
 
 
 
 
 
 
 
Civrais, Clément Henri Bernard (2024) Extension of the aerothermodynamics 
modelling in direct simulation Monte Carlo. PhD thesis. 
 
 
 
 
https://theses.gla.ac.uk/84584/  
 
 
 
 

Copyright and moral rights for this work are retained by the author 

A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge 

This work cannot be reproduced or quoted extensively from without first 
obtaining permission from the author 

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the author 

When referring to this work, full bibliographic details including the author, 
title, awarding institution and date of the thesis must be given 

 
 
 
 
 
 

Enlighten: Theses 
https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

https://theses.gla.ac.uk/84584/
mailto:research-enlighten@glasgow.ac.uk


Extension of the Aerothermodynamics Modelling in Direct
Simulation Monte Carlo

Clément Henri Bernard Civrais

Submitted in fulfilment of the requirements for the

Degree of Doctor of Philosophy

School of Engineering

College of Science and Engineering

University of Glasgow

May 2024



Abstract

The modelling of aerothermodynamic flows is extremely challenging as it combines both aero-
dynamics and thermodynamics disciplines. Aerothermodynamic applications typically involve
high-speed and high-temperature gas flows, giving rise to many processes to the extent of large
variation in the transport properties of the gas. This thesis concentrates on expanding the current
state of the art of aerothermodynamic modelling for a moderate to high degree of rarefaction.
Over the years, the direct simulation monte carlo method (DSMC) has emerged as the standard
method for simulating rarefied gas flows due to its ability to model complex non-equilibrium
effects in the flows such as non-equilibrium in the internal degrees of freedom of molecules
or non-equilibrium chemical processes in great detail. However, the traditional approaches for
modelling the vibrational excitation of molecules, the chemical reactions and the interaction
between internal modes in the DSMC method present some limitations.
The first research axis focuses on the vibrational modelling of molecular species with an anhar-
monic oscillator model. This has been motivated by the fact that high-fidelity calculations or
state-of-the-art radiation solvers compute the vibrational excitation with an anharmonic oscilla-
tor model, whereas the standard approach in the DSMC method relies on a harmonic oscillator
model. Therefore, the first objective of this thesis is to quantify the difference between the stan-
dard approach in the DSMC method and an anharmonic oscillator mode for the reproduction of
the thermodynamic properties. The quantification analysis is then extended to the context of an
Earth’s planetary reentry of a cylindrical body at an altitude of about 75 km.
The second research axis focuses on the extension of the quantum kinetics (QK) chemistry
models, in which vibrational excitation is modelled with an anharmonic oscillator model. This
custom version of the QK models has been constructed by a generalisation of the reaction
rates to incorporate the modelling of the vibrational excitation with an anharmonic oscillator
model. These formulations are extensively investigated for the most representative dissocia-
tion reactions occurring in an Earth’s atmospheric reentry under thermal equilibrium and non-
equilibrium conditions. The new formulations are compared against an extensive compilation
of well-established theoretical chemistry models, experimental measurements, and high-fidelity
calculations. Through this comprehensive study, the limitations of the new formulations are
identified, demonstrating an excessive utilisation of the relative translational energy and under-
utilisation of the vibrational energy to promote dissociation reactions. Based on these observa-
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ABSTRACT II

tions, an extension of these formulations of QK models is herein proposed incorporating tun-
able parameters to accurately reproduce the most representative experimental measurements and
high-fidelity calculations in both thermal equilibrium and non-equilibrium conditions. These
formulations are then applied for the reproduction of in-flight measurements of the surface heat
flux experienced by the Space Shuttle Columbia during its second mission at an altitude of about
92.35 km.
The third research axis focuses on the development of a novel model for electronic excited states
of molecular species in DSMC. The standard approach in the DSMC method is to treat sepa-
rately each mode of a chemical species which prohibits any interaction between internal modes.
However, aerothermodynamic processes involve the coupling between all internal modes which
becomes particularly significant in the analysis of molecular radiation, where achieving the cor-
rect distribution of vibrational and electronic excitation energy is crucial. As a result, a novel
model that assumes a coupling between the vibrational and electronic modes allowing each
electronic excited state to excite its vibrational quantum levels is proposed. Considering the
challenge of measuring experimentally chemical processes involving electronic excited states,
the novel model is verified against an extensive compilation of theoretical studies. Addition-
ally, the model is applied for a canonical hypersonic flow in Earth’s atmosphere past an infinite
cylindrical body at an altitude of 85 km.
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Chapter 1

Introduction

1.1 Context

The present thesis falls within the research area referred to as aerothermodynamics which cou-
ples the discipline of aerodynamics and thermodynamics [1]. Specifically, aerothermodynamics
is encountered in hyper-velocity propulsion systems [2], high enthalpy wind tunnels [3] or in
planetary reentry [4]. A common aspect of all these applications involves high-speed and high-
temperature flows, giving rise to many processes such as the excitation of the internal modes of
chemical species, e.g. rotational, vibrational and electronic and chemical reactions, e.g. dissoci-
ation and exchange reactions [5]. When these processes occur, the gas exhibits strong deviation
from the definition of thermal and caloric perfect gases, with the results of large variation of the
specific heat capacity ratio [6].
A schematic representation of the most dominant processes occurring alongside the stagnation
streamline of a vehicle entering from near-orbital or sub-orbital velocities into Earth’s atmo-
sphere is illustrated in Fig. 1.1. Physically, a high-velocity air mixture gas flow experiences a
compression through the shock wave that envelops the vehicle. Throughout the shock, most of
the kinetic energy of the gas is converted into translational energy by collision with the dense
gas lying in the shock layer. Through inelastic collisions, the internal modes of the chemical
species become largely activated. The different relaxation times of the internal modes lead to a
strong thermal and chemical non-equilibrium region in which numerous chemical processes oc-
cur. Specifically, the molecules quickly build up large amounts of vibrational energy to the point
where molecules possess sufficient energy to overcome the intra-molecular bond and experience
a dissociation reaction. Concurrently, these atomic species react with molecular species result-
ing in the production of nitric oxide through the Zeldovich exchange reactions [7, 8]. Simul-
taneously, the highly energetic inelastic collisions result in the excitation of electronic excited
states.
The modelling of aerothermodynamics flow must account for non-equilibrium effects which
are the consequence of the finite rate processes illustrated in Fig. 1.1. These processes are in-
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Figure 1.1: Illustration of the aerothermodynamic processes along the stagnation streamline for
Earth’s atmospheric reentry at near-orbital velocity (Adapted from Potter [9]).

herently dependent on molecular collisions and the density of the gas [10]. Specifically, these
non-equilibrium effects arise in moderate to high rarefied flow regimes but also persist to a lower
degree of rarefaction. These rarefied regimes are classified by the Knudsen number, a dimen-
sionless parameter defined as the ratio between the molecular mean free path and a characteristic
flow dimension. Depending on its values, distinct flow regimes and appropriate mathematical
models are distinguished. Figure 1.2 presents a classification of four flow regimes and the lim-
its of applicability of continuum and particle methods in terms of the Knudsen number. In the
context of a planetary reentry, all these flow regimes must be considered to accurately describe
the aerothermodynamic coefficients of the vehicle and correctly plan the reentry path. These
flow regimes not only differ by their respective Knudsen number but also from the relevant
aerothermodynamics processes characteristic to each of these regimes.
In the continuum flow regime, the velocity distribution deviates only slightly from the Maxwellian
distribution function, allowing the transport properties derived from Chapman-Enskog theory to
remain valid throughout [12]. The resulting mathematical formulations yield the Navier-Stokes-
Fourier (NSF) equations. In the limiting case of the Knudsen number equals zero, the flow is
in local thermodynamic equilibrium imposing the velocity distribution function to equal in any
point in space the Maxwellian distribution function. Consequently, the NSF equations simplify
to the inviscid Euler equations.
As the Knudsen number increases, molecular-surface interactions become less frequent, leading
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Figure 1.2: Knudsen number limits and flow regime classifications (Adapted from Bird [11]).

to the emergence of non-equilibrium regions near the surface, i.e. velocity slip and temperature
jump. This regime is commonly referred to as slip flow. Despite these non-equilibrium effects,
the Navier-Stokes-Fourier equations remains valid by applying velocity slip and temperature
jump boundary conditions. For moderate Knudsen numbers, the velocity distribution largely
deviates from the Maxwellian velocity distribution and the Navier-Stokes equations cease to
be valid. One extension of the traditional continuum method consists of applying a second-
order Chapman-Enskog to obtain the Burnett equations [13] which enhances the capabilities of
conventional continuum methods to a certain extent.
In both transition and free-molecular regimes, non-equilibrium effects dominate the physics of
the flow and the only closed equation applicable to such a degree of rarefaction is the Boltzmann
equation [14]. The Boltzmann equation can govern all ranges of Knudsen number, i.e. from con-
tinuum (Kn→ 0) to free-molecular (Kn→ ∞), so long as the assumption of a dilute gas is valid.
In the limit of the Knudsen number tending to infinity and for relatively simple geometries, an-
alytical solutions to the Boltzmann equation can be obtained by disregarding the collision in-
tegral. For finite Knudsen numbers, inter-molecular collisions remain significant, complicating
the derivation of analytical solutions. Several analytical methods for solving the Boltzmann
equation have been proposed. These methods rely on arbitrary assumptions about the form of
the velocity distribution function [15] or involve simplifications of the collision term [16].
However, rarefied high-temperature gas dynamics involve intricate aerothermodynamic and chem-
ical processes, e.g. internal mode excitation, chemical reactions or thermal radiation, which are
not captured by the Boltzmann equation. Consequently, this combined with the mathematical
challenge associated with the Boltzmann equation has stimulated the development of numeri-
cal methods to find solutions to the Boltzmann equation. The particulate nature of the gas has
enabled the development of direct simulation methods to find a solution to the Boltzmann equa-
tion. By far the most common numerical method to simulate rarefied gas flows in the transition
regime is the direct simulation Monte Carlo (DSMC) [17]. The DSMC method is a stochastic
particle-based method based on the kinetic theory of dilute gases.
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This thesis primarily focuses on moderate to high degree of rarefaction, for which the method
of choice is the DSMC method. Throughout this thesis, the DSMC method is utilised to develop
improved models for the modelling of the aerothermodynamic processes occurring during a
planetary reentry, as illustrated in Fig. 1.1.

1.2 Literature Review

The present section provides an overview of the state-of-the-art for the vibrational modelling,
chemistry modelling and electronic excited state modelling. Additionally, the discussion con-
cludes on the necessity of a fully coupled approach to describe the aerothermodynamics process
and the feasibility of such an approach to be implemented in a DSMC solver.

Vibrational Modelling

For many applications, there are large variations of thermodynamic and transport properties
leading to regions of the flow that are in the continuum regime and regions of the flow that are
in the rarefied regime. Consider a planetary reentry, the flow downstream of the bow shock
typically lies in the continuum regime, while some regions in the wake may exist in the rarefied
regime. Although simulating such flows with either continuum or particle methods is attractive,
exclusively relying on one method may lead to challenges. Specifically, for regions of the flow
that lie in the continuum regime, the particle method is prohibitively expensive. On the other
hand, for rarefied regions of the flow, physical assumptions behind the continuum method break
down. Therefore, the development of multidisciplinary hybrid numerical solvers taking advan-
tage of both continuum or particle methods remains an active field of research [18–20]. One
requirement for both methods to be combined is that thermodynamic and transport properties
are consistent on both sides of the interface to ensure the accuracy and global stability of the flow
field. Consequently, this necessitates both methods to achieve similar mathematical modelling
of the excitation of the internal modes.
In high-speed and high-temperature Navier-Stokes based methods, the thermodynamic proper-
ties are sometimes modelled with a polynomial curve fitted on high-fidelity calculation databases
such as Cantera [21] or the Chemical Equilibrium with Applications (CEA) software [22–24]
that incorporates real gas effects. These real gas effects involve the interactions between internal
modes. Specifically, the rotational excitation is modelled with a non-rigid rotor, accounting for
rotational-vibrational coupling effects and the vibrational mode is modelled with an anharmonic
oscillator (aHO) model. Additionally, these databases incorporate electronic excitation enabling
each electronic excited state to excite a unique set of rotational and vibrational quantum levels
that hold different spectroscopic constants to its ground electronic configuration [25,26]. While
at room temperatures these effects are particularly insignificant, for temperatures relevant to
planetary reentry, these effects are of major importance [27].
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In the DSMC method, the internal excitation of chemical species is, in contrast, divided into
four distinctive modes: translational, rotational, vibrational and electronic. The DSMC method
assumes individual treatment of all internal modes prohibiting any interaction between modes.
Specifically, the translational and rotational modes are frequently treated continuously whereas
the vibrational and electronic modes are treated with a discrete approach in which the vibrational
excitation is modelled with a harmonic oscillator (HO) model. For temperatures relevant to
planetary reentry, where high-lying vibrational quantum levels become significantly excited, the
assumption of a harmonic oscillator model for describing the vibrational excitation of chemical
species is inadequate. Specifically, such an assumption is undesirable leading to an inaccurate
description of the thermal conductivity; hence, influencing the Prandtl number of the flow and
the specific heats of the chemical species [28–30].
Therefore, the first aim of this thesis consists of implementing a similar model to describe the
vibrational excitation to the current high-fidelity databases [21–24]. It involves the modelling
of the vibrational quantum levels with an anharmonic oscillator model [31–33]. Several anhar-
monic oscillator models have been utilised in continuum and particle methods. The two main
vibrational models are the Morse anharmonic oscillator model [34] derived from the Morse po-
tential energy function which provides an analytical solution to the Schrödinger equation, and
the Dunham anharmonic oscillator model [35] which relies on a power series expansion of a
potential energy about an equilibrium position.
The Morse anharmonic oscillator model has largely been employed in the DSMC community
for the development of improved models. Specifically, The forced harmonic oscillator (FHO)
model was initially developed [36–38] for co-linear collisions of simple harmonic oscillators. It
has been found that anharmonicity effects are shown to largely impact the vibrational relaxation
time of CO + N2 within a factor of 2 for temperatures below 4500 K. For higher temperatures at
which vibrational quantum levels become excited and chemical reactions start playing a notice-
able role, these anharmonic effects are expected to be of primary importance. This observation
has motivated the extension of the FHO model by integrating three-dimensional collisions of an-
harmonic oscillators following the Morse potential energy function [39]. In the DSMC method,
the FHO model supersedes the traditional Larsen-Borgnakke (LB) technique and is often asso-
ciated with the terminology high-fidelity DSMC method [40]. Indeed, the FHO model describes
the probability transitions between pre-collision and post-collision vibrational quantum levels
based on the sequential mechanism of single-quantum steps in a single collision which has
shown to demonstrate excellent agreement with semi-classical calculations [41]. However, this
approach is severely limited in its application to nonequilibrium flow modelling due to their
prohibitive computational requirements [42]. Additionally, Luo et al. [43] developed a version
of the Macheret-Fridman (MF) chemistry model [44] for the DSMC method by describing the
inter-atomic interactions with the Morse potential energy function [34]. The study demonstrates
that the Morse anharmonic oscillator model plays an important role for molecules with high vi-
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brational energy and also in high-temperature conditions and recommends the modelling of the
vibrational energy with the anharmonic oscillator model over the traditional harmonic oscillator
model. While it is shown that the anharmonic oscillator model plays a significant role in the
investigation of the dissociation reaction rates, the temperature and species profiles in shock-
wave flows are not strongly influenced by this addition. Nonetheless, it must be emphasised that
an accurate description of the vibrational quantum levels remains important when microscopic
properties such as the internal energy distribution are of interest.
The Morse anharmonic oscillator model is constituted of a second-order formulation to describe
the vibrational energy of a molecule. The first term is identical to the traditional harmonic
oscillator model, whereas the negative second-order term accounts for anharmonicity effects.
Each of these two terms is multiplied by a spectroscopic constant which is commonly extracted
from the NIST database [25]. While the Morse model is a basis for model developments in
the DSMC community, the model only models the vibrational excitation of molecules and any
interaction between modes is disregarded.
Another anharmonic oscillator model is the Dunham anharmonic oscillator model which is
largely preferred over the Morse anharmonic oscillator model for the modelling of vibrational
excitation in continuum methods [28–30, 45], high-fidelity chemistry calculations [46, 47] and
radiation solvers [48, 49]. The benefits of the Dunham model lie in the modelling of the rota-
tional and vibrational coupling effects, i.e. change in moment of inertia and centrifugal force,
in the calculation of the internal energies of molecules. These internal energies are described
with an infinite number of terms which are limited to a certain order due to the availability of the
spectroscopic constants. The most popular source for obtaining these spectroscopic constants is
the NIST database. However, these spectroscopic constants are relatively old data which con-
vey uncertainties [50, 51]. Furthermore, the spectroscopic data used to interpolate the Dunham
coefficients are limited to relatively low quantum numbers leading to large uncertainties of their
range of applicability.
Both the Morse and Dunham models accurately describe vibrational quantum levels below the
dissociation energy but cannot be used beyond it, as they predict negative spacing between
levels. A more realistic description of these quasi-bounded levels would require a fit to some
polynomial which would produce rapidly decreasing but still positive level spacing as suggested
by Carlson and Bird [52]. Another approach consists of a truncation of the series of internal
energy to the dissociation energy and restricting the vibrational energies to positive gradients.
This technique has been utilised for the calculation of the thermodynamic properties of several
chemical species showing excellent reproduction of the baseline databases [45].
While the Dunham model presents the advantage of describing the interaction between the in-
ternal mode, this model is unsuitable for the current state of the DSMC method which is limited
by its primary assumption that each internal mode is treated individually and any interaction
between mode is disregarded. For the Dunham model to be incorporated into DSMC, signif-
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icant modifications would be necessary. Nonetheless, the Dunham model remains attractive,
especially for coupling DSMC solvers with radiation transport solvers [49, 53].
Given the uncertainties of the spectroscopic constants reported in the NIST database [25], the
availability of high-order anharmonic spectroscopic constants and the current limitations of the
DSMC method, the Morse anharmonic oscillator model is preferred in this thesis. The imple-
mentation of the Morse anharmonic oscillator model will be the subject of Chapter 4.

