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i

Abstract To function and survive cells need to be able to sense and respond to their
local environment through mechanotransduction. Crucially, mechanical and biochemical
perturbations initiate cell signaling cascades, which can induce responses such as growth,
apoptosis, proliferation and differentiation. At the heart of this process are actomyosin
stress fibres (SFs), which form part of the cell cytoskeleton, and focal adhesions (FAs),
which bind this cytoskeleton to the extra-cellular matrix (ECM). In addition to their
structural role, FAs additionally serve as signaling hubs for changes in cell function. It
follows that understanding the formation of these structures is a prerequisite for any
attempt to elucidate how mechanical and biochemical cues influence cell behaviour.

The focus of this thesis is on the development of mathematical models to describe
the coupled formation and maturation of cell-substrate adhesions and cell cytoskeleton in
non-motile cells. In particular, we formulate a zero-dimensional bio-chemical model and
one- and two-dimensional bio-chemo-mechanical models to describe the development of
SFs and FAs and activation of ROCK signaling. We use a large family of PDEs (or ODEs)
to describe three sets of biochemical events: the polymerisation of actin and subsequent
bundling into contractile SFs; the formation and maturation of cell-substrate adhesions;
and the activation of signaling proteins in response to FA and SF formation. In our
one- and two-dimensional models, the evolution of these key proteins is coupled to a
Kelvin-Voigt viscoelastic description of the cell cytoplasm and the ECM. We employ these
various models to understand how cells respond to external and intracellular cues in vitro
and are able to reproduce, and elucidate the mechanism of, a range of experimentally
observed phenomena. This includes non-uniform cell striation and cells forming weaker
SFs and FAs on softer substrates. It follows that the developed models provide a platform
for systematic investigation into how the cell biochemistry and mechanics influence cell
development and facilitates prediction of internal cell measurements that are difficult to
ascertain experimentally.
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Chapter 1

Introduction

In order to function and survive, eukaryotic cells need to be able to sense and respond to
their surrounding environment in a process called mechanotransduction, mediated by both
mechanical and biochemical cues. Mechanotransduction is ubiquitous across eukaryotic
cells, which are exposed to a variety of micro- and nano-scale stimuli which initiate signal-
ing cascades inside the cell inducing, among other things, cell growth, apoptosis, motility,
proliferation, quiescence or, in the case of stem cells, differentiation (Orr et al., 2006). In
particular, cells are exposed to a variety of forces in vivo, including gravity, blood-flow
induced shear stress on endothelial cells, cyclic stretching of vessels due to blood pressure,
and microscopic forces that arise from interactions between contracting cells (Chen, 2008,
Li et al., 2005). The corresponding changes at the cellular level can propagate and influ-
ence behaviour on the tissue scale. Indeed, it is through this process that many familiar
senses originate, including touch, hearing and balance (Chalfie, 2009). However, as well
as contributing to essential functions in the body, mechanotransduction is implicated in
contributing to various diseases, including atherosclerosis and cancer (DuFort et al., 2011,
Hahn and Schwartz, 2009, Jaalouk and Lammerding, 2009, Nigro et al., 2011).

Before proceeding, we briefly introduce a number of terms that are key and appear
throughout this thesis. These are listed in bold in this paragraph and we explore these
proteins and structures in more detail throughout this Chapter. The cell cytoskeleton
is composed of a complex and evolving network of proteins (mainly actin filaments) that
together give the cell shape, structure and stability. This structure is bathed in the
cell cytoplasm, a viscous liquid with suspended ions and proteins. The cytoskeleton is
composed of three key components: actin microfilaments, intermediate filaments and
microtubules, all of which can rapidly grow and disassemble in response to the needs of
the cell. Moreover, through the cytoskeleton, forces due to myosin II (which cross-links
actin filaments) based contraction of stress fibres (which are composed of actin and
a variety of cross-linkers) can be communicated to the extra-cellular matrix allowing
the cell to remodel, amongst others, collagen and fibronectin fibres in its surrounding
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environment. These forces pass from the cell to the substrate through a link formed
at focal adhesions; these adhesions are composed of integrins (proteins which can
hook onto collagen and fibronectin fibres in the underlying substrate), substrate ligands
and numerous focal adhesion associated proteins including talin and vinculin. These
structures are illustrated in Fig. 1.1 (below).

1.1 Mesenchymal stem cells

Our primary interest in this thesis is to model stem cells; these are unspecialised
cells that can undergo differentiation, specialising to a particular cell type, expressing
only certain genes and producing related proteins. This process is critical in complex
organisms, allowing for growth and repair through the production of specialised cell types
to renew damaged tissue (Biehl and Russell, 2009). Such cells can be broadly divided
into two types: embryonic stem cells (removed from embryos), which can differentiate
and specialise into a wide variety of different cell types (i.e. they are pluripotent), and
adult stem cells, which are found in a number of locations in the body but can generally
differentiate into only certain cell types, usually related to the location in which they are
found (Hu et al., 2018, Zakrzewski et al., 2019). Indeed, the seminal work of Engler et al.
(2006) demonstrated that the elasticity of the surrounding ECM directs stem cell fate,
generally in a way to promote tissue-specific healing (e.g. cells cultured on matrix with a
stiffness similar to that of pre-calcified bone undergo osteogenesis); this requires myosin
II contractility of the cell.

One example of adult stem cells are human mesenchymal stem cells (hMSCs), con-
tained in bone marrow, which have the ability to differentiate into a number of important
cell types associated with the musculoskeletal system such as osteoblasts (bone cells),
adipocytes (fat cells), chrondrocytes (cartilage cells) and fibroblasts (a key component of
connective tissue) (Hu et al., 2018, Robertson et al., 2018, Ullah et al., 2015). Given the
wide array of specialised cell types that can be derived from hMSCs, it is desirable to
be able to direct the differentiation process along a desired lineage, with applications in
tissue engineering, particularly for orthopedic surgery. For example, every year an esti-
mated 11,000,000 cm3 of bone grafts are required during an estimated 2,000,000 procedures
(Fernandez de Grado et al., 2018, Robertson et al., 2018). However, despite this being
a standard and widespread technique, there remain many potential complications during
treatment, including chronic pain, dysesthesia and infection. These problems could be
circumvented through control over stem cell differentiation, allowing a patient’s own stem
cells to be used to grow the necessary tissue and hence cutting the risk of tissue rejection.

A variety of techniques exist to direct differentiation (and other types of cell function)
in vitro. These techniques include passive methods, for example topographical control
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or altering environmental stiffness (Dalby et al., 2014, Urbanczyk et al., 2020). These
methods focus on the generation of internal tension within the cell by altering the envi-
ronment to which the cell is adhered (Kilian et al., 2010). Meanwhile, active techniques,
such as using shear flow, can promote osteogenesis (Kim et al., 2014, Yourek et al., 2010).
A more recent active technique has been inspired by the nanoscale vibrations that oc-
cur on the cell membrane when interacting with a substrate (these are specific to the
cell type, e.g. Rappaz et al., 2009, report that the membranes of red blood cells oscillate
with an amplitude of 36 nm, with a frequency range of 0.2-12 Hz). In particular, high-
frequency vibrational stimulation of nanoscale amplitude (‘nanokicking’ ) has been applied
to hMSCs as a means to direct differentiation. For example, nanoscale vibrations with
a frequency range of approximately 1000 Hz have been shown to induce osteogenesis in
hMSCs (Nikukar et al., 2013, Robertson et al., 2018). Similar to the passive methods, each
of these techniques achieves changes in function through the generation of tension in the
cell cytoskeleton, which affects the development of cytoskeleton and adhesion between the
cell and surrounding extra-cellular matrix (ECM) (Fletcher and Mullins, 2010, Martino
et al., 2018). Changes in adhesion consequently activate key biochemical signaling path-
ways inside the cell, such as those related to focal adhesion kinase (FAK), extra-cellular
signal related kinase (ERK) and Rho-kinase (ROCK) (Hastings et al., 2019, Provenzano
and Keely, 2011). These cascades are linked to transcription changes in the cell nucleus,
which then leads to changes in cell function. Hence, in order to understand how changes
in cell function occur in response to mechanotransductive cues, it is first crucial to under-
stand the coupled development of cell cytoskeleton and cell-substrate adhesions; this shall
be the focus of this thesis.

1.2 Mechanosensing structures

The forces experienced by cells and their subcellular components can be classified as
intracellular or extracellular. In non-muscle cells, intracellular forces are dominated by
contraction due to myosin II motors, though other components of the cytoskeleton may
contribute, e.g. microtubules (Dogterom and Yurke, 1997) or (the polymerisation of) actin
filaments in lamellipodia (Prass et al., 2006). External forces (which can be compressive,
tensile or shearing) can be exerted both naturally (e.g. by other cells) or artificially (e.g.
optical or magnetic tweezers). In any case, a force threshold on the order of the pN to nN
range is generally required to prompt a cellular response, with the applied forces usually
sensed through increased stress on, and deformation of, a mechanosenser (Chen, 2008,
Choquet et al., 1997, Jiang et al., 2003).

Mechanosensing occurs at a variety of locations in the cell, including the nucleus, the
cytoskeleton, the cortex and stretch-activated ion channels (Chen, 2008, Enyedi and Ni-
ethammer, 2017, Isermann and Lammerding, 2013, Martino et al., 2018), but particularly
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at focal adhesions (FAs) (Katsumi et al., 2004). At FAs cytoskeletally generated forces
lead to stress due to an opposite and equal reaction force arising in the ECM. We detail the
components and formation of FAs in Sec. 1.2.1 and of stress fibres (SFs), a key component
of the actin cytoskeleton in non-motile cells, in Sec. 1.2.2.

1.2.1 Focal adhesions

Focal adhesions form a link across the cell membrane between cell cytoskeleton, particu-
larly SFs, and the ECM, allowing cells to exert traction on the substrate to which they are
adhered (Endlich et al., 2007). Adhesions are regulated by a plethora of proteins which
can be divided into scaffolding proteins (e.g. vinculin and talin) and signaling proteins
(e.g. FAK, specific phosphatases and Rho-family proteins) (Maziveyi and Alahari, 2017,
Parsons et al., 2010, Wozniak et al., 2004). Scaffolding proteins, as indicated in Fig. 1.1,
help form and maintain a stable structural scaffold, linking the SFs to the ECM through
integrins and contributing to maturation of the adhesion. Meanwhile, signaling proteins
are recruited to adhesions, where they generate and influence adhesion-dependent sig-
nals that act to control the development and sustainability of FAs whilst simultaneously
regulating key cell processes.

The formation of these structures is initiated through integrins, transmembrane recep-
tors which cluster at adhesions (Endlich et al., 2007, Gilmore and Burridge, 1996). These
proteins can freely diffuse on the membrane but can become bound to the cytoskeleton
by the scaffolding protein talin in a force-independent manner. This coupling not only
impedes motion but activates the integrin so that it develops a high affinity for binding
to ECM ligands (Calderwood, 2004, Klapholz and Brown, 2017, Wegener et al., 2007).
When a high-affinity integrin and ligand bind, a nascent adhesion forms. These immature
structures are weak and susceptible to disassembly but can mature (in a myosin-dependent
process) to form more stable (less prone to disassembly) FAs through recruitment of vin-
culin (Atherton et al., 2016, Ciobanasu et al., 2014). Indeed, force induced stretching of
nascent adhesions exposes cryptic vinculin binding sites (VBSs) on talin, with vinculin
recruited (see Fig. 1.1) to reinforce the cytoskeleton-talin-integrin connections (Bays and
DeMali, 2017, Carisey et al., 2013). In particular, these links strengthen and mature
(through intracellular signaling) in response to loading, allowing the cell cytoskeleton to
respond to externally applied forces and to communicate intracellular contractile forces
to the surrounding environment (Gardel et al., 2008, Parsons et al., 2010, Wozniak et al.,
2004). This also enables cells to sense matrix stiffness, facilitating durotaxis (Rens and
Merks, 2020) and directing the lineage fates of hMSCs (Engler et al., 2006).

Adhesions also serve as sites for the polymerisation of actin filaments, as shown in
Fig. 1.1, which elongate towards the cell centre. In turn, these filaments provide a struc-
tural template for adhesion growth (Hirata et al., 2014b). The resultant actin bundles form
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connections with the actin cytoskeleton, allowing myosin II-generated contraction forces to
be transmitted to the ECM and causing maturation of adhesion complexes through changes
to their structural properties and signaling activity (Legerstee et al., 2019, Schwarz and
Gardel, 2012). It follows that adhesions serve as a physical link between the cytoskeleton
and ECM in addition to their role as signaling hubs to regulate pathways for growth,
apoptosis and differentiation (Lukashev and Werb, 1998).

Figure 1.1: Adhesion structure and SF formation. Key proteins in adhesion formation
(talin, integrins and ligands) and maturation (vinculin). Actin polymerisation occurs at
adhesion sites, with the resultant filaments cross-linked by α−actinin and myosin II.

1.2.2 Stress fibres

Cells continuously react to mechanical stimuli by pushing and pulling on their immediate
surroundings, changing their orientation and morphology to adapt to external mechanical
constraints and by migrating and dividing. The actin cytoskeleton is critical for giving a
cell shape and structure and is involved in many cellular processes including morphogen-
esis, cytokenesis and phagocytosis (Lawrence et al., 2016, Lee and Dominguez, 2010, May
and Machesky, 2001); it is also key to transmitting forces from the cell to its surroundings.

Stress fibres are a key component of the cell cytoskeleton that form in non-muscle cells
in response to loading (Kassianidou and Kumar, 2015, Tojkander et al., 2012). These
dynamic contractile actomyosin bundles are composed of actin filaments (around 10-30
actin filaments), cross-linked by myosin II motors (as shown in Fig. 1.2 below), together
with a large family of other bundling and cross-linking proteins that display constant
association and dissociation (Kassianidou and Kumar, 2015, Svitkina, 2018). They feature
prominently in non-motile cells, which are the focus of this thesis, but also allow highly
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motile cells to constrict and deform their surrounding ECM (even though SFs are much
weaker in these cells) (Kemp and Brieher, 2018). Such fibres can be broadly categorised
into four types which have different functions and dominant locations in the cell: dorsal
SFs, transverse arcs, ventral SFs (VSFs) and the perinuclear actin cap (Hotulainen and
Lappalainen, 2006, Tojkander et al., 2012); the properties of each of these are explored in
more detail below.

Ventral SFs, shown in Fig. 1.3 (below), are the dominant type in non-motile cells, ex-
tending across the length of the cell, connecting two FAs and generating a nearly isometric
tension (Burridge and Wittchen, 2013, Livne and Geiger, 2016). Such fibres are crucial
to mechanotransduction as the contractile forces they generate (through myosin motor
action) are exerted on, and promote the formation and maturation of, mechanosensing
FAs. Their density is highly dependent on the cellular microenvironment (Doss et al.,
2020, Tojkander et al., 2012). In particular, animal cells cultured on rigid surfaces often
displaying thicker fibres aligned (with adhesions) along the major cell axis compared to
the very thin and poorly aligned fibres in cells cultured on compliant substrates (Burridge
and Wittchen, 2013, Discher et al., 2005).

Actin filaments

The primary function of actin filaments in cells is to produce force. This can occur by two
mechanisms:

• Polymerisation of actin filaments against the cell membrane, exerting a pushing force
on the membrane (Alexandrova et al., 2020). This is regulated by a large family of
actin-binding proteins which control nucleation, elongation, disassembly, branching,
cross-linking and bundling of filaments (Pollard, 2016, Svitkina, 2018).

• Actin filaments can be cross-linked by myosin II to form contractile actomyosin SFs
with force generated by ATP-driven movement of myosin II motors (Cooper and
Adams, 2022).

The formation of SFs is initiated through polymerisation of (G-)actin monomers into long
(F-)actin filaments. Filament growth is initiated with the nucleation of three associating
monomers (Cooper and Adams, 2022). The filament then evolves through a combination of
branching from, and severing of, existing filaments. Branching is regulated by the Arp2/3
complex and is crucial in motile cells (Insall and Machesky, 2009, Kelleher et al., 1995,
Schwob and Martin, 1992). Moreover, capping proteins can regulate filament growth by
blocking the addition of new monomers (or severing filaments) to increase actin dynamics
(Dufort and Lumsden, 1996, Mogilner and Edelstein-Keshet, 2002). The actin polymeri-
sation process is polarised, with a rapidly-growing barbed end and slow-growing pointed
end on each filament (Mogilner and Edelstein-Keshet, 2002, Winder and Ayscough, 2005),
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leading to actin treadmilling (Pollard and Borisy, 2003, Wilson et al., 2010). The fila-
ment grows when ATP-actin monomers are recruited to the barbed end (Dominguez and
Holmes, 2011, Pollard et al., 2000), as indicated in Fig. 1.2. Over time, ATP bound in
actin monomers is hydrolysed, releasing phosphate. The resultant ADP-actin filament
disassembles through monomer loss at the pointed end (Blanchoin et al., 2014, Fujiwara
et al., 2007, Winder and Ayscough, 2005). Newly freed monomers undergo nucleotide
exchange, replenishing the pool of ATP-actin monomers available for polymerisation at
the barbed end (Winder and Ayscough, 2005). The resultant actin filaments can then be
bundled and cross-linked by filamin, α−actinin and particularly myosin II to form SFs
(Hotulainen and Lappalainen, 2006, Kassianidou and Kumar, 2015, Svitkina, 2018), as
indicated in Figs. 1.1, 1.2.

In highly motile cells, where mechanotransductive reorganisation of the cytoskeleton
requires a plentiful supply of actin monomer, rapid filament growth is observed. This is
regulated through a large family of actin binding proteins which promote the conversion
of ADP-actin to ATP-actin and which deliver monomers to barbed ends allowing for new
polymerisation. Sequestering proteins ensure that their a constant large pool of monomer
available in such cells (Pollard, 2016).

Myosin recruitment and movement

Myosin serves as a molecular motor, through hydrolysis of ATP, to provide energy to drive
actin filament sliding and hence generate force and movement (Alberts et al., 2015, Cooper
and Adams, 2022, Kolega, 2006). The interaction between myosin and actin is pivotal to
muscle action but is also responsible in non-muscle cells for cytokinesis, movement and
contraction (Vicente-Manzanares et al., 2009, Zang et al., 1997). This thesis is focused
on non-muscle cells that are non-motile, where actomyosin SFs display many similarities
to muscle fibres, particularly exhibiting a sarcomeric-like structure similar to myofibrils
(Kassianidou and Kumar, 2015, Thoresen et al., 2013).

In striated muscle cells, actomyosin contraction is mediated directly by Ca2+ ions
(Szent-Györgyi, 1975, Webb, 2003). However, in non-muscle cells (and smooth muscle),
contraction is regulated primarily by phosphorylation of myosin light chain (MLC), which
itself is regulated by the competing effects of myosin light chain kinase (MLCK) and
myosin light chain phosphatase (MLCP) (Johnson, 2006, Kamm and Stull, 1989). The
phosphorylation of MLCK is partly regulated by Ca2+ ions, whilst MLCP phosphorlaytion
is independent of Ca2+ concentration (Kitazawa et al., 2003, Somlyo and Somlyo, 1994).
Consequently, Ca2+ indirectly contributes to myosin II activation in non-muscle cells. The
subsequent phosphorylation of MLC promotes the assembly of myosin into filaments and
increases the enzymatic ability of myosin to facilitate contraction (Cooper and Adams,
2022, Kitazawa et al., 2003).
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Once bound to actin filaments, as illustrated in Fig. 1.2, myosin motors can facilitate
contraction of sarcomeres (without affecting overall filament length) by sliding actin fila-
ments towards the sarcomere centre (Squire, 2016). The conversion of chemical to kinetic
energy is controlled by changes in myosin conformation due to ATP hydrolysis (Bagshaw,
1993, Cooper and Adams, 2022, Huxley, 1957). This reaction facilitates repeated cycles of
interaction between myosin and actin, causing continual movement of myosin heads along
actin filaments (Cooper and Adams, 2022).

Figure 1.2: Actomyosin SF structure. Myosin II binds to actin filaments, sliding the
filaments towards each other, facilitating contraction.

Despite the similarities between muscle fibres and SFs in non-motile non-muscle cells
(e.g. structural periodicity), SFs are less well ordered (Gordon III, 1978). Moreover, unlike
muscle fibres, SFs exhibit non-uniform striation, with sarcomeres near adhesions tending
to shorten, whilst those further away elongate (Peterson et al., 2004).

Stress fibre types

In both motile and non-motile cells, reflecting their wide range of responsibilities, there
are a variety of SF types, with different shapes, composition and relationships with FAs.
Each type predominantly contains actin, but contractile SFs additionally contain myosin
(Hotulainen and Lappalainen, 2006). When anchored to FAs, these structures provide a
connection between the ECM and the actin cytoskeleton and are highly dynamic, even
in stationary cells, with rapid reaction kinetics that are essential for their formation and
contractility (Deguchi and Sato, 2009, Katoh et al., 2001, Kaunas et al., 2005). As already
mentioned, they can be broadly divided into four categories: dorsal SFs, transverse arcs,
ventral SFs and the perinuclear actin cap (Small et al., 1998); these are shown in Fig. 1.3
and any of these types may become dominant in response to the needs of the cell (Tojkander
et al., 2012).
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Figure 1.3: Stress fibre types. Illustration of the structure of dorsal SFs, transverse arcs,
ventral SFs and perinuclear actin cap and their location relative to the cell nucleus and
FAs.

Dorsal stress fibres: Dorsal SFs are long, linear bundles of actin, cross-linked by
α−actinin, that are particularly prominent in migrating cells (Livne and Geiger, 2016).
They generally do not contain myosin II and so are non-contractile (Tojkander et al., 2011).
Elongating from new adhesions (usually near the cell front) as the cell moves forward, they
have rapidly growing barbed ends facing the cell membrane and grow towards the cell cen-
tre (see Fig. 1.3), providing tracks for the sliding of transverse arcs and connecting these
to FAs (Hotulainen and Lappalainen, 2006, Livne and Geiger, 2016, Pellegrin and Mellor,
2007, Tojkander et al., 2015).

Transverse arcs: Transverse arcs are long, curved actomyosin bundles, with periodic
cross-linking by α−actinin and myosin (Livne and Geiger, 2016), which form particularly in
motile cells. They form in the lamellipodia (Hotulainen and Lappalainen, 2006, Tojkander
et al., 2011, Winder and Ayscough, 2005) and undergo retrograde flow, sliding centripetally
towards the cell centre along dorsal SFs due to myosin II motor action (Tee et al., 2015).
The arcs are not directly attached to FAs, but transmit myosin II generated contractile
forces to the surrounding microenvironment through their connection with dorsal SFs (see
Fig. 1.3). The arcs continue to flow towards the cell centre with the elongating dorsal SF
in a myosin II dependent manner, coalescing in the cell centre to form strong contractile
actomyosin bundles (Livne and Geiger, 2016, Small et al., 1998).

Ventral stress fibres: These long, linear actomyosin bundles are particularly prevalent
in non-motile cells, running along the cell periphery (Prager-Khoutorsky et al., 2011). Such
fibres can form through fusion (and exhibit properties) of a transverse arc with (two) dorsal
SFs at its edges in a tension-dependent manner (Hotulainen and Lappalainen, 2006, Livne
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and Geiger, 2016, Tojkander et al., 2015). Anchored to FAs at both ends (see Fig. 1.3),
VSFs usually extend from one side of the cell to another and can generate isometric tension
through actomyosin contraction (Deguchi and Sato, 2009, Small et al., 1998); they also
promote constriction and facilitate cell movement. Towards their centre they are composed
of alternating bands of α−actinin and myosin II with a periodic polarity pattern similar
to that observed in muscle cells. In contrast to driving centripetal motion in transverse
arcs, myosin II in VSFs functions to transmit contractile forces to the ECM through
their attachment to FAs, facilitating communication with the cellular microenvironment
(Balaban et al., 2001, Grashoff et al., 2010, Livne and Geiger, 2016). Hence, VSFs are
typically found in mature cells, where they play a significant role in mechanosensing (Livne
and Geiger, 2016, Pellegrin and Mellor, 2007).

Perinuclear actin cap: These SFs are similar to VSFs, however (as indicated in Fig. 1.3)
these are positioned over the cell nucleus (Kim and Wirtz, 2014). The role of the per-
inuclear actin cap is to both regulate the shape of the nucleus in cells and to act as
mechanotransducers to convey force from the microenvironment to the nucleus (Khatau
et al., 2009, Luxton et al., 2010).

1.2.3 Comparison between non-motile and motile cells

Non-motile cells typically have thick and relatively stable SFs compared with the thinner,
transient SFs found in highly motile cells (Pellegrin and Mellor, 2007, Tojkander et al.,
2012). Moreover, the spatial orientation of individual actin filaments within the SF differ
between motile and non-motile cells. In particular, SFs in the ventral region of motile cells
show a preference in actin filament orientation along the longitudinal axis of the SF, such
that the barbed ends of filaments are predominantly directed towards FAs. In non-motile
cells, VSFs show a periodic polarity with a similar organisation to that of muscle cell
sarcomeres (Cramer et al., 1997, Patla et al., 2010, Rigort et al., 2012).

1.2.4 Coupling of stress fibres and focal adhesions

Stress fibres and FAs are highly interdependent. For example, disruption of SFs (e.g. by
inhibiting myosin II) is accompanied by rapid disassembly of the attached FAs (Livne and
Geiger, 2016). Moreover, SFs diminish when their anchorage sites disassemble during cell
migration (Laukaitis et al., 2001). Actin polymerisation at adhesions also appears to be
force-dependent (Hirata et al., 2008) and inhibition of SF generated forces by myosin II
prevents actin treadmilling (Endlich et al., 2007, Livne and Geiger, 2016).

Ventral SFs and FAs, through their direct attachment, are particularly strongly coupled
and play a key role in cellular mechanics and force sensing. The assembly, growth and
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maintenance of FAs depends on mechanical stress and the mechanical force transmitted to
FAs by SFs can alter the conformation of mechanosensetive FA proteins including integrins
and talin (Martino et al., 2018). It follows that SF tension or contractility can convert
mechanical signals into biochemical cues (Burridge and Guilluy, 2016). Moreover, VSFs
that are in a state of isometric tension can displace the attached FAs towards the cell
centre (Badley et al., 1980). It has also been observed that FA proteins are organized in
elongated patches of similar width to the SFs connected to them, with the cross-sectional
area of SFs near FAs found to have a linear relationship with the area of the adhesion (Hu
et al., 2015, Livne and Geiger, 2016).

1.2.5 Signaling proteins

In response to adhesion formation and maturation, signaling proteins (particularly Rho
signaling in non-motile cells) become activated, regulating actin polymerisation and myosin
II activation (Deguchi and Sato, 2009, Pellegrin and Mellor, 2007). In particular, activation
of mDia1, ROCK and downstream effectors promotes cytoskeleton development through
increased formation of contractile actomyosin SFs (Feng et al., 1999, Maekawa et al.,
1999). In turn, these SFs exert forces on their attached adhesions, precipitating vinculin
recruitment to adhesions, increasing Rho signaling and closing a positive feedback loop.

The application of force, intracellular or external, has been shown to trigger the growth
of adhesions in a Rho-dependent manner (Ridley and Hall, 1992, Riveline et al., 2001).
Downstream, Rho activates the formin mDia1, leading to increased actin polymerisation
through binding of mDia1 to the actin binding protein profilin (Satoh and Tominaga,
2001, Wasserman, 1998, Watanabe et al., 1999, Yamana et al., 2006). In motile cells, it is
instead Rac that regulates assembly of an actin network; this occurs at the cell periphery,
inducing lamellipodia (Ridley et al., 1992).

Additionally, Rho signaling activates the enzyme Rho-associated kinase (ROCK), lead-
ing to increased phosphorylation of MLC on myosin II motors and increasing motor ac-
tivity (Liu et al., 2015, Totsukawa et al., 2000). This can occur through phosphorylation
of MLCP at its myosin binding site (Wang et al., 2009). Depending on the respective
activities of MLCP and MLCK, MLC either can be phosphorylated or dephosphorylated
and this controls myosin binding to actin filaments. MLC needs to be phosphorylated
(i.e. myosin activated) to allow myosin to bind to actin and facilitate contraction of SFs
(Amano et al., 1996). Phosphorylation of MLCK can occur through ROCK activation
(Dalby et al., 2018), or through an influx in calcium signaling (Kamm and Stull, 1985,
Somlyo and Somlyo, 2003, Tansey et al., 1992, 1994). When phosphorylated, MLCP is
inhibited in its ability to inactivate (dephosphorylate) myosin II, whilst phosphorylation
of MLCK leads to myosin II activation. Activated ROCK can also phosphorylate MLC
directly, though this effect is significantly weaker than phosphorylation by MLCK (Amano
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et al., 1996, Feng et al., 1999, Totsukawa et al., 2004).
Rho signaling also regulates the activity of cofilin, a key actin binding protein that

severs actin filaments and enhances actin dynamics (Sumi et al., 1999). This occurs
through targeting of LIM kinase (LIMK) by activated ROCK (Maekawa et al., 1999).
The subsequent phosphorylation of cofilin inhibits its severing ability, stabilising actin
structures (Bamburg et al., 1999, Bishop and Hall, 2000).

1.2.6 Molecular clutch

The cytoplasmic portion of FAs contains multiple layers, parallel to the substrate, with
distinct proteins, ranging from integrins adjacent to the substrate to actin deeper into the
cell (Hirata et al., 2014b, Legerstee and Houtsmuller, 2021). The link formed between the
cytoskeleton and ECM at FAs is highly dynamic and is governed by the accumulation of
transient behaviour of the constituent proteins. In particular, these proteins display rapid
reaction kinetics, with individual molecules residing at FAs for much shorter times than
the lifetime of the adhesion (Hoffman et al., 2011). In motile or deforming cells, it follows
that the cytoskeleton-integrin-ECM linkage at FAs is in a dynamic steady state between
the moving actin cytoskeleton and stationary ECM (Hirata et al., 2014b).

When forces are applied to FAs, they influence the mechanical strength of the link-
age by changing the reaction kinetics of molecular interactions at the FA (Geiger et al.,
2009, Hirata et al., 2014b). This dynamic linkage behaves like a molecular clutch. When
disengaged, the actin cytoskeleton moves freely (without connection to the ECM) and
contractile forces generated by myosin II are not transmitted to the cellular microenvi-
ronment. When partially engaged, the actin cytoskeleton links to the ECM via transient
connections between protein layers, leading to partial transmission of myosin II generated
forces to the ECM. Finally, if the clutch is fully engaged (i.e. if the adhesion is fully
matured) then actin movement is significantly hindered and contractile forces from the
cell cytoskeleton are easily transmitted to the microenvironment (Brown et al., 2006, Guo
and Wang, 2007, Hu et al., 2007b).

1.2.7 The extra-cellular matrix

The ECM consists of a complex network of proteins and macromolecules which provides
scaffolding for cellular components and bio-chemo-mechanical cues to allow cells to sense
and interact with their extracellular environment, facilitating, for example, tissue morpho-
genesis, cell differentiation and homeostasis (Frantz et al., 2010, Lu et al., 2011, Yamada
et al., 2019). Present in all tissues and organs, the constituents of the ECM cooperate
to form a structurally stable composite, influencing the mechanical properties of tissues
(Yue, 2014).
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Their constituents include macromolecules such as glycosaminoglycans (GAGs) (e.g.
hyaluronan). These large, highly negatively charged polysaccharides can additionally form
covalent bonds with proteins to form volume-filling proteoglycans (Frantz et al., 2010,
Mouw et al., 2014). Moreover, their negative charge facilitates recruitment of water into
the ECM, enabling the matrix to withstand compression whilst also facilitating rapid
diffusion of proteins (Alberts et al., 2015, Karamanos et al., 2021).

Fibrous proteins (e.g. collagen and elastin) are another key component of the ECM.
There are many collagen types but common to all is their arrangement in a triple helix,
with the capacity to bind to cell surface receptors (e.g. integrins) (Ricard-Blum, 2011,
Shoulders and Raines, 2009). Collagen fibres strengthen and organise the matrix and they
can, depending on their type, organise into fibrillar structures capable of resisting tensile
stress (Alberts et al., 2015, Gosline et al., 2002, Muiznieks and Keeley, 2013). Meanwhile,
the highly flexible protein elastin is commonly found in blood vessels and skin, providing
elasticity to the ECM (Baumann et al., 2021, Gosline et al., 2002, Muiznieks and Keeley,
2013).

Additionally, glycoproteins (e.g. laminin, fibronectin) promote cell migration and dif-
ferentiation (Singh and Schwarzbauer, 2012). For example, fibronectin cross-links with
ECM proteins and interacts with integrins to facilitate the formation of cell-substrate ad-
hesions (Burridge et al., 1988, Hsiao et al., 2017, Jockusch et al., 1995, Mosher et al., 1979,
Singh et al., 2010). Fibronectin can also coalesce to form fibrils (Mao and Schwarzbauer,
2005). On the other hand, laminin facilitates cell-substrate adhesion and cell motility
through the formation of mesh-like networks (Crossley et al., 2024, Hamill et al., 2009).

The ECM undergoes constant remodeling whereby its components are continually cre-
ated, destroyed or modified. For example, fibroblasts synthesise collagen to maintain a
stable structural framework in the ECM of connective tissue (Leblond, 1989). Meanwhile,
chondrocytes synthesise collagen for cartilage (Sandell and Aigner, 2001), endothelial cells
synthesise fibronectin (Jaffe and Mosher, 1978) and osteoblasts and osteoclasts compete to
synthesise and degrade bone (Florencio-Silva et al., 2015, Lu et al., 2011, Zelzer and Olsen,
2003). Moreover, proteases can be stored by the ECM to selectively target components
of the ECM (Goetzl et al., 1996, Parsons et al., 1997). These proteases (e.g. matrix met-
alloproteinases) are crucial, for example, in enhancing cell motility, through degradation
of damaged collagen fibres, during wound healing (Cawston and Young, 2010, Crossley
et al., 2024, Lu et al., 2011).

The ECM performs a diverse range of functions. For example, it can serve as a physical
barrier, an anchorage site, or a track to direct the motion of motile cells (Yue, 2014). The
ECM can also provide mechanical cues to cells, which can sense the physical properties of
the ECM (e.g. stiffness, porosity and orientation) through cell-substrate adhesions. For
example, stiff matrices promote integrin clustering, mature FAs and ROCK activation,
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leading to increased proliferation, contractility and, in the case of hMSCs, osteogenesis
(Choquet et al., 1997, Paszek et al., 2005, Sun et al., 2018). Beyond its structural function,
the ECM influences cell behaviour through biochemical signaling (Muncie and Weaver,
2018) and different cellular responses can be induced by different types of matrix (Frantz
et al., 2010).

1.2.8 Summary of key proteins

To serve as a reference point, we summarise in Table 1.1 the key structural and signaling
proteins involved in cell-substrate adhesion and cytoskeleton development, many of which
have been explored in detail in this Chapter.

Protein Type Role
Actin Structural G-actin monomers polymerise to form F-actin microfila-

ments, the basis for SFs. During cell motility, polymeri-
sation of actin filaments pushes the cell membrane.

Arp2/3 Structural Nucleates new branches from existing filaments, partic-
ularly in motile cells.

Cofilin Structural Severs actin filaments (when unphosphorylated), replen-
ishing pool of actin monomers. Phosphorylation inhibits
this ability.

Collagen Structural Strengthens and organises the ECM, allowing it to resist
tensile forces.

Elastin Structural Highly flexible, provides elasticity to the ECM.
Fibronectin Structural Cross-links with ECM proteins, connects ECM to inte-

grins and can forms fibrils in a force-dependent manner.
Filamin Structural Actin cross-linker, accumulates at adhesions to remodel

filaments into bundles.
FAK Signaling Activates Rho activity in response to adhesion formation

and maturation.
Integrins Structural Transmembrane receptors that, when activated by talin

binding, can bind to ECM ligands to form nascent ad-
hesions. Clustering through diffusion leads to FA for-
mation.

LIMK Signaling Phosphorylates cofilin (when activated by ROCK), in-
hibiting its severing ability.

Continued on the next page
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Table 1.1 – continued from previous page
Protein Type Role
mDia1 Structural Activated in response to adhesion formation, binds to

the actin binding protein profilin, promoting actin poly-
merisation.

MLCK Signaling When phosphorylated (in response to ROCK activa-
tion), MLCK can phosphorylate (activate) myosin II,
facilitating its interaction with actin.

MLCP Signaling When unphosphorylated, MLCP dephosphorylates (in-
activates) activated myosin II; this ability is inhibited
when phosphorylated by activated ROCK.

Myosin II Structural Cross-links actin filaments; facilitates contraction of SFs
through motor action when activated (by phosphoryla-
tion).

Profilin Structural Binds with mDia1, facilitating actin polymerisation
through conversion of ADP-actin monomers to ATP-
actin monomers.

Rac Signaling Regulates the actin cytoskeleton in motile cells.
Rho Signaling In response to adhesion formation and maturation, acti-

vates the enzyme ROCK and formin mDia1, facilitating
myosin II activation, actin filament elongation and, con-
sequently, SF formation.

ROCK Signaling By phosphorylating downstream effectors, induces the
formation of SFs and FAs by inhibiting actin filament
depolymerisation and promoting myosin II activation.

Talin Structural Connects the cell cytoskeleton to integrins, causing acti-
vation of integrins, facilitating nascent adhesion forma-
tion.

Vinculin Structural Recruited to nascent adhesions in a force-dependent
manner to strengthen the talin-actin bonds and prompt
maturation into FAs.

α−actinin Structural Bundles actin filaments to form short bundles, providing
a template for adhesion elongation.

Table 1.1: Summary of important structural and signal-
ing proteins involved in FA and SF formation and matu-
ration.
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1.3 Overview of our modelling approach

There are some common underlying principles to our modelling approaches in Chs. 2-5
to describe the coupled development and maturation of cell-substrate adhesions and cell
cytoskeleton. We outline these principles here.

1.3.1 Biochemistry

Throughout this thesis we shall assume that integrins can exist in four states. As indicated
in the blue section of Fig. 1.4 these states are low-affinity (for ECM ligand binding),
high-affinity (for ECM ligand binding), bound (to an ECM ligand) or recruited into a
mature FA. Moreover, as indicated in the red region of Fig. 1.4, we assume myosin II
is either inactivated or activated, and that actin can exist in three states, namely in
monomeric (G-actin) form, as part of a filament (F-actin) or recruited into a SF that has
been cross-linked by activated myosin II. The development of SFs and FAs is assumed
to be coupled, as indicated with green arrows in Fig. 1.4, through intracellular signaling.
The intracellular signaling cascades we consider are indicated in Fig. 1.5. In particular,
maturating adhesions are assumed to activate mDia1 and Rho signaling, leading to changes
in the dynamics of actin polymerisation and myosin II activation through downstream
effectors cofilin, MLCP and MLCK. Stress fibre formation is then linked to increased
adhesion maturation.

Figure 1.4: Overview of important biochemistry in the formation of FAs and VSFs. Key
proteins involved in adhesion formation and maturation (blue region) and SF assembly (red
region). Feedback loop indicated by dashed lines, a thick line is used to separate reactions
that occur on the cell membrane and reactions that occur deeper in the cytoplasm.

To summarise, we consider three key coupled biochemical events:
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Figure 1.5: Intracellular signaling feedback loop. Adhesion maturation leads to Rho acti-
vation, promoting actin polymerisation and ROCK activation. Activation of ROCK leads
to phosphorylation of downstream effectors (cofilin, MLCP and MLCK) and, consequently,
SF development and further adhesion maturation.

• Adhesion formation: As shown in the blue section of Fig. 1.4, we describe the acti-
vation (by talin binding) of integrins and subsequent binding of these integrins with
ECM ligands to form bound integrins (nascent adhesions). Subsequently, these ad-
hesions can mature (through recruitment of vinculin) in a stretch-dependent manner
into FAs.

• Intracellular signaling: As indicated in green in Fig. 1.4, the formation and mat-
uration of cell-substrate adhesions leads to increased actin filament formation and
myosin II activation, facilitating increased SF formation. Fig. 1.5 provides more
detail on the signaling pathways we consider, illustrating how adhesion maturation
leads to ROCK and mDia1 activation. In turn, mDia1 activation leads to increased
actin polymerisation, whilst ROCK activation precipitates phosphorylation of cofilin,
MLCP and MLCK leading to changes in actin and myosin dynamics.

• Stress fibre formation: As shown in the red section of Fig. 1.4, we incorporate
the polymerisation of actin monomers to form actin filaments, activation of myosin
II, and cross-linking of actin by myosin II to form SFs. The myosin II generated
contractile forces stretch adhesions, leading to maturation into FAs, as indicated in
Fig. 1.5.

In Chs. 3-5 we describe the evolution of each of these (structural and signaling) proteins
using a set of reaction-diffusion-advection equations. Hence, the concentration, c(x, t), of
a generic protein, C, at position x and time t is described by

∂c

∂t
= f (c, c1, ..., cj) +D∇2c−∇ · (vc) , (1.1)
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where f captures the reactions, involving other proteins with concentrations c1, ..., cj,

that lead to the formation or depletion of the protein C, D is the diffusivity of C, and
where C is advected with velocity v. In Ch. 2 we neglect spatial variations in protein
concentration, instead specifying a large family of ODEs to describe the evolution of the
average concentration or density of each protein.

1.3.2 Mechanics

In Chs. 3-5, in order to calculate the stress and deformation of the cell, ECM and adhesions,
we must impose constitutive assumptions on each of these structures. In line with existing
modelling approaches (e.g. Byrne and Chaplain, 1996, Gracheva and Othmer, 2004, Jamali
et al., 2010), we model each of these structures as a Kelvin-Voigt viscoelastic material.
Such a system consists of a viscous damper and elastic spring connected in parallel and is
appropriate to describe the rheology of long-time solid-like viscoelastic materials; contrast
this with the Maxwell model, which consists of a damper and spring connected in series and
is applicable to long-time fluid-like viscoelastic materials. In general, for such a material,
the Cauchy stress, σ, is related to both the strain, ϵ, and strain rate, ϵ̇, so that

σ = f (ϵ) + g (ϵ̇) , (1.2)

for functions f, g. Throughout this thesis we assume displacements in both the cell and
ECM are small, allowing us to assume linear viscoelasticity. In this case, the stress is given
by

σ = Eϵ+ µϵ̇, (1.3)

where E is the Young’s modulus of the material and µ is the material viscosity (Lai et al.,
1976). Of-course these are simple rheological assumptions for each of these structures, and
future developments of the model could consider more sophisticated mechanical features.
For example, the ECM is a complex porous structure, percolated by interstitial fluid.
Consequently, a poroviscoelastic model (e.g. in a similar manner to Cowin, 1999, Taffetani
et al., 2014) could better capture ECM rheology; in our model the ECM behaves akin to
a manufactured hydrogel (Saldin et al., 2017). Moreover, the ECM is an intrinsically
three-dimensional structure, whilst we restrict our modelling to one- and two-dimensions.
Despite these simplifications, our models are still able to capture ECM deformation in
response to cell contractility, viscous resistance, energy dissipation, and serve as a platform
that is readily adaptable to capture remodelling of ECM mechanical properties (e.g. strain
stiffening).
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1.3.3 Constitutive assumptions

Throughout this thesis, in order to close the positive feedback loop connecting FA and SF
formation and to connect the cell biochemistry to the underlying mechanical properties,
we make several constitutive assumptions. In particular, certain reaction rates (e.g. that
of actin polymerisation) are assumed to depend on the concentration of signaling proteins.
Moreover, in Chs. 3-5 we link the rate of adhesion maturation to adhesion stretch (in Ch. 2
we simply assume that the rate of adhesion maturation depends on SF concentration).
Furthermore, in a similar manner to Gracheva and Othmer (2004), Larripa and Mogilner
(2006), we couple the mechanical properties of the cytoskeleton and adhesions to the
biochemistry (e.g. assuming a linear dependence of adhesion stiffness on adhesion density).

1.4 Existing modelling approaches

At the molecular level, several models have been developed to describe the interaction be-
tween ligands and their receptors. For example, the model of Bell (1978) is often applied
to describe the dissociation of slip bonds (those which exhibit increasing dissociation as
force is loaded on them), assuming the bond dissociation increases exponentially with the
applied force; this model, however, assumes a bond rupture is reversible. To account for
the possibility of rebinding, Li and Ji (2014) have employed Brownian dynamics simula-
tions. Their model predicts that stronger ligand-receptor bonds form on stiffer substrates,
suggesting an ability of cell-substrate adhesions to respond to mechanical cues at the
molecular level (Chen et al., 2015). Separately, Erdmann and Schwarz (2006, 2007) for-
mulate a model connecting the rebinding rate of ligand-receptor pairs to their separation,
an approach that has been able to demonstrate the strong influence of substrate stiff-
ness on the lifetime and strength of a cluster of receptor–ligand bonds (Gao et al., 2011,
Qian et al., 2008, 2009). On the other hand, to describe catch ligand-receptor bonds,
where the dissociation rate decreases with the applied force, several theoretical models
(e.g. Pereverzev et al., 2005, Thomas et al., 2006, Zhu et al., 2005) have been developed
and are reviewed by Thomas (2008). These bonds, first proposed by Dembo et al. (1988),
have been reported between certain integrins and fibronectin (Kong et al., 2009).

Focal adhesions form due to the clustering of integrin-ligand connections. To describe
this process, Peng et al. (2012) have formulated a model that accounts for integrin diffu-
sion, activation and binding and predict that FA nucleation is enhanced on stiff substrates.
A similar study by Bihr et al. (2012) predicts the critical number of receptor-ligand bonds
needed for adhesion nucleation. A separate approach by Shemesh et al. (2005) employs
a thermodynamic model to describe the aggregation of integrins to form adhesions, pre-
dicting conditions that can lead to FA growth or disassembly. Meanwhile, Welf et al.
(2012) have used a coupled set of reaction-diffusion equations to predict the clustering
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of integrins through localised activation and binding of integrins to ECM ligands. More
recently, a coarse-grained approach has been applied by Bidone et al. (2019) to predict the
formation of adhesions. Accounting for the different properties of different integrin types
(e.g. diffusion, affinity to the ECM etc.), they predict the effect of ligand binding affinity
of integrins and interaction strength on adhesion morphology and distribution.

Focal adhesions mature and grow under relatively small forces, but can disassemble
when the applied force becomes sufficiently large (with the kinetics of bond breaking often
described using Bell, 1978). To describe these two modes of behaviour, Kong et al. (2008,
2010) have employed a model at the molecular level to account for force-dependent inte-
grin clustering and integrin–ligand binding. They demonstrate that small forces promote
clustering of integrins and other adhesion molecules whilst adhesions disassemble when
subjected to large forces, governed by the reaction kinetics of integrin–ligand bonds.

In this thesis we describe the coupled formation and maturation of FAs and VSFs
using a theoretical model. Our approach builds on several key studies which have each
considered a smaller portion of the overall process. Firstly, we model the formation of
SFs in a manner similar to Deshpande et al. (2006, 2007), who developed a continuum
model for SF concentration that incorporates three key biochemical processes: activation
of (calcium) signaling for actin polymerisation and myosin phosphorylation, tension de-
pendent formation of actomyosin SFs, and the generation of tension from actin-myosin
interactions. Their approach predicts that SFs and FAs form near sites of applied tension
(and can be extended to consider cyclic stretch, see Wei et al., 2008). Their model further
predicts that cells generate lower forces on more compliant surfaces, that cell shape and
boundary conditions influence the development of structural anisotropy and that SFs ex-
hibit a high concentration local to FAs (with adhesions orienting themselves preferentially
along the direction of fibres). Secondly, we model integrin activation, adhesion formation
and positive feedback (connecting FA and SF development) following refinements of these
SF models (Deshpande et al., 2008, Keshavanarayana et al., 2017, Vernerey and Farsad,
2014), who use a thermodynamic approach, incorporating suitable chemical potentials of
low- and high-affinity integrins and the stretch energy stored in adhesions. This approach
demonstrated that FAs concentrate around the cell periphery, that the fraction of the
cell area covered with FAs increases with decreasing cell size and facilitated prediction of
FA and SF formation on various patterned surfaces (McMeeking and Deshpande, 2017,
Pathak et al., 2008). Moreover, they were able to demonstrate the formation of highly
aligned SFs along the non-adhered edges of cells on concave ligand patterns. Similar anal-
ysis by Ronan et al. (2012, 2014) illustrates the effect of substrate stiffness on FA and SF
formation.

Our approach is similar in spirit to the bio-chemo-mechanical model developed by
Besser and Schwarz (2007) to study the deformation of SFs alone by linking the activation
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of the Rho-pathway to mechanical forces at adhesions. By modelling the consequent phos-
phorylation of certain downstream effectors (and increased activation of myosin II), they
replicated experimentally observed non-uniform striation of SFs (Peterson et al., 2004).
Moreover, by considering a steady state analysis for biologically relevant parameter values,
they were able to demonstrate bistability (i.e. the cell exhibits two stable steady states),
characteristic of a positive feedback loop (Tyson et al., 2003). In particular, they showed
one steady state corresponded to cells failing to establish mechanical stress, exhibiting low
myosin II activation; the other steady state, corresponding to well adhered cells, exhibited
significant intracellular stress due to the non-uniform activation of myosin motors. This
was further developed by Besser et al. (2011) who, neglecting the cell biochemistry, were
able to provide analytical solutions to describe cell deformation. In Ch. 3 our model sim-
ilarly connects the cytoskeletal mesh scale to the microscale using discrete-to-continuum
upscaling, but our model predicts FA and SF localisation without presupposing where this
will occur, provides a detailed analysis of the Rho-signaling feedback loop (which is linked
to changes in cell function) and incorporates ECM deformation.

Another similar modelling approach is taken by Edwards and Schwarz (2011) and
Dunlop (2019), who also connect the cell (assumed to be an elastic material subjected to
contractile pressures) to a substrate through a set of elastic springs to mimic FAs. This
purely mechanical model has been able to predict the experimentally observed localisation
of traction forces around the cell edge (and particularly to regions adhered to stiffer ECM),
and non-uniform cell striation and stretch (in response to non-uniform cellular contrac-
tility). A similar approach, employed by Banerjee and Marchetti (2013), demonstrates
that adhesion patterning can be used to control stress distribution in the cell. Moreover,
using this framework, Solowiej-Wedderburn and Dunlop (2022, 2023) predict the effect of
adhesion patterning on cell morphology, demonstrating that patterning changes the effec-
tive substrate stiffness experienced by an adhered cell. He et al. (2014) similarly consider
the deformation of a cell (treated as a contracting-disk), connected to a substrate via
elastic adhesions. They predict that the cell traction increases with increasing substrate
stiffness before plateauing, suggesting that cells cannot sense changes in substrate stiff-
ness at sufficiently high levels. This work has also demonstrated that displacement and
stress in the substrate decay exponentially with distance from the adhering cell, with a
characteristic decay length (the mechanosensing length of the cell) on the order of that
of the cell radius, consistent with experimental observations (Merkel et al., 2007). This
mechanosensing length has been shown to be insensitive to substrate stiffness for a wide
range of stiffnesses (Chen et al., 2015).

Our model also incorporates the dynamics of actin polymerisation, building on a previ-
ous study by Mogilner and Edelstein-Keshet (2002), who considered the dynamics of actin
polymerisation in the cortex of rapidly moving cells. Using a large family of PDEs they
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were able to describe the dynamics of actin sequestering, nucleation of filament branches
and changes in filament length due to polymerisation, capping and depolymerisation. Hu
et al. (2007a) also considered actin dynamics, predicting the time taken for actin filament
formation to equilibrate. Moreover, stochastic approaches by Hu and Othmer (2011),
Matzavinos and Othmer (2007) predict filament growth and decay in the presence of actin
binding proteins and fluctuations in actin filament length. We use a relatively simplistic
(continuum) model to describe polymerisation dynamics.

In this thesis we focus on non-motile cells and consequently the formation of VSFs.
The model developed couples local variations in mechanical properties induced by the
signaling and scaffolding proteins to the macroscale deformation of the cell using an ap-
proach similar to Gracheva and Othmer (2004). In particular (building on earlier work by
DiMilla et al., 1991, who developed a discrete model for the cell consisting of both Kelvin-
Voigt and Maxwell units), they coupled the mechanical properties of the cell (treated as
a Kelvin-Voigt viscoelastic material with additional active stresses) and adhesions to the
cell biochemistry in motile cells (see also Larripa and Mogilner, 2006, which focuses on the
formation of actin cytoskeleton). Most other models for the development of cell-substrate
adhesion and cytoskeleton are focused on motile cells, where other SF types become crucial
(e.g. transverse arcs or dorsal SFs); the reader is directed to detailed reviews elsewhere
(e.g. Chen et al., 2020, Flaherty et al., 2007, Holmes and Edelstein-Keshet, 2012, Mak
et al., 2016a, Mogilner, 2009).

Many of the aforementioned models have focused on mechanosensing through adhe-
sions. However it is worth noting that, on short time scales, before adhesions have had
an opportunity to mature, myosin motors can play a significant role in mechanosensing.
For example, computational modelling by Åström et al. (2008) demonstrates that actin
networks can adjust to mechanical environments by modulating cross-links within the
networks. Meanwhile, modelling by Walcott and Sun (2010) demonstrates that the appli-
cation of force to the cytoskeleton can cause actin filament aggregation and re-orientation
to a direction parallel to the force. The filament aggregation rate is shown to be force-
dependent, suggesting a mechanism for stress fibre formation and stiffness sensing for
cells adhered to soft substrates. Separately, Borau et al. (2012), Kim et al. (2009a,b)
use Brownian dynamics simulations to investigate the large-scale contractile responses of
a cross-linked actomyosin network (on timescales of hundreds of seconds) to investigate
stiffness sensing of actomyosin networks. They identify distinct mechanisms to limit the
amount of internal stress depending on the mechanical properties of the substrate. Further
developments by Mak et al. (2016b) incorporate actin turnover and cross-linking protein
binding and unbinding, demonstrating the significant role that actin turnover has on ad-
justing stress and stabilising the network. Continuing with this approach, Bidone et al.
(2017) have demonstrated how myosin motor and actin cross-linker density, and the ori-
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entation, mechanical properties and turnover of actin filaments can influence the bundling
of a cross-linked actomyosin network.

