

Dalton, David (2024) Physics-informed emulation with applications in soft-
tissue mechanics. PhD thesis.

https://theses.gla.ac.uk/84552/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

https://theses.gla.ac.uk/84552/
mailto:research-enlighten@glasgow.ac.uk

Physics-informed emulation
with applications in soft-tissue

mechanics

David Dalton

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE
DEGREE OF

DOCTOR OF PHILOSOPHY

SCHOOL OF MATHEMATICS AND STATISTICS

COLLEGE OF SCIENCE AND ENGINEERING

MARCH 2024

Abstract

The development of mathematical models in the past generation has been transformative

for a number of scientific disciplines. Mathematical models allow for causal effects to be

examined, relationships between variables to be quantified, and hypotheses to be explored

through the generation of synthetic data. One example of particular relevance for this

work is the field of soft-tissue mechanics, where recent developments in modelling theory

and practice have the potential for application in quantitative personalised medicine.

The sophistication of modern mathematical models extends far beyond the limits of

analytical tractability, which means that numerical physics simulators are required for

solutions to be found. Computer simulation algorithms have also seen tremendous devel-

opment in the past generation. However, challenges remain with traditional simulation

approaches, particularly their high computational costs in certain cases. An alternative

method which can alleviate some of these challenges is emulation, whereby the simulator

is replaced by a cheaper, data-driven surrogate model. Emulation however has its own

drawbacks, in particular lack of explicit incorporation of known physical laws. In this

work we make use of a new generation of methods which incorporate aspects of both

physics simulators and data-driven emulators, which we call physics-informed emulation.

We first consider a model describing the behaviour of the left-ventricle (LV) of the

heart in diastole, performing emulation with a Graph Neural Network (GNN) surrogate

model. In contrast to more traditional emulation approaches, a GNN allows for the exact

computational mesh representation of the LV to be modelled, without any approxima-

tions. Numerical experiments are performed which demonstrate that our approach can

achieve strong out of sample predictive accuracy, while offering massive savings over the

simulator at prediction time. We next extend the GNN emulation framework to a range

of soft-tissue mechanical models, involving varying constitutive laws, boundary conditions

and geometries. Furthermore, the emulator is trained by application of the Principle of

Minimum Potential Energy, which has the advantage that no simulation data is required

for training. The possible significance of this work is in enabling soft-tissue mechanical

ii

models to be deployed for real-time clinical decision support. Finally, we switch focus to

consider how to integrate noisy observation data, linear PDE information and boundary

conditions into a Gaussian process (GP) surrogate modelling framework. We demon-

strate via theoretical analysis and numerical experiments that this integration can be

done seamlessly and efficiently, and is especially useful for solving inverse problems.

iii

Contents

Abstract ii

Acknowledgements xix

Declaration xx

1 Introduction 1

1.1 Mathematical Modelling . 1

1.2 Computer Simulation . 3

1.3 Emulation . 6

1.4 Model validation . 8

1.5 Soft-tissue mechanics: simulation and emulation 9

1.6 Physics-Informed machine learning . 13

1.7 Background Methods . 14

1.7.1 Fully-connected neural networks . 14

1.7.2 Graph neural networks . 19

1.7.3 Physics-informed neural networks 23

1.7.4 Gaussian process regression . 27

1.8 Thesis outline . 30

2 Emulation of Cardiac Mechanics using Graph Neural Networks 32

2.1 Introduction . 33

2.1.1 Contributions . 35

2.2 Methods . 35

2.2.1 General Mechanics and Graph Representation Framework 35

2.2.2 Neural Networks . 39

iv

2.2.3 Augmented Graph Generation . 42

2.2.4 GNN Emulation Architecture . 50

2.3 Beam Deformation Application . 56

2.3.1 Mathematical Details and Data Generation 56

2.3.2 Implementation Details . 57

2.3.3 Results and Discussion . 59

2.4 Passive Left Ventricle Mechanics Application 63

2.4.1 Mathematical Details . 64

2.4.2 Simulation Data Generation . 66

2.4.3 Existing Work on Cardiac-Mechanic Emulation 68

2.4.4 Implementation Details . 69

2.4.5 Results . 72

2.4.6 Discussion . 80

2.5 Conclusion . 85

Data and Code Availability . 85

3 Physics-Informed Graph Neural Network Emulation of Soft-Tissue

Mechanics 86

3.1 Introduction . 88

3.1.1 Contributions . 89

3.2 Methods . 90

3.2.1 Mechanics Framework . 90

3.2.2 Numerical Methods . 92

3.2.3 Graph Neural Network Surrogate Model 94

3.2.4 Implementation Details . 95

3.3 Numerical Experiments . 101

3.3.1 Data-Driven and Physics-Informed Training Comparison 102

3.3.2 TwistingCube . 106

3.3.3 Liver . 109

3.3.4 LeftVentricle . 111

3.4 Discussion . 116

v

3.4.1 Data-Driven and Physics-Informed Training Comparison 116

3.4.2 Computational Costs . 116

3.4.3 Liver and LeftVentricle Emulation Results 117

3.4.4 Limitations and Future Work . 118

3.5 Conclusion . 119

4 Hard-constrained Gaussian processes for robust physics-informed learn-

ing of linear PDEs 120

4.1 Introduction . 121

4.1.1 Motivation . 122

4.1.2 Related Work . 123

4.1.3 Contributions . 124

4.2 Gaussian process regression . 124

4.3 GPR under Linear PDE constraints . 127

4.4 Hard-Enforcement of Dirichlet Boundary Conditions 130

4.4.1 Example - unit cube domain . 132

4.5 Reproducing-Kernel Hilbert Space Analysis 134

4.6 Connection to Neural Networks . 137

4.7 General Boundary Conditions . 139

4.7.1 Extension to higher dimensional domains 143

4.8 Numerical Experiments . 144

4.8.1 Poisson Equation . 147

4.8.2 Heat Equation . 153

4.8.3 Wave Equation . 157

4.8.4 Advection-Diffusion Equation . 163

4.8.5 Helmholtz Equation . 165

4.9 Conclusion . 167

5 Summary 170

5.1 Future Work . 172

Appendices 176

vi

A Appendix for Chapter 2 . 176

A.1 Additional Beam Emulation Results 176

A.2 Additional LV Emulation Results 178

A.3 Synthetic LV Geometry Generation 180

B Appendix for Chapter 3 . 185

B.1 Effect of learning rate on emulator training 185

B.2 Additional data-driven and physics-informed emulation experiments 188

B.3 Comparison of Neo-Hookean and Holzapfel-Ogden material models 188

B.4 Application to biventricle cardiac geometry 191

B.5 Emulation on new LV geometry . 192

C Appendix for Chapter 4 . 196

C.1 Proof of Lemma 4.4.1 . 196

C.2 Proof of Theorem 4.5.3 . 197

C.3 Proof of Theorem 4.6.2 . 202

vii

List of Tables

2.1 Prediction times (seconds) for forward simulator and GNN emulators. The

first row shows emulator prediction times when run on CPU, and the second

row shows GPU prediction times. 80

3.1 Summary of models considered for emulation. 102

3.2 Summary of emulation results for TwistingCube model using different mesh

densities. The final row presents prediction times when only the final, decoder

stage of Algorithm 2 is evaluated. 109

A.1 Emulation error (in mm) statistics for different values of message passing steps

K, when using non-augmented graph representations with M = 40. 176

A.2 Emulation error (in mm) statistics for different values of message passing steps

K, when using augmented graph representations with η = [24, 6] and M = 40.176

A.3 Emulation error (in mm) statistics for different values for η, the node cardin-

ality input vector to Algorithm 1. 177

A.4 Emulation error (in mm) statistics for different values for the dimensionality

M of the embedding vectors internal to the GNN, with K = 2 and η = [24, 6]. 177

A.5 Emulation error (in mm) statistics for different values of message passing steps

K, when using augmented graph representations when using FEniCS Tem-

plate as reference graph with η = [24, 6] and M = 40. 177

A.6 Emulation error (in mm) statistics for different values for η, the node cardin-

ality input vector to Algorithm 1 when using FEniCS Template as reference

graph with K = 2 and M = 40. 177

A.7 Emulation error (in mm) statistics for different values for the dimensionality M

of the embedding vectors internal to the GNN when using FEniCS Template

as reference graph with η = [24, 6] and K = 2. 178

viii

A.8 LV emulation error statistics (mm) for different number of principal compon-

ents (PCs) retained in zglobal, with K = 5 and M = 40. 178

A.9 LV emulation error statistics (mm) for different values of message passing steps

K with M = 40. 178

A.10 LVV emulation error statistics (%) for two MLP emulators and two GNN

emulators. 179

A.11 Emulation error statistics for general and transfer-learned emulators. The

”Displacement” columns give prediction errors on the nodal displacement vec-

tors (in mm), while the ”LVV” columns give percentage errors in LVV predic-

tions. 179

A.12 MLP LVV emulation error statistics (in %) for different choices of patience

level, where back-tracking is applied to find the optimal network weights

on the validation data. 179

A.13 MLP LVV emulation error statistics (in %) for different choices of patience

level, where back-tracking is not applied to find the optimal network

weights on the validation data. 180

ix

List of Figures

1.1 A real-world process maps a physical system from an initial state to an end

state. While we can observe the states of the system, the functional form of

the process itself is not known. The objective of mathematical modelling is to

model and abstract properties of the physical-process. This in turn allows a

computer simulator to be built which approximates the forward map of the real

process. Finally, a black-box emulator is an approximation of the simulator,

i.e. an approximation of an approximation. This is based purely on data, i.e.

none of the modelling assumptions used to build the simulator are explicitly

encoded into the emulator. 4

1.2 Panel (a) shows three possible activation functions φ. Regression results on

toy data with FCNNs using each of these choices of φ are shown in remaining

panels. Note that the linearity of the identity function induces an FCNN which

is affine in the input variable x. 18

1.3 Plots of two example graphs, where the nodes are represented as black squares,

and the edges as grey lines. 20

1.4 PINN results for 1D Poisson equation (see Eq. (1.17)). The left column shows

the results of a PINN trained using the strong form of the problem (see

Eq. (1.21)) and the right column shows the results of a PINN trained using

the energy form of the problem (see Eq. (1.22)). The top row shows the true

versus predicted value of the solution function u (see Eq.(1.18)), while the

bottom row shows the true versus predicted values of the forcing term g (see

Eq.(1.17)). 26

x

1.5 Samples from GPs with linear (Eq. (1.26)) and rational-quadratic (Eq. (1.27))

kernels, respectively. The top row shows samples in function space, and the

bottom row shows samples in derivative space, where the kernel for the deriv-

ative samples was found as in Eq. (1.28). 29

2.1 Panel (a) shows a simple 2-D FE mesh with two triangular elements (T1 and

T2). Panel (b) shows the nodes V (indexed n1 to n4) and the topology E

(shown as directed arrows) induced by the FE mesh. 37

2.2 Schematic illustration of GNN emulation. The emulator makes use of a three-

stage, encode-process-decode framework to map the initial state of the physical

system to its end state. 41

2.3 Illustration of Algorithm 1 applied to a 2-D beam geometry, with κ = 4 and

η = [24, 6]. Panel (a) shows the nodes and edges of the input graph and

panel (b) plots the real nodes in black with the augmented nodes in red and

green. The second and third row of figures illustrate steps one and two of the

algorithm respectively - for a detailed description, see the text. 47

2.4 Panel (a) shows the root neighbourhood for node nc, NRoots
c , with grey arrows,

and the neighbourhood for node nc′ , NRoots
c′ , with black arrows. We see that

nc′ ∈ NRoots
c but nc /∈ NRoots

c′ . Therefore, an additional edge {nc′ →nc} is

created, so that the symmetry from Eq. (2.27) can be enforced in the message-

passing stage of the emulator. 48

2.5 The upper row of figures shows two graphs G0 and G1 which share a common

topology, that is E0 = E1. The bottom row shows the augmented graphs G̃0

and G̃1 found by running Algorithm 1 with η = [2]. Virtual nodes are shown

in red and additional edges are shown as dashed red lines. In this case, we

have that Ẽ0 6= Ẽ1. 49

2.6 A large number of message passing steps may be required to disseminate in-

formation around a dense set of FE nodes. Introducing additional layers of

coarse, virtual nodes allows information to disseminate more quickly using a

“shortcut” through the augmented space (illustrated by the blue arrows). . . . 55

xi

2.7 Panel (a) shows an example discretised beam geometry in its initial, reference

configuration. Panel (b) then shows the end-state of the beam geometry after

a simulation following Eq. (2.38) is run. 57

2.8 Violin plots of test-set nodal GNN emulation prediction errors (in mm) for K =

1, ..., 6 message passing steps with the dimensionality of the internal embedding

vectors M = 40. The left hand side of each violin plot in blue gives the

distribution of errors when the non-augmented graph representations are used

for emulation, that is without any virtual nodes or edges. The right hand side

of each plot in green shows the error distribution when the augmented graphs

are used, generated using Algorithm 1 with nearest neighbour parameter κ = 4

and node cardinality vector η = [24, 6]. 60

2.9 Violin plots of test-set nodal GNN emulation prediction errors for different

hyperparameter input values. Panel (a) shows the distribution of errors for

six different values of η, with K = 2 and M = 40. Panel (b) plots the

distribution of emulation error for M = 3, 6, 10, 20, 40, 60, with K = 2 and

virtual node layer cardinality vector η = [24, 6]. 61

2.10 Illustration of emulation performance for two test-set beam simulations. The

beam in the left column had an initial width/height of 56.5/22.0mm, and the

simulation was run with Lamé parameters λ = 7.03, µ = 5.94. The beam

in the right column had initial dimensions of 66.1/16.7mm with λ = 6.52,

µ = 5.98. The top row of plots shows the predictions of the GNN emulator

with K = 2 rounds of message passing as red circles against the outputs of

the simulator as black squares. The second row displays emulator predictions

with K = 2 again as red circles, against predictions with K = 6 as blue

squares. The final row of figures displays an enlarged version of the nodes

inside the black squares from the figures in the second row, with coordinate

values provided for reference. 62

xii

2.11 Comparison of nodal coordinates {xi}|V|i=1 in geometry space (top row of panels)

against two dimensional projections of the local embedding vectors {zlocal
i }|V|i=1

(bottom row of panels), for two beam geometries. The projection values were

found using Principal Component Analysis (PCA). The columns of the nodal

coordinates in geometry space are coloured with a shading that is shared

with the PCA projections, allowing for clusters in the projection values to be

compared with coordinate position values. 64

2.12 Panel (a) shows the hexahedral FE mesh structure of a LV along with the

RBM generated myofibre field, where myofibre orientation varies smoothly

from endocardium to epicardium. Panel (b) shows the endocardial and epicar-

dial surfaces of an example LV geometry in its initial reference configuration.

Panel (c) then shows the deformed LV geometry after a simulation following

Eq. (2.41) is run. 67

2.13 Violin plots of test-set nodal GNN emulation prediction errors (in mm) for

different hyperparameter input values. Panel (a) shows the distribution of er-

rors with {0, 8, 16, 24, 32} PCs retained in zglobal using K = 5 message passing

steps. Panel (b) shows the distribution of errors for K = 1, ..., 6 with 32 PCs

retained in zglobal. 73

2.14 Comparison of test set LVV prediction errors for MLP and GNN emulation.

Performance is evaluated in terms of the absolute percentage error between

the predicted and true LVV values. The violin plots of MLP 1 and GNN 1 give

emulation results when the pre-transformations of inputs θ and zglobal detailed

in Section 2.4.4.1 are not applied before training. The violin plots of MLP 2

and GNN 2 then give the emulation results when these transformations are

applied. 74

2.15 Comparison of emulation performance of the general emulator and the emu-

lator transfer-learned on the specific LV geometry of interest. Panel (a) shows

violin of prediction errors in the nodal displacement of the deformed geometry

(mm), and (b) shows violin plots of errors in the prediction of LVV (%). . . . 75

xiii

2.16 Three example test-set end-diastole geometries outputted by the simulator

(red) against emulator predictions (blue). The top row shows the predictions of

the original, varying-geometry emulator in blue, and the second row shows the

predictions of the fixed-geometry emulator. Note that the simulated inflation

of the LV in the left column is larger than would be expected to be observed

in-vivo. 77

2.17 Distribution of emulation error over [a, b] space, with fixed af = bf = 1 and

fixed LV geometry. The top row shows heatmaps of mean displacement errors

over [a, b] space (in mm), while the second row shows heatmaps of absolute

percentage error in LVV prediction. The left column shows the results when

using the original emulator for predictions, while the second column shows

results when using the emulator transfer-learned on the fixed LV anatomy. . . 78

2.18 Comparison of nodal coordinates xi in geometry space (top row of panels)

against two dimensional projections of the local embedding vectors zlocal
i (bot-

tom row of panels), for two LV geometries. The top row of panels show short-

axis views of the two geometries, with 60 coordinates along the epicardial

surface of each LV displayed as points with a cyclic colour shading. For refer-

ence, the endocardial surface of each LV is also displayed as a black curve. The

projection values of the epicardial points are found using Principal Component

Analysis (PCA), and they are coloured in the bottom row of panels with the

same shading as the nodal coordinates. We observe the same periodicity in

the projection values as is seen in the coordinate values. 79

3.1 Schematic illustration of physics-informed training of ω, the tunable paramet-

ers of a GNN emulator. 96

3.2 Illustration of the rectangular beam models considered as 2-D slices in the (X1,

X3) plane (not to scale), where the dashed lines indicate a clamped Dirichlet

boundary, ρ is the density of the material and g the acceleration due to gravity.102

3.3 Comparison of data-driven and physics-informed emulation results on OnceClampedBeam

model. 103

xiv

3.4 Comparison of data-driven and physics-informed emulation results on TwiceClampedBeam

model. 105

3.5 Error density plots for TwistingCube model (343 FE nodes). The vertical

lines indicate median values. 107

3.6 Median out of sample emulation results for TwistingCube model (mm). 108

3.7 Emulation results for Liver model. The top row shows density plots of erru

and errI1 , where the vertical lines indicate median error values. The bottom

row displays loss heatmaps of erru and errI1 over the space of Lame parameter

(i.e. (λ, µ)) configurations considered. The dashed lines indicate the boundary

of the domain considered during training. 110

3.8 Median out of sample emulation results for Liver model (mm). 111

3.9 Short-axis illustration of boundary conditions for LeftVentricle model at the

base of the geometry (idealised, symmetric geometry only used for illustration

purposes). The figure shows in the (X1, X2) plane - the X3 direction runs from

the apex to the base (see Figure 3.11 (a)) . Here ∂Ωd
0 indicates the clamped

base of the LV where zero displacements are allowed, ∂Ωσ
0 the inner surface of

the LV (the endocardium) where outward pressure is applied, represented by p. 113

3.10 Error density plots for LeftVentricle model. The vertical lines indicate

median values. 114

3.11 Median out of sample emulation results for LeftVentricle model (mm). Note

that the simulated inflation of the LV in the left column is slighly less than

would be expected to be observed in-vivo. 115

4.1 Function (left column) and derivative (right column) samples from four HCGPs

corresponding to different boundary conditions at x = 0. The y-axis of each

plot is clipped to make function and derivative samples easier to compare.

For consistency, the same random seeds are used in drawing the samples from

each row. 140

4.2 Illustration of cubic polynomials B− : [a, b] → [0, 1] and B+ : [a, b] → [0, 1] for

[a, b] = [0, 1]. See Eq. (4.45) for more details. These functions are useful for

deriving boundary covariance functions k̃ for domains Ω ⊂ RD with D > 1. . . 143

xv

4.3 Illustration of results for Poisson-BVP-1, which compares the performance of a

HCGP with a HCNN given a sparse number of collocation points. Both models

are constrained to exactly satisfy the Cauchy condition on the left boundary

and Robin condition on the right boundary - see the HCGP samples in panel

(a) for instance. 150

4.4 Illustration of results for Poisson-BVP-2. Here, a HCGP is constructed on

a non-rectangular domain using the distance function ϕp(x, y) - see panel (c)

above and Eq. (4.56). 151

4.5 Plots of true solution (top row) and HCGP/PCGP predictions (second/third

rows) for Heat-BVP-1 (left column) and Heat-BVP-2 (right column). 155

4.6 Effect on parameter inference accuracy of number of penalty observation points

Nb for PCGP for Heat-BVP-1 and Heat-BVP-2. 156

4.7 Effect of observation noise on the accuracy of solution-space (top row) and

parameter-space (bottom row) results obtained using UCGP, PCGP and HCGP

respectively, for Heat-BVP-1 (left column) and Heat-BVP-2 (right column). . 158

4.8 Plots of true solution (top row) and HCGP/PCGP predictions (second/third

rows) for Wave-BVP-1 (left column) and Wave-BVP-2 (right column). 161

4.9 Traceplots of θ̂ against number of optimisation steps for Wave-BVP-1 and

Wave-BVP-2. The bold black horizontal lines indicate the true value of θ = 1

in both plots. 162

4.10 Illustration of true solution and HCGP prediction for Advection-Diffusion-

BVP (top row). Panel (c) shows parameter inference error as a function of

the number of training points for both UCGP (blue) and HCGP (green) ap-

proaches, while panel (d) shows function space error. 164

4.11 Posterior predictive results for Helmholtz equation using UCGP (left column)

and HCGP (right column). The red points in the top row show the obser-

vations in u-space, while the black crosses show the input locations for the

observations in f -space. The second row shows a heatmaps of prediction er-

ror, and the final row shows heatmaps of posterior predictive standard deviation.168

xvi

A.1 Emulator learning curves. Panel (a) shows training loss against epoch number

and panel (b) shows validation loss, both for the GNN Emulator. The

second row of panels shows learning curves for the MLP Emulator - panel

(c) shows training loss against epoch number, and panel (d) validation loss. . . 180

A.2 Panel (a) plots τ 2P , the cumulative proportion of variance explained by the first

P principal components (PCs), for P = 1, 2, ..., 20. Panel (b) plots the mean

reconstruction error δP (in mm) for the same values of P 183

A.3 An example LV geometry plotted against its PCA reconstruction. The red

surface shows the ground truth, while the blue surfaces show the geometry

reconstructed from an P dimensional latent PC space, for three different values

of P . 184

B.1 Illustration of the TractionBeamHO and TractionBeamGucci models as 2-D

slices in the (X1, X3) plane (not to scale). The dashed lines indicate a clamped

Dirichlet boundary, and p represents a pressure applied to a Neumann bound-

ary surface. 185

B.2 Traceplots of Mean(Π) for four beam models using different learning rates. . . 186

B.3 Traceplots of Mean(erru) for four beam models using different learning rates. 187

B.4 Comparison of data-driven and physics-informed emulation results on OnceClampedBeam

model. The PI-GNN is trained by optimisation of Eq. (3.12), the DD-GNN is

trained purely on displacement data as in Eq. (3.11), while the FDD-GNN ad-

ditionally incorporates a loss on the deformation gradient F following Eq. (B.1).189

B.5 Comparison of data-driven and physics-informed emulation results on TwiceClampedBeam

model. The PI-GNN is trained by optimisation of Eq. (3.12), the DD-GNN is

trained purely on displacement data as in Eq. (3.11), while the FDD-GNN ad-

ditionally incorporates a loss on the deformation gradient F following Eq. (B.1).190

B.6 Comparison of emulation results for LeftVentricle model under the Neo-

Hookean and Holzapfel-Ogden material models. 191

B.7 Comparison of simulation and emulation results for biventricular cardiac geo-

metry. 192

xvii

B.8 Comparison of emulation results for new LV geometry for GNN trained from

scratch for 15000 epochs (Reference), versus a transfer-learned GNN trained

for 12 epochs (Transfer Learned) and a randomly initialised GNN trained for

12 epochs (Baseline). 194

B.9 Median out of sample emulation results for LeftVentricle model (mm) using

new geometry. Top row shows a fully trained PI-GNN, bottom row shows a

PI-GNN transfer-learned for 90 seconds. 195

xviii

Acknowledgements
I would like to thank firstly my supervisors Prof. Dirk Husmeier and Dr. Hao Gao for

their support, guidance and at times patience during the past four years. I also need to

thank a number of researchers from the SofTMech group at Glasgow that I have been

fortunate to work with, namely, Yuzhang Ge, Dr. Alan Lazarus and Dr. Arash Rabbani.

Special thanks to Alan for his help during the first year of my PhD.

Finally, thanks to the University of Glasgow for funding my PhD studies.

xix

Declaration
I declare that, except where explicit reference is made to the contribution of others, this

thesis is the result of my own work and has not been submitted for any other degree at

the University of Glasgow or any other institution. This work was carried out during

my PhD studies under the supervision of Prof. Dirk Husmeier and Dr. Hao Gao. The

contents of Chapters 2 and 3 have resulted in two journal publications, which are listed

below. Additional publications I obtained which are not presented in this thesis include

[1]–[8].

- Dalton, David; Gao, Hao; Husmeier, Dirk (2022) [9]. “Emulation of Cardiac Mech-

anics using Graph Neural Networks”. In Computer Methods in Applied Mechanics

and Engineering.

- Dalton, David; Husmeier, Dirk; Gao, Hao (2023) [10]. “Physics-Informed Graph

Neural Network Emulation of Soft-Tissue Mechanics”. In Computer Methods in

Applied Mechanics and Engineering.

David Dalton

xx

Chapter 1
Introduction

The objective of this chapter is to give the reader a general overview of both the historical

context of the work presented in this thesis and some relevant material from the more

recent literature. A less formal style is favoured here which emphasises conceptual under-

standing, with technical details kept to a minimum. All such details are instead explained

comprehensively in separate methods sections presented in each subsequent chapter.

1.1 Mathematical Modelling

Mathematical modelling involves representing real-world systems or phenomena using

equations or algorithms, with the goal of abstracting the potentially complex structure

of the system under consideration [11]. Such abstractions have a number of potential

advantages over purely empirical approaches, primarily the fact that they allow for the

fundamental underlying principles driving the system to be elucidated and understood

[12]. This is essential for modern scientific applications, where increasingly complex pro-

cesses are being modelled [13]. In addition, mathematical models enable for the effect of

different variables to be quantitatively explored, including any potentially intricate inter-

action effects. This allows for the formulation and testing of hypotheses in a manner which

is not possible if only observational data were considered. The obvious disadvantage of

this approach is that with too much abstraction, the model may be too coarse-grained to

capture the essential structure of the real process. In this sense then, the art of modelling

is to balance considerations between fidelity and practicality, and in turn allow for the

construction of less wrong and more useful models, to paraphrase George Box [14].

1

1.1. Mathematical Modelling 2

A landmark moment in the development of mathematical modelling was Isaac New-

ton’s derivation of the orbits of the planets in 1687 [15]. The behaviour of the celestial

bodies has been the subject of universal human fascination for millennia, with cultures

across the entire planet having carefully documented the motion of the stars, planets and

comets during all of recorded history [16]. The apex of this type of analysis had come

earlier in the 17th century, with the publication by Johannes Kepler of his three laws for

planetary motion [17]. Derived via careful examination of astronomical records, Kepler’s

laws accurately described the motion of the planets of the solar system. However, these

laws were purely empirical - there was no underlying causal model explaining why the

laws held. Newton’s approach was much different, and it completely revolutionised the

means by which the solar system could be understood. Coupling his famous three laws

of mechanics with a theory of universal gravitation, Newton derived Kepler’s empirical

laws from first principles. A key advantage of Newton’s approach is that it allowed for

out-of-sample, data-independent predictions to be made. These predictions could then

be compared with empirical observations, allowing for discrepancies to be highlighted for

further investigation. A dramatic confirmation of the unique advantages of this approach

came in the mid 19th century, when astronomers identified a deviation in the observed

orbit of Uranus with that predicted under Newton’s mathematical model. This led some

scientists to postulate that the discrepancy was due to the existence of a large mass in

the solar system which had yet to be identified [18]. In 1846 Urbain Le Verrier was able

to derive the location and mass of an object that would reconcile the predictions of the

model with the astronomical observations. Later that year, the object was identified by

telescope to within 1◦ of Le Verrier’s prediction - we now call it the planet Neptune [19].

Various types of mathematical model exist, ranging from simple algebraic models

like the classic Leontief input-output economic model [20], to game-theoretic [21] and

agent based models [22]. In this work, however, we will be concerned primarily with

mathematical models based on differential equations [23], which are ubiquitous across

virtually all fields of science [24]. Differential equations (DEs) can be categorised into

a range of different subtypes, including for example ordinary (ODEs), partial (PDEs),

stochastic (SDEs) and differential-algebraic (DAEs). At their core, however, all differential

equation models postulate a functional form for some differential operation of the process

1.1. Mathematical Modelling 3

of interest. This functional form is usually derived using physical principles such as the

conservation of energy or momentum balance. A simple example is Newton’s second law,

which postulates a relationship between the force acting on an object and the acceleration

(i.e. second derivative of position) it experiences. Other classic examples of differential

equations include the harmonic oscillator, which describes the motion of a mass connected

to a spring [25], the Lotka-Volterra equations for modelling the evolution of predator

and prey populations [26], and finally the Schrödinger equation which governs the wave

function of a quantum-mechanical system [27].

The complexity of the physical systems being modelled has dramatically increased

since the pioneering work of Newton. For more complex systems, highly simplifying as-

sumptions are in general not adequate to capture the behaviour of the true process. For

example, Newton was able to derive highly accurate celestial orbits without having to

account for the specific geometries of the planets and the sun - instead, he considered

each as simply a point mass. By contrast, in the soft-tissue simulation models considered

in this work, it is essential that patient specific geometries are accounted for to maintain

model accuracy. This is because each geometry will be unique to the individual patient,

and changes in the geometry affect the stress-strain behaviour of the body under loading

[28]. While more sophisticated models can produce greater physical realism, they gener-

ally lack the analytical tractability of simpler models. For this reason, essential to the

development of mathematical modelling in the past generation has been the contempor-

aneous development of computer engineering and algorithms, which allows for numerical

simulation of sophisticated models to be performed.

1.2 Computer Simulation

Modern mathematical models provide a conceptual framework in terms of abstract equa-

tions and algorithms - it is only with computer simulation, however, that these abstrac-

tions are brought to life [29]. The main advantage of simulation methods is that they

allow researchers to push their models beyond the limits of analytical tractability, and

1.2. Computer Simulation 4

Initial State End State

Real Process

Simulator

Modelling

Data

Emulator

Figure 1.1: A real-world process maps a physical system from an initial state to an end
state. While we can observe the states of the system, the functional form of the process
itself is not known. The objective of mathematical modelling is to model and abstract
properties of the physical-process. This in turn allows a computer simulator to be built
which approximates the forward map of the real process. Finally, a black-box emulator
is an approximation of the simulator, i.e. an approximation of an approximation. This is
based purely on data, i.e. none of the modelling assumptions used to build the simulator
are explicitly encoded into the emulator.

consider features of the system of interest that would not be possible otherwise, such as

nonlinearities [30], multiscale interactions [31] and chaotic temporal dynamics [32]. This

is illustrated in Figure 1.1, where, through modelling and abstraction, we can build a

computer simulator which acts as a “digital twin” for the real-world process [33].

Contemporary computer simulation methods have as their foundation three comple-

mentary disciplines that have seen massive development in the past decades, namely;

computer hardware, computer software, and numerical simulation algorithms.

The earliest Turing-complete digital electronic computers include the ENIAC (1945)

[34] and UNIVAC (1951) [35]. Even at this early stage, the primary focus of these com-

puters was in the simulation of physical processes, such as nuclear physics [36, Chapter

13], weather forecasting [37], and fluid dynamics [38]. By the 1960s and 1970s, computers

became more widespread as costs decreased and accessibility increased, for example with

the development of graphical user interfaces (GUIs) [39]. In turn, computer simulation

became more widely applied in the hard sciences [40]. The 1990s and 2000s saw the

1.2. Computer Simulation 5

advent of affordable and powerful desktop computers, which in turn assisted the develop-

ment of computer simulation into new fields, including biology [41] and the social sciences

[42]. These developments have only grown in the past decade, aided by the increasing

availability of high performance computer clusters and cloud computing platforms [43].

Advances in computer hardware have been coupled with commensurate advances in

the ease with which computers can be programmed to perform numerical simulations.

Programming the earliest computers was a laborious process, where punchcards and later

switchboards were required [44]. Higher level computer languages gradually became avail-

able however which lowered the entry level required to program computers, most notably

FORTRAN (1957) [45], C (1972) [46] and C++ (1979) [47]. This has culminated today

in a multitude of modern languages and frameworks which make it convenient to write

efficient, differentiable programs which run not only on central processing units (CPUs),

but also graphics processing units (GPUs) and tensor processing units (TPUs). An ex-

ample of this is the excellent Python library JAX for differentiable and jit compilable

code [48], which is used to perform all numerical experiments presented in this work.

Finally, the past several decades have also seen massive developments in the qual-

ity and scale of numerical algorithms used to perform computer simulations. An early

example is the Markov-chain Monte-Carlo (MCMC) method, which allows intractable

integral equations to be solved approximately by using random samples drawn from

a Markov process. Originally developed for use in nuclear physics [49], [50], this ap-

proach has now revolutionised the practice of Bayesian statistical inference [51]. For

systems described by differential equations, a wide range of algorithms have been de-

veloped that facilitate computer simulation. This includes the finite-element method

(FEM) [52], finite-difference method (FDM) [53], finite-volume method (FVM) [54], and

material-point method (MPM) [55], to give some examples. The common theme in all

these methods is in discretising a set of continuous model equations, which can then be

naturally handled on a digital computer. In this work, all simulations are performed using

the FEM, which is discussed in detail in Chapter 3.

1.2. Computer Simulation 6

Traditional numerical simulation approaches such as the FEM have many advantages;

including rigorous mathematical foundations [56], suitability for complex application do-

mains [57], and wide availability of user-friendly software for practical implementation

[58]. There are however some drawbacks. For example, it can be difficult to incorpor-

ate noisy observational data [59], and also the computational expense can be very high

for simulating more complex systems [60]. In this work, we will consider an alternative

approach called emulation that can alleviate these issues.

1.3 Emulation

Emulation is a technique for approximating a computationally expensive computer simu-

lator with a cheaper machine learning model [61]. The objective is to create a surrogate

that can accurately replicate the behaviour of the simulator, but which is significantly

more efficient at prediction time, enabling experiments and analyses to be performed that

would otherwise be too expensive in reasonable time frames. Additionally, an emulator

can naturally accommodate noisy observations of the real-world process itself, which can

be difficult for a traditional numerical simulator [59].

The pioneering work of Kennedy and O’Hagan (2001) [62] is now seen as seminal in

the emulation community, where it was outlined how a class of stochastic processes called

Gaussian processes (GPs) could be used as surrogates for costly computer simulation

models. GPs are described in detail in Chapter 4. At first glance, this approach may

seem counter-intuitive, as it means assuming that the deterministic simulator follows a

stochastic process. However, this is exactly the Bayesian paradigm for performing infer-

ence, whereby all variables about which we are uncertain are assigned a prior probability

measure. The beauty of the GP formalism is that it allows us to place a probability meas-

ure directly on a function space, which is an appealing approach for learning the functional

form (i.e. the input-output map) of a computer simulator. Closed form expressions exist

for then updating the prior to a posterior given observation data. Once the GP emulation

framework has been presented, the paper discusses techniques for calibration and valida-

tion of the surrogate model, before presenting several applications, including for example

1.3. Emulation 7

environmental and engineering systems. More recently, the work of Gramacy (2020) [63]

will likely prove seminal for the next generation of researchers in the field, in which a

systematic illustration of the power of emulation using GPs is given, for tasks such as

prediction, uncertainty quantification, optimisation and experimental design.

In order for an emulator to be useful in practice, it must be able to generalise beyond

its training sample. For soft-tissue mechanics, it is essential that an emulator can gener-

alise to a new geometry (e.g. heart geometry), as this will vary from subject to subject.

Because of the inherent dimensionality of a 3D soft-tissue body (generally represented with

a computational mesh with thousands of nodes) this is difficult for a traditional emulation

approach, as they are typically applied to lower dimensional problems. To overcome this

issue, we make use of a graph neural network (GNN) emulator for soft-tissue mechanics in

Chapters 2 and 3, which can generalise to new geometries. One problem with using a more

complex emulation strategy, such as a GNN, is a corresponding loss in interpretability

of its predictions. While this was not an objective of this thesis, it has been the sub-

ject of extensive research in recent years. Proposed GNN interpretation methods include

CF-GNNExplainer [64], GNNInterpreter [65] and PGExplainer [66]. For a comprehensive

discussion of this topic, we direct the reader to the survey paper [67].

The traditional approach to emulation based on GPs treats the underlying simulator

as a black-box function, which maps inputs to outputs. This approach has some draw-

backs, however. First and foremost, it requires the generation of a large data set from the

simulator for training, which will be expensive to obtain. Clearly, it would be preferable

if emulator training could be performed without requiring a simulation data set. Further-

more, only through the simulation data itself is information about the underlying system

communicated to the emulator. In other words, prior knowledge about the system is not

systematically incorporated into the surrogate model, but instead must be learned from

the simulation data. This is illustrated in Figure 1.1, where the dashed line indicates that

the emulator is related to the simulator only via a data set, which acts as a bottleneck

through which all modelling assumptions and abstractions used to build the simulator

must be learned implicitly.

1.3. Emulation 8

Intuitively, an alternative modelling approach which combines the benefits of tradi-

tional emulation, such as computational efficiency, with the benefits of computer simu-

lation methods, like explicit handling of known physical properties, seems appealing. In

fact, models of this type have seen tremendous development during the past half-decade,

in the rapidly growing discipline of physics-informed machine learning - for details, see

Section 1.6.

1.4 Model validation

An essential component of both mathematical modelling and computer simulation is val-

idation, that is evaluating how well the model represents the real-world process by identi-

fying inconsistencies between the predicted and observed results [68]. One possibility for

an inconsistency is that the model is (approximately) correct, and there is an issue with

the observational data. The classic example of this was described in Section 1.1, where

the predicted and observed orbits of Uranus conflicted because Neptune had not been

identified and accounted for in the mathematical model. Alternatively, it could be the

case that the model itself is not an accurate abstraction for the true process. A classic

illustrative example of this is again provided by Newton’s model of celestial mechanics.

After the successful location of Neptune, astronomers began in earnest to identify more in-

consistencies between the model’s predictions and astronomical observations, in the hope

that further celestial bodies could be found [69]. One source of inconsistency was in the

orbit of Mercury, which Le Vellier himself predicted was due once more to the existence

of another planet, which became known as Vulcan [70]. Vulcan was never found, however

[69]. The reason was that, in this case, missing data was not the cause of the discrepancy

- instead the model itself was incorrect [71]. This was not clear until the beginning of the

following century with the celebrated work of Einstein on general relativity [72], which

showed that the discrepancies in Mercury’s orbit can be explained by the curvature of

spacetime due to the Sun’s mass [69].

1.4. Model validation 9

This example illustrates another important aspect of mathematical modelling, which

is that the domain of validity for a model should be clearly defined. For instance, it is now

understood that Newton’s three laws of motion are not universally valid, as for objects at

atomic level, the laws of quantum mechanics hold [73]. Similarly, while Newton’s theory

of universal gravitation holds for many practical purposes, it breaks down for velocities

close to the speed of light and/or in the presence of large gravitational potential, where

it is superseded by Einstein’s special and general theories of relativity [74].

Unfortunately, these important topics are beyond the scope of this thesis. However,

relevant ideas are implicit in some of the work we present. For instance, in Chapter 2 we

build an emulator for a simulation model of the LV in diastole, assuming a material model

for the cardiac tissue called the Holzapfel-Ogden (HO) model, which has been validated

in ex vivo mechanical studies [75]. Because of this, we appeal to transitivity to assert that

if the emulator accurately replicates the results of the simulator, then it is also reliable

against real data. However, in assuming the validity of this model, we are also implicitly

assuming that the external loads placed on the cardiac tissue are physiologically realistic.

On the other hand, for excessive loads which would cause the material to rupture, the

model is not valid.

1.5 Soft-tissue mechanics: simulation and emulation

The complexity of soft-tissues and their role in various physiological functions make it

challenging to analyse their mechanical properties through experimental techniques alone.

Consequently, mathematical modelling and computer simulation have the potential to

deliver unique insights in this area. This has inspired the development of the field of

soft-tissue mechanics, which involves modelling the mechanical behaviour of biological

tissues, such as muscles, tendons, ligaments [76].

The most common modelling approach taken in the field is the continuum mechanics

framework [77], whereby soft-tissues are treated as continuous and deformable materials.

In this framework, the goal is to find mathematical descriptions both for the forces under

which the soft-tissue body is placed (e.g. blood pressure), and the constitutive relationship

of the material, i.e. its mechanical response under loading. Equations of motion can

1.5. Soft-tissue mechanics: simulation and emulation 10

then be derived in terms of momentum balance and mass conservation, which are solved

numerically. These numerical simulation results capture the deformation, stress, and

strain distribution within the tissue, providing insights into its mechanical behaviour. In

all soft-tissue models considered in this work, the continuum mechanic framework will be

used, with simulations performed using the FEM.

Advancements in computational power, numerical algorithms, and imaging technolo-

gies have contributed to the increasing accuracy and complexity of soft-tissue mechanics

models and simulators in recent years. This includes coupled multi-physics simulations,

such as fluid-structure interaction [78] or electro-mechanical coupling [79], and models of

tissue growth and regeneration over longer time scales [80]. Such models have highly prom-

ising potential for applications in personalised medicine. By integrating patient-specific

data, for example medical images or biomechanical measurements, with mathematical

models and simulations, researchers can predict tissue response, assess treatment options,

and optimise interventions [81]. Soft-tissue mechanics simulations could also play a crucial

role in surgical planning, by simulating surgical procedures, evaluating different surgical

approaches, and predicting postoperative outcomes [82]. This could aid in preoperative

decision-making and reduce the risk associated with surgical interventions.

Despite the clear potential benefits offered by soft-tissue mechanical modelling, the

deployment of these models for real-time clinical applications has been limited to date.

One reason in particular is the prohibitive expense incurred in running physiologically

realistic computer simulations. In general, soft-tissue models are comprised of a system of

coupled, non-linear PDEs defined on a complex geometry. Iterative numerical techniques

are then required to perform a simulation, which can be time-consuming. For example, a

key model considered in this work will be a model of the left ventricle (LV) of the heart in

diastole, the passive stage of the cardiac cycle during which the LV fills with blood. One

potential application for this model is in the context of an inverse problem, where stiffness

properties of the cardiac tissue are estimated non-invasively from imaging scans [60].

However, this procedure involves calibrating the output of the simulator with observed

1.5. Soft-tissue mechanics: simulation and emulation 11

experimental data, and accurate calibration via an iterative optimisation routine could

require hundreds or thousands of simulations to be performed. Since a single simulation of

the LV model can take up to 10 minutes [60], clearly this procedure can not be performed

fast enough for real-time results to be obtained.

For this reason, alternative means are required for real time deployment of complex

soft-tissue mechanical models. There has recently been significant interest in the use of

emulators or digital twins for this purpose - see for instance the review papers by Qian

et al. [83] and Laubenbacher et al. [84]. In the present work, surrogate models are used

for the forward problem of predicting the deformation of the LV from start to end dia-

stole. Surrogate models based on GPs, neural networks and polynomial chaos expansion

have been already been widely used in cardiac mechanics for forward problems [85]–[88].

Emulators have also been commonly used for inverse problems, where the objective is to

identify certain parameters of the physical model by incorporating observational data. To

give two specific examples, Lazarus et al. (2022) [89] used a neural-network surrogate

model to identify stiffness levels in the cardiac tissue given volume and circumferential

strain observations, while Caforio et al. (2023) [90] performed parameter inference using

a physics-informed neural network. While we do not consider the inverse problem in

cardiac mechanics in this work, we do consider inverse problems involving linear PDEs in

Chapter 4.

There are several factors currently prohibiting cardiac mechanic emulators from de-

ployment in clinical-settings. Perhaps the key problem is the lack of precise, real-time,

automated methods for extracting data from cardiac imaging scans. For in-clinic de-

ployment, a cardiac model would need to be calibrated against patient-specific data.

Currently, the state-of-the-art is manual segmentation, which is slow and prone to hu-

man error. There is active research ongoing in this important area (in which we have

participated [91], [4]), however this is not the subject of the present thesis. Regarding

emulation itself, a particular limitation of existing surrogate models is their handling of

the cardiac geometry. It is essential that an emulator for cardiac mechanics can gen-

eralise to unseen geometries. This is because the heart geometry of each subject will

be unique, and differences in cardiac geometry can yield different behaviour under load-

ing [28]. Existing studies accounted for variations in cardiac geometry with a low order

1.5. Soft-tissue mechanics: simulation and emulation 12

representation found using principal component analysis (PCA) [92]–[94]. This means

that the emulator operates on an approximation to the geometry used by the simulator,

not the true cardiac geometry extracted from imaging scans. We address this issue in

Chapter 2 with the use of a graph neural network (GNN) emulator, which can operate on

the exact cardiac geometry without approximations. Another limitation of most current

approaches is their reliance on data-driven training. This means, for example, that per-

forming in-clinic corrections via transfer learning (as discussed in [95, Chapter 6]) would

be time-consuming to perform, as it would require simulation data to be generated in ad-

vance. Also, data-driven may not fully capture the true underlying physics of the model,

as it is not trained to do so explicitly. We address this issue in Chapter 3 through the

use of a physics-informed emulator training strategy. This precludes the use of simula-

tion data, meaning real-time transfer learning can be performed. Furthermore, we show

experimentally that this training routine yields emulation results that approximate the

underlying physics more closely. Finally, the impact of uncertainty must be quantified

and mitigated before cardiac mechanic emulators can be deployed in-clinic. For instance,

even the geometry itself is uncertain due to noise in the imaging scans and imperfections

in the current manual extraction procedure. The level of uncertainty here and its effect on

emulator results should be both quantified and mitigated. A possible mitigation approach

would be to build an ensemble of emulators, which would reflect the underlying uncer-

tainty in the geometry. Despite the importance of this issue, once again this is beyond

the scope of the present work.

Reduced-order models (ROMs) constitute an alternative approach by which real-time

solutions can be found for soft-tissue mechanical models [96]. While the present work does

not consider ROM techniques, we will give a brief overview here for completeness. ROMs

aim to represent the dynamics of a high-dimensional system using a much smaller set of

variables, capturing the essential variations at lower computational cost. In the context

of cardiac mechanics, for example, this involves reducing the complexity of modelling

the entire heart geometry and dynamics, while retaining key physiological features. A

full-order model (FOM) (i.e. a simulator) of cardiac mechanics describes the dynamics

of the state variables of the cardiac system (such as the deformation field). An ROM

describes these dynamics using a reduced basis, which is typically found by applying

1.5. Soft-tissue mechanics: simulation and emulation 13

proper orthogonal decomposition (POD) to snapshots of the dynamical process. Using

the reduced basis, a reduced form of the cardiac-mechanical equations can be derived,

which can be solved in a computationally efficient manner. ROMs and emulators have

different strengths and weakness. For example, the forward map of an emulator tends to

be faster, while ROMs can be more accurate when dealing with patient-specific cardiac

simulations [97].

1.6 Physics-Informed machine learning

Physics-informed machine learning (PIML) merges techniques from computational phys-

ics and machine learning (ML) to improve the modelling and understanding of physical

systems. The idea of PIML is to design models which are a hybrid between physically

derived mathematical models and data-driven ML models. PIML most commonly refers

to the use of ML training techniques that incorporate into the inference procedure known

laws or principles of the physical system under consideration. These laws are typically

in the form of PDEs, but other formulations (for example energy formulations) are also

possible. Unlike with traditional computer simulators, noisy observation data can also be

easily integrated here into the inference. In this thesis we follow the precedent of [59] and

extend the umbrella of PIML to also include approaches which explicitly encode known

physical principles into the design of the ML model itself. In this context, the principles

are typically invariances or equivariances of the system under certain operations [98].

The PIML literature is growing by the day - for an overview, we recommend recent

survey papers [59], [99]. Here, however, we will concentrate on three specific and landmark

PIML publications that are especially relevant for the work presented in this thesis.

- Battaglia et al. (2018) [100] surveys the literature on Graph Neural Networks

(GNNs), a class of neural network architecture which has seen rapid advancements

in the past several years. GNNs allow inductive biases to be explicitly encoded

into the model itself, meaning they do not have to be learned from data. This can

1.6. Physics-Informed machine learning 14

enable systems described by an extremely large number of particles to be accurately

modelled without overfitting, in contrast to a fully connected neural network. For

instance, in a fluid dynamics model, each particle represents a particle of fluid. For

more details on GNNs, see Section 1.7.2 below.

- Raissi et al. (2019) [101] is a groundbreaking paper in the field of PIML, in which

physics-informed neural networks (PINNs) are introduced. PINNs incorporate both

noisy observation data and PDE information into a single coherent inference frame-

work that allows for forward and inverse problems to be solved. PINNs have seen

massive development in the years since this publication, and have been used to

model processes across the entire spectrum of physics [59].

- Raissi et al. (2017) [102] is an earlier work by the same authors, in which again

the objective was to develop a coherent inference framework which integrated ob-

servational data with PDE information. Here, however, Gaussian processes (GPs)

are considered in place of neural networks. This work builds upon the well known

property that Gaussian processes are closed under linear operations, which makes

them natural candidates to model linear PDEs. The authors show how to leverage

this property to seamlessly integrate data and PDEs using a GP, allowing for effi-

cient and effective learning of any unknown PDE parameters as well as the unknown

function itself.

1.7 Background Methods

1.7.1 Fully-connected neural networks

Fully-connected neural networks (FCNNs), also known as multi-layer perceptrons (MLPs),

are flexible, nonlinear function approximators [103, Chapter 13]. FCNNs can trace their

origins to the pioneering work of [104], [105] - today, they are perhaps the most essential

component of modern machine learning systems. In the present work, FCNNs are used

in the context of regression. Recall that the objective of regression is to learn the form of

an unknown underlying function (denoted f), given an observed dataset of input-output

1.7. Background Methods 15

pairs:

D = {(x(1), y(1)), . . . , (x(N), y(N))}. (1.1)

The following noise model linking the observations and the true value of the underlying

function is typically assumed

y(i) = f(x(i)) + ε(i), i = 1, . . . , N, (1.2)

where ε(i) is a random value. In this context, an FCNN can be used to define a forward

map which approximates the true latent function across the input space, i.e.

NN(x;ω) = ŷ ≈ f(x), (1.3)

where ω are trainable parameters (see Section 1.7.1.1 below for more details).

The forward map of the FCNN is composed of a series of affine transformations,

followed by a nonlinear activation. Specifically, if we set z(0) = x, then the FCNN firstly

processes L hidden layers z(1), . . . , z(L) as

z(l) = φ(W(l)z(l−1) + b(l)) for l = 1, . . . , L, (1.4)

where φ is called the activation function (which is applied element-wise), W(l) is called

the weight matrix of layer l, while b(l) is called the bias vector. After all the hidden layers

have been processed, the final prediction is then made as

ŷ = w(L+1) · z(L) + b(L+1). (1.5)

In order to use an FCNN, the architecture of the network must be specified, by decid-

ing both the number of hidden layers (i.e. the value of L), and their dimensionality. These

values are referred to as the depth and width respectively of the network. It is possible

to prove that an FCNN with a single hidden layer is a universal function approximator,

given appropriate choice of activation function and no limit on the network’s width [106].

1.7. Background Methods 16

Intuitively, this means it is possible to choose the weights and biases such that any con-

tinuous function can be approximated to arbitrary precision. In practice, however, deep

network architectures with more than one hidden layer tend to yield greater accuracy and

generalisation capability than single layer networks [107].

In addition to the network architecture, the form of the activation function φ used

when processing the hidden layers must also be specified. The smoothness properties

of the activation function affect the smoothness properties of the FCNN itself, and can

also induce different training behaviour - for more details, see the review paper [108].

Two commonly used activation functions include the ReLU and tanh functions, which are

defined as

tanh: φ(x) =
exp(2x)− 1

exp(2x) + 1
, (1.6)

ReLU: φ(x) = Max(0, x). (1.7)

These functions are plotted in Figure 1.2 (a), over the interval [−1, 1]. It is essential that

a non-linear activation function is used to allow the FCNN to model non-linear functions

- for an example of this, see Figure 1.2 (d).

1.7.1.1 Training of weights and biases

Once the architecture and activation function of the FCNN have been chosen, it remains

to specify its weights and biases, denoted collectively as

ω = (W(1), b(1) . . . ,W(L), b(L),w(L+1), b(L+1)). (1.8)

Intuitively, the value of ω should be chosen so that the approximation in Eq. (1.3) is as

close as possible, across the entire input domain of interest. To this end, ω can be tuned

to minimise the mean squared prediction error on the training data:

L(ω) =
1

N

N∑
i=1

(
y(i) −NN(x(i);ω)

)2
. (1.9)

1.7. Background Methods 17

The nonlinearity of φ means that the objective function in Eq. (1.9) is not convex with

respect to ω, and no closed-form solution is available [109, Chapter 8]. Because of this,

a numerical optimisation scheme is used instead. Perhaps the simplest approach that

can be used is gradient descent (GD), whereby an initial value of the parameters ω(0) is

proposed (generally randomly generated), before this is sequentially updated via a series

of steps to designed to reduce the loss function L(ω). Each update step t > 0 takes the

form

ω(t) = ω(t−1) − η∇L(ω), (1.10)

where η > 0 is called the learning rate. For the training of deep neural networks, GD has

some drawbacks, however. Firstly, all data points are required to compute the gradient

of the loss function (i.e. ∇L(ω)) at each update step, which can be expensive. This can

however be overcome through the use of mini-batches, where a stochastic estimate of the

gradient is obtained using a subsample of the available training data [103, Section 8.4.1].