Chemistry Modelling

Furthermore, the interaction between internal modes not only plays a major role in the calcu-
lation of the thermodynamic and transport properties [29, 30] but also changes the chemical
reactivity of the chemical species [27]. It has long been known that the excitation of the internal
states strongly influences chemical processes [5, 54, 55].
The first approach for gaining insight into the chemical activity of non-equilibrium flow is
through experimental measurements. A compilation of the most representative experimental
measurements for the 19 most dominant chemical reactions occurring during an Earth’s reen-
try is presented in Tabs. 1.1 and 1.2 for thermal equilibrium and non-equilibrium conditions,
respectively. Many more experimental measurements are available for temperatures relevant to
combustion applications, especially for exchange reactions. However, the recommendation of
Baulch [56] highlights the failure of extrapolating combustion-relevant temperatures below 3000
K to high-speed and high-temperature flows. Consequently, these studies have been discarded
from the compilation in Tabs. 1.1 and 1.2. Ongoing experimental measurements in several
shock-tube facilities expand on the research conducted in the previous century [57–72]. While
the earlier experimental measurements carry significant information and are important for model
validation, recent studies benefit from more accurate techniques and instruments and in many
cases provide better descriptions of the chemical processes with a higher standard of accuracy.
Specifically, the recent experimental measurements [73–81] offer chemical reaction rates with
high-fidelity measurements for temperatures relevant to hypersonic conditions. These recent
experimental measurements combined with the past studies provide comprehensive ground for
model development and adjustment of tunable parameters.
A complementary approach for understanding key aspects of non-equilibrium flows involves
computational chemistry. Over the past two decades, the quasi classical trajectory (QCT) method
[120] has gained interest from the aerospace community to study the main chemical reactions
in typical Earth re-entry, see Tabs. 1.1 and 1.2. The QCT calculations yield reaction rates with
a high degree of fidelity, typically associated with an excellent reproduction of the most ac-
curate experimental measurements. This technique has been integrated into direct simulation
Monte Carlo (DSMC) simulations and the method is referred to as the direct molecular simu-
lation (DMS) method [121] or classical trajectory direct simulation Monte Carlo (CT-DSMC)
method [122, 123]. The DMS method can be regarded as an ab initio version of the DSMC
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Table 1.1: Overview of the thermal equilibrium reaction rates for the 19 most dominant chemical
reactions in an Earth’s reentry.

Reaction Experimental Measurements Review/Models QCT Calculations DMS Simulation

Dissociation reactions
O2 + O2 −−→ O + O + O2 [68–70, 73, 75–77] [54, 56, 82–84] [85–87] [88–90]
O2 + O−−→ O + O + O [70, 77] [54, 56, 82–84] [85, 86, 91–94] [90]

O2 + N2 −−→ O + O + N2 [57, 69, 81] [54, 56, 82–84] [85, 86, 90, 95] [89, 90]
O2 + N−−→ O + O + N [54, 56, 82–84] [90, 96, 97] [90]

O2 + NO−−→ O + O + NO [54, 56, 82–84]

N2 + O2 −−→ N + N + O2 [54, 56, 82–84] [86, 90, 95] [90]
N2 + O−−→ N + N + O [54, 56, 82–84] [98–101]

N2 + N2 −−→ N + N + N2 [58, 59, 66, 67] [54, 56, 82–84] [86, 102–104] [90, 105]
N2 + N−−→ N + N + N [58, 59, 66, 67] [54, 56, 82–84] [86, 106–109] [90, 110]

N2 + NO−−→ N + N + NO [54, 56, 82–84]

NO + O2 −−→ N + O + O2 [54, 56, 82–84]
NO + O−−→ N + O + O [54, 56, 82–84] [90] [90]

NO + N2 −−→ N + O + N2 [74, 79] [54, 56, 82–84] [111]
NO + N−−→ N + O + N [54, 56, 82–84] [90, 99] [90]

NO + NO−−→ N + O + NO [62, 63, 65, 78] [54, 56, 82–84]
Exchange reactions

N2 + O−−→ NO + N [64, 65, 80] [54, 56, 82–84] [98–101, 112, 113] [90]
NO + N−−→ N2 + O [60, 65, 80] [54, 56, 82–84] [99, 100] [90]
O2 + N−−→ NO + O [80] [54, 56, 82–84] [96, 97, 114–116] [90]
NO + O−−→ O2 + N [61, 80] [54, 56, 82–84] [90, 116] [90]

Table 1.2: Overview of the thermal non-equilibrium reaction rates for the 19 most dominant
chemical reactions in an Earth’s reentry.

Reaction Experimental Measurements Review/Models QCT Calculations DMS Simulation

Dissociation reactions
O2 + O2 −−→ O + O + O2 [71, 73] [5, 44, 117–119] [85] [88]
O2 + O−−→ O + O + O [5, 44, 117–119] [91]

O2 + N2 −−→ O + O + N2 [5, 44, 117–119] [85, 95]
O2 + N−−→ O + O + N [5, 44, 117–119]

O2 + NO−−→ O + O + NO [5, 44, 117–119]

N2 + O2 −−→ N + N + O2 [5, 44, 117–119] [95]
N2 + O−−→ N + N + O [5, 44, 117–119]

N2 + N2 −−→ N + N + N2 [72] [5, 44, 117–119] [102]
N2 + N−−→ N + N + N [5, 44, 117–119] [107]

N2 + NO−−→ N + N + NO [5, 44, 117–119]

NO + O2 −−→ N + O + O2 [5, 44, 117–119]
NO + O−−→ N + O + O [5, 44, 117–119]

NO + N2 −−→ N + O + N2 [5, 44, 117–119]
NO + N−−→ N + O + N [5, 44, 117–119]

NO + NO−−→ N + O + NO [5, 44, 117–119]
Exchange reactions

N2 + O−−→ NO + N [5, 44, 117–119] [98, 113]
NO + N−−→ N2 + O [5, 44, 117–119]
O2 + N−−→ NO + O [5, 44, 117–119]
NO + O−−→ O2 + N [5, 44, 117–119]
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method as it supersedes the phenomenological models by computing on the flight actual molec-
ular dynamics trajectories integrated on an ab initio PES. The DMS method was initially applied
to canonical flows around cylinders [124, 125]. Recently, the DMS method has been success-
fully applied to the reproduction of the experimental measurements [126] of spontaneous ther-
mal fluctuations around a given equilibrium state of pure oxygen [127], to simulate a reactive,
near-continuum, Mach 21 nitrogen flow over a blunt wedge [128] and to a large-scale, fully re-
solved computation of a non-equilibrium, reactive flow of pure oxygen over a double cone [129].
However, due to the cost of trajectory integration, the DMS method is significantly more compu-
tationally expensive than the standard DSMC method. Nevertheless, owing to their high fidelity,
QCT calculations and DMS simulations provide an extensive basis for the validation and analy-
sis of DSMC models.
While a large number of the chemical reactions have been experimentally studied, Tab. 1.1 shows
that for 7 chemical reactions, no experimental measurements have been reported in the literature.
Table 1.1 also demonstrates that most of these chemical reactions are covered by high-fidelity
calculations which, in combination with experimental measurements provide an extensive for
model development, validation, and analysis. However, for thermal non-equilibrium conditions,
Tab. 1.2 shows that only two chemical reactions have been experimentally studied, i.e. O2 +
O2 and N2 + N2, and 7 chemical reactions have been studied with high-fidelity calculations.
Due to the challenges of measuring high-energy collisions experimentally and the significant
gap in thermal equilibrium conditions, there is a need for the development of chemistry models
that can closely reproduce the compilation of studies presented in Tabs. 1.1 and 1.1 but also
provide an estimation of the reaction rates when no experimental measurements or high-fidelity
calculations are reported. This is primarily achieved using phenomenological models which are
commonly utilised in the DSMC community.
One example is the quantum-kinetic (QK) chemistry model which was developed by Bird [130].
The QK models are a series of molecular-level chemistry models that rely solely on the fun-
damental properties of the colliding particles, including their total collision energy, quantised
vibrational levels and molecular dissociation energies. These models can be easily integrated
into a DSMC solver and use the quantum Larsen-Borgnakke (LB) technique [131] to derive sim-
ple models for dissociation, recombination and exchange reactions. The advantage of the QK
chemistry model is that it has limited dependence on macroscopic data; instead, it depends on
vibrational energy at the microscopic level and does not require the gas to be in thermal equilib-
rium. Preliminary evaluations [130,132,133] indicated that the resultant reaction rates are in ex-
cellent agreement with measured Arrhenius rates for near-equilibrium conditions and with both
measured rates and other theoretical models for far-from-equilibrium conditions. Nowadays,
the QK models are still actively employed for the modelling of Earth re-entries [19, 133–137],
for Mars reentry [138–140] involving the modelling of polyatomic molecular systems, Lunar
reentry [141] and for combustion applications [142].
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Other phenomenological chemistry models are typically the total collision energy (TCE) model [17],
the vibrational favoured dissociation (VFD) model [143] or the bias model [144]. Most of these
chemistry models have been inferred on experimental measurements or theoretical calculations
to improve their predictive capabilities, e.g. MF-DSMC model [145,146], bias model [147] and
GCE model [148]. Despite being actively utilised for numerous applications [19, 133–142], the
QK models have received limited attention.
The QK models were developed around the assumption of the harmonic oscillator model for
the treatment of vibrational excitation. As highlighted in the preceding section, real gas effects
involve the interactions between all the internal modes where the current state-of-the-art for
modelling the vibrational excitation is an anharmonic oscillator model. Therefore, this thesis
aims to propose an extension to the QK models to accurately reproduce the most representative
experimental measurements and high-fidelity calculations, in which the vibrational excitation
is modelled with the current state-of-the-art for the vibrational modelling [135–137]. The de-
tailed description and comparison with an extensive compilation of past studies is the basis of
Chapters 5 and 6.

Electronic Excited States Modelling

Another important aerothermodynamic process is the excitation of the electronic excited states
of the chemical species. In the DSMC community, four methods have been developed to address
this aerothermodynamic process.
The first method has been introduced by Liechty and Lewis [141, 149] and similarly treats the
electronic excitation to the vibrational energies. In this method, each chemical species is ini-
tialised with an electronic quantum number sampled from the Boltzmann distribution. During
collisions, energy exchange with the translational degrees of freedom occurs through the LB
model [150]. The primary advantage of this technique lies in the storage of only one additional
energy value per particle, while many aspects of vibrational modelling can be incorporated.
However, a drawback of this method is that it exhibits significant noise, especially at low tem-
peratures, requiring a large number of particles to compensate for the noise.
The second method, initially introduced by Bird [151], improved by Carlson et al. [152, 153],
and later expanded by Burt and Josyula [154, 155], partially addresses this problem by equip-
ping each particle with a complete distribution function of electronic excitation instead of an
electronic quantum number. However, this leads to a significant increase in storage require-
ments.
The third method developed by Li et al. [156] treats each transition between two electronic
states as a chemical process during collisions, where each electronic excited state is regarded as
a distinct species. However, to maintain a reasonable level of complexity, assumptions are made
on the total number of electronic excited states involved. The merits of this method are that
the transition rates can be tuned to reproduce any experimental measurements or high-fidelity
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calculations; albeit, noise remains a problem.
The fourth method has been designed by Gallis and Harvey [157, 158]. While the preceding
methods rely on the assumption of an equilibrium distribution of the electronic state after a col-
lision, this method computes the probability of an electronic excitation resulting from a collision
with the aid of electronic excitation cross-sections. To achieve a realistic description of the elec-
tronic excitation, accurate cross-sections are required. However, the experimental measurement
of accurate cross-sections is extremely challenging and covers only a fraction of the electronic
transitions of interests. Consequently, electronic excitation cross-sections are typically either
calculated from theoretical considerations or approximated from other known cross-sections for
similar interactions.
A common aspect of all methods is that each internal mode, i.e. rotational, vibrational, and
electronic, is regarded separately. However, real-gas effects involve coupling between all inter-
nal modes, such as rotational-vibrational coupling and rovibronic coupling [4]. This becomes
particularly significant in the analysis of molecular radiation, where achieving the correct distri-
bution of vibrational and electronic excitation energy is crucial.
In recent years, coupling of DSMC methods with radiation transport solvers, e.g. PARADE [159],
NEQAIR [160] or Specair [161], has emerged for such investigations [49,53,162–165]. In con-
trast to the DSMC solvers, these radiation solvers adopt a fully coupled approach in which all
types of interactions between the internal modes are incorporated. To perform such coupling,
previous coupled radiation-DSMC simulations introduced additional assumptions, i.e. Boltz-
mann distribution [49, 53] or quasi-steady-state (QSS) [5, 156, 165–167], to transfer uncoupled
information from DSMC into the coupled models of radiation solvers. With an ever-increasing
number of missions involving spectral studies of flows during in-flight or experimental mea-
surements, a detailed description of the physics of the flow is fundamental to allow for spectral
comparison. However, a limitation arises due to the assumption of decoupling each internal
mode of the chemical species in DSMC simulations, preventing the achievement of this level of
detail.
In this thesis, a new model is developed that is more sophisticated than any of the four mod-
els previously introduced. Specifically, the model involves the coupling of the vibrational and
electronic modes of molecular species, enabling each electronic excited state to excite its unique
vibrational quantum levels [168, 169]. The derivation and description of this model is the basis
of Chapter 7.

1.3 Aims & Objectives

The review of the existing work has evidenced the need for adopting a coupled approach to
model the internal modes of the chemical species. Therefore, the main aim of this thesis is to
incorporate similar considerations in the DSMC method. It involves the development and im-
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plementation of new models to improve modelling of the physico-chemical processes occurring
in any aerothermodynamics applications. The objectives of this thesis are as follows:

Vibrational Modelling

• To implement a similar model to that utilised by high-fidelity databases for modelling the
vibrational excitation of molecular species.

• To verify the implementation of the new vibrational model and assess its predictive capa-
bilities in the context of a canonical reentry into Earth’s atmosphere.

• To quantify the difference between the traditional models utilised in DSMC solvers against
a more sophisticated model.

Chemistry Modelling

• To modify the original quantum kinetics chemistry models by modelling the vibrational
excitation with an anharmonic oscillator model and verify the derivation and implementa-
tion of these formulations for the most representative chemical reactions occurring during
a planetary reentry.

• To evaluate the predictions of the new formulations against an experimental compilation
of experimental measurements, high-fidelity calculations and well-established chemistry
models and assess their limitations to reproduce the baseline database.

• To derive an extension to the new formulations to accurately reproduce the most repre-
sentative database, to validate these formulations for all the chemical reactions occurring
during an Earth’s reentry and to apply these new formulations for the reproduction of
in-flight measurements.

Electronic Excited States Modelling

• To develop a new mathematical model for coupling the vibrational and electronic modes
based on the same considerations utilised for a fully coupled approach.

• To verify the derivation and implementation of the new formulations in a DSMC solver.

• To quantify the difference between the traditional approach utilised for modelling the
electronic excited states and the newly derived model.
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1.4 Thesis Outline

Chapter 2 provides an overview of the theoretical background to appreciate the novelty of this
thesis by supporting the derivation, implementation and validation of the new aerothermody-
namics models. It provides a comprehensive overview of the fundamental principles of quantum
mechanics, statistical mechanics and atomic and molecular orbital theories is presented.
Chapter 3 reviews the key concept of the DSMC method. The basic DSMC algorithm and the
main routines involving the internal modes are extensively described. The DSMC solver used
to perform all of the simulations in this thesis along with the contribution of this thesis to the
solver are presented.
Chapter 4 presents the implementation of an anharmonic oscillator model in a DSMC solver.
The anharmonic oscillator model is verified against theoretical predictions for a series of adi-
abatic reactor simulations involving both thermal equilibrium and non-equilibrium conditions.
The anharmonic oscillator model is then applied to a canonical hypersonic flow past an infinite
cylindrical body re-entering Earth’s atmosphere at an altitude of about 75 km.
Chapter 5 presents a custom version of the original QK chemistry models, in which vibrational
excitation is modelled with an anharmonic oscillator model. The new formulations are compared
against an extensive compilation of well-established theoretical chemistry models, experimental
measurements and high-fidelity calculations. Then, the limitations of these formulations are
assessed for thermal non-equilibrium conditions relevant to planetary reentry applications.
Chapter 6 presents an extension to the modified QK models presented in Chapter 5 to accu-
rately reproduce recent experimental measurements and high-fidelity calculations. These new
formulations are extensively investigated for 19 chemical reactions, dissociation and exchange
reactions, for Earth’s upper-atmospheric reentry under thermal equilibrium and non-equilibrium
conditions. The extended QK models are then utilised to reproduce in-flight measurements of
the space transport system’s second mission (STS-II) at an altitude of 92.35 km.
Chapter 7 presents a new model for coupling the vibrational and electronic modes of molecular
species in DSMC. The new model is verified against an extensive compilation of theoretical
studies. The model is applied for a canonical Earth’s atmospheric reentry at an altitude of 85 km.
Chapter 8 summarises the key findings of the research presented in this thesis and discusses
future perspectives.



