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Abstract 

Psychotic disorders such as schizophrenia are a family of severe psychiatric 

conditions which have been associated with substantial disease burden for 

patients, caregivers, and healthcare systems. Psychotic disorders are typically 

preceded by a prodromal phase, where psychotic symptoms are present but 

below the diagnostic threshold. The clinical at-risk state for psychosis can 

detect this state, but not all individuals who meet criteria for the at-risk state 

will ultimately develop psychosis. Being able to accurately predict clinical 

trajectories could help clinicians assign the most appropriate treatments to 

patients at the earliest signs of illness, thus reducing the risk of future distress 

and disability of patients. However, it is not yet known exactly which 

alterations characterise psychosis risk. 

Identifying markers of emerging and early-stage psychosis is therefore an 

important step in the prediction of clinical outcomes. This work aims at 

identifying markers of psychosis from multiple data modalities, from 

behavioural to neuroanatomical and functional neurological features. It shows 

an association between cognitive function and global functioning, and 

implicates an important role for the hippocampus and the brain networks it is 

embedded in as markers of early-stage psychosis. Furthermore, another 

candidate marker thought to explain alterations to the ventricular system, the 

choroid plexus, is rejected. 

Altogether, the results indicate that functional outcomes in individuals at 

clinical high-risk for psychosis are predicted by cognition, but are also 

relatively stable over time. Here, cognitive deficits are associated with 

psychosis risk, whereas individuals with other psychiatric problems who do not 

meet clinical high-risk for psychosis criteria do not show the same 

impairments. In the neuroanatomical domain, hippocampal volumes are 

decreased in early psychosis, but not in individuals with other psychiatric 

problems, thus indicating specificity to psychosis. While changes to the 

hippocampal surface are more regionally confined in clinical high-risk states 

for psychosis, the majority of the surface shows contraction in first-episode 

psychosis. The choroid plexus, however, is not associated with either psychosis 

risk, or early-stage psychosis and chronic schizophrenia. Again highlighting a 

key role for the hippocampus, functional neuroimaging shows that connectivity 

between the frontal cortex and hippocampus is lower in early-stage psychosis, 
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while the overall role of the hippocampus in the network differs between 

illness stages. No such effects are seen for the clinical control group.  

While the identified cognitive, neuroanatomical and functional neuroimaging 

markers appear to be specific to psychosis in the studied sample, they do not 

predict clinical outcomes particularly in clinical high-risk markers for psychosis. 

This suggests that the contributions of each data modality are unique, 

meaning that the results from this thesis could be used to plan future studies 

in which multimodal prediction models using these markers may be explored.  
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Chapter 0: Introduction 

Introduction to Psychosis and Schizophrenia 

Psychotic disorders such as schizophrenia (ScZ) are a group of severe 

psychiatric conditions and a major cause of disability worldwide (Solmi, 

Seitidis, et al., 2023). ScZ has shown increased global prevalence over the 

past few decades (Solmi, Seitidis, et al., 2023), and is associated with 

numerous medical comorbidities as well as significantly increased all-cause 

mortality (Ali, Santomauro, Ferrari, & Charlson, 2022; Lu et al., 2022) and 

suicide (X. Huang, Fox, Ribeiro, & Franklin, 2018). Furthermore, patients with 

ScZ commonly experience decreased quality of life, especially in the social 

domain (Desalegn, Girma, & Abdeta, 2020), and cognitive disability (Schaefer, 

Giangrande, Weinberger, & Dickinson, 2013). Accordingly, psychotic disorders 

are associated with major disease burden and substantial costs to healthcare 

systems (Crespo-Facorro et al., 2021).  

In the Diagnostic and Statistical Manual, 5th edition (DSM-5), the following 

psychotic disorders are defined: schizophrenia, schizoaffective disorder, 

schizophreniform disorder, delusional disorder, brief psychotic disorder, and it 

further includes psychosis secondary to drug misuse or another medical 

condition (American Psychiatric Association & Association, 2013; Bhati, 2013; 

Tandon et al., 2013). For a diagnosis of ScZ, an individual must experience at 

least two of the following symptoms: hallucinations, delusions, speech 

disturbances, grossly disorganised behaviour and negative symptoms; and 

these symptoms must be present for at least one month. In schizoaffective 

disorder, psychotic symptoms are further associated with mood disturbances 

such as depressed mood. Brief psychotic disorder requires symptoms to 

resolve within one month, and schizophreniform disorder requires the 

condition to last more than one month but less than six. Delusional disorder is 

defined by the presence of unusual beliefs which are resistant to change in the 

face of contradicting evidence for at least one month (American Psychiatric 

Association & Association, 2013).    

Common across psychotic disorders is a disruption in the patients’ 

understanding and relationship with themselves and reality (Bhati, 2013; 

Tandon et al., 2013). Although the concept of psychosis has undergone several 

historical shifts (Bürgy, 2008), contemporary frameworks and historical 
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frameworks generally share this common core. In contemporary research, 

clinical symptoms are further divided into positive, negative, and cognitive or 

disorganised symptoms (Kay, Fiszbein, & Opler, 1987). Here, positive 

symptoms refer to experiences which are absent in individuals without 

psychosis, such as hallucinations and delusions. Negative symptoms represent 

a reduction or absence of a function which is normally present, examples of 

this include flatted affect or reduced speech. Finally, cognitive and 

disorganised symptoms reflect a decline in cognitive function relative to a pre-

morbid baseline.  

Illness stages are often divided into premorbid, prodromal, early-stage illness, 

and chronic psychosis. Each stage is characterised by a set of risk and disease 

markers, which theories of schizophrenia draw from to explain the 

development and progression of psychotic disorders. 

 

Major Theories of Schizophrenia and Psychosis 

ScZ-like clinical cases have been documented since ancient times, but the 

development of concepts of ScZ and psychosis are relatively recent (Jablensky, 

2010). Two particularly influential historical perspectives are those of Kraepelin 

and Bleuler (Bleuler, 1931; Kraepelin, 1919), whose views still influence 

contemporary theory (Bürgy, 2008; Jablensky, 2010). Historically, ScZ has 

been conceptualised as both a developmental and a degenerative disorder. 

Kraepelin introduced the concept of dementia praecox (Adityanjee, Aderibigbe, 

Theodoridis, & Vieweg, 1999; Kraepelin, 1919), whereby ScZ was described as 

an early-onset form of dementia. Here, familial risk was noted, which was 

thought to reflect a hereditary component. Further, ScZ was thought of as a 

degenerative, incurable illness involving lesions to the cortex and other brain 

regions. Although patients often experienced periods of remission, the 

degenerative process would eventually resume, and it would do so much 

sooner than in other conditions classed as dementias, where old age is 

typically a main risk factor (Adityanjee et al., 1999).  

Bleuler on the other hand argued that schizophrenia was not always 

degenerative, and argued that the concept of ScZ should be broad to 

encompass a range of clinical presentations. Bleuler instead emphasised the 

loosening of mental associations and flattened affect over a progressive course 
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of illness and overt psychotic symptoms such as hallucinations (Bleuler, 1931). 

He further distinguished between two types of ScZ depending on their clinical 

presentation and clinical outcomes, indicating that some patients may recover 

over time whereas others do not. Like Kraepelin, Bleuler argued that 

pathological processes in the brain were the underlying cause behind psychotic 

disorders (Adityanjee et al., 1999).  

Modern developments in ScZ research further emphasised the importance of 

brain changes in ScZ and other psychotic disorders. Several prominent 

theories of psychosis further highlight the role of specific neurotransmitter 

systems in disease development and progression. Here, elements of many 

theories can broadly be classed as neurodegenerative or neurodevelopmental. 

In the former case, it is assumed that degeneration occurs over time, whereas 

in the latter case brain changes are assumed to emerge early in development 

and remain relatively stable. Many frameworks incorporate both of these 

elements, but differently so for different brain structures and stages of illness. 

 

The Dopamine Hypothesis 

Following the discovery that dopaminergic antagonists reduced psychotic 

symptoms (Seeman & Lee, 1975), the development of the dopamine 

hypothesis began. In its simplest form, the dopamine hypothesis assumes that 

excessive dopaminergic neurotransmission underlies the positive symptoms of 

psychosis (Benes, 2009; Howes & Kapur, 2009; Seeman & Lee, 1975). In line 

with this idea, it has been observed that baseline occupancy of dopamine D2 

receptors is increased in ScZ (Abi-Dargham et al., 2000), which likely reflects 

increased baseline activity at these receptor sites. Similarly, dopamine 

agonists such as amphetamines can be used to induce psychosis-like 

symptoms in non-clinical human participants as well as animal models (Bell, 

1965).  

The dopamine system is involved in motor control, reinforcement learning, 

cognition, and the processing of salience – multiple of these processes have 

shown alterations in ScZ patients (Björklund & Dunnett, 2007; Winton-Brown, 

Fusar-Poli, Ungless, & Howes, 2014). Dopamine receptors are typically 

separated into two classes, with D1 and D5 receptors in one class (D1-like), 

and D2-D4 in the other (D2-like). D1-like receptors are primarily postsynaptic, 

and are found in the striatum and subcortex (including the nucleus 
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accumbens, substantia nigra, caudate and putamen, thalamus, subthalamic 

nucleus) and hippocampus, whereas D2-like receptors are predominantly 

presynaptic and can be found in the substantia nigra and ventral tegmental 

area, hippocampus, amygdala, thalamus and cerebellum, as well as outside of 

the brain in the kidneys and vascular system (Jackson & Westlind-Danielsson, 

1994; Vallone, Picetti, & Borrelli, 2000). 

The primary dopamine pathways are the nigrostriatal, mesocortical, 

mesolimbic, and tuberoinfundibular pathways (Björklund & Dunnett, 2007; 

Vallone et al., 2000). The dopamine hypothesis of ScZ generally proposes that 

psychotic symptoms emerge when dopaminergic activity in striatal regions 

becomes abnormally elevated, and that suppressing striatal dopamine activity 

with D2 antagonist drugs reduces these symptoms (Howes & Kapur, 2009; 

Winton-Brown et al., 2014). Excess dopaminergic activity in the striatum is 

hypothesised to produce aberrant salience, thus giving rise to abnormal 

percepts and beliefs in the form of hallucinations and delusions (Winton-Brown 

et al., 2014). 

 

The Glutamate Hypothesis 

While dopamine antagonists reliably reduce psychotic symptoms and the 

efficacy of antipsychotic drugs is related to their ability to antagonise D2 

receptors (Kapur & Seeman, 2000), it has been observed that administering 

these drugs preventatively does not decrease individuals’ risk of developing a 

psychotic disorder (Zhang et al., 2020). It has thus been proposed that 

although excessive striatal dopamine activity is a clinical feature of acute 

psychosis, it may be a consequence of the disease process rather than its 

cause. The glutamate hypothesis proposes that disruptions in the excitatory-

inhibitory balance related to glutamatergic receptors may instead drive the 

disease process and generate striatal hyperdopaminergia (Benes, 2009; 

Moghaddam & Javitt, 2012). Based on the psychosis-like effects of dissociative 

drugs such as ketamine or phencyclidine which act on N-methyl-D-aspartate 

(NMDA) receptors, NMDA receptor hypofunction has been theorised as an 

aetiological factor behind psychosis (Farber, 2003).  

Glutamate is the most prominent excitatory neurotransmitter in the human 

brain (Platt, 2007). Excess glutamatergic activity can lead to cell death 

(excitotoxicity), and may occur for a wide range of reasons including traumatic 
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brain injury, vascular conditions, or neurodegenerative disease (Lau & 

Tymianski, 2010). Major glutamate receptor classes include NMDA receptors, 

AMPA receptors, and metabotropic receptors; NMDA receptors in particular 

may play an important role in maintaining the normal excitatory-inhibitory 

balance in the brain and have been implicated in conditions of excessive 

excitation such as seizures or excitotoxicity (Lau & Tymianski, 2010; Platt, 

2007). In rodent models, NMDA receptors in the hippocampus, cortex, 

thalamus and striatum show abnormal activity in response to oxygen 

deprivation, whereby the hippocampus appears to be particularly susceptible 

to cell damage induced by the resulting excitotoxicity (Lau & Tymianski, 

2010). Besides their involvement in such disease processes, NMDA receptors 

may play an important role in maintaining normal cognitive function, and their 

suppression produces cognitive deficits resembling those seen in ScZ (Rowland 

et al., 2005). 

The hippocampus, a brain region which has shown alterations in both ScZ 

patients and their unaffected relatives (Boos, Aleman, Cahn, Pol, & Kahn, 

2007; Ho & Magnotta, 2010), is proposed as a key aetiological site: Here, 

NMDA receptor hypofunction produces excessive activation of the 

hippocampus, which in turn causes a decline in its regulatory function over 

striatal dopamine (Lodge & Grace, 2006; McHugo et al., 2019). This in turn 

leads to excitotoxic volume loss of the hippocampus itself, and striatal 

dopamine neurotransmission becomes disinhibited, giving rise to the 

disruptions in salience also proposed by the dopamine hypothesis of ScZ 

(Grace, 2012; Lodge & Grace, 2006). Importantly, the glutamate hypothesis 

implies that pathogenic processes may already be active before the individual 

patient develops clinically overt psychosis, indicating that risk markers could 

be used at an earlier stage to predict clinical outcomes and progression. 

 

Alternative Hypotheses 

Many hypotheses have been developed to highlight the involvement of 

different brain systems in psychosis, such as the serotonergic system (Eggers, 

2013), cholinergic system (Raedler, Bymaster, Tandon, Copolov, & Dean, 

2007), or the γ-Aminobutyric acid (GABA) system (Fujihara, 2023). Other 

theoretical frameworks emphasise non-biological explanations, such as 

societal structures (Bhattacahrjee et al., 2011) or social isolation (Jaco, 1954). 
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While often presented separately, many of these theories are not mutually 

exclusive, nor competitors to the dopamine and glutamate hypotheses, but 

rather describe different contributions to psychosis risk and aetiology. For 

instance, alterations to the overall excitatory-inhibitory balance will likely 

affect multiple neurotransmitter systems, and each may make its own unique 

contributions to psychosis symptoms and aetiology. Furthermore, social 

contributions to psychosis risk likely also affect multiple brain systems (see for 

example Xiong, Hong, Liu, and Zhang (2023)), so that neuroscientific and 

sociological hypotheses largely describe different but compatible aspects of 

psychosis risk and aetiology. While some hypotheses may make different 

predictions regarding the brain systems which are first to show alterations 

(e.g. NMDA receptors, in the case of the glutamate hypothesis), the fine 

details of this are outside the scope of the present work which deals with 

markers of early-stage and emergent psychosis in adults and adolescent 

people. 

This work will focus primarily on the dopamine and glutamate hypotheses as 

they are particularly relevant to the present research, and suggest specific, 

falsifiable hypotheses, such as the role of abnormal hippocampal activity in 

early-stage psychosis. It should be noted that the aim of this work is not to 

verify or falsify any particular major hypothesis of schizophrenia, but the 

dopamine and glutamate hypotheses are discussed to provide theoretical 

context and rationale for individual hypotheses. 

 

Early-stage Psychosis and Clinical Trajectories 

The Clinical At-Risk State 

Psychotic disorders are often preceded by a prodromal phase, during which 

risk markers are present but individuals do not meet the diagnostic criteria for 

a psychotic disorder yet (Fusar-Poli et al., 2013). While familial risk markers 

(e.g. first-degree relatives with a psychotic disorder) are sometimes used 

(Miklowitz, 1994) clinical questionnaires such as the CAARMS or SPI-A 

(Schultze-Lutter, Addington, Ruhrmann, & Klosterkötter, 2007; Yung, Phillips, 

Yuen, & McGorry, 2006) establish clinical at-risk status for psychosis (CHR-P) 

by assessing behavioural symptoms. These behavioural criteria can further be 

subdivided into high-risk symptoms which are thought to predict the potential 
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development of a psychotic disorder on a short to medium timescale (Yung et 

al., 2006), and basic symptoms which reflect more subtle alterations in basic 

mental processes which may be present long before the onset of psychosis 

(Schultze-Lutter et al., 2007). 

High-risk criteria are met when an individual experiences a general decline in 

global function over the past year coupled with either positive symptoms 

(substantial but below the threshold for a psychotic disorder), brief limited 

intermittent psychosis (suprathreshold positive symptoms which went into 

remission within one week), or familial high risk (first-degree relative with a 

psychotic disorder). In contrast, basic symptom criteria assess subjective 

changes in cognition, perception, and speech, including for instance visual 

disturbances, thought blockages, or experiences of derealisation (Schultze-

Lutter et al., 2007). Basic symptom criteria can further be subdivided into 

cognitive disturbances (COGDIS), and cognitive-perceptive basic symptoms 

(COPER).  

Taken together, there are therefore five sets of criteria that can be used to 

establish CHR-P status: brief limited intermittent psychosis (BLIPS), 

attenuated psychotic symptoms (APS), familial high risk, cognitive 

disturbances (COGDIS), and cognitive-perceptive basic symptoms (COPER). 

Individuals may meet one or more of these criteria, whereby meeting multiple 

such criteria has been associated with a higher risk of transition to a psychotic 

disorder compared with individuals who only meet one (Schultze-Lutter, 

Klosterkötter, & Ruhrmann, 2014). 

Overall, CHR-P individuals have substantially elevated risk of developing a 

psychotic disorder compared to the general population, but the majority of 

them will go on to be diagnosed with psychiatric disorders other than 

psychosis (Gonzalo Salazar De Pablo et al., 2022; Fusar-Poli et al., 2013). 

Identifying markers which are specific to psychosis risk and early-stage illness 

rather than proneness to mental health problems more generally is therefore 

of particular interest. 

 

Clinical and Cognitive Markers and Outcomes 

Transition to psychosis refers to a CHR-P individual meeting diagnostic criteria 

for a psychotic disorder such as ScZ for the first time. This is also referred to 



25 
 

as first-episode psychosis, or FEP, while early-stage psychosis (EP) is typically 

defined as the first 5 years following disease onset. CHR-P status is associated 

with a significantly increased risk of transition to a psychotic disorder, albeit 

the exact magnitude of this risk has not remained stable across time (Gonzalo 

Salazar De Pablo, Radua, Pereira, Bonoldi, Arienti, Besana, Soardo, et al., 

2021). While earlier studies reported transition rates upwards of 30%, more 

recent research has seen a marked decrease in transition rates, with some 

studies showing rates as low as 10-20%. Most recently, a meta-analysis 

estimated the transition rate at approximately 25%-35%, 3 years and 10 

years after establishing CHR-P status, respectively. This represents a large 

increase compared to the incidence of psychosis of approximately 1% in the 

general population (Solmi, Seitidis, et al., 2023), but also highlights that CHR-

P criteria alone are not sufficiently specific to predict the onset of a psychotic 

disorder with certainty. 

The majority of CHR-P individuals will develop a psychiatric condition 

regardless of whether they transition to psychosis or not, with only 

approximately 20% of CHR-P individuals not having a diagnosed illness in 

some studies (Addington et al., 2017; Gonzalo Salazar De Pablo et al., 2022). 

The most common diagnoses other than psychosis in CHR-P cohorts are mood 

and anxiety disorders, as well as substance misuse and personality disorders 

(Addington et al., 2017; Gonzalo Salazar De Pablo et al., 2022; Lu et al., 

2022; Solmi, Soardo, et al., 2023). While a decrease in symptom severity over 

time is observed for mood and anxiety disorders in particular, most individuals 

will continue to present with clinically relevant psychopathology for at least 

several years (Addington et al., 2017; Gonzalo Salazar De Pablo et al., 2022). 

Compared to non-clinical, healthy controls (HC), CHR-P individuals score lower 

on multiple domains of cognitive function. This includes social cognition, 

emotion recognition, executive function, attention, verbal learning and 

memory, as well as motor and processing speed, and may be associated with 

a decline in global functioning as well as social and role (academic/work) 

function (Carrión et al., 2011; Carrión et al., 2013; Catalan et al., 2021; 

Eslami, Jahshan, & Cadenhead, 2011; Glenthøj et al., 2016; Lin et al., 2011; 

Niendam et al., 2006). CHR-P individuals generally show less substantial 

impairments than chronic ScZ patients, and the severity of cognitive 

impairment in CHR-P individuals may further be associated with the risk of 

transition to psychosis (Catalan et al., 2021). The association between 
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cognitive disability and functioning in psychosis alongside the relatively low 

specificity of CHR-P criteria in predicting functional and clinical outcomes thus 

highlights the need to improve clinical outcome prediction. Chapter 1 of this 

work will present an analysis of global functioning, cognitive, and clinical 

behavioural data whereby machine learning is used to predict functional 

outcomes. This highlights markers of psychosis in the behavioural data 

modality. 

 

Anatomical Markers of Psychosis 

Markers of Psychosis Risk 

Besides behavioural alterations, psychosis is associated with numerous 

anatomical alterations in the brain at all stages of illness. Individuals with 

familial high risk show decreased grey matter volumes and larger ventricles 

compared to controls with no family history of psychosis (Boos et al., 2007; Ho 

& Magnotta, 2010). In a meta-analysis, grey matter volume differences were 

found to be largest in the hippocampus (Boos et al., 2007).  

CHR-P status has been associated with decreased grey matter volume in 

cortical regions including the anterior cingulate cortex, prefrontal cortex, 

temporal cortex, fusiform gyrus, and insula (Fusar-Poli et al., 2013; 

Jalbrzikowski et al., 2021; Zikidi et al., 2020). White matter integrity may be 

reduced in CHR-P (Di Biase et al., 2021), particularly in the superior and 

inferior longitudinal fasciculus, and inferior fronto-occipital fasciculus 

(Waszczuk et al., 2021). This indicates impaired long-range anatomical 

connectivity in CHR-P. 

Multiple studies have reported decreased hippocampal volumes in CHR-P 

(Fabienne Harrisberger, Buechler, et al., 2016; F Harrisberger, Smieskova, et 

al., 2016; J. Lieberman et al., 2018; Provenzano et al., 2020; Vissink et al., 

2022; Wood et al., 2010), although some have not replicated this finding 

(Walter et al., 2016). There is some evidence that shrinkage may be more 

pronounced in the hippocampal subregion CA1 (J. Lieberman et al., 2018). 

Subcortical regions such as the thalamus may also be affected (Fabienne 

Harrisberger, Buechler, et al., 2016).  

There is inconsistent evidence regarding enlargement of the ventricles in CHR-

P, with some meta-analytic evidence suggesting it (Vissink et al., 2022) but 
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other research indicating ventricular volumes to be no different from controls 

in the CHR-P group as a whole (Berger et al., 2007). However, the transition to 

psychosis may be associated with enlarged ventricles in CHR-P (Chung et al., 

2017; Chung et al., 2015), indicating a potential involvement of the ventricular 

system in early disease processes. The choroid plexus is a small layer of 

epithelial cells within the ventricular system which is involved in maintaining 

the blood-cerebrospinal fluid (CSF) barrier as well as the production of CSF 

and various immune factors and neurotransmitters (Strazielle & Ghersi-Egea, 

2000). Some have suggested that it could contribute to potential abnormalities 

of the ventricular system in the CHR-P (Deepthi Bannai et al., 2024), but 

because the choroid plexus is part of the ventricular system and scales with it, 

problems with collinearity may arise without appropriate statistical corrections. 

 

Markers of Early-Stage Psychosis 

Individuals experiencing FEP or EP show more substantial anatomical changes 

than individuals with elevated psychosis risk (Fusar-Poli, Smieskova, Serafini, 

Politi, & Borgwardt, 2014), although there is considerable overlap regarding 

affected brain regions. FEP individuals show reduced overall brain volumes and 

increased ventricular volumes (Ellison-Wright, Glahn, Laird, Thelen, & 

Bullmore, 2008; Matéos et al., 2023; Vieira et al., 2021). More specifically, 

volumes of the temporal (inferior and mid), fusiform, lingual and orbital gyri 

as well as the insula have been found to be smaller in FEP, whereas right 

superior temporal gyrus volume may be increased (Vieira et al., 2021). In 

addition to the cortex, volumetric contraction has been observed in subcortical 

structures including the amygdala and thalamus (Fan et al., 2019). 

The hippocampus has consistently shown decreased volumes in FEP (Fan et 

al., 2019; J. Lieberman et al., 2018; Nakahara, Matsumoto, & van Erp, 2018; 

Vieira et al., 2021), whereby the largest contraction may be located in 

subregion CA1, although CA4 is also implicated (Nakahara et al., 2018). 

Anatomical connectivity may be disrupted in FEP, with a meta-analysis 

implicating the inferior longitudinal fasciculus and inferior fronto-occipital 

fasciculus, which have shown decreased integrity in CHR-P also (Waszczuk et 

al., 2021; L. Yao et al., 2013). The meta-analysis further identified decreased 

white matter integrity in the interhemispheric fibres and cingulum bundle (L. 
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Yao et al., 2013), indicating that long-range and interhemispheric anatomical 

connectivity could be disrupted in FEP to a greater extent than in CHR-P. 

There is some longitudinal evidence that grey and white matter integrity loss 

occurs after the onset of FEP (Asami et al., 2012) in non-affective psychosis 

and particularly in frontal cortical regions (Ohtani et al., 2018). Hippocampal 

volumes on the other hand may be stable over time in FEP (McHugo et al., 

2020; Wood et al., 2001), although hippocampal size at FEP onset may be 

related to the duration of the first psychotic episode and could be prognostic of 

the further clinical course (Hýža, Kuhn, Češková, Ustohal, & Kašpárek, 2016). 

This suggests that volume loss of the hippocampus may occur at the time of 

FEP onset but not afterwards. Since FEP and CHR-P were not directly 

compared in this regard, this raises the question whether volume loss starts at 

the FEP stage, or could already occur in CHR-P individuals. Direct comparisons 

across illness stages will be required to assess this. 

    

Markers of Chronic Psychosis 

Finally, chronic ScZ is associated with widespread volume loss across the brain 

compared to HC, as well as increased ventricular volumes (Ellison-Wright et 

al., 2008; Glahn et al., 2008; Vita, De Peri, Deste, & Sacchetti, 2012). Multiple 

subcortical regions show volumetric decreases in ScZ, including the thalamus, 

nucleus accumbens, and amygdala (Adriano, Spoletini, Caltagirone, & 

Spalletta, 2010; Van Erp et al., 2014; Van Erp, Hibar, Rasmussen, Glahn, 

Pearlson, Andreassen, Agartz, et al., 2016). The globus pallidus and caudate 

on the other hand was increased in volume (Van Erp, Hibar, Rasmussen, 

Glahn, Pearlson, Andreassen, Agartz, et al., 2016; van Haren et al., 2016). 

While some volumetric decline occurs as part of normal aging, subcortical 

volumes declined over time in ScZ more so than in HC (van Haren et al., 

2016). Volumetric decline is also seen in cortical grey matter and total brain 

volumes, and coincides with further ventricular enlargement (Haijma et al., 

2013; Vita et al., 2012). 

Abnormalities in the choroid plexus may contribute to ventricular enlargement, 

with some studies suggesting that choroid plexus volumes too are increased in 

ScZ (Paulo Lizano, Lutz, Ling, Lee, Eum, Bishop, Kelly, et al., 2019). Recent 

advances in choroid plexus segmentation however call into question the 

reliability of past reports, as the identification of choroid plexus boundaries can 
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differ substantially across segmentation methods (Deepthi Bannai et al., 2024; 

Tadayon et al., 2020). This indicates that further investigation is needed to 

determine the extent to which the choroid plexus is altered in psychotic 

disorders, and how this may differ across illness stages. 

 

Specificity of Anatomical Markers 

While CHR-P, FEP, and ScZ are reliably associated with multiple 

neuroanatomical alterations, this is true also of psychiatric conditions other 

than psychosis. For instance, hippocampus volumes are decreased in major 

depressive disorder (MDD)(Cole, Costafreda, McGuffin, & Fu, 2011; Videbech 

& Ravnkilde, 2004), post-traumatic stress disorder (PTSD) (Kribakaran, 

Danese, Bromis, Kempton, & Gee, 2020), or alcohol misuse (Wilson, Bair, 

Thomas, & Iacono, 2017). Similarly, ventricular and choroid plexus 

enlargement have both been demonstrated in MDD (Noha Althubaity, 

Schubert, Martins, Yousaf, Nettis, Mondelli, Pariante, et al., 2022; Kempton et 

al., 2011), which may suggest that these markers are not specific for either 

one disorder, but could instead be markers of overall psychopathology.  

However, distinguishing markers of psychosis from those of other disorders or 

general pathology is of particular importance when researching emerging 

psychosis. CHR-P individuals who will later develop psychosis will likely require 

different treatment compared to individuals who will develop MDD or an 

anxiety disorder; for early intervention to occur, clinicians will need to know 

which specific condition an individual is currently developing, as opposed to 

knowing about the presence of general psychopathology. The latter in 

particular is already evident through CHR-P status – thus, establishing 

specificity of markers will make an important contribution to the study of 

emerging psychosis. 

 

Summary of Anatomical Markers 

Psychotic disorders are associated with a loss of grey matter volume and white 

matter integrity at multiple stages of illness. The hippocampus may be one of 

the earliest structures to show volumetric decrease, with alterations potentially 

visible from the CHR-P state and becoming more substantial with the 

emergence of FEP. Although there is evidence to suggest that hippocampal 
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shape may be affected particularly in some subregions such as CA1, it is not 

yet clear if this is the case for both CHR-P and FEP, and how anatomical 

alterations in the hippocampus and subcortex differ when comparing directly 

across illness stages.  

Furthermore, the ventricular system consistently shows enlargement in 

diagnosed psychosis. The choroid plexus may play a role in this, but due to 

methodological limitations in choroid plexus segmentation, the extent to which 

choroid plexus alterations are present across illness stages in psychosis is not 

yet clear (see Chapter 3 for a more detailed discussion). 