1.5 Thesis structure

The remainder of this thesis is structured as follows. In Ch. 2 we provide a simple spatially-
averaged description for cell-substrate interactions. In particular, we use a large family
of ODEs to describe the formation and maturation of FAs, the polymerisation of actin,
activation of intracellular signaling and formation of VSFs. This approach neglects spa-
tial variations in the biochemical properties of the cell, adhesions and the ECM, requires
a high-degree of empiricism, and does not incorporate a mechanical description of cell-
substrate interaction. Nonetheless, this simplistic modelling approach provides intuition,
allows for rapid calculation of possible steady states and is shown to reproduce remarkably
well qualitatively the global biochemical dynamics of cell-substrate adhesion and cytoskele-
ton development predicted by higher-dimensional models. Ch. 3 then provides a basis for
the remaining work in this thesis. In Ch. 3 we develop, via discrete-continuum upscaling, a
one-dimensional bio-chemo-mechanical continuum model to describe the deformation and
stress of a cell adhering to a substrate, including the ECM and adhesions. We use a large
family of PDEs to describe the evolution of key proteins involved in cell-substrate adhe-
sion and cytoskeleton formation and maturation. We couple the mechanical properties of
the cell, adhesions and the ECM to the concentrations and densities of these proteins. By
linking the rate of adhesion maturation to adhesion stretch and of ROCK activation to ad-
hesion density we are able to predict changes in signaling during cell-substrate interaction.
We illustrate a baseline case, making predictions of both global and local behaviour of the
cell. In Ch. 4, employing the model developed in Ch. 3, we perform sweeps of the parame-
ter space, investigating the effect of various mechanotransductive and chemotransductive
cues applied to the cell. In particular, we are able to elucidate the mechanism through
which cells sense ECM stiffness and viscosity through adhesion maturation, how ROCK
inhibition facilitates stress relaxation inside the cell and how integrin clustering to form
adhesions is affected by ECM ligand density. In Ch. 5 we introduce a two-dimensional
analogue to the model introduced in Ch. 3. This approach is more realistic than our
one-dimensional model, facilitating the explicit inclusion of the cell nucleus (which we
treat as a rigid body) and of the cell membrane, which can resist deformation. To under-
stand the mechanism by which adhering cells adopt their characteristic non-uniform lobed
shape during the cell-substrate adhesion and cytoskeleton development, we test the (lin-
ear) stability of the axisymmetric deformation to perturbation normal modes of varying
azimuthal wavenumber. To conclude this thesis, in Ch. 6 we summarise and contextualise
our findings and provide an outlook for future research.



Chapter 2

A spatially-averaged model

In this short Chapter, we develop a spatially-averaged framework to describe the devel-
opment of cell-substrate adhesions and cell cytoskeleton, in order to develop an intuition
for the cell biochemistry. In contrast with Chs. 3-5 (below), we neglect spatial variations
and describe the evolution of spatially averaged concentrations of the relevant proteins
(those outlined in Sec. 1.3.1 and summarised in Figs. 1.4-1.5). In particular, we use a
large system of coupled ODEs to describe the formation and maturation of adhesions, the
polymerisation and cross-linking of actin by myosin II to form SFs, and the activation
of ROCK signaling and phosphorylation of its downstream effectors. Our approach here
is significantly oversimplified as the mechanical properties of the cell and ECM do not
play a role (as discussed in Ch. 3, spatial variations in myosin II generated contractility
are required for cell contraction and hence adhesion stretching). Consequently, to capture
the effect SFs have on FA development (through inducing adhesion stretch), we introduce
an empirical relation connecting the rate of adhesion maturation to the concentration of
VSFs. Despite its simplicity, this reduced approach still consistently predicts the global
behaviour of a cell as it interacts with a substrate by forming FAs and developing SFs.

This Chapter is structured as follows. In Sec. 2.1 we construct our biochemical model,
specifying a large family of ODEs to describe the formation of SFs (Sec. 2.1.1), the devel-
opment of cell-substrate adhesions (Sec. 2.1.2), and the activation of signaling proteins and
phosphorylation of their downstream effectors (Sec. 2.1.3) before specifying appropriate
initial conditions (Sec. 2.1.4). To simplify our analysis, we non-dimensionalise the govern-
ing ODEs in Sec. 2.2. Thereafter, we introduce our constitutive modelling assumptions in
Sec. 2.3. Particularly, we specify how adhesion formation and maturation leads to ROCK
activation and increased signaling (Sec. 2.3.1) and introduce an empirical law linking the
adhesion maturation rate to SF formation (Sec. 2.3.2). We specify our assumed model
parameters in Sec. 2.4 and briefly describe our computational method in Sec. 2.5 before
illustrating results from this model in Sec. 2.6. In particular, to investigate the temporal
dynamics of a cell binding to an ECM, we present a baseline output from our model,
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illustrating the evolution of the average concentration and density of key cytoskeleton,
adhesion and signaling proteins with time (Sec. 2.6.1). Subsequently, we consider sweeps
of the parameter space to investigate how changes in our constitutive assumptions can
impact model predictions (Secs. 2.6.2-2.6.3). Finally, we apply the model to investigate
how changes in the ECM ligand density (Sec. 2.6.4) and the introduction of a ROCK
inhibitor (Sec. 2.6.5) can influence the development of adhesions and cytoskeleton. We
conclude the Chapter with a brief summary in Sec. 2.7.

2.1 Spatially-averaged biochemical equations

In this Section we develop a spatially-averaged modelling framework to describe FA and
SF formation. We formulate a set of ODEs to describe the evolution of the average con-
centration or density of various proteins in the cell. This formulation neglects localisation
of the key cytoskeleton, adhesion and signaling proteins in the cell, which is the subject
of work in Chs. 3-5. Note that several of the reactions rates describing the dynamics of
scaffolding proteins are non-constant and are coupled to the concentration of signaling
proteins or other scaffolding proteins; constitutive assumptions to describe these reaction
kinetics are detailed in Sec. 2.3 (below). Such a dependence prevents simple decoupled
solutions of the system, which must be solved numerically.

2.1.1 Cytoskeleton proteins

Based on our discussion in Ch. 1, we suppose that actin monomers, average concentra-
tion c̄G, are polymerised into actin filaments, average concentration c̄F . In practice this
process occurs at adhesions (see Fig. 1.1). Hence, in this spatially-averaged model, we
assume the rate of polymerisation is catalysed by bound integrins, average density n̄b, and
FAs, average density n̄A. Subsequently, actin filaments can be cross-linked by activated
myosin II, average concentration c̄+m, to form contractile VSFs, with average concentration
c̄+S ; the dynamics of myosin II activation are described below. We describe the average
concentration of actin monomers by

dc̄G
dt

= −k+
p c̄G (n̄b + n̄A) + k−

p c̄F + k−
mc̄

+
S , (2.1a)

where k+
p represents the rate per adhesion of actin polymerisation, k−

p is the dissociation
rate of actin filaments and k−

m is the dissociation rate of SFs; note that in this model
the rates of actin polymerisation and depolymerisation depend on the concentration of
signaling proteins, as detailed in Sec. 2.3.1 (below). In particular, we assume that SFs
decompose directly into their constituent actin monomers (and myosin cross-linkers). We
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describe the corresponding dynamics of the actin filaments by

dc̄F
dt

= k+
p c̄G (n̄b + n̄A)− k−

p c̄F − k+
mc̄F

(
c̄F + c̄+S

)
c̄+m, (2.1b)

where cross-linking of actin filaments by myosin II occurs at a rate proportional to k+
m. In

turn, the corresponding dynamics of SFs satisfy

dc̄+S
dt

= k+
m

(
c̄F + c̄+S

)
c̄+m − k−

mc̄
+
S . (2.1c)

Notice that we satisfy the conservation law

d

dt

(
c̄G + c̄F + c̄+S

)
= 0, (2.1d)

i.e. the total actin in the cell, c̄G + c̄F + c̄+S , is a constant, KA.

Inactive myosin II, average concentration c̄m, is activated in response to signaling
proteins which, in turn, are regulated by ROCK. The concentration of inactive myosin II
and activated myosin II are described, respectively, by

dc̄m
dt

= −k+
a c̄m + k−

a c̄
+
m, (2.1e)

dc̄+m
dt

= k+
a c̄m − k−

a c̄
+
m − k+

mc̄F
(
c̄F + c̄+S

)
c̄+m + k−

mc̄
+
S , (2.1f)

where k+
a is the rate at which myosin II is activated and k−

a is the rate at which active
myosin II is inactivated (these rates are non-constant, depending on the concentration of
signaling proteins, as detailed below in Sec. 2.3.1); free active myosin II is lost due to its
recruitment into SFs.

2.1.2 Adhesion proteins

Interaction between the cell and substrate occurs primarily via adhesions. The formation
of these structures is initiated by the binding of talin to free integrins, average density
n̄f , to form high-affinity integrins, average density n̄h. We describe the dynamics of free
integrins by

dn̄f

dt
= −k+

h n̄f + k−
h n̄h, (2.1g)

where k+
h is the rate of integrin activation and k−

h is the rate of integrin inactivation. High-
affinity integrins then bind to ECM ligands, average density n̄s, to form bound integrins,
n̄b. The dynamics of high-affinity integrins and ECM ligands are described by

dn̄h

dt
= k+

h n̄f − k−
h n̄h − k+

b n̄hn̄s + k−
b n̄b, (2.1h)
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dn̄s

dt
= −k+

b n̄hn̄s + k−
b n̄b, (2.1i)

where binding occurs at a rate proportional to k+
b and integrin-ligand connections break

at a rate k−
b . We describe the dynamics of bound integrins by the simple reaction equation

dn̄b

dt
= k+

b n̄hn̄s − k−
b n̄b − k+

F n̄b + k−
F n̄A, (2.1j)

where bound integrins mature into FAs, n̄A, at rate k+
F , and FAs dissociate into weaker

bound integrins at rate k−
F . We describe the dynamics of FA formation by

dn̄A

dt
= k+

F n̄b − k−
F n̄A. (2.1k)

Note that the adhesion maturation rate is linked to the concentration of SFs in the cell,
this is discussed in Sec. 2.3.2 (below).

2.1.3 Signaling proteins

We focus on Rho signaling, which becomes activated in response to the formation of
cell-substrate adhesions, regulating actin polymerisation rates and myosin II activation
(Deguchi and Sato, 2009) through a variety of mechanisms including upregulation of mDia1
and ROCK (Feng et al., 1999, Maekawa et al., 1999), as shown in Fig. 1.5. For modelling
simplicity, we assume that increases in mDia1 activity occurs in tandem with ROCK
activation. Therefore, we use activated ROCK as a proxy measure for mDia1 activity
and hence the actin polymerisation rate. Activation or phosphorylation of each of these
species is described by very simple reaction kinetics, however several of the subsequent
rate constants are not constant, complicating dynamics.

We let c̄R denote the average concentration of inactive ROCK and c̄+R denote the
average concentration of activated ROCK inside the cell. We describe the dynamics of
ROCK activation by

dc̄R
dt

= −k+
R c̄R + k−

R c̄
+
R, (2.1l)

dc̄+R
dt

= k+
R c̄R − k−

R c̄
+
R, (2.1m)

where k+
R is the activation rate of inactive ROCK and k−

R is the rate at which activated
ROCK becomes inactivated.

In response to ROCK activation, MLCP, average concentration c̄P , is phosphorylated
at rate k+

1 to form phosphorylated MLCP, average concentration c̄P−P . Phosphorylated
MLCP is dephosphorylated at rate k−

1 . The reaction dynamics for MLCP are hence de-
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scribed by

dc̄P
dt

= −k+
1 c̄P + k−

1 c̄P−P , (2.1n)

dc̄P−P

dt
= k+

1 c̄P − k−
1 c̄P−P . (2.1o)

A further consequence of ROCK activation is phosphorylation of MLCK, average con-
centration c̄K , at rate k+

2 to form phosphorylated MLCK, average concentration c̄K−P .

Phosphorylated MLCK is dephosphorylated at rate k−
2 . The reaction dynamics for MLCK

are hence described by

dc̄K
dt

= −k+
2 c̄K + k−

2 c̄K−P , (2.1p)

dc̄K−P

dt
= k+

2 c̄K − k−
2 c̄K−P . (2.1q)

Finally, ROCK activation also precipitates phosphorylation of cofilin, average concen-
tration c̄C . Phosphorylation occurs at rate k+

3 to form phosphorylated cofilin, average
concentration c̄C−P . Phosphorylated cofilin is dephosphorylated at rate k−

3 . The reaction
dynamics for cofilin are described by

dc̄C
dt

= −k+
3 c̄C + k−

3 c̄C−P , (2.1r)

dc̄C−P

dt
= k+

3 c̄C − k−
3 c̄C−P . (2.1s)

Despite their relatively simple appearance, the dynamics of signaling proteins are cou-
pled to the dynamics of the wider system. Indeed several of the reaction rates are non-
constant functions of other variables (as detailed below in Sec. 2.3).

2.1.4 Initial conditions

We assume that the cell is newly introduced to the substrate so that no adhesions have
formed and all integrins are in their low-affinity state for ECM ligand binding. Moreover,
we assume that no SFs or actin filaments have formed so that all actin is monomeric.
We additionally assume that ROCK is initially wholly inactive and consequently, MLCP,
MLCK and cofilin are all initially unphosphorylated, with myosin II found entirely in its
inactive state. The full details of the initial conditions are presented in Table 2.1 in Sec. 2.4
(below).
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2.2 Non-dimensionalisation

To simplify our analysis, we non-dimensionalise our biochemical and mechanical equations.
We scale actin concentrations on CA, the initial average concentration of actin (in all its
forms), scale myosin concentrations on CM , the initial average concentration of myosin
(in its inactive and active forms). We scale integrin and adhesion density on the average
initial integrin (in all its forms) density, NI , and scale ligand density on NS, the initial
average free ligand density. A similar treatment is given to signaling proteins with ROCK
concentration scaled on CR, the average initial ROCK concentration (in its active and
inactive forms), MLCP concentration scaled on CP , the average concentration of MLCP
(in its phosphorylated and unphosphorylated forms), MLCK concentration is scaled on CK ,

the average total concentration of MLCK (in its phosphorylated and unphosphorylated
forms) and cofilin concentration is scaled on CC , the average total concentration of cofilin
(in its phosphorylated and unphosphorylated forms). In particular, we set

CA = c̄G(0) + c̄F (0) + c̄+S (0), CM = c̄m(0) + c̄+m(0),

NI = n̄f (0) + n̄h(0) + n̄b(0) + n̄A(0), NS = n̄s(0),

CR = c̄R(0) + c̄+R(0), CP = c̄P (0) + c̄P−P (0),

CK = c̄K(0) + c̄K−P (0), CC = c̄C(0) + c̄C−P (0).

(2.2)

Moreover, given that our primary interest is in the microscale patterning of adhesion, we
scale time on ⟨t⟩ = 1/

(
k+
b NS

)
, the characteristic timescale for the formation of nascent

adhesions (due to the binding of high-affinity integrins with ECM ligands). Note that this
process is rapid compared to adhesion maturation into focal structures, and so we consider
the dynamics of the model over a large number of dimensionless time units. Although
we do not explore in detail here, this sets up a fascinating problem that is amenable
to a multiple scales analysis, which may in future allow for simplification of the model
as certain reactions happen on very short timescales. Such an analysis requires a large
separation of timescales. As evidenced in Sec. 2.4 and Table 2.4 (below), we expect such
a separation in our system, with at least three important timescales: integrin activation
(which happens on very short timescales); integrin-ligand binding (the timescale on which
we have non-dimensionalised the system); and adhesion maturation (which happens on
longer timescales). This is further evidenced in Fig. 2.1 (see Sec. 2.6, below).
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By introducing the following dimensionless groups

k̃+
p = k+

p NI⟨t⟩, k̃−
p = k−

p ⟨t⟩, k̃+
m = k+

mCACM⟨t⟩, ǩ+
m = k+

mC
2
A⟨t⟩,

k̃−
m = k−

m⟨t⟩, ǩ−
m = k−

m⟨t⟩CA/CM , k̃+
a = k+

a ⟨t⟩, k̃−
a = k−

a ⟨t⟩,

k̃+
h = k+

h ⟨t⟩, k̃−
h = k−

h ⟨t⟩, k̃+
b = k+

b NS⟨t⟩(= 1), ǩ+
b = k+

b NI⟨t⟩,

k̃−
b = k−

b ⟨t⟩, ǩ−
b = k−

b ⟨t⟩NI/NS, k̃+
F = k+

F ⟨t⟩, k̃−
F = k−

F ⟨t⟩,

k̃+
R = k+

R⟨t⟩, k̃−
R = k−

R⟨t⟩, k̃+
1 = k+

1 ⟨t⟩, k̃−
1 = k−

1 ⟨t⟩,

k̃+
2 = k+

2 ⟨t⟩, k̃−
2 = k−

2 ⟨t⟩, k̃+
3 = k+

3 ⟨t⟩, k̃−
3 = k−

3 ⟨t⟩,

(2.3)

we can write the dimensional governing ODEs, described by Eq. (2.1) in Sec. 2.1, in the
following dimensionless form

dc̄G
dt

= −k̃+
p c̄G (n̄B + n̄A) + k̃−

p c̄F + k̃−
mc̄

+
S , (2.4a)

dc̄F
dt

= k̃+
p c̄G (n̄B + n̄A)− k̃−

p c̄F − k̃+
mc̄F

(
c̄F + c̄+S

)
c̄+m, (2.4b)

dc̄+S
dt

= k̃+
mc̄F

(
c̄F + c̄+S

)
c̄+m − k̃−

mc̄
+
S , (2.4c)

dc̄m
dt

= −k̃+
a c̄m + k̃−

a c̄
+
m, (2.4d)

dc̄+m
dt

= k̃+
a c̄m − k̃−

a c̄
+
m − ǩ+

mc̄F
(
c̄F + c̄+S

)
c̄+m + ǩ−

mc̄
+
S , (2.4e)

dn̄f

dt
= −k̃+

h n̄f + k̃−
h n̄h, (2.4f)

dn̄h

dt
= k̃+

h n̄f − k̃−
h n̄h − k̃+

b n̄hn̄s + k̃−
b n̄b, (2.4g)

dn̄b

dt
= k̃+

b n̄hn̄s − k̃−
b n̄b − k̃+

F n̄b + k̃−
F n̄A, (2.4h)

dn̄A

dt
= k̃+

F n̄b − k̃−
F n̄A, (2.4i)

dn̄s

dt
= −ǩ+

b n̄hn̄s + ǩ−
b n̄b, (2.4j)

dc̄R
dt

= −k+
R c̄R + k−

R c̄
+
R, (2.4k)

dc̄+R
dt

= k+
R c̄R − k−

R c̄
+
R, (2.4l)

dc̄P
dt

= −k̃+
1 c̄P + k̃−

1 c̄P−P , (2.4m)

dc̄P−P

dt
= k̃+

1 c̄P − k̃−
1 c̄P−P , (2.4n)

dc̄K
dt

= −k̃+
2 c̄K + k̃−

2 c̄K−P , (2.4o)

dc̄K−P

dt
= k̃+

2 c̄K − k̃−
2 c̄K−P , (2.4p)



CHAPTER 2. A SPATIALLY-AVERAGED MODEL 31

dc̄C
dt

= −k̃+
3 c̄C + k̃−

3 c̄C−P , (2.4q)

dc̄C−P

dt
= k̃+

3 c̄C − k̃−
3 c̄C−P . (2.4r)

2.3 Constitutive assumptions

As discussed in Ch. 1 and indicated in Fig. 1.5, a positive feedback loop connects FA and
SF development. To capture this we make several modelling assumptions, we outline these
here.

2.3.1 Signaling proteins effect on reaction rates

To capture the effect adhesion formation and maturation has on intracellular signaling
(Bhadriraju et al., 2007), we describe the rate of ROCK activation by

k+
R = K+

R (n̄b + δn̄A) /NI , (2.5)

where K+
R is a dimensional rate constant. This form is chosen so that the relative strength

of signaling due to FAs compared to nascent adhesions is increased by a factor of δ = O(1).

To incorporate the effects of ROCK activation on MLCP, MLCK and cofilin phos-
phorylation (Dalby et al., 2018, Deguchi and Sato, 2009, Maekawa et al., 1999), we set
k+
j = K+

j gj
(
c̄+R/CR

)
, j = 1, 2, 3, where K+

j are dimensional rate constants and gj are
dimensionless functions of activated ROCK concentration.

To capture the effect that MLCK phosphorylation has on myosin II activation and that
MLCP phosphorylation has on myosin II inactivation (as discussed in Sec. 1.2.5) we set

k+
a = K+

a g
+
a (c̄K−P/CK) , g+a (c̄K−P/CK) = c̄K−P/CK , (2.6a)

k−
a = K−

a g
−
a (c̄P/CP ) , g−a (c̄P/CP ) = c̄P/CP , (2.6b)

where K+
a , K

−
a are dimensional constants and g+a , g

−
a are dimensionless functions of phos-

phorylated MLCK and unphosphorylated MLCP concentration, respectively.
Finally, to capture the effects increased Rho and ROCK activation has on actin poly-

merisation and that cofilin phosphorylation has on actin depolymerisation (as discussed
in Sec. 1.2.5), we set

k+
p = K+

p g
+
p

(
c̄+R/CR

)
, g+p

(
c̄+R/CR

)
= c̄+R/CR, (2.6c)

k−
p = K−

p g
−
p (c̄C/CC) , g−p (c̄C/CC) = c̄C/CC , (2.6d)

where K+
p , K

−
p are dimensional constants and g+p , g

−
p are dimensionless functions of the

concentration of ROCK and unphosphorylated cofilin.
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2.3.2 The effect of stress fibre formation

In response to contractile forces generated by SFs, nascent adhesions mature into FAs.
In Chs. 3-5 (below) the rate of formation of FAs is assumed to depend on the length
(or stretch) of integrin-ligand connections, facilitating mechanical feedback into the cell
biochemistry. However, our spatially-averaged modelling approach does not incorporate
mechanical deformation. Consequently, we develop an empirical relation to link the rate
of adhesion maturation to SF concentration, setting

k+
F = K+

F g
+
s

(
c̄+S /CA

)
, g+s

(
c̄+S /CA

)
=

(
c̄+S /CA

)α(
c̄+S /CA

)α
+ βα

, (2.7)

where K+
F is a dimensionless constant and g+s is a dimensionless function of SF concen-

tration; α describes the strength of coupling between SFs and FA formation and β is
the fraction of actin recruited into SFs that precipitates a half-maximal response. The
assumed form of g+s (a Hill type equation) is used to capture increased FA formation
with SF formation; this rate saturates when SFs become sufficiently dense (and adhesions
stretched), reflecting resistance to continued adhesion stretch as adhesions mature.

2.4 Parameter estimation

In this Section we briefly outline the (baseline) parameter values we employ in our model.
Unless otherwise stated, in Sec. 2.6 these constitute the initial value used for each protein
species (Table 2.1), and the assumed rates used for scaffolding proteins (Table 2.2) and for
signaling proteins (Table 2.3). Note that we assume the cell has a volume of V = 1000 µm3.

Protein Value Justification/interpretation
c̄G(0) (100/V ) µM µm−3 All actin is initially sequestered. In line with

Kiuchi et al. (2011) who suggest that most
living cells contain roughly 100 µM of G-actin.

c̄F (0) 0 µM µm−3 All actin is initially sequestered.
c̄+S (0) 0 µM µm−3 All actin is initially sequestered.
c̄m(0) (30/V ) µM µm−3 All myosin II initially inactive. Estimated

based on Besser and Schwarz (2007), who use
a total amount of myosin II of 30 µM (based
on Butler et al. (1994)); and on Gracheva and
Othmer (2004) who assume a total amount of
myosin II of 20 µM.

c̄+m(0) 0 µM µm−3 All myosin II initially inactive.
Continued on the next page
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Table 2.1 – continued from previous page
Protein Value Justification/Interpretation
n̄f (0) 100 µm−2 Initially no adhesions have formed. The same

value has been used by Bidone et al. (2019)
(based on Oakes et al., 2018) and by Paszek
et al. (2009).

n̄h(0) 0 µm−2 Initially no adhesions have formed.
n̄b(0) 0 µm−2 Initially no adhesions have formed.
n̄A(0) 0 µm−2 Initially no adhesions have formed.
n̄s(0) 1000 µm−2 The same value has been used by Bidone et al.

(2019) and is consistent with Paszek et al.
(2009).

c̄R(0) (1/V ) nM µm−3 Assume all ROCK is initially inactive. Besser
and Schwarz (2007) use values for the total
amount of ROCK of 0-5 nM based on Feng
et al. (1999).

c̄+R(0) 0 nM µm−3 Assume all ROCK is initially inactive.
c̄K(0) (0.1/V ) µM µm−3 All MLCK is initially unphosphorylated.

Besser and Schwarz (2007) use a value for the
total amount of MLCK of 0.1 µM based on
Nagamoto and Yagi (1984).

c̄K−P (0) 0 µM µm−3 Assume all MLCK is initially unphosphory-
lated.

c̄P (0) (1/V ) µM µm−3 All MLCP is initially unphosphorylated.
Besser and Schwarz (2007) use values for the
total amount of MLCP of 0-1.2 µM based on
Hartshorne et al. (1998).

c̄P−P (0) 0 µM µm−3 Assume all MLCP is initially unphosphory-
lated.

c̄C(0) (1/V ) µM µm−3 Assume all cofilin is initially unphosphory-
lated.

c̄C−P (0) 0 µM µm−3 Assume all cofilin is initially unphosphory-
lated.

Table 2.1: Baseline initial conditions imposed on protein
concentrations in spatially-averaged model.
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Parameter Value Justification/Interpretation
K+

p 2×10−3adhesion−1 s−1 Typical actin polymerisation rate. Order of mag-
nitude estimate based on Larripa and Mogilner
(2006), Svitkina et al. (1997) (and the noted dif-
ference in filament density between the cell cen-
tre and edge).

k−
p 1× 10−2 s−2 Actin filament sequestering rate. Estimate in-

ferred from Larripa and Mogilner (2006) based
on Svitkina et al. (1997).

K+
a 1× 10−2 s−1 Typical myosin II activation rate. Estimated

(chosen so that activation occurs on the order
of minutes).

K−
a 1× 10−2 s−1 Typical rate of myosin II inactivation. (chosen so

that inactivation occurs on the order of minutes).
k+
m 1× 102 µM−2 s−1 Rate of cross-linking of actin bundles by myosin

II. Order of magnitude inferred from Larripa and
Mogilner (2006).

k−
m 1× 10−2 s−1 Rate of SF disassembly into constituent actin

monomers and myosin II. Estimate inferred from
Larripa and Mogilner (2006).

k+
h 0.5 s−1 Rate of conversion of free integrins to high-

affinity. The same value is used by Paszek et al.
(2009) based on Iber and Campbell (2006), Ta-
dokoro et al. (2003).

k−
h 5 s−1 Rate of conversion of integrins from high-affinity

to low-affinity. The same value is used by Paszek
et al. (2009) based on Iber and Campbell (2006),
Tadokoro et al. (2003).

k+
b 1× 10−4 ligand−1 s−1 Rate of integrin-ligand binding (nascent adhe-

sion formation). Estimated based on rapid for-
mation of bound integrins (on the order of tens
of seconds).

k−
b 1× 10−2 s−1 Rate of nascent adhesion disassembly. Estimated

based on expected short lifetime (compared to
FAs) on the order of tens of seconds to minutes.

Continued on the next page
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Table 2.2 – continued from previous page
Parameter Value Justification/Interpretation
K+

F 1× 10−2 s−1 Rate of FA formation. Order of magnitude esti-
mate chosen so that reverse reaction dominates
when there is little SF formation but forward re-
action dominates when SF concentration is large.

k−
F 1× 10−3 s−1 Rate of FA disassembly. Estimated based on ex-

pected long lifetime (compared to nascent adhe-
sions) on the order of tens of minutes.

Table 2.2: Baseline parameters for scaffolding protein dy-
namics in spatially-averaged model.

Parameter Value Justification/Interpretation
K+

R 1× 10−2 s−1 Typical activation rate of phosphorylation of
ROCK. Estimated (chosen to ensure little ROCK
activation when adhesions have not matured).

k−
R 1× 10−1 s−1 Typical inactivation rate of activated ROCK. Es-

timated (chosen to ensure little ROCK activation
without adhesion maturation).

δ 4 Increase in ROCK activation rate due to adhe-
sion maturation. Based on parameter sweep out-
lined in Sec. 2.6.2.

α 2 Hill coefficient (strength of coupling between SF
formation and adhesion maturation rate). Based
on parameter sweep outlined in Sec. 2.6.2.

β 0.25 Fraction of actin recruited into SFs that precip-
itates a half-maximal adhesion maturation rate.
Based on parameter sweep outlined in Sec. 2.6.2.

K+
1 1× 10−2 s−1 Typical rate of phosphorylation of MLCP. Esti-

mated (chosen to ensure little phosphorylation
without adhesion maturation).

k−
1 1× 10−2 s−1 Rate of dephosphorylation of MLCP-P. Esti-

mated (chosen to ensure little phosphorylation
without adhesion maturation).

Continued on the next page
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Table 2.3 – continued from previous page
Parameter Value Justification/Interpretation
K+

2 1× 10−2 s−1 Rate of phosphorylation of MLCK. Estimated
(chosen to ensure little phosphorylation without
adhesion maturation).

k−
2 1× 10−2 s−1 Rate of dephosphorylation of MLCK-P. Esti-

mated (chosen to ensure little phosphorylation
without adhesion maturation).

K+
3 5× 10−2 s−1 Rate of phosphorylation of cofilin. Estimated

based on 10-30% phosphorylation of cofilin (Pru-
dent et al., 2018).

k−
3 1× 10−2 s−1 Rate of dephosphorylation of phosphorylated

cofilin. Estimated based on 10-30% phosphory-
lation of cofilin (Prudent et al., 2018).

Table 2.3: Baseline parameters for signaling protein dy-
namics in spatially-averaged model.

2.5 Computational method

We solve the large system of dimensionless governing biochemical ODEs numerically using
the Matlab solver ode15s, employing Matlab’s default error tolerances. The results are well
converged (even for long times), and an in-depth analysis on a similar system is presented
in Sec. 3.8.1 in Ch. 3 (below).

2.6 Results

In this Section we present results from this spatially-averaged model. We begin in Sec. 2.6.1
by illustrating a baseline output from this model, using parameter values as outlined in
Sec. 2.4. This summarises the global response of the cell, including the formation of
FAs and SFs, when interacting with ECM. We then proceed to investigate the effect of
changes to our baseline parameter values on model predictions (Secs. 2.6.2-2.6.3), and
explore the effect of environmental and chemotransductive cues on the development and
sustainability of cell-substrate adhesions and cell cytoskeleton (Secs. 2.6.4-2.6.5). Note
that in Secs. 2.6.2-2.6.5 we consider the dynamics of the system at t = 10000 s, where the
system is generally at a steady state. For the sake of consistency with Chs. 3-5 we do not
consider a formal steady state analysis (where such a computation is significantly more
computationally costly given the large system of coupled equations). However, this simple
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ODE model is readily amenable to such an analysis, and would assist in understanding
bifurcations in the system. We suspend simulations at t = 10000 s, not only because our
simulations are at steady state, but also because beyond this time other effects (e.g. cell
remodelling of its microenvironment and growth) likely become important, reducing the
applicability of the model.

2.6.1 Baseline

In order to elucidate the overall temporal dynamics of cell-substrate binding, Fig. 2.1
illustrates a number of global measures of the system, which summarise the adhesion
strength and cytoskeleton development over time. We solve the dimensionless governing
equations, with dimensionless parameters (based on our parameter estimation in Sec. 2.4)
detailed in Table 2.4. As a function of time, we plot the partition of integrins across their
different forms (Fig. 2.1a), the fraction of signaling proteins activated or phosphorylated
(Fig. 2.1b), the partition of actin into its different forms (Fig. 2.1c) and the partition of
myosin into its inactivated or activated forms as a function of time (Fig. 2.1d). Note that,
to more easily facilitate comparison with results presented in Chs. 3-5 (see Figs. 3.7, 5.3
below), we highlight in Fig. 2.1 certain times using open circles. In particular, we highlight
t = 250 s (grey), t = 500 s (dark blue), t = 1000 s (orange), t = 1500 s (yellow), t = 2000

s (purple), t = 2500 s (green), t = 5000 s (maroon) and t = 10000 s (black) after the cell
has been introduced to the substrate.

Dimensionless pa-
rameter

Value Dimensionless pa-
rameter

Value

K̃+
p 2 K̃−

p 0.1
K̃+

a 0.1 K̃−
a 0.1

k̃+
m 3 k̃−

m 0.1
ǩ+
m 10 ǩ−

m 0.3̄

k̃+
h 5 k̃−

h 50
k̃+
b 1 k̃−

b 0.1
ǩ+
b 0.1 ǩ−

b 0.01
K̃+

F 0.1 k̃−
F 0.01

K̃+
R 0.1 K̃+

R 1
K̃+

1 0.1 K̃−
1 0.1

K̃+
2 0.1 K̃−

2 0.1
K̃+

3 0.5 K̃−
3 0.1

Table 2.4: Dimensionless parameters employed in base-
line simulations of spatially-averaged model.
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In the early stages after the cell is introduced to the substrate the cell, free (low-affinity)
integrins are rapidly activated to form high-affinity integrins (Fig. 2.1a). High-affinity in-
tegrins subsequently bind to ECM ligands to form bound integrins (i.e. nascent adhesions)
in line with Eqs. (2.1h)-(2.1j), as shown in Fig. 2.1(a). The formation of nascent adhe-
sions leads to weak activation of ROCK and phosphorylation of its downstream effectors
MLCP, MLCK and cofilin (Fig. 2.1b). In response, actin is polymerised (Fig. 2.1c) and
a small amount of myosin II is activated (Fig. 2.1d), leading to an increase in actin fil-
ament concentration and a small increase in VSF concentration (Fig. 2.1c). In response
to the formation of VSFs, the adhesion maturation rate increases in line with Eq. (2.7),
leading to the formation of mature FAs (Fig. 2.1a); this process begins several minutes
after the cell is introduced to the substrate, consistent with experimental observations
(e.g. see Mavrakis and Juanes, 2023). Adhesion maturation precipitates a commensurate
increase in ROCK activation (in line with Eq. 2.5), and, consequently, enhanced MLCP,
MLCK and cofilin phosphorylation (Fig. 2.1b). This initiates positive feedback, with the
activation of signaling proteins leading to an increase (decrease) in actin polymerisation
(depolymerisation), as observed in Fig. 2.1(c), and in myosin II activation (inactivation),
as observed in Fig. 2.1(d). In particular, there are significant increases in actin filament
and VSF formation (Fig. 2.1c), leading to further strengthening of adhesions. After ap-
proximately 2500 s, the cell settles to a steady state (Fig. 2.1a-d). However, this final
steady state is a consequence of our modelling approach, whereas the cell would continue
to grow, interact with neighbouring cells and remodel its environment.

We note that the results presented in Fig. 2.1 are similar to the predictions for the global
dynamics of cell-substrate adhesion made by the one- and two-dimensional models we
subsequently develop in Chs. 3-5 (below). Given that this simple zero-dimensional system
is readily amenable to a multiple scales analysis, this spatially-averaged model could be
employed to reduce the complexity (through a reduction in the number of parameters and
equations) of higher-dimensional models.

2.6.2 Varying feedback strength

In forming the model we have introduced empirical parameters δ, α and β. Recall from
Eq. (2.5) that δ measures the relative increase in the rate of ROCK activation when ad-
hesions mature into FAs compared to when they are immature (i.e. bound integrins).
Meanwhile, from Eq. (2.7), α is a Hill coefficient, measuring the strength of coupling be-
tween SF concentration and the adhesion maturation rate, and β is the fraction of actin
that must be recruited into SFs to produce a half-maximal rate of adhesion maturation.
These parameters essentially govern the strength of the positive feedback loop, with δ en-
suring that maturation of adhesions leads to increased phosphorylation of MLCP, MLCK
and cofilin and consequently increased VSF formation, whilst α and β ensure that SF for-
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Figure 2.1: Time-dependent evolution of percentage of total: (a) integrins in their various
forms (free low-affinity integrins, high-affinity integrins, bound integrins and recruited into
FAs), (b) ROCK activated and MLCP, MLCK and cofilin phosphorylated, (c) actin in its
different forms (monomeric, polymerised into filaments or recruited into SFs), (d) myosin
II in its inactive and active forms. Insets show large time dynamics for each property,
open circles indicate times of interest explored in Chs. 3-5. Parameter values are given in
Table 2.4.

mation leads to adhesion maturation. We explore the effect of changes to these parameters
below. Note that δ also features in our higher-dimensional models formulated in Chs. 3-5
(below); α and β do not feature in these models as we link the adhesion maturation di-
rectly to the relative deformation of the cell, rather than employing the empirical relation
Eq. (2.7).

Changes in δ

We investigate the effect of changes to the empirical parameter δ by considering the range
0 ≤ δ ≤ 10 whilst fixing all other parameters to their baseline values (those outlined in
Sec. 2.4). To quantify changes in the cell with increasing δ, we consider the partition of
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integrins (Fig. 2.2a) and the partition of actin (Fig. 2.2b) 10000 s after the cell has been
introduced to the substrate. As would be expected, an increase in δ leads to an increase
in both FA density (Fig. 2.2a) and VSF (and actin filament) concentration (Fig. 2.2b), as
ROCK signaling is enhanced through Eq. (2.5). However, this effect becomes significantly
less pronounced when δ ≳ 2, particularly for FA formation. In all other results presented
in this Chapter we use δ = 4, which is sufficient to capture the positive feedback loop. Note
also that the influence of δ saturates beyond this value (Fig. 2.2); this is to be expected
as myosin II becomes a limiting factor with increasing δ.
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Figure 2.2: Effect of changing δ on FA and VSF formation. As a function of δ, at t = 10000
s: (a) fraction, Fi, of integrins that are free, high-affinity, bound or recruited into FAs; (b)
fraction, Fa, of monomeric and filamentous actin, and actin recruited into VSFs.

Changes in α

We investigate the effect of changes to the empirical parameter α by considering the range
0 ≤ α ≤ 10 whilst fixing all other parameters to their baseline values (those outlined in
Sec. 2.4). As above, we quantify changes in the cell with increasing α by considering the
partition of integrins (Fig. 2.3a) and the partition of actin (Fig. 2.3b) 10000 s after the
cell has been introduced to the substrate. For α ≲ 5, an increase in α is observed to
lead to only a modest increase in FA density (Fig. 2.3a) and has negligible effect on VSF
(and actin filament) concentration (Fig. 2.3b). Beyond this threshold (i.e. for α ≳ 5),

the response is dramatically different: there is essentially no adhesion maturation, with
SF formation significantly diminished. In all other results presented in this Chapter we
use α = 2, which is sufficient to capture the positive feedback loop evident in experiments
(Parsons et al., 2010). Note that the sharp transition at α ≈ 5 suggests a bifurcation
analysis may be beneficial to characterise changes in the stability of steady states of the
system.
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Figure 2.3: Effect of changing α on FA and VSF formation. As a function of α, at
t = 10000 s: (a) fraction, Fi, of integrins that are free, high-affinity, bound or recruited
into FAs; (b) fraction, Fa, of monomeric and filamentous actin, and actin recruited into
VSFs.

Changes in β

In a similar manner, we investigate the effect of changes to the empirical parameter β by
considering the range 0 < β ≤ 1 (note that β = 1 corresponds to all actin recruited into
SFs), whilst fixing all other parameters to their baseline values (those outlined in Sec. 2.4).
We quantify changes in the cell with increasing β by again considering the partition of
integrins (Fig. 2.4a) and the partition of actin (Fig. 2.4b) 10000 s after the cell has been
introduced to the substrate. As would be expected from Eq. (2.7), an increase in β

precipitates a decrease in FA density (Fig. 2.4a) and an increase in bound, high-affinity
and free integrins, as the rate of adhesion maturation is reduced. In particular, increasing
β corresponds to a larger fraction of actin that must be recruited into VSFs to facilitate
a half-maximal rate of adhesion maturation. Consequently, through reduced signaling
(in line with Eq. 2.5), there is also a reduction in VSF and actin filament concentration
(Fig. 2.4b). However, this effect only becomes significant for β ≳ 0.3 (i.e. when more
than 30% of actin needs to be recruited into VSFs to facilitate a half-maximal adhesion
maturation rate), particularly for SF formation. In all other results presented in this
Chapter we use β = 0.25, which is sufficient to capture the positive feedback loop.

2.6.3 Varying dynamics of stress fibre formation

In this Section we investigate changes to the reaction kinetics through the governing
biochemistry equations described in Sec. 2.1, and their effect on the formation of FAs
and VSFs. In particular, we consider the effect of changes to the actin polymerisation
rate, myosin II activation rate and the rate of myosin II cross-linking. This work informs
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Figure 2.4: Effect of changing β on FA and VSF formation. As a function of β, at t = 10000
s: (a) fraction, Fi, of integrins that are free, high-affinity, bound or recruited into FAs; (b)
fraction, Fa, of monomeric and filamentous actin, and actin recruited into VSFs.

estimation of rate constants that are poorly estimated in existing literature, which we
subsequently use in Chs. 3-5 (below).

Changes in actin polymerisation

In Fig. 2.5 we investigate the effect of altering the actin polymerisation rate, whilst fixing
all other parameters to their baseline values outlined in Sec. 2.4. In particular, as a function
K+

p , we plot the partition of integrins (Fig. 2.5a) and actin (Fig. 2.5b) 10000 s after the
cell has been introduced to the substrate. As K+

p increases, we observe an almost switch-
like onset in the formation of FAs and VSFs, where we see an abrupt increase in FA and
VSF formation at a threshold polymerisation rate of K+

p ≈ 5× 10−4 adhesion−1 s−1. The
concentration of actin filaments also increases significantly with increasing K+

p , particularly
near the threshold value, though this dependence is less steep.

When K+
p ≲ 5×10−4adhesion−1 s−1, a small amount of actin filaments form. In partic-

ular, the formation of bound integrins (Fig. 2.5a) leads to weak activation of ROCK (com-
mensurate with Eq. 2.5) which, in turn, precipitates phosphorylation of MLCP, MLCK
and cofilin. However, the polymerisation of actin when K+

p ≲ 5 × 10−4 adhesion−1 s−1

is slow and severing of actin filaments dominates dynamics. Hence, few actin filaments
are formed (Fig. 2.5b). Consequently, no VSFs can form (Fig. 2.5b) and, per Eq. (2.7),
cell-substrate adhesions do not mature. Hence, in line with Eq. (2.5), ROCK activation re-
mains weak and the positive feedback loop described in Sec. 2.3 is never activated, further
suppressing actin filament formation.

It emerges that K+
p ≈ 5 × 10−4 adhesion−1 s−1 represents a thresholding value (when

all other parameters are given by their baseline values from Sec. 2.4). In particular, as K+
p
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increases through this value, several features of the feedback loop become evident. The
increasing actin polymerisation rate facilitates the formation of actin filaments that can be
cross-linked by myosin II to form VSFs (Fig. 2.5b). In turn, through Eq. (2.7), there is an
increase in adhesion maturation (Fig. 2.5a). Adhesion maturation leads to a significant in-
crease in ROCK activation (in line with Eq. 2.5) and, consequently, phosphorylation of its
downstream effectors MLCK, MLCP and cofilin. This results simultaneously in enhanced
(reduced) actin polymerisation (depolymerisation) and myosin II activation (inactivation),
leading to significantly enhanced VSF formation (Fig. 2.5b). Through the positive feed-
back loop, there is also a commensurate further increase in adhesion maturation.

Further increasing K+
p much beyond this threshold value leads to a modest increase

in actin filament formation but has little effect on VSF and FA formation as the pool of
myosin II available for actin cross-linking becomes a limiting factor. We therefore choose
a baseline value in simulations of K+

p = 2×10−3 adhesion−1 s−1, which is sufficient to allow
the positive feedback loop to be initiated in well-adhered cells.
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Figure 2.5: Effect of changing actin polymerisation rate on FA and VSF formation. As a
function of K+

p , at t = 10000 s: (a) fraction, Fi, of integrins that are free, high-affinity,
bound or recruited into FAs; (b) fraction, Fa, of monomeric and filamentous actin, and
actin recruited into VSFs.

Changes in myosin II activation

We investigate, in a similar manner, the effect of changes to the rate of myosin II activation
on the dynamics of cell-substrate adhesion. We fix all other parameters to their values
described in Sec. 2.4 and plot in Fig. 2.6 the partition of integrins (Fig. 2.6a) and of
actin (Fig. 2.6b) 10000 s after the cell has been introduced to the substrate as a function
of the myosin activation rate, K+

a . We observe, similar to Fig. 2.5, an approximately
switch-like onset in the formation of FAs and VSFs with increasing K+

a , with a threshold
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of K+
a ≈ 1× 10−3 s−1.

When K+
a ≲ 1 × 10−3 s−1, the formation of bound integrins (Fig. 2.6a) leads to weak

ROCK signaling (through Eq. 2.5). Consequently, a sizable pool of actin filaments form
(Fig. 2.6b). However, the low myosin II activation rate ensures no VSFs form (Fig. 2.6b).
Consequently, in line with Eq. (2.7), adhesions do not mature. Hence, the positive feedback
loop connecting adhesion maturation and VSF formation is never initiated.

Crossing the threshold value of K+
a ≈ 1 × 10−3 s−1 activates several features of the

feedback loop. In particular, the increased activation of myosin II facilitates its ability to
cross-link actin filaments to form VSFs (Fig. 2.6b). In response, through Eq. (2.7), there is
a significant increase in the formation of FAs. Adhesion maturation precipitates enhanced
ROCK signaling, through Eq. (2.5). This, in turn, leads to a significant increase in MLCP,
MLCK and cofilin phosphorylation. Consequently, there is a significant increase (decrease)
in actin polymerisation (depolymerisation) and myosin II activation (inactivation), leading
to further VSF and FA formation.

Further increases in K+
a cause a decrease in the concentration of actin filaments, as

these are cross-linked by activated myosin II to form VSFs (Fig. 2.6b). We set K+
a =

1 × 10−2 s−1 in baseline simulations, ensuring the positive feedback loop is activated in
well-adhered cells.
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Figure 2.6: Effect of changing myosin II activation rate on FA and VSF formation. As a
function of K+

a , at t = 10000 s: (a) fraction, Fi, of integrins that are free, high-affinity,
bound or recruited into FAs; (b) fraction, Fa, of monomeric and filamentous actin, and
actin recruited into VSFs.

Changes in myosin II cross-linking

We observe a similar dependence of the dynamics of cell-substrate adhesion on the rate
of myosin II cross-linking of actin filaments. In particular, fixing all other parameters to
their values described in Sec. 2.4, in Fig. 2.7 we explore the influence that increasing k+

m
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has on the partition of integrins (Fig. 2.6a) and of actin (Fig. 2.6b) 10000 s after the cell
has been introduced to the substrate. We find that k+

m ≈ 1 × 101 µM−2 s−1 acts as a
threshold value, below which there is little maturation of adhesions (Fig. 2.6a) and little
cross-linking of actin filaments to form VSFs (Fig. 2.6b). However, a sizable proportion of
actin will be polymerised into filaments due to the weak ROCK signaling associated with
bound integrins (see Eq. 2.5). Crossing the threshold of k+

m ≈ 1× 101 µM−2 s−1 leads to a
significant increase in FA, actin filament and VSF formation as the positive feedback loop
can become activated, in a similar manner described for the effect of increasing myosin II
activation rate. Moreover, we similarly observe that further increases in k+

m much beyond
the threshold value causes a reduction in actin filament concentration as filaments are
cross-linked by activated myosin II to form VSFs (Fig. 2.6b). In all baseline simulations
we set k+

m = 1 × 102 µM−2 s−1, which ensures the positive feedback loop is activated in
well-adhered cells.
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Figure 2.7: Effect of changing myosin II cross-linking rate on FA and VSF formation. As
a function of k+

m, at t = 10000 s: (a) fraction, Fi, of integrins that are free, high-affinity,
bound or recruited into FAs; (b) fraction, Fa, of monomeric and filamentous actin, and
actin recruited into VSFs.

2.6.4 Varying ligand density

In order to elucidate the effect of ECM ligand density (governed by the parameter NS) on
FA and VSF development, in Fig. 2.8 we vary ÑS = NS/NI , the relative density of ECM
ligands to the average integrin density (assumed to be NI = N I

0 = 100 µm−2 in the base
case), whilst holding all other parameter values equal to their baseline values. We illustrate
the effect of varying ÑS by again plotting the partition of integrins (Fig. 2.8a) and the
partition of actin (Fig. 2.8b) 10000 s after the cell has been introduced to the substrate.
In this model, we observe approximately switch-like behaviour in the formation of FAs
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and VSFs. In particular, when ECM ligand density is lower or comparable to cell integrin
density then no FAs or SFs form. In this regime, only a modest amount of integrins will
become bound to the ECM and consequently only a small amount of actin is polymerised
and a correspondingly small amount of myosin II is activated. The cell eventually develops
the ability to form mature FAs and contractile VSFs as the ligand density increases to
approximately five times greater than integrin density, with a reduction in the density of
nascent adhesions as these structures mature. There is saturation of FA, actin filament
and VSF formation when ligand density becomes sufficiently high, approximately when
ten times greater than the integrin density (i.e. for ligand densities of roughly greater
than 1000 µm−2). Thereafter, further increases in ECM ligand density yield little or no
further increase in VSF and FA formation. This switch-like behaviour has been observed
experimentally (e.g. by Arnold et al., 2004, Cavalcanti-Adam et al., 2007), with insufficient
clustering of integrins at low densities to facilitate adhesion maturation (and subsequent
signaling for VSF formation).
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Figure 2.8: Effect of ligand density on FA and VSF formation. As a function of NS/NI

(the ratio of ligand density to integrin density), at t = 10000 s: (a) fraction, Fi, of integrins
that are free, high-affinity, bound or recruited into FAs; (b) fraction, Fa, of monomeric
and filamentous actin, and actin recruited into VSFs.

2.6.5 Introduction of ROCK inhibitor

A crucial component of the positive feedback loop connecting the development of cell
cytoskeleton and maturate cell-substrate adhesions is Rho signaling. Such signaling is
strengthened by adhesion maturation and precipitates activation of ROCK, this is cap-
tured in our spatially-averaged model by Eq. (2.5). In turn, activated ROCK leads to
the phosphorylation of downstream effectors, precipitating increased (decreased) actin
polymerisation (depolymerisation) and myosin II activation (inactivation). Consequently,
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ROCK activation is necessary for the formation of contractile VSFs and is critical to the
positive feedback loop. In real cells, as discussed in Ch. 1, these exert contractile forces
on their attached adhesions, causing adhesions to mature, further enhancing ROCK sig-
naling. In our spatially-averaged model, the effect of increased SF concentration on FA
formation is captured through the empirical relation Eq. (2.7). In this Section, we focus
on inhibition of ROCK only and explore the influence that a ROCK inhibitor has on the
sustainability of cell-substrate adhesions and cell cytoskeleton. However, a similar analy-
sis could be employed for inhibition of any of the chemical species in our model. Indeed,
in Sec. 4.6.2 (below) we explore the influence of an inhibitor of myosin II activation on
predictions from our one-dimensional model developed in Ch. 3 (below).

We discuss inhibitors and their various functions in more detail in Ch. 4 (below),
but we briefly introduce a few necessary concepts here. We focus on competitive and
allosteric inhibitors. Competitive inhibitors compete with a substrate for a binding site
on a catalyst, occupying this site to block the ability of the catalyst to bind to the substrate.
On the other hand, allosteric inhibitors bind to a catalyst at a different location to the
substrate binding site. Instead, allosteric inhibitors induce a conformational change in the
catalyst, reducing its ability to bind to the substrate (Monod et al., 1965). Throughout our
analysis we will assume allosteric inhibitors are potent, ensuring that they fully prevent
the catalyst from binding to the substrate when in a complex with the catalyst. Under
this assumption, allosteric inhibitors do not need a distinct mathematical treatment from
competitive inhibitors.

ROCK inhibitors have a variety of clinical applications, including in statins, and have
been identified as a potential treatment for erectile dysfunction, high blood pressure and
glaucoma (Bivalacqua et al., 2004, Honjo et al., 2001, Liao et al., 2007). To investigate
the effect of ROCK inhibition on cytoskeleton and adhesion dynamics, we take a general
approach rather than focusing on specific inhibitors (e.g. the allosteric inhibitor Y-27623
or competitive inhibitor fasudil). In particular, we employ lumped parameters for the
inhibitor dynamics in our model, to illustrate the potential applicability of our spatially-
averaged modelling approach more widely (Amano et al., 2010).

This analysis requires modification of our governing equations from Sec. 2.1.3. Recall
that ROCK, average concentration c̄R, becomes activated at rate k+

R to form activated
ROCK, average concentration c̄+R. We suppose that an inhibitor (either competitive or a
potent allosteric) has average concentration c̄I and prevents activation of ROCK. Binding
of inactivated ROCK to the inhibitor occurs at a rate proportional to k+

IR, leading to the
formation of ROCK-inhibitor complexes which have average concentration c̄IR. ROCK
bound to an inhibitor cannot be activated, but ROCK-inhibitor complexes can dissociate
at rate k−

IR. We also include a source term, p, capturing the introduction of the ROCK
inhibitor to the cell. Hence, the dynamics of ROCK, the inhibitor and ROCK-inhibitor
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complexes can be described by

dc̄R
dt

= −k+
R c̄R + k−

R c̄
+
R − k+

IRc̄I c̄R + k−
IRc̄IR, (2.8a)

dc̄I
dt

= p(t)− k+
IRc̄I c̄R + k−

IRc̄IR, (2.8b)

dc̄IR
dt

= k+
IRc̄I c̄R − k−

IRc̄IR. (2.8c)

In all simulations k+
R and k−

R are defined by their baseline values given in Sec. 2.4. Addi-
tionally, we set k−

I = 1× 10−3 s−1 and set the source term to be

p(t) =

0, t < tp, tp < t < ts

pI , t = tp
, (2.9)

where pI = MI/V, with MI the total mass of inhibitor introduced and V the volume of
the cell. In particular, we assume the inhibitor is instantaneously introduced (at t = tp).
In all simulations we set tp = 5000 s and MI = 100 nM, with V given by its baseline value
from Sec. 2.4. We end simulations at t = ts = 10000 s. We vary the value of k+

IR as this
essentially dictates the potency of the inhibitor.

We demonstrate the effect that the introduction of a ROCK inhibitor has on the
dynamics of cell-substrate adhesion in Fig. 2.9. In particular, setting k+

IR = 200µM−1 s−1,

we illustrate time-traces of the partition of integrins into their various forms (Fig. 2.9a),
and the partition of actin (Fig. 2.9b). We highlight the key times t = tp (t = ts) using
blue (orange) open circles. The introduction of a ROCK inhibitor (inset in Fig. 2.9a)
leads to rapid dissociation of SFs (Fig. 2.9b) due to the reduction (increase) in actin
polymerisation (depolymerisation) and myosin II activation (inactivation). After some
time, there is a transient increase in actin filament concentration (Fig. 2.9b) as some actin
continues to be polymerised but cannot be cross-linked by myosin II to form VSFs, before
the actin filament concentration continues to fall. In line with Eq. (2.7), SF dissociation
leads to the disassembly of FAs (Fig. 2.9a) and further reduced ROCK signaling (inset
in Fig. 2.9b). Consequently, VSF and actin filament concentration continue to fall. For
this potent inhibitor, the cell eventually returns to its early (poorly-adhered) state, with
many immature adhesions to the substrate (Fig. 2.9a), but little cytoskeleton development
(Fig. 2.9b) and negligible adhesion maturation (Fig. 2.9a).