Chapter 2

Theoretical Background

The present chapter presents an overview of the theoretical background to appreciate the novelty
of this thesis by supporting the implementation, verification and validation of the new aerother-
modynamics models. Specifically, it provides a comprehensive introduction to the fundamental
principles of quantum mechanics, statistical mechanics and atomic and molecular orbital the-
ories. The main aim of this chapter is threefold. First, it intends to review the derivation and
limitations of the most common models, e.g. rigid rotor and harmonic oscillator models, utilised
in the DSMC method, Chapter 3, for modelling the internal modes of chemical species. These
models will be used as a baseline model for the development of more sophisticated approaches
in Chapter 4. Then, it aims at understanding the assumption around the derivation of the ther-
modynamic properties of a chemical species and the internal temperatures that are widely used
to provide physical insight about the excitation of the internal modes, see Chapters 5 and 6. Fi-
nally, it aims at understanding the different electronic configurations of a given chemical species
allowing for the development of partially coupled and fully coupled approaches which will be
the focus of Chapter 7 and Appendix A, respectively.

2.1 Quantum Mechanics

Quantum mechanics aims at describing the behaviour of elementary particles. In quantum me-
chanics, particles have wave-like properties and are governed by a particular wave equation,
commonly known as the Schrödinger equation, from which the internal energy of a particle
can be calculated. Therefore, the main purpose of this section is to understand the fundamen-
tal of quantum mechanics to later be used in subsequent sections to derive the thermodynamic
properties of a system and understand the many electronic configuration a particle may excite.

14
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2.1.1 Heisenberg’s Uncertainty Principle

Before proceeding deeper into quantum mechanics, it is helpful to begin with the Heisenberg’s
uncertainty principle. The existence of the quantum energy states is merely the results of the
Heisenberg’s uncertainty principle that is,

∆q∆p≥ ℏ
2
, (2.1)

where ∆q and ∆p are the uncertainties in the position coordinates and momentum, respectively
and ℏ is the reduced Planck constant.
A common physical interpretation of Eq. (2.1) is that the measurement of a particle’s position
with accuracy |∆q| must tolerate inaccuracy of ∆p ≈ ℏ

∆q in a simultaneous measurement of the
corresponding momentum. Theoretically, Eq. (2.1) demonstrates that for a particle to have a
definite absolute position, i.e. ∆q = 0, the momentum is indeterminate. Instead, Eq. (2.1) guides
us to adopt a probabilistic interpretation of a particle’s position. The notion of an absolute
position for a particle is impracticable; instead, it is preferable to refer to its probability to lie
in the vicinity of that position. It is important to emphasise that the Heisenberg’s uncertainty
principle is not a measurement-specific result rather a mathematical consequence of the wave
nature of matter [170].

2.1.2 Postulates

Quantum mechanics can be expressed in terms of a small set of postulates. The plausibility of
these postulates can be mathematically demonstrated, however, these derivations are beyond the
scope of this thesis. The existence of these postulates is herein not questioned and a comprehen-
sive discussion on this topic can be consulted in Lowe and Peterson [171].

Postulate 1: States and Wave functions

The state of a system is fully described by a function, Ψ(−→x , t).

In this Postulate, −→x represents the spatial coordinates of the system and t is the time. This
function is the so-called wave function and it is one of the most important concepts of quantum
mechanics theory. If the system is time-dependent, the wave function is formulated as Ψ(−→x , t)

whereas if the system is time-independent, the wave function is written ψ(−→x ).

Postulate 2: Probabilistic Interpretation of the Wave Functions

The probability that a particle will be found in a volume element dV at point −→x and time
t is P(−→x , t)dV = |ψ(−→x , t)2|dV .
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Postulate II, commonly referred as Born’s interpretation [170], arises as a consequence of Heisen-
berg’s uncertainty principle and observations made on the Mach-Zehnder interferometer. The
first accepted interpretation has been proposed by Born introducing a probabilistic interpretation
of the wave function. The wave function represents a probability amplitude and has no physical
significance. However, it is mathematically defined such that the product of its modulus by a
volume element, i.e. Ψ(−→x , t)Ψ(−→x , t)dV , represents the probability density that a particle lies in
the volume dV , at position −→x and time t.
The probability density must satisfy the condition that the particle is located somewhere in space.
This is also known as the normalisation condition which reads∫ +∞

−∞

Ψ(−→x , t)Ψ(−→x , t)dV = 1. (2.2)

Furthermore, for the wave function to be fully mathematically defined, it must be well-behaved,
i.e. single-valued in all coordinates, finite and continuous. The requirement for the wave function
to be well-behaved allows solutions of the Schrödinger equation to specific quantized values of
the energy.

Postulate 3: Outcome Measurements

When a system is described by a wave function, the expectation (mean) value of the
observable Ω in a series of measurements is equal to the expectation value of the corre-
sponding operator.

Postulate III implies that, for a state ψ(−→x ), the expectation value of an operator Ω denoted
< Ω >, is defined as,

< Ω >=

∫+∞

−∞
ψ(−→x )Ωψ(−→x )dV∫+∞

−∞
ψ(−→x )ψ(−→x )dV.

. (2.3)

If the system is chosen to be normalised, the expectation value simplifies as,

< Ω >=
∫ +∞

−∞

ψ(−→x )Ωψ(−→x )dV. (2.4)

Consider the example of the particle’s position. Heisenberg’s Uncertainty Principle has demon-
strated that a particle’s position cannot be exactly determined. However, let Ψ(x1, t) be a given
state and P(x1, t) be the probability for a particle to lie in between x1 and x1+dx1 and the system
is normalised, then, the mean particle position is

< x1 >=
∫ +∞

−∞

Ψ(x1, t)x1ψ(x1, t)dx1. (2.5)
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Postulate 4: Observables and Operators

Observables are represented by Hermitian operators chosen to satisfy the commutation
relations,

[q, pq′] = iℏδqq′ [q,q′] = 0 [pq, pq′] = 0, (2.6)

where i is the unit imaginary number, ℏ = h
2π

is the reduced Planck’ constant, q and q′

each denote one of the coordinate x,y,z and pq and pq′ the corresponding linear momenta.

In classical mechanics, an observable which represents any dynamic quantity is defined by math-
ematical functions. In contrast, quantum mechanics characterises an observable by a mathemat-
ical operator which act on the wave functions. This difference constitutes one of the biggest
mathematical changes between these two theories.
Postulate IV indicates that there exists a linear Hermitian operator for every observables in
classical mechanics. The Hermitian characteristic of the operator is herein not demonstrated.
An extensive discussion on the mathematical definition of the operators and their characteristic
can be consulted in Lowe and Peterson [171].
In classical mechanics, the total energy, H, of a particle of mass m is conventionally expressed
as the summation of two contributions; the particle’s momentum and potential energy func-
tion. This function is most commonly known as the Hamiltonian function, named after William
Rowan Hamilton for his significant contribution to the field of classical mechanics and formu-
lated,

H(−→x , t) =
1

2m
p2(−→x , t)+U(−→x , t), (2.7)

where U denotes the potential energy of the particle.
The corresponding operator is named the Hamiltonian operator and it is expressed

H = K(−→x , t)+U(−→x , t), (2.8)

where K is the kinetic energy of the particle.

Postulate 5: Wave Function Equations

The wave function ψ(−→x , t) evolves in time according to

iℏ
∂ψ(−→x , t)

∂ t
= Hψ. (2.9)

This partial differential equation was first introduced in 1926 by Erwin Schrödinger and it is
commonly known as Schrödinger equation [172]. In this thesis, Eq. (2.9) is regarded as an
established and accepted equation, its plausibility will not be a subject of further investigation.
An extensive discussion on the validity of the Schrödinger equation can be consulted in Lowe
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and Peterson [171].
Injecting the Hamiltonian operator, Eq. (2.8), in Eq. (2.9), it yields the time-dependent Schrödinger
equation,

ih
∂Ψ(−→x , t)

∂ t
=− ℏ2

2m
∇

2
Ψ(−→x , t)+U(−→x )Ψ(−→x , t). (2.10)

When the system is time-independent, the temporal dependence of the wave functions can be
dropped leading to a spatial wave function equation,

− ℏ2

2m
∇

2
ψ(−→x )+U(−→x )ψ(−→x ) = εψ(−→x ), (2.11)

where ε is the internal energy of the system.
Eq. (2.11) can be reduced to a compact expression commonly known as the time-independent
Schrödinger equation,

Hψ(−→x ) = εψ(−→x ), (2.12)

In light of the Schrödinger equations, it is evident that the primary challenge in quantum mechan-
ics lies in the selection of the appropriate potential energy function and form of a Hamiltonian
operator that accurately reproduces the behaviour of Nature. Once the potential energy func-
tion is carefully chosen, a secondary challenge arises with the resolution of the corresponding
Schrödinger equation.
In certain specific cases, such as a particle in motion in the absence of any field forces, a
two-particle system modelled with a rigid rotor or a harmonic oscillator, the Schrödinger equa-
tion yields analytical solutions. However, in scenarios involving more complex representations
of intra-molecular interactions within chemical species, the Schrödinger equation may not re-
sult in analytical solutions. Complementary derivations can be consulted in Atkins and Fried-
man [170], while comprehensive discussions on numerical resolution techniques are presented
in Jensen [173].

2.2 Statistical Mechanics

Statistical mechanics is a branch of physics that uses statistical principles to predict the behavior
of a large number of particles in a system. It provides a bridge between the microscopic be-
havior of individual particles, such as atoms and molecules and the macroscopic properties of
the system. In this context, the primary objective of this section is to derive the thermodynamic
properties of a system in thermal equilibrium exclusively from statistical considerations.

2.2.1 Description of Gases

The primary goal of this section is to derive the Boltzmann distribution and understanding
its inherent limitations. Similar to the other parts of this chapter, the emphasis is on gain-
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ing understanding rather than looking at the complete derivation of the solution which can be
found in high-temperatures textbooks dealing with aerothermodynamics such as Vincenti and
Kruger [174], Boyd and Schwartzentruber [10] or Anderson [6]. This section also introduces
the concept of the partition function, a property that plays a central role in bridging the micro-
scopic and macroscopic properties of a system.

Microstates and Macrostates

In statistical mechanics, a system is described by its microstates and macrostates which are
characterised by three properties,

• ε j: Characteristic energy of quantum level j,

• g j: Degeneracy of quantum level j,

• N j: Number of particle in quantum level j.

While ε j and g j are inherent to each system, hence, fixed properties, the number of particle in
each quantum level may vary in time.
Before deriving the traditional expression of statistical mechanics, it is helpful to first clarify
the terms microstates and macrostates. Consider a fictitious system at some given instant con-
stituted with N = 9 particles and five energy states. This situation corresponds to Macrostate I
described in Fig. 2.1 in which each energy state is denoted by a straight line and particles are
represented by a cross. At some later instant and with the aid of particle collisions, the popula-
tion of some quantum levels may change; hence, resulting in a different macrostate (Macrostate
II). A macrostate can therefore be defined as the certain distribution of the particles over the
quantum levels at one instant in time.

Energy levels ε0 ε1 ε2 ε3 ε4

Degeneracy g0 g1 g2 g3 g4

Population at time t N0 = 1 N1 = 2 N2 = 3 N3 = 2 N4 = 1

Population at time t +dt N0 = 1 N1 = 3 N2 = 2 N3 = 4 N4 = 1

One macrostate

Another macrostate

Figure 2.1: Illustration of macrostates (Adapted from Anderson [6]).

Figure 2.2 illustrates a simplified representation of a given macrostate for a system constituted
of N = 9 particles, total energy E and five internal energies. The degeneracy of each energy
is depicted by a horizontal line and its value as well as the population of the quantum level
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are indicated at the right of each level. Each particle is represented with a cross. The energy
value of each energy state is disregarded. Consider each of the microstates presented in Fig. 2.2
conserve the total energy of the system. At any instant in time, these particles are uniformly
distributed across the five quantum levels. At some later instant, the population of the highest
degeneracy of quantum levels 2 and 3 sees a depletion of a particle. However, the number of
particles populating these levels remains identical to Microstate I. Hence, this microstate belongs
to the same macrostate as Microstate I. At another instant, the population of the second and third
quantum levels have changed again, however, the population remains constant throughout the
temporal evolution of the system, hence, it is another microstate of the macrostate considered.
As a result, a macrostate may therefore have multiple microstates. A microstate can therefore
be defined as a permissible rearrangement of the N j over the quantum levels j without changing
the total number of particles and energy of the system.

ε0 ε1 ε2 ε3 ε4

g0 = 5 g1 = 2 g2 = 3 g3 = 3 g4 = 1

N0 = 1 N1 = 2 N2 = 3 N3 = 2 N4 = 1

X

X

X
X

X

X

X

X

X

Microstate I

X

X

X
X

X

X X

X

X

Microstate II
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Microstate III
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Figure 2.2: Illustration of three microstates of a macrostate (Adapted from Anderson [6]).

Let generalise the concept highlighted in Figs. 2.1 and 2.2 for an arbitrary system. Consider
a system with total energy E constituted of N microscopic identical particles, each of which
occupies at any instant one of the permissible energy of the system, ε0,ε1,ε2 · · · . Let N j be the
number of particles in an arbitrary energy state, i.e. ε j. The value of N j defines the population
of each energy state.
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Therefore, the total number of particles in the system satisfies,

N = ∑
j

N j, (2.13)

and that the total energy of the system is

E = ∑
j

N jε j. (2.14)

Over time, one macrostate emerges with more occurrence than any other. This macrostate is
known as the most probable macrostate and is characterised as the thermodynamic equilibrium
of the system. It is also characterised as the macrostate which has the maximum number of mi-
crostates. Therefore, counting the number of microstates is of primary importance to determine
the most probable macrostate that will later conduct us to the thermodynamic properties of the
system.

General Case

In quantum mechanics, chemical species are classified into two distinct categories depending on
their constitutive number of elementary particles.

1. Chemical species constituted from an even number of elementary particles obey the Bose-
Einstein statistical distribution. Such chemical species are called bosons. Examples of
bosons include C, O or N2.

2. Chemical species constituted from an odd number of elementary particles obey the Fermi-
Dirac statistical distribution. Such chemical species are called fermions. Examples of
bosons include p+, e– or N.

The Bose-Einstein statistics allow any number of N j particles in any one quantum level. On the
contrary, the Fermi-Dirac statistical distribution requires that no more than one particle populate
each quantum level. This difference results in two different numbers of microstate for a given
macrostate which, for the Bose-Einstein statistics reads,

WBE = ∏
j

(N j +g j−1)!
(g j−1)!N j!

, (2.15)

an for the Fermi-Dirac statistics,

WFD = ∏
j

g j!
(g j−1)!N j!

. (2.16)
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The reason for the two systems to allow different numbers of microstates lies in the symme-
try properties of the wave functions. The explanation is beyond the scope of this thesis and
comprehensive explanations can be consulted in Atkins and Friedman [170].
Searching the most probable macrostate consists of searching the specific sets of N j which al-
lows the maximum of Eqs. (2.15) and (2.16). The derivation is of minor importance and it is
therefore disregarded for clarity. The full derivation can be consulted in Anderson [6] or Vin-
centi and Kruger [174]. These derivation results show that for the Bose-Einstein statistics, the
maximum value of W is obtained for

NBE, j =
g j

eαeβε j −1
, (2.17)

and for the Fermi-Dirac statistics, it yields,

NFD, j =
g j

eαeβε j +1
. (2.18)

Eqs. (2.17) and (2.18) correspond to the most probable distribution of particles over the energy
levels ε j. The value of the two parameters α and β remain undetermined. However, Eqs. (2.17)
and (2.18) only differ by the sign in the denominator which will prove beneficial to determine
these parameters. Furthermore, the total number of particles in the system and its corresponding
total energy can, at this stage, be computed by inserting Eqs. (2.17) and (2.18) into Eqs. (2.13)
and (2.14) which reads,

N = ∑
j

g j

eα+βε j ±1
, (2.19)

E = ∑
j

g jε j

eα+βε j ±1
. (2.20)

For brevity, a ± symbol has been added to distinguish the two statistical distributions.

Limiting Case

The determination of α and β is essential to later determine the thermodynamics properties of
the system. This is only possible in a limiting situation which fortunately covers most practi-
cal interest applications. In the limit of the temperature being high enough to promote a spare
distribution of the particle over the permissible energy levels of the system, i.e. g j >> N j, the
denominator in Eqs. (2.17) and (2.18) must be large enough for the denominator to be approxi-
mated by eαeβε j ±1≈ eαeβε j . Note that this limiting situation is also known as the Boltzmann
limit. In this situation, the two statistical distributions yield a common limiting result,

N j = g je−αe−βε j . (2.21)
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Once again, the mathematical derivation is disregarded and the final results for α and β read,

β =
1

kT
, (2.22)

where k is Boltzmann’s constant and T is the temperature and,

e−α =
N

∑
j

g je−ε jβ
. (2.23)

Although succinct, Eq. (2.22) is an important result as it bridges statistical mechanics and
classical mechanics. A detailed explanation of this aspect can be consulted in Vincenti and
Kruger [174, p. 104-118].
Substituting Eqs. (2.22) and (2.23) into Eq. (2.21), it comes,

N j = N
g je−

ε j
kT

∑
j

g je−
ε j
kT

. (2.24)

This result is also known as the Boltzmann distribution. It corresponds to the most probable
distribution of particles over all the energy levels of a system in thermal equilibrium. The de-
nominator of Eq. (2.24) is called the partition function and it is denoted by,

Q = ∑
j

g je−
ε j
kT . (2.25)

Physically, the partition function represents a statistical ensemble of a thermodynamic system in
thermal equilibrium conditions. Although this property is dimensionless, the partition function
has a pivotal role in connecting microscopic and macroscopic properties which will be addressed
in subsequent sections.