A more fundamental issue for GD is that it can struggle in the presence of both suboptimal

local minima and saddle points of the loss function [110]. Several extensions of basic GD

have been proposed to overcome this issue - one example is called adaptive moment

estimation (Adam) [111], which is used in all the optimisation problems considered in this

thesis. Adam makes use of a momentum like variable to adapt the learning rate during

optimisation, allowing saddle points to be crossed. For an illustration of an FCNN used

to perform regression (with three different choices of activation function), see panels (b),

(c) and (d) of Figure 1.2. In this toy example, we set f(x) = x sin(x), and use N = 50

training data points with Gaussian observation noise.

It is important to distinguish two types of loss when training a machine learning model,

such as an FCNN. Firstly, there is the training loss on the discrete set of observational

data. Then, there is the generalisation loss at points not seen in the training phase.

Minimising training loss does not imply that generalisation loss is also minimised, as it is

possible for the model to “overfit” to the noise values ε(i) in the observation model from

1.7. Background Methods 18

−1.0 −0.5 0.0 0.5 1.0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
tanh

ReLU

identity

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

True

Prediction

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

True

Prediction

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

True

Prediction

(c) (d)

Figure 1.2: Panel (a) shows three possible activation functions φ. Regression results
on toy data with FCNNs using each of these choices of φ are shown in remaining panels.
Note that the linearity of the identity function induces an FCNN which is affine in the
input variable x.

Eq. (1.2), rather than learning the form of the underlying function f [103, Section 1.2.3].

Numerous approaches have been proposed to alleviate the overfitting problem - in this

work, we use the simple approach of reserving part of the training data as an independent

validation set, on which the issue of overfitting can be monitored.

1.7. Background Methods 19

1.7.2 Graph neural networks

Graph neural networks (GNNs) have emerged in recent years as a powerful framework for

performing machine learning tasks on graph-structured data [103, Chapter 23]. Mathem-

atically, a graph is a tuple of the form G ≜ (V , E). Here the individual elements (called

nodes) ni of the graph are contained in the set V = {n1, n2, . . . , n|V|}, while directed edge

connections between pairs of nodes (denoted ni→nj) are contained in the set E , called the

graph topology. If necessary, this basic graph structure can be imbued with additional

details such as global features - for more details, see Section 2.2.1.

Two example graphs are shown in Figure 1.3, where the nodes are represented as

black squares, and the edges (plotted without directionality) as grey lines. While these

two graphs may look similar at first glance, there is an important difference in their struc-

tures, which in turn affects the class of neural network that can operate on them. For

the graph in panel (a), the graph has a grid-like shape, with each node having the same

type of neighbourhood structure (top/bottom, left/right)1. This type of graph arises for

example in the digital representation of images, in which case the nodes correspond to

pixels. For machine learning tasks related to image processing (such as object detection

/ classification), convolutional neural networks (CNNs) are considered the default choice

[103, Chapter 14]. Convolutional filters are the key mechanisms of a CNN. These filters

are encoded as trainable weight matrices, and are applied sequentially across the image

by the use of matrix multiplications applied to the neighbourhood of each pixel. Import-

antly, because of the grid-like nature of the underlying graph, each pixel has the same

neighbourhood structure and so the same filter can be applied across the image. For the

graph in panel (b), however, the neighbourhood structure of each node is not fixed. For

instance, the node in the centre has four neighbours, while the upper right node has only

one. This inconsistency means that a convolutional filter cannot be directly applied to

this graph, meaning that a CNN is not appropriate here. However, it is exactly this type

of irregular graph structure that a GNN is designed to operate on. A GNN can in fact be

1Note that while this is not the case for boundary nodes, this can be easily overcome through the use
of padding [103, Section 14.2.1.4].

1.7. Background Methods 20

(a) Grid-like graph (b) Irregular graph

Figure 1.3: Plots of two example graphs, where the nodes are represented as black
squares, and the edges as grey lines.

considered as a generalisation of a CNN to operate on graphs without a fixed, grid-like

neighbourhood structure. Graphs with this type of complex relational structure arise in

many areas, such as chemistry [112], biology [113], physics [114], social networks [115] and

recommendation systems [116].

A wide range of different GNN architectures have been proposed. For instance, spectral

GNN approaches use the spectral domain of the graph Laplacian matrix to define graph

convolutions. This can be done in a spectrum-based manner where the eigendecomposi-

tion of the Laplacian is explicitly computed [117], or in a spectrum-free manner where the

decomposition is not explicitly computed [118]. An alternative approach is to perform

graph convolutions in a spatial manner. This is a more direct analogue to the convo-

lution operations of a CNN. The main idea of these approaches is to create fixed-size

graph patches for each node, overcoming the irregular neighbourhood structure of general

graphs. This can be done, for example, in a sampling manner (such as the GraphSAGE

model [119]), or using attention mechanisms (such as the Graph attention network [120]).

For the modelling of physical systems, in particular, an alternative method has become

popular called message-passing GNNs. Since this is the framework that is deployed in

Chapters 2 and 3 for emulation in soft-tissue mechanics, we discuss message-passing GNNs

in more detail below.

1.7. Background Methods 21

1.7.2.1 Message-passing GNNs

Message-passing GNNs approach graph-based machine learning problems via an inform-

ation diffusion mechanism, whereby the sequential application of message-passing steps

between neighbouring nodes allows information to be propagated around the graph, be-

fore a final decode stage solves the task at hand. Here we will consider the task of nodal

regression, which is most pertinent to the work of this thesis. This type of approach dates

back to the pioneering work of Gori et al. (2005) [121]. Battaglia et al. (2018) [100] out-

lines the modern evolution of the approach, in which GNNs process learned embeddings

over both nodes and features, allowing tasks such as node regression, link prediction, and

graph classification to be performed. While there are many different versions of message-

passing GNNs, in general, each follows a three stage architecture, which is detailed below.

Stage One: Encoder. In the first stage, the nodes and edges of the graph are given

feature vectors. We denote the node features as vi and the edge features as ei→j. The

form of these features will depend on the specific problem of interest. For example, in

Chapter 2, we make use of a message passing GNN for emulation of cardiac mechanics.

In this case, the nodes represent parts of the cardiac tissue, and the node feature vector

includes the fibre orientation of the muscle fibres at that node, while the edge features

give the distance between pairs of nodes. Once the node and edge features have been

assigned, they are then encoded into a higher dimensional latent space:

v0
i = NODE-ENCODER (vi) for all ni ∈ V , (1.11)

e0
i→j = EDGE-ENCODER (ei→j) for all {ni→nj} ∈ E . (1.12)

The idea is that by embedding into this latent space, we obtain more expressive

representations for the processor and decode stages.

Stage Two: Processor. In the processor stage, the encoded node and edge repres-

entations are sequentially updated for k = 1, . . . , K message passing steps, where K is

user specified. Each step k begins by calculating a message along each edge as follows:

mk
i→j = EDGE-PROCESSOR

(
ek−1
i→j ,v

k−1
i ,vk−1

j

)
for all {ni→nj} ∈ E . (1.13)

1.7. Background Methods 22

The messages are then used to update the node and edge representations as

vk
i = vk−1

i + NODE-PROCESSOR

vk−1
i ,

∑
j∈NG

i

mk
j→i

 for all ni ∈ V , (1.14)

ek
i→j = ek−1

i→j +mk
i→j for all {ni→nj} ∈ E , (1.15)

where N Gi is the set of all nodes in nj ∈ V which are connected to node ni in E . After

K rounds of message passing have been performed, the final representations at each node

can make use of information from all nodes that are no more than K steps away in the

graph.

Stage Three: Decoder. The third stage is to decode the final learned node rep-

resentations, depending on the task of interest. In this work, we are interested in node-

decoding, whereby a prediction for the displacement of the node from the start to the end

of diastole is made (see Chapter 2 for further details). Node decoding takes the form:

ŷi = NODE-DECODER

vK
i ,
∑
j∈NG

i

eK
i→j

 for all ni ∈ V , (1.16)

where ŷi denotes the GNN prediction of the quantity of interest at node ni.

The form of the forward map defined by a message-passing GNN is determined by

the encoding, processing and decoding functions respectively. These functions are each

specified to be individual FCNNs. The weights and biases of all these FCNNs can then be

trained in exactly the same manner as described in Section 1.7.1.1 above, with appropriate

choice of loss function given the specific task of interest. The latent space dimensional-

ity of the node and edge embeddings can be tuned by experimentation - this number

should be chosen to be high enough so that the embedding is sufficiently expressive, but

low enough to prevent overfitting. As for the number of message passing steps K, emu-

lator accuracy can be expected to increase as more steps are included, but likely with

diminishing marginal gains (see Figure 5 (d) of meshGraphNets for instance). Again,

experimentation can be applied to see when performance begins to plateau.

1.7. Background Methods 23

1.7.3 Physics-informed neural networks

Physics-informed neural networks (PINNs) are neural networks which incorporate physical

laws or principles into their training routine [101]. These laws or principles can be encoded

in different forms - using, for example, PDEs, integro-differential equations, fractional

equations or conservation laws [122]. PINNs are today used to solve forward, inverse and

optimisation problems, for systems across the spectrum of biology, chemistry and physics

[99]. In its most basic form, the idea behind a PINN is to approximate the solution

function to a PDE (plus any initial/boundary conditions) using a neural network. This

idea is illustrated below using a simple toy problem - the extension to more complex

applications is then discussed in Section 1.7.3.1.

Consider the problem of finding u : [0, 1] → R such that

−∂xxu(x) = g(x) = x2 for all x ∈ (0, 1), (1.17)

subject to homogeneous Dirichlet boundary conditions, i.e u(0) = u(1) = 0. This is a

specific form of Poisson’s equation in one dimension [123, Section 2.2]. The solution u can

be found by integrating twice and applying the boundary conditions to find the constants

of integration, yielding the expression

u(x) = (x4 − x)/12. (1.18)

A common theme in physics is that there exist different ways of representing the same

physical system. For example, classical mechanics can be represented in terms of forces

(i.e. Newtonian representation) or in terms of the Principle of Least Action (i.e. Lag-

rangian mechanics) [25]. In the case of the 1D Poisson equation, there exists an alternative

formulation of the problem in terms of the below functional Π, which is called the total

potential energy:

Π(u) = 〈∂xu, ∂xu〉 − 〈g, u〉 =
∫ 1

0

(∂xu(x))
2 dx−

∫ 1

0

g(x)u(x)dx. (1.19)

1.7. Background Methods 24

Specifically, it can be shown that the function u which satisfies Eq. (1.17) and the given

boundary conditions is exactly the function u which minimises Π [123, Theorem 17].

While these two formulations are mathematically equivalent, there is a key computational

difference between them, as only the first derivative of u needs to be evaluated to compute

Π, i.e. the required derivative information has been weakened relative to Eq. (1.17), which

is called the strong form of the PDE.

In general, differential equations of practical interest cannot be solved analytically,

meaning that numerical algorithms are required to find approximate solutions. Classical

approaches include the FDM and FEM, mentioned in Section 1.2. A PINN is an altern-

ative approximate solution method, whereby a neural network is proposed as the solution

function u. For this specific problem, we propose the following approximation û:

û(x;ω) = x(1− x)NN(x;ω), (1.20)

where NN(x;ω) is an FCNN (as described in Section 1.7.1). Note that the application

of the transformation x(1 − x) to the output of the network ensures that û satisfies the

boundary conditions u(0) = u(1) = 0, independently of the value of the parameters ω.

Therefore, the boundary conditions do not need to be explicitly handled in the PINN

training routine (see below). For more details on the explicit enforcement of boundary

conditions in PIML modelling, see Chapter 4.

The free parameters ω must be tuned in order for the approximation û to accurately

capture the true solution u. To this end, a loss function needs to be defined for training.

Unlike in Section 1.7.1.1, training is not performed against observational data, but against

the Poisson equation itself. Because we have two formulations of the Poisson problem,

two different PINN loss functions can be defined. Firstly, considering the strong form, a

loss function can be specified as:

Strong Form: L(ω) =
1

Ng

Ng∑
i=1

(g(xi)− ∂xxû(x;ω))2 . (1.21)

1.7. Background Methods 25

where the collocation points x1, x2, . . . , xNg are chosen to fill the interval (0, 1). The

key step required for this loss function to be directly computable is to implement the

differential operator ∂xx using automatic differentiation (AD), which allows it to be applied

without requiring any hand derivations. In this example, and throughout the thesis,

we make use of the AD framework provided by JAX. Secondly, considering the energy-

formulation of the problem, a PINN loss function can be specified as

Energy form: L(ω) = Π(û(·;ω). (1.22)

The integrals required to compute this loss function cannot be evaluated exactly, but can

be approximated to essentially arbitrary accuracy using numerical quadrature.

To assess the performance of the PINN framework in this toy model, we trained

the approximate solution from Eq. (1.20) on each PINN loss function, i.e. Eq. (1.21)

and Eq. (1.22). In both cases, NN(x;ω) was implemented using the tanh activation

function with two hidden layers each of width 16, and training was performed with Adam.

Ng = 50 collocation points were used to evaluate the strong-form loss, while the energy-

form loss was evaluated with 16 numerical quadrature points. Figure 1.4 shows the

prediction results for the strong-form PINN (left column) against the energy-form PINN

(right column), on both the solution function u (top row) and the forcing term g (bottom

row). In this example, the strong form PINN incurs lower mean-absolute prediction error

on both g (0.079 versus 7.440) and u (0.003 versus 0.007).

1.7.3.1 Extensions of the basic PINN framework

To implement a strong-form loss function for a general PDE operator (say F), this simply

requires ∂xx to be replaced with F in Eq. (1.21). To implement an energy-form loss func-

tion for more complex examples, will generally require a more sophisticated numerical

integration scheme (see Section 3.2.4 for example). In practical examples, (noisy) obser-

vations of the solution function itself u may also be available. This type of observational

1.7. Background Methods 26

Strong-form PINN Energy-form PINN

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
u(x)

û(x, ω)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
u(x)

û(x, ω)

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100
g(x)

∂xxû(x, ω)

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100
g(x)

∂xxû(x, ω)

Figure 1.4: PINN results for 1D Poisson equation (see Eq. (1.17)). The left column
shows the results of a PINN trained using the strong form of the problem (see Eq. (1.21))
and the right column shows the results of a PINN trained using the energy form of the
problem (see Eq. (1.22)). The top row shows the true versus predicted value of the solution
function u (see Eq.(1.18)), while the bottom row shows the true versus predicted values
of the forcing term g (see Eq.(1.17)).

data can be easily incorporated into the inference framework by using a loss function

which includes both a physics-informed term and a data-driven term (see Eq. (4.49), for

instance). This is particularly useful for inverse problems, whereby any known PDE

parameters can be jointly learned with u [101].

Beyond the strong-form and energy-form PINNs discussed above, a wide range of

different physics-informed models have been proposed in recent years, to address different

research challenges. To give some examples, this includes Bayesian PINNs for uncertainty

quantification [124], generative PINNs for solving problems involving SDEs [125], PINNs

which take inspiration from existing numerical approaches such as the finite-difference

[126] and Galerkin [127] methods, conservative PINNs for accounting for conservation

laws [128] and variational PINNs which allow for explicit domain decomposition [129].

1.7. Background Methods 27

1.7.4 Gaussian process regression

A stochastic process {f(x) | x ∈ X} is called a Gaussian process if, for any finite input

set x(1),x(2), ...,x(N) ∈X , the corresponding outputs f = (f(x(1)), f(x(2)), ..., f(x(N)))⊤

are jointly Gaussian distributed, i.e. p(f) = N (m,K) [130, Section 2.2]. Note that

here we use the same notation f to refer to the GP random function and the forward

model (Eq. (1.2)) - the reason for this shared notation will become clear below. A GP

is completely defined by its mean function m(·) and covariance function, k(·, ·). These

are evaluated on any discrete set of input points to give the mean vector m and covari-

ance matrix K of the corresponding multivariate Gaussian distribution over the function

outputs:

E
(
f(x(i))

)
= [m](i) = m(x(i)), (1.23)

Cov
(
f(x(i)), f(x(j))

)
= [K](i,j) = k(x(i),x(j)). (1.24)

Note that, in order for K to be a valid covariance matrix, the covariance function k must

be positive-definite. Such functions are called Mercer kernels - see Definitions 4.2.1 and

C.1 for further details.

Consider now having observed data D as in Eq. (1.1), where we will denote the vector

of observed output values as y. In order to use a GP to perform regression using this

dataset, two probabilistic assumptions are required about the data generation process

given in Eq. (1.2). Firstly, we will assume that the underlying function in Eq. (1.2) follows

a GP, with specified mean and covariance functions. Secondly, a distributional assumption

is required for the observation errors. We will assume independent errors, each following

a Gaussian distribution of the following form

ε(i) ∼ N (0, σ2), for i = 1, 2, . . . , N. (1.25)

The objective of regression is to learn from the training data an estimate of the underlying

function f , so that predictions can be made for the unobserved outputs f ∗ at any set of N∗

test input locations of interest x(1)
∗ ,x

(2)
∗ , . . . ,x

(N∗)
∗ . The GP assumption for the underlying

function plus the Gaussian noise model together imply that p(f ∗,y) is a multivariate

1.7. Background Methods 28

Gaussian distribution (see Eq. (4.7)). In this framework, the regression task reduces to

the problem of finding the conditional distribution p(f ∗|y). Using the properties of the

multivariate Gaussian [103, Section 3.2.3], it can be shown that this distribution is also

a Gaussian - see Proposition 4.2.1 for further details. Performing GP regression then

requires only the mean and covariance functions respectively to be chosen. In practice, it

is common to use a mean function set to zero [63]. The choice of covariance function is key,

as this choice encodes assumptions about the properties of the underlying forward map,

properties which can include stationarity, smoothness, periodicity, for instance. Assuming

that our input space is the real numbers, two possible choices are the rational-quadratic

and linear kernels:

Linear: kLin (x, x
′) = σ2

b + σ2
v(x− c) (x′ − c) (1.26)

Rational-Quadratic: kRQ (x, x′) = σ2
v

(
1 +

(x− x′)2

2αℓ2

)−α

(1.27)

To illustrate the impact that the choice of kernel has on the random functions gen-

erated by the GP, sample functions drawn from zero-mean GPs with linear and rational

quadratic kernels, respectively, are shown in the top row of Figure 1.5. The linear kernel

yields functions which are affine in x, while the rational-quadratic kernel yields smooth

functions which are non-linear in x. In general, kernels will have tunable hyperparamet-

ers. For instance, the linear kernel has hyperparameters (σ2
b , σ

2
v , c) and the RQ kernel, has

hyperparameters (σ2
v , α, ℓ

2). Given fixed observations y, a commonly used approach is to

tune the hyperparameter values to maximise p(y), which is called the marginal likelihood

in this context [130, Chapter 5].

1.7.4.1 Derivative observations

Because differentiation is a linear operator, GPs are closed under differentiation [130,

Chapter 9]. This allows inference to be performed based on observations of both the

value of the function itself and its derivatives. Again assuming that the input space is the

real numbers, a GP prior f(x) ∼ GP(0, k(·, ·)) implies the following covariance function

1.7. Background Methods 29

Linear kernel Rational-Quadratic kernel

Fu
nc

tio
n

sa
m

pl
es

−1.0 −0.5 0.0 0.5 1.0
−0.5

0.0

0.5

1.0

1.5

−1.0 −0.5 0.0 0.5 1.0

−0.5

0.0

0.5

1.0

1.5
D

er
iv

at
iv

e
sa

m
pl

es

−1.0 −0.5 0.0 0.5 1.0
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.5 0.0 0.5 1.0

−3

−2

−1

0

1

Figure 1.5: Samples from GPs with linear (Eq. (1.26)) and rational-quadratic
(Eq. (1.27)) kernels, respectively. The top row shows samples in function space, and
the bottom row shows samples in derivative space, where the kernel for the derivative
samples was found as in Eq. (1.28).

on the derivative process

Cov
(
∂f(x)

∂x
,
∂f(x′)

∂x′

)
=

∂2k (x, x′)

∂x∂x′ . (1.28)

and the following mixed covariance between the function and its derivative:

Cov
(
f(x),

∂f(x′)

∂x′

)
=

∂k (x, x′)

∂x′ . (1.29)

For more details, see [131, Section 2.2]. The bottom row of Figure 1.5 shows samples of

the derivative GPs induced by applying Eq. (1.28) to the linear and rational-quadratic

kernels, respectively. These results can be extended beyond simple differentiation to more

complex linear differential operators over higher dimensional spaces - this is made use of

in Chapter 4, for parameter inference in systems described by linear PDEs.

1.8. Thesis outline 30

1.8 Thesis outline

The contributions of this work are in the development of new approaches in the emulation

of physical systems modelled with PDEs, with particular emphasis on the context of soft-

tissue mechanics. The emulators we use are based on the latest research in PIML, and

we therefore call this physics-informed emulation. Our contributions are presented in

Chapters 2-4, which we summarise below.

- Chapter 2: here we introduce a Graph Neural Network (GNN) architecture for

emulation of left-ventricle (LV) mechanics, trained in a data-driven manner. The

advantage of a GNN here over more traditional emulation approaches is that it

can operate directly on the high dimensional computational mesh used to represent

the LV geometry, without requiring any approximations. Furthermore, the GNN

delivers significant computational savings at prediction time over the simulator. We

validate our method using extensive numerical experiments, where the emulator

displays strong out-of-sample predictive performance.

- Chapter 3: here we extend the GNN framework above to make use of physics-

informed training. This is where we train the emulator by minimisation of a po-

tential energy functional, meaning that no costly simulation dataset needs to be

generated. Once again, our approach is validated using numerical experiments,

using a range of mechanical models and constitutive laws.

- Chapter 4: here we introduce a hard-constrained Gaussian process modelling ap-

proach for solving forward and inverse problems involving linear PDEs, which allows

for the explicit enforcement of a versatile range of boundary constraints commonly

used in PDE modelling. Again, we present extensive numerical experiments to

test our approach, the results of which illustrate that explicit boundary enforce-

ment greatly increases the robustness of GP inference in the presence of observation

noise. Additionally, we present theoretical analyses of our method, which explore

the representational capacity of our proposed model and its connection to neural

networks.

1.8. Thesis outline 31

Chapter 5 then concludes with a summary and discussion of the work presented in the

thesis and an outlook on potential future research directions.

Chapter 2
Emulation of Cardiac Mechanics

using Graph Neural Networks

Dalton, David; Gao, Hao; Husmeier, Dirk (2022) [9]. “Emulation of Cardiac Mech-

anics using Graph Neural Networks”. In Computer Methods in Applied Mechanics

and Engineering, https://doi.org/10.1016/j.cma.2022.115645.

Abstract

Recent progress in Graph Neural Networks (GNNs) has allowed the creation of new meth-

ods for surrogate modelling, or emulation, of complex physical systems to a high level of

fidelity. The success of such methods has yet to be explored however in the context of

soft-tissue mechanics, an area of research which has itself seen substantial developments

in recent years. The present work explicates on this by introducing an emulation frame-

work based on a multi-scale, message-passing GNN, before applying it to the modelling

of passive left-ventricle mechanics. Through numerical experiments, it is demonstrated

that the proposed method delivers strong predictive accuracy when benchmarked against

the results of the non-linear finite-element method (FEM), and significantly outperforms

an alternative emulator based on a fully connected neural network. Furthermore, large

computational gains are achieved at prediction time against the FEM.

32

https://doi.org/10.1016/j.cma.2022.115645

2.1. Introduction 33

2.1 Introduction

We are entering the era of simulation intelligence (SI) [132]. SI describes a new paradigm

for quantitative scientific methods, where traditional numerical simulation methods are

combined with the latest advances in scientific machine learning. The leverage afforded

by machine learning methods allows experiments that were previously computationally

intractable to be performed, causal relationships between variables to be studied, model

uncertainty to be quantified, and noisy real-world data to be integrated into the model

framework. A key element of SI is surrogate modelling, or emulation. An emulator is a

statistical machine learning model which approximates a numerical forward model, while

incurring much lower computational expense at prediction time [62]. Commonly used

emulation approaches include neural networks [103, Chapter 13], polynomial chaos [133]

and Gaussian processes [63]. Emulation is widely used for forward [134] and inverse [135]

problems, as well as design [136] and optimisation [137] tasks. Traditional methods for

emulation however struggle to model high dimensional physical systems, such as those

represented by high-fidelity meshes or large numbers of particles, due to the so-called

curse of dimensionality. Furthermore, it can be difficult to build known symmetries or

invariances of the system under consideration into the structure of traditional surrogate

models. In recent years, new approaches have been developed for emulation of phys-

ical systems using Graph Neural Networks (GNNs) [103, Chapter 23]. A GNN can be

seen as a generalisation of a Convolutional Neural Network (CNN) [103, Chapter 14]

to operate on data with a non-Euclidean structure. This is critical for emulating com-

plex or multiscale systems, where the topology of the particles or nodes in the system

under consideration can be highly non-Euclidean. Furthermore, by accounting for the

intrinsic topology of a given system, GNN emulators have demonstrated the ability to

perform accurate modelling to very high levels of fidelity, beyond what is possible with

traditional emulation approaches. Consider for example GraphCast, a GNN emulator for

weather prediction which is considered the world’s most accurate medium range weather

forecaster [138]. GraphCast makes use of a discretisation of the earth’s surface that is

made up of more than one million grid points. If a traditional, fully connected neural

network were to be used on this data, an architecture with hundreds of billions of para-

2.1. Introduction 34

meters would potentially be required, which would be computationally infeasible to fit.

Example application domains of GNN emulators include computational fluid dynamics

[139], particle-based systems [114], cloth and elastic simulations meshGraphNets, rigid

and deformable bodes [140] as well computer graphics [141].

One potential application domain of GNN emulation that has received less attention

to date is the mechanics of biological soft tissue, that is, muscles, neurons, skin, cartilages,

which usually exhibit remarkable complexity with multiconstituent, hierarchical and het-

erogeneous structures, and their mechanical responses to various loading conditions can

be critical to maintain the biomechanical homeostasis for optimal mechanical functioning

of the organism [142]. When injury or disease occurs in biological soft tissues, an im-

balanced stress/strain micro-environment can be induced due to the loss of the complex

organisation of biomolecules, such as the loss of myocytes after myocardial infarction.

Therefore, there is a critical need for accurate and fast quantification of biomechanic

factors, such as stress and strain, in soft tissues. One approach is to develop high-fidelity

computational biomechanics models, which integrate knowledge of physiology, pathology

and the fundamental laws of mechanics into one framework [143], with the potential to

offer patient-specific diagnostic insights beyond what is available from typical in/ex vivo

analyses [81]. An excellent example is computational cardiac mechanics, which is now

being translated into industry and the clinic [144]–[146]. Other topics include the model-

ling of liver [147], mitral valve [148], arteries [149] and brain [150], to list some examples.

Personalised biomechanics models need to be solved numerically, one such method be-

ing the nonlinear finite element method (FEM) [151]. FEM-based models can require

significant computational resources due to potentially millions of unknown variables, in-

teractions among different subsystems, integration across different temporal and spatial

scales, and limited experimental data for model calibration [143]. This computational

bottleneck constitutes a large obstacle in translating biomechanical models into the clinic

for use in real-time estimation, where thousands of model simulations can be required to

obtain accurate calibration with experimental data [144].

2.1. Introduction 35

2.1.1 Contributions

To address these issues, recent efforts have focused on integrating machine learning and

biomechanics modelling together to create robust predictive models, explore massive para-

meter spaces, and provide real-time solutions [152]. This chapter adds to the growing

literature in this area by presenting a new GNN emulation framework, before evaluating

its accuracy in the modelling of passive left ventricle (LV) mechanics. This is a chal-

lenging emulation problem, as different LV anatomies can vary substantially in terms of

size, asymmetry, and wall thickness, for example, as well as exhibiting different material

properties. In addition, the emulator must deliver significant computational savings at

prediction time to be useful for real-time estimation. The GNN is implemented using a

message-passing approach on an augmented, multi-scale graph representation of the LV.

Experimental results demonstrate that the proposed method displays strong emulation

accuracy across different LV anatomies, as well as the ability to specialise on a given

anatomy of interest in a transfer learning setting. In addition, the emulator can make for-

ward predictions up to five orders of magnitude more quickly than the numerical forward

simulator.

The chapter is laid out as follows; first, Section 2.2 described the methods we use,

including the proposed emulation framework. Section 2.3 describes the application of this

framework to an illustrative two-dimensional beam deformation problem, before Section

2.4 describes the emulation results for passive LV mechanics. Section 2.5 finally then

concludes.

2.2 Methods

2.2.1 General Mechanics and Graph Representation Framework

We consider two quasi-static or static mechanical systems in this work. The first is a 2-D

beam with linear isotropic material property, clamped at one end and deformed under its

own weight (see Section 2.3). The second is a real human left ventricular model in diastole,

characterised by a nonlinear constitutive law (see Section 2.4). In general, the two models

2.2. Methods 36

can be formulated as a nonlinear boundary-value problem (BVP) of elastostatics, i.e.

∇ · σ + b = 0 in Ω,

u = ud on ∂Ωd,

σn = t on ∂Ωσ,

(2.1)

in which σ is the Cauchy stress tensor that is related to the strain tensor through a

chosen constitutive law, b is the body force, u is the displacement field that is the un-

known to be solved numerically, ud is the prescribed displacement boundary conditions

on the boundary ∂Ωd, and t is the applied traction density to the boundary ∂Ωσ. The

whole computational domain Ω needs to be discretised with n simplicial or quadrilat-

eral/hexahedral elements to allow the above BVP to be solved numerically, denoted as

{Th}h>0. Specifically,

Ω ≈ {Th}h>0 =
n⋃

el=1

Tel , (2.2)

where T ∈ Th can be tetrahedron or hexahedron for a 3-D finite-element (FE) mesh, and

triangle or quadrilateral for a 2-D mesh. For example, Figure 2.1 (a) displays a simple

rectangular domain Ω discretised with 2 triangles (T1 and T2).

In this work we use Graph Neural Network (GNN) emulators to find an approximation

to the solution of the above general BVP for the two mechanical systems considered. In

order to apply a GNN emulator to a given geometry, the discretised FE mesh (2.2) must

be represented in the form of a graph, G. We define a graph to be the following 3-tuple:

G ≜ (V , E ,θ). (2.3)

The set of nodes of the graph V is defined as

V ≜
|V|⋃
i=1

{(ni,xi)}, (2.4)

2.2. Methods 37

T1

T2

n3 n4

n2n1

(a) FE Mesh T1 ∪ T2 (b) Graph Representation G

Figure 2.1: Panel (a) shows a simple 2-D FE mesh with two triangular elements (T1

and T2). Panel (b) shows the nodes V (indexed n1 to n4) and the topology E (shown as
directed arrows) induced by the FE mesh.

which are extracted directly from the nodes of the FE mesh. Each node consists of a

scalar index value ni, the ordering of which follows that of the underlying FE mesh, and

a coordinate vector xi, which gives the spatial coordinates of the corresponding node in

the FE mesh, for i = 1, 2, ..., |V|. As a shorthand notation, we will use the scalar index

variable ni alone when referring to the nodes in V . The creation of V for the simple FE

mesh in Figure 2.1 (a) is illustrated in panel (b), where the four FE nodes are converted

to the set of graph nodes

V = {(n1,x1), (n2,x2), (n3,x3), (n4,x4)}. (2.5)

The set E is the graph topology, each element of which denotes a directed edge re-

lationship between a pair of nodes in V . A directed edge from node ni to node nj is

denoted {ni→nj}2. The directed edges in E are found by converting each undirected edge

in the FE mesh into two directional graph edges which point in opposite directions. This

is done by creating a directed edge from node ni to all nodes nj ∈ V that are in its FE

neighbourhood, N FE
i , for all ni ∈ V . We define N FE

i to be the set of all nodes in the graph

that share an edge with node ni in the FE discretisation from Eq. (2.2), i.e. the one-ring

neighbourhood of ni. For example, in Figure 2.1 (b), we have that the FE neighbourhood

of node n1 is

N FE
1 = {n2, n3}. (2.6)

2In the computer graphics literature, “directed edges” are commonly referred to as “half-edges”.

2.2. Methods 38

We introduce the following shorthand notation to refer to all directed edges that have

node ni as sender:

{ni→N FE
i } =

⋃
nj∈NFE

i

{ni→nj}. (2.7)

The entire graph topology E is then defined to be the union of the above over all nodes

ni ∈ V ,

E ≜
|V|⋃
i=1

{ni→N FE
i }. (2.8)

Thus for the FE mesh from Figure 2.1 (b), the specific edge set E is

{n1→n2, n2→n1, n2→n4, n4→n2, n3→n4, n4→n3, n2→n3, n3→n2, n1→n3, n3→n1}.

(2.9)

In this example, we have that |E| = 10, which is almost as high as the cardinality of the

completely connected directed graph on four nodes. However, for larger FE meshes, the

cardinality of the graph topology E extracted in this manner will be significantly lower

than that of the completely connected graph. Note that additional edges can be added

if desired, beyond those directly extracted from the FE mesh in the manner described

above. For example, the edge relations {n1→n4}, {n4→n1} could be added to the graph

topology E derived from the FE mesh in Figure 2.1.

The third element of G is a vector denoted θ, which represents any global attributes

of interest. In the present work, θ represents the material stiffness properties of the

geometry under consideration, assumed constant for all nodes ni ∈ V , and hence θ is a

global attribute. However, this assumption can be relaxed to allow stiffness levels to vary

across the graph.

Finally therefore, the entire graph is

G =

 |V|⋃
i=1

{(ni,xi)},
|V|⋃
i=1

{ni→N FE
i }, θ

 . (2.10)

For both the beam and left-ventricle (LV) mechanical systems considered for emulation

in this work, the objective of the surrogate model is to be able to generalise to initial states

not seen in the training data, in terms of the nodal coordinates from V and global material

parameters θ. However, the topology E of the graph representations is assumed constant

2.2. Methods 39

for all graphs in each respective system. For example, each LV anatomy is represented by

an FE mesh with the same number of nodes and the same finite element structure. This

is reasonable because each LV has a consistent shape, whereby a central cavity (the LV

chamber) is surrounded by a smooth 3D surface (the heart wall, or myocardium). This

shape consistency is exploited by our in-house segmentation software, which converts

cardiac imaging scans into a shared half-ellipsoidal mesh template. This means each

mesh has the same number of nodes and connectivity structure. Each LV will be different

geometrically, however, which means that the coordinate values assigned to each node

will be unique to each LV. For further details of this segmentation procedure, we direct

the reader to [60].

2.2.2 Neural Networks

A fully connected neural network, also known as the multi-layer perceptron (MLP) is

a powerful tool for function approximation. Recall that an MLP fω : RDin → RDout is

comprised of the sequential composition of affine functions with a nonlinear activation

function φ : R → R. A network with more than one unobserved, or hidden layer is

referred to as a deep network. A deep network with two hidden layers takes the form

z1 = φ (W0x+ b0)

z2 = φ (W1z1 + b1) (2.11)

y = W2z2 + b2,

where φ acts element-wise, Wt is the weight matrix of layer t and bt the bias, for t = 0, 1, 2.

Various forms for φ have been proposed [153], one of which is the tanh function:

φ(x) = tanh(x) = 2

1 + exp(−2x)
− 1. (2.12)

The form of the forward map defined by an MLP is determined by the collection of all

weights and biases of the network. A point estimate of these parameters is typically used

for prediction, trained with a stochastic gradient-based update scheme on a dataset of

input-output exemplars [103, Chapter 13].

2.2. Methods 40

Consider using an MLP to model very high-dimensional data, for example, emulating

a complex physical system to a high level of fidelity. To capture the interactions and

structure of the data, a network with large depth and/or width may be required. Because

the internal weight matrices of the MLP are dense, the number of trainable parameters

of the network will also be very large. This can make MLPs difficult to train to achieve

good generalisation performance in this case. If however the high dimensional data being

modelled has some intrinsic topology, this issue can be alleviated by designing a neural

network architecture that accounts for this topology. For example, a convolutional neural

network (CNN) applies a translation-invariant, discrete convolution to its internal layers

that is applicable to data with Euclidean topology, instead of dense weight matrices. As

convolution is a linear operator, a CNN can be equivalently written as a special case

of an MLP, where the weight matrices exhibit a sparse, Toeplitz-like structure. This

sparsity can lead to a massive reduction in the number of trainable parameters compared

to an MLP, allowing CNNs to model high-dimensional image data, for example, without

overfitting [103, Chapter 13].

The idea of a CNN is generalised by a Graph Neural Network (GNN), which refers

to a class of deep learning architectures that allow graph-structured data to be modelled.

GNNs have been applied in a wide range of contexts, including social network analysis

[154], drug discovery [155] molecular chemistry [112], traffic prediction [156], and surrogate

modelling of physical systems [114], [157], to give a few examples. Numerous approaches

have been proposed for the design of GNN architectures. One such approach is spatial

graph convolutions, which seeks to extend the convolution operations of a CNN, which

operate on the regular (grid-like) local neighbourhoods of image data, to the irregular local

neighbourhoods of arbitrary graph data. Spectral methods are another approach, where

graph convolution operations are performed by operating in the spectral domain of the

graph Laplacian matrix. In this work however, we use a GNN emulator that implements a

message-passing approach. Message passing GNNs naturally extend to both large graphs

and graphs not seen in the training data, and have proven successful for the emulation of

physical systems meshGraphNets, [114], [158], [141]. A message-passing GNN tackles

the problem of learning the physical dynamics of a system via an information diffusion

mechanism around the graph topology. The nodes of the system are assigned a learned

2.2. Methods 41

Simulator

GNN Emulator︷ ︸︸ ︷
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Initial State End State

Encoder Processor×K Decoder

Figure 2.2: Schematic illustration of GNN emulation. The emulator makes use of a
three-stage, encode-process-decode framework to map the initial state of the physical
system to its end state.

representation using a sequence of processor steps, where messages are exchanged between

neighbouring nodes, before a prediction for the forward dynamics of the system is made.

A more general form of the message-passing framework was proposed in [100], where

representations of nodes, edges, and the entire graph can be learned simultaneously in

a three-stage, encode-process-decode approach. In this work a variant of the three-stage

approach is used for emulation. Figure 2.2 gives a high-level illustration of the framework:

for specific details, the reader can see Section 2.2.4.

The input to the GNN emulator is the initial state of the physical system under

consideration in the form of a graph. In Figure 2.2, the input is the geometry of a left

ventricle at the start of diastole, which is the emulation problem considered in Section

2.4. The first stage of the emulator is the encoder. This is where any node and edge-wise

numerical features of the graph, such as boundary condition information, are embedded

into a higher dimensional latent space. The second stage is to process these embeddings

by performing a series of message-passing steps, whereby the node and edge represent-

ations are sequentially updated by exchanging information between neighbouring nodes

in accordance with the graph topology. The last stage is the decoder stage, whereby the

final node embeddings are used to predict the end state of the system. Each of the three

2.2. Methods 42

stages: encode, process and decode, are performed using individual, trainable MLPs. The

parameters of the MLPs, which we refer to collectively as ω, control the predictions of

the GNN. A pointwise estimate of ω can be found using a gradient-based update scheme

on a set of training data, in the same manner as for a single MLP.

2.2.3 Augmented Graph Generation

The GNN architecture introduced in Section 2.2.4 uses the message passing framework

from Figure 2.2 to perform emulation, whereby information is propagated between the

graph nodes, before a prediction is made for the forward displacement of the given body.

Instead of working with the graph representation G = (V , E ,θ) directly extracted from

the FE mesh in the manner discussed in Section 2.2.1, improved emulation performance

can be achieved by working with an augmented graph representation of the mesh, G̃. We

define an augmented graph as

G̃ ≜ (V ∪ Ṽ , Ẽ ,θ), (2.13)

where the augmented nodes Ṽ and topology Ẽ are created iteratively over L steps as in

Algorithm 1. The set Ṽ is defined as

Ṽ ≜
L⋃
l=1

Rootsl, (2.14)

where Rootsl is a set of virtual nodes derived from the FE nodes, for l = 1, 2, ..., L. The

root nodes are defined constructively in Algorithm 1. In summary, each layer of root

nodes Rootsl is found by clustering the root nodes from the previous layer Rootsl−1 into

a set of lower cardinality, meaning that successive layers provide an increasingly coarse

representation of the underlying FE mesh. The augmented topology Ẽ is defined as

Ẽ ≜ E ∪
L⋃
l=1

{
E l
intra ∪ E l

inter

}
. (2.15)

2.2. Methods 43

At each step l, E l
intra describes the intra-layer connections between nodes in Rootsl, while

E l
inter describes the inter-layer connections between nodes in Rootsl and the nodes in the

previous layer, Rootsl−1. Again, exact details of the construction of E l
intra and E l

inter are

given in Algorithm 1. The advantage of the augmented graph representation G̃ over the

original graph G is that the virtual nodes Ṽ provide a shortcut by which information can

propagate along the extended graph topology Ẽ ⊃ E .

Algorithm 1 details the construction of the augmented nodes and topology for a given

input graph G. Two other variables are required as inputs, the first of which is κ, the

number of nearest neighbours to consider when defining the intra-layer connectivity Ẽ l
intra

for each layer of virtual nodes up to the final layer. The second is a decreasing sequence

of natural numbers η, which gives the cardinality of each layer of virtual nodes that are

to be generated. These variables can be adjusted depending on the application context;

specific details for the two experimental domains considered in this work are given in

Sections 2.3.2 and 2.4.4 respectively. In general, the value of κ is specified so that the

average number of neighbours each virtual node has in E l
intra is approximately equal to

the average number of neighbours each real node has in E . The node cardinalities in η

are selected so that the number of nodes decreases by approximately the same factor for

each additional level, and such that this factor is at least as great as the number of real

nodes in each finite element.

Figure 2.3 presents a visual explanation of the augmented graph generation algorithm,

for one of the 2-D beam geometries considered for emulation in Section 2.3. Panel (a) of

the figure displays the original graph G. The positions of the |V| = 96 nodes in V are

shown as black squares, and each pair of directed edges in E is shown as a single grey line.

Panel (b) then shows the coordinates of the virtual nodes Ṽ = Roots1 ∪Roots2 generated

by Algorithm 1 with η = [24, 6] and κ = 4, along with the original FE nodes. The first

layer of η1 = 24 virtual nodes are displayed as red circles, and the second and final layer

of η2 = 6 nodes are shown as green triangles.

Algorithm 1 begins by initialising the 0th layer of root nodes, Roots0, to be the original

FE nodes V . The multiscale augmented graph is then built over L steps. At step l = 1,

the initial layer of virtual nodes Roots1 is created by first grouping the coordinates xi of

the real nodes V = Roots0 = Leaves1 into the clusters C = {c1, c2, ..., cη1} using κ-means.

2.2. Methods 44

Algorithm 1 Augmented Graph Generation
Input: G = (V , E ,θ), original graph; κ, nearest neighbours considered in Ẽintra; η =
[η1, ...ηL], cardinalities of virtual node layers
Output: G = (V ∪ Ṽ , Ẽ ,θ), augmented graph
linebreak
Initialise Roots0 = V
for l = 1, ...L do

Leavesl = Rootsl−1

Group Leavesl into ηl clusters: C = {c1, c2, ..., cηl} using k-means
Create new root node at each cluster centre: xc =

1
|c|Σi∈cxi for all c ∈ C

Collect all root nodes: Rootsl =
⋃

c∈C{(nc,xc)}
Connect roots to leaves: Ẽ l

inter =
⋃

c∈C{nc→ni, ni→nc | ni ∈ c}
if l < L then

Find neighbourhoods: NRoots
c = {nc′ | xc′ ∈ κ-nn(xc, Rootsl)} for all c ∈ C

Connect roots to roots: Ẽ l
intra =

⋃
c∈C{nc→nc′ , nc′→nc | nc′ ∈ Nc}

else
Connect roots to roots: Ẽ l

intra =
⋃

c∈C{nc→nc′ | nc′ ∈ C\c}
end if

end for
Define augmented nodes: Ṽ =

⋃L
l=1 Rootsl

Define augmented topology: Ẽ = E ∪
⋃L

l=1{E l
intra ∪ E l

inter}
linebreak

The coordinates of the virtual nodes Roots1 are then found as the centre of these η1

clusters:

Rootsl=1 =
⋃
c∈C

{(nc,xc)} where xc =
1

|c|
∑
ni∈c

xi. (2.16)

Note that each root node is also assigned a scalar index variable, denoted nc, which is

defined to be consistent with the index variables ni of the real nodes V . Once the roots

have been found, the inter-layer topology Ẽ1
inter between root and leaf nodes is defined by

creating a pair of directed edges {ni→nc, nc→ni} between each root node nc ∈ Roots1 and

all leaf nodes ni ∈ Leaves1 which were assigned to cluster c by k-means,

Ẽ l=1
inter =

⋃
c∈C

{nc→ni, ni→nc | ni ∈ c}. (2.17)

2.2. Methods 45

Figure 2.3 (c) displays the construction of the root nodes Roots1 and inter-layer connec-

tions Ẽ1
inter for the beam example. The coordinates xc of each of the η1 = 24 root nodes

are shown as red circles, which were found by clustering the 96 FE nodes. The connections

are shown as grey lines between each FE node and its corresponding cluster centre node.

For each root node nc ∈ Roots1, its local root neighbourhood NRoots
c is defined to be

its κ-nearest neighbours among other root nodes:

NRoots
c = {nc′ | xc′ ∈ κ-nn(xc, Rootsl=1)}. (2.18)

The distance metric used in the nearest-neighbour calculations is the usual Euclidean

metric. The intra-layer topology Ẽ1
intra between the root nodes in Roots1 is then construc-

ted by creating a pair of directed edges {nc→nc′}, {nc′→nc} between each root node nc

and its κ nearest neighbours in NRoots
c :

Ẽ l=1
intra =

⋃
c∈C

{nc→nc′ , nc′→nc | nc′ ∈ Nc}, (2.19)

Figure 2.3 (d) shows the creation of Ẽ1
intra for the beam example as grey lines, using

κ = 4 nearest neighbours. Note that the neighbourhoods defined by the κ-nn operation

are not symmetric, that is nc′ ∈ NRoots
c 6⇔ nc ∈ NRoots

c′ . This asymmetry is illustrated in

Figure 2.4 (a), which shows the top right corner of the beam geometry from Figure 2.3

(d). Two nodes nc, nc′ ∈ Roots1 are highlighted. The four root nodes in NRoots
c are shown

with grey arrows, while the neighbours NRoots
c′ are shown with black arrows. We see that

nc′ ∈ NRoots
c but nc /∈ NRoots

c′ . The GNN emulation architecture introduced in Section 2.4

requires that each edge relation {ni→nj} in Ẽ has a twin relation {nj→ni}, so that the

symmetry from Eq. (2.27) can be enforced. For this reason, we also add the additional

connection {nc′→nc} to Ẽ l
intra, shown as a black arrow in Figure 2.4 (b). The inclusion

of additional connections in this manner means that each root node will have at least κ

neighbours in Ẽ l
intra, for l = 1, 2, ..., L− 1.

2.2. Methods 46

Subsequent steps l = 2, ..., L of Algorithm 1 proceed in the same manner as the first

step, whereby the root nodes at the previous layer, Rootsl−1 become the leaf nodes of

step l, Leavesl and are clustered into ηl root nodes. The inter-layer and intra-layer node

topologies Ẽ l
inter and Ẽ l

intra are then calculated as before. This is with the exception of the

final layer of virtual nodes RootsL, which is fully connected:

ẼL
intra =

⋃
c∈C

{nc→nc′ | nc′ ∈ Rootsl=1\(nc,xc)}. (2.20)

Once the last layer of nodes has been created, the augmented graph G̃ is returned. The

third row of plots in Figure 2.3 shows the creation of the second and final layer of virtual

nodes and connections for the beam example. In Panel (e), the virtual nodes from layer

1 are clustered into η2 = 6 cluster centres to form Roots2, and Ẽ2
inter is created as before.

Then, the final intra-layer topology Ẽ2
intra in panel (f) is fully connected.

Our use of a multi-scale augmented graph for emulation is conceptually similar to

earlier work [140], [159]. Recall however that the goal of this work is to build an emulator

that can generalise to geometries not seen in the training data. As discussed though in

Section 2.2.1, we assume that the graph representations of the geometries in each system

we consider share a common topology, E . We therefore desire that the augmented graph

representations of the FE meshes also share a common topology, Ẽ . However this is

not guaranteed to be the case if Algorithm 1 were applied separately to the graph G

induced by the FE mesh of each individual geometry. For example, consider the graphs

G0 and G1 displayed in the top row of Figure 2.5. The two graphs clearly share a common

topology, that is E0 = E1. However, the augmented graphs G̃0 and G̃1 that result from

applying Algorithm 1 to each graph respectively with η = [2] do not share a common

topology. This is illustrated in the second row of plots in Figure 2.5, where we can

see that Ẽ0 6= Ẽ1. The discrepancy occurs because the generation of the virtual nodes

depends solely on the (different) coordinate values from the graph nodes V0 and V1,

not the common graph topology E0 = E1. To ensure then that the augmented graph

representations of different geometries have a shared topology Ẽ , this can be constructed

with respect to a single, representative graph using Algorithm 1. Any subsequent graphs

can then be augmented in a manner similar to Algorithm 1, whereby each layer of virtual

2.2. Methods 47

(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Illustration of Algorithm 1 applied to a 2-D beam geometry, with κ = 4 and
η = [24, 6]. Panel (a) shows the nodes and edges of the input graph and panel (b) plots
the real nodes in black with the augmented nodes in red and green. The second and third
row of figures illustrate steps one and two of the algorithm respectively - for a detailed
description, see the text.

nodes is constructed by pooling nodes in the previous layer. However, the pooling is

performed with respect to the clusters implied by the augmented topology Ẽ found on

the representative graph, rather than reapplying κ-means clustering, meaning that each

augmented graph shares this common topology. The nodes of the reference graph, denoted

V̄ can be found by “averaging” over the node coordinates of the geometries from the

available training data. Specifically, for each ni ∈ V̄ , the corresponding coordinate value

x̄i is found as x̄i =
1

Ntr

∑
j x

(j)
i , where we have introduced a superscript j to index over

the Ntr available training geometries.

2.2. Methods 48

nc

nc′

nc

nc′

(a) (b)

Figure 2.4: Panel (a) shows the root neighbourhood for node nc, NRoots
c , with grey

arrows, and the neighbourhood for node nc′ , NRoots
c′ , with black arrows. We see that

nc′ ∈ NRoots
c but nc /∈ NRoots

c′ . Therefore, an additional edge {nc′ →nc} is created, so
that the symmetry from Eq. (2.27) can be enforced in the message-passing stage of the
emulator.

The virtual node positions could potentially be improved by using a different clustering

approach, in particular through the use of a metric which accounted for the nonconvex

shape of the left ventricle. However, we felt the simple κ-means approach was sufficient,

as the main focus of this graph augmentation procedure was not the geometry of the

virtual nodes, but their topology, i.e. the additional edges which can be used as shortcut

connections for the message-passing.

The final data-processing stage before the surrogate model can be applied is to assign

numerical feature vectors to the individual nodes and edges of the augmented graph

representations. As detailed in Algorithm 2, these feature vectors are iteratively processed

by the GNN emulator over a series of message passing steps, before the final processed

values are used to predict the forward displacement of the body under consideration.

Specifically, each real or virtual node ni ∈ V ∪Ṽ is assigned (↠) a feature vector, denoted

vi,

ni ↠ vi for all ni ∈ V ∪ Ṽ . (2.21)

The real nodes in V are first assigned a feature vector. The form of these features will

depend on the application context, but could contain, for example, boundary condition

information, or for an inhomogeneous material, local fibre structure information. Import-

antly, the absolute positions xi are not encoded in the node features. Instead, relative

node positions are encoded in the edge features defined below, ensuring that the outputs

of the emulator are invariant to translations of the system in space. Each node in the

2.2. Methods 49

(a) G0 (b) G1

(c) G̃0 (d) G̃1

Figure 2.5: The upper row of figures shows two graphs G0 and G1 which share a common
topology, that is E0 = E1. The bottom row shows the augmented graphs G̃0 and G̃1 found
by running Algorithm 1 with η = [2]. Virtual nodes are shown in red and additional
edges are shown as dashed red lines. In this case, we have that Ẽ0 6= Ẽ1.

first layer of virtual nodes is then assigned a feature vector by taking the mean of the

features from all real nodes with which it shares an edge relation. Subsequent virtual

node layers l = 2, ...L are then iteratively assigned features in the same manner. Note

that for boundary node Boolean indicator variables, we could have used min() rather

than mean() aggregation to ensure that a virtual node will have a non-zero boundary

indicator variable only if all of its neighbours in the previous layer are boundary nodes.

These neighbourhoods will in general include interior points however and by using min()

aggregation then the virtual nodes would have no boundary condition information in their

feature vectors. See, for example, Figure 2.3, where no virtual nodes lie on the boundary

of the beam geometry. By using mean() aggregation instead, boundary condition inform-

ation is included in the virtual nodes, where the boundary indicator variable can take

values between 0 and 1.

2.2. Methods 50

The edge relations {ni→nj} ∈ Ẽ are also assigned numerical features, denoted ei→j.

For reasons discussed in Section 2.2.4, only one of each pair of directed edges {ni →

nj}, {nj →ni} ∈ Ẽ needs to be assigned an edge feature vector. This is achieved by

assigning features to those edges where the index of the sender node ni is greater than

that of the receiving node nj (note there are no self-loops in the graph). That is, edge

features are assigned as

{ni→nj} ↠ ei→j for all {ni→nj} ∈ Ẽ where i > j. (2.22)

The form of the assigned edge features was the same for both systems considered here

(beam and left ventricle);

ei→j = (xj − xi, ||xj − xi ||2), (2.23)

containing both the difference and distance between the coordinates of the sender node

and receiving node respectively.