To investigate how the potency of the ROCK inhibitor influences cytoskeleton and
adhesion dynamics, we vary k+

IR, the rate per concentration at which the inhibitor binds
to inactive ROCK and prevents its activation. Particularly, we consider the range 1 ×
10−2 µM−1 s−1 < k+

IR < 1 × 103 µM−1 s−1, whilst fixing all other parameters to their
baseline values (as outlined in Sec. 2.4 or above). We introduce the ROCK inhibitor at
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Figure 2.9: Investigating the effect of a ROCK inhibitor introduced to the cell. Time-
dependent evolution of percentage of total: (a) integrins in their various forms (free low-
affinity integrins, high-affinity integrins, bound integrins and recruited into FAs), (b) actin
in its different forms (monomeric, polymerised into filaments or recruited into SFs). Inset
in (b) shows fraction of ROCK activated and of its downstream effectors phosphorylated
as a function of time.

t = tp = 5000 s after the cell has been introduced to the substrate and is therefore well-
adhered (Fig. 2.1). We plot global measures of cell-substrate adhesion and cytoskeleton
development, particularly the partition of integrins (Fig. 2.10a) and the partition of actin
(Fig. 2.10b) 10000 s after the cell has been introduced to the substrate (5000 s after the
introduction of the inhibitor). We indicate with dashed lines in Fig. 2.10 the partition of
integrins and actin in the absence of any inhibitor introduction. We observe that for low
inhibitor-ROCK binding rates, the dynamics of inactivated ROCK is dominated by its ac-
tivation, leading to negligible effect on adhesion (Fig. 2.10a) and cytoskeleton (Fig. 2.10b)
dynamics. When the inhibition rate of ROCK becomes sufficiently high, approximately
when k+

IR ≈ 20 µM−1 s−1, there is a significant decrease in VSF concentration (Fig. 2.10b).
In line with Eq. (2.7), the reduction in VSF concentration leads to reduced FA density
(Fig. 2.10a). In turn, through Eq. (2.5), FA disassembly leads to further reduced acti-
vated ROCK concentration and so further decreases in VSF formation (Fig. 2.10b). A
reduction in actin filament concentration occurs in tandem with reduced VSF concen-
tration (Fig. 2.10b) with increasing k+

IR. However, at moderately high rates of ROCK
inhibition, with k+

IR ≈ 100 µM−1 s−1, there is still limited actin filament formation as
ROCK activation is not completely suppressed and weak signaling from bound integrins
(see Eq. 2.5) facilitates actin polymerisation (Fig. 2.10b). Thereafter, further increases
in k+

IR leads to nearly all actin returning to its monomeric form as actin polymerisation
(depolymerisation) decreases (increases).

It is worth emphasising the similarity in qualitative predictions of this model in re-
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Figure 2.10: Effect of ROCK inhibitor strength. As a function of the binding rate of the
ROCK inhibitor to ROCK, at t = 10000 s (5000 s after the inhibitor has been applied):
(a) fraction, Fi, of integrins that are free, high-affinity, bound or recruited into FAs; (b)
fraction, Fa, of monomeric and filamentous actin, and actin recruited into VSFs.

sponse to the introduction of ROCK inhibitor (Figs. 2.9- 2.10), to the predictions made by
the one-dimensional model presented in Sec. 4.6.1 in Ch. 4 (below). This suggests again
that, despite some quantitative differences, likely owing to the empirical relation con-
necting adhesion maturation to VSF formation (Eq. 2.7), this simple spatially-averaged
approach is successful at capturing the global dynamics of cell-substrate adhesion.

2.7 Summary

In this Chapter we have formulated a spatially spatially-averaged model for the develop-
ment of cell-substrate adhesions and cell cytoskeleton. In particular, we have formulated a
large system of ODEs to describe the reaction kinetics of important cytoskeletal, adhesion
and signaling proteins as a cell interacts with a substrate. By imposing various constitu-
tive assumptions, we have been able to link the formation of FAs and VSFs, capturing in
a simple way the positive feedback loop that connects their development. Furthermore,
we have demonstrated the efficacy of this model to quickly predict the global dynamics
of cell-substrate adhesion, to identify how changes to reaction kinetics can influence this
process and to investigate how environmental and biochemical cues can be applied to con-
trol this process. However, this model is insufficient to capture the full cytoskeletal and
adhesion dynamics as it fails to incorporate the mechanics of the cell, ECM and adhesions,
consideration of which is necessary to predict localisation of proteins in the cell. Extending
this model to consider these effects is the aim of the remainder of this thesis, particularly
the formation (Ch. 3) and analysis (Ch. 4) of a one-dimensional bio-chemo-mechanical
model, followed by analysis of a two-dimensional bio-chemo-mechanical model (Ch. 5).



Chapter 3

One-dimensional modelling

In Ch. 2 we presented a simple spatially-averaged bio-chemical model to describe the
formation and maturation of SFs and FAs in non-motile cells. Having identified the
strengths and weaknesses of this approach, we proceed in this Chapter to formulate a
one-dimensional bio-chemo-mechanical continuum model to describe the coupled forma-
tion and maturation of FAs and VSFs as a cell adheres to a substrate. The model takes the
form of a system of reaction-diffusion-advection equations that describe the evolution of a
large family of scaffolding, structural and signaling proteins integral to this process (those
identified in Figs. 1.4-1.5), coupled to the mechanical deformation of the cell induced by
adhesion to an ECM substrate and subsequent contraction under the action of myosin
motors.

As discussed in Sec. 1.3.2, we treat the cell as a Kelvin-Voigt viscoelastic material,
with additional active stresses in the cell reflecting myosin II motor contractility. We link
the mechanical properties of the cell and cell-substrate adhesions to the evolution of the
key scaffolding proteins (as in Figs. 1.4-1.5). By connecting the cytoskeletal mesh scale
to the microscale using discrete-to-continuum upscaling, our approach advances on the
homogenised account of the cell provided by many existing models by rationally connecting
the nanoscale and microscale features of cell-substrate adhesion and the cell cytoskeleton.
Moreover, by treating the ECM as a Kelvin-Voigt viscoelastic continuum material, coupled
to the cell through viscoelastic adhesions, our model predicts the deformation of the ECM,
facilitating prediction of FA and SF localisation. Additionally, in this Chapter, as in Ch. 2,
we link the formation and maturation of cell-substrate adhesions to increased activated
ROCK concentration. However, in this Chapter, SFs can exert contractile forces that
facilitate cell deformation, stretching cell-substrate adhesions, enhancing their maturation
(through exposure of VBSs). We incorporate this into our model by assuming the rate of
adhesion maturation depends on the relative deformation of the cell to the ECM, making
this modelling approach significantly more biologically realistic (compared with the Hill
type function employed in Ch. 2 to link adhesion maturation rate to SF concentration).

51
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This Chapter is structured as follows. In Sec. 3.1 we present our mechanical model to
describe the deformation of the cell, ECM and adhesions. Particularly, in Secs. 3.1.1-3.1.4
we treat the cell and ECM as a string of discrete (contractile) Kelvin-Voigt elements, con-
nected by Kelvin-Voigt viscoelastic adhesions. We employ discrete-to-continuum upscaling
(Sec. 3.1.5) to rationally formulate a system of continuum momentum balance equations
to describe the coupled deformation of the cell and ECM (Sec. 3.1.6). We consider the
mechanical behaviour of the ECM away from the cell in Sec. 3.1.7. In Sec. 3.2 we formu-
late a large system of PDEs to describe the formation and maturation of SFs (Sec. 3.2.1)
and FAs (Sec. 3.2.2), linked by intracellular signaling proteins (Sec. 3.2.3), before present-
ing the imposed boundary and initial conditions on the bio-chemo-mechanical system in
Sec. 3.3. To simplify our analysis, we non-dimensionalise our governing mechanical and
biochemical equations in Sec. 3.4. Thereafter, in Sec. 3.5 we introduce our constitutive
assumptions. Particularly we specify how ROCK activation and phosphorylation of down-
stream effectors is enhanced by adhesion maturation (Sec. 3.5.1), the mechanism by which
SF formation (and the associated cell deformation) leads to enhanced adhesion maturation
(Sec. 3.5.2) and couple the mechanical properties of the cytoskeleton and adhesions to the
cell biochemistry (Sec. 3.5.3). In Sec. 3.6 we provide estimates, together with justification,
of our assumed (baseline) parameter values and briefly detail our computational method
in Sec. 3.7. We then apply the developed model in Sec. 3.8, illustrating for a baseline case
(with parameters as outlined in Sec. 3.6) both the global and local, mechanical and bio-
chemical behaviour of the cell, ECM and adhesions as a cell interacts with a stiff collagen
substrate and develops cytoskeleton. We validate our computational method in Sec. 3.8.1
before investigating the effect that changes in feedback strength have on our predictions
(Sec. 3.8.2). Finally, we summarise the work of this Chapter in Sec. 3.9.

3.1 Mechanical model

We idealise the cell as a cuboid with initial length L, width W, and height H, so that the
total cell volume is V = WLH. We suppose that the cell is thin in the direction normal
to the substrate, so that H ≪ W,L. We reduce the problem to one spatial dimension by
cross-sectionally averaging the protein concentration and mechanical properties over the
cell width and height and consider variations across the cell length only.

We parameterise the cell using the coordinate x such that the initial configuration of the
cell is described by a set of material points with coordinates spanning −L/2 ≤ x ≤ L/2.

The left and right boundaries of the cell are displaced to x = l(t) and x = r(t), respectively,
whilst the internal points are displaced to x′ so that for all t ≥ 0 we have

l(t) = x′(−L/2, t) ≤ x′(x, t) ≤ x′(L/2, t) = r(t); (3.1)
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a similar set up was considered by Gracheva and Othmer (2004).
In our approach we suppose that the ECM consists of three regions, one below the

cell, of length L, and regions to the left and right, both of length L1, as indicated in
Fig. 3.1. The initial configuration of the ECM is described by a set of material points with
coordinates spanning −L1 − L/2 ≤ x ≤ L1 + L/2. We assume that the outer boundaries
of the ECM are fixed for all time (Fig. 3.1), whilst internal points are displaced to x̄′.

Figure 3.1: Overview of cell-ECM set-up. Boundary conditions imposed on the cell and
ECM, we consider the ECM as consisting of three connected compartments and match
stress and displacement across the boundaries connecting these.

The corresponding displacement of points in the cell cytoplasm, u(x, t), and in the
ECM, w(x, t), are described by

u(x, t) = x′(x, t)− x, w(x, t) = x̄′(x, t)− x; (3.2)

for simplicity, u and w are assumed small, allowing us to use linearised constitutive laws
for the cell rheology (see Secs. 3.1.1-3.1.2 below).

We assume that the motion of the cell boundaries results from a combination of exter-
nally applied forces on the cell, active and passive stresses within the cell itself and restoring
forces due to cell-substrate interaction, resisted by friction due to repeated detachment
and attachment of the cell to the substrate and restoring forces due to cell-substrate in-
teraction. We neglect inertial effects and other body forces.

3.1.1 Constitutive law for the cytoplasm

The cell cytoplasm consists of a viscous fluid phase (cytosol) and a scaffold structure
(cytoskeleton) formed from cross-linked protein filaments (actin filaments, microtubules,
intermediate filaments and SFs). In this model we describe the cytoplasm as a linearly
viscoelastic material which exhibits both a passive stress and a contractile active stress.
To inform the constitutive law for the rheological response of the cell, the cytoskeletal
network is modelled as a line of N contractile Kelvin-Voigt elements connected in series
(N is assumed even for simplicity). Similar constitutive assumptions for the cell have
been employed by others (e.g. Besser and Schwarz, 2007, Gracheva and Othmer, 2004,
Larripa and Mogilner, 2006) since VSFs dominate cytoskeletal dynamics in non-motile
cells and carry load at constant deformation for long periods of times (i.e. behave as an
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elastic material). These elements are assumed to be of uniform initial length ac (where
ac = L/N), mimicking the mesh spacing between cytoskeletal cross-links. This approach
then discretises the cell domain onto a uniform grid with xn = acn, n = −N/2,−N/2 +

1, . . . , N/2, where the two end points are the cell boundaries, as shown in Fig. 3.2.

Figure 3.2: Discretisation of the cell and ECM. Nodes are equally spaced (corresponding to
ac = aE) with connections between cell and ECM representing integrin-ligand connections.

In this model each element represents a bundle of actin filaments, SFs and other cy-
toskeletal proteins together with viscous cytoplasmic fluid. The cross-link at junction n

is connected to two elements on either side which are indexed as n− 1/2 (element to the
left) and n+ 1/2 (element to the right), as indicated in Fig. 3.3.

Figure 3.3: Full rheological diagram. A string of contractile Kelvin-Voigt elements repre-
sent the cytoplasm, each of these is connected, through a Kelvin-Voigt element representing
nascent and focal adhesions, to another Kelvin-Voigt element capturing the stiffness and
viscosity of the ECM.

To mimic the multiple elastic components of the cytoskeleton, each element is formed of
three elastic springs connected in parallel (see rheological diagram in Fig. 3.3) representing
actin filaments (with stiffness kF,n+1/2 for element n+1/2), SFs (with stiffness kS,n+1/2 for
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element n+1/2) and a passive stiffness due to microtubules, intermediate tubules and the
nucleus (with stiffness kP,n+1/2 for element n + 1/2). The form of the passive stiffness is
discussed in Sec. 3.5 (below); briefly, these elements are assumed to be stiffer near the cell
centre (mimicking the stiff nucleus) and softer towards the cell boundary (accounting for
microtubules and intermediate filaments).

Within each rheological element (see Fig. 3.3), we further include a dashpot (with
viscosity ηc,n+1/2 for element n + 1/2), in parallel with the springs, to mimic the viscous
fluid, and an active element which generates a contractile force due to myosin II motor
action (FII,n+1/2 for element n+ 1/2). In particular, we assume that the contractile force
can be described using the linearised relationship

FII,n+ 1
2
(vn+1/2) = Fstall,n+ 1

2

(
1−

vn+ 1
2

v0

)
, vn+ 1

2
=

∂

∂t
(un+1 − un) , (3.3)

where v0 is the zero-load velocity (assumed identical for all elements) and Fstall,n+1/2 is the
stall force of the motor (i.e. the maximal force allowing for motor movement) for element
n+ 1/2 (Besser and Schwarz, 2007).

Analysis of a single sarcomeric unit in the cell

In Fig. 3.4 we describe a single sarcomeric unit for the cell, this forms the repeating
unit in the string of contractile Kelvin-Voigt viscoelastic elements that describe the cell
cytoplasm, as indicated in Fig. 3.3. Each element consists of three springs connected in
parallel to capture the stiffness of actin filaments, kF , SFs, kS, and passive stiffness due to
microtubules, intermediate tubules and the nucleus, kP . These are connected in parallel
with a dashpot, viscosity ηc, and a contractile element, which generates a force FII . In a
similar manner to Besser and Schwarz (2007), we assume that the force-velocity relation
for myosin II motor action can be described using the linearised relationship

FII(v) = Fstall

(
1− v

v0

)
, v = −du

dt
, (3.4)

where FII is the force exerted by a myosin II motor moving with velocity v, v0 is the
zero-load velocity and Fstall is the stall force of the motor (the maximal force allowing for
motor movement); this is the single unit equivalent of Eq. (3.3). We note the connection
between the contraction velocity, v, and displacement of the unit, u, with displacement
becoming negative in response to contractile myosin II motor activity. The sum of all
forces, F, exerted on each element is then

F = −ηc
du

dt
− (kF + kS + kP )u− Fm. (3.5)
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Neglecting inertial effects and external forces then we deduce from Eq. (3.5), with F = 0,

that (
ηc +

Fstall

v0

)
du

dt
+ (kF + kS + kP )u = −Fstall. (3.6)

Eq. (3.6) indicates two effects of myosin II motors (as discussed by Besser and Schwarz,
2007). In particular, myosin motor action alters the effective viscosity of the cytoplasm
(by increasing the viscosity of the damping term) and generates a forcing term, resulting in
an inhomogeneous ODE. Assuming u(0) = 0 and that all parameters remain fixed (which
is not the case in the full model), then solving Eq. (3.6) yields

u(t) =
−Fstall

kF + kS + kP

(
1− e−

t
T

)
, (3.7)

where T = ηe/(kF + kS + kP ) is the relaxation time of the Kelvin-Voigt model with effec-
tive viscosity ηe = ηc + Fstall/v0.

We illustrate some representative solutions to Eq. (3.6) in Fig. 3.4. We observe that,
characteristic of a long-time solid, viscous stresses eventually dissipate, leaving a finite
elastic stress (dashed lines in Fig. 3.4). In particular, the long-time behaviour of the
material is determined entirely by the ratio of the stall force to spring stiffness. We hence
conclude that the assumption of Kelvin-Voigt viscoelasticity is appropriate for the cell
cytoplasm, given that SFs carry load at constant deformation over long periods of time
(Besser and Schwarz, 2007).

Figure 3.4: Left panel: single contractile Kelvin-Voigt element, consisting of three resistors,
a dashpot and a battery connected in parallel. Right panel: representative deformations
(solutions to Eq. 3.6) for varied mechanical properties, with kc = kP+kF+kS and u(0) = 0;
dashed lines indicate steady state deformation.
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3.1.2 Constitutive law for the ECM

We discretise the ECM in a similar manner to the cell so that it is described by M cross-
link junctions (we assume M is even) with indexing m = −M/2,−M/2+1, . . . ,M/2, with
the centre of the ECM (at x = 0) denoted by m = 0 as indicated in Fig. 3.2.

Similar to the cell, we assume that the ECM also consists of a mesh of cross-linked
protein filaments, modelled as a line of Kelvin-Voigt elements connected in series, each
of length aE = (L + 2L1)/M (see Fig. 3.2). Similar simple rheological assumptions (i.e.
that the ECM behaves as a long-time solid) have been employed for the ECM by others
(e.g. Byrne and Chaplain, 1996, Murray et al., 1988), though some other studies have
considered more complicated descriptions. Also similar to the cell, each ECM element is
indexed by the average of the two cross-link indices on either side (see Fig. 3.3). Each ECM
element is assumed to consist of two springs connected in parallel representing collagen
fibres (with stiffness kC,m+1/2 for element m+1/2) and other ECM fibres (e.g. fibronectin,
with stiffness kO,m+1/2 for element m+1/2). To mimic the viscous extracellular fluid within
the ECM these filaments are connected in parallel with a dashpot (viscosity ηE,m+1/2 for
element m+ 1/2).

The regions of ECM below the cell exhibit spatially and temporally dependent prop-
erties (which can be due to remodelling by the cell itself). Conversely, for simplicity the
regions of ECM away from the cell are assumed to have spatially uniform and constant
stiffness and viscosity, allowing for an analytical description of ECM displacement and
stress in each of these regions (though in real cells signals will diffuse away from the cell);
see details in Sec. 3.1.7.

Analysis of single sarcomeric unit in the ECM

In Fig. 3.5 we analyse a single sarcomeric unit for the cell, this forms the repeating unit
in the string of Kelvin-Voigt viscoelastic elements that describe the ECM, as indicated in
Fig. 3.3. Each element consists of two springs connected in parallel to capture the stiffness
of collagen, kC , and other fibres (e.g. fibronectin), kO. These are connected in parallel with
a dashpot, viscosity ηE. In contrast with the cytoplasm, contractile motors are absent.

We let w denote the displacement of points in the ECM so that the sum of all forces
acting on an individual element is

G = −ηE
dw

dt
− (kC + kO)w. (3.8)

Hence, in the absence of external forces, G = 0 and, assuming w(0) = 0, then w(t) = 0.

In Fig. 3.5 we illustrate some representative solutions of Eq. (3.8) with w(0) ̸= 0,
particularly showing the influence of the stiffness and viscosity of the ECM components
on stress relaxation. In the absence of external forcing, the material stress dissipates, with
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a characteristic time scale determined by the ratio of the ECM viscosity to ECM stiffness.
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Figure 3.5: Left panel: single Kelvin-Voigt element for the ECM, consisting of two resistors
and a dashpot connected in parallel. Right panel: representative deformations (solutions
to Eq. 3.8 with G = 0) for varied mechanical properties, with kE = kC + kO.

3.1.3 Coupling the ECM and cell networks

For simplicity, we assume that the cytoskeletal mesh spacing in the cell, ac, and the collagen
network mesh spacing, aE, are identical (ac = aE = a) and the cross-links are co-located
at the same x−location. This simplified set up is illustrated in Fig. 3.2.

3.1.4 Force balance at cross-links

The overall rheology of the cell-ECM system is summarised in Fig. 3.3. The resultant
force on the nth cross-link in the cell is given by (see Besser and Schwarz, 2007)

Fn =ηc,n+ 1
2

∂

∂t
(un+1 − un)− ηc,n− 1

2

∂

∂t
(un − un−1)

+ kc,n+ 1
2
(un+1 − un)− kc,n− 1

2
(un − un−1) + FII,n+ 1

2
− FII,n− 1

2
,

(3.9a)

where kc,n±1/2 = kF,n±1/2 + kS,n±1/2 + kP,n±1/2. Similarly, the resultant force on the mth

cross-link in the ECM is given by

Gm =ηE,m+ 1
2

∂

∂t
(wm+1 − wm)− ηE,m− 1

2

∂

∂t
(wm − wm−1)

+ kE,m+ 1
2
(wm+1 − wm)− kE,m− 1

2
(wm − wm−1) ,

(3.9b)

where kE,m±1/2 = kC,m±1/2 + kO,m±1/2.

In the region of ECM below the cell (−L/2 < x < L/2) these internal forces are
balanced by a restoring force due to integrins connected to the ECM and due to viscous
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cell-substrate interaction, as shown in Fig. 3.3. We suppose that these integrin connections
are also linear Kelvin-Voigt viscoelastic materials; similar rheological assumptions have
been employed for cell-cell adhesions by Jamali et al. (2010), whilst Di Stefano et al.
(2022) treat cell-substrate adhesions as purely elastic. Hence, we have

Fn = kI,n (un − wn) + ηI,n
∂

∂t
(un − wn) = −Gn, (3.10)

where kI,n = kNA,n + kFA,n and ηI,n = ηNA,n + ηFA,n, where kNA,n and ηFA,n are used to
represent the stiffness and viscosity of nascent adhesions and kNA,n and ηFA,n are used to
represent the stiffness and viscosity of mature focal adhesions.

In ECM regions away from the cell (−L1 − L/2 < x < −L/2, L/2 < x < L/2 + L1)

there are no adhesion-based restoring or drag forces to balance internal forces so we have
Gm = 0.

3.1.5 Upscaling to a continuum description

Upscaling this discrete force balance to obtain a continuum description (e.g. Barry et al.,
2022, Besser and Schwarz, 2007) we assume displacements in the cell and ECM respectively
are described by continuum functions u(x, t) and w(x, t) such that u(x = xn, t) = un(t)

and w(x = xn, t) = wn(t). Moreover, we assume that the stiffness and viscosity of integrin-
ligand connections (at the cross-link locations) can be described by continuous functions
kI(x, t) and ηI(x, t) such that kI(x = xn, t) = kI,n(t) and ηI(x = xn, t) = ηI,n(t), where
kI,n(t) = kNA,n(t) + kFA,n(t) and ηI,n(t) = ηNA,n(t) + ηFA,n(t).

We similarly assume that mesh-dependent functions such as cytoplasm stiffness, ECM
stiffness, cytoplasm viscosity, ECM viscosity and contractile forces can all be described
by continuum functions. In particular, we set ki(x = xn+1/2, t) = ki,n+1/2(t) where i =

F, S, P, C,O. Moreover, the viscosity of the cell and ECM are described by continuum
functions np(x, t) where ηp(x = xn+1/2, t) = ηp,n+1/2(t) where p = c, E. The myosin II motor
generated contraction force is described by the continuum function FII(x = xn+1/2, t) =

FII,n+1/2(t). Finally, for simplicity we combine some of the elastic parameters by writing
kc(x, t) = kF (x, t) + kS(x, t) + kP (x, t) and kE(x, t) = kC(x, t) + kO(x, t).

For a ≪ L,L1 we employ Taylor series expansions of each of these functions around a
given meshpoint (assuming smoothness within small distances a). Retaining only leading-
order terms (i.e. neglecting terms O(a2/L2)) gives the continuum force in the cell, F (x, t),

and in the ECM, G(x, t), as

F (x, t) = a2
∂

∂x

(
ηc(x, t)

∂2

∂x∂t
+ kc(x, t)

∂

∂x

)
u(x, t) + a

∂FII(x, t)

∂x
, (3.11a)

G(x, t) = a2
∂

∂x

(
ηE(x, t)

∂2

∂x∂t
+ kE(x, t)

∂

∂x

)
w(x, t). (3.11b)
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Similarly, Taylor expansion of our expression for the contractile velocity of each cell element
from Eq. (3.3) leads to the continuum description for contraction velocity

v = −a
∂

∂t

(
∂u

∂x

)
, (3.12)

where v(x = xn+1/2, t) = vn+1/2(t). Hence, by upscaling Eq. (3.3) we have

FII(x, t) = Fstall

(
1 +

a

v0

∂

∂t

(
∂u

∂x

))
. (3.13)

It follows that the continuum force in the cell can instead be expressed as

F (x, t) = a2
∂

∂x

(
ηe

∂2

∂x∂t
+ kc

∂

∂x

)
u+ a

∂Fstall

∂x
, (3.14)

where the effective viscosity is ηe = ηc + Fstall/v0 (described previously for SFs by Besser
and Schwarz, 2007). We relabel ηc as η0 and relabel ηe as ηc and so, henceforth, ηc =

η0 + Fstall/v0 refers to the effective viscosity of the cell cytoplasm.
The internal continuum forces in the cell and ECM, F (x, t) and G(x, t), given by

Eqs. (3.11b) and (3.14) respectively, are balanced by a restoring force due to integrins
connected to the ECM and due to viscous cell-substrate interaction, as shown in Fig. 3.3.
We then derive the continuum version of Eq. (3.10) in the form

F (x, t) = kI (u− w) + ηI
∂

∂t
(u− w) = −G(x, t). (3.15)

3.1.6 Conversion of our force balance to a stress balance

We convert the one-dimensional force balance description of Eq. (3.15) to a description
involving a stress balance by dividing by an appropriate scale factor. In particular, we
let VC (VE) be the volume of a segment of the cell (ECM) and set Vc = aAc, VE = aAE

where Ac, AE are the cross-sectional areas of the cell and ECM respectively. We rewrite
the mechanical properties of the cell and ECM by writing

kc =
EcAc

L0
c

, ηc =
µcAc

L0
c

, Fstall = τAc, kE =
EEAE

L0
E

, ηE =
µEAE

L0
E

, (3.16)

where Ec, EE are the Young’s modulus of the cell cytoplasm and ECM respectively, µc,

µE are the (effective) viscosity of the cytoplasm and ECM respectively and τ is the stress
exerted inside the cell by contractile SFs. Moreover, L0

c and L0
E are the natural lengths of

the cell and ECM segments. We suppose that L0
c = L0

E = a so that this length scale does
not feature in the point-wise momentum balance equations. We hence obtain the stress
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counterparts of Eq. (3.11) as

F̂ (x, t) =
∂

∂x

(
µc(x, t)

∂2

∂x∂t
+ Ec(x, t)

∂

∂x

)
u(x, t) +

∂τ(x, t)

∂x
, (3.17a)

Ĝ(x, t) =
∂

∂x

(
µE(x, t)

∂2

∂x∂t
+ EE(x, t)

∂

∂x

)
w(x, t). (3.17b)

In Eq. (3.15) we assume that Ac = AE and write kI = κIaAc, ηI = βIaAc, where κI is the
stiffness of adhesions per cell (or ECM) volume and ηI is the drag due to adhesions. We
hence conclude that

F̂ (x, t) = κI (u− w) + βI
∂

∂t
(u− w) = −Ĝ(x, t). (3.18)

Finally, comparison of Eqs. (3.17) and (3.18) produces the governing (momentum balance)
equations in terms of the Cauchy stress in the cytoplasm and ECM of the form

∂σc

∂x
= κI (u− w) + βI

∂

∂t
(u− w) ,

∂σE

∂x
= κI (w − u) + βI

∂

∂t
(w − u) , (3.19a)

where κI is the stiffness (per unit cell volume) of adhesions (both nascent and focal) and βI

is the drag per unit volume; this is similar to that of Gracheva and Othmer (2004), Larripa
and Mogilner (2006), but both considered the cell only. The drag term is decomposed into
three components in the form

βI = βe + βNA + βFA, (3.19b)

where βe is a (small) uniform background drag (introduced mainly for computational ease),
whilst βNA and βFA are the drag associated with nascent and focal adhesions (which are
specified in terms of the adhesion densities in Sec. 3.5.3 below). The additional uniform
drag term is necessary in simulations owing to our imposed initial conditions (see Table 3.2
below). In particular, we assume the cell is initially well spread but has formed no adhe-
sions to resist deformation; this additional drag ensures the cell is initially in contact with
the ECM long enough to begin forming adhesions. An alternative approach would be to
assume some adhesions have already formed at the initialisation of simulations. We infer
the corresponding continuum Cauchy stress tensors of the cell and ECM as

σc =

(
µc

∂2

∂x∂t
+ Ec

∂

∂x

)
u+ τ, σE =

(
µE

∂2

∂x∂t
+ EE

∂

∂x

)
w, (3.19c)

where µc = µ0+τ/v0 is the effective viscosity of the cell cytoplasm (with µ0 the unmodified
cytoplasm viscosity), µE is the viscosity of the ECM, Ec = EF + ES + EP is the effective
Young’s modulus of the cytoplasm (a sum of the Young’s modulus of actin filaments, EF ,
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VSFs, ES, and a passive contribution due to the cell nucleus, microtubules and interme-
diate filaments, EP ), EE = EC +EO is the effective Young’s modulus of the ECM (a sum
of the Young’s modulus of collagen fibres, EC , and other proteins, EO) and τ is the active
stress generated by myosin II motor action. Note that for the remainder of this Chapter
we consider an ECM consisting of collagen alone and hence neglect EO.

3.1.7 Extension of ECM beyond the footprint of the cell

We assume that the domain of the ECM extends beyond the edges of the cell and is
described by a set of material points −L1−L/2 ≤ x ≤ L1+L/2. In particular, we suppose
that the ECM is composed of three compartments as indicated in Fig. 3.1, with region
1 described by points −L1 − L/2 ≤ x ≤ −L/2, region 2 described by points L/2 ≤ x ≤
L/2 + L1 and region 3 (lying underneath the cell) described by points −L/2 ≤ x ≤ L/2.

For simplicity, we assume that the ECM has constant Young’s modulus and viscosity
in regions 1 and 2 so that EE(x, t) = Ē, µE(x, t) = µ̄, in these regions. We denote the
continuum displacement of the ECM in each of these regions by w̄i (i = 1, 2) and note
that the Cauchy stress, σ̄E,1 (σ̄E,2), in region 1 (2) is given by

σ̄E,1 = Ē
∂w̄1

∂x
+ µ̄

∂2w̄1

∂x∂t
, σ̄E,2 = Ē

∂w̄2

∂x
+ µ̄

∂2w̄2

∂x∂t
. (3.20)

Given these regions are not connected to the cell (and so there are no adhesion mediated
drag or restoring forces), we thus solve Eq. (3.19a) with κI = 0, βI = 0. Given that Ē and
µ̄ are independent of x, we have

Ē
∂2w̄i(x, t)

∂x2
+ µ̄

∂3w̄i(x, t)

∂x2∂t
= 0. (3.21)

Integrating with respect to x twice we obtain

Ēw̄i + µ̄
∂w̄i

∂t
= Ai(t)x+Bi(t), (3.22)

where Ai, Bi are functions of time. Treating x as a parameter, Eq. (3.22) is a first-order
linear inhomogeneous PDE which can be solved for w̄i using an appropriate integrating
factor. We focus our attention on region 1, with the calculation for region 2 analogous.

In region 1 we impose no displacement initial conditions, w̄1(x, 0) = 0. For the bound-
aries of region 1 we impose the following boundary/matching conditions

w̄1(−L/2−L1, t) = 0, w̄1(−L/2, t) = w(−L/2, t), σ̄E,1(−L/2, t) = σ(−L/2, t), (3.23)

where w(x, t) denotes the (numerically calculated) continuum displacement in region 3 (un-
derneath the cell). The first condition imposes no displacement on the far field boundary
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(the ECM is fixed at some distance L1 from the cell), the second and third equations repre-
sent matching of displacement and stress (these must be continuous) across the boundary
connecting region 1 and region 3. Imposing no displacement in the far field gives

Ēw̄1 + µ̄
∂w̄1

∂t
= A1(t)

(
x+ L1 +

L

2

)
, (3.24)

which yields

w̄1 =
1

µ̄L1

(
x+ L1 +

L

2

)
e−tĒ/µ̄

∫ t

0

A1(T )e
TĒ/µ̄dT. (3.25)

In order to apply our matching conditions we require the numerically calculated (dis-
cussed in Sec. 3.7 below) displacement and stress at the left boundary of region 3. The
displacement at this point is given by w(−L/2, t) = w0(t). Applying the displacement
matching conditions at the boundary of regions 1 and 3 hence gives

w̄1(x, t) =
1

L1

(
x+ L1 +

L

2

)
w0(t), (3.26a)

a linearly decreasing function of displacement away from the cell, governed by the time-
dependent displacement of the boundary with region 3.

In a similar calculation we deduce the displacement of points in region 2 are given by

w̄2(x, t) =
1

L1

(
L1 +

L

2
− x

)
wN(t), (3.26b)

where wN(t) is the numerically calculated value of displacement at the right boundary of
region 3.

With our analytical description from Eq. (3.26) for displacement in regions 1 and 2, we
match stress across each boundary between different regions (as discussed in detail below
in Sec. 3.3). In particular, we incorporate this into our numerical method to describe the
displacement of the ECM underneath the cell (region 3), as discussed in Sec. 3.7 (below).
In Ch. 4 we explore the effect that changes to this far field boundary condition have on
the cell, mimicking, for example, the influence of ECM remodelling by other cells.

3.2 Biochemical Model

The mechanical properties of the cell depend on the concentrations of intra- and extra-
cellular proteins. In particular, the scaffolding protein actin in its various forms contributes
to cell stiffness, whilst SFs generate contractile forces (due to the action of myosin motors)
within the cell that are transmitted to the ECM through adhesions (Besser and Schwarz,
2007, Gracheva and Othmer, 2004). Moreover, nascent and focal adhesions provide drag
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forces due to viscous resistance to motion through the membrane. Furthermore, certain
signaling proteins are activated in response to the formation and maturation of adhe-
sions which promote SF assembly and contraction causing maturation of the cytoskeleton.
Therefore, to fully describe the deformation of the cell, we must also characterise the
internal signaling pathways and the dynamics of scaffolding proteins and couple to the
mechanical components discussed above.

Diagrams summarising the reactions considered in this model are shown in Figs. 1.4-1.5
and are similar to those explored in Ch. 2. In particular, free integrins (with a low-affinity
for binding to ECM ligands) become activated to form high-affinity integrins, which bind
to the ECM ligands to form nascent adhesions. Nascent adhesions can mature to form
FAs in a force-dependent manner (i.e. forces applied to adhesions promotes maturation).
The formation and maturation of adhesions leads to an increase in intracellular signaling
for increased (decreased) myosin II activation (inactivation) and increased (decreased)
actin polymerisation (depolymerisation). Consequently, actin monomers polymerise into
filaments and myosin II becomes activated, facilitating cross-linking of actin filaments to
form VSFs. In turn, VSFs exert forces that stretch adhesions, exposing VBSs on talin,
leading to adhesion maturation and closing a positive feedback loop.

A key feature of our one-dimensional model in this Chapter is the assumption that
the ECM ligands can be divided into two distinct families, as summarised in Fig. 3.6.
For simplicity, we distinguish these families by the direction in which the anchored actin
filaments grow; see sketch in Fig. 3.6(a). Such an approach is designed to ensure the two
families of filaments grow toward one another, in order to mimic the growth of filaments
(and hence VSFs) between FAs. As these two families of ECM ligands bind to the cell, this
naturally results in two corresponding families of adhesions and actin filaments; we denote
these as family 1 and family 2, indicated with a superscript (1) or (2), respectively. Ligands
associated with family 1 (2) have density n

(1)
s (n(2)

s ) and connect to high-affinity integrins
to form family 1 (2) nascent adhesions, density n

(1)
b (n(2)

b ). Nascent adhesions can mature
into FAs, density n

(1)
A (n(2)

A ), from which family 1 (2) actin filaments are polymerised and
grow, with concentration c

(1)
F (c(2)F ). Each family is endowed with a corresponding actin

polymerisation velocity. Note that this categorisation only works in one dimension.
In this model we prescribe the spatial profile of ligand patterning so that the total

ECM ligand density is constant along the length of the cell. Each family of ligands can
be described at t = 0 by

n(i)
s (x, 0) = NS

0 S(i)(x), (3.27)

where i = 1, 2, NS
0 is a constant (the maximum ligand density) and 0 ≤ S(i)(x) ≤ 1 is a

prescribed function which decays to zero at the right (left) boundary of the cell for family
1 (family 2) ligands. We choose S(1), S(2) so that S(1)+S(2) = NS

0 at any point x. A typical
spatial profile of ligand patterning is shown in Fig. 3.6(b).
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Moreover, for simplicity, we assume that treadmilling of actin filaments occurs at (ap-
proximately) constant velocity U0, maintaining initial direction, with family 1 filaments
treadmilled to the right (increasing x) and family 2 filaments treadmilled to the left (de-
creasing x). The assumed spatial profile of the treadmilling velocity is shown in Fig. 3.6(c).
In particular, we assume that treadmilling within each family of filaments is reduced at
the boundaries to ensure mass conservation within the cell, which we capture by multi-
plying by a dimensionless function, Ũ (1), Ũ (2), which are both broadly constant but decay
significantly near the boundaries (as indicated in Fig. 3.6c). Hence, actin treadmilling
velocity terms can be written in the form

U (1) = U0Ũ
(1), U (2) = U0Ũ

(2). (3.28)

Note that this velocity profile neglects the effect that rapid changes in actin concentration
at adhesions could have on the treadmilling velocity, but this simple expression is used for
tractability.
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Figure 3.6: Overview of biochemical set-up. (a) Two families of adhesions: family 1
(2) ligands in blue (red) connect to integrins on the cell membrane to form family 1 (2)
adhesions, from which actin filaments grow. Imposed ligand patterning shown in panel
(b) and actin treadmilling velocity for both families shown in panel (c).

We now outline the dynamical equations for each of the respective protein families in
the model. Note that, as we assume deformations of the cell and ECM are small, for
simplicity we solve these biochemical equations in the reference configuration. Moreover,
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note that several of the reaction rates describing the dynamics of scaffolding proteins are
coupled to the concentration of signaling proteins or cell deformation; constitutive assump-
tions describing these dynamics are presented in Secs. 3.5.1-3.5.2 (below). In particular,
these rates will be non-constant and spatially non-uniform functions of other variables,
preventing simple decoupled solutions of the system.

3.2.1 Cytoskeleton proteins

Our model for maturation of the cytoskeleton incorporates the polymerisation of actin
protein monomers into actin filaments. These filaments become cross-linked by activated
myosin II to form contractile SFs. In this one-dimensional framework we propose a system
of reaction-diffusion-advection PDEs to describe the dynamics of actin and myosin and
conversion between different states (cf. simple reaction ODEs presented in Sec. 2.1.1).

The concentration of G-actin monomers, cG, satisfies

(3.29a)
∂cG
∂t

= −k+
p cG

(
n
(1)
b + n

(2)
b + n

(1)
A + n

(2)
A

)
+ k−

p

(
c
(1)
F + c

(2)
F

)
+ k−

mc
+
S +DG

∂2cG
∂x2

,

where k+
p represents the rate per adhesion of polymerisation of actin monomers (at ad-

hesions), k−
p represents the dissociation rate of actin filaments and k−

m is the dissociation
rate of VSFs, concentration c+S . Note the similarities with Eq. (2.1a), describing actin
monomer concentration in our simple spatially-averaged model; in this model the rates
of actin polymerisation and depolymerisation similarly depend on the concentration of
signaling proteins, as detailed in Sec. 3.5.1 (below). However, we now account for spatial
variations in protein concentration and assume that G-actin is diffusive, with (constant)
diffusion coefficient DG, allowing monomer concentration to be replenished in regions with
high polymerisation rates.

The resulting actin filament families can be cross-linked by activated myosin II, con-
centration c+m(x, t), to form SFs, with the concentration of each family of filaments given
by

(3.29b)
∂c

(i)
F

∂t
+

∂

∂x

(
c
(i)
F U (i)

)
= k+

p cG

(
n
(i)
b + n

(i)
A

)
− k−

p c
(i)
F

− k+
m

(
c
(i)
F c

(i)
F + c

(1)
F c

(2)
F + c

(i)
F c+S

)
c+m +DF

∂2c
(i)
F

∂x2
,

where i = 1, 2. Actin filaments form due to polymerisation of G-actin and are recruited
into SFs at rate proportional to k+

m through cross-linking by active myosin II to other
filaments or existing SFs. As discussed above, we include the directed treadmilling of
filaments at speed U (i) due to polymerisation at the attached adhesion; this motion is
directed away from the nearest cell edge using an advection-like term (see prescribed form
in Fig. 3.6c). To ensure these PDEs are parabolic, we include a small diffusion term, with
constant diffusivity DF , allowing application of boundary conditions at both ends of the
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domain (this is similar to Larripa and Mogilner, 2006). This formulation is similar to
our description of actin filament dynamics in Ch. 2 (see Eq. 2.1b), but actin filaments in
this one-dimensional model have variable concentration spatially, can diffuse and can be
treadmilled (advected).

Actin bundles from the two families can interact with others from the same family or
from the other family and with active myosin II to form SFs; their concentration satisfies
the PDE

(3.29c)
∂c+S
∂t

= k+
m

(
2c

(1)
F c

(2)
F + c

(1)
F c

(1)
F + c

(2)
F c

(2)
F + c

(1)
F c+S + c

(2)
F c+S

)
c+m − k−

mc
+
S ,

where k−
m is the rate of SF disassembly. Upon disassembly SFs are assumed to decom-

pose directly into the constituent active myosin II and actin monomers (not filaments).
This formulation is similar to our description of SF formation in our spatially-averaged
modelling approach in Ch. 2 (see Eq. 2.1c).

Unbound myosin II motors exist in two states: inactive and active (where they can
cross-link actin bundles and facilitate contraction). Transition between these states occurs
in response to Rho-signaling, which is strengthened in response to FA formation. The
concentration of free inactive myosin II motors, denoted cm, is given by

∂cm
∂t

= −k+
a cm + k−

a c
+
m +Dm

∂2cm
∂x2

, (3.29d)

where Dm is the (constant) diffusion coefficient for inactive myosin II motors and where
myosin II is activated and deactivated at rate k+

a and k−
a respectively; in a similar manner

to Ch. 2 these rates are non-constant and depend on the concentration of signaling proteins,
as detailed in Sec. 3.5.1 (below). The concentration of free activated myosin II in the cell
is then described by

(3.29e)
∂c+m
∂t

= k+
a cm − k−

a c
+
m − k+

m

(
2c

(1)
F c

(2)
F + c

(1)
F c

(1)
F + c

(2)
F c

(2)
F + c

(1)
F c+S + c

(2)
F c+S

)
c+m

+ k−
mc

+
S +D+

m

∂2c+m
∂x2

,

where D+
m is the (constant) diffusivity of active myosin II. These equations, describing the

activation of myosin II, and its subsequent cross-linking of actin, are similar to their coun-
terparts Eqs. (2.1e)-(2.1f) in the spatially-averaged model developed in Ch. 2. However,
we additionally incorporate diffusivity of myosin II in this one-dimensional model.

3.2.2 Adhesion proteins

Adhesions connect the cell to the underlying ECM through integrin-ligand mediated con-
nections. This process begins inside the cell, where talin binds integrins to the cytoskele-
ton. In response, integrins change conformation and develop a high-affinity for ECM
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binding. This conversion from low-affinity to high-affinity occurs at rate k+
h and is re-

versible with rate k−
h . These low-affinity integrins can also diffuse along the membrane

(Pathak et al., 2008), with (constant) diffusivity Df , replenishing regions where integrins
have become high-affinity (and have subsequently bound to the ECM). Hence, the density,
nf , of free, low-affinity integrins, satisfies

∂nf

∂t
= −k+

h nf + k−
h nh +Df

∂2nf

∂x2
, (3.29f)

where nh represents the number density of high-affinity unbound integrins.
In their high-affinity state, integrins can now bind to ligands of density n

(1)
s and n

(2)
s ,

representing, respectively, the two families in the underlying ECM, allowing for the forma-
tion of nascent adhesions (bound integrins). This binding occurs at a rate k+

b per ligand,
whilst bonds between the integrins and the substrate break at rate k−

b . We describe the
dynamics of high-affinity integrins and substrate ligands respectively by the PDEs

∂nh

∂t
= k+

h nf − k−
h nh − k+

b nh

(
n(1)
s + n(2)

s

)
+ k−

b

(
n
(1)
b + n

(2)
b

)
, (3.29g)

∂n
(i)
s

∂t
= −k+

b nhn
(i)
s + k−

b n
(i)
b , (3.29h)

with i = 1, 2, where n(1)
b and n

(2)
b are used to describe the density of bound integrins related

to each family of ligands, with densities n
(1)
s and n

(2)
s , respectively.

The concentration of bound integrins, n(i)
b , is given by

∂n
(i)
b

∂t
= k+

b nhn
(i)
s − k−

b n
(i)
b − k+

F n
(i)
b + k−

F n
(i)
A , (3.29i)

i = 1, 2, describing the formation of nascent adhesions and their subsequent maturation
into FAs. The conversion from nascent to focal adhesions occurs, through recruitment of
vinculin, at rate k+

F , whilst FAs can dissociate at rate k−
F .

Finally, the concentration of FAs associated with each cluster can be described by

∂n
(i)
A

∂t
= k+

F n
(i)
b − k−

F n
(i)
A . (3.29j)

In a similar manner to Ch. 2, the rate of adhesion maturation is non-constant. However,
in this one-dimensional framework we link this rate to the stretch of adhesions as detailed
in Sec. 3.5.2 (below); cf. the highly empirical relation employed in Ch. 2, which couples
this rate to SF concentration.

Note that, as purely reaction equations, Eqs. (3.29g)-(3.29j) are very similar to their
counterparts (Eqs. 2.1h-2.1k) in the spatially-averaged model developed in Ch. 2. However,
this one-dimensional model allows for spatial variation in the density of each species and
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requires distinction between two families of ligands and adhesions. The description of free
integrin dynamics (see Eq. 3.29f) is similar to the spatially-averaged description presented
in Ch. 2 (Eq. 2.1g). However, in this one-dimensional framework free integrins can diffuse
along the cell membrane.

3.2.3 Signaling proteins

Recall that, in response to cell-substrate adhesion formation, the Rho signaling protein
is activated, regulating actin polymerisation rates and myosin II activation (Deguchi and
Sato, 2009) through a variety of mechanisms including upregulation of mDia1 and Rho-
kinase (ROCK), as shown in Fig. 1.5 (Feng et al., 1999, Maekawa et al., 1999). Recall
also that for our modelling purposes we assume that increases in mDia1 activity occurs
in tandem with ROCK activation and so we use activated ROCK as a proxy measure for
mDia1 activity and hence the actin polymerisation rate. Our modelling approach here
is similar to that presented in Sec. 2.1.3 in the formulation of our spatially-averaged bio-
chemical model developed in Ch. 2. However, this one-dimensional framework allows for
spatial variation in the concentration of ROCK and its downstream effectors. Additionally,
we now incorporate diffusivity of downstream effectors of ROCK. It is worth emphasising
that, although the subsequent proposed dynamics for signaling proteins appears simple,
several of the reaction rates are non-constant; the constitutive relations required to fully
describe these rates are presented in Secs. 3.5.1-3.5.2 (below).

We let cR denote the concentration of inactive ROCK and c+R denote the concentration
of activated ROCK. We assume that both forms of ROCK are non-diffusive and so their
dynamics are described by a set of kinetic equations, with activation at rate k+

R and
inactivation occurring at rate k−

R , in the form

∂cR
∂t

= −k+
RcR + k−

Rc
+
R, (3.30a)

∂c+R
∂t

= k+
RcR − k−

Rc
+
R. (3.30b)

In response to ROCK activation, myosin light chain phosphatase (MLCP), which in-
activates active myosin II, is phosphorylated to form phosphorylated myosin light chain
phosphatase (MLCP-P); this phosphorylation suppresses the inhibitory ability of MLCP
on myosin II activation. Phosphorylation of MLCP, concentration cP , occurs at rate k+

1 ,

whilst dephosphorylation of MLCP-P, concentration cP−P , occurs at rate k−
1 . Their dy-

namics are described by the reaction-diffusion equations

∂cP
∂t

= −k+
1 cP + k−

1 cP−P +DP
∂2cP
∂x2

, (3.30c)

∂cP−P

∂t
= k+

1 cP − k−
1 cP−P +DP−P

∂2cP−P

∂x2
, (3.30d)
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where MLCP and MLCP-P are assumed to be diffusive with constant diffusivities DP and
DP−P respectively.

Furthermore, ROCK activation triggers phosphorylation of myosin light chain kinase
(MLCK), concentration cK , to form phosphorylated myosin light chain kinase (MLCK-P),
concentration cK−P (Dalby et al., 2018). In its phosphorylated form, MLCK-P facilitates
activation of myosin II. We describe the dynamics of MLCK phosphorylation by

∂cK
∂t

= −k+
2 cK + k−

2 cK−P +DK
∂2cK
∂x2

, (3.30e)

∂cK−P

∂t
= k+

2 cK − k−
2 cK−P +DK−P

∂2cK−P

∂x2
, (3.30f)

where k+
2 is the phosphorylation rate of MLCK, k−

2 is the rate at which MLCK-P is
dephosphorylated and where DK and DK−P are the constant diffusivities of MLCK and
MLCK-P, respectively.

Finally, ROCK also phosphorylates cofilin, concentration cC , at rate k+
3 to form phos-

phorylated cofilin, concentration cC−P , whilst this process is also reversible with rate k−
3 .

These dynamics are described by reaction-diffusion equations in the form

∂cC
∂t

= −k+
3 cC + k−

3 cC−P +DC
∂2cC
∂x2

, (3.30g)

∂cC−P

∂t
= k+

3 cC − k−
3 cC−P +DC−P

∂2cC−P

∂x2
, (3.30h)

where DC and DC−P represent the (constant) diffusivities of cofilin and phosphorylated
cofilin respectively. Note that phosphorylation of cofilin inhibits its ability to sever actin
filaments and so the actin depolymerisation rate, k−

p , decreases, as discussed in Sec. 3.5
below.

It should be noted that, despite their simple appearance, the dynamics of signaling
proteins described are still coupled to the dynamics of the wider system. Indeed several of
the reaction rates are non-constant and spatially non-uniform functions of other variables,
preventing a simple decoupled solution for the dynamics of signaling proteins.

3.3 Initial and boundary conditions

In this Section we outline the initial and boundary conditions we impose on the governing
equations describing the deformation of the cell, ECM and adhesions (see Sec. 3.1) and
the cell biochemistry (see Sec. 3.2).
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3.3.1 Mechanical conditions

Initially, we assume zero displacement everywhere in the cell and ECM in the form

u(x, 0) = 0, w(x, 0) = 0. (3.31a)

We prescribe boundary stresses on the cell in the form

σc (−L/2, t) = −σ1, σc (L/2, t) = σ2, (3.31b)

where σ1, σ2 can be used to represent stresses due to actin polymerisation at the boundaries
pushing against the membrane (in a similar manner to Gracheva and Othmer, 2004) or
external stresses. In the absence of contractility, these stresses would lead to expansion of
the cell. However, in a non-motile cell these forces are negligible. Hence, we set σ1 = 0

Pa, σ2 = 0 Pa.
The boundary conditions imposed on the ECM require a different treatment, as indi-

cated in Fig. 3.1. In particular, we impose zero displacement in the ECM far field

w (−L/2− L1, t) = 0, w (L/2 + L1, t) = 0, (3.31c)

whilst at the junctions between ECM regions either side of the cell boundary we match
stress and displacement. It then emerges (see Sec. 3.1.7) that we can semi-analytically
solve the ECM mechanical equations away from the cell to obtain a description of the
displacement of the ECM in these regions, given by Eq. (3.26). As discussed in Sec. 3.1.7,
we use these displacements to match displacement between region 1 and region 3 and
region 2 and region 3, providing boundary conditions for the region of ECM below the cell
in the form

σE(−L/2, t) = σ̄E,1(−L/2, t), σE(L/2, t) = σ̄E,2(L/2, t), (3.31d)

where σ̄E,i is the analytically calculated stress in the ECM regions to the left and right of
the cell.

3.3.2 Biochemistry conditions

We assume that the cell is newly introduced to the substrate so that no adhesions have
formed and all integrins are in their low-affinity state for ECM ligand binding. Moreover
we assume that no SFs or actin filaments have formed so that all actin is monomeric.
We additionally assume that ROCK is initially wholly inactive and consequently, MLCP,
MLCK and cofilin are all initially unphosphorylated and myosin II is found entirely in its
inactive state. We detail the full initial conditions for each protein in Sec. 3.6.

To conserve the mass of each family of proteins in the cell, we assume no flux boundary
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conditions for each species. In general, the flux, jα, of an advective (with velocity Uα) and
diffusive (with diffusivity Dα) protein, with concentration cα, satisfies

jα = Uαcα −Dα
∂cα
∂x

= 0, (3.32)

at the boundaries x = −L/2 and x = L/2, i.e. advective and diffusive effects must balance.
For non-diffusive and non-advective proteins we immediately satisfy no-flux boundary
conditions and solve the reaction equations at the boundary as we do at the interior. For
diffusive proteins that do not experience advection then Eq. (3.32) becomes

∂cα
∂x

= 0, (3.33)

at x = −L/2, x = L/2. The only protein species in our model that is assumed to be
advected (treadmilled) are actin filaments. We deduce that at the boundaries we must
satisfy

DF
∂c

(i)
F

∂x
= U0Ũ

(i)c
(i)
F , (3.34)

for i = 1, 2.

Assuming that the boundary condition Eq. (3.32) is satisfied for all species then, to-
gether with Eqs. (3.29a)-(3.30h), we derive the following conservation laws

∂

∂t

∫ L
2

−L
2

(
cG(x, t) + c

(1)
F (x, t) + c

(2)
F (x, t) + c+S (x, t)

)
dx = 0,

∂

∂t

∫ L
2

−L
2

(
nf (x, t) + nh(x, t) + n

(1)
b (x, t) + n

(2)
b (x, t) + n

(1)
A (x, t) + n

(2)
A (x, t)

)
dx = 0,

∂

∂t

∫ L
2

−L
2

(
cR(x, t) + c+R(x, t)

)
dx = 0,

∂

∂t

∫ L
2

−L
2

(cP (x, t) + cP−P (x, t)) dx = 0,

∂

∂t

∫ L
2

−L
2

(cK(x, t) + cK−P (x, t)) dx = 0,
∂

∂t

∫ L
2

−L
2

(cC(x, t) + cC−P (x, t)) dx = 0,

(3.35)

representing, respectively, conservation of actin (in all its forms), of integrins (in their
various forms), of ROCK (in its inactivated and activated forms) and of MLCP, MLCK
and cofilin (in their phosphorylated and unphosphorylated forms) in the cell.

3.4 Non-dimensionalisation

In a similar way to Ch. 2, to simplify our analysis we non-dimensionalise our biochemical
and mechanical equations. Given that our primary interest is in the microscale patterning
of adhesion to the substrate we scale all lengths on the cell length, L, and time on ⟨t⟩ =
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1/
(
k+
b NS

)
, the characteristic timescale of the formation of nascent adhesions (due to the

binding of high-affinity integrins with ECM ligands), where NS is the initial average free
ligand density. Note that this process is rapid compared to adhesion maturation into
focal structures, and so we consider the dynamics of the model over a large number of
dimensionless time units. However, we are interested in all timescales. We scale stresses
on EF

0 , the Young’s modulus of actin filaments when they are at a typical concentration
(defined below). Furthermore, as discussed in detail in Sec. 3.4.2 (below), we scale actin
concentrations on CA, the initial average concentration of actin (in all its forms), scale
myosin concentrations on CM , the initial average concentration of myosin (in its inactive
and active forms). We scale integrin and adhesion density on the average initial integrin
density (in all its forms), NI , and scale ligand density on NS. A similar treatment is
given to signaling proteins with ROCK concentration scaled on CR, the average initial
ROCK concentration (in its active and inactive forms), MLCP concentration scaled on
CP , the average concentration of MLCP (in its phosphorylated and unphosphorylated
forms), MLCK concentration scaled on CK , the average total concentration of MLCK (in
its phosphorylated and unphosphorylated forms) and cofilin concentration scaled on CC ,

the average total concentration of cofilin (in its phosphorylated and unphosphorylated
forms).