2.2.2 Quantum Energy States

After a detailed discussion on how particles occupy their allowed quantized energy states, this
section creates a bridge between the aforementioned discussion on quantum mechanics and
statistical mechanics theories. The primary objective of this section is not to present a com-
prehensive mathematical derivation of quantum energy levels but, rather, to provide physical
insights into these quantum energy levels. Full derivations can be found in quantum chemistry
textbooks [170, 171].
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Particles Representation

In the development of statistical mechanics, diatomic chemical species are conventionally rep-
resented with a dumbbell model sketched in Fig. 2.3. In this representation, the constitutive
atoms are represented as solid spheres, while the chemical bonds connecting these atoms are
represented as solid lines. This simple representation facilitates a clear examination of the inter-
nal modes that a chemical species can exhibit, namely, translational, rotational, vibrational and
electronic modes.
Chemical species are free to move in space. Thus, chemical species have a translational mode
with a corresponding translational kinetic energy, i.e. ε ′t .
For temperatures beyond absolute zero, chemical species rotate in space due to its angular mo-
mentum and angular velocity. This mode is known as the rotational mode with corresponding
rotational energy, i.e. ε ′r.
The vibrational mode with vibrational energy, i.e. ε ′v, of a chemical species is characterised by
two sources: the kinetic energy associated to the vibration of the constitutive atoms and the
description of the intra-molecular forces through a potential energy function.
The electronic mode refers to the location and the motion of the electron orbiting around its nu-
clei. Depending on thermal conditions, a chemical species may experience rearrangement in its
electronic configuration. The activation of the electronic mode of a chemical species relies on its
ability to transition from one electronic configuration to another. The corresponding electronic
energy, i.e. ε ′e, refers to the difference of energy between two adjacent electronic configurations.
These distinct electronic configurations are referred to as electronic excited states and will be
thoroughly discussed in subsequent sections.

Translational Energy

Consider a free particle of mass m in motion inside a three-dimensional box with side lengths
Lx = Ly = Lz in the absence of any field force inside the box and an infinite repulsive force
outside the box. For such conditions, the time-independent Schrödinger, Eq. (2.11), reads,

− ℏ2

2m

(
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2

)
ψ(−→x ) = εψ(−→x ). (2.26)

The mathematical resolution of Eq. (2.26) to determine the translational energy has been con-
sciously omitted for the sake of clarity. Its full derivation can however be consulted in Lowe and
Peterson [171]. The final results of the derivation demonstrates that the translational energy are
the eigen-values of Eq. (2.26) formulated,

εt =
h2

8m

(
n2

x
L2

x
+

n2
y

L2
y
+

n2
z

L2
z

)
∀nx,ny,nz ∈ Z3

>0, (2.27)
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(a) Translational mode.
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(b) Rotational mode.

(c) Vibrational mode. (d) Electronic mode.

Figure 2.3: Modelling of the internal modes of chemical species (Reproduced from Ander-
son [6]).

where nx, ny and nz are the translational quantum numbers.
While the derivation of Eq. (2.27) has not been shown, some lessons can be deduced from
its formulation. It indicates that the translational energy of a particle is quantized and it can
only take specific values. It also reveals that these translational energy levels are inversely
proportional to the square of the length. This means that the spacing between energy levels
depends on the spatial confinement. Furthermore, it demonstrates that Eq. (2.27) admits a finite
zero-energy point equal to εt =

h2

8m even at a temperature of absolute zero. Finally, it shows that
the energy is proportional to the inverse of the mass, which leads to an interesting consequence:
the spacing between allowed translational levels decreases as the mass increases. Ultimately, for
heavy particles, the translational levels become practically indistinguishable from the continuum
of levels expected in classic mechanics.

Rotational Energy

The derivation of the rotational, vibrational and electronic quantum levels requires to consider
a two-particle system. Let two particles of masses m1 and m2 located at position (x1,y1,z1)
and (x2,y2,z2) separated by a constant distance r with associated momentum p1 and p2. The
corresponding time-independent Schrödinger equation of the system, also known as a rigid-
rotor, reads

ℏ2

2m1
∇

2
1ψ(−→x )+

ℏ2

2m2
∇

2
2ψ(−→x )+(ε−U)ψ(−→x ) = 0 (2.28)
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Table 2.1: Characteristic rotational and vibrational temperatures of diatomic molecules.

Molecule Molecular weight (g.mol−1) θr (K) θv (K)

H2 2.02 87.37 6319.4
N2 28.01 2.869 3386.5
CO 28.01 2.773 3115.5
NO 30.00 2.470 2734.1
O2 32.00 2.064 2268.9
F2 38.00 1.278 1316.1
Cl2 70.91 0.350 803.70

Similar to the derivation of the translational quantum levels, the full mathematical derivation
is disregarded. The rotational energy of such a system is the eigen-energy of Eq. (2.28) which
reads,

εr =
ℏ2

2µr2
eq

J(J+1) ∀J ∈ Z≥0, (2.29)

where µ is the reduced mass, req is the distance between the two particles at rest and J is the
rotational quantum number.
The derivation of Eq. (2.29) demonstrates that for each J, the system admits 2J + 1 eigen-
functions, i.e. gr = 2J + 1. The minimum rotational energy is zero which contrast with the
translational mode that has a finite value. Eq. (2.29) also shows that the spacing between two
adjacent rotational quantum levels increases as J increases.
The rotational energy is commonly reformulated to express the energy in term of the character-
istic rotational temperature, i.e. θr,

εr = kθrJ(J+1). (2.30)

A compilation of characteristic rotational temperatures of diatomic molecules is presented in
Tab 2.1. It reveals that as a molecule’s mass increases, its characteristic rotational tempera-
ture decreases. Specifically, in the case of heavy molecules, the spacing between rotational
energy is small enough for the quantum effects to be neglected in most applications. In contrast,
lighter molecules, such as molecular hydrogen, exhibit larger characteristic rotational tempera-
ture resulting in larger spacing between rotational quantum levels. A quantised approach of the
rotational mode is therefore preferable which can be put to good use for nanoscale technology
applications.
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Vibrational Energy

Consider a diatomic molecule in which the constitutive atoms vibrate back and forth along the
inter-nuclear axis and the intra-molecular interactions are dictated by a potential, U ,

U =
1
2

ks
(
r− req

)2
, (2.31)

where ks is the bound stiffness.
The corresponding one dimensional time-independent Schrödinger equation for such a system
reads,

− ℏ2

2µ

d2ψ(x)
dx2 +

1
2

ksx2
ψ(x) = εψ(x). (2.32)

For the reasons previously mentioned, the full mathematical derivation of the internal energy
is herein disregarded. This extensive mathematical derivation ultimately reveals the vibrational
energy under the assumption of the harmonic oscillator,

εv = hν

(
i+

1
2

)
∀i ∈ Z≥0, (2.33)

where ν is the fundamental frequency of the bound and i is the vibrational quantum number.
The derivation of the vibrational energy shows that the eigenfunctions are either symmetric
or anti-symmetric leading to each vibrational quantum level being non-degenerate, i.e. gv = 1.
Furthermore, Eq. (2.33) shows that the vibrational energy allows a finite zero-point energy of
exactly hν

2 . Additionally, the vibrational energy presents a constant spacing between adjacent
vibrational quantum levels.
Similar to the rotational energy, it is common to define the internal energy in term of their
corresponding characteristic temperature,

εv = ikθv. (2.34)

Table 2.1 provides insight into the characteristic vibrational temperatures for various diatomic
species. These temperatures serve as an indicator for investigating the spacing between adjacent
quantum levels. Notably, the characteristic vibrational temperature follows a similar trend to
that of the characteristic rotational temperature: lighter particles exhibit higher characteristic
temperatures, while heavier ones have lower characteristic temperatures. However, a notable
distinction emerges when comparing the rotational and vibrational modes. In contrast to ro-
tational energy, Tab 2.1 shows that the characteristic vibrational temperature is approximately
two to three orders of magnitude higher than the characteristic rotational temperature. This
significant disparity implies that while rotational quantum effects can be disregarded in certain
applications, this assumption does not stand for the vibrational mode, where quantum effects
play a crucial role.
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Electronic Energy

A chemical species, i.e. atom or molecule, can have multiple electronic excited states corre-
sponding to different arrangement of the electrons surrounding its nucleus. Generally, the most
stable electronic configuration is represented by the ground state.
Consider the two-particle system utilised for the derivation of the rotational energy. Let the
system be constituted of an electron with corresponding charge −e orbiting in a Coulomb field
about a nucleus composed of Z atomic number and Ze charge. The corresponding electrostatic
potential energy function representing the intra-molecular interactions is

U =− Ze2

4πε0 [(xn− xe−)
2 +(yn− ye−)

2 +(zn− ze−)
2]

2 , (2.35)

where ε0 is the vacuum permittivity; hence, the time-independent Schrödinger equation for this
system becomes,

ℏ2

2m1
∇

2
1ψ(−→xn ,

−→xe−)+
ℏ2

2m2
∇

2
2ψ(−→xn ,

−→xe−)+Uψ(−→xn ,
−→xe−) = εψ(−→xn ,

−→xe−). (2.36)

where the subscript ()n and ()e− are the position of the nucleus and the electron respectively.
This system is known as the special theoretical case of the hydrogenic particles and its derivation
ultimately leads to the formulation of the electronic energy,

εe =−
µe4

8ε2
0 h2

(
Z
n

)2

∀n ∈ Z>0, (2.37)

where n is the electronic quantum number.
The ground electronic excited state is characterised by zero electronic energy and it acts as a
reference energy state. Eq. (2.37) describes the amount of energy required for a particle to
transition from one electronic excited state to another. The derivation of Eq. (2.37) shows that all
of the electronic excited states are degenerate. The particularity of the electronic excited states,
i.e. electronic configuration, nomenclature and degeneracy, will later be assessed in subsequent
discussions concerning atomic and molecular structures.

2.2.3 Relation to Thermodynamics

The present section consists in bridging statistical thermodynamics and classical thermodynam-
ics. For such a purpose, it is convenient to introduce the Helmholtz free energy,

F = E−T S =−NkT
[

ln
(

Q
N

)
+1
]
, (2.38)

where S and Q are the entropy and the partition function of the system, respectively.
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The benefits of these variables is that, all other variables of interests can be found by differenti-
ating Eq. (2.38), such as the entropy

S =−
(

∂F
∂T

)
V,N

= Nk
[

ln
Q
N
+1+T

∂ (lnQ)

∂T

]
, (2.39)

of the pressure of the system,

P =−
(

∂F
∂V

)
T,N

= NkT
∂ (lnQ)

∂T
. (2.40)

Rearranging Eq. (2.38) and substituting the solution for the entropy, Eq. (2.39), the internal
mean energy of a system reads,

E = F +T S = NkT 2 ∂ (lnQ)

∂T
. (2.41)

The partition function plays a pivotal role in establishing the connection between statistical
thermodynamics and classical thermodynamics, as it serves as a function upon which all the
macroscopic thermodynamic variables are constructed. A crucial attribute of the partition func-
tion is its factorization property, which enables the overall partition function for a system to be
expressed as the product of individual partition functions,

Q = Qt ∏
int

Qint = QtQrQvQe, (2.42)

where (.)t , (.)r, (.)v and (.)e subscripts refer to the translational, rotational, vibrational and
electronic contributions, respectively.
It is important to realise that Eq. (2.42) implies that each mode is individually regarded and
any interaction that may occur has been disregarded. Specifically, the non-adiabatic electronic
transitions and the rotational-vibrational coupling, in which the rotation of the molecule gives
rise to a centrifugal force that affects vibration of the molecule while the vibrational excitation
is accompanied by changes in the moment of inertia, are disregarded. A number of examples
where these interactions are important will be presented throughout this thesis. Specifically,
Chapter 7 will focus on the modelling of the former interaction and the later interaction will be
thoroughly examined in Appendix A.
For molecular species, the thermodynamic variables specific to each internal contribution can
therefore be obtained by substituting Eq. (2.42) into Eqs. (2.40)–(2.41). For the energy, written
now in term of the specific energy, i.e. e = E

mN , it becomes,

e = et +∑
int

eint = et + er + ev + ee. (2.43)
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The isochoric specific heat capacity can be directly obtained by differentiating Eq. (2.41) for
each internal modes as,

cV =

(
∂et

∂T

)
V
+∑

int

(
∂eint

∂T

)
V
= cV,t + cV,r + cV,v + cV,e. (2.44)

The equipartition theorem links the macroscopic temperature to the average of the microscopic
energies. Specifically, for a system in thermal equilibrium, an internal mode, namely m, with
degree of freedom ξm contributes kT

2 to the total energy,

e =
ξ kT

2
. (2.45)

For atomic species, Eqs. (2.43) and (2.44) are drastically simplified as atoms can only excite
translational and electronic modes. The evaluation of the thermodynamic properties has now
become a matter of investigating each contribution.

Translational Mode

Consider the translation partition function, i.e. Qt . Inserting the internal translational energy,
Eq. (2.27), into the global definition of the partition function, Eq. (2.25), it reads,

Qt =
∞

∑
n1=1

e
− h2

8mkT
n2
1

a2
1

∞

∑
n2=1

e
− h2

8mkT
n2
2

a2
2

∞

∑
n3=1

e
− h2

8mkT
n2
3

a2
3 (2.46)

Considering the close spacing between adjacent translational quantum levels, the translational
mode can be regarded as continuous which means that the summation can be substituted by an
integral. The resulting translational partition function yields,

Qt =V
(

2πmkT
h2

) 3
2

, (2.47)

where the volume is defined by V = a1a2a3.
The corresponding translational specific mean energy is,

et =
3
2

RT, (2.48)

where R = k
m is the specific gas constant and the translational isochoric specific heat capacity

reads
cV,t =

3
2

R. (2.49)
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Rotational Mode

Consider the rotational mode of the particle. As discussed previously, the rotational quantum
levels are described according to Eq. (2.30) with a degeneracy of gr = 2J+1. Substituting these
elements into Eq. (2.25), the rotational partition function reads,

Qr = ∑
J
(2J+1)e−

J(J+1)h2

8π2IkT , (2.50)

where I is the moment of inertia.
For T < θr, Eq. (2.50) indicates that the partition function equals unity, which implies zero
specific mean energy and specific heat capacity. For most applications, this limit is rarely en-
countered, see Tab. 2.1. For T > θr, Tab. 2.1 suggests that for the most dominant chemical
species in an air mixture, the spacing between adjacent quantum levels is small, hence, the rota-
tional mode can be regarded as continuous. By analogy with the translational partition function,
the summation of Eq. (2.50) can be substituted by integral which leads to

Qr =
1
ς

T
θr
, (2.51)

where ς is a symmetry factor that has a value of 2 for homonuclear molecules, e.g. O2 or N2,
and 1 for hetero-nuclear molecules, e.g. NO or CO.
On the basis of Eq. (2.41), the rotational specific mean energy is,

er = RT, (2.52)

hence,
cV,r = R. (2.53)

With the knowledge of the contribution of the translational and rotational modes to the specific
heat capacities, the ratio of specific heat capacity becomes, i.e. γ ,

γ =
(cV,t + cV,r)+R

cV,t + cV,r
=

7
5
= 1.4, (2.54)

which is typically expected for an air mixture at room temperature.

Vibrational Mode

Consider the quantum harmonic oscillator with vibrational energy described by Eq. (2.34) and
all vibrational quantum levels being non-degenerate. The corresponding vibrational partition
function is

Qv =
∞

∑
i=0

e−
iθv
T . (2.55)
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Due to the absence of a degeneracy factor, an analytical expression can be derived by recognising
the geometric series which yields,

Qv =
1

1− e−
θv
T

. (2.56)

Substituting Eq. (2.56) into Eq. (2.25),

ev =
Rθv

e
θv
T −1

(2.57)

thus,

cV,v = R

[
θv
2T

sinh( θv
2T )

]2

. (2.58)

In the limit of T < θv, the vibrational partition function equals unity, hence, the vibrational
mode does not contribute to the specific heat capacity of the particle. For T > θv and under the
assumption of a harmonic oscillator, the vibrational specific mean energy tends to RT , hence,
the vibrational mode ultimately contributes to the specific heat capacity by R. Therefore, for a
fully vibrationally excited gas, the ratio of specific heat capacity reads,

γ =
(cV,t + cV,r + cV,v)+R

cV,t + cV,r + cV,r
=

9
7
. (2.59)

Electronic Mode

Finally, consider the electronic excitation of a chemical species. Its electronic energy is governed
by Eq. (2.37) with all electronic excited being degenerate. The corresponding electronic partition
function is

Qe = ∑
i

gie−
εe,i
kT . (2.60)

Differentiating Eq. (2.60) in accordance with Eq. (2.41), the internal energy yields,

ee =

∑
i

giεe,ie−
εe,i
kT

∑
i

gie−
εe,i
kT

. (2.61)

The corresponding isochoric specific heat capacity is derived from differentiating Eq. (2.61)
with respect to T which reads,

cV,e =

∑
i

gi
ε2

e,i
kT 2 e−

εe,i
kT ∑

i
gie−

εe,i
kT −∑

i
giεe,ie−

εe,i
kT ∑

i
gi

εe,i
kT 2 e−

εe,i
kT(

∑
i

gie−
εe,i
kT

)2 . (2.62)
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2.3 Atomic & Molecular Orbital Theory

Atomic and molecular orbital theory aims to understand the possible arrangements of electrons
around nuclei and their distribution in electron shells and sub-shells. These distinct arrange-
ments lead to different electronic states, typically accompanied by a change in spectroscopic
properties. Therefore, understanding the electronic structure of a chemical species is crucial for
understanding its chemical reactivity and spectroscopy properties. The objective of this section
is threefold: to understand the nomenclature of the electronic states, to recognise the electronic
ground and excited states and to identify the important spectroscopic characteristics.

2.3.1 Atomic Orbital Theory

The primary goal of this section is to provide a comprehensive overview of the quantum numbers
and rules that define the electronic states of atomic species. The ground electronic configuration
of atomic oxygen is used as an example.

Electronic Classification

An electronic state of an atom corresponds to a specific arrangement of the electrons orbiting
around its nuclei. These electrons orbit in shells that are defined by a principal quantum number,
i.e. n and a corresponding electronic energy, Eq. (2.37). The orbit gives rise to an orbital angular
momentum vector, i.e.