Based on these findings, the hippocampus and several subcortical structures 

were selected for anatomical analysis (Chapter 2) as well as the choroid plexus 

and ventricular system (Chapter 3) to identify markers of psychosis from the 

neuroanatomical data modality. Here, a clinical control group of individuals 

experiencing various psychiatric problems who did not meet CHR criteria 

(CHR-N) were further analysed to assess the specificity of markers to 

psychosis and psychosis risk. 

 

Accounts of Anatomical Changes in Psychosis 

While several anatomical changes such as decreased hippocampal volumes are 

observed across illness stages in psychosis, their role in the disease process is 

not yet clear. Furthermore, the majority of studies compare each illness stage 

with HC rather than draw comparisons across illness stages, which leaves open 

the questions: if and how neuroanatomical alterations differ between stages of 

psychotic illness.  

Echoing historical debates regarding the degenerative nature (or not) of 

psychotic disorders, some have argued that anatomical changes, especially 

grey matter volume loss, are progressive in nature (Keshavan, 1999; J. A. 

Lieberman, 1999), whereas others argue that developmentally very early 

onset alterations instead drive the disease process (Gilmore, 2010). Yet others 

argue that volume loss may be confined to periods of active illness – that is, 

pathological processes during acute psychotic episodes, which subside as the 

episode comes to an end (Wyatt, 1991). It should be noted that these views 

are not mutually exclusive, as they could be applied to different brain 

structures or stages of a process within the same framework (Keshavan, 1999; 
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J. A. Lieberman, 1999). However, when applied to a specific brain region, they 

have different implications for comparisons across illness stages. For instance, 

an early developmental lesion would not be expected to change between the 

premorbid and FEP stages, whereas a neurodegenerative view would suggest 

that volume loss should be more substantial the longer the individual has been 

ill. Comparing neuroanatomy across stages of psychotic illness can therefore 

give insights into pathological processes. 

This, however, still leaves the question how these anatomical changes come to 

be. Prominent theoretical frameworks, including the glutamate hypothesis, 

predict that changes in brain structure are, at least to an extent, the result of 

abnormal brain function in psychosis (Lau & Tymianski, 2010; Moghaddam & 

Javitt, 2012). Here, it is proposed that NMDA receptor hypofunction leads to 

aberrant baseline excitation of the hippocampus. This in turn diminishes its 

regulatory function on striatal dopamine transmission, thus causing 

disinhibition (Grace, 2012; Lodge & Grace, 2006). A link to neuroanatomical 

changes has been established in animal models, where the aforementioned 

excessive excitation causes excitotoxic damage to the hippocampus, resulting 

in volume loss (Grace, 2012; J. Lieberman et al., 2018). While this is by no 

means the only instance where abnormal brain activity may lead to anatomical 

and behavioural deficits in models of ScZ, the hippocampus has consistently 

emerged as an anatomical region of interest (ROI) in human research, and 

animal research provides a potential link between alterations from the 

anatomical and functional imaging modalities. This implies that functional 

imaging should reveal further alterations in early and emerging psychosis, and 

may offer a more complete picture compared to anatomical analysis alone. 

 

Brain Networks in Psychosis 

Anatomical alterations in psychosis may be caused at least in part by changes 

in brain function. Non-invasive neuroimaging methods, such as functional MRI 

(fMRI), or magneto/electroencephalography (M/EEG), can be used to detect 

changes in brain function in human subjects, while more invasive methods 

such as single cell recordings can be used in animal models of psychosis. 

Across illness stages, several functional alterations can be seen in psychosis, 

although open questions remain regarding the role of particular structures 
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such as the hippocampus, the specificity to psychosis, and potential 

differences between illness stages.  

More specifically, the glutamate hypothesis suggests that the excitatory-

inhibitory balance becomes disrupted in ScZ due to NMDA receptor 

hypofunction (Benes, 2009). In the case of the hippocampus, this causes it to 

become excessively excited at baseline, and lose its regulatory function over 

subcortical dopamine neurotransmission, thus resulting in excessive 

dopaminergic activity in the striatum (Grace, 2012). Recent work has 

emphasised the role of cortico-striato-thalamic brain networks in such 

processes (Sabaroedin, Tiego, & Fornito, 2023). Here, it is proposed that due 

to different disease processes, chronic ScZ is characterised by global 

decreases in connectivity across the entire network, while functional 

connectivity alterations at earlier stages of illness (FEP, CHR-P) may be more 

varied. 

This is not the only network where disease-relevant processes likely occur, as 

changes have also been identified in sensorimotor networks (Kaufmann et al., 

2015) or fronto-parietal control network (Tu, Lee, Chen, Li, & Su, 2013). An 

overview over alterations in functional connectivity will now be given for the 

different illness stages, whereby the hippocampus and cortico-striato-thalamic 

networks are particularly of interest (Sabaroedin et al., 2023). This is not 

because other networks do not matter in emerging psychosis, but because this 

network provides a bridge between our anatomical findings and potentially 

associated changes in brain function. 

 

Measuring Brain Networks 

The extent to which a given set (or pair) of brain regions is connected or 

networked can be measured in multiple ways. In fMRI studies, functional 

connectivity (FC) is commonly used. This is typically given as the correlation 

between two time-courses of blood-oxygen level dependent (BOLD) signals 

taken from two brain regions. Functional connectivity can be recorded during 

resting state, that is, when individuals do not do anything in particular in the 

scanner, or it can be recorded while participants perform a task.  

Using general linear modelling (GLM) approaches, it is possible to examine 

changes in activity in a given region or regions depending on task conditions. 
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Connected networks of brain regions can either be defined a priori, or found 

with data-driven methods such as independent component analysis (ICA). 

fMRI can be used to image the entire brain with good spatial resolution, but 

the BOLD signal is an indirect measure of brain activity and relatively sluggish 

temporally (Boly, Gosseries, Massimini, & Rosanova, 2016). For a more 

extensive characterisation of the BOLD signal and its meaning, see e.g. 

Logothetis and Wandell (2004). 

With electrophysiological methods such as electroencephalography (EEG) or 

magnetoencephalography (MEG), temporal resolution is very high, but spatial 

resolution is relatively poor. Regions further away from the scalp such as the 

subcortex cannot be measured well using EEG/MEG, thus these methods also 

have limited spatial coverage (Boly et al., 2016). 

In both types of functional neuroimaging methods, brain networks can be 

assessed using correlational methods, data-driven methods (e.g. ICA), or 

graph theory. Graph theory is a branch of mathematics which deals with the 

formal analysis of networks, also known as graphs. It is therefore of particular 

interest to the analysis of brain networks (Fornito, Zalesky, & Bullmore, 2016), 

and key aspects will now be described. In graph theory, networks have two 

basic components: nodes and edges. Nodes represent individual objects, such 

as brain regions, and edges reflect the connections between them, which could 

be given e.g. by FC. Networks can either be binary or weighted. The edges are 

either present or absent between any pair of nodes in the former, and in the 

latter, non-zero edges can have a range of values to indicate, for example, the 

strength of the connection. Using this information, graph theory provides tools 

to describe both the properties of the overall network, as well as the nodes 

within it. Measures of centrality or node importance can indicate what role a 

given node plays in the network – for instance, how many total connections it 

has (degree centrality), or the extent to which it acts as a bridge between 

different clusters in the network (betweenness centrality). The overall 

connectedness of the network can also be described, for example by giving the 

average number of steps required to get from each node to every other node 

in the network (Fornito et al., 2016). 

Brain activity and networks can therefore be described by investigating 

changes in activity in response to some condition, by measuring the 

correlation between a pair of brain regions, or by using graph theory to 
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describe the network as a whole. A brief summary of findings using such 

methods in different illness stages of psychosis will now be given. 

 

Markers of Psychosis Risk 

CHR-P status is associated with BOLD signal decreases in the inferior, superior 

and medial frontal gyri and the anterior cingulate (Fusar-Poli, 2012), as well as 

increased recruitment of the frontal cortex and thalamus, and decreased 

recruitment of the striatum alongside reduced cognitive task performance 

(Fusar-Poli et al., 2007), although several alterations in activation are seen in 

the absence of overt behavioural differences (Andreou & Borgwardt, 2020). 

The hippocampus has shown increased regional cerebral blood flow at 

baseline, which is suggestive of hyperactivity at rest (Allen et al., 2016). The 

involved regions are ordinarily recruited during a broad range of tasks, 

including cognitive control, sensory gating, reinforcement learning, or memory 

formation. Multiple of these regions are also part of the salience network 

(Peters, Dunlop, & Downar, 2016), and could potentially make early 

contributions to aberrant salience. 

In studies using EEG, mismatch negativity and the P300 component are 

decreased compared to healthy controls (Hamilton, Boos, & Mathalon, 2020). 

Mismatch negativity here refers to a negative EEG signal which occurs in 

response to infrequent auditory stimuli, while the P300 is measured when an 

infrequent, irrelevant stimulus occurs during a task. Both components thus 

indicate response to unexpected stimuli, and are tied to the salience and 

attention networks (de la Salle et al., 2021). This is further corroborated by 

fMRI investigations, whereby the salience network as a whole was found to 

have lower functional connectivity (FC) at rest in CHR-P compared to HC (Del 

Fabro et al., 2021). 

In network analyses, reduced centrality was seen in the anterior cingulate 

cortex (ACC)(Lord et al., 2012). While theoretical frameworks such as the 

glutamate hypothesis imply that the centrality of the hippocampus may also 

be altered, this has not been investigated yet in CHR-P to my knowledge. 
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Markers of Early-Stage Psychosis 

In FEP patients, hypoactivation is observed in multiple brain regions during 

cognitive tasks. More specifically, a meta-analysis suggests lowered BOLD 

signal during tasks in the striatum, insula, and precuneus. Several included 

studies identified reduced activation in the (pre)frontal cortex and anterior 

cingulate cortex (Soldevila-Matías et al., 2022). The salience network, default 

mode network (DMN), and central executive networks have lower overall 

connectivity in individuals with FEP compared to HC (O’Neill, Mechelli, & 

Bhattacharyya, 2019). Connectivity between the inferior frontal cortex and 

hippocampus may be decreased (Benetti et al., 2009). 

Non-task related, spontaneous BOLD signal fluctuations are increased in FEP 

compared to HC in the striatum and middle frontal gyrus, but decreased in the 

inferior frontal and precentral gyrus (Cattarinussi, Grimaldi, & Sambataro, 

2023). This, coupled with previous findings of decreased task-related activity, 

could indicate increased baseline activation. This has also been found for the 

hippocampus, where baseline BOLD signal is increased in FEP, but decreased 

during cognitive tasks, coinciding with lower performance compared to HC 

(McHugo et al., 2019).  

At the level of the network, decreased network connectivity among nodes from 

the DMN, sensorimotor network, and cingulate has been observed in FEP 

(Rikandi et al., 2022); some network analyses however found network 

properties to be preserved and stable in FEP patients (Ganella et al., 2018). 

 

Markers of Chronic Psychosis 

ScZ patients show widespread changes in functional connectivity. Thalamic 

connectivity with sensory areas was found to be elevated in ScZ compared to 

HC, while connectivity with frontal regions was reduced in a meta-analysis 

(Giraldo-Chica & Woodward, 2017). The hippocampus and frontal gyrus may 

show reduced task-induced activation (Ledoux et al., 2013), although the 

hippocampus has also shown increased functional connectivity during memory 

tasks (Kraguljac, Srivastava, & Lahti, 2013), indicating that the direction of 

effects may be task dependent. 

Alterations in functional connectivity did not show specific associations with 

cognitive function, but rather generalised cognitive disability was found to 
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coincide with widespread changes in brain function (Sheffield & Barch, 2016). 

Hypoconnectivity was found to recover to an extent with antipsychotic 

admission, particularly between the midbrain and ACC (Hadley et al., 2014). 

At the level of brain networks, a meta-analysis did not find evidence for 

hyperconnectivity in any brain networks identified through ICA in ScZ, but 

instead observed hypoconnectivity in the DMN, sensory, core, and self-

referential networks (S. Li, Hu, et al., 2019). Widespread hypoconnectivity has 

also been noted in networks involving the frontal cortex, subcortex, as well as 

hippocampus (Sabaroedin et al., 2023). 

Graph-theoretic analyses have not been consistent, with the most recent 

meta-analysis not identifying any reliable alterations in ScZ patients (Gao et 

al., 2023), while an older review suggested that local network alterations may 

be present in ScZ, particularly with regard to network clustering which was 

reduced (Van Den Heuvel & Fornito, 2014). In the older review, evidence is 

noted in particular for reduced long-range connectivity in ScZ (Van Den Heuvel 

& Fornito, 2014). There is currently no consensus regarding graph analysis 

methods in neuroimaging, which likely contributed to the heterogeneity in 

observed findings (Gao et al., 2023). 

 

Summary of Functional Markers 

Common across multiple illness stages are findings of increased baseline 

activation coupled with decreased recruitment during cognitive tasks in 

multiple brain regions. Here, the hippocampus consistently emerges, as well 

as potentially the striatum. Altered activation in the frontal cortex and multiple 

subcortical sites is replicated several times across illness stages, implying that 

activity at these sites could reveal markers of psychosis risk. 

While chronic psychosis may be characterised by widespread reductions in 

connectivity, alterations could be more varied in earlier stages of illness. While 

hypoconnectivity is observed in both CHR-P and FEP, the question remains 

whether the magnitude of this is comparable across these stages, or whether 

alterations are more substantial with later stages of illness. 

Graph-theoretic analyses in particular are strongly affected by methodological 

choices, which likely resulted in inconsistent meta-analytic results in ScZ. The 

extent to which network alterations are present in CHR-P and FEP also remains 
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unclear. The number of investigations which conduct such analyses in CHR-P 

remain very limited; and those in FEP do no show consistent results, which 

may again be linked to the lack of methodological consensus in graph-

theoretic analysis of brain networks. Furthermore, although the theoretical 

frameworks suggest a pivotal role for the hippocampus in particular brain 

networks (see e.g. Sabaroedin et al. (2023)), to my knowledge, it has not yet 

been the focus of investigation in either CHR-P or FEP. This is why Chapter 4 of 

this thesis presents an analysis of the role of the hippocampus in cortical-

subcortical brain networks, while paying particular attention to methodological 

issues and drawing from the latest developments in fMRI preprocessing and 

denoising. 

 

Research Aims 

Alterations in early-stage and emergent psychosis are not confined to any one 

data modality, but can be identified behaviourally, neuroanatomically, and in 

functional neuroimaging. The existing literature suggests that neither 

approach on their own can provide a complete picture of psychosis, but that 

multimodal research is needed to elucidate markers of psychosis from all these 

perspectives. To contribute to the existing body of knowledge, this thesis 

therefore aims to identify markers of early-stage and emerging psychosis and 

clinical outcomes using these three modalities. 

Chapter 1 draws from the behavioural modality: Here, we investigate the 

association between cognition and functional outcomes in CHR-P individuals, 

using a machine learning approach to determine the extent to which cognitive 

markers could be used for individualised predictions. 

Chapters 2 and 3 use magnetic resonance imaging (MRI) data to identify 

neuroanatomical markers of CHR-P and early-stage psychosis. As previously 

discussed, there is evidence that both the subcortex, including the 

hippocampus, and the ventricular system are altered in psychosis, but the 

extent to which such alterations differ between CHR-P and FEP individuals 

remains unclear. As alterations have been identified in other clinical conditions 

also, we incorporated a clinical control group to assess the specificity of 

alterations to psychosis in our sample. Furthermore, the literature on the 

choroid plexus within the ventricular system in particular could be enhanced 
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by addressing certain methodological issues relating to statistical controls as 

well as choroid plexus segmentation. These chapters therefore aim to identify 

neuroanatomical markers in the subcortex and ventricular systems in a 

rigorous way, and assess their specificity to psychosis. 

Chapter 4 involves the analysis of functional MRI data (fMRI), which can 

provide insights into brain function. Because theoretical models drawing from 

the glutamate hypothesis in particular suggest that changes in brain function 

may give rise to anatomical deficits in cortical-subcortical networks involving 

the hippocampus, we focus on this network. We compare changes across 

illness stages, and assess the specificity to psychosis using the CHR-N clinical 

control group. Furthermore, we draw from recent advances in fMRI 

preprocessing to minimise the risk of false positive findings due to e.g. motion 

artifacts. The relationship between identified effects and anatomy is further 

assessed, as well as the relationship with clinical features. 

The thesis as a whole therefore has the following aims: Firstly, to identify 

markers specific to psychosis at different stages of illness. This is addressed by 

comparing patients with psychotic disorders to both a clinical and a non-

clinical control group. Secondly, to identify markers specific to psychosis risk, 

and assess whether such markers resemble markers of disease. We 

investigate this by comparing individuals at clinical high-risk of psychosis to a 

clinical and a non-clinical control group, and by comparing clinical high-risk 

individuals to patients with early-stage and chronic psychosis. Finally, this 

thesis aims to determine if the identified markers are associated with each 

other, or if they are independent. That is, do these potential markers capture 

similar aspects of psychosis, or is the information conveyed by each marker 

unique?  
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Chapter 1: The relationship between cognitive deficits 

and impaired short-term functional outcome in clinical 

high-risk for psychosis participants: A machine 

learning and modelling approach. 

 

Kate Haining, MSc*, Gina Brunner, MSc*, Ruchika Gajwani, Ph.D. , Joachim 

Gross, Ph.D., Andrew I. Gumley, Ph.D., Stephen M. Lawrie M.D., Matthias 

Schwannauer, Ph.D., Frauke Schultze-Lutter, Ph.D., & Peter J. Uhlhaas, Ph.D. 

* these authors contributed equally 

 

Abstract 

Poor functional outcomes are common in individuals at clinical high-risk for 

psychosis (CHR-P), but the contribution of cognitive deficits remains unclear. We 

examined the potential utility of cognitive variables in predictive models of 

functioning at baseline and follow-up with machine learning methods. Additional 

models fitted on baseline functioning variables were used as a benchmark to 

evaluate model performance.  

Data were available for 146 CHR-P individuals of whom 118 completed a 6- 

and/or 12-month follow-up; as well as 47 participants not fulfilling CHR criteria 

(CHR-Ns) but displaying affective and substance use disorders; and 55 healthy 

controls (HCs). Predictors of baseline global assessment of functioning (GAF) 

scores were selected by L1-regularised least angle regression and then used to 

train various classifiers, evaluated with 10-fold cross-validation, to predict 

functional outcome in CHR-P individuals.  

In CHR-P participants, cognitive deficits together with clinical and functioning 

variables explained 41% of the variance in baseline GAF scores while cognitive 

variables alone explained 12%. These variables allowed classification of 

functional outcome with an average balanced accuracy (BAC) of 63% in both 

mixed- and cross-site models. However, higher accuracies (68%-70%) were 

achieved using classifiers fitted only on baseline functioning variables. 
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Our findings suggest that cognitive deficits, alongside clinical and functioning 

variables, displayed robust relationships with impaired functioning in CHR-P 

participants at baseline and follow-up. Moreover, these variables allow for 

prediction of functional outcome. However, models based on baseline 

functioning variables showed a similar performance, highlighting the need to 

develop more accurate algorithms for predicting functional outcome in CHR-P 

participants.  

 

Introduction 

Psychotic disorders, such as schizophrenia, continue to pose a significant 

challenge for the field given that many patients experience poor outcomes and 

the absence of significant advances in treatments over the last decades (Millan 

et al., 2016; Owen et al., 2016). Schizophrenia may be preceded by a clinical 

high-risk for psychosis (CHR-P) state lasting approximately 5-6 years (Schultze-

Lutter et al., 2015) and clinical criteria have been developed to detect 

individuals prior to the onset of full-blown psychosis (Fusar-Poli et al., 2013). 

CHR-P criteria include attenuated psychotic symptoms, brief frank psychosis and 

functional decline with genetic risk (Yung et al., 2005) as well as self-

experienced perceptual and cognitive anomalies known as basic symptoms 

(Schultze-Lutter, 2009; Schultze-Lutter et al., 2012). Approximately 20% of 

individuals meeting CHR-P criteria will transition to psychosis within a 2-year 

period (Fusar-Poli et al., 2016). Moreover, around 40-50% of nonconverters 

continue to experience impairments in social and role functioning (Carrión et al., 

2013; Koutsouleris et al., 2018). Therefore, understanding the underlying 

factors as well as predictors of poor functioning in CHR-P individuals is an 

important objective for early detection and intervention. 

Negative symptoms, disorganised symptoms, impairments in social and role 

functioning and poor premorbid psychosocial adjustment have been found to 

predict poor baseline functioning and/or poor functional outcome at follow-up 

(Carrión et al., 2013; Glenthøj et al., 2016; Koutsouleris et al., 2018; 

Salokangas et al., 2014). Although positive symptom severity is predictive of 

transition to psychosis, effects on functioning remain inconsistent (Carrión et 

al., 2016; Meyer et al., 2014). 
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While there is emerging evidence for a relationship between cognitive deficits 

and impaired functioning in CHR-P individuals, the contribution of specific 

cognitive deficits varies across studies. Cognitive deficits, predominantly in 

verbal memory, are an established mediator of functional outcomes in chronic 

schizophrenia (Green, 1996; Schmidt et al., 2011). Interestingly, in studies of 

early psychosis, reasoning, problem solving and motor skills more frequently 

predict short-term (< 2 years) functional outcome while language/verbal skills 

and global/general cognition more often predict longer-term (> 2 years) 

functional outcome (Allott et al., 2011). In CHR-P individuals specifically, 

impairments in verbal memory, emotion recognition and processing speed have 

been linked with impairments in social and/or role functioning at baseline and 

follow-up (Carrión et al., 2011, 2013; Glenthøj et al., 2016; Lin et al., 2011; 

Modinos et al., 2019; Niendam et al., 2006). Moreover, deficits in verbal 

learning and fluency, motor speed and executive function have also been 

associated with poor functioning in CHR-P individuals (Carrión et al., 2013; 

Eslami et al., 2011; Lin et al., 2011; Niendam et al., 2006). 

In the current study, we sought to clarify the contribution of cognitive deficits 

towards impaired functioning in CHR-participants. To identify predictors of 

functioning, we employed a machine learning approach in which we first 

identified variables associated with baseline functioning using LASSO-LARS 

regression and then predicted functional outcome at follow-up with classifiers 

evaluated using 10-fold cross-validation and permutation testing. While machine 

learning studies have previously shown potential for identifying predictors of 

transition to psychosis as well as functional outcomes based on clinical, 

functional and neuroimaging data (Kambeitz-Ilankovic et al., 2016; Koutsouleris 

et al., 2009, 2012, 2018), a considerable proportion have also failed to provide 

convincing evidence (Fusar-Poli et al., 2019; Mechelli et al., 2017; Ramyead et 

al., 2016). Furthermore, previous studies predicting functional outcome using 

cognitive measures have applied more traditional logistic regressions without 

cross-validation or regularisation techniques, potentially carrying a risk of 

overfitting (Carrión et al., 2013; Eslami et al., 2011; Lin et al., 2011; Meyer et 

al., 2014; Modinos et al., 2019). Even in machine learning studies leveraging 

these techniques, few have attempted to compare their multi-step machine 

learning pipelines to simpler predictive models in order to justify this added 

complexity (DeMasi et al., 2017). 
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To address these gaps, we firstly examined the contribution of clinical, 

functioning and cognitive variables to impaired functioning at baseline in CHR-P 

participants. We also included a sample of participants who did not fulfil CHR-P 

criteria but were characterised by mood, anxiety and substance use (i.e. alcohol 

and drug) disorders (CHR-Ns), as well as healthy controls (HCs). We then 

applied a machine learning approach to those variables associated with 

impaired functioning at baseline in order to predict short-term functional 

outcome. We additionally created simpler predictive models of functional 

outcome using only baseline functioning variables to determine whether our 

more complex machine learning pipeline provided a significant increase in 

predictive performance. Given the contribution of cognitive impairment to 

impaired functioning in established schizophrenia (Green, 1996; Schmidt et al., 

2011), we hypothesised that the inclusion of cognitive variables in machine 

learning models would enhance the prediction of functional outcome in CHR-P 

participants, outperforming simpler models.  

 

Methods 

Participants  

The data were collected as part of the Youth Mental Health Risk and Resilience 

(YouR) study (Uhlhaas et al., 2017), an ongoing longitudinal study funded by 

the Medical Research Council (MRC), which aims to identify neurobiological and 

psychological mechanisms and predictors of psychosis risk. CHR-P participants 

were recruited through an online-screening approach (www.your-study.org.uk; 

McDonald et al., 2019) and via referrals from NHS patient services and student 

counselling services. CHR-N participants (N = 47) were also recruited using the 

former approach while HCs (N = 55) were obtained from an existing volunteer 

database. CHR-N participants were recruited to allow for a more meaningful 

comparison with the CHR-P group (Millman et al., 2019). By including 

participants with affective and substance use disorders (CHR-N group), we 

aimed to separately assess the impact of psychiatric comorbidity given that 

such comorbidity is also characteristic of the CHR-P state. Recruitment and 

assessment visits/ratings were carried out by trained research assistants and 

MSc/PhD level researchers. 

http://www.your-study.org.uk/
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Data were available for 146 CHR-P individuals that were recruited across two 

sites: Glasgow (n = 109; 74.7%) and Edinburgh (n = 37; 25.3%). One hundred 

and eighteen participants (80.8%) completed a follow-up session at 6 and/or 12 

months. Attrition rates were similar across sites (Glasgow: 20.2%; Edinburgh: 

16.2%).  

 

Baseline Assessments 

The positive scale of the Comprehensive Assessment of At-Risk Mental States 

(CAARMS; Yung et al., 2005) and the Cognitive Disturbances (COGDIS) and 

Cognitive-Perceptive Basic Symptoms (COPER) items of the Schizophrenia 

Proneness Instrument, Adult version (SPI-A; Schultze-Lutter et al., 2007) were 

administered to all participant groups. Participants were recruited into the CHR-

P group if they met SPI-A COGDIS/COPER criteria or one of the following 

CAARMS criteria: Attenuated Psychosis Symptoms (APS), Genetic Risk and 

Deterioration Syndrome (GRD) or Brief Limited Intermittent Psychotic 

Symptoms (BLIPS). 

All participants were also assessed with the Mini-International Neuropsychiatric 

Interview (MINI; Sheehan et al., 1998), Global Assessment of Functioning 

(GAF) scale from the DSM-IV-TR, Global Functioning: Social (GF: Social) and 

Role (GF: Role) scales (Cornblatt et al., 2007), Premorbid Adjustment Scale 

(PAS; Cannon-Spoor et al., 1982) and Adverse Childhood Experiences Scale 

(ACES; Felitti et al., 1998). Neuropsychological assessments consisted of the 

Brief Assessment of Cognition in Schizophrenia (BACS; Keefe et al., 2004) and 

three tasks from the Penn Computerized Neurocognitive Battery (CNB; Moore et 

al., 2015): the Continuous Performance Test, the N-Back Test and the Emotion 

Recognition Task which provide measures of accuracy and response time (RT) 

for attention, working memory and emotion recognition respectively.  

 

Follow-Up Assessments 

Follow-up interviews were conducted at 6- and 12-months following the 

baseline assessments for the CHR-P and CHR-N groups and involved the positive 

scale of the CAARMS as well as the GAF, GF: Social and GF: Role scales. The HC 

group did not complete follow-up assessments.   
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Statistical Analysis 

Preprocessing 

Data were analysed using Python (3.7) packages Numpy, Pandas and Scikit-

learn (SKL). In accordance with Keefe et al. (2008), BACS raw scores were 

converted into standardized z-scores using the means and standard deviations 

of gender-specific HCs. This gender correction was applied because gender has 

been shown to affect BACS performance in a normative sample (Keefe et al., 

2008). For consistency, CNB raw scores were calculated in the same way, albeit 

without correction for gender. CAARMS severity was calculated by multiplying 

the global score by the frequency score for each of the four domains and 

summing these products while SPI-A severity was calculated by summing the 

frequency scores for each basic symptom. Where participants did not 

experience a symptom, the associated frequency and distress were set to zero 

while those with missing data for the outcome variable were removed. 

Participants and variables with < 70% of the measures of interest were 

removed and missing values were imputed by Bayesian Ridge regression. 

Additional columns were generated for GAF scores to define good (GFO) or poor 

functional outcome (PFO), whereby GAF scores below 65 were coded as PFO. In 

line with prior studies (Allen et al., 2015; Modinos et al., 2019), this cut-off was 

selected because the 61-70 range corresponds to the presence of “some 

difficulty in social, occupational or school functioning but [the person] has some 

meaningful interpersonal relationships”. We additionally calculated how many 

participants changed GAF category between baseline and follow-up as well as 

GAF changes over time. 

 

Group Comparisons  

Group differences were analysed using non-parametric Kruskal-Wallis H tests or 

Mann–Whitney U tests and chi-square tests, followed by appropriate post hoc 

tests if required.  
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Regression Analysis 

To determine which variables were associated with baseline GAF scores in CHR-

P and CHR-N groups, we fitted combined and cognitive models, whereby the 

former included clinical, cognitive and functioning variables. We used L1-

regularised least angle regression (LASSO-LARS; Efron et al., 2004), with 10-

fold cross-validation, as implemented in the SKL function LassoLarsCV. This 

method is particularly appropriate for addressing the high dimensionality of our 

candidate predictor set (Fonti, 2017). We excluded attention accuracy as its 

distribution was highly skewed with a small number of extreme outliers. 

 

Classification Analysis 

We trained classifiers to categorise CHR-P individuals into GFO/PFO based on 

the last available follow-up data (6 months [n = 26] or 12 months [n = 92]). 