3.4.1 Mechanical equations

In order to non-dimensionalise the mechanical equations Eq. (3.19a) we write

EF = EF
0 f̃F , ES = ES

0 f̃S, EP = EP
0 f̃P , EC = EC

0 f̃C ,

EO = EO
0 f̃O, τ = τ0f̃τ , µc = µc

0g̃c, µE = µE
0 g̃E,

κNA = κNA
0 f̃NA, κFA = κFA

0 f̃FA, βNA = βNA
0 f̃NA, βFA = βFA

0 f̃FA,

(3.36)

where EF
0 , E

S
0 , E

P
0 , E

C
0 , E

O
0 , κ

NA
0 , κFA

0 , βNA
0 , βFA

0 , τ0, µ
c
0 and µE

0 are dimensional constants,
and all variables with tildes are dimensionless functions. By scaling position, time and
velocity by writing x′ = x/L, t′ = t/⟨t⟩, v′ = v⟨t⟩/L then the dimensionless form of the
governing equations Eq. (3.19a) are

(3.37a)

(
∂

∂x′ (µ̃
c
0g̃c)

∂2

∂x′∂t′
+

∂

∂x′

(
f̃F + ẼS

0 f̃S + ẼP
0 f̃P

) ∂

∂x′

)
u′ + τ̃0

∂

∂x′

(
f̃τ

)
=
(
κ̃NA
0 f̃NA + κ̃FA

0 f̃FA

)
(u′ − w′) +

(
β̃NA
0 f̃NA + β̃FA

0 f̃FA + β̃e

) ∂

∂t′
(u′ − w′) ,

(3.37b)

(
∂

∂x′

(
µ̃E
0 g̃E

) ∂2

∂x′∂t′
+

∂

∂x′

(
ẼC

0 f̃C + ẼO
0 f̃O

) ∂

∂x′

)
w′

=
(
κ̃NA
0 f̃NA + κ̃FA

0 f̃FA

)
(w′ − u′) +

(
β̃NA
0 f̃NA + β̃FA

0 f̃FA + β̃e

) ∂

∂t′
(w′ − u′) ,
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where we have the following dimensionless groups

µ̃c
0 = µc

0/E
F
0 ⟨t⟩, τ̃0 = τ0/E

F
0 , ẼS

0 = ES
0 /E

F
0 ,

ẼP
0 = EP

0 /E
F
0 , κ̃NA

0 = κNA
0 L2/EF

0 , κ̃FA
0 = κFA

0 L2/EF
0 ,

β̃NA
0 = βNA

0 L2/EF
0 ⟨t⟩, β̃FA

0 = βFA
0 L2/EF

0 ⟨t⟩, β̃e = βeL
2/EF

0 ⟨t⟩,

µ̃E
0 = µE

0 /E
F
0 ⟨t⟩, ẼC

0 = EC
0 /E

F
0 , ẼO

0 = EO
0 /E

F
0 .

(3.38)

The initial and boundary conditions from Eq. (3.31a)-(3.31b) transform to

u′(x′, 0) = 0, w′(x′, 0) = 0, σ̃c (−1/2, t′) = −σ̃1(= 0), σ̃c (1/2, t
′) = σ̃2(= 0), (3.39)

where the dimensionless Cauchy stress, scaled on EF
0 , is given by

σ̃c = µ̃c
0g̃c

∂2u′

∂x′∂t′
+
(
f̃F + ẼS

0 f̃S + ẼP
0 f̃P

) ∂u′

∂x′ + τ̃0f̃τ , (3.40a)

σ̃E = µ̃E
0 g̃E

∂2w′

∂x′∂t′
+
(
ẼC

0 f̃C + ẼO
0 f̃O

) ∂w′

∂x′ , (3.40b)

for the cell and ECM respectively.
In order to non-dimensionalise conditions for the ECM underneath the cell cytoplasm,

we recall our semi-analytical expressions for the displacement in the ECM far field given
by Eq. (3.26). We non-dimensionalise by setting L1 = αL, so that α is the dimensionless
length of far field regions, to obtain expressions for the dimensionless displacement of the
ECM in regions 1 and 2. In particular, we have

w̄′
1(x

′, t′) =
1

α

(
x′ + α +

1

2

)
w′

0(t
′), (3.41a)

w̄′
2(x

′, t′) =
1

α

(
α +

1

2
− x′

)
w′

N(t
′), (3.41b)

where w̄′
1, w̄

′
2 are the dimensionless displacements in region 1 (−1/2−α ≤ x′ ≤ −1/2), and

region 2 (1/2 ≤ x′ ≤ 1/2+α), respectively and where w′
0(t

′) and w′
N(t

′) are the numerically
calculated dimensionless displacements of the ECM below the cell at the boundaries with
region 1 and region 2 respectively. From Eq. (3.31d), the dimensionless stress matching
boundary conditions for the region of ECM below the cell are then given by

σ̃E(−1/2, t′) = ˜̄σE,1(−1/2, t′), σ̃E(1/2, t
′) = ˜̄σE,2(1/2, t

′), (3.42)

where ˜̄σE,i is the analytically calculated dimensionless stress in the ECM regions to the
left and right of the cell.
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3.4.2 Scaffolding and signaling proteins

In addition to the aforementioned length- and time-scales introduced, we compute the ini-
tial average concentration of actin, integrins, myosin, ECM ligands, ROCK, MLCP, MLCK
and cofilin (in their various forms), which we use as scales in order to non-dimensionalise
the equations describing cell biochemistry (Eqs. 3.29a-3.30h). In particular, we set

CA =
1

L

∫ L/2

−L/2

(
cG(x, 0) + c

(1)
F (x, 0) + c

(2)
F (x, 0) + c+S (x, 0)

)
dx,

NI =
1

L

∫ L/2

−L/2

(
nf (x, 0) + nh(x, 0) + n

(1)
b (x, 0) + n

(2)
b (x, 0) + n

(1)
A (x, 0) + n

(2)
A (x, 0)

)
dx,

CM =
1

L

∫ L/2

−L/2

(
cM(x, 0) + c+M(x, 0)

)
dx, NS =

1

L

∫ L/2

−L/2

(
n(1)
s (x, 0) + n(2)

s (x, 0)
)
dx,

CR =
1

L

∫ L/2

−L/2

(
cR(x, 0) + c+R(x, 0)

)
dx, CP =

1

L

∫ L/2

−L/2

(cP (x, 0) + cP−P (x, 0)) dx,

CK =
1

L

∫ L/2

−L/2

(cK(x, 0) + cK−P (x, 0)) dx, CC =
1

L

∫ L/2

−L/2

(cC(x, 0) + cC−P (x, 0)) dx,

(3.43)
representing, respectively, a concentration scale for actin species (monomers, filaments and
stress fibres), for integrin species (low and high-affinity integrins, nascent and focal adhe-
sions), for myosin II (inactive and active), ligands, ROCK (inactive and active), MLCP
(phosphorylated and unphosphorylated), MLCK (phosphorylated and unphosphorylated)
and cofilin (phosphorylated and unphosphorylated).

We introduce the following dimensionless groups:

k̃+
p = k+

p ⟨t⟩NI , k̃−
p = k−

p ⟨t⟩, k̃+
m = k+

m⟨t⟩CMCA, k̄+
m = k+

m⟨t⟩C2
A,

k̃−
m = k−

m⟨t⟩, k̄−
m = k−

m⟨t⟩CA/CM , k̃+
a = k+

a ⟨t⟩, k̃−
a = k−

a ⟨t⟩,

k̃+
h = k+

h ⟨t⟩, k̃−
h = k−

h ⟨t⟩, k̃+
b = k+

b ⟨t⟩NS(= 1), k̄+
b = k+

b ⟨t⟩NI ,

k̃−
b = k−

b ⟨t⟩, k̄−
b = k−

b ⟨t⟩NI/NS, k̃+
F = k+

F ⟨t⟩, k̃−
F = k−

F ⟨t⟩,

D̃G = DG⟨t⟩/L2, D̃F = DF ⟨t⟩/L2, D̃m = Dm⟨t⟩/L2, D̃+
m = D+

m⟨t⟩/L2,

D̃f = Df⟨t⟩/L2, k̃+
R = k+

R⟨t⟩, k̃−
R = k−

R⟨t⟩, k̃+
1 = k+

1 ⟨t⟩, k̃−
1 = k−

1 ⟨t⟩,

k̃+
2 = k+

2 ⟨t⟩, k̃−
2 = k−

2 ⟨t⟩, k̃+
3 = k+

3 ⟨t⟩, k̃−
3 = k−

3 ⟨t⟩,

D̃P = DP ⟨t⟩/L2, D̃P−P = DP−P ⟨t⟩/L2, D̃K = DK⟨t⟩/L2,

D̃K−P = DK−P ⟨t⟩/L2, D̃C = DC⟨t⟩/L2, D̃C−P = DC−P ⟨t⟩/L2.

(3.44)

With these dimensionless groups we can construct the following dimensionless biochemical
equations (where primes are used to denote dimensionless quantities)

(3.45a)
∂c′G
∂t′

= −k̃+
p c

′
G

(
n
(1)
b

′
+ n

(2)
b

′
+ n

(1)
A

′
+ n

(2)
A

′)
+ k̃−

p

(
c
(1)
F

′
+ c

(2)
F

′)
+ k̃−

mc
+
S
′
+ D̃G

∂2c′G
∂x′2 ,
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(3.45b)
∂c

(i)
F

′

∂t′
+

∂

∂x′

(
c
(i)
F

′
U (i)′

)
= k̃+

p c
′
G

(
n
(i)
b

′
+ n

(i)
A

′)
− k̃−

p c
(i)
F

′

− k̃+
m

(
c
(1)
F

′
c
(2)
F

′
+ c

(i)
F

′
c+S

′
)
c+m

′
+ D̃F

∂2c
(i)
F

′

∂x′2 ,

(3.45c)
∂c+S

′

∂t′
= k̃+

m

(
2c

(1)
F

′
c
(2)
F

′
+ c

(1)
F

′
c+S

′
+ c

(2)
F

′
c+S

′
)
c+m

′ − k̃−
mc

+
S
′
,

(3.45d)
∂cm

′

∂t′
= −k̃+

a c
′
m + k̃−

a c
+
m

′
+ D̃m

∂2c′m
∂x′2 ,

(3.45e)
∂c+m

′

∂t′
= k̃+

a c
′
m − k̃−

a c
+
m

′ − k̄+
m

(
c
(1)
F

′
c
(2)
F

′
+ c

(1)
F

′
c+S

′
+ c

(2)
F

′
c+S

′
)
c+m

′
+ k̄−

mc
+
S
′
+ D̃+

m

∂2c+m
′

∂x′2 ,

(3.45f)
∂n′

f

∂t′
= −k̃+

h n
′
f + k̃−

h n
′
h + D̃f

∂2n′
f

∂x′2 ,

(3.45g)
∂n′

h

∂t′
= k̃+

h n
′
f − k̃−

h n
′
h − k̃+

b n
′
h

(
n(1)
s

′
+ n(2)

s

′
)
+ k̃−

b

(
n
(1)
b

′
+ n

(2)
b

′)
,

(3.45h)
∂n

(i)
b

′

∂t′
= k̃+

b n
′
hn

(i)
s

′ − k̃−
b n

(i)
b

′
− k̃+

F n
(i)
b

′
+ k̃−

F n
(i)
A

′
,

(3.45i)
∂n

(i)
s

′

∂t′
= −k̄+

b n
′
hn

(i)
s

′
+ k̄−

b n
(i)
b

′
,

(3.45j)
∂n

(i)
A

′

∂t′
= k̃+

F n
(i)
b

′
− k̃−

F n
(i)
A

′
,

(3.45k)
∂c′R
∂t′

= −k̃+
Rc

′
R + k̃−

Rc
+
R
′
,

(3.45l)
∂c+R

′

∂t′
= k̃+

Rc
′
R − k̃−

Rc
+
R
′
,

(3.45m)
∂c′P
∂t′

= −k̃+
1 c

′
P + k̃−

1 c
′
P−P + D̃P

∂2c′P
∂x′2 ,

(3.45n)
∂c′P−P

∂t′
= k̃+

1 c
′
P − k̃−

1 c
′
P−P + D̃P−P

∂2c′P−P

∂x′2 ,

(3.45o)
∂c′K
∂t′

= −k̃+
2 c

′
K + k̃−

2 c
′
K−P + D̃K

∂2c′K
∂x′2 ,

(3.45p)
∂c′K−P

∂t′
= k̃+

2 c
′
K − k̃−

2 c
′
K−P + D̃K−P

∂2c′K−P

∂x′2 ,

(3.45q)
∂c′C
∂t′

= −k̃+
3 c

′
C + k̃−

3 c
′
C−P + D̃C

∂2c′C
∂x′2 ,

(3.45r)
∂c′C−P

∂t′
= k̃+

3 c
′
C − k̃−

3 c
′
C−P + D̃C−P

∂2c′C−P

∂x′2 .

The dimensionless initial conditions imposed on the system are easily deduced using
values from Table 3.2 in Sec. 3.6 (below), together with the concentration scales from
Eq. (3.43).
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Recall that for the cell biochemistry, to conserve protein mass in the cell, we assume
no flux boundary conditions for each protein species. In general, from Eq. (3.46), the
dimensionless flux, j′α, of an advective (with dimensionless velocity Ũα) and diffusive (with
dimensionless diffusivity D̃α) protein, with dimensionless concentration c′α, satisfies

j′α = Ũαc
′
α − D̃α

∂c′α
∂x′ = 0, (3.46)

at the boundaries x = −1/2 and x = 1/2. For non-diffusive and non-advective proteins we
immediately satisfy no-flux boundary conditions and solve the reaction equations at the
boundary as we do at the interior. For diffusive proteins that do not experience advection
then Eq. (3.32) becomes

∂c′α
∂x′ = 0, (3.47)

at x = −1/2, x = 1/2. For actin filaments (that are treadmilled), we deduce that at the
boundaries we must satisfy

D̃F
∂c

(i)
F

′

∂x′ = Ũ0Ũ
(i)

′

c
(i)
F

′
, (3.48)

for i = 1, 2, where Ũ0 = U0⟨t⟩/L.

3.5 Constitutive assumptions

In order to close the positive feedback loop connecting FA and SF formation and to connect
the cell biochemistry to the underlying mechanical properties we link various reaction rates
to the concentration of signaling proteins (Sec. 3.5.1), link the rate of adhesion maturation
to adhesion stretch (Sec. 3.5.2) and couple mechanical properties of the cytoskeleton and
adhesions to the cell biochemistry (Sec. 3.5.3).

3.5.1 Signaling proteins effect on reaction rates

In a similar manner to Ch. 2, we suppose that the activation rate of ROCK is dependent
on the local density of nascent and focal adhesions by setting

k+
R = K+

R (nb + δnA) /NI , nb = n
(1)
b + n

(2)
b , nA = n

(1)
A + n

(2)
A , (3.49)

so that the relative strength of signaling due to FAs compared to nascent adhesions is
increased by a factor of δ = O(1).

To incorporate the effects of ROCK activation on MLCP, MLCK and cofilin phospho-
rylation, we set k+

j = K+
j gj

(
c+R/CR

)
, j = 1, 2, 3, where K+

j are dimensional rate constants
and gj are dimensionless functions of activated ROCK concentration.
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To capture the effect that MLCK phosphorylation has on myosin II activation and
that MLCP phosphorylation has on myosin II inactivation we set

k+
a = K+

a g
+
a (cK−P/CK) , g+a (cK−P/CK) = cK−P/CK , (3.50a)

k−
a = K−

a g
−
a (cP/CP ) , g−a (cP/CP ) = cP/CP , (3.50b)

where K+
a , K

−
a are dimensional constants and g+a , g

−
a are dimensionless functions of MLCK-

P and MLCP concentration, respectively.
Finally, to capture the effects increased Rho and ROCK activation has on actin poly-

merisation (Hirata et al., 2008, 2014b) and that cofilin phosphorylation has on actin de-
polymerisation, we set

k+
p = K+

p g
+
p

(
c+R/CR

)
, g+p

(
c+R/CR

)
= c+R/CR, (3.50c)

k−
p = K−

p g
−
p (cC/CC) , g−p (cC/CC) = cC/CC , (3.50d)

where K+
p , K

−
p are dimensional constants and g+p , g

−
p are dimensionless functions of the

concentration of ROCK and unphosphorylated cofilin.

3.5.2 The effect of contractile forces

In response to contractile forces generated by SFs, nascent adhesions mature into FAs.
These contractile forces stretch bound integrins, exposing VBSs on talin leading to vinculin
recruitment (Hirata et al., 2014c) and maturation into FAs (which in turn leads to Rho
and ROCK activation). Hence, the rate of formation of FAs is assumed to depend on the
length (or stretch) of integrin-ligand connections. Approximating this length by λI(x, t) =

u(x, t)− w(x, t) (the relative deformation of the cell to the ECM), we write

k+
F = K+

F g
+
s (λI/L) , g+s (λI/L) = (λI/L)

2 , (3.51)

where K+
F is a dimensionless constant and g+s is a dimensionless function of adhesion length.

We assume a quadratic dependence in a similar manner to the stored elastic energy. This
is in contrast with with our purely empirical formula linking the adhesion maturation rate
to SF concentration in Ch. 2 (see Eq. 2.7); this was necessary as mechanical deformation
was neglected in Ch. 2.

3.5.3 Coupling mechanics and biochemistry

In order to allow the protein concentrations to influence the mechanical properties of the
cytoplasm and adhesions we select a key set of dimensional parameters and multiply each
by a dimensionless function of a particular protein concentration, as discussed in Sec. 3.4.
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We link each of these mechanical properties to the biochemical properties of the cell and
adhesions (in a similar manner to Gracheva and Othmer, 2004, Larripa and Mogilner,
2006).

In particular, we describe the Young’s modulus of actin filaments by

EF = EF
0 f̃F , f̃F

(
c
(1)
F + c

(2)
F

)
=
(
c
(1)
F + c

(2)
F

)
/CA, (3.52)

where EF
0 is a dimensional constant and f̃F is a dimensionless function of actin filament

concentration. Similarly, the Young’s modulus of SFs is described by

ES = ES
0 f̃S, f̃S

(
c+S
)
= c+S /CA, (3.53)

where ES
0 is a dimensional constant and f̃S

(
c+S
)

is a dimensionless function of SF concen-
tration. We also link the (active) contractile stress due to myosin II motor action to the
SF concentration by setting

τ = τ0f̃τ , f̃τ
(
c+S
)
= c+S /CA, (3.54)

where τ0 is a dimensional constant and f̃τ
(
c+S
)

is a dimensionless function of SF con-
centration. The Young’s modulus of the cytosol due to the nucleus, microtubules and
intermediate filaments is assumed to satisfy

EP = EP
0 f̃P , f̃P = γ + (1− γ) cos6 (πx/L), (3.55)

where f̃P is chosen so that it attains a maximum at the cell centre (representing the stiff
nucleus) and decays towards the cell edges. We set γ = 0.1 in all simulations so that the
nuclear region of the cell is approximately ten times stiffer than (the passive contributions)
near the cell edge, where the only contributing components are assumed to be microtubules
and intermediate filaments.

Additionally, we describe the restoring forces and drag induced by nascent adhesions
by

κNA = κNA
0 f̃NA, βNA = βNA

0 f̃NA, f̃NA =
(
n
(1)
b + n

(2)
b

)
/NI , (3.56)

where κNA
0 is a dimensional constant and f̃NA is a dimensionless function of nascent adhe-

sion concentration. Similarly, the restoring forces and drag induced by FAs are assumed
to be given by

κFA = κFA
0 f̃FA, βFA = βFA

0 f̃FA, f̃FA =
(
n
(1)
A + n

(2)
A

)
/NI , (3.57)

where κFA
0 is a dimensional constant and f̃FA is a dimensionless function of FA concen-
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tration.

3.6 Parameter estimation

Our model includes a large family of parameters, we outline their assumed values for the
baseline case below and provide (where possible) justification for the chosen parameter
value. In particular, we specify the assumed mechanical properties of the cell, ECM
and cell-substrate adhesions in Table 3.1. We give further detail on the imposed initial
conditions on the concentration and density of protein species in Table 3.2. In Table 3.3 we
present the reaction rates, diffusivities and treadmilling velocity assumed for scaffolding
proteins and provide similar details on these biochemical properties for signaling proteins
in Table 3.4.

Mechanical
Property

Value Justification/Interpretation

a 50 nm Repeating unit length. Order of magnitude esti-
mate based on integrin-ligand connection (and
cytoskeletal mesh) spacing (Cavalcanti-Adam
et al., 2007, Dalby et al., 2014, Hu et al., 2019).

L 25 µm Typical MSC length. Based on Krueger et al.
(2018) who quote MSC lengths of 15-30 µm.

S 50 µm2 Cell cross-sectional area based on Gracheva and
Othmer (2004) who quote values of 30-50 µm2.
Note that we assume the cell is nearly flat with
W = 25 µm, H = 2 µm.

EF
0 1 ×103 Pa Typical stiffness generated by actin filaments.

Order of magnitude estimate based on Mathieu
and Loboa (2012) who quote the Young’s modu-
lus of hMSCs to be roughly 3.2 kPa, in line with
Darling et al. (2008), Titushkin and Cho (2009).

ES
0 5 ×103 Pa Typical stiffness generated by actin SFs. Order

of magnitude estimate based on Mathieu and
Loboa (2012) who quote the Young’s modulus
of hMSCs to be roughly 3.2 kPa, in line with
Darling et al. (2008), Titushkin and Cho (2009).

Continued on the next page
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Table 3.1 – continued from previous page
Mechanical
Property

Value Justification/Interpretation

EP
0 5 ×103 Pa Typical stiffness generated by nucleus, micro-

tubules and intermediate filaments. Order of
magnitude estimate based on Lammerding
(2011) who suggest the Young’s modulus of the
nucleus varies between 1-10 kPa for different cell
types.

τ0 1 ×103 Pa Contractile stress generated by stress fibres at a
typical concentration. Consistent with Larripa
and Mogilner (2006) who use values of 102 − 103

pN µm−2 and Gracheva and Othmer (2004) who
quote the force in the cell as 500-1000 nN.

κNA
0 10 Pa µm−2 Typical stiffness per unit volume of nascent ad-

hesions. Chosen to be five times weaker than
FAs and to be of comparable stiffness to actin
filaments.

κFA
0 50 Pa µm−2 Typical stiffness per unit volume of focal adhe-

sions. Chosen to be five times stiffer than nascent
adhesions and to be of comparable stiffness to
SFs.

βNA
0 1 Pa s µm−2 Typical drag generated by nascent adhesions.

Chosen to be five times less viscous than FAs and
so that elastic effects dominate adhesive stresses
(see dimensionless groups in Sec. 3.4).

βFA
0 5 Pa s µm−2 Typical drag generated by FAs. Chosen to be five

times more viscous than nascent adhesions and
so that elastic effects dominate adhesive stresses
(see dimensionless groups in Sec. 3.4).

EC
0 1× 106 Pa Typical Young’s modulus of ECM collagen, as-

sumed much stiffer than cell cytoplasm. Esti-
mated based on approximate collagenous bone
Young’s modulus of >100 kPa (Engler et al.,
2006).

µ0 1× 102 Pa s Typical cell viscosity. Estimate in line with
Gracheva and Othmer (2004) who quote a typi-
cal cell viscosity of 2 ×103 dyn s cm−2.

Continued on the next page
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Table 3.1 – continued from previous page
Mechanical
Property

Value Justification/Interpretation

µE
0 1 Pa s Typical ECM viscosity. Assumed less viscous

than cytosol.
σ1 0 Pa Stress at left boundary of cell. Neglected.
σ2 0 Pa Stress at right boundary of cell. Neglected.
βe 1.6× 10−8 Pa s µm−2 Extra (small) drag for computational simplicity.

Assumed small (compared to βNA
0 and βFA

0 ).
v0 1 µm s−1 Maximum motor velocity, identical value is used

by Besser and Schwarz (2007).
Table 3.1: Baseline parameters for mechanical properties
of the cytosol and ECM.

Protein Value Justification/interpretation
cG(x, 0) (100/V ) µM µm−3 All actin is initially sequestered. In line with

Kiuchi et al. (2011) who suggest that most
living cells contain roughly 100 µM of G-actin.

c
(1)
F (x, 0), c

(2)
F (x, 0) 0 µM µm−3 All actin is initially sequestered.

c+S (x, 0) 0 µM µm−3 All actin is initially sequestered.
cm(x, 0) (30/V ) µM µm−3 All myosin II initially inactive. Estimated

based on Besser and Schwarz (2007), who use
a total amount of myosin II of 30 µM (based
on Butler et al., 1994); and on Gracheva and
Othmer (2004) who assume a total amount of
myosin II of 20 µM.

c+m(x, 0) 0 µM µm−3 All myosin II initially inactive.
nf (x, 0) 100 µm−2 Initially no adhesions have formed. The same

value has been used by Bidone et al. (2019)
(based on Oakes et al., 2018) and by Paszek
et al. (2009).

nh(x, 0) 0 µm−2 Initially no adhesions have formed.
n
(1)
b (x, 0), n

(2)
b (x, 0) 0 µm−2 Initially no adhesions have formed.

n
(1)
A (x, 0), n

(2)
A (x, 0) 0 µm−2 Initially no adhesions have formed.

Continued on the next page
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Table 3.2 – continued from previous page
Protein Value Justification/Interpretation
N

(1)
s (x, 0), N

(2)
s (x, 0) 1000 µm−2 Maximum free ligand population for each fam-

ily (their sum is uniform across the cell length
as indicated in Fig. 3.6b in Sec. 3.2). The same
value has been used by Bidone et al. (2019)
and is consistent with Paszek et al. (2009).

cR(x, 0) (1/V ) nM µm−3 Assume all ROCK is initially inactive. Besser
and Schwarz (2007) use values for the total
amount of ROCK of 0-5 nM (based on Feng
et al., 1999).

c+R(x, 0) 0 nM µm−3 Assume all ROCK is initially inactive.
cK(x, 0) (0.1/V ) µM µm−3 All MLCK is initially unphosphorylated.

Besser and Schwarz (2007) use a value for the
total amount of MLCK of 0.1 µM (based on
Nagamoto and Yagi, 1984).

cK−P (x, 0) 0 µM µm−3 Assume MLCK is initially unphosphorylated.
cP (x, 0) (1/V ) µM µm−3 All MLCP is initially unphosphorylated.

Besser and Schwarz (2007) use values for the
total amount of MLCP of 0-1.2 µM (based on
Hartshorne et al., 1998).

cP−P (x, 0) 0 µM µm−3 Assume MLCP is initially unphosphorylated.
cC(x, 0) (1/V ) µM µm−3 Assume cofilin is initially unphosphorylated.
cC−P (x, 0) 0 µM µm−3 Assume cofilin is initially unphosphorylated.

Table 3.2: Baseline initial conditions imposed on protein
concentrations.

Parameter Value Justification/Interpretation
K+

p 2×10−3adhesion−1 s−1 Typical actin polymerisation rate. Order of mag-
nitude estimate based on Larripa and Mogilner
(2006), Svitkina et al. (1997) (and the noted dif-
ference in filament density between the cell cen-
tre and edge).

k−
p 1× 10−2 s−2 Actin filament sequestering rate. Estimate in-

ferred from Larripa and Mogilner (2006) (based
on Svitkina et al., 1997).

Continued on the next page
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Table 3.3 – continued from previous page
Parameter Value Justification/Interpretation
K+

a 1× 10−2 s−1 Typical myosin II activation rate. Estimated
(chosen so that activation occurs on the order
of minutes).

K−
a 1× 10−2 s−1 Typical rate of myosin II inactivation. (chosen so

that inactivation occurs on the order of minutes).
k+
m 1× 102 µM−2 s−1 Rate of cross-linking of actin bundles by myosin

II. Order of magnitude inferred from Larripa and
Mogilner (2006).

k−
m 1× 10−2 s−1 Rate of stress fibre disassembly into constituent

actin monomers and myosin II. Estimate inferred
from Larripa and Mogilner (2006).

k+
h 0.5 s−1 Rate of conversion of free integrins to high-

affinity. The same value is used by Paszek et al.
(2009) (based on Iber and Campbell, 2006, Ta-
dokoro et al., 2003).

k−
h 5 s−1 Rate of conversion of integrins from high-affinity

to low-affinity. The same value is used by Paszek
et al. (2009) (based on Iber and Campbell, 2006,
Tadokoro et al., 2003).

k+
b 1× 10−4 ligand−1 s−1 Rate of integrin-ligand binding (nascent adhe-

sion formation). Estimated based on rapid for-
mation of bound integrins (on the order of tens
of seconds).

k−
b 1× 10−2 s−1 Rate of nascent adhesion disassembly. Estimated

based on expected short lifetime (compared to
FAs) on the order of tens of seconds to minutes.

K+
F 25 s−1 Rate of FA formation. Order of magnitude esti-

mate chosen so that reverse reaction dominates
when adhesions are unstretched but forward re-
action dominates when (approximate) adhesion
length ≳ 100 nm (a maximum length of 130 nm
is assumed by Keshavanarayana et al., 2018).

k−
F 1× 10−3 s−1 Rate of FA disassembly. Estimated based on ex-

pected long lifetime (compared to nascent adhe-
sions) on the order of tens of minutes.

Continued on the next page
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Table 3.3 – continued from previous page
Parameter Value Justification/Interpretation
DG 10 µm2 s−1 Diffusivity of actin monomers. Based on Kiuchi

et al. (2011) who quote a value of 13.7 µm2 s−1.
DF 0.3 µm2 s−1 Diffusivity of actin filaments. Similar to Lar-

ripa and Mogilner (2006) who use a value of
0.1 µm2 s−1.

Dm 1 µm2 s−1 Diffusivity of inactive myosin II. Estimate based
on Uehara et al. (2010) who quote a value for
myosin II diffusivity of 0.8 µm2 s−1.

D+
m 1 µm2 s−1 Diffusivity of active myosin II. Estimate based

on Uehara et al. (2010) who quote a value for
myosin II diffusivity of 0.8 µm2 s−1.

Df 0.1 µm2 s−1 Diffusivity of free integrins. The same value is
used by Bidone et al. (2019) (based on Rossier
et al., 2012).

U0 0.1 µm s−1 Advection (treadmilling) velocity. The same
value is used by Larripa and Mogilner (2006).

Table 3.3: Baseline parameters for scaffolding protein dy-
namics.

Parameter Value Justification/Interpretation
K+

R 1× 10−2 s−1 Typical activation rate of phosphorylation of
ROCK. Estimated (chosen to ensure little ROCK
activation when adhesions have not matured).

k−
R 1× 10−1 s−1 Typical inactivation rate of activated ROCK. Es-

timated (chosen to ensure little ROCK activation
without adhesion maturation).

δ 4 Increase in ROCK activation rate due to adhe-
sion maturation. Based on parameter sweep out-
lined in Sec. 3.8.2 (below).

K+
1 1× 10−2 s−1 Typical rate of phosphorylation of MLCP. Esti-

mated (chosen to ensure little phosphorylation
without adhesion maturation).

Continued on the next page
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Table 3.4 – continued from previous page
Parameter Value Justification/Interpretation
k−
1 1× 10−2 s−1 Rate of dephosphorylation of MLCP-P. Esti-

mated (chosen to ensure little phosphorylation
without adhesion maturation).

K+
2 1× 10−2 s−1 Rate of phosphorylation of MLCK. Estimated

(chosen to ensure little phosphorylation without
adhesion maturation).

k−
2 1× 10−2 s−1 Rate of dephosphorylation of MLCK-P. Esti-

mated (chosen to ensure little phosphorylation
without adhesion maturation).

K+
3 5× 10−2 s−1 Rate of phosphorylation of cofilin. Estimated

based on 10-30% phosphorylation of cofilin for
myeloid cells (Prudent et al., 2018); our steady
state value is roughly 40% phosphorylation.

k−
3 1× 10−2 s−1 Rate of dephosphorylation of phosphorylated

cofilin. Estimated based on 10-30% phosphory-
lation of cofilin for myeloid cells (Prudent et al.,
2018); our steady state value is roughly 40%
phosphorylation.

DP 15 µm2 s−1 Diffusivity of MLCP. Besser and Schwarz (2007)
use a value of 14 µm2 s−1 (based on Lippincott-
Schwartz et al., 2001).

DP−P 15 µm2 s−1 Diffusivity of MLCP-P. Besser and Schwarz
(2007) use a value of 14 µm2 s−1 (based on
Lippincott-Schwartz et al., 2001).

DK 1 µm2 s−1 Diffusivity of MLCK. Order of magnitude esti-
mate based on large molecular weight (Gallagher
et al., 1991) and relationship between diffusivity
and molecular radius (Lippincott-Schwartz et al.,
2001).

DK−P 1 µm2 s−1 Diffusivity of MLCK-P. Order of magnitude esti-
mate based on large molecular weight (Gallagher
et al., 1991) and relationship between diffusivity
and molecular radius (Lippincott-Schwartz et al.,
2001).

Continued on the next page
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Table 3.4 – continued from previous page
Parameter Value Justification/Interpretation
DC 10 µm2 s−1 Diffusivity of cofilin. Order of magnitude

estimate based on small molecular weight
(Muneyuki et al., 1985) and relationship between
diffusivity and molecular radius (Lippincott-
Schwartz et al., 2001).

DC−P 10 µm2 s−1 Diffusivity of phosphorylated cofilin. Order of
magnitude estimate based on small molecular
weight (Muneyuki et al., 1985) and relation-
ship between diffusivity and molecular radius
(Lippincott-Schwartz et al., 2001).

Table 3.4: Baseline parameters for signaling protein dy-
namics.

3.7 Computational method

The resulting large system of governing mechanical and biochemical PDEs is parabolic and
so we solve the system numerically using a finite difference method based on the method of
lines. In particular, we discretise the spatial domain −1/2 ≤ x ≤ 1/2 using a uniform grid
size ∆x (the other ECM spatial domains away from the cell are solved semi-analytically,
as in Sec. 3.1.7). We discretise all spatial derivatives using a second-order finite difference
stencil and solve the resulting large family of ODEs numerically using the Matlab solver
ode15s. We employ the fictitious nodes procedure to apply the boundary conditions but
note that for the ECM we need to incorporate our far field treatment (Sec. 3.1.7). In most
cases we discretise the (dimensionless) domain with ∆x = 0.01 (i.e. N = 100) and use
Matlab’s default error bounds for the time-stepping. In this case, mass is conserved in
the system within 1% error over long simulations. We have also validated that using finer
mesh resolutions and more stringent error tolerances makes no qualitative (and negligible
quantitative) differences to the predictions, as discussed in Sec. 3.8.1 (below).

3.8 Results

In order to investigate the temporal and spatial dynamics of a cell binding to a stiff (i.e.
significantly greater Young’s modulus than the cell cytoplasm) collagen ECM, Figs. 3.7-
3.11 illustrate a baseline output from our model using the parameters listed in Sec. 3.6.
We solve the dimensionless governing equations, with dimensionless parameters (based
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on our parameter estimation in Sec. 3.6) detailed in Table 3.5, and present dimensionless
output from our model for all independent and dependent variables with the exception of
time, which we convert back to dimensional units for ease of interpretation. We firstly
summarise the global response (Fig. 3.7), followed by the local behaviour of individual
components of the system, including the mechanical deformation of the cell cytoplasm
and the ECM (Fig. 3.8), the integrins and adhesions (Fig. 3.9), the signaling proteins
(Fig. 3.10) and actin and myosin (Fig. 3.11). We have already been able to access the
global biochemical response of the cell through our spatially-averaged model developed in
Ch. 2 (see Fig. 2.1). However, the ability to predict changes in the mechanical properties
of the cell, ECM and adhesions, and to predict localisation of proteins within the cell is
novel in this Chapter. Note that in Figs. 3.9-3.11 we consider the temporal dynamics of
proteins at five spatial locations in the left half of the cell (noting the assumed symmetry in
the cell in this base case), in particular at the cell boundary (black line), cell centre (green
line) and three equidistant locations between these points (the red, yellow and purple lines
respectively as we move from the boundary towards the cell centre); these are marked as
open squares on spatial plots in Figs. 3.7-3.11. Similarly, we plot the spatial dynamics of
proteins (and mechanical properties) at certain snapshots in time, in particular at t = 250

s (grey), t = 500 s (dark blue), t = 1000 s (orange), t = 1500 s (yellow), t = 2000 s
(purple), t = 2500 s (green), t = 5000 s (maroon) and t = 10000 s (black) after the cell
has been introduced to the substrate; these times are marked as open circles on temporal
plots in Figs. 3.7-3.11.

Dimensionless pa-
rameter

Value Dimensionless pa-
rameter

Value

K̃+
p 2 K̃−

p 0.1
K̃+

a 0.1 K̃−
a 0.1

k̃+
m 1.92 k̃−

m 0.1
ǩ+
m 6.4 ǩ−

m 0.3̄

k̃+
h 5 k̃−

h 50
k̃+
b 1 k̃−

b 0.1
ǩ+
b 0.1 ǩ−

b 0.01
K̃+

F 250 k̃−
F 0.01

K̃+
R 0.1 K̃+

R 1
K̃+

1 0.1 K̃−
1 0.1

K̃+
2 0.1 K̃−

2 0.1
K̃+

3 0.5 K̃−
3 0.1

D̃G 0.16 D̃F 0.0048
D̃m 0.016 D̃+

m 0.016
Continued on the next page
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Table 3.5 – continued from previous page
Dimensionless pa-
rameter

Value Dimensionless pa-
rameter

Value

D̃f 0.0016 Ũ0 0.04
D̃P 0.24 D̃P−P 0.24
D̃K 0.016 D̃K−P 0.016
D̃C 0.16 D̃C−P 0.16
µ̃0 0.01 τ̃0 1
ẼS

0 5 ẼP
0 5

κ̃NA
0 6.25 κ̃FA

0 31.25
β̃NA
0 0.0625 β̃FA

0 0.3125
β̃e 1× 10−8 µ̃E

0 1× 10−4

ẼC
0 1000 ẼO

0 0
ṽ0 0.4

Table 3.5: Dimensionless parameters employed in base-
line simulations of the one-dimensional model.

In order to elucidate the overall temporal dynamics of cell-substrate binding, Fig. 3.7
illustrates a number of global (i.e. spatially-independent) measures of the system which
summarise the adhesion strength over time, including the total cell length (Fig. 3.7a), the
partition of integrins across their different forms (Fig. 3.7b), the relative concentrations of
activated/phosphorylated proteins compared to the total (Fig. 3.7c) and the partition of
the total concentration of actin into its different forms (Fig. 3.7d). In the early stages after
the cell is introduced to the substrate, the cell length remains almost fixed (Fig. 3.7a),
while there is a rapid (almost instantaneous) conversion of free integrins into high-affinity
integrins (Fig. 3.7b). These high-affinity integrins are then able to bind to ECM ligands to
form bound integrins (nascent adhesions) in line with Eq. (3.29i), as shown in Fig. 3.7(b);
this is also captured by our spatially-averaged model (see Fig. 2.1a). As nascent adhesions
form, ROCK becomes weakly activated which leads to phosphorylation of MLCP, MLCK
and cofilin (Fig. 3.7c), as is also observed in Fig. 2.1(c). Consequently, actin is polymerised
and a small amount of myosin II is activated, leading to an increase in actin filament
concentration and a small increase in VSF concentration (Fig. 3.7d, see also Fig. 2.1c). In
response to the formation of VSFs, the cell begins to contract (Fig. 3.7a), in turn pulling
on bound integrins, stretching them and exposing VBSs. As bound integrins become
stretched, they mature into FAs, which leads to a significant increase in ROCK activation
and consequently MLCP, MLCK and cofilin phosphorylation. This instigates our positive
feedback loop, with the activation of signaling proteins leading to an increase (decrease) in
actin polymerisation (depolymerisation) and in myosin II activation (inactivation), leading
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to significant increases in actin filament and VSF formation and so the cell continues to
contract (Fig. 3.7a). After approximately 2500 s, the cell settles to an apparent steady
state (Fig. 3.7). However, within the cell the redistribution of myosin II bound actin
filaments and localisation of FAs continues on a longer time scale (several hours) before
the cell finally reaches a full steady state as seen in Figs. 3.8-3.11 (below). It should be
noted that this final steady state is a consequence of our modelling approach, whereas the
cell would continue to grow, interact with neighbouring cells and remodel its environment.
In summary, Fig. 3.7 illustrates the global changes in the cell when adhering to a substrate,
particularly capturing the changes in length (contraction) commensurate with the coupled
formation and maturation of FAs and VSFs. Moreover, note the similarities of Figs. 3.7(b)-
(d) with Figs. 2.1(a)-(c) in Ch. 2, illustrating the success of the spatially-averaged model
in describing global measures of the system during the development and maturation of
cell-substrate adhesions and cell cytoskeleton.

We now proceed to examine in detail how this global process manifests locally within
the cell. In order to elucidate the mechanical changes during cell-substrate binding,
Fig. 3.8 illustrates spatial profiles of the cell cytoplasm and ECM (at the eight time-
points highlighted above), including the coupled displacement (and strain) of material
points (Fig. 3.8a-b) and the corresponding Cauchy stress (Fig. 3.8c-d). Initially there is
no deformation or stress inside the cell but, over time, in response to the formation and
maturation of cell-substrate adhesions and associated formation of VSFs, the cell contracts
(i.e. exhibits inward displacement, Figs. 3.7a, 3.8a). In particular, after around 250-500
s, the feedback loop connecting FA and VSF formation becomes evident, where there is a
significant increase in displacement within the cell due to the contractile action of myosin
II motors. This displacement is particularly pronounced near the cell boundary, where
there is concentrated myosin II cross-linking of actin filaments (as in Fig. 3.11 below).
We observe a non-uniform striation pattern (see spatial variations in cell contraction in
the inset in Fig. 3.8a) where the cell is particularly contracted near the edges but with
little deformation near the centre. This spatial inhomogeneity blunts overall cell contrac-
tion and maintains almost isometric tension (Fig. 3.7a). Moreover, there is a significant
increase in stress in response to FA and VSF formation (Fig. 3.8c), which is nearly uni-
form across the cell interior but rapidly decays to zero at the boundary (in line with the
boundary conditions imposed in Eq. 3.31b). The adhesive coupling between the cell and
the ECM consequently leads to ECM displacement and strain (Fig. 3.8b), coupled to an
ECM stress (Fig. 3.8d). However, the ECM is significantly stiffer than the cell and so
exhibits much smaller relative displacements and strain compared to the cell (whilst ex-
hibiting similar levels of stress), with a qualitatively similar distribution of each. Given
that we measure adhesion length using the relative deformation of the cell to the ECM,
in this case (where the much stiffer ECM resists deformation) the adhesions between the
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Figure 3.7: Global measures of cytoskeleton and adhesion development. (a) Evolution of
dimensionless cell length with time. Time-dependent evolution of percentage of total: (b)
integrins in their various forms (free low-affinity integrins, high-affinity integrins, bound
integrins and recruited into FAs), (c) ROCK activated and MLCP, MLCK and cofilin
phosphorylated, (d) actin in its different forms (monomeric, polymerised into filaments
or recruited into SFs). Insets show large time dynamics for each property, open circles
indicate times of interest, corresponding to identically coloured lines in spatial distributions
in Figs. 3.8-3.11. Parameter values are given in Table 3.5.
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cell and ECM become highly stretched, following a similar pattern of deformation to the
cell. Consequently, FAs form predominantly near the cell boundaries (as shown in Fig. 3.9
below), leading to an increase in ROCK signaling in this region (as shown in Fig. 3.10
below). In summary, Fig. 3.8 illustrates the mechanical changes (displacement, stress and
strain) that occur in both the cell and ECM when a cell adheres to a substrate. The di-
verse range in behaviour observed over the cell length is indicative of the need to consider
local behaviour (in addition to global), which we now explore.
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Figure 3.8: Mechanical properties of the cell and ECM. At snapshots in time, as a function
of initial dimensionless position, dimensionless (a) displacement of points in cell from
their initial position, (b) displacement of points in ECM from their initial position, (c)
stress in cytosol, (d) stress in ECM. Insets in (a), (b) show strain, percentage stretch
(positive)/compression (negative), of the cell and ECM respectively. Coloured squares
correspond to positions of identically coloured lines in temporal plots in Figs. 3.9-3.11.
Away from the cell, ECM stress and displacement decay linearly to zero towards the far
field. Parameter values are given in Table 3.5.

In Figs. 3.9-3.11 we summarise the dynamics of the key cytoskeletal, adhesion and
signaling proteins in the baseline case shown in Figs. 3.7-3.8. We account for the spatial
and temporal changes in integrin and adhesion distribution in Fig. 3.9. Initially there are



CHAPTER 3. ONE-DIMENSIONAL MODELLING 93

no adhesions between the cell and substrate, with all integrins uniformly dispersed and in
a free state with low-affinity to the ECM (Fig. 3.9a-b). These integrins rapidly bind to
talin to form high-affinity integrins (Fig. 3.9c-d), which are able to bind to ligands in the
underlying ECM to form bound integrins (Fig. 3.9e-f). The early formation of high-affinity
and bound integrins occurs almost uniformly, owing to the high diffusivity of free integrins
and the assumed uniformity in initial free integrin and ligand density. The bound integrins
will eventually (in response to signaling) go on to mature into FAs (Fig. 3.9g-h).

The formation of nascent adhesions initiates weak signaling inside the cell, the dynam-
ics of this process are summarised in Fig. 3.10. In particular, ROCK becomes weakly acti-
vated (Fig. 3.10a-b). This occurs nearly uniformly, reflecting the early uniform distribution
of nascent adhesions (and lack of FAs). In response to ROCK activation, phosphorylation
of MLCP (Fig. 3.10c-d), MLCK (Fig. 3.10e-f) and cofilin (Fig. 3.10g-h) occurs. These are
also uniform at early times, resultant from a combination of uniform ROCK activation
and because they are all assumed to be diffusive. The weak activation of ROCK leads to
an increase in actin polymerisation across the cell at nascent adhesions. Moreover, the
phosphorylation of MLCP (MLCK) leads to a decrease (increase) in myosin II inactivation
(activation) and cofilin phosphorylation leads to a reduction in actin depolymerisation.

In response to signaling, actin is polymerised and myosin II is activated, leading to
the formation of actin filaments and VSFs. The dynamics of these are summarised in
Fig. 3.11. In particular we consider the temporal (spatial) dynamics of actin monomers
in Fig. 3.11(a) (Fig. 3.11b), of actin filaments in Fig. 3.11(c) (Fig. 3.11d), of VSFs in
Fig. 3.11(e) (Fig. 3.11f) and of myosin II in Fig. 3.11(g) (Fig. 3.11h). At early times
there is, consistent with the near uniform weak signaling, a nearly uniform decrease in
actin monomer concentration (Fig. 3.11a-b) as actin is polymerised, leading to an in-
crease in actin filament concentration (Fig. 3.11c-d). The small amount of activated
myosin II (Fig. 3.11g-h) then begins to cross-link actin filaments and form contractile
VSFs (Fig. 3.11e-f). As a consequence of contraction of resultant VSFs, bound integrins
are pulled (stretched), enhancing FA formation and, in turn, signaling and VSF formation.
Consequently, Figs. 3.9-3.11 are intimately linked and feed back to one another.

In response to VSF formation, particularly the contractile action of myosin motors, the
cell begins to contract approximately 250-500 s after being introduced to the substrate
(Figs. 3.7a, 3.8a) and the positive feedback loop becomes activated. This contraction is
most keenly felt near the cell edge, leading to maturation of bound integrins into FAs here
(Fig. 3.9g-h) as VBSs become exposed as bound integrins become stretched (Fig. 3.8a-
b). Consequently, there is also a transient increase in the cell in the number of bound
integrins (Fig. 3.9e-f). Reflecting the inhomogeneity in FA formation (Fig. 3.9g-h), spatial
variations emerge in free integrin (Fig. 3.9a-b) and high-affinity integrin density (Fig. 3.9c-
d), though these differences remain relatively small owing to the high-diffusivity of free
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integrins. As ROCK activation is significantly enhanced in response to FA formation
(compared to nascent adhesions) and because ROCK (in both inactive and active forms)
is assumed to be non-diffusive, significant spatial disparities arise in activated ROCK con-
centration (Fig. 3.10a-b), mirroring the spatial distribution in FA density. Consequently,
phosphorylation of MLCP (Fig. 3.10c-d), MLCK (Fig. 3.10e-f) and cofilin (Fig. 3.10g-h) is
significantly enhanced, though these proteins are diffusive and so are comparatively spa-
tially homogeneous (as would be expected based on dimensionless parameters presented in
Table 3.5). These phosphorylated signaling proteins consequently lead to a significant in-
crease in actin polymerisation (Fig. 3.11c-d) in the locality of FAs and, in turn, a significant
decrease in actin monomer concentration (Fig. 3.11a-b). Owing to the high diffusivity of
actin monomers, the reduction in monomer concentration occurs approximately uniformly.
The resultant filaments are treadmilled towards the cell centre and are cross-linked, in the
vicinity of FAs, by activated myosin II (Fig. 3.11g-h), leading to a significant increase in
VSF concentration near FAs (Fig. 3.11e-f). These VSFs exert further contractile forces
on bound integrins, leading to more FA formation (Fig. 3.9g-h), strengthened signaling
(Fig. 3.10) and, consequently, more VSF formation (Fig. 3.11e-f). This process of rapid
increases in FA and VSF formation occurs over the course of around 500-2000 s after the
cell is introduced to the substrate. Thereafter, redistribution of adhesions (Fig. 3.9e-h),
signaling hubs (Fig. 3.10) and VSFs (Fig. 3.11e-f) dominates dynamics until a steady state
is reached (after around 10000 s).

In summary Figs. 3.9-3.11, when taken together, demonstrate the effect of the positive
feedback loop in the cell. They show how adhesion formation precipitates signaling inside
the cell which, in turn, leads to the formation of actin filaments and VSFs, and are able to
capture how increased SF formation leads (through cell contraction, as shown in Figs. 3.7-
3.8) to increased and localised FA formation. This one-dimensional modelling approach
is significantly more sophisticated than the spatially-averaged approach taken in Ch. 2,
with an ability now to predict changes in the mechanical properties of the cell, ECM and
cell-substrate adhesions and to predict localisation of adhesions, actin filaments, VSFs and
stress inside the cell. Nonetheless, the similarity in the prediction of global biochemical
dynamics (see Figs. 2.1, 3.7) demonstrates the ability of the spatially-averaged model to
capture key aspects of cell-substrate adhesion and cytoskeleton development in a simple
manner.
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3.8.1 Model validation

In this Section we demonstrate the mesh independent convergence of our computational
model discussed in Sec. 3.7. In particular, to ensure that it sufficiently accurately identifies
solutions to our large system of governing mechanical and biochemical PDEs, in Figs. 3.12-
3.14 we quantify the effect of increasing grid resolution and introducing more stringent
error tolerances.

Throughout this Section we evaluate the model in terms of three quantities. Firstly, we
test the conservation of mass in the cell, particularly ensuring that actin in its various forms
(monomeric, filamentous or recruited into SFs) and integrins in their various forms (free,
high-affinity, bound or recruited into FAs) are appropriately conserved. In particular,
Eq. (3.35) should be satisfied to ensure no mass leaves the system, which we test by
integrating the concentration of actin and density of integrins over the cell length. We
consider mass to be suitably conserved if less than 1% is lost over the (long) simulation
time; of-course this choice is arbitrary, and is chosen because a mass loss (or gain) of 1%
leads to little change in the qualitative behaviour of the system, but more stringent error
tolerances could be employed if required. We also test the discrepancy in the momentum
balance equation for the cell, calculating the difference between the left-hand side and
right-hand side of Eq. (3.37a) according to our numerical model. Moreover, we test the
predicted stress at the left boundary of the cell, which should be zero in our baseline case
(according to Eq. 3.39).

Increasing grid resolution

In Fig. 3.12 we investigate the effect of increasing grid resolution, with 20 ≤ N ≤ 200, on
predictions from the computational model by considering mass loss of actin and integrins
from the cell due to advection and diffusion at the cell boundaries (Fig. 3.12a) and by
checking the consistency of our mechanical governing equations (Fig. 3.12b). In particu-
lar, to quantify the accuracy of the model, in Fig. 3.12(a) we plot the percentage of actin
(left y-axis) and percentage of integrins (left y-axis) lost or gained from the cell 10000 s
after the cell has been introduced to the substrate. In Fig. 3.12(b) we plot the discrepancy
in the momentum balance equation for the cell (left y-axis) and the predicted stress at the
left boundary of the cell (right y-axis) 10000 s after the cell has been introduced to the
substrate. We additionally illustrate the computational time taken to run a single simu-
lation, using the baseline parameter values outlined in Sec. 3.6, for each N, as indicated
on the right y-axis of Fig. 3.12(a). Broadly we observe that an increase in grid resolution
leads to a reduction in mass loss from the system (Fig. 3.12a) and better describes the
mechanical equations (Fig. 3.12b). However, computational time also increases rapidly
with N (Fig. 3.12a) meaning a balance must be struck, choosing N so that the compu-
tational model sufficiently emulates the developed mathematical model but can be solved
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in reasonable time scales. Hence, we typically set N = 100 in simulations, but increase
this grid resolution if this leads to unacceptably high mass loss (i.e. >1% loss over the
simulation time).
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Figure 3.12: Effect of increasing grid resolution on numerical results. As a function of
N, at t = 10000 s: (a, left y−axis) fraction (percentage), FT , of total integrins (orange)
and actin (purple) lost or gained from the system; (a, right y−axis) computational time
(red) taken to run a single simulation at that grid resolution in Matlab; (b, left y−axis)
maximum discrepancy in calculation of ∇ · σ; (b, right y−axis) boundary stresses (note
this should be zero from our boundary conditions).

