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Abstract 

Visual categorization is one of the most fundamental and crucial cognitive functions of the 

human brain. An unsolved mystery about human visual categorization ability is its 

remarkable efficiency and generalization. These abilities rely on the brain’s sophisticated 

system that actively extracts and processes the task-relevant features, through an integration 

of both bottom-up processing of visual input and top-down information of task context. This 

thesis argues that the complexity of features represented in the brain has not been adequately 

considered. Reconstructing how the brain actively transforms complex visual input into task-

relevant features could shed light on the underpinnings of visual efficiency and 

generalization. 

In this thesis, I employed a novel approach to tackle this problem. By precisely controlling 

the visibility of individual pixels in images and utilizing high spatial and temporal resolution 

neuroimaging data, combined with information-theoretic analysis framework, I 

reconstructed the specific pixels that are collectively represented by neural activity, thereby 

dynamically revealing the visual content (i.e. features) within images that are represented by 

brain and which brain regions, at what time, transform the complex visual input into task-

relevant features. 

Moreover, I also introduced a new information-theoretic measure, termed Samplewise 

Mutual Information (SMI), which quantifies the single-trial relationships between two 

variables. By applying SMI to characterize the single-trial relationship between participant 

behavior and the image samples, and employing Non-negative Matrix Factorization (NMF) 

clustering algorithm to learn the local parts of pixels that collectively influence the 

participant’s behavior, I identified the finer components of the features that can better predict 

the participant’s behavior. These feature components could serve as the minimal processing 

units by the brain. 

These works advance our understanding of information processing strategies of the human 

brain for visual categorization tasks and open up a new analysis framework for future 

research. 
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1 General introduction 

1.1 Overview 

Visual categorization is one of the most important cognitive functions of the brain. By 

rapidly classifying visual inputs into meaningful categories, this ability allows us to 

efficiently interpret and interact with our surrounding environment. In the animal kingdom, 

fast and accurate visual categorization is vital for survival. For example, distinguishing 

between potential threats and non-threatening objects, or identifying safe versus dangerous 

food sources, can significantly impact an animal's chances of survival. 

The brain's visual categorization abilities are not only highly efficient but also exhibit 

exceptional generalization capabilities, as demonstrated by the ability to apply learned 

categories to new, unfamiliar stimuli under varying conditions of lighting, angle, or cluttered 

scenes, and identify objects even when they are partially obscured (Biederman, 1987; 

DiCarlo et al., 2012; DiCarlo & Cox, 2007; Logothetis & Sheinberg, 1996). Despite 

significant advancements in artificial intelligence (AI), the human brain still outperforms AI 

in classifying visual inputs with greater ease and accuracy, as well as in generalizing across 

different contexts. Such efficiency and flexibility of the brain in visual categorization are 

attributed to its sophisticated architecture where bottom-up (feedforward) visual information 

is processed in a hierarchical manner (DiCarlo et al., 2012; Serre et al., 2007; VanRullen & 

Thorpe, 2001). This bottom-up processing is complemented by a top-down attentional 

mechanism (Desimone & Duncan, 1995, 1995; Evans et al., 2011; Harel et al., 2014; 

Kanwisher & Wojciulik, 2000; Moore & Zirnsak, 2017; Moran & Desimone, 1985), which 

allows the brain to selectively extract and process diagnostic features that are relevant to the 

task at hand, rather than processing all visual information. Similar attention mechanisms 

have also significantly enhanced AI capabilities (Vaswani et al., 2017). 

Given the crucial role that selective feature extraction and processing play in understanding 

the efficiency and generalization of visual categorization, it has been a longstanding and 

important question in the field of visual cognitive neuroscience and still remains unclear.  

One of the most influential model in cognitive neuroscience posits the brain as an 

information processing system (Marr & Ullman, 2010).  Within this framework, a central 

goal of cognitive neuroscience is to understand what specific information the brain processes, 

and where, when, and how the brain processes this information to achieve visual 
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categorization behavior. To this end, an extensive body of work in cognitive neuroscience 

has been done to understand what specific visual features human participants used to achieve 

behavioral decisions (Bonnar et al., 2002; Gosselin & Schyns, 2001; Schyns et al., 2002; 

van Rijsbergen et al., 2014), where, when and how the brain represents these visual features 

into their neural activities (Huth et al., 2012; Schyns et al., 2007, 2009; M. L. Smith et al., 

2004; Teichmann et al., 2023; Zhan, Ince, et al., 2019), the transition of visual features in 

brain networks (R. A. A. Ince et al., 2015; R. A. A. Ince, Jaworska, Gross, Panzeri, Van 

Rijsbergen, et al., 2016) and how top-down information of task contexts, attention and 

predictions can change the representation of visual features (Harel et al., 2014; Hebart et al., 

2018; K. Kay et al., 2023; Schyns & Oliva, 1999; Yan et al., 2023; Zhan, Ince, et al., 2019). 

1.1.1 An overlooked complexity in feature representation 

Although these approaches have substantially advanced the understanding of visual 

information processing underlying categorization behaviors, there remains an overlooked 

complexity on feature representation that impedes a comprehensive elucidation of the visual 

cognitive system. Visual categorization relies on the mental/internal representation of 

features (Baker et al., 2022; Brinkman et al., 2017; DiCarlo & Cox, 2007; Murray, 2011). 

Given the modulation of spatial, object and feature attention (Brignani et al., 2010; Carrasco 

& Barbot, 2019; Evans et al., 2011; Moore & Zirnsak, 2017), the brain does not represent 

the entirety of visual input. Instead, the mental/internal representation of visual input only 

encompasses a subspace of their features. However, a single input image, and even a single 

object within this image, typically affords multiple different categorization behaviors. 

Observers can use, therefore represent, distinct features derived from the same images or 

objects to perform different categorizations. A study using ambiguous images has 

demonstrated that even without explicit categorization tasks, observer can perceive totally 

different content from a static image due to the perception of different features within the 

image (Bonnar et al., 2002; Zhan, Ince, et al., 2019). Therefore, the internal representation 

of the same input is not unique but can vary depending on task contexts, leading to distinct 

brain activity dynamics and behaviors. 

Current perspectives posit that the neural representation of an input stimulus represents not 

only the properties of stimulus features, but also the internal states of the observer, including 

top-down information of task contexts, attention and prior knowledge (Çukur et al., 2013; 

Harel et al., 2014; Hebart et al., 2018). This perspective aligns with the idea that the features 

of a stimulus are not fixed or inherent but are actively and flexibly extracted by the brain 
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depending on the classification task at hand. Rather than passively receiving pre-existing 

features and selecting and enhancing the relevant ones, the brain engages in an active process 

to construct the necessary features from the visual input (Schyns et al., 1998; Schyns & 

Rodet, 1997). It highlights a dynamic transformation process of represented content during 

visual information processing. 

This complexity of stimulus feature representations is often neglected in vision study 

because either the effect of the task is neglected (K. Kay et al., 2023) or only stimulating 

with full images, as is typical (Russakovsky et al., 2015; Rust & Movshon, 2005; Schrimpf 

et al., 2018). While studies using reverse correlation techniques uncover the task-relevant 

(i.e., diagnostic) features that participants use for visual categorization task (Gosselin & 

Schyns, 2001; Schyns et al., 2007; M. L. Smith et al., 2004; Zhan, Ince, et al., 2019), they 

do not unravel the specific task-dependent transformations of  represented contents in the 

brain under a multiple-task design. Besides, Reverse correlation techniques describe the 

diagnostic features as the mental/internal representation of the stimulus because it is assumed 

that brain must process the features underlying behavior. However, it is not necessarily the 

case that the diagnostic features must be the minimum feature unit that the brain processes. 

If the mental representation provided by reverse correlation encompasses multiple 

processing units within the brain, rather than isolating each unit individually, the brain's 

processing of each independent unit might not be accurately captured. This poses a 

significant obstacle to elucidating the cognitive system since a crucial point in cognitive 

neuroscience is determining the specific visual information (the “what” question) that the 

brain processes to achieve the behavior (Schyns, 2018; Schyns et al., 2022).  

1.1.2 The Aim of this thesis 

The aim of this thesis is to develop a method combining reverse correlation (Gosselin & 

Schyns, 2001; Murray, 2011), neuroimaging (Baillet, 2017) and information theory (Cover 

& Thomas, 2012; R. A. A. Ince et al., 2017) to reconstruct the transformations of visual 

contents represented by neural representations throughout the process of neural information 

processing depending on the task at hand. Reverse correlation serves to manipulate and 

sample the visual contents within image stimuli. Neuroimaging serves to record brain 

activities. Information theory serves as an analysis framework to build the statistical 

relationship between stimuli and brain activity, quantifying the neural representation of 

stimuli, transformations of represented visual content and higher-order interactions about 

stimulus representations. 
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This method helps to investigate how the brain selects and extracts diagnostic features from 

complex visual inputs depending on the tasks. Reverse correlation methods can approximate 

the mental representations of stimulus features by human subjects based on their behavior. 

By reconstructing the transformations in the visual content represented by neural source 

activities under high spatial and temporal resolution (Baillet, 2017; Hillebrand & Barnes, 

2005), we can observe when and in which brain regions these neural representations begin 

to resemble the mental representations. Since the neural representation of visual content 

depends on the specific visual information that the cognitive system is utilizing from images, 

analyzing how this represented content transforms can help us understand the brain's 

strategies for processing information. 

1.1.3 Framing the question and the solution 

The cognitive system receives the sensory inputs of external stimuli. The incoming sensory 

information is then handled by a series of cognitive processes implemented by neurons, to 

ultimately give rise to a behavioral decision. To formally frame this procedure, the cognitive 

processes can be studied in a system comprising four levels of concepts (see Figure 1-1):  

1. external stimuli;  

2. physical properties of the brain; 

3. emerging mental properties of the mind;  

4. behavioral decisions.  

In this system, we can manipulate the external stimuli and ask participants to perform 

specific behavioral tasks while recording the (parts of) neural activity of their brain. Thus, 

stimuli, behavior and neural activity (physical brain properties) can be thought of as three 

measurable levels, while emerging mental properties of the mind are immeasurable. In this 

system, the aim of cognitive neuroscience can be framed as understanding the immeasurable 

emerging mind from the data of the other three measurable levels. 
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Figure 1-1 The architecture of cognitive neuroscience. 

 

To understand the immeasurable level of the emerging mind, one approach is to analyze 

mental representations. There are two primary methods to characterize mental 

representations. The first method involves using reverse correlation techniques, where visual 

content is randomly sampled to determine which features of the stimuli influence the 

subject's behavior (Brinkman et al., 2017; Gosselin & Schyns, 2001; Murray, 2011; Schyns 

et al., 2002). Because the visual features influencing the behavior are thought to be 

represented. This approach provides an approximation of the mental representation based on 

behavioral responses. The second method involves measuring how visual content is 

represented in neural activity. Here, neural representations are considered as approximations 

of mental representations (Baker et al., 2022; Poldrack, 2021). However, it is important to 

note that the content represented by neural activity is dynamic and continuously evolving, 

rather than fixed. The transformation of neural representations depends on how the cognitive 

system utilizes information from visual inputs. Therefore, by reconstructing how the content 

of neural representations transforms over time, we can gain insights into the information 

processing strategies employed by the cognitive system, offering a way to explore the 

higher-level processes associated with the emerging mind. 

It is important to bear in mind that none of them are the true mental representation. The 

features influencing behaviors are a subset of the mental representation as it can’t measure 

those features represented in the brain but not directly related to the behavior. For example, 

the salient distractor that are task-irrelevant can be dominant in the brain response (Lin et 

al., 2024). 
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1.1.4 Practical principles and the challenges of analysis 

To deal with the above system, this thesis focuses on combining reverse correlation, 

neuroimaging techniques and information theory as a practical framework to understand 

cognitive systems. 

I would like to highlight the importance of using high dimensional stimuli and reverse 

correlation technique. In a normal behavioral experiment, researchers must have a prior 

assumption of the stimulus properties that influence participant’s behavior and randomly 

sample those properties during the experiment to observe their elicited responses. In reverse 

correlation experiment, these assumptions are not needed. Any property influencing 

participant’s behavior will be automatically revealed if they are covered by the space of 

stimuli to which random noise is added. On the other hand, classical analysis methods in 

cognitive neuroscience focus on investigating spatiotemporal dynamics of neural activity 

that represent the stimulus, but they do not unravel how stimulus representations are 

transformed during neural processing. Characterizing the patterns of pixels that are 

collectively represented in neural activity and how the patterns change at different stages of 

neural processing provides a means to track such transformation of stimulus representations 

by neural processing. 

Neuroscience makes the elusive aim of understanding the cognitive system feasible. 

However, it also introduces a very large and complex system that is difficult to deal with. 

How we study the complex relationships within this large system becomes a crucial problem 

in above analysis framework. Particularly when experiments involve a high dimensional 

stimulus (e.g., realistic scene images where each pixel is sampled) because the relationships 

between high-dimensional stimuli and high-dimensional brain activity need to be resolved. 

For example, in a 6mm source reconstructed magnetoencephalography (MEG) data there 

will be 12,773 voxels (sources) with also a high temporal resolution (e.g., usually 500-

1000Hz sampling rates which means each voxel will have 500-1000 samples per second 

recording). Such a huge amount of data makes it difficult to both compute and visualize the 

relationships in the data. 

Information theory, as a tool for measuring the variability and the relationships among 

variables, provides a solution for uncovering the complex interactions within the system 

efficiently. Normally, different mechanisms of relationships could produce the same effect 

size in terms of information theoretic measures. That means that one information theoretical 
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quantity will not correspond to one specific relationship but a group of relationships. A 

practical principle for information theoretic analysis is to use its quantities as an index to 

search the effects of interest from high dimensional data space and then disentangle the exact 

relationship by visualizing the structure of the relationships. 

1.1.5 Organization of the thesis 

To address these challenges, I used an analysis framework combining neuroimaging 

techniques, reverse correlation and information theory method. In the rest of this chapter, I 

will review reverse correlation, neuroimaging, the method of source reconstruction that I 

used in this thesis, the concept of visual representation and information theory. For 

information theory, I focus on understanding the concepts of information, using information 

theory as a tool for measuring relationships, entropy (as the core of information theory), 

Mutual Information (MI), Point-wise Mutual Information (PMI) and Co-Information (CoI), 

since these concepts are used in this thesis for measuring and decomposing relationships. I 

also briefly review the common-used information theory quantities.  

The following chapters are organized as follows.  

Chapter 2  

Addressing these challenges requires a high-dimensional, fine-granularity control of the 

stimuli, multiple tasks experiment design and an efficient analysis framework. To this end, 

I designed an experiment comprising four 2-Alternative-Forced-Choice (AFC) 

categorization tasks applied to the same realistic, complex city street scene images randomly 

sampled with Bubbles procedure (Gosselin & Schyns, 2001). Bubbles approach randomly 

samples the pixels (i.e. fine granularity) of a stimulus image with Gaussian apertures. It 

ensures that the participant can only correctly categorize the images when the randomly 

sampled pixels show the features needed for categorization (Gosselin & Schyns, 2001; 

Schyns et al., 2002), enabling reverse correlating each pixel of image to the participant’s 

behavior and brain activity. Considering each pixel as a feature dimension (i.e. high-

dimensional), features that are represented into brain activity would be a subset of pixels 

representing a geometric subspace of the image. To enable the fast computation of the 

relationships between high-dimensionally sampled stimulus images and high-dimensional 

brain activity data as well as tracking task modulations on them, I employed information 

theory analysis using Gaussian Copula Mutual Information (GCMI)  (R. A. A. Ince et al., 
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2017). The results reveal three internal transformation stages of the image representation 

guided by pre-frontal cortex. From high-dimensional representation at stage 1 (50-120ms) 

where occipital sources represent more image features than the task requires, to stage 2 

(121-150ms) where feature representations reduce to lower-dimensional manifolds, which 

then transform into the task-relevant features underlying categorization behavior over Stage 

3 (161-350ms). 

Chapter 3  

While chapter 2 reverse engineered how tasks change the internal transformation of visual 

content represented in the brain, each task in chapter 2 only relied on a simple unitary feature 

of the images. In more complex scenarios, e.g., the perception of Dali’s ambiguous painting 

(Bonnar et al., 2002; Zhan, Ince, et al., 2019), participants’ perceptual decisions relied on 

multiple pieces of features in the image. It triggered the next critical question: What is the 

minimum representational unit that is represented into brain activity? Addressing this 

question requires a more comprehensive characterization of the relationship structures 

between stimulus samples and brain activity. To this end, I developed a new quantity under 

information theory framework—Sample-wise Mutual Information (SMI), inspired by Point-

wise Mutual Information (PMI) in information theory (Cover & Thomas, 2012; R. A. A. 

Ince et al., 2017), to measure the specific contribution of each individual sample to the 

overall relationships between two variables. PMI measures the specific contribution of any 

combination of values of two variables. In this chapter, I introduce PMI and SMI and 

demonstrate their application on various datasets. 

In next chapter, I will apply these two quantities to decompose the task-relevant features in 

a Dali’s ambiguous painting perception experiment (Bonnar et al., 2002; Zhan, Ince, et al., 

2019).  

Chapter 4  

To address the question: What is the minimum representational unit of feature manifolds 

that are represented into brain activity? I specifically test if the decomposition of task-

relevant features can predict the participants’ behavior better. The idea is that SMI between 

stimulus image samples and participants’ behavior response can attribute the credit to each 

pixel that influence participants’ behavior on individual trials. Therefore, it can reveal single-

trial task-relevant feature images (i.e. single-trial classification images). Then we could 

cluster the pixels into their best local parts based on their trial-by-trial credit patterns. 
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I apply SMI on task-relevant features that are obtained from MI between participants’ 

behavior responses and stimulus image samples to decompose single-trial relationship 

between them. I further apply the Non-negative Matrix Factorization (NMF) algorithm (Lee 

& Seung, 1999) on matrix of single-trial task-relevant features to learn the parts that 

collectively support participant’s behavior. Results show that NMF is able to decompose 

task relevant features into parts of eyes, nose, mouth, similar to stimulus features represented 

in participants’ brain activity. 

Chapter 5  

In this chapter, I will give a general discussion on the results of this thesis and the future 

research plan on this topic.  

 

1.2 Psychophysical reverse correlation techniques: 

measuring the mind through behaviors 

1.2.1 Psychophysical reverse correlation 

Psychophysics is a branch of psychology that deals with the relationship between physical 

stimuli and the perceptions they elicit, which provides crucial theoretical and methodological 

foundations for understanding human perceptual systems. The history of psychophysics can 

be traced back to the 19th century with the work of German psychologist Gustav Fechner, 

who proposed that the relationship between physical stimuli and perception (e.g., the 

threshold of detection, discrimination and identification of visual stimuli) could be 

quantified using mathematical equations (Gescheider, 2013).  

Within the framework of psychophysics, the reverse correlation technique (also known as 

the classification images technique for visual study) emerged as a novel research paradigm 

to find an approximation of mental representation of stimuli by inferring critical stimulus 

features influencing participants' responses (Murray, 2011). This method is originally 

derived from auditory research of auditory tone detection in noise (Ahumada & Lovell, 

1971) that explores the characteristics of the auditory stimulus features that best predict the 

observer’s decision variable.  
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The name "reverse correlation" comes from the fact that the method is reversed from the 

traditional correlation method. In traditional correlation experiments, researchers present a 

set of predefined stimuli and observe what responses are elicited by each stimulus. In reverse 

correlation experiments, participants are presented with noisy stimuli (base stimuli added 

with random noise that varies from trail to trial) and are asked to perform a specific 

behavioral task over hundreds to thousands of trials of repeated experiments. The rationale 

behind reverse correlation is that if random noise distorts the task relevant features in stimuli, 

participants will be unable to correctly recognize the stimuli. Therefore, only when the 

relevant stimulus features are maintained in the randomly varying noise can participants 

make accurate behavioral responses. Reverse correlation then seeks to reveal the pattern 

(e.g., subareas on the images) in varied stimuli that is most likely to elicit a particular 

response, by relating the random noise to participants’ behavior responses. For example, to 

discover which facial features underlie the recognition of gender, participants are presented 

with face images altered by random noise and are asked to judge the gender of the faces. 

Every pixel in the image changes from trial to trial due to noise, but only the variations in 

the pixels that are relevant to gender recognition will affect the accuracy of participants’ 

judgment, while variations in other pixels will not. Therefore, the patterns of pixels that are 

collectively associated with accuracy can reveal the face regions that support gender 

judgment (Brinkman et al., 2017; Gosselin & Schyns, 2001; Schyns et al., 2002). The 

outcome of reverse correlation is called classification image (CI) which shows stimulus 

features that participants use in the task and these features are also called task-relevant 

features or diagnostic features (Gosselin & Schyns, 2001; Schyns et al., 2002; Zhan, Ince, et 

al., 2019).  

There are two main ways to compute CI in reverse correlation experiments. One way is to 

average the random noise for a particular response and the resulting CI is thought to be the 

typical value of stimuli that elicit this response. The other way is to calculate the correlation 

between random noise and responses. This way reveals which stimulus features influences 

responses and the magnitude of correlation quantifies the weight of each stimulus feature to 

determine the response. 

CI is also often regarded as an approximation of mental representation of the stimuli. Mental 

representations refer to the theorical internal cognitive constructs that mirror the properties 

of external stimuli, such as visual images. Directly measuring mental representations poses 

significant challenges due to their subjective and intangible nature. Reverse correlation 

offers a novel approach to visualize these mental representations. In reverse correlation, it is 
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assumed that people do visual categorization tasks by matching visual stimuli to a mental 

template/representation (Brinkman et al., 2017). For example, people identify a face as male 

face because the visual input of the face matches their mental template of male more than 

that of female. Different people may use different templates to do the same task thus 

subjective difference exists. Reverse correlation provides an approach to visualize the mental 

template/representation by inferring which facial features influence observers' judgments of 

a face's gender. 