2.2.4 GNN Emulation Architecture

Algorithm 2 presents the DeepGraphEmulator GNN architecture, which defines a forward

map of the form (
G̃, zglobal

)
7→ Û . (2.24)

The first input variable G̃ is the augmented graph representation of the geometry under

consideration, the construction of which is described in Section 2.2.3 above. The second,

optional input is zglobal, a vector-embedding of the global shape of the real nodes of the

given geometry. The form of zglobal will be context-dependent, and could be obtained for

example using dimensionality reduction or parameterised methods. The GNN emulator

then makes a prediction Û for the node-wise displacement of the body from its initial

to end-state using a three-stage, encode-process-decode approach, which is illustrated

schematically in Figure 2.2. Each stage is controlled by individual, trainable MLPs. In

2.2. Methods 51

Algorithm 2 DeepGraphEmulator
Input: G̃ = (V ∪ Ṽ , Ẽ ,θ), zglobal

Output: Û = {ûi for all ni ∈ V}
linebreak
Encoder:
v0
i = fV (vi) for all ni ∈ V ∪ Ṽ

e0
i→j = fE (ei→j) for all {ni→nj} ∈ Ẽ where i > j

Processor:
for k = 1 : K do

mk
i→j = gkE

(
ek−1
i→j ,v

k−1
i ,vk−1

j

)
for all {ni→nj} ∈ Ẽ where i > j

mk
i→j = −mk

j→i for all {ni→nj} ∈ Ẽ where i < j

vk
i = vk−1

i + gkV

(
vk−1
i ,

∑
j∈NG

i
mk

j→i

)
for all ni ∈ V ∪ Ṽ

ek
i→j = ek−1

i→j +mk
i→j for all {ni→nj} ∈ Ẽ where i > j

end for
zlocal
i = (vK

i ,
∑

j∈NG
i
eK
i→j) for all ni ∈ V

Decoder:
zθ = fP (θ)
ûd
i = hd(zθ, zglobal, zlocal

i) for all ni ∈ V for d = 1, ..., D
ûi = (û1

i , ..., û
D
i) for all ni ∈ V

total, there are (2K + 3 + D) such MLPs internal to the emulator: two encoder MLPs,

fV and fE, two processor MLPs for each of K rounds of message passing, {gkV , gkE}Kk=1,

one global parameter embedding MLP, fP , and D node-decode MLPs, {hd}Dd=1, where D

is the dimensionality of the system.

The first stage of the DeepGraphEmulator algorithm, the encoder, embeds each node

feature vector vi and edge feature vector ei→j from the augmented graph representation

of the physical system G̃ into a higher M -dimensional vector space,

v0
i = fV (vi) for all ni ∈ V ∪ Ṽ , (2.25)

e0
i→j = fE (ei→j) for all {ni→nj} ∈ Ẽ where i > j. (2.26)

This embedding increases the expressive power of the final learned node and edge rep-

resentations. The node encoding is performed using the MLP fV and the edge encoding

with the MLP fE.

2.2. Methods 52

The node and edge embeddings are then updated sequentially in the processor stage

over k = 1, 2, ...K message-passing steps. At each step k, the processor first calculates an

M -dimensional message vector mk
i→j for each directed edge {ni→nj} ∈ Ẽ . In performing

the message-passing, we follow the approach of [160] and enforce the symmetry

mk
i→j = −mk

j→i (2.27)

in the messages passed between each twin pair of directed edges {ni→nj}, {nj→ni} ∈ Ẽ .

This symmetry is inspired by interpreting the messages as forces and then incorporating

Newton’s third law of motion. It is enforced by first computing the message vector for

one edge from each twin pair in Ẽ using the MLP gkE as follows:

mk
i→j = gkE

(
ek−1
i→j ,v

k−1
i ,vk−1

j

)
for all {ni→nj} ∈ Ẽ where i > j. (2.28)

For remaining edges {ni→nj} ∈ Ẽ where i < j, the message value mi→j is found by

simply negating the message mj→i found using gkE above:

mk
i→j = −mk

j→i for all {ni→nj} ∈ Ẽ where i < j. (2.29)

Note that a consequence of this method of enforcing the symmetry in Eq. (2.27) is that the

output Û of the emulator is not invariant under a permutation of the node and edge indices

of the input graph G̃, as is typically the case for GNNs [100]. Permutation invariance and

the message-passing symmetry could both be maintained at each step by, for example,

using gkE to compute an initial message ḿk
i→j on each edge {ni→nj} ∈ Ẽ , before calculating

the final message values as mi→j = (ḿk
i→j − ḿk

j→i)/2. We took the alternative approach

given in Equations (2.28) and (2.29) in this work as it is more computationally efficient,

because only half of the messages need to be explicitly computed using gkE. The updated

node embedding vectors vk
i are then found as the sum of the embedding from the previous

step k − 1, plus a learned value from the node-update MLP gkV ,

vk
i = vk−1

i + gkV

vk−1
i ,

∑
j∈NG

i

mk
j→i

 for all ni ∈ V ∪ Ṽ . (2.30)

2.2. Methods 53

The node-update MLP incorporates the message vectors by summing over all incoming

messages to each node ni ∈ V ∪ Ṽ . The set of all nodes nj ∈ V ∪ Ṽ which send a directed

edge to node ni is called its graph neighbourhood N G
i , defined as

N G
i ≜ {nj ∈ V ∪ Ṽ | {nj→ni} ∈ Ẽ}. (2.31)

The use of sum aggregation when updating the node representations is again motivated by

interpreting the message vectors as forces, and then incorporating the elementary concept

in classical mechanics that the net force acting on an object is the sum of all forces acting

upon it3. The updated edge embeddings ek
i→j are found as the sum of the embedding

from the previous step k − 1, plus the computed message value mi→j,

ek
i→j = ek−1

i→j +mk
i→j for all {ni→nj} ∈ Ẽ . (2.32)

After K rounds of message passing are complete, the final local learned representation

zlocal
i is found for each real node ni ∈ V as the concatenation of vK

i with the sum of all

edge embedding vectors eK
i→j in its local graph neighbourhood N G

i ,

zlocal
i = (vK

i ,
∑
j∈NG

i

eK
i→j) for all ni ∈ V . (2.33)

The importance of the virtual nodes and edges described in Section 2.2.3 to the

processor stage of the emulator is illustrated in Figure 2.6, for the augmented beam

geometry from Figure 1. Because messages can only move by one neighbourhood at a

time, it can take a large number of steps for information to disseminate across a dense

set of real nodes. By contrast, the augmented nodes are less dense, allowing information

to be disseminated more efficiently around the graph, as shown for example by the blue

arrows.
3An alternative message-aggregation function could however be selected here instead, however the

selected function must be both permutation invariant and applicable to a variable number of inputs in
order to be suitable for graphs with arbitrary topology [100, Section 3.2.2].

2.2. Methods 54

The final, decode stage of the emulator makes a prediction ûi for the displacement

for each real node ni ∈ V . This is done by first embedding the global parameters θ into

an M -dimensional vector zθ using the MLP fP ,

zθ = fP (θ). (2.34)

Then, a prediction is made for the displacement at each node, using the MLPs h1, ..., hD

for each of the D dimensions of the system

ûd
i = hd(zθ, zglobal, zlocal

i) for all ni ∈ V for d = 1, ..., D. (2.35)

The decoder MLPs take as input the global parameter embedding zθ, global shape embed-

ding vector zglobal, and the local embedding vector zlocal
i . Note how the node-decode MLP

makes a prediction for each node individually, and each dimension individually, without

explicitly accounting for any correlation structure. This is because any such structure is

implicitly accounted for by the processor stage of the emulator, and can hence be ignored

in the final decoder stage. The output Û of the emulator is then the collection of all

individual displacement predictions,

Û = {ûi for all ni ∈ V} where ûi = (û1
i , ..., û

D
i). (2.36)

Performing emulation with DeepGraphEmulator requires in particular the structure of

the internal MLPs, the dimensionality M of the internal embedding vectors, and finally

the number of message-passing steps K to be specified. Greater values of M and K

allow for more information to be incorporated in the final decoder stage of the emulator.

However, this also leads to longer training and prediction times, as well as increases the

potential for overfitting. As discussed above, there are (2K+3+D) MLPs internal to the

GNN. In addition, the outputs of all MLPs with the exception of the final node decode

MLPs {hd}Dd=1 are processed with a LayerNorm [161]. The trainable parameters denoted

ω of the GNN then consist of the weights and biases of all internal MLPs, as well as the

LayerNorm parameters.

2.2. Methods 55

Layer 0 (Real Nodes)

Figure 2.6: A large number of message passing steps may be required to disseminate
information around a dense set of FE nodes. Introducing additional layers of coarse,
virtual nodes allows information to disseminate more quickly using a “shortcut” through
the augmented space (illustrated by the blue arrows).

Before moving on to describe the experimental results for the two systems considered

for emulation, we first discuss the motivation behind two of the design choices of the

architecture that are particularly advantageous for emulation of LV mechanics. Firstly,

note the inclusion of the global shape embedding vector zglobal in the decode stage. This

allows the decoder MLP h to assimilate information specific to each individual node ni ∈ V

(zlocal
i) together with information about the global shape of the geometry when predicting

the forward displacement of the LV, which is useful as each LV anatomy will have a unique

shape. Secondly, consider how the parameter vector θ is only included at the final, decode

stage of the GNN. This means that, when considering repeated forward evaluations for

a fixed initial geometry under different input parameter values, the encode and process

state can be precomputed exactly once initially. Subsequent evaluations then only require

the decode step to be performed. Since the processor stage constitutes the bulk of the

computational requirements of the emulator, forward evaluations of the surrogate model

2.2. Methods 56

can be made highly efficiently in this case. Again, this is useful in LV emulation, as the

emulator must deliver significant computational savings over the numerical simulator to

be useful for real-time estimation tasks, which in general will be required for the fixed LV

geometry of a given subject.

2.3 Beam Deformation Application

We first illustrate the application of the proposed GNN emulation framework to modelling

the displacement of a 2-D beam. Specific details of the mechanics problem are given in

Section 2.3.1, as well as a description of how training, validation and testing datasets were

generated. Section 2.3.2 details how the emulator was implemented, and finally Section

2.3.3 presents and discusses the emulation results.

2.3.1 Mathematical Details and Data Generation

In this section, we will introduce a 2-D clamped beam that is deformed under its own

weight, this is a simple 2-D linear elasticity model based on a similar example from

FEniCS [162]. In brief, Figure 2.7 (a) shows an example of a beam geometry in its

reference configuration, while Figure 2.7 (b) displays the beam in its current, displaced

configuration with the left side fixed. Denote the Cauchy stress tensor σ, the linear strain

tensor ϵ = 1
2

(
∇u+ (∇u)T

)
where u is the displacement field. By assuming the material

is isotropic and linear, we have

σ = λ tr(ϵ)I + 2µϵ, (2.37)

where θ = (λ, µ) gives the Lamé parameters, and I is the identity matrix. From Eq. (2.1),

the balance equations for this beam (Ω) can be written as

−∇ · σ = f in Ω

u = 0 at ∂Ωd,
(2.38)

2.3. Beam Deformation Application 57

(a) Initial State (b) End State

Figure 2.7: Panel (a) shows an example discretised beam geometry in its initial, reference
configuration. Panel (b) then shows the end-state of the beam geometry after a simulation
following Eq. (2.38) is run.

where f = (0,−ρg) is the gravity force density with ρ the density of the beam and g the

gravity acceleration, and ∂Ωd is the clamped end that is the left side of the beam. No

traction is applied to the rest of the boundaries. Detailed numerical implementation can

be found in the FEniCS documentation [162].

Three hundred individual beam geometries were generated for emulation, all of which

shared a common triangular finite-element mesh with 96 nodes and 154 elements. Each

beam’s length was found by uniformly randomly sampling within the range [40, 70]mm,

and its width was set as a randomly chosen fraction of the length within the range [0.20,

0.40]. A forward simulation was run for each beam according to Eq. (2.38), with a uni-

formly random sample of θ ∈ [4, 10]2, where the Lamé parameters are in units of stress

[162]. The first 225 simulations were used as training data on which the emulator could be

fit, the following 25 for validation and the remaining 50 were reserved as an independent

test set. Note that this sampling procedure ensured each data point had unique beam

geometry and Lamé parameter values.

2.3.2 Implementation Details

Emulation was performed for several different values of the number of message-passing

steps K, dimensionality M of the internal embedding vectors within the GNN, and car-

dinality of the virtual node layers η, to quantify the impact of these hyper-parameters on

emulation accuracy. In practice, these values could be selected using a held-out validation

set of simulations. The global shape embedding input to Algorithm 2 for each individual

2.3. Beam Deformation Application 58

beam geometry was set to be the two-dimensional vector giving the beam’s length and

width. All encoder, processor and decoder MLPs internal to the emulator were imple-

mented with two hidden layers each of width 128, using tanh activation function4. For

each value of η considered, a single augmented graph topology ẼBeam for use on all train-

ing, validation and test beams was found by applying Algorithm 1 to a reference beam

geometry. The reference beam was generated using the “averaging” approach described

in Section 2.2.3. Emulation results for an alternative choice of representative graph are

given in Section A.1, with the results obtained being very similar to those presented in

Section 2.3.3 below. The augmented nodes for each individual training, validation and test

beam were then generated in the manner discussed in Section 2.2.3. For all beam graph

representations, each edge {ni→nj} where i > j was assigned a feature vector ei→j as

given in Eq. (2.23). Each real node was assigned a single, Boolean feature variable, which

indicated if it lay on the Dirichlet boundary ∂Ωd from Eq. (2.38). Augmented nodes were

then assigned features sequentially as detailed in Section 2.2.3. Before training, all input

features and output displacement values were normalised to mean zero and unit variance.

Training was performed using the Adam optimiser [111] with a batch size of one for 300

epochs using a fixed learning rate of 5× 10−5, after which the loss value on the validation

set was found to plateau. The loss function used for training the GNN parameters ω was

the mean prediction error between nodal displacements outputted by the simulator ui

and those predicted by the emulator ûi,

L(ω) =
1

|V|

|V|∑
i=1

|| ui − ûi ||2, (2.39)

where |V| = 96 is the number of nodes in the FE representation of each beam. The 25

simulations in the validation dataset were used to monitor emulation performance, with

the trained network parameters which gave the lowest error on this data saved for use in

predicting the displacements of the 50 test simulations.

4Initial experiments with smaller MLPs gave slightly poorer predictive performance. We found two
hidden layers of width 128 to be a good comprise between predictive accuracy and computational effi-
ciency.

2.3. Beam Deformation Application 59

2.3.3 Results and Discussion

Figure 2.8 compares the test set prediction errors when emulation is performed on the

non-augmented graph representations of the beam geometries against results on the aug-

mented graphs, for K = 1, ..., 6 message passing steps5. When operating on the non-

augmented graphs, at least K = 5 message passing steps are required to ensure the bulk

of emulation errors are less than 0.1mm, whereas almost identical performance can be

obtained in only K = 2 steps when using the augmented representations. For reference,

the average magnitude of the true nodal forward displacement vectors across the test

data was 4.2mm. Figure 2.9 (a) displays emulation errors for different values of virtual

node cardinality input vector η, with results exhibiting low sensitivity with respect to

this hyperparameter vector, and panel (b) displays errors for different choices of latent

embedding dimension M . Errors tend to fall as M increases, however for M = 60, we see

a small increase in the distribution of tail prediction errors which could be evidence of

slight overfitting. By using arguments similar to Takens’ embedding theorem for dynam-

ical systems (see e.g. [163]), it is reasonable to assume there exists an optimal value for

M , below which insufficient information underfitting may occur and beyond which more

scope for overfitting is introduced.

The disparity between the augmented and non-augmented emulation errors for low

values of K from Figure 2.8 exists because the emulator requires higher values of K

to distinguish between the internal nodes of the beam geometries when using the non-

augmented graph representations. In particular, due to the regularity of the nodes in each

beam geometry, as illustrated in Figure 2.7 (a), any nodes more than K steps away from

a boundary node will have the exact same local information available to them after K

message passing steps. This means they will share a common value of zlocal
i (Eq. (2.33))

and hence will be indistinguishable to the node-decode MLPs (Eq. (2.35)). Even then for

this 2-D beam model, for a high fidelity FE mesh a large value of K would be required to

discriminate between internal nodes and achieve accurate emulation. By introducing vir-

tual nodes and edges, this issue is alleviated. The use of augmented graph representations

5For ease of reference, all beam emulation results are tabulated in Section A.1.

2.3. Beam Deformation Application 60

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6
0.0

0.1

0.2

0.3

0.4

0.5

P
re

d
ic

ti
on

E
rr

or
(m

m
)

Figure 2.8: Violin plots of test-set nodal GNN emulation prediction errors (in mm)
for K = 1, ..., 6 message passing steps with the dimensionality of the internal embedding
vectors M = 40. The left hand side of each violin plot in blue gives the distribution
of errors when the non-augmented graph representations are used for emulation, that is
without any virtual nodes or edges. The right hand side of each plot in green shows the
error distribution when the augmented graphs are used, generated using Algorithm 1 with
nearest neighbour parameter κ = 4 and node cardinality vector η = [24, 6].

has other advantages also, beyond what can be seen in this simple example. For instance,

when considering simulations involving the contact of different bodies, the virtual nodes

and edges allow the contact information to be rapidly propagated across the entire body

under contact [140].

The top row of Figure 2.10 compares the predictions of the GNN emulator with K = 2

against the outputs of the simulator for two beam geometries from the independent test

set. Note the difference in size between the two beams, which is a result of the random

sampling approach used to generate them. The beam in the left column was the simu-

lation for which the emulator obtained the first-quartile value of mean prediction error

(0.03mm), and the beam on the right the third quartile error value (0.05mm). For both

simulations, the emulator delivers accurate predictions across the entire geometry. The

violin plots from Figure 2.8 illustrate the accuracy / efficiency trade-off of the choice of K.

That is, K must be chosen such that the node-decode MLPs have sufficient information

to make accurate predictions. However, higher values of K also introduce the potential

for the network to overfit to its training data. In this case, as more than K = 2 steps of

message passing are performed using the augmented graph representations, the emulator

begins to overfit. Nevertheless, the exact value of K is far less critical than when perform-

2.3. Beam Deformation Application 61

η = [4] η = [8] η = [24, 6] η = [48, 12] η = [48, 12, 4] η = [48, 24, 6]
0.0

0.1

0.2

0.3

0.4

0.5

P
re

d
ic

ti
on

E
rr

or
(m

m
)

(a)

M = 3 M = 6 M = 10 M = 20 M = 40 M = 60
0.0

0.1

0.2

0.3

0.4

0.5

P
re

d
ic

ti
on

E
rr

or
(m

m
)

(b)

Figure 2.9: Violin plots of test-set nodal GNN emulation prediction errors for different
hyperparameter input values. Panel (a) shows the distribution of errors for six different
values of η, with K = 2 and M = 40. Panel (b) plots the distribution of emulation
error for M = 3, 6, 10, 20, 40, 60, with K = 2 and virtual node layer cardinality vector
η = [24, 6].

ing emulation using the non-augmented graphs. The overfitting effect is visualised in the

final two rows of Figure 2.10, which compares the predictions of the GNN emulator with

K = 2 against an emulator with K = 6. Despite the slight overfitting, the predictions of

the two emulators appear qualitatively similar, with increased deviations for nodes farther

from the clamped left side.

Finally, Figure 2.11 displays the node coordinate values {xi}|V|i=1 of the same geometries

from Figure 2.10 in the top row of panels, while the bottom row displays two-dimensional

projections of the corresponding local embedding vectors {zlocal
i }|V|i=1. The embeddings

were generated using the GNN with M = 40 (which implies that each zlocal
i was of length

80) and K = 2. The projection values were found using Principal Component Analysis

2.3. Beam Deformation Application 62

Beam One Beam Two

(a) (b)

(c) (d)

42.5 45.0 47.5 50.0 52.5
x1-coordinate (mm)

−8

−6

−4

−2

0

2

x
2-

co
or

d
in

at
e

(m
m

)

52.5 55.0 57.5 60.0 62.5
x1-coordinate (mm)

−10

−8

−6

−4

−2

0

x
2-

co
or

d
in

at
e

(m
m

)

(e) (f)

Figure 2.10: Illustration of emulation performance for two test-set beam simulations.
The beam in the left column had an initial width/height of 56.5/22.0mm, and the simu-
lation was run with Lamé parameters λ = 7.03, µ = 5.94. The beam in the right column
had initial dimensions of 66.1/16.7mm with λ = 6.52, µ = 5.98. The top row of plots
shows the predictions of the GNN emulator with K = 2 rounds of message passing as red
circles against the outputs of the simulator as black squares. The second row displays
emulator predictions with K = 2 again as red circles, against predictions with K = 6
as blue squares. The final row of figures displays an enlarged version of the nodes inside
the black squares from the figures in the second row, with coordinate values provided for
reference.

2.3. Beam Deformation Application 63

(PCA). The PCA projection matrix was learned using as input data the collection of

individual values of zlocal
i across all the beams in the test data. The first two components,

labelled PC 1 and PC 2, were found to explain over 44% of the variance in this data.

The columns of the nodal coordinates in geometry space are coloured with a shading that

is shared with the PCA projections, allowing for clusters in the projection values to be

compared with coordinate position values. In panel (c), four distinct node clusters can

be seen. Firstly, the boundary nodes in black are clustered far away from all other nodes,

with high values of PC 1 and low values of PC 2. The second cluster consists of blue nodes

near the left hand clamped boundary of the beam, which congregate at the top left of the

scatter plot. The third cluster near the top centre of the plot consists mainly of red nodes

from the right hand side of the beam. The final cluster consists of mostly nodes from the

middle of the beam geometry which have low values of PC 1 and PC 2. Interestingly, the

blue nodes which are nearest the clamped boundary in geometry space are furthest from

the clamped boundary nodes in the projected space. The results in panel (d) are very

consistent in relative terms with panel (c), while in absolute terms the projections in (d)

tend to have slightly lower PC 1 value.

2.4 Passive Left Ventricle Mechanics Application

This section describes the application of the proposed GNN emulation framework to the

mechanics of the left-ventricle (LV) in diastole, the passive stage of the cardiac cycle.

Mathematical and numerical details of the mechanics problem are given in Section 2.4.1.

Section 2.4.2 describes the creation of simulation data on which the emulator was trained,

validated and tested. A summary of existing work on the emulation of cardiac-mechanics is

given in Section 2.4.3 before implementation details are given in Section 2.4.4. Emulation

results are then presented in Section 2.4.5 and finally discussed in Section 2.4.6.

2.4. Passive Left Ventricle Mechanics Application 64

Beam One Beam Two

N
od

al
C

oo
rd

in
at

es
x
i

(a) (b)

PC
A

Pr
oj

ec
tio

n
of

z
lo

ca
l

i

−5 0 5 10 15
PC 1

−6

−4

−2

0

2

4

6

8

10

P
C

2

−5 0 5 10 15
PC 1

−6

−4

−2

0

2

4

6

8

10

P
C

2

(c) (d)

Figure 2.11: Comparison of nodal coordinates {xi}|V|i=1 in geometry space (top row of
panels) against two dimensional projections of the local embedding vectors {zlocal

i }|V|i=1

(bottom row of panels), for two beam geometries. The projection values were found using
Principal Component Analysis (PCA). The columns of the nodal coordinates in geometry
space are coloured with a shading that is shared with the PCA projections, allowing for
clusters in the projection values to be compared with coordinate position values.

2.4.1 Mathematical Details

The passive myocardium is modelled as an incompressible, hyperelastic and transversely

isotropic material, which is reduced from the Holzapfel-Ogden HO model [75], motivated

by the results of previous uncertainty quantification study [164]. The adopted strain

energy density function is given by

Ψ =
a

2b

(
eb(I1−3) − 1

)
+

af

2bf

(
ebf(max(I4f,1)−1)2 − 1

)
+

1

2
P(J − 1)2, (2.40)

where θ = (a, b, af, bf) are the material parameters. Parameters a and b describe the

isotropic response of the myocardium, af and bf characterise the reinforced stiffness in the

myofibre direction. The principal invariant I1 and transversely isotropic invariant I4f are

defined as I1 = trace(C) and I4f = f 0 · (Cf 0), with C = F TF the right Cauchy-Green

2.4. Passive Left Ventricle Mechanics Application 65

tensor, F the deformation gradient, and f 0 the unit vector in the myofibre direction in

the reference configuration. The max() term in Eq. (2.40) ensures that the myofibres only

support extension but not compression, while the final term in the equation enforces the

incompressibility constraint with the Lagrange multiplier P and J = det(F).

The filling process of the LV in diastole is described by a quasi-static, pressure-loaded

boundary-value problem over the computational domain occupied by the geometry of the

LV. A linearly ramped pressure from 0 to 8 mmHg is applied to the endocardial surface

(Γendo), and the basal plane of the geometry is fixed in the longitudinal and circumferential

directions, with only radial expansion allowed during the filling process. Note a cylindrical

coordinate system is introduced to the nodes in the basal plane. The system of equations

at the current configuration (Ω) is given by:

∇ · σ = 0 in Ω,

σ · n = −pn on Γendo,

uθ = uz = 0 on Γbase,

(2.41)

where n is the normal direction of the endocardial surface Γendo and p is the loaded

pressure at Γendo. The vectors uθ and uz are the displacement components along the

circumferential direction and z-axis at the basal surface Γbase, respectively. The above

FE-based LV model (Eq. (2.41)) is then solved using ABAQUS (Simulia, Providence, RI,

USA), a general-purpose finite-element package. Further details of the FE simulation of

the passive LV dynamics are given in [165].

Note that here we restrict our analysis to the passive stage of the cardiac cycle.

However, emulation could also be used to model the active stage of the cardiac cycle,

when the LV contracts. For instance, see the recent work by Naghavi et al. (2024) [166].

2.4. Passive Left Ventricle Mechanics Application 66

2.4.2 Simulation Data Generation

The emulation study was conducted using 3000 randomly generated, synthetic LV geomet-

ries. Synthetic geometries were used in the absence of a large dataset of real geometries.

For full details of the generation procedure, see Appendix A.3. In brief, the synthetic LV

geometries were generated by sampling in a 40-dimensional latent space. This space was

found by applying principal component analysis (PCA) to a population of 65 real LV geo-

metries, extracted from cardiac imaging scans. The variation of the sampler along each

axis was set to be slightly more than the empirical variation observed on the real data.

The advantage of using a high-dimensional latent space is that the synthetic geometries

exhibited a wide variation of size, wall thickness and skewness, for example. However, they

were not guaranteed to be physically realistic. For example, a geometry can be generated

where the inner and outer wall intersect. To prevent such problems, we applied a post-

processing step after geometry generation to remove such unrealistic geometries. Each LV

geometry was represented using a three-layer, hexahedral mesh with 6874 nodes and 4995

finite-elements, with myofibre structure described by a rule based method (RBM) [165].

This mesh is slightly less dense than would be considered in practical cases involving real

patients (see the experiments in [92] for example). We used a less dense mesh here to

accelerate the extensive numerical experiments we performed.Figure 2.12 (a) illustrates

both the form of the hexahedral mesh and the RBM for fibre generation.

To create simulation datasets on which the GNN emulator could be trained, validated

and tested, a forward mechanics simulation was run for all 3000 synthetic LVs. Panel (b)

in Figure 2.12 shows an example LV geometry in its reference configuration, while panel

(c) shows the form of the geometry after a forward simulation is run. Each simulation

was performed with a unique value of the material parameter vector θ = [a, b, af, bf].

The parameter values were found by running a Sobol sequence of length 3000 within

the set [0.1, 10]4, where a and af are measured in kPa while b and bf are dimensionless

quantities. A Sobol sequence is a low-discrepancy sequence, commonly used in the design

of computer experiments to ensure a space-filling coverage of the experimental domain

of interest [167]. The Sobol sequence was run on the log-scale rather than the uniform

scale. Sampling on the log-scale favours material parameter vectors θ with lower stiffness

2.4. Passive Left Ventricle Mechanics Application 67

(a)

c

(b) Initial State (c) End State

Figure 2.12: Panel (a) shows the hexahedral FE mesh structure of a LV along with
the RBM generated myofibre field, where myofibre orientation varies smoothly from en-
docardium to epicardium. Panel (b) shows the endocardial and epicardial surfaces of
an example LV geometry in its initial reference configuration. Panel (c) then shows the
deformed LV geometry after a simulation following Eq. (2.41) is run.

levels, which results in an increase in the magnitude of the simulated displacement of the

myocardium from start to end-diastole. By contrast, samples on the uniform scale result

in displacements that are smaller in magnitude than would be expected for real data [164].

The first 2250 simulation results were used as training data, and the following 150 were

used as a validation set. The remaining simulation results were used as a test set. Note

that 29 of the forward mechanics simulations failed to converge. Furthermore, some of

the remaining simulations exhibited extremely large displacements beyond what would

2.4. Passive Left Ventricle Mechanics Application 68

be expected to be observed in-vivo. For this reason, we excluded from the test set any

simulation results where the cavity volume of the deformed geometry exceeded 850 mL,

which left 567 test data points. For reference, the mean end-diastolic volume for healthy

males has been found to be 160 mL, with standard deviation of 27 mL [168, Table 2].

An additional dataset of 350 simulations was generated for a fixed LV geometry,

randomly chosen from the test set. Again, each simulation was run with a different

material parameter input vector θ, the values of which were found by continuing the Sobol

sequence beyond the last index from the above data. The fixed LV geometry simulations

were used to quantify how transfer learning on a specific geometry of interest can affect

emulation performance. Transfer learning involves taking a pre-trained machine learning

model and fine-tuning it for a new, but related application domain [169]. Details of the

transfer-learning approach used in this instance are given in Section 2.4.4.2. The first

85 simulations were used for training, with 15 reserved for validation. Four simulations

failed to converge, leaving 246 test points.

2.4.3 Existing Work on Cardiac-Mechanic Emulation

Emulation has been widely applied in LV mechanics, due to the numerical expense in-

curred in simulating soft-tissue mechanical systems. As discussed in Section 2.2.2 however,

traditional emulation methods such as MLPs are not suited to emulating LV mechanics

due to the excessive dimensionality of the simulations that are required for high fidelity

results. Instead, a common approach in the literature has been to emulate certain numer-

ical properties of the displaced geometry outputted by the simulator, such as LV inner

cavity volume (LVV), instead of directly emulating the displacement of the myocardium

itself. Consider for example the additional simulation data described in the last para-

graph of Section 2.4.2, that were created for a fixed LV geometry. If we calculate the

LVV resulting from each simulation, a dataset where inputs are the four material para-

meters in θ and outputs being scalar LVV can be created, which is appropriate to model

with a traditional surrogate modelling technique. This is the approach taken in [170],

where Gradient Boosted trees were used to emulate blood pressure, myocardial stresses

and LVV through the full cardiac cycle. In [171], polynomial chaos emulators were used

2.4. Passive Left Ventricle Mechanics Application 69

to conduct a sensitivity analyses of the passive mechanics of the LV, considering outputs

such LVV and apex lengthening. Finally, [135] and [172] used Gaussian process emulators

for LVV and circumferential stains to perform fast parameter inference for the material

properties of the underlying constitutive law.

All of the above works performed emulation for a single, fixed LV geometry. In order

for a traditional emulation method to be able to generalise to different LV anatomies, a

low-order representation of the true LV is required as input to the emulator. This repres-

entation is typically found using PCA. In [89] for example, a 5 dimensional representation

of the LV geometry was found using PCA, while in [86] a 2 dimensional PCA represent-

ation of the LV was used. Low-order parameterised representations for the LV geometry

have also been considered for training emulators [87]. However, [173] has shown that such

parameterised methods incur higher reconstruction error than PCA.

To benchmark the emulation performance of the GNN surrogate model, we compare

its predictive accuracy for LVV with that of an MLP emulator on the test data set of 567

simulations described in Section 2.4.2. The MLP learns a forward map of the form

(
θ, zglobal) 7→ LVV (2.42)

on the training data, whereby a prediction of LVV is made directly given input values for

the global material parameters θ and global shape coefficients zglobal respectively. We have

previously found that MLPs achieve strong performance for emulation of LV mechanics

[2]. In addition, the computational efficiency of MLPs allows for gradient-based MCMC

approaches to be used for inverse problems, see [89] for example.

2.4.4 Implementation Details

Emulation for the LV model in diastole was performed using the same augmented graph

topology for each LV geometry, denoted ẼLV . A common augmented topology was used

as all LV geometries share a common FE mesh structure and hence share a common

non-augmented graph topology, ELV , which is derived as in Eq. (2.8). ẼLV was generated

by applying Algorithm 1 to a reference graph with nodes V̄ and graph topology ELV ,

where κ = 5 and η = [813, 126, 13]. The node set V̄ was found using the “averaging”

2.4. Passive Left Ventricle Mechanics Application 70

approach discussed in Section 2.2.3. The value of κ was chosen so virtual nodes would

have approximately the same number of intra-layer neighbours in ẼLV as each real node

has neighbours in the FE mesh (5.46 on average). The value of η was selected so that

the cardinality of each successive layer of virtual nodes decreased by approximately a

factor of 8, which is the number of real nodes in each hexahedral finite-element. Note

that the usual Euclidean metric was used for the operations performed in Algorithm 1.

Performance could potentially be improved by instead using a metric which accounts for

the non-convexity and curvature of the myocardium, however we leave this to future work.

Each real node ni ∈ V was assigned a feature vector vi for processing by the emulator, as

discussed in Section 2.2.3. The feature vector for each node included two Boolean indic-

ator variables, which were equal to one if the node lay on Γbase or Γendo respectively, and

zero otherwise. Additionally, the 3-D fibre orientation vectors generated by the rule-based

method at each node were assigned to vi. Finally, each node feature further included the

radial direction of the underlying node in the FE mesh (the vector er in Figure 2.12 (a)),

which helped the emulator learn the boundary condition on Γbase. Edge features were

assigned as in Eq. (2.23). Emulation was performed with fixed M = 40, which was the

value that gave the lowest prediction error for the beam dataset. The structure of the

MLPs internal to the GNN was the same as described in Section 2.3.2, as were the train-

ing details, with the exception that training was performed using a fixed learning rate of

5× 10−5 for 3000 epochs, after which loss on the validation dataset was found to plateau.

Because the LV geometries under analysis are synthetic, generated by sampling coeffi-

cients in a 40-dimensional latent space obtained using PCA (see Section A.3 for details),

we used these principal component coefficients for input to the emulator as the global

embedding vector zglobal. Note that for real LV geometry data, the global coefficients

could be found by applying the PCA projection matrix as in Eq. (A.1). To analyse the

impact of this hyper-parameter on emulation performance, emulation was performed with

{0, 8, 16, 24, 32, 40} PC coefficients inputted to zglobal. Emulation performance was also

quantified for K = {1, 2, 3, 4, 5, 6}. Preliminary experiments with regularisation tech-

niques including weight decay and dropout yielded no increase in emulation accuracy.

2.4. Passive Left Ventricle Mechanics Application 71

Note that our use of a stochastic training approach (Adam [111] with batch size of one)

can be seen as an implicit regularisation method. This is because stochastic training is

practically similar to training with added noise, which can help prevent overfitting [174]

and is equivalent to Tikhonov regularisation [175].

2.4.4.1 MLP Emulator Implementation Details

As discussed in Section 2.4.3, we compare the performance of the GNN emulator in

predicting LVV on the varying geometry dataset against an MLP emulator, which directly

predicts LVV using a forward map of the form of Eq. (2.42). The MLP was implemented

with two hidden layers, each of width 128, and tanh activation function. A point estimate

for the weights and biases was found by optimising the squared error between the true

LVV values and those predicted by the MLP on the training data set of 2250 simulations.

Optimisation was performed using the Adam algorithm [111] with a batch size of 200 for

1000 steps, after which validation set loss was found to plateau. We have found that the

predictive accuracy of the MLP emulator can be significantly improved by performing pre-

transformations of the two inputs θ and zglobal before training and evaluation. Firstly, the

material parameters θ were inputted on normalised log-scale, rather than uniform scale.

Secondly, the individual principal component coefficients in zglobal were not normalised

independently before training. Instead, all coefficients were normalised with respect to the

variance in the training data along the direction of the second principal component. These

transformations were informed by our previous experience in emulating LV mechanics [2].

2.4.4.2 Transfer Learning Details

The GNN emulator is designed to be able to perform forward evaluations (without retrain-

ing) for arbitrary values of the LV geometry and material parameter inputs respectively.

In practice however, particularly in clinical applications, predictions for different material

parameters may only be required for one specific LV geometry of interest. In this case, the

original emulator can be fine-tuned using additional forward simulations of this specific

LV geometry, which is referred to as transfer learning. Transfer learning is more efficient

and can lead to more accurate predictions than re-training the emulator from scratch

2.4. Passive Left Ventricle Mechanics Application 72

on the additional simulations [169]. We performed transfer learning by taking a GNN

emulator that was pre-trained on the original data, and fine-tuning its parameters on the

dataset of 85 forward simulations for a randomly chosen, fixed LV geometry. See Section

2.4.2 for details of this fixed geometry dataset. The transfer learning was performed with

the Adam optimiser, using a learning rate of 1× 10−5 for 1500 epochs. We used a lower

learning rate than used on the original dataset to decrease the stochasticity observed in

the trace plots of the loss on the validation set of 15 simulations, however we found that

the learning rate does not have a significant impact on emulation performance. Further-

more, only the weights and biases of the three node-decode MLPs in the final stage of

the GNN were updated during the transfer learning. All other trainable parameters were

held fixed to the values determined by the original dataset.

2.4.5 Results

2.4.5.1 General Dataset

Figure 2.13 displays violin plots of the test-set nodal prediction errors (in mm) for the

GNN emulator for different hyperparameter input values6. Panel (a) shows the distribu-

tion of errors with 0, 8, 16, 24, 32 PCs retained in zglobal with K = 5 message passing steps.

We see that emulation error decreases monotonically as more components are included.

Panel (b) shows the distribution of errors for K = 1, ..., 6 with 32 coefficients retained in

zglobal. Again we see a decrease in error as more message passing steps are performed,

but this effect is less pronounced than in panel (a). For subsequent experiments, we pro-

ceeded with the GNN emulator with K = 5 and 32 PC coefficients retained in zglobal.

This emulator obtained a median nodal-prediction error of 0.27mm on the independent

test set, with interquartile range [0.15, 0.50]mm. For reference, the average magnitude of

the true nodal forward displacement vectors across the test data was 11.0mm. We chose

K = 5 as the difference in emulation performance was marginal compared with K = 6.

We do not retain all 40 PCs in zglobal, as we believe this better represents the case for real

data where a perfect low order representation of the LV anatomy will not be available.

6For ease of reference, all LV emulation results are tabulated in Section A.2.

2.4. Passive Left Ventricle Mechanics Application 73

0 PCs 8 PCs 16 PCs 24 PCs 32 PCs 40 PCs
0.0

0.2

0.4

0.6

0.8

1.0

P
re

d
ic

ti
on

E
rr

or
(m

m
)

(a)

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6
0.0

0.2

0.4

0.6

0.8

1.0

P
re

d
ic

ti
on

E
rr

or
(m

m
)

(b)

Figure 2.13: Violin plots of test-set nodal GNN emulation prediction errors (in mm)
for different hyperparameter input values. Panel (a) shows the distribution of errors with
{0, 8, 16, 24, 32} PCs retained in zglobal using K = 5 message passing steps. Panel (b)
shows the distribution of errors for K = 1, ..., 6 with 32 PCs retained in zglobal.

2.4.5.2 Comparison with MLP Emulation

Figure 2.14 presents a comparison of test set LVV prediction errors for the MLP and GNN

emulators, measured in terms of the absolute percentage error between the predicted and

true LVV values. The GNN emulators predict the value of LVV by explicitly calculating

the volume inside the deformed endocardial surface derived from the forward prediction

of the GNN. The MLP emulators directly predict the value of LVV at end-diastole with

a forward map following Eq. (2.42), where 32 PCs were retained inside zglobal. The violin

plots of MLP 1 and GNN 1 give emulation results when the pre-transformations of inputs θ

and zglobal detailed in Section 2.4.4.1 are not applied before training, while the violin plots

2.4. Passive Left Ventricle Mechanics Application 74

MLP 1 MLP 2 GNN 1 GNN 2
0

5

10

15

20

25

LV
V

P
re

d
ic

ti
on

E
rr

or
(%

)

Figure 2.14: Comparison of test set LVV prediction errors for MLP and GNN emulation.
Performance is evaluated in terms of the absolute percentage error between the predicted
and true LVV values. The violin plots of MLP 1 and GNN 1 give emulation results when
the pre-transformations of inputs θ and zglobal detailed in Section 2.4.4.1 are not applied
before training. The violin plots of MLP 2 and GNN 2 then give the emulation results
when these transformations are applied.

of MLP 2 and GNN 2 give the emulation results when these transformations are applied.

Without the input transformations, the MLP incurs very large errors in the prediction of

LVV, with median absolute error of 20.3%. When the input transformation is performed,

error for the MLP approach is significantly reduced to interquartile range [1.95%, 7.8%].

However, these errors are still substantially larger than those of the two GNN emulators.

In particular, GNN 2 achieves median prediction error of 0.49% and interquartile range

[0.24%, 0.89%]. This again presents an improvement over the case where the input pre-

transformations are not applied, however the difference however is much less pronounced in

this case. GNN 2 achieves achieves prediction errors approximately one order of magnitude

lower than MLP 2. In addition, the prediction errors of the GNN were less heavily skewed

- the largest error for the GNN was 6.8%, whereas the MLP incurred an error of over 50%

for one test point. This outlier point was run with a large value of material parameter a

(9.03 kPa) and very low value of b (0.10). For reference, the error of the GNN emulator

for this point was 1.6%.

2.4. Passive Left Ventricle Mechanics Application 75

General Transfer-Learned
0.0

0.2

0.4

0.6

0.8

1.0

P
re

d
ic

ti
on

E
rr

or
(m

m
)

General Transfer-Learned
0

1

2

3

4

5

LV
V

P
re

d
ic

ti
on

E
rr

or
(%

)

(a) (b)

Figure 2.15: Comparison of emulation performance of the general emulator and the
emulator transfer-learned on the specific LV geometry of interest. Panel (a) shows violin
of prediction errors in the nodal displacement of the deformed geometry (mm), and (b)
shows violin plots of errors in the prediction of LVV (%).

2.4.5.3 Transfer Learning on a Fixed LV Geometry

We also explore the effect of transfer-learning on the accuracy of the GNN emulator. Ini-

tialising on the trained parameter values from the above GNN emulator with K = 5 and

32 PCs retained in zglobal, we transfer-learned the GNN on a set of 85 simulations for a

randomly chosen, fixed LV from the held out set of 567 geometries. Figure 2.15 (a) com-

pares the test-set nodal prediction accuracy of the original and transfer-learned emulators

and Figure 2.15 (b) compares their predictive accuracy for LVV. Nodal prediction errors

tend to fall by greater than a factor of 2, with the transfer-learned emulator incurring

a median node prediction error of 0.11mm compared to 0.29mm for the original emu-

lator. The increase in LVV prediction accuracy was more slight, with the transfer-learned

emulator achieving a median error of 0.34%, compared to 0.43% for the original emulator.

To further characterise emulation performance, we consider the distribution of predic-

tion errors across the LV geometry surface in Figures 2.16. We selected for plotting the

three test simulations where the transfer learned GNN attained the 25th percentile (0.2%),

median (0.3%) and 75th percentile (0.6%) error values in the prediction of LVV. The ori-

ginal GNN incurred errors of 1.4%, 0.1% and 0.2% respectively for these simulations.

Figure 2.16 displays the three ground truth LV geometries outputted from the simulator

in red, against the predictions of the original and transfer-learned GNNs respectively in

2.4. Passive Left Ventricle Mechanics Application 76

blue. The first row is for the predictions of the original GNN, and the second for the

transfer-learned GNN. The first column shows the simulation where the transfer-learned

surrogate achieved the 25th percentile error in LVV, the second the median, and the third

the 75th percentile. For the original GNN, we tend to see slightly higher prediction errors

towards the apex of the LV in panel (a). For all other predictions for both the original

and transfer-learned GNNs, it is difficult to discern a spatial pattern in the predictions

errors, as predictions are highly accurate across the entire geometry.

Using the same fixed LV geometry as above, additional forward simulations were run

over a grid of values in [a, b] space with fixed af = bf = 1 (approximately the median values

from the training data), and predictions were made using both the general and transfer-

learned emulators. Constraining the input space to be two dimensional allows plots of

the distribution of prediction errors to be produced, which are displayed in Figure 2.17.

The first column of Figure 2.17 shows the results for the original emulator trained on the

varying-geometry dataset, and the second column the results for the emulator transfer-

learned on this specific LV anatomy. The top row displays displacement prediction error

(in mm) over [a, b] space, and the second row shows absolute percentage LVV prediction

error. The transfer learned emulator tends to attain higher accuracy across the entire

space in both cases. For displacement error, both emulators incur highest errors at the

corner of the space where a and b are low. For LVV, the distribution of emulation errors

over [a, b] space is less smooth. For the general emulator, highest errors occur for very

low values of a and b, while for the transfer learned emulator, highest errors are incurred

for low values of a where b is in the range [5, 10].

2.4.5.4 Visual Analysis of Latent Learned Embeddings

Figure 2.18 displays a comparison of node coordinate values {xi}|V|i=1 against 2-D projec-

tions of the corresponding local embedding vectors {zlocal
i }|V|i=1, for two randomly selected

LV geometries from the test set. The top row of panels shows short-axis views of the

two geometries, where the slice is taken mid-way up the myodardium. This plot is ana-

logous to Figure 2.11 for the beam data, however in this case we restrict our analysis to

the epicardial points on a single short-axis slice rather than considering all nodes in the

FE mesh, allowing for 2-D plots to be made. PCA was applied to the local embedding

2.4. Passive Left Ventricle Mechanics Application 77

(a) (b) (c)

(d) (e) (f)

Figure 2.16: Three example test-set end-diastole geometries outputted by the simulator
(red) against emulator predictions (blue). The top row shows the predictions of the
original, varying-geometry emulator in blue, and the second row shows the predictions
of the fixed-geometry emulator. Note that the simulated inflation of the LV in the left
column is larger than would be expected to be observed in-vivo.

vectors zlocal
i along this slice of the epicardium, across all 567 geometries from the varying

geometry test data set. The local embedding vectors were found using the GNN with

K = 5 message passing steps and M = 40. The first two PCs accounted for over 50% of

the variance observed in the data. The projection values in the bottom row of panels are

coloured with the same shading as the nodal coordinate values in the top row. For both

LV geometries, the projection values exhibit a similar periodicity to that seen in the nodal

2.4. Passive Left Ventricle Mechanics Application 78

2 4 6 8 10
a

2

4

6

8

10

D
is

p
la

ce
m

en
t

L
os

s
(m

m
)

b

Original Emulator

0.16

0.
32

0.48
0.640.80
0.80

2 4 6 8 10
a

2

4

6

8

10

b

Transfer-Learned Emulator

0.16
0.16

0.32

0.
32

0.48

0.64

2 4 6 8 10
a

2

4

6

8

10

V
ol

u
m

e
L

os
s

(%
)

b

0.25

0.25

0.25

0.50
0.50

0.50

0.50

0.50

0.50

0.75

0.75
0.75

0.75

0.75

1.00

1.00

1.00

1.00

1.
25

2 4 6 8 10
a

2

4

6

8

10

b
0.25

0.25

0.25

0.25

0.25

0.25

0.50

0.50

0.50

0.50

0.75
0.75

0.75

0.75

1.00

1.00
1.25

0.00

0.16

0.32

0.48

0.64

0.80

0.96

0.00

0.16

0.32

0.48

0.64

0.80

0.96

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Figure 2.17: Distribution of emulation error over [a, b] space, with fixed af = bf = 1
and fixed LV geometry. The top row shows heatmaps of mean displacement errors over
[a, b] space (in mm), while the second row shows heatmaps of absolute percentage error
in LVV prediction. The left column shows the results when using the original emulator
for predictions, while the second column shows results when using the emulator transfer-
learned on the fixed LV anatomy.

coordinate values. For the blue points with the lowest values of PC1 however, we see in

both cases a more acute curve in the surface of the projection values than in the nodal

coordinate values. Note however that the projection values also account for the myofibre

structure of the LV, which is not shown in the nodal coordinate plots.

2.4.5.5 Prediction Speed

Finally, the wall-clock forward prediction times of the GNN surrogate model and the nu-

merical simulator are compared in Table 2.1. Note that simulation times for the numerical

solver are dependent on the values of the material stiffness parameters, with lower stiffness

configurations generally leading to longer prediction times. The values indicated were run

2.4. Passive Left Ventricle Mechanics Application 79

Left Ventricle One Left Ventricle Two

N
od

al
C

oo
rd

in
at

es
x
i

(a) (b)

PC
A

Pr
oj

ec
tio

n
of

z
lo

ca
l

i

−8 −6 −4 −2 0 2 4 6 8
PC 1

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

P
C

2

−8 −6 −4 −2 0 2 4 6 8
PC 1

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

P
C

2

(c) (d)

Figure 2.18: Comparison of nodal coordinates xi in geometry space (top row of panels)
against two dimensional projections of the local embedding vectors zlocal

i (bottom row
of panels), for two LV geometries. The top row of panels show short-axis views of the
two geometries, with 60 coordinates along the epicardial surface of each LV displayed as
points with a cyclic colour shading. For reference, the endocardial surface of each LV is
also displayed as a black curve. The projection values of the epicardial points are found
using Principal Component Analysis (PCA), and they are coloured in the bottom row of
panels with the same shading as the nodal coordinates. We observe the same periodicity
in the projection values as is seen in the coordinate values.

with θ = [1, 1, 1, 1], approximately the median values from the simulation data set. The

first row of Table 2.1 compares the prediction times of the emulator when run on a CPU

(Dual Intel Xeon Gold 6138 2.0GHz), and the second row gives GPU (Dual Quadro RTX

8000) prediction times. In addition, two forward evaluation times for the emulator are

presented for each type of hardware. The column “Varying Geom.” in Table 2.1 shows

the prediction time when all three stages from Algorithm 2 are performed. We have

however designed the emulator such that repeated predictions for a fixed LV geometry

over different material parameter values θ are particularly efficient. Repeated forward

2.4. Passive Left Ventricle Mechanics Application 80

evaluations of this type are required for example in the context of an inverse problem

where the material stiffness properties of a patient’s LV are estimated from experimental

data. Stiffness estimates obtained in this manner have been found to deliver insights into

cardiac function that are relevant for clinical diagnostic purposes [60]. As discussed in

Section 2.2.4, for a fixed LV geometry, the message passing stage of the network can be

pre-computed exactly once to find zlocal
i for each node ni ∈ V , which constitutes the bulk

of the computations of the emulator. The column “Fixed Geom.” in Table 2.1 shows the

evaluation times of the emulator once this pre-computation has been performed, where

only the final node-prediction MLP has to be evaluated. On CPU, the varying-geometry

emulator requires 2.0 × 10−1 s to make a forward evaluation, while in the case of a fixed

geometry, predictions can be made in only 9.6 × 10−3 s. By contrast, 78 s are typically

required for the numerical simulator to converge. Forward evaluations of the emulator

are even faster on the GPU, requiring 4.5 × 10−3 s in the general case, and 2.4 × 10−4 s

for a fixed LV geometry. In particular for the fixed geometry case, this gives a speed up

of over five orders of magnitude compared to the simulator.

Table 2.1: Prediction times (seconds) for forward simulator and GNN emulators. The
first row shows emulator prediction times when run on CPU, and the second row shows
GPU prediction times.

Emulator Simulator Speedup Factor
Varying Geom. Fixed Geom. a=b=af=bf=1 Varying Geom. Fixed Geom.

2.0× 10−1 9.6× 10−3 78 3.7× 102 8.1× 103

4.5× 10−3 2.4× 10−4 78 1.7× 104 3.3× 105

2.4.6 Discussion

In this work we have introduced an emulation framework based on a novel GNN architec-

ture. The GNN uses a three stage, encode-process-decode approach to perform emulation

(Algorithm 2). The processor stage involves the processing and propagation of messages

around an augmented form of the graph structure induced by the underlying FE mesh.

The augmented structure involves the use of additional virtual nodes and edges, generated

as in Algorithm 1, to increase message-passing efficiency. We then applied the framework

to two separate mechanics problems, the first of which was the toy problem of a 2-D beam

with linear and isotropic elastic properties, clamped at one end and deformed under its

2.4. Passive Left Ventricle Mechanics Application 81

own weight due to gravity. The second was a 3-D model of the LV in diastole, carried out

using synthetic LV geometries with myocardium characterised by a non-linear and trans-

versely isotropic constitutive law, and myofibre field generated by an RBM. Experiments

were performed to evaluate the accuracy and computational efficiency of the proposed

emulation framework.

2.4.6.1 General Dataset

Figure 2.13 shows that the prediction errors of the GNN emulator decrease both as more

PCs are included in zglobal and as more message passing steps K are performed. This

effect is more pronounced for increasing PCs than for increasing K. The importance of

including additional PCs in zglobal shows that information about the global shape of the

LV geometry helps to improve the generalisation performance of the emulator, which is

likely due to the high level of variation observed between different LV anatomies.

2.4.6.2 LVV Benchmark against MLP

The GNN emulation approach is substantially more accurate than an MLP emulator in

the prediction of LVV, achieving a reduction in prediction errors of approximately one

order of magnitude, as illustrated in Figure 2.14. Note also in Figure 2.14 the sensitivity

of MLP emulation performance to an application specific pre-transformation of the input

variables. Without this transformation, informed by our experience in modelling this type

of simulation data, the emulation performance is extremely poor. On the other hand, the

GNN emulation results are much less sensitive to this transformation, suggesting that the

GNN requires less domain specific feature engineering to obtain accurate results than a

traditional emulator. Note that the GNN and MLP emulators also differ substantially,

both in terms of number of trainable parameters and training times. Specifically, the

MLP emulator has 21,377 parameters and took approximately 1 minute to train (Dual

Intel Xeon Gold 6138 CPU), while the GNN has over 520,000 parameters and took 27

hours to train (Dual Quadro RTX 8000 GPU).

2.4. Passive Left Ventricle Mechanics Application 82

2.4.6.3 Transfer Learning on Fixed LV Geometry

Generalisation error can be expected to increase for test geometries further from the bulk

of the training examples. The use of transfer learning in the case of a fixed LV geometry

can lead to improved emulation performance. Figure 2.15 (a) demonstrates that nodal

emulation prediction errors decrease by approximately a factor of three when using less

than a hundred additional training simulations. LVV predictions from Figure 2.15 (b)

also improve, but the effect was less pronounced. Recall that LVV was not incorporated

in the loss function used when transfer learning. If a quantity such as LVV is of par-

ticular interest, the loss function could be adjusted to target this quantity specifically.