Classifiers included gaussian naive bayes (GNB), linear discriminant analysis 

(LDA), support vector machines (SVM), random forest classification (RFC) and 

logistic regression (LR). With the exception of class weights, which were set to 

‘balanced’ due to the unequal numbers of PFO and GFO individuals, default SKL 

hyperparameters were used. Using only those CHR-P participants with follow-up 

information, variables not set to zero by the LASSO-LARS model were used for 

these models (Supplementary Figure 1). All variables were rescaled between 

zero and one to avoid class separability problems induced by differences in 

scaling. Due to class imbalance with PFO being more common than GFO, we 

used area under the curve (AUC) scores to determine whether classifiers 

performed significantly above chance.  

Mixed-site classifiers were evaluated using 10-fold cross-validation, whereby the 

full dataset was used, and performance metrics are reported as averaged across 

k-folds. Specifically, the SKL function permutation_test_score (10000 

permutations), which implements Test 1 from Ojala and Garriga (2010), was 

used to conduct permutation tests to evaluate AUC significance. We report 

performance metrics for all classifiers to evaluate their consistency, as very 

large discrepancies could suggest that the best performing classifiers were 

simply overfitting (Vieira et al., 2020). 

To determine whether transfer could be established between the two test sites, 

cross-site classifiers were additionally evaluated with AUC scores obtained by 



46 
 

training on the Glasgow data and testing on the Edinburgh data. This split was 

used as approximately two thirds of the data were collected at the Glasgow site. 

We report mean AUC, precision, recall, F1 scores (the harmonic mean of 

precision and recall) and mean balanced accuracy (BAC) for all classifiers. Recall 

for the two classes (PFO, GFO) corresponds to sensitivity and specificity, 

respectively. Precision, recall and F1 scores were generated using the functions 

cross_val_predict and classification_report, whereby the former reports the 

prediction given for each data point when in the test set. All other scores reflect 

the mean across k-folds.   

We also created two models which utilised only baseline functioning variables to 

obtain a stricter benchmark for classifier accuracy. In the first model, we split 

baseline GAF scores into good and poor functioning at baseline using the same 

threshold and used these data as predictors. In the second model, we trained 

the classifiers on social and role functioning as well as GAF scores to determine 

whether these additional variables could significantly improve classification 

accuracy compared to those based on baseline GAF scores alone.  

 

Results 

Demographic Information 

In the CHR-P group, 106 (72.6%) and 70 (59.3%) individuals had poor 

functioning at baseline and follow-up respectively (Table 1). CHR-P individuals 

were significantly impaired relative to CHR-N and HC participants, displaying 

greater symptom severity and distress, increased ACES scores, more comorbid 

anxiety and mood disorders, lower functioning and poorer attention and 

processing speed. In addition, CHR-P participants were younger and reported 

fewer years of education. In the CHR-P group, baseline GAF scores were 

significantly affected by drug abuse/dependence (p = .022), anxiety disorders 

(p = .031) and mood disorders (p < .001). Age, gender, education and 

medication use exerted no such effects. Significant differences across study 

sites for the CHR-P group are displayed in Supplementary Table 1. 
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Table 1-1. Demographic, clinical, functioning and cognitive characteristics of the 

entire sample (N = 248) 

Variable CHR-P 

(N = 146) 

CHR-N 

(N = 47) 

HC 

(N = 55) 

p-value Post hoc tests 

Age (years), mean (SD) 21.47 
(4.22) 

22.94 
(4.80) 

22.31 
(3.39) 

.025 CHR-P v HC, 
CHR-N 

Gender, female n (%) 104 
(71.2) 

30 (63.8) 37 
(67.3) 

.606 - 

Education (years), mean 

(SD) 

15.12 

(3.09) 

16.45 

(3.44) 

16.38 

(2.84) 

.006 CHR-P v HC, 

CHR-N 

CAARMS severity, median 
(range) 

28 (0-74) 6 (0-24) 0 (0-12) < .001  CHR-P v HC v 
CHR-N 

CAARMS mean distress, 
median (range) 

30 (0-86) 3 (0-55) 0 (0-25) < .001  CHR-P v HC v 
CHR-N 

SPI-A severity, median 
(range) 

7 (0-74) 0 (0-7) 0 (0-2) < .001    CHR-P v HC, 
CHR-N 

SPI-A mean distress, 
median (range) 

3 (0-28) 0 (0-6) 0 (0-1) < .001  CHR-P v HC v 
CHR-N 

CHR-P criteria subgroup, 
n (%) 

     

CAARMS 45 (30.8) - - - - 

SPI-A 37 (25.3) - - - - 

CAARMS/SPI-A 64 (43.8) - - - - 

ACES total, median 

(range) 

2 (0-8) 1 (0-4) 0 (0-4) < .001 CHR-P v HC v 

CHR-N 

Comorbidity, n (%)      

Anxiety disorder 104 
(71.2) 

22 (46.8) 0 (0) < .001 CHR-P v HC v 
CHR-N 

Mood disorder 97 (66.4) 14 (29.8) 0 (0) < .001 CHR-P v HC v 

CHR-N 

Alcohol 
abuse/dependence 

46 (31.5) 11 (23.4) 2 (3.6) < .001 HC v CHR-P, 
CHR-N 

Drug abuse/dependence  24 (16.4) 3 (6.4) 0 (0) .002 CHR-P v HC 

Eating disorder 11 (7.5) 1 (2.1) 0 (0) .054 - 

Medication, n (%)      

Antipsychotic 4 (2.7) 0 (0) 0 (0) .242 - 

Mood stabiliser  4 (2.7) 0 (0) 0 (0) .242 - 

Antidepressant 53 (36.3) 13 (27.7) 0 (0) < .001 HC v CHR-P, 

CHR-N 

Anti-anxiety 10 (6.8) 1 (2.1) 0 (0) .076 - 

GAF, median (range) 58 (21-
95) 

70 (43-94) 88 (67-
97) 

< .001 CHR-P v HC v 
CHR-N 
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Poor baseline functioning, 
n (%) 

106 
(72.6) 

- -  - 

PFO, n (%) 70 (59.3) - -  - 

Social functioning, 
median (range) 

8 (3-10) 8 (6-9) 9 (8-10) < .001 CHR-P v HC v 
CHR-N 

Role functioning, median 
(range) 

8 (3-9) 8 (5-9) 9 (5-9) < .001 CHR-P v HC v 
CHR-N 

PAS average, median 
(range) 

1.22 (0-
3.43) 

0.86 (0-
3.86) 

0.43 (0-
1.64) 

 < .001 CHR-P v HC v 
CHR-N 

BACS, mean (SD)      

Verbal memory -0.22 

(1.20) 

0.09 (1.05) 0 (1.01) .295 - 

Motor speed -0.72 

(1.21) 

-0.39 

(1.01) 

0 (1.01) < .001 CHR-P v HC 

Attention & processing 

speed 

-0.48 

(1.14) 

0.08 (1.19) 0 (1.01) .001 CHR-P v HC, 

CHR-N 

Verbal fluency -0.09 

(1.24) 

-0.23 

(1.05) 

0 (1.01) .760 - 

Executive function 0 (1.34) 0.05 (1.25) 0 (1.01) .855 - 

Working memory -0.08 
(1.41) 

0.24 (1.13) 0 (1.01) .443 - 

Composite score -0.59 
(1.71) 

-0.07 
(1.36) 

0 (1.01) .022 CHR-P v HC 

CNB, mean (SD)      

Emotion recognition 
accuracy 

-0.17 
(1.13) 

-0.10 
(0.91) 

0 (1.01) .565 - 

Emotion recognition RT 0.59 
(1.58) 

0.18 (1.33) 0 (1.01) .037 CHR-P v HC 

Attention accuracy -0.71 
(2.60) 

0.10 (1.13) 0 (1.01) .039 CHR-P v HC 

Attention RT -0.11 
(0.86) 

-0.26 
(0.96) 

0 (1.01) .326 - 

Working memory 
accuracy 

-0.41 
(1.68) 

-0.17 
(1.23) 

0 (1.01) .286 - 

Working memory RT -0.05 
(0.82) 

-0.10 
(0.98) 

0 (1.01) .691 - 

Note. CHR-P, clinical high-risk for psychosis; CHR-N, clinical high-risk-negative; 

HC, healthy control; CAARMS, Comprehensive Assessment of At-Risk Mental 

States; SPI-A, Schizophrenia Proneness Instrument, Adult version; ACES, 

Adverse Childhood Experience Scale; GAF, Global Assessment of Functioning; 

PFO, poor functional outcome; PAS, Premorbid Adjustment Scale; BACS, Brief 

Assessment of Cognition in Schizophrenia; CNB, Penn Computerized 

Neurocognitive Battery; RT, response time 
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Baseline Regression Analysis 

We fitted combined models where clinical, cognitive and functioning variables 

were entered as candidate predictors, and a cognitive model which only 

included cognitive variables.  

In the combined model for the CHR-P group, cognitive (verbal memory, working 

memory RT, emotion recognition accuracy, motor speed), functioning 

(premorbid adjustment, social and role functioning) and clinical (SPI-A and 

CAARMS severity and distress, ACES total) variables were associated with 

baseline GAF scores (Figure 1). The combined model explained 41% of the 

variance in GAF scores in the CHR-P group, whereas the cognitive model 

explained 12%. The cognitive model contained verbal memory, working 

memory accuracy and RT, executive function, emotion recognition accuracy and 

attention RT (Supplementary Figure 2). Unexpectedly, motor speed and 

executive function were negatively related to GAF scores in the combined and 

cognitive models, respectively, while attention RT was positively related to GAF 

scores in the cognitive model.  

 

Table 1-2: Nonzero LASSO-LARS regression coefficients for CHR-P (N = 146) 

and CHR-N (N = 47) baseline models 

Variable β coefficient 

 CHR-P combined 

model 

CHR-P cognitive model CHR-N 

combine
d model Social 

functioning 
2.97  1.12 

PAS average -2.15   

Role functioning 1.24  2.07 

Working memory 
RT 

-0.96 -1.88  

SPI-A mean 
distress 

-0.85  -0.63 

ACES total -0.51   

Motor speed -0.24   

Verbal memory 0.24 1.88  

Emotion 

recognition 
accuracy 

0.11 1.75  

Total CAARMS 
severity 

-0.10   

SPI-A severity -0.05   
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CAARMS mean 
Table 3: Mixed-site 

and cross-site 

classifiers in the 

CHR-P sample (N = 

146) 

Mod

el 

Me

an 

A

UC 

Precisi

on 

(PFO/G

FO) 

Recall 

(PFO/G

FO) 

F1 

(PFO/G

FO) 

Me

an 

BA

C 

p-

val

uea 

Mixed-site classifiers 

GN

B 

0.7

0 

0.68/0.

48 

0.54/0.

62 

0.60/0.

55 

0.5

9 

.00

2 

LDA 0.7

3 

0.71/0.

59 

0.73/0.

56 

0.72/0.

57 

0.6

5 

.00

5 

SV

M 

0.7

2 

0.73/0.

55 

0.64/0.

65 

0.68/0.

60 

0.6

5 

.01

4 

LR 0.7

4 

0.72/0.

56 

0.66/0.

62 

0.69/0.

59 

0.6

5 

.00

3 

RFC 0.7

2 

0.64/0.

55 

0.81/0.

33 

0.72/0.

42 

0.6

1 

.01

3 

Aver

age 

0.7

2 

0.70/0.

55 

0.68/0.

56 

0.68/0.

55 

0.6

3 

- 

Cross-site classifiers 

GN

B 

0.6

1 

0.71/0.

50 

0.63/0.

58 

0.67 

/0.54 

0.6

1 

- 

LDA 0.6

4 

0.68/0.

50 

0.68/0.

50 

0.68/0.

50 

0.5

9 

- 

SV

M 

0.6

2 

0.72/0.

54 

0.68/0.

58 

0.70/0.

56 

0.6

3 

- 

LR 0.6

5 

0.72/0.

54 

0.68/0.

58 

0.70/0.

56 

0.6

3 

- 

RFC 0.6

6 

0.73/0.

67 

0.84/0.

50 

0.78/0.

57 

0.6

7 

- 

Aver

age 

0.6

4 

0.71/0.

55 

0.70/0.

55 

0.71/0.

55 

0.6

3 

- 

Note. GNB, gaussian 

naive bayes; LDA, 

linear discriminant 

analysis; SVM, 

support vector 

machines; RFC, 

random forest 

classification; LR, 

logistic regression; 

AUC, area under the 

curve; PFO, poor 

functional outcome; 

GFO, good functional 

-0.02   

Attention RT  1.27  

Executive 
function 

 -0.60  

Working memory 

RT 

 0.05  

Note. CHR-P, clinical high-risk for psychosis; CHR-N, clinical high-risk-negative; 

CAARMS, Comprehensive Assessment of At-Risk Mental States; SPI-A, 

Schizophrenia Proneness Instrument, Adult version; ACES, Adverse Childhood 

Experience Scale; GAF, Global Assessment of Functioning; PAS, Premorbid 

Adjustment Scale; RT, response time 

 

Concurring with permutation feature importance scores (Supplementary Table 

2), social functioning (β = 2.97) emerged as the strongest predictor in the 

combined model (Table 2; Supplementary Table 3) whereas verbal memory (β = 

1.88) was a particularly strong predictor in the cognitive model (Table 2). 

The combined model for the CHR-N group explained 17% of the variance in 

baseline GAF scores. This model included clinical (SPI-A distress) and 

functioning (social and role functioning) variables (Supplementary Figure 3) 

with role functioning (β = 2.07) emerging as the strongest predictor (Table 2, 

Supplementary Table 2). The cognitive model for the CHR-N group, however, 

failed to explain any variance in GAF scores. 
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Figure 1-1 Correlation matrix showing the relationship between nonzero predictors and 

baseline GAF scores for the combined LASSO-LARS regression model for the CHR-P group (N 

= 146). The latest GAF score is added to this figure for visualisation purposes only and has 

not been entered in the regression model. 

 

Follow-up Classification Analysis 

At follow-up, 59.3% of CHR-P individuals presented with PFO. Mixed-site 

classifiers were trained to predict PFO versus GFO in CHR-P individuals based on 

variables associated with baseline GAF (Figure 1). Permutation tests on AUC 

scores indicated that all mixed-site classifiers performed significantly above 

chance (Table 3). The classifiers performed consistently, showing a mean BAC of 

63% and a mean AUC of 0.72, while LR performed best (mean AUC = 0.74; 

mean BAC = 0.65). Mean sensitivity and specificity across classifiers was 68% 

and 56%, respectively, suggesting a bias towards predicting PFO.  

Performance among the cross-site models was consistently lower than for the 

mixed-site models (Table 3), with a mean AUC of 0.64 and a mean BAC of 0.63 

across classifiers. Again, sensitivity was consistently higher than specificity. 
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Table 1-3: Mixed-site and cross-site classifiers in the CHR-P sample (N = 146) 

Model Mean 

AUC 

Precision 

(PFO/GFO) 

Recall 

(PFO/GFO) 

F1 

(PFO/GFO) 

Mean 

BAC 

p-

valuea 

Mixed-site classifiers 

GNB 0.70 0.68/0.48 0.54/0.62 0.60/0.55 0.59 .002 

LDA 0.73 0.71/0.59 0.73/0.56 0.72/0.57 0.65 .005 

SVM 0.72 0.73/0.55 0.64/0.65 0.68/0.60 0.65 .014 

LR 0.74 0.72/0.56 0.66/0.62 0.69/0.59 0.65 .003 

RFC 0.72 0.64/0.55 0.81/0.33 0.72/0.42 0.61 .013 

Average 0.72 0.70/0.55 0.68/0.56 0.68/0.55 0.63 - 

Cross-site classifiers 

GNB 0.61 0.71/0.50 0.63/0.58 0.67 /0.54 0.61 - 

LDA 0.64 0.68/0.50 0.68/0.50 0.68/0.50 0.59 - 

SVM 0.62 0.72/0.54 0.68/0.58 0.70/0.56 0.63 - 

LR 0.65 0.72/0.54 0.68/0.58 0.70/0.56 0.63 - 

RFC 0.66 0.73/0.67 0.84/0.50 0.78/0.57 0.67 - 

Average 0.64 0.71/0.55 0.70/0.55 0.71/0.55 0.63 - 

Note. GNB, gaussian naive bayes; LDA, linear discriminant analysis; SVM, 

support vector machines; RFC, random forest classification; LR, logistic 

regression; AUC, area under the curve; PFO, poor functional outcome; GFO, 

good functional outcome; BAC, balanced accuracy.  

a Permutation tests on AUC, corrected for multiple comparisons (Bonferroni). 

 

 

Classifiers using baseline functioning variables only (GAF, social and role 

functioning) performed better than either mixed- or cross-site models on 

average (mean AUC = 0.76; mean BAC = 0.68). The baseline GAF model, which 
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used good and poor baseline functioning categories as predictors, yielded an 

AUC of 0.67 and BAC of 0.70.  

 

Table 1-4: Classifiers using baseline functioning variables in the CHR-P sample 

(N = 146) 

Model Mean 
AUC 

Precision 
(PFO/GFO) 

Recall 
(PFO/GFO) 

F1 
(PFO/GFO) 

Mean 
BAC 

p-
valuea 

GNB 0.80 0.76/0.59 0.67/0.69 0.71 /0.63 0.68 .001 

LDA 0.78 0.73/0.64 0.77/0.58 0.75/0.61 0.68 .001 

SVM 0.79 0.78/0.59 0.66/0.73 0.71/0.65 0.70 .001 

LR 0.79 0.77/0.60 0.67/0.71 0.72/0.65 0.69 .001 

RFC  0.70 0.69/0.57 0.71/0.54 0.70/0.55 0.65 .019 

Simple 
GAFb 

0.67 0.71/0.69 0.84/0.50 0.77/0.58 0.70 - 

Average 0.76 0.74/0.61 0.73/0.63 0.73/0.61 0.68 - 

Note. GNB, gaussian naive bayes; LDA, linear discriminant analysis; SVM, 

support vector machines; RFC, random forest classification; LR, logistic 

regression; AUC, area under the curve; PFO, poor functional outcome; GFO, 

good functional outcome; GAF, Global Assessment of Functioning; BAC, 

balanced accuracy. 

a Permutation tests on AUC, corrected for multiple comparisons (Bonferroni). 

b Associated values reflect single values rather than means due to the nature of 

the model. 

 

 

GAF Score Changes  

For the CHR-P group, median absolute change in GAF during follow-up was 

10.0, whereas median raw change in GAF (including negative change as is) was 

0.5 (Supplementary Figure 4A-B). Eighty-three (70.3%) individuals did not 

change GAF category between baseline and follow-up, whereby 59 (50.0%) and 

24 (20.3%) presented with poor and good functioning at both time points 

respectively. By contrast, 35 (29.7%) individuals did change GAF category 
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between baseline and follow-up, whereby 24 (20.3%) changed from poor to 

good functioning and 11 (9.3%) changed from good to poor functioning. These 

results were statistically significant (p < .001) with the highest proportion of 

CHR-P participants presenting with poor functioning at both time points. 

Notably, raw GAF score changes between baseline and 6-month follow-up were 

not significantly different from changes between baseline and 12-month follow-

up in CHR-P individuals (n = 84) with both follow-up assessments (p = .590; 

Supplementary Figure 4C-D).  

 

Discussion 

We investigated the contribution of cognition towards impaired functioning as 

well as the potential utility of incorporating cognitive variables into predictive 

models of functional outcome. Although cognitive deficits explained 41% of the 

variance in baseline GAF scores when combined with clinical and functioning 

variables, cognitive variables alone explained only 12%. The combination of 

cognitive variables with functioning and clinical variables allowed classification 

of CHR-P individuals into GFO and PFO groups at follow-up with an average BAC 

of 63% in both mixed- and cross-site models. Furthermore, we were able to 

predict functional outcomes with acceptable accuracy using simple classifiers 

incorporating only baseline functioning variables. 

 

Predictors of Baseline Functioning  

In addition to clinical and functioning variables, cognitive deficits emerged as 

predictors of baseline functioning, together explaining 41% of the variance in 

baseline GAF scores in CHR-P participants. Impaired functioning prior to 

disorder onset is one of the strongest predictors of functional outcome in CHR-P 

individuals (Salokangas et al., 2014) and in patients with first-episode psychosis 

or established schizophrenia (Barajas et al., 2013). Indeed, functioning 

variables comprised the strongest predictors in the current study, illustrating the 

importance of interventions targeting functional impairments during early 

psychosis. Cognitive and clinical variables were weaker predictors and 

evidenced relatively similar importance scores. In line with previous studies, 

verbal memory (Meyer et al., 2014; Niendam et al., 2006), working memory 

(Goghari et al., 2014), emotion recognition (Glenthøj et al., 2016), motor speed 
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(Carrión et al., 2013), ACES total (Kraan et al., 2015), social and role 

functioning and premorbid adjustment (Salokangas et al., 2014) emerged as 

predictors of GAF in the combined CHR-P model. The emergence of CAARMS 

and SPI-A severity and distress scores as predictors, however, contrasts with 

previous findings (Carrión et al., 2016; Kim et al., 2019; Lin et al., 2011; Meyer 

et al., 2014; Rekhi et al., 2019). 

In the CHR-P group, the relationship observed between impaired cognition and 

functioning is consistent with studies in established schizophrenia where 

cognitive deficits have been linked to decreased ability to live independently, 

poor social skills and inability to maintain employment (Lepage et al., 2014). 

Cognitive variables alone only explained 12% of the variance in baseline 

functioning in the CHR-P group, concurring with previous studies in 

schizophrenia (Fett et al., 2011) and CHR-P cohorts (Carrión et al., 2011). 

Notably, one of the strongest cognitive predictors was verbal memory, 

consistent with previous CHR-P studies predicting social functioning (Meyer et 

al., 2014; Niendam et al., 2006) and schizophrenia studies predicting a variety 

of functional outcomes (Green, 1996). Although certain cognitive variables (i.e. 

motor speed, executive function and attention RT) displayed unexpected 

relationships with baseline functioning in both combined and cognitive CHR-P 

models, this may partially reflect a speed-accuracy trade off. Moreover, in our 

CHR-N sample, cognitive variables were unrelated to GAF, suggesting that this 

relationship may be specific to the CHR-P state. However, this finding may be 

explained by the absence of significant cognitive deficits in the CHR-N sample 

and the smaller sample size. 

 

Predictors of Functional Outcome 

Mixed-site models combining cognitive variables with clinical and functioning 

variables were able to predict functional outcome in the CHR-P group. All mixed-

site models performed significantly above chance, with a mean AUC of 0.72 and 

a mean BAC of 63%. Performance was relatively consistent across all algorithms 

making it unlikely that our best performing classifier (LR; mean AUC = 0.74) 

was overfitting. These data are in line with previous research utilising clinical, 

functional and neuroimaging data where functional outcomes have been 

predicted with AUC scores between 0.70-0.86 and accuracies between 62.5%-

82.7% (Kambeitz-Ilankovic et al., 2016; Koutsouleris et al., 2018; Mechelli et 
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al., 2017). Notably, performance in the current study decreased for the cross-

site models (mean AUC =  0.64; mean BAC =  63%), which is a common 

problem noted for machine learning classifiers in the field (Vieira et al., 2020).  

We additionally fitted classifiers on baseline functioning variables. Using 

baseline data to predict later measures of the same variable often predicts 

outcomes better than chance and baseline models can provide a more stringent 

method for evaluating classifier accuracy (DeMasi et al., 2017). Indeed, 

previous studies identified global and social functioning scores as the most 

useful variables for predicting social functioning at 1-year follow-up in CHR-P 

participants (Koutsouleris et al., 2018). In the current study, classifiers fitted 

only on baseline functioning variables performed better, on average, than both 

mixed- and cross-site models with a mean AUC and BAC of 0.76 and 68%, 

respectively. This is possibly explained by the fact that GAF scores appear to be 

relatively stable across time. Overall, nearly two thirds of our sample showed 

PFO in agreement with previous studies (Carrión et al., 2013; Koutsouleris et 

al., 2018) and the majority of individuals (70.3%) remained within the same 

outcome category.  

 

Limitations 

Both the regression and classification analyses could be optimised by increasing 

the number of participants relative to candidate predictors. Additionally, we only 

had two test sites, meaning that cross-site classifiers were only trained on a 

single site, thus limiting their ability to learn patterns across multiple sites. 

Given that machine learning models have the potential to outperform human 

judgement, it is highly probable that models predicting functional outcomes in 

early psychosis can improve in larger datasets (Fusar-Poli et al., 2019). As 

accuracy tends to exhibit a strong relationship with sample size for machine 

learning methods in particular (Floares et al., 2017), standardising data 

acquisition protocols across research centres and thereby facilitating the 

collection of much larger collaborative datasets is likely to produce significant 

performance gains in terms of both accuracy and cross-site transfer. 

Furthermore, due to the small size of CHR-N participants, strong conclusions 

regarding the contribution of cognitive deficits towards impaired functioning in 

this group cannot be drawn and, given that only 55% completed follow-up 

assessments, GAF outcome/change could not be examined in this group. 
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The current study also highlights the limitations of current functioning 

measurements in CHR-P populations. The GAF scale, for example, confounds 

functioning with symptom severity and shows only limited fluctuations over 

time. However, the GAF scale was chosen over social and role functioning scales 

in this study as scores obtained from the latter displayed low variability. 

Accordingly, more sensitive measures are required that trace changes in 

functioning across several dimensions. Finally, negative symptoms, which have 

been shown to mediate the relationship between neurocognition and functioning 

(Glenthøj et al., 2016; Meyer et al., 2014), as well as treatment use over follow-

up were not assessed in the current CHR-P sample. 

 

Conclusions 

Utilising a machine learning approach, we have shown that cognitive variables 

alongside clinical and functioning variables predict short-term functional 

outcome with above-chance performance. With the increasing popularity of 

complex machine learning models in psychiatry, it is important to consider 

appropriate benchmark measures to determine whether the potential gains are 

sufficient to justify their use over simpler alternatives. Our findings suggest, for 

example, that baseline GAF scores allow a more robust prediction of functional 

outcomes in CHR-P individuals than complex machine learning approaches. 

Given the large proportion of CHR-P individuals presenting with PFO, 

interventions incorporating social skills training, vocational rehabilitation and 

cognitive remediation are clearly warranted at this stage. 
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Abstract 

Hippocampal dysfunctions are a core feature of schizophrenia, but conflicting 

evidence exists whether volu-metric and morphological changes are present in 

early-stage psychosis and to what extent these deficits are related to clinical 

trajectories. In this study, we recruited individuals at clinical high risk for 

psychosis (CHR-P) (n = 108), patients with a first episode of psychosis (FEP) (n 

= 37), healthy controls (HC) (n = 70) as well as a psychiatric control group with 

substance abuse and affective disorders (CHR-N: n = 38). MRI-data at baseline 

were obtained and volumetric as well as vertex analyses of the hippocampus 

were carried out. Moreover, volumetric changes were examined in the 

amygdala, caudate, nucleus accumbens, pallidum, putamen and thalamus. In 

addition, we obtained follow-up functional and symptomatic assessments in 

CHR-P individuals to examine the question whether anatomical deficits at 

baseline predicted clinical trajectories. Our results show that the hippocampus is 

the only structure showing significant volumetric decrease in early-stage 

psychosis, with FEPs showing significantly smaller hippocampal volumes 

bilaterally alongside widespread shape changes in the vertex analysis. For the 

CHR-P group, volumetric decreases were confined to the left hippocampus. 

However, hippocampal alterations in the CHR-P group were not robustly 

associated with clinical outcomes, including the persistence of attenuated 

psychotic symptoms and functional trajectories. Accordingly, our findings 

highlight that dysfunctions in hippocampal anatomy are an important feature of 

early-stage psychosis which may, however, not be related to clinical outcomes in 

CHR-P participants. 
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Introduction 

Psychotic disorders, such as schizophrenia (ScZ), have been associated with 

neuroanatomical changes, including grey matter (GM) alter-ations in cortical 

(Glahn et al., 2008) and subcortical regions (van Erp et al., 2016, Gutman et 

al., 2022), that have been related to negative symptoms (Walton et al., 2018) 

as well as to cognitive deficits (Pantelis and Nelson, 2019). In addition to 

cortical changes, reductions in the hippocampus, amygdala, thalamus and 

nucleus accumbens have been observed, while pallidum volume is increased in 

ScZ (van Erp et al., 2016). Volumetric changes in subcortical areas correlate 

with surface alterations that include both surface contractions and increases 

(Gutman et al., 2022). 

Recent work has investigated the role of GM changes in participants at clinical 

high risk for psychosis (CHR-P) to identify biomarkers for early detection and 

prognosis (Jalbrzikowski et al., 2021). There is extensive evidence that ScZ is 

preceded by a prodromal phase of up to 5 years (Fusar-Poli et al., 2020a,b; 

Klosterkotter et al., 2001) that involves subtle alterations in cognition and 

functioning that could be mediated by changes in GM (Koutsouleris et al., 

2010). Reductions in cortical GM have been identified in CHR-P individuals 

(Group, Jalbrzikowski et al. 2021; Zikidi et al., 2020), which may be related to 

transition to psy-chosis (Koutsouleris et al., 2009) as well as functional 

outcomes (Koutsouleris et al., 2018). Relationships with clinical outcomes are a 

particularly important issue as only a minority of CHR-P participants, 

approximately 25% over a three-year period (Pablo et al., 2021), will eventually 

transition to a first-episode of psychosis (FEP). While there is consistent 

evidence for cortical GM changes in CHR-P participants, evidence for a possible 

contribution of subcortical regions in emerging psychosis is less clear. 