1.2.2 Bubbles 

The reverse correlation method used in this thesis is called Bubbles (Gosselin & Schyns, 

2001), a data-driven method that allows researchers to study which area of images (spatial 

visual information) the participants uses to perform visual categorization tasks. Specifically, 

Bubbles technique adds randomly positioned Gaussian apertures to the images that support 

the categorization task to vary the visibility of every pixel on the image. Bubbles sampling 

ensures the participant can only correctly categorize the stimulus when the random samples 

reveal the features that the participant uses in the task. After hundreds to thousands of trials, 

classification images can be generated by measuring the relationships between the bubbles 

sampling and participant’s behavior responses. 

1.2.3 Classification images vs. fixation of eye movements 

Fixation of eye movements and classification images are two different methods used to study 

visual perception and attention (Murray, 2011; Rayner, 1998). Fixation of eye movements 

is a method that involves tracking the movement of the eyes as a participant views a visual 

scene. By measuring where and how long a participant fixates their gaze for, researchers can 

gain insight into the visual features that capture attention, and how explicit attention is 

directed to different areas of a scene. This method is widely used in cognitive science and 

psychology to study visual attention, visual search, and visual perception. 

One advantage of classification images over fixation of eye movements is that it allows 

researchers to study the internal representation (mental representation) of the visual stimulus 

rather than just the position of gaze. By analyzing the patterns of responses across a set of 

noise images, researchers can infer the visual features that support the task at hand and 

understand how the visual system uses this information to perform visual tasks.  
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1.2.4 Limitations of Reverse Correlation 

While reverse correlation has proven to be a powerful tool in psychological study, it also has 

its limitations. One significant limitation of reverse correlation is that it requires features 

within images to be consistently positioned. For example, facial stimuli are well-suited for 

reverse correlation because key facial features like eyes, nose, and mouth are generally in 

the same relative locations across different faces. This consistency allows reverse correlation 

to effectively identify how variations in these features can influence perception, such as 

recognizing expressions. However, if features are not in a consistent position, reverse 

correlation becomes less effective, as the technique relies on stable spatial relationships to 

infer mental representations. 

Another limitation is that reverse correlation typically requires a large number of trials to 

achieve reliable results, which can be time-consuming and potentially fatiguing for 

participants. Therefore, it is not suitable for populations of kids and older people. 

 

1.3 Tracking neural representations with neuroimaging 

The human brain is made up of approximately 85-100 billion neurons (Herculano-Houzel, 

2009), which are the primary functional units of the nervous system. These nerve cells are 

connected to each other to form complex neural networks, whose activity encodes and 

transmits information, providing foundations for higher-level cognitive functions, such as 

vision, sensation, emotions, memory, and decision making (Ju & Bassett, 2020). 

1.3.1 Neural representation 

Neural representation refers to the process by which the brain encodes external stimuli into 

patterns or states of neural activity, essentially creating an internal "copy" or representation 

of the external world. This internal representation allows the brain to process and respond to 

stimuli in a meaningful way. At its core, neural representation involves a population of 

neurons using their specific activity states to encode external stimuli (Baker et al., 2022; K. 

N. Kay, 2011; Kriegeskorte & Kievit, 2013; Poldrack, 2021). 

In cognitive psychology, a core concept is mental representation, which is a theoretical 

construct believed to underlie higher cognitive functions. However, since it is theoretical, 
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mental representations cannot be directly observed. Even though psychophysical methods, 

such as reverse correlation techniques, can approximate mental representations, these 

approximations do not directly capture the mental representations themselves. Neural 

representation offers an alternative approach from neuroscience perspective. While we 

cannot directly observe mental representations, we can observe neural representations. These 

neural representations may serve as the physical basis for mental representations or, at the 

very least, provide another means of approximating them. This connection between neural 

and mental representations opens up a new avenue for understanding the physical 

underpinnings of cognitive processes. 

In cognitive neuroscience research, the term representation often refers to the systematic 

relationship between neural activity and the variations in external stimuli (Baker et al., 2022; 

K. N. Kay, 2011; Poldrack, 2021). This relationship is based on the premise that if a group 

of neurons represents an external stimulus through its specific activity states, then their 

activity must be correlated with variations in the stimulus. This approach does not directly 

explore the specific state-based mechanisms by which neurons encode a stimulus 

(Kriegeskorte & Kievit, 2013). Instead, the strength of this representation can be 

quantitatively assessed, allowing researchers to infer which brain regions, and at what times, 

are involved in encoding and processing information about external stimuli. This method 

helps us understand the underlying cognitive system. 

1.3.2 Neuroimaging: measuring physical activities of the brain 

To explore neural representations in the brain and to investigate how the brain processes 

information, it is essential to have methods that allow for the direct observation of neural 

activity. Neuroimaging techniques provide us with such a means, enabling researchers to 

measure neural activity in the brain (the physical properties of the brain). Various techniques 

in neuroimaging are used to measure and visualize the structure and function of the brain. 

The most commonly used noninvasive neuroimaging techniques include 

electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic 

resonance imaging (fMRI). Each of these techniques has its own pros and cons. 

EEG is a non-invasive method to record an electrogram of the electrical activity of the brain 

using electrodes placed on the scalp. EEG has a high temporal resolution and is relatively 

inexpensive and portable, making it a popular technique in cognitive neuroscience research. 

However, EEG signals are sensitive to noise and artifacts, and the spatial resolution is 
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relatively low. MEG is another non-invasive technique that measures the magnetic fields 

generated by the brain electrical activity. Like EEG, it provides high temporal resolution 

recording of neural activity and has a better spatial resolution than EEG. Besides. MEG 

signals are less sensitive to noise and artifacts than EEG. Particularly, MEG signals are less 

distorted than EEG signals by the skull and scalp, which results in an advantage of source 

reconstruction for MEG (Hari et al., 2010). EEG and MEG are also considered to be two 

complementary recordings because MEG is more sensitive in detecting currents that are 

tangential to the surface of the scalp while EEG is more sensitive to tangential and radial 

neuronal activities. Thus, EEG can detect neuronal activities both in the sulci and at the top 

of the cortical gyri, whereas MEG is more sensitive to neuronal activities in sulci (Hari et 

al., 2010). 

The neuroimaging technique used in this thesis is MEG considering its advantages in 

reconstructing the activity sources. 

1.3.3 ERP 

Event-related potentials (ERP) is an electrical brain response that is time-locked to specific 

events. ERPs are measured by EEG, normally calculated by averaging EEG signals that are 

time-locked to specific events over multiple trails. The rationale is that averaging can cancel 

out random noise in EEG signals (the average value of noise is approximately 0), while 

event-related EEG activity accumulates to form specific waveforms (Luck & Kappenman, 

2012). ERPs provide a fundamental understanding of how brain processes information 

through temporal perspective. 

Although this thesis is based on the MEG technique, I also aligned the results (i.e. the 

reconstructed internal transformations of representations) into different ERP time window. 

These cover: 

C1  

 The ERP component C1 can be a negative-going component  or a positive-going component 

with its peak normally observed in the 65–90 ms post-stimulus. Its thought to be linked with 

occipital hemifield responses (Slotnick, 2018).  

P100  
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The ERP component P100 is a positive deflection in the waveform that peaks approximately 

100 milliseconds after the presentation of a visual stimulus. The P100 is typically observed 

over the occipital scalp regions and is primarily associated with early visual processing, early 

attention/stimulus representation. 

N170 

The ERP component N170 is a negative deflection in the waveform that peaks approximately 

170 milliseconds after the presentation of a visual stimulus. The N170 is typically observed 

over the occipito-temporal scalp regions and is primarily associated with the processing of 

faces, familiar objects or words (Bentin et al., 1996, 2007; R. A. A. Ince, Jaworska, Gross, 

Panzeri, Rijsbergen, et al., 2016; Kanwisher et al., 1997; Rossion et al., 2003; Rousselet et 

al., 2004; Schyns et al., 2007). 

N250 

The ERP component N250 is a negative deflection in the waveform that peaks approximately 

250 milliseconds after the presentation of a visual stimulus. The N250 is typically observed 

over central and parietal scalp regions and is primarily associated with the cognitive 

processes related to attention, decision-making, and semantic processing N250 (Kaufmann 

et al., 2008). 

P300 

The ERP component P300 is a positive deflection in the waveform that peaks approximately 

300-400 milliseconds after the presentation of a visual stimulus. The P300 is typically 

observed over parietal and central scalp regions and is primarily associated with attention, 

memory, categorization, and decision-making. P300 is considered to be an endogenous 

potential, as its occurrence links not to the physical attributes of a stimulus, but to a person's 

reaction to it (Nieuwenhuis et al., 2005; Ratcliff et al., 2009). 

1.3.4 Source reconstruction 

The EEG/MEG signals recorded from the scalp do not directly reflect the activated neuronal 

sources in the brain but actually are a mixing of those source signals. Source reconstruction 

is a method used to estimate the location and strength of the brain's neuronal sources 

activities from recorded scalp signals (Hillebrand & Barnes, 2005). 
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The problem that source’s locations of activity have to be estimated from scalp recording 

data is called inverse problem.  A main challenge of inverse problem is that theoretically it 

may not have a unique solution, just like inferring a three-dimensional scene from a two-

dimensional image does not have a unique solution. That means multiple sources distribution 

can give rise to the same scalp recordings.  Source reconstruction methods seek to find the 

best solution for the inverse problem using models involving prior knowledge of brain 

activity (Hillebrand & Barnes, 2005).   

A main technique for source reconstruction is beamforming, where a theoretical model of 

the magnetic field produced by a given current dipole is used as a prior, along with second-

order statistics of the data in the form of a covariance matrix, to calculate a linear weighting 

of the sensor array (the beamformer) via the Backus-Gilbert inverse. This is also known as 

a linearly constrained minimum variance (LCMV) beamformer. (Hillebrand & Barnes, 

2005; Oostenveld et al., 2011). There are two main advantages of beamforming technique. 

One is that induced changes in cortical oscillatory power that do not result in a strong 

average-evoked response, known as event-related synchronization (ERS) and event-related 

desynchronization (ERD), can be identified and localized. The other one is that beamforming 

is practically simple and user-friendly. Beamforming does not need a predefined number of 

active sources as a priori and the only parameters that a user needs are the size of grid for 

the reconstruction, the time-frequency window over which to run the analysis, and optionally 

the amount of noise regularization (Hillebrand & Barnes, 2005). 

1.4 Information theory 

With methods to record neural activity (i.e. neuroimaging) and techniques to manipulate 

visual stimuli (i.e. psychophysics), a critical step in understanding neural representation and 

how the brain processes information is to measure the systematic relationships between these 

variables. This includes examining the relationship between two variables, such as the 

stimulus and the neuronal activity, as well as exploring more complex interactions, such as 

how neural activity represents multiple stimulus features or how multiple neurons 

collectively represent a stimulus. These relationships can be quantitatively assessed using 

information-theoretic approaches, which provide a framework for measuring the 

informational content, their interactions and transmissions within neural activities (R. A. A. 

Ince et al., 2017). 
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Information theory is a branch of mathematics that deals with the quantification, storage, 

and communication of information. It was developed by mathematician Claude Shannon in 

his 1948 seminal paper "A Mathematical Theory of Communication" as a way to understand 

the fundamental limits of communication and information processing (Shannon, 1948). 

Information theory provides the mathematical foundation for many modern technologies 

such as data compression, data encryption, and wireless communication. It has been widely 

used in fields like communication, machine learning, statistics, neuroscience, biology and 

physics. 

1.4.1 The concept of information 

Intuitively, information can be understood as the thing that reduces one’s uncertainty about 

the outcome of an event. That is, if you gain the information about an event, you will go 

from being more uncertain (“unknown”) to being more certain (“known”) about that event 

and you can better predict the outcome. Thus, the amount of information is often quantified 

by the magnitude of reduction in uncertainty. In information theory, this is the basic idea 

behind the concept of entropy, which measures the uncertainty (interchangeably used with 

variability and randomness) of a random variable or more generally a system (e.g., brain). 

When new information is received, it can be used to reduce the entropy of a system, which 

is against the second law of thermodynamics (Friston, 2010a). The total entropy of a variable 

or system is considered as the amount of information carried by that variable or system. 

It is noteworthy that unlike the information we casually refer to, information in information 

theory does not have any specific semantic meaning, but only relates to the number of 

elementary events or messages. Information theory was originally designed to study 

communication. As Shannon describes in his information theory paper: the fundamental 

problem of communication is that of reproducing at one point (“receiver”) either exactly or 

approximately a message selected at another point (“sender”). Often, the messages have 

meaning, but these semantic aspects of communication are irrelevant to the formal problem 

of their engineering. The significant aspect is that the actual message is that selected from a 

set of possibilities. So, the system must be designed to operate for each possible selection, 

not just the one which will actually be chosen since this is unknown at the time of design 

(Shannon, 1948). 
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1.4.2 Information theory as a tool for measuring the 

relationships 

In this thesis, I will use information theory as a framework for studying the relationship 

between variables (R. A. A. Ince et al., 2017). Using information theory to measure the 

relationship between variables is a natural endeavor. The goal of communication is to 

reproduce at the receiver end the signal of the sender. If reproduction is perfect, the received 

signal contains all the information of the sent signal, and the sent and received signals are 

completely correlated. If the signal varies during transmission, thereby differing with the 

original signal, the received signal has only part of the information of the original signal, and 

the two signals are partially correlated. Therefore, it is intuitive that the degree to which two 

signals share each other's information can be used as a measure of their relationships. 

To illustrate usage of information theory to study a system (e.g., our goal: cognitive system), 

consider the example of the eyes (Figure 1-2). The eye is a complex system that captures 

external light and converts it into electrical signals, which are then processed by the brain to 

form visual perception. Our two eyes capture a 2D projection of the outside world meaning 

that a copy of information about the outside world is represented on the retina and its 

receptors, which can be measured with information theoretical quantity Mutual Information 

(MI). The 2D information (e.g., color information) is largely redundant between the two eyes, 

meaning that when one eye is closed, this information is not lost. This redundancy provides 

the visual system with robustness, as the loss or mutation of information in one eye does not 

lead to an error in the system, because the counterpart redundant information in the other 

eye is still available. However, 3D depth information from stereopsis, which is not seen by 

either eye alone (unlike 3D depth from shading), can only be perceived by the two eyes 

working together (i.e., the information from the two eyes is integrated). This kind of 

information is called synergy, which refers to the additional information that two variables 

convey only when they work together, while not conveyed by either variable individually 

(Luppi et al., 2022). 
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Figure 1-2 An illustration of using information theory to understand the eyes system. 

 

In the next section, I review information theoretic quantities, including entropy, mutual 

information, redundancy, synergy and explain how to quantify these abstract concepts 

mathematically. 

1.4.3 Review of information theory quantities 

Information theoretic quantities are measures of the amount of information that is contained 

in a variable or variables in a system. They are used to understand and quantify the 

fundamental limits of communication and information processing. 

1.4.3.1 Entropy 

Entropy is a fundamental quantity in information theory that quantifies the uncertainty, 

interchangeably used with variability and randomness, of a random variable (Shannon, 

1948). It is fundamental because all other information theory quantities can be derived from 

entropy (like the building blocks) in a simple and intuitive way (only involving addition and 

subtraction). Thus, understanding entropy is central for understanding information theory. 

For a discrete random variable 𝑋 with probability mass function 𝑝(𝑥) for each outcome 

value 𝑥, a low probability outcome means that outcome is less likely to occur, and so would 

be more surprising to an observer if it did occur. A high probability outcome would be less 

surprising. Information theory says that a more surprising outcome conveys more 

information, which is called the surprisal or self-information of that outcome. 

Mathematically, this notion can be expressed as 
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ℎ(𝑥) = − log 𝑝(𝑥) 

The information value has units (e.g., bits or nats) depending on the base of logarithm. 

Conventionally the base of logarithm is taken to 2, corresponding to units of bits. Entropy 

of variable 𝑋  is then defined as the expected (i.e., average) information (i.e., surprisal) 

conveyed by observing the outcome value 𝑥, that is  

𝐻(𝑋) =  ∑ 𝑝(𝑥)ℎ(𝑥)

𝑥

 

= − ∑ 𝑝(𝑥) log 𝑝(𝑥)

𝑥

. 

A higher entropy variable has a higher degree of uncertainty or variability, which means it 

is harder to predict the outcome. A lower entropy variable is easier to predict. Shannon 

proved that his entropy formula is the unique function that satisfies the axioms of being 

continuous, non-decreasing and additive for independent events. 

In addition to information entropy, variance is also a representation of information. Variance 

is a statistical measure of the spread of a dataset by measuring the average of the squared 

deviation of each data point from the mean. In dimensionality reduction method Principal 

Component Analysis (PCA), variance is used to measure information that is retained in the 

transformed dataset (a matrix with multiple variables). The goal of PCA is to find the 

directions in the data with the most variance, and these directions are considered to be the 

directions that contain the most information. By projecting the data onto these directions, 

the dimensionality of the data can be reduced while retaining the most important information. 

Unlike information entropy, variance is defined on a set of data (i.e., a set of samples or 

trials), while information entropy is defined on the probability distribution. Therefore, for 

empirical data, calculating entropy usually needs to estimate the probability distribution 

from samples. Besides, a major advantage of information entropy for neuroimaging 

applications is that it provides a common meaningful effect size (i.e., bits) across many 

different statistical tests (with discrete, continuous, and multidimensional variables). 

1.4.3.2 Mutual information 

Though entropy per se has a wide range of applications, researcher often are not interested 

in the entropy of a certain variable, but instead, they want to know whether the variabilities 

of two different variables are mutually independent or correlated. Mutual information (MI) 
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is a measure of the amount of shared information between two variables (Shannon, 1948). It 

is defined as the amount of reduction in the uncertainty1 of one variable that can be achieved 

by obtaining knowledge about the other variable. MI between variables 𝑋  and 𝑌  is 

formulated as:  

𝑀𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) 

= 𝐻(𝑌) − 𝐻(𝑌|𝑋) 

Another way to understand MI is by considering the joint entropy 𝐻(𝑋, 𝑌) =

− ∑ ∑ 𝑝(𝑥, 𝑦) log 𝑝(𝑥, 𝑦)𝑦𝑥  based on the joint distribution 𝑃(𝑋, 𝑌). In the Venn diagram in 

Figure 1-3, 𝐻(𝑋)  and 𝐻(𝑌)  can be thought of as the area of the left and right circles 

respectively, and 𝐻(𝑋, 𝑌) is represented by the total area occupied by both circles. Then 

𝑀𝐼(𝑋, 𝑌), which is represented as overlapping part of two circles, can be calculated as 

𝑀𝐼(𝑋; 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) 

These three formulas are completely equivalent, and they can be written into the same form 

by substituting the entropy formula as 

𝑀𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦) log
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑦𝑥

 

This formula reveals the essence of measuring relationships through mutual information by 

comparing the joint probability of two variables and the product of the individual 

probabilities. Probability theory shows that when two variables are independent, the product 

of their probabilities equals the joint probability. In this case, the above formula takes a value 

of 0. The more correlated the two variables are, the larger the value of the above formula 

will be. 

 

1 As mentioned in section of “concept of information”, information reduces uncertainty. 
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Figure 1-3 Venn diagram of mutual information. 

 

1.4.3.3 Pointwise mutual information 

Pointwise Mutual Information (PMI) is a concept similar to MI for quantifying the 

association between two variables. The difference is that PMI measures the relationship 

between each individual outcome of the two variables, whereas MI measures the overall 

association between the two variables. PMI of a pair of outcomes 𝑥 and 𝑦 from discrete 

random variables 𝑋 and 𝑌 is defined as: 

𝑃𝑀𝐼(𝑥; 𝑦) = ℎ(𝑥) − ℎ(𝑥|𝑦) 

= h(y) − h(y|x) 

= h(x) + h(y) − h(x, y) 

= log
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
 

The formula for PMI is similar in form to MI, but PMI is calculated based on surprisal instead; 

MI is expected (i.e., average) PMI: 

𝑀𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦) 𝑃𝑀𝐼(𝑥, 𝑦)

𝑦𝑥

 

Unlike MI, the value of PMI can be either positive or negative. The positive PMI value 

means that the outcome 𝑥 and 𝑦 are more likely to occur together than they would if they 

are independent. Negative PMI value means outcome 𝑥  and 𝑦  are less likely to occur 

together. 
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PMI is widely used in multiple fields, such as natural language processing, information 

retrieval, and machine learning. In natural language processing, it is used to evaluate the 

association between words in a corpus of text, and is often used to identify collocations (i.e., 

words that tend to occur together). In information retrieval, PMI is used to estimate the 

relevance of a document to a query and to rank search results. In machine learning, it is used 

to identify features that are highly correlated with a target variable and to enhance the 

performance of classifiers and other algorithms. 

However, PMI also has some limitations. One of them is that PMI is sensitive to the rarity 

of outcomes. It can give a large value for the association between two rare outcomes, which 

may not be meaningful. In this case, weighted PMI (wPMI) is often used. 