−→
λ and a spin angular momentum vector, i.e. −→σ . The magnitude of

−→
λ

and −→σ is governed by the orbital quantum number l and spin quantum number s, respectively,

such that |
−→
λ | =

√
l(l+1)

ℏ and |−→σ | =
√

s(s+1)
ℏ . Additionally, the direction of both

−→
λ and −→σ is

governed by magnetic quantum numbers ml and ms, respectively. The orbital and spin angular
momentum vectors are illustrated in Fig. 2.4. Therefore, an electronic state of an atomic species
is fully defined by a set of five quantum numbers summarised in Tab. 2.2

Table 2.2: Set of quantum levels defining an atomic term symbol.

Quantum Level Notation Values

Principal n 0,1,2,3 · · ·
Orbital l 0,1,2 · · ·n−1

Magnetic orbital ml 0,±1,±2 · · ·± l
Spin s 1

2
Magnetic spin ms ±1

2

The electronic configuration of the first three shells and their corresponding sub-shell is repre-
sented in Tab. 2.3. Each electron with the same principal quantum number occupies the same
orbital shell denominated by K, L and M. Similarly, each electron with the same value of n and
l occupy the same sub-shell denoted by s, p and d depending on their orbital quantum number.
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−→
λ 2ℏ

−→
λ ℏ

−→
λ

0

−→
λ −ℏ

−→
λ −2ℏ

λx

λz

λy

(a) Orbital angular momentum vector for l = 2 and
ml =−2,−1,0,1,2.

−→
σ

ℏ
2

−→
σ

ℏ
2

σx

σz

σy

(b) Spin angular momentum vector for ms =−1
2 ,

1
2 .

Figure 2.4: Illustration of the orbital and spin angular momentum vectors.

The electronic shells and sub-shells are filled following the aufbau principle *. A graphical il-
lustration of the atomic orbitals of the first three sub-shells is depicted in Fig. 2.5. For atomic
oxygen with atomic number Z = 8, the corresponding ground electronic configuration reads
(1s)2(2s)2(2p)4. Table 2.3 indicates that the 1s and 2s sub-shells are fully filled with a total of
two electrons for each sub-shell and the 2p sub-shell is partially filled with four electrons. The
four electrons lying in the 2p sub-shell give rise to different electronic rearrangement; hence,
different electronic states.

Table 2.3: Electronic configuration of the first three shells (Reproduction from Boyd and
Schwartzentruber [10]).

Shell K L M
n 1 2 3

Sub-shell s s p s p d
l 0 0 1 0 1 2

ml 0 0 -1 0 1 0 -1 0 1 -2 -1 0 1 2
ms ±1

2 ±1
2 ±1

2 ±1
2 ±1

2 ±1
2 ±1

2 ±1
2 ±1

2 ±1
2 ±1

2 ±1
2 ±1

2 ±1
2

ge 2 8 18

The derivation of Eq. (2.37) has demonstrated the degeneracy of electronic energy levels. In
Eq. (2.37), electronic energy levels are solely determined by their respective principal quantum

*From the German Aufbauprinzip which means the build-up principle. Note that this rule is also known as
Klechkowsky rule.
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Figure 2.5: Illustration of the atomic orbitals of the first three sub-shells.

numbers. Therefore, various combinations of the remaining three quantum numbers result in
degenerate states. Specifically, for each orbital quantum number, there exists 2l + 1 magnetic
quantum numbers and two possible spin quantum numbers. The total degeneracy or number of
states per shell reads,

ge =
n−1

∑
l=0

2(2l +1) = 2n2. (2.63)

Number of Electronic Rearrangement

For each electronic configuration, such as O (1s)2(2s)2(2p)4, there exists a maximum number
of possible electron rearrangements. This number corresponds to the total number of different
ways, denoted as Ne, in which Ne− free electrons can be assigned to Nl orbital quantum numbers.
Mathematically, this number is given by

Ne =
Nl!

Ne−!(Nl−Ne−)!
. (2.64)

In the case of atomic oxygen, as shown in Tab. 2.3, there are only four free electrons in the 2p

sub-shell. Notably, this sub-shell can accommodate a maximum of six electrons. Therefore,
atomic oxygen in its ground electronic configuration, i.e. O(1s)2(2s)2(2p)4, holds 15 distinct
rearrangement possibilities, which are summarized in Tab. 2.4.
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Atomic Term Symbols

The magnetic fields associated with the orbital and spin angular momentum vectors give rise
to diverse forms of angular momentum coupling: orbital-orbital,

−→
λ
−→
λ , spin-spin, −→σ −→σ and

orbital-spin,
−→
λ
−→
σ . For light atoms in which the

−→
λ
−→
σ coupling is weak in comparison with

Coulombic interactions between electrons, the atomic term symbols can be described by the
Russell–Saunders coupling. In contrast, for heavy atoms in which the

−→
λ
−→
σ coupling is strong,

the −→ι −→ι formalism must be applied. In the present thesis, only light atoms are considered;
hence, only the Russell–Saunders coupling is considered. A vector illustration of the Rus-
sell–Saunders coupling in represented in Fig. 2.6. The classification of the electronic state of
atoms is given by the Russell-Saunders term symbol,

2σ+1
λι , (2.65)

where each term symbol is characterised by the total orbital angular momentum quantum num-
ber, λ , the total spin angular momentum quantum number, σ , and the total angular momentum
quantum number, ι .

−→
λ

−→
σ

−→
ι

σx

σz
σy

λx

λz

λy

Figure 2.6: Illustration of the Russell–Saunders (
−→
λ
−→
σ ) coupling (Adapted from Atkins and

Friedman [170]).

Additionally, each term symbol is defined by two subsequent quantum numbers describe the
direction of the orbital and spin angular momentum vectors, i.e.

−→
λ and −→σ , respectively. For a
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system with two free electrons are defined, the total magnetic and spin orbital quantum numbers
take the form of mλ = |ml,1 +ml,2|, · · · , |ml,1−ml,2| and mσ = |ms,1 +ms,2|, · · · , |ms,1−ms,2|,
respectively. For a system constituted of more than two free electrons, an additional term in
between the absolute value of each term is added for each supplementary electron. For a system
with three free electrons, the total magnetic orbital quantum number becomes mλ = |ml,1 +

ml,2 +ml,3|, · · · , |ml,1−ml,2−ml,3|.
The values of these quantum numbers for the 15 electronic arrangements of atomic oxygen
in its ground electronic configuration, i.e. O(1s)2(2s)2(2p)4, are presented in Tab. 2.4. Note
that only the unfilled orbitals are useful for determining the different electronic states of atoms.
Therefore, for O (1s)2(2s)2(2p)4, only four electrons are represented in Tab. 2.4. The electrons
are represented by half-arrows with the direction of the arrows indicating the spin of the electron:
upward arrows refer to a positive spin and downward arrows refer to a negative spin. The first
three columns in the table corresponds to the magnetic quantum number values (ml). The fourth
and fifth columns refer to the total orbital and spin quantum numbers (mλ and mσ ). The sixth
and seventh columns characterise the orbital and spin angular momentum quantum numbers
for each specific rearrangement of free electrons in the sub-shell (λ and σ ). The last column
provides a summary of the corresponding term symbol for each unique electronic distribution
(2σ+1λ ). It is important to mention that the table does not include the total angular momentum
quantum number ((.)ι ), which will be addressed in at a later stage. To ease the understanding of
these quantum numbers, each one of these will be individually addressed.

Table 2.4: Electronic rearrangement and electronic states for a (1s)2(2s)2(2p)4 electronic con-
figuration (Adapted from Catling and Kasting [175, Appendix C]).

ml =+1 ml = 0 ml =−1 mλ mσ λ σ State

↿⇂ ↿⇂ -2 0 2 0 1D
↿⇂ ↿⇂ 0 0 0 0 1S
↿⇂ ↿⇂ 2 0 2 0 1D
⇂ ⇂ ↿⇂ -1 -1 1 1 3P
⇂ ↿⇂ ⇂ 0 -1 1 1 3P
⇂ ↿ ↿⇂ -1 0 2 0 1D
⇂ ↿⇂ ↿ 0 0 1 1 3P
↿ ⇂ ↿⇂ -1 0 1 1 3P
↿ ↿⇂ ⇂ 0 0 2 0 1D
↿ ↿ ↿⇂ -1 1 1 1 3P
↿ ↿⇂ ↿ 0 1 1 1 3P
↿⇂ ⇂ ⇂ 1 -1 1 1 3P
↿⇂ ⇂ ↿ 1 0 2 0 1D
↿⇂ ↿ ⇂ 1 0 1 1 3P
↿⇂ ↿ ↿ 1 1 1 1 3P
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Total Magnetic Orbital and Spin Quantum Numbers, mλ and mσ Consider the total mag-
netic orbital and spin quantum numbers, mλ and mσ . The total magnetic orbital and spin quan-
tum numbers are obtained by summing the ml and ms values weighted by their corresponding
population. In the case of O(1s)2(2s)2(2p)4, there are four free electrons in the (2p) sub-shell,
i.e. l = 1; hence, the corresponding values for the magnetic orbital quantum number are ml =

1,0,−1. Consider the first row of the table, two electrons occupy the magnetic orbital quantum
number ml = 0 and two occupy ml =−1. Therefore, mλ = 0× (+1)+2× (0)+2× (−1) =−2
and mσ = 0+(+1

2 −
1
2)+(+1

2 −
1
2) = 0.

Total Orbital Angular Momentum Quantum Number, λ The total orbital angular momen-
tum quantum number, λ , defines the state of the electronic configuration of the atom. This
quantum number can only take positive integers for which each values corresponds to a unique
term symbol summarised in Tab. 2.5. For a system with two free electrons, this quantum number
can be determined by

λ = |l1 + l2|, · · · , |l1− l2|. (2.66)

Table 2.5: Total orbital angular momentum quantum number and their associated symbols for
atomic species.

λ 0 1 2 3 4

Symbol S P D F G

For a (2p) sub-shell populated with two electrons, e.g. C, or two gaps, e.g. O, which corresponds
to l1 = 1 and l2 = 1; hence, the allowed values for λ are 2, 1 and 0. Consider the first row
of Tab. 2.4, λ = |0× (+1)|+ |2× (0)|+ |2× (−1)| = 2. In light of Tab. 2.5, the electronic
arrangement in the first row corresponds to O(2σ+1Dι ).

Total Spin Angular Momentum Quantum Number, σ The total spin angular momentum
quantum number, denoted as σ , plays a pivotal role in defining the multiplicity of an electronic
configuration. This quantum number is limited to positive values, with each value corresponding
to a unique multiplicity as tabulated in Tab. 2.6. In a two-electron system, the calculation of this
quantum number follows,

σ = |s1 + s2|, · · · , |s1− s2|. (2.67)

Table 2.6: Spin momentum quantum number and their associated multiplicity.

σ 0 1
2 1 3

2 2

Multiplicity Singlet Doublet Triplet Quartet Quintet
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Consider the first row of Tab. 2.4. In this row, there is one unfilled sub-shell and two filled sub-
shells, each occupied by two electrons with a positive spin. This configuration results in a total
spin of σ = 0+

∣∣1
2 −

1
2

∣∣+ ∣∣1
2 −

1
2

∣∣ = 0. Referring to Tab. 2.6, this row corresponds to a singlet
state, denoted as 2σ +1 = 1 and the term symbol reads O(1Dι ).

Total Angular Momentum Quantum Number, ι The total angular momentum quantum
number is the results of the orbit-spin coupling, i.e.

−→
λ
−→
σ . The total angular momentum vec-

tor is merely a linear combination of the orbit and spin angular momentum vector, respectively,
−→
λ and −→σ as described in Fig. 2.6.
While λ informs on the term symbol and σ informs on the multiplicity, ι provides the degener-
acy of the term symbol which is calculated as:

g = 2ι +1, (2.68)

where the associated quantum number is computed as,

ι = |λ +σ |, · · · , |λ −σ |. (2.69)

Let’s now return to the task of assigning the degeneracy of the term symbols presented in
Tab. 2.4. So far, three states have yet been identified which are namely, 1S, 1D and 3P.
With λ = 0 and σ = 0, Eq. (2.69) shows that there is only one possible quantum level: ι = 0.
Thus, the complete term symbol for this electronic state becomes 1S0. The degeneracy of this
state equals unity, i.e. g(1S0) = 2ι + 1 = 1 which concurs with the number of occurrences of
this state in Tab. 2.4.
For the 1D term symbol obtained with λ = 2 and σ = 0, Eq. (2.69) demonstrates that this state
has only one possible total angular momentum quantum number: ι = 2. The complete term
symbol is then 1D2. This state appears five times in Tab. 2.4 and its degeneracy is accordingly
g(1D2) = 2ι +1 = 5.
The triplet P state 3P is obtained with λ = 1 and σ = 1. In contrast to the other two states, triplet
P has three possible total angular momentum quantum numbers: ι = 0,1,2. Consequently,
there are three term symbols 3P2, 3P1 and 3P0. The total degeneracy of triplet P is g(3P) =

∑i(2ιi + 1) = 9. This number aligns with the number of triplet P states in the last column of
Tab. 2.4. The individual degeneracy of 3P2, 3P1 and 3P0 are 5, 3 and 1, respectively.

Electronic Ground and Excited States

After identifying the term symbols corresponding to a specific electronic configuration, the final
task consists of identifying the ground and excited electronic states and classifying them based
on their respective electronic energy. To do this, Friedrich Hund has designed a set of three rules
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also known as Hund’s rules for identifying the lowest energy term symbol of a configuration.
These rules classify the electronic configurations from ground to excited states as follows.

1. The term with the maximum multiplicity, i.e. σ , lies lowest in energy.

2. For a given multiplicity, i.e. σ , the term symbol with the highest value of λ lies lowest in
energy.

3. For atoms with less than half-filled shells, the level with the lowest value of ι lies lowest in
energy. Reciprocally, for atoms with more than half-filled shells, the level with the highest
value of ι lies lowest in energy.

The first step consists of determining the ground electronic state of atomic oxygen. According to
Hund’s first rule, the most stable electronic state corresponds to the lowest total spin. Thus, the
ground electronic state of atomic oxygen is a triplet P state. Recalling that the electronic config-
uration of atomic oxygen is (1s)2(2s)2(2p)4 and given that the 2p sub-shell can accommodate
up to 6 electrons, the sub-shell is more than half-filled. As a result, among the three triplet P
states, the most stable state is 3P2. Consequently, the first and second electronically excited
states are 3P1 and 3P0. The Singlet S and D states hold the same multiplicity. To differentiate
between them, Hund’s second rule is applied, which states that the term symbol with the lowest
λ value is the most stable state. Therefore, the third and fourth electronically excited states are
1D2 and 1S0, respectively. The first five electronic states of atomic oxygen are summarized in
Tab. 2.4.

Table 2.7: First five electronic states of atomic oxygen (Adapted from Boyd and Schwartzentru-
ber [10]).

Configuration Term Degeneracy Energy (eV)

(1s)2(2s)2(2p)4 3P2 5 0.00
(1s)2(2s)2(2p)4 3P1 3 0.02
(1s)2(2s)2(2p)4 3P0 1 0.03
(1s)2(2s)2(2p)4 1D2 5 1.97
(1s)2(2s)2(2p)4 1S0 1 4.20

2.3.2 Molecular Orbital Theory

This section provides an overview of the nomenclature principles used to determine the elec-
tronic states of molecular species. These principles are exemplified with the ground electronic
configuration of molecular oxygen.
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Born-Oppenheimer Approximation

The Born-Oppenheimer approximation assumes that the motion of the electronic and atomic
nuclei can be regarded as two independent contributions. The origin of this approximation lies
in the respective mass of a proton and an electron. Specifically, a proton is 1836 times heavier
than an electron which means that an electron has a much faster response to forces than a proton.
Moreover, these two particles possess opposite charges, resulting in an attractive force. The
magnitude of the force is inversely proportional to the mass of the particle, therefore, an electron
has a much larger acceleration in comparison to its counterpart. Consequently, the motion of the
nuclei can be regarded as stationary in contrast to the motion of the orbiting electron.
From a statistical mechanics perspective, the Born-Oppenheimer approximation imposes each
internal mode to be treated independently, neglecting any interactions between modes. This
approximation imposes the specific energy of the system to be expressed as the summation of its
contributions. Atomic species can only excite their translational and electronic modes, therefore,
the total internal energy of an atomic system yields,

ε = εt + εe, (2.70)

and for molecular systems,
ε = εt + εr + εv + εe. (2.71)

The Born-Oppenheimer approximation holds for conditions where interactions between the in-
ternal modes are negligible, however, in the context of high-speed atmospheric reentries, the
flow conditions may be sufficient enough to promote such interactions. This approximation is
considered in the majority of the thesis with the exception of Chapter 7 in which the vibrational
and electronic modes are coupled.

Linear Combinations of Atomic Orbitals

Consider the hydrogen molecule-ion H2
+ consisting of two protons, denoted by HA and HB,

separated by a variable distance rHA−HB and one electron with charge e separated from proton A
by a distance rHA−e− and from proton B by a distance rHA−e− . The corresponding Hamiltonian
of this molecule reads,

H =− ℏ2

2me−
∇

2− e2

4πε0rHA−e−
− e2

4πε0rHB−e−
− e2

4πε0rHA−HB

(2.72)

In the limit of the electron lying in the vicinity of nuclei A, rHA−e− << rHB−e− , the Hamiltonian
simplifies to,

H =− ℏ2

2me−
∇

2− e2

4πε0rHA−e−
− e2

4πε0rHA−HB

. (2.73)
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Likewise, for the electron lying in the vicinity of nuclei B, the Hamiltonian becomes,

H =− ℏ2

2me−
∇

2− e2

4πε0rHB−e−
− e2

4πε0rHA−HB

. (2.74)

With the only difference to the third term, Eqs. (2.73) and (2.74) describe a similar Hamiltonian
to that of atomic hydrogen. Therefore, close to nuclei A or nuclei B, the wave-function of
H2

+ will be similar to a hydrogen atomic orbital. Under this hypothesis, a molecular orbital
can be obtained by a linear combination of its constitutive atomic orbitals. This development
will be considered as a sufficient justification to construct the molecular orbital theory. An
extended discussion supported with mathematical derivations can be consulted in Atkins and
Friedman [170].