The additional training input locations were chosen using a space-filling design. This

could be improved using an active-learning approach, where the input locations are se-

lected to target those areas of the input space where the emulator is less accurate [63,

Chapter 6]. For example, considering the heatmap in the bottom right of Figure 2.17. An

active-learning approach that accounts for prediction errors over this space would select

additional simulation data a < 1 and 5 < b < 10 to target the region of higher error.

2.4.6.4 Prediction Speed

The objective of the present work is to allow for patient-specific computational cardiac

models to be eventually applied in clinical decision support roles, for which rapid evalu-

ation times are required. Note that while generating the simulation datasets and training

the GNN emulator is computationally expensive, the advantage of our approach is that

these computations can be pre-computed in advance as no re-training is required for the

emulator to be applied to an arbitrary LV anatomy of interest. A further increase in

performance can be achieved however in the case of a fixed LV of interest using a small

number of additional forward simulations, as discussed in the previous subsection. The

results in Table 2.1 show that the emulator delivers significant gains in computation time

over the simulator at the prediction stage, i.e. once training is complete. In the case of

performing simulations for a fixed LV geometry, the GNN emulator can perform over 4000

forward evaluations per second on GPU. The GNN emulator can also leverage automatic

2.4. Passive Left Ventricle Mechanics Application 83

differentiation to compute exact derivatives (to machine precision) at negligible addi-

tional computational cost. This combination of rapid and accurate predictions available

with gradient information means that our approach is suitable for performing numerical

experiments such as forward and inverse problems in real-time.

2.4.6.5 Limitations and Future Work

The approach presented in this work could be extended for more realistic and patient-

specific cardiac simulations. Specifically, the myofibre field of each synthetic LV geometry

considered here was assigned by an RBM, see Section A.3. Each real LV geometry however

will have a unique myofibre field, the structure of which can have a significant impact on

the mechanical response of the LV in diastole [85]. In addition, we have assumed that

the material properties of each LV are constant across all nodes. Future work could relax

this assumption to allow stiffness values to vary for different regions of the LV, which

can be achieved by simply inputting a local value θi in the decoder stage of Algorithm 2

rather than a global value θ. This would be especially useful for emulation of the passive

mechanics of post myocardial infarction (MI) patients, as the myocardium can exhibit

significantly higher stiffness levels in the MI region. In this case however, removing the

global material parameter information from the message passing stage of the GNN as we

have done in Algorithm 2 may produce sub-optimal results. An indicator variable in each

node feature vector vi indicating healthy or diseased status could be sufficient though

to achieve accurate emulation. Furthermore, this study has restricted its analysis to the

passive phase of the cardiac cycle. Future work could consider the active phase and model

the electrophysiologically driven contraction of the heart.

In addition, the architecture of the GNN itself could be more specifically tailored to

the LV model. Note how we have used the exact same architecture for both the 2-D beam

model and 3-D LV model. For both models, the operation of running a forward simulation

of a given geometry commutes with the operation of translation of the geometry in space.

We have designed the emulator to also satisfy this commutation property, through the use

of relative displacements in the edge features from Eq. (2.23). For the LV model, we have

an additional commutation relationship, which the GNN architecture from Algorithm 2

does not satisfy. That is, the operation of running a forward simulation of the LV in

2.4. Passive Left Ventricle Mechanics Application 84

diastole commutes with the operation of rotating the geometry around the z-axis. Future

work could develop a GNN architecture which does satisfy this commutation relation,

potentially improving emulation performance. Further insight into the possibilities offered

by a more application specific emulator design can be drawn by considering the results in

Figure 2.18, which show that the emulator has learned a periodicity in the local embedding

vectors zlocal
i that mirrors the periodicity seen in the coordinate values xi for a slice of

nodes on the epicardium. The periodicity in the latent space in turn helps to ensure a

periodicity in the displacement predictions of the emulator, which we know to be true

in advance as we do not consider ruptures of the myocardium. While it is promising

that the emulator has learned this periodicity property automatically from the simulation

data, emulation performance could potentially be improved by instead explicitly enforcing

periodicity by adjusting the design of the emulator itself. This could be done by working

with prolate spheroidal coordinates for example when performing emulation, rather than

using the Cartesian coordinate system.

Extending the modelling framework to more complex and patient-specific simulations

makes the general emulation problem more challenging in turn, as it increases the dimen-

sionality of the input space of the emulator. In this case, it is likely that transfer-learning

the general emulator for a specific LV anatomy and myofibre field of interest will be re-

quired to maintain highly accurate emulator predictions. However, transfer-learning in

a data-driven manner as we consider in this chapter would require numerical forward

simulations to be performed, which are expensive to obtain. An alternative would be to

transfer-learn in a physics-informed manner [101]. With physics-informed training, the

parameters of the surrogate model are learned by minimising a potential-energy [176] or

PDE residual based loss function [177]. The advantage of physics informed loss functions

is that they can be evaluated without requiring any numerical simulation data, potentially

allowing for transfer learning to be performed rapidly in-clinic. Physics-informed training

has been applied in cardiac mechanics using non-GNN based surrogate models [176], [94].

2.5. Conclusion 85

2.5 Conclusion

This work has introduced a novel GNN framework for emulation of FE based numerical

simulators. The GNN uses a three-stage, encode-process-decode approach to perform

emulation, implemented on an augmented graph representation of the underlying FE

mesh. The GNN can easily generalise to different systems without retraining, both in

terms of the geometry of the underlying mesh and any material constitutive parameters.

The accuracy and efficiency of the emulator was compared against numerical simulations

for two mechanics problems; a 2-D beam model and a 3-D model of the left-ventricle

in diastole. Results are presented showing the emulator delivers accurate out-of-sample

predictions comparable to the simulator, while being able to make forward evaluations

several orders of magnitude more quickly. These results illustrate the promise of our GNN

emulation framework compared to traditional approaches, and constitute an initial step

towards eventual application of GNN emulation for clinical decision support.

Data and Code Availability

The GNN (Algorithm 2) was implemented in Python using the JAX [48] and Flax [178]

libraries, while the MLP emulator from Section 2.4 was implemented using the scikit-learn

machine learning library [179]. All GNN emulation code is available on GitHub7.

7https://github.com/dodaltuin/passive-lv-gnn-emul

https://github.com/dodaltuin/passive-lv-gnn-emul

Chapter 3
Physics-Informed Graph Neural

Network Emulation of Soft-Tissue
Mechanics

Dalton, David; Husmeier, Dirk; Gao, Hao (2023) [10]. “Physics-Informed Graph

Neural Network Emulation of Soft-Tissue Mechanics”. In Computer Methods in Ap-

plied Mechanics and Engineering, https://doi.org/10.1016/j.cma.2023.116351.

Abstract

Modern computational soft-tissue mechanics models have the potential to offer unique,

patient-specific diagnostic insights. The deployment of such models in clinical settings has

been limited however, due to the excessive computational costs incurred when performing

mechanical simulations using conventional numerical solvers. An alternative approach to

obtaining results in clinically relevant time frames is to make use of a computationally

efficient surrogate model, called an emulator, in place of the numerical simulator. In

this work, we propose an emulation framework for soft-tissue mechanics which builds on

traditional approaches in two ways. Firstly, we use a Graph Neural Network (GNN) to

perform emulation. GNNs can naturally handle the unique soft-tissue geometry of a given

patient, without requiring any low-order approximations to be made. Secondly, the emu-

lator is trained in a physics-informed manner to minimise a potential energy functional,

meaning that no costly numerical simulations are required for training. We present results

showing that our framework allows for highly accurate emulation for a range of soft-tissue

mechanical models, while making predictions several orders of magnitude more quickly

than the simulator.

86

https://doi.org/10.1016/j.cma.2023.116351

87

...Nomenclature
Ω0 Reference configuration

Ω Current configuration

X Coordinates in reference configuration

x Coordinates in current configuration

u Displacement

σ Cauchy stress tensor

b Body force in current configuration

Ωd Dirichlet boundary in current configuration

ud Prescribed displacement on Dirichlet boundary

Ωσ Neumann boundary in current configuration

n Surface normal vector in current configuration

t Traction force on Neumann boundary

F Deformation gradient

C Right Cauchy-Green tensor

J Determinant of F

I1 First invariant of F

Ψ Strain energy density function

Π Total potential energy

G/G̃ Graph / augmented graph

V/Ṽ Graph nodes / augmented graph nodes

vi Node feature vector

E/Ẽ Graph edges / augmented edges

ei→j Edge feature vector

θ Global graph parameters / material parameters

ω Trainable emulator parameters

mk
j→i Message from node j to node i at processor step k

û Emulator predicted displacement

U Array of displacements from simulator

Û Array of displacements from emulator

3.1. Introduction 88

3.1 Introduction

This chapter extends the work of Chapter 2 to consider physics-informed training, as there

are disadvantages to the data-driven approach. Firstly, a large dataset may be required to

train an accurate surrogate model, which will be expensive to obtain. Also, with a purely

data-driven training, any a-priori known underlying physical properties of the system

under consideration (which could include momentum conservation, for instance) are not

explicitly incorporated into the emulator. Instead, such properties are only implicitly

incorporated via the simulation data. Physics-informed machine learning approaches

constitute an alternative approach to emulation, whereby properties or constraints of the

underlying physical system are explicitly accounted for in the structure of the emulator,

and/or into the training procedure. Early work in the field includes the use of both neural

networks [180]–[182] and Gaussian processes [183], [184] for solving forward and inverse

problems involving differential equations. A major development was the seminal work of

Raissi et al. (2019) [101], which introduced physics-informed neural networks (PINNs).

PINNs explicitly incorporate the underlying equations of the model (typically PDEs) into

the training of the neural network surrogate model. PINNs can be trained on a loss

function solely derived from the underlying PDEs, or in a multi-task learning framework

where observational data is also included. PINNs were originally implemented using

the strong form of the underlying PDEs, with all required partial derivatives computed

using automatic differentiation, but have subsequently been extended to model PDE

systems using variational [185] and energy minimisation [186], [187] approaches. PINNs

have become one of the most highly researched areas of scientific machine learning, for

purposes including forward, inverse, control and model discovery problems across a range

of disciplines. To give a handful of examples, this includes computational fluid dynamics

[188], hyperelasticity [186], electromagnetics [189] and molecular dynamics [190]. Several

detailed survey papers on PINNs are also available, providing a comprehensive overview

of the field [59], [99].

3.1. Introduction 89

PINNs have also been applied in soft-tissue mechanics, for emulation of the dynamics

of the left ventricle of the heart for the entire cardiac cycle [94], and during the passive

diastolic phase [176], with both approaches making use of fully connected neural networks

(FCNNs). One issue with applying FCNNs in soft-tissue mechanics is that the geometries

of individual organs or vessel networks vary across the population, meaning that a different

computational mesh representation must be generated for each subject. This makes it

difficult to construct an accurate emulator using a traditional approach, especially one

that can generalise to geometries not seen in the training phase, due to the so-called curse

of dimensionality. In Buoso et al. (2021) [94], a low rank approximation to both the

left ventricle (LV) geometry and displacement field is required to overcome this issue and

allow the FCNN to generalise to new LV geometries, while in Zhang et al. (2022) [176],

only a simple cuboidal geometry is considered, not a real heart geometry.

3.1.1 Contributions

This chapter builds upon Chapter 2 by making use of physics-informed training through

application of the principle of minimum total potential energy, in place of a data-driven

approach based on numerical simulation data. Training on a potential energy object-

ive function is enabled by the use of transformation barrier functions, which explicitly

incorporate known physical constraints and stabilise the objective. A range of realistic

soft-tissue mechanics models are considered, including highly non-linear, fibre reinforced

materials. Experimental results demonstrate that strong out-of-sample accuracy can be

achieved, i.e. the emulator can generalise to input points not seen during the training

phase. Additional experimental comparisons indicate that physics-informed training al-

lows for a more physically realistic deformation to be consistently captured in comparison

to data-driven training. Finally, significant computational savings at prediction time are

made over the finite-element based simulator.

The chapter is laid out as follows; Section 3.2 first describes the methods used, includ-

ing the underlying mechanics framework considered and the proposed physics-informed

emulation approach. Section 3.3 then presents emulation results for a number of mech-

anics models. Section 3.4 discusses these results, before Section 3.5 concludes.

3.2. Methods 90

3.2 Methods

3.2.1 Mechanics Framework

Consider a continuum body made of a hyperelastic material. Let Ω0 ⊂ R3 be the reference

configuration of the body, comprised of material points X = (X1, X2, X3)
⊤ ∈ Ω0. Under

external loading, the body can deform into current configuration Ω, comprised of material

points x = (x1, x2, x3)
⊤. The material points in the current and reference configurations

are related as x = χ(X, t) = X + u, with χ the (invertible) motion map and u =

u(X, t) the displacement. In this chapter we will assume the same quasi-static, nonlinear

boundary value problem from Eq. (2.1), in which case the displacement field is found as

that which satisfies momentum balance subject to prescribed boundary conditions.

An important quantity for quantifying the forward map from the reference to the

current configuration is the deformation gradient tensor, which is defined as F ∈ R3×3 =

∂x
∂X

= ∇u + I, with I the identity tensor. For a hyperelastic material, the stress σ and

strain (or F) tensors can be related by a constitutive law, Ψ, i.e. σ = J−1
(
∂Ψ
∂F

)T , where

J = det(F) . Three constitutive laws are considered in this work: Neo-Hookean [191],

Holzapfel-Ogden [75] and Guccione [192]8.

The Neo-Hookean model is derived from first principles on the properties of cross-

linked polymer chains, and is suitable for isotropic plastic and rubber-like materials [191].

The strain energy density for a compressible Neo-Hookean material is given by

Neo-Hookean : Ψ(F ,θ) =
1

2
λ[log(J)]2 − µ log(J) + 1

2
µ (I1 − 3) . (3.1)

Here, I1 = tr(C) is the first invariant with C = F⊤F the right-Cauchy-Green deformation

tensor. The parameters λ and µ are the Lame material parameters, which are denoted

collectively as θ. The Neo-Hookean model can be equivalently parameterised in terms of

Young’s modulus E and Poisson ratio ν, which are related to the Lame parameters as:

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (3.2)

8Experiments involving the Guccione law are performed in Section B.1.

3.2. Methods 91

The Holzapfel-Ogden (H-O) model is a phenomenologically derived anisotropic hy-

perelastic material model for describing the passive response of the myocardium [75].

The fully incompressible strain energy density function of a transversely isotropic H-O

material is given by

H-O : Ψ(F ,θ) =
a

2b

(
eb(I1−3) − 1

)
+

af

2bf

(
ebf(max(I4f,1)−1)2 − 1

)
. (3.3)

Here I1 is defined as above, while the transversely isotropic invariant I4f is equal to

f0 · (Cf0), where f0 ∈ R3×1 is the unit vector in the myofibre direction in the reference

configuration. The material parameters are θ = (a, b, af, bf). The max() term in Eq. (3.3)

ensures that the myofibres only support extension but not compression. The use of the

transversely isotropic version of the H-O material is motivated by the results of an earlier

sensitivity study of the full H-O law [164]. In our numerical implementation, we consider

the myocardium nearly incompressible, which is a widely used practice in cardiac models,

using the F-bar method to Eq.(3.3) to ensure numerical stability [193]. By decomposing

F into a deviatoric (F̄ = J−1/3F) and volumetric component (J1/3I), the F-bar method

will relax the near-incompressibility constraint. Accordingly, we have

C̄ = F̄
T
F̄ , Ī1 = tr(C̄), Ī4 = F̄ f0 · F̄ f0, (3.4)

and the H-O model is modified as

Ψ(F ,θ) =
a

2b

(
eb(Ī1−3) − 1

)
+

af

2bf

(
ebf(max(Ī4f,1)−1)2 − 1

)
+

P
2
(J − 1)2, (3.5)

where the final term in the equation, known as the penalty function, enforces the near-

incompressibility constraint of the myocardium via the Lagrange multiplier P ∈ R+,

which may also be referred to as the bulk modulus. In this study, P is pre-set to be a

fixed value, however P can also be treated as an unknown field variable based on the

multi-field variable principles [77, Chapter 8].

3.2. Methods 92

The Guccione model [192] also describes the mechanical response of the passive

myocardium, with the strain energy density function given by

Guccione : Ψ(F ,θ) =
C

2

(
eQ − 1

)
+

P
2
(J − 1)2, with (3.6)

Q = bfĒ
2
11 + bt

(
Ē2

22 + Ē2
33 + Ē2

23 + Ē2
32

)
+ bfs

(
Ē2

12 + Ē2
21 + Ē2

13 + Ē2
31

)
.

Here Ē = 1
2
(C̄−I) is the Green-Lagrange strain tensor, and we have material parameter

vector θ = (C, bf, bt, bfs).

3.2.2 Numerical Methods

In this work, we propose a GNN emulation approach for boundary value problems of

the form of Eq. (2.1), with particular emphasis on applications in soft-tissue mechanics.

Emulation results are benchmarked with numerical simulations obtained using the non-

linear finite-element method. Before a numerical solution for the displacement field can

be found using either the FEM simulator or GNN emulator, a number of processing steps

are required.

Firstly, the nonlinear boundary-value problem (BVP) of Eq. (2.1) is very challenging

to be solved analytically, in particular for complex geometries. In this study, we consider

the quasi-static BVP to be a conservative mechanical system, which requires the existence

of an energy functional Π for both the stresses of a deformable body and the loads. Such

an assumption is commonly used in solid mechanics. Based on the stationary energy

principle, and further treating u as the only unknown, then of all the admissible u, we seek

the solution that minimises the total potential energy. [77, Chapter 8]. In other words,

the first variation of the total potential energy δΠ needs to vanish in static equilibrium.

In the case of a hyper-elastic continuum, the total potential energy Π of Eq. (2.1) is given

by:

Π =

∫
Ω0

ΨdV −
∫
Ω0

b0 · udV −
∫
∂Ωσ

0

t0 · udA, (3.7)

3.2. Methods 93

in which b0(X) = b(χ−1(x, t), t = 0) is the body force density with respect to the reference

configuration, and t0(X) = t(χ−1(x, t), t = 0) is the traction force density with respect

to the reference configuration. Mathematically, the desired solution can be obtained by

requiring the directional derivative (or Gateaux derivative) of Π with respect to u to

vanish in all directions δu, that is

δΠ(u, δu) =
d

dϵ
Π(u+ ϵδu)|ϵ=0 = 0. (3.8)

Further details of the principle of stationary potential energy can be found in [77, Chapter

8].

The FEM is the most commonly used approach to numerically solve this type of BVP.

Before a solution can be found using FEM, the reference configuration of the body under

consideration needs to be discretised with n elements, denoted as {Th}h>0. Specifically,

Ω0 ≈ {Th}h>0 =
n⋃

el=1

Tel , (3.9)

where in this work we consider each Tel to be a tetrahedron. This means that in practice

a finite-dimensional projection of the full displacement field is solved for when minimising

Eq. (3.7). The continuous displacement field within each element is represented as a

weighted sum of a finite set of basis functions

u(X) =
ne∑
α=1

uh
αiNα(X), (3.10)

in which uh
αi is the displacement component along the i-th direction at the α-th node, ne

is the number of nodes in one finite element, and Nα is the finite element basis function

at the α-th node.

3.2. Methods 94

3.2.3 Graph Neural Network Surrogate Model

This chapter makes use of the same graph neural network (GNN) surrogate modelling

approach introduced in Chapter 2. Recall that this involves first converting the underlying

computational finite-element mesh into a graph format (see Section 2.2.1). Then, an

augmented version of the graph is built (see Section 2.2.3). Finally, a message passing

GNN is used for emulation (see Section 2.2.4 and Algorithm 2). The only difference is

that in this chapter, only fixed soft-tissue geometries are considered, and therefore the

global PCA representation vector zglobal from Algorithm 2 is not required.

3.2.3.1 GNN Surrogate Training

The GNN surrogate is comprised of (3 + 2K + D) internal FCNNs: three encoders

{fV , fE, fP}, two processors for each of K rounds of message passing, {gkV , gkE}Kk=1 , and D

decoders {hd}Dd=1, where D is the dimensionality of the system. One node-decode FCNN

with D outputs could have been used instead here, however we found during experiment-

ation in previous work that this lead to less accurate results [9]. A layer normalisation

operation (LayerNorm) is applied after each FCNN (with the exception of the decoder

FCNNs) and in the creation of zlocal
i to normalise the intermediate values, which increases

numerical stability during training [161]. The trainable parameters of the GNN, which

we denote collectively as ω, consistent then of all the weights and biases of the internal

FCNNs along with the LayerNorm parameters.

Neural network surrogate models are typically trained in a data-driven approach,

using a loss function derived from a dataset of numerical forward simulations. Denote a

simulation dataset as {(Gj,Uj)
N
j=1}, the data-driven approach to learning a point estimate

of ω is then

Data-Driven : ω∗ = argmin
ω

N∑
j=1

L
(
Uj(θj), Ûj(Gj;ω)

)
(3.11)

3.2. Methods 95

where L : R|V|×3 × R|V|×3 → R is a user-specified loss function, for example root mean-

squared-error. Eq. (3.11) is generally minimised using an iterative, gradient based updat-

ing scheme. Instead of a batch approach, where the gradients are computed from all N

data points, we have used the concept of mini-batches. This is equivalent to a stochastic

gradient descent scheme, which tends to be faster, less susceptible to entrapment in local

optima, and more robust with respect to overfitting [175].

Physics-informed training is an alternative approach, whereby instead of considering

simulation data, training is performed against known properties of the physical system

being modelled, which can be formulated using balance equations, PDE residuals, or

conservation principles [59]. In this work, we make use of a loss function based on the

total potential energy functional Π (Eq. 3.7), which is illustrated schematically in Figure

3.1. Specifically, a point-estimate of the network parameters is learned as:

Physics-Informed : ω∗ = argmin
ω

N∑
j=1

Π
(
Ûj(Gj;ω),θj

)
(3.12)

A clear difference between the two approaches is that physics-informed (PI) training

is not dependent on simulator outputs Uj, in contrast to data-driven (DD) training.

Another difference between relates to computational costs. Because more the PI loss

function requires more involved computations, the DD loss is faster to evaluate - we

found the difference to be about one order of magnitude for the LV model. Further

differences are explored in Section 3.3.1. Note that a surrogate model can also be trained

in a multi-task manner, using a loss function which incorporates both a data fit term and

a physics-informed term [101].

3.2.4 Implementation Details

3.2.4.1 FEM Simulation Details

All FEM simulations were performed using first-order tetrahedral elements. For any

simulations involving a traction force, an iterative solution approach was taken whereby

the pressure was linearly increased from zero to the final prescribed value.

3.2. Methods 96

G̃ = (V ∪ Ṽ, E ∪ Ẽ ,θ)

GNN Emulator︷ ︸︸ ︷
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Û

Total Potential Energy

Π
(
Û(G̃;ω),θ

)
Repeat N times

Optimisation

argmin
ω

∑N
j=1 Π

(
Û(G̃j ;ω),θj

)

Return: ω∗

Reference Configuration

Encoder Processor×K Decoder

Figure 3.1: Schematic illustration of physics-informed training of ω, the tunable para-
meters of a GNN emulator.

3.2.4.2 Computation of Total Potential Energy

To calculate the total potential energy in Eq. (3.7), the deformation gradient F must

first be found. Because first-order tetrahedral elements were used, F only needs to be

computed at the centroid of each element. Denoting the coordinates of the four vertices

of a tetrahedron in the current (reference) configuration as xi, xj, xk, and xl (X i, Xj,

Xk and X l), then F is found as

F =
[
xj − xi, xk − xi, xl − xi

] [
Xj −X i, Xk −X i, X l −X i

]−1

, (3.13)

3.2. Methods 97

where the position vector for each node is treated as a column vector. Eq. (3.13) is the

same as the method used in [94]. The integrals required for the calculation of Π are

computed in the reference configuration Ω0. As a result, we will need to express both the

body force and the traction force in the reference configuration, b0 and t0, respectively.

Here, the body force is taken to be gravity which is independent of the deformation,

thus it remains the same. If the traction force is not a dead load but resulted from a

pressure load P , then according to Nanson’s formula, the traction force in the reference

configuration can be expressed as

t0 = −J PF−TN , (3.14)

in which N is the normal of the boundary faces of the elements where a pressure load is

applied. Finally the total potential energy (Eq. (3.7)) can be approximated as

Π ≈
n∑

el=1

∫
Ωel

e

Ψ(F)dV −
n∑

el=1

∫
Ωel

e

b0 · udV −
nf∑

fl=1

∫
∂Ωfl

e

t0 · udA, (3.15)

where Ωel
e is the domain occupied by the el-th tetrahedral element in the reference con-

figuration, ∂Ωfl
e is the fl-th face on the Neumann boundary with nf the number of faces

on the Neumann boundary. The differential volume dV and the differential area dA are

computed in the reference configuration. The total potential energy is approximated using

the first-order Gauss quadrature rule, that is

Π ≈
n∑

el=1

Ψ(F el)V el
e −

n∑
el=1

(
bel0 · uel

e

)
V el
e −

nf∑
fl=1

(
tfl0 · ufl

A

)
Afl

e , (3.16)

in which uel
e is the displacement vector at the centroid of the el-th element, and ufl

A

is the displacement vector at the centroid of the fl-th face, both of which are linearly

interpolated from the nodal displacements ui. Ve and Ae are the volume and area of

the associated element and face in the reference configuration, respectively, which can be

precomputed in advance of emulator training.

3.2. Methods 98

3.2.4.3 Stabilising Potential Energy Computations

Training an emulator directly on the discretised potential energy functional Π from

Eq. (3.16) is numerically difficult. During the early stages of training, the surrogate may

produce physically unrealistic predictions, leading to extreme behaviour (such as diver-

gences) in the computation of Π. In [176], the authors overcome this issue by initially

training on a small subset of parameter space, before gradually expanding the train-

ing domain. In the present work, we make use of the entire material parameter domain

throughout training, where numerical stability in Π is ensured by the use of certain barrier

transformation functions, which we now detail.

Firstly, due to the invertibility of the forward map χ and because volumes cannot

be negative, we know a− priori that any volumetric change ratios from the reference to

current configuration must be strictly positive. Mathematically, this means that J > 0.

An untrained emulator could however make a prediction to the displacement field which

violates this condition. For this reason, we apply the following transformation to Ĵ before

evaluating Π,

Ĵ trans =

exp
(
β1Ĵ + β2

)
+ β3, if Ĵ ≤ J ch

Ĵ , otherwise.
(3.17)

Here J ch is the point after which the transformation changes to the identity map, and

{β1, β2, β3} are parameters of the transformation whose values must be specified. Element-

ary algebraic manipulations and the asymptotic behaviour of the exponential function can

be combined to show that setting

β1 =
1

J ch − Jmin
, β2 = log

(
J ch − Jmin

)
− J ch

J ch − Jmin
and β3 = Jmin (3.18)

ensures Ĵ trans > Jmin, and that the transformation is both continuous and differentiable

at the change point J ch. For all experiments, we set Jmin = 0.001 and J ch = 0.05, whereas

for quasi-incompressible materials J ≈ 1.

3.2. Methods 99

For the H-O and Guccione constitutive laws, a similar issue arises due to their use

of the exponential function. Physically unrealistic emulator predictions during the initial

phase of training can lead to large predicted values for I1, I4f or Q, which when exponen-

tiated lead to overflow in the computation of Π. We prevent this behaviour through use

of the following transformation

Ẑtrans =

tanh

(
Ẑ − Zch

)
+ Zch, if Ẑ ≥ Zch

Ẑ, otherwise.
(3.19)

where Ẑ ∈ {Î1, Î4f , Q̂} is the relevant value computed from the emulator’s prediction

and Zch ∈ {Ich1 , Ich4f , Q
ch} is the change point after which the non-linear transformation is

applied. This transformation is continuous and differentiable at Zch, and ensures Ẑtrans <

Zch + 1. We do not have rigorous finite upper bounds for I1, I4f or Q. Instead, we set

the bounds to be higher than is expected for the simulation results, but low enough to

prevent overflow from becoming an issue. These specific values were Ich1 = 10, Ich4f = 8 or

Qch = 15.

Finally, we initialise the weights and biases in the final layer of the decoder FCNNs to

zero. This ensures that the untrained emulator predicts zero displacement for all material

parameter values, give further numerical stability in the initial stages of training.

3.2.4.4 Enforcing Dirichlet Boundary conditions

For each model considered, we explicitly enforce the outputs of the GNN emulator along

the Dirichlet boundary Ωd to satisfy the prescribed displacement values. This is achieved

through an additional post-processing step after evaluation of the emulator, where the

prescribed values are substituted in place of the predicted values on Ωd. In principle,

these boundary conditions could be softly enforced using a penalty method, however we

found training was significantly easier when using explicit enforcement - similar results

were reported in [177].

3.2. Methods 100

3.2.4.5 GNN Emulation Details

Performing emulation with the DeepGraphEmulator architecture (see Algorithm 2) re-

quires the number of message-passing steps K, the dimensionality M of the internal

embedding vectors, and the structure of the internal FCNNs to be specified. For all ex-

periments, we fixed K = 5, M = 40 and used FCNNs with CELU activation function

[194] and two hidden layers, each of width 128. The choice of these hyper-parameters

is based on extensive numerical experiments conducted in previous work [9]. With these

values, the emulator had approximately 510,000 trainable parameters for each model con-

sidered. Training is performed using Adam [111], with a batch size of one on a single

GPU (Dual NVIDIA RTX A6000). The effect of changes in learning rate on emulator

training is explored in Section B.1 - we find that a learning rate of 1 × 10−4 is optimal

in the early stages of training. In data-driven training of neural networks, the use of

techniques such as early stopping can be critical to prevent overfitting and ensure good

generalisation performance. However we found during experimentation that this was not

required for physics-informed training, where overfitting was not observed during longer

training runs.

The node and edge features for each model considered were specified to have the

following form

vi = (di) or (di,f i) (3.20)

ei→j = (xj − xi, ||xj − xi ||2), (3.21)

where di is a Boolean variable indicating if the node lies on the Dirichlet boundary,

and f i is the unit vector in the fibre direction. Fibre information is only included for

models with non-isotropic constitutive law and spatially varying fibre field in the reference

configuration. Node and edge features are normalised element-wise to mean zero and unit

variance before being inputted to the emulator. Note how absolute positional information

is not included in the node features, instead only relative positions are incorporated via

the edge features. This ensures that the emulator is invariant under translations of the

underlying geometry in space.

3.2. Methods 101

3.2.4.6 Data and Code Availability

All experiments were implemented in Python. FEM simulations were performed us-

ing FEniCS [162], and PI-GNN computations were performed using the JAX [48], Flax

[178] and Optax [195] libraries. All data and code is available at https://github.com/

dodaltuin/soft-tissue-pignn.

3.3 Numerical Experiments

We conducted numerical experiments to evaluate the performance of the PI-GNN emu-

lation framework involving a total of five different mechanics models9. In each case, a

fixed geometry is considered, and an emulator is trained over a specified material para-

meter domain using the GNN architecture detailed in Section 3.2.4.5. Complete details

of each model are given in Sections 3.3.1-3.3.4, while Table 3.1 presents a summary. The

column for η refers to the cardinalities of the layers of virtual nodes created from the base

FE nodes - see Algorithm 1 for details. Benchmarking of emulation results is performed

primarily in terms of error in prediction of the displacement u, the deformation gradient

F , the first invariant I1 and the total potential energy Π. Errors on these quantities are

quantified using the metrics from Eq. (3.22), where the hat symbol denotes results from

the emulator and ‖ · ‖F is the Frobenius norm. The error metric on u is an absolute value

measured in (mm) while errF , errI1 and errΠ are relative errors, measured in (%).

Error Metrics :
erru = ‖u− û‖2 (mm),

errI1 =

∣∣∣∣∣I1 − Î1
I1

∣∣∣∣∣× 100 (%),

errF =
‖F − F̂ ‖F

‖F ‖F
× 100 (%),

errΠ =

∣∣∣∣∣Π− Π̂

Π

∣∣∣∣∣× 100 (%).

(3.22)

9Four additional models are considered in the supplementary material.

https://github.com/dodaltuin/soft-tissue-pignn
https://github.com/dodaltuin/soft-tissue-pignn

3.3. Numerical Experiments 102

Model Material θ η Nnode Nelem

OnceClampedBeam Neo-Hookean (λ, µ) [97, 24] 390 1440
TwiceClampedBeam Neo-Hookean (λ, µ) [97, 24] 390 1440
TwistingCube Neo-Hookean (E, ν) Varying Varying Varying
Liver Neo-Hookean (λ, µ) [233, 58, 14] 935 4408
LeftVentricle Holzapfel-Ogden (a, b, af, bf) [392, 98, 24] 1570 6176

Table 3.1: Summary of models considered for emulation.

3.3.1 Data-Driven and Physics-Informed Training Comparison

The first model considered, OnceClampedBeam is illustrated in Figure 3.2 (a). This model

involves a beam with Ω0 = [0, 100]× [0, 10]2 (mm), discretised using 390 nodes and 1440

elements. The beam is clamped at the left end ∂Ωd
0 = {X ∈ Ω0 : X1 = 0}, and displaced

under gravitation from its own weight. Specifically, b = (0, 0,−ρg)⊤, with ρ the density

of the beam and g the acceleration due to gravity. No traction force is applied. A

Neo-Hookean material model is assumed (see Eq. (3.1)), with material parameters λ, µ ∈

[5, 10] kPa. The second model considered, TwiceClampedBeam, is illustrated in Figure 3.2

(b). This is similar to the first model, except we have Ω0 = [0, 150]× [0, 10]× [0, 2] (mm),

and both ends of the beam are clamped, that is ∂Ωd
0 = {X ∈ Ω0 : X1 = 0 or X1 = 150}.

(a) OnceClampedBeam

(b) TwiceClampedBeam

Figure 3.2: Illustration of the rectangular beam models considered as 2-D slices in
the (X1, X3) plane (not to scale), where the dashed lines indicate a clamped Dirichlet
boundary, ρ is the density of the material and g the acceleration due to gravity.

3.3. Numerical Experiments 103

We use these models to compare the performance of a GNN emulator trained in a data-

driven manner as in Eq. (3.11) (DD-GNN) with physics-informed training as in Eq. (3.12)

(PI-GNN). For training of the DD-GNN, 200 simulations were first run from randomly

sampled material parameter values. Training was then performed for 5000 epochs using a

fixed learning rate of 1×10−4. For consistency, the PI-GNN was trained at the exact same

material parameter inputs, with the same number of training epochs and learning rate.

For evaluation, an independent set of 100 simulations were performed for each model. The

average magnitude of the nodal displacements ‖u‖ for OnceClampedBeam was 15.7mm,

with maximum value of 50.1mm. For TwiceClampedBeam, the corresponding values were

2.3mm and 6.0mm respectively, where the disparity in displacement magnitudes is due

to the additional clamped boundary constraints at both ends of the TwiceClampedBeam

model.

10−4 10−3 10−2 10−10.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Physics Informed

Data Driven

10−1 1000

1

2

3

4

5

6

7

D
en

si
ty

Physics Informed

Data Driven

(a) erru (mm) (b) errΠ (%)

10−2 10−1 1000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
en

si
ty

Physics Informed

Data Driven

10−4 10−3 10−2 10−1 1000.0

0.2

0.4

0.6

0.8

D
en

si
ty

Physics Informed

Data Driven

(c) errF (%) (d) errI1 (%)

Figure 3.3: Comparison of data-driven and physics-informed emulation results on
OnceClampedBeam model.

3.3. Numerical Experiments 104

Figure 3.3 shows emulation results for the OnceClampedBeam model, using density

plots which compare the test-set accuracy of the two training approaches in terms of the

four error metrics from Eq. (3.22). Note that we present density plots on the log scale,

as we believe this makes them more easy to interpret. Panel (a) indicates that the DD-

GNN, which as been trained on displacement data, achieves lower error in prediction of the

displacements, with median erru value of 6.5×10−3 mm compared to 2.0×10−2 mm for the

PI-GNN. Nevertheless, there is a high degree of overlap between the errors. By contrast,

there is a sharp divergence between the distributions of errΠ for the two emulators in

panel (b), as the median errΠ value incurred by the DD-GNN of 1.7% percent is two

orders of magnitude higher than the corresponding median value of 6.6 × 10−2 % seen

with the PI-GNN. Furthermore, there is no overlap between the distributions, i.e. the

lowest errΠ value for the DD-GNN is larger than the highest errΠ value with the PI-GNN.

This shows that the predictions of the PI-GNN are consistently more physically realistic

in terms of the potential energy state. The more realistic deformation captured by the

PI-GNN is reflected in the prediction errors for F and I1 displayed in panels (c) and

(d), where we see lower errors obtained for the PI-GNN. Specifically, the DD-GNN incurs

median error of 1.8 × 10−1 % for errF against 8.7 × 10−2 % with the PI-GNN, while the

median errI1 value is 1.1×10−1 % for the data-driven approach is approximately one order

of magnitude greater than for the PI-GNN, which had median errI1 value of 2.0×10−2 %.

Figure 3.4 shows emulation results for the TwiceClampedBeam model. The pattern of

results is similar to that seen in Figure 3.3, but here the data-driven method performs

less well relative to the physics-informed approach. For errors in displacement space in

panel (a), the PI-GNN achieves a slightly lower median error value of 9.6 × 10−3 mm

versus 1.1 × 10−2 mm for the DD-GNN, albeit with large overlap between the two error

distributions. For errΠ again we see no overlap between the errors, with the median value

of errΠ for the DD-GNN of 5.3% three orders of magnitude higher than the corresponding

median value for the PI-GNN of 1.6 × 10−3 %. Finally, for the difference between the

accuracy for the predictions of F and I1 was even more pronounced in this model, with

3.3. Numerical Experiments 105

10−5 10−4 10−3 10−20.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Physics Informed

Data Driven

10−5 10−3 10−1 1010

1

2

3

4

5

D
en

si
ty

Physics Informed

Data Driven

(a) erru (mm) (b) errΠ (%)

10−4 10−3 10−2 10−1 1000.0

0.2

0.4

0.6

0.8

1.0

1.2

D
en

si
ty

Physics Informed

Data Driven

10−6 10−5 10−4 10−3 10−2 10−1 1000.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Physics Informed

Data Driven

(c) errF (%) (d) errI1 (%)

Figure 3.4: Comparison of data-driven and physics-informed emulation results on
TwiceClampedBeam model.

PI-GNN errors typically one or two orders of magnitude lower. Specifically, the DD-GNN

incurs median error of 8.0×10−1 % for errF against 3.8×10−3 % with the PI-GNN, while

median errI1 value is 1.0×10−1 % for the data-driven approach, compared to 7.9×10−4 %

for the PI-GNN.

One possible reason why the DD-GNN performs better relative to the PI-GNN on

the OnceClampedBeam model is the fact that the displacements u for this model had

greater magnitude and variation across the test data compared to the TwiceClampedBeam

model. The DD-GNN has the advantage of operating in normalised space by making use

of summary statistics for the displacement field found on the training data, whereas the

PI-GNN is trained in the original space, meaning the network weights have to be trained

to values with larger magnitude to capture the variation in the data.

3.3. Numerical Experiments 106

3.3.2 TwistingCube

We next consider emulation of a model TwistingCube involving a cuboidal geometry

(Ω0 = [0, 10]3 mm) discretised with 343 nodes and 1296 elements, based on a similar

example from the FEniCS documentation [162]. Here, no external forces are explicitly

applied. Instead, the cube is clamped at the left most end ∂Ωd0
0 = {X ∈ Ω0 : X1 = 0},

and the following rotational displacements are prescribed at the right end ∂Ωd1
0 = {X ∈

Ω0 : X1 = 1}:

u =(0,

(0.5 + (x2 − 0.5) cos(π/3)− (x3 − 0.5) sin(π/3)− x2)/2,

(0.5 + (x2 − 0.5) sin(π/3) + (x3 − 0.5) cos(π/3)− x3))/2). (3.23)

The Neo-Hookean material model is used (see Eq. (3.1)), parameterised in terms of Young’s

modulus E and Poisson ratio ν, with ranges E ∈ [1, 25] and ν ∈ [0.1, 0.4]. A PI-GNN

emulator was trained for 1000 epochs over (E, ν) space. During the first 500 epochs, a

fixed set of 200 material parameter configurations were used for training (selected using

a Latin Hypercube Sampling (LHS) design), with learning rate of 1 × 10−4. For the re-

maining epochs, the learning rate was reduced to 1 × 10−5, and at each epoch, a new

set of 200 material parameters were randomly sampled using a uniform distribution. To

evaluate the trained emulator, 50 simulations were performed using the FEM to act as

independent test set. Density plots for erru and errI1 on the test set are given in Figure

3.5. The density plot of erru shown in Panel (a) shows that the displacement predictions

of the emulator are extremely accurate, achieving median erru value of 8.5 × 10−4 mm

with no errors exceeding 7.0 × 10−3 mm (for reference, the mean and max values of ‖u‖

over the test data were 1.1mm and 3.5mm respectively). From panel (b), the errors in I1

are also very low, with median errI1 value of 1.2 × 10−2 %, while no errors are in excess

of 2.0× 10−1 %.

3.3. Numerical Experiments 107

10−4 10−3 10−20.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
en

si
ty

10−5 10−4 10−3 10−2 10−1 1000.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

(a) erru (mm) (b) errI1 (%)

Figure 3.5: Error density plots for TwistingCube model (343 FE nodes). The vertical
lines indicate median values.

The emulation results for the test-set simulation for which the PI-GNN achieved the

median value of Mean(erru) are visualised in Figure 3.6. Panel (a) shows the reference

configuration of the cube, panel (b) the current configuration as given by the FEM sim-

ulation, while panel (d) shows the current configuration as predicted by the PI-GNN. No

differences between the two results are apparent. Panel (c) shows the distribution of erru

on the surface of the reference geometry, and indicates that greater errors are incurred

in the centre of the cube along the edges, although no prediction errors are observed in

excess of 3.0× 10−3 mm.

To investigate how the density of the FE mesh affects emulation results, we repeated

the above experiments using four additional FE meshes, which had 1000 (4374), 4096

(20250), 13824 (73002) and 21952 (119098) nodes (elements) respectively. All other model

and implementation details remained the same, with the exception of the mesh with 13824

(21952) nodes, where emulator training was performed for an additional 4000 (6500) steps

to ensure convergence of the total potential energy. Table 3.2 gives the average erru

values obtained at each mesh density, where the errors are considered for those points

where X1 = 0.5, that is a slice in the (X2, X3) plane. Errors remain roughly constant for

all mesh densities, indicating that the accuracy of the PI-GNN is not sensitive to mesh

density. Note however that fewer training epochs are required to reach the same level

of accuracy for less dense meshes. Table 3.2 also presents training and prediction times

for the different meshes. Training and prediction times scale by roughly the same order

3.3. Numerical Experiments 108

X3

X1

X2

∂Ωd1
0

3.
5

∥u
∥

0.
00

3.
5

∥u
∥

0.
00

(a) Reference Configuration (b) Current Configuration (FEM)

0.
00
3

er
r u

0.
00

3.
5

∥û
∥

0.
00

(c) erru = ‖u− û‖2 (d) Current Configuration (PI-GNN)

Figure 3.6: Median out of sample emulation results for TwistingCube model (mm).

of magnitude. When the message passing stage of the GNN is precomputed however,

prediction times for the decoder increase by less than a factor of three when the number

of nodes rises by almost two orders of magnitude from 343 to 21952. This illustrates the

advantage of our GNN architecture design (see Algorithm 2). By decoupling material

parameter information from the message-passing stage of the GNN, predictions can be

made extremely efficiently for a fixed input geometry once training is complete, even for

very dense meshes. This is useful for inverse problems, for example, where numerous

forward evaluations may be required to allow the material parameters for a given subject

to be inferred from experimental data [135].

3.3. Numerical Experiments 109

Nnode 343 1000 4096 13824 21952
Nelem 1296 4374 20250 73002 119098

Mean(erru) 1.3× 10−3 1.1× 10−3 1.2× 10−3 1.1× 10−3 1.7× 10−3

Train Time 150min 176min 190min 1166min 2325min
Prediction Time 1.7× 10−3 s 1.9× 10−3 s 4.1× 10−3 s 1.1× 10−2 s 1.6× 10−2 s
Decoder Time 2.1× 10−4 s 2.2× 10−4 s 2.4× 10−4 s 5.0× 10−4 s 5.9× 10−4 s

Table 3.2: Summary of emulation results for TwistingCube model using different mesh
densities. The final row presents prediction times when only the final, decoder stage of
Algorithm 2 is evaluated.

3.3.3 Liver

We next consider a model of a human liver, the reference configuration of which can

be seen in Figure 3.8 (a). No traction force is applied, with external loading consisting

solely of gravitational force. The Dirichlet boundary consists of half of the bottom surface

of the geometry, where zero displacement is allowed. The geometry used is that made

available by the authors of Zhang and Chauhan (2020) [196]. In this work, we use the

same Dirichlet boundary surface as [196], and also assume the same Neo-Hookean material

model (see Eq. (3.1)). We additionally re-scaled the geometry to have a length of 150mm,

approximately the average value for an adult human [197].

We trained a GNN emulator for the Liver model over parameter space θ = (λ, µ) ∈

[3.5, 10]2 kPa initially for 500 epochs with a fixed learning rate of 1×10−4 using a fixed set

of 200 material parameter configurations. Training was then continued for an additional

500 epochs with learning rate 1 × 10−5, with randomly sampled material parameters at

each epoch. The out of sample prediction results of the trained emulator are presented

in Figure 3.7. These results were evaluated on a set of 482 simulations performed using

the FEM, each of which made use of a randomly sampled material parameter vector.

The emulator exhibits strong accuracy in prediction of the displacement values, as

is illustrated in the density plot in Figure 3.7 (a). The median out of sample prediction

error is 8.8 × 10−3 mm and only a tiny fraction of errors exceed one-tenth of a mm (for

reference, the mean and max values of ‖u‖ over the test data were 7.9mm and 58.5mm

respectively). From Panel (b), the errors in I1 are also very low, with median errI1

value of 1.9 × 10−2 %, while virtually no errors exceed half a percent. The two plots on

the bottom row display loss heatmaps over material parameter space. We consider the

3.3. Numerical Experiments 110

10−4 10−3 10−2 10−1 100 1010.0

0.2

0.4

0.6

0.8

1.0

1.2

D
en

si
ty

10−5 10−4 10−3 10−2 10−1 100 1010.0

0.2

0.4

0.6

0.8

D
en

si
ty

(a) erru (mm) (b) errI1 (%)

4 5 6 7 8 9 10 11
µ

4

5

6

7

8

9

10

11

λ

0.02

0.02

0.
02

0.02
0.

04

0.04

0.
06

0.06

0.
08

0.08
0.10

0.12

4 5 6 7 8 9 10 11
µ

4

5

6

7

8

9

10

11

λ

0.02

0.0
3

0.04

0.04

0.04

0.05
0.05

0.05

0.
06

0.06

0.
07

0.07 0.08

(c) Mean(erru) (mm) (d) Mean(errI1) (%)

Figure 3.7: Emulation results for Liver model. The top row shows density plots of erru
and errI1 , where the vertical lines indicate median error values. The bottom row displays
loss heatmaps of erru and errI1 over the space of Lame parameter (i.e. (λ, µ)) config-
urations considered. The dashed lines indicate the boundary of the domain considered
during training.

performance of the emulator under extrapolation by extending the heatmaps beyond the

domain considered during training, the boundary of which is illustrated by the dashed

lines. The plots exhibit broadly similar patterns, with very low errors within the training

domain, with a smooth deterioration in prediction accuracy as we move outside this area.

Figure 3.8 visualises results for the test data simulation where the emulator achieved

median value of Mean(erru). Panels (b) and (d) show the current configurations of the

body outputted by the FEM and PI-GNN, respectively. It is difficult to visually discern

any differences between the two results. The distribution of erru values is given in Panel

(c), which shows that errors are highest towards the end of the geometry where ‖u‖ is

highest, however these errors do not exceed 4.3× 10−2 mm.

3.3. Numerical Experiments 111

∂Ωd
0

∣∣∣
u=0

ρg

29
∥u

∥
0.
00

29
∥u

∥
0.
00

(a) Reference Configuration (b) Current Configuration (FEM)

0.
04
3

er
r u

0.
00

29
∥û

∥
0.
00

(c) erru = ‖u− û‖2 (d) Current Configuration (PI-GNN)

Figure 3.8: Median out of sample emulation results for Liver model (mm).

3.3.4 LeftVentricle

In the final emulation experiment, we consider a model for the passive mechanics of the

left ventricle (LV) of the heart. The LV geometry considered is a real model, extracted

from the cardiac magnetic resonance (CMR) imaging scans of a healthy volunteer at

early diastole. Both long and short axis CMR scans were used for the reconstruction,

which was performed using segmentation software developed in-house. For further details

on LV geometry reconstruction, see [60], [80]. A layered myofibre structure is typically

incorporated into LV models, but imaging of myofibres in-vivo remains a challenging

problem. For this reason, we adopt a rule based method (RBM) to describe the layered

myofibres in this work [165]. Here a fibre-sheet-normal local material coordinate system

is defined, where we vary the fibre angle linearly from −90o at endocardium to 90o at

epicardium. The geometry is approximately 75mm in length from base to apex, and is

discretised using 1570 nodes and 6176 elements. The passive filling of the myocardium is

3.3. Numerical Experiments 112

modelled by a linearly increased cavity pressure applied to the inner surface of the LV, with

no body force applied. The base of the LV is fully constrained with zero displacements.

These boundary conditions are illustrated via a 2-D diagram of the base of the LV in

Figure 3.9. The H-O material model is used to describe the mechanical response of the

myocardium. The ranges considered for each material parameter (see Eq. (3.3)) were a ∈

[0.1, 2.6] kPa, b ∈ [1., 4.2], af ∈ [1.5, 5.18] kPa and bf ∈ [1, 4.46]. These ranges were chosen

so as to match the mean parameter values found on real data [60], with roughly double

the level of variance around the mean. The final pressure loading on the endocardium is

allowed to range from 4 to 10 mmHg, and it is incorporated in the GNN by concatenation

to the material parameter vector θ. We set the parameter P to equal 25 kPa (5 kPa

was used in [176]) to allow some compressibility in the myocardium. Note that it is

still debatable whether the myocardium shall be treated to be fully incompressible or

compressible [198]. In future work, we will consider multi-field variational principles as

an alternative approach to handle incompressibility - this is discussed further in Section

3.4.4. The reference configuration of the LV is shown in Figure 3.11 (a), while Panel (b)

shows an FEM simulation result.

A PI-GNN emulator for the LeftVentricle model over the four dimensional material

parameter space was trained for 15000 epochs, with a learning rate of 1 × 10−4 during

the first half of training and 1 × 10−5 for the second half. More training epochs were

used here over previous models based on examination of the traceplots of the potential

energy. A test data set of 150 points was generated using the FEM to evaluate the out of

sample performance of the trained PI-GNN, where each simulation was performed with a

different randomly sampled material parameter vector and pressure loading value. Note

that further details of the training procedure used are given in Section 3.2.4.

Density plots of emulation error on the test set are presented in Figure 3.10. From

Panel (a), the bulk of displacement prediction errors fall within an order of magnitude of

the median erru value of 2.8× 10−2 mm, however the tail of the distribution approaches

6.5 × 10−1 mm (for reference, the mean and max values of ‖u‖ over the test data were

6.8mm and 26.3mm respectively). The distributions of F and errI1 errors are both

slightly more peaked around their median values of 1.9×10−1 % and 4.7×10−2 % respect-

ively. We also consider the emulation error in predicting the volume V enclosed within

3.3. Numerical Experiments 113

∂Ωd
0

∣∣∣
u=0

∂Ωσ
0

pX1

X2

Figure 3.9: Short-axis illustration of boundary conditions for LeftVentricle model
at the base of the geometry (idealised, symmetric geometry only used for illustration
purposes). The figure shows in the (X1, X2) plane - the X3 direction runs from the apex
to the base (see Figure 3.11 (a)) . Here ∂Ωd

0 indicates the clamped base of the LV where
zero displacements are allowed, ∂Ωσ

0 the inner surface of the LV (the endocardium) where
outward pressure is applied, represented by p.

the cavity of the LV, using the error measure

errV =

∣∣∣∣∣V − V̂

V

∣∣∣∣∣× 100, (3.24)

as cavity volume is an important quantity for clinicians in the diagnosis of certain cardi-

ovascular diseases [199]. The distribution of errV from Panel (d) indicates strong agree-

ment between the simulator and emulator on the test data, with median error value of

3.7× 10−2 %, while the largest error incurred was less than half a percent.

Emulation results for the LeftVentricle model for the test simulation where the

emulator achieved the median value of Mean(erru) are visualised in Figure 3.11. Com-

paring the FEM and PI-GNN results from panels (b) and (d) respectively shows strong

agreement between the two. The distribution of erru values from panel (c) indicates that

errors are highest further from the base of the LV, and approach 1×10−1 mm at the apex.

3.3. Numerical Experiments 114

10−3 10−2 10−1 1000.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

10−2 10−1 1000.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

D
en

si
ty

(a) erru (mm) (b) errF (%)

10−5 10−4 10−3 10−2 10−1 100 1010.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

10−4 10−3 10−2 10−1 1000.0

0.2

0.4

0.6

0.8

D
en

si
ty

(c) errI1 (%) (d) errV (%)

Figure 3.10: Error density plots for LeftVentricle model. The vertical lines indicate
median values.