Changes in error tolerance

In Fig. 3.13 (Fig. 3.14) we investigate the effect on model predictions of changing Matlab’s
relative (absolute) error tolerance by again considering mass loss from the cell due to
advection and diffusion at the cell boundaries in Fig. 3.13(a) (Fig. 3.14a), and checking
the consistency of our mechanical governing equations in Fig. 3.13(b) (Fig. 3.14b). To
quantify the accuracy of the model, we plot in Fig. 3.13(a) (Fig. 3.14a) the percentage
of actin (left y-axis) and percentage of integrins (left y-axis) lost or gained by the cell
10000 s after the cell has been introduced to the substrate. In Fig. 3.13(b) (Fig. 3.14b)
we plot the error in the momentum balance equation for the cell (left y-axis) and the
predicted stress at the left boundary of the cell (right y-axis). We additionally illustrate
the computational time taken to run a single simulation, using the baseline parameter
values outlined in Sec. 3.6, for each tolerance; this is indicated on the right y-axis of
Fig. 3.13(a) (Fig. 3.14a). We broadly observe that more stringent relative (Fig. 3.13)
or absolute (Fig. 3.14) error tolerances have little effect on model predictions, and also
have little effect on computational time (see Fig. 3.13a and Fig. 3.14a). Consequently, we
choose to adopt Matlab’s standard error tolerances, i.e. we set the relative tolerance to
RelTol=1× 10−3 and absolute tolerance to AbsTol=1× 10−6.
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Figure 3.13: Effect of changing relative error tolerance, RelTol, in ODE solver in Matlab.
As a function of RelTol at t = 10000 s: (a, left y−axis) fraction (percentage), FT , of total
integrins (orange) and actin (purple) lost or gained from the system; (a, right y−axis)
computational time (red) taken to run a single simulation at that grid resolution in Matlab;
(b, left y−axis) maximum discrepancy in calculation of ∇ · σ; (b, right y−axis) boundary
stresses (note this should be zero from our boundary conditions).
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Figure 3.14: Effect of changing absolute error tolerance, AbsTol, in ODE solver in Matlab.
As a function of RelTol at t = 10000 s: (a, left y−axis) fraction (percentage), FT , of total
integrins (orange) and actin (purple) lost or gained from the system; (a, right y−axis)
computational time (red) taken to run a single simulation at that grid resolution in Matlab;
(b, left y−axis) maximum discrepancy in calculation of ∇ · σ; (b, right y−axis) boundary
stresses (note this should be zero from our boundary conditions).
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3.8.2 Changes in feedback strength

In forming the model, in Eq. (3.49) we introduced the empirical parameter δ, which mea-
sures the relative increase in the rate of ROCK activation when adhesions mature into FAs
compared to when they are immature (i.e. bound integrins). This parameter effectively
governs the strength of the positive feedback loop, ensuring that maturation of adhesions
into FAs (in response to contraction of VSFs) leads to increased phosphorylation of MLCP,
MLCK and cofilin and, consequently, increased VSF formation.

Since the parameter is empirical, we investigate its effect by considering the range
0 ≤ δ ≤ 10 whilst fixing all other parameters to their baseline values (as outlined in
Sec. 3.6). To quantify changes in the cell with increasing δ, we consider the global measure
of the partition of integrins (Fig. 3.15a) and the partition of actin (Fig. 3.15b) 10000 s after
the cell has been introduced to the substrate. As would be expected, an increase in δ leads
to an increase in both FA density (Fig. 3.15a) and VSF (and actin filament) concentration
(Fig. 3.15b). However, this effect becomes significantly less pronounced when δ ≳ 2,

particularly for FA formation. By considering the maximum and average activated ROCK
concentration (inset in Fig. 3.15a), we demonstrate that there is increased FA localisation
within the cell with increasing δ (note that local activated ROCK concentration is directly
linked to local FA density). This is reflective of an increase in the maximum and average
relative deformation of the cell compared to the ECM (as seen in the inset in Fig. 3.15b),
leading to adhesion stretch and maturation (per Eq. 3.51).

In all other results presented in this Chapter we use δ = 4, which is sufficient to capture
the positive feedback loop. Note also that the influence of δ saturates beyond this value
(Fig. 3.15).

3.9 Summary

In this Chapter we have presented a one-dimensional bio-chemo-mechanical continuum
model to describe the coupled development of cell-substrate adhesions and cell cytoskele-
ton. In particular, treating the cell and ECM as Kelvin-Voigt viscoelastic materials,
coupled to each other through viscoelastic adhesions, we have formulated a discrete me-
chanical model to describe the deformation of each of these structures during cell-substrate
interaction. By employing discrete-to-continuum upscaling we have been able to rationally
connect nanoscale features of adhesions and the cytoskeleton to the microscale and have
formulated a continuum system of momentum balance equations to describe the coupled
deformation of the cell and ECM. We have formulated a large system of reaction-diffusion-
advection equations to describe the evolution of important cytoskeletal, adhesion and sig-
naling proteins and have linked the concentration and density of these proteins to the
mechanical properties of the cell, ECM and adhesions. By imposing various constitutive
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Figure 3.15: Effect of changing feedback strength on FA and VSF formation. As a function
of δ, at t = 10000 s: (a) fraction, Fi, of integrins that are free, high-affinity, bound or re-
cruited into FAs; (b) fraction, Fa, of monomeric and filamentous actin and actin recruited
into VSFs. Insets show (a) maximum (light grey) and average (black) dimensionless con-
centration of c+R in the cell and (b) maximum (light grey) and average (black) relative
dimensionless displacement of the cell to ECM.

assumptions, we have been able to link the formation of FAs and VSFs, capturing in a
simple way the positive feedback loop that connects the development of both of these
structures. Application of this model has demonstrated its ability to predict the global
dynamics of cell-substrate interaction and we have demonstrated striking similarity with
predictions from the significantly simpler spatially-averaged model developed in Ch. 2.
However, this one-dimensional framework reduces the need for empiricism, incorporates
the mechanics of the cell, ECM and adhesions and is able to predict localisation of pro-
teins, deformation and stress. We conclude that this model successfully incorporates the
key components needed to describe cell-substrate adhesion and cytoskeleton development.
We now proceed in Ch. 4 to consider sweeps of the parameter space, elucidating the
mechanism of several experimentally observed phenomena.



Chapter 4

Influence of microenvironment cues

In Ch. 1 we discussed how cells respond to cues from their microenvironment through
changes in cell-substrate adhesion, cytoskeleton development and activation (or inhibi-
tion) of intracellular signaling cascades. Building on this, in Ch. 3 we developed a one-
dimensional bio-chemo-mechanical continuum model to describe the coupled formation
and maturation of cell-substrate adhesions and SFs, together with the deformation of the
cell and ECM. Particularly, using baseline model parameters discussed in Sec. 3.6, we
applied the model to illustrate the local and global dynamics of a cell binding to a stiff
ECM (see Sec. 3.8).

In this Chapter we use the model developed in Ch. 3 to investigate the influence of
various environmental and biochemical cues, elucidating the mechanism by which they
cause changes in cell-substrate adhesion. Particularly, in Sec. 4.1 we investigate the effect
of ECM ligand density on the formation of FAs and SFs. In Sec. 4.2 we explore how ligand
micropatterning influences localisation of FAs, SFs and intracellular stress. In Sec. 4.3
we elucidate the mechanism by which increased substrate stiffness precipitates increased
adhesion and SF formation. We continue in Sec. 4.4 by quantifying the sensitivity of
the cell to its microenvironment by examining the mechanosensing distance of the cell
(i.e. the maximal distance from the cell at which mechanical perturbations applied to the
ECM can induce a biochemical response in a well-adhered cell). In Sec. 4.5, mimicking,
for example, magnetic tweezer or atomic force microscopy experiments, we investigate the
effect of externally probing the cell, predicting how the magnitude and the position of
the applied force can influence adhesion and cytoskeleton dynamics. Finally, in Sec. 4.6
we explore the effect of various inhibitors on reaction kinetics, particularly how inhibition
of ROCK (Sec. 4.6.1) and myosin II (Sec. 4.6.2) can lead to FA and SF disassembly in
a well-adhered cell. Having identified that the model developed in Ch. 3 is capable of
predicting the impact of various mechanotransductive and chemotransductive cues on the
development of cell-substrate adhesion and cell cytoskeleton, in Sec. 4.7 we outline a range
of future research questions that this model can now be employed to address.
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4.1 The influence of ECM ligand density

In order to elucidate the effect of ECM ligand density (governed by the parameter NS
0 )

on FA and VSF development in Fig. 4.1 we vary ÑS
0 , the relative density of ligands

(assumed to be constant over the ECM) to the average integrin density (assumed to be
NI = N I

0 = 100 µm−2 in the base case), whilst holding all other parameter values equal
to their baseline values (as outlined in Sec. 3.6). We illustrate the effect of varying ÑS

0 by
plotting the partition of integrins (Fig. 4.1a) and the partition of actin (Fig. 4.1b) 10000 s
after the cell has been introduced to the substrate (the model may allow for FAs to form
at even later times, but other effects likely become dominant at these long times, reducing
model applicability).

We broadly observe that increases in ligand density lead to increases in FA and VSF
formation. This effect is particularly pronounced when ligand density is comparable to
integrin density (i.e. when ligand density is between one and ten times greater than
integrin density). We predict saturation of the integrin density as the ligand density
becomes sufficiently high (with a density of approximately 1000-10000 µm−2) and little
further increase in VSF and FA formation. Increasing ligand density further (with density
around 10000-100000 µm−2, likely outwith the scope of most experiments) leads to a
small decrease in FA formation. We hypothesise that this is because the cell struggles to
contract when ligand density becomes sufficiently high due to the increasing uniformity
(and strength) of cell-substrate adhesions. This leads to a reduction in bound integrin
stretch (see inset in Fig. 4.1b) and, in turn, a reduction in the maximum concentration of
activated ROCK (see inset in Fig. 4.1a) due to reduced FA formation.

These observations are compatible with experimental results. For example, it has
been shown by Cavalcanti-Adam et al. (2007) (studying rat fibroblasts) that increasing
ligand density leads to more pronounced FA formation, but has little effect on nascent
adhesion formation. Moreover, Arnold et al. (2004) demonstrated that FAs struggle to
form when ligand spacing is above approximately 73 nm, which corresponds to a minimum
ligand density of approximately 200 µm−2; comparable with our model predictions showing
sudden onset of FA formation when ligand densities reach around 350 µm−2 (below this
level there is insufficient clustering of integrins to form mature adhesions). Note that this
sudden onset behaviour was predicted by the spatially-averaged model developed in Ch. 2
(see Fig. 2.8); however, this simplified modelling approach was unable to access reductions
in adhesion maturation at very high ligand densities.

4.2 The influence of ECM ligand patterning

In order to assess how micropatterning of ECM ligands can be employed to influence
localisation of cell-substrate adhesion, cytoskeleton development and intracellular stress,
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Figure 4.1: Effect of ligand patterning on FA and VSF formation. As a function of N0
S/N

0
I

(the ratio of ligand density to integrin density), at t = 10000 s: (a) fraction, Fi, of integrins
that are free, high-affinity, bound or recruited into FAs; (b) fraction, Fa, of monomeric and
filamentous actin and actin recruited into VSFs. Insets show (a) maximum (light grey)
and average (black) dimensionless concentration of c+R in the cell and (b) maximum (light
grey) and average (black) relative dimensionless displacement of the cell to ECM.

we illustrate examples of the model using a prescribed ligand pattern (Fig. 4.2a) and a
random ligand pattern (Fig. 4.2b). Note that we obtain an approximation of a random
ligand pattern by repeatedly smoothing a random distribution of ECM ligands at each
grid point, to ensure the initial conditions are continuous, multiplied by a weighting factor
(of the form seen in Fig. 3.6) across the domain to ensure family 1 (2) ligands are found
predominantly below the left (right) half of the cell. We subsequently multiply by an
appropriate scale factor to ensure the same average density of ligands over the domain
as in baseline simulations. Assuming all other parameters are given by their baseline
values outlined in Sec. 3.6, we demonstrate this effect by plotting the spatial dynamics of
proteins, alongside the mechanical properties of the cell, at certain snapshots in time. In
particular, we present snapshots at t = 250 s (grey), t = 500 s (dark blue), t = 1000 s
(orange), t = 1500 s (yellow), t = 2000 s (purple), t = 2500 s (green), t = 5000 s (maroon)
and t = 10000 s (black) after the cell has been introduced to the substrate. We indicate
in Fig. 4.3(a) (Fig. 4.4a) the density of bound integrins at these snapshots in time for
the prescribed (random) ligand pattern. These nascent adhesions can mature into FAs,
the profiles of which are indicated in Fig. 4.3(b) (Fig. 4.4b). As in Sec. 3.8 of Ch. 3, the
formation and maturation of adhesions precipitates increased Rho signaling inside the cell,
leading to increased actin filament and VSF formation, which is documented in Fig. 4.3(c)
(Fig. 4.4c). The formation of FAs and, in turn, contractile SFs leads to deformation of
the cell as indicated in Fig. 4.3(d) (Fig. 4.4d), with the intracellular stress indicated in an
inset in Fig. 4.3(d) (Fig. 4.4d). We present the ECM ligand patterning (as an initial ECM
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ligand density) in Fig. 4.3(c) (Fig. 4.4c).
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Figure 4.2: Panel (a) shows imposed initial ligand patterning and corresponds to cell-
substrate dynamics in Fig. 4.3; panel (b) shows random initial ligand patterning and
corresponds to cell-substrate dynamics in Fig. 4.4. ECM density profile for family 1 (2)
ligands are indicated in pink (blue).

In a similar manner to our baseline case outlined in Sec. 3.8 in Ch. 3, there are initially
no adhesions between the cell and substrate. At this time, integrins are dispersed uniformly
over the cell membrane and are in their free, low-affinity state, whilst all ECM ligands are
unbound and distributed as indicated in Fig. 4.3(c) (Fig. 4.4c). The integrins rapidly bind
to talin and form high-affinity integrins (not shown) which in turn bind to ECM ligands
to form bound integrins. The pattern of bound integrin formation reflects the pattern of
ECM ligands and can be highly variable across the cell length, as observed in Fig. 4.3(a)
(Fig. 4.4a); note the contrast with the approximately uniform formation of bound integrins
at early times when the cell is cultured on a substrate with uniform ligand density (as
presented in Sec. 3.8). The formation of bound integrins leads to weak signaling inside
the cell, facilitating polymerisation of actin and activation of myosin II. Consequently,
in Fig. 4.3(c) (Fig. 4.4c) we observe a small increase in VSF concentration. In turn,
the cell contracts, as observed in Fig. 4.3(d) (Fig. 4.4d). This initial development of SFs
(and hence contraction of the cell) is (weakly) spatially non-uniform, owing to the variable
bound integrin density (Figs. 4.3a, 4.4a). Contraction of the cell stretches bound integrins,
exposing VBSs, and causing maturation of adhesions into FAs (Figs. 4.3b, 4.4b). As in the
baseline case illustrated in Sec. 3.8 of Ch. 3, generally FAs preferentially form in the vicinity
of the cell boundary, where contraction of the cell is greatest (Figs. 4.3d, 4.4d). However,
owing to variations in ligand and bound integrin density, and in SF formation, pockets of
FAs can also form away from the cell edge (Figs. 4.3b, 4.4b), in regions where the ligand
patterning is particularly dense. Over time, there is a competitive aspect to continued
FA maturation, with smaller adhesions (regions with lower FA density) dissociating, with
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Figure 4.3: Effect of imposed ligand micropatterning (pattern shown in Fig. 4.2a). At
snapshots in time, as a function of initial dimensionless position, dimensionless (a) density
of bound integrins, (b) density of FAs, (c) concentration of SFs (left axis), (d) displacement
of points in cell from their initial position. Solid lines in (a), (b) correspond to family
1 adhesions whilst dashed lines correspond to family 2 adhesions. Insets in (d) shows
dimensionless stress as a function of dimensionless initial position.

integrins subsequently absorbed into larger adhesions (Figs. 4.3b, 4.4b). In the case of
random ligand patterning (or patterning with an imposed bias), this can lead to further
localisation of FAs and SFs in the cell, though cell displacement and stress remains largely
symmetric (Figs. 4.3d, 4.4d). However, asymmetries in the mechanical properties of the
cell may arise if sufficient asymmetries exist in the initial ligand patterning (e.g. many
more ligands in the ECM below the left half of the cell compared to the right).

4.3 The influence of substrate stiffness

In order to assess how the mechanical properties of the ECM influence cell-substrate
adhesion and cytoskeleton formation, we consider the effect of changing ECM (collagen)
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Figure 4.4: Effect of random ligand micropatterning (pattern shown in Fig. 4.2b). At
snapshots in time, as a function of initial dimensionless position, dimensionless (a) density
of bound integrins, (b) density of FAs, (c) concentration of SFs (left axis), (d) displacement
of points in cell from their initial position. Solid lines in (a), (b) correspond to family
1 adhesions whilst dashed lines correspond to family 2 adhesions. Insets in (d) shows
dimensionless stress as a function of dimensionless initial position.

stiffness. In theory the model can also be applied to demonstrate how increased substrate
viscosity can enhance adhesion and cytoskeleton development, as observed by Cantini
et al. (2020). However, we neglect such an analysis here, as predicting this behaviour in a
noteworthy way requires model parameter values that are difficult to realise experimentally.

We examine the effect of increasing the stiffness of the ECM on the maturation of
adhesion and development of VSFs in Fig. 4.5. Particularly, we vary the relative Young’s
modulus of the ECM compared to a typical Young’s modulus of actin filaments (assumed
to be EF

0 = 1 kPa) whilst holding all other parameter values constant, using the baseline
parameters outlined in the Sec. 3.6. We illustrate the effect of EC

0 by plotting the partition
of integrins (Fig. 4.5a) and the partition of actin (Fig. 4.5b) 10000 s after the cell has been
introduced to the substrate.
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We observe in Fig. 4.5(a) that the model replicates the well-established experimen-
tal result that cells cultured on stiffer substrates form more FAs (Engler et al., 2006).
Consequently, more actin becomes recruited into SFs due to the positive feedback loop
(consistent with Ronan et al., 2014). This effect is particularly pronounced as the Young’s
modulus becomes comparable to a typical value in the cell cytoplasm. As the Young’s
modulus increases (and becomes comparable to a typical value in the cell cytoplasm, i.e.
when EC

0 /E
F
0 ≈ 1) the density of integrins recruited into FAs is increased (Fig. 4.5a).

Furthermore, more actin is recruited into SFs (Fig. 4.5b), consistent with an increase in
ROCK activation and intracellular signaling (inset in Fig. 4.5a). The model elucidates the
underlying mechanism: on more compliant substrates the ECM deforms in tandem with
the cell and so these integrins remain largely unstretched (inset in Fig. 4.5b). However, as
the substrate becomes stiffer, bound integrins become more stretched (inset in Fig. 4.5b),
exposing VBSs, allowing maturation of bound integrins into FAs (Hirata et al., 2014a). In-
creased adhesion maturation precipitates increased ROCK activation (inset in Fig. 4.5a),
leading to increased VSF formation, adhesion stretching and maturation and, in turn,
increased signaling. Note that as ECM stiffness increases we also observe a significant
increase in localisation of FAs in the cell (inset in Fig. 4.5a).
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Figure 4.5: Effect of ECM stiffness on FA and VSF formation. As a function of EC
0 /E

F
0

(relative ECM stiffness to that of actin filaments) at t = 10000 s: (a) fraction, Fi, of
integrins that are free, high-affinity, bound or recruited into FAs; (b) fraction, Fa, of
monomeric and filamentous actin and actin recruited into VSFs. Insets show (a) maximum
(light grey) and average (black) dimensionless concentration of c+R in the cell and (b)
maximum (light grey) and average (black) relative dimensionless displacement of the cell
to ECM.
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4.4 Mechanosensing distance

Recall from Ch. 3 that we assume the displacement (and hence stress) in the ECM decays to
zero in the far field, at some distance L1 from the cell edge (see Fig. 3.1). Setting L1 = αL

then α defines the relative distance from the cell edge at which the zero displacement
boundary condition in the ECM is applied (see Eq. 3.31c). Cells, however, rarely exist
in isolation and there are continual external perturbations to the ECM to which they are
adhered, applied by a range of stimuli (e.g. remodelling by other cells). To investigate how
far away cells can sense these stimuli in their microenvironment, we introduce a prescribed
displacement (i.e. displacement changes resulting from a prescribed forcing) at the far field
edge of the ECM. In particular, using the notation developed in Ch. 3, the dimensionless
displacement of the ECM in the far field to the left and right of the cell (i.e. in regions 1
and 2 respectively) is given by

w̄1(x, t) =

(
1− 1

α

(
x+ α +

1

2

))
wa,1(t) +

1

α

(
x+ α +

1

2

)
w0(t), (4.1a)

w̄2(x, t) =

(
1 +

1

α

(
x− 1

2
− α

))
wa,2(t) +

1

α

(
α +

1

2
− x

)
wN(t), (4.1b)

where wa,1, wa,2 are the time-dependent applied dimensionless displacements of the ECM
at x = −1/2 − α and x = 1/2 + α respectively. Recall also from Eq. (3.41) that w0(t)

and wN(t) are the numerically calculated dimensionless displacements in the ECM at the
boundary between region 1 and region 3 and region 2 and region 3 respectively. Note that
Eq. (4.1) is consistent with Eq. (3.41) in Ch. 3, in which there is no applied displacement
in the ECM far field and so wa,1(t) = wa,2(t) = 0.

In order to investigate the sensitivity of the cell to its microenvironment we introduce
simple perturbations to the ECM far field. In a similar manner to our baseline case
outlined in Sec. 3.8, we introduce the cell to a stiff collagen substrate. We allow sufficient
time to pass to allow the cell to become well adhered to the ECM. Then, tp seconds after
the cell has been introduced to the substrate, we introduce the following (dimensionless)
perturbations to the ECM far field, namely

wa,1(t) =


0, t < tp

−γ (t− tp) /td, tp ≤ t ≤ tp + td

−γ, tp + td < t ≤ ts

,

wa,2(t) =


0, t < tp

γ (t− tp) /td, tp ≤ t ≤ tp + td

γ, tp + td < t ≤ ts

,

(4.2)
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i.e. we introduce linearly increasing deformation in the ECM far field at time tp for td

seconds until deformation reaches a maximum dimensionless deformation of γ. After td

seconds from the initial perturbation, we maintain the deformation, holding the ECM far
field in this new configuration until simulations are ended at time ts. This displacement
could mimic, for example, sustained deformation of the ECM due to contraction of a nearby
cell. In our subsequent analysis, we set γ = 0.01 (which corresponds to a dimensionless
displacement of 0.25µm, 1% of the initial length of the cell and on the order of the length
of contraction of the cell) and set tp = 5000 s, td = 100 s and ts = 10000 s.

To demonstrate the effect of the applied perturbation we present a baseline case in
Fig. 4.6. Setting α = 0.5 (i.e. perturbing the ECM at a distance of one half the cell
length from the cell edge), we illustrate the global dynamics of the cell. Particularly, as a
function of time, we plot in Fig. 4.6(a) the partition of integrins into their various forms
(free, high-affinity, bound and recruited into FAs) and in Fig. 4.6(b) the partition of actin
(into monomers, filamentous or recruited into SFs). We highlight the key times t = tp

(t = ts) using blue (orange) open circles.
We observe that, in response to the applied perturbation described in Eq. (4.2), there

is an increase in FA formation (Fig. 4.6a) owing to increased stretching (and subsequent
maturation) of cell-substrate adhesions. In response, there is a modest increase in ROCK
signaling and phosphorylation of its downstream effectors, leading to enhanced actin fil-
ament formation Fig. 4.6(b). There is, however, little further increase in VSF formation
as a large proportion of myosin II has already been recruited into VSFs. This analysis
suggests that mechanosensing at a distance occurs primarily through cell-substrate ad-
hesions (in well-adhered cells). However, mechanosensing through the cytoskeleton may
be an important feature of less well-adhered cells (e.g. those cultured on more compliant
substrates), where maturation of adhesions could facilitate increased VSF formation.

We investigate the mechanosensing distance of the cell by varying the dimensionless
parameter α (the ratio of the length L1 of regions 1 and 3 of the ECM to the length of the
cell L). In particular, we consider the range 0 < α ≤ 5 whilst fixing all other parameters
to their baseline values (as outlined in Sec. 3.6). Introducing the perturbation described
by Eq. (4.2), we consider the global measure of the partition of integrins (Fig. 4.7a) and
the partition of actin (Fig. 4.7b) 10000 s after the cell has been introduced to the substrate
(5000 s after the initial applied displacement). Indicated with dashed lines in Fig. 4.7 are
the partition of integrins and actin in the absence of far field ECM deformation (from the
baseline output discussed in Sec. 3.8). Compared with the scenario where no displacement
is applied in the ECM far field, for all α there is an increase in FA, actin filament and
VSF formation at the expense of the density of free, high-affinity and bound integrins and
actin monomer concentration. This is due to increased stretch of cell-substrate adhesions
(inset in Fig. 4.7b), leading to increased ROCK activation (inset in Fig. 4.7a). However,
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Figure 4.6: Investigating the mechanosensing distance of the cell. Effect of applied dis-
placement in the ECM at a dimensionless distance of α = 0.5 from the cell. Time-
dependent evolution of percentage of total: (a) integrins in their various forms (free low-
affinity integrins, high-affinity integrins, bound integrins and recruited into FAs), (b) actin
in its different forms (monomeric, polymerised into filaments or recruited into SFs). Dashed
lines indicate adhesion and cytoskeleton dynamics in the absence of a perturbation. Insets
show (a) enhanced FA localisation, (b) enhanced SF localisation in response to perturba-
tions.

this effect becomes more muted with increasing α and is negligible beyond α ≳ 4. This
suggests that well-adhered cells can sense mechanical changes in their environment several
cell lengths away. Our observations are consistent with existing experimental data (Merkel
et al., 2007) and modelling studies, particularly the demonstration by He et al. (2014) that
both displacement and stress in the substrate decay exponentially with distance, with a
characteristic decay length on the order of the cell radius (Chen et al., 2015). Additionally,
it has been reported by Ruimerman et al. (2005) that bone cells have a mechanosensing
distance of approximately 100 µm, in agreement with our predictions for hMSCs (which
can subsequently differentiate into bone cells).

We also demonstrate (not shown) using this modelling approach that the mechanosens-
ing length is generally independent of substrate stiffnesses (for typical ECM stiffnesses),
and that larger perturbations to the ECM lead to a stronger cell response. Of-course, the
model could also be adapted, through modification of Eq. (4.2), to consider the influence
of transient perturbations to the ECM (where the far field displacement in the ECM is
relaxed at some time tp + td < tr < ts).

It is important to note that, because of the linear decay in the ECM far field in this
one-dimensional model, this approach is unable to fully capture stress decay in the ECM.
In reality, and as described in Ch. 5, displacements in the ECM decay exponentially
away from the cell. Nonetheless, this work demonstrates proof of concept, and is readily
adaptable to test perturbations in higher dimensions. Moreover, this analysis justifies our
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Figure 4.7: Effect of distance from cell at which perturbations are applied to the ECM. As
a function of dimensionless distance α, at t = 10000 s (5000 s after the ECM perturbation
has been applied): (a) fraction, Fi, of integrins that are free, high-affinity, bound or re-
cruited into FAs; (b) fraction, Fa, of monomeric and filamentous actin and actin recruited
into VSFs. Insets show (a) maximum (light grey) and average (black) dimensionless con-
centration of c+R in the cell and (b) maximum (light grey) and average (black) relative
dimensionless displacement of the cell to ECM. Dashed lines indicate observed partition
of integrins and actin when no perturbations are applied.

boundary condition of zero displacement in the ECM far field, provided α is sufficiently
large.

4.5 Introduction of external forces

To demonstrate potential application of the model to optimise experimental protocols, in
this Section we examine the influence of applied body forces (e.g. mimicking atomic force
microscopy, applied shear stress or magnetic tweezers in this one-dimensional framework)
on the development of cell cytoskeleton and cell-substrate adhesions. For example, this
has applications in atomic force microscopy, used to probe the mechanical properties of
cells, where it is desirable to suppress the influence of the force on adhesion dynamics to
ensure more accurate measurement of cell properties. In a similar manner to Sec. 4.5, we
introduce the cell to a stiff collagen ECM and allow the cell to become well adhered to
the substrate. After tp seconds we apply an external body force to the cell. Particularly,
the stress inside the cell (which is given by Eq. 3.19c in the absence of an applied stress)
satisfies

σc =

(
µc

∂2

∂x∂t
+ Ec

∂

∂x

)
u+ τ + σa, (4.3)
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where σa is the applied stress (a body force). In all simulations we describe the applied
stress by

σa(x, t) =

0, t < tp

Fa(x)/S, tp ≤ t ≤ ts
, (4.4)

where S = HW is the cross-sectional area of the cell and Fa is the applied force. In
particular, we introduce an instantaneous increase in the cell stress at time tp which is
then maintained until the end of simulations at time ts. In our subsequent study, we
consider tp = 5000 s and ts = 10000 s. In experiments, the active force will be a near
point-force (due to the small spatial extent of the probe), which should modelled using a
Dirac delta function. However, to ensure stress is continuous in the cell, in dimensional
variables we assume that the applied force takes the following form

Fa(x) =
Fmax√
2πϵ2

e−(x−xa)
2/2ϵ2L, (4.5)

an approximation of the Dirac delta function, where the force is applied at the position
xa, ϵ is a (small) smoothing parameter and Fmax is the applied force. In subsequent
simulations we set Fmax = 10 nN and ϵ = 0.02.

To demonstrate the effect of an applied force, we present an example case in Fig. 4.8.
Setting xa/L = 0.25 (i.e. applying a force to the cell at the midpoint between the cell centre
and boundary), we illustrate the global dynamics of the cell. Particularly, as a function
of time, we plot in Fig. 4.8(a) the partition of integrins into their various forms (free,
high-affinity, bound and recruited into FAs) and in Fig. 4.8(b) the partition of actin (into
monomers, filamentous or recruited into SFs). We highlight the key time t = tp (t = ts)
using blue (orange) open circles. In Fig. 4.8(c) we illustrate the effect the applied force has
on FA and SF localisation and present in Fig. 4.8(d) how it influences the displacement and
stress in the cytoplasm. We observe that, in response to the application of force (which is
indicated in Fig. 4.8d), there is a modest increase in the density of FAs (Fig. 4.8a), owing
to the forced stretching of bound integrins (Fig. 4.8d) and their subsequent maturation.
Consequently, there is a small increase in actin filament formation (Fig. 4.8b), but only
negligible increase in VSF formation, as myosin II has largely already been recruited into
VSFs (i.e. myosin II availability is a limiting factor). However, application of force to a
cell that is not already well-adhered to its substrate will likely lead a significant increase in
VSF formation. We observe that the application of force does not dramatically influence
the profile of FAs and SFs within the cell (Fig. 4.8c). However, local to the region where
force is applied, FA profiles resemble cell displacement profiles (Fig. 4.8d), reflecting the
dependence of adhesion maturation on adhesion stretch (see Eq. 3.51).

Using this modelling approach, we also demonstrate that the location at which exter-
nal forces are applied can influence the impact forcing has on cytoskeleton and adhesion
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Figure 4.8: The effect of an imposed force on the cell. Time-dependent evolution of
percentage of total: (a) integrins in their various forms (free low-affinity integrins, high-
affinity integrins, bound integrins and recruited into FAs), (b) actin in its different forms
(monomeric, polymerised into filaments or recruited into SFs). Dashed lines in (a), (b)
indicate adhesion and cytoskeleton dynamics in the absence of a perturbation. Panel
(c) shows the changes to FA (solid lines) and SF (dashed lines) localisation. Panel (d)
indicates the displacement of the cell in response to forcing (solid lines) and associated
change in stress (dashed lines), the green dashed line indicates the applied stress to the
cell.

dynamics. Particularly, fixing all other parameters to their baseline values outlined in
Sec. 3.6 or above, we apply the stress described in Eq. (4.4) and consider the partition
of integrins (Fig. 4.9a) and the partition of actin (Fig. 4.9b) 10000 s after the cell has
been introduced to the substrate (5000 s after the initial applied displacement), varying
the dimensionless position at which the force is applied with 0 ≤ xa/L ≤ 0.5. We indi-
cate with dashed lines in Fig. 4.9 the partition of integrins and actin in the absence of
an applied force (using the baseline output presented in Sec. 3.8). We observe that the
application of external stresses near the cell boundary has a negligible effect on adhesion
and cytoskeleton dynamics. However, moving away from the cell centre, the application of
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force can precipitate an increase in FA density (Fig. 4.9a) and actin filament concentration
(Fig. 4.9b). This is because cell-substrate adhesions in these regions (in the absence of
force) are generally immature and so comparatively weak. Hence, bound integrins away
from the cell boundary can become stretched (inset in Fig. 4.9b), leading to a modest in-
crease in adhesion maturation (Fig. 4.9a). This effect again becomes more muted towards
the cell centre, where the stiff nucleus dominates mechanics and resists deformation.
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Figure 4.9: Effect of changing the position at which an external force is applied. As a
function of dimensionless initial position, at t = 10000 s (5000 s after the ECM pertur-
bation has been applied): (a) fraction, Fi, of integrins that are free, high-affinity, bound
or recruited into FAs; (b) fraction, Fa, of monomeric and filamentous actin and actin
recruited into VSFs. Insets show (a) maximum (light grey) and average (black) dimen-
sionless concentration of c+R in the cell and (b) maximum (light grey) and average (black)
relative dimensionless displacement of the cell to ECM. Dashed lines indicate observed
partition of integrins and actin when no perturbations are applied. Dashed lines indicate
observed partition of integrins and actin when no partitions are applied.

It follows that this model serves as a platform to investigate the effect of applied forces
on the development and sustainability of cell-substrate adhesions and VSFs. Particularly,
the model can be employed to explore how the magnitude and direction of the force,
the position at which it is applied and the stage of cell-substrate adhesion at which it is
introduced can be optimised to induce (or prevent) increased adhesion and cytoskeleton
development.

4.6 Inhibition of ROCK and its effectors

The development of cell cytoskeleton and mature cell-substrate adhesions is highly in-
terdependent. In particular, signaling through ROCK, which is enhanced by adhesion
maturation, is required to lead to significant actin polymerisation, myosin II activation
and, consequently, the formation of VSFs. Ventral SFs, in turn, exert contractile forces
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inside the cell, causing stretching of bound integrins (when the cell is cultured on a stiff
ECM), leading to adhesion maturation through recruitment of vinculin. Therefore, disrup-
tion of any one component of this feedback loop can lead to several downstream effects.
We focus in this Section on the effect of inhibiting ROCK activation and of inhibiting
myosin II cross-linking of actin filaments. A similar analysis was performed using our
spatially-averaged model in Sec. 2.6.5 to investigate the influence of a ROCK inhibitor
only. Of-course, our analysis could be extended to consider inhibition of any scaffolding
or signaling protein species (e.g. inhibition of the ability of talin to activate integrins),
but our aim here is to illustrate the ability of the model to investigate these dynamics.

Inhibitors can influence reaction kinetics in a variety of ways, we focus on competitive
and allosteric inhibitors. Competitive inhibitors act by competing with a substrate for a
binding site on a catalyst; when occupying this site, the inhibitor blocks the catalyst from
binding to the substrate. Allosteric inhibitors instead act by binding to the catalyst at a
different location to the substrate binding site, where they induce a conformational change
in the catalyst, reducing the ability of the substrate to bind to the catalyst (Monod et al.,
1965). Allosteric inhibitors do still allow for the possibility of the substrate binding to
the catalyst (-inhibitor complex), though this will occur at a significantly reduced rate.
However, for simplicity, we assume that allosteric inhibitors are potent and, when bound
to a catalyst, fully prevent the catalyst from binding to a substrate. Under this assump-
tion, allosteric inhibitors do not need a distinct mathematical treatment from competitive
inhibitors.

To illustrate the general approach taken throughout this Section we consider a compet-
itive inhibitor I, with concentration ci, which can bind to E, an enzyme with concentration
ce, forming a complex C, with concentration cc. When the enzyme is not bound to an in-
hibitor it can facilitate the conversion of a substrate S, with concentration cs, to form a
product P, with concentration cp. It follows that the concentration of each of these species
can be described by

∂cs
∂t

= fs +Ds
∂2cs
∂x2

, (4.6a)

∂cp
∂t

= fp +Dp
∂2cp
∂x2

, (4.6b)

∂ci
∂t

= p(x, t)− k+
i cice + k−

i cc +Di
∂2ci
∂x2

, (4.6c)

∂ce
∂t

= fe − k+
i cecs + k−

i cc +De
∂2ce
∂x2

, (4.6d)

∂cc
∂t

= k+
i cice − k−

i cc +Dc
∂2cc
∂x2

, (4.6e)

where fs, fp and fe capture reaction terms involving the conversion of substrate to product,
p(x, t) is a source term capturing the introduction of inhibitor (e.g. by injection into the
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cell), k+
i is proportional to the binding rate of the inhibitor to the enzyme, k−

i is the rate
at which (enzyme-inhibitor) complexes dissociate and where Ds, Dp, Di, De and Dc are
the diffusivities of the substrate, product, inhibitor, enzyme and complexes respectively.

We now illustrate the ability of the model developed in Ch. 3 to explore the effect of
ROCK inhibition (Sec. 4.6.1) and of myosin II inhibition (Sec. 4.6.2) on the stability of
cell-substrate adhesions and cell cytoskeleton.

4.6.1 ROCK inhibition

ROCK is critical to the cell feedback loop, it is activated in response to adhesion formation
and this activation is significantly enhanced by adhesion maturation (see Eq. 3.49 in
Ch. 3). Inhibitors of ROCK have a demonstrated clinical application in statins (to lower
cholesterol and improve cardiovascular health) and have been identified as a potential
treatment for erectile dysfunction, high blood pressure and glaucoma (Bivalacqua et al.,
2004, Honjo et al., 2001, Liao et al., 2007). Understanding the mechanism by which these
inhibitors influence cell cytoskeleton and adhesion viability and, consequently, intracellular
signaling is therefore highly relevant. To investigate the effect of ROCK inhibition we
take a general approach, rather than focusing on specific inhibitors (e.g. the allosteric
inhibitor Y-27623 or competitive inhibitor fasudil), using lumped parameters to illustrate
the potential applicability of our modelling approach more widely (Amano et al., 2010).

We suppose that inactivated ROCK, concentration cR, becomes activated at rate k+
R

to form activated ROCK, concentration c+R. As discussed in Ch. 3 (see Eqs. 3.30a-3.30b),
we assume ROCK in both its inactivated and activated forms is non-diffusive. Inactivated
ROCK can be prevented from being activated if bound to an inhibitor (either competitive
or a potent allosteric), which has concentration cI . Binding of inactivated ROCK to the
inhibitor occurs at a rate proportional to k+

IR, leading to the formation of ROCK-inhibitor
complexes which have concentration cIR. ROCK bound to an inhibitor cannot be activated,
but ROCK-inhibitor complexes can dissociate at rate k−

IR. We assume that the inhibitor
can diffuse with diffusivity DI . Moreover, inhibitor-ROCK complexes can theoretically
diffuse, with diffusivity DIR. However, given that we assume ROCK is non-diffusive, we
set DIR = 0 µm2 s−1. We also include a source term, p, capturing the introduction of
the ROCK inhibitor to the cell. Hence, since we neglect diffusion of ROCK-inhibitor
complexes, the dynamics of ROCK, the inhibitor and ROCK-inhibitor complexes can be
described by

∂cR
∂t

= −k+
RcR + k−

Rc
+
R − k+

IRcIcR + k−
IRcIR, (4.7a)

∂cI
∂t

= p(x, t)− k+
IRcIcR + k−

IRcIR +DI
∂2cI
∂x2

, (4.7b)
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∂cIR
∂t

= k+
IRcIcR − k−

IRcIR. (4.7c)

In all simulations k+
R and k−

R are defined by their baseline parameters in Sec. 3.6 in Ch. 3.
Additionally, we set DI = 10 µm2 s−1, k−

I = 1× 10−3 s−1 and set the source term to be

p(x, t) =

0, t < tp, tp < t < ts

pI , t = tp
, (4.8)

where pI = MI/V, with MI the total mass of inhibitor introduced and V the volume of
the cell. In particular, we assume the inhibitor is instantaneously introduced (at t = tp)

spatially uniformly to the cell. In all simulations we set tp = 5000 s and MI = 100 nM,
with V given by its baseline value from Sec. 3.6. We end simulations at t = ts = 10000 s.
We vary the value of k+

IR as this essentially dictates the potency of the inhibitor.
To demonstrate the effect that the introduction of a ROCK inhibitor has on the dynam-

ics of cell-substrate adhesions, we consider various global measures of the cell in Fig. 4.10.
Particularly, setting k+

IR = 200µM−1 s−1, in Fig. 4.10(a) we illustrate as a function of time
the partition of integrins into their various forms (free, high-affinity, bound and recruited
into FAs), and in Fig. 4.10(b) the partition of actin (into monomers, filamentous or re-
cruited into SFs). We highlight t = tp (t = ts) using blue (orange) open circles. As would
be expected, the introduction of a ROCK inhibitor (inset in Fig. 4.10a) leads to rapid
dissociation of SFs (Fig. 4.10b) owing to the reduction in actin polymerisation and myosin
II activation. After some time, there is a transient increase in actin filament concentra-
tion (Fig. 4.10b) as some actin continues to be polymerised but cannot be cross-linked
by myosin II to form VSFs, before the actin filament concentration continues to fall. As
SFs dissociate and the contractile forces exerted on the cell reduce, there is an increase in
cell length (inset in Fig. 4.10b). In turn, bound integrins and integrins recruited into FAs
experience a reduction in their stretch. Over time, this manifests itself as a reduction in
FA density (Fig. 4.10a), leading to reduced ROCK signaling (inset in Fig. 4.10a) and hence
further reduced VSF and actin filament concentration. For a sufficiently potent inhibitor,
such as this, the cell eventually returns to its early state, with many immature adhesions
to the substrate (Fig. 4.10a) but little cytoskeleton development (Fig. 4.10b), negligible
deformation (inset in Fig. 4.10b) and negligible adhesion maturation (Fig. 4.10a).

To investigate how the potency of the ROCK inhibitor influences cytoskeleton and
adhesion dynamics we vary k+

IR, the rate per concentration at which the inhibitor binds
to inactive ROCK and prevents its activation. Particularly, we consider the range 1 ×
10−2 µM−1 s−1 < k+

IR < 1 × 103 µM−1 s−1 whilst fixing all other parameters to their
baseline values (as outlined in Sec. 3.6 or above). We introduce the ROCK inhibitor at
t = tp = 5000 s after the cell has been introduced to the stiff substrate (and therefore
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Figure 4.10: Investigating the effect of a ROCK inhibitor introduced to the cell. Time-
dependent evolution of percentage of total: (a) integrins in their various forms (free low-
affinity integrins, high-affinity integrins, bound integrins and recruited into FAs), (b) actin
in its different forms (monomeric, polymerised into filaments or recruited into SFs). Insets
show (a) fraction of ROCK activated and of its downstream effectors phosphorylated as a
function of time, (b) cell length as a function of time.

is well-adhered). We plot global measures of cell-substrate adhesion and cytoskeleton
development, particularly the partition of integrins (Fig. 4.11a) and the partition of actin
(Fig. 4.11b) 10000 s after the cell has been introduced to the substrate (5000 s after the
introduction of the inhibitor). We indicate with dashed lines in Fig. 4.11 the partition of
integrins and actin in the absence of any inhibitor introduction.

We observe that for low inhibitor-ROCK binding rates, the dynamics of inactivated
ROCK is dominated by its activation, leading to negligible effect on adhesion (Fig. 4.11a)
and cytoskeleton (Fig. 4.11b) dynamics. When the inhibition rate of ROCK becomes suf-
ficiently high, roughly when k+

IR ≈ 10µM−1 s−1, there is a significant decrease in VSF con-
centration (Fig. 4.11b), leading to a decrease in cell contraction and adhesion stretch (inset
in Fig. 4.11b). The reduction in adhesion stretch leads to reduced FA density (Fig. 4.11a),
in turn leading to further reduced activated ROCK concentration (inset in Fig. 4.11a) and
so further decreases in VSF formation (Fig. 4.11b). A reduction in actin filament concen-
tration occurs in tandem with reduced VSF concentration with increasing k+

IR (Fig. 4.11b).
However, at moderately high rates of ROCK inhibition with k+

IR ≈ 100 µM−1 s−1, there
is still limited actin filament formation as ROCK activation is not completely suppressed
and weak signaling from bound integrins can facilitate actin polymerisation (Fig. 4.11b).
Thereafter, further increases in k+

IR leads to nearly all actin returning to its monomeric
form as actin polymerisation (depolymerisation) decreases (increases).

It is worth emphasising the striking similarity to the qualitative predictions (see Figs. 2.9-
2.10) made by the spatially-averaged model developed in Ch. 2. This again gives us con-
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Figure 4.11: Effect of ROCK inhibitor strength. As a function of the binding rate of the
ROCK inhibitor to ROCK, at t = 10000 s (5000 s after the ECM perturbation has been
applied): (a) fraction, Fi, of integrins that are free, high-affinity, bound or recruited into
FAs; (b) fraction, Fa, of monomeric and filamentous actin and actin recruited into VSFs.
Insets show (a) maximum (light grey) and average (black) dimensionless concentration of
c+R in the cell and (b) maximum (light grey) and average (black) relative dimensionless
displacement of the cell to ECM. Dashed lines indicate observed partition of integrins and
actin when no perturbations are applied.

fidence that a simple ODE model can capture several important aspects of cell-substrate
adhesion and cytoskeleton development.

4.6.2 Myosin inhibition

Myosin II cross-linking of actin filaments is required to form contractile VSFs, which in
turn stretch cell-substrate adhesions leading to their maturation and enhanced ROCK
signaling. The most commonly used myosin II inhibitor is blebbistatin, which has been
previously employed to improve cell survival times in vitro (Kabaeva et al., 2008). This
allosteric inhibitor prevents binding of activated myosin II to actin filaments, hindering
its cross-linking ability to form contractile VSFs.

To model the effect of myosin II inhibition on cytoskeleton and adhesion dynamics,
we consider activated myosin II, concentration c+m, which forms from the activation of
inactive myosin II at rate k+

a and which can diffuse with diffusivity D+
m (see Eq. 3.29e).

Activated myosin II can cross-link actin filaments to form VSFs at a rate proportional to
k+
m and these VSFs dissociate at rate k−

m. Activated myosin II can be prevented from cross-
linking actin filaments if bound to an inhibitor (e.g. blebbistatin), which has concentration
cI . Binding of activated myosin II to the inhibitor occurs at rate k+

Im, leading to the
formation of myosin-inhibitor complexes which have concentration cIm. These myosin-
inhibitor complexes can dissociate at rate k−

Im. We assume that the inhibitor can diffuse
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with diffusivity DI . Moreover, inhibitor-myosin complexes can diffuse, with diffusivity
DIm. We also include a distributed source term, p, capturing the introduction of the
myosin inhibitor to the cell. Hence, the dynamics of activated myosin II, the inhibitor and
myosin-inhibitor complexes can be described by

∂c+m
∂t

= k+
a cm − k−

a c
+
m − k+

m

(
2c

(1)
F c

(2)
F + c

(1)
F c

(1)
F + c

(2)
F c

(2)
F + c

(1)
F c+S + c

(2)
F c+S

)
c+m

+k−
mc

+
S + k+

ImcIc
+
m + k−

ImcIm +D+
m

∂2c+m
∂x2

, (4.9a)

∂cI
∂t

= p(x, t)− k+
ImcIcm + k−

ImcIm +DI
∂2cI
∂x2

, (4.9b)

∂cIm
∂t

= k+
ImcIc

+
m − k−

ImcIm +DIm
∂2cIm
∂x2

. (4.9c)

In all simulations k+
a , k

−
a , k

+
m, k

−
m and D+

m are defined by their baseline parameters in
Sec. 3.6 in Ch. 3. Additionally, we set DI = 10 µm2 s−1, DIm = D+

m, k
−
I = 1 × 10−3 s−1

and use an identical form of source term as for the ROCK inhibitor (i.e. identical to
Eq. 4.8), except we set MI = 10 µM. In all simulations we set tp = 5000 s, with the cell
volume, V, given by its baseline value from Sec. 3.6. We end simulations at t = ts = 10000

s and vary the value of k+
Im, which governs the strength of the myosin inhibitor.

To examine the influence that the strength of myosin II inhibitor has on cytoskele-
ton and adhesion dynamics, we vary k+

Im, the rate per concentration at which the in-
hibitor binds to activated ROCK, preventing actin cross-linking. Particularly, we set
1 × 10−2 µM−1 s−1 < k+

Im < 1 × 103 µM−1 s−1 whilst fixing all other parameters to their
baseline values (as outlined in Sec. 3.6) or as outlined above. At t = tp = 5000 s after
the cell has been introduced to the stiff substrate, at which point the cell is well-adhered,
we introduce the myosin inhibitor. To illustrate the effect of this inhibitor, we again plot
global measures of cell-substrate adhesion and cytoskeleton development, particularly the
partition of integrins (Fig. 4.12a) and the partition of actin (Fig. 4.12b) 10000 s after
the cell has been introduced to the substrate (5000 s after the introduction of the myosin
inhibitor). As before, we indicate with dashed lines in Fig. 4.12 the partition of integrins
and actin in the absence of any inhibitor introduction.

When the rate of binding of the inhibitor to myosin II is low, myosin II continues to
cross-link actin filaments, leading to the formation of contractile VSFs (Fig. 4.12b), which,
in turn, stretch cell-substrate adhesions (inset Fig. 4.12b), leading to adhesion maturation
(Fig. 4.12a) and a high degree of ROCK activation (inset in Fig. 4.12a). Activated ROCK,
in turn, facilitates VSF formation through increased actin filament formation and myosin
II activation. As the strength of myosin II inhibitor increases (i.e. as k+

Im increases), there
is a decrease in myosin II cross-linking of actin filaments, leading to a decrease in VSF
formation (Fig. 4.12b), reduced adhesion stretch (inset Fig. 4.12b) and, consequently, a
reduction in adhesion maturation (Fig. 4.12a). However, increasing k+

Im through interme-
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diate values (approximately 1×10−1 µM−1 s−1 < k+
Im < 1×100 µM−1 s−1) leads to a small

increase in actin filament formation (Fig. 4.12b) as actin polymerisation continues but fil-
aments are not cross-linked by myosin II. Further increases in myosin II inhibitor strength
leads to significant reductions in VSF concentration (Fig. 4.12a) and, through reduced
adhesion stretch (inset in Fig. 4.12b), reduced FA maturation (Fig. 4.12b). At high values
of k+

Im, no VSFs or FAs remain some time after the application of inhibitor. However,
bound integrins can still form and a substantial amount of actin remains in filamentous
form (Fig. 4.12b), polymerised at bound integrins but not cross-linked by myosin II to
form VSFs. Contrast this with the response of the cell to a ROCK inhibitor (Fig. 4.11),
which causes a collapse in both actin filament and VSF concentration. Consequently, if the
aim of an inhibitor is to prevent contraction alone and not disrupt the entire cytoskeleton,
it is beneficial to employ a myosin II inhibitor.

10
-2

10
-1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

10
-2

10
3

0

0.2

0.4

10
-2

10
-1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

10
-2

10
3

0

0.01

0.02

Figure 4.12: Effect of myosin inhibitor strength. As a function of the binding rate of
the myosin II inhibitor to activated myosin II, at t = 10000 s (5000 s after the ECM
perturbation has been applied): (a) fraction, Fi, of integrins that are free, high-affinity,
bound or recruited into FAs; (b) fraction, Fa, of monomeric and filamentous actin and
actin recruited into VSFs. Insets show (a) maximum (light grey) and average (black)
dimensionless concentration of c+R in the cell and (b) maximum (light grey) and average
(black) relative dimensionless displacement of the cell to ECM. Dashed lines indicate
observed partition of integrins and actin when no perturbations are applied.

4.7 Summary

In this Chapter we have employed our one-dimensional bio-chemo-mechanical model de-
veloped in Ch. 3 to investigate the influence of various biochemical and mechanical cues
on the development and sustainability of cell-substrate adhesions and cell cytoskeleton. In
particular, we have been able to predict the influence that ligand density and micropattern-
ing has on the formation and localisation of FAs, SFs and mechanical stress inside the cell.
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Moreover, the model has elucidated the mechanism by which more mature cell-substrate
adhesions and contractile VSFs develop on more stiff and viscous substrates (Cantini et al.,
2020, Engler et al., 2006), through increased adhesion stretch and, consequently, enhanced
signaling. Allowing the cell to become well-adhered to the underlying ECM, we have also
demonstrated the ability of the model to predict the sensitivity of the cell to distant me-
chanical perturbations in its microenvironment, identifying a mechanosensing distance on
the order of several cell lengths; this agrees with existing experimental and modelling stud-
ies (Chen et al., 2015, He et al., 2014, Merkel et al., 2007, Ruimerman et al., 2005). We
have also been able to demonstrate that the model can predict the influence that applied
stresses (e.g. from atomic force microscopy) have on cell-substrate adhesion and cytoskele-
ton development, and have shown that this response can depend on the location in the
cell at which forces are applied. Finally, we have illustrated how the model can be used
to investigate the effect of various chemotransductive cues on cell-substrate interaction,
particularly the effect of ROCK and myosin II inhibitors on adhesion and cytoskeleton
viability in well-adhered cells.

Having demonstrated the ability of the model to make predictions about how the
cell reacts to a variety of environmental and biochemical cues, the model now serves as
a platform for several future investigations. For example, the model can be employed
to investigate how simultaneous control over ECM ligand density and the mechanical
properties of the ECM can be used to influence cell-substrate adhesion development. The
model can also be applied to describe mechanical communication between different cells
through the ECM. Moreover, further investigation would allow for application of the model
to optimise experimental protocols in, for example, atomic force microscopy or magnetic
and optical tweezer experiments. In particular, to address how to apply forces in such
a way to instigate or suppress changes in the cytoskeletal and adhesion properties of
the cell. Finally, the model provides a framework for exploring how to optimally apply
inhibitors (or activators) to the cell (e.g. inhibitor strength, its target and the position
within the cell and stage of cell-substrate adhesion at which the inhibitor is applied) to
influence cytoskeleton and adhesion dynamics. Potential applications of this work include
in providing mechanistic insight into the influence of ROCK inhibition in treatments for
erectile dysfunction, high blood pressure and glaucoma (Bivalacqua et al., 2004, Honjo
et al., 2001, Liao et al., 2007).



Chapter 5

Two-dimensional modelling

In this Chapter we develop a two-dimensional analogue of our one-dimensional model for
the formation and maturation of cell-substrate adhesions and the cell cytoskeleton, pre-
sented and analysed in Ch. 3 (and based on the work of Besser and Schwarz, 2007, Gracheva
and Othmer, 2004, Larripa and Mogilner, 2006). This two-dimensional framework allows
for more complicated and realistic modelling of the cell-substrate interaction. In particular,
we now incorporate a cell nucleus, which we treat as a rigid body but which could instead
be treated as a stiff viscoelastic material. The formulation also explicitly includes the cell
membrane, although this additional influence is not considered in our present work; similar
two-dimensional axisymmetric modelling by Vernerey and Farsad (2014) of an elastic cell
coupled to an elastic substrate explicitly includes a cortical membrane, which facilitates
cell spreading. Our goal for this Chapter is to understand how cells adhere to a substrate
and to predict whether they remain axisymmetric or develop surface patterns during this
process. Our strategy is as follows: we consider the cell to be initially cylindrical and
introduce it to a collagen ECM; we assume an initially axisymmetric deformation of the
cell; after some time we introduce small biochemical and mechanical perturbations to this
axisymmetric deformation, evolving the system in time in order to determine the stability
of the cell to various normal modes of deformation. Two-dimensional axisymmetric defor-
mation of the cell, coupled to an elastic ECM via cell-substrate adhesions, has also been
considered by Banerjee and Marchetti (2013), Edwards and Schwarz (2011), He et al.
(2014), Schwarz and Safran (2013). These models have taken a purely mechanical ap-
proach, in contrast with the bio-chemo-mechanical approach employed in our work. More
generally, simple geometry (ellipsoidal) deformations are considered by Dunlop (2019),
Friedrich and Safran (2012), to investigate the links between cellular anisotropy and con-
tractility. By introducing perturbations to the axisymmetric state with a simple sinusoidal
dependency on polar angle, a suitable ansatz reduces our governing equations to quasi-one-
dimensional, parameterised by the azimuthal mode number, circumventing computational
difficulty associated with two-dimensional modelling. This allows us, in a similar manner
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to Ch. 3, to employ finite difference methods to solve the governing PDEs. This strategy
is summarised in Fig. 5.1 and is similar to the method employed by Greenspan (1976)
to investigate tumour growth. Such an analysis facilitates investigation of the ability of
cells to undergo self-driven surface patterning in vitro; Solowiej-Wedderburn and Dunlop
(2022, 2023) similarly consider two-dimensional deformations, but force changes in cell
shape through adhesion patterning (in a similar manner to our work Sec. 4.2).