𝑤𝑃𝑀𝐼(𝑥, 𝑦) = 𝑝(𝑥, 𝑦) 𝑃𝑀𝐼(𝑥, 𝑦) 

= 𝑝(𝑥, 𝑦) log
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
 

1.4.3.4 Co-information (interaction information) 

Co-information (CoI), also known as interaction information with a flip sign, is a 

generalization of mutual information for three variables, which measures the relationships 

in terms of information among them. For random variables X, Y and Z, the positive co-

information is called redundancy, which measures the amount of information shared by three 

variables. The negative co-information (or positive interaction information) is call synergy, 

which measures the amount of additional information about Z that can be obtained by 

knowing X and Y together compared to knowing X and Y separately. In other words, 

redundancy measures how well three variables covary. While synergy measures how one 

variable changes (modulates) the relationship between the other two. It is a measure of the 

degree to which the three variables interact with each other, rather than just co-varying. 

The formula of co-information is: 

𝐶𝑜𝐼(𝑋; 𝑌; 𝑍) =  𝑀𝐼(𝑋; 𝑍) + 𝑀𝐼(𝑌; 𝑍) − 𝑀𝐼([𝑋, 𝑌]; 𝑍) 

Since co-information is symmetric, it can be also written as 

𝐶𝑜𝐼(𝑋; 𝑌; 𝑍) =  𝑀𝐼(𝑋; 𝑌) + 𝑀𝐼(𝑍; 𝑌) − 𝑀𝐼([𝑋, 𝑍]; 𝑌) 

= 𝑀𝐼(𝑌; 𝑋) + 𝑀𝐼(𝑍; 𝑋) − 𝑀𝐼([𝑌, 𝑍]; 𝑋) 



31 

1.4.3.5 Partial information decomposition 

Partial information decomposition (PID) is a framework to analyze the information 

conveyed by multiple variables 𝑹 = {𝑅1, 𝑅2 … 𝑅𝑛} about a target variable 𝑆 (Williams & 

Beer, 2010; R. Ince, 2017). PID decomposes the total information conveyed by 𝑹 into the 

sum of unique, redundant and synergistic information subsets. For 3-variable interaction 

(which is the state-of-the-art), PID decompose 𝑀𝐼([𝑅1 𝑅2];  𝑆) into 𝑈𝑛𝑞(𝑅1) + 𝑈𝑛𝑞(𝑅2) +

𝑅𝑒𝑑 + 𝑆𝑦𝑛, where 𝑈𝑛𝑞 denotes unique information conveyed by the variable about 𝑆, and 

𝑅𝑒𝑑 and 𝑆𝑦𝑛 denote redundant and synergistic information respectively. Unlike CoI that 

can only be either redundancy or synergy, PID says redundancy and synergy can exist at 

once and CoI = redundancy – synergy.  

The main aim of PID is to deal with the problem of CoI that redundancy and synergy are 

confounded. When any two among three variables are independent, redundancy doesn’t exist, 

and therefore there is no confusion between redundancy and synergy. In this case, the classic 

CoI is safe to use. Otherwise PID can provide a better understanding of information in 

system. 

1.4.3.6 Conditional mutual information 

Conditional mutual information (CMI) is simply the MI that considers the effect of other 

variables in the system. The CMI between random variables 𝑋  and 𝑌  conditioned on 

variable 𝑍 is defined as: 

𝐶𝑀𝐼(𝑋; 𝑌|𝑍) = 𝑀𝐼(𝑋; 𝑌) − 𝐶𝑜𝐼(𝑋; 𝑌; 𝑍) 

It is noteworthy that the explanation of CMI is different depending on CoI since CoI can be 

either positive or negative. When CoI is positive, 𝐶𝑀𝐼(𝑋; 𝑌|𝑍) measures shared information 

between 𝑋  and 𝑌  removing the part that also shared with 𝑍 . When CoI is negative, 

𝐶𝑀𝐼(𝑋; 𝑌|𝑍) measures shared information between 𝑋 and 𝑌 adding the synergy with 𝑍. 

1.4.3.7 Transfer entropy 

Transfer entropy (TE), also known as directed information (DI), is a measure of the time 

lagged relationship between two variables (Schreiber, 2000). It is defined as conditional 

mutual information between variables 𝑋 in earlier time and 𝑌 in later time conditioning out 

the 𝑌  in earlier time. That is, the information about 𝑌  provided by earlier 𝑋  that is not 
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included in earlier 𝑌. Transfer entropy can be thought as the information communicated from 

earlier 𝑋 to later 𝑌. 

1.4.3.8 Directed feature information  

Directed feature information (DFI) is an extension of DI. It is defined as 

𝐷𝐹𝐼 = 𝐷𝐼 − 𝐷𝐼|𝐹 

DFI measures the causal transfer of information specific to a stimulus feature (i.e., variable), 

which can be used to determine the content of communications (R. A. A. Ince et al., 2015). 
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2 Brain networks compute low-dimensional 

categorization-relevant feature manifolds that 

support behavior 

2.1 Summary 

To interpret our surroundings, the brain uses a visual categorization process. Current theories 

and models suggest that this process comprises a hierarchy of different computations that 

transforms complex, high-dimensional inputs into lower-dimensional representations (i.e. 

manifolds) in support of multiple categorization behaviors. In this chapter, I tested this 

hypothesis by analyzing these transformations reflected in dynamic MEG source activity 

while individual participants actively categorized the same stimuli according to different 

tasks: face expression, face gender, pedestrian gender, vehicle type. Results reveal three 

transformation stages. At Stage 1 (high-dimensional, 50-120ms), occipital sources represent 

both task-relevant and task-irrelevant stimulus features; task-relevant features advance into 

higher ventral/dorsal regions whereas task-irrelevant features halt at the occipital-temporal 

junction. At Stage 2 (121-150ms), stimulus feature representations reduce to lower-

dimensional manifolds, which then transform into the task-relevant features underlying 

categorization behavior over Stage 3 (161-350ms). The findings detailed in this chapter shed 

light on how the brain’s network mechanisms transform high-dimensional inputs into the 

specific feature manifolds that support multiple categorization behaviors. 

2.2 Introduction 

Despite the intricate and detailed nature of the visual input, our ability to categorize relies 

on extracting the essential elements of this information—i.e. the features that are crucial for 

the task at hand. For example, whereas categorizing the scene in Figure 2-1A as a “happy 

face” requires processing the mouth of the central face, categorizing this same picture as a 

“SUV” requires processing the shape of the right-flanked vehicle, or the left “female 

pedestrian” with the bodily features that disclose its gender, and so forth. The key point is 

that a single input image, and even a single object within this image, typically affords 

multiple different categorization behaviors (e.g. “happy,” or “female” for the same central 

face). When our brain categorizes these input images or objects, it doesn’t just passively 

treat them as unitary wholes. Instead, current theories and models suggest that brain 

networks actively transform their representations of the complex input images into task-

specific image subspaces characterized by distinct geometric structures—i.e. diagnostic 
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feature manifolds (Cichy & Kaiser, 2019; De Melo et al., 2022; K. Kay et al., 2023; Naitzat 

et al., n.d.; Schyns et al., 2002, 2022; M. L. Smith et al., 2012; Zhan, Ince, et al., 2019). 

Hence, the actual visual information processed by the brain for categorization does not 

encompass the entirety of the stimulus images or objects presented in the visual field, but 

rather, it only comprises a geometrical subset of them, and critically, this subset varies 

depending on the task at hand. Here, I am testing this fundamental hypothesis, by reverse 

engineering, at a system level, the dynamic brain networks that actively transform identical 

input scene images for distinct categorization behaviors. 

Significant progress in understanding visual categorization resulted from accurately 

mapping the brain regions that respond to various categories of images, e.g., those of faces, 

bodies, objects and scenes (Bracci & Op De Beeck, 2023; DiCarlo & Cox, 2007; Grill-

Spector & Weiner, 2014). These regions comprise primarily the occipito-ventral/dorsal 

pathways that respond to different image categories, from their early split projection in left 

and right occipital cortex to their later categorical/semantic representations in the right 

fusiform gyrus, including how feedback reverses this flow to predict the input stimulus 

(Friston, 2010b; Lawrence et al., 2019; Yuille & Kersten, 2006). Though this approach 

proved invaluable to investigate where and when different brain regions are involved with 

processing full images, it overlooked how the task itself changes the actual feature manifolds 

that are processed by the brain. That is, how does categorizing the scene as “happy face,” or 

“SUV” or “female pedestrian” differently transform this fixed input into the specific feature 

manifolds that support task behavior?  

Research into eye movements (Henderson & Hayes, 2017; Malcolm et al., 2014),  attention 

(Brignani et al., 2010; Carrasco & Barbot, 2019), reverse correlation (Gosselin & Schyns, 

2001; M. L. Smith et al., 2012; Zhan, Ince, et al., 2019) and neural network modelling 

(Schyns et al., 2022) suggests that categorization mechanisms in capacity-limited systems 

actively and flexibly transform the representation of high-dimensional input images into the 

low-dimensional feature manifolds that specifically support different categorization 

behavior (e.g. the smiling mouth feature manifold for responding “happy”, or the car shape 

manifold for responding “car” from the same image in Figure 2-1A), guided by frontal-

parietal network mechanisms (Shashidhara et al., 2019). Critically, what emerges is an active 

process whereby brain networks process feature manifolds that are not inherently given, but 

instead dynamically extracted from the image depending on the participant’s categorization 

task and their individual strategy. 



35 

To track such transformations of feature manifolds into neural responses requires a broad, 

systems-level approach with fine-granularity control of the stimuli. Stimulating with 

categories of uncontrolled faces, cars and pedestrians full images, as is typical (Russakovsky 

et al., 2015; Rust & Movshon, 2005; Schrimpf et al., 2018), makes it practically unfeasible 

to precisely track where, when and particularly how the individual brain transforms the 

representation of these images (and objects within them) into the specific feature manifolds 

needed for categorization behavior–i.e. in the finite time of a neuroimaging experiment. 

Instead, these features hide behind the notorious “wall of [image] pixels (De Melo et al., 

2022; Schyns et al., 2022).” To break through this wall, and reveal the feature manifolds 

used for categorization, I applied the Bubbles procedure (Gosselin & Schyns, 2001; Schyns 

et al., 2002). Bubbles randomly samples, with Gaussian apertures, the pixels of a stimulus 

image that each participant then categorized in four different ways–i.e. as face expression, 

face gender, pedestrian gender and vehicle type (see Figure 2-1A). Bubbles ensures that the 

participant can only correctly categorize the images when the randomly sampled pixels show 

the features needed for categorization (Gosselin & Schyns, 2001; Schyns et al., 2002). With 

such control, we could reverse engineer (1) the feature manifolds that each participant 

processes for categorization behavior in each task (Jack & Schyns, 2017) and critically, (2) 

where (i.e. which networks of brain regions), when (i.e. during which time windows) and 

how (i.e. with what transformations) the activity of 5,107 cortical MEG sources (every 1.67 

ms between 0 to 450 ms post stimulus) transformed the representation of the same images 

into distinct task-specific feature manifolds that support behavior. 

To preview the findings, the categorization task modulates internal representations of the 

visual input and their transformations over three systems-level Stages. At Stage 1 (high-

dimensional, 50-120ms), occipital sources represent more stimulus features than the task 

requires–i.e. including opponent source-level representations (Buchsbaum et al., 1983; 

Graham & Wolfson, 2004; Popivanov et al., 2016; G. Rhodes et al., 2013) of a feature when 

it is task-relevant vs. irrelevant. While task-relevant features advance into ventral/dorsal 

pathways (Cichy et al., 2014; K. N. Kay et al., 2015; Kietzmann et al., 2019; Kriegeskorte 

et al., 2008; Margalit et al., 2020), irrelevant ones are halted at the occipital-temporal 

junction. At Stage 2 (high-to-low dimensional, 121-150ms), occipital sources reduce most 

irrelevant features, while ventral-dorsal pathways represent manifolds that keep 

transforming over Stage 3 (low-dimensional 161-350ms) into the task-relevant features 

(Frangou et al., 2019; Hanks & Summerfield, 2017; Jaworska et al., 2022; Ratcliff et al., 

2009; Shashidhara et al., 2019) underlying categorization behavior (e.g. smiling mouth in 

“happy” vs. car features in “car”). Furthermore, I show that Pre-Frontal Cortex (PFC) 
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interacts with ventral/dorsal pathways early on (during Stages 1-2, from 71-95 ms post-

stimulus), to guide stimulus feature representations based on their task-relevance. 

2.3 Results 

2.3.1 Experiment 

The experiment comprised four 2-Alternative-Forced-Choice (AFC) categorization tasks 

applied to the same 64 base images of a realistic, complex city street scene (see Figure 2-1A).  

These images comprised varying embedded targets–i.e. 8 (4 male + 4 female) different face 

identities (Dailey et al., 2001) x 2 expressions x 2 vehicles x 2 pedestrian). Each participant 

(N = 10, within-participant statistics) performed each 2-AFC task in different blocks of 1,536 

trials (i.e. precision neuroscience, with dense sampling (Poldrack, 2017)). Figure 2-1A 

illustrates, with two examples of the base images, the combinatorics of stimulus and 2-AFC 

task-response differences (i.e. face expression, face gender, pedestrian gender and vehicle 

type). 

Each trial started with a fixation cross presented in the middle of screen for a random time 

interval between 500-1000 ms, followed by one base image for 150 ms, whose pixels were 

randomly sampled with the Bubbles procedure (Gosselin & Schyns, 2001; Schyns et al., 

2002), see Figure 2-1 and Methods, Stimuli. As explained, Bubbles sampling ensures that 

the participant can only correctly categorize the stimulus when the random samples reveal 

by chance the pixels of the features that the participant requires to resolve the task. For 

example, the randomly sampled pixels of trial n in Figure 2-1 would enable categorization 

of “happy” in the face expression block, but not categorization of “SUV” in the vehicle type 

block, and vice versa with the samples of trial m (see Methods, Task Procedure). Critically, 

to eliminate typical low-level effects when different stimuli are associated with different 

categorization tasks (e.g. of different contrast energy profiles in different categories), here 

the set of randomly sampled stimuli was identical in each participant and blocked task (with 

stimuli presented in a random order in each block). Furthermore, to control the active 

engagement of cognitive processes from stimulus onset to categorization response, I kept 

the retinal locations of the image components constant across the experiment. This enabled 

processes from predictions of the spatial locations of task-relevant features, to discrimination 

of their attended pixel contents for decisions–e.g. the vehicle was always presented at a right 

image location, with “car” vs. “SUV” pixel contents to categorize. On each trial, the 
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participant’s dynamic MEG activity (localized with a beamformer to 5,107 cortical sources, 

see Methods, MEG) and categorization responses are concurrently recorded. 

2.3.2 Behavior: Task-relevant feature manifolds 

To reconstruct the categorization-feature manifolds that support task performance (see Table 

2-3 and Table 2-4), in each participant, I quantified the cross-trial relationship between pixel 

presence vs. absence due to random sampling (Figure 2-1C) and corresponding behavioral 

correct vs. incorrect in each categorization task—computed with Mutual Information (MI) 

(Cover & Thomas, 2012; R. A. A. Ince et al., 2017) as MI(pixel visibility; correct vs. 

incorrect categorization), maximum statistics (T. E. Nichols & Holmes, 2002; T. Nichols & 

Hayasaka, 2003), controlling the Family Wise Error Rate (FWER) over 101,920 pixels at p 

< 0.05, see Methods, Analyses, Participant features. 

Figure 2-1C shows that participants use different features per task from an identical set of 

sampled images—e.g. mouth features to categorize face expression; left and/or right eye 

features for face gender; body parts for pedestrian gender; different features for vehicle type. 

Importantly, different participants often use different features to classify the same object 

with the same labels—e.g. Figure 2-1C illustrates that participant 1 uses the windshield and 

a large portion of the front fender and bonnet to classify vehicle type as “car” or “SUV” 

whereas participant 10 uses the shape of the alloy wheel and the car badge on the hood to 

produce the same category labels (Figure 2-7 develops all these results per participant). This 

demonstrates that a similar stimulus-response relationship across participants (or participant 

and models) does not warrant internal processing of the same stimulus features.  

However, with these low-dimensional manifolds of categorization features now identified in 

each participant, I can uniquely examine how their brain transforms the same high-

dimensional stimuli into the specific low-dimensional feature manifolds to enact behavior in 

each task. 
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Figure 2-1 Categorization design and task-relevant features.  A. Scene Images. I used 64 original 

images of a street scene that comprises a central face, to its left, a pedestrian on a sidewalk, to its 

right a parked vehicle. B. Randomly Sampled Features. On each trial, Bubbles randomly sampled 

the pixel-composite features of one of the 64 original images to synthesize a sampled stimulus. I 

used the same set of sampled stimuli (Gosselin & Schyns, 2001) presented in a random order in 

each categorization task, so that each participant (N = 10) saw each sampled stimulus image 8 times 

(twice per task). C. Categorization Behavior; Task-Relevant Features. The stimulus set afforded two 

different categorization responses in four different two-alternative forced choice categorization tasks: 

face expression, “happy vs. neutral” responses; face gender, “male vs. female”; pedestrian gender, 

“male vs. female”; vehicle type, “car vs. SUV.” Task-relevant features (color-coded for Participants 1 

and 10, see Figure 2-7 for all participants). For each participant, I computed MI(pixel-visibility; correct 

vs. incorrect categorization) (R. A. A. Ince et al., 2017) for each image pixel to reveal the pixels that 

significantly (FWER corrected p < 0.05) modulate categorization accuracy–i.e. color-coded in 

example participants 1 and 10 in each categorization task to illustrate the key point that participants 

often use different (sometimes even mutually exclusive) features to produce the same responses 

(e.g. for “male” vs “female pedestrian”, upper body in participant 1 and full body in participant 10). 

 

2.3.3 Brain: Systems-level time-courses of task-dependent 

stimulus transformations 

To identify the stages that convert the representation of high-dimensional input images to 

the low-dimensional feature manifolds underlying categorization behavior, I started with a 

data-driven analysis. This analysis computed the representation of each varying scene pixel 

across trials (due to random Bubbles sampling) into the corresponding variations of MEG 

source amplitude responses post-stimulus–i.e. computing MI(pixel-visibility, MEGt), for 

each pairing of 61 x 47 image pixels and 5,107 cortical sources, across 271 time points. For 
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visualization, I summarized the results into short consecutive periods of source response: 

[50-70], [71-80], [81-90], [91-120], [121-140], [141-150], [161-200], [221-280], [291-350] 

ms post-stimulus. These periods cover five dynamic neural events involved with visual 

categorizations–i.e. C1 (Slotnick, 2018), occipital hemifield responses; P100, early 

attention/stimulus representation and ensuing N170 (Bentin et al., 1996, 2007; R. A. A. Ince, 

Jaworska, Gross, Panzeri, Rijsbergen, et al., 2016; Rossion et al., 2003; Rousselet et al., 

2004; Schyns et al., 2007), faces/familiar object representations; N250 (Kaufmann et al., 

2008) and P300 (Ratcliff et al., 2009), attention/decision mechanisms. This analysis 

visualizes the image pixels that dynamic brain activity represents within each period and 

transforms across periods. 

Figure 2-2A summarizes the results, showing different dynamic transformations of the same 

stimuli in each categorization task (rows), where orange-to-yellow colors indicate number 

of participants whose sources represent this image pixel in each period; maximum = 9/10 

participant, maximum a posteriori probability (MAP) [95% highest posterior density interval 

(HPDI)] estimate of the population prevalence (R. A. Ince et al., 2021) of the effect of 9/10 

participant replications = 0.9 [0.61 - 0.99], see Methods, Analyses, Global representation of 

image pixels in brain networks; Methods, Bayesian population prevalence. 
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Figure 2-2 Systems-level transformations of images into categorization feature manifolds. A. 

Dynamic stimulus representation by categorization task. In each participant and MEG source, I 

computed the cross-trial relationship between each pixel’s visibility and the MEG source amplitudes 

at time t post-stimulus–i.e. MI(pixel-visibility, MEGt). I segmented the post-stimulus time course into 

9 consecutive periods. In each period, and for each categorization task, I pooled pixels significantly 

represented on at least one MEG source, False Discovery Rate (FDR) test with q = 0.001. To 

visualize the transformations of stimulus representations across participants, I summarize their per-

period results, by revealing the image pixels that their MEG sources represent in each task–i.e. where 

orange-to-yellow colors indicate the number of participants whose MEG sources represent this pixel, 

maximum = 9/10 participant, Maximum A Posteriori (MAP) [95% Highest Posterior Density Interval 

(HPDI)] prevalence (R. A. Ince et al., 2021) = 0.90 [0.61 - 0.99]). B. Transition from high- to low-

dimensional pixel representations. In each period, I computed across participants and tasks the 

average number of task-relevant (vs. task-irrelevant) pixels–i.e. normalized per participant and task 

to the maximum task-relevant (vs. irrelevant) pixel numbers, with standard error bars. The resulting 

curves cross-over between Stages 1-2 and Stage 3 showing the transition from higher-dimensional 

inputs (with both task-relevant and irrelevant pixels) to lower-dimensional, task-relevant feature 

manifolds (with mainly task-relevant pixels). C. Spatio-temporal dynamics of task-relevant vs. 

irrelevant feature representations. For each participant, task and behavioral categorization feature 

(Figure 2-1C and Figure 2-7), I quantified how each source represents this feature (F) in its amplitude 

at each post-stimulus time point t–i.e. MI(F; MEGt ) (R. A. A. Ince et al., 2017), FWER corrected in 

each participant over sources and time points, p < 0.01. Greyscale sources reveal the number of 

participants that represented at least one feature in each period, when the feature is task-relevant 

vs. irrelevant, maximum = 8/10 participant, MAP [95% HPDI] prevalence (R. A. Ince et al., 2021) = 

0.80 [0.49 - 0.96]. Category information provides a ground-truth reference of the MEG source 

representation of category information across participants—computed e.g. in vehicle type as MI(car 

vs. SUV stimulus; MEGt), FWER corrected over sources and time points, p < 0.05, maximum = 8/10 

participant, MAP [95% HPDI] prevalence (R. A. Ince et al., 2021) = 0.80 [0.49 - 0.96].  
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Considering each pixel as a stimulus dimension, each task shows MEG sources transitioning 

from an initially high-dimensional stimulus representation of large parts of the scene (Stage 

1, 50-120 ms, periods 1 to 4) to a more focussed representation of only the task-relevant 

pixels–i.e. the lower-dimensional manifolds that develop between Stage 3, periods 7 to 9, 

161-350 ms, compare with Figure 2-7. Stage 2 (periods 5 to 6) therefore marks the critical 

transition from higher-dimensional Stage 1 to task-relevant feature manifolds Stage 3.  