In addition to strong emulation accuracy, the emulator offers significant computa-

tional savings at prediction time over the FEM. A single forward evaluation for the

LeftVentricle model takes 2.7 × 10−3 s, and once the message-passing stage is pre-

computed, only 2.3 × 10−4 s10. By contrast, simulations of the LeftVentricle model in

FEniCS can take in excess of one hour11. Simulation times could however be reduced to

the order of minutes by exploring parallel computing and solver optimisation in software

such as ABAQUS. Nevertheless, even a one minute simulation time is prohibitively ex-

pensive for real-time applications where thousands of simulations need to be performed

in sequence, as would be required for example with the use of a sampling-based Bayesian

inference method for an inverse problem. As a consequence of the reduction in the com-

putational costs, Bayesian sampling with our method becomes practically feasible. This

10Dual NVIDIA RTX A6000
11Dual Xeon Gold 6254

3.3. Numerical Experiments 115

Apex

Base

18
∥u

∥
0.
00

18
∥u

∥
0.
00

(a) Reference Configuration (b) Current Configuration (FEM)
0.
65

er
r u

0.
00

18
∥û

∥
0.
00

(c) erru = ‖u− û‖2 (d) Current Configuration (PI-GNN)

Figure 3.11: Median out of sample emulation results for LeftVentricle model (mm).
Note that the simulated inflation of the LV in the left column is slighly less than would
be expected to be observed in-vivo.

indicates that our methodological improvements enable sound parameter inference with

proper uncertainty quantification in real time, which would otherwise would not be feas-

ible, thereby paving the path to genuine impact in the clinic. It is also trivial to parallelise

the GNN to handle multiple input configurations simultaneously, using the vmap func-

tionality in the JAX library.

3.4. Discussion 116

3.4 Discussion

3.4.1 Data-Driven and Physics-Informed Training Comparison

The experiments from Section 3.3.1 reveal interesting differences between data-driven

(DD) and physics-informed (PI) training. In particular, while both trainnig approaches

yield similar errors in the prediction of the displacement field, the PI-GNN approache

achieves much more accurate results as measured in terms of the potential energy, the

deformation gradient F and first invariant I1. This indicates that the PI-GNN is consist-

ently capturing a more physically realistic displacement than the DD-GNN. In Section B.2

we re-perform these experiments using a DD-GNN where the loss function also includes

a penalty term on F . We find that this leads to improved accuracy, but nevertheless

PI-GNN achieves lower values of errΠ, errF and errI1 .

The reason for the discrepancy in the accuracy of the deformation gradients recovered

from the PI and DD predictions respectively relates to bias. In particular, we found that

the prediction errors of the DD-GNN for the displacement field were relatively unbiased,

whereas the errors for the PI-GNN were biased. Biased prediction errors in the dis-

placement field cancel out in the evaluation of F (see Eq. (3.13), where we difference the

predicted nodal positions), whereas unbiased errors propagate through this computation.

These results indicate that, while data-driven training may lead to accurate results

in displacement space, these results are not guaranteed to respect the underlying physics.

Therefore, if further quantities of interest are required beyond the displacements, for

example stress and strain values, the use of physics-informed training will lead to more

accurate results.

3.4.2 Computational Costs

The results from Table 3.2 indicate that an increase in mesh density leads to an increase

in training and prediction times of a similar order of magnitude. We have not emphasised

optimisation of training time in this work. Possible methods for doing so include mixed

precision training, utilisation of multiple GPUs, or use of a second order optimisation

approach such as conjugate gradients. Note that the particular advantage of a GNN

3.4. Discussion 117

emulator is that training can be done offline - again, see [9] for details. Once the processor

stage of the emulator is precomputed however, prediction times only increase by a factor

of three when the mesh density increase by approximately a factor of sixty. This illustrates

the advantage of our architecture design, which combines the modelling benefits of a GNN

with the computational efficiency of an FCNN at prediction time.

3.4.3 Liver and LeftVentricle Emulation Results

The strong emulation accuracy for the Liver and LeftVentricle models highlights the

ability of our PI-GNN approach to handle realistic models involving complex soft-tissue

geometries12. The PI-GNN can also be applied to a soft-tissue geometry on which it has

not seen during the initial training phase, which is demonstrated in Section B.5.

Comparing the results for the two real soft-tissue models, we see that higher accuracy

was obtained for the Liver model, which assumed a Neo-Hookean material, compared

to the LeftVentricle, where the more nonlinear H-O material model was used. This

suggests that it may be easier to train in a physics-informed manner for more linear con-

stitutive laws. A further comparison is explored in Section B.3, where the LeftVentricle

emulation experiments are re-performed under the Neo-Hookean model. The results in-

dicate that the emulator can consistently obtain a better approximation to the true Π

under the more linear model, with lower error values in both u and F observed in turn.

Nevertheless, predictions for the LeftVentricle model using the Holzapfel-Ogden ma-

terial model were still highly accurate. For instance, the worst error observed in LV cavity

volume of approximately half a percent is an order of magnitude lower than typical er-

ror measurements from manual segmentation of CMR scans [91]. In addition to strong

predictive accuracy, the emulator is also several orders of magnitude less computation-

ally expensive at prediction time when compared to the FEM. Furthermore, our PI-GNN

implementation can be automatically differentiated using JAX, allowing ∂Û/∂θ to be

computed to machine precision at negligible additional computational costs. This com-

bination of rapid, highly accurate predictions with end-to-end differentiability completely

12In Section B.4 we also consider emulation involving a biventricle cardiac geometry.

3.4. Discussion 118

changes the range of applications for which soft-tissue models can be deployed in real

time. For example, the parameter inference problem for passive cardiac mechanics con-

sidered in [60], which took over one week using the FEM, could be performed in seconds

using a PI-GNN emulator.

3.4.4 Limitations and Future Work

The principle of minimum total potential energy is a fundamental concept in mechanics

and engineering, and has been used in this work to handle soft-tissue mechanics problems

using PI-GNNs, in a similar manner to some recent studies [185], [94]. An alternative ap-

proach can be derived from the weak formulation of PDE residuals based on the principle

of virtual work, as done in [177]. With this approach, a physics-informed loss function may

be defined as L =‖ (
∫
Ω
∇·σ+b) ·ηdv ‖2, with η the test function. There are a number of

potential advantages to this approach, including the flexibility of handling time-dependent

dynamic problems, discontinuous problems and non-conservative systems, i.e. shocks.

The strain energy density functions of the myocardium used here are considered to

be slightly compressible, making use of the so-called F-bar method. To fully address

incompressibility, future work can make use of the so-called multi-field variational prin-

ciples [77, Chapter 8], where additional variables are introduced to take into account the

incompressibility constraint.

In future directions of work we will extend the PI-GNN to consider higher-order

finite elements with quadratic shape functions. This is to enhance the robustness of

our method to the locking phenomenon which is a well-known issue when using linear

tetrahedral elements for FE computations [200], in particular for incompressible or nearly-

incompressible materials. A wider range of PDE systems with unstructured data could

also be considered, for example material science [201], fluid dynamics (i.e. arterial blood

flow [188], [202]), structural mechanics [177], and other large-scale engineering systems

[203].

The results of the preliminary mesh convergence study (see Table 3.2) show that

PI-GNN can match the FEM results well for different mesh densities, thus it can be

expected that with increased mesh density, the emulator will obtain more accurate and

reliable results. In real applications for clinical decision-making, the PI-GNN may also

3.4. Discussion 119

need a fine discretisation as is the case for the FEM. However, the mesh density required

by the surrogate model might be different from the classical FEM. There are some studies

in the literature which explore this problem from a theoretical perspective, see for example

He et al. [204] which draws an analogy between ReLU deep neural networks and linear

finite elements.

Finally, the natural progression of the present work is to consider the inverse problem,

that is, to infer material parameters for soft-tissue bodies from clinical data using a PI-

GNN, and quantify the inference uncertainty. For the left ventricle, we have previously

found that some parameters are weakly identifiable given observed strain values at 24

landmark points on the myocardium [164]. Emulation of the entire displacement field with

a PI-GNN may provide important additional information that will reduce the posterior

uncertainty. However, a verification of this hypothesis is beyond the remit of the present

chapter and will be addressed in our future work.

3.5 Conclusion

This chapter has presented a PI-GNN emulation framework for application to soft-tissue

mechanics. The GNN can operate directly on the unstructured mesh representation of a

given soft-tissue geometry and is trained in a physics-informed manner by applying the

principle of minimum total potential energy. Physics-informed training is enabled by the

introduction of barrier transformation functions, which stabilise the objective function by

explicitly incorporating known physical constraints such as the impenetrability of matter.

A range of hyper-elastic models are considered, including realistic models of the human

liver and left ventricle. Furthermore, significant computational savings at prediction time

are made compared to the FEM. The authors believe this work is an important step in

the development of real-time clinical applications of computational soft-tissue mechanics.

Chapter 4
Hard-constrained Gaussian processes
for robust physics-informed learning

of linear PDEs

Notation and Symbols
N set of all natural numbers
R set of all real numbers
RD set of all D-tuples of real numbers
X space of input values
C(X) space of continuous functions u : X → R
‖ · ‖∞ supremum norm
k kernel/covariance function
ξ vector of kernel hyper-parameters
H Hilbert space
Hk reproducing kernel Hilbert space (RKHS)
Lθ

x linear partial differential equation (PDE) operator
θ parameters of PDE operator
Ω bounded subset of RD on which PDE is defined
∂Ω boundary of Ω
u solution function to a boundary value problem
f result of Lθ

x applied to u

b known boundary function
ϕ distance function
GP Gaussian process
k̃ hard-constrained covariance function
(m̃) m (hard-constrained) mean function
N normal distribution
yu/yf vectors of possibly noisy observations of u/f
E/Cov expectation/covariance operators
û prediction of u from machine learning model

120

4.1. Introduction 121

4.1 Introduction

Physics-informed machine learning (PIML) has emerged in recent years as a new discipline

which integrates data-based machine learning approaches with physics-based mathemat-

ical methods [59], [99]. A PIML model of a physical system leverages observational data

with known physical principles, which can include for example boundary constraints,

symmetries, partial differential equations (PDEs) and conservation laws. Physics in-

formed approaches can offer more robust and interpretable predictions than data-based

approaches, in addition to insights and inference about the system of interest that would

not be possible without accounting for domain specific information. Consequently, PIML

has rapidly become one the most topical research areas in computational physics and ma-

chine learning, with applications in a wide range of disciplines. Examples include quantum

chemistry [205], solid mechanics [186] fluid dynamics [206], soft-tissue mechanics [10] and

climate modelling [207].

Gaussian process regression (GPR) [130] is one machine learning framework which

has found application in the context of PIML. GPR can be especially effective for data

that is limited or expensive to obtain, and also offers well calibrated predictive uncer-

tainty estimates that may be essential for scientific applications. In this work, we will

consider the application of GPR to physical systems subject to boundary value and linear

PDE constraints. GPR is particularly useful here, as the framework allows for seamless

integration of observational data with linear PDEs. This in turn enables efficient joint in-

ference of any unknown PDE parameters together with the unknown function itself. Our

objective in this chapter is to expand upon existing work and design a GPR approach

which also seamlessly integrates boundary information into the inference framework. We

begin with a review of this related literature.

4.1. Introduction 122

4.1.1 Motivation

The strategy proposed in this chapter was motivated by a stark difference we observed in

the training behaviour of the PI-GNN from the previous chapter, depending on how the

Dirichlet boundary conditions were handled. Recall from Section 3.2.4.4 that we applied

a post-processing step to the output of the PI-GNN, which ensured that the Dirichlet

conditions were exactly satisfied, irrespective of the value of the emulation parameters.

As a result, the boundary conditions did not have to be explicitly handled when training

the emulator. Alternatively, it is also possible to incorporate boundary conditions in a

soft manner without using a post-processing step, by including an additional term to

the physics-informed objective function (Eq. (3.12)) which penalises emulator prediction

errors at the boundary. When performing experiments, however, we found that training

using the penalty approach was very inefficient, as it was extremely difficult to tune the

learning rate so that both the potential energy was minimised and boundary conditions

satisfied. Note that this problem was not specific to the setting of 3D solid mechanics - we

found that it arises even for a simple 1D Poisson equation (see Section 1.7.3). Learning

rate scheduling approaches have been proposed to overcome the issue [208], however we

found it more convenient to use explicit boundary condition enforcement. In this chapter,

then, we delve more deeply into the idea of hard boundary condition enforcement, by de-

veloping and evaluating approaches for explicit enforcement of a wider range of boundary

conditions typically encountered in PDE modelling, beyond simple Dirichlet conditions.

We also make use of physics-informed Gaussian processes in this chapter, in place of

neural networks, as were used in the previous two chapters. However, as we detail below,

the two approaches are strongly related in this context (see Section 4.6).

4.1. Introduction 123

4.1.2 Related Work

The closure of GPs under linear operators has been long understood ADLER, which

follows from the closure of multivariate Gaussian random variables under linear/affine

functions. Early work leveraged this property of GPs to build models to incorporate

derivative information [209], learn latent forces [210], and model ordinary and partial

differential equations [183], [211], [212]. Of specific relevance to the material presented

here is the physics-informed Gaussian process (PIGP) inference framework introduced

in the seminal work [102], where it was outlined how noise levels, any unknown PDE

parameters and the function of interest itself could be jointly inferred using GPs.

A recent thread of research in the GP literature has focused on the design of models

that exactly satisfy known boundary conditions in advance of training. In the context

of data-driven surrogate modelling, approaches have been proposed which design non-

stationary mean and covariance functions so that boundary conditions on the value of the

unknown function itself are satisfied [213], [214]. This type of approach can also be used

in the context of multi-output GPs, to enforce both boundary and PDE constraints [215].

Other approaches have also been proposed, including the design of a bespoke kernel in

terms hyperbolic sine and cosine functions so that Dirichlet conditions are satisfied [216],

and the use kernels derived from variational harmonic features which can be used to

enforce a range of boundary conditions [217], [218].

Physics-informed neural networks (PINNs) are an alternative paradigm for the ma-

chine learning of PDE systems [101]. While PINNs are considered to be a more “data-

hungry” method than PIGPs, they have the advantage of not being limited to the model-

ling of linear PDEs. Contemporaneous with the introduction of the above hard-constrained

methods in the PIGP literature has been the development of methods for imposing the

exact same type of constraints in PINNs. As we discuss in Section 4.6, these two threads

of research are in fact highly analogous. Early work in PINNs used simple distance

functions to enforce homogeneous Dirichlet conditions [186], while more recent work has

introduced techniques to handle more complex domains and more versatile boundary

conditions [219]–[221].

4.1. Introduction 124

4.1.3 Contributions

In this chapter, we introduce a GP modelling framework for imposing hard enforcement of

boundary conditions, which naturally accommodates time-dependent PDEs in the context

of both inverse and forward problems. We do this by extending existing approaches [213],

[214] beyond Dirichlet conditions to enforce more general Neumann, Cauchy and Robin

conditions. We prove that the construction allows for universal approximation within

the boundary-constrained function space under Dirichlet conditions, and also introduce a

theoretical link between the hard-constrained PINN and PIGP literatures in the limit of

an infinite width network. Furthermore, we then conduct extensive numerical experiments

involving multiple PDE systems, the results of which demonstrate that explicitly enforcing

boundary conditions allows for more robust inference, when compared to methods which

ignore boundary conditions or which introduce boundary information using a penalty

approach.

The chapter is laid out as follows; Sections 4.2 and 4.3 give background material on

GPR and linear PDEs, respectively, while Section 4.4 describes how Dirichlet boundary

conditions can be explicitly enforced in a GP model. Sections 4.5 and 4.6 present the-

oretical results which explore respectively the representation capacity of the kernel used

to enforce Dirichlet conditions, and the connection between neural networks and GPs in

this context. Section 4.7 then outlines how general boundary conditions can be modelled

in addition to Dirichlet conditions, before Section 4.8 details the numerical experiments

we conducted to evaluate these methods. Section 4.9 concludes. Supplementary material

is provided in Appendix C.

4.2 Gaussian process regression

Regression refers to the process of using a finite set of possibly noise corrupted data to

perform inference about an unknown function of interest, which we denote u : X → R.

Specifically, suppose a dataset of input-output pairs (x
(i)
u , y

(i)
u) has been observed for

i = 1, . . . , Nu, with the following noise model assumed for each observation:

y(i)u = u(x(i)
u) + ϵ(i)u with x(i)

u ∈ X and ϵ(i)u ∼ N (0, σ2
u). (4.1)

4.2. Gaussian process regression 125

The goal of regression is to use these observations yu = (y
(1)
u , . . . , y

(Nu)
u)⊤ to learn the

underlying function, allowing its output u∗ = (u
(1)
∗ , . . . ,u

(N∗)
∗)⊤ to be predicted at any

test points of interest x(1)
∗ , . . . ,x

(N∗)
∗ . In this section, we discuss the essential concepts of a

non-parametric Bayesian method for performing regression based on Gaussian processes.

For further details, we direct the reader to [130, Chapter 2] and [222, Chapter 18], while

[223] offers a more technical introduction.

Central to the formulation of Gaussian processes are Mercer kernels [223, Definition

2.1], which we will henceforth refer to as simply kernels.

Definition 4.2.1 (Mercer kernel). Let X be a nonempty set. A symmetric function

k : X × X → R is called a Mercer kernel, if for any N ∈ N, c1, . . . , cN ⊂ R and

x1, . . . ,xN ⊂ X , we have
N∑
i=1

N∑
j=1

cicjk (xi,xj) ≥ 0. (4.2)

This property of kernels is referred to as positive-definiteness. The prototypical ex-

ample of a kernel when the input space is Euclidean is the squared-exponential.

Example 4.2.1 (Squared-exponential kernel). Let X ⊂ RD. Given τ, λ > 0, a

squared-exponential kernel kSE is defined as

kSE (x,x′; τ, λ) ≜ τ 2 exp
(
−‖x− x′‖2

2λ2

)
, x,x′ ∈ X . (4.3)

A kernel will in general depend on a set of hyperparameters, which we will denote

as ξ. With the squared exponential kernel, we have ξ = (τ, λ), where τ is called the

amplitude and λ the lengthscale. For ease of notation we usually leave this dependence

implicit, i.e. writing k(x,x′) in place of k(x,x′; ξ).

We are now ready to define a Gaussian process [223, Definition 2.2], where kernels

allow for the covariance between random function outputs to be specified and are hence

often called covariance functions in this context.

4.2. Gaussian process regression 126

Definition 4.2.2 (Gaussian process). Let X be a non-empty set, k : X × X → R a

Mercer kernel and m : X → R any function. Then a random function u : X → R is called

a Gaussian process with mean m and covariance k, which we denote

u(x) ∼ GP (m(x), k (x,x′)) , (4.4)

if, for any finite collection of inputs x(1),x(2), . . . ,x(N)∈X , the distribution of the corres-

ponding outputs u = (u(x(1)), u(x(2)), ..., u(x(N)))⊤ is Gaussian, that is p(u) = N (m,K),

where the mean vector m and covariance matrix K are found by evaluating the mean and

covariance functions from Eq. (4.4) as follows:

E
(
u(x(i))

)
= m(i) = m(x(i)), (4.5)

Cov
(
u(x(i)), u(x(j))

)
= K(i,j) = k(x(i),x(j)). (4.6)

Performing Gaussian process regression (GPR) begins with the assumption that the

unknown function of interest u follows a Gaussian process with specified mean and co-

variance functions, which we denote mu and kuu respectively. This assumption, along

with the independent and identically distributed Gaussian observation noise model (see

Eq. (4.1)), implies that the training observations yu ∈ RNu×1 and unknown test outputs

u∗ ∈ RN∗×1 have the following joint Gaussian distribution:

 yu

u∗

 ∼ N

 mu

m∗

 ,

 Kuu + σ2
uINu Ku∗

K∗u K∗∗

 . (4.7)

Here, mu ∈ RNu×1 and m∗ ∈ RN∗×1 are found using the mean function mu as in Eq. (4.5),

while Kuu ∈ RNu×Nu and K∗∗ ∈ RN∗×N∗ are found using the covariance function kuu as in

Eq. (4.6). INu ∈ RNu×Nu is the identity matrix while the off diagonal terms are found as

K
(j,i)
u∗ = K

(i,j)
∗u = kuu(x

(i)
∗ ,x

(j)
u).

Given this joint distribution, the regression task reduces to evaluating p(u∗ | yu), the

conditional distribution of the unknown test function outputs given the observed data.

The properties of the multivariate Gaussian are such that this distribution is again a

Gaussian [222, Section 2.3.1.5].

4.2. Gaussian process regression 127

Proposition 4.2.1 (Posterior Predictive Gaussian Distribution). Let u∗ and yu

be jointly Gaussian distributed as in Eq. (4.7). Then p(u∗ | yu) = N (µ∗,Σ∗) with

µ∗ = m∗ + K⊤
u∗
(
Kuu + σ2

uINu

)−1
(yu −mu) ,

Σ∗ = K∗∗ − K⊤
u∗
(
Kuu + σ2

uINu

)−1 Ku∗.
(4.8)

Carrying out GPR requires then the mean and covariance function to be specified.

A common choice in practice is to use a zero mean function and squared exponential

kernel. Various approaches can then be used to fit any tunable mean/kernel paramet-

ers, including Markov-chain Monte-Carlo, variational inference and empirical Bayesian

methods respectively.

4.3 GPR under Linear PDE constraints

In this work, we study processes for which linear partial differential equation (PDE)

information is available, which we define as follows [224, Definition 1].

Definition 4.3.1 (Linear PDE). Let u be a real valued function on some subset of RD.

A PDE Lθ
x[u](x) = f(x) with possibly non-homogeneous term f(x) is called a linear PDE

if Lθ
x[u](x) is a linear differential operator:

Lθ
x[u](x) ≜

L∑
i=1

ci(x,θ)∇αi
u(x), with ∇αi

u ≜ ∂αi,1

∂x
αi,1

1

· · · ∂αi,D

∂x
αi,D

D

u, (4.9)

where θ parameterises the PDE, L is the number of derivatives, αi = (αi,1, · · · , αi,D)

indicates the order of the derivative for each input dimension, x = (x1, · · · , xD) and

ci(x,θ) the coefficient at x.

Suppose that, in addition to observations yu ∈ RNu×1 in u-space (see Eq. (4.1)),

observations in yf ∈ RNf×1 in f -space are available with observation model

y
(i)
f = f(x

(i)
f) + ϵ

(i)
f with ϵ

(i)
f ∼ N (0, σ2

f), (4.10)

4.3. GPR under Linear PDE constraints 128

for all i = 1, . . . , Nf . We seek to incorporate yu and yf into a joint inference framework

using Gaussian processes. To do so, we employ the GPR algorithm introduced in [102],

which is generalised in this section to allow for non-zero mean function. As with usual

GPR, the algorithm begins by assuming that u(x) follows a Gaussian process,

u(x) ∼ GP (mu(x), kuu (x,x
′; ξ)) . (4.11)

For clarity, we use subscripts in this section to denote the spaces in which observations

are made, so that mg(x) = E (g(x)) and kgh(x,x
′) = Cov (g(x), h(x′)) for g, h ∈ {u, f}.

Additionally, we make explicit the dependence of the kernel on any hyperparameters ξ (

we assume the mean function has no trainable parameters).

They key insight required here is that Gaussian processes are closed under linear

operations [130, Section 9.4]. This means that our assumption for the distribution of

u(x) in Eq. (4.11) implies that

Lθ
x[u](x) = f(x) ∼ GP (mf (x;θ), kff (x,x

′; ξ,θ)) . (4.12)

Furthermore, we have the following fundamental relationship between the mean and co-

variance functions of the two processes [102]:

mf (x;θ) = Lθ
xmu(x), (4.13)

kff (x,x
′; ξ,θ) = Lθ

xLθ
x′kuu (x,x

′; ξ) . (4.14)

Similarly, the cross-covariance between the observations of the two processes are found as

kuf (x,x
′; ξ,θ) = Lθ

x′kuu (x,x
′; ξ) , (4.15)

kfu (x,x
′; ξ,θ) = Lθ

xkuu (x,x
′; ξ) (4.16)

4.3. GPR under Linear PDE constraints 129

Note that we are assuming here that the chosen kernel kuu is sufficiently smooth for the

PDE operator to be applied, an issue which is discussed in detail in ADLER. The

above properties of GPs along with our Gaussian noise assumptions for observations yu

in u-space and observations yf in f -space imply the following joint distribution for the

observed data.

Proposition 4.3.1 (Joint distribution of yu and yf). Let u follow a Gaussian process

as in Eq. (4.11), with Lθ
x[u] = f . Assume yu ∈ RNu×1 has been observed with noise model

given in Eq. (4.1), and yf ∈ RNf×1 has been observed with noise model in Eq. (4.10).

Then, yu and yf follow a joint normal distribution p(yu,yf ; ξ,θ, σ
2
u, σ

2
f) of the form

 yu

yf

 ∼ N

 mu

mf

 ,Kyy

 , with Kyy =

 Kuu + σ2
uINu Kuf

Kfu Kff + σ2
fINf

 ,

(4.17)

where m
(i)
g = m(x

(i)
g) and K

(i,j)
gh = kgh(x

(i)
g ,x

(i)
h) for g, h ∈ {u, f}, while IN is the identity

matrix of dimension N , for N ∈ {Nu, Nf}.

A major contribution of [102] was to recognise that the parameters θ of the linear

PDE operator are turned into hyperparameters of mf , kff , kuf and kfu (note how these

functions depend on θ in Eqs. (4.13)-(4.16)). Therefore, if these parameters are unknown,

they can be inferred in the same manner as the original kernel parameters ξ. As in [102],

we perform inference by maximisation of p(yu,yf ; ξ,θ, σ
2
u, σ

2
f):

{ξ̂, θ̂, σ̂2
u, σ̂

2
f} = argmax

ξ,θ,σ2
u,σ

2
f

log p(yu,yf ; ξ,θ, σ
2
u, σ

2
f), (4.18)

where the log is taken for reasons of numerical stability.

When viewed as a function of the tunable parameters given fixed observations as

in Eq. (4.18) above, p(yu,yf ; ξ,θ, σ
2
u, σ

2
f) is called the marginal likelihood or evidence of

the observed data. Maximisation of the log marginal likelihood is a common method for

training GPs, as this quantity balances a trade-off between model fit and complexity [222,

Section 3.8.1]. This can be seen by writing the objective function out in explicit form [222,

Section 18.3.5], where we suppress dependence on the parameters ξ,θ, σ2
u, σ

2
f and ignore

4.3. GPR under Linear PDE constraints 130

any added constants for notational convenience:

log p(yu,yf) = −

Data-Fit︷ ︸︸ ︷
1

2

 yu −mu

yf −mf

⊤

K−1
yy

 yu −mu

yf −mf

−

Regularisation︷ ︸︸ ︷
1

2
log |Kyy| . (4.19)

The first term above is the squared distance between the observed and predicted values

under the Mahalanobis metric [222, Section 2.3.1]. This is a data-fit term, as it favours

models which better fit the observations. The second term is the log determinant of Kyy,

which is a measure of model complexity, since smoother functions will yield smaller de-

terminants. Therefore, this is a regularisation term, as it favours more simple models.

By balancing fit and complexity, the marginal likelihood can enable effective model train-

ing even in the low data regime. This is discussed further in the context of a numerical

experiment in Section 4.8.1.

Once the GP has been trained, prediction on any new test points of interest follows

almost the exact same formulas as presented in Eq. (4.8). The only difference is that any

terms involving the training data now have a block structure to account for the fact that

observations are available in two different spaces. So for example, K⊤
u∗ in Eq. (4.8) is

replaced with a matrix of the form [K⊤
u∗ K⊤

f∗] .

4.4 Hard-Enforcement of Dirichlet Boundary Condi-

tions

Solutions to PDEs are not uniquely defined. To make a problem well posed, a boundary

value problem (BVP) is considered, by subjecting the PDE to boundary constraints.

Commonly used boundary conditions include Dirichlet, Neumann, Cauchy and Robin

conditions. When a PDE is time-dependent, an initial boundary value problem (IBVP)

can be defined, whereby an additional constraint is placed on the initial condition of the

system. For notational simplicity, however, in the following we will not make explicit

any temporal components to a process. Instead, several numerical experiments involving

IBVPs are considered in Section 4.8, where we illustrate that initial conditions can be

handled in exactly the same manner as boundary conditions.

4.4. Hard-Enforcement of Dirichlet Boundary Conditions 131

As discussed in Section 4.1.2, a recent thread of research in the application of GPs to

BVPs has been in the specification of mean and covariance functions so that the prescribed

boundary conditions are exactly satisfied a-priori. In this work, we call such models hard-

constrained GPs (HCGPs). Consider first the case of Dirichlet boundary conditions. If

we consider a bounded domain Ω ⊂ RD with ∂Ω its boundary, then a Dirichlet boundary

condition takes the form

u(x) = b(x) for all x ∈ ∂Ω, (4.20)

where u : Ω → R is the unknown function of interest (which we assume is continuous)

and b : ∂Ω → R is known. In this case, a HCGP can be defined as follows.

Definition 4.4.1 (Hard-Constrained Gaussian Process (HCGP) for Dirichlet

Boundary Conditions). Consider bounded domain Ω ⊂ RD with boundary ∂Ω and

known boundary function b : ∂Ω → R. Then let m̃ : Ω → R be any continuous function

with m̃(x) = b(x) if x ∈ ∂Ω, and ϕ : Ω → R be a continuous distance function satisfying

ϕ(x) = 0 if x ∈ ∂Ω with ϕ(x) > 0 otherwise. Finally, let k̃(x,x′) = ϕ(x)ϕ(x′)k(x,x′) for

arbitrary covariance function k : Ω× Ω → R. Then we call a hard-constrained Gaussian

processes (HCGP) a model of the form

u(x) ∼ GP
(
m̃(x), k̃(x,x′)

)
. (4.21)

We remark that k̃ above defines a valid covariance function since any inner product

ϕ(x)ϕ(x′) with ϕ : Ω → R defines a valid kernel [225, Definition 4.1] and the product of

two kernels is a kernel [225, Lemma 4.6].

The design of the mean and covariance functions in the HCGP is motivated by the

elementary result from probability theory that if c is a deterministic/known variable,

then Var(c) = 0, and additionally for any random variable X, we have Cov(c,X) = 0.

Therefore, under Dirichlet conditions where the output of the function is known exactly on

∂Ω, the variance of the GP prior on u should be zero at the boundary, that is k̃(x,x′) = 0

if x ∈ ∂Ω, with mean function equal to the known value, that is m̃(x) = b(x). Similarly,

the covariance should equal zero if one of the input points lies on the boundary, i.e.

k̃(x,x′) = 0 if x ∈ ∂Ω and/or x′ ∈ ∂Ω. Clearly, the forms of m̃ and k̃ in Definition 4.4.1

4.4. Hard-Enforcement of Dirichlet Boundary Conditions 132

ensure that these conditions are met. In this sense, then, the HCGP model imposes a hard

enforcement of the Dirichlet conditions13. The explicit construction of mean function m̃

and distance function ϕ in the case of a unit-cube domain is described in Section 4.4.1

below.

The advantage of using a HCGP over a more general GP is that our prior knowledge

of the Dirichlet boundary conditions is reflected directly in the function space on which we

place our Gaussian process prior, and therefore does not have to be learned from data. An

extension to the framework presented here is required if more general Cauchy, Neumann

and Robin boundary conditions are to be considered. We are not aware of any work in

the literature on GPs which discusses this issue, however, and so we present the extension

in Section 4.7.

In most numerical experiments performed in Section 4.8, we consider Ω to be a grid-

like subset of RD. As we discuss in Section 4.4.1 below, this allows for simple hand-

derivations of the form of the required HCGP. However we stress that the methods presen-

ted here are not limited to such simple domains. Several approaches recently presented

in the PINN literature such as [219], [220] could easily be applied to specify boundary

constrained mean and covariance functions m̃ and k̃ respectively if the PDE domain Ω

has a more complex form. We present an experiment illustrating this in Section 4.8.1.

4.4.1 Example - unit cube domain

We assume now that our domain of interest is the unit cube in RD, i.e. Ω = [0, 1]D. In

this case, the boundary ∂Ω can be decomposed as

∂Ω =
D⋃
i=1

1⋃
j=0

∂Ωij, where ∂Ωij = {x = (x1, . . . , xD) ∈ Ω : xi = j}. (4.22)

Typically in the literature on BVPs, no intersection between different boundaries is al-

lowed. To simplify notation however, here we have relaxed this to allow for possibly

non-null but zero-measure intersections. Note this makes no practical difference as we are

assuming continuity in the underlying function of interest u.

13For a more technical discussion of this idea in a similar context, we direct the reader to [214] (spe-
cifically Proposition 1).

4.4. Hard-Enforcement of Dirichlet Boundary Conditions 133

Algorithm 3 HCGP Generator
Input: Covariance function k : Ω× Ω → R, boundary function b : ∂Ω → R
Output: m̃, k̃

1: m̃1(x) = b(x : x1 = 0)(1− x1) + b(x : x1 = 1)x1

2: for i = 2 : D

3: b̃i,j(x) = b(x : xi = j)− m̃i−1(x : xi = j) for all j ∈ {0, 1}
4: m̃i(x) = m̃i−1(x) + b̃i,0(x)(1− xi) + b̃i,1(x)xi

5: end for
6: m̃(x) ≜ m̃D(x)

7: ϕ(x) ≜ ΠD
i=1xi(1− xi)

8: k̃(x,x′) ≜ ϕ(x)ϕ(x′)k(x,x′)

The boundary constrained mean and covariance functions for specifying a HCGP can

then be generated using Algorithm 3. The mean function is found initially using an

iterative procedure. For the first input dimension (x1), the mean is initialised on line

1 by linearly interpolating between the specified boundary functions on ∂Ω10 and ∂Ω11.

For each additional dimension i = 2, . . . , D, the mean is augmented by adding a similar

linear interpolation for the ith input dimension on line 4. The difference is that the

interpolation is done with respect to augmented boundary functions b̃i,0 and b̃i,1 found on

line 3, which ensures that the boundary values for dimensions l < i are not affected by the

augmentation procedure. The construction of k̃ on line 8 is even simpler, by combining

the original kernel k with a feature transformation ϕ defined on line 7 which satisfies

ϕ(x) = 0 if x ∈ ∂Ω and ϕ(x) > 0 otherwise.

We use this algorithm to specify the HCGPs considered in Section 4.8, adjusted

slightly to account for IBVPs and for alternative boundary conditions. We remark that,

clearly k̃(x,x′) = 0 if x ∈ ∂Ω and/or x′ ∈ ∂Ω. Furthermore, the function m̃ exactly

satisfies the given Dirichlet boundary conditions.

Lemma 4.4.1. Dirichlet boundary conditions of the form given in Eq. (4.20), let m̃ be

the mean function generated by Algorithm 3. Then we have

m̃(x) = b(x) for all x ∈ ∂Ω. (4.23)

This result is proved in Section C.1.

4.5. Reproducing-Kernel Hilbert Space Analysis 134

4.5 Reproducing-Kernel Hilbert Space Analysis

In Section 4.2, we introduced a kernel as a positive definite function appropriate for use as a

covariance function in the specification of a Gaussian process. Kernels also have a deep and

one-to-one correspondence with Hilbert spaces of functions whose evaluation functional

is continuous. Such function spaces are called reproducing kernel Hilbert spaces (RKHSs).

This property of kernels allows for theoretical analysis of their representational capacity

in terms of an associated RKHS, which we will make use of to analyse the boundary

constrained kernel used in the specification of a HCGP for Dirichlet boundary conditions

(Definition 4.4.1). To do so, we begin with some foundational results from kernel and

RKHS theory. For a comprehensive introduction to this topic, see [225, Chapter 4].

Definition 4.5.1 (Reproducing Kernel Hilbert Space (RKHS) [223]). Let X be a

non-empty set, k a kernel on X×X and H an R-Hilbert space over X . That is H is a vector

space consisting of functions u that map X to R, which is equipped with an inner product

〈·, ·〉H that induces a metric for which the space is complete. H is additionally called a

reproducing kernel Hilbert space (RKHS) with reproducing kernel k, if the following are

satisfied:

1. For all x ∈ X , we have k(·,x) ∈ H;

2. For all x ∈ X and for all u ∈ H, we have

u(x) = 〈u(·), k(·,x)〉H.

The second condition above is called the reproducing property of the kernel. We

introduce the notation Hk to denote an RKHS with reproducing kernel k, given the result

of the below theorem.

Theorem 4.5.1 (Moore–Aronszajn Theorem [226]). Let X be a nonempty set. Then

for every kernel k on X ×X , there exists a unique RKHS H for which it is the reproducing

kernel, and vice-versa.

For Theorems 4.5.2, 4.5.3 and 4.5.3 below, the concept of density in a metric space is

required [227, Theorem 4.2.1].

4.5. Reproducing-Kernel Hilbert Space Analysis 135

Definition 4.5.2 (Dense subset of a metric space). A subset D of a metric space X

with metric d is called dense in X if, for all ε > 0 and all x ∈ X , there exists x̂ ∈ D such

that d(x, x̂) < ε.

The following result allows us to consider the elements of Hk in terms of finite weighted

sums of k [225, Theorem 4.21].

Theorem 4.5.2 (Reproducing kernel map representation). Let X be a non-empty

set and k a kernel on X ×X , with Hk its associated RKHS. Consider the set of functions

Hpre
k ≜

{
u(x) =

N∑
i=1

cik (xi,x) : N ∈ N, c1, . . . , cN ∈ R,x1, . . . ,xN ∈ X

}
. (4.24)

Then Hpre
k ⊂ Hk and Hpre

k is dense in Hk with respect to the metric induced by 〈·, ·〉Hk
.

We remark that the density of Hpre
k in Hk is equivalent to stating that the topological

completion of Hpre
k is equal to Hk [227, Theorem 4.2.1], with appropriate choice of inner

product on Hpre
k [223, page 11].

The implication of Theorem 4.5.2 for GP regression is clear by noticing that, in the

case of a zero mean function, the posterior mean from Eq. (4.8) has exactly the form of a

weighted sum of evaluations from the chosen kernel as seen in from Eq. (4.24). Therefore

the RKHS of a given kernel k can be seen intuitively as the space of all posterior means

of the GP. In the general regression case, it would clearly be desirable if this posterior

mean could model any function arbitrarily well. Kernels for which this property is true

are called universal kernels [225, Definition 4.52].

Definition 4.5.3 (Universal Kernel). A continuous kernel k defined on X × X with

X a compact metric space is called universal if its associated RKHS Hk is dense in C(X)

with respect to the metric induced by the supremum norm. That is, for every u ∈ C(X)

and for all ε > 0, there exists û ∈ Hk such that ‖u− û‖∞ ≤ ε.

It can be shown that the squared exponential kernel kSE from Eq. (4.3) is universal

on any compact subset of RD [228]. By contrast, any boundary constrained kernel k̃ as

considered in Section 4.4 for exactly satisfying Dirichlet boundary constraints will not be

universal, because all functions in its associated RKHS Hk̃ will be constrained to equal

4.5. Reproducing-Kernel Hilbert Space Analysis 136

zero at the domain boundary. This behaviour of the k̃ is desirable when the value of the

function on the boundary is prescribed. However, the function is unknown on the interior

of its domain. Therefore it would also be desirable if k̃ maintains universal approximation

within the interior, for all functions which satisfy the boundary conditions.

For the purposes of exposition, we study this problem in the one-dimensional case with

homogeneous Dirichlet boundary conditions. That is, we consider the function space

Hbc ≜ {u ∈ C([0, 1]) : u(0) = u(1) = 0}. (4.25)

In this case, Algorithm 3 generates a zero mean function, and boundary constrained kernel

given by

k̃(x, x′) = ϕ(x)ϕ(x′)k(x, x′) with ϕ(x) = x(1− x), (4.26)

for any input kernel k. We then have the following result.

Theorem 4.5.3 (Universal Boundary Constrained Kernel). Let k be any universal

kernel on [0, 1]× [0, 1], and k̃ be given as in Eq. (4.26). Then, the RKHS Hk̃ is dense in

Hbc from Eq. (4.25) with respect to the metric induced by the supremum norm. That is,

for every u ∈ Hbc and for all ε > 0, there exists û ∈ Hk̃ such that ‖u− û‖∞ ≤ ε.

This result is proved in Section C.2, the outline of which we sketch here. Firstly,

consider the following definition.

Definition 4.5.4 (Latent Function zu). For any u ∈ Hbc, we define its corresponding

latent function zu : (0, 1) → R as

zu(x) ≜
u(x)

ϕ(x)
, (4.27)

where ϕ is given as in Eq. (4.26).

Intuitively, for any u ∈ Hbc, if there exists ẑ ∈ Hk so that its corresponding latent

function zu is approximated “well”, then we can find û ∈ Hk̃ so that u is approximated

“well” by simply multiplying ẑ by ϕ. Note however that while zu is clearly continuous on

its domain (0, 1), Theorem 4.5.3 does not hold because (0, 1) is an open set. Furthermore,

we cannot necessarily continuously extend zu to the closure of its domain (i.e. to the

4.5. Reproducing-Kernel Hilbert Space Analysis 137

set [0, 1]) because zu may diverge for x ∈ {0, 1}. For example, if u(x) = (1 − x)x
1
2 then

u ∈ Hbc but its latent function zu(x) = x− 1
2 diverges at x = 0. Since zu is continuous on

(0, 1) however, it will also be continuous on any closed subset of (0, 1). In particular, we

have then that k will be a universal approximator of zu on subdomains of the form [δ, 1−δ]

for arbitrary δ ∈ (0, 1/2). This type of approximation is called convergence in (Lebesgue)

measure. Moreover, the region (0, δ) ∪ (1 − δ, 1) where we cannot guarantee uniform

approximation is exactly the region where u is converging to zero by assumption. This

allows uniform approximation to be obtained for u, even if only convergence in measure

is possible for zu.

4.6 Connection to Neural Networks

As discussed in Section 4.1.2, the problem of hard enforcement of boundary conditions

has been explored in both the Gaussian process and neural network literatures. To our

knowledge, however, no one has yet introduced a formal link between these two bodies

of work. In this section, we introduce such a link, by proving that a hard-constrained

Gaussian process (HCGP) is the infinite width limit of a hard-constrained neural network

(HCNN). We define a HCNN as follows.

Definition 4.6.1 (Hard-Constrained Neural Network (HCNN) for Dirichlet

Boundary Conditions). Consider bounded domain Ω ⊂ RD with boundary ∂Ω and

known boundary function b : ∂Ω → R. Let m̃ : Ω → R and ϕ : Ω → R be as given in

Definition 4.4.1, and znn be a neural network. We then define a hard-constrained neural

network (HCNN) to be a model unn : Ω → R of the form

unn(x) = m̃(x) + ϕ(x)znn(x). (4.28)

It is well known that, in the infinite width limit and under certain regularity conditions

(see below), a single layer neural network converges to a Gaussian process. Specifically,

we have the following result from [229, Chapter 2], reviewed succinctly in [222, Section

18.7.1].

4.6. Connection to Neural Networks 138

Theorem 4.6.1 (Convergence of neural network to Gaussian process in infinite

width limit). Consider a single layer neural network of width H, i.e. a model of the

form

znn(x) = b(1) +
H∑
j=1

w
(1)
j hj(x), hj(x) = φ

(
b
(0)
j + x⊤w

(0)
j

)
(4.29)

where H is the width of the hidden layer and φ is a non-linear activation function taken

to be bounded (such as the tanh function). Assuming Gaussian priors on the parameters

of the form

b(1) ∼ N (0, σb(1)) , w
(1)
j ∼ N

(
0,

√
ω

H

)
, b

(0)
j ∼ N

(
0, σ

b
(0)
j

)
,w

(0)
j ∼ N (0,Σw(0)), (4.30)

then, in the limit as H → ∞, we have

znn(x) → GP(0, knn(x,x
′)), (4.31)

where the form of the limiting kernel knn depends on the choice of activation function φ.

We now introduce a corresponding theorem for the limiting form of a hard-constrained

single layer neural network.

Theorem 4.6.2 (Convergence of HCNN to HCGP in infinite width limit). Let

unn be a HCNN of the form of Eq. (4.28) and znn a single layer network of width H, with

prior distributions of the form of Eq. (4.30) assumed on its the parameters. Then we have

in the limit as H → ∞,

unn(x) → GP(m̃(x), k̃nn(x,x
′)), (4.32)

where k̃nn is the boundary constrained kernel found by using knn in the construction of a

HCGP (Definition 4.4.1).

This result is proved in Section C.3.

In the present work we concentrate on HCGPs because this approach is particularly

suited to efficient inference of any unknown linear differential parameters θ via the ana-

lytically tractable log marginal likelihood (see Eq. (4.18)). The objective of this section

was to emphasise however that the methods used to construct HCGPs are not restricted

4.6. Connection to Neural Networks 139

to the setting of kernel design, and can easily be applied to neural networks to yield

similar results. Specifically, analogous arguments to those presented in Sections 4.4 and

4.5 respectively can be applied to show both that the HCNN architecture exactly satis-

fies the specified Dirichlet boundary conditions and is a universal function approximator

within the boundary constrained function space14. Finally, Theorem 4.6.2 shows that the

two seemingly disparate approaches of HCGPs and HCNNs are in fact equivalent in the

infinite width limit with appropriate choice of prior.

4.7 General Boundary Conditions

In this section, we show how the hard-constrained framework for Dirichlet boundary

conditions described in Section 4.4 can be extended to additional types of boundary con-

ditions. For the purposes of exposition, we initially let Ω = [0, 1] and consider boundary

constraints at the left end point x = 0. In this case, recall that a Dirichlet boundary

condition takes the form

Dirichlet Boundary : u(0) = b0. (4.33)

As detailed in Algorithm 3, a HCGP can be specified as follows to exactly satisfy these

conditions,

m̃(x) = b0, (4.34)

k̃(x, x′) = ϕ(x)ϕ(x′)k(x, x′) with ϕ(x) = x. (4.35)

The top row of Figure 4.1 displays five functions and corresponding derivatives sampled

from a HCGP with the above mean and covariance functions in the case where b0 = 0.

A Cauchy boundary condition takes a similar form

Cauchy Boundary : u(0) = b0 and ux(0) = c0, (4.36)

14This relies on the well known universal approximation theorem for neural networks [106].

4.7. General Boundary Conditions 140

Function Samples Derivative Samples

D
iri

ch
let

0.0 0.2 0.4 0.6 0.8 1.0
x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

u
(x

)

0.0 0.2 0.4 0.6 0.8 1.0
x

−4

−2

0

2

4

u
x
(x

)

Ca
uc

hy

0.0 0.2 0.4 0.6 0.8 1.0
x

−3

−2

−1

0

1

2

3

u
(x

)

0.0 0.2 0.4 0.6 0.8 1.0
x

−4

−2

0

2

4

u
x
(x

)

Ne
um

an
n

0.0 0.2 0.4 0.6 0.8 1.0
x

−3

−2

−1

0

1

2

3

u
(x

)

0.0 0.2 0.4 0.6 0.8 1.0
x

−4

−2

0

2

4

u
x
(x

)

Ro
bi

n

0.0 0.2 0.4 0.6 0.8 1.0
x

−4

−3

−2

−1

0

1

2

3

4

u
(x

)

0.0 0.2 0.4 0.6 0.8 1.0
x

−4

−3

−2

−1

0

1

2

3

4

u
x
(x

)

Figure 4.1: Function (left column) and derivative (right column) samples from four
HCGPs corresponding to different boundary conditions at x = 0. The y-axis of each plot
is clipped to make function and derivative samples easier to compare. For consistency,
the same random seeds are used in drawing the samples from each row.

4.7. General Boundary Conditions 141

where in this case the value of the derivative ux is exactly specified in addition to the

function value itself u. It is typically used as an initial condition in time dependent PDEs,

where it has the physical interpretation of describing the initial position and velocity of a

system. A HCGP can be specified by slightly altering the mean and covariance functions

of the HCGP for Dirichlet conditions as follows

m̃(x) = b0 + c0x, (4.37)

k̃(x, x′) = ϕ(x)ϕ(x′)k(x, x′) with ϕ(x) = x2. (4.38)

By setting ϕ(x) = x2 so that ϕ(0) = ∂xϕ(0) = 0, we ensure k̃(x, x′), ∂xk̃(x, x′), ∂x′ k̃(x, x′)

and ∂x∂x′ k̃(x, x′) all equal zero if x = 0 and/or x′ = 0. This in turn means that all

functions sampled from GP(m̃, k̃) will have value and derivative that revert to those of

the mean function at x = 0, which we have specified so that it exactly satisfies the given

boundary conditions, that is m̃(0) = b0 and ∂xm̃(0) = c0.

The second row of Figure 4.1 displays five samples of a HCGP in the case where

b0 = −1 and c0 = 1. At the left boundary for each sample, we see the function constraint

is satisfied, as well as the derivative constraint.

A Neumann boundary condition at x = 0 has the form

Neumann Boundary : ux(0) = c0, (4.39)

where, unlike a Cauchy boundary, only the derivative value is specified and not the func-

tion itself. A HCGP in this case can be specified using the following mean and covariance

functions

m̃(x) = β0 + c0x, (4.40)

k̃(x, x′) = ϕ(x)ϕ(x′)k(x, x′) with ϕ(x) = x2. (4.41)

The specification of m̃ and k̃ are similar here as in the Cauchy boundary, with the ex-

ception that β0 is a trainable parameter because the function value in this instance is

not prescribed on the boundary and therefore must be learned. We remark that, when

fitting a GP in practice, it may be more convenient to integrate this parameter out of the

4.7. General Boundary Conditions 142

mean function - for details, see Section 4.8.1. The third row of Figure 4.1 shows random

samples from a HCGP of this form where we let c0 = 1 and β0 ∼ N (0, 1), where we can

see in the right column the Neumann condition is satisfied. Because we used consistent

random seeds, the function samples here are almost exactly the same as for the Cauchy

boundary, except they are shifted by the random value of β0 in each case.

We finally consider Robin boundary conditions, which in the one dimensional case

take the form

Robin Boundary : a0u(0) + b0ux(0) = c0, (4.42)

with a0, b0 6= 0. Note the contrast here to a Cauchy condition - instead of specifying the

value of both the function and the derivative, we instead specify a weighted combination

of the two. A HCGP in this case can be specified by slightly modifying the mean and

covariance functions used in the above examples as follows:

m̃(x) =

(
a0x− b0

b0

)
β0 +

c0
b0
x, (4.43)

k̃(x, x′) = ϕ(x)ϕ(x′)k(x, x′) with ϕ(x) = x2. (4.44)

The hard constrained kernel here is the same as used for a Cauchy boundary, which again

means that all functions sampled from a GP with this kernel will have value and derivative

which revert to the mean function at x = 0. Furthermore, we have by construction

that m̃(0) = −β0 while by differentiation ∂xm̃(0) = (a0β0 + c0)/b0. Rearranging yields

m̃(0)a0 + ∂xm̃(0)b0 = c0 as required. The final row of Figure 4.1 shows random samples

from a HCGP of this form, where we let a0 = b0 = c0 = 1 and once again β0 ∼ N (0, 1).

For each sample, the values of both the function and its derivative at the left boundary

are random. However, note we also have u(0) = −ux(0) for each sample, meaning the

Robin boundary is satisfied.

4.7. General Boundary Conditions 143

4.7.1 Extension to higher dimensional domains

The above methods can be extended to higher dimensions. If the domain has a grid

like structure, the mean and covariance functions of a HCGP can be derived in a similar

manner as Algorithm 3. We show extensive examples of this in Section 4.8 below. In

performing these derivations, we make use of two cubic polynomial functions B− : [a, b] →

[0, 1] and B+ : [a, b] → [0, 1], whose coefficients are chosen such that the conditions given

in Eq. (4.45) are satisfied. These functions are plotted for [a, b] = [0, 1] in Figure 4.2.

B−(a) = 1, B−(b) = 0, ∂xB
−(a) = 0, ∂xB

−(b) = 0,

B+(a) = 0, B+(b) = 1, ∂xB
+(a) = 0, ∂xB

+(b) = 0.
(4.45)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

B
− (
x

)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

B
+

(x
)

(a) B− : [0, 1] → [0, 1] (b) B+ : [0, 1] → [0, 1]

Figure 4.2: Illustration of cubic polynomials B− : [a, b] → [0, 1] and B+ : [a, b] → [0, 1]
for [a, b] = [0, 1]. See Eq. (4.45) for more details. These functions are useful for deriving
boundary covariance functions k̃ for domains Ω ⊂ RD with D > 1.

For non grid-like domains, there exist several methods recently introduced in the

PINN literature which could be adjusted for use in the case of PIGPs [219]–[221]. We

illustrate this using a numerical example in Section 4.8.1.

4.8. Numerical Experiments 144

4.8 Numerical Experiments

We now present numerical experiments which evaluate the effectiveness of the methods

discussed above for hard enforcement of boundary conditions. The experiments include

both forward and inverse problems for a range of different linear PDEs, including the three

canonical linear PDEs, namely the Poisson, Heat and Wave Equations. The boundary

conditions are chosen so that at least one example of Dirichlet, Cauchy, Neumann, Robin

and periodic conditions respectively are considered.

To distinguish between different modelling approaches, we will make use of the fol-

lowing acronyms :

- UCGP: Unconstrained Gaussian Process - here no boundary information is ac-

counted for in the modelling problem. This is the approach used in the seminal

paper [102].

- PCGP: Penalty Constrained Gaussian Process - here a set of pseudo-observations

on the boundaries are used to account for the boundary conditions. This is similar

to a penalty or soft enforcement approach, as used in [230].

- HCGP: Hard Constrained Gaussian Process - here the mean and covariance func-

tions of the GP are designed such that all boundary conditions are exactly satisfied,

everywhere on the boundary.

- HCNN: Hard Constrained Neural Network - a model based on neural networks such

that, as for the HCGP, all boundary conditions are exactly satisfied everywhere.

The above modelling approaches have different strengths and weaknesses, and the

choice of which to deploy in practice will depend on the specifics of the problem of in-

terest. PIGPs are particularly suited to inference in systems governed by linear PDEs.