Figure 5.1: Overview of approach in two-dimensions: an initially cylindrical cell undergoes
an axisymmetric deformation, settling to a steady state around which we conduct a linear
stability analysis to various modes of deformation.

This Chapter is structured as follows. In Secs. 5.1-5.5 we outline the full two-dimensional
problem, which has strong similarity to our work in Ch. 3, but with several important mod-
ifications. In Sec. 5.6 we solve the two-dimensional axisymmetric problem, identifying a
base state around which we linearise in Sec. 5.7. In Sec. 5.8 we assume perturbations to
this axisymmetric base state are sinusoidal in nature, seeking spatially periodic solutions,
with a given mode number, in all quantities in order to deduce the stability of the cell
to various normal modes of deformation, with results presented in Sec. 5.10. Finally, in
Sec. 5.11 we interpret the predictions from this two-dimensional approach and outline
potential directions for further research.
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Figure 5.2: Cell and nucleus set-up in two-dimensional problem. We consider the cell to
be composed of three distinct components and the ECM to have three distinct regions.

5.1 Mechanical model

As indicated in Fig. 5.2, we idealise the cell in its reference configuration as a cylinder. We
treat the cell to be composed of three distinct regions: a rigid nucleus (of radius Rn) and a
viscoelastic cytoplasm, encased by an elastic membrane. We assume that the initial radius
of the cell is R and that its height is H (so that the total cell volume is V = πR2H) and
suppose that the cell is thin in the direction orthogonal to the substrate, so that H ≪ R.

We parameterise the cell using the coordinates (r, θ, z) such that the initial configura-
tion of the cell is described by a set of material points x(r, θ, z), with coordinates spanning
0 ≤ r ≤ R, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ H. Throughout this Chapter we depth-average over the
z−direction, neglecting variations in the biochemical and mechanical properties of the cell
and ECM in the direction orthogonal to the substrate. Additionally, we assume that the
cell centre remains at a fixed position and that the outer boundary of the cell is displaced
to r = ζ(θ, t), whilst the internal points are displaced to r′ so that for all t ≥ 0 we have

0 ≤ r′(r, θ, t) ≤ r′(R, θ, t) = ζ(θ, t); (5.1)

this is analogous to our set-up in Ch. 3.
We suppose that the ECM consists of three regions, one below the cell nucleus, of

radius Rn, another below the cell cytoplasm, occupying the region Rn ≤ r ≤ R and
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another region beyond the cell with R ≤ r < ∞. This is also indicated in Fig. 5.2. We
assume that the ECM is fixed in the far field and at r = 0, whilst internal points are
displaced to x̄′.

The corresponding displacement of points in the cell cytoplasm, u(r, θ, t), and in the
ECM, w(r, θ, t), are described by

u(r, θ, t) = x′(r, θ, t)− x, w(r, θ, t) = x̄′(r, θ, t)− x; (5.2)

for simplicity, we assume displacements |u| and |w| are small, allowing us to use linearised
constitutive laws for the cytoplasm and ECM rheology. We denote radial (azimuthal)
displacements of the cell cytoplasm by ur (uθ) and of the ECM by wr (wθ) so that the
displacement of points in the cell cytoplasm and ECM can be decomposed into

u = urer + uθeθ, w = wrer + wθeθ. (5.3)

We generalise the one-dimensional discrete-to-continuum model developed in Ch. 3 and,
in a similar manner, we assume that the deformation of the cell results from a combination
of externally applied forces on the cell and active and passive stresses within the cell itself,
with this motion resisted by friction due to repeated detachment and attachment of the
cell to the substrate and restoring forces due to cell-substrate interaction. However, we
can now additionally include a tensioned cell membrane, though we neglect the properties
of this membrane in our subsequent analysis. Moreover, we assume that no adhesions
between the cell and substrate can form underneath the cell nucleus (this is primarily for
modelling simplicity, however we observe in Ch. 3 that FAs localise near the cell boundary),
which is now explicitly accounted for. We neglect inertial effects and other body forces.
Letting σc denote the Cauchy stress in the cell cytoplasm and σE denote the Cauchy
stress in the ECM then we assume an analogous form of mechanical governing equations
to Eq. (3.19a). In particular, we have

∇ · σc = κI (u−w) + βI
∂

∂t
(u−w) , ∇ · σE = κI (w − u) + βI

∂

∂t
(w − u) , (5.4a)

where κI is the stiffness per unit volume of nascent and focal adhesions and βI is the drag
induced by such adhesions and where we neglect derivatives in the z−direction (through
depth-averaging). We write

σc = Ec(r, θ)ϵc + µc(r, θ)
∂ϵc
∂t

+ τ (r, θ), σE = EE(r, θ)ϵE + µE(r, θ)
∂ϵE
∂t

, (5.4b)

where Ec is the Young’s modulus of the cell cytoplasm, µc is the effective viscosity of
the cell cytoplasm (as defined in Sec. 3.1 for the one-dimensional model), τ is a tensor
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capturing the (radial) contraction of the cytoplasm due to myosin II motor action, EE is
the Young’s modulus of the ECM and µE is the viscosity of the ECM. The infinitesimal
strain tensors satisfy

ϵc =
∂ur

∂r
er ⊗ er +

1

r

(
∂uθ

∂θ
+ ur

)
eθ ⊗ eθ +

1

2

(
1

r

∂ur

∂θ
+

∂uθ

∂r
− uθ

r

)
(er ⊗ eθ + eθ ⊗ er) ,

(5.4c)

ϵE =
∂wr

∂r
er ⊗ er +

1

r

(
∂wθ

∂θ
+ wr

)
eθ ⊗ eθ +

1

2

(
1

r

∂wr

∂θ
+

∂wθ

∂r
− wθ

r

)
(er ⊗ eθ + eθ ⊗ er) .

(5.4d)

We assume the contractile action of VSFs is purely radial so that it can described by

τ = τer ⊗ er, (5.4e)

where τ is a scalar function that depends on the concentration of VSFs.
In a similar manner to Ch. 3, we suppose that the Young’s modulus and viscosity of

the cell cytoplasm and the Young’s modulus of the ECM can be decomposed as follows

Ec = EF + ES + EP , µc = µ0 + τ/v0, EE = EC + EO, (5.5)

where EF is the contribution to the Young’s modulus of the cytoplasm due to actin
filaments, ES is the contribution to the Young’s modulus of the cytoplasm due to VSFs and
EP is the contribution to the Young’s modulus of the cytoplasm due to microtubules and
intermediate filaments. Moreover, µ0 is the viscosity of the cell cytoplasm, v0 is the stall
speed of myosin II motor action, as defined in Sec. 3.1.1, and so µc is the effective viscosity
of the cell cytoplasm. Furthermore, EC is the contribution to the Young’s modulus of the
ECM due to collagen fibres and EO is the contribution to the Young’s modulus of the ECM
due to other fibres (e.g. fibronectin). We also decompose the restoring forces exerted by
connections between the cell and substrate, κI , and the drag due to cell-substrate adhesions
and interaction, βI , into their constituent contributions with

κI = κNA + κFA, βI = βe + βNA + βFA, (5.6)

where βe is a (small) uniform background drag whilst βNA (κNA) and βFA (κFA) are the
drag (restoring forces) associated with nascent and focal adhesions, which are specified in
terms of the adhesion densities below.
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5.2 Biochemical model

In two-dimensions our governing biochemical equations are similar to their one-dimensional
analogue outlined in Sec. 3.2. All quantities are defined analogously to those in Sec. 3.2,
with the exception of the actin treadmilling velocity, which is now denoted by v(r, θ, t).

However, the presence of the cell nucleus, and the assumption that actin filaments cannot
grow into this structure, leads to a natural simplification in our biochemistry in that we
do not need to consider two separate families of ligands, adhesions and actin filaments.
Hence, there is some modification to our governing PDEs.

We describe actin and myosin dynamics, by analogue with Eqs. (3.29a)-(3.29e) in Ch. 3,
in the form

∂cG
∂t

= −k+
p cG (nb + nA) + k−

p cF + k−
mc

+
S +DG∇2cG, (5.7a)

∂cF
∂t

+∇ · (vc) = k+
p (nb + nA)− k−

p cF − k+
mcF c

+
m

(
cF + c+S

)
+DF∇2cF , (5.7b)

∂c+S
∂t

= k+
mcF c

+
m

(
cF + c+S

)
− k+

mc
+
S , (5.7c)

∂cm
∂t

= −k+
a cm + k−

a c
+
m +Dm∇2cm, (5.7d)

∂c+m
∂t

= k+
a cm − k−

a c
+
m − k+

mcF c
+
m

(
cF + c+S

)
+ k−

mc
+
S +D+

m∇2c+m. (5.7e)

This system of reaction-diffusion-advection equations captures the polymerisation of actin
monomers into actin filaments and the subsequent treadmilling and cross-linking of actin
filaments by activated myosin II to form activated VSFs. We assume radial treadmilling
of actin filaments (i.e. v is parallel to er), towards the nucleus, which is arrested in the
vicinity of the nucleus and cell membrane, in a similar manner to Ch. 3.

We describe the recruitment of integrins and ECM ligands into adhesions by

∂nf

∂t
= −k+

h nf + k−
h nh +Df∇2nf , (5.7f)

∂nh

∂t
= k+

h nf − k−
h nh − k+

b nhns + k−
b nb, (5.7g)

∂nb

∂t
= k+

b nhns − k−
b nb − k+

F nb + k−
F nA, (5.7h)

∂nA

∂t
= k+

F nb − k−
F nA, (5.7i)

∂ns

∂t
= −k+

b nhns + k−
b nb, (5.7j)

in analogue with their counterparts Eqs. (3.29f)-(3.29j) in Ch. 3. This captures the con-
version of low-affinity free integrins to high-affinity free integrins, the subsequent binding
of these integrins to ECM ligands to form bound integrins (nascent adhesions), and the
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maturation of these adhesions into mature FAs.
We describe the activation of ROCK and phosphorylation of its downstream effectors

by

∂cR
∂t

= −k+
RcR + k−

Rc
+
R, (5.7k)

∂c+R
∂t

= k+
RcR − k−

Rc
+
R, (5.7l)

∂cP
∂t

= −k+
1 cP + k−

1 cP−P +DP∇2cP , (5.7m)

∂cP−P

∂t
= k+

1 cP − k−
1 cP−P +DP−P∇2cP−P , (5.7n)

∂cK
∂t

= −k+
2 cK + k−

2 cK−P +DK∇2cK , (5.7o)

∂cK−P

∂t
= k+

2 cK − k−
2 cK−P +DK−P∇2cK−P , (5.7p)

∂cC
∂t

= −k+
3 cC + k−

3 cC−P +DC∇2cC , (5.7q)

∂cC−P

∂t
= k+

3 cC − k−
3 cC−P +DC−P∇2cC−P . (5.7r)

This system of reaction-diffusion equations captures, in direct analogue with Eq. (3.30)
in Ch. 3, the activation of ROCK and the subsequent phosphorylation of MLCP, MLCK
and cofilin.

5.3 Initial and boundary conditions

5.3.1 Mechanical conditions

Initially, we assume zero displacement everywhere in the cell and ECM in the form

u(r, θ, 0) = 0, w(r, θ, 0) = 0. (5.8a)

We prescribe the following boundary conditions on the cell cytoplasm. Firstly, we
enforce zero displacement of the cell cytoplasm on the boundary with the cell nucleus
(which we treat as a rigid body and are neglecting translation), i.e. we have

u(Rn, θ, t) = 0. (5.8b)

Such an assumption (i.e. that solutions are pinned on the inner boundary of the cell
cytoplasm) is highly idealised, and may suppress non-axisymmetric modes of deformation
in our later analysis (see Secs. 5.7-5.10 below). Hence, future developments of this model
should incorporate a stiff, deformable nucleus. On the cell membrane we impose the
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normal stress balance

(σc (R, θ, t)nm) · nm = (σbnm) · nm + fm, (5.8c)

where nm is the unit normal to the membrane, σb can capture stresses due to actin
polymerisation at the boundaries pushing against the membrane or externally applied
stresses (in a similar manner to Ch. 3 we set σb = 0). We could also incorporate the
mechanical effect of the elastic cell membrane (e.g. bending rigidity or membrane tension)
through fm but for the remainder of this Chapter we set fm = 0 (in a similar manner to
Solowiej-Wedderburn and Dunlop, 2022). We also assume no tangential stress on the cell
membrane, i.e.

(σc (R, θ, t)nm) · tm = 0, (5.8d)

where tm is the unit tangent to the cell membrane. Note that, as we are in the regime of
linear viscoelasticity, nm = er, tm = eθ throughout this Chapter (following the work of
Biot, 1963, Martin and Payton, 1964).

In the ECM we impose zero-displacement at r = 0 and in the far field so that

w (0, θ, t) = 0, lim
r→∞

w (r, θ, t) = 0, (5.8e)

whilst at the junctions between ECM regions either side of the cytoplasmic boundary
we match normal and tangential stress and displacement. Throughout this Chapter, we
refer to the ECM below the cell nucleus as region 1 and in the far field (i.e. beyond the
edge of the cell) as region 2. For simplicity, following Ch. 3, we will assume that the
ECM has constant Young’s modulus and viscosity in these regions so that EE(r, θ, t) =

Ē, µE(r, θ, t) = µ̄. It then emerges (in a similar manner to Sec. 3.1.7) that we can semi-
analytically solve the ECM mechanical equations in these regions. For i = 1, 2 we denote
the continuum displacement of the ECM in each of these regions by w̌i and denote the
Cauchy stress by σ̌E,i. Matching of the normal and tangential stresses at each of these
boundaries yields

(σE (Rn, θ, t)n1) · n1 = (σ̌E,1 (Rn, θ, t)n1) · n1, (5.8f)

(σE (Rn, θ, t)n1) · t1 = (σ̌E,1 (Rn, θ, t)n1) · t1, (5.8g)

(σE (R, θ, t)n2) · n2 = (σ̌E,2 (R, θ, t)n2) · n2, (5.8h)

(σE (R, θ, t)n2) · t2 = (σ̌E,2 (R, θ, t)n2) · t2, (5.8i)

where, for i = 1, 2, the unit normal (tangent) of the ECM to the interface with region i is
denoted by ni (ti). Note that, as we are in the regime of linear viscoelasticity, ni = ±er,

ti = ±eθ throughout this Chapter (following Biot, 1963, Martin and Payton, 1964).
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5.3.2 Biochemistry conditions

We assume that the cell is newly introduced to the substrate so that no adhesions have
formed and all integrins are in their low-affinity state for ECM ligand binding. Moreover,
we assume that no SFs or actin filaments have formed so that all actin is monomeric.
We additionally assume that ROCK is initially wholly inactive and consequently, MLCP,
MLCK and cofilin are all initially unphosphorylated and myosin II is found entirely in its
inactive state.

To preserve the mass of the various proteins in the cell, we assume no flux boundary
conditions for each protein species at the cytoplasm edge. Hence, at the edge of the
cytoplasm, the flux, jα, of each protein satisfies

jα · nn = 0, jα · nm = 0, jα = Dα∇cα − vαcα, (5.8j)

where nn = −er is the unit normal to the cytoplasm at the boundary with the cell nucleus.
Here α is used to represent any of the concentrations (or densities), with the first term
representing diffusive effects and the second representing advective effects (with velocity
vα). For non-diffusive and non-advective proteins we immediately satisfy no-flux boundary
conditions and solve the reaction equations at the boundary as we do at the interior.

5.4 Non-dimensionalisation

To simplify our analysis, in a similar manner to Sec. 3.4, we non-dimensionalise our gov-
erning biochemical and mechanical governing Eqs. (5.4)-(5.7), together with with their
associated boundary and initial conditions from Eq. (5.8). Once again, given that our
primary interest is in the microscale patterning of adhesion to the substrate, we scale all
lengths on the cell radius, R, and time on ⟨t⟩ = 1/

(
k+
b NS

)
, the characteristic timescale

of the formation of nascent adhesions (due to the binding of high-affinity integrins with
ECM ligands), where NS is the initial average free ligand density. Note that this pro-
cess is rapid compared to adhesion maturation into focal structures, and so we consider
the dynamics of the model over a large number of dimensionless time units. We scale
stresses on EF

0 , the Young’s modulus of actin filaments when they are at a typical con-
centration (defined below). Furthermore, we scale actin concentrations on CA, the initial
average concentration of actin (in all its forms), scale myosin concentrations on CM , the
initial average concentration of myosin (in its inactive and active forms). We scale inte-
grin and adhesion density on the average initial integrin (in all its forms) density, NI , and
scale ligand density on NS. A similar treatment is given to signaling proteins with ROCK
concentration scaled on CR, the average initial ROCK concentration (in its active and in-
active forms), MLCP concentration scaled on CP , the average concentration of MLCP (in
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its phosphorylated and unphosphorylated forms), MLCK concentration is scaled on CK ,

the average total concentration of MLCK (in its phosphorylated and unphosphorylated
forms) and cofilin concentration is scaled on CC , the average total concentration of cofilin
(in its phosphorylated and unphosphorylated forms).

5.4.1 Mechanical equations

In order to non-dimensionalise the mechanical equations Eq. (5.4) we write

EF = EF
0 f̃F , ES = ES

0 f̃S, EP = EP
0 f̃P , EC = EC

0 f̃C ,

EO = EO
0 f̃O, τ = τ0f̃τ , µc = µc

0g̃c, µE = µE
0 g̃E, (5.9)

κNA = κNA
0 f̃NA, κFA = κFA

0 f̃FA, βNA = βNA
0 f̃NA, βFA = βFA

0 f̃FA,

where EF
0 , E

S
0 , E

P
0 , E

C
0 , E

O
0 , κ

NA
0 , κFA

0 , βNA
0 , βFA

0 , τ0, µ
c
0 and µE

0 are dimensional constants,
and all variables with tildes are dimensionless functions. We scale position, time and
velocity by writing r′ = r/L, t′ = t/⟨t⟩, v′ = v⟨t⟩/L. Hence, the dimensionless form of the
governing equations Eq. (5.4) are

EF
0

R
∇̃ · σ′

c = κIR (u′ −w′) + βI
R

⟨T ⟩
∂

∂t
(u′ −w′) , (5.10a)

EF
0

R
∇̃ · σ′

E = κIR (w′ − u′) + βI
R

⟨t⟩
∂

∂t
(w′ − u′) . (5.10b)

Hence

∇̃ · σ′
c = κ̃I (u

′ −w′) + β̃I
∂

∂t
(u′ −w′) , (5.11a)

∇̃ · σ′
E = κ̃I (w

′ − u′) + β̃I
∂

∂t
(w′ − u′) , (5.11b)

where

σ′
c = Ẽc(r

′, θ)ϵ′c + µ̃c(r
′, θ)

∂ϵ′c
∂t

+ τ ′, (5.11c)

σ′
E = ẼE(r

′, θ)ϵ′E + µ̃E(r
′, θ)

∂ϵ′E
∂t

. (5.11d)

Note that we have the following dimensionless groups

µ̃c
0 = µc

0/E
F
0 ⟨t⟩, τ̃0 = τ0/E

F
0 , ẼS

0 = ES
0 /E

F
0 ,

ẼP
0 = EP

0 /E
F
0 , κ̃NA

0 = κNA
0 R2/EF

0 , κ̃FA
0 = κFA

0 R2/EF
0 ,

β̃NA
0 = βNA

0 R2/EF
0 ⟨t⟩, β̃FA

0 = βFA
0 R2/EF

0 ⟨t⟩, β̃e = βeR
2/EF

0 ⟨t⟩,

µ̃E
0 = µE

0 /E
F
0 ⟨t⟩, ẼC

0 = EC
0 /E

F
0 , ẼO

0 = EO
0 /E

F
0 .

(5.11e)
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The infinitesimal strain tensors from Eq. (5.4d) are already dimensionless, but we can
rewrite them as

ϵ′c =
∂u′

r

∂r′
er ⊗ er +

1

r′

(
∂u′

θ

∂θ
+ u′

r

)
eθ ⊗ eθ +

1

2

(
1

r′
∂u′

r

∂θ
+

∂u′
θ

∂r′
− u′

θ

r′

)
(er ⊗ eθ + eθ ⊗ er) ,

(5.11f)

ϵ′E =
∂w′

r

∂r′
er ⊗ er +

1

r′

(
∂w′

θ

∂θ
+ w′

r

)
eθ ⊗ eθ +

1

2

(
1

r′
∂w′

r

∂θ
+

∂w′
θ

∂r′
− w′

θ

r′

)
(er ⊗ eθ + eθ ⊗ er) .

(5.11g)

The initial conditions Eq. (5.8a) transform to

u′(r′, θ, 0) = 0, w′(r′, θ, 0) = 0. (5.12a)

The boundary conditions on the cell from Eqs. (5.8b)-(5.8d) become

u′(R′
n, θ, t

′) = 0, (5.12b)

(σ′
c (R

′, θ, t′) er) · er = 0, (5.12c)

(σ′
c (R

′, θ, t′) er) · eθ = 0. (5.12d)

From Eq. (5.8e) the boundary conditions imposed on the ECM become

w′ (0, θ, t′) = 0, lim
r′→∞

w′ (r′, θ, t′) = 0, (5.12e)

and we match the dimensionless displacement and stress at the boundaries between the
ECM underneath the cell cytoplasm and regions 1 and 2. In particular, from Eqs. (5.8f)-
(5.8i) we have

(σ′
E (R′

n, θ, t
′) er) · er =

(
σ̌′

E,1 (R
′
n, θ, t

′) er

)
· er, (5.12f)

(σ′
E (R′

n, θ, t
′) er) · eθ =

(
σ̌′

E,1 (R
′
n, θ, t

′) er

)
· eθ, (5.12g)

(σ′
E (R′, θ, t′) er) · er =

(
σ̌′

E,2 (R
′, θ, t′) er

)
· er, (5.12h)

(σ′
E (R′, θ, t′) er) · eθ =

(
σ̌′

E,2 (R
′, θ, t′) er

)
· eθ, (5.12i)

where σ̌′
E,i = σ̌E,i/E

F
0 for i = 1, 2.

5.4.2 Biochemistry

We let Ac = π (R2 −R2
n) denote the surface area of the cell cytoplasm in contact with

the ECM and Vc = πH (R2 −R2
n) denote the volume of the cell cytoplasm. In order to
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non-dimensionalise the cell biochemistry we introduce the following scales

CA =
1

Vc

∫ H

0

∫ 2π

0

∫ R

Rn

(
cG(r, θ, 0) + cF (r, θ, 0) + c+S (r, θ, 0)

)
rdrdθdz, (5.13a)

NI =
1

Ac

∫ 2π

0

∫ R

Rn

(nf (r, θ, 0) + nh(r, θ, 0) + nb(r, θ, 0) + nA(r, θ, 0)) rdrdθ, (5.13b)

CM =
1

Vc

∫ H

0

∫ 2π

0

∫ R

Rn

(
cm(r, θ, 0) + c+m(r, θ, 0)

)
rdrdθdz, (5.13c)

NS =
1

Ac

∫ 2π

0

∫ R

Rn

ns(r, θ, 0) rdrdθ, (5.13d)

CR =
1

Vc

∫ H

0

∫ 2π

0

∫ R

Rn

(
cR(r, θ, 0) + c+R(r, θ, 0)

)
rdrdθdz, (5.13e)

CP =
1

Vc

∫ H

0

∫ 2π

0

∫ R

Rn

(cP (r, θ, 0) + cP−P (r, θ, 0)) rdrdθdz, (5.13f)

CK =
1

Vc

∫ H

0

∫ 2π

0

∫ R

Rn

(cK(r, θ, 0) + cK−P (r, θ, 0)) rdrdθdz, (5.13g)

CC =
1

Vc

∫ H

0

∫ 2π

0

∫ R

Rn

(cC(r, θ, 0) + cC−P (r, θ, 0)) rdrdθdz, (5.13h)

representing a concentration scale for actin species (monomers, filaments and stress fi-
bres), for integrin species (low and high-affinity integrins, nascent and focal adhesions),
for myosin II (inactive and active), ligands, ROCK (inactive and active), MLCP (phos-
phorylated and unphosphorylated), MLCK (phosphorylated and unphosphorylated) and
cofilin (phosphorylated and unphosphorylated) respectively. Note the average concentra-
tion is computed as the total initial mass of each species averaged over the entire cell.

Given that we assume the cell is initially circular, with radius R, then using ci(r, θ, t) =

ci(r, t) we can simplify our scales to

CA =
2

(R2 −R2
n)

∫ R

Rn

(
cG(r, 0) + cF (r, 0) + c+S (r, 0)

)
rdr, (5.14a)

NI =
2

(R2 −R2
n)

∫ R

Rn

(nf (r, 0) + nh(r, 0) + nb(r, 0) + nA(r, 0)) rdr, (5.14b)

CM =
2

(R2 −R2
n)

∫ R

Rn

(
cm(r, 0) + c+m(r, 0)

)
rdr, (5.14c)

NS =
2

(R2 −R2
n)

∫ R

Rn

ns(r, 0) rdr, (5.14d)

CR =
2

(R2 −R2
n)

∫ R

Rn

(
cR(r, 0) + c+R(r, 0)

)
rdr, (5.14e)

CP =
2

(R2 −R2
n)

∫ R

Rn

(cP (r, 0) + cP−P (r, 0)) rdr, (5.14f)
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CK =
2

(R2 −R2
n)

∫ R

Rn

(cK(r, 0) + cK−P (r, 0)) rdr, (5.14g)

CC =
2

(R2 −R2
n)

∫ R

Rn

(cC(r, 0) + cC−P (r, 0)) rdr. (5.14h)

Our choice of scaling introduces the following additional dimensionless groups,

k̃+
p = k+

p ⟨t⟩NI , k̃−
p = k−

p ⟨t⟩, k̃+
m = k+

m⟨t⟩CMCA, k̄+
m = k+

m⟨t⟩C2
A,

k̃−
m = k−

m⟨t⟩, k̄−
m = k−

m⟨t⟩CA/CM , k̃+
a = k+

a ⟨t⟩, k̃−
a = k−

a ⟨t⟩,

k̃+
h = k+

h ⟨t⟩, k̃−
h = k−

h ⟨t⟩, k̃+
b = k+

b ⟨t⟩NS(= 1), k̄+
b = k+

b ⟨t⟩NI ,

k̃−
b = k−

b ⟨t⟩, k̄−
b = k−

b ⟨t⟩NI/NS, k̃+
F = k+

F ⟨t⟩, k̃−
F = k−

F ⟨t⟩,

D̃G = DG⟨t⟩/R2, D̃F = DF ⟨t⟩/R2, D̃m = Dm⟨t⟩/R2, D̃+
m = D+

m⟨t⟩/R2,

D̃f = Df⟨t⟩/R2, k̃+
R = k+

R⟨t⟩, k̃−
R = k−

R⟨t⟩, k̃+
1 = k+

1 ⟨t⟩, k̃−
1 = k−

1 ⟨t⟩,

k̃+
2 = k+

2 ⟨t⟩, k̃−
2 = k−

2 ⟨t⟩, k̃+
3 = k+

3 ⟨t⟩, k̃−
3 = k−

3 ⟨t⟩,

D̃P = DP ⟨t⟩/R2, D̃P−P = DP−P ⟨t⟩/R2, D̃K = DK⟨t⟩/R2,

D̃K−P = DK−P ⟨t⟩/R2, D̃C = DC⟨t⟩/R2, D̃C−P = DC−P ⟨t⟩/R2.

(5.15)

Hence, the dimensionless governing equations become

∂c′G
∂t′

= −k̃+
p c

′
G (n′

b + n′
A) + k̃−

p c
′
F + k̃−

mc
+
S
′
+ D̃G∇̃2c′G, (5.16a)

∂c′F
∂t

+ ∇̃ · (v′c′) = k̃+
p (n′

b + n′
A)− k̃−

p c
′
F − k̃+

mc
′
F c

+
m

′
(
c′F + c+S

′
)
+ D̃F ∇̃2c′F , (5.16b)

∂c+S
′

∂t′
= k̃+

mc
′
F

(
c′F + c+S

′
)
c+m

′ − k̃−
mc

+
S
′
, (5.16c)

∂c′m
∂t′

= −k̃+
a c

′
m + k̃−

a c
+
m

′
+ D̃m∇̃2c′m, (5.16d)

∂c+m
′

∂t′
= k̃+

a c
′
m − k̃−

a c
+
m

′ − k̄+
mc

′
F

(
c′F + c+S

′
)
c+m

′
+ k̄−

mc
+
S
′
+ D̃+

m∇̃2c+m
′
, (5.16e)

∂n′
f

∂t′
= −k̃+

h n
′
f + k̃−

h n
′
h + D̃f∇̃2n′

f , (5.16f)

∂n′
h

∂t′
= k̃+

h n
′
f − k̃−

h n
′
h − k̃+

b n
′
hn

′
s + k̃−

b n
′
b, (5.16g)

∂n′
b

∂t′
= k̃+

b n
′
hn

′
s − k̃−

b n
′
b − k̃+

F n
′
b + k̃−

F n
′
A, (5.16h)

∂n′
A

∂t′
= k̃+

F n
′
b − k̃−

F n
′
A, (5.16i)

∂n′
s

∂t′
= −k̄+

b n
′
hn

′
s + k̄−

b n
′
b, (5.16j)

∂c′R
∂t′

= −k̃+
Rc

′
R + k̃−

Rc
+
R
′
, (5.16k)

∂c+R
′

∂t′
= k̃+

Rc
′
R − k̃−

Rc
+
R
′
, (5.16l)
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∂c′P
∂t′

= −k̃+
1 c

′
P + k̃−

1 c
′
P−P + D̃P ∇̃2c′P , (5.16m)

∂c′P−P

∂t′
= k̃+

1 c
′
P − k̃−

1 c
′
P−P + D̃P−P ∇̃2c′P−P , (5.16n)

∂c′K
∂t′

= −k̃+
2 c

′
K + k̃−

2 c
′
K−P + D̃K∇̃2c′K , (5.16o)

∂c′K−P

∂t′
= k̃+

2 c
′
K − k̃−

2 c
′
K−P + D̃K−P ∇̃2c′K−P , (5.16p)

∂c′C
∂t′

= −k̃+
3 c

′
C + k̃−

3 c
′
C−P + D̃C∇̃2c′C , (5.16q)

∂c′C−P

∂t′
= k̃+

3 c
′
C − k̃−

3 c
′
C−P + D̃C−P ∇̃2c′C−P . (5.16r)

Eqs. (5.16) are similar to their dimensionless counterparts from our one-dimensional for-
mulation in Ch. 3 (see Eqs. 3.45), but with the a reduction in the number of equations
due to the natural simplification of the system in this two-dimensional framework (see
Sec. 5.2).

5.5 Constitutive assumptions

In a similar manner to Sec. 3.5, in order to close the positive feedback loop connecting FA
and SF formation and to connect the cell biochemistry to the underlying mechanical prop-
erties, we link various reaction rates to the concentration of signaling proteins (Sec. 5.5.1),
link the rate of adhesion maturation to adhesion stretch (Sec. 5.5.2) and couple mechanical
properties of the cytoskeleton and adhesions to cell biochemistry (Sec. 5.5.3).

5.5.1 Signaling proteins effect on reaction rates

In analogue with Eq. (3.49) in Ch. 3 we suppose that the activation rate of ROCK is
dependent on the local density of nascent and focal adhesions by setting

k+
R = K+

R (nb + δnA) /NI , (5.17)

so that the relative strength of signaling due to FAs compared to nascent adhesions is
increased by a factor of δ = O(1).

To incorporate the effects of ROCK activation on MLCP, MLCK and cofilin phospho-
rylation, in an identical manner to Sec. 3.5.1 we set k+

j = K+
j gj

(
c+R/CR

)
, j = 1, 2, 3,

where K+
j are dimensional rate constants and gj are dimensionless functions of activated

ROCK concentration.
To capture the effect that MLCK phosphorylation has on myosin II activation and
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that MLCP phosphorylation has on myosin II inactivation we set

k+
a = K+

a g
+
a (cK−P/CK) , g+a (cK−P/CK) = cK−P/CK , (5.18a)

k−
a = K−

a g
−
a (cP/CP ) , g−a (cP/CP ) = cP/CP , (5.18b)

where K+
a , K

−
a are dimensional constants and g+a , g

−
a are dimensionless functions of MLCK-

P and MLCP concentration, respectively. These are identical to our assumptions in
Sec. 3.5.1.

Finally, as in Sec. 3.5.1, to capture the effects increased Rho and ROCK activation has
on actin polymerisation and that cofilin phosphorylation has on actin depolymerisation,
we set

k+
p = K+

p g
+
p

(
c+R/CR

)
, g+p

(
c+R/CR

)
= c+R/CR, (5.18c)

k−
p = K−

p g
−
p (cC/CC) , g−p (cC/CC) = cC/CC , (5.18d)

where K+
p , K

−
p are dimensional constants and g+p , g

−
p are dimensionless functions of the

concentration of ROCK and unphosphorylated cofilin.

5.5.2 The effect of contractile forces

In response to contractile forces generated by SFs, nascent adhesions mature into FAs
through stretching of talin (which exposes VBSs). Hence, the rate of formation of FAs is
assumed to depend on the length (or stretch) of integrin-ligand connections. In a similar
manner to Sec. 3.5.2, we approximate this length by λI(r, θ, t) = |u(r, θ, t) − w(r, θ, t)|
(the relative deformation of the cell to the ECM) and write

k+
F = K+

F g
+
s (λI/R) , g+s (λI/L) = (λI/R)2 , (5.19)

where K+
F is a dimensionless constant and g+s is a dimensionless function of adhesion

length. We note that

λI =

√
(ur − wr)

2 + (uθ − wθ)
2, (5.20)

where we consider only the positive branch of the square root.

5.5.3 Coupling mechanics and biochemistry

As in Sec. 3.5.3, in order to allow the protein concentrations to influence the mechanical
properties of the cytoplasm and adhesions, we select a key set of dimensional parameters
and multiply each by a dimensionless function of a particular protein concentration. We
link each of these mechanical properties to the biochemical properties of the cell and
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adhesions.
In particular, we describe the Young’s modulus of actin filaments by

EF = EF
0 f̃F , f̃F (cF ) = cF/CA, (5.21)

where EF
0 is a dimensional constant and f̃F is a dimensionless function of actin filament

concentration. Similarly, the Young’s modulus of SFs is described by

ES = ES
0 f̃S, f̃S

(
c+S
)
= c+S /CA, (5.22)

where ES
0 is a dimensional constant and f̃S

(
c+S
)

is a dimensionless functions of SF con-
centration. We also link the (active) contractile stress due to myosin II motor action to
the SF concentration by setting

τ = τ0f̃τ , f̃τ
(
c+S
)
= c+S /CA, (5.23)

where τ0 is a dimensional constant and f̃τ
(
c+S
)

is a dimensionless function of SF concen-
tration. The Young’s modulus of the cytoplasm due to the microtubules and intermedi-
ate filaments is assumed to be a constant, EP = EP

0 . We note that this contrasts with
Eq. (3.55) in Sec. 3.5.3, where we assume a non-constant term to additionally capture
the stiff nucleus (we account for this in this two-dimensional model through the explicit
inclusion of a rigid body at the cell centre).

Additionally, we describe the restoring forces and drag induced by nascent adhesions
through

κNA = κNA
0 f̃NA, βNA = βNA

0 f̃NA, f̃NA = nb/NI , (5.24)

where κNA
0 is a dimensional constant and f̃NA is a dimensionless function of nascent ad-

hesion concentration. Similarly the restoring forces and drag induced by FAs are assumed
to be given by

κFA = κFA
0 f̃FA, βFA = βFA

0 f̃FA, f̃FA = nA/NI , (5.25)

where κFA
0 is a dimensional constant and f̃FA is a dimensionless function of FA concen-

tration.

5.6 Axisymmetric problem

We shall henceforth work in dimensionless variables (unless otherwise stated), and drop
all tildes and primes.

In this Section we solve the system outlined in Secs. 5.1-5.5 under the assumption of
axisymmetry in all variables, in which there is no θ-dependence (and all derivatives with
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respect to θ vanish). This allows us to identify an axisymmetric baseline state around
which to linearise in Secs. 5.7-5.8.

5.6.1 Axisymmetric mechanics

In addition to assuming axisymmetry, we assume that the cell (and ECM) undergoes no
rotation or twisting, so that uθ(r, t) = 0, wθ(r, t) = 0. Hence, the deformation of the
cell cytoplasm and ECM can be written as u = ur(r)er and w = wr(r)er, respectively.
Consequently, the strain tensors given by Eq. (5.4c-5.4d) reduce to

ϵc =
∂ur

∂r
er ⊗ er +

ur

r
eθ ⊗ eθ, ϵE =

∂wr

∂r
er ⊗ er +

wr

r
eθ ⊗ eθ. (5.26)

It follows that the azimuthal component of Eq. (5.4a) is satisfied trivially and the radial
components of the governing equations Eq. (5.4a) are given by

∂τ

∂r
+

τ

r
+

(
Ec

∂2ur

∂r2
+ µc

∂3ur

∂r2∂t

)
+

1

r

(
Ec

∂ur

∂r
+ µc

∂2ur

∂r∂t

)
− 1

r2

(
Ecur + µc

∂ur

∂t

)
+

(
∂Ec

∂r

∂ur

∂r
+

∂µc

∂r

∂2ur

∂r∂t

)
= βI

∂

∂t
(ur − wr) + κI (ur − wr) , (5.27a)(

EE
∂2wr

∂r2
+ µE

∂3wr

∂r2∂t

)
+

1

r

(
EE

∂wr

∂r
+ µE

∂2wr

∂r∂t

)
− 1

r2

(
EEwr + µE

∂wr

∂t

)
+

(
∂EE

∂r

∂wr

∂r
+

∂µE

∂r

∂2wr

∂r∂t

)
= βI

∂

∂t
(wr − ur) + κI (wr − ur) . (5.27b)

Initial and boundary conditions

In this axisymmetric framework Eq. (5.8a) becomes

u(r, 0) = 0, w(r, 0) = 0. (5.28a)

In order to apply the boundary conditions on the cell cytoplasm, recall that in this linear
viscoelastic framework we have nn = −er,nm = er and tm = eθ. Hence, Eqs. (5.8b)-(5.8d)
reduce to

u(Rn, t) = 0, (5.28b)

(σc (R, t) er) · er = 0, (5.28c)

(σc (R, t) er) · eθ = 0. (5.28d)

In axisymmetry, Eq. (5.28d) is trivially satisfied.
For the ECM we need to impose a boundary condition at the centre of the domain (i.e.

at r = 0) and in the far field and match displacement and stress at the interface between
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the ECM under the nucleus (region 1) and under the cytoplasm, and under the cytoplasm
and in the far field (region 2). Given that we assume that the ECM has a uniform Young’s
modulus and viscosity in these regions (see Sec. 5.3.1) then the axisymmetric Cauchy
stress can be written as

σ̌E,1 =

(
Ē
∂w̌r,1

∂r
+ µ̄

∂2w̌r,1

∂r∂t

)
er ⊗ er +

1

r

(
Ēw̌r,1 + µ̄

∂w̌r,1

∂t

)
eθ ⊗ eθ, (5.29a)

σ̌E,2 =

(
Ē
∂w̌r,2

∂r
+ µ̄

∂2w̌r,2

∂r∂t

)
er ⊗ er +

1

r

(
Ēw̌r,2 + µ̄

∂w̌r,2

∂t

)
eθ ⊗ eθ, (5.29b)

in regions 1 and 2 respectively. As these regions are not connected to the cell, they
experience no adhesion mediated drag or restoring forces. Hence, from Eq. (5.27), we
solve

∂2

∂r2

(
Ēw̌r,i + µ̄

∂w̌r,i

∂t

)
+

1

r

∂

∂r

(
Ēw̌r,i + µ̄

∂w̌r,i

∂t

)
− 1

r2

(
Ēw̌r,i + µ̄

∂w̌r,i

∂t

)
= 0, (5.30)

with i = 1, 2. Writing W̌r,i =
(
ĒEw̌r,i + µ̄E∂w̌r,i/∂t

)
, then we identify Eq. (5.30) as an

Euler-type ODE for W̌r,i, which we solve by assuming solutions of the form W̌r,i = rk, k ∈
R (Hermann and Saravi, 2014). In particular, we deduce that the general solution to
Eq. (5.30) is

Ēw̌r,i + µ̄
∂w̌r,i

∂t
= Ai(t)r +

Bi(t)

r
, (5.31)

where Ai, Bi are arbitrary functions of time.

ECM below the nucleus

At the origin we impose, from Eq. (5.8e), that w̌r,1(0, t) = 0 and ∂w̌r,1(0, t)/∂t = 0 and
deduce that B1(t) = 0. It follows that, in the region of ECM below the nucleus, we can
write

Ēw̌r,1 + µ̄
∂w̌r,1

∂t
= A1(t)r. (5.32)

Using an integrating factor we can write

w̌r,1(r, t) = e−
Ē
µ̄
t r

µ̄

∫ t

0

e
Ē
µ̄
TA1(T ) dT. (5.33)

Matching displacement at the boundary between region 1 and the region of the ECM
underneath the cytoplasm, we set w̌r,1(Rn, t) = w0(t), where w0(t) is the numerically
calculated displacement of the cytoplasm at the boundary. Combining this with Eq. (5.33)
then then deduce that

w̌r,1(r, t) =
r

Rn

w0(t), (5.34)

for 0 ≤ r ≤ Rn.
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We provide a boundary condition by matching the normal stress at the interface be-
tween region 1 and region 3 (i.e. at the inner edge of the ECM underneath the cell
cytoplasm). From Eq. (5.8f) we have

(σE (Rn, t) er) · er = (σ̌E,1 (Rn, t) er) · er. (5.35)

Note that the tangential stress boundary condition from Eq. (5.8g) is identically satisfied
in this axisymmetric framework. Note also that Eq. (5.35) can be written explicitly as

EE
∂w(Rn, t)

∂r
+ µE

∂2w(Rn, t)

∂r∂t
= Ē

1

Rn

w0(t) + µ̄
1

Rn

w′
0(t), (5.36)

using w̌r,1 from Eq. (5.34).

ECM in the far field

In the far field of the ECM, away from the cell, we impose, from Eq. (5.8e), that w̌r,2(r, t) =

0 and ∂w̌r,2(r, t)/∂t = 0 as r → ∞ and deduce that B2(t) = 0. It follows that

Ēw̌r,2 + µ̄
∂w̌r,2

∂t
=

B2(t)

r
. (5.37)

Using an integrating factor we can write

w̌r,2(r, t) = e−
Ē
µ̄
t 1

µ̄r

∫ t

0

e
Ē
µ̄
TB2(T ) dT. (5.38)

Matching displacement at the boundary between region 2 and the region of the ECM
underneath the cytoplasm, we set w̌r,2(R, t) = wN(t), where wN(t) is the numerically
calculated displacement of the cytoplasm. Combining this with Eq. (5.38) then we deduce
that

w̌r,2(r, t) =
R

r
wN(t), (5.39)

for R ≤ r < ∞.

We provide a boundary condition by matching the normal stress at the interface be-
tween region 2 and region 3 (i.e. at the outer edge of the ECM underneath the cell
cytoplasm). From Eq. (5.8h) we have

(σE (R, t) er) · er = (σ̌E,2 (R, t) er) · er, (5.40)

Note that the tangential stress balance boundary condition from Eq. (5.8i) is identically
satisfied in this axisymmetric framework. Note also that Eq. (5.40) can be written explic-
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itly as

EE
∂w(R, t)

∂r
+ µE

∂2w(R, t)

∂r∂t
= Ē

1

R
wN(t) + µ̄

1

R
w′

N(t), (5.41)

using w̌r,2 from Eq. (5.39).

5.6.2 Biochemistry in axisymmetric problem

In the axisymmetric problem all quantities are independent of θ and we assume radial
treadmilling of actin filaments so that v = vrer. Hence Eqs. (5.7) become

∂cG
∂t

= −k+
p cG (nb + nA) + k−

p cF + k−
mc

+
S +DG

(
∂2cG
∂r2

+
1

r

∂cG
∂r

)
, (5.42a)

∂cF
∂t

+
1

r

∂ (rcFvr)

∂r
= k+

p (nb + nA)− k−
p cF − k+

mcF c
+
m

(
cF + c+S

)
+DF

(
∂2cF
∂r2

+
1

r

∂cF
∂r

)
,

(5.42b)

∂c+S
∂t

= k+
mcF c

+
m

(
cF + c+S

)
− k+

mc
+
S , (5.42c)

∂cm
∂t

= −k+
a cm + k−

a c
+
m +Dm

(
∂2cm
∂r2

+
1

r

∂cm
∂r

)
, (5.42d)

∂c+m
∂t

= k+
a cm − k−

a c
+
m − k+

mcF c
+
m

(
cF + c+S

)
+ k−

mc
+
S +D+

m

(
∂2c+m
∂r2

+
1

r

∂c+m
∂r

)
, (5.42e)

∂nf

∂t
= −k+

h nf + k−
h nh +Df

(
∂2nf

∂r2
+

1

r

∂nf

∂r

)
, (5.42f)

∂nh

∂t
= k+

h nf − k−
h nh − k+

b nhns + k−
b nb, (5.42g)

∂nb

∂t
= k+

b nhns − k−
b nb − k+

F nb + k−
F nA, (5.42h)

∂nA

∂t
= k+

F nb − k−
F nA, (5.42i)

∂ns

∂t
= −k+

b nhns + k−
b nb, (5.42j)

∂cR
∂t

= −k+
RcR + k−

Rc
+
R, (5.42k)

∂c+R
∂t

= k+
RcR − k−

Rc
+
R, (5.42l)

∂cP
∂t

= −k+
1 cP + k−

1 cP−P +DP

(
∂2cP
∂r2

+
1

r

∂cP
∂r

)
, (5.42m)

∂cP−P

∂t
= k+

1 cP − k−
1 cP−P +DP−P

(
∂2cP−P

∂r2
+

1

r

∂cP−P

∂r

)
, (5.42n)

∂cK
∂t

= −k+
2 cK + k−

2 cK−P +DK

(
∂2cK
∂r2

+
1

r

∂cK
∂r

)
, (5.42o)

∂cK−P

∂t
= k+

2 cK − k−
2 cK−P +DK−P

(
∂2cK−P

∂r2
+

1

r

∂cK−P

∂r

)
, (5.42p)
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∂cC
∂t

= −k+
3 cC + k−

3 cC−P +DC

(
∂2cC
∂r2

+
1

r

∂cC
∂r

)
, (5.42q)

∂cC−P

∂t
= k+

3 cC − k−
3 cC−P +DC−P

(
∂2cC−P

∂r2
+

1

r

∂cC−P

∂r

)
. (5.42r)

Given that nn = −er, nm = er, it follows from Eq. (5.8j) that the flux, jα, of each
protein on each of the cytoplasmic boundaries is given by

Dα
∂cα
∂r

− vα,rcα = 0, (5.43)

where vα,r = vα · er.

5.6.3 Computational method

The resulting large system of governing mechanical and biochemical PDEs is parabolic and
so we solve the system numerically using a finite difference method based on the method
of lines, in a similar manner to Sec. 3.7. In particular, we discretise the (dimensionless)
spatial domain Rn/R ≤ x ≤ 1 using a uniform grid size ∆r (the other ECM spatial
domains away from the cell are solved semi-analytically, as in Sec. 5.6.1). We discretise
all spatial derivatives using second-order finite difference stencils and solve the resulting
large family of ODEs numerically using the Matlab solver ode15s. We employ the ficti-
tious nodes procedure to apply the boundary conditions but note that for the ECM we
need to incorporate our far field treatment (Sec. 5.6.1). In most cases we discretise the
(dimensionless) domain with ∆r = 0.01(1−Rn/R) and use Matlab’s default error bounds
for the time-stepping. In this case mass is conserved in the system within 1% error over
long simulations.

5.6.4 Results

In Ch. 3 (see Sec. 3.8) we present a baseline output from our one-dimensional model,
where in Figs. 3.7-3.11 we illustrate the temporal and spatial dynamics of a cell binding
to a stiff ECM. We similarly illustrate these dynamics in this Section, using output from
our two-dimensional model, under the assumption of axisymmetry. We generally use the
parameters listed in Sec. 3.6 from Ch. 3, but with a few exceptions. Particularly, in order
to replicate the observed localisation of myosin cross-linked actin filaments in the vicinity
of the cell membrane, we assume that k+

m = 1 × 103 µM−2 s−1 and k−
m = 1 × 10−1 s−1

(cf. k+
m = 1 × 102 µM−2 s−1 and k−

m = 1 × 10−2 s−1 in Ch. 3). Moreover, owing to
natural simplification in our two-dimensional model (in particular, the fact we only need
to consider one family of ligands, adhesions and actin filaments), we assume our prescribed
ECM ligand pattern, ns(r, 0), is uniform, with ns(r, 0)=1000 µm2. Additionally, we set
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EP
0 = 5 × 102 Pa, as this passive stiffness does not include contributions from the cell

nucleus (in contrast with our work in Ch. 3, where we set EP
0 = 5 × 103 Pa, but where

there is spatial dependence to account for the cell nucleus). We assume that the cell radius
is R = 12.5 µm, reflective of the assumed cell length of L = 25 µm in Ch. 3. Finally,
we assume that the radius of the rigid nucleus is Rn = 5 µm (based on measurements
by Lipowsky et al., 2018); note that this parameter is not present in the one-dimensional
model. In a similar manner to Sec. 3.8, we solve the dimensionless governing equations,
with dimensionless parameters detailed in Table 5.1; we present dimensionless output from
our two-dimensional axisymmetric model for all independent and dependent variables with
the exception of time, which we convert back to dimensional units for ease of interpretation.
We summarise the global response (Fig. 5.3) followed by the local behaviour of individual
components of the system, including the mechanical deformation of the cell cytoplasm and
the ECM (Fig. 5.4), the integrins and adhesions (Fig. 5.5), the signaling proteins (Fig. 5.6)
and actin and myosin (Fig. 5.7). Note that in Figs. 5.5-5.7 we consider the temporal
dynamics of proteins at five radial locations in the cell (noting the assumed axisymmetry),
in particular at the cell boundary (black line), the boundary of the cytoplasm with the cell
nucleus (green line) and three equidistant locations between these points (the red, yellow
and purple lines respectively as we move from the membrane towards the cell nucleus);
these are marked as open squares on spatial plots in Figs. 5.4-5.7. Similarly, we plot the
spatial dynamics of proteins (and mechanical properties) at certain snapshots in time, in
particular t = 250 s (grey), t = 500 s (dark blue), t = 1000 s (orange), t = 1500 s (yellow),
t = 2000 s (purple), t = 2500 s (green), t = 5000 s (maroon) and t = 10000 s (black) after
the cell has been introduced to the substrate; these times are marked as open circles on
temporal plots in Figs. 5.3-5.7.

Dimensionless pa-
rameter

Value Dimensionless pa-
rameter

Value

K̃+
p 2 K̃−

p 0.1
K̃+

a 0.1 K̃−
a 0.1

k̃+
m 44.11 . . . k̃−

m 1
ǩ+
m 147.04 . . . ǩ−

m 3.3̄

k̃+
h 5 k̃−

h 50
k̃+
b 1 k̃−

b 0.1
ǩ+
b 0.1 ǩ−

b 0.01
K̃+

F 250 k̃−
F 0.01

K̃+
R 0.1 K̃+

R 1
K̃+

1 0.1 K̃−
1 0.1

K̃+
2 0.1 K̃−

2 0.1
Continued on the next page
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Table 5.1 – continued from previous page
Dimensionless pa-
rameter

Value Dimensionless pa-
rameter

Value

K̃+
3 0.5 K̃−

3 0.1
D̃G 0.64 D̃F 0.0192
D̃m 0.064 D̃+

m 0.064
D̃f 0.0064 Ũ0 0.08
D̃P 0.96 D̃P−P 0.96
D̃K 0.064 D̃K−P 0.064
D̃C 0.64 D̃C−P 0.64
µ̃0 0.01 τ̃0 1
ẼS

0 5 ẼP
0 0.5

κ̃NA
0 6.25 κ̃FA

0 31.25
β̃NA
0 0.0625 β̃FA

0 0.3125
β̃e 2.5× 10−9 µ̃E

0 1× 10−4

ẼC
0 1000 ẼO

0 0
ẼN

0 10 ṽ0 0.8
Table 5.1: Dimensionless parameters employed in base-
line simulations of the two-dimensional model.

In direct correspondence with Fig. 3.7 in Ch. 3, in Fig. 5.3 we elucidate the overall tem-
poral dynamics of cell-substrate binding by presenting a number of global (i.e. spatially-
independent) measures of the system which summarise the adhesion strength over time.
In particular, we show the radius of the cell (Fig. 5.3a), the partition of integrins across
their different forms (Fig. 5.3b), the relative concentrations of activated/phosphorylated
proteins compared to the total (Fig. 5.3c) and the partition of the total concentration
of actin into its different forms (Fig. 5.3d). In the early stages after the cell is intro-
duced to the substrate the cell diameter remains almost fixed (Fig. 5.3a, compare with
Fig. 3.7a), whilst there is a rapid (almost instantaneous) conversion of free integrins into
high-affinity integrins (Fig. 5.3b), this is also predicted by our one-dimensional model
(see Fig. 3.7b). High-affinity integrins subsequently bind to ECM ligands to form nascent
adhesions, as shown in Fig. 5.3(b). Just as we observe in our one-dimensional model in
Fig. 3.7(c), in response to nascent adhesion formation, ROCK becomes weakly activated,
leading to phosphorylation of MLCP, MLCK and cofilin (Fig. 5.3c). Consequently, actin
is polymerised and a small amount of myosin II is activated, leading to an increase in actin
filament concentration and a small increase in VSF concentration (Fig. 5.3d, compare with
Fig. 3.7d). In response to the formation of VSFs, the cell begins to contract (Fig. 5.3a), in
turn pulling on bound integrins, stretching them and exposing VBSs. Stretching of bound
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integrins leads to maturation of adhesions and a significant increase in ROCK activa-
tion (in line with Eq. 5.17) and, consequently, MLCP, MLCK and cofilin phosphorylation
(from Sec. 5.5.1). This, based on Eq. (5.18), initiates our positive feedback loop, with
the activation of signaling proteins leading to an increase (decrease) in actin polymeri-
sation (depolymerisation) and in myosin II activation (inactivation). Hence, there is a
significant increase in actin filament and VSF formation and so the cell continues to con-
tract (Fig. 5.3a). After approximately 2500 s, the cell settles to an apparent steady state
(Fig. 5.3). However, within the cell the redistribution of myosin II bound actin filaments
and localisation of FAs continues on a longer time scale before the cell finally reaches a
full steady state as seen in Figs. 5.4-5.7 (below). As discussed in Sec. 3.8, this final steady
state is a consequence of our modelling approach; in reality the cell would continue to
grow, interact with neighbouring cells and remodel its environment. In summary, Fig. 5.3
illustrates the global changes in the cell when adhering to a substrate, particularly captur-
ing the changes in diameter (contraction) commensurate with the coupled formation and
maturation of FAs and VSFs. Again, we note the note the similarities of Figs. 5.3(b)-(d)
with Figs. 2.1(a)-(c) in Ch. 2, reinforcing the idea that our simple spatially-averaged model
is successful in describing the global dynamics of cell-substrate adhesion and cytoskeleton
formation. We also note the overshoot in cell contraction in simulations of this model
(see for example Fig. 5.3a), which is not particularly apparent in simulations of our one-
dimensional model (see Fig. 3.7a). This results from the faster myosin dynamics assumed
in this model (see Table 5.1), which leads to enhanced VSF formation and cell contraction
before adhesions mature and further resist deformation.