To better formalize these transitions, I grouped image pixels as either task-relevant or 

irrelevant based on participant behavior–cf. Figure 2-1C and Figure 2-7 and Methods, 

Analyses, Feature mask and visibility. In Figure 2-2B, the red curve shows across different 

periods the number of task-relevant pixels while the blue curve shows task-irrelevant ones–

i.e. computed as the cross-participant-and-tasks average of significant pixels in each period, 

reported with error bars. The cross-over of these curves between Stages 1-2 and Stage 3 

identifies the transition from high-dimensional representations to task-specific feature 

manifolds. 

2.3.4 Brain: Systems-level localizations of task-dependent 

stimulus transformations 

To examine how the localized MEG sources represent and transform images based on task 

demands, I compared the source representation of an identical feature when it is task-

relevant, or not–e.g. Participant 1’s blue mouth in Figure 2-1C in face expression vs. in all 

other tasks. For each behavioral categorization feature (in Figure 2-7), I therefore determined 

the per-trial visibility score F, by intersecting this feature’s pixels (e.g. Participant 1’s blue 

mouth) with the pixels randomly sampled by Bubbles (cf. Figure 2-1, and Methods, 

Analyses, Feature visibility). I then quantified how variations of F across trials (Cover & 

Thomas, 2012; R. A. A. Ince et al., 2017) are represented in corresponding variations of 

MEG source amplitude responses–i.e. as MI(F; MEGt ) (R. A. A. Ince et al., 2017), FWER 

corrected in each participant over sources and time points, p < 0.01 see Methods, Feature 

representation on MEG sources. Thus, the resulting MI curves (which I will develop in 

Figure 2-3, see Equation 1 in Methods, Analyses) are not curves of brain activity. Rather, 

they are curves of feature F representation into source magnetic field amplitude (MEGt). 

First, I show summary results in Figure 2-2C that reveal where (which sources) and when 

(which Stage/time period) features are transformed when they are task-relevant and used for 

behavior (Figure 2-2C, task-relevant) vs. task-irrelevant (Figure 2-2C, task-irrelevant). Each 



42 

glass brain displays the number of participants (gray levels) whose MEG sources represent 

at least one such feature as task-relevant or irrelevant–i.e. maximum = 8/10 participant, MAP 

[95% HPDI] prevalence (R. A. Ince et al., 2021) = 0.80 [0.49 - 0.96]. For reference, I also 

show how these MEG sources represent category information for at least one task, computed 

for instance for vehicle type as MI(car vs. SUV stimulus; MEGt), FWER corrected over 

sources and time points, p < 0.05, plotted again as number of participants, maximum = 8/10 

participant, MAP [95% HPDI] prevalence (R. A. Ince et al., 2021) = 0.80 [0.49 - 0.96]. 

Figure 2-2C reveals that occipital cortex sources represent task-relevant and task-irrelevant 

features during Stage 1, accounting for its higher dimensionality. However, there is already 

an effect of task because early representations distribute around the locations of the task-

relevant features in the image but their effect sizes (i.e. MI) are weaker for surrounding pixels 

(see Figure 2-2A). Task-relevant features move along the ventral/dorsal pathways, but if 

they are irrelevant, they halt at the occipital-temporal junction. Occipital sources reduce most 

task-irrelevant features while ventral/dorsal sources form a lower-dimensional feature 

manifold during Stage 2. During Stage 3, the ventral/dorsal pathways keep transforming the 

low-dimensional feature manifolds into task-relevant features (at Stage 3, period 9). And 

category information is increasingly represented from 161-280 ms (at Stage 3, period 7 and 

8), peaking at the parietal-frontal juncture post ~291ms (at Stage 3, period 9).  

2.3.5 Brain: Systems-level expansion of task x feature 

transformations 

Figure 2-3 expands the summary of Figure 2-2C, by displaying the representational 

dynamics in a grid with feature on the rows and task on the columns. Each panel shows the 

cross-participant average curves of significant feature representation–i.e. MI(F; MEGt)–

every 2 ms, for each color-coded MEG source, progressing from cyan (occipital) to yellow 

(frontal) as indicated in the reference glass brain. 
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Figure 2-3 Dynamic representations of stimulus features across categorization tasks. 

Dynamic representation of stimulus features (rows) in categorization tasks (columns). Curves in each 

cell show the average (n = 10 participants) time-course of significant feature representation—of each 

participant’s feature shown in Figure 2-1C and Figure 2-7, computed as MI(F; MEGt) (R. A. A. Ince 

et al., 2017)—on MEG sources, each color-coded by its location on a posterior-to-anterior axis (cyan-

yellow)—FWER p < 0.01, permutation maximum statistics per participant. Dashed lines (at 120 and 

150 ms) delineate stages S1 to S3 reported from Figure 2-2. Small brains flanking the dashed 

lines(Bentin et al., 1996, 2007; R. A. A. Ince, Jaworska, Gross, Panzeri, van Rijsbergen, et al., 2016; 

Rousselet et al., 2004) show the participant prevalence of feature representations 50-150 ms (left 

brain) and 150-450 ms (right brain) post-stimulus, Bayesian maximum a posteriori (MAP) population 

prevalence(R. A. Ince et al., 2021), n = 10 participants, p = 0.01. Each row reveals qualitatively 

different representation dynamics of the same stimulus feature when it is task-relevant (matrix 

diagonal, highlighted with a box) vs. task-irrelevant (off diagonal). B. Stimulus evoked variance and 

gradient of MEG occipital source signal (cyan colored) in stages S1 to S3, averaged per source 

across participants. 

 

The diagonal of Figure 2-3A shows the transformation of task-relevant features (Fs) through 

Stage 1 to 3 (black box highlights, e.g. vehicle feature in vehicle type; dashed lines delineate 

stages S1 to S3), with representations progressing from occipital to higher-level regions, 
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seen in the cyan-to-yellow occipital-to-frontal time-courses. Off diagonal plots, on the other 

hand, display short-lived representations of task-irrelevant features confined to occipital 

cortex (evident in cyan curves, cf. vehicle feature, the first three columns of the fourth row). 

Small brains localize the within-participant inference of these divergent representations 

across participants, during Stage 1-2 (left) and Stage 3 (right), FWER p < 0.01, permutation 

test, maximum statistic, see Methods, Feature representation on MEG sources. An 

exception is the central face’s eyes, which remain represented in the two face tasks, 

consistent with previous studies (Schyns et al., 2003, 2007; M. L. Smith et al., 2004). This 

observation will be revisited in the Discussion. 

The comparison in Figure 2-3A between features when they are task-relevant (diagonal) vs.  

irrelevant (each row, off-diagonal) is noteworthy. It shows similar initial representations in 

the occipital sources (cyan) for the same feature. However, by Stage 2, these representations 

diverge, with the same feature reduced in occipital cortex vs. passed into ventral/dorsal 

pathways. Next, I develop the representation mechanisms behind this divergence at the level 

of individual occipital sources. 

2.3.6 Brain: Source-level representation of task-relevant vs. 

irrelevant F 

First, I draw attention to the higher-dimensional feature representations on cyan occipital 

sources (Figure 2-3A) which align at Stage 1 with the peak cross-trial variance of their 

evoked MEG responses (Figure 2-3B). During 120-150ms Stage 2, this variance drops 

(negative gradient in 3B), marking the time when occipital sources reduce task-irrelevant 

features while relevant features progress into ventral/dorsal pathways. Figure 2-9 further 

shows that occipital representations of a given feature peaks slightly sooner when it is task-

irrelevant than when it is task-relevant (Wilcoxon rank sum test, p < 0.001, MI averaged at 

each time point across participants, tasks and sources). Now, I delve into how the variance 

of an occipital source marks the identical feature variations F as task-relevant (and passed 

for further processing) or task-irrelevant (and reduced in occipital cortex). 

Figure 2-4A, illustrates the variations F of the vehicle feature visibility from participant 8 as 

disks with varying radii (representing relative feature visibility). Figure 2-4B shows the MI 

representation curve of F on an example cyan occipital source at Stage 1, when the feature 

is relevant (in vehicle type, Figure 2-4B, solid cyan MI representation curve for this source) 
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vs. irrelevant (in all other tasks, Figure 2-4B, dashed cyan MI curve). Figure 2-4C shows 

the corresponding ERF and variance underpinning these representations of F.  

 

 

Figure 2-4 Task-modulations of feature representations. A. Feature visibility, F. Random stimulus 

sampling across trials varies visibility of vehicle feature F, represented as 5 varying radii (example 

from participant 8, Figure 2-7). B. MI(F; MEG) quantifies the dynamic representation of F in one 

example occipital source (located in small brains) when F is task-relevant (plain cyan curve) vs. task-

irrelevant (dashed cyan curve). C. Event-Related Field (ERF) underlying the MI curves (panel B) for 

this source whose MEG amplitudes variations (shaded area, variance) represent F. D. Opponent 

occipital source representations of F. At 111 ms, the MEG amplitude variations of the same source 

(y axis) differently represent identical variations of feature F (circle radii, panel A) when it is task-

relevant vs. irrelevant. Cyan arrows indicate these opposite representational directions when F is 

task-relevant (plain arrow, in vehicle type) and passed later into rFG vs. irrelevant (dashed arrow, 

other tasks) and reduced in occipital cortex. E. The cyan synergy curve quantifies the time course of 

these opponent representational interactions (Cover & Thomas, 2012; R. A. A. Ince et al., 2017) (that 

panel D illustrates at peak 111 ms, indicated with opponent arrows). The dark blue synergy curve 

illustrates another representational interaction in the rFG source shown in panel F (located in 

adjacent small brain). F. Unidirectional Representations. Dark blue rFG source represents F at 135 

ms peak synergy, but here only when the feature is relevant in vehicle type. G. Synergistic 

Representations. Synergy(F; MEGt; Task-relevance) quantifies how brain sources differently 

represents identical F over Stages 1 to 3 depending on task-relevance vs. task-irrelevance, covering 
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three types of source-level representations. Opponent synergy indicates number of participants with 

significant opponent representations of the same F when task-relevant vs. irrelevant (cf. panel D); 

Task-relevant (or irrelevant) synergy indicates unidirectional representations of F when either task-

relevant (cf. panel F) or irrelevant. 

 

Figure 2-4D shows how F is differently represented based on its task-relevance. At Stage 1 

(111 ms post stimulus), identical vehicle feature variations F (varying disk radii) exhibit 

MEG amplitude responses in opposite directions on the occipital source. Importantly, this 

depends on whether F is task-relevant (solid arrow in Figure 2-4D), and subsequently passed 

into the ventral/dorsal pathways vs. task-irrelevant (dashed arrow), and subsequently 

reduced in occipital cortex (i.e vehicle type vs. all other tasks). Figure 2-4E quantifies such 

opponent representations with information theoretic synergy(F; MEGt; task-relevance vs. 

task-irrelevance), a double interaction that Figure 2-4D illustrates at its 111 ms peak 

(indicated with opponent cyan arrows in Figure 2-4E cyan curve). Task-synergy quantifies 

how the same feature is differently represented on the same source2 depending on task, 

leading to different fates (i.e. passed vs. reduced). 

Figure 2-4G shows that such opponent sources (cf. opposite cyan arrows) are mainly found 

in occipital cortex during Stage 1 and are consistent across participants (FWER p < 0.01 

corrected over MI-significant sources * 271 time points, see Methods, Analyses, Opponent 

feature representations). And as previewed, the direction of these amplitude responses in 

Stage 1 could determine whether the feature will be reduced at Stage 2 or prominently 

represented in Stage 3 for behavioral responses. 

In contrast, task-synergy can also indicate a feature that is unidirectionally represented either 

when it is task-relevant or irrelevant. Figure 2-4E displays the synergy curve of an example 

right Fusiform Gyrus (rFG) source, marked in purple, with a 135 ms peak (single arrow on 

the curve) during transition Stage 2. In Figure 2-4F, this rFG source unidirectionally 

represents the same vehicle feature F, but here only when it is task-relevant. Figure 2-4G 

extends this observation, illustrating across sources and time the count of participants who 

have at least one such exclusive task-relevant (or task-irrelevant) feature representation 

 

2 Although the sign of MEG responses is arbitrary(Gross et al., 2013), opponent signs reliably 

indicate the task-relevance vs. irrelevance of the same feature.  
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(FWER p < 0.01 corrected over MI-significant sources * 271 time points, see Methods, 

Analyses, Task-relevant feature selection).  

2.3.7 Brain: Network interactions with prefrontal cortex modulate 

early source representations by task 

Figure 2-4 shows that amplitude variations in occipital sources can represent the same 

feature differently by task relevance: either in opposite directions or unidirectionally. Here, 

I test the hypothesis that network interactions during Stages 1 and 2, specifically between 

Pre-Frontal Cortex (PFC) and the occipital-ventral/dorsal pathways, top-down modulate 

these early feature representations, to determine whether the same physical feature is passed 

into the ventral pathway for further processing, or instead reduced early within occipital 

cortex. 

To investigate this, in each participant and task, I pinpointed two sources in the occipito-

ventral/dorsal pathway during Stages 1 and 2: the source with strongest opponent 

representation of a given feature F (the synergistic “opponent seed” shown in Figure 2-5, 

color-coded by participant) and that with strongest unidirectional representation of F (the 

synergistic “unidirectional seed” also show in Figure 2-5). I then computed separately how 

opponent and unidirectional seeds interact will all PFC sources–i.e. by computing for each 

source pair the synergy(F; seed sourcet; PFC sourcet), separately for trials when F is task-

relevant vs. F is task-irrelevant, FWER p < 0.05. Synergy emerges when two sources 

together predict more information about the feature than the sum of prediction by each 

source. Though PFC brain activity does not directly represent the feature, it does influence 

representation of the feature in the occipital-ventral/dorsal pathways. That is, when PFC 

activity changes, the relationship between feature visibility and activity in occipital-

ventral/dorsal pathways changes. In this case, PFC sources and occipital-ventral/dorsal 

sources will generate synergy (the extra information about the feature that cannot be obtained 

from only occipital-ventral/dorsal sources without considering the PFC). Therefore, we need 

to explicitly consider PFC and occipital-ventral/dorsal activity together (synergistically) to 

understand the role of PFC on the occipital-ventral/dorsal representation of the feature. 

This synergy analysis produced the four spatio-temporal maps per participant and task 

shown in Figure 2-5–i.e. opponent and unidirectional seeds x task-relevant and irrelevant 

feature conditions. It indicates where, when and how strongly each pair of PFC and occipito-
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ventral/dorsal sources worked together as a network in representing feature F, separately for 

when F was task-relevant and irrelevant. 

When F is task-relevant, Figure 2-5A shows that the orbitofrontal and ventromedial PFC 

(vmPFC) interact with both unidirectional and opponent seed sources during Stages 1 and 2 

(96-150ms)–i.e. unidirectional seeds, maximum = 8/10 participant, (MAP) [95% HPDI] 

prevalence(R. A. Ince et al., 2021) = 0.80 [0.49 – 0.96]; opponent seeds, maximum = 7/10 

participant, (MAP) [95% HPDI] prevalence (R. A. Ince et al., 2021) = 0.70 [0.38 – 0.90]). 

Critically, vmPFC interacts with occipital opponent sources primarily during Stage 2, when 

occipital cortex passes task-relevant features into the ventral pathway but reduces the 

features that are task-relevant. This suggests that vmPFC is involved with maintaining 

representations stimulus features when they are task-relevant across Stages 1 and 2, enabling 

their subsequent processing in the ventral pathway. 

In contrast, when the same F is task-irrelevant, Figure 2-5B shows that the unidirectional 

occipital sources interact primarily with PFC orbitofrontal region (not with vmPFC), from 

early Stage 1 (71-95 ms); maximum = 9/10 participant, (MAP) [95% HPDI] prevalence(R. 

A. Ince et al., 2021) = 0.90 [0.61 – 0.99]. There is no clear PFC network interaction pattern 

for opponent seeds. These different network interactions for the representation of the same 

feature suggest that orbitofrontal PFC is primarily involved at Stage 1, with attentional or 

other mechanisms that mark the representations of task-irrelevant stimulus features for their 

subsequent reduction during Stage 2. 

 



49 

 

Figure 2-5 Early network interactions between PFC sources and occipito-ventral/dorsal 

sources. A. Synergistic interactions when feature is task-relevant. Unidirectional and opponent 

occipito-ventral/dorsal seed sources are color-coded by participant. Grey-levels indicate participant 

prevalence (>= 5) of synergistic interactions, computed as synergy(F; seed sourcet; PFC sourcet), 

revealing involvement of orbitofrontal and ventromedial PFC regions, from 96-120ms, permutation 

maximum statistics per participant, FWER p < 0.05. Unidirectional seeds, maximum = 8/10 

participant, (MAP) [95% HPDI] prevalence(R. A. Ince et al., 2021) = 0.80 [0.49 – 0.96]; Opponent 

seeds, maximum = 7/10 participant, (MAP) [95% HPDI] prevalence(R. A. Ince et al., 2021) = 0.70 

[0.38 – 0.90]. B. Synergistic interactions when feature is task-irrelevant. Unidirectional and opponent 

seeds synergistically interact mainly with orbitofrontal regions of PFC from 71-95ms, ending before 

the beginning of Stage 2 (121 ms). Unidirectional seeds, maximum = 9/10 participant, (MAP) [95% 

HPDI] prevalence(R. A. Ince et al., 2021) = 0.90 [0.61 – 0.99]; Opponent seeds, maximum = 6/10 

participant, (MAP) [95% HPDI] prevalence(R. A. Ince et al., 2021) = 0.60 [0.28 – 0.83]. 

 

In sum, the network analyses show that different regions of PFC get involved with the early 

occipito-ventral/dorsal representations of stimulus features, depending on their task-

relevance. Specifically, when a feature is task-relevant, orbitofrontal PFC and vmPFC guide 

its unidirectional and opponent representations during Stages 1 and 2 (~96-140ms), enabling 

the feature to progress from occipital into ventral/dorsal pathways for processing for 

behavior. In contrast, when the same physical feature is task-irrelevant, orbitofrontal PFC 

guides its unidirectional occipital representation at Stage 1 (~71-120ms), that occipital 

cortex then reduces from ~120ms. These distinct network interactions therefore suggest that 

PFC regulates how occipito-ventral/dorsal pathway transform representations of the same 

features based on their importance for the task at hand.  
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2.4 Discussion 

At a systems-level, I studied where, when and how the brain networks of individual 

participants transform an identical set of high-dimensional input images into different low-

dimensional manifolds of categorization features that support behavior in four different 

tasks—i.e. face expression, face gender, pedestrian gender and vehicle type. I revealed three 

stages that transform stimulus features into the task manifolds under the influence of pre-

frontal cortex. During Stage 1 (50-120ms), higher-dimensional occipital sources represent 

more features than each task demands. If task-relevant, features advance into ventral and 

dorsal pathways; when irrelevant, their representations halt at the occipito-ventral junction. 

Occipital feature representations can be opponent or unidirectional. During Stage 2 (121-

150ms), the representational focus narrows to low-dimensional task-relevant features 

manifolds because occipital cortex reduces most irrelevant features. During Stage 3 (161-

350ms), the low-dimensional feature manifolds are further refined into the task-relevant 

features of decision behavior. Using precision neuroimaging and a dense-sampled design, I 

replicated these results in at least 8/10 participants, conferring a high Bayesian population 

replication probability (R. A. Ince et al., 2021) to these feature transformation mechanisms. 

Furthermore, top-down PFC influences modulate these task-dependent occipital 

representations from Stage 1. Specifically, orbito-frontal PFC is primarily involved with 

representations of task-irrelevant features at Stage 1 (~71-120ms) that occipital cortex 

reduces from ~100ms. When features are task-relevant, ventro-medial PFC is involved over 

Stages 1 and 2 (~96-140 ms) with unidirectional and opponent representations of task-

relevant features that progress into ventral/dorsal pathways for behavior.  

In both psychology and neuroscience, feature processing (Martínez et al., 1999; Noesselt et 

al., 2002) is foundational to numerous higher-level theories, spanning face, object and scene 

categorization and recognition (Humphreys, 2016; Nosofsky, 1986), as well as working 

(Baddeley, 2000; S. Rhodes & Cowan, 2018; van Moorselaar et al., 2018) and semantic 

memory (Grossman et al., 2002; Rubin, 2022) and even extending to conscious perception 

(Dehaene et al., 2014; Mashour et al., 2020). While feature processing encompasses 

feedforward and feedback communications across the occipito-ventral/dorsal and frontal-

parietal-occipital networks, it is crucial to understand its role in interactive hierarchical 

models that disambiguate representations across layers (Friston, 2010b; Kietzmann et al., 

2019; McClelland & Rumelhart, 1981; Yuille & Kersten, 2006). I align with this 
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understanding of a hierarchical interactive organization. For instance, a task like categorizing 

vehicle type should elicit specific information predictions (i.e. the participant’s vehicle 

features), which would then flow downward through the hierarchy to the occipital cortex to 

interact with the incoming input. In this study, I demonstrated that distinct categorization 

tasks (e.g. vehicle type vs. pedestrian gender) invoked top-down PFC influences from Stage 

1. These influences determined the relevance of the same physical feature in occipital cortex 

(and represented with opponent or unidirectional representations). It is crucial for 

categorization models, including Deep Neural Networks (DNNs), to replicate these three 

stages of dimensionality reduction, to yield similarly understandable feature manifolds for 

each categorization task (Schyns et al., 2022). Otherwise, while these models might predict 

category membership similarly to humans, the underlying features and transformations they 

compute might differ, see (Daube et al., 2021) for a solution to address this problem. 