As detailed in Section 4.3, any unknown PDE parameters θ become hyperparameters of

the PIGP kernel, allowing for efficient inference of θ from observational data. The num-

ber of parameters to be inferred when using a PIGP (that is the kernel, noise and PDE

parameters) will be much lower than is the case with a PINN, where typically thousands

of weights and biases will need to be trained. PIGPS also give full uncertainty quanti-

4.8. Numerical Experiments 145

fication via the analytically tractable posterior predictive distribution (Eq. (4.8)). The

advantage of PINNs is that they significantly more computationally efficient than PIGPs,

and can naturally handle non-linear PDEs. As for the handling of boundary conditions,

unconstrained approaches (i.e. UCGPs or UCNNs) are appropriate for applications where

boundary conditions are unknown. When boundary conditions are known, they can either

be softly enforced using a penalty approach, or explicitly enforced with a HCGP/HCNN.

One problem with PCGPs is that computational resources are “wasted” accounting for

the boundary conditions, whereas with a HCGP, the conditions are enforced without us-

ing observational data. However, implementing a HCGP/HCNN requires bespoke mean

and kernel functions to be derived.

In all experiments, the base kernel k from which we construct a hard constrained

kernel k̃ is the squared-exponential with seperate lengthscales for each dimension, i.e. a

kernel of the form

k(x,x′) = τ 2 exp
(
−1

2

D∑
i=1

(xi − x′
i)
2

λ2
i

)
. (4.46)

Here, the kernel hyperparameters are ξ = (τ, λ1, . . . , λD). This is referred to as an auto-

matic relevance determination (ARD) kernel, as it allows for the most important input

dimensions to be identified automatically during the training procedure [130, Section 5.1].

As discussed in Section 4.3, we train GPs by optimisation of the marginal likelihood

(see Eq. (4.18)). Note that this objective function is not convex with respect to the

hyperparameters of the kernel, and therefore we consider multiple restarts under different

random initialisations when training.

For comparison, we also perform an experiment using a HCNN in Section 4.8.1.

HCNNs can be trained to minimise prediction error against observations yu ∈ RNu×1

in u-space (see Eq. (4.1)) and observations yf ∈ RNf×1 in f -space (see Eq. (4.10)). We

denote a HCNN as unn, with weights and biases denoted ω and any trainable variables

used to enforce the boundary conditions denoted β. Then, assuming the parameters θ of

4.8. Numerical Experiments 146

the differential operator Lθ
x are known, loss terms for the HCNN can be defined as

Lu(ω,β) =
1

Nu

Nu∑
i=1

(
y(i)u − unn(x

(i)
u ;ω,β)

)2
, (4.47)

Lf (ω,β) =
1

Nf

Nf∑
i=1

(
y
(i)
f − fnn(x

(i)
f ;ω,β)

)2
, (4.48)

where fnn(x;ω,β) = Lθ
x[unn](x;ω,β). The parameters can then be trained to minimise

the sum of these loss terms:

{ω̂, β̂} = argmin
ω

Lpinn(ω,β), (4.49)

where Lpinn = Lu + Lf . Typically in PINNs, a boundary loss term is also included,

but this is not necessary with a HCNN because the boundary conditions are satisfied

automatically. Again we use multiple random restarts when solving this optimisation

problem because the objective function is non-convex with respect to ω.

In the experiments performed in Section 4.8.1, solely the forward problem of learning u

is considered, in which case only collocation points in f -space are used for training, where

f is known. In the experiments performed in Sections 4.8.2-4.8.4, the inverse problem

of identifying θ is considered, given a finite set of noise corrupted observations of u. In

each case, we assume f = 0 is a known conservation principle, which we incorporate into

the inference once again via collocation points. Finally, the experiment in Section 4.8.5

is taken from [218], where the forward problem is considered given discrete observations

of u and f , which are subject to observation noise in each case.

Accuracy of the ML models assessed using the following error metrics

erru = Mean(|u− û|), errθ = ‖θ − θ̂‖2, (4.50)

where θ̂ is the point estimate of the PDE parameters found during training and, for GPs,

û is the posterior mean. The Mean(·) operator in erru is taken over a large grid of test

points in the specified domain.

4.8. Numerical Experiments 147

Experiments are implemented in Python using the JAX [48] library. Adam [111] is

used for training with an exponentially decaying learning rate. For each PDE considered,

the differential operator Lθ
x is implemented in JAX code, which allows for mf , kff , kuf and

kfu (see Section 4.3 for details) as well as fnn (see Eq. (4.48) above) to be found using the

automatic differentiation system provided by JAX, i.e. no hand derivations are required.

4.8.1 Poisson Equation

Our first set of numerical experiments involve Poisson’s equation, the prototypical elliptic

PDE that has wide utility in physics. Given two spatial dimensions x and y, the equation

takes the form

−(uxx + uyy) = f. (4.51)

For the Poisson equation, we will only consider the forward problem of learning the

function u, using two BVPs stated below. Note that for Poisson-BVP-1, only one spatial

dimension is considered.

Poisson-BVP-1:

x ∈[0, 2]

u(0) = 0,

ux(0) = 0,

ux(2) = u(2).

Poisson-BVP-2:

(x, y) ∈ Ωp,

u(x, y) = 0, (x, y) ∈ ∂Ωp.

Poisson-BVP-1 is a slightly adjusted version of the BVP presented in DeepXDE doc-

umentation [231], which we follow by setting f(x) = 2 which yields u(x) = x2. This

simple preliminary example is used for exposition of the hard-constrained framework for

modelling BVPs, both for neural networks (HCNNs) and Gaussian processes (HCGPs).

We also highlight a subtle difference in the handling of the trainable parameters for a

HCNN, which is a frequentist approach, and a HCGP, which is a Bayesian method.

The following HCNN is specified for the problem,

unn(x;ω, β) = ϕ2(x)β + ϕ1(x)z1(x;ω), (4.52)

4.8. Numerical Experiments 148

where z1 is an FCNN with tanh activation function with weights and biases ω, ω, β is a

trainable parameter while

ϕ1(x) = x2(2− x)2 and ϕ2(x) = (x− 1)B+(x). (4.53)

B+ : [0, 2] → [0, 1] is a cubic polynomial with coefficients chosen to satisfy the conditions

given in Eq. (4.45). This HCNN exactly satisfies the boundary conditions of Poisson-

BVP-1, which can be seen by noting that unn(0;ω, β) = 0, unn(2;ω, β) = β, then using

the chain rule to show that ∂xunn(0;ω, β) = 0 and ∂xunn(2;ω, β) = β.

A HCGP could be specified for this BVP using a mean function of the form m̃(x) =

βϕ2(x). However, care must be taken with the parameter β. Directly optimising its value

as was done with the HCNN would not allow uncertainty at the right boundary to be

accounted for. Instead, then of optimising this parameter, we use a Bayesian approach

by assigning it an N (0, σ2
β) prior and then integrating out over the implied distribution

in function space to yield the following kernel:

Cov (m̃(x), m̃(x′)) = E [m̃(x)m̃(x′)]−
0︷ ︸︸ ︷

E [m̃(x)]E [m̃(x′)]

= E [(βϕ2(x)) (βϕ2(x
′))]

= σ2
βϕ2(x)ϕ2(x

′).

(4.54)

The final HCGP then has a zero mean function and a kernel of the form

k̃(x, x′) = ϕ1(x)ϕ1(x
′)k1(x, x

′) + ϕ2(x)ϕ2(x
′)σ2

β. (4.55)

Ten prior samples from this HCGP are given in Figure 4.3 (a). On the left boundary,

note how each sample is equal to zero with zero derivative, i.e. the Cauchy condition from

the mixed BVP in Eq. (4.8.1) is satisfied. At the right boundary, the value of each sample

scales exactly with the derivative, i.e. the Robin condition of the BVP is satisfied.

4.8. Numerical Experiments 149

We consider the forward problem of learning u from a sparse data set of Nf = 4

collocation points at input locations (x
(1)
f , x

(2)
f , x

(3)
f , x

(4)
f) = (0.5, 1.0, 1.5, 2.0). The HCGP

was trained to maximise the marginal likelihood of this data (see Eq. (4.18)). The HCNN

was trained to minimise the loss term Lpinn (see Eq. (4.49)), where Lpinn = Lf in this case

because no observations in u-space are considered here. For the latent FCNN z1, we used

one hidden layer of width 16, with tanh activation function.

Figure 4.3 (b) presents the predictions of both models after training. The HCNN

completely fails to capture the true function, obtaining erru value of 1.33. This is despite

the fact that the HCNN learns to nearly perfectly interpolate the four collocation points,

i.e. Lf ≈ 0. By contrast, the HCGP recovers the true solution almost exactly, with

erru = 4.9×10−5. This example illustrates the effectiveness of the HCGP in the low-data

regime in comparison to the HCNN, which is a consequence of the different objective

functions used to train the two models.

To elucidate further on this point, we re-performed the above experiment using Nf = 8

collocation points, the results of which are displayed in the bottom row of Figure 4.3. Two

HCNNs are shown, which correspond to parameter estimates {ω(1), β(1)} and {ω(2), β(2)}

which were obtained by solving the (nonconvex) optimisation problem given in Eq. (4.49)

under two different random initialisations. From panel (d) of the figure, we see HCNN

2 is clearly a better approximation to the true function u. The reason for this is clear

from panel (c), which indicates that for low values of x, HCNN 1 exhibits high oscillation

around the true f(x) = 2. However, both models yield the same objective function value

with Lf (ω
(1), β(1)) = Lf (ω

(2), β(2)) = 1.7 × 10−5. This illustrates the problem with the

PINN training scheme from Eq. (4.49), as it is unable to distinguish between models which

give the same data fit. A regularisation term could be added here, which would favour

HCNN 2 because it is the simpler function. However, this requires both the form and the

strength of the regularisation to be specified, which would likely require manual tuning.

Note the contrast to the GP objective function, which automatically incorporates both a

data fit and regularisation term (see Eq. (4.19)). This balance of model fit and complexity

(called the Bayesian Occam’s razor) is what allows the GP to learn the underlying function

u even with only Nf = 4 collocation points.

4.8. Numerical Experiments 150

0.0 0.5 1.0 1.5 2.0
x

−1

0

1

2
u

(x
)

0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

u
(x

)

u(x)

(x
(i)
f)4

i=1

HCGP

HCNN

(a) Prior HCGP Samples (b) Posterior Results

0.0 0.5 1.0 1.5 2.0
x

−20

−10

0

10

f
(x

)

f (x)

(x
(i)
f , y

(i)
f)8

i=1

HCNN 1

HCNN 2

0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

u
(x

)

u(x)

(x
(i)
f)8

i=1

HCNN 1

HCNN 2

(c) fnn(x) under two random restarts (d) unn(x) under two random restarts

Figure 4.3: Illustration of results for Poisson-BVP-1, which compares the performance
of a HCGP with a HCNN given a sparse number of collocation points. Both models
are constrained to exactly satisfy the Cauchy condition on the left boundary and Robin
condition on the right boundary - see the HCGP samples in panel (a) for instance.

With more training data, the performance of the HCNN improves considerably. In

particular, we find that with 50 collocation points, the erru value obtained with a HCNN

is approximately equal to the erru value for the HCGP in Figure 4.3 (b) with 4 collocation

points.

We move on now to the second BVP, which is used to illustrate how domains which

do not have a grid-like structure can be modelled in the HCGP framework. Specifically,

consider the pentagon shaped domain Ωp embedded within [−1, 1]2, which is displayed in

Figure 4.4 (a). We set f(x, y) = 4 and solve for u(x, y) using the finite-element analysis

(FEA) software FEniCS, the results of which are displayed in Figure 4.4 (b).

4.8. Numerical Experiments 151

Ωp

∂Ωp

x

−1.0
−0.5

0.0
0.5

1.0

y
−0.5

0.0

0.5

1.0
0.00

0.10

0.20

0.30

0.40

0.50

0.60

(a) (b) u(x, y)

x

−1.0
−0.5

0.0
0.5

1.0

y
−0.5

0.0

0.5

1.0
0.00

0.10

0.20

0.30

0.40

0.50

0.60

x

−1.0
−0.5

0.0
0.5

1.0

y
−0.5

0.0

0.5

1.0
0.00

0.10

0.20

0.30

0.40

0.50

0.60

(c) ϕp(x, y) (d) û(x, y) (erru = 1.1× 10−3)

Figure 4.4: Illustration of results for Poisson-BVP-2. Here, a HCGP is constructed on
a non-rectangular domain using the distance function ϕp(x, y) - see panel (c) above and
Eq. (4.56).

Since this BVP just involves homogeneous Dirichlet boundary conditions, clearly to

specify a HCGP as described in Definition 4.4.1 we only need to find a smooth distance

function ϕp : Ωp → R which satisfies ϕp(x, y) = 0 if (x, y) ∈ ∂Ωp and ϕp(x, y) > 0

otherwise. Several recently developed approaches from the PINN literature could be

applied here. One possibility is to define ϕp using radial basis interpolation [219]. For

2D domains, ϕp can be defined by making leveraging the theory of R-functions [220].

Since Ωp ⊂ R2, this is the approach we follow. Recall from Algorithm 3 that for a grid-

4.8. Numerical Experiments 152

like domain, a distance function ϕ can be defined by first finding the distances to each

individual boundary, and then using multiplication to combine these individual distances

into a single scalar distance value. The approach used in [220] is conceptually similar,

except generalised to domains whose boundary is comprised of an arbitrary finite number

(n) of individual pieces. For Ωp in Figure 4.4 (a), its boundary ∂Ωp is made up of n = 5

pieces, each of which is a line segment. In this case, a distance function ϕp can be

constructed as follows [232, Section 2.2.3], [220, Section 3.1]. Firstly, functions ϕi(x, y)

for i = 1, . . . , n are constructed, each of which give the approximate distance from (x, y)

to the ith boundary segment. For specific details of this construction, see [232, Eq. (11)]

and [220, Eq. (6)]. Then, the individual distance functions are combined into a global

distance function using the R-equivalence formula [233]

ϕp(x, y) ≜
1

m

√
1

ϕm
1 (x,y)

+ 1
ϕm
2 (x,y)

+ . . .+ 1
ϕm
n (x,y)

, (4.56)

which is both associative and normalised up to the mth order [232]. Figure 4.4 (c) displays

the distance function ϕp created using Eq. (4.56), with m = 1 as in [220].

This distance function allows us to specify a HCGP for the BVP on Ωp, by using a

zero mean function and boundary constrained kernel given by

k̃([x, y], [x′, y′]) = ϕp(x, y)ϕp(x
′, y′)k([x, y], [x′, y′]). (4.57)

We then trained the HCGP using 100 collocation points in f -space and plot the posterior

mean û obtained after training in Figure 4.4 (d). There is strong agreement between the

FEA and HCGP results, with erru = 1.1× 10−3.

4.8. Numerical Experiments 153

4.8.2 Heat Equation

We next analyse the heat equation, which describes the diffusion of heat in an isotropic

medium. In Cartesian coordinates, the equation takes the form

ut − θ(uxx + uyy) = f = 0, (4.58)

over two spatial dimensions x and y. Here, we consider the inverse problem of learning

from observation data the parameter θ, which in this case is the thermal diffusivity of

the material. Experiments are performed using two BVPs previously introduced in [230],

which are stated below. In both cases, we set θ = 1. Note that for Heat-BVP-1, only one

spatial dimension is considered.

Heat-BVP-1:

(x, t) ∈
[
−π

2
,
π

2

]
× [0, 1]

u(x, 0) = sin(x),

u(−π

2
, t) = − exp(−t),

u(
π

2
, t) = exp(−t).

Heat-BVP-2:

(x, y, t) ∈ [0, π]2 × [0, .5]

u(x, y, 0) = sin(x) sin(y),

u(0, y, t) = u(π, y, t) = 0,

u(x, 0, t) = u(x, π, t) = 0.

The separation of variables technique can be used to show the following closed form

solution to Heat-BVP-1

u(x, t) = sin(x) exp(−t), (4.59)

which is plotted in Figure 4.5 (a). Because this BVP only involves Dirichlet boundary

conditions, Algorithm 3 can be followed to yield the below mean and covariance functions

so that the inhomogeneous Dirichlet conditions are satisfied exactly.

m̃(x, t) = 2πx exp(−t) + (1− t)(sin(x)− 2πx), (4.60)

k̃([x, t], [x′, t′]) = ϕ(x, t)ϕ(x′, t′)k([x, t], [x′, t′]), (4.61)

with ϕ(x, t) =
(
x+

π

2

)(π
2
− x
)
t. (4.62)

4.8. Numerical Experiments 154

We use a HCGP to infer θ given Nu = 25 observations in function space corrupted with

2.5% Gaussian noise, and Nf = 25 collocation points observed noise free. The noise was

calculated as a percentage of the variance of the underlying signal. This quantity can be

considered an inverse signal-to-noise ration (SNR). Given this data, the HCGP learns an

estimate θ̂ = 1.000, while its posterior mean incurs a loss value of erru = 4.9× 10−5, and

is displayed in Figure 4.5 (c). Visually, the prediction provides a perfect match to the

true function.

The following exact solution to Heat-BVP-2 can be also be found using separation of

variables

u(x, y, t) = sin(x) sin(y) exp(−2t). (4.63)

This function is displayed in Figure 4.5 (b) with fixed t = 0.5. Algorithm 3 can once more

be followed to find the following form of m̃ and k̃ so that the boundary conditions are

satisfied:

m̃(x, y, t) = 2πx exp(−t) + (1− t)(sin(x)− 2πx), (4.64)

k̃([x, y, t], [x′, y′, t′]) = ϕ(x, y, t)ϕ(x′, y′, t′)k([x, y, t], [x′, y′, t′]), (4.65)

with ϕ(x, y, t) = x
(π
2
− x
)
y
(π
2
− y
)
t. (4.66)

Again the inverse problem is considered, this time given Nu = 50 noise-corrupted function

observations and Nf = 50 collocation points. More training points are considered here

due to the increased dimensionality of the problem. From this data, the HCGP learns an

estimate of θ̂ = 0.994, with erru = 5.8 × 10−4. Figure 4.5 (d) shows the posterior mean

prediction over both spatial dimensions at time t = 0.5, which accurately captures the

true function from panel (b).

To benchmark the results of the HCGP, we re-performed the above experiments us-

ing a PCGP. Recall that with a PCGP, boundary condition information is introduced by

conditioning on Nb pseudo-observations sampled from the boundary. A heteroskedastic

noise model for function space observations is required here, because the pseudo observa-

tions are observed noised-free, in contrast to the noisy observations yu from the interior

of the domain. Therefore, we introduce a small noise variance σ2
n for the boundary points,

4.8. Numerical Experiments 155

Heat-BVP-1 Heat-BVP-2
Tr

ue
Fu

nc
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
t

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(a) (b)

HC
G

P

0.0 0.2 0.4 0.6 0.8 1.0
t

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(c) erru = 5.3× 10−5 (d) erru = 5.8× 10−4

PC
G

P

0.0 0.2 0.4 0.6 0.8 1.0
t

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(e) erru = 9.4× 10−5 (f) erru = 9.1× 10−4

Figure 4.5: Plots of true solution (top row) and HCGP/PCGP predictions (second/third
rows) for Heat-BVP-1 (left column) and Heat-BVP-2 (right column).

which ensures numerical stability in the matrix computations. We furthermore let σ2
n be

a trainable hyperparameter, which we find improves performance. For both BVPs, we

randomly sampled Nb points on the boundary and then used a PCGP to infer θ under

10 random restarts. We repeat this for a range of values of Nb, allowing the parameter

inference results to be plotted against Nb in Figure 4.6. Panel (a) displays the results for

4.8. Numerical Experiments 156

0 25 50 75 100 125 150
Nb

10−3

10−2

10−1

er
r θ

PCGP

HCGP

0 25 50 75 100 125 150
Nb

10−2

10−1

100

er
r θ

PCGP

HCGP

(a) Heat-BVP-1 (b) Heat-BVP-2

Figure 4.6: Effect on parameter inference accuracy of number of penalty observation
points Nb for PCGP for Heat-BVP-1 and Heat-BVP-2.

Heat-BVP-1, which shows a reduction in errθ as more boundary enforcement points are

included, and for Nb > 75, the PCGP closely approaches the performance of the HCGP,

shown as a black dashed horizontal line for reference. For Heat-BVP-2 in panel (b), high

errθ errors are incurred for Nb < 25, however results rapidly switch to yield significantly

more accurate results for Nb > 25.

When training a PCGP for Wave-BVP-2 with a low number of boundary enforcement

points Nb, we found that the optimiser would consistently converge to a result which

yielded posterior mean û approximately equal to zero across the domain, in which case

all variation in the data is attributed to noise with high value of σ2
u inferred. This is a

well known problem in physics informed training in the presence of sparse data - see [234]

for a detailed discussion. We call this the trivial solution, as the zero function trivially

satisfies the Heat PDE in Eq. (4.58). As Nb was increased, a greater proportion of the

random restarts began to (approximately) learn the true solution. However, even for

values of Nb up to 1000, we continued to encounter the problem. Furthermore, this was

not a local optima - in fact the value of the objective function (Eq. (4.18)) for restarts

which learned û ≈ 0 was consistently higher than for restarts which learned û ≈ u. For

the results presented in Figure 4.6 (b), we manually filtered all restarts and removed

any optimisation results which yielded û ≈ 0. If this filtering was not performed, the

performance of the PCGP would be significantly worse here. Note the contrast to the

HCGP, which consistently found the correct solution under different random restarts

without any hand-tuning being required.

4.8. Numerical Experiments 157

The above experiments all applied 2.5% Gaussian observation noise to the function

space observations yu. We next explore how results change as this noise level is varied. To

this end, we re-performed the experiments with noise levels ranging from 0% to 10%. The

results obtained using UCGPs, PCGPs and HCGPs respectively are displayed as line plots

in Figure 4.7. For Heat-BVP-1, Nb = 90 boundary points were used when implementing

the PCGP, while Nb = 100 points were used for Heat-BVP-2. First considering the

UCGP results, we see that strong accuracy is obtained for Heat-BVP-1 when there is no

observation noise. However, results rapidly deteriorate as noise levels increase. For Heat-

BVP-2, even with low noise levels, the UCGP finds the trivial solution and therefore incurs

high errors in prediction of u and θ. These results clearly indicate a lack of robustness of

the UCGP to observation noise.

The PCGP and HCGP results more closely align, with a more gentle deterioration

in accuracy observed with increasing observation noise. The HCGP results are almost

always better, with the exception of errθ for Heat-BVP-1, the accuracy of the PCGP

oscillates as observation noise rises. Also note the high errors incurred by the PCGP

in Heat-BVP-2 for 10% observation noise. As discussed above, we manually filtered the

PCGP optimisation results to remove those which found the trivial solution of û ≈ 0.

However, with 10% noise, all random restarts found the trivial solution, leading to high

errors in this case.

Another point to note here is that if boundary conditions involving derivatives are

specified, implementing a PCGP becomes more complex. This is because derivative values

will not lie in either u space or f space, which means that the training data covariance

matrix Kyy from Eq. (4.17) will need to be adjusted to a 3× 3 block matrix.

4.8.3 Wave Equation

We next examine the wave equation, a hyperbolic, second-order PDE that is fundamental

for describing wave phenomena in areas such as fluid dynamics, electromagnetics and

acoustics. Over one spatial dimension, the wave equation takes the form

utt − θ2uxx = f = 0, (4.67)

4.8. Numerical Experiments 158

Heat-BVP-1 Heat-BVP-2

0.0 2.5 5.0 7.5 10.0
Observation Noise (%)

10−5

10−4

10−3

10−2

10−1

er
r u

UCGP

PCGP

HCGP

0.0 2.5 5.0 7.5 10.0
Observation Noise (%)

10−5

10−4

10−3

10−2

10−1

er
r u

UCGP

PCGP

HCGP

(a) (b)

0.0 2.5 5.0 7.5 10.0
Observation Noise (%)

10−4

10−3

10−2

10−1

100

er
r θ

UCGP

PCGP

HCGP

0.0 2.5 5.0 7.5 10.0
Observation Noise (%)

10−4

10−3

10−2

10−1

100

er
r θ

UCGP

PCGP

HCGP

(c) (d)

Figure 4.7: Effect of observation noise on the accuracy of solution-space (top row) and
parameter-space (bottom row) results obtained using UCGP, PCGP and HCGP respect-
ively, for Heat-BVP-1 (left column) and Heat-BVP-2 (right column).

with θ > 0 a parameter controlling the wave propagation speed. We will consider the

inverse problem of learning θ from observational data, for two different BVPs, which are

stated below.

Wave-BVP-1:

(x, t) ∈ [0, π]× [0, 1]

u(x, 0) = cos(x),

ut(x, 0) = cos2(x),

ux(0, t) = ux(π, t) = 0.

Wave-BVP-2:

(x, t) ∈ [0, 1]× [.5, 2.5]

u(x, 0) = sin(x),

ut(x, 0) = 0,

u(0, t) = u(π, t).

4.8. Numerical Experiments 159

For Wave-BVP-1 we set θ = 1, given which the separation of variables technique can

be applied to find the following closed form solution for u

u(x, t) =
1

2
t+ cos(t) cos(x) + 1

4
sin(2t) cos(2x). (4.68)

This function is plotted as a heatmap in Figure 4.8 (a). We seek to learn θ given Nu = 25

noise corrupted observations of u, and Nf = 25 forcing point observations of f = 0, where

in each case, the input locations are randomly sampled from within the spatio-temporal

domain.

We first address the inverse problem using a UCGP, i.e. we follow the approach

of [102] and do not make use of boundary condition information during the parameter

inference. In this case, we achieve a best estimate of θ̂ = 0.53. The posterior mean is

plotted in Figure 4.8 (e) which indicates that it fails to capture the true function on the

upper right of the domain, and it incurs prediction error of erru = 1.5 × 10−1. Further

insight into the performance of the UCGP can be seen in Figure 4.9 (c), which plots θ̂ at

each optimisation step for 10 random initialisations of the hyperparameters in blue. The

traceplots indicate that the value of the parameter estimate θ̂ obtained with the UCGP

is unstable with respect to the initialisation.

We then make use of a HCGP for this problem, specifying the below mean and cov-

ariance functions so that the boundary conditions are exactly satisfied. To see this, note

that for t/t′ = 0, k̃([x, t], [x′, t′]), ∂tk̃([x, t], [x′, t′]), ∂t′ k̃([x, t], [x′, t′]), ∂t∂t′ k̃([x, t], [x′, t′]) all

equal zero, while m̃(x, 0) = cos(x) and ∂tm̃(x, 0) = cos2(x), which ensures that the Cauchy

initial condition is fulfilled by the HCGP. Similarly ∂xk̃([x, t], [x
′, t′]), ∂x′ k̃([x, t], [x′, t′]),

∂x∂x′ k̃([x, t], [x′, t′]) are all equal to zero if either x or x′ lie on the boundary by the chain

rule and ∂xm̃(x, t) = 0 for x ∈ {0, π}, ensuring that the Neumann spatial conditions are

met (see Section 4.7.1 for details of the functions B− and B+).

m̃(x, t) = cos(x) + t cos2(x), (4.69)

k̃([x, t], [x′, t′]) = ϕ1(x, t), ϕ1(x
′, t′)k1([x, t], [x

′, t′]) +
3∑

i=2

ϕi(x, t)ϕi(x
′, t′)ki(t, t

′), (4.70)

with ϕ1(x, t) = x2(π − x)2t2, ϕ2(x, t) = B−(x)t2 and ϕ3(x, t) = B+(x)t2. (4.71)

4.8. Numerical Experiments 160

In this example, k̃ consists of three individual squared-exponential kernels. This is because

of the Neumann conditions on the spatial boundaries, which means that form of the func-

tion itself is not prescribed at x = 0 or x = π. The additional kernels k2 and k3 are intro-

duced then to represent priors on the function at the two boundaries. To see this, remark

that k̃([x, t], [x′, t′]) = k2(t, t
′) when x = x′ = 0, while similarly k̃([x, t], [x′, t′]) = k3(t, t

′)

when x = x′ = π. Note the contrast here from the kernel construction in Algorithm

3, where only Dirichlet boundary conditions were considered, in which case there is no

uncertainty at the boundary and therefore the prescribed functional form can be “plugged

in” instead of a prior.

Using the HCGP, we recover a parameter estimate of θ̂ = 1.01, which gives a value

of errθ several orders of magnitude lower than the UCGP. A massive gain performance is

also seen in function space, where the posterior mean of the HCGP incurs an error value

of erru = 5.2 × 10−4. This prediction is displayed in Figure 4.8 (b), and we see perfect

agreement with the true function. Finally, the traceplots from Figure 4.9 (c) demonstrate

that the HCGP estimates of θ are stable under different restarts, unlike the UCGP, and

convergence is also noticeably faster.

For Wave-BVP-2, we set θ = 1, given which d’Alembert’s formula can be applied to

yield the form of u given in Eq. (4.72), which we plot in Figure 4.8 (c). As in the above

experiment, we again seek to learn θ given Nu = Nf = 25 observations using both a

UCGP and a HCGP.

u(x, t) = sin(xπ) cos((t− 0.5)π). (4.72)

For this inverse problem, the UCGP completely fails, with a best estimate of θ̂ = 0.06.

The posterior mean is plotted in Figure 4.8 (f) where we see it has collapsed to zero across

the domain, yielding erru = 4.0 × 10−1. Traceplots of θ̂ for the UCGP under different

restarts are given in Figure 4.9 (b), which show that the parameter estimate tends towards

zero irrespective of the initialisation.

4.8. Numerical Experiments 161

Wave-BVP-1 Wave-BVP-2
Tr

ue
Fu

nc
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

−1.0

−0.5

0.0

0.5

1.0

0.5 1.0 1.5 2.0 2.5
t

0.0

0.2

0.4

0.6

0.8

1.0

x

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

(a) (b)

HC
G

P

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

−1.0

−0.5

0.0

0.5

1.0

0.5 1.0 1.5 2.0 2.5
t

0.0

0.2

0.4

0.6

0.8

1.0

x

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(c) erru = 5.2× 10−4 (d) erru = 3.3× 10−3

UC
G

P

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

−1.0

−0.5

0.0

0.5

1.0

0.5 1.0 1.5 2.0 2.5
t

0.0

0.2

0.4

0.6

0.8

1.0

x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(e) erru = 1.5× 10−1 (f) erru = 4.0× 10−1

Figure 4.8: Plots of true solution (top row) and HCGP/PCGP predictions (second/third
rows) for Wave-BVP-1 (left column) and Wave-BVP-2 (right column).

To use a HCGP for this problem, we specify the following mean and covariance func-

tions such that the boundary conditions are satisfied.

m̃(x, t) = sin(xπ), (4.73)

k̃([x, t], [x′, t′]) =ϕ1(x, t)ϕ1(x
′, t′)k1([x, t][x

′, t′]) + ϕ2(t)ϕ2(t
′)k2(t, t

′), (4.74)

with ϕ1(x, t) = x(1− x)(t− 0.5)2 and ϕ2(t) = (t− 0.5)2. (4.75)

4.8. Numerical Experiments 162

0 500 1000 1500 2000 2500
Steps

0

1

2

3

4

θ̂

UCGP

HCGP

θ

0 500 1000 1500 2000 2500
Steps

0

1

2

3

4

5

θ̂

UCGP

HCGP

θ

(a) Wave-BVP-1 (b) Wave-BVP-2

Figure 4.9: Traceplots of θ̂ against number of optimisation steps for Wave-BVP-1 and
Wave-BVP-2. The bold black horizontal lines indicate the true value of θ = 1 in both
plots.

The form of k̃ above is almost the same as that used for Wave-BVP-1, and satisfies the

prescribed initial conditions for the same reason. The main difference is that only one

additional squared exponential kernel k2 is needed for Wave-BVP-2, because here periodic

spatial boundary conditions are assumed and therefore only one spatial boundary prior

is required. In contrast to the UCGP, the HCGP accurately captures both the unknown

parameter θ and the underlying function. Specifically, the HCGP learns an estimate of

θ̂ = 1.01, while the posterior mean achieves erru value of 3.3 × 10−3. The posterior

mean is plotted in Figure 4.8 (d), which illustrates it almost perfectly captures the true

function. Finally, the traceplots of θ̂ for the HCGP show robustness of the estimated

value to different restarts.

Note that the periodic spatial boundary conditions for Wave-BVP-2 could be handled

through the use of a periodic kernel [130, Chapter 4], instead of introducing the additional

kernel k2 in Eq. (4.73). However, during experiments with this approach, we found that

the accuracy of the parameter inference was poor, with best estimate of θ̂ = 2.40.

4.8. Numerical Experiments 163

4.8.4 Advection-Diffusion Equation

We now apply the HCGP approach to modelling an advection-diffusion equation, which

is used to describe the evolution of some quantity of interest inside a physical system due

to the processes of advection and diffusion, for instance the evolution of particles inside a

fluid. We will assume a physical system over one spatial dimension x with no sources or

sinks, in which case the equation takes the form

ut + θ1ux − θ2uxx = f = 0, (4.76)

where θ1 controls the strength of the advection term, while θ2 controls the level of diffusion.

We denote the two parameters together as θ = (θ1, θ2), and again the inverse problem of

identifying θ from observational data is considered. We set θ1 = 0.05 and θ2 = 0.025 and

assume the following BVP:

Advection-Diffusion-BVP:

(x, t) ∈ [0, 1]2,

u(x, 0) = sin(2πx) exp(x),

u(0, t) = u(1, t) = 0.

It can be seen that the function u which satisfies the PDE and BVP is given by

Eq. (4.77) below, which we visualise using a heatmap in Figure 4.10 (a).

u(x, t) = sin(2πx) exp
(
−(0.1π2 + 0.025)t+ x

)
. (4.77)

Here we have a rectangular domain with Dirichlet boundaries, and therefore Algorithm

3 can be followed to yield the following hard constrained mean/covariance functions:

m̃(x, t) = sin(2πx) exp(x), (4.78)

k̃([x, t], [x′, t′]) = ϕ(x, t)ϕ(x′, t′)k([x, t], [x′, t′]) with ϕ(x, t) = 4x(1− x)t. (4.79)

4.8. Numerical Experiments 164

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

(a) u(x, t) (b) û(x, t) (HCGP)

50 150 300
Nu + Nf

10−4

10−3

10−2

10−1

er
r θ

50 150 300
Nu + Nf

10−4

10−3

10−2

10−1

100

er
r u

(c) errθ versus Nu +Nf (d) erru versus Nu +Nf

Figure 4.10: Illustration of true solution and HCGP prediction for Advection-Diffusion-
BVP (top row). Panel (c) shows parameter inference error as a function of the number
of training points for both UCGP (blue) and HCGP (green) approaches, while panel (d)
shows function space error.

We used this system to explore how changing the number of observed data points Nu

and Nf affects the accuracy of the inference results. Specifically, we generated datasets of

sizes Nu + Nf = {50, 150, 300} with Nu = Nf , where the function space observations yu

were corrupted by 2.5% Gaussian noise. From these datasets, we used HCGPs and UCGPs

to learn the parameter vector θ and solution function u. To give uncertainty quantification

for the results, we repeated this procedure under 15 different random regenerations of each

dataset. Distributions plots of erru and errθ against Nu+Nf for both types of model are

shown in the bottom row of Figure 4.10, where blue indicates the result of a HCGP, and

green the HCGP results. Once again, here the HCGP approach outperforms the UCGP

by several orders of magnitude by both error measures. The HCGP was significantly more

efficient with respect to the number of training observations used - for instance, a HCGP

4.8. Numerical Experiments 165

trained using only Nu = Nf = 10 data points attains similar error values to a UCGP

trained with N = 300 data points. Figure 4.10 (b) shows the posterior mean of a HCGP

trained on a dataset of this size, and we see strong agreement with the true function with

erru value of 9 × 10−3 and parameter estimate θ̂ = (0.054, 0.252), compared to the true

θ = (0.05, 0.025).

4.8.5 Helmholtz Equation

We next consider solving the Helmholtz equation over two spatial dimensions x and y

−uxx − uyy + θ2u = f, (4.80)

with θ = 3, subject to the boundary conditions:

Helmholtz-BVP:

(x, y) ∈ [0, 1]2

ux(0, y) = uy(x, 0) = 0,

u(1, y) = u(x, 1) = 0.

The following form of the underlying solution u and source term f is specified:

u(x, y) =
(
1− x2

) (
1− y2

)
+ cos

(πx
2

)
(exp(−y) + y − (1 + exp(−1))), (4.81)

f(x, y) =2
(
1− x2

)
+ 2

(
1− y2

)
+
(π
2

)2
cos
(πx

2

)
(exp(−y) + y − 1 + exp(−1))

− cos
(πx

2

)
exp(−y)

+ θ2
[(
1− x2

) (
1− y2

)
+ cos

(πx
2

)
(exp(−y) + y − 1 + exp(−1))

]
. (4.82)

We take this example from previous work [218], in which boundary-constrained Gaus-

sian processes (BCGPs) are introduced. The BCGP method is based on the spectral

theory of elliptic operators and allows for boundary conditions to be exactly enforced for

inference in linear PDEs, the same objective as the HCGP framework presented in this

chapter. The key difference in practice is that the BCGP method is not applicable to

time dependent PDEs or to inverse problems, as it makes use of a spectral decomposition

which assumes the parameters θ of the linear PDE operator are known a-priori. While it

4.8. Numerical Experiments 166

may be possible to extend BCGPs to overcome these limitations, the authors note that

this would lead to increased complexity and computational costs [218]. Note the contrast

here to the HCGP approach, which naturally accommodates both time-dependent PDEs

and inverse problems.

We specify a HCGP to exactly satisfy the Helmholtz-BVP by using a zero mean

function and kernel function given by

k̃([x, y], [x′, y′]) =ϕ1(x, t)ϕ1(x
′, y′)k1([x, y], [x

′, y′]) + ϕ2(x, y)ϕ2(x
′, y′)k2(x, x

′)

+ ϕ3(x, y)ϕ3(x
′, y′)k3(y, y

′) + ϕ4(x, y)ϕ4(x
′, y′)σ2

b , (4.83)

where

ϕ1(x, y) = x2(1− x)2y2(1− y)2, ϕ2(x, y) = y2(1− y)B−(x),

ϕ3(x, y) = x2(1− x)2B+(y), ϕ4(x, y) = B−(x)B−(y). (4.84)

Again, we refer the reader to Section 4.7.1 for details of the functions B− and B+. The

structure of this kernel is similar to the kernels used for the Wave-BVPs in Section 4.8.3.

By construction, we have k̃([x, y], [x′, y′]) = 0 if any of x, y, x′, y′ is equal to one, to ensure

the two Dirichlet spatial conditions are satisfied. Similarly, the use of the functions B−

and B+ enforces the two Neumann conditions, which can be verified using the chain rule

as shown for Wave-BVP-1 in Section 4.8.3. Finally, an additional hyperparameter σ2
b is

included to capture the function behaviour at the point (0, 0) where the two Neumann

boundaries intersect.

We perform an experiment following that presented in Section 4.2 of [218], whereby

the forward problem of learning u is considered, given 10 observations each of u and f ,

in both cases corrupted with white noise with standard deviation σu = σf = 0.01. The

posterior predictive results for both a UCGP and HCGP are presented in Figure 4.11.

We see a clear difference in prediction error obtained with the two approaches, with the

HCGP achieving erru value of 1.2 × 10−3, almost one-order of magnitude lower than

the value of 1.0 × 10−2 obtained with the UCGP. For reference, in [218] the BCGP only

improved errors by a factor of two over the UCGP. The density plots of prediction error

4.8. Numerical Experiments 167

|u(x) − û(x)| and posterior predictive standard deviation σ(x, t) further emphasise the

advantage of the HCGP framework. From panels (c) and (d), we see that the highest

level of prediction error and uncertainty for the UCGP is at the point (1, 1). However,

this is exactly where the function value is prescribed, and so where uncertainty should in

principle be lowest - this is precisely what is captured by the HCGP results in panels (d)

and (f).

4.9 Conclusion

In this chapter, we have made use of hard-constrained Gaussian processes (HCGPs) for

modelling systems for which linear PDE and boundary value information is available. A

HCGP has bespoke mean and covariance functions that are designed so that the specified

boundary conditions are satisfied exactly. We analysed the representational capacity

of the HCGP framework in the case of Dirichlet boundary conditions, and found that

our construction can satisfy universal approximation within the boundary constrained

function space of interest. We also demonstrate an equivalence in the infinite width limit

of a hard-constrained neural network (HCNN) with a HCGP. Finally, we showed how

to extend existing methods to a wider range of commonly used boundary conditions.

We then conducted extensive numerical experiments for different linear PDEs, where the

primary focus was the inference of any unknown parameters θ of the PDE operator. A

consistent pattern we observed was the HCGP framework offered results that were robust

to initialisation, observation noise and data sparsity.

We used the squared-exponential kernel for the experiments in Section 4.8 because it

is infinitely differentiable [130, Chapter 4]. This means it is appropriate for modelling all

linear PDEs, and is therefore the natural kernel to use in the specification of a PIGP. In

subsequent work involving non-linear PDEs, we experimented with the rational-quadratic

kernel. Experimental results showed little difference between the two choices. Note that

because we used automatic differentiation to implement all the PDE operators, changing

the base kernel is trivial - only one line of code needs to be updated.

4.9. Conclusion 168

UCGP HCGP

û
(x
,y
)

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0

0.2

0.4

0.6
0.8

1.0
0.00

0.10

0.20

0.30

0.40

0.50

0.60

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0

0.2

0.4

0.6
0.8

1.0
0.00

0.10

0.20

0.30

0.40

0.50

0.60

(a) (b)

|u
(x
,y
)
−

û
(x
,y
)|

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

(c) erru = 1.00× 10−2 (d) erru = 1.20× 10−3

σ
(x
,y
)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.005

0.010

0.015

0.020

0.025

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.000

0.001

0.002

0.003

0.004

0.005

0.006

(e) (f)

Figure 4.11: Posterior predictive results for Helmholtz equation using UCGP (left
column) and HCGP (right column). The red points in the top row show the observa-
tions in u-space, while the black crosses show the input locations for the observations in
f -space. The second row shows a heatmaps of prediction error, and the final row shows
heatmaps of posterior predictive standard deviation.

4.9. Conclusion 169

There are a number of ways in which future work could expand on the material presen-

ted in this chapter. Firstly, the GPR approach we use here is limited to the modelling

of linear PDEs, as Proposition 4.3.1 does not hold for non-linear differential operators.

Several approaches have been proposed to extend GP inference to non-linear PDEs [235],

[224], [236]. For more details on this issue, see the discussion in Section 5.1.

Furthermore, our approach is not appropriate for large datasets, as the computational

cost of performing full GP inference would be prohibitive. This is because evaluating the

marginal likelihood (Eq. (4.18) and posterior predictive distribution (Eq. (4.8)) requires

inversion (or in practice Cholesky decomposition) of an (N ×N) training data covariance

matrix, where N is the total number of data points available both in u and f space.

Since matrix inversion is an O(N3) operation, this becomes computationally intractable

for large datasets. For general GP regression, several sparse approximation methods have

been proposed to alleviate this computational burden [237], [238]. We are not aware

of any work in the literature, however, which has adapted these methods to PIGPs.

One approach we believe has particular promise in the case of PIGPs is the Vecchia

approximation, which allows for an accurate approximation of the matrix inversion to

be found very efficiently [239]. The Vecchia approximation has recently shown to deliver

significant computational savings with virtually no loss in predictive accuracy, both for

shallow and deep GPs [240]. A key advantage of the Vecchia approximation is that it is

parameter free, meaning that the number of parameters that need to be inferred remains

low.

We have also only considered boundary information in the design of the mean and

covariance functions m̃ and k̃ used in this work. Knowledge of the PDE itself could

also be used however when designing these functions [241]. Finally, here we performed

inference in an empirical Bayesian manner, which does not yield uncertainty bounds for

the parameter estimates. This could be rectified in future work by taking a fully Bayesian

approach to inference using Markov-chain Monte-Carlo, which would allow uncertainty

to be more fully quantified.

Chapter 5
Summary

This thesis has focused on the development and application of methods for performing

emulation of physical systems described using PDEs, with particular emphasis on the con-

text of soft-tissue mechanics. Traditional, black-box emulators do not directly incorporate

known physical principles; instead, these principles must be learned from data. For this

reason, our focus in this work has been on physics-informed emulation methods, which do

directly incorporate physical principles, through the design of the surrogate itself and/or

the training routine.

The work of Chapter 2 involved the development of a Graph Neural Network (GNN)

architecture for emulation of the passive filling process of the left ventricle (LV) in dia-

stole. A GNN is a class of deep learning model that can be applied to graph-structured

data, i.e. data consisting of a set of individual elements called nodes, and a set of pairwise

relationship between the nodes called edges. A classic example of data with this structure

is a social network, where the nodes represent different people, while the edges indic-

ate the existence of some form of relationship between each pair of individuals. GNNs

have recently been effectively deployed for emulation of physical systems - consider for

example a particle based fluid simulation, which can be represented as a graph where the

nodes are the individual fluid particles, while the edges denote an interaction relation-

ship between neighbouring nodes. The objective of Chapter 2 was to deploy this type

of emulation model in the context of cardiac mechanics, in which case the graph rep-

resents a discretised form of the LV geometry. This is a challenging emulation problem,

due to the heterogeneity in the geometries of different subjects. A message passing GNN

was introduced for this emulation task, which allowed for generalisation to different LVs

geometries and material parameter configurations. To improve generalisation to differ-

ent LVs, global geometry information was accounted for using a low order representation

170

5. Summary 171

found with PCA. To improve computational efficiency at prediction time, the material

parameters were handled independently of the message passing stage of the emulator. A

systematic evaluation of the proposed method was performed using a series of numerical

experiments. Strong out of sample performance was observed - for instance, expected

errors in LV volume extracted from the GNN results were on the order of 1%, lower than

the errors that can be expected from manual extraction [91]. The GNN also significantly

outperformed a benchmark emulation based on a fully connected neural network. Finally,

massive computational savings were made at prediction time compared to the simulator.

In Chapter 3, a physics-informed GNN (PI-GNN) framework was introduced for emu-

lation of soft-tissue mechanics. Physics-informed neural networks (PINNs) are a class of

deep learning architecture where known physical laws or principles are directly incorpor-

ated into the training routine. To create a PI-GNN for soft tissue mechanics, we leveraged

the Principle of Minimum Potential Energy, which states that in static equilibrium, the

total potential energy of a system is minimised. Therefore, instead of training an emulator

to against simulation data, training can be performed to minimise the potential energy

(PE). The clear advantage of this approach is that it does not require any simulation data

to be generated for emulator training. However, we found that the PE was an unstable

objective function for emulator training, as unphysical predictions from the GNN would

cause the PE to diverge. To alleviate this, we introduced internal transformations to

stabilise the PE computations, enabling effective and efficient training. Extensive nu-

merical experiments showed strong predictive performance of the PI training routine. Of

particular note were the results of comparison between data-driven and physics-informed

training. While both yielded similar accuracy in the prediction of forward displacements,

the predictions from the data-driven emulator consistently failed to find the minimum

energy state, in contrast to the physics-informed emulator.

While performing the numerical experiments presented in Chapter 3, we found that

the way in which the boundary conditions (BCs) were handled had a significant impact

on the training behaviour of the physics-informed emulator. If BCs were softly enforced

by a penalty term in the loss function, then it was extremely difficult to tune the learn-

ing rate to yield good performance. However, if the BCs were explicitly enforced by a

post-processing transformation of the emulator’s predictions (see Section 3.2.4.4), then

. Summary 172

training was far more efficient. In Chapter 4, we investigated more deeply the idea of

hard boundary condition enforcement in the context of PIML modelling. Instead of con-

sidering neural networks, here we made use of Gaussian process (GP) models, and applied

them in the context of linear PDEs. In contrast to the NN models from Chapters 2 and

3 respectively, a GP offers a probabilistic approach to learning the solution function to a

PDE. GPs are particularly well suited to modelling systems where linear PDE information

is available, as in this case a consistent prior distribution can be placed over both solution

and PDE space. This can then be updated to a posterior distribution given (possibly

noisy) observational data. The first aspect of Chapter 4 involved the theoretical analysis

of what we label hard-constrained Gaussian processes (HCGPs), where the kernel is de-

signed so that the GP explicitly satisfies the boundary conditions. We first established a

universal approximation theorem for the HCGP kernel, and then introduced a theoretical

link between HCGPs and hard-constrained neural networks (HCNNs). Finally, extension

of HCGPs to more general boundary conditions (such as Robin conditions) was discussed.

Extensive numerical experiments involving several different linear PDEs were then con-

ducted, involving both forward and inverse problems. The results showed that explicitly

controlling for boundary conditions allowed more accurate results to be obtained than

ignoring boundary conditions or using a soft-enforcement of boundary conditions. We

also observed that HCGPs were much less prone to the well known problem of PIML

models learning the trivial solution of û ≈ 0 in the presence of noisy/sparse data.

5.1 Future Work

The design, testing and use of emulators which directly incorporate knowledge of physical

laws and principles is still in its infancy. For this reason, there exist a range of potential

future research directions in this area which could directly expand upon the work that

has been presented in the preceding three chapters, examples of which we give below.

In Chapter 2, we used a GNN emulator that explicitly enforced the known transla-

tion invariance of the underlying simulator. However, we did not explicitly enforce the

rotational equivariance of the simulator, and therefore this property had to be learned

by the surrogate model. The design of neural networks which satisfy equivariance under

5.1. Future Work 173

rotation (and more general group operations) is a topical research area [98] - future work

could build on this literature to construct a new emulator for the LV model. Another

possible extension would be to consider modelling the entire cardiac cycle, not just dia-

stole, and the entire heart geometry, not just the LV. Finally, it is natural to consider the

inverse problem in future work, where the objective is to infer the stiffness properties of

the cardiac tissue using data obtained from cardiac imaging scans [89].

In Chapter 3, we performed physics-informed training by making use of an energy

formulation of the mechanics problem. An alternative approach would be to train the

emulator by making use of the so-called weak formulation. Here, training would be per-

formed by application of the Principle of Virtual Work [77, Section 8.2], rather than the

Principle of Minimum Potential Energy [77, Section 8.3]. While both formulations are

equivalent mathematically, numerical differences between the two can arise in practice,

and it would be interesting to see if this impacts the efficiency and accuracy of the emu-

lator. Another extension of this PI-GNN framework would be to consider emulation of a

particle-based fluid simulator, which could be used in the context of biofluid mechanics,

for instance. The main complication here over the work presented in Chapter 3 is that in

this case the particle topology changes over time and therefore needs to be recalculated

at each time step [158].

Future work could also explore how the use of prior information could leverage the

gains yielded by physics-informed approaches. For instance, consider the parameter in-

ference study by Lazarus et al. [92], which sought to infer the material parameters of

the cardiac muscle tissue from observational data, using a similar mechanical model to

the one described in Chapter 2. The authors improved the parameter inference results

by designing physically meaningful priors using the results of existing empirical studies.

It would be interesting to see what effect imbuing this inference routine with physics in-

formed knowledge (e.g. The Principle of Minimum Potential Energy) would have. There

could be a synergistic effect in incorporating information from different sources (i.e. em-

pirical studies and physical laws), which may allow for more accurate inference results in

the presence of noisy or sparse data.

5.1. Future Work 174

For the GP modelling work presented in Chapter 4, the obvious limitation of this

framework is its restriction to linear PDEs. In subsequent work completed after the

submission of this thesis [8], we have extended this approach to allow for non-linear PDEs

to be accommodated, using an approximation method called variational inference [222,

Chapter 10] (similar to the approach of [236]). To explain how this works, consider

the posterior predictive distribution p(us | yu,yf), where us, yu and yf are defined in

Chapter 4. We can write the posterior in un-marginalised form as

p(us | yu,yf) =

∫
p(us | u,f)p(u,f | yu,yf)dudf , (5.1)

where [u](i) = u(x
(i)
u) (see Eq. (4.1)) and [f](i) = f(x

(i)
f) (see Eq. (4.10)). In Chapter 4,

we assumed that f(x) = Lθ
x[u](x) with Lθ

x a linear PDE operator. In this case, both

probability distributions under the integral in Eq. (5.1) are Gaussian, allowing u and f

to be marginalised out exactly, yielding a closed form expression for p(us | yu,yf), which

is another Gaussian (see Eq. (4.8)).

If, however, we have f(x) = Fθ
x [u](x) with Fθ

x a non-linear PDE operator, then

neither distribution under the integral in Eq. (5.1) are Gaussian, because Gaussian random

variables are not closed under non-linear operations. This means in turn that the latent

vectors u and f cannot be marginalised out exactly. We overcome this issue using two

stages. Firstly, we decompose the nonlinear PDE into its sublinear differential operators.

Consider for instance the Allen-Cahn equation over one spatial dimension:

Fθ
x [u](x) = ∂tu(x)− θ∂xxu(x)− (u(x)− u(x)3) = 0, (5.2)

where x = (x, t). If we set d0(x) = u(x) and d1(x) = ∂tu(x) − θ∂xxu(x), then we can

write our PDE as an algebraic equation of the form:

Fθ
x [u](x) = F (d0(x), d1(x)) = d1(x)− (d0(x)− d0(x)

3). (5.3)

We then replace f with d0 and d1 in Eq. (5.1)

p(us | yu,yf) =

∫
p(us | u,d0,d1)p(u,d0,d1 | yu,yf)dudd0dd1, (5.4)

5.1. Future Work 175

where [d
(i)
j] = dj(x

(i)
f) for j = 0, 1. The advantage of this reformation is that p(us |

u,d0,d1) is now a Gaussian, because both d0 and d1 are found by applying a linear

operator to u. The posterior distribution over the latent vectors u,d0,d1 given the obser-

vational data is still not a Gaussian, however, due to the nonlinearity of F in Eq. (5.3).

For this reason we proceed by variational inference, whereby a variational Gaussian ap-

proximation is introduced:

p(u,d0,d1 | yu,yf) ≈ q(u,d0,d1) = N (u,d0,d1 | a,S). (5.5)

The variational mean a and covariance S are jointly inferred together with the ker-

nel/noise/PDE parameters by maximising a tractable lower bound to the log marginal

likelihood called the evidence lower bound (ELBO). Once all parameters have been in-

ferred, we can evaluate an approximate posterior predictive distribution p̂ as follows:

p̂(us | yu,yf) =

∫
p(us | u,d0,d1)q(u,d0,d1)dudd0dd1, (5.6)

We do not show the derivations here, but p̂ is Gaussian.