Molecular Term Symbols

A molecular electronic configuration corresponds to a specific arrangement of its constitutive
electrons on its molecular orbitals. This definition is analogue to that of the electronic config-
uration of atoms. Indeed, a molecular orbital is regarded as a linear combination of its consti-
tutive atomic orbitals (LCAO). In a similar fashion to the atomic term symbols, the molecular
term symbols aim at describing the orbital and spin angular momentum of the electrons orbit-
ing around the nucleus. Moreover, the molecular term symbols follow the Russell–Saunders
−→
λ
−→
σ coupling, see Fig. 2.6, and their corresponding formulation for homo-nuclear diatomic

molecules read,
2Σ+1

Λ
+/−
u/g (2.75)

where Λ refers to the total angular momentum quantum number, Σ refers to the total spin angular
momentum quantum number, the superscript +/− refers to the molecular parity properties and
the subscript u/g refers to the molecular reflection properties.
Each of the quantum numbers and symmetry properties within the molecular term symbol will
be discussed individually and illustrated with the example of diatomic oxygen in its ground
electronic configuration. This configuration is achieved by combining two atomic orbitals in a
triplet P configuration, i.e. O(3P). The molecular orbital energy diagram of molecular oxygen
is depicted in Fig. 2.7. The electrons are denoted by half-arrows with directions indicating their
respective spin following the convention used in Fig. 2.4. For completeness, the 1s and 2s sub-
shells have been added to the diagram but do not contribute to the term symbol. It is important
to emphasise that only the unfilled orbitals are important for determining the electronic state.
Therefore, the attribution of the molecular electronic state of this configuration is merely the
result of the combination of the two 2p sub-shells.
The combination of two 2p sub-shells yields four molecular orbitals: σ , σ∗, π and π∗, with the
superscript (.)∗ distinguishing the anti bonding molecular orbitals. The distinction between σ
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and π molecular orbitals lies in the orientation of the two combined atomic orbitals. σ molecular
orbitals are generated by a head-to-head overlap along the inter-nuclear axis, while π molecular
orbitals are formed through lateral overlapping. These justifications are regarded as sufficient
for the scope of this thesis. For extensive discussion on molecular orbital theory, the reader is
referred to Atkins and Friedman [170].

1s

2s

2pz2py2px

1s

2s

2pz2py2px

1σs,g

1σ∗s,u

2σs,g

2σ∗s,u

2σx,g

2σ∗x,u

2πy,u

2π∗y,g

2πz,u

2π∗z,g

Energy

O(3P) O2(3Σ−g ) O(3P)

Figure 2.7: Molecular orbital energy level diagram of O2(X3Σ−g ) in the LCAO approximation.

Total Angular Momentum Quantum Number, Λ While the total angular momentum quan-
tum number, Λ, yields similar definition to that for atomic orbital theory, its calculation remains
different. The attribution of the corresponding symbol of a molecular electronic configuration
consists of evaluating the distribution of the electrons on the unfilled molecular orbitals. It con-
sists of summing each electron’s contribution such that,

Λ = |∑
i

λi|, (2.76)

where λi equals 0 for each electron occupying a σ molecular orbital and ±1 for each electron
occupying a π or π∗ molecular orbital. Each value of Λ has a distinctive symbol which is
summarized in Tab. 2.8.
In the case of oxygen molecule, two unpaired electrons occupy the π∗y and π∗z molecular orbitals
which have been materialised by the blue arrows in Fig. 2.7. As a result, the total angular
momentum quantum number is calculated as Λ = |(−1)×1+(+1)×1| = 0. This leads to the
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Table 2.8: Total orbital angular momentum quantum number and their associated symbols for
molecular species.

Λ 0 1 2 3 4

Symbol Σ Π ∆ Φ Γ

corresponding term symbol for the oxygen molecule in its ground electronic configuration being
2Σ+1Σ

+/−
u/g .

Total Spin Angular Momentum Quantum Number, Σ The multiplicity of a molecular term
symbol is determined in a similar manner to the approach used for atomic term symbols. It takes
into account only the unpaired electrons in the molecule. Each electron with an upward spin is
assigned a half-positive spin, while each electron with a downward spin is assigned a negative-
half spin. The total spin angular momentum quantum number is then calculated by summing the
contributions from all electrons. Similarly, the degeneracy of a molecular term symbol depends
on the total orbital and spin angular momentum quantum numbers and is determined as follows,

g =

2Σ+1 if Λ = 0

2(2Σ+1) if Λ > 0
(2.77)

Consider the example of molecular oxygen, where two unpaired electrons occupy the 2π∗y and
2π∗z molecular orbitals and both electrons have upward spins. The total spin angular momentum
is calculated as Σ = (+1

2)+ (+1
2) = 1. This results in a multiplicity of 3 and the term symbol

becomes 3Σ
+/−
u/g . This term symbol is characterised by Λ = 0, therefore, according to Eq. (2.77),

it possesses a degeneracy of g = 3.

Molecular Parity The molecular parity informs whether the molecular orbital is symmetric or
anti-symmetric when an inversion operator is applied. To ease the understanding, the molecular
parity is herein approached through a graphical explanation. The example of two π molec-
ular orbitals is depicted in Fig. 2.8. The constitutive atoms are represented in black spheres
and the molecular orbitals are denoted in blue and red spheres. The inversion operator consists
of two rotations denoted by the two numbers representing the application order. The molecu-
lar orbital illustrated in Fig. 2.8a remains indistinguishable from itself after inversion through
its centre. Consequently, the molecular orbital is symmetric and designated by the subscript
g †. On the contrary, the phase of the molecular orbital depicted in Fig. 2.8b changes. This
molecular orbital is therefore anti-symmetric and it is designated by subscript u ‡. Note that
these subscripts are only permissible for molecules allowing a center of inversion. Therefore,

†The subscript g stands for gerade which means even in German.
‡The subscript u stands for ungerade which means uneven in German.
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the molecular term symbol of hetero-nuclear molecules, e.g. NO or CO, do not possess such
subscripts. Extensive discussion supported with mathematical derivations can be consulted in
Atkins and Friedman [170].

1

2

(a) π∗ molecular orbital.

1

2

(b) π molecular orbital.

Figure 2.8: Parity classification for two π molecular orbitals.

The parity of a term symbol is determined by assessing the parity of each open-shell electron
either from its molecular electronic configuration or from its molecular orbital energy diagram,
see Fig. 2.7. In a simplified approach, each electron occupying a gerade open-shell can imagi-
narily be assigned a +1 contribution and for a ungerade open-shell a−1 contribution. The parity
of the term symbol is then calculated as the product of each electron’s contribution. For a system
with two open-shell electrons, the parity follows these rules: g×g = g, g×u = u and u×u = g.
For a system consisting of three open-shell electrons, it follows: g× g× g = g, g× u× u = g,
g×g×u = u and u×u×u = u.
To ease the understanding, the symmetry properties of the molecular orbitals have been added
in subscripts to Fig. 2.7. In the case of the oxygen molecule, there are two open-shell electrons
occupying the π∗g molecular orbitals. Following the rules previously introduced, the ground
electronic state of molecular oxygen exhibits gerade symmetry and its term symbol becomes
3Σ

+/−
g .

Molecular Reflection The molecular reflection informs on the symmetry of a given molecular
orbital upon reflection about a reflection plane containing the inter-nulcear axis. A symmetric
molecular orbital corresponds to a positive superscript sign and an anti-symmetric molecular
orbital to a negative superscript sign. The overall reflection of a molecular orbital follows the
rules aforementioned, i.e. (−)× (−) = (+), (−)× (+) = (−) and (+)× (+) = (+).
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Consider a reflection through the plane aligned with the inter-nuclear axis of the π∗y molecular
orbital. Figure 2.9a presents the distribution of the wave functions on both side of the plane.
The two atoms are denoted in black balls and the inter-nuclear axis corresponds to the segment
between the two atoms. This reflection results in a different molecular orbital; this reflection is
said to be anti-symmetric. Consider the reflection through the plane of the π∗z molecular orbital
as described in Fig. 2.9b. The resulting molecular orbital is identical to the initial molecular
orbital. This reflection is therefore symmetric.
A symmetric reflection is labelled with a positive sign (+) and an anti-symmetric reflection with
a negative sign (−). It is important to mention that the electronic configurations for which Λ > 0
have both symmetric and anti-symmetric states with respect to reflection; hence, the superscript
± is only attributed to molecular term symbol where Λ = 0.
In this operation, each σ molecular orbitals has the value (+1); whereas π molecular orbitals
have values (+1) and (−1). Consider the case of molecular oxygen illustrated in Fig. 2.7 in
which the two open-shell electrons occupy two π molecular orbitals. One of them is assigned a
positive value and the other is assigned a negative value and the overall value of this configura-
tion is (+1)× (−1) = (−1). Finally, the complete molecular term symbol of molecular oxygen
corresponding to Fig. 2.7 is 3Σ−g .

(a) Anti-symmetric reflection.

(b) Symmetric reflection.

Figure 2.9: Reflection symmetry classification of the π∗y and π∗z molecular orbitals.

Electronic Ground and Excited States

To differentiate the electronic ground state from its electronic excited states, a letter is assigned
to the term symbol. The electronic ground state is typically denoted as X. Electronic excited
states are represented by letters in alphabetical order. When an electronic excited state shares
the same multiplicity as the ground state, its term symbol is expressed in uppercase letters. In
contrast, if an electronic excited state has a different multiplicity, its term symbol is presented in
lowercase letters.
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The first seven term symbols for molecular oxygen are summarized in Table 2.9. The first three
term symbols correspond to molecular oxygen in its ground electronic configuration, whereas
the last four originate from an electronic excited configuration in which one electron has transi-
tioned from a 2π to a 2π∗ molecular orbital.

Table 2.9: Electronic excited states of molecular oxygen.

Electronic Configuration State εe (eV) g θv (K) θr (K)

(1σ)2(1σ∗)2(2σ)2(2σ∗)2(2σ)2(2π)4(2π∗)2 X3Σ−g 0.00 3 2400.33 2.06
(1σ)2(1σ∗)2(2σ)2(2σ∗)2(2σ)2(2π)4(2π∗)2 a1∆g 0.98 2 2130.05 2.05
(1σ)2(1σ∗)2(2σ)2(2σ∗)2(2σ)2(2π)4(2π∗)2 b1Σ+

g 1.63 1 2057.25 2.01
(1σ)2(1σ∗)2(2σ)2(2σ∗)2(2σ)2(2π)3(2π∗)3 c1Σ−u 4.09 1 1140.33 1.31
(1σ)2(1σ∗)2(2σ)2(2σ∗)2(2σ)2(2π)3(2π∗)3 A′3∆u 4.29 6 1220.45 1.38
(1σ)2(1σ∗)2(2σ)2(2σ∗)2(2σ)2(2π)3(2π∗)3 A3Σ+

u 4.38 3 1147.32 1.31
(1σ)2(1σ∗)2(2σ)2(2σ∗)2(2σ)2(2π)3(2π∗)3 B3Σ−u 6.16 3 1018.43 1.18



Chapter 3

Direct Simulation Monte Carlo

The previous chapter has reviewed the most common models employed in the direct simulation
Monte Carlo method for the modelling of the internal modes. The present chapter intends to
describe the direct simulation Monte Carlo method and its general procedures. The chapter
primarily focuses on routines involving internal modes such as the initialisation, post-collision
and internal mean temperature measurements. Finally, the DSMC solver utilised to perform all
the simulations presented in this thesis is introduced.

3.1 The Direct Simulation Monte Carlo Method

The direct simulation Monte Carlo method, pioneered by Bird, has become the predominant
numerical approach for simulating rarefied gas flows in the transitional regime over the last
six decades [176]. The DSMC method is a stochastic particle-based technique which emulates
the physics of the Boltzmann equation. The DSMC method consists in tracking the motion of
representative model particles in time and space while modifying their positions and velocities
in such a way that mimic the statistical representation of a real gas flow. A DSMC simulator
particle can represent any number of real gas particles and possesses molecular information such
as position, velocity and internal energy.
The DSMC method relies on considerations from kinetic theory, imposing that the gas is dilute,
i.e. the mean molecular diameter must be significantly smaller than the mean free path and that
Boltzmann’s molecular chaos assumption holds. The assumption of a dilute gas combined with
the stochastic approach, enables both the particle motion and intermolecular collisions to be
decoupled for time steps smaller than the mean collision time. Particle motion is addressed
deterministically, with each DSMC simulator particle traveling a distance proportional to its
individual velocity as long as no external forces act upon the gas. In contrast, intermolecular
collisions are treated stochastically after updating the positions of all particles.
The DSMC method requires the creation of a numerical mesh composed of sampling cells and
collisional subcells. The sampling cell grid provides volumes for evaluating macroscopic flow

48
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properties based on sampling the microscopic properties of particles. The collisional subcell
grid is utilised by the collision scheme, restricting interactions to particles within the subcell.
To ensure correct reproduction of the transport of momentum and energy upon collisions, the
usual recommendation is to ensure that the subcell size, ∆x, is a fraction of the molecular mean
free path, λ . One of the rules of thumb employed in DSMC simulations suggests that the
collision cell size should be smaller than one-third of the local mean free path, i.e. ∆x < λ

3 .
Another requirement of the DSMC method relates to the selection of an appropriate time step.
To maintain the assumption of uncoupled particle collisions and movements, it is imperative that
the time step is considerably smaller than both the mean collision time and the cell residence
time.
In the early days of the DSMC method, questions were raised about the relationship between
the Boltzmann equation and the DSMC method. Despite scepticism, the DSMC method grew
in popularity accompanied by an increase in users which led to the development of numer-
ous improvements, e.g. Larsen-Borgnakke redistribution scheme [131], the variable hard sphere
model [177] or the no time counter collision scheme [178]. In 1992, Wagner [179] demonstrated
that for a monoatomic gas in the limiting case of an infinitely small cell size and time-step, the
DSMC method mathematically satisfies an equation close to the Boltzmann equation which
removed ambiguity on the capabilities of the DSMC method to approach the Boltzmann equa-
tion. While the DSMC method can provide an asymptotic solution to the Boltzmann equation,
the DSMC method can go beyond the Boltzmann equation including internal mode excitation,
chemical reactions and thermal radiation [17].
The flowchart of typical DSMC simulations has not changed greatly since the method was first
introduced. The general procedure is depicted in Fig. 3.1 and the typical steps in each DSMC
time step are: (1) Move the particle over the time step ∆t; (2) Index the particle into the cells
and subcells; (3) Collide particles in each cell or subcell; (4) Sample the macroscopic flow
properties.
The initial step consists of populating the numerical mesh with DSMC simulator particles. The
DSMC simulator particles are assigned a thermal velocity sampled from the Maxwell distri-
bution – centred around the local mean velocity – at the prescribed translational temperature
and an internal energy or quantum level for each mode considered which is sampled from the
Boltzmann distribution, Eq. (2.24), at the corresponding prescribed internal temperature.
Next, all particles are moved according to their velocity vector and the time step. Consequently,
interactions with boundaries are addressed, including gas-surface interaction, e.g. specular or
diffuse reflection or removal of particles at deletion boundaries. Computation of macroscopic
properties at solid boundaries occurs during this step.
Following this, particles are then indexed by cell location to initiate the collision and sam-
pling routines which depend on the cell occupancy. Intermolecular collisions are handled in
a probabilistic manner which contrasts with the the deterministic treatment that characterised
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the ballistic motion. Several colliding partner selection schemes have been formulated in the
DSMC method, e.g. nearest neighbor [180], majorant collision frequency scheme [181], null-
collision [182] or Bernoulli trials [183]. These selection schemes ensure that the correct collision
rates between colliding partner is achieved. A comprehensive review of these collision schemes
can be consulted in Roohi and Stefanov [184]. If a colliding pair is selected for collision, each
partner is tested for internal energy relaxation, i.e. inelastic collision. If accepted, internal energy
is exchanged; otherwise, the colliding partner conserves its internal energy and a new velocity
vector is assigned. In DSMC, the LB model [131] is commonly employed for the redistribution
of internal energy.
Lastly, macroscopic flow properties are sampled after all collisions have been processed. This
procedure is repeated until the end time is reached. After a sufficiently large time has elapsed,
a steady flow is established and macroscopic flow properties are measured over a large enough
sample size to reduce the statistical error to an acceptable level. The following sections focus on
reviewing the standard approaches of the DSMC method, which involves the internal modes of
chemical species

3.2 Equilibrium Sampling

The equilibrium sampling procedures consist in initialising the internal energy or internal quan-
tum levels of each DSMC simulator particle. These procedures occur at inlet boundaries and
after a collision with a diffuse surface. The present section aims to present an overview of the
equilibrium sampling technique employed in the DSMC method.
Consider a particle with internal mode, m, described continuously, internal energy, εm, and with
internal degree of freedom, ξm, at an equilibrium temperature, T . Its equilibrium distribution
follows the Hinshelwood distribution [186] which reads,

f (εm) =
(

εm

kT

) ξm
2 −1

e−
εm
kT . (3.1)

The distribution function can be normalized such that the probability of εm lying between εm

and εm+dεm is given by f (εm)dεm. If εm ranges between a and b, the integration of f (εm) from
a to b equals unity, i.e.,

∫ b
a f (εm)dεm = 1. It is convenient at this point to define the cumulative

distribution as follows,
G(εm) =

∫
εm

a
f (εm)dεm. (3.2)

This function can be equated to a random number, R, to determine the cumulative distribution
value corresponding to a representative internal energy, εm. If Eq. (3.2) can be inverted, it pro-
vides an expression for a representative value of εm as a function of a random number; otherwise,
εm is extracted using an acceptance-rejection method.
It is important to emphasise that this procedure is exclusively applicable to continuous internal
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Start

Populate mesh with particles and
initialise boundary conditions

Move particles and com-
pute boundary interactions

Update particles indexing

Select collision pairs and
perform intermolecular collisions

Sample flow properties

Steady flow?

t = tend?