A region that has received particular attention during early-stage psychosis is 

the hippocampus (Provenzano et al., 2020). Previous studies suggested that 

abnormal functioning and anatomy of the hippocampus may constitute one of 

the earliest signs of psychosis (Lieber-man et al., 2018). Specifically, it has been 

proposed that dysregulated neurotransmission of glutamatergic circuitry may 

lead to excitotoxic effects (Lisman et al., 2008) and abnormal hippocampal 
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activation (Allen et al., 2015, 2021; Modinos et al., 2020a,b), resulting in volu-

metric reductions (Provenzano et al., 2020). Moreover, these changes may in 

turn drive functional and structural abnormalities in dopaminergic 

neurotransmission (Modinos et al., 2021; Stone et al., 2010), indicating that the 

hippocampus could play a key role in the pathophysiology of ScZ by triggering a 

cascade of events leading to wide-spread cortical and subcortical circuit 

changes. The subregion CA1 has received particular attention (Schobel et al., 

2013), but there is also evidence for abnormalities in CA2 and CA3 (Baglivo et 

al., 2018). 

Despite the prominent role of the hippocampus in ScZ, there is currently 

conflicting evidence whether hippocampal alterations are present in early-stage 

psychosis. In CHR-P participants, some studies have reported intact 

hippocampus volumes (Walter et al. 2016, 2020), while others have reported 

overall volumetric reductions (Ganzola et al., 2014; Harrisberger et al., 

2016a,b,c; Wood et al., 2010), in particular in CA1 (Lieberman et al., 2018). 

Similarly, hippocampal hyperactivity, as reflected by elevated blood flow and 

glutamate levels, predicted tran-sition to psychosis in CHR-P participants 

(Bossong et al., 2019, Provenzano et al., 2020). In contrast, the majority of 

studies in FEP-patients have reported hippocampal reductions (Adriano et al., 

2012; Borgwardt et al., 2007; Buehlmann et al., 2010; Lieberman et al., 2018; 

Phillips et al., 2002; Velakoulis et al., 2006), suggesting the possibility of 

progressive dysfunctions with illness stages. 

To clarify the role of the hippocampus in early-stage psychosis, we performed 

volumetric and morphological analyses of the hippocampus and other 

subcortical structures (amygdala, caudate, nucleus accumbens, palladium, 

putamen, thalamus) in CHR-Ps and FEP-patients. This is because it is currently 

unclear whether anatomical alterations are specific to the hippocampus or 

whether subcortical regions, such as the nucleus accumbens, caudate 

(Sasabayashi et al., 2020), and thalamus (Harrisberger et al., 2016a), are also 

affected. Moreover, antipsychotic and antidepressant medication (APM/ADM) 

have previously been shown to affect subcortical volumes (Hashimoto et al., 

2018). Accordingly, we also tested the effects of APM/ADM on anatomical 

variables in CHR-P and FEP-groups. 

We also included a group of participants with affective and substance use 

disorders who did not meet CHR-P criteria (CHR-N) in addition to non-clinical 
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control participants (HC). There is evidence that hippocampal changes also 

occur in several other psychiatric syndromes, including major depressive 

disorder (Arnone et al., 2012) as well as substance abuse (Wilson et al., 2017; 

Wang et al., 2021) and there is substantial comorbidity between affective 

disorders, substance abuse and early-stage psychosis (Li et al., 2020; Wilson et 

al., 2017; Herniman et al., 2021). Finally, we investigated the relationship 

between hippocampal volumes and clinical features, including global functioning 

and cognition, and the persistence of attenuated psychotic symptoms (APS) to 

determine whether hippocampal changes correlate with clinical and functional 

outcomes in CHR-P participants. 

 

Materials and methods 

Participants 

A total of 253 participants were recruited from the Youth Mental Health Risk and 

Resilience (YouR) Study (Uhlhaas et al., 2017) and divided into four groups: 1) 

108 participants meeting CHR-P criteria, (2) 38 participants characterized by 

non-psychotic disorders, such as affective disorders (n = 11), anxiety disorders 

(n = 16), eating disorders (n = 1), and/or substance abuse (n = 10) (CHR-N), 

3) 37 patients with FEP (15 antipsychotic-naïve) and, 4) 70 healthy control 

participants (HC) without an axis I diagnosis or family history of psychosis. Ages 

across groups ranged from 16 to 34 years. 

CHR-P status at baseline was established by ultra-high risk criteria according to 

the Comprehensive Assessment of At Risk Mental States (CAARMS) Interview 

(Yung et al., 2005) and the Cognitive Disturbances (COGDIS) and Cognitive-

Perceptive (COPER) basic symptoms criteria according to the Schizophrenia 

Proneness Instrument, Adult version (SPI-A (Schultze-Lutter et al., 2012). FEP 

patients were assessed with the Structured Clinical Interview for DSM-5 (SCID, 

First, 2014) and with the Positive and Negative Symptom Scale (PANSS, Kay et 

al., 1987). For all groups except FEP-patients, cognition was assessed with the 

Brief Assessment of Cognition in Schizophrenia (BACS) (Keefe et al., 2004). 

The study was approved by the ethical committees of University of Glasgow and 

the NHS Research Ethical Committee Glasgow & Greater Clyde. All participants 

provided written informed consent. 
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MRI acquisition 

We acquired T1-weighted MR images on a 3 T Siemens scanner using a 3D 

MPRAGE sequence with the following parameters: FoV: 256 × 256 × 176 mm3, 

voxel size: 1 × 1 × 1 mm3, TR: 2250 ms, TE: 2.6 ms, TI: 900 ms, FA: 9◦. 

 

Preprocessing 

Pre-processing was performed using ANTs (http://stnava.github. io/ANTs/), 

AFNI (https://afni.nimh.nih.gov/), FSL (https://fsl.fmrib. ox.ac.uk/fsl/fslwiki) 

and custom functions in R (https://www.r-pro ject.org/). DICOM images were 

converted to nifti (.nii) files using the function dcm2niix_afni. T1-w volumes 

were up-sampled to 0.8 mm isotropic. Up-sampling was performed using the 

AFNI function 3dre-sample, using linear interpolation. Single-participant 

volumes were skull-stripped using the afni function 3dSkullStrip. The intensity 

of T1-w volumes was normalized to remove global inhomogeneities using the 

ANTs function N4BiasFieldCorrection. Volumes were normalized to Talairach 

space using the function @auto_tlrc and the corresponding affine 

transformations were stored for subsequent use. FSL FIRST was used to extract 

subcortical segmentations for the following structures: thalamus, putamen, 

pallidum, caudate, amygdala, hippocampus and nucleus accumbens. Lastly, we 

transformed the result of FSL segmen-tation back into the original single-

participant space by inverting the affine transformation. The computation of 

subcortical volume was per-formed in the original single-participant space. We 

also obtained an estimate of total brain volume (TBV) from the brain mask 

obtained from 3dSkullStrip. 

It is important to note that although Freesurfer has shown greater consistency 

with manual segmentations in pediatric and longitudinal data (Cover et al., 

2016; Schoemaker et al., 2016), FSL-FIRST has consistently outperformed the 

non-longitudinal Freesurfer pipeline on hippocampal (Cover et al., 2016; Næss-

Schmidt et al., 2016; Velasco-Annis et al., 2018) and other subcortical 

structures (Perlaki et al., 2017).     We     therefore     chose     FSL-FIRST     to     

perform     subcortical segmentations (see in Fig. 1). All images were visually 

inspected, whereby images with visible artifacts and poor quality segmentations 

(i. e. visibly inconsistent with how the image would have been segmented 

http://stnava.github.io/ANTs/
http://stnava.github.io/ANTs/
https://afni.nimh.nih.gov/
https://afni.nimh.nih.gov/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
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manually) were excluded. Data from one CHR-P individual was excluded from all 

analyses due to motion artifacts. 

 

 

 

Figure 2-1 Analysis pipeline and example segmentation outcome from FSL FIRST. Panel A: 

flowchart reporting the preprocessing steps using AFNI and ANTs functions. B: subcortical 

segmentation example obtained from a single participant. The quality of all segmented 

images was determined by visual inspection. 

 

Volumetric analysis 

Volumetric measurements were extracted from the FSL segmentations and 

averaged across the two hemispheres for the following structures: thalamus, 

putamen, pallidum, caudate, amygdala, hippocampus, nucleus accumbens. We 

conducted a GLM analysis which tested for differences in volumes between HC 

and each clinical group with age and TBV being used as covariates. The 

following equation was used in R: 

Subcortical volume ∼ Group+TBV+age 

 

The R function aov was additionally used to identify main effects of group. FDR 

correction was applied to correct for multiple comparisons; all analyses were 

conducted using the software R and the lme4 package. Analyses were also 

conducted for hemispheres and structures separately while controlling for years 

of education and handedness (Supplementary Table 1). In addition, we tested 

for the effects of antidepressant medication in the CHR-Ps and antipsychotic 
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medication in the FEP groups on subcortical volumes (Supplementary Tables 4 

and 5). 

 

Vertex analysis 

Following our volumetric analysis, we used FSL to examine regional shape 

differences. While FSL does not directly extract subfield volumes, subfield-

specific changes can be inferred from the location of shape deformations on the 

surface of each structure. Vertex analysis therefore allows us to determine 

where potential volumetric changes from the prior volumetric analysis likely 

originated from – i.e. whether they are regionally specific or widespread across 

a given subcortical structure. Surface meshes were extracted for each 

participant from the subcortical segmentations generated using FSL FIRST. 

Design matrices were generated for each pairwise group comparison and 

hemisphere separately. 

We used the same covariates as for the linear models (i.e. total brain volume, 

age); covariate scores were mean-centered for the vertex analysis. FSL 

randomize was then used to generate 10,000 permutations (per comparison), 

and to compute the F-statistic and significance (FWE-corrected at the cluster 

level at a minimum cluster size of 3 voxels). Bonferroni-correction was 

additionally applied to correct for the mul-tiple comparisons between groups 

conducted. 

For visualization purposes, the generated masks showing F-values were plotted 

in MNI space using the Python package nilearn. The masks were thresholded to 

only show F-values where the cluster p-value ≤ 0.05; analyses which returned 

no significant clusters were omitted from plotting. 

 

 

Clinical Follow-Up 

Participants meeting CHR-P criteria were reassessed at 3-, 6-, 9-, 12-, 18-, 24-, 

30-, and 36-month intervals to examine the persistence of APS and functional 

outcomes, using the CAARMS interview. Based on past research (Allen et al., 

2015; Modinos et al., 2019), GAF outcome cate-gories were split into good 
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(GFO) and poor functional outcomes (PFO) using a cutoff of GAF ≥ 65. For the 

follow-up analyses, we used GAF data from 6- and 12-months follow-ups. 

Persistence of ultra-high risk criteria was operationalized by the continued 

presence of APS up to 12 months. In addition, transition to psychosis was 

assessed. We fitted binomial GLMs for each clinical outcome (i.e. APS 

persistence, functional outcomes, transition to psy-chosis) in the CHR-P group 

to investigate the relationship between hippocampal volumes and outcomes, 

using the same covariates (TBV, age) as our aforementioned linear models with 

the R package lme4. 

 

Results 

Demographic and clinical data 

In the CHR-P group, n = 30 individuals showed persistent APS and n = 10 

transitioned to psychosis (mean follow-up period to transition: 19.2 months). N 

= 78 CHR-Ps were characterized by GAF scores < 65 at baseline, n = 57 at 6 

months follow-up, and n = 40 at 12-months follow-up. The groups showed 

differences in gender and age distribution, whereby the FEP group was slightly 

older and included more male participants. CHR-P individuals additionally 

showed significantly lower GAF, motor speed and total BACS scores than HC 

individuals (see Table 1). 

 

Volumetric analysis 

We conducted a general linear model (GLM) analysis for each subcortical 

structure. A significant effect of TBV was observed, indi-cating a positive scaling 

between subcortical structures volume and TBV (t-values ranging between 5.97 

for the amygdala to 18.14 for the thal-amus, all p > 0.05, Bonferroni 

corrected). An effect of age was also observed for the thalamus and the 

hippocampus, indicating a positive scaling between volume and age (t of 3.56 

and 2.95, respectively, p <.05, Bonferroni corrected). 

 

Table 1: Demographics 
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HC  

(N=70) 

CHR-N  

(N=38) 

CHR-P  

(N=108) 

FEP  

(N=37) 

Group  

effect 
Post-hoc 
comparisons 

Age (M, SD) 
23.59 
(3.87) 

22.95 
(4.66) 

21.81 
(4.46) 

24.76 
(4.15) 

F=7.06, p < 
.001 

HC < CHR-P 

FEP > CHR-P 

Gender (F, %) 
39 
(55.71) 

26 
(68.42) 

80 
(74.07) 

15 
(40.54) 

χ =17.05, p 
< .001  

Education (years) 
16.65 
(3.05) 

16.46 
(3.45) 

15.30 
(3.21) 

16.20 
(3.30) 

 F=2.58, 
p=.054  

Medication (n, 

%)    *   

None 70 (100) 
23 
(60.52) 

50 
(46.30) 

4 
(26.67) - - 

Antidepressant - 
8 
(21.05) 

33 
(30.56) 3 (20) - - 

Antipsychotic - 0 (0) 1 (0.92) 6 (40) - - 

Other - 
7 
(18.42) 

30 
(27.78) 

7 
(46.67) - - 

CAARMS severity    *   

Total score (M, 
SD) - 

6.18 
(6.21) 

30.29 
(4.64) - 

F = 45.33, p 
< .01 

CHR-P > CHR-
N CHR-P > HC 

UTC - 
0.61 
(1.15) 

1.84 
(1.93) - - - 

NBI - 
0.79 
(1.04) 

2.91 
(1.76) - - - 

PA - 
0.97 
(1.35) 

2.87 
(1.50) - - - 

DS - 
0.52 
(0.89) 

1.42 
(1.38) - - - 

CHR category       

CAARMS only 

(APS/GFRD) - - 31 - - - 

SPI-A only 

(COGDIS/COPER) - - 29 - - - 

CAARMS + SPI-A - - 51 - - - 

 

HC  

(N=70) 

CHR-N  

(N=38) 

CHR-P  

(N=108) 

FEP  

(N=37) 

Group  

effect 
Post-hoc 
comparisons 

BACS       

Composite score 
0.21 
(0.78) 

-0.05 
(1.59) 

-0.64 
(1.67) - 

F=3.59, -p= 
.03 HC > CHR-P 

Verbal memory 
0.25 
(1.0) 

0.20 
(1.73) 

0.01 
(1.27) - 

F=0.524, p= 
.59 - 

Verbal fluency 
0.07 
(1.54) 

-0.24 
(1.01) 

-0.03 
(1.16) - 

F=,0.58 p= 
.56 - 
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Working memory 
(Digit 

sequencing) 

0.19 

(1.0) 

0.29 

(1.26) 

0.05 

(1.36) - 

F=0.39, p= 

.68 - 

Motor speed 
(Token task) 

0.0 
(0.97) 

-0.70 
(1.0) 

-1.10 
(1.41) - 

F=9.60 p .< 
.01 HC > CHR-P 

Executive 
functioning 
(Tower of 
London) 

0.10 
(0.79) 

0.24 
(1.25) 

-0.16 
(1.41) - 

F=,1.41 p= 
.32 HC > CHR-P 

GAF0 (M, SD) 
87.57 
(6.49) 

70.05 
(12.76) 

58.33 
(13.83) - 

F=79.82, p 
< .01 

HC > CHR-N 

HC > CHR-P 

CHR-N > 
CHR-P 

GAF6 (M, SD) - 
57.73 
(20.3) 

58.8 
(13.71) - -  

GAF12 (M, SD) - 

66.59 

(20.32) 

62.59 

(14.52) - -  

N at follow-up 
(6m, 12m) - 15, 20 88, 74 - -  

Abbreviations: APS, attenuated psychotic symptoms; BACS, Brief Assessment of 

Cognition in Schizophrenia; CAARMS, Comprehensive Assessment of At Risk 

Mental States; COGDIS, Cognitive Disturbances, COGDIS, Cognitive-Perceptive 

Basic Symptoms criterion; HC, healthy controls; CHR-N, clinical risk-negative; 

CHR-P, clinical high-risk positive; FEP, first-episode psychosis; GAF, global 

assessment of functioning; SPI-A, Schizophrenia Proneness Instrument, Adult 

version; SD, standard deviation of the mean; AD, antidepressant; AP, 

antipsychotic. 

Note: * data only available for 15 participants. 

 

We observed a main effect of group on hippocampal volumes (F = 5.67, p 

<.01). A significant, bilateral reduction in hippocampal volume was found for 

FEPs vs. HCs (t =   3.75, p <.05, FDR corrected) (Fig. 2, Supplementary Table 

1). The difference between CHR-Ps and HCs also was significant (t =   2.38, p 

=.017) before but not after FDR correction (p =.06). A reduction in volume was 

observed in the left (t =   2.69, p = 0.008, uncorrected) but not in the right 

hippocampus (t =   1.58, p = 0.116, uncorrected) in the CHR-P group compared 

to HCs. The difference between FEP and CHR-P groups was not significant (t = 

1.8, p =.08). 
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No other subcortical structures were characterized by significant differences 

between clinical groups and HC (Fig. 2). Differences in the FEP group in the 

thalamus and amygdala as well as in the putamen in the CHR-P group showed p 

<.1, but were all nonsignificant at p <.05 after FDR correction (see 

Supplementary Table 1). 

 

 

Figure 2-2 Volumetric analysis, results. Average volumetric results for each subcortical 

structure across the control group (HC), clinical controls (CHR-N), clinical high-risk (CHR-P) 

and first-episode psychosis (FEP). Error bars indicate ±1 standard error of the mean (sem). 

Volumetric results are reported in cubic millimeters. *** indicate a significant difference 

between the groups, Bonferroni corrected, p < 0.05. 

 

Vertex analysis 

Vertex analysis was limited to the hippocampus since this was the only 

subcortical structure that differed between groups (Fig. 3). The HC and FEP 

groups showed significant bilateral differences across the hip-pocampal surface 

(Peak cluster left: voxel 62, 106, 50 (MNI152 1 mm; p =.001, F = 16.12); peak 

cluster right: 116, 105, 50 (p =.0004, F = 18.91). In the CHR-P group, clusters 

with the highest F-values were primarily concentrated around the most anterior 

and posterior hippo-campus in both hemispheres. However, no differences 

between CHR-P and HC, or CHR-P and CHR-N groups were significant 

(Supplementary Table 3). 

For the FEP and CHR-P groups, there was a significant difference in the anterior 

to mid-left hippocampus (p =.007, F = 10.17), with a peak cluster around voxel 
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120, 103, 61 (Fig. 3). No differences were observed in the right hemisphere 

(see Supplementary Table 3). 

 

 

Figure 2-3. Vertex analysis at the level of the hippocampus. Hippocampal masks output by 

FSL showing the values of the F-statistic are overlaid onto a 1 mm MNI standard image. 

Panel A: the comparison between patients with a first-episode of psychosis (FEP) and 

healthy controls (HC) revealed significant shape differences. Panel B: the comparison 

between the clinical high-risk (CHR-P) and first episode (FEP) revealed significant shape 

differences in the anterior to mid-left hippocampus. No differences were observed in the 

right hemisphere. 

 

Correlations with cognition and clinical measures 

Hippocampal volumes did not show any significant correlations with global 

functioning (GAF), cognition (BACS total score and subscales), and symptom 

severity (CAARMS total and subscales, SPI-A severity) in the CHR-P group (see 

Supplementary Table 2). A relationship, however, was observed between left 

hippocampal volumes and GAF score at 12 months follow-up, but this was not 

significant after correction for multiple comparisons. 

 

Subcortical volumes and clinical outcomes in CHR-P participants 

We compared hippocampal volumetric data for CHR-P participants who 

continued to meet criteria for persistent APS at 12-month follow-up (APS-P: n = 

32; APS-NP: n = 40). There were no significant differences between CHR-P 

subgroups (p =.14, t = -1.49). Moreover, a binomial GLM did not reveal a 

significant relationship between hippocampal volume and transition to psychosis 

(p >.10, see Supplementary Table 6). In addition, the relationship with good 

and poor functional outcomes 
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at baseline as well as at 6- and 12-months follow-up using logistic regression 

were explored. Mean hippocampus volume (averaged across hemispheres) did 

not show a significant association with GAF category at baseline (p =.58, 

uncorrected) or at 6 months (p =.33, uncorrected), but a relationship with GAF 

category at 12 months was detected (β = 0.0018, p =.036, Bonferroni-

corrected) (Supplementary Table 6). 

 

Medication effects on subcortical volumes 

In the CHR-P group, ADM medication status did not show a significant 

relationship with any subcortical volumes in either hemisphere (all p > 0.1, 

uncorrected), including the hippocampus. Similarly, no effect was found in the 

FEP group for APM-status (Supplementary Table 5). 

 

Discussion 

The current study examined alterations in hippocampal volume and morphology 

during early-stage psychosis to address the specificity of hippocampal changes, 

relationship to illness stage as well as the link with clinical outcomes in CHR-P 

participants. We detected hippocampal volume-reductions in both CHR-P and 

FEP groups which were not pre-sent in psychiatric controls nor was any other 

subcortical structure characterized by anatomical deficits. Hippocampal volumes 

did not, however, robustly predict clinical and functional outcomes in CHR-P 

participants. 

There is currently inconsistent evidence for hippocampus alterations in CHR-Ps. 

Although several studies have observed reduced hippocam-pus volumes 

(Borgwardt et al., 2007; Ganzola, Maziade & Duchesne, 2014; Harrisberger et 

al., 2016a,b,c; Sasabayashi et al., 2021; Wood et al., 2010), recent meta-

analyses (Walter et al., 2016; Hinney et al., 2021) observed no robust evidence 

for volumetric reductions. 

Reduced hippocampus volumes have been previously shown to predict transition 

to psychosis (Buehlmann et al., 2010; Provenzano et al., 2020, but see Hinney 

et al., 2020) as well as a persistence of APS (Ho et al., 2016, Ho et al., 

2017a,b), especially in the hippocampal subregion CA1. In the current study, 

hippocampal volumes did not differ between CHR-P with persistent vs. non-
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persistent APS nor were CHR-Ps who transitioned to psychosis characterized by 

exaggerated GM-reductions. However, there was a nonsignificant association 

between hippocampal volumes and GAF at 12 months but not at 6 months in 

the CHR-P group. Given the smaller number of follow-up data for CHR-Ps at 12 

months, one possibility is that this effect is driven by attrition of participants. 

In FEP patients, more robust deficits have been reported for both hippocampal 

volume and shape (Adriano et al., 2012; Borgwardt et al., 2007; Buehlmann et 

al., 2010; Lieberman et al., 2018; Phillips et al., 2002; Velakoulis et al., 2006), 

particularly in the anterior portion (McHugo et al., 2020; see also Haukvik et al., 

2016). Interestingly, the extent of volume loss may be linked with the duration 

of untreated psychosis (Briend et al., 2020) and reduced hippocampal volume 

might be prognostic for clinical outcomes (McHugo et al., 2020). 

In the current study, volumetric reductions in the FEP-group involved the 

bilateral hippocampus while in CHR-P participants defi-cits were confined to the 

left hemisphere. There is inconsistent evidence for the role of hemispheric 

differences in the hippocampus in early-stage psychosis. Some have observed 

changes in the left hemisphere that were associated with transition to psychosis 

(Buehlmann et al., 2010), FEP status (Baglivo et al., 2018; Velakoulis et al., 

2006) and illness chronicity (Sasabayashi et al., 2021), while others did not 

report hemispheric differences in CHR-Ps (Harrisberger et al., 2016a,b,c) or in 

FEP-patients (Ho et al., 2017a,b). 

Vertex analyses revealed widespread alterations in FEP-patients while in the 

CHR-P group, no significant differences were observed. Consistent with our 

findings, previous studies have found evidence for volumetric reductions in 

hippocampal subfields bilaterally in early psychosis, specifically CA2/3 and the 

subiculum (Baglivo et al., 2018; Vargas et al., 2018). On the other hand, illness 

progression has been associated with volumetric decline in CA1, CA2/3, DG, and 

(pre-) subiculum bilaterally (Vargas et al., 2018). 

In contrasting with our data, however, others (e. g. Sasabayashi et al., 2021) 

have identified shared deficits between CHR-Ps and schizophrenia patients in 

CA1 as well as in the hippocampal tail. Accordingly, further longitudinal data will 

be required to determine the precise trajectory of hippocampal shape 

abnormalities from the CHR-P state to manifest psychosis and schizophrenia. 
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In the present study, CHR-Ps and FEPs showed an overlapping and specific 

deficit in hippocampal volume, providing support for the hypothesis that 

hippocampal dysfunctions may constitute a core signature of early-stage 

psychosis (e.g. Lieberman et al., 2018). Importantly, participants with 

substance abuse and affective disorders were not characterized by hippocampal 

volume loss, suggesting that the observed reductions may be specifically 

related to psychosis and not to other comorbid psychopathology (e.g. Cole et 

al., 2011; Santos et al., 2018). In addition, the hippocampal deficits in CHR-P 

and FEP-groups were not influenced by antipsychotic and antidepressant 

medication status. 

The overlapping volumetric reductions in the hippocampus in both FEP and CHR-

P groups indicate a potential role for hippocampal alterations in development of 

psychosis. However, the more pronounced hippocampal dysfunctions in both 

volume and shape in the FEP group suggest stage-specific differences that 

raises questions regarding the underlying mechanisms and origins. One 

possibility is that hippocampal dysfunctions are the result of prolonged 

psychosis and associated changes in hippocampus physiology involving elevated 

glutamatergic neurotransmission as previously proposed (e.g. Lieberman et al., 

2018; Plitman et al., 2014). In addition, antipsychotic medication levels have 

been related to GM loss in schizophrenia (van Haren et al., 2008) as well as 

hippocampal shape changes (Gutman et al., 2022). 

Finally, hippocampal deficits have been also found in individuals at high genetic 

risk (Ganzola, Maziade & Duchesne, 2014) as well as un-affected relatives of 

individuals with psychosis (e.g. Boos et al., 2007; Choi et al., 2022). 

Accordingly, it is conceivable that hippocampal abnormalities are driven partially 

by genetic susceptibility. To distinguish between these possibilities, further 

longitudinal studies are required in CHR-Ps and FEPs to identify the trajectory 

and contribution of anatomical and functional hippocampal alterations towards 

the development of psychosis as well as potential subgroups with distinct 

genetic contributions. 

Several limitations must be considered in the interpretation of our findings. 

Firstly, hippocampal volume deficits in the CHR-P group did not reach statistical 

significance following corrections for multiple comparisons. Secondly, the 

number of transitions to FEP was too small to properly assess the relationship 

with hippocampal alterations. 
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Summary 

Our study shows that CHR-P and FEP groups were characterized by a specific 

and overlapping deficit in hippocampal anatomy which was not observed in 

other subcortical structures, highlighting the importance of abnormalities in the 

hippocampus for understanding early stage-psychosis. However, volumetric 

abnormalities were not related to clinical and functional outcomes in CHR-P 

participants, suggesting that other biomarkers may be more promising for 

predicting clinical trajectories. Future studies should employ multi-modal 

neuroimaging approaches to characterize the functional consequences of 

abnormal hippocampus anatomy during early-stage psychosis. 
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Abstract 

Background: The choroid plexus is an important structure contained within the 

ventricular system.  Schizophrenia has been associated with morphological 

changes to the choroid plexus but the presence and extent of deficits at 

different illness stages is unclear. Methods: We examined choroid plexus 

volumes in participants at clinical high-risk for psychosis (N=110), participants 

with first-episode psychosis (N=37), participants with schizophrenia (N=28), 

clinical (N=38) and non-clinical controls (N=75). Automated segmentation 

(Gaussian mixture model) was used to estimate choroid plexus volumes from 

T1 MR images. We then conducted a linear model and Bayes factor analysis to 

investigate group differences, and assessed the relationship between choroid 

plexus volumes and clinical characteristics. Results: Schizophrenia patients 

were characterised by increased choroid plexus and ventricular volume while 

first-episode psychosis and clinical high-risk for psychosis participants showed 

no differences. However, choroid plexus volumes in schizophrenia patients did 

not significantly differ from controls when controlling for ventricular volume. 

Finally, choroid plexus volumes were not associated with clinical characteristics 

in any group. Conclusion: Our findings suggest that choroid plexus 

morphology is not affected in schizophrenia and early-stage psychosis. 

Previously reported choroid plexus abnormalities in schizophrenia patients are 

likely due to overall changes in ventricular volume. 
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Introduction 

The choroid plexus (CP) is contained within the ventricular system and 

primarily consists of an epithelial cell layer which is involved in the production 

of cerebrospinal fluid (CSF), and its capillary system maintains the blood-CSF 

barrier (Lun, Monuki, & Lehtinen, 2015). CP pathology such as papilloma, has 

been associated with major structural changes in the ventricular system 

(Fujimura et al., 2004) and may cause psychosis-like symptoms (Arasappa, 

Danivas, & Venkatasubramanian, 2013; Carson, Weingart, Guarnieri, & Fisher, 

1997). CP function is further associated with the brain’s inflammatory 

response (Karimy et al., 2017), dopaminergic states (Castellani et al., 2019), 

as well as learning (Arnaud et al., 2021; Zarif et al., 2018) and neuroplasticity 

(Falcao et al., 2012). 

Abnormal CP functioning has been recently implicated in the pathophysiology 

of schizophrenia (SCZ), which is a severe psychotic disorder characterised by 

widespread neuroanatomical alterations (van Erp, Hibar, Rasmussen, Glahn, 

Pearlson, Andreassen, & Turner, 2016; Van Erp et al., 2018). The hippocampus 

and lateral ventricles have shown the largest volumetric changes in SCZ (van 

Erp, Hibar, Rasmussen, Glahn, Pearlson, Andreassen, & Turner, 2016; Van Erp 

et al., 2018). Several genes implicated in SCZ are also expressed in the CP 

and impact neuroplasticity (Balu & Coyle, 2011). 