Replicating our analysis in Sec. 3.8, we proceed to examine in detail how this global
process manifests locally within the cell. We first elucidate the mechanical changes during
cell-substrate binding. In particular, Fig. 5.4 illustrates (radial) spatial profiles of the cell
cytoplasm and ECM (at the eight timepoints highlighted above), including the coupled
radial displacement (and strain) of material points (Fig. 5.4a,b) and the corresponding
radial component of the Cauchy stress (Fig. 5.4c,d). As we observe in Fig. 3.8, there is
initially no deformation or stress inside the cell but, over time, in response to the formation
and maturation of cell-substrate adhesions and associated formation of VSFs, the cell
contracts (i.e. exhibits inward displacement, Figs. 5.3a, 5.4a). After approximately 250-
500 s, the feedback loop connecting FA and VSF formation becomes evident and there is
significant contraction of the cell due to the action of myosin II motors. This displacement
is particularly pronounced near the cell boundary (Fig. 5.3a), where there is concentrated
myosin II cross-linking of actin filaments (as in Fig. 5.7 below). We observe a non-uniform
striation pattern (see spatial variations in cell contraction in the inset in Fig. 5.4a), where
the cell is particularly contracted near the cell membrane but with little deformation near
the nucleus. Particularly, there is no deformation on the boundary with the nucleus, in line
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with our imposed boundary condition in Eq. (5.8b). This spatial inhomogeneity blunts
overall cell contraction and maintains almost isometric tension (Fig. 5.3a). Moreover,
there is a significant increase in stress in response to FA, actin filament and VSF formation
(Fig. 5.4c). In our one-dimensional model, intracellular stress is approximately constant in
the cell bulk throughout the development of cell-substrate adhesions and cell cytoskeleton
(see Fig. 3.8c). In contrast, in this two-dimensional model, the rigid nucleus leads to
a pronounced increase in intracellular stress towards the cell centre at early stages of
adhesion, when the mechanical contribution of the rigid nucleus dominates. Over time, this
disparity persists but reduces as the mechanical effects of mature adhesions and contractile
VSFs near the cell edge begin to contribute significantly. Throughout this process of
cell-substrate adhesion and cytoskeleton development, in a similar manner to the one-
dimensional model, stress rapidly decays to zero at the boundary (this is enforced through
the boundary condition Eq. 5.8c). The adhesive coupling between the cell and the ECM
consequently leads to ECM displacement and strain (Fig. 5.4b), coupled to an ECM stress
(Fig. 5.4d). However, as discussed in Sec. 3.8, the ECM is significantly stiffer than the cell
and consequently exhibits much smaller relative displacements and strain compared to the
cell (whilst showing comparable levels of stress), with a qualitatively similar distribution
of each. Once again, given that we measure adhesion length using the relative deformation
of the cell to the ECM (see Eq. 5.20), in this case (where the much stiffer ECM resists
deformation) the adhesions between the cell and ECM become highly stretched, following a
similar pattern of deformation to the cell. Consequently, FAs form predominantly near the
cell boundaries (as shown in Fig. 5.5 below), leading to an increase in ROCK signaling in
this region (as shown in Fig. 5.6 below). To summarise, Fig. 5.4 illustrates the mechanical
changes (displacement, stress and strain) that occur in both the cell and ECM when a
cell adheres to a substrate and can be compared directly with broadly similar predictions
from our one-dimensional model presented in Fig. 3.8. We now, in a similar manner to
Sec. 3.8, explore the local behaviour of adhesion, signaling protein and actin dynamics.

In Figs. 5.5-5.7 we summarise the dynamics of the key cytoskeletal, adhesion and
signaling proteins in the baseline case shown in Figs. 5.3-5.4. In analogue with Fig. 3.9,
we account for the spatial and temporal changes in integrin and adhesion distribution in
Fig. 5.5. Initially there are no adhesions between the cell and substrate, with all integrins
uniformly dispersed and in a free state with low-affinity to the ECM (Fig. 5.5a-b). These
integrins rapidly bind to talin to form high-affinity integrins (Fig. 5.5c-d), which are able to
bind to ligands in the underlying ECM to form bound integrins (Fig. 5.5e-f). As predicted
by our one-dimensional model (see Fig. 3.9), early activation of integrins and binding
to ECM ligands to form nascent adhesions occurs almost uniformly, owing to the high
diffusivity of free integrins and the assumed uniformity in initial free integrin and ligand
density. In response to signaling, the bound integrins will eventually go on to mature into
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FAs (Fig. 5.5g-h).
The formation of nascent adhesions initiates weak signaling inside the cell, the dynam-

ics of this process are summarised in Fig. 5.6 and can be compared with near identical
dynamics in Fig. 3.10 predicted by our one-dimensional model. In particular, ROCK be-
comes weakly activated (Fig. 5.6a-b). This occurs nearly uniformly, reflecting the early
uniform distribution of nascent adhesions (and lack of FAs). In response to ROCK activa-
tion, phosphorylation of MLCP (Fig. 5.6c-d), MLCK (Fig. 5.6e-f) and cofilin (Fig. 5.6g-h)
occurs. These are also uniform at early times, resultant from a combination of uniform
ROCK activation and because they are all assumed to be diffusive. The weak activation
of ROCK leads to an increase in actin polymerisation across the cell at nascent adhe-
sions. Moreover, the phosphorylation of MLCP (MLCK) leads to a decrease (increase)
in myosin II inactivation (activation) and cofilin phosphorylation leads to a reduction in
actin depolymerisation.

In response to signaling, actin is polymerised and myosin II is activated leading to
the formation of actin filaments and VSFs. The dynamics of these are summarised in
Fig. 5.7 and can be directly compared with predictions from our one-dimensional model
presented in Fig. 3.9. In particular we consider the temporal (spatial) dynamics of actin
monomers in Fig. 5.7(a) (Fig. 5.7b), of actin filaments in Fig. 5.7(c) (Fig. 5.7d), of VSFs
in Fig. 5.7(e) (Fig. 5.7f) and of myosin II in Fig. 5.7(g) (Fig. 5.7h). At early times there
is, consistent with the near uniform weak signaling, a nearly uniform decrease in actin
monomer concentration (Fig. 5.7a-b) as actin is polymerised, leading to an increase in actin
filament concentration (Fig. 5.7c-d). The small amount of activated myosin II (Fig. 5.7g-
h) then begins to cross-link actin filaments and form contractile VSFs (Fig. 5.7e-f). As
a consequence of contraction of resultant VSFs, bound integrins are pulled (stretched),
enhancing FA formation and in turn signaling and VSF formation, consequently Figs. 5.5-
5.7 are intimately linked and feedback to one another.

The formation of VSFs, particularly the contractile action of myosin motors, causes
the cell to begin to contract approximately 250-500 s after being introduced to the sub-
strate (Figs. 5.3a, 5.4a). At this time the positive feedback loop becomes activated. This
contraction is most keenly felt near the cell edge, leading to maturation of bound inte-
grins into FAs in this region (Fig. 5.5g-h) as VBSs become exposed as bound integrins
become stretched (Fig. 5.4a-b). Consequently there is also a transient increase in the cell
in the number of bound integrins (Fig. 5.5e-f). Reflecting the inhomogeneity in FA forma-
tion (Fig. 5.5g-h), spatial variations emerge in free integrin (Fig. 5.5a-b) and high-affinity
integrin density (Fig. 5.5c-d), though these differences remain relatively small owing to
the high-diffusivity of free integrins. As ROCK activation is significantly enhanced in
response to FA formation (compared to nascent adhesions) and because ROCK (in both
inactive and active forms) is assumed to be non-diffusive, significant spatial distributions
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arise in activated ROCK concentration (Fig. 5.6a-b), mirroring the spatial distribution in
FA density (Fig. 5.5g-h). Consequently, phosphorylation of MLCP (Fig. 5.6c-d), MLCK
(Fig. 5.6e-f) and cofilin (Fig. 5.6g-h) becomes significantly enhanced, though these pro-
teins are diffusive and so are comparatively spatially homogeneous (as would be expected
based on dimensionless parameters presented in Table 5.1). These phosphorylated signal-
ing proteins consequently lead to a significant increase in actin polymerisation (Fig. 5.7c-d)
in the locality of FAs and in turn a significant decrease in actin monomer concentration
(Fig. 5.7a-b). However, this reduction in monomer concentration occurs approximately
uniformly, owing to the high diffusivity of actin monomers. The resultant filaments are
treadmilled towards the cell nucleus and are cross-linked, in the vicinity of FAs, by acti-
vated myosin II (Fig. 5.7g-h), leading to a significant increase in VSF concentration near
FAs (Fig. 5.7e-f). These VSFs exert further contractile forces on bound integrins, leading
to more FA formation (Fig. 5.5g-h), strengthened signaling (Fig. 5.6) and consequently
more VSF formation (Fig. 5.7e-f). This process of rapid increases in FA and VSF for-
mation occurs over the course of around 500-2000 s after the cell is introduced to the
substrate. Thereafter, redistribution of adhesions (Fig. 5.5e-h), signaling hubs (Fig. 5.6)
and VSFs (Fig. 5.7e-f) dominates until a steady state is reached (after around 10000 s).

In summary Figs. 5.5-5.7 reproduce the predictions of their one-dimensional counter-
parts Figs. 3.9-3.11 in Ch. 3. When taken together, Figs. 5.5-5.7 demonstrate the effect
of the positive feedback loop in the cell. They show how adhesion formation precipitates
signaling inside the cell which, in turn, leads to the formation of actin filaments and VSFs
and are able to capture how increased SF formation leads, through cell contraction (as
shown in Figs. 5.3-5.4), to increased and localised FA formation.
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Figure 5.3: Global measures of cytoskeleton and adhesion development. (a) Evolution of
dimensionless cell radius with time. Time-dependent evolution of percentage of total: (b)
integrins in their various forms (free low-affinity integrins, high-affinity integrins, bound
integrins and recruited into FAs), (c) ROCK activated and MLCP, MLCK and cofilin
phosphorylated, (d) actin in its different forms (monomeric, polymerised into filaments
or recruited into SFs). Insets show large time dynamics for each property, open circles
indicate times of interest, corresponding to identically coloured lines in spatial distributions
in Figs. 5.4-5.7. Parameter values are given in Table 5.1.
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Figure 5.4: Mechanical properties of the cell and ECM. At snapshots in time, as a function
of initial dimensionless radial position, dimensionless (a) radial displacement of points in
cell from their initial position, (b) radial displacement of points in ECM from their initial
position, (c) radial stress in cytosol, (d) radial stress in ECM. Insets in (a), (b) show
radial strain, percentage stretch (positive)/compression (negative), of the cell and ECM
respectively. Parameter values are given in Table 5.1.
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5.7 Linearisation around the axisymmetric state

In Sec. 5.6 we found that the cell forms adhesions and develops contractile VSFs when
introduced to a (stiff) substrate. We observe in Sec. 5.6.4 that, after some time (on the
order of an hour), the cell will settle to a near steady axisymmetric state. In order to
understand the susceptibility of the cell to non-axisymmetric deformations, we linearise
the model around this axisymmetric base state. In particular, we perturb all quantities
with a modal perturbation of (small) amplitude ϵ. Hence, all concentrations and densities
can be written as the sum of a baseline value (denoted by a bar) and a perturbation
(denoted by a hat), i.e. c = c̄ + ϵĉ, n = n̄ + ϵn̂. Moreover, displacements in the cell and
ECM be written as u = ū + ϵû, w = w̄ + ϵŵ and we assume all mechanical properties
of the cell, ECM and adhesions can be written as the sum of a baseline axisymmetric
component (denoted by a bar) and a small modal perturbation denoted by a hat. All
values denoted by a bar correspond to the axisymmetric base state values extracted from
our axisymmetric model, discussed in Sec. 5.6.4, and consequently have no θ−dependence.
Note that this linearisation is independent of the assumption of linear elasticity, which is
present in the axisymmetric model also.

5.7.1 Mechanical equations

The Cauchy stress inside the cell cytoplasm can similarly be decomposed into its axisym-
metric base state value plus a small perturbation, by writing σc = σ̄c + ϵσ̂c with

σc =
(
Ēc + ϵÊc

)
(ϵ̄c + ϵϵ̂c) + (µ̄c + ϵµ̂c)

(
∂ϵ̄c
∂t

+ ϵ
∂ϵ̂c
∂t

)
+ (τ̄ + ϵτ̂ ) +O

(
ϵ2
)
. (5.44)

It follows that

σc = Ēcϵ̄c + µ̄c
∂ϵ̄c
∂t

+ τ̄ + ϵ

(
Ēcϵ̂c + Êcϵ̄c + µ̄c

∂ϵ̂c
∂t

+ µ̂c
∂ϵ̄c
∂t

+ τ̂

)
+O

(
ϵ2
)
, (5.45)

where, noting the assumption that ūr is independent of θ and ūθ = 0 (from Sec. 5.6),

ϵ̄c =
∂ūr

∂r
er ⊗ er +

ūr

r
eθ ⊗ eθ, (5.46a)

and where the perturbation infinitesimal stress tensor is given by

ϵ̂c =
∂ûr

∂r
er ⊗ er +

1

r

(
∂ûθ

∂θ
+ ûr

)
eθ ⊗ eθ +

1

2

(
1

r

∂ûr

∂θ
+

∂ûθ

∂r
− ûθ

r

)
(er ⊗ eθ + eθ ⊗ er) .

(5.46b)
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From Eq. (5.4a) we have

∇ · σc =
(
β̄I + ϵβ̂I

) ∂

∂t
(ū+ ϵû− w̄ − ϵŵ) + (κ̄I + ϵκ̂I) (ū+ ϵû− w̄ − ϵŵ) +O

(
ϵ2
)
.

(5.47)

Combining Eq. (5.45) and Eq. (5.47) then at O(ϵ0) we have

∇ ·
(
Ēcϵ̄c + µ̄c

∂ϵ̄c
∂t

+ τ̄

)
= β̄I

∂

∂t
(ū− w̄) + κ̄I (ū− w̄) , (5.48)

this is precisely the axisymmetric problem we have already solved in Sec. 5.6, with results
detailed in Sec. 5.6.4. At O(ϵ) we have from Eq. (5.45) and Eq. (5.47) that

∇ ·
(
Ēcϵ̂c + Êcϵ̄c + µ̄c

∂ϵ̂c
∂t

+ µ̂c
∂ϵ̄c
∂t

+ τ̂

)
= β̄I

∂

∂t
(û− ŵ) + β̂I

∂

∂t
(ū− w̄)

+κ̄I (û− ŵ) + κ̂I (ū− w̄) . (5.49)

In an identical manner we write the Cauchy stress in the ECM as σE = σ̄E + ϵσ̂E. A
similar calculation demonstrates that

ϵ̄E =
∂w̄r

∂r
er ⊗ er +

w̄r

r
eθ ⊗ eθ, (5.50)

with the infinitesimal perturbation strain tensor given by

ϵ̂E =
∂ŵr

∂r
er ⊗er +

1

r

(
∂ŵθ

∂θ
+ ŵr

)
eθ ⊗eθ +

1

2

(
1

r

∂ŵr

∂θ
+

∂ŵθ

∂r
− ŵθ

r

)
(er ⊗ eθ + eθ ⊗ er) .

(5.51)
We hence deduce, in a similar manner to the cell, the linearised ECM displacement equa-
tion

∇ ·
(
ĒE ϵ̂E + ÊE ϵ̄E + µ̄E

∂ϵ̂E
∂t

+ µ̂E
∂ϵ̄E
∂t

)
= β̄I

∂

∂t
(ŵ − û) + β̂I

∂

∂t
(w̄ − ū)

+κ̄I (ŵ − û) + κ̂I (w̄ − ū) . (5.52)

Initial and boundary conditions

We perturb our linearised system from the baseline state identified in Sec. 5.6. The form
of this perturbation (i.e. the initial condition imposed) is discussed in detail in Sec. 5.9
(below).

The condition on the perturbation displacement at the boundary between the cell
cytoplasm and cell nucleus is

û(Rn, θ, t) = 0. (5.53a)
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On the edge of the cell adjacent to the cell membrane, the boundary conditions are applied
in the unperturbed domain (following work in linear elasticity by Biot, 1963, Martin and
Payton, 1964). It follows from Eq. (5.8c) that

(σ̂cer) · er = 0. (5.53b)

At the edge of the cell connected to the cell membrane we also have from Eq. (5.8d) that

(σ̂cer) · eθ = 0. (5.53c)

The perturbation boundary conditions on the ECM are given by

ŵ (0, θ, t) = 0, lim
r→∞

ŵ (r, θ, t) = 0, (5.53d)

whilst at the junctions between ECM regions either side of the cell cytoplasm boundary
we match stress and displacement, as in Sec. 3.1.7 and Sec. 5.6.1. In particular, from
Eqs. (5.12f)-(5.12i), at O(ϵ) for regions 1 and 2 we have

(σ̂En1) · n1 =
(
ˆ̌σE,1n1

)
· n1, (σ̂En1) · t1 =

(
ˆ̌σE,1n1

)
· t1, (5.53e)

(σ̂En2) · n2 =
(
ˆ̌σE,2n2

)
· n2, (σ̂En2) · t2 =

(
ˆ̌σE,2n2

)
· t2, (5.53f)

where, for i = 1, 2, σ̌i = ¯̌σi + ϵˆ̌σi, ni = ±er and ti = ±eθ.

5.7.2 Biochemistry

We introduce small perturbations to all concentrations and densities in the biochemical
equations Eqs. (5.42). The O(ϵ0) equations are exactly those solved in Sec. 5.6.2 given by
Eqs. (5.42). At O(ϵ) we have

(5.54a)

∂ĉG
∂t

= −
(
k̄+
p c̄G (n̂b + n̂A) + k̂+

p ĉG (n̄b + n̄A) + k̂+
p c̄G (n̄b + n̄A)

)
+
(
k̄−
p ĉF + k̂−

p c̄F

)
+ k−

mĉ
+
S +DG

(
∂2ĉG
∂r2

+
1

r

∂ĉG
∂r

+
1

r2
∂2ĉG
∂θ2

)
,

∂ĉF
∂t

+
1

r

∂ (rĉFvr)

∂r
=
(
k̄+
p c̄G (n̂b+ n̂A)+ k̂+

p ĉG (n̄b+ n̄A)+ k̂+
p c̄G (n̄b+ n̄A)

)
−
(
k̄−
p ĉF + k̂−

p c̄F

)
− k+

m

(
c̄F c̄

+
m

(
ĉF + ĉ+S

)
+ c̄F ĉ

+
m

(
c̄F + c̄+S

)
+ ĉF c̄

+
m

(
c̄F + c̄+S

))
+DF

(
∂2ĉF
∂r2

+
1

r

∂ĉF
∂r

+
1

r2
∂2ĉF
∂θ2

)
,

(5.54b)

(5.54c)
∂ĉ+S
∂t

= k+
m

(
c̄F c̄

+
m

(
ĉF + ĉ+S

)
+ c̄F ĉ

+
m

(
c̄F + c̄+S

)
+ ĉF c̄

+
m

(
c̄F + c̄+S

))
− k+

mĉ
+
S ,

(5.54d)
∂ĉm
∂t

= −
(
k̄+
a ĉm + k̂+

a c̄m

)
+
(
k̄−
a ĉ

+
m + k̂−

a c̄
+
m

)
+Dm

(
∂2ĉm
∂r2

+
1

r

∂ĉm
∂r

+
1

r2
∂2ĉm
∂θ2

)
,
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(5.54e)

∂c+m
∂t

=
(
k̄+
a ĉm + k̂+

a c̄m

)
−
(
k̄−
a ĉ

+
m + k̂−

a c̄
+
m

)
− k+

m

(
c̄F c̄

+
m

(
ĉF + ĉ+S

)
+ c̄F ĉ

+
m

(
c̄F + c̄+S

)
+ ĉF c̄

+
m

(
c̄F + c̄+S

))
+ k−

mĉ
+
S +D+

m

(
∂2ĉ+m
∂r2

+
1

r

∂ĉ+m
∂r

+
1

r2
∂2ĉ+m
∂θ2

)
,

(5.54f)
∂n̂f

∂t
= −k+

h n̂f + k−
h n̂h +Df

(
∂2n̂f

∂r2
+

1

r

∂n̂f

∂r
+

1

r2
∂2n̂f

∂θ2

)
,

(5.54g)
∂n̂h

∂t
= k+

h n̂f − k−
h n̂h − k+

b (n̄hn̂s + n̂hn̄s) + k−
b n̂b,

(5.54h)
∂n̂b

∂t
= k+

b (n̄hn̂s + n̂hn̄s)− k−
b n̂b −

(
k̄+
F n̂b + k̂+

F n̄b

)
+ k−

F n̂A,

(5.54i)
∂n̂A

∂t
=
(
k̄+
F n̂b + k̂+

F n̄b

)
− k−

F n̂A,

(5.54j)
∂ns

∂t
= −k+

b (n̄hn̂s + n̂hn̄s) + k−
b n̂b,

(5.54k)
∂ĉR
∂t

= −
(
k̄+
R ĉR + k̂+

R c̄R

)
+
(
k̄−
R ĉ

+
R + k̂−

R c̄
+
R

)
,

(5.54l)
∂ĉ+R
∂t

=
(
k̄+
R ĉR + k̂+

R c̄R

)
−
(
k̄−
R ĉ

+
R + k̂−

R c̄
+
R

)
,

(5.54m)
∂ĉP
∂t

= −
(
k̄+
1 ĉP + k̂+

1 c̄P

)
+ k−

1 ĉP−P +DP

(
∂2ĉP
∂r2

+
1

r

∂ĉP
∂r

+
1

r2
∂2ĉP
∂θ2

)
,

(5.54n)
∂ĉP−P

∂t
=
(
k̄+
1 ĉP + k̂+

1 c̄P

)
− k−

1 ĉP−P +DP−P

(
∂2ĉP−P

∂r2
+

1

r

∂ĉP−P

∂r
+

1

r2
∂2ĉP−P

∂θ2

)
,

(5.54o)
∂ĉK
∂t

= −
(
k̄+
2 ĉK + k̂+

2 c̄K

)
+ k−

2 ĉK−P +DK

(
∂2ĉK
∂r2

+
1

r

∂ĉK
∂r

+
1

r2
∂2ĉK
∂θ2

)
,

(5.54p)
∂ĉK−P

∂t
=
(
k̄+
2 ĉK+ k̂+

2 c̄K

)
−k−

2 ĉK−P +DK−P

(
∂2ĉK−P

∂r2
+
1

r

∂ĉK−P

∂r
+

1

r2
∂2ĉK−P

∂θ2

)
,

(5.54q)
∂ĉC
∂t

= −
(
k̄+
3 ĉC + k̂+

3 c̄C

)
+ k−

3 ĉC−P +DC

(
∂2ĉC
∂r2

+
1

r

∂ĉC
∂r

+
1

r2
∂2ĉC
∂θ2

)
,

(5.54r)
∂ĉC−P

∂t
=
(
k̄+
3 ĉC + k̂+

3 c̄C

)
− k−

3 ĉC−P +DC−P

(
∂2ĉC−P

∂r2
+

1

r

∂ĉC−P

∂r
+

1

r2
∂2ĉC−P

∂θ2

)
,

where quantities denoted with a bar represent baseline values calculated from the non-
linear simulations presented in Sec. 5.6.
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Perturbation to rate constants

Note that Eqs. (5.54) have also required expansion of some reaction rates (those that are
non-constant). We deduce the perturbation reaction rates as follows. Let kg denote a
generic reaction rate which depends on a parameter ϕ, i.e. kg = kg(ϕ). Using Taylor series
we can expand

kg(ϕ̄+ ϵϕ̂) = kg(ϕ̄) + ϵϕ̂k′
g(ϕ̄) +O(ϵ2), (5.55)

so that
k̄g = kg

(
ϕ̄
)
, k̂g = ϕ̂k′

g

(
ϕ̄
)
, (5.56)

where the prime is used to denote differentiation. For most non-constant rates we have a
linear relationship in one variable, the only exceptions are the rate of ROCK activation,
which from Eq. (5.17) is assumed to depend on both bound integrin and FA density
(and consequently requires application of Taylor series for functions of multiple variables),
and the rate of FA maturation, which from Eq. (5.19) is assumed to have a quadratic
dependence on the adhesion stretch. Hence, the baseline rate constant for each of these
quantities is given by

k̄+
p = K+

p c̄
+
R, k̄−

p = K−
p c̄C , k̄+

a = K+
a c̄K−P , k̄−

a = K−
a c̄P ,

k̄+
R = K+

R (n̄b + δn̄A) , k̄+
F = k+

F λ̄
2
I ,

(5.57)

precisely those used in the axisymmetric baseline model. The perturbation rate is given
by

k̂+
p = K+

p ĉ
+
R, k̂−

p = K−
p ĉC , k̂+

a = K+
a ĉK−P , k̂−

a = K−
a ĉP−P ,

k̂+
R = K+

R (n̂b + δn̂A) , k̄+
F = 2K+

F λ̄I λ̂I .
(5.58)

From Eq. (5.20) we have

λI = λ̄I + ϵλ̂I =

√
((ūr + ϵûr)− (w̄r + ϵŵr))

2 + ((ūθ + ϵûθ)− (w̄θ + ϵŵθ))
2. (5.59)

Noting that ūθ = 0, w̄θ = 0 and expanding we deduce that

λI =

√
(ūr − w̄r)

2 + ϵ
1√

(ūr − w̄r)
2
(ūr − w̄r) (ûr − ŵr) +O

(
ϵ2
)
, (5.60)

where we consider only the positive branch of the square root terms.

Initial and boundary conditions

The imposed initial condition on perturbation quantities depends on the exact form of
perturbation imposed, we discuss this in Sec. 5.9 (below).

As discussed in Sec. 5.3.2, in order to preserve the mass of the various proteins in the
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cell, we assume no flux boundary conditions for each protein species at the edge of the
cytoplasm. At the boundary of the cell cytoplasm with the nucleus we have nn = −er

whilst at the cell membrane we have nm = er. The flux through the cell cytoplasm can
be written jα = j̄α + ϵĵα. From Eq. (5.8j), the flux at the boundary between the cell
cytoplasm and nucleus and at the cell membrane can be written as

j̄α · er = 0, j̄α = Dα∇c̄α − vαc̄α, (5.61a)

ĵα · er = 0, ĵα = Dα∇ĉα − vαĉα, (5.61b)

at O(ϵ0) (from the axisymmetric problem) and O(ϵ) respectively.

5.8 Fourier decomposition

For simple periodic solutions, we suppose that all O(ϵ) quantities, denoted by hats in
Sec. 5.7, can be decomposed into a function of radial position and time, and a simple
periodic function of θ, parameterised by an azimuthal wavenumber, n ∈ N. In general, for
any function f̂ we set f̂(r, θ, t) = f̃(r, t;n)einθ.

5.8.1 Mechanical equations

Under the assumption of periodicity, the infinitesimal stress tensors Eqs. (5.46b) and (5.51)
satisfy ϵ̂c = ϵ̃ce

inθ, ϵ̂E = ϵ̃Ee
inθ, where for each n ∈ N we have

ϵ̃c =
∂ũr

∂r
er ⊗ er +

1

r
(inũθ + ũr) eθ ⊗ eθ +

1

2

(
1

r
inũr +

∂ũθ

∂r
− ũθ

r

)
(er ⊗ eθ + eθ ⊗ er) ,

(5.62a)

ϵ̃E =
∂w̃r

∂r
er ⊗ er +

1

r
(inw̃θ + w̃r) eθ ⊗ eθ +

1

2

(
1

r
inw̃r +

∂w̃θ

∂r
− w̃θ

r

)
(er ⊗ eθ + eθ ⊗ er) .

(5.62b)

The momentum balance equations Eq. (5.49) and Eq. (5.52) then become

∇ ·
[(

Ēcϵ̃c + Ẽcϵ̄c + µ̄c
∂ϵ̃c
∂t

+ µ̃c
∂ϵ̄c
∂t

+ τ̃

)
einθ
]
= β̄I

∂

∂t
(ũ− w̃) einθ + β̃I

∂

∂t
(ū− w̄) einθ

+κ̄I (ũ− w̃) einθ + κ̃I (ū− w̄) einθ, (5.63a)

∇ ·
[(

ĒE ϵ̃E + ẼE ϵ̄E + µ̄E
∂ϵ̃E
∂t

+ µ̃E
∂ϵ̄E
∂t

)
einθ
]
= β̄I

∂

∂t
(w̃ − ũ) einθ + β̃I

∂

∂t
(w̄ − ū) einθ

+κ̄I (w̃ − ũ) einθ + κ̃I (w̄ − ū) einθ. (5.63b)
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Writing ur = Ur, uθ = iUθ, wr = Wr, wθ = iWθ with Ur, Uθ, Wr, Wθ ∈ R, then Eq. (5.63)
yields

1

2r2

[
−2

(
ẼcŪr + µ̃c

∂Ūr

∂t

)
−
(
2 + n2

)(
ĒcŨr + µ̄c

∂Ũr

∂t

)
+ 3n

(
ĒcŨθ + µ̄c

∂Ũθ

∂t

)

+ 2rτ̃ + 2r

(
Ẽc

∂Ūr

∂r
+ µ̃c

∂2Ūr

∂r∂t

)
+ 2r

(
Ēc

∂Ũr

∂r
+ µ̄c

∂2Ũr

∂r∂t

)
− nr

(
Ēc

∂Ũθ

∂r
+ µ̄c

∂2Ũθ

∂r∂t

)

+ 2r2
∂τ̃

∂r
+ 2r2

(
∂Ẽc

∂r

∂Ūr

∂r
+

∂µ̃c

∂r

∂2Ūr

∂r∂t

)
+ 2r2

(
∂Ēc

∂r

∂Ũr

∂r
+

∂µ̄c

∂r

∂2Ũr

∂r∂t

)

+ 2r2
(
Ẽc

∂2Ūr

∂r2
+ µ̃c

∂3Ūr

∂r2∂t

)
+ 2r2

(
Ēc

∂2Ũr

∂r2
+ µ̄c

∂3Ũr

∂r2∂t

)]
= β̄I

∂

∂t

(
Ũr − W̃r

)
+ β̃I

∂

∂t

(
Ūr − W̄r

)
+ κ̄I

(
Ũr − W̃r

)
+ κ̃I

(
Ūr − W̄r

)
,

(5.64a)

1

2r2

[
2n

(
ẼcŪr + µ̃c

∂Ūr

∂t

)
+ nr

(
∂Ēc

∂r
Ũr +

∂µ̄c

∂r

∂Ũr

∂t

)
− r

(
∂Ēc

∂r
Ũθ +

∂µ̄c

∂r

∂Ũθ

∂t

)

+ r2

(
∂Ēc

∂r

∂Ũθ

∂r
+

∂µ̄c

∂r

∂2Ũθ

∂r∂t

)
+ 3n

(
ĒcŨr + µ̄c

∂Ũr

∂t

)
−
(
1 + 2n2

)(
ĒcŨθ + µ̄c

∂Ũθ

∂t

)

+ nr

(
Ēc

∂Ũr

∂r
+ µ̄c

∂2Ũr

∂r∂t

)
+ r

(
Ēc

∂Ũθ

∂r
+ µ̄c

∂2Ũθ

∂r∂t

)
+ r2

(
Ēc

∂2Ũθ

∂r2
+ µ̄c

∂3Ũθ

∂r2∂t

)]
=

β̄I
∂

∂t

(
Ũθ − W̃θ

)
+ β̃I

∂

∂t

(
Ūθ − W̄θ

)
+ κ̄I

(
Ũθ − W̃θ

)
+ κ̃I

(
Ūθ − W̄θ

)
,

(5.64b)

1

2r2

[
−2

(
ẼEW̄r + µ̃E

∂W̄r

∂t

)
−
(
2 + n2

)(
ĒEW̃r + µ̄E

∂W̃r

∂t

)
+ 3n

(
ĒEW̃θ + µ̄E

∂W̃θ

∂t

)

+ 2r

(
ẼE

∂W̄r

∂r
+ µ̃E

∂2W̄r

∂r∂t

)
+ 2r

(
ĒE

∂W̃r

∂r
+ µ̄E

∂2W̃r

∂r∂t

)
− nr

(
ĒE

∂W̃θ

∂r
+ µ̄E

∂2W̃θ

∂r∂t

)

+ 2r2

(
∂ẼE

∂r

∂W̄r

∂r
+

∂µ̃E

∂r

∂2W̄r

∂r∂t

)
+ 2r2

(
∂ĒE

∂r

∂W̃r

∂r
+

∂µ̄E

∂r

∂2W̃r

∂r∂t

)

+ 2r2
(
ẼE

∂2W̄r

∂r2
+ µ̃E

∂3W̄r

∂r2∂t

)
+ 2r2

(
ĒE

∂2W̃r

∂r2
+ µ̄E

∂3W̃r

∂r2∂t

)]
= β̄I

∂

∂t

(
W̃r − Ũr

)
+ β̃I

∂

∂t

(
Ūr − W̄r

)
+ κ̄I

(
W̃r − Ũr

)
+ κ̃I

(
Ūr − W̄r

)
,

(5.64c)
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1

2r2

[
2n

(
ẼEW̄r + µ̃E

∂W̄r

∂t

)
+ nr

(
∂ĒE

∂r
W̃r +

∂µ̄E

∂r

∂W̃r

∂t

)
− r

(
∂ĒE

∂r
W̃θ +

∂µ̄E

∂r

∂W̃θ

∂t

)

+ r2

(
∂ĒE

∂r

∂W̃θ

∂r
+

∂µ̄E

∂r

∂2W̃θ

∂r∂t

)
+ 3n

(
ĒEW̃r + µ̄E

∂W̃r

∂t

)

−
(
1 + 2n2

)(
ĒEW̃θ + µ̄E

∂W̃θ

∂t

)
+ nr

(
ĒE

∂W̃r

∂r
+ µ̄E

∂2W̃r

∂r∂t

)

+ r

(
ĒE

∂W̃θ

∂r
+ µ̄E

∂2W̃θ

∂r∂t

)
+ r2

(
ĒE

∂2W̃θ

∂r2
+ µ̄E

∂3W̃θ

∂r2∂t

)]
= β̄I

∂

∂t

(
W̃θ − Ũθ

)
+ β̃I

∂

∂t

(
W̄θ − Ūθ

)
+ κ̄I

(
W̃θ − Ũθ

)
+ κ̃I

(
W̄θ − Ūθ

)
.

(5.64d)

We note from Sec. 5.6 that Ūθ = 0, W̄θ = 0.

We assume that the mechanical properties of the ECM have not been perturbed so
that ẼE = 0 and µ̃E = 0. Consequently, from Eq. (5.64), we have for the ECM that

(5.65a)

1

2r2

[
−
(
2 + n2

)(
ĒEW̃r + µ̄E

∂W̃r

∂t

)
+ 3n

(
ĒEW̃θ + µ̄E

∂W̃θ

∂t

)

+ 2r

(
ĒE

∂W̃r

∂r
+ µ̄E

∂2W̃r

∂r∂t

)
− nr

(
ĒE

∂W̃θ

∂r
+ µ̄E

∂2W̃θ

∂r∂t

)

+ 2r2

(
∂ĒE

∂r

∂W̃r

∂r
+

∂µ̄E

∂r

∂2W̃r

∂r∂t

)
+ 2r2

(
ĒE

∂2W̃r

∂r2
+ µ̄E

∂3W̃r

∂r2∂t

)]
=

β̄I
∂

∂t

(
W̃r − Ũr

)
+ κ̄I

(
W̃r − Ũr

)
+ κ̃I

(
W̄r − Ūr

)
,

1

2r2

[
nr

(
∂ĒE

∂r
W̃r+

∂µ̄E

∂r

∂W̃r

∂t

)
−r

(
∂ĒE

∂r
W̃θ+

∂µ̄E

∂r

∂W̃θ

∂t

)
+r2

(
∂ĒE

∂r

∂W̃θ

∂r
+
∂µ̄E

∂r

∂2W̃θ

∂r∂t

)

+ 3n

(
ĒEW̃r + µ̄E

∂W̃r

∂t

)
−
(
1 + 2n2

)(
ĒEW̃θ + µ̄E

∂W̃θ

∂t

)
+ nr

(
ĒE

∂W̃r

∂r
+ µ̄E

∂2W̃r

∂r∂t

)

+ r

(
ĒE

∂W̃θ

∂r
+ µ̄E

∂2W̃θ

∂r∂t

)
+ r2

(
ĒE

∂2W̃θ

∂r2
+ µ̄E

∂3W̃θ

∂r2∂t

)]
= β̄I

∂

∂t

(
W̃θ − Ũθ

)
+ κ̄I

(
W̃θ − Ũθ

)
.

(5.65b)

Boundary conditions

From Eq. (5.53a) we have

Ũr(Rn, t) = 0, Ũθ(Rn, t) = 0. (5.66a)
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From Eq. (5.53b) we have
(σ̃cer) · er = 0, (5.66b)

which gives

Ēc
∂Ũr

∂r
+ Ẽc

∂Ūr

∂r
+ µ̄c

∂2Ũr

∂r∂t
+ µ̃c

∂2Ūr

∂r∂t
+ τ̃ = 0, (5.66c)

on the cell membrane. From Eq. (5.53c) we have

(σ̃cer) · eθ = 0, (5.66d)

which gives on the cell membrane

(5.66e)
Ēc

2

(
n

R
Ũr +

∂Ũθ

∂r
− 1

R
Ũθ

)
+

µ̄c

2

(
n

R

∂Ũr

∂t
+

∂2Ũθ

∂r∂t
− 1

R

∂Ũθ

∂t

)
= 0.

Finally, the perturbation boundary conditions on the ECM from Eq. (5.53d) are given by

W̃r(0, t) = 0, W̃θ(0, t) = 0, lim
r→∞

W̃r(r, t) = 0, lim
r→∞

W̃θ(r, t) = 0. (5.66f)

At the junctions between ECM regions either side of the cell membrane boundary (i.e.
underneath the cell nucleus and in the far field) we match stress and displacement, as is
discussed below.

5.8.2 ECM below nucleus and in the far field

For the ECM below the nucleus and in the far field, we recall our assumption that ĒE = Ē

and µ̄E = µ̄ are spatially uniform and write

F (r, t) = ĒW̌r,i + µ̄
∂W̌r,i

∂t
, G(r, t) = ĒW̌θ,i + µ̄

∂W̌θ,i

∂t
, (5.67)

where W̌r,i and W̌θ,i are the perturbation radial and azimuthal displacements respectively
in region i = 1, 2. As there are no adhesions to the cell in these regions, employing
Eq. (5.67) allows us to write the momentum balance equations for the ECM from Eq. (5.65)
as

−
(
2 + n2

)
F + 2r

∂F

∂r
+ 2r2

∂2F

∂r2
+ 3nG− nr

∂G

∂r
= 0, (5.68a)

−
(
1 + 2n2

)
G+ r

∂G

∂r
+ r2

∂2G

∂r2
+ 3nF + nr

∂F

∂r
= 0. (5.68b)
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We assume solutions to Eq. (5.68) take the form F =
∑4

p=1 fpr
kp , G =

∑4
p=1 gpr

kp for
fp, gp to be determined and where kp ∈ R. Using this ansatz we have

−
(
2 + n2

)
fp + 2kpfp + 2kp (kp − 1) fp + 3ngp − nkpgp = 0, (5.69a)

−
(
1 + 2n2

)
gp + kpgp + kp (kp − 1) gp + 3nfp + nkpfp = 0. (5.69b)

Rearranging Eq. (5.69a), we deduce a relation between fp and gp of the form

gp = αpfp, αp =

(− (2 + n2) + 2k2
p

n(kp − 3)

)
, (5.70)

for kp ̸= 3, n ̸= 0. Consequently, the case of n = 0 has to be dealt with separately, and
this is presented in Sec. 5.6.1. Substituting Eq. (5.70) into Eq. (5.69b) yields

2

(
k4
p + (n2 − 1)

2 − 2k2
p (1 + n2)

n (kp − 3)

)
fp = 0, (5.71)

and so the exponents, kp, are given by the roots of the equation

k4 − 2k2
(
1 + n2

)
+
(
n2 − 1

)2
= 0. (5.72)

We deduce that the roots of Eq. (5.72) are given by

k1 = n+ 1, k2 = n− 1, k3 = −n+ 1, k4 = −n− 1, (5.73)

hence kp ∈ Z. We note however that these solutions require kp ̸= 3 in order to satisfy
Eq. (5.71), hence we will need to consider cases with kp = 3 separately. By Eq. (5.73) this
will only occur when n = 2 or n = 4; we consider these special cases below. It follows
from Eq. (5.73) that the solutions of Eq. (5.68) for n ̸= 2, 4 take the form

F = f1r
n+1 + f2r

n−1 + f3r
−n+1 + f4r

−n−1, (5.74a)

G = g1r
n+1 + g2r

n−1 + g3r
−n+1 + g4r

−n−1, (5.74b)

where fp, gp are functions of time, related through Eq. (5.70) for p = 1, 2, 3, 4. It follows
from Eq. (5.67) that

ĒW̌r,i + µ̄E
∂W̌r,i

∂t
= f1r

n+1 + f2r
n−1 + f3r

−n+1 + f4r
−n−1, (5.75a)

ĒW̌θ,i + µ̄E
∂W̌θ,i

∂t
= g1r

n+1 + g2r
n−1 + g3r

−n+1 + g4r
−n−1. (5.75b)
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Special case with n = 2

For n ̸= 0, Eq. (5.70) is satisfied if kp ̸= 3. Employing the same ansatz as above then
for n = 2, from Eq. (5.73), we have k1 = 3 whilst k2 ̸= 3, k3 ̸= 3, k4 ̸= 3. In particular,
for p = 2, 3, 4 the relationship between fp and gp from Eq. (5.70) holds and, following the
above analysis, we have

k2 = 1, k3 = −1, k4 = −3. (5.76)

Returning to Eq. (5.69) with p = 1, kp = 3, n = 2, we deduce that f1 = 0 and g1 is a free
variable.

It follows that solutions of Eq. (5.68) for n = 2 take the form

F = f2r + f3r
−1 + f4r

−3, (5.77a)

G = g1r
3 + g2r + g3r

−1 + g4r
−3, (5.77b)

where fp, gp are functions of time for p = 1, 2, 3, 4 and where fp, gp are related through
Eq. (5.70) for p = 2, 3, 4. It follows from Eq. (5.67) that for n = 2 we have

ĒW̌r,i + µ̄E
∂W̌r,i

∂t
= f2r + f3r

−1 + f4r
−3, (5.78a)

ĒW̌θ,i + µ̄E
∂W̌θ,i

∂t
= g1r

3 + g2r + g3r
−1 + g4r

−3. (5.78b)

Special case with n = 4

For n ̸= 0, Eq. (5.70) is satisfied if kp ̸= 3. In this case, our subsequent analysis shows
that for n = 4 we have k2 = 3 (see Eq. 5.73). Hence, n = 4 appears to require a different
treatment. However, it emerges for n = 4 that Eq. (5.70) has a removable singularity
when kp = 3, which yields a simple relationship between fp, gp of the form

gp = γpfp, γp =
1

2
(kp + 3) , (5.79)

for p = 1, 2, 3, 4. Hence, for n = 4 we have

k1 = 5, k2 = 3, k3 = −3, k4 = −5. (5.80)

It follows from Eq. (5.67) that for n = 4 we have

ĒW̌r,i + µ̄
∂W̌r,i

∂t
= f1r

5 + f2r
3 + f3r

−3 + f4r
−5, (5.81a)

ĒW̌θ,i + µ̄
∂W̌θ,i

∂t
= g1r

5 + g2r
3 + g3r

−3 + g4r
−5, (5.81b)
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where fp, gp are related through Eq. (5.79) (or equivalently Eq. 5.70). Observe that the
form of general solution for n = 4 (given by Eq. 5.81) is identical to that for the general
case (Eq. 5.75). Hence, n = 4 does not need a distinct treatment and we no longer
distinguish it from the general case described by Eq. (5.75).

ECM below the nucleus

We illustrate fully the calculation for the displacement and stress in the region below the
nucleus for n ̸= 2 (i.e. with azimuthal wavenumbers other than two), with the calculation
for n = 2 similar and described more briefly below. In this region we impose, from
Eq. (5.66f), that W̌r,1(0, t) = 0, ∂W̌r,1(0, t)/∂t = 0, W̌θ,1(0, t) = 0 and ∂W̌θ,1(0, t)/∂t = 0.

We deduce from Eq. (5.75) that f3 = 0, f4 = 0 and consequently, through Eq. (5.70), that
g3 = 0, g4 = 0. It follows from Eq. (5.75) that we have

ĒW̌r,1 + µ̄
∂W̌r,1

∂t
= f1r

n+1 + f2r
n−1, (5.82a)

ĒW̌θ,1 + µ̄
∂W̌θ,1

∂t
= α1f1r

n+1 + α2f2f
n−1, (5.82b)

with α1, α2 given by Eq. (5.70). The remaining boundary conditions at the boundary with
the ECM below the cell cytoplasm allow us to eliminate one of the unknowns. In particular,
we set W̌θ,1(R, t) = W̃θ,0(t), where W̃θ,0(t) is the numerically calculated displacement of
the ECM connected to (underneath) the cytoplasm at the boundary with the nucleus. We
hence deduce from Eq. (5.82b) that

f1 =
1

α1Rn+1
n

(
ĒW̃θ,0 + µ̄

∂W̃θ,0

∂t
− α2f2R

n−1
n

)
. (5.83)

Hence from Eq. (5.82a) we solve

ĒW̌r,1 + µ̄
∂W̌r,1

∂t
=

1

α1Rn+1
n

(
ĒW̃θ,0 + µ̄

∂W̃θ,0

∂t
− α2f2R

n−1
n

)
rn+1 + f2r

n−1. (5.84)

By identifying an appropriate integrating factor, we deduce that

W̌r,1 =
1

µ̄
e−

Ē
µ̄
t

∫ t

0

e
Ē
µ̄
T

[
1

α1Rn+1
n

(
ĒW̃θ,0 + µ̄

∂W̃θ,0

∂T
− α2f2R

n−1
n

)
rn+1 + f2r

n−1

]
dT.

(5.85)
We can rewrite Eq. (5.85) as

W̌r,1 = Ar,1(t)
rn+1

Rn+1
n

+

(
rn−1 − α2

α1

Rn−1
n

Rn+1
n

rn+1

)
Br,1(t), (5.86)
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where

Ar,1(t) =
1

α1µ̄
e−

Ē
µ̄
t

∫ t

0

e
Ē
µ̄
T

(
ĒW̃θ,0 + µ̄

∂W̃θ,0

∂T

)
dT,

Br,1(t) =
1

µ̄
e−

Ē
µ̄
t

∫ t

0

e
Ē
µ̄
Tf2 dT.

(5.87)

Imposing W̌r,1(Rn, t) = W̃r,0(t) as a known function, then the numerically calculated radial
displacement of the ECM at the boundary with the ECM below the cytoplasm is given by

Br,1(t) =
1

Rn−1
n

(
1− α2

α1

)−1 (
W̃r,0(t)− Ar,1(t)

)
, (5.88)

so that

W̌r,1 = Ar,1(t)
rn+1

Rn+1
n

+

(
rn−1

Rn−1
n

− α2

α1

rn+1

Rn+1
n

)(
1− α2

α1

)−1 (
W̃r,0(t)− Ar,1(t)

)
. (5.89)

A similar calculation yields the azimuthal displacement underneath the nucleus as

W̌θ,1 = Aθ,1(t)
rn+1

Rn+1
n

+

(
α2

rn−1

Rn−1
n

− α1
rn+1

Rn+1
n

)
(α2 − α1)

−1
(
W̃θ,0(t)− Aθ,1(t)

)
, (5.90)

where

Aθ,1(t) =
α1

µ̄
e−

Ē
µ̄
t

∫ t

0

e
Ē
µ̄
T

(
ĒW̃r,0 + µ̄

∂W̃r,0

∂T

)
dT,

Bθ,1(t) =
1

µ̄
e−

Ē
µ̄
t

∫ t

0

e
Ē
µ̄
Tf2 dT.

(5.91)

Case with n = 2

If n = 2 then we calculate the radial and azimuthal displacement of points underneath
the nucleus using Eq. (5.78). From Eq. (5.66f) we set W̌r,1(0, t) = 0, ∂W̌r,1(0, t)/∂t = 0,

W̌θ,1(0, t) = 0 and ∂W̌θ,1(0, t)/∂t = 0. Hence, we have

ĒW̌r,i + µ̄
∂W̌r,i

∂t
= f2r, ĒW̌θ,i + µ̄

∂W̌θ,i

∂t
= g1r

3 + g2r, (5.92)

with f2, g2 related through Eq. (5.70). It follows that

W̌r,1 =
r

µ̄
e−

Ē
µ̄
t

∫ t

0

e
Ē
µ̄
Tf2(T ) dT, (5.93)

Imposing W̌r,1(Rn, t) = W̃r,0(t), where W̃r,0(t) is a known function, yields

W̌r,1 =
r

Rn

W̃r,0, (5.94)
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for 0 ≤ r ≤ Rn. Integrating our azimuthal displacement equation from Eq. (5.92) gives

W̌θ,1 =
r3

µ̄
e−

Ē
µ̄
t

∫ t

0

e
Ē
µ̄
Tg1(T ) dT +

r

µ̄
e−

Ē
µ̄
t

∫ t

0

e
Ē
µ̄
Tg2(T ) dT. (5.95)

Note that g2 = α2f2, with α2 defined by Eq. (5.70) for n = 2, k2 = 1. Hence, recalling
Eq. (5.93), we have

W̌θ,1 =
r3

µ̄
e−

Ē
µ̄
t

∫ t

0

e
Ē
µ̄
Tg1(T ) dT + α2W̌r,1. (5.96)

Imposing W̌θ,1(Rn, t) = W̃θ,0(t), where W̃θ,0(t) is a known function, we deduce that

W̌θ,1 = α2W̌r,1 +
r3

R3
n

(
W̃θ,0 − α2W̃r,0

)
, (5.97)

for 0 ≤ r ≤ Rn.

ECM in the far field

We illustrate the calculation for the displacement and stress in the ECM far field for
n ̸= 2 (i.e. the azimuthal wavenumber is not equal to two), with the calculation for n = 2

identical. In this region we impose, from Eq. (5.66f), that

lim
r→∞

W̌r,2(r, t) = 0, lim
r→∞

∂W̌r,2(r, t)

∂t
= 0, lim

r→∞
W̌θ,2(r, t) = 0, lim

r→∞

∂W̌θ,2(r, t)

∂t
= 0,

(5.98)
and deduce from Eq. (5.75) that f1 = 0, f2 = 0 and consequently, from Eq. (5.70), that
g1 = 0, g2 = 0; hence, n = 2 does not need a distinct treatment in the far field and our
subsequent analysis applies generally. It follows from Eq. (5.75) that we have

ĒW̌r,2 + µ̄
∂W̌r,2

∂t
= f3r

−n+1 + f4r
−n−1, (5.99a)

ĒW̌θ,2 + µ̄
∂W̌θ,2

∂t
= α3f3r

−n+1 + α4f4f
−n−1, (5.99b)

with α3, α4 given by Eq. (5.70). The remaining boundary conditions at the boundary with
the ECM below the cell cytoplasm allow us to eliminate one of the unknowns. In particular,
we set W̌θ,2(R, t) = W̃θ,N(t), where W̃θ,N(t) is the numerically calculated displacement of
the ECM underneath the cell cytoplasm at the boundary with region 2. We hence deduce
from Eq. (5.99b) that

f3 =
1

α3R−n+1

(
ĒW̃θ,N + µ̄

∂W̃θ,N

∂t
− α4f4R

−n−1

)
. (5.100)
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Hence from Eq. (5.99a) we solve

ĒW̌r,2 + µ̄E
∂W̌r,2

∂t
=

1

α3R−n+1

(
ĒW̃θ,N + µ̄

∂W̃θ,N

∂t
− α4f4R

−n−1

)
r−n+1 + f2r

−n−1.

(5.101)
By identifying an appropriate integrating factor, we deduce that

W̌r,2 =
1

µ̄
e−

Ē
µ̄
t

∫ t

0

e
Ē
µ̄
T

[
1

α3R−n+1

(
ĒW̃θ,N + µ̄

∂W̃θ,N

∂T
− α4f4R

−n−1

)
r−n+1 + f4r

−n−1

]
dT,

(5.102)
which can be rewritten as

W̌r,2 = Ar,2(t)
r−n+1

R−n−1
+

(
rn−1 − α4

α3

R−n−1

R−n+1
r−n+1

)
Br,2(t), (5.103)

where

Ar,2(t) =
1

α3µ̄
e−

Ē
µ̄
t

∫ t

0

e
Ē
µ̄
T

(
ĒW̃θ,N + µ̄

∂W̃θ,N

∂T

)
dT,

Br,2(t) =
1

µ̄
e−

Ē
µ̄
t

∫ t

0

e
Ē
µ̄
Tf4 dT.

(5.104)

Imposing W̌r,2(R, t) = W̃r,N(t), where W̃r,N(t) is the numerically calculated displacement
of the ECM at the boundary, then

Br,2(t) =
1

R−n−1

(
1− α4

α3

)−1 (
W̃r,N(t)− Ar,2(t)

)
, (5.105)

so that

W̌r,2 = Ar,2(t)
r−n+1

R−n+1
+

(
r−n−1

R−n−1
− α4

α3

r−n+1

R−n+1

)(
1− α4

α3

)−1 (
W̃r,N(t)− Ar,2(t)

)
. (5.106)

A similar calculation yields the azimuthal displacement underneath the nucleus as

W̌θ,2 = Aθ,2(t)
r−n+1

R−n+1
+

(
α4

r−n−1

R−n−1
− α3

r−n+1

R−n+1

)
(α4 − α3)

−1
(
W̃θ,N(t)− Aθ,2(t)

)
,

(5.107)
where

Aθ,2(t) =
α3

µ̄
e−

Ē
µ̄
t

∫ t

0

e
Ē
µ̄
T

(
ĒW̃r,N + µ̄

∂W̃r,N

∂T

)
dT,

Bθ,2(t) =
1

µ̄
e−

Ē
µ̄
t

∫ t

0

e
Ē
µ̄
Tf4 dT.

(5.108)

In this region it emerges that the solutions for n = 2 can be solved in an identical manner to
the case where n ̸= 2. Consequently, in the far field we can apply our solutions Eqs. (5.106)
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and (5.107) for all n ∈ N, n ≥ 1.