Compute averaged properties

End

Unsteady

No

Yes

Yes

Figure 3.1: Flowchart of the standard DSMC algorithm (Adapted from White [185]).

modes which are typically the translational and rotational modes. For quantised internal modes,
a different approach based on the acceptance-rejection method is employed.
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3.2.1 Rotational Mode

Consider a continuous treatment of the rotational mode, see Chapter 2, the rotational energy of
the particle can be sampled from Eq. (3.1) at an initialization temperature, T . As discussed in
the preceding section, it is good practice to calculate the cumulative distribution associated with
the distribution function which yields,

G(εr) =
∫ εr

kT

0

(
εr

kT

) ξr
2 −1

e−
εr
kT d
(

εr

kT

)
. (3.3)

From Eq. (3.3), two scenarios arise depending on the value of ξr:

1. If ξr = 2, e.g diatomic molecules, the mean rotational degree of freedom equals 2 and the
cumulative distribution greatly simplifies to,

G(εr) = 1− e−
εr
kT . (3.4)

It is evident that Eq. (3.4) is reversible. Therefore, the rotational energy of the particle
can be evaluated by mean of a random number, R, uniformly distributed between 0 and 1
such that,

εr =−kT ln(R). (3.5)

2. If ξr > 2, e.g. polyatomic molecules, the cumulative distribution becomes irreversible,
therefore, an acceptance-rejection method is employed using the distribution,

f ′ =
f (εr)

fmax
=

 (
εr
kT

)(
ξr
2 −1

)


ξr
2 −1

e
ξr
2 −1− εr

kT . (3.6)

Specifically, an energy ratio, namely R1 =
εr
kT , is chosen at random from the range 0 to 1.

The distribution is evaluated from the above equation against a random fraction, i.e. R2,
uniformly distributed between 0 and 1. The energy ratio is accepted if the distribution
satisfies

f ′ >R2, (3.7)

otherwise, the energy ratio R1 is rejected. The procedure is repeated until an energy ratio,
R1, is accepted and the rotational energy of the particle is calculated,

εr =−R1kT. (3.8)
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3.2.2 Vibrational Mode

Under the hypothesis that the vibrational excitation of a particle is modelled with the harmonic
oscillator model, described in Chapter 2, the distribution function of the vibrational energy is
provided by the proportionality relation,

f (εv) ∝ e−
εv
kT δ

(
εv−

(
i+

1
2

)
θv

)
, (3.9)

and the cumulative distribution reads,

G(εv) = 1− e−
εv
kT , (3.10)

where δ (x) is the Dirac delta.
The cumulative distribution is reversible and the vibrational quantum level of a particle can be
sampled from,

i =
⌊
−ln(R)

T
θv

⌋
. (3.11)

where ⌊· · ·⌋ denotes truncation to the lower integer value. The corresponding vibrational energy
of the particle is then calculated with Eq. (2.34).

3.2.3 Electronic Mode

In thermal equilibrium, the Boltzmann distribution for the electronic excited states j at a given
temperature follows,

f (εe, j) =
g je−

εe, j
kT

∑
j

g je−
εe, j
kT

. (3.12)

In contrast with the previous two modes, this distribution does not simplify and an electronic
quantum number cannot be directly sampled from Eq. (3.12). To overcome this problem, an
acceptance-rejection method is applied by selecting an electronic quantum level from the fol-
lowing distribution,

f ′ =
f(εe, j)

fmax
=

g je
−

εe, j
kTe

g j′e
−

εe, j′
kTe

. (3.13)

The sampling of an electronic quantum level proceeds as follows. First, the electronic quantum
level, i.e. j′, corresponding to the maximum of Eq. (3.12) is determined. Next, a random elec-
tronic quantum number, i.e. j⋆, is sampled from a uniform distribution which takes the values
between 0 and j′. A value of j⋆ is selected and Eq. (3.13) is evaluated for j⋆. Finally, the elec-
tronic quantum number j⋆ is accepted if Eq. (3.13) is greater than a random number; otherwise,
the procedure is repeated until an accepted value for j⋆ is obtained.
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3.3 Post Collision Sampling

In the event of a binary collision, the post-collision routines involve the molecular species, the
three components of velocity and either the internal energy or quantum level of each mode.
Two types of collisions can be distinguished: elastic collisions, which occur between particles
that are not exchanging internal energy and inelastic collisions, in which the collision energy is
redistributed through the internal mode of the particles. During such collisions, particles may be
assigned post-collision velocities, post-collision internal energy or quantum levels and undergo
chemical reactions, for reactive gases.
The present section focuses on the redistribution of internal energy during an inelastic collision.
Elastic collisions are herein disregarded. A comprehensive discussion on elastic collisions can
be consulted in Bird’s monograph [17]. Chemical reactions are not investigated in the present
chapter but will be later addressed in Chapters 5 and 6.

3.3.1 Larsen-Borgnakke Redistribution Scheme

The LB redistribution scheme is a phenomenological model first introduced by Larsen and
Borgnakke [131] for a mixture of polyatomic gases in which the internal energy was regarded
as continuous. Bird [17] later generalised this scheme to incorporate molecular model effects,
introducing the Variable Hard Sphere (VHS) model for elastic collisions. Unlike the rotational
mode, the vibrational mode is generally only partially excited and the classical extension of
the LB model to the vibrational mode was inappropriate. The situation was significantly en-
hanced by the introduction of a quantum approach for the vibrational mode by Bergemann and
Boyd [150], greatly simplifying DSMC procedures. Since then, the redistribution scheme has
remained unchanged and is now widely adopted in the DSMC community.
Figure 3.2 illustrates the general procedure of the quantum LB method during a collision be-
tween colliding partners A and B, involving the redistribution of rotational, vibrational and
electronic internal energies. The quantum LB technique consists of a six-step procedure for re-
distributing the internal energy. The purpose of step 1 (top left) and 4 (top right) is to allocate
a portion of the collision energy to the rotational mode of particles A and B, respectively. Simi-
larly, step 2 (left) and 5 (right) aim to redistribute the collision energy to the vibrational mode of
the collision partners. Finally, step 3 (bottom left) and 6 (bottom right) intend to redistribute the
collision energy to the electronic mode of the collision partners. Additionally, for each sequence
presented in Fig. 3.2, the colliding partner is tested for energy redistribution and only a fraction,
i.e. 1

Z , is allowed for energy exchange. If an inelastic collision is accepted, the collision energy
is redistributed as detailed in the subsequent sections; if not, the colliding partner conserves
its pre-collision internal energy and the colliding partner is then considered for the following
internal mode.
The general redistribution between the translational energy and an internal mode of the collid-
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ing partners A and B, namely εA and εB, respectively, with respective mean internal degree of
freedom ΞA = 1

2ξA and ΞB = 1
2ξB is formulated,

f
(

εA

εc

)
= f

(
εB

εc

)
=

Γ(ΞA +ΞB)

Γ(ΞA)Γ(ΞB)

(
εA

εc

)ΞA−1(
εB

εc

)ΞB−1

. (3.14)

The redistribution of the rotational, vibrational and electronic energy following a collision event
is addressed separately in the subsequent sections following the example illustrated in Fig. 3.2.

A

εr,A

εv,A

εe,A

B

εr,B

εv,B

εe,B

εt

εc,1 = εt + εr,A
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ε⋆r,A

εv,A

εe,A

B

εr,B

εv,B

εe,B

ε⋆t,1

εc,2 = ε⋆t,1 + εv,A

ε⋆t,2 = εc,2− ε⋆v,A
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ε⋆r,A

ε⋆v,A

εe,A

B
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εe,B

ε⋆t,2

εc,3 = ε⋆t,2 + εe,A

ε⋆t,3 = εc,3− ε⋆e,A

A

ε⋆r,A

ε⋆v,A

ε⋆e,A

B

εr,B

εv,B

εe,B

ε⋆t,3

εc,4 = ε⋆t,3 + εr,B

ε⋆t,4 = εc,4− ε⋆r,B

A

ε⋆r,A

ε⋆v,A

ε⋆e,A

B

ε⋆r,B

εv,B
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ε⋆t,4
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Figure 3.2: Flowchart of the serial application of the quantum Larsen-Borgnakke techniques.
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3.3.2 Rotational Mode

Consider the first redistribution of internal energy which involves the translational and rotational
modes, illustrated in bottom left Fig. 3.2. In the DSMC community, the rotational collision
number is commonly defined as a constant number, typically suggested as Zr = 5 and a collision
is allowed to result in a rotational energy exchange if,

1
Zr,A

>R. (3.15)

If an inelastic collision is accepted, the pre-collision energy of the collision partners A and B,
εc,1, is calculated as the sum of the relative translational energy of the pair A and B, εt and the
pre-collision rotational energy of particle A, εr,A,

εc,1 = εt + εr,A. (3.16)

The LB method samples a post-collision energy from a combined distribution of the translational
and an internal mode of the colliding particle. The translational distribution function inherently
depends on the inter-molecular model employed as it defines the collision probability. For the
VHS model, the probability distribution of translational energy during a collision is,

f (εt) =
1

Γ(ξt)

(
εt

kT

) 3
2−ωA,B

e−
εt
kT , (3.17)

where Γ(s) is the ordinary gamma function and ξt is the mean translational degree of freedom,
which, for the VHS gas, is given by averaging the relative translational collision between parti-
cles which yields,

ξt =
5
2
−ωA,B. (3.18)

where ωA,B is the mean viscosity exponent between colliding partners A and B.
The distribution function for the rotational mode of a particle with ξr rotational degree of free-
dom follows the Hinshelwood distribution function [186] that is,

f (εr,A) ∝ ε

ξr
2 −1

r e−
εr,A
kT . (3.19)

For linear molecules, e.g. O2 or N2, there are two rotational degrees of freedom, i.e. ξr = 2,
whereas for non-linear molecules, e.g. H2O or CH4, there are three rotational degrees of free-
dom, i.e. ξr = 3. Inserting the corresponding degree of freedom into Eq. (3.14), two scenarios
arise depending on reversibility of the cumulative distribution.
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If ξr = 2, Eq. (3.14) reduces,

f (εr,A) =

(
5
2
−ωA,B

)(
1−

εr,A

εc,1

) 3
2−ωA,B

. (3.20)

It is evident that Eq. (3.4) is reversible. Therefore, the rotational energy of the particle can be
evaluated by mean of a random number uniformly distributed between 0 and 1 such that,

εr,A =−kT ln(R). (3.21)

In this specific case, the cumulative distribution is reversible and the cumulative function can be
equated to a random number uniformly distributed between 0 and 1 such that the post-collision
rotational energy of colliding partner A is obtained by,

ε
⋆
r,A = 1−R

1
5
2−ωA,B , (3.22)

where the superscript (.)⋆ refers to post-collision properties.
If ξr > 2, Eq. (3.14) cannot be simplified to a reduced form. An acceptance-rejection method is
required with the following distribution,

f ′ =
f (εc,εr,A)

fmax
=

 ξr
2 + 1

2 −ωA,B(
ξr
2 −1

) R1


ξr
2 −1(

ξr
2 + 1

2 −ωA,B(3
2 −ω

) (1−R1)

) 3
2−ωA,B

. (3.23)

A post-collision energy ratio, i.e. R1 =
εr,A
εc

, is chosen at random from the range 0 to 1. The
distribution is evaluated from the above equation and is compared with a random fraction, R2,
that is uniformly distributed between 0 and 1. The post-collision rotational energy is accepted if
the distribution satisfies,

f ′ >R2. (3.24)

The post-collision rotational energy of the colliding partner A is obtained by,

ε
⋆
r,A =R1εc,1. (3.25)

After this process, the collision energy is redistributed between a new translational energy, ε⋆t,1

and the newly selected rotational energy ε⋆r,A, such that

εt,1 = εc,1− ε
⋆
r,A. (3.26)

This procedure is repeated for colliding partner B after all the internal mode of particle A has
been addressed.
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3.3.3 Vibrational Mode

Consider the second redistribution of internal energy that takes place between the translational
and vibrational modes, shown in left of Fig. 3.2. In DSMC, a common approach is to assume
a constant vibrational relaxation number, typically prescribed to Zv,A = 50. This assumption
implies that only a fixed fraction of collisions results in vibrational energy exchange. A more
detailed approach, proposed by Bird [187], relies on microscopic information related to the
colliding partners. The initial step is to define a quantized collision temperature, denoted as Tcol ,
when a pair is selected for collision,

Tcol =
i⋆θv,A

(7
2 −ωA,B)

(3.27)

where,

i⋆ =
⌊

εc,2

kθv,A

⌋
. (3.28)

With this approach, the vibrational collision number is calculated

Zv,A =

(
θd,A
Tcol

)ωA
((

θd,A
Tcol

) 1
3 −1

)
Zmax

(
θd,A
Tre f

)ωA
((

θd,A
Tre f

) 1
3 −1

) , (3.29)

where θd is the dissociation temperature, Tre f is a reference temperature and Zmax is the reference
collision number and it is formulated as,

Zmax =

(
C1

T ωA
max

)
eC2T

− 1
3

max , (3.30)

where Tre f is usually taken to be the characteristic vibrational temperature of colliding partner A,
C1 and C2 are constants from the Millikan and White data that can be consulted in Bird [17][Ap-
pendix A].
The colliding partner is tested for vibrational energy exchange and it is accepted if,

1
Zv,A

>R. (3.31)

If an inelastic collision is accepted, the pre-collision energy of the collision partners A and B,
εc,2, is calculated as the sum of the remaining energy from the redistribution of the rotational
energy of colliding partner A, ε⋆t,1 and the pre-collision vibrational energy of particle A, εv,A,

εc,2 = ε
⋆
t,1 + εv,A. (3.32)

Following the approach adopted by Bergemann and Boyd [150], a Dirac delta function is ap-
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plied to the Boltzmann distribution, Eq. (2.24), of the vibrational energy to define the following
continuous distribution function,

f (εv,i) =
e−

εv,i
kT

∑
j

e−
εv, j
kT

δ

(
εv−

(
i+

1
2

)
kθv

)
. (3.33)

Combining the translational and vibrational distribution function, Eqs. (3.17) and (3.33), the
maximum probability of the resulting distribution is obtained for the ground vibrational quantum
level, i.e. i = 0; hence, the normalisation factor, fmax, of the resulting distribution reads,

fmax = ε
3
2−ωA,B
c e−

εc
kT . (3.34)

A post-collision vibrational quantum level i⋆ is uniformly chosen between 0 and imax and an
acceptance-rejection method is used to select a value of i⋆ from the distribution,

f ′ =
f (εc,εv,i⋆)

fmax
=

(
1− i⋆kθv

εc

) 3
2−ωA,B

. (3.35)

Finally, the post-collision vibrational quantum level i⋆ is accepted if the distribution satisfies,

f ′ >R. (3.36)

Then, the colliding partner is assigned a new vibrational energy which corresponds to,

ε
⋆
v,A = i⋆kθv,A. (3.37)

The difference between the available collision energy εc,2 and the newly selected vibrational
energy ε⋆v,A is allocated to a new translational energy, ε⋆t,2 such that,

ε
⋆
t,2 = εc,2− ε

⋆
v,A. (3.38)

This procedure is repeated for colliding partner B after all the internal mode of particle A has
been addressed.

3.3.4 Electronic Mode

Consider the third redistribution of internal energy which occurs between the translational and
electronic modes, presented in top left of Fig. 3.2. In a similar fashion to the previous modes,
the electronic collision number is traditionally regarded as constant, typically prescribed to Ze =
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500 [151]. An electronic energy exchange is then allowed if,

1
Ze,A

>R. (3.39)

If the collision process is inelastic, the pre-collision energy of the collision partners A and B,
εc,3, is calculated as the sum of the remaining energy from the redistribution of the vibrational
energy of colliding partner A, ε⋆t,2 and the pre-collision electronic energy of particle A, εe,A,

εc,3 = ε
⋆
t,2 + εe,A. (3.40)

In a similar fashion to the construction of the distribution for the vibrational mode, a Dirac delta
function is applied to the Boltzmann distribution of the electronic energy to form the continuous
distribution function,

f (εe, j) =
g je−

εe, j
kT

∑
n

gne−
εe,n
kT

δ (εe− εe, j). (3.41)

Combining Eq. (3.17) and Eq. (3.41), the resulting distribution reads,

f (εc,εe, j) =
g je−

εc
kT

Γ(5
2 −ωA,B)∑

n
gne−

εe,n
kT

(
εc− εe, j

kT

) 3
2−ωA,B

. (3.42)

The LB method assumes local thermal equilibrium prevails, which imposes the temperature to
be constant in the process. Similarly, the total collision energy is constant through the redistri-
bution. The distribution function can therefore be reduced to the simple form,

f (εc,εe, j) ∝ g j(εc− εe, j)
3
2−ωA,B . (3.43)

A post-collision electronic energy cannot be directly sampled from the above expression, there-
fore, an acceptance-rejection method is employed. The first step consists of normalising the
distribution by its maximum and searching the corresponding electronic quantum level j′. The
normalised distribution yields,

f ′ =
f (εc,εe, j)

fmax
=

g j(εc− εe, j)
3
2−ωA,B

g j′(εc− εe, j′)
3
2−ωA,B

. (3.44)

A post-collision electronic quantum number, j⋆, is sampled from a uniform distribution which
admits the values between 0 and j′. Finally, j⋆ is accepted if the normalised distribution satisfies,

f ′ >R. (3.45)

The colliding partner is assigned a new electronic energy ε⋆e,A and the available collision energy
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εc,2 is reduced accordingly to a new translational energy, ε⋆t,3 such that,

ε
⋆
t,3 = εc,2− ε

⋆
e,A. (3.46)

At this stage of the procedure, the collision energy has been redistributed through all internal of
the colliding partner A. The difference of energy between the collision energy εc,3 and the newly
selected electronic energy ε⋆e,A is passed on to colliding partner B to sequentially redistribute the
total collision through all its internal mode in a similar fashion as herein described for colliding
partner A.