The onset of SCZ is preceded in the majority of cases by a clinical high-risk 

state for psychosis (CHR-P) characterized by attenuated psychotic symptoms 

(APS), self-reported cognitive deficits, functional impairments and anatomical 

alterations (Ellis, Walker, & Goldsmith, 2020; Yung et al., 2006; Zikidi et al., 

2020).  Approximately 22% of CHR-P individuals will transition to first-episode 

psychosis (FEP) within 2 years (G. S. de Pablo, Radua, Pereira, Bonoldi, 

Arienti, Besana, & Fusar-Poli, 2021). Increased inflammatory markers have 

been recently shown in CHR-P participants, although they did not predict 

transition to psychosis (Misiak et al., 2021) 

In FEP, ventricular volumes are increased (Gallardo-Ruiz, Crespo-Facorro, 

Setien-Suero, & Tordesillas-Gutierrez, 2019; Steen, Mull, McClure, Hamer, & 

Lieberman, 2006), while CHR-P individuals have not consistently shown 
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ventricular alterations except for those who later convert to psychosis (Chung 

et al., 2015). Both FEP and CHR-P groups are characterized by decreased 

hippocampal volumes (Brunner et al., 2022; Gallardo-Ruiz et al., 2019; 

Velakoulis et al., 2006). 

Recent investigations have reported increased CP volumes in schizophrenia as 

well as first-degree relatives (J. Huang et al., 2022; P. Lizano, Lutz, Ling, Lee, 

Eum, Bishop, & Keshavan, 2019). However, one study found changes to be 

confined to early stages of psychosis (within five years of diagnosis), but not 

later stages (Senay et al., 2023). In SCZ, CP volumes were found to correlate 

with stress and inflammatory markers but not clinical features (P. Lizano, Lutz, 

Ling, Lee, Eum, Bishop, & Keshavan, 2019; Zhou et al., 2020). 

Increased CP volumes have been reported recently in CHR-P individuals, which 

correlated with inflammatory markers (D. Bannai et al., 2022b). However, 

there were significant effects  of CP segmentation methods and differences in 

ventricular size were found to impact estimates of CP-volume (D. Bannai et al., 

2022b; P. Lizano, Lutz, Ling, Lee, Eum, Bishop, & Keshavan, 2019). It is 

important to note that ventricles encompass the CP with robust positive 

correlations between ventricular size and CP volumes (P. Lizano, Lutz, Ling, 

Lee, Eum, Bishop, & Keshavan, 2019; Tamminga et al., 2021; Zhou et al., 

2020).  

In the current study, we investigated CP volumes in individuals with 

schizophrenia and in early-stage psychosis (CHR-P, FEP) to determine whether 

changes in CP morphology can be observed across illness stages and whether 

they are present independently of ventricular changes. To this end, we 

recruited a sample of 110 CHR-P, 37 FEP, and 28 patients with SCZ who were 

compared to non-clinical healthy controls (HC) and a clinical control group who 

did not meet CHR criteria (CHR-N). We included the CHR-N control group to 

control for potential effects of general psychopathology on CP volumes (N. 

Althubaity, Schubert, Martins, Yousaf, Nettis, Mondelli, & Veronese, 2022; 

Zhou et al., 2020). To investigate differences in CP morphology and its 

relationship with ventricular changes, we used linear models including 

ventricular volumes as a covariate. Moreover, we further incorporated a 

Bayesian analysis to estimate the confidence in our findings as the Bayes 

factor quantifies evidence in favour or against the null hypothesis tested 

(Keysers, Gazzola, & Wagenmakers, 2020). 
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Methods 

Participants 

A total of 289 participants from four clinical groups were recruited: 1) 110 

participants meeting CHR-P criteria, 2) 38 participants not meeting CHR-P 

criteria but who met criteria for  affective disorders (n = 11), anxiety disorders 

(n = 16), eating disorders (n = 1), and/or substance abuse (n = 10) (CHR-N), 

3) 37 patients with FEP, 4) 28 participants with schizophrenia (SCZ), and 5) 75 

healthy controls (HC) without an axis I diagnosis or family history of 

psychosis. All CHR-P, CHR-N, FEP and 38 HC subjects came from the Youth 

Mental Health Risk and Resilience (YouR) Study cohort (Uhlhaas et al., 2017).  

CHR-P status was established using the Comprehensive Assessment of At Risk 

Mental States (CAARMS) high-risk criteria (Yung et al., 2006) and the 

Cognitive Disturbances (COGDIS) and Cognitive-Perceptive (COPER) basic 

symptoms criteria according to the Schizophrenia Proneness Instrument, Adult 

version (Schultze-Lutter et al., 2007). FEP and SCZ participants were assessed 

with the Structured Clinical Interview for DSM-5 (SCID) (First, 2014) and the 

Positive and Negative Symptom Scale (PANSS) (Kay et al., 1987). CHR-P, CHR-

N and HC participants were assessed using the Brief Assessment of Cognition 

in Schizophrenia (BACS, Keefe et al. (2004). 

The study was approved by the ethical committees of University of Glasgow 

and the NHS Research Ethical Committee Glasgow & Greater Clyde. All 

participants provided written informed consent. 

 

MRI acquisition 

YouR T1-weighted images were acquired using a Siemens 3T scanner using a 

3D MPRAGE sequence with the following parameters: FoV: 256 × 256 × 176 

mm3, voxel size: 1 × 1 × 1 mm3, TR: 2250 ms, TE: 2.6 ms, TI: 900 ms, 

FA: 9°. Data from the SCZ and n =37 HC participants were acquired on an 

Allegra 3T scanner using the following parameters: FoV: 256 mm3, voxel size: 

 1 × 1 × 1 mm3, TR: 2300 ms, TE: 3.93 ms. 
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MRI preprocessing and segmentation 

All images were visually inspected for image quality and participants with 

visible artifacts or substantial anatomical abnormalities were excluded. One 

CHR-N participant was excluded due to a visible cerebellar abnormality.  

CP segmentation was performed with Freesurfer (Fischl, 2012) recon-all and a 

Gaussian mixture model, GMM (Tadayon et al., 2020). While GMM-based 

segmentations have shown adequate accuracy in the past (D. Bannai et al., 

2022b), the existing implementation (Tadayon et al., 2020) relies on a 

ventricle mask provided by Freesurfer – i.e. its accuracy may be diminished if 

this mask contains errors. Upon visual inspection, it was noted that the 

Freesurfer based ventricle mask could extend outside of the ventricle in the 

posterior portion, thus leading the GM segmentations to include grey and 

white matter. To address this problem, we used the AFNI (Cox, 1996) 3dseg 

tool to constrain this mask. Here, voxels with a > 0.75 probability of being CSF 

within the Freesurfer ventricle mask were kept and the remainder were 

excluded. GM-based CP segmentations were then computed within this 

restricted mask which was found to produce good accuracy in line with human 

inter-rater reliability (0.71). 

In addition to GMM and Freesurfer, a randomly selected subset of 25 scans 

containing equal proportions of each group were manually segmented by three 

raters (GB, RE, RT) with substantial MRI experience. Dice coefficients were 

computed to assess the similarity of segmentations from each automated 

method with manual segmentations, and the similarity across different human 

raters (inter-rater reliability). We also report the Dice coefficient between 

manual rates and the GMM obtained from the original Freesurfer ventricular 

mask and the AFNI 3dseg ventricular mask. Qualitatively, it was noted that 

both Freesurfer and GMM segmentation masks showed similar shapes to 

manual segmentations, but Freesurfer segmentations were commonly shifted 

upwards or downwards which resulted in decreased overlap with manual 

segmentations compared with GMM segmentation masks. 
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Figure 3-1. Manual, GMM, and Freesurfer (FS) segmentations for a selection of individual 

participants. Manual segmentation is shown in blue, GMM in green, and FS in pink colour. 

Panels A and B show 3D render for the three segmentation types separately, and 

overlayed (right) to show overlap, whereby blended colours represent overlap. Anatomical 

plane is shown in the cube at the bottom left of each panel. Panels C and D show a 

coronal, axial and sagittal slice with each segmentation type visible, whereby anatomical 

plane and direction are indicated at each side of the image, and at the bottom of each 

image in panel D. Images were visualised using FSLeyes (slices) and MRIcroGL (3D render). 

 

 

Statistical methods 

Statistical analyses were completed using R (https://www.r-project.org/). 

We fitted linear models using the lm function for R to investigate group 

differences in CP volume. CP volumes were averaged between the left and 

right hemisphere. The following equation was used (Equation 1): 

(1.) CP volume ~ group * volume covariate + age 

The primary volumetric covariate we used was ventricular volume as given by 

the volume of the ventricle masks, whereby the left and right hemispheres 

were averaged. We further fitted this model with total brain volume (TBV) as a 

covariate obtained from the Freesurfer brain mask. Both covariates were 

centred using the R scale function, with analyses completed using the original 

scale given in the supplement for completeness. We further applied 

bootstrapping with 5000 samples to obtain 95% confidence intervals. 

We report both uncorrected CP volume analysis (Mann Whitney U) as well as 

models where ventricular volume is used as a covariate. The reasons for this 

https://www.r-project.org/
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are twofold: Firstly, CP volumes correlate strongly with ventricular volumes 

(Tadayon et al., 2020). Secondly, differences in ventricular volume have 

frequently been identified in schizophrenia patients (van Erp, Hibar, 

Rasmussen, Glahn, Pearlson, Andreassen, & Turner, 2016). Reporting 

differences in CP volume without taking into consideration differences in 

ventricular or total brain volume (TBV) may therefore not reflect changes 

specific to the CP itself. 

Furthermore, we fitted Bayesian linear models and obtained Bayes factors 

using the lmBF function from the BayesFactor package for R (Morey, Rouder, 

Jamil, & Morey, 2015). The model specification was identical to (Equation 1), 

whereby the chosen covariates were included in the null model. Models were 

fit separately for each group so that we could evaluate the evidential support 

for group effects compared to HC. We used BayesFactor default priors.  

When describing our results, we use terminology previously introduced by 

Jeffreys regarding evidence in favour or against the null hypothesis (Jeffreys, 

1939; Lee & Wagenmakers, 2013). More specifically, we use the terms ‘weakly 

in favour/against’, ‘moderately in favour/against’ and ‘strongly in 

favour/against’. These corresponding to Bayes factors of <3, 3-10 and >10, 

respectively. Bayes factors can be reported as BF01 or BF10 (van Doorn et al., 

2021), whereby larger values of the former indicate evidence in favour of the 

null over the alternative hypothesis, and vice versa. As both measures contain 

the same information, we only report the larger value for ease of readability. 

We further assessed the relationship between CP volumes and clinical 

characteristics (CAARMS severity, GAF, BACS), as well as medication 

(antidepressants) in the CHR-P group. CAARMS severity, GAF scores, and 

BACS scores were correlated with CP volumes using Pearson’s r, and GAF 

outcome was investigated with a GLM using a logistic link function which 

incorporated the covariates of age and ventricular volume. Here, a cut-off 

score of 65 (inclusive) was used to divide GAF scores into two outcome 

categories. Demographic information was compared across groups using 

ANOVA, chi-squared and post-hoc tests. 
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Results 

Demographics 

The groups differed regarding gender distribution (X=23.58, p <.001) and age 

(F=43.46, p < .001), whereby the FEP and SCZ groups tended to be older and 

included fewer female participants compared to controls. Compared to HC, 

CHR-Ps showed lower baseline GAF (F=79.65, p < .001) and reduced BACS 

composite, working memory, and motor task scores (ps < .05). 

 

Table 1: Demographics and clinical information about the included sample 

 
HC 
(N=75) 

CHR-N 
(N=38) 

CHR-P 

(N=111
) 

FEP 
(N=39) 

SCZ 

(N=30) Group 
effect 

Post-hoc 

comparison
s 

Age (M, SD) 
24.68 
(5.74) 

22.95 
(4.66) 

21.9 
(4.51) 

25.0 
(4.61) 

 

 

 

37.53 
(11.05) 

F=43,4

6, p < 
.001 

HC < 

CHR-P: p 
= .02; FEP 

> CHR-P: 
p = .05, 
SCZ > HC, 

CHR-N, 
CHR-P, 

FEP: ps < 
.001 

Gender (F, %) 
39 
(52.0) 

26 
(68.42) 

80 
(72.07) 

15 
(38.46) 

11 

(36.66) 

X=23.5

8, p 
<.001  

Education 
(years) 

16.65 
(3.05) 

16.40 
(3.47) 

15.30 
(3.21) 

16.20 
(3.30) 

-  

F=2.48, 
p=.062 NS 

Medication (n, 
%)    * 

 
  

None 

75 

(100) 
23 
(60.52) 

50 
(45.05) 

4 
(10.26) 

 

- - - 

Antidepressant - 

8 

(21.05) 

33 

(29.72) 

3 

(7.69) 

 

- - - 

Antipsychotic - 0 (0) 

1 

(0.90) 

6 

(15.38) 

- 

- - 

Other - 
7 
(18.42) 

30 
(27.03) 

7 
(17.95) 

- 
- - 
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CAARMS 
severity    * 

 
  

Total score (M, 
SD) - 

6.18 
(6.21) 

29.75 
(17.10) - 

 

 

- 

F 

=161.1
4, p < 
.001 

CHR-P > 

CHR-N: p 
< .001; 

CHR-P > 
HC: p < 
.001 

UTC - 

0.61 

(1.15) 

1.83 

(1.92) - 

 

- - - 

NBI - 
0.79 
(1.04) 

2.84 
(1.80) - 

 

- - - 

PA - 

0.97 

(1.35) 

2.86 

(1.50) - 

 

- - - 

DS - 
0.53 
(0.89) 

1.43 
(1.38) - 

 

- - - 

CHR category        

CAARMS only 

(APS/GFRD) - - 31 - 

 

- - - 

SPI-A only 
(COGDIS/COPE

R) - - 29 - 

 

- 
- - 

CAARMS + SPI-

A - - 51 - 

- 

- - 

BACS        

Composite score 
0.21 
(0.78) 

-0.05 
(1.59) 

-0.64 
(1.67) - 

 

 

- 
F=3.59, 
-p= .03 

HC > 
CHR-P: p 
= .044 

Verbal memory 
0.25 
(1.0) 

0.20 
(1.73) 

0.01 
(1.27) - 

 

- 

F=0.52
4, p= 
.59 - 

Verbal fluency 

0.07 

(1.54) 

-0.24 

(1.01) 

-0.03 

(1.16) - 

 

- 

F=,0.58 

p= .56 - 

Working 

memory (Digit 
sequencing) 

0.19 
(1.0) 

0.29 
(1.26) 

0.05 
(1.36) - 

 

- 
F=0.39, 
p= .68 - 

Motor speed 
(Token task) 

0.0 
(0.97) 

-0.70 
(1.0) 

-1.10 
(1.41) - 

 

 

F=9.60 

p= .< 
.01 

HC > 

CHR-P: p 
< .001 



103 
 

- 

Executive 
functioning 

(Tower of 
London) 

0.10 
(0.79) 

0.24 
(1.25) 

-0.16 
(1.41) - 

 

 

- 
F=,1.41 
p= .32 

HC > 

CHR-P, p 
< .001 

GAF0 (M, SD) 
87.57 
(6.49) 

70.05 
(12.76) 

58.28 
(13.83) - 

 

 

 

- F=79.6

5, p < 
.001 

HC > 

CHR-N: p 
< .01; HC 

> CHR-P: 
p < .01; 
CHR-N > 

CHR-P: P 
< .01 

GAF6 (M, SD) - 

57.73 

(20.30) 

59.01 

(13.82) - 

 

- -  

GAF12 (M, SD) - 
66.95 
(20.32) 

62.54 
(14.48) - 

 

- -  

N at follow-up 
(6m, 12m) - 15, 20 91, 76 - 

 

- -  

Abbreviations: APS, attenuated psychotic symptoms; BACS, Brief Assessment 

of Cognition in Schizophrenia; CAARMS, Comprehensive Assessment of At Risk 

Mental States; COGDIS, Cognitive Disturbances, COGDIS, Cognitive-

Perceptive Basic Symptoms criterion; HC, healthy controls; CHR-N, clinical 

risk-negative; CHR-P, clinical high-risk positive; FEP, first-episode psychosis; 

GAF, global assessment of functioning; SPI-A, Schizophrenia Proneness 

Instrument, Adult version; SD, standard deviation of the mean; AD, 

antidepressant; AP, antipsychotic 

Note: * data only available for 15 subjects  

 

Segmentation quality 

Inter-rater Dice for manual segmentation included the highest Dice values and 

showed mean Dice of M=0.71, SD=0.13. 

Mean Dice between manual and automated segmentations for GMM (M=0.71, 

SD=0.08) and Freesurfer (M=0.30, SD=0.07) were comparable to past 

observations (D. Bannai et al., 2022b). A Wilcoxon signed-rank test showed 

significantly higher Dice coefficients with manual segmentations compared to 

Freesurfer segmentations (W=300, p < .001) (Figure 2). Using GMM with the 
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default Freesurfer ventricle mask produced nonsignificant decreases in 

performance (M=0.70, SD=0.79), whereby GMM with the improved ventricle 

mask was used due to qualitative inspection. 

 

Figure 3-2. Distribution of Dice scores for GMM and Freesurfer segmentations. GMM: 

Gaussian mixture model; FS: Freesurfer; GMMVE: Gaussian mixture model with edited 

ventricle mask; MR: manual segmentation inter-rater reliability. 

 

GMM segmentations were selected for statistical analyses based on 

performance. Full results including models fitted with the Freesurfer data can 

be found in the supplementary information. 

 

Volumetric analysis 

CP volumes showed a significant association with ventricular volume (t= 9.25, 

p < .001) but not age (t= 0.60, p=.55). The linear model did not show 

significant differences between HC and SCZ (t= 0.02, p=.98), FEP (t= -1.70, 

p=.09, 95%CI: -99.49, 6.15, whereby CIs are obtained from bootstrapping), 

CHR-P (t= -1.76, p=.08) and CHR-N (t= -0.59, p=.56). 
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Mann Whitney U testing (no covariates) showed increased ventricular (U = 

605.0, p = .001) and CP volumes compared to HC (U = 780.0, p = .055) in 

SCZ patients; whereas FEP and CHR-P did not show an effect (ps > .05).  

 

 

Figure 3-3. Linear associations between choroid plexus volumes and lateral ventricle 

volumes (centred) for each of the clinical groups, given with respect to the HC group. 

 

A Bayesian analysis was conducted whereby models were fit separately for 

each group compared to controls. Bayes factors (BF01) are reported in 

accordance with Jeffrey's standards (Jeffreys, 1939; Lee & Wagenmakers, 

2013). There was moderate to strong evidence in favour of the null model (no 

difference between CHR-P and HC) for the CHR-P group (BF01= 15.39 

±1.12%) and the CHR-N group (BF01= 28.98 ±1.17%). For the FEP group, 

the null model was weakly supported (2.69 ±2.61%). In the SCZ group, a 

BF01 of 3.815 ±1.2% weakly to moderately supported the null model. 
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Table 2. Model coefficients and BF01 for all groups. Mean posterior (10000 

samples) and BF01 are taken from Bayesian linear models, t and p values are 

taken from frequentist testing. All models compare HC versus the clinical 

group listed, with HC at the intercept, and using ventricular volume and age as 

covariates. BF01 is pertaining to the model including group vs. the null model 

as described in Methods. 

Model Variable Posterior (M, 
SD) 

t p BF01 

CHR-N (Intercept) 701.908 
(13.73) 

18.09 <0.001  

 Group -6.499 (13.01) -0.59 0.557 28.98 
±1.17% 

 VV 138.237 

(16.48) 

- -  

 VV * 

Group 

-5.925 (15.84) -0.29 0.769  

 Age 2.647 (2.38) 0.60 0.551  

      
CHR-P (Intercept) 684.343 

(10.21) 
18.09 <0.001  

 Group -15.968 
(10.24) 

-1.76 0.080 15.39 
±1.12% 

 VV 145.117 
(11.48) 

- -  

 VV * 

Group 

-1.254 (11.14) -0.04 0.971  

 Age 2.238 (2.03) 0.60 0.551  

      
FEP (Intercept) 715.579 

(14.56) 
18.09 <0.001  

 Group -22.924 
(14.02) 

-1.70 0.090 2.69 
±2.61% 

 VV 126.876 
(12.59) 

- -  

 VV * 

Group 

-17.606 

(12.23) 

-1.55 0.122  

 Age 2.145 (2.59) 0.60 0.551  

      
SCZ (Intercept) 747.302 

(17.988) 
18.09 <0.001  

 Group -5.785 
(19.181) 

0.02 0.984 3.815 
±1.2% 

 VV 113.665 
(16.981) 

- -  

 VV * 

Group 

-29.532 

(16.389) 

-1.95 0.053  

 Age 1.545 (1.945) 0.60 0.551  
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CP volumes and clinical characteristics and medication 

There were no significant correlations between CP volume and CAARMS 

severity, GAF scores, or BACS (including subscales), each p > .1, uncorrected. 

Antidepressant medication was associated with decreased CP volumes in the 

CHR-P group (t= -2.51, p=.013) (see SI Material).  

 

Discussion 

The present study examined CP volumes in SCZ and early-stage psychosis to 

identify the pattern of deficits across illness stages, the relationship to 

ventricular changes as well as relationship with clinical characteristics. The CP 

is involved in several processes altered in psychosis, including inflammation 

(N. Althubaity, Schubert, Martins, Yousaf, Nettis, Mondelli, & Veronese, 2022; 

Karimy et al., 2017; P. Lizano, Lutz, Ling, Lee, Eum, Bishop, & Keshavan, 

2019; Misiak et al., 2021), neuroplasticity (Zarif et al., 2018), and 

immunological processes mediated by its response to the dopamine system 

(Castellani et al., 2019; Williams, Macdonald, & Turkheimer, 2023). Previous 

studies reported volumetric increases in the CP in early-stage psychosis and 

schizophrenia (D. Bannai et al., 2022b; P. Lizano, Lutz, Ling, Lee, Eum, Bishop, 

& Keshavan, 2019; Senay et al., 2023; Zhou et al., 2020). 

In the currently study, CP volumes were only increased in SCZ patients but not 

in the FEP or CHR-P groups. However, differences between SCZ patients and 

HC were not observed when controlling for ventricular volumes. Bayesian 

testing, which can be used to establish confidence in null findings (Keysers et 

al., 2020), provided further evidence against group differences. Moreover, we 

did not observe relationships between CP volumes and clinical characteristics 

for any group.  

The CP is embedded within the ventricular space, and ventricular volume 

scales linearly with CP volume (D. Bannai et al., 2022a; P. Lizano, Lutz, Ling, 

Lee, Eum, Bishop, & Keshavan, 2019; Tadayon et al., 2020) which was also 

observed in the current study. Thus, when examining the CP in SCZ, it is 

crucial to account for potential differences in ventricular volume given the 

extensive evidence on ventricular enlargement in the disorder. Indeed, 

previous investigations investigating CP alterations in SCZ and early-stage 

psychosis suggest that the majority of group differences were no longer 
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significant after accounting for ventricular volumes (D. Bannai et al., 2022b; P. 

Lizano, Lutz, Ling, Lee, Eum, Bishop, & Keshavan, 2019; Senay et al., 2023).  

Ventricular enlargement is among the largest and most frequently replicated 

anatomical alterations in psychosis (Svancer & Spaniel, 2021; van Erp, Hibar, 

Rasmussen, Glahn, Pearlson, Andreassen, & Turner, 2016; Van Erp et al., 

2018). Increased ventricles have been observed in longitudinal studies of 

early-stage psychosis and have been associated with grey matter volume loss 

(Chung et al., 2017; Kempton, Stahl, Williams, & DeLisi, 2010). This 

enlargement is further linked with the duration of illness in SCZ and may be 

mediated by medication usage, treatment response and illness severity 

(Svancer & Spaniel, 2021). It has thus been suggested that ventricular 

enlargement may be a marker of neurodegeneration in chronic SCZ patients 

as ventricular differences are less prominent in early-stage psychosis (Chung 

et al., 2017; Svancer & Spaniel, 2021).  

Consistent with previous findings (Ellis et al., 2020), our analyses did not show 

evidence for alterations in CP volume in the CHR-P, FEP, and SCZ groups when 

accounting for ventricular volumes, which suggests that anatomical deficits in 

the CP may be a secondary phenomenon of general neurodegenerative 

processes. The CP nonetheless remains a target of interest for SCZ and early-

stage psychosis research. Although in vivo CP anatomy alone may not be a 

robust disease marker, recent advances in functional CP measurement using 

arterial spin labelling (ASL) and MRI/PET suggest that it is possible to study CP 

function and CSF flow dynamics (Mehta et al., 2022; Zhao, Taso, Dai, Press, & 

Alsop, 2020).  

CP function is tied to the production of CSF (Lun et al., 2015) and accordingly 

may also be involved in  the progressive increases in ventricular volume 

observed in psychosis. CP function is furthermore affected by dopamine 

activity (Castellani et al., 2019), which may affect CP microstructure especially 

in unmedicated schizophrenia (Williams et al., 2023).  

In addition to investigating the impact of ventricular size on CP volumes, we 

also examined different segmentation methods since there is evidence 

indicating that the segmentation approach strongly affects CP volume 

estimates in early-stage psychosis (D. Bannai et al., 2022b)  as well as other 

clinical groups (Tadayon et al., 2020). To address this issue, we manually 

segmented a subset of scans and compared those to Freesurfer and GMM 
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segmented images to evaluate their quality. Consistent with previous reports, 

we show that GMM segmentations yielded significantly more overlap with 

manual segmentation than Freesurfer (D. Bannai et al., 2022b; P. Lizano, Lutz, 

Ling, Lee, Eum, Bishop, & Keshavan, 2019; Tadayon et al., 2020). Importantly, 

Dice coefficients were similar to human inter-rater Dice coefficients. Thus, it is 

unlikely that our results are affected by systematic segmentation errors. 

However, we cannot exclude that small effects in CP volume (smaller than the 

margin of error of our measurement) could have eluded our detection. Further 

advancements in CP segmentation and possibly the use of other imaging 

modalities (see e.g.  (Alkemade et al., 2022)) could provide more conclusive 

evidence regarding CP abnormalities in psychosis.  

 

Conclusion 

We investigated CP volumes in CHR-P, FEP and SCZ groups using different 

segmentation methods to examine the presence of changes in CP across 

different stages of psychosis. While increased CP volumes were observed in 

the SCZ, differences were not significant when taking into account ventricular 

volumes. Furthermore, we did not observe differences in CP volume in the 

CHR-P and FEP groups. Accordingly, we conclude that CP volumes are not a 

robust marker of psychosis and are likely a secondary consequence of broader 

anatomical changes to the ventricular system. 
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Abstract 

Background: Deficits in the hippocampus are a consistent finding in 

schizophrenia and have also been demonstrated in early-stage psychosis. 

Moreover, alterations in hippocampal anatomy and connectivity have been 

implicated in aberrant functional interactions in subcortical and cortical 

networks. However, the nature and extent of these alterations and their 

association with frontal and subcortical regions remain unclear.  

Methods: To address these questions, we analysed resting state fMRI 

functional connectivity and graph properties in n=93 individuals at clinical 

high-risk for psychosis (CHR-P), n=26 patients with first-episode psychosis 

(FEP), n=31 individuals with affective disorders and substance abuse as well 

as n=58 healthy controls. We used novel denoising techniques and individually 

optimised functional connectivity matrices, which were compared across 

clinical groups. Finally, the centrality of the hippocampus as well as network 

segregation and integration were assessed using graph-based analysis. 

Results: Both the FEP and CHR-P groups were characterised by reduced 

functional connectivity between the hippocampus and inferior frontal cortex 

albeit the differences in CHR-P individuals did not survive corrections for 

multiple comparisons. Compared to CHR-P, FEP show decreased centrality of 

the hippocampus but increased network segregation.  

Conclusions: Our findings show decreased connectivity between the 

hippocampus and frontal cortex in early-stage psychosis, with FEP patients 
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showing stronger decreases in connectivity compared to CHR-Ps. Furthermore, 

network-based analyses highlight reduced centrality in FEPs compared to CHR-

Ps, indicating reduced influence on the wider network. Thus, altered 

connectivity along the hippocampal-frontal axis could be a potential marker of 

illness stage in early-stage psychosis. 

 

 

Introduction  

Schizophrenia (ScZ) is a severe psychiatric disorder which is typically 

preceded by a prodromal phase, during which attenuated psychotic symptoms, 

functional deficits and cognitive impairments are present (Catalan et al., 2021; 

Fusar-Poli et al., 2013). These observations have led to the formulation of 

clinical high-risk for psychosis (CHR-P) criteria which are associated with a risk 

of developing first-episode psychosis (FEP) of approximately 25% over a 

three-year period (Gonzalo Salazar De Pablo, Radua, Pereira, Bonoldi, Arienti, 

Besana, Soardo, et al., 2021). CHR-P participants are characterized by both 

anatomical and functional brain changes (Fusar-Poli, 2012; Fusar-Poli, 

McGuire, & Borgwardt, 2012; Fusar-Poli et al., 2007). While some such 

alterations may be stable over time, others may potentially be progressive 

(Grace, 2012; J. Lieberman et al., 2018). Decreased hippocampal volumes are 

already observed in CHR-P participants (Brunner et al., 2022; Zikidi et al., 

2020) and may predict transition to psychosis (Provenzano et al., 2020) and 

illness progression (Sasabayashi et al., 2021; Vargas et al., 2018).  