Matching stress in each region

We match the normal and tangential stresses at the boundary between the ECM below
the cytoplasm and the ECM underneath the nucleus and in the far field. We deduce from
Eqs. (5.53e)-(5.53f) that

(σ̃Eer) · er =
(
˜̌σE,1er

)
· er, (σ̃Eer) · eθ =

(
˜̌σE,1er

)
· eθ, (5.109a)

(σ̃Eer) · er =
(
˜̌σE,2er

)
· er, (σ̃Eer) · eθ =

(
˜̌σE,2er

)
· eθ. (5.109b)

A simplifying assumption

We have theoretically described the calculation of displacement in the ECM and the as-
sociated matching of stress at the boundaries between different regions of the ECM. We
deem this calculation to be relatively complicated. However, we have demonstrated in
Chs. 3-4 that cells cultured on stiff substrates can form mature cell-substrate adhesions
and cytoskeleton, aided by the negligible displacement of the ECM. Hence, to simplify our
analysis, in subsequent modelling (and simulations) we neglect the perturbation deforma-
tion of the ECM and so we assume that W̃r = 0, W̃θ = 0, W̌r,1 = 0, W̌θ,1 = 0, W̌r,2 = 0

and W̌θ,2 = 0. This assumption is justified by our linear stability analysis of our one-
dimensional model (presented in App. A); in this case, the perturbation deformation of
the ECM is much more easily incorporated but is shown to have negligible influence on
the stability of the system for cells cultured on stiff substrates.

5.8.3 Biochemistry equations

Assuming the same periodic decomposition holds for all concentrations and densities we
write, for a generic perturbation concentration, ĉ, that ĉ = c̃einθ and for a generic pertur-
bation density, n̂, we have n̂ = ñeinθ. Under this assumption, Eqs. (5.54) become

(5.110a)

∂c̃G
∂t

= −
(
k̄+
p c̄G (ñb + ñA) + k̄+

p c̃G (n̄b + n̄A) + k̃+
p c̄G (n̄b + n̄A)

)
+
(
k̄−
p c̃F + k̃−

p c̄F

)
+ k−

mc̃
+
S +DG

(
∂2c̃G
∂r2

+
1

r

∂c̃G
∂r

− n2

r2
c̃G

)
,

∂c̃F
∂t

+
1

r

∂ (rc̃Fvr)

∂r
=
(
k̄+
p c̄G (ñb+ ñA)+ k̄+

p c̃G (n̄b+ n̄A)+ k̃+
p c̄G (n̄b+ n̄A)

)
−
(
k̄−
p c̃F + k̃−

p c̄F

)
− k+

m

(
c̄F c̄

+
m

(
c̃F + c̃+S

)
+ c̄F c̃

+
M

(
c̄F + c̄+S

)
+ c̃F c̄

+
m

(
c̄F + c̄+S

))
+DF

(
∂2c̃F
∂r2

+
1

r

∂c̃F
∂r

− n2

r2
c̃F

)
,

(5.110b)

(5.110c)
∂c̃+S
∂t

= k+
m

(
c̄F c̄

+
m

(
c̃F + c̃+S

)
+ c̄F c̃

+
M

(
c̄F + c̄+S

)
+ c̃F c̄

+
m

(
c̄F + c̄+S

))
− k+

mc̃
+
S ,
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(5.110d)
∂c̃M
∂t

= −
(
k̄+
a c̃M + k̃+

a c̄m

)
+
(
k̄−
a c̃

+
M + k̃−

a c̄
+
m

)
+Dm

(
∂2c̃M
∂r2

+
1

r

∂c̃M
∂r

− n2

r2
c̃M

)
,

(5.110e)

∂c̃+M
∂t

=
(
k̄+
a c̃M + k̃+

a c̄m

)
−
(
k̄−
a c̃

+
M + k̃−

a c̄
+
m

)
− k+

m

(
c̄F c̄

+
m

(
c̃F + c̃+S

)
+ c̄F c̃

+
M

(
c̄F + c̄+S

)
+ c̃F c̄

+
m

(
c̄F + c̄+S

))
+ k−

mc̃
+
S +D+

m

(
∂2c̃+M
∂r2

+
1

r

∂c̃+M
∂r

− n2

r2
c̃+M

)
,

(5.110f)
∂ñf

∂t
= −k+

h ñf + k−
h ñh +Df

(
∂2ñf

∂r2
+

1

r

∂ñf

∂r
− n2

r2
ñf

)
,

(5.110g)
∂ñh

∂t
= k+

h ñf − k−
h ñh − k+

b (n̄hñs + ñhn̄s) + k−
b ñb,

(5.110h)
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)
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F ñA,
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)
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Perturbation to rate constants

The perturbation reaction rates are all derived from Eq. (5.58) in the expected way. In
particular, we have

k̃+
p = K+

p c̃
+
R, k̃−

p = K−
p c̃C , k̃+

a = K+
a c̃K−P , k̃−

a = K−
a c̃P−P ,

k̃+
R = K+

R (ñb + δñA) , k̃+
F = 2K+

F λ̄I λ̃I ,
(5.111)

where from Eq. (5.60) we deduce that

λ̃I =
1√

(ūr − w̄r)
2
(ūr − w̄r) (ũr − w̃r) , (5.112)

where we consider only the positive branch of the square root.
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Boundary conditions

To implement the no-flux boundary conditions at the boundary with the cell nucleus and
at the cell membrane, we recall that nn = −er and on the cell membrane we have nm = er.

The flux through the cell cytoplasm can be decomposed as jα = j̄α + ϵj̃αe
inθ. Hence, the

perturbation boundary condition on the cell membrane and at the boundary with the
nucleus, from Eq. (5.61), can be written

j̃α · er = 0, j̃αe
inθ = Dα∇

(
c̃αe

inθ
)
− vαc̃αe

inθ. (5.113)

We note that
j̃α = Dα

(
∂c̃α
∂r

er +
1

r
inc̃αeθ

)
− vα,rc̃αer. (5.114)

Hence, Eq. (5.113) gives the no-flux boundary condition on the cell membrane as

Dα
∂c̃α
∂r

− vα,rc̃α = 0, (5.115)

with an identical expression for the boundary with the cell nucleus.

5.9 Numerical implementation

To deduce the stability of the cell to various modes of deformation, we evolve the linear
system presented in Sec. 5.8 in time. We let tp denote the time that we perturb the time,
relative to its introduction to the substrate (in non-linear simulations). At this time, the
cell will have undergone an axisymmetric deformation from its initial state. In particular,
all barred terms in the linearised equations presented in Sec. 5.8 are extracted from the
non-linear axisymmetric simulations at time t = tp (see Sec. 5.6.4). We then initialise
our linear simulations using an arbitrarily chosen perturbation which is consistent with
the boundary conditions. In particular, for Rn ≤ r ≤ R we introduce (dimensionless)
perturbations of the form

Ũr(r, 0) = −ϵ

(
r −Rn

R−Rn

)
, (5.116)

i.e. we introduce a (negative) radial displacement throughout the cell cytoplasm that
decays linearly, from a maximum displacement of −ϵ at the cell membrane, to zero at the
boundary with the cell nucleus. In subsequent simulations we set ϵ = 0.01. We do not
perturb any other quantities, i.e. all perturbation concentrations and densities are set to
zero initially with c̃(x, 0) = 0, ñ(x, 0) = 0.

Evolving the linear system in time, we solve the system of governing equations from
Sec. 5.8 numerically, using a finite difference method based on the method lines (in a similar
manner to Secs. 3.7, 5.6.3). We discretise the (dimensionless) spatial domain Rn/R ≤ r ≤
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1 using a uniform grid size ∆r. We discretise all spatial derivatives using second-order finite
difference stencils and employ the Matlab solver ode15s to solve the resulting large family
of ODEs numerically. We employ the fictitious nodes procedure to apply the boundary
conditions. We discretise the (dimensionless) domain with ∆r = 0.01(1−Rn/R) and use
stringent error bounds for the time-stepping.

In our analysis there is an initial transient as the initial configuration (described by
Eq. 5.116) is not fully compatible with the governing equations, which passes after a (short)
time of approximately tt. We run simulations to a large time ts ≫ tt. In this linear system,
all quantities will eventually grow or decay exponentially with time, i.e. all quantities,
described by a function f(r, t), can eventually be written as f(r, t) ≈ f̌(r)eΩt, where Ω ∈ C
is the complex growth rate. The growth rate can be decomposed into Ω = Ωr+ iΩi, where
Ωr = Re(Ω) > 0 leads to exponential growth (instability), Ωr < 0 leads to exponential
decay (stability) and Ωr = 0 represents neutral stability. Oscillations of the system are
permissible, with frequency Ωi = Im(Ω). These oscillations can be induced in response
to some choices of initial perturbation, particularly if the initial configuration is far from
compatible with the governing equations.

We determine the stability of the system by measuring the evolution of the perturbation
deformation of the cell boundary (at the cell membrane) with time. We quantify the real
part of the growth rate, Re(Ω), by fitting an exponential curve to Ũ(R, t) for tt < t ≤ ts. If
the system exhibits exponentially growing or decay oscillations in this time frame, we fit
an exponential curve to the envelope of local maxima/minima. We deduce the oscillation
frequency, Im(Ω), by calculating the inverse of the time, T, between two subsequent peaks
(which is approximately independent of which two peaks are used), with Im(Ω) ≈ 2π/T ;
if there are no oscillations by ts, we suppose that Im(Ω) = 0.

5.10 Results

In this Section, using the linearised model developed in Secs. 5.7-5.8, we investigate the
stability of the axisymmetric baseline state discussed in Sec. 5.6 to various normal modes
of instability, parameterised by the azimuthal wavenumber, n. In particular, we examine
the impact that perturbing the cell at different stages in the development and matura-
tion of cell cytoskeleton and cell-substrate adhesion has on the growth rate of normal
modes. For completeness, throughout our linear stability analyses we include the n = 0

(corresponding to axisymmetry) and n = 1 (corresponding to cell translation) modes.
However, perturbations with n = 0 are analogous to our (linear) perturbations to the
one-dimensional model (from Ch. 3) introduced in App. A. In this case, fully non-linear
simulations demonstrate that perturbations briefly push the response of the system away
from its preferred trajectory before it rapidly returns to this trajectory. Moreover, the
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biological relevance of the translation mode n = 1 is questionable given that motile cells
have different dominant signaling pathways (Ridley and Hall, 1992, Ridley et al., 1992). It
follows that the modes of particular interest are n ≥ 2; instabilities to these modes would
indicate a mechanism for spontaneous surface patterning of binding cells in vitro.

In Fig. 5.8 we present baseline linear stability analyses, where we perturb the cell us-
ing the perturbation described by Eq. (5.116), at various times, tp, after the cell has been
introduced to the substrate. Particularly, we consider tp = 100 s, tp = 250 s, tp = 650

s and tp = 1000 s. Evolving the linear system in time, we consider the behaviour of the
first six normal modes (i.e. n = 0, 1, 2, 3, 4, 5) and determine the stability of the system
in the manner described in Sec. 5.9. We observe distinct behaviour of the system when
perturbing at the four aforementioned times, including exponential decay (Fig. 5.8a), expo-
nential growth (Fig. 5.8b), oscillatory growth (Fig. 5.8c) and oscillatory decay (Fig. 5.8d).
Throughout our analysis, we denote the complex growth rate of the nth mode by Ωn.

The initial rapid transient behaviour of the system (discussed in Sec. 5.9) is observed in
Fig. 5.8 as near vertical lines close to the y−axis, reflecting the rapid adjustment of the
perturbation described by Eq. (5.116). We are focused on the long-time behaviour of the
system; however, these initial transients can subsequently induce the oscillatory behaviour
observed in Figs. 5.8(c)-(d), when the system “overshoots” in returning to equilibrium from
its initial perturbation.

At tp = 100 s the cell is poorly adhered to the substrate in fully non-linear axisym-
metric simulations (see Sec. 5.6.4). At this time, some bound integrins have formed (see
Figs. 5.3b, 5.5e-f) but there are virtually no FAs (Fig. 5.5g-h) and there has been little
actin polymerisation (Fig. 5.7c-d). The cell is stable to the perturbation described by
Eq. (5.116) (see Fig. 5.8a) for all normal modes, i.e. Re(Ωn) < 0. In particular, fol-
lowing initial (rapid) transient behaviour, the cell returns to its axisymmetric baseline
state. There are also no oscillations, with Im(Ωn) = 0. Moreover, stability at this time is
hierarchical, with n = 0 the least stable mode, followed by n = 1 and so on, i.e. we have

0 > Re(Ω0) > Re(Ω1) > Re(Ω2) > Re(Ω3) > Re(Ω4) > Re(Ω5). (5.117)

The stability of the axisymmetric configuration is due to the lack of mature structure
(e.g. cytoskeleton and adhesion) in the cell at this early time. In particular, the (poorly-
adhered) cell is unable to mechanosense and convert the perturbation from Eq. (5.116)
into a biological response.

At tp = 250 s we are in the early stages of the positive feedback loop in the fully non-
linear axisymmetric simulations. Particularly, some actin has been polymerised (Fig. 5.7c-
d) and cross-linked by activated myosin II to form VSFs (Fig. 5.7e-f). Consequently, the
cell is in the early stages of contraction (see Figs. 5.3a, 5.4a), bound integrins are partially
stretched and there has been a small amount of adhesion maturation (Figs. 5.3b, 5.5g-h).
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Figure 5.8: Baseline linear stability analyses. Growth or decay of the first six normal
modes (n = 0, 1, 2, 3, 4, 5) when the cell is perturbed at (a) tp = 100 s, (b) tp = 250 s,
(c) tp = 650 s, (d) tp = 1000 s. Stability is determined by considering the dimensionless
radial boundary displacement of the cell, Ũr(R, t)/R.

Introducing the perturbation from Eq. (5.116), the cell is unstable to modes n = 0, 1, 2 (see
Fig. 5.8b), whilst it is stable to modes n = 3, 4, 5 (see inset Fig. 5.8b). The hierarchical
structure in stability is maintained with

Re(Ω0) > Re(Ω1) > Re(Ω2) > 0 > Re(Ω3) > Re(Ω4) > Re(Ω5). (5.118)

Again, there are no oscillations in the system, with Im(Ωn) = 0 for each n. At this
time the cell is susceptible to external influences as the cytoskeleton and adhesions are
sufficiently mature so that the cell can respond to deformation, whilst a sufficient pool of
free myosin II remains to further cross-link actin filaments and form more dense VSFs.
Consequently, the cell contracts. Given that the n = 0 and n = 1 modes are largely
redundant in our analysis (for the reasons discussed above), Re(Ω2) > 0 is significant. In
particular, this suggests that the cell has the ability to develop non-axisymmetric surface
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patterning, in isolation, through the coupled biomechanics of cell-substrate adhesions and
cell cytoskeleton, if perturbed at this stage of cell-substrate interaction. However, we
would need to test this perturbation in a full two-dimensional non-linear simulation of
this system to determine if mode n = 2 patterns are ever observable in practice.

For tp = 650 s after the cell has been introduced to the substrate, the cell will be at
an intermediate stage in the positive feedback loop (as discussed in Sec. 5.6.4). Particu-
larly, there will be ongoing rapid maturation of adhesions (Figs. 5.3b, 5.5g-h), activation
of ROCK and phosphorylation of its downstream effectors (Figs. 5.3c, 5.6), polymerisa-
tion of actin (Figs. 5.3d, 5.7c-d) and cross-linking of filaments by activated myosin II to
form contractile VSFs (Figs. 5.3d, 5.7e-f). Perturbing the cell at this time, we lose the
hierarchical behaviour exhibited at earlier perturbation times, where now n = 1 is the
dominant mode (although biologically irrelevant). The n = 0, 1, 2 modes remain unstable
(see Fig. 5.8c) and n = 3, 4, 5 modes remain stable (see inset in Fig. 5.8c). We compute

Re(Ω1) > Re(Ω0) > Re(Ω2) > 0 > Re(Ω3) > Re(Ω4) > Re(Ω5). (5.119)

However, perturbing the cell at this time leads to oscillations (with the exception of the
n = 1 mode). Particularly, we have Im(Ω1) = 0 and Im(Ω0) > 0, Im(Ω2) > 0, Im(Ω3) > 0,

Im(Ω4) > 0 and Im(Ω5) > 0; there appears to be no obvious ordering to these oscillation
frequencies (see Fig. 5.8c). These unstable waves form early in the evolution of the linear
system, due to resistance to the imposed deformation (Eq. 5.116) by the mature adhesions
and cytoskeleton. In particular, we observe in Figs. 5.8(c)-(d) that the deformation of the
cell “overshoots” during the initial transient behaviour when attempting to return to its
unperturbed state (due to the incompatibility of the initial condition Eq. 5.116 with the
governing equations).

Finally, perturbing the cell at tp = 1000 s means that the cell has formed mature
adhesions and cytoskeleton and the positive feedback loop connecting the development of
these structures is now subdominant in the fully non-linear axisymmetric simulations (see
Sec. 5.6.4). Particularly, at this time the majority of integrins have been recruited into
FAs (Fig. 5.3b), and a significant amount of myosin II has been activated (Fig. 5.7g-h)
and has cross-linked actin filaments to form VSFs (Fig. 5.7e-f). At this time, the cell is
stable to all perturbation modes (Fig. 5.8d), with n = 0 the most stable mode (of those
tested), followed by a hierarchical structure with n = 1 the least stable mode, followed by
n = 2 and so on. In particular, we have

0 > Re(Ω1) > Re(Ω2) > Re(Ω3) > Re(Ω4) > Re(Ω5) > Re(Ω0). (5.120)

However, rather than pure exponential decay, we observe damped oscillatory waves for all
normal modes, for exactly the same reasons as when the system is perturbed at tp = 650 s.
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The greatest frequency of these oscillations is for the n = 0 mode; thereafter a hierarchical
structure in oscillation frequency is observed. In particular, we have

Im(Ω0) > Im(Ω5) > Im(Ω4) > Im(Ω3) > Im(Ω2) > Im(Ω1) > 0. (5.121)

This switching behaviour, from an unstable response when the cell is perturbed at tp = 650

s (see Fig. 5.8c), to an underdamped system (see Fig. 5.8d) when perturbed at the late
stages of adhesion development, reflects the dwindling pool of myosin II available for VSF
formation.

We now examine in a more systematic manner how the stage at which the cell is
perturbed (governed by the parameter tp) influences the stability of the cell to various
modes of deformation, presenting two visualisations of the parameter space in Fig. 5.9. In
particular, in Fig. 5.9(a) we illustrate the growth rate, Re(Ωn), of the boundary deforma-
tion, as a function of the time of perturbation (in full non-linear simulations), for various
mode numbers, n. In Fig. 5.9(b) we present the growth rate, Re(Ωn), of the boundary
deformation as a function of mode number for various perturbation times, tp, in the full
non-linear simulations. Regions where exponential growth (decay) will occur are shaded
in light green (red). For completeness, we again include the n = 0 and n = 1 modes (as
dashed lines) in our analysis. However, our primary focus remains on modes with n ≥ 2

and so we provide no discussion of modes n = 0, n = 1. There is a degree of volatility
throughout our analysis (particularly in Fig. 5.9a) but this is only due to the numerical
method used to fit an exponential curve to the perturbation deformation and does not
detract from our overall conclusions.

In Fig. 5.9 we observe that Re(Ωn) < 0 (for n = 0, 1, 2, 3, 4, 5) when tp ≲ 100 − 150

s (consistent with Fig. 5.8a). In particular, the cell is stable to perturbations at these
early times due to the lack of mature structure, with the cell unable to convert the applied
mechanical perturbation into a biological response. With increasing time at which the
perturbation is applied, we then observe a window of instability for the n = 2 mode.
Particularly, perturbing the cell on the order of hundreds of seconds after being introduced
to the substrate, we have Re(Ω2) > 0. This suggests that, at these intermediate times,
mechanical (and biochemical) cues can cause the cell to lose axisymmetry. Increasing the
perturbation time further, the cell becomes stable to all modes of deformation, reflective of
the entrenched axisymmetry due to the mature (axisymmetric) adhesions and cytoskeleton
in the base state (see Sec. 5.6.4).

Our linear stability analysis suggests that for small and large perturbation times the
cell remains axisymmetric. Meanwhile, non-linear simulations of the axisymmetric system
demonstrate that, even though axisymmetric perturbations grow exponentially in the lin-
ear system when perturbations are applied at intermediate times (Fig. 5.9), the non-linear
system adopts the same final axisymmetric state. However, for a range of intermediate
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Figure 5.9: Influence of time of perturbation on cell stability. Real part of the complex
growth rate as (a) a function of perturbation time, tp, for various modes, (b) a function of
mode number, for various perturbation times. Imaginary part of the complex growth rate
as (c) a function of perturbation time, tp, for various modes, (d) a function of mode number,
for various perturbation times. Pale green background represents region of instability, pale
red background denotes region of stability.

perturbation times the system is also unstable to higher modes of deformation (Fig. 5.9).
It remains to be seen if such higher modes are ever observed in fully non-linear simula-
tions. Nonetheless, the spontaneous transition to higher modes observed in Figs. 5.8-5.9
demonstrates the potential ability of a cell to form self-directed surface patterning in vitro;
advancing on the prescribed forcing used in existing modelling approaches (e.g. Solowiej-
Wedderburn and Dunlop, 2022).

It should be noted that the outcome from this linear stability analysis is likely highly
sensitive to the prescribed form of initial perturbation and the response of the system
may be enhanced using a different (optimal) perturbation. However, given the focus on
mechanotransduction in this thesis, we have employed a purely mechanical perturbation
(Eq. 5.116). As we prescribe only changes in displacement (and not in protein concen-
trations), this explains why, for n = 0, the system returns to the same trajectory once
the perturbation washes out in fully non-linear simulations. The impact of changes to
reaction kinetics in the model should also be examined (given we have to estimate several
parameters in the model). However, crucially this modelling approach has demonstrated
a route for the formation of surface patterning for a cell cultured in isolation in vitro. We
are also able to demonstrate that our predictions for the growth rate of different modes
are independent of the perturbation type (e.g. a biochemical rather than mechanical
perturbation).
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5.11 Summary

In this Chapter we have extended the one-dimensional bio-chemo-mechanical continuum
model we have developed in Ch. 3 to a two-dimensional model. This extension allows for
explicit incorporation of the cell nucleus, which we treat as a rigid body. It also allows
for inclusion of an elastic cell membrane, the mechanical properties of which we have
neglected in this current work. We have demonstrated in Sec. 5.6.4 the ability of this two-
dimensional model to replicate the baseline behaviour predicted by our one-dimensional
model (see Sec. 3.8). Particularly, we are able to reproduce the predicted non-uniform cell
stress and striation, and localisation of FAs, VSFs and activated ROCK near to the cell
edge. Moreover, the global dynamics of cell-substrate adhesion and cytoskeleton formation
are shown to be consistent with predictions from both our zero-dimensional model (see
Ch. 2) and our one-dimensional model (see Ch. 3).

We use the predicted axisymmetric deformation as a base state around which to con-
duct a linear stability analysis (Secs. 5.7-5.10) to predict the stability of the cell to various
normal modes of deformation. We demonstrate that, for baseline parameter values, the
cell is unstable to certain non-axisymmetric modes for an intermediate range of perturba-
tion times, suggesting a possible mechanism for self-directed surface patterning in vitro.
Relaxation of certain conditions imposed in our modelling (e.g. purely radial treadmilling
of actin) may give access to further modes of instability. Moreover, instabilities may be
enhanced through interactions of cells with their external environment (e.g. remodelling
of the ECM by other cells and direct cell-cell communication), this is deferred to future
work.
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Discussion

Motivated by an interest in controlling the differentiation of hMSCs using mechanical
and biochemical cues, this thesis has focused on the development of models to describe
interactions between eukaryotic cells and their microenvironment. Particularly, we have
developed models to describe the formation and maturation of adhesions between a cell
and substrate in vitro, the subsequent activation of intracellular signaling cascades and
the resultant development of cell cytoskeleton due to enhanced actin polymerisation and
myosin II activation. The bio-chemo-mechanical continuum models that we develop in
Chs. 3-5 build particularly on models for motile cells (particularly Gracheva and Othmer,
2004, Larripa and Mogilner, 2006), a model for the contraction of SFs (by Besser and
Schwarz, 2007) and to mechanical models for the deformation of a cell adhered to a sub-
strate by (particularly Dunlop, 2019, Edwards and Schwarz, 2011). However, we provide
several advancements, which we discuss in this brief Chapter, together with outlining a
range of possible future research directions.

The models developed in this thesis are as minimal as possible whilst retaining the
necessary biophysics. In particular, they account only for the scaffolding and signaling
proteins that are key to the development of cell-substrate adhesions and cell cytoskeleton.
However, despite their relative simplicity, these models are able to capture the positive
feedback loop that couples cytoskeleton development to adhesion maturation, whilst cru-
cially making no assumptions on where FAs and SFs will form and mature. Moreover,
despite being motivated by modelling the interaction of hMSCs with their microenviron-
ment, the models we have developed in Chs. 2-5 have been formulated in a general manner,
lending themselves to application to a wide variety of eukaryotic cell types. A particular
strength of our approach is the detailed analysis of ROCK signaling, which is known to be
influential in cell function (Riento and Ridley, 2003). Moreover, by distinguishing between
bound integrins (nascent adhesions) and FAs, we have been able to incorporate, empiri-
cally, the increase in ROCK signaling associated with adhesion maturation (Wozniak et al.,
2004).

182
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In addition to being able to predict the localisation of integrins, actin, myosin and
signaling proteins in their various forms, our coupling to viscoelastic deformation provides
insight into mechanical changes inside the cell and ECM, particularly the temporal and
spatial variations in displacement, stress and strain of both structures. Crucially, defor-
mation of the ECM due to the communication of intracellular forces via cell-substrate
adhesions allows us to elucidate the mechanism by which FAs and SFs localise and pro-
vides a platform by which to later investigate biochemical remodelling (through protease
secretion) of the ECM by the cell. Moreover, we rationally link nanoscale and microscale
mechanical properties of the cell, ECM and adhesions through the use of discrete-to-
continuum upscaling, advancing on the homogenised description of the cell provided by
many existing models (see Ch. 3). Consequently, the model provides a framework for
systematic investigation into how the cell biochemistry and mechanics influence cell de-
velopment and facilitates prediction of internal cell measurements that are difficult to
ascertain experimentally. These models are also able to replicate various experimentally
observed phenomena. Indeed, our one-dimensional model predicts that increasing ligand
density leads to more pronounced FA formation but has a weaker effect on nascent adhesion
formation (see Sec. 4.1), consistent with experimental observations by Cavalcanti-Adam
et al. (2007). Moreover, the one-dimensional model predicts a minimum ligand density
(or equivalently maximum ligand spacing), below which FAs struggle to form, in line with
Arnold et al. (2004). The one-dimensional model also replicates the experimental observa-
tion that cells form more FAs and VSFs when cultured on stiffer substrates (Engler et al.,
2006), also elucidating the mechanism by which this occurs (see Sec. 4.3). We further
demonstrate in Ch. 4 that the model developed in Ch. 3 provides a framework to predict
how mechanotransductive and chemotransductive cues can be optimally applied to facil-
itate (or prevent) adhesion and cytoskeleton development, with potential applicability in
improving experimental protocols. Particularly, we have demonstrated how probing of the
cell (e.g. mimicking atomic force microscopy or magnetic tweezer experiments) can induce
adhesion formation in Sec. 4.5. Further, we show in Sec. 4.6 how ROCK and myosin II
inhibitors can be employed to facilitate FA and SF disassembly.

We have demonstrated in Ch. 2 that a simple ODE model to describe the cell bio-
chemistry can successfully capture several key features of cell-substrate interaction. In
particular, this spatially-averaged description of the cell is able to closely reproduce the
global dynamics of the development of cell-substrate adhesions and cell cytoskeleton pre-
dicted by our one-dimensional model in Ch. 3 (compare Figs. 2.1, 3.7). The computational
cost of simulating a family of ODEs that describe the average concentration of proteins
in the cell is dramatically less than simulating a family of PDEs which account for spatial
variations; employing the method of lines, PDEs require the solution of a time-dependent
ODE at each spatial location. This simple model should be amenable to a multiple scales
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analysis (Hinch, 1991, Nayfeh, 2008), which should elucidate the cause and effect of dif-
ferent processes. Consequently, this would allow for a systematic reduction in model
complexity (through a reduction in the number of parameters and equations solved) in
higher-dimensional models, improving computational efficiency.

Moving forward, the essence of our modelling approach is also applicable to motile
cells. In these cells different signaling cascades (e.g. Rac) and different types of SF (e.g.
dorsal fibres and transverse arcs) become important (Ridley et al., 1992, Tojkander et al.,
2012) and the cell cortex becomes a crucial driver of intracellular dynamics (Cusseddu
et al., 2019, Gracheva and Othmer, 2004, Mogilner and Edelstein-Keshet, 2002). This
extension of the model would be complicated by the moving boundary problem that arises
when considering the coupled deformation and motion of the cell. This may require, for
example, application of the immersed boundary method to account for the interaction of
intracellular fluid with the membrane (Mittal and Iaccarino, 2005, Peskin, 2002). However,
inclusion of cell motility is necessary to describe the motion of hMSCs to maintain tissue
homoeostasis and mediate repair and regeneration (de Lucas et al., 2018). Such modelling
also has applications in predicting cancer metastasis (Franssen et al., 2019, Stuelten et al.,
2018).

In the bio-chemo-mechanical models (presented in Chs. 3-5) we have assumed that
the mechanical properties of the ECM are constant in time and have considered only
mechanical remodelling of the ECM by the cell. However, the ECM is in a constant
state of flux and cells continually secrete proteases which form, degrade or modify the
ECM (Bonnans et al., 2014). The mechanical models we have developed should be readily
adaptable to investigate how secreted proteases induce changes in cell-substrate adhesion
and cell cytoskeleton through altering environmental biochemical and mechanical stimuli
(e.g. through self-driven chemo- or duro-taxis). This development is a necessary step
towards understanding a variety of processes including the establishment of a stem cell
niche (Li and Xie, 2005, Lu et al., 2011), branching morphogenesis in the development
of lungs and kidneys (Kheradmand et al., 2002, Page-McCaw et al., 2007), branching of
blood vessels (Ilan et al., 2006, Mott and Werb, 2004) and wound repair (Xue and Jackson,
2015).

We have further illustrated the ability of the one-dimensional model to predict the
biochemical response of the cell to distant mechanical perturbations in the ECM (e.g.
mimicking ECM remodelling by another cell). Throughout this thesis we have modelled
cells in isolation. However, cells rarely exist remotely and the consideration of cell-cell
interactions is crucial for upscaling from cells to tissues, a necessity for applications to
tissue model development (Barry et al., 2022). Cells communicate with each other through
a variety of means, particularly through the formation of cadherin junctions (cell-cell
adhesions) or through the release of soluble molecules (e.g. growth factors, cytokines and
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chemokines). For example, the formation of cadherin junctions leads to changes in cell
morphology and function through their influence on cytoskeletal tension and, consequently,
on intracellular signaling (Gomez et al., 2011, Maître and Heisenberg, 2013). It is hence
crucial to consider these interactions, where individual cells influence their neighbours,
giving rise to collective behaviour (Brückner et al., 2021, Mishra et al., 2019, Poujade et al.,
2007). Indeed, our modelling suggests these interactions may be necessary to enhance the
asymmetries observed in real cells (see Ch. 5). Again, our modelling approach should be
amenable to this addition, with cell-cell adhesions included through modification of the
boundary conditions applied to the cell and with soluble molecules described by a set of
reaction-diffusion equations.

We have modelled the cell, ECM and adhesions as Kelvin-Voigt viscoelastic materials
and have assumed that deformation of each of these structures is small, allowing us to
employ simple linear relations between stress and strain (in a similar manner to Besser
and Schwarz, 2007, Gracheva and Othmer, 2004, Larripa and Mogilner, 2006). The as-
sumption of linear Kelvin-Voigt viscoelasticity is appropriate for materials that behave as
long-time solids. However, it would be instructive to consider other constitutive relations.
For example, DiMilla et al. (1991) employ a Maxwell description (long-time fluid) for a
migrating cell in the vicinity of the cell front and rear (whilst assuming Kelvin-Voigt be-
haviour in the cell bulk). Moreover, nanokicking of cells has been shown to induce sizeable
cell deformation (Robertson et al., 2018), where the assumption of linear viscoelasticity
may no longer be valid and a non-linear constitutive assumption may be required (Bonet,
2001). Furthermore, a poroelastic description of the cell may also be appropriate to de-
scribe the interaction between the cell cytosol and cytoskeleton (Copos and Guy, 2018,
Moeendarbary et al., 2013, Thekkethil et al., 2024). These adaptations to the assumed rhe-
ological properties of the cell may be necessary to capture different phases of cell-substrate
interaction, particularly if cell motility is incorporated.

In this thesis we have focused particularly on the mechanosensing ability of the cell
cytoskeleton and cell-substrate adhesions. However, as discussed in Ch. 1, mechanosensing
also occurs at the cell nucleus and stretch-activated ion channels (Enyedi and Niethammer,
2017, Isermann and Lammerding, 2013, Lammerding, 2011, Martino et al., 2018, Ridone
et al., 2019). To more fully capture cellular mechanotransduction it would be useful
to incorporate these effects into our model. For example, enhanced calcium signaling
through activation of ion channels can lead to MLCK phosphorylation, increasing myosin II
activation (Kuo and Ehrlich, 2015, Takashima, 2009). Our two-dimensional work lays the
groundwork for the incorporation of nuclear mechanosensing, where we treat the nucleus
as a rigid body, occupying a large volume at the centre of the cell (see Ch. 5). Signaling
from this structure could be induced in our model through stress at the boundary between
the cell cytoplasm and the nucleus, with a set of diffusive proteins released or activated
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at this boundary. Moreover, deformation of the nucleus could be included in a relatively
simple manner if we assume it has constant stiffness and viscosity. In this case, matching
of stress and displacement could be employed at the boundary between the cell cytoplasm
and nucleus in a similar manner to the matching employed between regions of the ECM
underneath the cell and in the far field (see Chs. 3-5).

We have presented a discrete one-dimensional model to describe the mechanical prop-
erties and deformation of the cell, ECM and adhesions (see Ch. 3). By performing discrete-
to-continuum upscaling we have been able to formally connect nanoscale and microscale
mechanical features of the cell cytoskeleton and cell-substrate adhesions. However, we ne-
glect a discrete description for the cell biochemistry. Discrete modelling could, for example,
include molecular or Brownian dynamics simulations for the formation of cell-substrate ad-
hesions (Bidone et al., 2019, Tong et al., 2023), signaling protein aggregation (Gabdoulline
and Wade, 1998, Mereghetti et al., 2010), actin filament polymerisation (Guo et al., 2010,
Lee and Liu, 2009) and myosin II cross-linking of filaments treated as discrete elastic rods
(Bidone et al., 2017, Borau et al., 2012, Mak et al., 2016b). Such simulations are com-
putationally costly, however they reduce the need for empiricism and provide significant
insight into the nanoscale biochemical and mechanical properties of cell-substrate adhesion
and cytoskeleton development (Erban, 2014). Hence, it would be informative to develop
such a model to describe the formation and maturation of adhesions and to describe actin
polymerisation and branching in two- and three-dimensions. This modelling approach
may also explain the observed discrepancy in stiffness between purified actin filaments
and the actin cytoskeleton (Haase and Pelling, 2015). Moreover, this approach opens up
the possibility for links to the tensegrity model for mechanotransduction developed by
Ingber (1997), which describes the cell as a set of compressive struts (microtubules and
FAs) connected by tension cables (actin and intermediate filaments).

Another fundamental development to our modelling approach would be incorporation
of intracellular fluid flows, to describe the transport of proteins, which have been neglected
in the models presented in this thesis. Such modelling would allow us to elucidate the
subcellular fluid mechanical processes influenced by mechanostimuli. In particular, we
would be able to investigate how mechanostimuli (e.g. nanokicking) drive fluid instabili-
ties inside the cell, generating (or enhancing) fluid flows (e.g. cytoplasmic streaming) to
transport proteins and promote the polymerisation of actin filaments and maturation of
adhesions to the ECM (Illukkumbura et al., 2020, Mogre et al., 2020). This would also
involve considering the entrainment of the viscous cytoplasmic fluid by myosin motors
(Goldstein and van de Meent, 2015, Goldstein et al., 2008).

In this thesis, we have demonstrated the ability of our modelling approach in one- and
two-dimensions to investigate the influence cues from the cellular microenvironment (e.g.
substrate stiffness or viscosity) have on cell-substrate adhesion and cytoskeleton develop-
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ment. However, cells are fundamentally three-dimensional structures and it would be nat-
ural to extend our current bio-chemo-mechanical continuum model, firstly through depth-
averaging, to a quasi-three-dimensional model, before moving to a fully three-dimensional
framework, which could be implemented computationally using the finite element method.
Such an extension is required, for example, for modelling the influence of fluid shear
strength on cell development.

Finally, the maturation of cell-substrate adhesions and development of cell cytoskele-
ton is linked to intracellular signaling for changes in cell function (Geiger et al., 2009,
Wozniak et al., 2004). These signaling cascades could be incorporated into our model to
investigate the circumstances (e.g. substrate stiffness, fluid shear strength) where a cell
will undertake a particular function. For example, future iterations of the model could
incorporate the YAP/TAZ molecular pathway (previously modelled by Sun et al., 2016),
which is important in the differentiation of hMSCs; or activation of FAK, and its down-
stream effector ERK, which regulates cell division, differentiation, and survival (Lavoie
et al., 2020, Sawai et al., 2005). Consequently, the models we have developed in this thesis
serve as a necessary first step to characterise the mechanotransductive cues required to
direct cells to undertake a particular function.



Appendix A

Linear stability analysis of
one-dimensional model

In Ch. 3 we develop a one-dimensional bio-chemo-mechanical model to describe the coupled
development of cell-substrate adhesions and cell cytoskeleton, together with the deforma-
tion of the cell, ECM and adhesions. In Ch. 5 we extend this modelling approach to two
spatial dimensions, where we subsequently perform a linear stability analysis (see Sec. 5.7)
to predict the stability of the non-linear axisymmetric system (discussed in Sec. 5.6) to
various normal modes of deformation. In a similar manner, in this Appendix we present
a linear stability analysis on the one-dimensional model presented in Ch. 3.

A.1 Identification of a base state

In Sec. 3.8 we show how the cell, when introduced to a substrate, forms adhesions and
develops contractile VSFs. We observe in Sec. 3.8 that, after some time (on the order of
an hour), the cell will settle to a near steady state. In order to predict the stability of
the cell to perturbations, we perform a linear stability analysis around the non-linear base
state described in Ch. 3.

A.2 Linearisation

Linearising around the non-linear base state described in Ch. 3, we perturb all quantities
by a small amount, ϵ. Hence, all concentrations and densities can be written as the sum of
a baseline value (denoted by a bar) and a perturbation (denoted by a hat), i.e. c = c̄+ ϵĉ,

n = n̄ + ϵn̂. Moreover, displacements in the cell and ECM be written as u = ū + ϵû,

w = w̄ + ϵŵ. Additionally, we assume all mechanical properties of the cell, ECM and
adhesions can be written as the sum of a baseline figure (denoted by a bar) and a small
perturbation, of amplitude ϵ, denoted by a hat, in a similar manner to Sec. 5.7. All values
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denoted by a bar are the base state values extracted from our full non-linear simulations
(see Sec. 3.8). Note that this linearisation is independent of the assumption of linear
elasticity, which is present in the non-linear model also (see Sec. 3.1). Note also that the
perturbations we introduce are one-dimensional only.

A.2.1 Mechanical equations

The Cauchy stress inside the cell cytoplasm, given be Eq. (3.19c), can be decomposed into
its non-linear base state value plus a small perturbation by writing σc = σ̄c + ϵσ̂c with

σc =
(
Ēc + ϵÊc

)
(ϵ̄c + ϵϵ̂c) + (µ̄c + ϵµ̂c)

(
∂ϵ̄c
∂t

+ ϵ
∂ϵ̂c
∂t

)
+ (τ̄ + ϵτ̂) +O

(
ϵ2
)
. (A.1)

It follows that

σc = Ēcϵ̄c + µ̄c
∂ϵ̄c
∂t

+ τ̄ + ϵ

(
Ēcϵ̂c + Êcϵ̄c + µ̄c

∂ϵ̂c
∂t

+ µ̂c
∂ϵ̄c
∂t

+ τ̂

)
+O

(
ϵ2
)
, (A.2)

where
ϵ̄c =

∂ū

∂x
, ϵ̂c =

∂û

∂x
. (A.3)

From Eq. (3.19a) we have

∂σc

∂x
=
(
β̄I + ϵβ̂I

) ∂

∂t
(ū+ ϵû− w̄ − ϵŵ) + (κ̄I + ϵκ̂I) (ū+ ϵû− w̄ − ϵŵ) +O

(
ϵ2
)
. (A.4)

Combining Eq. (A.2) and Eq. (A.4) then at O(ϵ0) we have

∂

∂x

(
Ēcϵ̄c + µ̄c

∂ϵ̄c
∂t

+ τ̄

)
= β̄I

∂

∂t
(ū− w̄) + κ̄I (ū− w̄) , (A.5)

precisely the baseline non-linear problem we have solved in Ch. 3, with results detailed in
Sec. 3.8. At O(ϵ) we have from Eq. (A.2) and Eq. (A.4) that

∂

∂x

(
Ēcϵ̂c + Êcϵ̄c + µ̄c

∂ϵ̂c
∂t

+ µ̂c
∂ϵ̄c
∂t

+ τ̂

)
= β̄I

∂

∂t
(û− ŵ) + β̂I

∂

∂t
(ū− w̄)

+κ̄I (û− ŵ) + κ̂I (ū− w̄) . (A.6)

In an identical manner we write the Cauchy stress in the ECM, given be Eq. (3.19c),
as σE = σ̄E + ϵσ̂E. A similar calculation demonstrates that

ϵ̄E =
∂w̄

∂x
, ϵ̂E =

∂ŵ

∂x
, (A.7)

representing the baseline and perturbation infinitesimal strain tensors respectively. We



APPENDIX A. STABILITY OF ONE-DIMENSIONAL SYSTEM 190

hence deduce, in a similar manner to the cell, that

∂

∂x

(
ĒE ϵ̂E + ÊE ϵ̄E + µ̄E

∂ϵ̂E
∂t

+ µ̂E
∂ϵ̄E
∂t

)
= β̄I

∂

∂t
(ŵ − û) + β̂I

∂

∂t
(w̄ − ū)

+κ̄I (ŵ − û) + κ̂I (w̄ − ū) . (A.8)

Boundary conditions

Following Eq. (3.31b) we impose no perturbation stress boundary conditions on the cell
in the form

σ̂c (−L/2, t) = 0, σ̂c (L/2, t) = 0. (A.9)

From Eq. (3.31c) the perturbation boundary conditions on the ECM are given by

ˆ̄w1(−L/2− L1, t) = 0, ˆ̄w2(L/2 + L1, t) = 0, (A.10a)

note that the barred terms here do not denote O(ϵ0) quantities, instead these definitions
follow from our setup in Sec. 3.1.7. At the junctions between ECM regions either side of
the cell boundary we match stress and displacement (see Eq. 3.42), i.e.

ˆ̄w1(−L/2, t) = ŵ(−L/2, t), ˆ̄σE,1(−L/2, t) = σ̂E(−L/2, t), (A.10b)

ˆ̄w2(L/2, t) = ŵ(L/2, t), ˆ̄σE,2(L/2, t) = σ̂E(L/2, t). (A.10c)

A.2.2 Biochemistry

We introduce small perturbations to all concentrations and densities in the biochemical
equations Eqs. (3.29)-(3.30). The O(ϵ0) equations are exactly those presented in Ch. 3
given by Eqs. (3.29)-(3.30). At O(ϵ) we have

∂ĉG
∂t

= −
(
k̄+
p c̄G

(
n̂
(1)
b + n̂

(2)
b + n̂

(1)
A + n̂

(2)
A

)
+ k̂+

p ĉG
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ĉ+m − k+

mĉ
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where quantities denoted with a bar represent baseline values calculated from the non-
linear model presented in Ch. 3.

Perturbation to rate constants

Note that Eqs. (A.11) have also required expansion of some reaction rates (those that
are non-constant). We expand these in an identical manner as in Sec. 5.7. In particular,
employing Taylor series, we deduce the baseline rate constant for each of these quantities
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is given by
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precisely those used in the baseline non-linear model presented in Ch. 3. The perturbation
(i.e. O(ϵ)) rates are given by

k̂+
p = K+

p ĉ
+
R, k̂−

p = K−
p ĉC , k̂+

a = K+
a ĉK−P , k̂−

a = K−
a ĉP−P ,

k̂+
R = K+

R

(
n̂
(1)
b + n̂

(2)
b + δ

(
n̂
(1)
A + n̂

(2)
A

))
, k̄+

F = 2K+
F λ̄I λ̂I .

(A.13)

From Sec. 3.5.2 we have

λI = λ̄I + ϵλ̂I =

√
((ū+ ϵû)− (w̄ + ϵŵ))2. (A.14)

We hence deduce that

λI =

√
(ū− w̄)2 + ϵ

1√
(ū− w̄)2

(ū− w̄) (û− ŵ) +O
(
ϵ2
)
, (A.15)

where we consider only the positive branch of the square root terms.

Boundary conditions

As discussed in Sec. 3.3.2, in order to preserve the mass of the various proteins in the
cell, we assume no flux boundary conditions for each protein species at the edge of the
cytoplasm. The flux through the cell cytoplasm can be written jα = j̄α + ϵĵα. We deduce
from Eq. (3.32) that

Uαc̄α −Dα
∂c̄α
∂x

= 0, Uαĉα −Dα
∂ĉα
∂x

= 0, (A.16)

representing no flux boundary conditions at O(ϵ0) and O(ϵ) respectively.

A.3 Numerical implementation

In a similar manner to our linear stability analysis on our two-dimensional model (see
Sec. 5.10), we employ the linearised one-dimensional model developed in Sec. A.2 to in-
vestigate the stability of the non-linear baseline state presented in Ch. 3. In particular,
we examine the impact that perturbing the cell at different stages in the development
and maturation of cell cytoskeleton and cell-substrate adhesion has on the growth rate of
perturbations.
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We let tp denote the time, after the cell has been introduced the substrate, that we
perturb the cell. At this time, the cell will have undergone a non-linear deformation
from its initial state (see Sec. 3.8). All barred terms in the linearised equations presented
in Sec. A.2 are extracted from the non-linear simulations at time tp (see Sec. 3.8). We
then initialise our linear simulations. In particular, for −L/2 ≤ x ≤ L/2 we introduce
(dimensionless) perturbations of the form

û(x, 0) = −ϵ

(
2x

L

)
, (A.17)

i.e. we introduce a (compressive) displacement throughout the cell cytoplasm that decays
linearly, from a maximum displacement of ±ϵ at the cell edge, to zero at the cell centre.
In subsequent simulations we set ϵ = 0.01. We do not perturb any other quantities, i.e.
all other hatted terms in Sec. A.2 are set to zero initially, hence ĉ(x, 0) = 0, n̂(x, 0) =

0, ŵ(x, 0) = 0. To deduce the stability of the cell, we evolve the linear system presented
in Sec. A.2 in time.

We solve the resulting system of governing equations from Sec. A.2 numerically, using
a finite difference method based on the method lines (in a similar manner to Sec. 3.7).
We discretise the dimensionless spatial domain −1/2 ≤ x ≤ 1/2 using a uniform grid size
∆x. We discretise all spatial derivatives using second-order finite difference stencils and
employ the Matlab solver ode15s to solve the resulting large family of ODEs numerically.
We employ the fictitious nodes procedure to apply the boundary conditions. We discretise
the (dimensionless) domain with ∆x = 0.01 and use stringent error bounds for the time-
stepping.

In our analysis there is an initial transient as the initial configuration is not fully com-
patible with the governing equations, which passes after a (short) time of approximately
tt. We run simulations to a large time ts ≫ tt. As discussed in Sec. 5.10, all quantities in
this linear system will eventually grow or decay exponentially with time, i.e. all quantities,
described by a function f(x, t), can be written as f(x, t) ≈ f̌(x)eΩt, where Ω ∈ C is the
complex growth rate for large t. The growth rate can be decomposed into Ω = Ωr + iΩi,

where Ωr = Re(Ω) > 0 leads to exponential growth (instability), Ωr < 0 leads to exponen-
tial decay (stability) and Ωr = 0 represents neutral stability. Oscillations of the system
are permissible, with frequency Ωi = Im(Ω). These oscillations can be induced in response
to some perturbations (those that are far from compatible with the governing equations).

Evolving the linear system in time, we determine the stability of the system by measur-
ing the perturbation deformation of the cell boundary. In particular, we quantify the real
part of the growth rate, Re(Ω), by fitting an exponential curve to û(L/2, t) for tt < t ≤ ts.

If the system exhibits exponentially growing or decaying oscillations in this time inter-
val, we fit an exponential curve to the oscillatory envelope. We deduce the oscillation
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frequency, Im(Ω), by calculating the inverse of the time, T, between two successive peaks
(which is approximately independent of which two peaks are used), with Im(Ω) = 2π/T ;
if there are no oscillations by ts, we suppose that Im(Ω) = 0.

A.4 Results

In Fig. A.1 we present some baseline linear stability analyses, where we perturb the cell
using the perturbation described by Eq. (A.17), at various times, tp, after the cell has
been introduced to the substrate. Particularly, we consider tp = 100 s, tp = 600 s and
tp = 1500 s. We observe distinct behaviour in each of these three cases. Note the rapid
initial transient behaviour (discussed above) manifests as approximately vertical lines near
the y−axis in Fig. A.1(a); this transient reflects the introduction of the initial perturbation
and its rapid decay.
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Figure A.1: Influence of time of perturbation on cell stability. (a) Baseline linear stability
analyses: growth or decay of modes when the cell is perturbed at tp = 100 s, tp = 600 s,
(d) tp = 1500 s. Stability is determined by considering the dimensionless radial boundary
displacement of the cell, û(L/2, t)/L. (b) Real part of the complex growth rate as a
function of perturbation time, tp; pale green background represents region of instability,
pale red background denotes region of stability.

At tp = 100 s the cell is poorly adhered to the substrate in fully non-linear simula-
tions (see Sec. 3.8). At this time, some bound integrins have formed (see Fig. 3.7b and
Fig. 3.9e-f) but there has been little adhesion maturation (Fig. 3.9g-h) and actin poly-
merisation (Fig. 3.11c-d). The cell is stable to the perturbation described by Eq. (A.17)
(see Fig. A.1a), i.e. Re(Ω) < 0. In particular, following initial (rapid) transient behaviour,
the cell returns to its base state. There are also no oscillations, with Im(Ω) = 0. As
discussed in Sec. 5.10 for the two-dimensional model, this stability is due to the lack of
mature structure (e.g. cytoskeleton and adhesion) in the cell at early times. In particular,
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the (poorly-adhered) cell is unable to mechanosense and convert the perturbation from
Eq. (A.17) into a biological response.

At tp = 600 s we are at an intermediate stage in the the positive feedback loop in
the full non-linear simulations. Particularly, some actin has been polymerised (Fig. 3.11c-
d) and cross-linked by activated myosin II to form VSFs (Fig. 3.11e-f). Consequently,
the cell is in the process of contracting (see Figs. 3.7a, 3.8a), bound integrins are being
stretched and adhesions are beginning to mature (Figs. 3.7b, 3.9g-h). The cell is unstable
to the perturbation described by Eq. (A.17), with Re(Ω) > 0. There are no oscillations in
the system, with Im(Ω) = 0. At this time the cell is susceptible to external influences as
sufficiently mature structures (cytoskeleton and cell-substrate adhesions) have formed that
can respond to deformation, whilst a sufficient pool of free myosin II remains to further
cross-link actin filaments and form more dense VSFs. Consequently, the cell contracts.

Finally, perturbing the cell at tp = 1500 s means that the cell has formed mature
adhesions and cytoskeleton and the positive feedback loop connecting the development of
these structures is becoming subdominant in fully non-linear axisymmetric simulations (see
Sec. 3.8). At this time, the majority of integrins have been recruited into FAs (Fig. 3.7g-h),
and a significant amount of myosin II has been activated (Fig. 3.11g-h) and has cross-linked
actin filaments to form VSFs (Fig. 3.11e-f). The cell is stable to the perturbation described
by Eq. (A.17), with Re(Ω) < 0 (Fig. A.1a). However, rather than pure exponential decay,
we observe damped waves (exponentially decaying oscillations), though the system is on
the precipice between exhibiting underdamping and critical damping. This underdamping
(when perturbed at the late stages of adhesion development) is due to the particular form
of initial perturbation (Eq. A.17) introduced to the system. In particular, we observe in
Fig. A.1(a) the system “overshoots” when returning to equilibrium in its initial transient
behaviour, serving as a source of oscillations.

In Fig. A.1(b) we further examine how the stage at which the cell is perturbed influ-
ences the stability of the cell to the mechanical perturbation described by Eq. (A.17). In
particular, we present the growth rate Re(Ω), of the boundary deformation as a function
of time of perturbation (in full non-linear simulations). Regions where exponential growth
(decay) will occur are shaded in light green (red). There is a slight degree of volatility
throughout this analysis, owing purely to the numerical method used to fit an exponen-
tial curve to the perturbation deformation but this does not influence our conclusions.
We observe that Re(Ω) < 0 when tp ≲ 200 s. In particular, the cell is stable at these
early times due to the lack of mature structure, with the cell unable to mechanosense the
applied perturbation (Eq. A.17) through cell-substrate adhesions and the cytoskeleton.
With increasing time at which the perturbation is applied, owing to the development of
mechanosensing structure within the cell, the cell becomes (linearly) unstable to the ap-
plied perturbation (Eq. A.17). With further increasing time (tp ≳ 1250 s) at which the
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perturbation is applied, we observe in Fig. A.1(b) that the cell redevelops linear stability
to the one-dimensional mechanical perturbation (Eq. A.17), owing to the dwindling pool
of myosin II available for VSF development as the cell has already developed significant
amounts of mature cytoskeleton and cell-substrate adhesions in full non-linear simula-
tions (see Sec. 3.8). These one-dimensional perturbations to the one-dimensional system
are a direct analogue for the axisymmetric perturbations to the axisymmetric non-linear
base state presented in Sec. 5.10, and we observe several similarities between Fig. A.1(b)
and our predictions for the n = 0 mode (corresponding to axisymmetric deformation) in
Fig. 5.9(a).

This linear stability analysis of the one-dimensional system presented in Ch. 3 provides
insight to inform our approach to the analysis of the two-dimensional system presented in
Ch. 5. In particular, in Sec. 5.7.1 we make the simplifying assumption that ECM deforma-
tion has little influence on the linearised dynamics of the system when the ECM is stiff. In
the linear stability analysis presented in this Appendix we do not make this assumption,
allowing the ECM to deform in the linearised system. We are able to demonstrate that, for
a stiff ECM, the assumption of no perturbation ECM displacement has negligible influence
on model predictions, hence justifying our approach in Sec. 5.7.1. Additionally, we are able
to evolve the non-linear system (see Ch. 3) with perturbations akin to those introduced
in the linear stability analysis (see Eq. A.17). We observe that these mechanical pertur-
bations to the non-linear system are quickly absorbed and the cell continues to behave in
exactly the way it would in the absence of perturbation (i.e. after the perturbation, the
response of the system returns quickly to its preferred trajectory).
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