The critical first 150 ms 

In the critical first 150 ms, the observations of the prevalent transformations from Stage 1 to 

Stage 2 during each categorization task largely align with classic early selection models of 

attention (Broadbent, 1957, 1958). There is an implementation whereby task-relevant 

features are channeled (or filtered in) through the ventral/dorsal pathways for further 

transformation and processing which eventually influences behavior. On the other hand, 

most task-irrelevant features, while initially represented, are subsequently reduced (or 

filtered out). The data indicate that interactions during Stage 1 particularly with the orbito-

frontal and ventral-medial regions of the PFC, play a pivotal role in determining the 

trajectory of the same physical stimulus feature. This underscores potential constraints in 

how brain networks dynamically filter or allow features, especially in capacity-limited 

systems (Shiffrin & Gardner, 1972). Further research, especially those that delve into the 

finer granularities of neural responses (Huber et al., 2021; Lawrence et al., 2019; F. W. Smith 

& Muckli, 2010; Stephan et al., 2019), could shed more light on these mechanisms.  

The two primary constraints underpinning the discussion are presented across Figure 2-2 to 

Figure 2-4. The first constraint emphasizes the sustained representation of the categorization 

feature manifolds in each task throughout the entire duration of information processing. A 

pressing question arises from this observation: How do gain functions and the 

recurrent/interactive activations in the cortical layers (specifically in V1-V4 and both the 

ventral and dorsal pathways) actively uphold these task-relevant feature representations from 

the moment of stimulus onset to the final behavior? The second constraint (cf. Figure 2-4) 
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notes that even when these same features are irrelevant in the task, the occipital cortex still 

briefly represents them. This brief representation leads us to consider the possibility of fusing 

individual MEG source amplitude data with fMRI cortical layer bold responses. Such a 

fusion could provide insights in how the inner and outer layers of the occipito-ventral (Huber 

et al., 2021; Margalit et al., 2020; Self et al., 2019) and dorsal cortex represent the same 

stimulus features, contingent on its task relevance. This approach may help elucidate how 

variations in layered cortical activity can result in opponent representations of the same 

feature, determining whether it is upheld or reduced. This distinction is pivotal to deepening 

the mechanistic understanding of the processes at play in Stages 1 and 2.  

The 100-170 ms occipito-ventral/dorsal junction and subsequent visual categorizations 

The task-dependent reduction and passing of stimulus features happen around the occipito-

ventral and dorsal junction, before and after the timing and sources of the right occipito-

ventral N/M170 Event Related Potentials (Bentin et al., 1996, 2007; R. A. A. Ince, Jaworska, 

Gross, Panzeri, van Rijsbergen, et al., 2016; Rousselet et al., 2004, 2014; Schyns et al., 2007) 

(ERPs). Past work showed that the N/M170 ERP reflects a network that communicates to 

the right fusiform gyrus the features contra-laterally represented in occipital cortices (R. A. 

A. Ince, Jaworska, Gross, Panzeri, van Rijsbergen, et al., 2016). The results suggest a 

reinterpretation of the N/M170. I showed that brain signal variance over the short (~50 ms) 

time window that precedes the N/M170 peak (cf. Figure 2-3B) reflects the junction during 

which brain networks transition from Stage 1 of high-dimensional stimulus representation 

to Stage 2 of lower dimensional processing of task-relevant feature manifolds. Transition to 

task-relevant categorization manifolds could explain why the N170 has been associated with 

multiple face, object and scene categorizations(Bentin et al., 1996, 2007; R. A. A. Ince, 

Jaworska, Gross, Panzeri, van Rijsbergen, et al., 2016; Rousselet et al., 2004). Developing 

further, Stage 2 transition is also when task-relevant features represented in left and right 

occipital cortices converge to the rFG (R. A. A. Ince, Jaworska, Gross, Panzeri, van 

Rijsbergen, et al., 2016; Zhan, Ince, et al., 2019), that seem to act as a buffer. Stage 3 

processing could then integrate (Jaworska et al., 2022; Zhan, Ince, et al., 2019) these 

lateralized features into bi-lateral representations for multiple categorization behaviors. 

Results of decreasing lateralization of receptive fields (K. N. Kay et al., 2015) along the 

occipito-ventral pathway support such developments of bilateral representations. 

Here again, further studies could fuse the precise temporal precision of MEG with the higher 

spatial resolution of fMRI (Finn et al., 2020; Huber et al., 2021; Lawrence et al., 2019; Self 
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et al., 2019), to better comprehend how the cortical layers of the ventral and dorsal pathways 

implement computations that integrate lateralized, buffered features into bilateral “stitched 

up,” representations of the stimuli, pre- and post-170 ms, as shown with simpler stimuli and 

tasks (Jaworska et al., 2022; Schyns et al., 2009). 

When these networks effectively categorize the stimulus is a fundamental question that 

relates to the visual information that is consciously perceived. Prevailing models(Dehaene 

et al., 2014; Mashour et al., 2020) suggest that stimulus features are “dispatched” to working 

memory for conscious perception. However, the data illustrates that categorization feature 

manifolds are maintained from occipital cortex to higher regions (R. A. A. Ince et al., 2015; 

R. A. A. Ince, Jaworska, Gross, Panzeri, van Rijsbergen, et al., 2016), potentially jointly 

acting as functional memory (Mashour et al., 2020) from ~100 ms post-stimulus until 

response. The features that constitute conscious perception(Schyns & Oliva, 1994, 1999) 

might align with the manifolds revealed at Stage 3, contrasting with the features that occipital 

cortex reduces at Stage 2 (see Figure 2-2 and Figure 2-3). This presents a tangible 

methodology to explore the complex landscape of conscious perception, including the 

influence of memory and prediction. The interplay between memory and categorization is 

evident as the feature manifolds of a categorization likely represent the predicted contents 

processed for categorization behavior when the stimulus appears. The findings also offer a 

robust framework to investigate the often-intangible contents of memory.  

At this juncture, remember that I flagged that the eyes were processed in both face tasks, 

even when irrelevant in face expression. A similar result over the time-course of the N170 

ERP is documented (Schyns et al., 2003, 2007), where the eyes are systematically 

represented, though not always necessary to judge the expression of a face. Others suggested 

that the first contact with a face is via the eyes (Niedenthal et al., 2010). The results of this 

chapter do indeed suggest that participants systematically represent the eyes and other face 

features in face categorizations tasks. These denser representations could explain why a 

deeper N170 ERP is often reported for faces (Bentin et al., 1996, 2007; Rousselet et al., 

2014). Systematic representations of features spatially distributed across the face into the 

rFG could also explain its apparent “holistic representation” (Itier & Preston, 2018; 

Nemrodov et al., 2014; Richler & Gauthier, 2014). 

The image is more broadly represented in the face tasks than in the other two tasks. This 

likely results from a combination of eye movements, inter-subject variability, cortical 

magnification, and attention. Specifically, the face is spatially broader in stimuli than the 
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pedestrian and vehicle. In the face tasks, participants likely attended to a larger region than 

in the pedestrian and vehicle tasks, which could also increase inter-subject variability. 

Besides, pedestrian and vehicle tasks are located in the two sides of the image, which leads 

to more eye movements. Together, these factors could have contributed to the broader image 

representation in the face tasks. However, these factors do not influence the conclusion 

because I aim to study the transformation of visual contents in natural vision, including the 

involvement of visual attention. Though the image representation is broader in face tasks, 

all four tasks demonstrated the same dimension-reduction transformations into task-relevant 

features over time. 

Given the blocked task design, participants could use different decision-making strategies 

for the different blocks. However, because features obtained from reverse correlation cover 

different aspects of the image they are constrained to the same psychophysical scale between 

tasks. This is not problematic for rank-based information theoretic analysis. 

I studied pervasive mechanisms that dynamically transform the same complex, high-

dimensional input images for multiple visual categorizations. Within 150ms post-stimulus, 

the occipital cortex, under frontal guidance, either passes or reduces a feature based on its 

relevance in a categorization task, revealing opponent representational signatures at the 

MEG source-level. Following this, occipito-ventral and dorsal networks focus on the feature 

manifolds relevant to each categorization task. These feature transformations offer 

mechanistic insights into attention theories, face and object categorizations, and our 

understanding of conscious perception. 

2.5 Methods 

2.5.1 Participants 

Ten participants (3 males and 7 females, age: M = 25.3, SD = 1.64, range = 23-28 years old) 

with normal or corrected to normal vision participated in all four tasks. All participants are 

right-handed. Gender and age were not considered in the study design and analysis. 

Participants were recruited via a database of participants at University of Münster. Informed 

consent was obtained from all participants. I designed and piloted the experiment. The 

formal experiment data was collected from University of Münster, Germany. The study was 

approved by the ethics committee of the University of Münster (2019-198-f-S) and 

conducted in accordance with the Declaration of Helsinki. 
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The number of participants and trials was determined based on statistical power estimation 

from the study employing within-participant statistics and population prevalence, which 

have demonstrated the ability to obtain robust and replicable effects (R. A. A. Ince et al., 

2020, 2022). 

2.5.2 Stimuli 

I used 64 base greyscale images (8 face identities with 4 male and 4 female × 2 expressions 

× 2 pedestrians × 2 car) of a realistic city street scene comprising the combinations of varying 

embedded targets: a central face (which was male vs. female and happy vs. neutral), left 

flanked by a pedestrian (male vs. female), right flanked by a parked vehicle (car vs. SUV). 

The images were presented at 5.72° × 4.4° of visual angle, with 364 × 280 pixel size.  I 

sampled information from each image, using the Bubbles procedure.  Specifically, I 

multiplied the image with randomly positioned Gaussian apertures (sigma = 15 pixels) to 

vary the visibility of image features on each trial. I used 35 Gaussian apertures in all tasks, 

which was determined by a behavioral experiment pilot with 4 participants from Glasgow to 

trade-off the participant’s performance among four tasks.  I pre-generated 768 random 

bubble masks which were the same in all categorization tasks. On each session of trials, I 

applied the 768 masks to 12 repetitions of the original 64 images, for a total of 768 trials 

presented in a random order. 

2.5.3 Task procedure 

Each trial began with a fixation cross presented for a random time interval 500-1000 ms, 

followed by one of the original stimuli for 150 ms, whose features were randomly sampled 

with the Bubbles procedure. Participants were instructed to maintain fixation on each trial 

and respond as quickly and accurately as possible, by pressing one of two keys ascribed to 

each response choice—i.e. “happy” vs. “neutral” in face expression; “male” vs. “female” in 

face gender task; “male” vs. “female” in pedestrian gender; “car” vs. “SUV “in vehicle type.  

Each task comprised two sessions of trials, each comprising 768 trials (of 6 runs followed 

by a short break, each run comprising 128 trials = 8 identities × 2 expressions × 2 pedestrians 

× 2 cars × 2 repetitions). 

2.5.4 MEG 

Participants were seated upright in a magnetically shielded room while their MEG and 

behavior data were simultaneously recorded. Brain activity was recorded using a 275-
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channel whole-head MEG system (OMEGA 275, VSM Medtech Ltd., Vancouver, Canada) 

at a sampling rate of 600 Hz. During MEG recordings, the head position was continuously 

tracked online by the CTF acquisition system. For MEG source localization, I obtained high-

resolution structural magnetic resonance imaging (MRI) scans in a 3T Magnetom Prisma 

scanner (Siemens, Erlangen, Germany). 

2.5.4.1 Pre-processing 

I performed analyses with Fieldtrip (Oostenveld et al., 2010) and in-house MATLAB code, 

following recommended guidelines (Gross et al., 2013). I first visually identified noisy 

channels and trials with epoched data (-400 to 1500 ms around stimulus onset on each trial) 

high-pass filtered at 1 Hz (4th order two-pass Butterworth IIR filter). Next, I epoched the 

raw data into trial windows (-400 to 1500 ms around stimulus onset, 1-25 Hz band-pass, 4th 

order two-pass Butterworth IIR filter), filtered for line noise (notch filter in frequency space), 

applied fieldtrip build-in denoise function specific to the MEG system, and rejected noisy 

channels and trials identified in the first step. I then decomposed the data with ICA, and 

visually identified and removed the independent component corresponding to artifacts (eye 

blinks or movements, heartbeat). 

2.5.4.2 Source reconstruction 

I applied a Linearly Constrained Minimum Variance (LCMV) beamformer (Hillebrand & 

Barnes, 2005) to reconstruct the time series of 12,773 sources on a 6mm uniform grid warped 

to standardized MNI coordinate space. Using a Talaraich-Daemon atlas(Lancaster et al., 

2000), I excluded all cerebellar and non-cortical sources, and performed statistical analyses 

on the remaining 5,107 cortical grid sources. I categorized cortical sources into four regions 

based on ROIs defined in the Talaraich-Daemon atlas (Lancaster et al., 2000). 

Table 2-1 Cortical sources categorized into four regions of the Talaraich-Daemon atlas (Lancaster 

et al., 2000).   

Occipital region Lingual gyrus (LG) 

Cuneus (CUN) 

Inferior Occipital Gyrus (IOG) 

Middle Occipital Gyrus (MOG) 

Superior Occipital Gyrus (SOG) 

Temporal region Fusiform Gyrus (FG) 

Inferior Temporal Gyrus (ITG) 

Middle Temporal Gyrus (MTG) 

Superior Temporal Gyrus (STG) 

Parietal region Superior Parietal Lobule (SPL) 
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Inferior Parietal Lobule (IPL) 

Angular Gyrus (ANG) 

Supramarginal Gyrus (SMRG) 

Precuneus (PRECUN) 

Postcentral Gyrus (POSTCEN) 

Frontal region Anterior Cingulate (AC) 

Inferior Frontal Gyrus (IFG) 

Medial Frontal Gyrus (MeFG) 

Middle Frontal Gyrus (MiFG) 

Orbital Gyrus (OG) 

Paracentral Lobule (PL) 

Precentral Gyrus (PRECEN) 

Superior Frontal Gyrus (SFG) 

 

2.5.5 Analyses 

Feature representation 

What is it? 

Feature representation refers to a systematic relationship between a feature of the external 

world and neural activity (Baker et al., 2022; Poldrack, 2021). Our methodology quantifies 

the representation of a visual feature so that we can trace where, when and how the brain 

processes it. 

How is a feature representation quantified? 

In our data, the visibility of a feature in a stimulus varies in a continuous manner across 

trials–i.e. it is not a binary feature present vs. absent. To measure the representation of the 

feature into MEG activity, we use Mutual Information (specifically, the Gaussian Copula 

MI, GCMI) (R. A. A. Ince et al., 2017). GCMI quantifies across trials how strongly the 

variations of MEG amplitude represent the variations of feature visibility in the stimuli–i.e. 

as the information that MEG amplitude variations and feature visibility variations share, 

measured on the scale of bits. 

For example, Figure 2-6A now plots the mean MEG amplitude response curves, where all 

trials are split into 5 equally occupied feature visibility bins–quintiles of the empirical CDF 

of feature visibility. Statistical difference between these mean curves is considered to reflect 

important processing differences across feature visibility conditions. Figure 2-6 clarifies that 
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the highest MI measure of feature representation corresponds to largest differences amongst 

mean MEG responses to the different bins of feature visibility. 

The MEG amplitude curves evolve with peaks and troughs. These peaks and troughs can 

reflect representations of other features and/or cognitive variables. However, the feature 

representation curve underneath in Figure 2-6B does not mirror the MEG peaks because our 

information theoretic analysis specifically isolates, from raw MEG amplitude variations, the 

information that only pertains to the tested stimulus feature. 

Feature manifolds 

We used ‘manifold’ in its mathematical understanding, as a topological space that locally 

resembles Euclidean space. In neuroscience, ‘neural manifold’ is often used to refer to 

geometric structures in neural population activity–i.e. a subspace of neural state space. 

We deliberately used ‘feature manifold’ to refer to the geometric structure of visual inputs 

(e.g. images) that are represented in neural activity. Object categorization relies on 

diagnostic features, which we show underline categorization behavior. However, a given 

object can be categorized in multiple different ways, each relying on distinct sets of 

diagnostic features. This implies that the brain must represent different stimulus feature 

manifolds for this object. This is often neglected in neuroimaging studies of visual 

categorization. We show that only a subspace of the 2D projection of the real-world (i.e. the 

image) is selected for categorization, in a task and participant-specific way. 

Participant features 

To reveal what image features each participant used to in each categorization task (i.e. the 

task-relevant features), I quantified the cross-trial statistical dependence between the 

visibility of each pixel due to bubbles sampling (Gosselin & Schyns, 2001) and the 

corresponding correct vs. incorrect categorization response of the participant in this task, 

computed as Mutual Information (Cover & Thomas, 2012; R. A. A. Ince et al., 2017), 

MI(pixel visibility; correct vs. incorrect categorization). I represented pixel visibility on each 

trial as a real number from 0 to 1 (low to high visibility), which I then binarized using a 0.2 

threshold into 2 categories: 0 for low visibility and 1 for high visibility. To establish 

statistical significance, I ran a non-parametric permutation test with 1,000 shuffled 

repetitions, corrected over 101,920 ( 364 x 280) pixels using maximum statistics (FWER p 
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< 0.05). Significant pixels represent the participant’s task-relevant features whose visibility 

influences their categorization behavior in each task (see Figure 2-1, Figure 2-2A and Figure 

2-7). 

Global representation of image pixels in brain networks 

To visualize the global representational dynamics of the visual stimuli in each categorization 

task, I computed MI(pixel-visibility, MEGt) for each one of the 364 x 280 stimulus pixels 

(downsampled to 61 x 47 for computational efficiency), 5,107 cortical MEG sources and 

271 time points, producing a 3D matrix of MI values with dimensions of 2867 (61 x 47) 

pixels x 271 time points x 5,107 sources. MI quantifies the statistical dependence between 

two variables.  

I then segmented the time dimension into nine intervals ([50-70], [71-80], [81-90], [91-120], 

[121-140], [141-150], [161-200], [221-280], [291-350] ms). To visualize the pixels that the 

MEG sources of each participant represent, I pooled all the pixels with statistically 

significant MI on at least one source on the considered interval. To compute this statistical 

significance in each participant, for each pixel, I took the maximum MI(pixel visibility, 

MEGt) at each time point, resulting in a pixels x time matrix.  I performed a FDR test on this 

matrix with a false discovery rate set at q = 0.001.  For each image pixel, I color-coded the 

number of participants with such significant MI (maximum number = 9, Maximum A 

Posteriori (MAP) [95% Highest Posterior Density Interval (HPDI) prevalence = 0.90 [0.61 

– 0.99]). Similarly, to visualize which MEG sources of the participant represent these pixels 

in each time interval, I pooled all sources with at least one significant MI(pixel visibility, 

MEGt) in the interval.  I reported the number of participants with a significant pixel To 

compute this statistical significance in each participant, for each source and time point, I 

took the maximum MI(pixel visibility, MEGt) over all pixels, resulting in a sources x time 

matrix.  I performed a FDR test on this matrix with a false discovery rate set at q = 0.1%.  

Feature mask and visibility 

As different participants can use different features in each task, to generalize analyses across 

participants, I transformed the data from levels of pixel visibility into levels of feature 

visibility (i.e. comprising the pixels making up the features of each participant). To this end, 

for each feature I selected the top 5% pixels with highest MI(pixel visibility; correct vs. 

incorrect categorization) to form feature masks.  On each trial, I computed feature visibility 
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as the feature mask pixels shown by the bubbles sampling, weighted by the MI values of 

each pixel of the feature mask. I divided mouth (for face expression) and eyes (for face 

gender) features into their left and right components and considered them as a 2-dimensional 

feature variable in analyses.  Figure 2-7 shows the feature masks of each participant and 

task. 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =  ∑ 𝑀𝐼(𝑃𝑖𝑥𝑒𝑙𝑖 𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦; 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟) · 𝑃𝑖𝑥𝑒𝑙𝑖 𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 

𝑖 

 

 

Feature representation into MEG sources 

To reconstruct where, when and how MEG sources represent each participant’s features, I 

computed MI between the visibility of each feature and 5107 MEG source signals over 0 to 

450 ms, in each task—i.e. when the feature is task-relevant, and also in the three other tasks 

when it is task-irrelevant, computed as MI(feature visibility; MEGt) with GCMI as described 

above (R. A. A. Ince et al., 2017). To establish statistical significance, I ran a non-parametric 

permutation test with 1,000 shuffled repetitions, corrected (FWER p < 0.01) over 5107 

sources x 271 timepoints with maximum statistics. This computation produces a 4 (tasks) x 

4 (features) x 5,107 sources x 271 time points feature representation matrix for each 

participant. 