The hippocampus is a crucial hub for subcortical and cortical networks and is 

characterized by extensive anatomical and functional connectivity (FC) with 

the frontal, occipital and temporal lobes as well as with sensory-motor regions 

and subcortical areas (Ezama, Hernández‐Cabrera, Seoane, Pereda, & Janssen, 

2021; Maller et al., 2019). Moreover, the hippocampus supports numerous 

cognitive functions, such as emotion regulation (Bubb, Kinnavane, & Aggleton, 

2017; Pessoa, 2017), memory consolidation (Battaglia, Benchenane, Sirota, 

Pennartz, & Wiener, 2011), and social cognition (Montagrin, Saiote, & Schiller, 

2018). Several of these domains are impaired in both CHR-Ps (Catalan et al., 

2021) and ScZ patients (Bortolato, Miskowiak, Köhler, Vieta, & Carvalho, 

2015). The hippocampus has shown decreased task-related activation in 
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combination with elevated baseline BOLD in early-stage psychosis in fMRI 

studies (McHugo et al., 2019) which could be due to excessive excitation and 

may cause volumetric changes (J. Lieberman et al., 2018). 

At the circuit level, the hippocampus is involved in regulating striatal dopamine 

activity. N-methyl-D-aspartate (NMDA) receptor activation in the hippocampus 

causes the nucleus accumbens to inhibit the ventral pallidum via γ-

aminobutyric acid (GABA) release, which in turn disinhibits the ventral 

tegmental area (Lisman et al., 2008; Lodge & Grace, 2006). In animal models 

of ScZ, lesions to the hippocampus during early development have been 

shown to induce disinhibition and behavioural deficits observed in ScZ patients 

(J. Lieberman et al., 2018). More specifically, it has been suggested that a loss 

of GABAergic interneurons and NMDA receptor dysfunction may increase 

baseline hippocampal excitation (Grace, 2012; J. Lieberman et al., 2018), 

resulting in elevated striatal dopamine activity (Grace, 2012). Excessive 

baseline excitation may compromise the anatomical integrity of both the 

hippocampus (Grace, 2012; J. Lieberman et al., 2018), and the frontal cortex 

(Bertolino et al., 2002; Lipska, Aultman, Verma, Weinberger, & Moghaddam, 

2002), thus driving more widespread network changes surrounding the 

hippocampus (Sabaroedin et al., 2023). 

Changes in functional connectivity between subcortical and cortical sites have 

been shown to predict the development of psychosis in CHR-P individuals 

(Anticevic et al., 2015) highlighting that investigations into large-scale 

functional networks may be important for understanding the development of 

psychosis. Furthermore, differences may exist across illness stages in cortical-

subcortical networks (Sabaroedin et al., 2023). While the hippocampus has a 

pivotal role in such networks in theoretical and preclinical work (Grace, 2012; 

J. Lieberman et al., 2018), its role within the broader network in human 

neuroimaging remains an open question. 

In the current study, we addressed this question through investigating 

alterations in functional connectivity between the hippocampus, subcortical 

and cortical regions in early-stage psychosis. Currently, the precise nature of 

the aberrant network interactions in early-stage psychosis remains unclear as 

both increased and decreased connectivity patterns have been demonstrated 

(Brunner et al., 2022; McHugo et al., 2019; Provenzano et al., 2020). In 

addition, evidence from graph theoretical studies has shown that that ScZ 
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patients show altered local but not global network organisation, which may 

correlate with illness severity (Kambeitz et al., 2016) (but see (Gao et al., 

2023)). From a local network perspective, in CHR-P individuals, several frontal 

regions been shown to operate more in isolation compared to HC (Davies et 

al., 2023; R. R. Li et al., 2018; Lord et al., 2011). Global network properties on 

the other hand may be preserved (Lord et al., 2012).  

 

Methods and Materials  

Participants 

A total of 289 participants from four clinical groups were included: 1) n=93 

participants meeting CHR-P criteria, 2) n=31 participants not meeting CHR-P 

criteria but who met criteria for  affective disorders (n = 11), anxiety disorders 

(n = 16), eating disorders (n = 1), and/or substance abuse (n = 10) (clinical 

high-risk negative, CHR-N, included as a clinical control group), 3) n=26 FEP 

patients, and 4) n=58 healthy controls (HC) without an axis I diagnosis or 

family history of psychosis. Measurements from a further 18 HC, 17 CHR-P, 7 

CHR-N, and 11 FEP were recorded, but excluded due to either missing imaging 

data, clinically significant incidental findings, or poor image quality.  

CHR-P status was established using the Comprehensive Assessment of At Risk 

Mental States (CAARMS) interview (Yung et al., 2006) and the Cognitive 

Disturbances (COGDIS) and Cognitive-Perceptive (COPER) basic symptoms 

criteria according to the Schizophrenia Proneness Instrument, Adult version 

(Schultze-Lutter et al., 2007). FEP patients were assessed with the Structured 

Clinical Interview for DSM-5 (SCID) (First, 2014) and the Positive and 

Negative Symptom Scale (PANSS) (Kay et al., 1987), and were required to 

have no more than one episode of psychosis, and a duration of illness of less 

than five years. CHR-P, CHR-N and HC participants were assessed using the 

Brief Assessment of Cognition in Schizophrenia battery (BACS)(Keefe et al., 

2004).  

The study was approved by the ethical committees of University of Glasgow 

and the NHS Research Ethical Committee Glasgow & Greater Clyde. All 

participants provided written informed consent.  
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MRI Acquisition 

All images were acquired using a Siemens 3T scanner with a 32-channel head 

coil. T1-weighted images were acquired using a 3D MPRAGE sequence with the 

following parameters: FoV: 256 × 256 × 176 mm3, voxel size: 1 × 1 × 1 mm3, 

TR: 2250ms, TE: 2.6ms, TI: 900ms, FA: 9°. BOLD fMRI was acquired with an 

EP2D-PACE sequence using the following parameters: FoV, voxel size 3 × 3 × 3 

mm3, TR: 2000ms, TE: 3ms, FA: 77°. 

 

Neuroimaging Processing 

 

Figure 4-1: Schematic representation of the preprocessing pipeline. Preprocessing of 

anatomical (T1-weighted) data is shown in blue (panel A), following the standard 

fmriprep pipeline. BOLD fMRI preprocessing is shown in orange (panel B), and includes 

standard fmriprep preprocessing, as well as additional denoising steps (ICA-AROMA, 

DiCER). Shown are example topologies and time courses for a noise ICA component 

(red), and a component which was not rejected (green). The visualisation for DiCER 

shows two carpet plots, whereby the vertical axis reflects voxel location, and the 

horizontal axis shows changes in these voxels over time. The upmost carpet plot 

shows an image pre-DiCER, whereby the ordering of voxels is determined by DBSCAN 

clustering to visualise large signal deflections. The carpet plot below shows the same 

image and ordering post-DiCER, whereby the large signal deflections have been 

removed. Finally, derivatives of preprocessing are shown in green (panel C), whereby 
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time courses are extracted with PCA from AAL subparcellated regions (see text below), 

and the largest correlations per AAL region pair are retained for each subject, thus 

providing the outputs used for analysis. Abbreviations: sMRI, structural MRI; T1w, T1-

weighted MRI; fMRI, functional MRI; AAL, automated anatomical labelling; DiCER, 

diffuse cluster estimation and regression; PCA, principal component analysis. 

 

 

fmriprep preprocessing 

We used fmriprep 21.0.2 (Esteban et al., 2019) to conduct anatomical and 

functional data processing. We primarily followed the fmriprep standard 

pipeline which is described fully in the Methods automatically generated by 

fmriprep, and can be found in Supplement Methods I. Several options differed 

from fmriprep defaults, specifically: we used 12 degrees of freedom during 

registration of BOLD to anatomical images, and used ICA-AROMA to reject 

noise components (Pruim et al., 2015). ICA-AROMA was chosen due to its 

ability to retain most data, unlike e.g. censoring approaches with similar 

denoising performance (Parkes, Fulcher, Yücel, & Fornito, 2018). ICA-AROMA 

uses a classifier on FSL MELODIC ICA components to identify and reject noise 

components, and has previously shown good performance in the removal of 

motion artifacts in resting state fMRI (Parkes et al., 2018).  

Following fmriprep processing, we used ICA-AROMA regressors on the 

preprocessed BOLD images. In line with prior applications where ICA-AROMA 

regressors have been applied to data with less or no smoothing (Aquino et al., 

2022), the regressors were applied to images smoothed with a 3mm FWHM 

Gaussian kernel as a final step.  

 

Artifact correction 

Clinical populations, such as schizophrenia patients, typically show increased 

head motion which can result in widespread fMRI signal deflections (Pardoe, 

Hiess, & Kuzniecky, 2016; N. Yao et al., 2017). This can increase local FC while 

diminishing long range FC (Van Dijk, Sabuncu, & Buckner, 2012), and may 

substantially impact case-control comparisons (Haar, Berman, Behrmann, & 

Dinstein, 2016; Parkes et al., 2018), graph metrics (Yan, Craddock, He, & 

Milham, 2013), and modelling results (Aquino et al., 2022). The most common 
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method for removing large signal deflections is global signal regression (GSR), 

which can remove global signal deflections and thereby strengthen fMRI-

behavioural associations (J. Li, Kong, et al., 2019; Power, Plitt, Laumann, & 

Martin, 2017). However, GSR has been shown to introduce spurious negative 

correlations (Murphy, Birn, Handwerker, Jones, & Bandettini, 2009), or fail to 

remove some widespread signal deflections which likely reflect non-neuronal 

noise (Aquino, Fulcher, Parkes, Sabaroedin, & Fornito, 2020).  

Diffuse Cluster Estimation and Regression (DiCER) is a novel method which 

uses DBSCAN clustering to identify clusters of widespread signal deflections in 

fMRI signals, and then using regression to remove it from the signal (Aquino 

et al., 2020). DICER attempts at regressing out anomalous clusters rather 

than the global signal, it is therefore more specific in its denoising than GSR, 

and captures signal deflections which do not affect all regions equally. As it 

has further been shown to improve measures of denoising quality such as FC 

distance dependence (Aquino et al., 2020), we therefore used DiCER to 

minimise the risk of false positive findings related to artifacts. All preprocessed 

scans were inspected using ordered carpet plots (Aquino et al., 2020), which 

allow for the visualisation of widespread signal deflections (see Figure 1, panel 

B). 

 

Functional connectivity extraction 

We used the NiPy ecosystem (Brett et al., 2009) and R to extract time courses 

and compute functional connectivity matrices. While the AAL atlas (Tzourio-

Mazoyer et al., 2002) was used to provide a standardised set of anatomical 

regions, it has previously been observed that standardised atlases may fail to 

capture individual variation in functional connectivity (R. Kong, Yang, et al., 

2021). To retain a set of regions comparable across subjects while retaining 

individual variability, we sub-parcellated each AAL region into 5 subregions 

using k-means clustering on the AAL atlas image ROI coordinates. We 

extracted time courses using the 1st principal component from each subregion 

as PCA has been found to yield more robust FC estimates (Anzellotti, 

Caramazza, & Saxe, 2017). Then, pairwise Pearson’s correlations were 

computed for between all subregions in ROI pairs, and only the largest 

correlation (positive or negative) was retained for each pair. 



124 
 

Functional connectivity analysis 

We analysed FC as given by the correlations between the hippocampus and all 

AAL regions in the medial, lateral, ventral and dorsal frontal cortex, amygdala, 

caudate, pallidum, putamen, and thalamus, based previous findings 

(Sabaroedin et al., 2023). FDR corrected T-tests were used to compare the 

obtained FC values between ROI pairs from each clinical group to HC. 

 

Graph analysis 

Graph generation and edge thresholding 

The Python networkx package (Hagberg, Swart, & S Chult, 2008) was used to 

generate graph representations of individual FC matrices and to extract graph-

theoretic metrics. We generated weighted, undirected graphs by using the FC 

correlation matrices described in the previous step to provide edge weights. 

Typically, this matrix is then thresholded to provide a sparse representation of 

network connectivity. While there is no consensus regarding the optimal 

threshold for graph representations of fMRI data, it has previously been 

reported that the choice of threshold can significantly impact case-control 

comparisons, including sign reversals of significant effects (Fornito, Zalesky, & 

Breakspear, 2013; van den Heuvel et al., 2017). To address these problems, 

we applied proportional thresholding multiple times, retaining the nth quantile 

from quantiles 1-10 at each step. By using quantiles (per subject), we ensure 

an equal number of connections for each graph at each step to ascertain that 

case-control differences will not be introduced by overall differences in FC, but 

by specific alterations to network function. Absolute FC values were used. 

 

Graph metrics 

Networkx was used to extract graph metrics for the left and right 

hippocampus, and local network properties. Based on prior findings in ScZ 

(Kambeitz et al., 2016), we focused on local efficiency as well as local 

clustering (node-level clustering coefficient) and betweenness centrality for 

the left and right hippocampus. Betweenness centrality was selected as a 

measure of the ability of the hippocampus to control information flow within 

the network as it measures the extent to which a given node is on the shortest 

path connecting other nodes with each other. The local clustering coefficient 
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and local efficiency measure network segregation and integration, respectively. 

As specified in the Networkx documentation, the former is calculated as the 

geometric average of the subgraph edge weights, while the latter is defined as 

the average global efficiency of the subgraph induced by the neighbors of the 

node (Networkx). 

While metrics are reported at all quantiles to demonstrate the overall effects of 

thresholding, we restrict statistical testing to the 3rd to 7th quantile. At 

thresholds below the 3rd quantile, very few edge weights are removed, thus 

leaving in noisy, small correlations which can distort network properties. 

Conversely, a substantial proportion of participants’ graph networks became 

disconnected at thresholds above the 7th quantile, i.e. there was no possible 

path from each node to every other node (for further details see 

Supplementary Material). 

Within the range of thresholds selected for interpretation, t-tests were 

conducted to compare each clinical group to the HC group, with FDR correction 

applied across the number of quantiles.  

 

Associations with Clinical and Behavioural Variables  

ROIs with significant group differences were selected and Pearson’s 

correlations were computed between FC and PANNS or CAARMS ratings (for 

FEP and CHR-P, respectively) as well as GAF scores. 

 

 

 

 

 

Results 

Demographics 

 

Table 1: Clinical and demographics data for all included groups.  
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HC 
(N=58) 

CHR-N 
(N=31) 

CHR-P 
(N=93) 

FEP 
(N=26) 

Group 
effect 

Post-hoc 
comparisons 

Age (M, SD) 

24.017 

(4.162) 

23.19 

(4.76) 

21.58 

(4.26) 

24.22 

(4.20) 

F=5.12, 

p=.002 

HC > CHR-P, 

FEP > CHR-P 

Gender (F, %) 40 (58) 18 (58) 67 (72) 10 (38) 

X=11.66, 

p<.01 - 

Medication (n, 
%)       

Antidepressant - 8 (25) 27 (29) 8 (30) - - 

Antipsychotic - 0 (0) 0 (0) 13 (50) - - 

Neither 

75 

(100) 23 (74) 68 (73) 5 (19) - - 

       

CAARMS severity       

Total score (M, 
SD) - 

5.06 
(5.85) 

32.46 
(16.83) - 

 t=9.24, 
p<.001 CHR-P > CHR-N 

UTC - 

0.52 

(1.12) 

2.075 

(1.95) - - - 

NBI - 
0.74 
(1.06) 

2.98 
(1.78) - - - 

PA - 
0.71 
(1.27) 

2.84 
(1.51) - - - 

CHR category  -    - 

CAARMS only 
(APS/GFRD) - - 31 - - - 

SPI-A only 

(COGDIS/COPER) - - 29 - - - 

CAARMS + SPI-A - - 51 - - - 

       

PANSS severity       

Total score (M, 

SD) - - - 

55.73 

(20.11) - - 

Positive - - - 
13.58 
(7.05) - - 

Negative - - - 
10.40 
(4.29) - - 

Cognitive - - - 

12.07 

(3.33) - - 
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Global 
Functioning    *   

GAF (M, SD) 
87.35 
(7.15) 

70.26 
(12.95) 

56.68 
(11.85) 

43.92 
(15.45) 

F=68.70, 
p<.001 

HC > CHR-N, 
CHR-P, FEP, 

CHR-N > CHR-P, 
FEP, CHR-P > 
FEP 

Abbreviations: APS, attenuated psychotic symptoms; BACS, Brief Assessment 

of Cognition in Schizophrenia; CAARMS, Comprehensive Assessment of At Risk 

Mental States; COGDIS, Cognitive Disturbances, COGDIS, Cognitive-

Perceptive Basic Symptoms criterion; HC, healthy controls; CHR-N, clinical 

risk-negative; CHR-P, clinical high-risk positive; FEP, first-episode psychosis; 

GAF, global assessment of functioning; SPI-A, Schizophrenia Proneness 

Instrument, Adult version; SD, standard deviation of the mean; AD, 

antidepressant; AP, antipsychotic. Note: * data only available for 12 

participants. 

 

HC and FEP groups were older compared to CHR-Ps while the FEP group had 

fewer female participants and lower GAF scores.  

 

Functional connectivity results 

FEP patients showed significantly lower FC compared to HC between the 

hippocampus and inferior frontal cortex (pars triangularis) in the right 

hemisphere (t=-4.19, pFDR =.0046, Figure 2). Furthermore, the FEP group 

showed reduced FC between the right hippocampus and ventrolateral 

prefrontal cortex (vlPFC, AAL region: inferior frontal cortex, pars triangularis) 

compared to CHR-Ps (t=-3.71, pFDR=.023, Figure 2), as well as increased FC 

between the right hippocampus and right thalamus (t=3.47, pFDR=.023). A 

reduction in FC between right hippocampus and vlPFC (left) was found when 

comparing HC and CHR-Ps, but this did not survive correction for multiple 

comparisons (t=-3.26, puncorr.=.0014, pFDR=.086). CHR-N showed increased FC 

between the right hippocampus and right vlPFC (t=3.45, pFDR=.054), as well 

as the right putamen (t=3.34, pFDR=.054) (see Figure 3) Uncorrected results 

(puncorr. < .02) can be found in Supplementary Material. 
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Figure 4-2: Results from the FC analysis. Panel A: Visualisation of loci of FC effects in 

FEP/CHR-P compared to HC. Shown are the right hippocampus and vlPFC (inferior 

frontal cortex, pars triangularis, left and right), whereby region masks are based on 

AAL regions. Regions are visualised in blue to indicate decreased FC. Panel B: Table 

showing the two largest effects per group comparison, including corrected (FDR) and 

uncorrected p-values, rounded to 2 significant figures. Significant (post FDR) effects 

are highlighted with an asterisk (*). Compared to HC, FEP show decreased FC 

between the hippocampus and vlPFC, which is seen for CHR-P prior to FDR correction 

only. Compared to CHR-P, FEP show decreased FC between hippocampus and vlPFC, 

and increased FC between hippocampus and thalamus. 

 

 

Graph analysis  

Compared to CHR-Ps, FEP patients had significantly decreased betweenness 

centrality of the right hippocampus (t=-4.73, pcorr=.0001, 4th quantile), but 

significantly increased local clustering in the left hippocampus (t=2.8, pcorr 

=.0075, 7th quantile; t=2.19, pcorr =.046, 5th quantile). FEP showed decreased 

betweenness centrality at the right hippocampus compared to HC (t=-2.44, 

p=.02, 4th quantile), but this was no longer significant after adjusting for 

multiple comparisons. There were no significant differences between CHR-P 

and HC, and no effects were seen for local efficiency (ps > .05).  
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Figure 4-3: Betweenness centrality and local clustering for the left and right 

hippocampus. Shown are all thresholding quantiles (1-9), but statistical 

testing is restricted to quantiles 3-7. Highlighted (*) are significant differences 

between CHR-P and FEP, with the other groups not showing significant 

differences; shaded regions reflect one standard deviation from the mean. FEP 

showed significantly lower hippocampus betweenness centrality compared to 

CHR-P, and increased local clustering in the left hemisphere. Betweenness 

centrality indicates the extent to which the hippocampus is involved in 

information flow between different clusters within the network, and local 

clustering indicates the extent to which the immediate neighbours of the 

hippocampus are connected to each other. 

 

 

Associations with Clinical and Behavioural Variables  

A linear model showed decreased right hippocampal volumes in the FEP group 

(estimate: -203.20, t=-2.074, p=0.039) compared to controls, whereby total 

brain volume and age were used as covariates following our previous work. 

Hippocampal volumes were not significantly correlated with FC between right 

hippocampus and vlPFC (pars triangularis) in either hemisphere, neither 

betweenness centrality nor local clustering (ps > .05). Connectivity between 

the right hippocampus and vlPFC was not associated with betweenness 
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centrality or local clustering (using hemisphere and quantile where group 

differences were observed). Symptom severity (total PANNS scores) and 

functioning (GAF) did not show significant associations with either graph 

metrics or hippocampal FC with the vlPFC (as described above).  

In FEP patients, antipsychotic medication (APM) was associated with increased 

FC between the right hippocampus and left vlPFC (pars triangularis): t=2.06, 

p=.049. There was no evidence for an effect of antidepressants on FC 

(hippocampus-vlPFC) or graph metrics (p > .05) in CHR-P. 

Neither FC between the right hippocampus and vlPFC (pars triangularis, left 

and right) nor graph metrics were related to symptom severity (CAARMS), 

functioning (GAF), or right hippocampal volumes in CHR-P (ps > .05). 

 

Discussion 

We analysed functional connectivity and graph-based network properties in 

cortical-subcortical networks involving the hippocampus in early-stage 

psychosis using resting state fMRI. We found evidence for decreased functional 

connectivity between the right hippocampus and vlPFC in FEP patients. 

Compared to the CHR-P group, FEP patients showed increased connectivity 

between the right hippocampus and right thalamus. Moreover, APM was 

associated with increased FC between the right hippocampus and left vlPFC. 

To our knowledge, this is the first study to investigate the role of the 

hippocampus within cortical-subcortical networks in early-stage psychosis 

using resting-state fMRI. Previous studies conducted whole brain analyses, 

highlighted different brain structures, or focused on different networks, such 

as the DMN, or structural connectivity. Consistent with previous research, we 

observed decreased functional connectivity between the hippocampus and 

inferior frontal cortex in early-stage psychosis (Benetti et al., 2009).  

Interestingly, local clustering was increased in FEP patients compared to CHR-

Ps, indicating that connectivity among the neighbouring brain areas was 

increased relative to the hippocampus. Moreover, we observed decreased 

centrality of the hippocampus in FEP patients, suggesting that the 

hippocampus is less embedded in the wider network. (Crossley et al., 2016). 

FEP patients have previously shown hypoconnectivity (Du et al., 2018), which 

is reflected anatomically in decreased hippocampal structural centrality 
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(Makowski et al., 2020). Together, these finding implicate the hippocampus as 

one contributing factor towards functional hypoconnectivity in early-stage 

psychosis. Preclinical and theoretical work suggests that impaired hippocampal 

regulatory function could induce elevated striatal dopaminergic activity which 

in turn increases activity in multiple regions (Grace, 2012; J. Lieberman et al., 

2018; Lodge & Grace, 2006).  

We did not observe significant reductions in local network integration in FEP 

patients or CHR-Ps. Previous studies have identified decreased local network 

integration in ScZ patients (Su, Hsu, Lin, & Lin, 2015). One reason for this 

difference may be our preprocessing pipeline, which did not use global signal 

regression and used individualised correlation matrices. The former has been 

shown to increase potentially spurious negative correlations in patients due to 

generally lower SNR (Aquino et al., 2020; Murphy et al., 2009; Saad et al., 

2012), while the latter has been shown to decrease the number of significant 

case-control findings in ScZ (Levi et al., 2023). 

Moreover, we did not identify correlations between hippocampal-frontal 

connectivity and symptom measures. This finding is consistent with previous 

work. For example, Samudra et al. did not report a relationship between 

hippocampal-frontal functional connectivity and PANSS scores in early-stage 

psychosis (Samudra et al., 2015), and this was also true at baseline in a 

longitudinal study (Alho et al., 2023).  

In this work, we addressed several limitations typically found in functional 

connectivity analysis. First, an improved preprocessing pipeline to reduce the 

impact of noise (Aquino et al., 2020; Parkes et al., 2018) which tends to be 

larger in psychosis samples (Pardoe et al., 2016; Van Dijk et al., 2012; N. Yao 

et al., 2017). Furthermore, we used individually optimised functional 

connectivity matrices, which reduce individual variability in functional 

connectivity estimates (De La Vega, Yarkoni, Wager, & Banich, 2018; Gordon 

et al., 2017; Gratton et al., 2020; Samudra et al., 2015). Finally, we could 

show that observed alterations in functional connectivity were specific to 

psychosis in our sample. While reduced network connectivity has been 

observed in other psychiatric conditions, such as major depressive disorder 

(Sun et al., 2023), our CHR-N sample showed increased connectivity 

compared to FEP. 
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Limitations 

Our FEP sample was relatively small. Moreover, the difference between CHR-P 

and HC in terms of hippocampal-vlPFC connectivity was no longer significant 

after correction for multiple comparisons. Moreover, there is currently no 

methodological consensus regarding graph measures (Fornito et al., 2013) 

which can limit generalisability (see e.g. (Gao et al., 2023)). 

 

Conclusion 

Resting state functional connectivity between the hippocampus and frontal 

cortex is decreased in early-stage psychosis. Using novel network-based 

analyses, our finding implicates the hippocampus as important factor in 

altered network organization, suggesting reduced involvement in the 

information flow between connected cortical and subcortical networks. Thus, 

altered connectivity along the hippocampal-frontal axis could be a potential 

biomarker of early-stage psychosis.  

To further elucidate the nature and mechanisms of alterations in hippocampal 

networks in psychosis, future work could investigate the role of 

neurotransmitter systems in generating these network alterations using MR 

spectroscopy or PET imaging. This may connect our human findings to past 

theoretical and preclinical work which highlights an important role for 

dopaminergic and glutamatergic transmission (Grace, 2012; J. Lieberman et 

al., 2018; Lodge & Grace, 2006). 
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Chapter 5: General Discussion 

Summary of Results 

In this thesis, behavioural, neuroanatomical, and functional neuroimaging 

markers of emerging and early-stage psychosis were identified.  

In Chapter 1, the relationship between cognitive tests and functional outcomes 

in CHR-P individuals was assessed using machine learning approaches. Based 

on previous research using patients as their own baseline, the models 

informed by cognitive data were compared to simpler models using only 

baseline functioning measures as predictors of functional outcomes. Here, 

models informed by cognition were able to predict functional outcomes with 

adequate accuracy, but their performance was not better than models 

informed only by baseline functioning. This suggests that functioning follows a 

predictable course from baseline, and its prediction is not improved by 

incorporating cognitive markers.  

In Chapter 2, the subcortex and hippocampus were analysed anatomically in 

terms of volume, and, where volumetric differences were identified, shape. 

CHR-P and FEP groups were analysed, as well as a clinical control group (CHR-

N) to assess the specificity of potential findings to psychosis. Decreased 

hippocampal volumes were observed in psychosis but not the CHR-N group, 

which indicated specificity to psychosis. Other subcortical structures on the 

other hand were unaffected. Hippocampal shape deformations were seen 

across the hippocampal surface bilaterally in FEP patients, while volumetric 

contractions were more regionally specific and smaller in magnitude in the 

CHR-P group. However, hippocampal volume did not show an association with 

clinical or cognitive features in either group. 

In Chapter 3, the choroid plexus was analysed in CHR-P, CHR-N, FEP, and ScZ 

individuals as a possible contributor to ventricular alterations in psychosis. 

Here, we refined an existing protocol for choroid plexus segmentation, and 

determined that it performed on par with manual segmentation by inspecting 

inter-rater overlap among humans, and overlap with the automated 

segmentation method. Freesurfer, a popular segmentation method which was 

used in previous research, showed very low overlap with manual 

segmentations and produced different statistical results to our chosen 

segmentation method. Using this improved protocol, a conventional 
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frequentist analysis showed no evidence for alterations in choroid plexus 

volume in either psychosis group. Further strengthening this, an additional 

Bayesian analysis provided evidence against group differences, which suggests 

that choroid plexus volumes are not a reliable marker of psychosis at any 

stage of illness. 

In Chapter 4, functional connectivity was analysed. Prominent theoretical 

frameworks assign a key role to the hippocampus in cortical-subcortical 

networks, but this has not been investigated empirically in early-stage and 

emerging psychosis yet. Based on this gap in the literature, investigated this 

using fMRI. We identified lower functional connectivity between the 

hippocampus and inferior frontal cortex in psychosis, whereby this effect was 

stronger in the early-stage psychosis group. The centrality of the hippocampus 

differed between the two illness stages, but neither graph metrics nor 

functional connectivity showed an association with clinical measures or 

hippocampal volumes. 

The key implications of our findings will now be discussed for each analysis, 

and potential future studies based on our findings will be described. 

 

Cognition and Functional Outcomes: Implications and Future 

Directions 

Psychosis is characterised by cognitive difficulties at all stages of illness, 

including the clinical at-risk stage. Our CHR-P sample had lower total BACS 

scores as well as lower processing and motor speed, although they were not 

impaired on other individual tasks. Compared to HC, CHR-P individuals had 

significantly worse baseline GAF scores, indicative of lower overall functioning. 

Because functioning relates to an individual’s need for support, predicting 

future functioning is particularly of interest when trying to allocate future 

treatments or support. Clinical outcomes are diverse and not known at the 

stage of CHR-P (G. S. de Pablo, Radua, Pereira, Bonoldi, Arienti, Besana, & 

Fusar-Poli, 2021; Gonzalo Salazar De Pablo et al., 2022), so being able to 

predict future need for support could therefore aid clinical decision-making.  

Machine learning models are particularly well suited for this, as trained models 

can be provided to e.g. clinicians or other researchers, and a prediction can be 

returned for any new samples fed into a pre-fit model (Koutsouleris et al., 
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2018; Young, Kempton, & McGuire, 2016). In some instances, incorporating 

machine learning predictions may yield improved outcome predictions in 

psychosis compared to clinical expertise alone (Fusar-Poli et al., 2019). 