Appendices

A Appendix for Chapter 2

A.1 Additional Beam Emulation Results

The emulation results for the non-augmented graph representations from Figure 2.8 are

tabulated in Table A.1 below, while the results for the augmented graph representations

are given in Table A.2. Table A.4 displays emulation results for different values of the

node cardinality input vector to Algorithm 1, η, from Figure 2.9 (a), while Table A.3

gives the results from Figure 2.9 (b), displaying emulation errors for different values of

internal embedding dimension M . Note that for these tables the representative graph was

chosen using the “averaging” method described in Section 2.2.3.

Table A.1: Emulation error (in mm) statistics for different values of message passing
steps K, when using non-augmented graph representations with M = 40.

Number of Message Passing Steps
Error

Percentile K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

25th 4.16× 10−1 5.33× 10−2 2.30× 10−2 1.78× 10−2 1.38× 10−2 1.39× 10−2

50th 1.47 6.64× 10−1 8.21× 10−2 4.06× 10−2 2.72× 10−2 2.85× 10−2

75th 2.69 1.74 9.74× 10−1 1.01× 10−1 4.82× 10−2 5.35× 10−2

Table A.2: Emulation error (in mm) statistics for different values of message passing
steps K, when using augmented graph representations with η = [24, 6] and M = 40.

Number of Message Passing Steps
Error

Percentile K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

25th 4.75× 10−2 1.36× 10−2 1.47× 10−2 1.33× 10−2 1.35× 10−2 1.78× 10−2

50th 1.61× 10−1 2.79× 10−2 2.71× 10−2 2.73× 10−2 3.09× 10−2 3.47× 10−2

75th 1.79 5.04× 10−2 5.42× 10−2 6.07× 10−2 6.26× 10−2 6.60× 10−2

176

A. Appendix for Chapter 2 177

Table A.3: Emulation error (in mm) statistics for different values for η, the node car-
dinality input vector to Algorithm 1.

Node Cardinality Input Vector to Algorithm 1
Error

Percentile [4] [8] [24, 6] [48, 12] [48, 12, 4] [48, 24, 6]

25th 1.23× 10−2 1.58× 10−2 1.36× 10−2 1.68× 10−2 1.48× 10−2 1.35× 10−2

50th 2.37× 10−2 2.84× 10−2 2.79× 10−2 3.45× 10−2 2.76× 10−2 2.49× 10−2

75th 4.58× 10−2 4.64× 10−2 5.04× 10−2 6.34× 10−2 4.91× 10−2 4.70× 10−2

Table A.4: Emulation error (in mm) statistics for different values for the dimensionality
M of the embedding vectors internal to the GNN, with K = 2 and η = [24, 6].

Dimensionality of Internal Embedding Vectors
Error

Percentile M = 3 M = 6 M = 10 M = 20 M = 40 M = 60

25th 5.63× 10−2 2.00× 10−2 1.84× 10−2 1.76× 10−2 1.36× 10−2 1.22× 10−2

50th 1.02× 10−1 3.80× 10−2 3.46× 10−2 3.21× 10−2 2.79× 10−2 2.49× 10−2

75th 1.96× 10−1 6.72× 10−2 6.07× 10−2 5.53× 10−2 5.04× 10−2 4.97× 10−2

Tables A.5-A.7 display the analagous results to Tables A.2-A.4 except that a template

beam generated using FEniCS was used for representative graph. All triangular elements

of the template had height of 1 cm each, giving total height/width of 8 cm/12 cm. The

variation in emulation performance for the two choices of reference graph (on the or-

der of 1 × 10−2mm) is very slight relative to the magnitude of the mean nodal forward

displacement of 4.2mm from the test set.

Table A.5: Emulation error (in mm) statistics for different values of message passing
steps K, when using augmented graph representations when using FEniCS Template
as reference graph with η = [24, 6] and M = 40.

Number of Message Passing Steps
Error

Percentile K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

25th 3.90× 10−2 1.34× 10−2 1.38× 10−2 1.18× 10−2 1.24× 10−2 1.21× 10−2

50th 1.04× 10−1 2.35× 10−2 2.79× 10−2 2.53× 10−2 2.58× 10−2 2.57× 10−2

75th 9.02× 10−1 4.23× 10−2 5.68× 10−2 5.20× 10−2 5.23× 10−2 5.33× 10−2

Table A.6: Emulation error (in mm) statistics for different values for η, the node car-
dinality input vector to Algorithm 1 when using FEniCS Template as reference graph
with K = 2 and M = 40.

Node Cardinality Input Vector η to Algorithm 1
Error

Percentile [4] [8] [24, 6] [48, 12] [48, 12, 4] [48, 24, 6]

25th 1.49× 10−2 1.26× 10−2 1.34× 10−2 1.21× 10−2 1.22× 10−2 1.60× 10−2

50th 2.80× 10−2 2.39× 10−2 2.35× 10−2 2.38× 10−2 2.42× 10−2 3.08× 10−2

75th 5.23× 10−2 4.34× 10−2 4.23× 10−2 4.48× 10−2 4.71× 10−2 5.93× 10−2

A. Appendix for Chapter 2 178

Table A.7: Emulation error (in mm) statistics for different values for the dimensionality
M of the embedding vectors internal to the GNN when using FEniCS Template as
reference graph with η = [24, 6] and K = 2.

Dimensionality of Internal Embedding Vectors
Error

Percentile M = 3 M = 6 M = 10 M = 20 M = 40 M = 60

25th 2.94× 10−2 2.23× 10−2 1.69× 10−2 1.32× 10−2 1.34× 10−2 1.38× 10−2

50th 5.71× 10−2 4.13× 10−2 3.25× 10−2 2.73× 10−2 2.35× 10−2 2.84× 10−2

75th 1.08× 10−1 7.24× 10−2 5.83× 10−2 5.16× 10−2 4.23× 10−2 5.53× 10−2

A.2 Additional LV Emulation Results

Table A.8 gives emulation error statistics for different numbers of PCs retained in zglobal

from Figure 2.13 (a), while Figure 2.13 (b), which displays emulation error against number

of message passing steps K, is tabulated in Table A.9. Table A.10 displays the compar-

ison between GNN and MLP prediction errors for LVV from Figure 2.14. Finally, the

comparison of prediction accuracy for the general and transfer-learned GNN emulators

from Figure 2.15 is given in Table A.11. In addition, learning curves for the GNN and

MLP emulators are displayed in Figure A.1, for both training and validation data.

Table A.8: LV emulation error statistics (mm) for different number of principal com-
ponents (PCs) retained in zglobal, with K = 5 and M = 40.

Number of PCs Retained
Error

Percentile 0 PCs 8 PCs 16 PCs 24 PCs 32 PCs 40 PCs
25th 2.80× 10−1 2.43× 10−1 2.20× 10−1 1.76× 10−1 1.51× 10−1 1.40× 10−1

50th 5.27× 10−1 4.46× 10−1 4.13× 10−1 3.18× 10−1 2.66× 10−1 2.41× 10−1

75th 1.05 9.00× 10−1 8.23× 10−1 6.10× 10−1 4.99× 10−1 4.34× 10−1

Table A.9: LV emulation error statistics (mm) for different values of message passing
steps K with M = 40.

Number of Message Passing Steps
Error

Percentile K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

25th 1.72× 10−1 1.62× 10−1 1.59× 10−1 1.60× 10−1 1.51× 10−1 1.56× 10−1

50th 2.98× 10−1 2.81× 10−1 2.78× 10−1 2.78× 10−1 2.66× 10−1 2.67× 10−1

75th 5.42× 10−1 5.20× 10−1 5.25× 10−1 5.10× 10−1 4.99× 10−1 4.90× 10−1

Tables A.12 and A.13 display MLP emulation error statistics when early stopping

using patience is applied during training. When using patience, either the parameters for

which the patience level is exceeded can be returned, or back-tracking can be applied to

return the network parameters for which validation loss is minimised. Table A.12 displays

A. Appendix for Chapter 2 179

Table A.10: LVV emulation error statistics (%) for two MLP emulators and two GNN
emulators.

Emulator
Error

Percentile MLP 1 MLP 2 GNN 1 GNN 2
25th 9.51% 1.95% 0.28% 0.24%
50th 20.34% 4.35% 0.60% 0.49%
75th 36.13% 7.78% 1.13% 0.89%

Table A.11: Emulation error statistics for general and transfer-learned emulators.
The ”Displacement” columns give prediction errors on the nodal displacement vectors (in
mm), while the ”LVV” columns give percentage errors in LVV predictions.

General Transfer-Learned
Error

Percentile Displacement LVV Displacement LVV
25th 1.85× 10−1mm 0.18% 6.34× 10−2mm 0.16%
50th 2.95× 10−1mm 0.43% 1.13× 10−1mm 0.34%
75th 5.13× 10−1mm 0.76% 2.08× 10−1mm 0.64%

results when back-tracking is applied, and Table A.13 shows results when back-tracking is

not applied. For higher patience levels, emulation results are slightly more accurate when

back-tracking is used, while the converse is true for lower patience levels. In both cases,

if the patience level is less than 100, the early stopping routine halts training before the

plateau in validation loss is reached, leading to less accurate results. Note that training

using back-tracking with a patience level of 100 leads to the same parameter values being

chosen as training for 1000 epochs and selecting the parameters with optimal validation

loss.

Table A.12: MLP LVV emulation error statistics (in %) for different choices of patience
level, where back-tracking is applied to find the optimal network weights on the val-
idation data.

Patience Level (Stopping Epoch)
Error 10 (93) 25 (142) 50 (319) 100 (620) None (1000)
25th 2.85% 2.69% 2.31% 1.95% 1.95%
50th 6.31% 5.86% 5.05% 4.35% 4.35%
75th 12.11% 10.73% 9.38% 7.78% 7.78%

A. Appendix for Chapter 2 180

0 500 1000 1500 2000 2500 3000
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

L
os

s

0 500 1000 1500 2000 2500 3000
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

L
os

s

(a) GNN Learn Curve - Training (b) GNN Learn Curve - Validation

0 200 400 600 800 1000
Epoch

0.00

0.01

0.02

0.03

0.04

0.05

L
os

s

0 200 400 600 800 1000
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

L
os

s

(a) MLP Learn Curve - Training (b) MLP Learn Curve - Validation

Figure A.1: Emulator learning curves. Panel (a) shows training loss against epoch
number and panel (b) shows validation loss, both for the GNN Emulator. The second
row of panels shows learning curves for the MLP Emulator - panel (c) shows training
loss against epoch number, and panel (d) validation loss.

Table A.13: MLP LVV emulation error statistics (in %) for different choices of patience
level, where back-tracking is not applied to find the optimal network weights on the
validation data.

Patience Level (Stopping Epoch)
Error 10 (93) 25 (142) 50 (319) 100 (620) None (1000)
25th 2.90% 2.60% 2.52% 2.52% 1.95%
50th 6.51% 5.71% 5.55% 5.33% 4.35%
75th 12.03% 10.73% 10.50% 9.28% 7.78%

A.3 Synthetic LV Geometry Generation

As discussed in Section 2.4.2, the LV emulation study was performed with synthetic LV

geometries that were generated by sampling in a latent space found using Principal Com-

ponents Analysis (PCA). PCA was performed on a dataset of N = 65 real LV geometries

{Gn}Nn=1, which were extracted from in-vivo cardiac magnetic resonance (CMR) images

A. Appendix for Chapter 2 181

of healthy volunteers, obtained at early-diastole. Both long and short axial CMR cine

images were used in the extraction procedure. Full details of the study design, imaging

protocol and extraction procedure used are given in previous work [60]. Each geometry

is represented by 1696 nodes in both the endocardial and epicardial surfaces respectively,

or a total of Nv = 3392 nodes, each of dimension 3. Before applying PCA, each repres-

entation Gn was flattened to a row vector gn of width D = 3392 × 3 = 11796, where

the coordinates of each vector were centred with respect to the mean geometry vector ḡ

evaluated over the N samples. The objective of PCA is to find an orthonormal matrix

B ∈ RD×P from which an P << D dimensional compression of the data is computed as

follows:

zPCA
n = B⊤gn. (A.1)

B is found as the projection for which the reconstructions in the original space,

ĝn = BB⊤gn, (A.2)

minimise the following mean squared error loss over the training data:

LPCA(B) =
1

N

N∑
n=1

||gn − ĝn||22 =
1

N

N∑
n=1

||gn − BB⊤gn||22. (A.3)

Consider the covariance matrix of the data, and its associated eigendecomposition

S =
1

N − 1

N∑
n=1

gng⊤
n =

N∑
n=1

λnbnb⊤
n , (A.4)

where the eigenvalues λ1 > λ2 > ..., λN give the variances of the data along their associated

eigenvectors b1,b2, ...,bN . It can be shown that B can be selected to minimise Eq. (A.3)

by setting its pth column equal to the eigenvector bp, for p = 1, 2, ..., P . Because these

eigenvectors are the components along which the data varies the most, they are referred

to as the principal component vectors. Note that in our case, the covariance matrix S is

rank deficient, as we have D > N . In addition, its rank is further reduced by one as we

have mean centred the data. Therefore, S has only N − 1 non-zero eigenvalues, meaning

that up to N − 1 principal components can be extracted.

A. Appendix for Chapter 2 182

Applying PCA simply requires the number of leading PCs retained P to be selected.

This value is typically specified by considering the cumulative proportion of variance

explained by the first P PCs, τ 2P , which is defined as follows

τ 2P =

∑P
p=1 λp∑N−1
n=1 λn

(A.5)

for P = 1, 2, ...N−1. The value of P can be chosen as the smallest number of components

such that τ 2P exceeds some threshold value that is deemed sufficient to obtain an acceptable

representation of the LV geometry. This is the approach taken for example in [86] to select

the use of 2 principal components for representation of the LV anatomy. The value of τ 2P
on our dataset is displayed in Figure A.2 (a) for P = 1, 2, ...20. As has been observed in

previous analyses of LV geometry data [86], τ 2P quickly approaches 100% for increasing

values of P . The proportion of variance explained measure is widely applied and is useful

for the selection of P for arbitrary datasets. In the case of the specific dataset considered

here however, it does not account for the fact that the latent vectors zPCA
n represent the

geometry of a LV embedded in 3 dimensional space. For this reason, we take a different

approach here to select the number of leading PCs P to retain, by considering the mean

node-wise Euclidean distance between the real LV geometries Gn and the corresponding

geometry reconstructions Ĝn from the P -dimensional PC space:

δP =
1

N

N∑
i=1

1

Nv

Nv∑
j=1

||Gi[j]− Ĝi[j]||2 (A.6)

The notation Gi[j] means we extract the jth node from the ith geometry. Using this

measure allows the performance of PCA for different values of P to be evaluated in the

same geometry space from which simulations are run. High values of δP mean that the

synthetic LV geometries are failing to capture the anatomical features present in the

real data. This in turns means that simulations run using the synthetically generated

geometries may exhibit bias with respect to simulations using the true LV geometries,

indicating that more principal components should be retained. Figure A.2 (b) plots the

value δP (in mm) on our dataset for the first 40 principal components. In this case, we

observe that δP does not go to zero as rapidly as τ 2P goes to 1.

A. Appendix for Chapter 2 183

4 8 12 16 20 24 28 32 36 40
P

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

τ
2 P

4 8 12 16 20 24 28 32 36 40
P

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

δ P
(m

m
)

(a) (b)

Figure A.2: Panel (a) plots τ 2P , the cumulative proportion of variance explained by
the first P principal components (PCs), for P = 1, 2, ..., 20. Panel (b) plots the mean
reconstruction error δP (in mm) for the same values of P .

Consequently, we retained a large number P = 40 leading principal components

when generating the synthetic LV geometries for this study, where the mean nodal re-

construction error δ40 was 0.12mm. By sampling in a latent space of this dimensionality,

the synthetic geometries that are generated exhibit greater realism than samples from a

lower-dimensional space, in terms of asymmetry, skewness and wall thickness variation.

This effect is illustrated in Figure A.3. Panel A.3 (a) displays a randomly selected, real

LV geometry against its reconstruction from a 2-dimensional PC space, as used in [86].

Panels (b) and (c) display the analogous plots for reconstructions from a 5-dimensional

space (as used in [89]) and a 40 dimensional space respectively. The reconstruction from

the 40 dimensional latent space incurs an average nodal reconstruction error of 0.11mm,

significantly lower than that of the 2 dimensional reconstruction (1.60mm) and the 5

dimensional reconstruction (0.81mm). Higher values of P could be considered, but run

the risk of overfitting to the dataset of only N = 65 real anatomies.

Once PCA has been performed, a synthetic LV geometry vector can be generated by

first assigning a probability distribution over the P dimensional latent space, from which

a random sample z∗ is drawn. The sample is re-projected back to the full D dimensional

space using B, before adding the mean geometry vector from the training data ḡ;

g∗ = ḡ + Bz∗ (A.7)

A. Appendix for Chapter 2 184

(a) P = 2 (b) P = 5 (c) P = 40

Figure A.3: An example LV geometry plotted against its PCA reconstruction. The red
surface shows the ground truth, while the blue surfaces show the geometry reconstructed
from an P dimensional latent PC space, for three different values of P .

creating a synthetic LV geometry g∗. We used a P = 40-dimensional multivariate Gaus-

sian distribution to generate the random samples. The variances of each dimension were

found as the variances from the training data, increased by 10%, while the cross-covariance

terms and mean values of the distribution were set to zero. The variances were increased

by 10% to produce greater variation in the sampled geometries than was observed in the

real geometries, while still ensuring that the majority of the sampled geometries were

valid. Note that the sampling procedure outlined above is not guaranteed to produce

a valid LV geometry, as for example the endocardial and epicardial surfaces of the re-

constructed geometry may intersect for some values of z∗ in Eq. (A.7). We therefore

discarded any synthetic geometries for which wall thickness, length and width did not

fall within ranges similar to those seen in the real LV data. The two outer surfaces of

the synthetic geometries were further processed into a three-layer, hexahedral mesh with

6784 nodes and 4995 finite-elements. Finally, a rule based method (RBM) [165] was ad-

opted to describe the myofiber structure of each geometry, where the fibre angle varied

linearly from αendo = 60◦ at endocardium to αepi = −60◦ at epicardium. 3000 synthetic

LV geometries were generated in this manner, a similar order to the number of real LV

geometries available at UK Biobank [242].

A. Appendix for Chapter 2 185

B Appendix for Chapter 3

B.1 Effect of learning rate on emulator training

We use four beam models to explore the effect that learning rate has on emulator train-

ing. The first two models, OnceClampedBeam and TwiceClampedBeam were also considered

in Section refsec:ddComparison for the data driven and physics informed training com-

parison. For the third model TractionBeamHO, we have Ω0 = [0, 100] × [0, 10]2 (mm),

represented using 176 nodes and 440 elements. The beam is clamped at the left most end

∂Ωd
0 = {X ∈ Ω0 : X1 = 0}, and subject to a pressure of 0.15 kPa on its bottom surface

∂Ωσ
0 = {X ∈ Ω0 : X3 = 0}, with no body force applied. The H-O constitutive law is

used (see Eq. (3.3)), with θ ∈ [.75, 2.5]4 where a and af are in kPa, and a fixed myofibre

field with f0 = (1, 0, 0)⊤ is assumed throughout Ω0. The setup of the final beam model,

TractionBeamGucci is identical with the exception that the Guccione material model

is used (see Eq. (3.6)), with θ ∈ [1.75, 3.5]4. The reference configuration and boundary

conditions for both traction-force models is shown in Figure B.1.

TractionBeamHO and TractionBeamGucci

Figure B.1: Illustration of the TractionBeamHO and TractionBeamGucci models as 2-D
slices in the (X1, X3) plane (not to scale). The dashed lines indicate a clamped Dirichlet
boundary, and p represents a pressure applied to a Neumann boundary surface.

For each model, training was performed over 200 randomly sampled input material

parameter values. An additional 100 independent simulations were used as a test set

for evaluation of out of sample performance. Three different fixed learning rates were

considered; 1 × 10−5, 5 × 10−5 and 1 × 10−4. 5000 epochs were used for training, which

was a sufficient number to make comparisons between the different rates. Learning curves

for the four beam models are displayed in Figure B.2, with the mean potential energy

B. Appendix for Chapter 3 186

0 1000 2000 3000 4000 5000
Epoch

−8000

−7500

−7000

−6500

−6000

−5500

−5000

−4500 lr = 1× 10−5

lr = 5× 10−5

lr = 1× 10−4

0 1000 2000 3000 4000 5000
Epoch

−375

−350

−325

−300

−275

−250

−225

−200
lr = 1× 10−5

lr = 5× 10−5

lr = 1× 10−4

(a) OnceClampedBeam (b) TwiceClampedBeam

0 1000 2000 3000 4000 5000
Epoch

−0.060

−0.055

−0.050

−0.045

−0.040

−0.035
lr = 1× 10−5

lr = 5× 10−5

lr = 1× 10−4

0 1000 2000 3000 4000 5000
Epoch

−0.065

−0.060

−0.055

−0.050

−0.045

−0.040

−0.035
lr = 1× 10−5

lr = 5× 10−5

lr = 1× 10−4

(c) TractionBeamHO (d) TractionBeamGucci

Figure B.2: Traceplots of Mean(Π) for four beam models using different learning rates.

value obtained at the 200 training input configurations plotted against number of training

epochs performed. For all models, the higher learning rate of 1×10−4 allows the emulator

to reach the minimum of the potential energy most rapidly. Training diverged in each case

when a higher learning rate of 5 × 10−4 was used(not shown in figure to avoid clutter).

Figure B.3 again displays learning curves, except here the mean erru value across the

100 test simulations is plotted against number of epochs. A similar pattern is observed,

whereby a high learning rate yields faster training. Significant variation in the erru

traceplots are present however when using a higher learning rate, suggesting that lowering

its value at the end of training may be useful to settle on the optimal displacement values.

For this reason we used a two-phase training approach for the emulation experiments

in Sections 3.3.2-3.3.4 whereby a learning rate of 1 × 10−4 was used for the first half

of training, before this was reduced by one order of magnitude for the second half of

B. Appendix for Chapter 3 187

0 1000 2000 3000 4000 5000
Epoch

10−1

100

101
lr = 1× 10−5

lr = 5× 10−5

lr = 1× 10−4

0 1000 2000 3000 4000 5000
Epoch

10−3

10−2

10−1

100
lr = 1× 10−5

lr = 5× 10−5

lr = 1× 10−4

(a) OnceClampedBeam (b) TwiceClampedBeam

0 1000 2000 3000 4000 5000
Epoch

10−1

100

lr = 1× 10−5

lr = 5× 10−5

lr = 1× 10−4

0 1000 2000 3000 4000 5000
Epoch

10−1

100

101

lr = 1× 10−5

lr = 5× 10−5

lr = 1× 10−4

(c) TractionBeamHO (d) TractionBeamGucci

Figure B.3: Traceplots of Mean(erru) for four beam models using different learning
rates.

training. We found that this simple strategy was highly effective at finding the minimum

total potential energy state, and hence we did not pursue more complex approaches in

this work, such as second order methods. Note that we also initially experimented with

an automatic learning rate finder approach similar to [243] and different decay schedules,

however we consistently found that using a fixed learning rate of 1 × 10−4 was optimal

during the early stages of training.

B. Appendix for Chapter 3 188

B.2 Additional data-driven and physics-informed emulation ex-

periments

The results from Section 3.3.1 illustrate that while data-driven can achieve strong accuracy

in terms of displacements, the results obtained do not approximate the true potential

energy state to the same accuracy as with physics-informed training, which is reflected

in greater errors in the deformation gradient F and first invariant I1. A possible way of

alleviating this issue would be to train a data-driven emulator against both displacement

and deformation gradient data. To test this approach, we re-performed the data-driven

emulation experiments by making use of the following loss function

ω∗ = argmin
ω

Mean
[
Nsim∑
j=1

Nnode∑
i=1

‖uji − ûji(ω)‖2 +
Nsim∑
j=1

Nelem∑
k=1

‖F jk − F̂ jk(ω)‖F

]
, (B.1)

which includes a penalty term for in terms of the Frobenius norm ‖cdot‖F . We refer to

a GNN trained using this loss function as an “FDD-GNN”. Figures B.4 and B.5 then

replicate the corresponding figures from Section 3.3.1 for both the OnceClampedBeam and

TwiceClampedBeam models, except this time the FDD-GNN results are also included. For

each model, we see that including a penalty term on F in the data-driven loss function

leads to improved emulation accuracy, particularly in terms of the errΠ, errF and errI1 ,

but nevertheless the PI-GNN still achieves better accuracy on these three error metrics.

B.3 Comparison of Neo-Hookean and Holzapfel-Ogden material

models

The higher level of accuracy obtained for the Liver model in Section 3.3.3, which used

the Neo-Hookean law, compared to the LeftVentricle emulation results in Section 3.3.4,

where the Holzapfel-Ogden law was assumed, suggests that the PI-GNN is easier to train

when the underlying constitutive relationship is linear or near-linear. For further insight

here, in this section we re-perform the LeftVentricle emulation experiments using the

Neo-Hookean material model. Specifically, was trained over material parameter space

and LV pressure profiles between 4 and 10 mmHg, with Neo-Hookean constitutive law

parameterised by Lame material parameters λ and µ, where both parameters varied in

B. Appendix for Chapter 3 189

10−4 10−3 10−2 10−10.0

0.2

0.4

0.6

0.8

1.0

1.2

D
en

si
ty

PI-GNN

DD-GNN (w = 0)

DD-GNN (w = 1)

10−2 10−1 1000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
en

si
ty

PI-GNN

DD-GNN (w = 0)

DD-GNN (w = 1)

(a) erru (mm) (b) errF (%)

10−4 10−3 10−2 10−1 1000.0

0.2

0.4

0.6

0.8

D
en

si
ty

PI-GNN

DD-GNN (w = 0)

DD-GNN (w = 1)

10−1 1000

1

2

3

4

5

6

7

D
en

si
ty

PI-GNN

DD-GNN (w = 0)

DD-GNN (w = 1)

(c) errI1 (%) (d) errΠ (%)

Figure B.4: Comparison of data-driven and physics-informed emulation results on
OnceClampedBeam model. The PI-GNN is trained by optimisation of Eq. (3.12), the
DD-GNN is trained purely on displacement data as in Eq. (3.11), while the FDD-GNN
additionally incorporates a loss on the deformation gradient F following Eq. (B.1).

the range [8, 10] kPa. Emulator performance of the surrogate was evaluated on a test set

of 150 simulations obtained using the finite-element method (FEM). Figure B.6 displays

error density plots for this emulator, compared with results from Section 3.3.4 for the

original PI-GNN which made use of the H-O law. In all cases, we see noticeably better

performance under the Neo-Hookean model. For relative errors in u seen in panel (a),

median errors under the Neo-Hookean model are almost one order of magnitude lower

than for the H-O model. For errI1 displayed in panel (b), there is even greater disparity

between the results, with very little overlap between the two densities. If we consider errΠ

in panel (c), we see that the PI-GNN consistently achieves a better approximation to the

true minimum potential energy value, indicating it is easier to train the emulator when

the material model is near linear. Finally, for errV in panel (d), the difference between the

B. Appendix for Chapter 3 190

10−5 10−4 10−3 10−20.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

PI-GNN

DD-GNN

FDD-GNN

10−4 10−3 10−2 10−1 1000.0

0.2

0.4

0.6

0.8

1.0

1.2

D
en

si
ty

PI-GNN

DD-GNN

FDD-GNN

(a) erru (mm) (b) errF (%)

10−6 10−5 10−4 10−3 10−2 10−1 1000.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

PI-GNN

DD-GNN

FDD-GNN

10−5 10−3 10−1 1010

1

2

3

4

5

6

D
en

si
ty

PI-GNN

DD-GNN

FDD-GNN

(c) errI1 (%) (d) errΠ (%)

Figure B.5: Comparison of data-driven and physics-informed emulation results on
TwiceClampedBeam model. The PI-GNN is trained by optimisation of Eq. (3.12), the
DD-GNN is trained purely on displacement data as in Eq. (3.11), while the FDD-GNN
additionally incorporates a loss on the deformation gradient F following Eq. (B.1).

two results is less pronounced. While lower errors are achieved under the Neo-Hookean

model, there is a high degree of overlap between the two distributions. This results suggest

that further experimentation could be required here to determine how PI-GNN accuracy

can be increased for more non-linear material models. One possible approach could be

the use of feature transformations of the material parameter vector θ.

B. Appendix for Chapter 3 191

10−3 10−2 10−1 100 1010.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
en

si
ty

Holzapfel-Ogden

Neo-Hookean

10−3 10−2 10−1 1000.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

D
en

si
ty

Holzapfel-Ogden

Neo-Hookean

(a) Relative erru (%) (b) errI1 (%)

10−3 10−2 10−1 1000.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

D
en

si
ty

Holzapfel-Ogden

Neo-Hookean

10−4 10−3 10−2 10−1 1000.0

0.2

0.4

0.6

0.8

D
en

si
ty

Holzapfel-Ogden

Neo-Hookean

(c) errΠ (%) (d) errV (%)

Figure B.6: Comparison of emulation results for LeftVentricle model under the Neo-
Hookean and Holzapfel-Ogden material models.

B.4 Application to biventricle cardiac geometry

Here we demonstrate the application of a PI-GNN to the filling of a biventricular cardiac

geometry. For this illustrative example, idealised symmetric ventricles are considered, the

Neo-Hookean material model is assumed and the same cardiac pressure is used in each

cavity. A PI-GNN emulator was trained for 1000 steps. Prediction results against an

FEM simulation are shown in Figure B.7, where the mean erru value is 4.8× 10−2 mm..

Visually we see strong agreement, however relative errors are higher than seen in the

LeftVentricle model, which may be alleviated by more training steps or a larger number

of message passing steps.

B. Appendix for Chapter 3 192

4.
4

∥u
∥

0.
00

(a) Current Configuration (FEM)

4.
4

∥û
∥

0.
00

(b) Current Configuration (PI-GNN)

Figure B.7: Comparison of simulation and emulation results for biventricular cardiac
geometry.

B.5 Emulation on new LV geometry

The geometry of a soft-tissue body will vary from patient to patient, therefore it is essential

that the emulator can generalise to a new geometry not seen in the training phase. Note

we have already addressed this in earlier work [9], where a GNN was trained on a dataset

where each simulation was performed using a different left ventricle geometry. In this

work, we take a simpler approach by considering the generalisation of the PI-GNN for the

LeftVentricle model in the case of one new LV geometry, again extracted from cardiac

imaging scans. Note that this geometry had a different mesh topology (1268 nodes and

4847 elements) to the original LV (1570 nodes and 6176 elements).

B. Appendix for Chapter 3 193

To test how the GNN can generalise to the new geometry, we took the pre-trained

PI-GNN from the original LV, and transfer learned for 12 epochs or approximately 90

seconds on the new geometry (we refer to this as the “Transfer Learned” emulator). For

baseline comparison, we consider a PI-GNN trained for the same computational budget

(i.e. 12 steps / 90 seconds), but from randomly initialised network parameters (we refer

to this as the “Baseline” emulator). Comparing the transfer learned results with the

baseline allows the gain achieved by sharing information from the original geometry to

be quantified. Finally, as reference we consider the results we the performance of a PI-

GNN again trained from scratch, but this time for 15000 epochs (we refer to this as

the “Reference” emulator). After training, emulation performance of the three emulators

was then evaluated on a test set of 150 simulations run using the same material model

(Holzapfel-Ogden) and material parameter domain as the original LV geometry, with fixed

cardiac pressure of 6 mmHg.

Figure B.8 shows density plots of test set emulation errors for the three emulators

considered. In each case, we see a clear gain in performance when re-using the network

weights over the Baseline PI-GNN with randomly initialised weights. With erru for in-

stance, the increase in accuracy is approximately one order of magnitude. The accuracy of

the full-trained Reference emulator is then one order of magnitude lower again. Perform-

ing over one thousand times as many training steps has allowed the Reference emulator

to obtain clearly more accurate results.

Panel (c) shows the error in total potential energy Π incurred by the emulator, which

illustrate allowed the fully-trained Reference PI-GNN to reach a better approximation of

the true minimum potential energy state than the two PI-GNNs that were trained for 12

steps. However, the transfer learned emulator has clearly benefited from the initialisation

at the weights found on the other LV geometry, as the worst errΠ is lower seen in the

transfer-learning case is lower than the smallest error seen with the Baseline, randomly

initialised PI-GNN. A similar pattern is observed in panel (d), which displays density

plots of errV . Here however the transfer-learned emulator more closely matches the

performance of the fully-trained Reference emulator. While lower errors are attained in

general with full training, there is significant overlap between the two error distributions,

and for the transfer-learned PI-GNN, only a small fraction of errors exceed 1%.

B. Appendix for Chapter 3 194

10−3 10−2 10−1 100 1010.0

0.2

0.4

0.6

0.8

1.0
D

en
si

ty

Reference

Transfer Learned

Baseline

10−2 10−1 100 1010.0

0.5

1.0

1.5

2.0

D
en

si
ty

Reference

Transfer Learned

Baseline

(a) erru (mm) (b) errF (%)

10−2 10−1 100 1010.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
en

si
ty

Reference

Transfer Learned

Baseline

10−3 10−2 10−1 100 1010.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Reference

Transfer Learned

Baseline

(c) errΠ (%) (d) errV (%)

Figure B.8: Comparison of emulation results for new LV geometry for GNN trained from
scratch for 15000 epochs (Reference), versus a transfer-learned GNN trained for 12 epochs
(Transfer Learned) and a randomly initialised GNN trained for 12 epochs (Baseline).

Figure B.9 displays emulation plots for the new geometry for the simulation which

gave median out of sample error. In the left column, we see that the errors incurred by

the transfer learned PI-GNN are consistently higher across the surface of the geometry

than for the Reference PI-GNN. In the right column, differences between the two are only

only slightly visually apparent, and the errV values were very similar for each surrogate -

for the Reference PI-GNN, errV error was 0.03%, while for the transfer-learned PI-GNN,

the corresponding error was 0.04%.

B. Appendix for Chapter 3 195

R
ef

er
en

ce
PI

-G
N

N

0.
87

er
r u

0.
00

9.
7

∥û
∥

0.
00

(a) erru = ‖u− û‖2 (d) Current Configuration (PI-GNN)

Tr
an

sfe
r

Le
ar

ne
d

PI
-G

N
N

0.
87

er
r u

0.
00

9.
7

∥û
∥

0.
00

(c) erru = ‖u− û‖2 (d) Current Configuration (PI-GNN)

Figure B.9: Median out of sample emulation results for LeftVentricle model (mm)
using new geometry. Top row shows a fully trained PI-GNN, bottom row shows a PI-GNN
transfer-learned for 90 seconds.

These results suggest that for macro level quantities of interest such as cardiac volume,

where precise node-wise accuracy levels, the PI-GNN exhibits reasonable generalisation

performance when applied to a new geometry. It is likely that more accurate results can

be obtained by incorporating a larger number of different geometries into the training

routine as done in [9], which is the direction we will pursue in future work.

B. Appendix for Chapter 3 196

C Appendix for Chapter 4

C.1 Proof of Lemma 4.4.1

Proof. We prove that for all i = 1, . . . , D, m̃i(x) exactly satisfies boundary conditions on⋃i
l=0

⋃1
j=0 ∂Ωlj. Since m̃(x) ≜ m̃D(x), this is sufficient to prove the claim.

We proceed by induction. Firstly, note by construction of m̃1 that m̃1(x : x1 = 0) =

b(x : x1 = 0) and m̃1(x : x1 = 1) = b(x : x1 = 1), i.e m̃1(x) satisfies the specified

boundary conditions on ∂Ω10 and ∂Ω11.

Next, assume that m̃i−1(x) exactly satisfies boundary conditions on
⋃i−1

l=0

⋃1
j=0 ∂Ωlj

for i = 2, . . . , D. Consider the output of m̃i(x) with xi = j for j ∈ {0, 1}, that is,

m̃i(x : xi = j). We have

m̃i(x : xi = j) = m̃i−1(x : xi = j) + b̃i,0(x : xi = j)(1− j) + b̃i,1(x : xi = j)j (C.1)

= m̃i−1(x : xi = j) + b̃i,j(x : xi = j) (C.2)

= m̃i−1(x : xi = j) + b(x : xi = j)− m̃i−1(x : xi = j) (C.3)

= b(x : xi = j). (C.4)

That is, m̃i satisfies the boundary conditions on ∂Ωi0 and ∂Ωi1.

Now, we show that m̃i satisfies the boundary conditions on ∂Ωij for l < i. Since m̃i−1

satisfies these conditions by assumption, by construction of m̃i we simply need to prove

that for all l < i we have b̃i,j(x : xl = q) = 0 for j, q ∈ {0, 1}. To see this, let l < i be

arbitrary. We then have

b̃i,j(x : xl = q) = b(x : xi = j, xl = q)− m̃i−1(x : xi = j, xl = q) (C.5)

= 0. (C.6)

C. Appendix for Chapter 4 197

The above equality holds because m̃i−1 equals b where xl = q ∈ {0, 1} by assumption.

Therefore, m̃i(x) = m̃i−1(x) where x ∈ ∂Ωl0 ∪ ∂Ωl1, Since l was arbitrary, this holds for

all l < i, i.e. boundary conditions are satisfied for all
⋃i−1

l=0

⋃1
j=0 ∂Ωlj. Combined with

the above result for ∂Ωi0 ∪ ∂Ωi1, we conclude by induction that m̃ satisfies boundary

conditions on all of ∂Ω.

C.2 Proof of Theorem 4.5.3

We begin by introducing an alternative definition of a reproducing kernel in terms of a

feature map [225, Definition 4.1].

Definition C.1. Let X be a non-empty set. A function k : X × X → R is a kernel if

there exists an R-Hilbert space H0 and a map Φ0 : X → H0 such that, for all x,x′ ∈ X ,

we have

k(x,x′) = 〈Φ0(x),Φ0(x
′)〉H0

. (C.7)

We call Φ0 a feature map of k, and H0 a feature space.

There are a number of equivalent ways of representing an RKHS. One way that is

particularly useful when considering the density of an RKHS is the feature map repres-

entation [225, Theorem 4.21].

Theorem C.1 (Feature map representation of RKHS). Let X be a non-empty set

and k a kernel on X × X with feature map Φ0 : X → H0 where H0 is a Hilbert space.

Consider the normed space

HΦ0 ≜
{
u : X → R : ∃ w ∈ H0 with u(x) = 〈w,Φ0(x)〉H0

for all x ∈ X
}

(C.8)

where

‖u‖HΦ0
≜ inf

{
‖w‖H0 : w ∈ H0 with u = 〈w,Φ0(·)〉H0

}
. (C.9)

Then, Hk = HΦ0.

We remark that kernels do not have unique feature maps, however the above con-

struction is independent of the specific choice of Φ0.

C. Appendix for Chapter 4 198

Lemma C.2. Let k : [0, 1]×[0, 1] → R be a kernel with feature map Φ0 : [0, 1] → H0 and let

k̃ and ϕ be as defined in Eq. (4.26). Finally, define Φ̃0 : [0, 1] → H0 as Φ̃0(x) ≜ ϕ(x)Φ0(x).

Then Φ̃0 is a feature map for k̃.

Proof. First remark that ϕ(x) ∈ R for all x ∈ [0, 1] and H0 is an R-Hilbert space, and

therefore ϕ(x)Φ0(x) ∈ H0 for all x.

Now, let x, x
′ ∈ [0, 1] be arbitrary. Then we have

〈
Φ̃0(x), Φ̃0(x

′)
〉
H0

= 〈ϕ(x)Φ0(x), ϕ(x
′)Φ0(x

′)〉H0
(C.10)

= ϕ(x)ϕ(x′) 〈Φ0(x),Φ0(x
′)〉H0

(C.11)

= ϕ(x)ϕ(x′)k(x, x′) (C.12)

= k̃(x, x′). (C.13)

Lemma C.3. Let k : [0, 1]×[0, 1] → R be a kernel, and k̃ and ϕ be as defined in Eq. (4.26).

Then ẑ ∈ Hk implies û ∈ Hk̃ where û(x) = ϕ(x)ẑ(x).

Proof. Let ẑ ∈ Hk be arbitrary. By Theorem C.1, there exists feature map Φ0 : [0, 1] →

H0 with H0 a Hilbert space so that

ẑ(x) = 〈w,Φ0(x)〉H0
(C.14)

for all x ∈ [0, 1] for some w ∈ H0. Therefore, we have

û(x) = ϕ(x)ẑ(x) (C.15)

= ϕ(x) 〈w,Φ0(x)〉H0
(C.16)

= 〈w, ϕ(x)Φ0(x)〉H0
(C.17)

=
〈
w, Φ̃0(x)

〉
H0

. (C.18)

for all x ∈ [0, 1]. Recall by Lemma C.2 that Φ̃0(x) = ϕ(x)Φ0(x) is a feature map for k̃,

which means û ∈ HΦ̃0
= Hk̃ by Theorem C.1. Since ẑ was chosen arbitrarily, this holds

for all ẑ ∈ Hk.

C. Appendix for Chapter 4 199

Lemma C.4. Let u ∈ Hbc be arbitrary, where Hbc is defined as in Eq. (4.25). Given

corresponding zu as in Eq. (4.27) and ϕ as in Eq. (4.26), then

lim
x→0+

ϕ(x)zu(x) = lim
x→1−

ϕ(x)zu(x) = 0. (C.19)

Proof. Let u ∈ Hbc be arbitrary. Note by construction of its associate latent function zu

that we can express u on the interior of its domain as

u(x) = ϕ(x)zu(x) for x ∈ (0, 1). (C.20)

Since u ∈ Hbc, u is continuous and therefore

u(0) = lim
x→0+

u(x) (C.21)

= lim
x→0+

ϕ(x)zu(x) (C.22)

Since u(0) = 0 by assumption (see Eq. (4.25)), we have limx→0+ ϕ(x)zu(x) = 0. By the

exact same line of reasoning, we have limx→1− ϕ(x)zu(x) = 0.

We can now consider Theorem 4.5.3.

Proof. Let both u ∈ Hbc and ε > 0 be arbitrary. We need to find some û ∈ Hk̃ such that

‖u− û‖∞ ≤ ε.

To begin, note that Lemma C.4 implies the existence of δ0, δ1 ∈ (0, 1
2
) such that

|ϕ(x)zu(x)| <
ε

3
for all x ∈ (0, δ0] and |ϕ(x)zu(x)| <

ε

3
for all x ∈ [1− δ1, 1). (C.23)

Let δ = min(δ0, δ1). Now consider the function z̃u : [0, 1] → R given by

z̃u(x) =

zu(δ), if x ∈ [0, δ)

zu(x), if x ∈ [δ, 1− δ]

zu(1− δ), if x ∈ (1− δ, 0]

(C.24)

C. Appendix for Chapter 4 200

where zu is the latent function of u, as defined as in Eq. (4.27). Clearly, z̃u ∈ C([0, 1]).

Since k is a universal kernel by assumption, there exists ẑ ∈ Hk such that

‖z̃u − ẑ‖∞ ≤ ε

3
. (C.25)

Consider now the function û : [0, 1] → R defined as

û(x) = ϕ(x)ẑ(x). (C.26)

Note that û ∈ Hk̃ by Lemma C.3. We claim that ‖u − û‖∞ ≤ ε. We prove this by

partitioning the domain into four subdomains and considering each case in turn.

Case I: x ∈ {0, 1}. Clearly û(x) = 0 in this case since ϕ(0) = ϕ(1) = 0, which is exactly

the value that u(x) takes at the boundary points by assumption. Therefore, û(x) = u(x)

for x ∈ {0, 1}.

Case II: x ∈ [δ, 1− δ]. By Eq. (C.25) we know

|z̃u(x)− ẑ(x)| < ε

3
. (C.27)

Since x ∈ [δ, 1−δ], we have that z̃u(x) = zu(x) by construction (see Eq. (C.24)). Therefore

|zu(x)− ẑ(x)| < ε

3
. (C.28)

Since ϕ(x) ∈ (0, 1
2
] if x ∈ (0, 1), we furthermore have

ϕ(x) |zu(x)− ẑ(x)| < ϕ(x)
ε

3
(C.29)

⇒ |ϕ(x)zu(x)− ϕ(x)ẑ(x)| < ε

3
. (C.30)

Finally, note that u(x) = ϕ(x)zu(x) for x ∈ (0, 1) ⊃ [δ, 1 − δ] by construction of zu (see

Definition 4.5.4) and û(x) = ϕ(x)ẑ(x) by definition (see Eq. (C.26)). Therefore

|u(x)− û(x)| < ε

3
. (C.31)

C. Appendix for Chapter 4 201

Case III: x ∈ (0, δ). Then again by Eq. (C.25) we know

|z̃u(x)− ẑ(x)| < ε

3
. (C.32)

Since x ∈ (0, δ), we have that z̃u(x) = zu(δ) by construction (see Eq. (C.24)). Therefore

|zu(δ)− ẑ(x)| < ε

3
. (C.33)

This inequality can be expressed equivalently as

−ε

3
< zu(δ)− ẑ(x) <

ε

3
(C.34)

⇒ −zu(δ)−
ε

3
< −ẑ(x) < −zu(δ) +

ε

3
. (C.35)

Since inequalities are not affected by the addition of constants, the above implies

zu(x)− zu(δ)−
ε

3
< zu(x)− ẑ(x) < zu(x)− zu(δ) +

ε

3
. (C.36)

Furthermore, because ϕ(x) > 0 for x ∈ (0, 1) ⊃ (0, δ), the above expression is valid when

multiplied by ϕ(x):

ϕ(x)zu(x)− ϕ(x)zu(δ)− ϕ(x)
ε

3
< u(x)− û(x) < ϕ(x)zu(x)− ϕ(x)zu(δ) + ϕ(x)

ε

3
, (C.37)

where, as in Case II, we have made use of the fact that u(x) = ϕ(x)zu(x) for x ∈ (0, 1) ⊃

(0, δ) and û(x) = ϕ(x)ẑ(x).

Finally, note that by construction we have |ϕ(x)| ≤ 1
2

for all x ∈ [0, 1] (see Eq. (4.26)).

Additionally, we have |ϕ(x)zu(x)| < ε
3

for x ∈ (0, δ] since δ = min(δ0, δ1) (see Eq. (C.23)).

Together with the inequality in Eq. (C.37), this implies

−ε

3
− ε

3
− ε

3
< u(x)− û(x) <

ε

3
+

ε

3
+

ε

3
(C.38)

⇒ |u(x)− û(x)| < ε. (C.39)

C. Appendix for Chapter 4 202

Case IV: x ∈ (1− δ, 1). Follows by the exact same reasoning as x ∈ (0, δ).

Therefore putting all cases together we have

sup{|u(x)− û(x)| : x ∈ [0, 1]} = ‖u− û‖∞ ≤ ε. (C.40)

C.3 Proof of Theorem 4.6.2

Proof. The proof here follows the proof of Theorem 4.6.1 from [222, Section 18.7.1].

We denote the trainable parameters of the latent fully connected neural network znn

(Eq. (4.29)) used in the definition of the HCNN (Eq. (4.28)) as

ω = {b(1), w(1)
1 , . . . , w

(1)
H , b

(0)
1 , . . . , b

(0)
H ,w

(0)
1 , . . . ,w

(0)
H }. (C.41)

Let x ∈ Ω be arbitrary. Then, the expected value of unn(x) (see Eq. (4.28)) under the

prior distributions from Eq. (4.30) is given by:

Eω [unn(x)] = Eω [m̃(x) + ϕ(x)znn(x)] (C.42)

= Eω

[
m̃(x) + ϕ(x)

(
b(1) +

H∑
j=1

w
(1)
j hj(x)

)]
(C.43)

= Eω [m̃(x)] + Eω

[
ϕ(x)

(
b(1) +

H∑
j=1

w
(1)
j hj(x)

)]
(C.44)

= m̃(x) + ϕ(x)Eω

[
b(1) +

H∑
j=1

w
(1)
j hj(x)

]
(C.45)

= m̃(x) + ϕ(x)

(
Eω

[
b(1)
]
+

H∑
j=1

Eω

[
w

(1)
j hj(x)

])
(C.46)

= m̃(x) + ϕ(x)

Eω

[
b(1)
]︸ ︷︷ ︸

=0

+
H∑
j=1

Eω

[
w

(1)
j

]
︸ ︷︷ ︸

=0

Eω [hj(x)]

 (C.47)

= m̃(x). (C.48)

We remark that Eω

[
w

(1)
j hj(x)

]
= Eω

[
w

(1)
j

]
Eω [hj(x)] holds because w

(1)
j is independent

of hj(x) for all j = 1, . . . , H under our prior assumption for ω (see Eq. (4.30)).

C. Appendix for Chapter 4 203

Now let x,x′ ∈ Ω be arbitrary. Then by Eq. (4.28) and Eq. (4.30), the covariance

between the corresponding outputs unn(x) and unn(x
′) is given by

Cov (unn(x)unn(x
′)) = Eω [(unn(x)− Eω [unn(x)]) (unn(x

′)− Eω [unn(x
′)])] (C.49)

= Eω [ϕ(x)znn(x)ϕ(x
′)znn(x

′)] (C.50)

= ϕ(x)ϕ(x′)Eω [znn(x)znn(x
′)] . (C.51)

We furthermore have that

Eω [znn(x)znn(x
′)] = Eω

[(
b(1) +

H∑
j=1

w
(1)
j hj(x)

)(
b(1) +

H∑
j=1

w
(1)
j hj(x

′)

)]
(C.52)

= σ2
b(1) +

H∑
j=1

ω

H
Eω [hj(x)hj (x

′)] , (C.53)

where the final expression holds because Eω

[
b(1)
]
= 0 and Cov

(
w

(1)
i , w

(1)
j

)
= 0 for i 6= j.

Note that all b(0)j

(
w

(0)
j

)
share a common prior. Therefore, Eω [hj(x)hj (x

′)] is the same

for all j = 1, . . . , H . This means we have

Eω [znn(x)znn(x
′)] = σ2

b(1) + ωEω [h1(x)h1 (x
′)] ≜ knn (x,x

′) . (C.54)

We remark that knn is exactly the form of the kernel for the infinite width limit of the

unconstrained neural network znn given in Eq. (4.31) [222, Section 18.7.1]. We therefore

have

Cov (unn(x)unn(x
′)) = ϕ(x)ϕ(x′)knn (x,x

′) (C.55)

= k̃nn (x,x
′) , (C.56)

i.e. the covariance between any two function outputs is given by the boundary constrained

kernel k̃nn generated by using knn in the construction of a HCGP (see Definition 4.4.1).

Now, consider the limit as H → ∞. Note that the contribution of the hidden units

(the hj’s) is an infinite sum of random variables with shared mean and variance, respect-

ively. Furthermore, the variance is bounded because we are assuming φ is bounded.

By the Central Limit Theorem, we conclude then that the contribution of the hidden

C. Appendix for Chapter 4 204

units converges in distribution to a Gaussian. Therefore the output of the HCNN it-

self at any point x ∈ Ω converges to a Gaussian, with mean m̃(x) and covariance

k̃nn (x,x). Furthermore, given any set of inputs x(1),x(2), . . . ,x(N) ∈ Ω with N ≥ 2

the joint distribution of the corresponding outputs (unn(x
(1)), unn(x

(2)), ..., unn(x
(N)))⊤

converges to a multivariate Gaussian, where the cross covariance terms are found as

Cov(unn(x
(i)), unn(x

(j)) = k̃nn
(
x(i),x(j)

)
Therefore in the limit, the function unn exactly satisfies the definition of a Gaussian

process (Definition 4.2.2) over Ω with mean function m̃ and covariance function k̃nn so

we conclude

unn(x) → GP(m̃(x), k̃nn(x,x
′)). (C.57)

Bibliography

[1] D. Dalton and D. Husmeier, ‘Improved statistical emulation for a soft-tissue cardiac

mechanical model’, in Proceedings of the 35th International Workshop on Statistical

Modelling, 2020, pp. 55–60.

[2] D. Dalton, A. Lazarus and D. Husmeier, ‘Comparative evaluation of different emu-

lators for cardiac mechanics’, in Proceedings of the 2nd International Conference

on Statistics: Theory and Applications, Virtual Conference, 2020.

[3] D. Dalton, A. Lazarus, A. Rabbani, H. Gao and D. Husmeier, ‘Graph neural net-

work emulation of cardiac mechanics’, in Proceedings of the 3rd International Con-

ference on Statistics: Theory and Applications, Virtual Conference, 2021.

[4] L. Romaszko, A. Borowska, A. Lazarus, D. Dalton, C. Berry, X. Luo, D. Hus-

meier and H. Gao, ‘Neural network-based left ventricle geometry prediction from

cmr images with application in biomechanics’, Artificial Intelligence in Medicine,

vol. 119, p. 102 140, 2021.

[5] A. Lazarus, D. Dalton, D. Husmeier and H. Gao, ‘Sensitivity analysis and inverse

uncertainty quantification for the left ventricular passive mechanics’, Biomechanics

and Modeling in Mechanobiology, vol. 21, no. 3, pp. 953–982, 2022.

[6] D. Husmeier, D. Dalton, A. Lazarus and H. Gao, ‘Forward and inverse uncer-

tainty quantification in cardiac mechanics’, in Proceedings of the 2nd International

Conference on Statistics: Theory and Applications, Prague, Czech Republic, 2022.

[7] A. Rabbani, H. Gao, A. Lazarus, D. Dalton, Y. Ge, K. Mangion, C. Berry and D.

Husmeier, ‘Image-based estimation of the left ventricular cavity volume using deep

learning and gaussian process with cardio-mechanical applications’, Computerized

Medical Imaging and Graphics, vol. 106, p. 102 203, 2023.

[8] D. Dalton, D. Husmeier and H. Gao, ‘Physics and lie symmetry informed gaussian

processes’, in International Conference on Machine Learning, PMLR, 2024.