Task modulation of feature representation on MEG sources 

Synergy computes the difference between the overall representation strength of a feature 

(i.e. its visibility, F) in MEG activity, quantified across all trials ignoring the particular task 

(quantified with MI), and the average task-conditional representation strength (quantified 

with conditional MI): 

 Synergy(F; MEGt; Task) = MI(F; MEGt | Task) – MI(F; MEGt)  

If the Task factor has no effect on representation, the above MI quantities will not differ 

resulting in zero synergy. Synergy results when the average representational strength of a 

feature is higher when controlling for task, meaning that we would better predict the stimulus 

from brain activity if we also knew the task performed. 
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To quantify the modulation effect of the four categorization tasks on the representation of 

the participant’s features into MEG source activity, for each participant feature, I computed 

information theoretic synergy, as just defined, between 0 and 450 ms post-stimulus, where 

the categorization tasks variable has values of 1 to 4 to represent each task. To establish 

statistical significance, I use a nonparametric permutation test, with 1,000 repetitions, 

shuffling the task label of each trial, corrected over 5107 sources * 271 timepoints (FWER 

p < 0.01). This provides permutation samples from the null distribution where task does not 

affect feature representation.  

Task-relevant vs. task-irrelevant 

To quantify the specific modulation of task-relevance vs. irrelevance on the MEG source 

representation of each participant feature, I computed again synergy, this time as 

synergy(feature visibility; MEGt; task-relevance), where task-relevance could be 1 (for task-

relevant) or 2 (for task-irrelevant). It was observed that synergy arose from two different 

representational mechanisms: Opponent feature representation and task-relevant feature 

selection.  I define each below. 

Opponent feature representations 

Opponent feature representation on a given source means this: the same physical variations 

of feature visibility incur MEG amplitudes in opposite directions depending on whether this 

feature is task-relevant vs. task-irrelevant. Figure 2-6 illustrates this opposition in the shaded 

time window. We can see that the same changes in feature visibility give rise to MEG 

amplitude changes in opposite directions in the task-relevant and task-irrelevant binned 

MEG amplitude curves. Specifically, when the feature is task-relevant, the MEG amplitude 

response is more negative to higher feature visibility; in contrast, when the feature is task-

irrelevant, the MEG amplitude response is more negative to lower feature visibility. It is 

important to note that this reversal refers to a difference in the sign of the correlation between 

feature and MEG–although we use MI, which is an unsigned measure. This reversal is not a 

statement about the sign of the evoked magnetic field. As shown in the example, there is a 

change in the sign of the correlation relationship, but the evoked MEG signal has negative 

sign in both cases. This implies that significant MI for F in multiple tasks, but their synergy 

reveals that this representational relationship depends on tasks. 

I formalize this effect as the following logical conjunction: 
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Opponent feature representation:-  

<significant task-relevant MI>  

& <task-irrelevant MI> 

& <significant synergy> 

& <opponent signs for relevant vs irrelevant> 

Task-relevant feature selection 

Occurs when a given source represents a participant feature only when it is task-relevant. 

This synergy is logically defined as: 

Unidirectional task-relevant feature representation:-   

<significant task-relevant MI> 

& <no significant task-irrelevant MI> 

& <significant synergy>  

 

Mutual Information (MI) 

When testing whether a brain source is responsible for processing a stimulus feature, we 

conduct statistical tests to compare neural activities of the brain source (i.e. MEG amplitude 

in our case) under conditions where the feature is present versus absent. A significant 

difference in MEG amplitudes between two conditions indicates that the brain source is 

involved in processing that stimulus feature. In neuroscience, this systematic relationship 

between a particular feature of the external world and empirical data of neural activity is 

broadly called feature representation into neural activity. When feature visibility is not 

simply a binary state (present or absent), but rather exists on a continuous scale, we can 

quantify the relationship between feature visibility and MEG amplitudes using Mutual 

Information (MI) analysis. Figure 2-6 uses an example source to illustrate how the MI metric 

quantifies the relationship between feature visibility and MEG amplitude. 
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Figure 2-6 Illustration of Mutual Information (MI) and opponent representation. A. Mean MEG 

amplitude for 5 feature visibility bins. I split trials into 5 bins by feature visibility and plotted the mean 

MEG amplitude of an example occipital source for each visibility bins. In the period highlighted in 

grey, feature visibility was correlated with MEG amplitude. However, there was an opponent 

representation of the feature when it was task-relevant vs. task-irrelevant. Specifically, when the 

feature was task-relevant, higher feature visibility corresponded to more negative MEG amplitudes. 

In contrast, when the feature was task-irrelevant, lower feature visibility corresponded to more 

negative MEG amplitudes. B. MI(Feature Visibility; MEG Amplitude). MI therefore quantifies the 

relationship between feature visibility and MEG amplitude, which is broadly called feature 

representation in MEG amplitude in neuroscience. 

 

Gaussian Copula Mutual Information (GCMI) 

I calculate MI between the continuous valued pixel visibility (bubble mask value) and the 

continuous valued MEG amplitude at a given source and timepoint with Gaussian Copula 

Mutual Information (GCMI)  (R. A. A. Ince et al., 2017). The empirical Cumulative 

Distribution Function (CDF) of the marginal distribution of each variable (pixel visibility 

and MEG) is estimated, and the data are transformed via the inverse CDF of a standard 

normal distribution. This results in a data set with perfect standard normal marginal 

distributions, but the same empirical copula as the original data. Then standard analytic 

expressions for bias-corrected Gaussian MI are used. As MI is invariant to marginal 

distributions, and Gaussian distribution has maximum entropy given constrained second 
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moments, this GCMI procedure provides a lower bound estimate of the true MI (R. A. A. 

Ince et al., 2017). 

Bayesian population prevalence 

Table 2-2 below provides a reference to transform the proportion of participants from the 

sample who have a significant effect into the Bayesian population prevalence(R. A. Ince et 

al., 2021). Population prevalence is a Bayesian estimate of the within-participant replication 

probability. Replicating a result in multiple participants offers a much higher standard of 

evidence than to declare statistical significance of a population mean effect. For example, p 

= 0.05 typically defines population mean statistical significance; p < 0.001 would be 

considered stronger evidence. In Figure 2-3A (diagonal of the matrix), I show 8/10 

participants have significant MI task-relevant feature representations in occipital and ventral 

cortex (FWER p < 0.01). The frequentist p-value corresponding to this result under the 

global null that no one in the population shows this effect is 1.6x10-9. Under the global null 

the results are therefore 7 orders of magnitude more surprising than a typical mean 

demonstrating the experimental effect at the population level. Here, I report Bayesian 

estimates of the population parameter with their associated uncertainty. Given 8/10 

participants significant at p = 0.01, we can be confident that the population replication 

probability is greater than 49%. I would expect the majority of the population to show this 

result if they were tested in the same experiment.  

Table 2-2 Bayesian population prevalence:  Maximum A Posteriori (MAP) [95% Highest Posterior 

Density Interval (HPDI)] for k significant participants out of 10. 

 Within participant α = 0.05 Within participant α = 0.01 

K=10 1 [0.75 - 1] 1 [0.75 – 1] 

K=9 0.89 [0.61 – 0.99] 0.90 [0.61 – 0.99] 

K=8 0.79 [0.49 – 0.96] 0.80 [0.49 – 0.96] 

K=7 0.68 [0.38 – 0.90] 0.70 [0.38 – 0.90] 

K=6 0.58 [0.28 – 0.83] 0.60 [0.28 – 0.83] 

K=5 0.47 [0.19 – 0.75] 0.49 [0.19 – 0.75] 

K=4 0.37 [0.11 – 0.66] 0.39 [0.11 – 0.66] 

K=3 0.26 [0.05 – 0.56] 0.29 [0.05 – 0.56] 

K=2 0.16 [0 – 0.44] 0.19 [0 – 0.44] 

K=1 0.05 [0 – 0.34] 0.09 [0 – 0.34] 

 

Table 2-3 reports the average categorization accuracy and reaction time performance 

(standard deviation in parentheses) in each task of the design (see Table 2-4 below for 

individual participants’ data).   



65 

 

Table 2-3 Average accuracy and reaction times across participants in each categorization 

task. 

 Face 

Expression 

Face Gender  Pedestrian 

Gender 

Vehicle 

Accuracy 77.21% 

(1.45%) 

75.12% 

(1.92%) 

76.11% 

(1.56%) 

65.25% 

(1.91%) 

Reaction Time 753 ms (54.14) 738 ms (42.24) 779 ms (42.15) 978 ms (50.51) 

 

Table 2-4 Per participant average accuracy and RT in each categorization task. 

 

 Face 

Expression 

Face Gender Pedestrian 

Gender 

Vehicle 

Participant 1 70.31% 68.82% 75.20% 69.01% 

Participant 2 78.06% 74.61% 73.57% 64.19% 

Participant 3 83.59% 85.74% 80.99% 55.17% 

Participant 4 76.63% 74.22% 67.84% 57.23% 

Participant 5 76.30% 74.35% 71.74% 60.35% 

Participant 6 76.17% 71.81% 74.35% 66.80% 

Participant 7 84.44% 83.07% 83.07% 66.54% 

Participant 8 70.64% 65.36% 79.62% 67.84% 

Participant 9 78.26% 75.46% 73.31% 72.07% 

Participant 10 77.67% 77.73% 81.38% 73.31% 

 Face 

Expression 

Face-Gender  Pedestrian 

Gender 

Vehicle 

Participant 1 614 583 651 775 

Participant 2 1127 954 1058 1308 

Participant 3 654 690 730 846 

Participant 4 805 729 796 1037 

Participant 5 865 903 824 890 

Participant 6 684 816 745 1037 

Participant 7 667 642 668 790 

Participant 8 614 683 650 821 

Participant 9 596 554 725 928 
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Supplementary Information 

 

Figure 2-7 Task-relevant features. A. Mean MI in each categorization task.  In each task (columns) 

and participant, for each image pixel I computed MI(<pixel visibility; correct vs. incorrect 

categorization>) (R. A. A. Ince et al., 2017), to reveal the significant (p < 0.05, FWER corrected) 

pixels that modulate categorization accuracy. For each pixel, i computed the mean MI across all ten 

participants.  B. Task-relevant features in each participant. In each task (columns) the same olor-

code represent the significant features for this participant.  Note in each column (e.g. pedestrian 

gender) that different participants can use different (even mutually exclusive) features for the same 

categorization responses (e.g. for “male” vs “female pedestrian”, upper body in participants 1, 2 and 

3; lower body in participant 4). From the proportion of participants who significantly used each pixel, 

I estimated the population prevalence, expressed as a Bayesian maximum a posteriori (MAP) [95% 

Highest Posterior Density Interval (HPDI)] estimate. Face expressions: MAP [95% HPDI] = 1 [0.75 - 

1]. Face gender: MAP [95% HPDI] = 0.58 [0.28 – 0.83]. Pedestrian: MAP [95% HPDI] = 1 [0.75 – 1]. 

Vehicle: [95% HPDI] = 0.47 [0.19 – 0.75]. 

 

Participant 10 906 828 946 946 
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Figure 2-8 Systems-level image transformations along the layers of the ventral 

pathway. A color-coded reference for the ventral pathway sources color-code their (cyan-to-yellow) 

depths (back-to-front). I sliced the ventral pathway into 7 layers of increasing depth and repeated for 

each layer (row), the analysis of Figure 2-2A to visualize the image transformations in the sources of 

each ventral layer (row) and time periods (columns in each task). Images show the number of 

participants (color-coded) that represent a given image pixel within a ventral layer and time window 

and task (FDR test with q=0.05). The result show task-specific transformations of broader image 

representations into lower-dimensional manifolds across the layers of the ventral pathway over ~91-

150ms (when occipital cortex reduces task-irrelevant features). 

 

 

Figure 2-9 Distribution of peak time of feature representation. Across Stages 1 and 2, within 80-

140 ms, for task-relevant vs. task-irrelevant features in each task. 
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Figure 2-10 Categorical representation into MEG activity. Four rows are four tasks and four 

columns are four categorical information (i.e. categories of face expression, face gender, pedestrian 

gender and vehicle type). The plots show the mean MI(categorization response; MEG amplitude) 

over 10 participant. In each plot, x axis is time and y axis is sources (from top to bottom are occipital, 

temporal, parietal and frontal sources labeled with different respective). The plots on diagonal show 

that task-relevant categorical information is represented in brain activity after 200 ms post stimulus 

onset. While the plots off diagonal show that task-irrelevant categorical information is not represented 

in brain activity. 

 

 

Figure 2-11 Categorization response representation into MEG activity with response-locked 

analysis. Four each task (each row), I plotted the prevalence of MI(categorization response; 

response-locked MEG activity) in grassbrains for 6 time windows across -200-400ms from 

participants’ response. The results show a broad parietal-frontal network representing categorization 

responses, which peaks between 20-200ms post decision.  
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Note: Though the representation of categorization responses (behavior) per se is quite 

interesting, this study only focuses on the early representations of the feature manifolds and 

their transformations over time depending on the tasks. 
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3 Decomposing statistical dependence with 

pointwise and samplewise mutual information 

3.1 Summary 

In Chapter 2, although I reconstructed how the brain transforms the same complex scene 

images into task-relevant, low-dimensional features, the features used by participants in this 

experiment were relatively simple. However, many visual classification tasks rely on more 

complex features. This raises an important question: What is the minimum independent unit 

of representation in the brain for a visual categorization task? Addressing this question 

requires decomposing the reconstructed features, which necessitates a more precise 

characterization of the single trial relationship between stimuli and behavior, or between 

stimuli and the brain. With this refined single-trial relationship, clustering algorithms can 

learn about local clusters within these features. Therefore, in this chapter, I demonstrate how 

to use Pointwise Mutual Information (PMI) to decompose relationships and introduce a new 

information-theoretic measure inspired from PMI called Samplewise Mutual Information 

(SMI), which decomposes the relationship between two variables into the contribution of 

each trial/sample. I tested these measures using public datasets and will demonstrate how to 

use them and clustering algorithms to decompose diagnostic features in the next Chapter. 

3.2 Introduction 

Psychology depends heavily on statistical methods and modelling to gain insight from 

experimental data. Studies of decision making, categorization and information processing in 

psychology and neuroimaging rely on statistics to describe and quantify relationships in 

experimental data. Historically, the field has focused on the framework of Null Hypothesis 

Significance Testing (NHST), where an effect is statistically significant if it exceeds the 

chance level—defined as the level we would expect to observe 5% of the time under the null 

hypothesis that there is no effect. However, there is growing recognition of the insight that 

can be gained from quantifying statistical effects in more detail, as opposed to reducing them 

to a binary inferential result of significant vs. non-significant (McShane et al., 2019).  

Although the focus is often on such binary inferences, most statistical methods provide an 

overall aggregate effect size – a single number that quantifies the strength of dependence 

between two measured variables in the observed data. For example, a correlation coefficient 

quantifies the strength of the linear relationship between two continuous variables. Mutual 
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information (MI) generalizes the measures (Cover & Thomas, 1991; R. A. A. Ince et al., 

2017), to any form of dependence, linear or non-linear, and whether related to differences in 

means or in other higher order moments of a distribution. MI can be used as a statistical test, 

with either parametric inference based on the chi-squared null distribution or non-parametric 

permutation-based inference. However, a major advantage of MI for practical experimental 

statistics in psychology, neuroscience and neuroimaging is that it provides effect sizes on a 

common and meaningful scale (bits) across many different statistical tests with discrete, 

continuous, multidimensional and circular variables. These different families of variables 

are usually treated with different statistical tests whose effect sizes are not comparable. 

Although MI provides meaningful and quantitatively comparable effect sizes across a range 

of different tests, it reduces the relationship between the samples of two considered variables 

to a single number. Two different data sets could produce statistical dependence of the same 

strength (same MI value), even with a very different relationship between the variables. 

Methods that describe the statistical relationships in more detail could then give greater 

insight, particularly when comparing between signals or responses as is common in cognitive 

neuroimaging (with high dimensional neural responses, stimuli and experimental parameters 

and behavioral variables). 

Here, I present two extensions to MI that decompose the dependence in two different ways 

(Figure 3-1) to provide more detailed quantifications of the dependence relationship between 

two variables. The first, pointwise mutual information (PMI), quantifies the specific 

contribution of any particular combination of values of the variables. For example, consider 

an experiment where MI reveals a relationship between visual evidence (e.g. level of 

coherence of a pattern of random moving dots) and behavioral decision (e.g. perceived 

leftward vs rightward motion).  To decompose this relationship, I would compute a PMI 

quantity for each specific combination of stimulus value (i.e. level of evidence and direction 

of motion) and response value (i.e. “left” vs. “right”).  Figure 3-1 (third row) illustrates how 

PMI decomposes the relative contributions of each combination of the values of variables X 

(e.g. level of evidence for left and right motion) and Y (e.g. “left” vs. “right” decision) in 

both linear and nonlinear relationships. The second decomposition of MI, samplewise MI 

(SMI), quantifies the contribution of each individual sample (e.g. experimental trial) to the 

overall MI value. With SMI, researchers can quantify the degree to which individual trials 

follow or fail to follow (e.g. noisy trials) the overall pattern of dependence.  Figure 3-1 

(fourth row) shows the SMI value corresponding to each individual trial, where a high 
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positive (vs. negative) SMI (in red vs. blue) indicates that this trial contributes to (vs. 

contradicts) the relationship.  

In sum, PMI and SMI decompose the aggregate MI measure of dependence between two 

variables.  Whereas PMI quantifies the relative contribution of each possible combination of 

the values of the two variables, SMI accesses the contribution of each individual sample (e.g. 

experimental trial) to the aggregate effect.  Both PMI and SMI provide further insight into 

the relationship that the overall MI effect size value does not reveal. For example, in Figure 

3-1 the non-linear systems (see columns 4 and 5) have a similar strength of dependence 

measured with MI, but PMI and SMI reveal the different underlying structures of the 

relationships. 

 

Figure 3-1 Examples of PMI and SMI. Each column shows an example of data simulated from a 

different system with varying dependence between two variables X and Y (x-axis and y-axis). From 

left to right, the first three columns show three systems where X and Y are jointly normally distributed 

with correlations 0.8, -0.8 and 0.4 respectively. In the last two examples, X and Y have a correlation 

of 0, but a clear non-linear relationship. Mutual Information (MI) is calculated by binning each variable 

into 16 equally occupied bins (top row; grey lines show bin edges) and sample the corresponding 

joint probability distribution as the normalized count of the number of samples in each joint bin 

(second row).  Pointwise Mutual Information (PMI; third row): Red colors represent positive PMI, 

those values of X and Y are more likely to occur together than if the variables were independent. 

Blue colors represent negative PMI, those values of X and Y are less likely to occur together. The 

pattern of PMI over the input space reflects the structure of the underlying relationship (c.f. sign of 

correlation), both for linear (columns 1-3) and non-linear (columns 4-5) relationships. Samplewise 

Mutual Information (SMI; fourth row) shows the contribution of each sample (e.g. experimental trial), 

given by the PMI corresponding to the specific values of the variables that occurred in that sample. 

The mean of the SMI values over samples is equal to the overall MI. Positive SMI (red) indicates 

samples that contribute to the dependence; negative SMI (blue) indicates samples that are unlikely 
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given the overall dependence (i.e. noisy samples whose presence reduces the overall MI effect size 

value).   

 

In this chapter, I introduce PMI and SMI and illustrate them on data from a simple 2-

alternative forced choice (2-AFC) behavioral task. I show how PMI can quantify and classify 

the dependence between participants’ response on one trial and the response for the previous 

trial (i.e. history bias). I then show how SMI between evidence and response quantifies an 

aspect of decision-making behavior that relates to reaction time. Next, I consider a more 

complicated reverse correlation task, with a natural stimulus image that is richly sampled 

across trials in a 3-alternative forced choice (3-AFC) design. Using PMI, I show the structure 

of serial dependence of behavioral responses in this experiment. Next, I will show how PMI 

and SMI can both be applied to the multi-class reverse correlation problem. Using PMI, I 

extract the image pixels that preferentially drive one or more responses (i.e. a unique vs. 

common effect). Using SMI I compute a classification image for each trial, and from these 

trial-based classification images I extract low-dimensional stimulus features. I validate these 

features by showing that they have a stronger relationship with participants’ responses than 

other representations of the stimulus based on aggregate behavioral effects. 

3.3 Results 

Measuring serial dependence in a 2-AFC task with PMI 

Serial dependence, or choice history bias, refers to the tendency of participants’ responses 

on a trial, t, to be influenced by their response on the previous trial, t-1, even when this 

dependency is not optimal for decision making. Within the information theoretic framework, 

this serial dependence can be quantified with the mutual information between the responses 

on consecutive trials: 𝐼(𝑅𝑡; 𝑅𝑡−1). MI expresses the strength of the serial dependence in bits 

(an unsigned positive value), without detailing the nature of the underlying statistical 

relationship. Here, I show how PMI can reveal this structure.  
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Figure 3-2 Quantifying serial dependence with PMI. In a 2-AFC experiment the MI between the 

current response choice (t) and the response choice on the previous trial (t-1) is calculated from four 

pointwise terms. I define a serial dependence index by considering the difference between the terms 

representing repetition of response choice (highlighted in green) and those representing alternation 

of response choice (highlighted in purple). Participants with similar values of MI (teal curve, right 

axis) can have different response patterns, which are revealed as different patterns of PMI (inset 

matrices, dashed lines indicate selected participant). SDI is shown for each participant (grey bars) 

together with 95% bootstrap confidence intervals. The statistical significance of SDI is determined 

from a two-sided permutation test; * = p<0.05, ** = p<0.01, *** = p<0.001. 