In our sample, machine learning models informed by cognitive markers could 

predict functional outcomes (as measured via the GAF scale) with above-

chance accuracy. However, functional outcomes were best predicted by models 

informed by baseline functioning measures – this suggests that GAF scores 

either follow a reliable trajectory following baseline, or that they simply do not 

change very much. As can be seen in Supplement 1, the latter was the case in 

our dataset. This is consistent with past evidence (Koutsouleris et al., 2018), 

although here typically the ability of other markers to also contribute has been 

highlighted rather than the fact that functioning is predictive of itself over 

time. Functioning itself being the strongest predictor of future functioning 

scores does not negate the association between cognitive variables and 

functional outcomes. However, it implies that the use of complex models 

informed by cognitive variables may not be warranted at this stage. Arguably, 

the complexity of a model should be justified by sufficient improvements in 

performance over simpler variants, especially if their use may require 

additional training for clinical staff who are not necessarily experienced in 

incorporating machine learning models into their clinical decision-making 

processes.  

The utility of baseline functioning in predicting its future course also has 

important clinical implications – it is often assumed that the primary clinical 

outcome that should be monitored in CHR-P individuals is transition to 

psychosis, and that individuals who do not transition may not require 

treatment. However, most individuals with poor functioning at baseline also 

presented with poor functional outcomes many months later in our sample. 

Not only were CHR-P individuals unlikely to recover GAF scores over time, but 

the majority of them also presented with low GAF scores at all assessment 

time points. It can thus be proposed that CHR-P individuals with poor 

functioning should be offered help by default, rather than wait for either 

transition to psychosis or for individuals to get better over time. 

GAF scores represent a mixture of different components, including symptom 

severity, social life, or occupational/educational functioning (Hall, 1995). Due 

to this, it is possible for individuals with substantially different constellations of 
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these different factors to be rated the same. For instance, an individual who 

experiences frequent psychotic symptoms but is successful in their career may 

be assigned to the same GAF outcome category as an individual who 

experiences much milder symptoms, but whose symptoms preclude them from 

engaging in work or education. GF-Role and GF-Social are designed to 

separate these different contributions by rating them separately. However, we 

observed the variance in GF scores on either subscale to be very low, which 

ultimately rendered them unsuitable as an outcome variable. Future research 

may benefit from the development of improved clinical tools to assess 

functioning. Based on our observations, these tools should be able to separate 

different aspects of functioning such as symptom severity and occupational 

success, and they should not be as coarse as GF-Role and Social to ensure 

that there will be statistical variance that can be analysed. While it is an 

assumption that there is more true variability in functioning in the CHR-P 

population than GF Role and Social indicated in our sample, arguably the 

range of outcomes after CHR-P baseline supports this assumption - see e.g. 

(G. S. de Pablo, Radua, Pereira, Bonoldi, Arienti, Besana, & Fusar-Poli, 2021; 

Gonzalo Salazar De Pablo et al., 2022; Solmi, Soardo, et al., 2023). 

In summary, cognitive variables and functioning show an association in our 

CHR-P sample, who were cognitively and functionally impaired. However, 

future functioning is best predicted by baseline functioning measures because 

scores change little over time, which suggests that early intervention should 

be given at the CHR-P stage. 

 

Anatomical Markers of Psychosis  

In the anatomical domain, we investigated the hippocampus and subcortex, as 

well as the choroid plexus and the ventricular system. Here, the hippocampus 

showed shrinkage in early-stage psychosis, whereas the choroid plexus was 

not altered volumetrically at any stage of illness.  

Not only did we not find evidence for volumetric differences in the choroid 

plexus in any illness stage in psychosis, but a Bayesian analysis also indicated 

evidence against group differences when ventricular volume was used as a 

covariate. Volumetric enlargement relative to HC was observed in the ScZ 

group prior to such correction, but this finding is of limited importance. This is 
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because the ScZ group also showed enlarged ventricles -  and it is known that 

the size of the choroid plexus scales with the ventricular system, just as e.g. 

grey matter structures typically scale with total brain size. 

Recent advances in choroid plexus segmentation have revealed relatively low 

quality of Freesurfer-based segmentations (D. Bannai et al., 2022b; Tadayon 

et al., 2020), on the basis of which some past studies have reported 

volumetric differences (Paulo Lizano, Lutz, Ling, Lee, Eum, Bishop, Kelly, et al., 

2019). Consistent with our findings, a recent study also found that the 

statistical results varied depending on the choice of segmentation algorithm 

(Deepthi Bannai et al., 2024). This highlights the importance of quality 

assurance of segmentations for any volumetric analysis, even for commonly 

used software packages such as Freesurfer. 

Our findings further highlight the utility of incorporating different statistical 

approaches, such as Bayesian analysis, to obtain a more complete 

understanding of the results. Bayesian analysis in particular can be used to 

improve our understanding of null findings, which, in a frequentist framework, 

as such cannot tell us whether the data was simply uninformative regarding 

the presence of an effect (i.e. a simple replication failure), or may in fact 

provide evidence against it (Dienes, 2014). Some previous studies have 

reported null findings in a frequentist framework in some psychotic disorders 

as well as CHR-P individuals, (Deepthi Bannai et al., 2024; Paulo Lizano, Lutz, 

Ling, Lee, Eum, Bishop, Kelly, et al., 2019), although the meaning of these 

results has remained unclear up until now. To my knowledge, we are the first 

to also report Bayesian analysis of choroid plexus volumes, demonstrating that 

our dataset was not uninformative regarding the question of volumetric 

differences, but indeed provided evidence against them. 

Overall, this suggests that the choroid plexus volume is unlikely to be a robust 

marker of psychosis. The choroid plexus may still be mechanistically involved 

in the alterations to the ventricular system in psychosis, but this contribution 

is not evident through volumetric changes. Future research may instead 

assess the function of the choroid plexus, as this could be a more promising 

avenue to identifying origins of ventricular changes in psychosis. For more 

information on measuring choroid plexus function, see e.g. (Mehta et al., 

2022; Zhao et al., 2020). 
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While choroid plexus volumes are rejected as a candidate marker of psychosis, 

we find decreased hippocampal volumes to be a marker specific to early-stage 

psychosis. No change to hippocampal volumes is seen in the clinical control 

group, and any (non-significant) changes from the HC group are in the 

opposite direction to the effects identified in early-stage psychosis. 

Furthermore, we find evidence that shape deformities are more regionally 

confined in the CHR-P group, but they are seen across the hippocampal 

surface in the FEP group.  

It should be noted that the volumetric differences in the CHR-P group were 

ultimately not statistically significant after correction, thus no strong claims 

can be made about this group. Numerically, the difference between CHR-P and 

HC is comparable to that between FEP and HC, which is consistent with past 

findings, whereby not all find such differences to be statistically significant 

(Buehlmann et al., 2010; Ganzola, Maziade, & Duchesne, 2014; J. Lieberman 

et al., 2018; Provenzano et al., 2020; Velakoulis et al., 2006; Walter et al., 

2016; Wood et al., 2010). Particularly if volumetric contractions are potentially 

confined to small subregions within the hippocampus, overall volumetric 

changes may be too small to be reliably detected at samples of our size. This 

suggests that a shape analysis should be performed on a larger sample; 

whereby the use of Bayesian statistics (as e.g. in Chapter 3) could clarify the 

meaning of null findings if they occur. 

Furthermore, the number of transitions to psychosis was too small in our 

sample to assess the relationship between transition and morphometry in 

either brain structure (n=14 [13% of the sample included in the volumetric 

analysis, 9% of the total sample]). Very large CHR-P cohorts are likely 

required to capture a sufficiently sized group of transitions, which may be of 

interest to future research. 

To summarise our anatomical findings, we found evidence for decreased 

hippocampal volumes in early-stage psychosis, but evidence against choroid 

plexus volume changes across illness stages. The role of the hippocampus will 

thus be discussed further. 
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The Role of the Hippocampus in Psychosis: Causes, Implications 

and Future Directions 

Converging evidence from multiple neuroimaging modalities (see Chapter 2 

and 4) point to hippocampal alterations being markers of psychosis in our 

sample. In early-stage psychosis, the hippocampus had significantly decreased 

volumes, as well as decreased functional connectivity with the inferior frontal 

cortex. Numerically, both anatomical and functional changes were larger in 

early-stage psychosis than in CHR-P, which may suggest that these markers 

are indicative of not only risk but also early disease processes. Further 

evidence for differences between illness stages came from the network 

analysis, which suggested that the functional organisation of the hippocampus 

within a cortical-subcortical network may differ between early-stage psychosis 

and CHR-P. Both our anatomical and functional neuroimaging observations are 

broadly consistent with previous findings (J. Lieberman et al., 2018; 

Provenzano et al., 2020; Wood et al., 2010), although this leaves open the 

question why hippocampal changes are seen in psychosis and how they may 

emerge. 

Neurodevelopmental theories suggest that susceptibility to psychosis may 

emerge early in life (Gilmore, 2010).The development of hippocampal volumes 

may be particularly susceptible to stress, particularly early life stress 

(Humphreys et al., 2019; Larosa & Wong, 2022), which is commonly evident 

via adverse childhood experiences in individuals with psychotic disorders 

(Rosenberg, Lu, Mueser, Jankowski, & Cournos, 2007). Genetic risk factors 

may contribute to hippocampal abnormalities in psychosis, and this is further 

associated with subcortical volumes (Smeland et al., 2018). Alterations in 

gene expression could be another contributing factor (Heckers & Konradi, 

2010), and abnormal development and function can be induced with infections 

in animal models (Ducharme, Lowe, Goutagny, & Williams, 2012), which 

appears consistent with the increase in psychosis risk associated with prenatal 

infection (Khandaker, Zimbron, Lewis, & Jones, 2013). This implies that the 

antecedents of the effects we detected may occur at developmentally very 

early stages, long even before the onset of the prodromal phase. Given the 

differences we observed between CHR-P and FEP regarding e.g. network 

organisation surrounding the hippocampus, this suggests that disease-relevant 

processes in the hippocampus may nonetheless occur at these stages (as 
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opposed to much earlier in development). Future work may assess individuals 

longitudinally, and explore whether alterations in functional network 

organisation or hippocampal volumes can be mitigated at earlier stages of 

illness. Such research may help clarify if early developmental changes 

inevitably cause pathological changes to occur in later developmental stages 

such as adolescence/early adulthood, or if they only represent a risk factor 

which can be mitigated given appropriate interventions. 

Furthermore, previous studies and theoretical works have addressed possible 

mechanisms of hippocampal change in early-stage psychosis. Here, 

neurodegenerative views suggest a decline during active phases of illness 

(Keshavan, 1999; J. A. Lieberman, 1999). Although this is not something that 

could be measured directly in our sample, animal models suggest that 

abnormal activity in the hippocampus and volumetric decline may be linked 

through a process of excitotoxicity (Grace, 2012; J. Lieberman et al., 2018). 

We did not observe a significant association between hippocampal volumes 

and either functional connectivity or network properties, which, while not 

supporting this view, is also not inconsistent with it. Our sample was cross-

sectional, whereas the excitotoxicity hypothesis of the relationship between 

hippocampal activity and volumes in psychosis deals with longitudinal 

changes, so that longitudinal data is required thoroughly test it. It is further 

worth noting that not all individuals in the CHR-P group are truly in the 

prodromal phase of psychosis, as the majority of them did not transition to 

psychosis at the time of the final assessment. Another contributing factor to 

the lack of association between measures of hippocampal function and 

anatomy could thus lie in the fact that the disease process of psychosis may 

have been underway in relatively few CHR-P individuals, so that the CHR-P 

group as a whole is less likely to show an effect. That is, since most CHR-P 

individuals did not transition to psychosis, they were not in a state of 

emerging psychosis. However, this is speculative, and the question whether 

CHR-P individuals who transition and those who don’t are in some sense 

qualitatively different at baseline is outside the scope of this thesis. Exploring 

whether psychosis risk and early disease processes differ qualitatively or only 

in magnitude may be of interest to future work. 

Besides the assessment of longitudinal changes, another future avenue of 

interest is highlighted by this work. The glutamate hypothesis of psychosis 

proposes that NMDA receptor hypofunction contributes to changes in 
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hippocampal activity in the early stages of illness (Farber, 2003; Grace, 2012). 

An fMRI protocol as used in the present work could be combined in future 

research with imaging modalities that are sensitive to neurotransmitters, such 

as magnetic resonance spectroscopy (MRS) or positron emission tomography 

(PET). Here, researchers could assess whether regional changes in glutamate 

activity show a relationship with the functional connectivity between the 

hippocampus and inferior frontal cortex, or the role of the hippocampus in the 

cortical-subcortical network as measured for example with betweenness 

centrality.  

The hippocampus has further been described in relation to dopamine 

hyperactivity in psychosis. Here, animal models suggest that the 

aforementioned changes in hippocampal activity cause disinhibition, which in 

turn causes striatal dopamine activity to be abnormally elevated and gives rise 

to aberrant salience (Grace, 2012; Lodge & Grace, 2006; Winton-Brown et al., 

2014). Interestingly, we did not observe changes to functional connectivity 

between hippocampus and subcortical regions. Subcortical regions did also not 

show volumetric changes in the anatomical analysis, so we do not find 

evidence to support proposed links between hippocampus and striatal regions 

in our sample. Similarly to proposed future investigations of glutamate 

function in psychosis, MRS or PET imaging could be used to image dopamine 

in striatal regions specifically to determine whether the hippocampal changes 

our work highlights show an association with, for instance, dopamine receptor 

occupancy in early-stage and emerging psychosis, relating our work to 

previous investigations on dopamine receptor occupancy in ScZ (Abi-Dargham 

et al., 2000). 

While the hippocampus has been an important ROI in both past empirical and 

theoretical work (see e.g. (Grace, 2012; Lodge & Grace, 2006)), our 

investigations make a novel contribution to this body of literature by 

highlighting the following aspects. In the anatomical domain, we compare 

hippocampal volumes and shape across illness stages in early-stage and 

emerging psychosis, and we establish that, at least in our sample, the 

identified alterations are specific to psychosis as they are not observed in the 

clinical control group, CHR-N. These aspects are also incorporated into the 

fMRI analysis, which is also novel to my knowledge. Furthermore, we draw 

from the latest developments in fMRI preprocessing designed to address 

artifacts which are known to be more common in patients (Pardoe et al., 2016; 
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Parkes et al., 2018; N. Yao et al., 2017), and the use of which has previously 

been shown to affect case-control comparisons (Aquino et al., 2020; Parkes et 

al., 2018). 

In summary, we thus provide novel evidence to support existing frameworks 

postulating an important role for the hippocampus in early-stage and 

emerging psychosis. Our work points to several promising lines of research 

which could be conducted in the future to enhance our understanding of the 

role of the hippocampus in psychosis. 

  

Multimodal Characteristics of Psychosis: Associations between 

Behavioural, Anatomical, and Functional Markers of Psychosis 

Multimodal analysis can reveal markers of psychosis from different angles and 

levels of analysis, and highlight relationships between the different data 

modalities. Furthermore, it can highlight information that is shared across 

different modalities, as well as information which is unique and may thus 

expand our understanding of psychosis. 

Early-stage and emerging psychosis were characterised by both behavioural 

and neuroanatomical/functional alterations in our sample. Consistent with 

previous evidence, CHR-P and FEP individuals showed some cognitive 

impairments and reduced global functioning (Glenthøj et al., 2016; Lin et al., 

2011; Niendam et al., 2006; Schaefer et al., 2013). Many normal cognitive 

functions rely at least in part on the hippocampus, including e.g. memory 

formation, spatial navigation, or even emotional cognition (Battaglia et al., 

2011; Shohamy & Turk-Browne, 2013). Changes in hippocampal baseline 

activation have further been associated with differences in cognitive 

performance on cognitive tasks (McHugo et al., 2019). As past theoretical and 

preclinical work further shows associations between excessive baseline 

excitation in the hippocampus and decreased volumes (J. Lieberman et al., 

2018), one might therefore expect to observe relationships between 

hippocampal variables and behavioural measures. 

While the hippocampus shows both anatomical and functional alterations in 

our early-stage psychosis samples, we consistently found no association 

between either neuroimaging modality and cognitive or clinical markers. 

Hippocampal volumes as well as the role of the hippocampus in the cortical-
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subcortical network showed a relationship with illness stage, but did not 

demonstrate associations with clinical features such as symptom severity or 

persistence of attenuated psychotic symptoms within each stage. The 

observed alterations were however specific to psychosis in our data, 

suggesting that they characterise early-stage psychosis but are not prognostic 

of clinical course or outcomes.  

On the flip side, this also implies that the features captured by each data 

modality contain unique information about psychosis. Thus, this provides 

support for a multimodal approach, as each chapter addressing a different 

data modality also provides new markers for early-stage and emerging 

psychosis. Future modelling work could assess the extent to which information 

from these modalities may be synergistic in predicting clinical outcomes – that 

is, can the unique contributions from each modality be combined in a way 

which improves predictive performance over separate analyses? In the case of 

such prediction models, the use of features which already contain significant 

correlations would be less advantageous, as at least some of this shared 

information would be redundant and could cause problems with collinearity in 

model fitting. 

Future studies may draw from our work and measure e.g. hippocampal 

volumes as well as hippocampal function and role in the cortical-subcortical 

network to predict transition to psychosis from CHR-P. Because the proportion 

of transitions to psychosis has significantly decreased in recent years 

compared to earlier samples (Gonzalo Salazar De Pablo, Radua, Pereira, 

Bonoldi, Arienti, Besana, Soardo, et al., 2021), large samples will likely be 

required to detect effects associated with transition. Problems such as 

overfitting, which are commonly found in individualised prediction models 

fitted on smaller datasets, could be mitigated this way (Schnack & Kahn, 

2016; Vieira et al., 2020; Vieira, Pinaya, & Mechelli, 2017). Recent 

methodological advances in e.g. convolutional neural networks incorporating 

graphs may further aid in the analysis of multimodal data by not only 

qualitatively comparing their findings, but by actively fusing the modalities 

during analysis (Z. Kong, Sun, et al., 2021). We chose not to use such 

methods in the present work due to our sample size, but future research could 

build on our work described in Chapter 4 by analysing the same network 

multimodally, in a large, multi-centre sample. 
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This thesis thus makes advances to psychosis research by highlighting 

markers which could be particularly useful in future multimodal prediction 

models. 

This thesis further indicates that, at least in our dataset, the identified markers 

are specific to psychosis as they were not observed in our clinical control 

group (CHR-N). At face value, this may be at odds with previous studies which 

have reported hippocampal volume loss in conditions other than psychosis 

(Cole et al., 2011; Kempton et al., 2011; Videbech & Ravnkilde, 2004; Wilson 

et al., 2017). However, individuals with psychosis were not directly compared 

to these other conditions in these samples.  

It should be noted that our clinical control group was relatively small, so that 

future investigations into the specificity of hippocampal volume reductions, 

shape changes, and function in a cortical-subcortical network to psychosis are 

warranted. In such future studies, the relationship between various markers of 

general psychopathology versus features of psychosis and our identified brain 

markers should further be analysed. For instance, hippocampal volumes could 

be correlated with PANSS scores, but also with the severity of MDD or anxiety 

symptom severity in a clinical control group. This may help determine whether 

any potential relationships between behavioural and brain markers are specific 

to psychosis, or are also evident in other psychiatric conditions. 

 

Limitations 

Several limitations should be considered when interpreting our findings, 

particularly regarding sample size and data availability, specificity to psychosis, 

outcomes in the CHR-P group, individualised prediction methods, and the 

cross-sectional design. Suggestions are given about how future studies may 

address these limitations. 

Sample sizes in the CHR-N, FEP, and ScZ groups were smaller than in the 

CHR-P and HC groups, which may have limited our ability to identify effects in 

these groups. We were also unable to assess the relationship between clinical 

variables such as symptom severity and neuroimaging features in the FEP and 

ScZ groups due to limited data availability. In the ScZ group, fMRI data was 

unavailable, so we were not able to analyse potential changes in hippocampal 

function in this group. Hippocampal alterations have been proposed to play a 
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causal role in generating aberrant salience (Grace, 2012; Heckers & Konradi, 

2010; Winton-Brown et al., 2014), but our data cannot directly address this 

important hypothesis. The relationship between the hippocampal markers we 

identified and symptom severity in the FEP and ScZ groups should be assessed 

in future studies. 

Data availability should also be considered in the interpretation of our findings 

that cognitive and hippocampal changes were specific to psychosis rather than 

reflective of general psychopathology (see chapters 1, 2, 4). The CHR-N group 

were assessed with the same clinical instruments as the CHR-P group, which 

indicated whether criteria were met across multiple disorders (e.g. generalised 

anxiety disorder), but did not provide detailed information about severity 

outwith psychosis-related symptoms. Thus, we cannot exclude the possibility 

that overall psychopathology was lower in this group compared to CHR-P, 

which could have contributed to the differences between these groups. It 

should also be noted that the extent to which severity can be compared across 

different diagnostic categories is a matter of debate, with some suggesting 

that psychosis should be considered more severe in principle (Caspi et al., 

2014; Kotov et al., 2017). 

Analysis of the CHR-P group was also limited by data availability. Transition to 

psychosis is an important clinical outcome in this group, but it was omitted 

from analysis in this thesis because we considered the number of CHR-P 

individuals who transitioned in our dataset too small (<10%). This low rate is 

in keeping with a current downward trend in transition rates described in 

Chapter 0 (G. S. de Pablo, Radua, Pereira, Bonoldi, Arienti, Besana, & Fusar-

Poli, 2021), which indicates that future studies may need to collect CHR-P 

samples much larger than ours to capture a sufficiently large transitioned 

group.  

A related problem is that the CHR-P cohort as a whole likely show a mixture of 

risk, compensatory, and resilience markers regarding transition to psychosis 

(de Wit et al., 2016; Thakkar et al., 2023), and clinical outcomes are highly 

heterogenous (G. S. de Pablo, Radua, Pereira, Bonoldi, Arienti, Besana, & 

Fusar-Poli, 2021; Gonzalo Salazar De Pablo et al., 2022). We cannot exclude 

the possibility that some differences between HC and CHR-P identified in this 

thesis are the result of e.g. compensatory mechanisms as opposed to 

psychosis risk. An analysis of transitioners versus non-transitioners in future 
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studies could therefore clarify which aspect of the CHR-P group our identified 

markers best capture. Furthermore, it is not yet clear whether even those who 

transition to psychosis can be regarded as a homogenous group, as evidence 

for distinct subtypes exists, which may be transdiagnostic (Cowan & Mittal, 

2021; Lalousis et al., 2022). This thesis did not include data-driven analysis to 

identify subgroups in the CHR-P group, so it is not possible to state whether 

the alterations we identified are characteristic of CHR-P as a whole, or are 

driven by a particular subgroup. 

In clinical research, one major limitation of traditional statistical analysis is 

that it does not directly enable individualised prediction. Machine learning, 

however, is capable of this (Dwyer, Falkai, & Koutsouleris, 2018; Janssen, 

Mourão-Miranda, & Schnack, 2018). While we aimed to take advantage of this 

in Chapter 1, machine learning analysis is not included in Chapters 2-4. 

Preliminary machine learning analysis of the neuroimaging data (not included 

in thesis) showed unstable model performance, indicative of overfitting. This is 

a known problem in the machine learning analysis of neuroimaging data and 

may be due to sample size(Schnack & Kahn, 2016; Vieira et al., 2021). There 

is no hard rule to determine when a given sample is suitable for machine 

learning analysis, although more subtle and complex patterns generally 

require larger sample sizes (Rajput, Wang, & Chen, 2023). Our sample was 

thus likely too small to generate individualised predictions from the 

neuroimaging data. 

Nested cross-validation, whereby hyperparameters are optimised in addition to 

model parameters, often outperforms simple k-fold cross validation, and has 

been recommended for machine learning model optimisation (Bates, Hastie, & 

Tibshirani, 2024; Cearns, Hahn, & Baune, 2019). In Chapter 1, we chose k-

fold cross validation and therefore did not optimise hyperparameters as this 

failed to show a benefit (see e.g. (Wainer & Cawley, 2021). It is therefore 

possible that models with optimised hyperparameters may outperform our 

simple GAF model, and this should be assessed in future studies. 

In the theoretical frameworks we draw from, the hippocampus may undergo 

longitudinal changes across illness stages, particularly at the onset of 

psychosis (Grace, 2012; J. Lieberman et al., 2018; Moghaddam & Javitt, 

2012). This suggests that changes such as volume loss may occur between 

the CHR-P and FEP stages. Our data is consistent with this, but cannot directly 
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confirm longitudinal effects due to the cross-sectional design. This is an 

important limitation, and longitudinal neuroimaging studies of CHR-P cohorts 

will be required to directly to test the longitudinal predictions of these 

frameworks. 

In summary, the conclusions that can be drawn from this thesis are limited by 

sample size and data availability, as well as the inferential and predictive 

limitations of the design used. Future studies may further advance our 

understanding of early-stage and emerging psychosis by collecting longitudinal 

neuroimaging data, and ensuring that sufficient clinical information is collected 

for all groups. To enable analysis of transition to psychosis in the CHR-P group 

as well as individualised prediction modelling, larger samples will be required 

in future studies. 

 

Conclusion 

Early-stage and emerging psychosis are characterised by impairments in 

cognitive function and global functioning, and these problems are unlikely to 

improve over time without support. Concurrently, these individuals show 

altered function and volume of the hippocampus, and this distinguished 

psychosis from other psychopathology in our sample. More specifically, 

hippocampus volumes were decreased, and functional connectivity between 

the hippocampus and inferior frontal cortex was also lower in early-stage 

psychosis. Furthermore, early-stage and emerging psychosis differ from each 

other in terms of the magnitude of anatomical and functional changes to the 

hippocampus. Its role in a cortical-subcortical network further differs between 

illness stages.  

The markers identified in each data modality are unique, and do not show 

significant associations with one another. On the one hand, this means that we 

cannot conclude from this thesis what the behavioural/clinical implications of 

our neuroimaging results are. While a disadvantage at first glance, there is 

also an important advantage to this: identifying unique markers is useful for 

future predictive modelling studies, as they can draw from the multimodal 

markers we identified without facing problems due to collinearity. This thesis 

thus makes a novel contribution to the field by identifying promising 
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neuroanatomical and functional neuroimaging markers for predictive modelling 

studies of emerging and early-stage psychosis. 
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Appendix 1: Supplementary Materials for Chapter 1 

 

Supplementary Figure 1: Flowchart showing the sequence of analyses used. 

Data was first prepared for regression, variables associated with GAF scores at 

baseline were identified, and GAF outcomes were classified using those 

variables. 

 

 

Supplementary Figure 2: Correlation matrix showing the relationship 

between nonzero predictors and baseline GAF scores for the cognitive 

LASSO-LARS regression model for the CHR-P group (N = 146). The 
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latest GAF score is added to this figure for visualisation purposes only 

and has not been entered in the regression model. 

 

Supplementary Figure 3: Correlation matrix showing the relationship 

between nonzero predictors and baseline GAF scores for the combined 

LASSO-LARS regression model for the CHR-N group (N = 47).  

 

 

 

Supplementary Figure 4: GAF score changes in the CHR-P group: (A) 

absolute change in GAF scores between baseline and 6-12 month 

follow-up (N = 146); (B) raw change in GAF scores between baseline 

and 6-12 month follow-up (N = 146); (C) raw change in GAF scores 

 B 
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between baseline and 6-month follow-up (N = 108); (D) raw change in 

GAF scores between baseline and 12-month follow-up (N = 94).  