205

BIBLIOGRAPHY 206

[9] D. Dalton, H. Gao and D. Husmeier, ‘Emulation of cardiac mechanics using graph

neural networks’, Computer Methods in Applied Mechanics and Engineering, 2022.

[10] D. Dalton, D. Husmeier and H. Gao, ‘Physics-informed graph neural network emu-

lation of soft-tissue mechanics’, Computer Methods in Applied Mechanics and En-

gineering, vol. 417, p. 116 351, 2023.

[11] L. Zamecnik, ‘Mathematical models as abstractions’, Organon F, vol. 25, pp. 244–

264, 2018.

[12] A. Fowler, Mathematical Models in the Applied Sciences. Cambridge University

Press, 1997.

[13] M. Awasthi, M. Verma and M. Ram, Advances in Mathematical and Computational

Modeling of Engineering Systems. CRC Press, 2023.

[14] G. Box, ‘Robustness in the strategy of scientific model building’, in Robustness in

Statistics, Academic Press, 1979, pp. 201–236.

[15] G. Smith, ‘Newton’s Philosophiae Naturalis Principia Mathematica’, in The Stan-

ford Encyclopedia of Philosophy, E. N. Zalta, Ed., Winter 2008, Metaphysics Re-

search Lab, Stanford University, 2008.

[16] J. Marchant, The Human Cosmos: A Secret History of the Stars. Canongate Books,

2020.

[17] J. L. Russell, ‘Kepler’s laws of planetary motion: 1609–1666’, The British journal

for the history of science, vol. 2, no. 1, pp. 1–24, 1964.

[18] R. W. Smith, ‘The cambridge network in action: The discovery of neptune’, Isis,

vol. 80, no. 3, pp. 395–422, 1989.

[19] J. Chambers and J. Mitton, From Dust to Life: The Origin and Evolution of Our

Solar System. Princeton University Press, 2014.

[20] W. Leontief, Input-output Economics. Oxford University Press, 1986.

[21] G. Owen, Game theory. Emerald Group Publishing, 2013.

[22] S. De Marchi and S. E. Page, ‘Agent-based models’, Annual Review of political

science, vol. 17, pp. 1–20, 2014.

BIBLIOGRAPHY 207

[23] M. Renardy and R. C. Rogers, An introduction to partial differential equations.

Springer Science & Business Media, 2006, vol. 13.

[24] M. Braun and M. Golubitsky, Differential equations and their applications. Springer,

1983, vol. 2.

[25] H. Goldstein, C. Poole and J. Safko, Classical mechanics. Pearson, 2013.

[26] A. Lotka, ‘Elements of Physical Biology’, Nature, vol. 116, no. 2917, pp. 461–461,

1925.

[27] E. Schrödinger, ‘An undulatory theory of the mechanics of atoms and molecules’,

Phys. Rev., vol. 28, pp. 1049–1070, 6 1926.

[28] J. O. Campos, J. Sundnes, R. W. dos Santos and B. M. Rocha, ‘Effects of left

ventricle wall thickness uncertainties on cardiac mechanics’, Biomechanics and

Modeling in Mechanobiology, vol. 18, no. 5, pp. 1415–1427, 2019.

[29] H. Gould, J. Tobochnik and W. Christian, An Introduction to Computer Simulation

Methods: Applications To Physical Systems. CreateSpace Independent Publishing

Platform, 2017.

[30] R. Pukl, M. Jansta, J. Červenka, M. Vořechovskỳ, D. Novák and R. Rusina, ‘Spatial

variability of material properties in nonlinear computer simulation’, in Computa-

tional Modelling of Concrete Structures, CRC Press, 2020, pp. 891–896.

[31] G. Enkavi, M. Javanainen, W. Kulig, T. Róg and I. Vattulainen, ‘Multiscale simu-

lations of biological membranes: The challenge to understand biological phenomena

in a living substance’, Chemical reviews, vol. 119, no. 9, pp. 5607–5774, 2019.

[32] A. Atangana and I. Koca, ‘Chaos in a simple nonlinear system with atangana–

baleanu derivatives with fractional order’, Chaos, Solitons & Fractals, vol. 89,

pp. 447–454, 2016.

[33] L. Wright and S. Davidson, ‘How to tell the difference between a model and a

digital twin’, Advanced Modeling and Simulation in Engineering Sciences, vol. 7,

no. 1, pp. 1–13, 2020.

[34] T. Haigh, P. M. Priestley and C. Rope, ENIAC in action: Making and remaking

the modern computer. MIT press, 2016.

BIBLIOGRAPHY 208

[35] G. O’Regan, ‘The first commercial computers’, in A Brief History of Computing,

Springer, 2021, pp. 71–79.

[36] R. Rhodes, Dark Sun: The Making of the Hydrogen Bomb. Simon Schuster, 1995.

[37] L. De Mol, ‘‘A Pretence of What is Not’? A Study of Simulation(s) from the

ENIAC Perspective’, NTM Zeitschrift für Geschichte der Wissenschaften, Technik

und Medizin, vol. 27, no. 4, pp. 443–478, 2019.

[38] F. H. Harlow, ‘Fluid dynamics in group t-3 los alamos national laboratory: (la-ur-

03-3852)’, Journal of Computational Physics, vol. 195, no. 2, pp. 414–433, 2004.

[39] J. Reimer, ‘A history of the gui’, Ars Technica, vol. 5, pp. 1–17, 2005.

[40] D. Goldsman, R. E. Nance and J. R. Wilson, ‘A brief history of simulation re-

visited’, in Proceedings of the 2010 Winter Simulation Conference, IEEE, 2010,

pp. 567–574.

[41] H. Kitano, ‘Computational systems biology’, Nature, vol. 420, no. 6912, pp. 206–

210, 2002.

[42] R. Scarpa and A. Alberini, Applications of simulation methods in environmental

and resource economics. Springer Science & Business Media, 2005, vol. 6.

[43] E. Bisong and E. Bisong, ‘An overview of google cloud platform services’, Build-

ing Machine Learning and Deep Learning Models on Google Cloud Platform: A

Comprehensive Guide for Beginners, pp. 7–10, 2019.

[44] G. O’Regan and O’Regan, A brief history of computing. Springer, 2008.

[45] J. Backus, ‘The history of fortran i, ii, and iii’, ACM Sigplan Notices, vol. 13, no. 8,

pp. 165–180, 1978.

[46] B. W. Kernighan and D. M. Ritchie, ‘The C programming language’, 2002.

[47] B. Stroustrup, ‘A history of c++ 1979–1991’, in History of programming languages—

II, 1996, pp. 699–769.

[48] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin,

G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne and Q. Zhang, JAX:

Composable transformations of Python+NumPy programs, version 0.2.5, 2018.

BIBLIOGRAPHY 209

[49] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller,

‘Equation of state calculations by fast computing machines’, The Journal of Chem-

ical Physics, 1953.

[50] C. Robert and G. Casella, ‘A short history of markov chain monte carlo: Subjective

recollections from incomplete data’, Statistical Science, vol. 26, no. 1, 2011.

[51] D. Gamerman, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian

Inference. Chapman & Hall/CRC, 2006.

[52] J. N. Reddy, Introduction to the finite element method. McGraw-Hill Education,

2019.

[53] G. D. Smith, Numerical solution of partial differential equations: finite difference

methods. Oxford University Press, 1985.

[54] R. Eymard, T. Gallouët and R. Herbin, ‘Finite volume methods’, Handbook of

numerical analysis, vol. 7, pp. 713–1018, 2000.

[55] S. Bardenhagen, J. Brackbill and D. Sulsky, ‘The material-point method for gran-

ular materials’, Computer methods in applied mechanics and engineering, vol. 187,

no. 3-4, pp. 529–541, 2000.

[56] A. K. Aziz, The mathematical foundations of the finite element method with ap-

plications to partial differential equations. Academic Press, 2014.

[57] L. Sabat and C. K. Kundu, ‘History of finite element method: A review’, Recent

Developments in Sustainable Infrastructure: Select Proceedings of ICRDSI 2019,

pp. 395–404, 2020.

[58] M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson,

J. Ring, M. E. Rognes and G. N. Wells, ‘The FEniCS project version 1.5’, Archive

of Numerical Software, vol. 3, 2015.

[59] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang and L. Yang,

‘Physics-informed machine learning’, Nature Reviews Physics, vol. 3, no. 6, pp. 422–

440, 2021.

BIBLIOGRAPHY 210

[60] H. Gao, A. Aderhold, K. Mangion, X. Luo, D. Husmeier and C. Berry, ‘Changes and

classification in myocardial contractile function in the left ventricle following acute

myocardial infarction’, Journal of The Royal Society Interface, vol. 14, no. 132,

p. 20 170 203, 2017.

[61] A. Grow and J. Hilton, ‘Statistical emulation’, in Wiley StatsRef: Statistics Refer-

ence Online. John Wiley & Sons, Ltd, 2018, pp. 1–8.

[62] M. C. Kennedy and A. O’Hagan, ‘Bayesian calibration of computer models’, Journal

of the Royal Statistical Society: Series B (Statistical Methodology), vol. 63, no. 3,

pp. 425–464, 2001.

[63] R. B. Gramacy, Surrogates: Gaussian Process Modeling, Design and Optimization

for the Applied Sciences. Boca Raton, Florida: Chapman Hall/CRC, 2020.

[64] A. Lucic, M. ter Hoeve, G. Tolomei, M. de Rijke and F. Silvestri, Cf-gnnexplainer:

Counterfactual explanations for graph neural networks, 2022. arXiv: 2102.03322.

[65] X. Wang and H.-W. Shen, Gnninterpreter: A probabilistic generative model-level

explanation for graph neural networks, 2024. arXiv: 2209.07924.

[66] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen and X. Zhang, Parameterized

explainer for graph neural network, 2020. arXiv: 2011.04573.

[67] J. Kakkad, J. Jannu, K. Sharma, C. Aggarwal and S. Medya, A survey on explain-

ability of graph neural networks, 2023. arXiv: 2306.01958.

[68] T. L. Paez, ‘Introduction to model validation.’, Sandia National Lab.(SNL-NM),

Albuquerque, NM (United States), Tech. Rep., 2008.

[69] R. P. Baum and W. Sheehan, In Search of Planet Vulcan: The Ghost in Newton’s

Clockwork. Springer, 2013.

[70] O. J. Eggen, ‘Vulcan’, Astronomical Society of the Pacific Leaflets, Vol. 6, No. 287,

p. 291, vol. 6, p. 291, 1953.

[71] T. Levenson, The Hunt for Vulcan. Random House, 2015.

[72] N. Straumann, General relativity. Springer Science & Business Media, 2012.

[73] E. Merzbacher, Quantum mechanics. John Wiley & Sons, 1998.

https://arxiv.org/abs/2102.03322
https://arxiv.org/abs/2209.07924
https://arxiv.org/abs/2011.04573
https://arxiv.org/abs/2306.01958

BIBLIOGRAPHY 211

[74] A. Zee, Einstein gravity in a nutshell. Princeton University Press, 2013, vol. 14.

[75] G. A. Holzapfel and R. W. Ogden, ‘Constitutive modelling of passive myocardium:

A structurally based framework for material characterization’, Philosophical Trans-

actions of the Royal Society of London A: Mathematical, Physical and Engineering

Sciences, vol. 367, no. 1902, pp. 3445–3475, 2009.

[76] A. Al-Mayah, Biomechanics of Soft Tissues: Principles and Applications. CRC,

2018.

[77] G. A. Holzapfel, Nonlinear solid mechanics: a continuum approach for engineering

science. Kluwer Academic Publishers Dordrecht, 2002.

[78] J. J. Shim, S. A. Maas, J. A. Weiss and G. A. Ateshian, ‘A formulation for fluid-

structure interactions in febio using mixture theory’, Journal of Biomechanical

Engineering, 2019.

[79] C. Zhang, H. Gao and X. Hu, ‘A multi-order smoothed particle hydrodynamics

method for cardiac electromechanics with the purkinje network’, Computer Meth-

ods in Applied Mechanics and Engineering, vol. 407, p. 115 885, 2023.

[80] W. Li, H. Gao, K. Mangion, C. Berry and X. Luo, ‘Apparent growth tensor of

left ventricular post myocardial infarction–in human first natural history study’,

Computers in Biology and Medicine, vol. 129, p. 104 168, 2020.

[81] J. Corral-Acero, F. Margara, M. Marciniak et al., ‘The ‘digital twin’ to enable the

vision of precision cardiology’, European Heart Journal, vol. 41(48), pp. 4556–4564,

2020.

[82] L. Paun, A. Schmidt, S. Mcginty and D. Husmeier, ‘Statistical inference for op-

timisation of drug delivery from stents’, in Proceedings of the 4th International

Conference on Statistics: Theory and Applications, 2022.

[83] S. Qian, D. Ugurlu, E. Fairweather, M. Strocchi, L. D. Toso, Y. Deng, G. Plank, E.

Vigmond, R. Razavi, A. Young, P. Lamata, M. Bishop and S. Niederer, ‘Developing

cardiac digital twins at scale: Insights from personalised myocardial conduction

velocity’, medRxiv, 2024.

BIBLIOGRAPHY 212

[84] R. Laubenbacher, B. Mehrad, I. Shmulevich and N. Trayanova, ‘Digital twins in

medicine’, Nature Computational Science, vol. 4, pp. 184–191, 2024.

[85] R. Rodriguez-Cantano, J. Sundnes and M. E. Rognes, ‘Uncertainty in cardiac

myofibre orientation and stiffnesses dominate the variability of left ventricle de-

formation response’, International Journal for Numerical Methods in Biomedical

Engineering, no. 35, e3178, 2018.

[86] G. D. Maso Talou, T. P. Babarenda Gamage, M. Sagar and M. P. Nash, ‘Deep

learning over reduced intrinsic domains for efficient mechanics of the left ventricle’,

Frontiers in Physics, vol. 8, 2020.

[87] J. O. Campos, J. Sundnes, R. W. dos Santos and B. M. Rocha, ‘Uncertainty

quantification and sensitivity analysis of left ventricular function during the full

cardiac cycle’, Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, vol. 378, no. 2173, p. 20 190 381, 2020.

[88] B. Milićević, M. Milošević, V. Simić, A. Preveden, L. Velicki, Đorđe Jakovljević, Z.

Bosnić, M. Pičulin, B. Žunkovič, M. Kojić and N. Filipović, ‘Machine learning and

physical based modeling for cardiac hypertrophy’, Heliyon, vol. 9, no. 6, e16724,

2023.

[89] A. Lazarus, H. Gao, X. Luo and D. Husmeier, ‘Improving cardio-mechanic inference

by combining in vivo strain data with ex vivo volume-pressure data’, Journal of

the Royal Statistical Society: Series C (Applied Statistics), 2022.

[90] F. Caforio, F. Regazzoni, S. Pagani, E. Karabelas, C. Augustin, G. Haase, G.

Plank and A. Quarteroni, Physics-informed neural network estimation of material

properties in soft tissue nonlinear biomechanical models, 2023. arXiv: 2312.09787

[cs.LG].

[91] A. Rabbani, H. Gao, A. Lazarus, D. Dalton, Y. Ge, K. Mangion, C. Berry and D.

Husmeier, ‘Image-based estimation of the left ventricular cavity volume using deep

learning and gaussian process with cardio-mechanical applications’, Computerized

Medical Imaging and Graphics, vol. 106, p. 102 203, 2023.

https://arxiv.org/abs/2312.09787
https://arxiv.org/abs/2312.09787

BIBLIOGRAPHY 213

[92] A. Lazarus, H. Gao, X. Luo and D. Husmeier, ‘Improving Cardio-Mechanic In-

ference by Combining in Vivo Strain Data with Ex Vivo Volume–Pressure Data’,

Journal of the Royal Statistical Society Series C: Applied Statistics, vol. 71, no. 4,

pp. 906–931, 2022.

[93] D. Dalton, A. Lazarus and D. Husmeier, ‘Comparative evaluation of different emu-

lators for cardiac mechanics’, 2020.

[94] S. Buoso, T. Joyce and S. Kozerke, ‘Personalising left-ventricular biophysical mod-

els of the heart using parametric physics-informed neural networks’, Medical Image

Analysis, vol. 71, p. 102 066, 2021.

[95] A. Lazarus, ‘Surrogate modelling of a patient-specific mathematical model of the

left ventricle in diastole’, PhD thesis, University of Glasgow, 2022.

[96] D. Bonomi, A. Manzoni and A. Quarteroni, ‘A matrix deim technique for model

reduction of nonlinear parametrized problems in cardiac mechanics’, Computer

Methods in Applied Mechanics and Engineering, vol. 324, pp. 300–326, 2017.

[97] L. Cicci, S. Fresca, A. Manzoni and A. Quarteroni, ‘Efficient approximation of

cardiac mechanics through reduced-order modeling with deep learning-based oper-

ator approximation’, International Journal for Numerical Methods in Biomedical

Engineering, vol. 40, no. 1, e3783, 2024.

[98] V. G. Satorras, E. Hoogeboom and M. Welling, E(n) equivariant graph neural

networks, 2021. arXiv: 2102.09844.

[99] Z. Hao, S. Liu, Y. Zhang, C. Ying, Y. Feng, H. Su and J. Zhu, Physics-informed

machine learning: A survey on problems, methods and applications, 2022. arXiv:

2211.08064.

[100] P. W. Battaglia, J. B. Hamrick, V. Bapst et al., Relational inductive biases, deep

learning, and graph networks, 2018. arXiv: 1806.01261.

[101] M. Raissi, P. Perdikaris and G. E. Karniadakis, ‘Physics-informed neural networks:

A deep learning framework for solving forward and inverse problems involving non-

linear partial differential equations’, Journal of Computational Physics, vol. 378,

pp. 686–707, 2019.

https://arxiv.org/abs/2102.09844
https://arxiv.org/abs/2211.08064
https://arxiv.org/abs/1806.01261

BIBLIOGRAPHY 214

[102] M. Raissi, P. Perdikaris and G. E. Karniadakis, ‘Machine learning of linear dif-

ferential equations using Gaussian processes’, Journal of Computational Physics,

vol. 348, pp. 683–693, 2017.

[103] K. P. Murphy, Probabilistic Machine Learning: An introduction. MIT Press, 2022.

[104] W. McCulloch and W. Pitts, ‘A logical calculus of ideas immanent in nervous

activity’, Bulletin of Mathematical Biophysics, vol. 5, pp. 127–147, 1943.

[105] F. Rosenblatt, ‘The perceptron: A probabilistic model for information storage and

organization in the brain’, Psychological Review, vol. 65, pp. 386–408, 1958.

[106] G. Cybenko, ‘Approximation by superpositions of a sigmoidal function’, Mathem-

atics of Control, Signals and Systems, vol. 2, no. 4, pp. 303–314, 1989.

[107] W. Buntine, ‘Machine learning after the deep learning revolution’, Frontiers of

Computer Science, vol. 14, pp. 1–3, 2020.

[108] S. R. Dubey, S. K. Singh and B. B. Chaudhuri, ‘Activation functions in deep learn-

ing: A comprehensive survey and benchmark’, Neurocomputing, vol. 503, pp. 92–

108, 2022.

[109] I. Goodfellow, Y. Bengio, A. Courville, and F. Bach, Deep Learning. MIT Press,

2017.

[110] Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli and Y. Bengio, Identi-

fying and attacking the saddle point problem in high-dimensional non-convex op-

timization, 2014. arXiv: 1406.2572 [cs.LG].

[111] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017. arXiv:

1412.6980.

[112] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals and G. E. Dahl, ‘Neural

message passing for quantum chemistry’, in Proceedings of the 34th International

Conference on Machine Learning, vol. PMLR 70, 2017.

[113] C. Stark, B. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers,

‘Biogrid: A general repository for interaction datasets’, Nucleic Acids Research,

vol. 34, pp. D535–D539, 2006.

https://arxiv.org/abs/1406.2572
https://arxiv.org/abs/1412.6980

BIBLIOGRAPHY 215

[114] P. Battaglia, R. Pascanu, M. Lai, D. Jimenez Rezende and K. Kavukcuoglu, ‘In-

teraction networks for learning about objects, relations and physics’, in Advances

in Neural Information Processing Systems, vol. 29, Curran Associates, Inc., 2016.

[115] H. Ohtsuki, C. Hauert, E. Lieberman, and M. Nowak, ‘A simple rule for the evolu-

tion of cooperation on graphs and social networks’, Nature, vol. 25, pp. 441–502–5,

2006.

[116] I. Konstas, V. Stathopoulos and J. M. Jose, ‘On social networks and collaborative

recommendation’, in Proceedings of the 32nd International ACM SIGIR Conference

on Research and Development in Information Retrieval, ser. SIGIR ’09, Boston,

MA, USA: Association for Computing Machinery, 2009, pp. 195–202.

[117] J. Bruna, W. Zaremba, A. Szlam and Y. LeCun, Spectral networks and locally

connected networks on graphs, 2014. arXiv: 1312.6203.

[118] T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional

networks, 2017. arXiv: 1609.02907.

[119] W. L. Hamilton, R. Ying and J. Leskovec, Inductive representation learning on

large graphs, 2018. arXiv: 1706.02216.

[120] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò and Y. Bengio, Graph

attention networks, 2018. arXiv: 1710.10903.

[121] M. Gori, G. Monfardini and F. Scarselli, ‘A new model for learning in graph do-

mains’, in Proceedings. 2005 IEEE International Joint Conference on Neural Net-

works, 2005., vol. 2, 2005, 729–734 vol. 2.

[122] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi and F. Piccialli,

‘Scientific machine learning through physics–informed neural networks: Where we

are and what’s next’, Journal of Scientific Computing, vol. 92, pp. 1573–7691,

2022.

[123] L. C. Evans, Partial Differential Equations. American Mathematical Society, 1993.

[124] L. Yang, X. Meng and G. E. Karniadakis, ‘B-PINNs: Bayesian physics-informed

neural networks for forward and inverse PDE problems with noisy data’, Journal

of Computational Physics, vol. 425, p. 109 913, 2021.

https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1710.10903

BIBLIOGRAPHY 216

[125] L. Yang, D. Zhang and G. E. Karniadakis, ‘Physics-informed generative adversarial

networks for stochastic differential equations’, SIAM Journal on Scientific Com-

puting, vol. 42, no. 1, A292–A317, 2020.

[126] Z. Xiang, W. Peng, W. Zhou and W. Yao, Hybrid finite difference with the physics-

informed neural network for solving pde in complex geometries, 2022. arXiv: 2202.

07926.

[127] J. Sirignano and K. Spiliopoulos, ‘Dgm: A deep learning algorithm for solving par-

tial differential equations’, Journal of Computational Physics, vol. 375, pp. 1339–

1364, 2018, ISSN: 0021-9991.

[128] A. D. Jagtap, E. Kharazmi and G. E. Karniadakis, ‘Conservative physics-informed

neural networks on discrete domains for conservation laws: Applications to forward

and inverse problems’, Computer Methods in Applied Mechanics and Engineering,

vol. 365, p. 113 028, 2020.

[129] E. Kharazmi, Z. Zhang and G. E. Karniadakis, ‘Hp-vpinns: Variational physics-

informed neural networks with domain decomposition’, Computer Methods in Ap-

plied Mechanics and Engineering, vol. 374, p. 113 547, 2021.

[130] C. E. Rasmussen and K. I. Williams, Gaussian Processes for Machine Learning.

Cambridge, MA.: MIT Press, 2006.

[131] R. J. Adler, The Geometry of Random Fields. Society for Industrial and Applied

Mathematics, 2010.

[132] A. Lavin, H. Zenil, B. Paige, D. Krakauer, J. Gottschlich, T. Mattson, A. Anandku-

mar, S. Choudry, K. Rocki, A. G. Baydin, C. Prunkl, B. Paige, O. Isayev, E.

Peterson, P. L. McMahon, J. Macke, K. Cranmer, J. Zhang, H. Wainwright, A.

Hanuka, M. Veloso, S. Assefa, S. Zheng and A. Pfeffer, Simulation intelligence:

Towards a new generation of scientific methods, 2021.

[133] C. Soize and R. Ghanem, ‘Physical Systems with Random Uncertainties: Chaos

Representations with Arbitrary Probability Measure’, SIAM Journal on Scientific

Computing, vol. 26, no. 2, pp. 395–410, 2004.

https://arxiv.org/abs/2202.07926
https://arxiv.org/abs/2202.07926

BIBLIOGRAPHY 217

[134] M. Shahriari, D. Pardo, B. Moser and F. Sobieczky, ‘A Deep Neural Network as

Surrogate Model for Forward Simulation of Borehole Resistivity Measurements’,

Procedia Manufacturing, International Conference on Industry 4.0 and Smart Man-

ufacturing (ISM 2019), vol. 42, pp. 235–238, 2020.

[135] V. Davies, U. Noè, A. Lazarus, H. Gao, B. Macdonald, C. Berry, X. Luo and D.

Husmeier, ‘Fast parameter inference in a biomechanical model of the left ventricle

by using statistical emulation’, Journal of the Royal Statistical Society. Series C,

Applied Statistics, vol. 68, no. 5, pp. 1555–1576, 2019.

[136] G. Sun and S. Wang, ‘A review of the artificial neural network surrogate modeling

in aerodynamic design’, Proceedings of the Institution of Mechanical Engineers,

Part G: Journal of Aerospace Engineering, vol. 233, no. 16, pp. 5863–5872, 2019.

[137] I. Pan, M. Babaei, A. Korre and S. Durucan, ‘Artificial Neural Network based

surrogate modelling for multi- objective optimisation of geological CO2 storage

operations’, Energy Procedia, 12th International Conference on Greenhouse Gas

Control Technologies, GHGT-12, vol. 63, pp. 3483–3491, 2014.

[138] R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, F. Alet,

S. Ravuri, T. Ewalds, Z. Eaton-Rosen, W. Hu, A. Merose, S. Hoyer, G. Holland,

O. Vinyals, J. Stott, A. Pritzel, S. Mohamed and P. Battaglia, ‘Learning skillful

medium-range global weather forecasting’, Science, vol. 382, no. 6677, pp. 1416–

1421, 2023.

[139] F. e Avila Belbute-Peres, T. D. Economon and J. Z. Kolter, ‘Combining differen-

tiable pde solvers and graph neural networks for fluid flow prediction’, in Interna-

tional Conference on Machine Learning, vol. 37, 2020.

[140] D. Mrowca, C. Zhuang, E. Wang, N. Haber, L. Fei-Fei, J. B. Tenenbaum and

D. L. K. Yamins, Flexible neural representation for physics prediction, 2018. arXiv:

1806.08047.

[141] M. Zheng, Y. Zhou, D. Ceylan and J. Barbič, A deep emulator for secondary motion

of 3d characters, 2021. arXiv: 2103.01261.

https://arxiv.org/abs/1806.08047
https://arxiv.org/abs/2103.01261

BIBLIOGRAPHY 218

[142] N. M. E. Ayad, S. Kaushik and V. M. Weaver, ‘Tissue mechanics, an important

regulator of development and disease’, Philosophical Transactions of the Royal

Society B: Biological Sciences, vol. 374, no. 1779, p. 20 180 215, 2019.

[143] A. Quarteroni, T. Lassila, S. Rossi and R. Ruiz-Baier, ‘Integrated heart—coupling

multiscale and multiphysics models for the simulation of the cardiac function’,

Computer Methods in Applied Mechanics and Engineering, vol. 314, pp. 345–407,

2017.

[144] K. Mangion, H. Gao, D. Husmeier, X. Luo and C. Berry, ‘Advances in compu-

tational modelling for personalised medicine after myocardial infarction’, Heart,

vol. 104, no. 7, pp. 550–557, 2018.

[145] M Peirlinck, F. S. Costabal, J Yao, J. Guccione, S Tripathy, Y Wang, D Ozturk, P

Segars, T. Morrison, S Levine et al., ‘Precision medicine in human heart modeling’,

Biomechanics and modeling in mechanobiology, vol. 20, no. 3, pp. 803–831, 2021.

[146] S. A. Niederer, M. S. Sacks, M. Girolami and K. Willcox, ‘Scaling digital twins

from the artisanal to the industrial’, Nature Computational Science, vol. 1, no. 5,

pp. 313–320, 2021.

[147] S. Marchesseau, S. Chatelin and H. Delingette, ‘Nonlinear biomechanical model of

the liver’, in Biomechanics of Living Organs, Elsevier, 2017, pp. 243–265.

[148] H. Gao, N. Qi, L. Feng, X. Ma, M. Danton, C. Berry and X. Luo, ‘Modelling mitral

valvular dynamics–current trend and future directions’, International Journal for

Numerical Methods in Biomedical Engineering, vol. 33, no. 10, e2858, 2017.

[149] G. A. Holzapfel and R. W. Ogden, ‘An arterial constitutive model accounting for

collagen content and cross-linking’, Journal of the Mechanics and Physics of Solids,

vol. 136, p. 103 682, 2020.

[150] S. Budday, T. C. Ovaert, G. A. Holzapfel, P. Steinmann and E. Kuhl, ‘Fifty shades

of brain: A review on the mechanical testing and modeling of brain tissue’, Archives

of Computational Methods in Engineering, vol. 27, no. 4, pp. 1187–1230, 2020.

[151] P. Wriggers, Nonlinear finite element methods. Springer Science & Business Media,

2008.

BIBLIOGRAPHY 219

[152] M. Alber, A. Buganza Tepole, W. R. Cannon, S. De, S. Dura-Bernal, K. Garikip-

ati, G. Karniadakis, W. W. Lytton, P. Perdikaris, L. Petzold and E. Kuhl, ‘Integ-

rating machine learning and multiscale modeling—perspectives, challenges, and

opportunities in the biological, biomedical, and behavioral sciences’, npj Digital

Medicine, vol. 2, no. 1, p. 115, 2019.

[153] A Olgac and B. Karlik, ‘Performance analysis of various activation functions in

generalized mlp architectures of neural networks’, International Journal of Artifi-

cial Intelligence And Expert Systems, vol. 1, pp. 111–122, 2011.

[154] Q. Tan, N. Liu and X. Hu, ‘Deep representation learning for social network ana-

lysis’, Frontiers in Big Data, vol. 2, 2019.

[155] K. Han, B. Lakshminarayanan and J. Liu, Reliable graph neural networks for drug

discovery under distributional shift, 2021. arXiv: 2111.12951.

[156] Z. Cui, K. Henrickson, R. Ke and Y. Wang, ‘Traffic graph convolutional recurrent

neural network: A deep learning framework for network-scale traffic learning and

forecasting’, IEEE Transactions on Intelligent Transportation Systems, 2019.

[157] A. Gruber, M. Gunzburger, L. Ju and Z. Wang, ‘A comparison of neural net-

work architectures for data-driven reduced-order modeling’, Computer Methods in

Applied Mechanics and Engineering, vol. 393, p. 114 764, 2022.

[158] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec and P. W. Battaglia,

‘Learning to simulate complex physics with graph networks’, in Proceedings of the

37th International Conference on Machine Learning, 2020.

[159] Y. Li, J. Wu, R. Tedrake, J. B. Tenenbaum and A. Torralba, Learning particle

dynamics for manipulating rigid bodies, deformable objects, and fluids, 2018.

[160] C. Yang, W. Gao, D. Wu and C. Wang, Learning to simulate unseen physical

systems with graph neural networks, 2022. arXiv: 2201.11976.

[161] J. L. Ba, J. R. Kiros and G. E. Hinton, Layer normalization, 2016. arXiv: 1607.

06450.

[162] H. P. Langtangen and A. Logg, Solving PDEs in Python. Springer International

Publishing, 2016.

https://arxiv.org/abs/2111.12951
https://arxiv.org/abs/2201.11976
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450

BIBLIOGRAPHY 220

[163] M. Casdagli, S. Eubank, J. Farmer and J. Gibson, ‘State space reconstruction in

the presence of noise’, Physica D: Nonlinear Phenomena, vol. 51, no. 1, pp. 52–98,

1991.

[164] A. Lazarus, D. Dalton, D. Husmeier and H. Gao, ‘Sensitivity analysis and inverse

uncertainty quantification for the left ventricular passive mechanics’, Biomechanics

and Modeling in Mechanobiology, pp. 1–30, 2022.

[165] H. M. Wang, H. Gao, X. Y. Luo, C. Berry, B. E. Griffith, R. W. Ogden and

T. J. Wang, ‘Structure-based finite strain modelling of the human left ventricle in

diastole’, International Journal for Numerical Methods in Biomedical Engineering,

vol. 29, no. 1, pp. 83–103, 2013.

[166] E. Naghavi, H. Wang, L. Fan, J. S. Choy, G. Kassab, S. Baek and L.-C. Lee, Rapid

estimation of left ventricular contractility with a physics-informed neural network

inverse modeling approach, 2024. arXiv: 2401.07331 [cs.CE].

[167] K.-T. Fang, R. Li and A. Sudjianto, Design and Modeling for Computer Experi-

ments (Computer Science & Data Analysis). Chapman & Hall/CRC, 2005.

[168] N. Kawel-Boehm, A. Maceira, E. R. Valsangiacomo-Buechel, J. Vogel-Claussen,

E. B. Turkbey, R. Williams, S. Plein, M. Tee, J. Eng and D. A. Bluemke, ‘Normal

values for cardiovascular magnetic resonance in adults and children’, Journal of

Cardiovascular Magnetic Resonance, vol. 17, no. 1, p. 29, 2015.

[169] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong and Q. He, A

comprehensive survey on transfer learning, 2019. arXiv: 1911.02685.

[170] Y. Dabiri, A. Van der Velden, K. L. Sack, J. S. Choy and G. S. Kassab, ‘Prediction

of Left Ventricular Mechanics Using Machine Learning’, Frontiers in Physics, vol. 7,

2019.

[171] H. Osnes and J. Sundnes, ‘Uncertainty analysis of ventricular mechanics using the

probabilistic collocation method’, IEEE transactions on bio-medical engineering,

vol. 59, no. 8, pp. 2171–2179, 2012.

https://arxiv.org/abs/2401.07331
https://arxiv.org/abs/1911.02685

BIBLIOGRAPHY 221

[172] U. Noè, A. Lazarus, H. Gao, V. Davies, B. Macdonald, K. Mangion, C. Berry,

X. Luo and D. Husmeier, ‘Gaussian process emulation to accelerate parameter

estimation in a mechanical model of the left ventricle: A critical step towards

clinical end-user relevance’, Journal of The Royal Society Interface, vol. 16, no. 156,

p. 20 190 114, 2019.

[173] L. Romaszko, A. Lazarus, H. Gao, A. Borowska, X. Luo and D. Husmeier, ‘Massive

dimensionality reduction for the left ventricular mesh’, International Conference

on Statistics: Theory and Applications (ICSTA), 2019.

[174] R. M. Zur, Y. Jiang, L. L. Pesce and K Drukker, ‘Noise injection for training

artificial neural networks: A comparison with weight decay and early stopping’,

Medical Physics, vol. 36, no. 10, pp. 4810–4818, 2009.

[175] C. M. Bishop, ‘Training with Noise is Equivalent to Tikhonov Regularization’,

Neural Computation, vol. 7, no. 1, pp. 108–116, 1995.

[176] W. Zhang, D. S. Li, T. Bui-Thanh and M. S. Sacks, ‘Simulation of the 3D hy-

perelastic behavior of ventricular myocardium using a finite-element based neural-

network approach’, Computer Methods in Applied Mechanics and Engineering,

vol. 394, p. 114 871, 2022.

[177] H. Gao, M. J. Zahr and J.-X. Wang, ‘Physics-informed graph neural Galerkin

networks: A unified framework for solving PDE-governed forward and inverse

problems’, Computer Methods in Applied Mechanics and Engineering, vol. 390,

p. 114 502, 2022.

[178] J. Heek, A. Levskaya, A. Oliver, M. Ritter, B. Rondepierre, A. Steiner and M. van

Zee, Flax: A neural network library and ecosystem for JAX, version 0.4.0, 2020.

[179] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.

Cournapeau, M. Brucher, M. Perrot and E. Duchesnay, ‘Scikit-learn: Machine

learning in Python’, Journal of Machine Learning Research, vol. 12, pp. 2825–

2830, 2011.

BIBLIOGRAPHY 222

[180] H. Lee and I. S. Kang, ‘Neural algorithm for solving differential equations’, Journal

of Computational Physics, vol. 91, no. 1, pp. 110–131, 1990.

[181] A. Meade and A. Fernandez, ‘The numerical solution of linear ordinary differential

equations by feedforward neural networks’, Mathematical and Computer Modelling,

vol. 19, no. 12, pp. 1–25, 1994.

[182] I. Lagaris, A. Likas and D. Fotiadis, ‘Artificial neural networks for solving ordinary

and partial differential equations’, IEEE Transactions on Neural Networks, vol. 9,

no. 5, pp. 987–1000, 1998.

[183] T. Graepel, ‘Solving Noisy Linear Operator Equations by Gaussian Processes:

Application to Ordinary and Partial Differential Equations’, in Proceedings of The

20th International Conference on Machine Learning, vol. 1, 2003, pp. 234–241.

[184] S. Särkkä, ‘Linear operators and stochastic partial differential equations in gaussian

process regression’, in Artificial Neural Networks and Machine Learning – ICANN

2011, T. Honkela, W. Duch, M. Girolami and S. Kaski, Eds., Springer Berlin

Heidelberg, 2011, pp. 151–158.

[185] E Weinan and B. Yu, ‘The deep ritz method: A deep learning-based numerical

algorithm for solving variational problems’, Communications in Mathematics and

Statistics, vol. 1, no. 6, pp. 1–12, 2018.

[186] V. M. Nguyen-Thanh, X. Zhuang and T. Rabczuk, ‘A deep energy method for finite

deformation hyperelasticity’, European Journal of Mechanics - A/Solids, vol. 80,

p. 103 874, 2020.

[187] J. He, D. Abueidda, S. Koric and I. Jasiuk, ‘On the use of graph neural networks

and shape-function-based gradient computation in the deep energy method’, Inter-

national Journal for Numerical Methods in Engineering, vol. 124, no. 4, pp. 864–

879, 2023.

BIBLIOGRAPHY 223

[188] G. Kissas, Y. Yang, E. Hwuang, W. R. Witschey, J. A. Detre and P. Perdikaris,

‘Machine learning in cardiovascular flows modeling: Predicting arterial blood pres-

sure from non-invasive 4D flow MRI data using physics-informed neural networks’,

Computer Methods in Applied Mechanics and Engineering, vol. 358, p. 112 623,

2020.

[189] A. Kovacs, L. Exl, A. Kornell, J. Fischbacher, M. Hovorka, M. Gusenbauer, L.

Breth, H. Oezelt, M. Yano, N. Sakuma, A. Kinoshita, T. Shoji, A. Kato and T.

Schrefl, ‘Conditional physics informed neural networks’, Communications in Non-

linear Science and Numerical Simulation, vol. 104, p. 106 041, 2022.

[190] M. Islam, M. S. H. Thakur, S. Mojumder and M. N. Hasan, ‘Extraction of material

properties through multi-fidelity deep learning from molecular dynamics simula-

tion’, Computational Materials Science, vol. 188, p. 110 187, 2021.

[191] M. Destrade, L. Dorfmann and G. Saccomandi, ‘The ogden model of rubber mech-

anics: 50 years of impact on nonlinear elasticity’, Philosophical Transactions of the

Royal Society A, vol. 380, no. 2234, p. 20 210 332, 2022.

[192] J. Guccione, K. Costa and A. McCulloch, ‘Finite element stress analysis of left

ventricular mechanics in the beating dog heart’, Journal of biomechanics, vol. 28,

no. 10, pp. 1167–1177, 1995.

[193] E. D. S. Neto, F. A. Pires and D. Owen, ‘F-bar-based linear triangles and tetra-

hedra for finite strain analysis of nearly incompressible solids. part i: Formulation

and benchmarking’, International Journal for Numerical Methods in Engineering,

vol. 62, no. 3, pp. 353–383, 2005.

[194] J. T. Barron, Continuously differentiable exponential linear units, 2017. arXiv:

1704.07483.

[195] I. Babuschkin, K. Baumli, A. Bell et al., The DeepMind JAX Ecosystem, 2020.

[196] J. Zhang and S. Chauhan, ‘Fast computation of soft tissue thermal response under

deformation based on fast explicit dynamics finite element algorithm for surgical

simulation’, Computer Methods and Programs in Biomedicine, vol. 187, p. 105 244,

2020.

https://arxiv.org/abs/1704.07483

BIBLIOGRAPHY 224

[197] W. Kratzer, V. Fritz, R. A. Mason, M. M. Haenle, V. Kaechele and R. S. Group,

‘Factors affecting liver size’, Journal of Ultrasound in Medicine, vol. 22, no. 11,

pp. 1155–1161, 2003.

[198] H. Liu, J. S. Soares, J. Walmsley, D. S. Li, S. Raut, R. Avazmohammadi, P. Iaizzo,

M. Palmer, J. H. Gorman, R. C. Gorman et al., ‘The impact of myocardial com-

pressibility on organ-level simulations of the normal and infarcted heart’, Scientific

reports, vol. 11, no. 1, pp. 1–15, 2021.

[199] O. Bernard, A. Lalande, C. Zotti, F. Cervenansky, X. Yang, P.-A. Heng, I. Cetin,

K. Lekadir, O. Camara, M. A. G. Ballester et al., ‘Deep learning techniques for

automatic mri cardiac multi-structures segmentation and diagnosis: Is the problem

solved?’, IEEE transactions on medical imaging, vol. 37, no. 11, pp. 2514–2525,

2018.

[200] S. H. Sheen, E. Larionov and D. K. Pai, ‘Volume preserving simulation of soft

tissue with skin’, Proceedings of the ACM on Computer Graphics and Interactive

Techniques, vol. 4, no. 3, pp. 1–23, 2021.

[201] P. Reiser, M. Neubert, A. Eberhard, L. Torresi, C. Zhou, C. Shao, H. Metni, C.

van Hoesel, H. Schopmans, T. Sommer et al., ‘Graph neural networks for materials

science and chemistry’, Communications Materials, vol. 3, no. 1, p. 93, 2022.

[202] L. Pegolotti, M. R. Pfaller, N. L. Rubio, K. Ding, R. B. Brufau, E. F. Darve and

A. L. Marsden, Learning reduced-order models for cardiovascular simulations with

graph neural networks, 2023. ArXiv: abs/2303.07310.

[203] E. Haghighat, D. Amini and R. Juanes, ‘Physics-informed neural network simula-

tion of multiphase poroelasticity using stress-split sequential training’, Computer

Methods in Applied Mechanics and Engineering, vol. 397, p. 115 141, 2022.

[204] J. He, L. Li, J. Xu and C. Zheng, ‘ReLU Deep Neural Networks and Linear Finite

Elements’, Journal of Computational Mathematics, vol. 38, no. 3, pp. 502–527,

2020.

abs/2303.07310

BIBLIOGRAPHY 225

[205] G. P. P. Pun, R. Batra, R. Ramprasad and Y. Mishin, ‘Physically informed artificial

neural networks for atomistic modeling of materials’, Nature Communications,

vol. 10, no. 1, p. 2339, 2019.

[206] S. Cai, Z. Mao, Z. Wang, M. Yin and G. E. Karniadakis, Physics-informed neural

networks (pinns) for fluid mechanics: A review, 2021. arXiv: 2105.09506.

[207] B. Lütjens, C. H. Crawford, M. Veillette and D. Newman, Pce-pinns: Physics-

informed neural networks for uncertainty propagation in ocean modeling, 2021.

arXiv: 2105.02939.

[208] S. Wang, X. Yu and P. Perdikaris, When and why pinns fail to train: A neural

tangent kernel perspective, 2020. arXiv: 2007.14527.

[209] E. Solak, R. Murray-Smith, W. Leithead, D. Leith and C. Rasmussen, ‘Derivative

observations in gaussian process models of dynamic systems’, in Advances in Neural

Information Processing Systems, vol. 15, MIT Press, 2002.

[210] M. Alvarez, D. Luengo and N. Lawrence, ‘Linear latent force models using gaus-

sian processes’, IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 35, no. 11, pp. 2693–2705, 2013.

[211] A. Melkumyan, ‘Operator induced multi-task gaussian processes for solving differ-

ential equations’, in Advances in Neural Information Processing Systems Workshop:

New Directions in Multiple Kernel Learning, MIT Press, 2012.

[212] F Dondelinger, M Filippone, S Rogers and D Husmeier, ‘ODE parameter infer-

ence using adaptive gradient matching with Gaussian processes’, in Proceedings of

The 16th International Conference on Artificial Intelligence and Statistics, 2013,

pp. 216–228.

[213] M. Tan, ‘Gaussian process modeling with boundary information’, Statistica Sinica,

2016.

[214] Z. Li and M. H. Y. Tan, ‘Improving Gaussian Process Emulators with Boundary

Information’, in Artificial Intelligence, Big Data and Data Science in Statistics:

Challenges and Solutions in Environmetrics, the Natural Sciences and Technology,

Cham: Springer International Publishing, 2022, pp. 171–192.

https://arxiv.org/abs/2105.09506
https://arxiv.org/abs/2105.02939
https://arxiv.org/abs/2007.14527

BIBLIOGRAPHY 226

[215] M. Lange-Hegermann, ‘Linearly Constrained Gaussian Processes with Boundary

Conditions’, in Proceedings of The 24th International Conference on Artificial In-

telligence and Statistics, PMLR, 2021, pp. 1090–1098.

[216] L. Ding, S. Mak and C. F. J. Wu, Bdrygp: A new gaussian process model for

incorporating boundary information, 2019. arXiv: 1908.08868.

[217] A. Solin and M. Kok, ‘Know your boundaries: Constraining Gaussian processes

by variational harmonic features’, in Proceedings of Machine Learning Research,

vol. 89, 2019, pp. 2193–2202.

[218] M. Gulian, A. Frankel and L. Swiler, ‘Gaussian process regression constrained by

boundary value problems’, Computer Methods in Applied Mechanics and Engin-

eering, vol. 388, p. 114 117, 2022.

[219] H. Sheng and C. Yang, ‘PFNN: A Penalty-Free Neural Network Method for Solv-

ing a Class of Second-Order Boundary-Value Problems on Complex Geometries’,

Journal of Computational Physics, vol. 428, p. 110 085, 2021.

[220] N. Sukumar and A. Srivastava, ‘Exact imposition of boundary conditions with

distance functions in physics-informed deep neural networks’, Computer Methods

in Applied Mechanics and Engineering, vol. 389, p. 114 333, 2022.

[221] S. Liu, Z. Hao, C. Ying, H. Su, J. Zhu and Z. Cheng, A Unified Hard-Constraint

Framework for Solving Geometrically Complex PDEs, 2022.

[222] K. P. Murphy, Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023.

[223] M. Kanagawa, P. Hennig, D. Sejdinovic and B. K. Sriperumbudur, Gaussian Pro-

cesses and Kernel Methods: A Review on Connections and Equivalences, 2018.

[224] J. Chen, Z. Chen, C. Zhang and C. F. Jeff Wu, ‘Apik: Active physics-informed kri-

ging model with partial differential equations’, SIAM/ASA Journal on Uncertainty

Quantification, vol. 10, no. 1, pp. 481–506, 2022.

[225] I. Steinward and A. Christmann, Support Vector Machines (Information Science

and Statistics). New York, NY: Springer New York, 2008.

[226] N. Aronszajn, ‘Theory of Reproducing Kernels’, Transactions of the American

Mathematical Society, vol. 68, no. 3, pp. 337–404, 1950.

https://arxiv.org/abs/1908.08868

BIBLIOGRAPHY 227

[227] M. �. Searcóid, Metric Spaces. London: Springer London, 2007.

[228] C. A. Micchelli, Y. Xu and H. Zhang, ‘Universal Kernels’, Journal of Machine

Learning Research, vol. 7, no. 95, pp. 2651–2667, 2006.

[229] R. M. Neal, Bayesian Learning for Neural Networks. Springer, 1996.

[230] J. Zhang, S. Zhang and G. Lin, PAGP: A physics-assisted Gaussian process frame-

work with active learning for forward and inverse problems of partial differential

equations, 2022. arXiv: 2204.02583.

[231] L. Lu, X. Meng, Z. Mao and G. E. Karniadakis, ‘DeepXDE: A deep learning library

for solving differential equations’, SIAM Review, vol. 63, no. 1, pp. 208–228, 2021.

[232] D. Millán, N. Sukumar and M. Arroyo, ‘Cell-based maximum-entropy approxim-

ants’, Computer Methods in Applied Mechanics and Engineering, vol. 284, pp. 712–

731, 2015.

[233] A. Biswas and V. Shapiro, ‘Approximate distance fields with non-vanishing gradi-

ents’, Graphical Models, vol. 66, no. 3, pp. 133–159, 2004.

[234] R. Leiteritz and D. Pflüger, How to Avoid Trivial Solutions in Physics-Informed

Neural Networks, 2021.

[235] M. Raissi, P. Perdikaris and G. E. Karniadakis, ‘Numerical Gaussian Processes for

Time-Dependent and Nonlinear Partial Differential Equations’, SIAM Journal on

Scientific Computing, vol. 40, no. 1, A172–A198, 2018.

[236] D. Long, Z. Wang, A. Krishnapriyan, R. Kirby, S. Zhe and M. Mahoney, AutoIP:

A United Framework to Integrate Physics into Gaussian Processes, 2022.

[237] M. Titsias, ‘Variational learning of inducing variables in sparse gaussian processes’,

in Proceedings of the Twelth International Conference on Artificial Intelligence and

Statistics, ser. Proceedings of Machine Learning Research, vol. 5, PMLR, 2009,

pp. 567–574.

[238] J. Hensman, N. Fusi and N. D. Lawrence, Gaussian processes for big data, 2013.

arXiv: 1309.6835.

https://arxiv.org/abs/2204.02583
https://arxiv.org/abs/1309.6835

BIBLIOGRAPHY 228

[239] A. V. Vecchia, ‘Estimation and model identification for continuous spatial pro-

cesses’, Journal of the Royal Statistical Society. Series B (Methodological), vol. 50,

no. 2, pp. 297–312, 1988.

[240] A. C. Annie Sauer and R. B. Gramacy, ‘Vecchia-approximated deep gaussian pro-

cesses for computer experiments’, Journal of Computational and Graphical Stat-

istics, vol. 32, no. 3, pp. 824–837, 2023.

[241] S. Sarkka, A. Solin and J. Hartikainen, ‘Spatiotemporal learning via infinite-

dimensional bayesian filtering and smoothing: A look at gaussian process regression

through kalman filtering’, IEEE Signal Processing Magazine, vol. 30, no. 4, pp. 51–

61, 2013.

[242] K. Gilbert, W. Bai, C. Mauger, P. Medrano-Gracia, A. Suinesiaputra, A. M. Lee,

M. M. Sanghvi, N. Aung, S. K. Piechnik, S. Neubauer, S. E. Petersen, D. Rueck-

ert and A. A. Young, ‘Independent Left Ventricular Morphometric Atlases Show

Consistent Relationships with Cardiovascular Risk Factors: A UK Biobank Study’,

Scientific Reports, vol. 9, no. 1, p. 1130, 2019.

[243] L. N. Smith, A disciplined approach to neural network hyper-parameters: Part 1 –

learning rate, batch size, momentum, and weight decay, 2018. arXiv: 1803.09820.

https://arxiv.org/abs/1803.09820

	Thesis cover sheet
	2024DaltonPhD
	Abstract
	Acknowledgements
	Declaration
	Introduction
	Mathematical Modelling
	Computer Simulation
	Emulation
	Model validation
	Soft-tissue mechanics: simulation and emulation
	Physics-Informed machine learning
	Background Methods
	Fully-connected neural networks
	Graph neural networks
	Physics-informed neural networks
	Gaussian process regression

	Thesis outline

	Emulation of Cardiac Mechanics using Graph Neural Networks
	Introduction
	Contributions

	Methods
	General Mechanics and Graph Representation Framework
	Neural Networks
	Augmented Graph Generation
	GNN Emulation Architecture

	Beam Deformation Application
	Mathematical Details and Data Generation
	Implementation Details
	Results and Discussion

	Passive Left Ventricle Mechanics Application
	Mathematical Details
	Simulation Data Generation
	Existing Work on Cardiac-Mechanic Emulation
	Implementation Details
	Results
	Discussion

	Conclusion
	Data and Code Availability

	Physics-Informed Graph Neural Network Emulation of Soft-Tissue Mechanics
	Introduction
	Contributions

	Methods
	Mechanics Framework
	Numerical Methods
	Graph Neural Network Surrogate Model
	Implementation Details

	Numerical Experiments
	Data-Driven and Physics-Informed Training Comparison
	TwistingCube
	Liver
	LeftVentricle

	Discussion
	Data-Driven and Physics-Informed Training Comparison
	Computational Costs
	Liver and LeftVentricle Emulation Results
	Limitations and Future Work

	Conclusion

	Hard-constrained Gaussian processes for robust physics-informed learning of linear PDEs
	Introduction
	Motivation
	Related Work
	Contributions

	Gaussian process regression
	GPR under Linear PDE constraints
	Hard-Enforcement of Dirichlet Boundary Conditions
	Example - unit cube domain

	Reproducing-Kernel Hilbert Space Analysis
	Connection to Neural Networks
	General Boundary Conditions
	Extension to higher dimensional domains

	Numerical Experiments
	Poisson Equation
	Heat Equation
	Wave Equation
	Advection-Diffusion Equation
	Helmholtz Equation

	Conclusion

	Summary
	Future Work

	Appendices
	Appendix for Chapter 2
	Additional Beam Emulation Results
	Additional LV Emulation Results
	Synthetic LV Geometry Generation

	Appendix for Chapter 3
	Effect of learning rate on emulator training
	Additional data-driven and physics-informed emulation experiments
	Comparison of Neo-Hookean and Holzapfel-Ogden material models
	Application to biventricle cardiac geometry
	Emulation on new LV geometry

	Appendix for Chapter 4
	Proof of Lemma 4.4.1
	Proof of Theorem 4.5.3
	Proof of Theorem 4.6.2