 

Figure 3-2 (teal curve) shows MI, which quantifies the serial dependence between Rt and Rt-

1 for 32 participants in the visual fixed during 2-AFC discrimination task from (Urai et al., 

2019). Inset matrices show PMI for three participants which illustrates the structure of the 

dependence relationship (see Methods). The left and right illustrated participant, have 

significant MI (permutation test, p<0.001), which shows that there is an above chance 

dependence between Rt-1 and Rt. In contrast, there is no such serial dependence for the 

middle participant. The PMI values show markedly different patterns for relationships with 

similar strength (MI effect size). The participant shown on the right shows a tendency to 

repeat responses (e.g. more likely to respond “up” when response to the previous trial was 

also “up”).  The participant shown on the left shows instead a tendency to alternate responses 

(e.g. more likely to respond “up” when the previous trial was “down”). Red colors indicate 

positive PMI, a response sequence more likely to occur than if each response was 

independent (optimal behavior given the task); blue colors indicate negative PMI, a response 

sequence less likely to occur given the observed serial dependence.  Hence, this simple 

example illustrates how the aggregate MI effect size between two variables can be 

decomposed into the combinations of variable values that are more likely to occur (red, 

positive PMI) and those that are less likely to occur (blue, negative PMI), given the observed 
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dependence.  The overall aggregate MI is the expectation of these PMI values over the 

observed joint distribution (see Methods).  

To develop the analysis, I defined a Serial Dependence Index (SDI) as the difference 

between the repetition and alternation terms (see Methods, illustrated on the central 

participant in Figure 3-2). The bars in Figure 3-2 show the SDI for all 32 participants. 14 

participants have a significant serial dependence (two-sided permutation test on SDI, 

p<0.05), 9 of them tend to repeat previous responses (i.e. positive SDI), whereas 5 

participants alternated responses (i.e negative SDI). This analysis is applied to five different 

behavioral experiments from (Urai et al., 2019), a visual grating orientation decision task 

from (Benwell et al., 2019) and an unpublished auditory sweep direction decision task (see 

Methods). Based on the number of significant positive and negative SDI values, the 

population prevalence (R. A. A. Ince et al., 2020) proportion of individuals who would show 

such effects if tested is estimated. These results are shown in Figure 3-3. All experiments 

show reliable evidence for a non-zero prevalence of repeaters at the population level, with 

estimated values for the prevalence of repeating choice history behavior ranging from 15-

50%. Only three experiments show reliable evidence for non-zero prevalence of alternators 

at the population level. For the auditory tasks there is evidence that the proportion of the 

population who show repeater behavior is greater than the proportion that show alternator 

behavior.  
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Figure 3-3 Population prevalence of repeating vs alternating serial dependence. The population 

prevalence proportion of participants who would show a true positive significant SDI value  (R. A. A. 

Ince et al., 2020) is shown for a range of decision making tasks. For each participant a two-sided 

permutation test (p=0.05) is performed on the SDI value, the number of significant repeaters (SDI>0) 

and alternators (SDI<0). Circles show maximum a posteriori (MAP) estimate, thick lines show 50% 

highest posterior density interval (HPDI) and thin lines show 96% HPDI. Numbers in legend show 

number of participants and median number of trials for each experiment. 

 

Indexing behavioral accuracy in a 2-AFC task with SMI between stimulus and 

response 

I have shown how we can decompose the aggregate MI with PMI, to measure the 

contribution of each particular combination of variable values, and given an example where 

this pattern can be used to quantify meaningful features of the data.  Now, I consider 

Samplewise Mutual Information (SMI), which decomposes an MI effect size by quantifying 

the specific contribution of each individual sample (here, experimental trial in the behavioral 

task).   

To illustrate, I used the same 2-AFC motion perception task described and earlier  (from 

Urai et al., 2019), where observers responded “left” vs. “right” to leftward vs. rightward 

moving random dot patterns with different levels of motion coherence. For each observer, I 

computed MI between the 10 different stimuli presented (5 levels of coherence each for left 

and right motion) and the observers’ responses (“left” vs “right”). I then used PMI to 

decompose the aggregate MI relationship and reveal the behavioral pattern of each observer.  
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Figure 3-4 SMI between evidence and response in a 2-AFC task. A. Top: The joint probability 

distribution of stimulus evidence (here angle of a gabor patch, see Methods) and the participant 

response for an example participant. Middle: The joint probability distribution that would be expected 

if the participants response was statistically independent of the stimulus evidence. Bottom: The PMI 

for each combination of stimulus and response for this participant. B. The SMI value for each trial 

(obtained from the PMI for the particular stimulus and response combination of that trial) is negatively 

correlated with reaction time for this example participant. C: Combining trials across all participants 

(with SMI calculated based on each participant individual stimulus-response distribution), the sign of 

SMI is effectively equivalent to accuracy.  

 

Whereas PMI decomposes MI into the specific values of the variables, SMI decomposes MI 

into the contribution of each specific trial. Each trial consists of one specific stimulus value 

that was shown on that trial, together with the particular response that the participant chose 

on that trial. The SMI value of each trial is obtained as the PMI value corresponding to the 

specific combination of stimulus and response which occurred on that trial. Hence, here each 

trial takes one of 20 possible PMI values from the joint space of 10 stimuli and 2 participant 

responses (Figure 3-4A). The mean SMI value over all trials is equal to the aggregate MI 

effect size (see Methods).  

As for PMI, a positive (vs. negative) SMI value indicates that the combination of stimulus 

and response values on this trial are more (vs. less) likely to occur than if the variables were 

independent. In this experiment, all observers were accurate well above chance (mean 81%, 

range 70-87%, p<0.001 for each observer). For an observer performing above chance, 

positive SMI values generally indicate correct trials, as they indicate trials which follow the 

overall dependence pattern, which involves mostly correct responses due to the high 

accuracy. Negative SMI values generally indicate incorrect trials, as these are trials that don’t 

follow the overall pattern of dependence in the participant’s behavior.  Note that SMI 

associated with individual trials can be higher, or lower than the aggregate MI, because MI 

is the average of the SMI values.   

Measuring serial dependence in a 3-AFC task with PMI 

The task consists of classifying spatial and spatial frequency sampled versions of a bistable 

Dali painting with three responses depending on which interpretation of the image was 

perceived – nuns (N, the two nuns in the slave market), voltaire (V, the disappearing bust of 

Voltaire) or don’t know (DK). I show the PMI values for the 9 combinations of 3 responses 

over two consecutive trials (x-axis: previous response, y-axis: current response). Positive 

values of PMI mean that sequence of responses is more likely to occur than if the participants 
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were responding independently on each trial (red scale). Negative values of PMI mean that 

sequence of responses is less likely to occur (blue scale). Note that the serial dependence 

effect here is weak (0.0054 [0.0018-0.0188] bits mean [range] across participants) but 

significant, (p<0.005 for all subjects obtained from 100,000 permutations). This may be due 

to the presence of strong stimulus evidence on many trials (MI between dimensionality 

reduced stimulus and response is 0.36 [0.28-0.5] bits), which could override the bias from 

the previous response. PMI reveals different patterns of serial dependence: two participants 

(4 and 5, second row) show an alternating behavior between N and V: they are more likely 

to respond N when they responded V on the previous trial, and vice versa. Participants 1,2 

and 3 on the other hand instead show repetition behavior, they are more inclined to repeat 

the same positive response (but not necessarily DK), and less likely to switch between N and 

V. In addition to these patterns there are some participant specific idiosyncrasies: participant 

1 is more like to respond DK after V, and participant 3 is more likely to response N after 

DK. All participants are less likely to respond V after DK. Note that participant 2 is an outlier 

(10 x greater serial dependence MI than the other participants) and follows the repetition 

response pattern, suggesting there may have been periods where that participant paid less 

attention to the stimuli and instead responded repetitively. 

 

Figure 3-5 PMI for serial dependence in the 3-AFC Dali bubbles task 
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3.4 Methods 

Pointwise Mutual Information (PMI) 

Mutual information (MI) is the most general statistical test of dependence between two 

variables (Cover & Thomas, 1991; R. A. A. Ince et al., 2017). Here I consider the discrete 

formulation for categorical variables. Mutual information has a number of advantages as a 

statistical tool for practical data analysis. It makes minimal assumptions on the form of any 

dependence, is defined for any number of discrete classes and has a meaningful effect size 

in bits. The MI between two discrete variables S and R is usually defined as: 

𝐼(𝑆; 𝑅) = ∑ 𝑝(𝑠, 𝑟) log2

𝑝(𝑠, 𝑟)

𝑝(𝑠)𝑝(𝑟)
𝑠∈𝑆,𝑟∈𝑅

 

Note that this is equivalent to expectation with respect to the joint distribution P(S,R) of a 

function (Bouma, 2009; Church & Hanks, 1990; Cover & Thomas, 1991; R. A. A. Ince, 

2017; Lizier et al., 2014; Wibral et al., 2015): 

𝑖(𝑠; 𝑟) = log2

𝑝(𝑠, 𝑟)

𝑝(𝑠)𝑝(𝑟)
= log2

𝑝(𝑟|𝑠)

𝑝(𝑟)
  

So that 

𝐼(𝑆; 𝑅) = 〈𝑖(𝑠; 𝑟)〉𝑃(𝑆,𝑅) = ∑ 𝑝(𝑠, 𝑟)𝑖(𝑠; 𝑟)

𝑠∈𝑆,𝑟∈𝑅

 

The value of the function i(s;r) for specific values of s, r has been termed the pointwise 

(Bouma, 2009; Church & Hanks, 1990) or the local (Lizier et al., 2008) mutual information. 

While I(S;R)  is always greater than or equal to zero, the pointwise terms i(s;r) can be either 

positive or negative. Note that 𝑖(𝑠; 𝑟) for a specific r and s is positive when 𝑝(𝑟|𝑠) > 𝑝(𝑟), 

and negative when 𝑝(𝑟|𝑠) < 𝑝(𝑟). 

Applying a Bayesian perspective, p(r) can be thought of as the prior probability of r. p(r|s) 

can be interpreted as the posterior probability of r, after s has been observed. A Bayes 

optimal gambler who is able to observe values of S prior to betting on the outcome R (S-

gambler) with knowledge of the overall participants performance P(R,S) makes bets based 

on P(R|S). A gambler without access to S (blind gambler) would place bets based only on 
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the prior P(R).  Consider a simple experiment where the stimulus is an arrow pointing either 

left (sL) or right (sR). The participant is asked to respond indicating the observed direction 

(rL, rR). If the participant is performing the task successfully (i.e. above chance accuracy) 

then when sL is presented our S-gambler will place a larger bet on the outcome rL, as they 

know the participant is more likely to provide the correct response. If that response indeed 

occurs, then the S-gambler will have higher winnings than the blind gambler, as they bet 

more on the correct outcome rL, which indeed occurred on this trial. This corresponds to a 

positive value of i(rL;sL) because p(rL|sL)>p(rL), and means that, when the particular values 

sL and rL observed, our S-gambler won more than our blind gambler.  

However, assuming imperfect performance of our participant, perhaps due to lapses in 

concentration, there will be some trials where they make an error and respond rR even when 

the stimulus is sL. In this case, our S-gambler will have observed sL and bet accordingly on 

the outcome rL which was more likely. But although rL is more likely overall when stimulus 

sL is presented, on this particular trial, it didn’t occur – the participant was incorrect. While 

overall the participant is correct more than they are incorrect, they are still incorrect on some 

trials. So in this specific trial, our S-gambler would earn less than the blind gambler. This 

corresponds to a negative value of i(rR;sL) because p(rR|sL)<p(rR). In general, negative values 

of pointwise information mean that, for that particular combination of values, the 

information provided by the stimulus was misleading, because an event it suggested was less 

likely to occur, nevertheless did occur. Hence negative pointwise information values have 

been termed misinformation (Wibral et al., 2015). 

Of course, I(S;R)>0, and so, on average, the optimal posterior gambler will always do better 

in the long run. But pointwise mutual information can help us identify the contribution of 

specific combinations of values. Pointwise approaches have been applied in linguistics 

(Bouma, 2009; Church & Hanks, 1990; Recchia & Jones, 2009), in the study of complex 

systems such as cellular automata (Lizier et al., 2008, 2012, 2014) and recently in 

neuroscience (Martinez-Cancino et al., 2018; Wibral et al., 2014, 2015).  

Throughout this paper when plotting PMI values I actually plot the summand of the mutual 

information expectation, which is the local information value weighted by the probability of 

those particular values: 𝑝(𝑠, 𝑟)𝑖(𝑠; 𝑟). 

Samplewise Mutual Information (SMI) 
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Samplewise Mutual Information (SMI) is simply the PMI evaluated at the specific pair of 

values obtained in each sample. For example, if the experiment consists of a set of trials, 

where the stimulus presented on trial 𝑡 is 𝑠𝑡 and the response on the same trial is 𝑟𝑡, then the 

SMI for that trial is given by 𝑆𝑀𝐼(𝑡) = 𝑖(𝑠𝑡, 𝑟𝑡).  Then the overall MI is the mean of the SMI 

values over trials: 

𝐼(𝑆; 𝑅) =
1

𝑁𝑡
∑ 𝑆𝑀𝐼(𝑡)

𝑡

 

 

As for PMI, positive values occur on trials where the two observed values of s and r are 

more likely to occur together than they would if S and R were independent, and negative 

values occur on trials where the particular observed s and r are less likely to co-occur than 

if S and R were independent. In this sense, samples with positive SMI are those that follow 

the overall dependence relationship, while samples with negative SMI deviate from the 

overall relationship. 

As well as considering positive vs negative values (i.e. 𝑆𝑀𝐼(𝑡) > 0 or 𝑆𝑀𝐼(𝑡) < 0 ) we can 

also consider samples with 𝑆𝑀𝐼(𝑡) > 𝑀𝐼 vs those with 𝑆𝑀𝐼(𝑡) < 𝑀𝐼. The former are trials 

which are driving the relationship to be stronger, while the latter are trials that are pulling 

down the overall dependence. Splitting on MI rather than 0 results in a more balanced 

binarization, especially when the MI is large.  

In the field of complex systems both PMI and SMI have often been termed local mutual 

information.  

Serial Dependence Index (SDI) 

The serial dependence index for a 2-AFC task is defined in terms of the PMI as: 

𝑆𝐷𝐼 = [𝑖(𝑟𝑡−1 = 0, 𝑟𝑡 = 0) + 𝑖(𝑟𝑡−1 = 1, 𝑟𝑡 = 1)] 

          −[𝑖(𝑟𝑡−1 = 0, 𝑟𝑡 = 1) + 𝑖(𝑟𝑡−1 = 1, 𝑟𝑡 = 0)]  
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That is the difference between the diagonal terms (representing choice repetition) and the 

off-diagonal terms (representing choice alternation). Positive values of SDI indicate 

repetition serial dependence, negative values indicate alternation. 

SDT Experiment 

I consider behavioral data from a two alternative forced choice (2AFC) fixed duration visual 

motion discrimination task described in (Urai et al., 2019). Data are available from 

https://doi.org/10.6084/m9.figshare.7268558. 32 observers performed a random dot motion 

discrimination (up vs down) task. After a fixation interval of 0.75—1.5s, random dot motion 

stimuli (0, 3, 9, 27 or 81% motion coherence) were displayed for 750ms. See (Urai et al., 

2019) for full experimental details.  

Dali Experiment 

I consider behavioral data from a three alternative forced choice (3AFC) “bubbles” task (R. 

A. A. Ince et al., 2015; Zhan, Ince, et al., 2019). A ambiguous section of the Salvador Dali 

painting “Slave Market with the Disappearing Bust of Voltaire”, was sampled with bubbles 

(Gosselin & Schyns, 2001) across five spatial frequencies. The image was decomposed into 

5 spatial frequency octaves, each of which were independently sampled by randomly 

positioned Gaussian apertures with standard deviation dependent on spatial frequency. 

These sampled spatial frequency slices were then recombined into a single presented 

stimulus image. Participants were asked to report whether they perceived the nuns in the 

slave market, the bust of Voltaire, or don’t know, in case neither perception was clear.  

3.5 Discussion 

In event-related experimental designs there is increasing interest in what are often terms 

single-trial methods (Pernet et al., 2011), in which the trial-by-trial variability within 

participants is explicitly considered. For example, with events of two different classes, a 

classical approach would be to average the recorded neuroimaging signal to presentations of 

each class, and then look for a significant group level difference between those two mean 

responses across participants. But considering the variability at the trial level can give extra 

insight, particularly for reverse correlation experiments using high-dimensional sample data.  
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Therefore I developed a new information theory quantity SMI, inspired by PMI in 

information theory (Cover & Thomas, 2012; R. A. A. Ince et al., 2017), to quantify the trial-

by-trial relationship between variables. Specifically, PMI gives details of the pattern of 

dependence between discrete variables with any number of categories, which is 

demonstrated here with examples of serial dependence and behavioral decisions. SMI gives 

the contribution of each individual trial sample to the overall dependence. This provides an 

avenue for higher order statistics, where the trial-by-trial relationship between two variables 

can be quantified, and then related to other experimental measures. 

While I focus here on behavioral tasks, it is important to note that both PMI and SMI can be 

directly applied to neuroimaging data such as EEG, MEG or fMRI. I expect SMI in particular 

to have broad application. 

In reverse correlation experiments, by establishing the relationship between noise stimuli 

and participant behavior, we can reconstruct the features that influence behavior, which are 

also referred to as mental representations (Gosselin & Schyns, 2001; Murray, 2011). These 

representations reflect how the stimulus is mentally perceived and processed under a given 

task. However, many visual tasks rely on complex features (Zhan, Ince, et al., 2019), which 

raises an important question: what is the minimum independent unit of representation that 

the brain processes? To address this, it is crucial to accurately characterize the relationship 

between stimuli and behavior, or between stimuli and brain activity, at the level of single 

trials. SMI characterizes the single-trial relationship between stimulus samples and 

participants' behavior, resulting in single-trial classification images. Clustering algorithms 

like Non-negative Matrix Factorization (NMF) can learn local pixel clusters (Lee & Seung, 

1999) that share a common single-trial relationship structure as unitary features. 

Moreover, contemporary cognitive neuroscience views the brain as a complex network 

(Bassett & Sporns, 2017), where cognitive functions are supported by connections between 

different regions of the brain. Given this framework, a critical question arises: how are 

features represented by connectivity between two units (e.g. neurons, voxels, channels) 

ranther than only within individual units? Since representation involves the relationship 

between stimuli and neural activity (Baker et al., 2022; Poldrack, 2021), this now involves 

examining the relationship between a feature and a relationship. However, measuring 

relationships typically requires a set of trials or samples, and the relationship itself is often a 

single statistical value summarized from a set of trials or samples, therefore without 

trial/sample dimension. To overcome this problem, we can decompose a relationship into 
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contributions from individual trials, providing a method to measure the relationship between 

a variable and a relationship, or even between two relationships. With these methods, we 

can explore scenarios such as whether a feature is represented in the connectivity between 

activities of two units or whether the activity of a unit can represent the feature representation 

state of another unit. In all such contexts, the ability to compute and decompose relationships 

becomes essential. This is where SMI proves valuable, offering a powerful tool for these 

complex analyses in future work. 
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4 Decomposing task-relevant features with trial-by-

trial variations can better predict the behavior 

4.1 Introduction 

Reverse correlation techniques quantify the relationship between randomly sampled stimuli 

and behavioral responses, resulting in classification images that reveal which stimulus 

subspace are relevant to participants' behavior. (Gosselin & Schyns, 2001; Murray, 2011). 

The stimulus subspace revealed by classification images is termed task-relevant or 

diagnostic features, which are considered the mental representation of stimulus features  

(Brinkman et al., 2017). More recently, reverse correlation experiments have focused on 

measuring the neural representation of stimuli (Schyns et al., 2009; M. L. Smith et al., 2004; 

Zhan, Ince, et al., 2019). As shown in Chapter 2, this thesis also developed a systems-level 

analysis framework to reverse engineer the internal transformations of neural 

representational feature manifolds. 

However, it is not necessarily the case that the task-relevant feature must be the minimum 

feature unit in mental representation. Thus, this thesis proposed a key challenge of 

decomposing the task-relevant features (i.e. diagnostic features) into their local parts that 

collectively influence participants’ behavior trial by trial, serving as a proxy of the minimum 

feature unit of mental representation.  

To address this challenge, Chapter 3 develops Pointwise Mutual Information (PMI) to 

quantify the specific contribution of any particular combination of values of the variables 

and Samplewise Mutual Information (SMI) to measure the contribution of each individual 

sample to the overall relationships between two variables within the information theory 

framework. This chapter further applies PMI and SMI on task-relevant features that are 

obtained from Mutual Information (MI) between participants’ behavior and stimulus 

samples to decompose them into local parts respectively. PMI can be used to directly 

decompose the stimulus features into parts that are specifically contributing to each behavior 

response. While SMI does not directly decompose features into parts. Instead, SMI 

characterizes the single-trial relationship between stimulus samples and participants' 

behavior, resulting in single-trial classification images. I then apply clustering algorithms of 

Non-negative Matrix Factorization (NMF) to learn their local pixel clusters (Lee & Seung, 

1999) that share a common single-trial relationship structure as unitary features. Finally, MI 
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between each type of decomposed features and participants behavior is calculated to 

compare whether the decomposition enhances the MI relationship effect. 

This analysis is applied on the perception of Dali’s ambiguous painting experiment (Bonnar 

et al., 2002; Zhan, Ince, et al., 2019). Participants can perceive either two nuns or a Voltaire 

bust from a static image due to processing of different features. In this experiment, 

participants utilized more complex features from the images for each perceptual decision 

than the experiment in chapter 2, therefore more suitable for the decomposition analysis. In 

this chapter, I used PMI to decompose task-relevant features into features that support each 

individual perception (i.e. Nuns features or Voltaire features) as well as features that can 

support both two perceptions. Besides, I used SMI and the NMF algorithm to decompose 

the task-relevant features into more granular local components. By calculating the 

relationship (i.e. MI) between these different features and behavior, the results showed that 

the more refined features derived using SMI and NMF algorithms could better predict 

participants' behavior. 