 

 

Supplementary Table 1. Demographic, clinical, functioning and cognitive 

characteristics across sites for CHR-P participants (N = 146) 

Variable Glasgow 

(N = 109) 

Edinburgh 

(N = 37) 

p-value 

Age (years), mean (SD) 20.79 (3.95) 23.46 (4.39) < .001 

Gender, female n (%) 78 (71.6) 26 (70.3) .881 

Education (years), mean (SD) 14.51 (2.73) 16.95 (3.39) < .001 

CAARMS severity, median 

(range) 

24 (0-74) 34 (12-72) .006 

CAARMS mean distress, median 

(range) 

25 (0-86) 39 (0-85) .005 

SPI-A severity, median (range) 6 (0-74) 7 (0-39) .987 

SPI-A mean distress, median 

(range) 

3 (0-28) 4 (0-12) .339 

CHR-P criteria subgroup, n (%)    

CAARMS 33 (30.3) 12 (32.4) .806 

SPI-A 33 (30.3) 4 (10.8) .019 

CAARMS/SPI-A 43 (39.4) 21 (56.8) .067 

ACES total, median (range) 2 (0-8) 2 (0-6) .991 

Comorbidity, n (%)    

Anxiety disorder 80 (73.4) 24 (64.9) .322 

Mood disorder 75 (68.8) 22 (59.5) .298 

Alcohol abuse/dependence 31 (28.4) 15 (40.5) .171 

Drug abuse/dependence  19 (17.4) 5 (13.5) .579 

Eating disorder 5 (4.6) 6 (16.2) .021 

Medication, n (%)    
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Antipsychotic 3 (2.8) 1 (2.7) .987 

Mood stabiliser  2 (1.8) 2 (5.4) .250 

Antidepressant 32 (29.4) 21 (56.8) .003 

Anti-anxiety 4 (3.7) 6 (16.2) .009 

GAF, median (range) 58 (21-95) 58 (40-80) .715 

Poor baseline functioning, n 

(%) 

79 (72.5) 27 (73.0) .953 

PFO, n (%) 51 (46.8) 19 (51.4) .840 

Social functioning, median 

(range) 

8 (3-10) 8 (6-9) .474 

Role functioning, median 

(range) 

8 (3-9) 8 (4-9) .711 

PAS average, median (range) 1.26 (0-3.43) 1.14 (0.29-2.50)  .984 

BACS, mean (SD)    

Verbal memory -0.47 (1.14) 0.50 (1.12) < .001 

Motor speed -0.60 (1.22) -1.05 (1.14) .017 

Attention & processing speed -0.45 (1.12) -0.57 (1.21) .452 

Verbal fluency -0.15 (1.17) 0.09 (1.41) .187 

Executive function -0.11 (1.38) 0.31 (1.16) .093 

Working memory -0.29 (1.35) 0.53 (1.42) .001 

Composite score -0.75 (1.61) -0.10 (1.91) .051 

CNB, mean (SD)    

Emotion recognition accuracy -0.16 (1.13) -0.19 (1.12) .763 

Emotion recognition RT 0.12 (1.19) 1.97 (1.77) < .001 

Attention accuracy -0.72 (2.58) -0.69 (2.68) .943 

Attention RT -0.05 (0.88) -0.27 (0.84) .142 

Working memory accuracy -0.33 (1.67) -0.62 (1.76) .298 

Working memory RT -0.04 (0.81) -0.06 (0.86) .941 

Note. CHR-P, clinical high-risk for psychosis; CAARMS, Comprehensive 

Assessment of At-Risk Mental States; SPI-A, Schizophrenia Proneness 

Instrument, Adult version; ACES, Adverse Childhood Experience Scale; GAF, 

Global Assessment of Functioning; PFO, poor functional outcome; PAS, 
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Premorbid Adjustment Scale; BACS, Brief Assessment of Cognition in 

Schizophrenia; CNB, Penn Computerized Neurocognitive Battery; RT, response 

time 

 

 

 

Supplementary Table 2: Permutation feature importance scores for nonzero 

variables for the CHR-P (N= 146) and CHR-N (N = 47) LASSO-LARS baseline 

models 

Variable Permutation feature importance score 

 CHR-P combined 

model 

CHR-P cognitive 

model 

CHR-N combined 

model 

Social functioning 0.18  0.04 

PAS average 0.04   

Role functioning 0.04  0.10 

Working memory RT 0.01 0.04  

SPI-A mean distress 0.01  0.05 

ACES total 0.02   

Motor speed < 0.01   

Verbal memory < 0.01 0.08  

Emotion recognition accuracy < 0.01 0.05  

Total CAARMS severity 0.05   

SPI-A severity 0.01   

CAARMS mean distress 0.01   
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Attention RT  0.02  

Executive function  0.01  

Working memory RT  0.04  

Note. CHR-P, clinical high-risk for psychosis; CHR-N, clinical high-risk-

negative; CAARMS, Comprehensive Assessment of At-Risk Mental States; SPI-

A, Schizophrenia Proneness Instrument, Adult version; ACES, Adverse 

Childhood Experience Scale; GAF, Global Assessment of Functioning; PAS, 

Premorbid Adjustment Scale; RT, response time. Here, importance (i) for 

variable j is calculated using the R2 score for the fitted model, and new R2 

scores (Sk,j) obtained after randomly shuffling variable column j for k iterations 

in the following manner: 

 

Supplementary Table 3: Nonzero coefficients and variable significance for the 

combined LASSO-LARS model for the CHR-P group (N = 146). 

Variable 
Coefficient 

(cv.glmnet) 

Coefficient 

(selectiveInference) 

p-value 

(selectiveInference) 

Verbal memory 0.20 0.57 .464 

SPI-A mean distress -0.18 -0.27 .370 

Executive function 0 0 - 

ACES total -0.49 -0.76 .116 

Motor speed -0.15 1.18 .116 

Verbal fluency 0 0 - 

Attention & processing 

speed  
0 0 - 

BACS composite score 0 0 - 

CAARMS mean distress -0.02 -0.05 .416 

Emotion recognition RT 0 0 - 
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Working memory 

accuracy 
0 0 - 

PAS average -2.08 -2.79 .071 

Emotion recognition 

accuracy 
0.06 0.52 .539 

Total CAARMS severity -0.10 -0.09 .256 

SPI-A severity -0.05 -0.08 .493 

Role functioning 1.22 1.42 .119 

Social functioning 2.97 2.96 .002 

Working memory 0 0 - 

Working memory RT -0.83 -2.19 .051 

Attention RT 0 0 - 

Note. CHR-P, clinical high-risk for psychosis; CHR-N, clinical high-risk-

negative; CAARMS, Comprehensive Assessment of At-Risk Mental States; SPI-

A, Schizophrenia Proneness Instrument, Adult version; ACES, Adverse 

Childhood Experience Scale; GAF, Global Assessment of Functioning; PAS, 

Premorbid Adjustment Scale; RT, response time. Coefficients were calculated 

using the R packages glmnet and selectiveInference, whereby the former is a 

different implementation of the algorithm used in the main text. The second 

set of coefficients and p-values were obtained using the package 

selectiveInference, which implements a procedure proposed by Lockhart et al. 

(2014). Due to implementation differences, the coefficients obtained through 

the two different functions differ slightly from each other; and both differ from 

those obtained using Python because random state settings do not transfer 

between platforms. 
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Appendix 2: Supplementary Materials for Chapter 2 

 

Supplementary Table 1: Subcortical volumes and linear model analyses 

Subcortical Volumes (mean mm, SD) 

 HC CHR-N CHR-P FEP 

Amygdala 1286 (219.2) 1275 (203.3) 1272 (197.1) 1246 (186.4) 

Caudate 3822 (415.2) 3767 (434.7) 3750 (412) 3823 (475.1) 

Hippocampus 4069 (328.5) 4108 (366.9) 3908 (428.7) 3892 (416.8) 

Nucleus 

Accumbens 

533.9 (87.72) 514.4 (84.79) 533 (77.47) 540.1 (96.8) 

Pallidum 1801 (194.8) 1762 (143.7) 1763 (178.9) 1852 (181.8) 

Putamen 5380 (521.7) 5197 (467.6) 5205 (552.3) 5440 (590.7) 

Thalamus 8144 (699.1) 8062 (617) 7979 (744.7) 8169 (737.3) 

     

Subcortex Linear Models, hemispheres averaged (t, p) 

 

Amygdala 16.71 (< 0.001) 0.17 (0.863) -0.08 (0.939) -1.9 (0.059) 

Caudate 30.8 (< 0.001) -0.24 (0.813) -1.48 (0.140) -1.04 (0.300) 

Hippocampus 29.36 (< 0.001) 1.22 (0.225) -2.38 (0.018) -3.75 (<0.001) 

Nucleus 

Accumbens 

17.54 (< 0.001) -0.73 (0.46) 0.28 (0.78) -0.64 (0.53) 

Pallidum 35.05 (< 0.001) -0.49 (0.624) -1.28 (0.202) -0.09 (0.930) 

Putamen 33.67 (< 0.001) -1.36 (0.176) -2.4 (0.017) -0.78 (0.433) 

Thalamus 44.36 (< 0.001) 0.41 (0.682) -1.43 (0.153) -2.25 (0.025) 

     

Subcortex Linear Models, left hemispere (t, p) 

 HC [intercept] CHR-N CHR-P FEP 
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Amygdala 13.65 (<0.001) 1.18 (0.239) 0.42 (0.678) -1.88 (0.061) 

Caudate 30.02 (<0.001) 0.16 (0.873) -1.01 (0.314) -1.35 (0.179) 

Hippocampus 27.15 (<0.001) 0.57 (0.566) -2.69 (0.008) -3.69 (<0.001) 

Nucleus 

Accumbens 

13.78 (<0.001) -1.11 (0.27) -0.28 (0.78) -0.55 (0.58) 

Pallidum 31.35 (<0.001) -0.36 (0.72) -0.50 (0.61) 0.38 (0.71) 

Putamen 32.78 (<0.001) -1.81 (0.071) -2.51 (0.013) -0.60 (0.549) 

Thalamus 44.36 (<0.001) 0.41 (0.682) -1.43 (0.153) -2.25 (0.025) 

     

Subcortex Linear Models, right hemisphere (t, p) 

 HC [intercept] CHR-N CHR-P FEP 

Amygdala 14.99 (<0.001) -0.98 (0.330) -0.59 (0.556) -1.34 (0.182) 

Caudate 29.08 (<0.001) -0.61 (0.541) -1.83 (0.069) -0.65 (0.518) 

Hippocampus 25.36 (<0.001) 1.60 (0.112) -1.58 (0.116) -3.02 (0.003) 

Nucleus 

Accumbens 

17.03 (<0.001) -0.18 (0.86) 0.78 (0.44) -0.56 (0.25) 

Pallidum 33.67 (<0.001) -0.56 (0.577) -1.91 (0.057) -0.57 (0.567) 

Putamen 32.61 (<0.001) -0.82 (0.411) -2.15 (0.033) -0.92 (0.356) 

Thalamus 43.43 (<0.001) 0.78 (0.438) -1.00 (0.319) -1.83 (0.069) 

     

 

Subcortex Linear Models (additional covariates), left hemispere (t, p) 

 HC 

[intercept] 

(N=48) 

CHR-N 

(N=35) 

CHR-P 

(N=107) 

FEP 

(N=13) 

TBV Age Education Handedness 

(right/left ratio) 

Amygdala 11.57 

(<0.001) 

-0.19 

(0.853) 

0.40 

(0.690) 

-0.77 

(0.444) 

5.79 

(<0.001) 

-0.15 

(0.883) 

1.99 

(0.048) 

1.52 (0.131) 
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Caudate 25.16 

(<0.001) 

-0.16 

(0.875) 

-0.63 

(0.532) 

1.49 

(0.138) 

8.68 

(<0.001) 

-2.16 

(0.032) 

0.36 

(0.720) 

1.10 (0.271) 

Hippocampus 20.83 

(<0.001) 

 1.05 

(0.294) 

-1.82 

(0.070) 

-1.86 

(0.065) 

6.40 

(<0.001) 

1.27 

(0.206) 

0.67 

(0.504) 

1.69 (0.092) 

Nucleus 

Accumbens 

 14.33 

(<0.001) 

-0.44 

(0.658) 

0.70 

(0.486) 

0.95 

(0.343) 

7.20 

(<0.001) 

-0.61 

(0.542) 

1.66 

(0.098) 

0.55 (0.582) 

Pallidum 27.51 

(<0.001) 

-0.64 

(0.525) 

-0.15 

(0.883) 

0.79 

(0.432) 

12.84 

(<0.001) 

 -0.72 

(0.470) 

2.24 

(0.026) 

0.88 (0.382) 

Putamen 29.74 

(<0.001) 

-1.74 

(0.083) 

-1.62 

(0.106) 

0.80 

(0.424) 

12.50 

(<0.001) 

-1.22 

(0.225) 

1.37 

(0.173) 

1.26 (0.208) 

Thalamus 38.66 

(<0.001) 

0.86 

(0.390) 

-0.49 

(0.622) 

-0.09 

(0.928) 

17.31 

(<0.001) 

0.49 

(0.627) 

1.75 

(0.081) 

1.61 (0.110) 

         

Subcortex Linear Models additional covariates), right hemisphere (t, p) 

 HC 

[intercept] 

CHR-N CHR-P FEP TBV Age Education Handedness 

Amygdala 11.48 

(<0.001) 

0.51 

(0.61) 

-0.15 

(0.88) 

-0.43 

(0.67) 

4.10 

(<0.001) 

0.70 

(0.49) 

0.28 

(0.78) 

0.06 (0.95) 

Caudate 25.68 

(<0.001) 

-0.51 

(0.61) 

-1.16 

(0.25) 

-0.86 

(0.39) 

9.25 

(<0.001) 

-1.20 

(0.23) 

-0.18 

(0.86) 

0.40 (0.69) 

Hippocampus 22.86 

(<0.001) 

0.57 

(0.568) 

-2.28 

(0.024) 

-1.85 

(0.066) 

6.88 

(<0.001) 

0.73 

(0.463) 

0.19 

(0.849) 

2.23 (0.027) 

Nucleus 

Accumbens 

 13.55 

(<0.001) 

-0.78 

(0.44) 

0.32 

(0.75) 

0.95 

(0.34) 

6.70 

(<0.001) 

0.36 

(0.72) 

-0.14 

(0.88) 

1.63 (0.10) 

Pallidum 29.52 

(<0.001) 

-0.19 

(0.85) 

-0.79 

(0.43) 

1.54 

(0.13) 

14.06 

(<0.001) 

-0.06 

(0.95) 

1.64 

(0.10) 

0.69 (0.49) 

Putamen 29.49 

(<0.001) 

-1.15 

(0.252) 

-1.95 

(0.053) 

0.66 

(0.511) 

12.54 

(<0.001) 

-1.28 

(0.204) 

1.24 

(0.217) 

1.09 (0.276) 

Thalamus 37.42 

(<0.001) 

0.86 

(0.39) 

-0.47 

(0.64) 

-0.03 

(0.98) 

15.98 

(<0.001) 

0.49 

(0.63) 

1.45 

(0.15) 

1.65 (0.10) 

Note. p-values shown are uncorrected. Sample sizes for the additional covariate 

analysis are smaller due to missing data. 
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Supplementary Table 2: Correlations between hippocampal volumes and 

clinical severity, functioning and cognitive performance 

Correlations with hippocampal volume (CHR-P group) 

 Right 

hippocampus r 

p Left 

hippocampus r 

p 

Total CAARMS 

severity 

0.083 0.389 0.082 0.394 

CAARMS UTC 0.035 0.716 0.067 0.486 

CAARMS NBI 0.031 0.743 -0.006 0.953 

CAARMS PA 0.095 0.320 0.019 0.841 

CAARMS DS 0.117 0.223 0.191 0.117 

Total SPI-A 

severity  

0.120 0.203 0.082 0.394 

GAF 0 -0.141 0.140 -0.089 0.345 

GAF 6m -0.118 0.266 0.069 -0.118 

GAF 12m 0.088 0.452 0.282 0.013 

BACS composite 

score 

-0.022 0.859 0.046 0.703 

BACS verbal 

fluency 

-0.022 0.857 0.046 0.704 

BACS working 

memory 

-0.035 0.771 -0.034 0.779 

BACS ToL -0.022 0.858 0.046 0.704 

BACS motor 

speed 

-0.022 0.858 0.046 0.703 
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BACS symbol 

coding 

-0.021 0.859 0.046 0.703 

BACS, Brief Assessment of Cognition in Schizophrenia; CAARMS, 

Comprehensive Assessment of At Risk Mental States; HC, healthy controls; 

CHR-N, clinical risk-negative; CHR-P, clinical high-risk positive; FEP, first-

episode psychosis; GAF, global assessment of functioning; SPI-A, 

Schizophrenia Proneness Instrument, Adult version; SD, standard deviation of 

the mean; AD, antidepressant; AP, antipsychotic 

Note. P-values are shown without correction. 

 

 

Supplementary Table 3: Hippocampal shape analysis 

 

Hippocampal shape analysis 

 Peak F p Peak coordinates  (x, y ,z)* 

HC vs CHR-P    

right 25.050 0.070 NS  

left 8.120 0.530 NS  

HC vc CHR-N    

right 8.530 0.290 NS  

left 10.360 0.170 NS  

HC vs FEP    

right 16.140 <0.01 116, 105, 50 

left 18.910 <0.001 62, 106, 50 

CHR-P vs FEP    

right 10.520 0.230 NS  
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left 19.910 0.010 NS 120, 103, 61 

 

Supplementary Table 4: Effects of antidepressant use on subcortical volumes 

in the CHR-P group 

Antidepressant effects on subcortical volumes 

 t p 

AD vs no AD 

(CHR-P) 

  

Amydgala   

right -1.155 0.251 

left -1.455 0.149 

Caudate   

right 1.549 0.124 

left 1.119 0.266 

Hippocampus   

right 0.097 0.923 

left 0.638 0.525 

Nucleus 

Accumbens 

  

right -0.710 0.479 

left 0.525 0.601 

Pallidum   

right -0.342 0.733 

left -0.749 0.455 

Putamen   

right -0.106 0.916 
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left -0.189 0.850 

Thalamus   

right -0.943 0.348 

left -0.660 0.510 

 

 

 

 

Supplementary Table 5: Effects of antipsychotic use on subcortical 

volumes in the FEP group 

AP vs no AP 

(FEP) 

  

Amydgala   

right 1.334 0.205 

left -0.240 0.814 

Caudate   

right 0.486 0.635 

left 1.273 0.225 

Hippocampus   

right 1.240 0.243 

left 0.654 0.524 

Nucleus 

Accumbens 

  

right 0.157 0.878 

left -0.229 0.820 

Pallidum   
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right 0.295 0.772 

left 0.270 0.792 

Putamen   

right -0.509 -0.620 

left -0.125 0.903 

Thalamus   

right -0.129 0.899 

left -0.314 0.759 

Note: Data only available for 15 FEP subjects 

 

 

Supplementary Table 6: Relationship between GAF scores and 

hippocampal volumes in the CHR-P group 

Relationship between hippocampal volumes and functional outcomes 

 Z (binomial 

GLM) 

p 

Baseline GAF -0.550 0.580 

GAF (6m) 0.980 0.330 

GAF (12m) 2.510 0.012 
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Appendix 3: Supplementary Materials for Chapter 3 

 

Supplementary Table 1: Model coefficients and BF01 for all groups for CP 

volumes obtained using GMM, with original scaling. Mean posterior estimate 

and BF01 are taken from Bayesian linear models, t and p values are taken 

from frequentist testing. All models compare HC versus the clinical group 

listed, with HC at the intercept, and using ventricular volume and age as 

covariates. BF01 is pertaining to the model including group vs. the null model 

as described in Methods. 

Model Variable Posterior (M) t p BF01 

CHR-N (Intercept) 702.01 8.79 <.001  

 Group -6.48 0.02 0.982 27.83 

±1.21% 

 VV 0.038 9.25 <.001  

 VV * 

Group 

-0.001 -0.29 0.769  

 Age 2.64 0.60 0.551  

      

CHR-P (Intercept) 684.05 8.79 <.001  

 Group -15.68 -0.78 0.436 15.29 

±1.2% 

 VV 0.04 9.25 <.001  

 VV * 

Group 

-0.0004 -0.04 0.971  

 Age 2.24 0.60 0.551  

      

FEP (Intercept) 715.63 8.79 <.001  

 Group -22.78 0.37 0.715 2.565 

±1.19% 

 VV 0.035 9.25 <.001  

 VV * 

Group 

-0.005 -1.55 0.122  

 Age 2.13 0.60 0.551  
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SCZ (Intercept) 747.22 8.79 <.001  

 Group -6.30 1.44 0.152 3.732 

±1.11% 

 VV 0.03 9.25 <.001  

 VV * 

Group 

-0.01 -1.95 0.053  

 Age 1.58 0.60 0.551  

      

 

 

 

Supplementary Table 2: Model coefficients and BF01 for all groups for CP 

volumes obtained using Freesurfer. Mean posterior estimate and BF01 are 

taken from Bayesian linear models, t and p values are taken from frequentist 

testing. All models compare HC versus the clinical group listed, with HC at the 

intercept, and using ventricular volume and age as covariates. BF01 is 

pertaining to the model including group vs. the null model as described in 

Methods. 

Model Variable Posterior (M) t p BF01 

CHR-N (Intercept) 449.22 16.05 <0.001  

 Group -7.72 -0.74 0.463 13.55 

±1.23% 

 VV 126.78 9.86 <0.001  

 VV * 

Group 

12.47 1.07 0.288  

 Age 0.88 0.40 0.693  

      

CHR-P (Intercept) 434.15 16.05 <0.001  

 Group -16.74 -2.27 0.024  3.093 

±1.09% 

 VV 121.48 9.86 <0.001  

 VV * 

Group 

5.79 0.75 0.452  

 Age 0.89 0.40 0.693  
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FEP (Intercept) 463.78 16.05 <0.001  

 Group -16.28 -1.63 0.103 3.28 

±1.21% 

 VV 97.99 9.86 <0.001  

 VV * 

Group 

-14.56 -1.75 0.081  

 Age 1.72 

 

0.40 0.693  

      

SCZ (Intercept) 514.62 16.05 <0.001  

 Group 24.53 1.83 0.069 7.108 

±1.86% 

 VV 112.06 9.86 <0.001  

 VV * 

Group 

-1.8 -0.25 0.806  

 Age 0.11 0.40 0.693  
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Appendix 4: Supplementary Materials for Chapter 4 

 

Supplementary Information 

Supplement I: fmriprep preprocessing 

We used the fmriprep package (21 series) with the following command: 

/opt/conda/bin/fmriprep /data /out participant --use-aroma --skip-bids-

validation --bold2t1w-dof 12 --output-spaces MNI152NLin2009cAsym. The 

following description is automatically provided by fmriprep and is intended to 

be provided unaltered; please note that it refers to one subject due to the 

command being run in a loop, but the same processing was applied to the 

entire dataset. No changes were made to the below text except for formatting 

adjustments:  

Results included in this manuscript come from preprocessing performed 

using fMRIPrep 21.0.2 (Esteban, Markiewicz, et al. (2018); Esteban, Blair, et 

al. (2018); RRID:SCR_016216), which is based on Nipype 1.6.1 (K. 

Gorgolewski et al. (2011); K. J. Gorgolewski et al. (2018); 

RRID:SCR_002502). 

Preprocessing of B0 inhomogeneity mappings 

A total of 1 fieldmaps were found available within the input BIDS structure for 

this particular subject. A B0 nonuniformity map (or fieldmap) was estimated 

from the phase-drift map(s) measure with two consecutive GRE (gradient-

recalled echo) acquisitions. The corresponding phase-map(s) were phase-

unwrapped with prelude (FSL 6.0.5.1:57b01774). 

Anatomical data preprocessing 

A total of 1 T1-weighted (T1w) images were found within the input BIDS 

dataset. The T1-weighted (T1w) image was corrected for intensity non-

uniformity (INU) with N4BiasFieldCorrection (Tustison et al. 2010), distributed 

with ANTs 2.3.3 (Avants et al. 2008, RRID:SCR_004757), and used as T1w-

reference throughout the workflow. The T1w-reference was then skull-stripped 

with a Nipype implementation of the antsBrainExtraction.sh workflow (from 

ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of 

cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was 
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performed on the brain-extracted T1w using fast (FSL 6.0.5.1:57b01774, 

RRID:SCR_002823, Zhang, Brady, and Smith 2001). Brain surfaces were 

reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, Dale, 

Fischl, and Sereno 1999), and the brain mask estimated previously was 

refined with a custom variation of the method to reconcile ANTs-derived and 

FreeSurfer-derived segmentations of the cortical gray-matter of 

Mindboggle (RRID:SCR_002438, Klein et al. 2017). Volume-based spatial 

normalization to two standard spaces (MNI152NLin2009cAsym, 

MNI152NLin6Asym) was performed through nonlinear registration 

with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w 

reference and the T1w template. The following templates were selected for 

spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 

2009c [Fonov et al. (2009), RRID:SCR_008796; TemplateFlow ID: 

MNI152NLin2009cAsym], FSL’s MNI ICBM 152 non-linear 6th Generation 

Asymmetric Average Brain Stereotaxic Registration Model [Evans et al. 

(2012), RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym]. 

Functional data preprocessing 

For each of the 1 BOLD runs found per subject (across all tasks and sessions), 

the following preprocessing was performed. First, a reference volume and its 

skull-stripped version were generated using a custom methodology 

of fMRIPrep. Head-motion parameters with respect to the BOLD reference 

(transformation matrices, and six corresponding rotation and translation 

parameters) are estimated before any spatiotemporal filtering 

using mcflirt (FSL 6.0.5.1:57b01774, Jenkinson et al. 2002). BOLD runs were 

slice-time corrected to 0.962s (0.5 of slice acquisition range 0s-1.93s) 

using 3dTshift from AFNI (Cox and Hyde 1997, RRID:SCR_005927). The BOLD 

time-series (including slice-timing correction when applied) were resampled 

onto their original, native space by applying the transforms to correct for 

head-motion. These resampled BOLD time-series will be referred to 

as preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD 

reference was then co-registered to the T1w reference 

using bbregister (FreeSurfer) which implements boundary-based 

registration (Greve and Fischl 2009). Co-registration was configured with 

twelve degrees of freedom to account for distortions remaining in the BOLD 

reference. Several confounding time-series were calculated based on 

the preprocessed BOLD: framewise displacement (FD), DVARS and three 
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region-wise global signals. FD was computed using two formulations following 

Power (absolute sum of relative motions, Power et al. (2014)) and Jenkinson 

(relative root mean square displacement between affines, Jenkinson et al. 

(2002)). FD and DVARS are calculated for each functional run, both using their 

implementations in Nipype (following the definitions by Power et al. 2014). 

The three global signals are extracted within the CSF, the WM, and the whole-

brain masks. Additionally, a set of physiological regressors were extracted to 

allow for component-based noise correction (CompCor, Behzadi et al. 2007). 

Principal components are estimated after high-pass filtering the preprocessed 

BOLD time-series (using a discrete cosine filter with 128s cut-off) for the 

two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). 

tCompCor components are then calculated from the top 2% variable voxels 

within the brain mask. For aCompCor, three probabilistic masks (CSF, WM and 

combined CSF+WM) are generated in anatomical space. The implementation 

differs from that of Behzadi et al. in that instead of eroding the masks by 2 

pixels on BOLD space, the aCompCor masks are subtracted a mask of pixels 

that likely contain a volume fraction of GM. This mask is obtained by dilating a 

GM mask extracted from the FreeSurfer’s aseg segmentation, and it ensures 

components are not extracted from voxels containing a minimal fraction of 

GM. Finally, these masks are resampled into BOLD space and binarized by 

thresholding at 0.99 (as in the original implementation). Components are also 

calculated separately within the WM and CSF masks. For each CompCor 

decomposition, the k components with the largest singular values are 

retained, such that the retained components’ time series are sufficient to 

explain 50 percent of variance across the nuisance mask (CSF, WM, combined, 

or temporal). The remaining components are dropped from consideration. The 

head-motion estimates calculated in the correction step were also placed 

within the corresponding confounds file. The confound time series derived 

from head motion estimates and global signals were expanded with the 

inclusion of temporal derivatives and quadratic terms for each (Satterthwaite 

et al. 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 

standardised DVARS were annotated as motion outliers. The BOLD time-series 

were resampled into standard space, generating a preprocessed BOLD run in 

MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped 

version were generated using a custom methodology of fMRIPrep. Automatic 

removal of motion artifacts using independent component analysis (ICA-

AROMA, Pruim et al. 2015) was performed on the preprocessed BOLD on MNI 
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space time-series after removal of non-steady state volumes and spatial 

smoothing with an isotropic, Gaussian kernel of 6mm FWHM (full-width half-

maximum). Corresponding “non-aggresively” denoised runs were produced 

after such smoothing. Additionally, the “aggressive” noise-regressors were 

collected and placed in the corresponding confounds file. All resamplings can 

be performed with a single interpolation step by composing all the pertinent 

transformations (i.e. head-motion transform matrices, susceptibility distortion 

correction when available, and co-registrations to anatomical and output 

spaces). Gridded (volumetric) resamplings were performed 

using antsApplyTransforms (ANTs), configured with Lanczos interpolation to 

minimize the smoothing effects of other kernels (Lanczos 1964). Non-gridded 

(surface) resamplings were performed using mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn 0.8.1 (Abraham et al. 2014, 

RRID:SCR_001362), mostly within the functional processing workflow. For 

more details of the pipeline, see the section corresponding to workflows 

in fMRIPrep’s documentation. 

Copyright Waiver 

The above boilerplate text was automatically generated by fMRIPrep with the 

express intention that users should copy and paste this text into their 

manuscripts unchanged. It is released under the CC0 license. 

Note that the fmriprep pipeline was run exactly as described, but in line with 

prior applications where ICA-AROMA regressors have been applied to data with 

less or no smoothing (Aquino et al., 2022), the regressors were applied to 

images smoothed with a 3mm FWHM Gaussian kernel as a final step. ICA-

AROMA was chosen due to its ability to retain most data, unlike e.g. censoring 

approaches with similar denoising performance (Parkes et al., 2018). 
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Supplementary Table: Functional connectivity analysis, all results where p < 

0.02 (before rounding). Significant results (post-FDR correction) are 

highlighted with *. 

Contra
st 

ROI pair t p p 
(FDR) 

HC vs 
CHR-P 

Hippocampus-R & Frontal-
Inf-Tri-L 

-3.26 0.0014 0.086 

Hippocampus-R & Amygdala-
L 

2.89 0.0046 0.14 

Hippocampus-R & Putamen-
R 

-2.75 0.0067 0.14 

Hippocampus-L & Caudate-R 2.51 0.013 0.21 

HC vs 
FEP 

Hippocampus-R & Frontal-
Inf-Tri-R 

-4.19 0.0001 0.0046 
* 

Hippocampus-R & Frontal-
Med-Orb-L 

-2.60 0.013 0.22 

CHR-P 
vs FEP 

Hippocampus-R & Frontal-
Inf-Tri-R 

-3.71 0.0005 0.023 * 

Hippocampus-R & Thalamus-
R 

3.47 0.0007 0.023 * 

Hippocampus-R & Frontal-
Sup-R 

-2.55 0.0129 0.27 

HC vs 
CHR-N 

Hippocampus-R & Frontal-
Inf-Tri-L 

3.45 0.0014 0.054 

Hippocampus-R & Putamen-
R 

3.34 0.0020 0.054 

Hippocampus-R & Pallidum-L 3.16 0.0026 0.054 

CHR-N 

vs FEP 

Hippocampus-R & Frontal-

Inf-Tri-R 

-3.094 0.003 0.20 

Hippocampus-R & Frontal-

Sup-R 

-2.509 0.016 0.33 

CHR-N 
vs FEP 

Hippocampus-L & Frontal-

Sup-Orb-R 

2.482 0.016 0.33 

Hippocampus-R & Frontal-

Inf-Tri-R 

-3.094 0.003 0.20 

CHR-N 

vs CHR-
P 

Hippocampus-L & Caudate-L 3.06 0.0032 0.18 

Hippocampus-R & Pallidum-L -2.82 0.0072 0.18 

Hippocampus-L & Caudate-R -2.72 0.0089 0.18 
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