4.2 Results 

PMI decomposition of task relevant features 

Pointwise Mutual Information (PMI) can decompose the relationship between two variables 

into the contribution of each pair of outcomes to the overall correlation. I calculate the PMI 

between participants’ behavior and stimulus samples to decompose task-relevant features 

into the features that support different behavioral responses. Figure 4-1 shows the task-

relevant features obtained by MI between stimulus samples and the participant’s behavior 

and the decomposed Nuns-unique, Voltaire-unique as well as common features. 
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Figure 4-1 PMI decomposition of task relevant features. Each row represents a feature. Each 

column represents a spatial frequency (SF). The first row shows task relevant features obtained from 

MI between stimulus samples and the participant’s behavior. The second row shows Nuns-unique 

features. The third row shows Voltaire-unique features. The fourth row shows common features for 

both Nuns and Voltaire responses. 

 

Single-trial task-relevant features 

Samplewise Mutual Information (SMI) can decompose the relationship between two 

variables into the contribution of each trial to the overall correlation (i.e., single-trial 

relationship). I calculate the SMI between participants’ behavior and stimulus samples for 

every pixel to decompose task-relevant features into the features that support participant’s 

behavioral responses in each individual trial. Left panel of Figure 4-2 displays three example 

trials showing the stimulus images presented to the participants. These stimulus images were 

sampled using the Bubbles technique (Gosselin & Schyns, 2001). The right panel shows the 

task-relevant features (classification images) derived for each trial using SMI. Specifically, 

the SMI values on the images reveal which regions or features of the image drove the 

participants' response in that particular trial. 
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Figure 4-2 Single-trial task relevant features. On the left panel, I selected three trials where 

participants gave three different behavior responses. One the right panel, red blobs (i.e. positive SMI 

values) on Images show which features are relevant to the participant’s behavior in that trial, which 

is obtained from SMI between stimulus samples of each pixel and the participant’s behavior. The 

average of SMI values over trials equals to MI.  

 

SMI-NMF decomposition of task relevant features 

Non-negative Matrix Factorization (NMF) is a popular algorithm used for decomposition 

and dimensionality reduction of non-negative data, such as images. NMF aims to express 

the original matrix as a linear combination of basis vectors (also known as components or 

features) with non-negative coefficients (Lee & Seung, 1999). I applied the NMF algorithm 

on matrix of single-trial task-relevant features obtained with SMI to decompose features into 

the local parts (a local group of pixels) that collectively support participant’s behavior from 

trial to trial (see Figure 4-3). Results show that NMF is able to decompose task-relevant 

features into parts of eyes, nose, mouth, which have been proven to be represented in 

participants’ brain activity (Zhan, Ince, et al., 2019). 
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Figure 4-3 SMI-NMF decomposition of task relevant features. By applying NMF on SMI matrix, 

task-relevant features are decomposed into local features (components). Each column represents a 

feature (component). Each row represents a spatial frequency (SF). NMF-SMI decomposes the 

complex task-relevant features into local features with specific semantic meaning (i.e. left or right 

eye, mouth, broad face). 

 

SMI-NMF features predict the participant’s behavior better  

I computed MI between participants’ behavior and each feature to show how much 

information in participants’ behavior can be predicted or explained by different kinds of 

features. The results show that the local features obtained from NMF-SMI decomposition 

can better predict participants’ behavior (see Figure 4-4). 

 

Figure 4-4 MI between participants’ behavior and each feature. Different rows show MI between 

participants’ behavior and features obtained by different methods. The last row shows how much 
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information (unit: bit) in total is carried by participants’ behavior. This figure reveals how much 

information about behavior can be predicted or explained by different features. Results show that 

NMF-SMI features can predict participants’ behavior better. 

 

4.3 Methods 

Participants 

Five right-handed observers with normal (or corrected to normal) vision participated in the 

experiment. Informed consent was obtained from all observers and ethical approval from the 

University of Glasgow Faculty of Information and Mathematical Sciences Ethics Committee. 

Experiment 

The ambiguous portion of Dali’s Slave Market with the Disappearing Bust of Voltaire was 

cropped to retain the bust of Voltaire and the two nuns. The image was presented at 5.72° × 

5.72° of visual angle on a projector screen (image size was 256 × 256 pixels). Bubble masks 

made of randomly placed Gaussian apertures sampled information from the cropped image 

to create a different sparse stimulus for each trial (see Figure 4-5). The Dali image was 

decomposed into five independent Spatial Frequency (SF) bands of one octave each, with 

cutoffs at 128 (22.4), 64 (11.2), 32 (5.6), 16 (2.8), 8 (1.4), 4 (0.7) cycles per image (cycles 

per degree of visual angle). For each SF band, a bubble mask was generated from a number 

of randomly located Gaussian apertures (the bubbles), with a standard deviation of 0.13, 

0.27, 0.54, 1.08, and 2.15 degrees respectively. The image content of each SF band was 

sampled by multiplying the bubble masks and underlying greyscale pixels at that SF band, 

and summed the resulting pixel values across SFs to generate the actual stimulus image. The 

stimulus remained on the screen until the observer depressed one of three possible response 

keys, according to which aspect of the image they perceived: “the nuns” (N), “Voltaire” (V), 

or “don’t know” (DK). A fixation cross was presented from 500 ms prior and until stimulus 

onset and observers were instructed to maintain fixation during each trial. The total number 

of Gaussian apertures remained constant throughout the task, ensuring that equivalent 

amounts of visual information was presented on each trial, at a level (60 bubbles) found 

previously to maintain “don’t know” responses at 25% of the total number of responses30. 

Since the underlying image was always the same, all analysis was performed on the bubble 

masks controlling visibility. For analysis, I down-sampled (bilinear interpolation) the bubble 

masks to a resolution of 64 × 64 pixels. 
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Each trial started with a fixation cross displayed for 500 ms at the center of the screen, 

immediately followed by a stimulus generated as explained above that remained until 

response. Observers were instructed to maintain fixation during each trial, and to respond by 

pressing one of three keys ascribed to each response choice. Stimuli were presented in runs 

of 150 trials, with randomized inter-trial intervals of 1.5–3.5s (mean 2s). Observers 

performed 4–5 runs in a single day session with short breaks between runs. Observers 

completed the experiment over 4–5 days. 

 

 

Figure 4-5 The stimulus in DALI experiment. 

 

Pointwise Mutual Information (PMI) 

Mutual information (MI) is the most general statistical test of dependence between two 

variables (Cover & Thomas, 1991; R. A. A. Ince et al., 2017). Here I consider the discrete 

formulation for categorical variables. Mutual information has a number of advantages as a 

statistical tool for practical data analysis. It makes minimal assumptions on the form of any 

dependence, is defined for any number of discrete classes and has a meaningful effect size 

in bits. The MI between two discrete variables S and R is usually defined as: 

𝐼(𝑆; 𝑅) = ∑ 𝑝(𝑠, 𝑟) log2

𝑝(𝑠, 𝑟)

𝑝(𝑠)𝑝(𝑟)
𝑠∈𝑆,𝑟∈𝑅

 

Note that this is equivalent to expectation with respect to the joint distribution P(S,R) of a 

function (Bouma, 2009; Church & Hanks, 1990; Cover & Thomas, 1991; R. A. A. Ince, 

2017; Lizier et al., 2014; Wibral et al., 2015): 

𝑖(𝑠; 𝑟) = log2

𝑝(𝑠, 𝑟)

𝑝(𝑠)𝑝(𝑟)
= log2

𝑝(𝑟|𝑠)

𝑝(𝑟)
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So that 

𝐼(𝑆; 𝑅) = 〈𝑖(𝑠; 𝑟)〉𝑃(𝑆,𝑅) = ∑ 𝑝(𝑠, 𝑟)𝑖(𝑠; 𝑟)

𝑠∈𝑆,𝑟∈𝑅

 

The value of the function i(s;r) for specific values of s, r has been termed the pointwise 

(Bouma, 2009; Church & Hanks, 1990) or the local (Lizier et al., 2008) mutual information. 

While I(S;R)  is always greater than or equal to zero, the pointwise terms i(s;r) can be either 

positive or negative. Note that 𝑖(𝑠; 𝑟) for a specific r and s is positive when 𝑝(𝑟|𝑠) > 𝑝(𝑟), 

and negative when 𝑝(𝑟|𝑠) < 𝑝(𝑟). 

Samplewise Mutual Information (SMI) 

Samplewise Mutual Information (SMI) is simply the PMI evaluated at the specific pair of 

values obtained in each sample. For example, if the experiment consists of a set of trials, 

where the stimulus presented on trial 𝑡 is 𝑠𝑡 and the response on the same trial is 𝑟𝑡, then the 

SMI for that trial is given by 𝑆𝑀𝐼(𝑡) = 𝑖(𝑠𝑡, 𝑟𝑡).  Then the overall MI is the mean of the SMI 

values over trials: 

𝐼(𝑆; 𝑅) =
1

𝑁𝑡
∑ 𝑆𝑀𝐼(𝑡)

𝑡

 

 

4.4 Discussion 

In an experiment where participants can perceive either two nuns or a Voltaire bust from a 

static ambiguous image, I identified the features that support each perception, as well as the 

features that can support both perceptions by calculating the PMI between participants’ 

behavior and stimulus samples. I also employed the SMI to calculate the single-trial 

relationship between participant’s behavior and stimulus samples. The results reveal the 

task-relevant features on each trial—specifically, the image features that drive or influence 

the participant's response in that trial. Subsequently, I applied Non-negative Matrix 

Factorization (NMF) algorithms (Lee & Seung, 1999) to decompose the SMI matrix. The 

decomposition results reveal the local components (i.e. a group of local pixels that 

collectively influence the participant’s behavior) of the task-relevant features. Results show 

that NMF is able to decompose task relevant features into parts of eyes, nose, mouth, similar 
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to stimulus features represented in participants’ brain activity. By identifying these local 

components, I effectively pinpointed the minimum units that drive the participant's responses. 

In the context of reverse correlation study, task-relevant features (i.e. classification images) 

are regarded as mental representations—visual stimulus features that are mentally 

represented in the participant’s brain while performing specific visual categorization tasks 

(Brinkman et al., 2017; Murray, 2011). Therefore, the local components derived from the 

NMF decomposition can be viewed as the minimum units of mental representations 

processed in the brain. 

It is worth noting that the same analysis can be applied to brain activity data to better 

characterize single-trial stimulus features represented in the brain. However, due to the 

significantly larger volume of brain activity data compared to the behavioral data, this 

method encounters computational challenges in practice, which requires further exploration 

in future work. 

It is assumed that people do classification tasks by matching visual stimuli to mental 

templates/representations (Brinkman et al., 2017). Chapter 2 shows that, in the time window 

of P3 ERP component (associated with decision making and attention), brain represents 

similar stimulus contents to mental templates (i.e., task relevant features obtained from 

reverse correlation analysis), supporting this hypothesis. However, chapter 2 uses a stimulus 

with simple features for each categorization task. This chapter decomposes the more 

complexed task-relevant features from the perception of Dali’s ambiguous painting 

experiment (Bonnar et al., 2002) into parts carrying specific semantic meaning (e.g., eyes, 

nose, mouth), which have been proven to be represented in participants brain activity (Zhan, 

Ince, et al., 2019). 

In Chapter 2, I demonstrated how the brain actively transforms the complex visual inputs 

into task-relevant features at ~300 ms post-stimulus. For tasks where participants rely on 

more complex features, it is also crucial to investigate whether the brain similarly transforms 

complex visual inputs into task-relevant features with refined components around the same 

time window. This hypothesis remains to be tested in future work. To verify this, it will be 

necessary to apply the feature decomposition methods with NMF and SMI to brain activity 

data, as discussed earlier. 
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5 General Discussion 

One of the most influential model in cognitive neuroscience posits the brain as an 

information processing system (Marr & Ullman, 2010). In this model, identifying the 

specific visual information (i.e. the mental representation of the stimulus features) processed 

by the brain is crucial for understanding the neural mechanisms underlying behavior. 

Although numerous studies have attempted to approximate the mental representation of 

stimulus features using either task-relevant features obtained from behavior data (Brinkman 

et al., 2017; Murray, 2011) or neural representations (Schyns et al., 2009; M. L. Smith et al., 

2004; Zhan, Ince, et al., 2019), there is still a lack of understanding how the brain transforms 

the internal representation of stimulus features depending on the task at hand (K. Kay et al., 

2023). 

One significant reason for the challenges in understanding neural representations is the 

complexity of these representations (Biederman, 1987; Logothetis & Sheinberg, 1996), 

which has not been adequately considered. Due to the brain's attentional mechanisms (Evans 

et al., 2011; Shiffrin & Gardner, 1972), it does not represent all contents of a visual input but 

selectively processes task-relevant features. These features are not fixed or inherent. That 

means, the brain does not simply passively receive and then choose which features to process 

or suppress. Instead, the brain actively extracts and constructs features from the visual input 

based on the task at hand (Schyns et al., 1998; Schyns & Rodet, 1997). Investigating this 

dynamic process requires fine-grained, high-dimensional control over the stimuli (Gosselin 

& Schyns, 2001; Murray, 2011), the use of multitask experimental paradigms (Harel et al., 

2014) along with efficient data analysis methods (R. A. A. Ince et al., 2017). 

In this thesis, I employed the Bubbles (Gosselin & Schyns, 2001) method to control the 

visual stimuli. Bubbles control the visibility of each pixel of stimulus images. In a visual 

categorization task, the participant can correctly perform the task only when the task-relevant 

features are revealed by the Bubbles. This approach allows us to identify which features in 

the image support the participant’s categorization behavior. Since every pixel is controlled, 

I can observe pixels collectively influence the participant's behavior, thereby flexibly 

identifying the features within the image. A similar approach can be used to observe which 

pixels collectively influence brain activity, that is, which pixels are collectively represented 

by brain activity. This enables the flexible revelation of the represented feature content. 
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For the multitask, I designed an experiment comprising four 2-Alternative-Forced-Choice 

(AFC) categorization tasks applied to the same realistic, complex city street scene images 

randomly sampled with Bubbles procedure (Gosselin & Schyns, 2001). Each task required 

the participant to use different features from the images, leading to a process in the brain 

where the same visual input is transformed into different features. This process involves a 

combination of bottom-up visual processing and top-down task-related and attentional 

information (DiCarlo et al., 2012; Evans et al., 2011; Harel et al., 2014; VanRullen & 

Thorpe, 2001). 

I then employed information theory (Cover & Thomas, 2012; R. A. A. Ince et al., 2017) 

methods as an efficiency framework for quantifying the relationships between two or more 

variables. This efficiency is crucial given the high-dimensional nature of both the stimulus 

data and the brain activity data.  A key advantage of this approach is its ability to measure 

relationships regardless of whether the variables are discrete, continuous, or a mix of both. 

Moreover, the relationships are measured on a common scale (bits), facilitating the 

comparison of results. 

Through this experimental approach, I provided a descriptive model of how the brain 

gradually transforms high-dimensional, complex visual input into task-relevant features 

through occipital-ventral pathway by three distinct stages. This model also highlights the 

crucial role of interactions between the prefrontal cortex (PFC) and the occipital-ventral 

visual pathway in this dimension-reducing transformations depending on tasks (Johnston & 

Everling, 2006; Roy et al., 2010). 

In this experiment, participants complete each task using relatively simple features, but many 

real-world visual tasks depend on more complex features. In such cases, the task-relevant 

features identified by reverse correlation methods may not necessarily represent the smallest 

processing units in the brain. To identify these minimal units, I introduced a measure based 

on information theory, the Samplewise Mutual Information (SMI), which quantifies the 

single-trial relationship between two variables. By calculating the SMI between stimulus 

samples and the participant’s behavior, I identified the features that support participant’s 

response in each single trial. These features, referred to as single-trial task-relevant features, 

were then analyzed using clustering algorithms (i.e. Non-negative Matrix Factorization, 

NMF) to learn the patterns among them (Lee & Seung, 1999). This allowed for the 

decomposition of complex task-relevant features into finer components. The components 

identified through this method correspond to meaningful features such as eyes, mouth, and 
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broader facial regions. These refined feature components can better predict the participant's 

behavior than the features directly derived from reverse correlation analysis (Bonnar et al., 

2002; Zhan, Ince, et al., 2019). 

Broader implications 

My research focuses on understanding how the brain transforms complex visual inputs into 

low-dimensional, task-relevant features. A key factor motivating this work is the brain's 

attentional mechanisms (Evans et al., 2011; Harel et al., 2014; Kastner & Pinsk, 2004; 

Shiffrin & Gardner, 1972), which allow it to selectively process only a subset of information 

rather than all visual input. The transformation in this thesis is closely related to the 

mechanisms of attention. 

It’s important to emphasize that attention itself is a phenomenon we aim to explain through 

neuroscience. Theories and evidence suggest that visual categorization abilities of brain 

depend on features (DiCarlo et al., 2012; Schyns et al., 1998; Schyns & Rodet, 1997; 

VanRullen & Thorpe, 2001). However, these features are neither fixed nor inherent in the 

stimuli. Rather, they are subjectively created by the brain by the demands of the visual task 

at hand. My data show that the visual content of images represented within the brain 

progressively transforms across three stages into task-relevant features with the involvement 

of synergistical interactions between the occipital-ventral pathway and the PFC cortex (Duan 

et al., 2024). This supports the idea that the brain actively constructs features based on the 

task. 

Moreover, the evidence from visual information decoding (Harel et al., 2014) suggests that 

neural representations are not purely bottom-up reflections of stimuli but rather complex 

representations integrating both stimulus information and top-down information of task 

context. My results align with this view and demonstrate two key characteristics that result 

in such task-dependent representations: 1. The visual feature content represented by neural 

activity is highly task-dependent, which is demonstrated as the result of three stages of 

transformations. 2. Even for the same feature, the internal neural state that encodes the 

external feature states is also task-dependent, demonstrated as the result of opponent 

representations (Duan et al., 2024) of the same feature in chapter 2. 

The methodologies I have developed in this thesis are not limited to human brain data. They 

can also be applied to deep network models that also integrate attentional mechanisms (i.e. 
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transformers) and learn contextual representations (Vaswani et al., 2017). By employing the 

same techniques, we can investigate how deep networks transform complex inputs into 

features. Given that attention mechanisms have significantly enhanced the performance of 

deep networks, I anticipate that similar processes of feature transformation will be 

observable in these models. This approach provides a way to compare the information 

processing strategies of the human brain and deep networks (Schyns et al., 2022) in a visually 

intuitive manner. 

Future work 

In the context of this thesis, I define the transformation of visual content represented in neural 

activity as the macroscopic behavior of the brain, conceptualized as an information-

processing machine. If this macroscopic behavior can be characterized as thoroughly as 

human behavior, it could then be utilized as a powerful tool to study the cognitive system of 

the human brain. By relating neural activity patterns to brain behaviors, in a manner 

analogous to existing methodologies that relate neural activity to human behaviors (Greene 

et al., 2023). This perspective allows us to bridge the gap between neural activity (physical 

properties of brain) and cognitive function (emerging properties of mind), though a middle 

level of macroscopic behavior of the brain. Further efforts are required to address this 

challenge. Although this ambitious goal was not achieved in this thesis, the proposed 

methods bring us closer to a solution. 

In this thesis, I tested the internal transformation of simplest feature manifolds with 2D 

images. While the real world is 3D. Considering the time, the real visual input is at least 4D. 

Like 2D images, the internal representation of 3D/4D visual inputs are a low-dimensional 

manifold of them. Testing the actual feature manifolds and their transformations for 3D/4D 

visual input and generative models (Schyns et al., 2022; Zhan, Garrod, et al., 2019) are 

needed in future work. 

Moreover, the information theory framework employed in this thesis has significant 

potential for further development and application. For instance, Figure 5-1 show that 

Conditional Mutual Information (CMI) reveals representational effects that are not captured 

by the Mutual Information (MI) analysis. It indicates that this representation depends on its 

own past stage, which reflects a bottom-up procure in neural dynamics. Besides, Figure 5-2 

show that co-information is able to identify the complex network interaction patterns for 

neural sources. Further exploration of the exact feature contents communicated by these 
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networks can be conducted. For example, an important question that arises is whether the 

communication between different neural sources serves merely for transmitting features, or 

if, during this process of communication, there is also a transformation of the visual content. 

These analyses need to be formalized and applied to large-scale datasets in future work. 

 

Figure 5-1 Self Conditional Mutual Information (CMI) reveals effects hidden in MI analysis. The 

Conditional Mutual Information (CMI) analysis (bottom panel) reveals representational effects that 

are not captured by the Mutual Information (MI) analysis (top panel). It reflects that the neural 

representation in this source depends on its own past state. 
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Figure 5-2 Co-information reflects source self-interaction patterns The co-information between 

each pair of time points from a source reveals local redundant representations, local synergistic 

representations, and patterns of cross-temporal redundancy and synergy. 

 

The methods employed in this paper are primarily data driven. Within this framework, 

incorporating additional experimental manipulations could yield more meaningful and 

robust results. For instance, the transfer of task-relevant features from the occipital to the 

ventral stream, and the transformations that occur during this transfer, might be the crucial 

mechanisms underlying conscious visual processing and working memory (Duan et al., 

2024). To test this hypothesis, one could introduce behavioral manipulations within the same 

experimental paradigm. By controlling the presentation time of stimuli and using masking 

techniques to inhibit participants' conscious perception of visual content, we could observe 

whether these neural processes diminish, thereby validating these proposed mechanisms. 
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