3.4 Internal Temperatures

The internal temperatures represent important properties for characterising the mechanisms gov-
erning the physics of the flow. These properties are also of major importance for distinguishing
different models at a comparable level. Therefore, understanding the derivation of these inter-
nal temperatures is fundamental for gaining insights into the physics of the flow. This section
presents an overview of the derivation of these properties, along with a discussion of their limi-
tations.

3.4.1 Rotational Temperature

For most of the applications presented in this thesis, the temperature is sufficiently high for
the rotational mode to be treated as continuous. In other words, the quantized effects of this
mode are neglected, significantly simplifying the mathematical derivation of the rotational tem-
perature. This temperature is derived from the equipartition theorem, which was previously
introduced for the calculation of the internal degree of freedom, as seen in Eq. (2.45). The
equipartition theorem establishes a connection between the mean internal energy, the degree of
freedom and the internal temperature, expressed as,

Tr =
2er

ξrk
. (3.47)

3.4.2 Vibrational Temperature

The vibrational temperature is computed as the ratio between the Boltzmann distribution of two
adjacent vibrational quantum levels, specifically, the ground and first vibrational quantum levels.
Their respective distribution are given by,

n0

n
=

e−
ε0
kTv

∑
i

e−
εi

kTv

, (3.48)
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and,
n1

n
=

e−
ε1
kTv

∑
i

e−
εi

kTv

, (3.49)

where n0 and n1 are the number density of the ground and first vibrational quantum level, re-
spectively and n is the total number density of the cell.
The division of Eq. (3.48) by Eq. (3.49) eliminates the partition function, resulting in a simple
formulation from which the vibrational temperature can be extracted using the natural logarithm
function. Assuming a harmonic oscillator model, where vibrational quantum levels are equally
spaced with a constant increment energy ∆εv = kθv, the ratio of two adjacent quantum levels can
be further simplified by demonstrating that the average vibrational quantum level is,

⟨i⟩= ev

kθv
. (3.50)

Applying these transformations to the ratio of Eqs. (3.48) and (3.49), the formulation for the
vibrational temperature reduces to,

Tv =
θv

ln
(

1+ 1
⟨i⟩

) . (3.51)

It is important to emphasise that the derivation of Eq. (3.51) relies on the assumption that the
vibrational quantum levels follow the Boltzmann distribution. As highlighted in Chapter 2, the
Boltzmann distribution applies only to a system in thermal equilibrium. Additionally, it is impor-
tant to mention that for non-Boltzmann distribution of the vibrational energy, the ratio between
two adjacent vibrational quantum levels may result in a different vibrational temperature to that
defined in Eq. (3.51). Consequently, it is important to recognise that Eq. (3.51) is inherently
limited to thermal equilibrium conditions.

3.4.3 Electronic Temperature

The electronic temperature implemented in dsmcFoam+ follows the suggestion of Liechty [188].
This temperature is constructed on the same premises as the vibrational temperature. It consists
in calculating the ratio between the Boltzmann distribution of the ground and first electronic
excited states that are respectively,

ne,0

n
=

g0e−
εe,0
kTe

∑
i

gie
− εi

kTe

, (3.52)
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and,

ne,1

n
=

ge,1e−
εe,1
kTe

∑
i

ge,ie
−

εe,i
kTe

, (3.53)

where ne,0 and ne,1 are the number density of the ground and first electronic excited states,
respectively.
From the above two equations, Eqs. (3.52) and (3.53), the derivation of the electronic tempera-
ture is straightforward and yields,

Te =
ε1− ε0

kln
(

n0
n1

g1
g0

) . (3.54)

The electronic temperature is fundamentally derived from similar considerations to the vibra-
tional temperature, therefore, it shares the same limitations as its counterparts.

3.4.4 Overall Temperature

In thermal non-equilibrium conditions, it is sometime convenient to refer to the overall temper-
ature which is a weighted mean of the translational and internal temperatures,

Tov =
ξtTt +ξrTr +ξvTv +ξeTe

ξt +ξr +ξv +ξe
, (3.55)

where ξv and ξe are the vibrational and electronic degrees of freedom, respectively, calculated
from the equipartition theorem, Eq. (2.45).
The overall temperature represents the theoretical equilibrium temperature toward which a gas
initialised in an adiabatic box in thermal non-equilibrium conditions will theoretically converge.
This temperature can serve the purpose of a verification exercise to ensure the correct imple-
mentation of a new model in any DSMC solver.

3.5 dsmcFoam+ Solver

The original version of dsmcFoam was developed by OpenCFD Ltd in collaboration with Scan-
lon et al. [189] at the University of Strathclyde, building upon the molecular dynamics (MD)
solver mdFoam developed by Macpherson [190] and Borg [191]. dsmcFoam was built within
the framework of the open-source C++ computational fluid dynamics toolbox open-source field
operation and manipulation (OpenFOAM) [192]. The core DSMC capabilities of OpenFOAM
was first released with OpenFOAM 1.7.0. Since then, the original version of dsmcFoam remains
largely unchanged and can be found in the any of the release of OpenFOAM.
The original version of dsmcFoam encompassed essential features of any modern DSMC solver,
but was lacking a number of crucial features for dsmcFoam to be practicable to engineering
applications. Specifically, dsmcFoam was adequate for the simulation of rarefied gas flow with
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noble gas, e.g. Ar, Ne or Xe, or strongly bounded diatomic molecules, e.g. N2. However, it was
inadequate for typical atmospheric reentry conditions in which real gas effects can no longer
be neglected. In the view of these limitations, a significant extension of dsmcFoam was under-
taken by White [185] and named dsmcFoam+ [193]. This solver builds upon the capabilities
of the original dsmcFoam and provides an enhanced set of DSMC capabilities, including par-
allel performance with dynamic load balancing, vibrational and electronic modes or chemical
reactions.
In a similar philosophy to the work of White [185], this thesis contributes to elevating dsm-

cFoam+ to state-of-the-art accuracy standards. This thesis extends the DSMC capabilities of
dsmcFoam+ with a sophisticated approach for modelling molecular vibrational excitation, an
improved chemistry model fitted to reproduce experimental measurements and high-fidelity
chemistry calculations and the consideration of real-gas effects through the coupling of elec-
tronic and vibrational modes. These individual contributions are comprehensively discussed in
subsequent chapters.

Table 3.1: Comparison of dsmcFoam and dsmcFoam+ capabilities (Adapted from White et
al. [193]).

Feature dsmcFoam dsmcFoam+ This thesis

Arbitrary 2D geometries ✓ ✓ ✓
Arbitrary 3D geometries ✓ ✓ ✓

Arbitrary axisymmetric geometries x ✓ ✓
Chemical reactions (QK-HO) x ✓ ✓
Chemical reactions (QK-aHO) x x ✓

Coupling electronic-vibrational modes x x ✓
Dynamic load balancing x ✓ ✓

Electronic energy x ✓ ✓
Gravitational force controller x ✓ ✓

Landau-Teller relaxation correction x x ✓
Mass flow rate measurement x ✓ ✓

Normal shock wave stabilisation x x ✓
Parallel processing ✓ ✓ ✓
Rotational energy ✓ ✓ ✓

Simulation quality reports x ✓ ✓
Vibrational energy (HO) x ✓ ✓
Vibrational energy (aHO) x x ✓



Chapter 4

Vibrational Modelling with an
Anharmonic Oscillator Model in DSMC *

This chapter presents the implementation of an anharmonic oscillator model in the dsmcFoam+

solver. Firstly, the derivation of an anharmonic oscillator model is presented, including a de-
tailed discussion of the difference between the harmonic and anharmonic oscillator models. The
two vibrational models are then compared against a compilation of PES calculations for the
calculation of the vibrational energies. A series of adiabatic scenarios relevant to high-speed
flows is performed to verify the implementation of the anharmonic oscillator model. Finally, the
two vibrational models are applied to a canonical high-speed flow of a cylindrical body entering
Earth’s atmosphere at about 75 km.

4.1 Theoretical Background

This section presents the derivation of vibrational energy under the assumption that the inter-
atomic forces acting within the molecule are governed by the Morse potential [34]. Firstly, the
differences in describing the potential energy function are discussed. Then, the vibrational ener-
gies of the two vibrational models are compared against a compilation of PES calculations [194]
and a new set of spectroscopic constants are suggested. Finally, the vibrational quantum level
reached at the dissociation energy of both vibrational models is discussed.
Consider a diatomic molecule consisting of two nuclear masses m1 and m2 with pure vibrational
motion concentrated along the inter-nuclear axis which, in contrast to the harmonic oscillator
model, is governed by the Morse potential energy function [34],

U = εd

(
1− e−2α

r−req
req

)2

, (4.1)

*A large portion of the work presented in this Chapter is published in C. H. B. Civrais, C. White and R. Steijl
(2022). "Vibrational modelling with an anharmonic oscillator model in direct simulation Monte Carlo", Journal of
Thermophysics and Heat Transfer, 37(3):534–548, 2022. doi: 10.2514/1.T6547.
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where εd is the dissociation energy and α is a spectroscopic constant that controls the width of
the potential energy function.
The time independent Schrödinger equation of this system becomes,

− ℏ2

2µ

d2ψ(x)
dx2 +

(
ε− εd

(
1− e−2α

r−req
req

)2
)

ψ(x) = 0. (4.2)

Figure 4.1 presents a comparison between the Morse potential energy function and Eq. (2.31)
for a selection of three diatomic molecules: N2, O2 and NO. The potential energy is normalised
by the dissociation energy of the molecule and the inter-nuclei distance is scaled by the distance
at rest between the two nuclei. As a convention for the entire thesis, the harmonic oscillator
model is denoted in blue color and the anharmonic oscillator model in red color. For reference,
the vibrational quantum levels of the two approaches are included in horizontal lines.
The Morse and Hooke’s potential energy functions substantially differ in the description of the
intra-molecular interactions. Specifically, the Morse potential energy tends asymptotically to
the dissociation energy of the chemical species, whereas Hooke’s law tends to infinity. This
difference has a substantial consequence on the vibrational quantum levels obtained for both
models. While the Morse potential asymptotically tends to the dissociation energy with a finite
number of vibrational quantum levels, the harmonic oscillator model remains unbounded with
the results of an infinite number of vibrational quantum levels.
The present section focuses on gaining physical insights in the vibrational modelling rather than
solving Eq. (4.2) with the intra-molecular interactions described with Eq. (4.1). No further justi-
fication on the validity and full derivation will be provided in this thesis. For further explanation,
the reader is referred to Morse [34] or a quantum mechanics textbook [170].
Under the assumption of the Morse potential, the vibrational energies are formulated,

εv = hν

(
i+

1
2

)
− (hν)2

4εd

(
i+

1
2

)2

, (4.3)

where the fundamental frequency is defined as

ν =
α

2π

√
εd

m
. (4.4)

The vibrational energy modelled with the Morse potential is constituted of two terms. The first
term is equivalent to the harmonic oscillator model. The second term is a negative second-order
term that is responsible for an asymptotic curve towards the dissociation limit.
To compare the two vibrational models at an equivalent level, it is necessary to follow the same
convention. For this purpose, the vibrational energy, Eqs. (2.33) and (4.3), can be re-written in
the form of a function that accounts for spectroscopy constants only. To achieve this transforma-
tion, the first step consists in expressing both the fundamental frequency and dissociation energy
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(a) Nitrogen molecule.
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(b) Oxygen molecule.
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(c) Nitric oxide molecule.

Figure 4.1: Potential energy for three diatomic molecules in their ground electronic state.

in terms of spectroscopy constants
ν = cωe, (4.5)

and,

εd =
(hc)2

4ωeχe
, (4.6)

where ωe and ωeχe are two spectroscopic constants.
Substituting Eqs. (4.5)-(4.6) in Eq. (2.33), the harmonic oscillator model becomes,

εv = hcωe

(
i+

1
2

)
. (4.7)
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Applying a similar transformation to Eq. (4.3), the Morse vibrational energy reads,

εv = hcωe

(
i+

1
2

)
−ωeχe

(
i+

1
2

)2

. (4.8)

The most popular sources for obtaining these constants are the National Institute of Standards
and Technology (NIST) database [25] or the Huber and Herzberg tables [26]. However, Da Silva et

al. [51] have reported that the use of these database often over-estimates the number of vibra-
tional quantum levels and the dissociation energy of a molecule. Therefore, the spectroscopic
constants used in this thesis have been fitted to high-fidelity PES data from Armenise and Es-
posito [194] for all three molecular species. Table 4.1 presents the fitted spectroscopy constants
along with the values extracted from the Huber and Herzberg tables [26] for three molecular
systems lying at the ground state level.

Table 4.1: Spectroscopy constants for three diatomic molecules in their ground electronic state.

Species
Huber and Herzberg [26] Fitted

ωe (cm−1) ωeχe (cm−1) ωe (cm−1) ωeχe (cm−1)

N2(X1
∑
+
g ) 2358.57 14.324 2419.32 17.867

O2(X3
∑
−
g ) 1580.19 11.981 1688.17 16.425

NO (X2 Πr) 1904.20 14.075 1967.28 17.305

The comparison of the vibrational energies for N2, O2 and NO are depicted in Fig. 4.2a. The
vibrational energies are calculated with both sets of spectroscopic constants shown in Tab. 4.1
and are normalised by the dissociation energy. The calculation of the vibrational energy with the
Huber and Herzberg table [26] values are represented by solid lines, while those based on the
fitted spectroscopic constants are represented in dashed lines. The PES calculations [194] are
included for reference. The two vibrational models are differentiated by the color convention
previously defined.
In Chapter 2, the foundation of the harmonic oscillator model has been detailed. This vibrational
model is based on an equally spaced distribution of the vibration quantum levels which, in turn,
leads to a linear trend of the vibrational energy. In contrast, the anharmonic oscillator model
differs from uniformity. Specifically, this model incorporates a second-order negative term that
decreases the spacing between levels as the level increases. This behaviour is noticeable in
Fig. 4.2, with a high concentration of energy in the high-lying vibrational quantum levels.
Consider the vibrational excitation of a nitrogen molecule. The vibrational energies computed
with the Huber and Herzberg tables [26] reproduce the PES calculations for the first 8 vibra-
tional quantum levels. Beyond this limitation, the vibrational energy diverges as the vibrational
quantum level increases. This discrepancy indicates that these spectroscopic constants overesti-
mate the vibrational energy leading to smaller number of vibrational quantum levels lying below
the dissociation energy.
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(a) Nitrogen molecule.

0 10 20 30 40 50
Vibrational Quantum Level

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

No
rm

ali
se

d 
Vi

br
ati

on
al 

En
er

gy

PES Calculations
Armenise and Esposito (2015)

Theoretical Calculations
HO
Huber and Herzberg (1979)
Fitted

(b) Oxygen molecule.
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(c) Nitric oxide molecule.

Figure 4.2: Vibrational energy for three diatomic molecules at the ground state level.

The maximum vibrational quantum levels preceding dissociation energy are summarized in
Tab. 4.2 for the three molecular species. The selection of the vibrational model has a direct
impact on the vibrational quantum level achieved at the dissociation energy. For a nitrogen
molecule under the harmonic oscillator assumption, the dissociation limit is reached for a quan-
tum level of 33, while under the anharmonic oscillator assumption, the dissociation occurs at
quantum level 47 for the vibrational energies computed with the Huber and Herzberg tables [26]
or 58 for vibrational energies fitted on PES calculations. A modification of the maximum vi-
brational quantum level allowed before dissociation of the molecule may result in noticeable
changes in the chemical activity of the molecule.
For instance, Grover et al. [125] presents a comparative study of two independently developed
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PESs for N3 and N4 systems at the University of Minnesota and NASA Ames Research Center. It
is shown that PES developed at the University of Minnesota describes the rotational-less ground
electronic states of N2 with 55 vibrational quantum levels while the PES developed at NASA
Ames Research Center describes it with 61 vibrational quantum levels. The different approach
in constructing the two PES is also noticeable in the rovibrational quantum levels in which the
NASA Ames Research Center’s PES describes N2 with an additional 192 rovibrational quantum
levels. The study demonstrates that the two PES not only differ from their description of the
internal quantum levels of N2 but also on the dissociation reaction rates of N2 + N2 and N2 + N
and the vibrational temperature and atomic fraction flow fields for a reactive nitrogen flow past
a cylinder at freestream conditions: Ma∞ = 20 and Kn∞ = 0.015. In light of Grover et al. [125],
it is reasonable to conclude that considering an anharmonic oscillatory model instead of the
harmonic oscillator model will have significant implications on the macroscopic properties of
the gas as well as its composition.
Although this fundamental aspect is of interest in the context of high-speed flow simulations,
chemical reaction rates are not investigated in the present chapter but will be later addressed in
Chapters 5 and 6.

Table 4.2: Maximum vibrational quantum levels before the dissociation barrier for three di-
atomic molecule in their ground electronic state.

Species HO Huber and Herzberg [26] Fitted

N2(X1
∑
+
g ) 33 47 58

O2(X3
∑
−
g ) 26 36 42

NO(X2Πr) 27 39 44

Another outcome highlighted in Fig. 4.2 is the validity of the harmonic oscillator assumption.
It is perceptible that, due to the linear behaviour, the harmonic oscillator model is an acceptable
hypothesis in a configuration where only a small portion of vibrational levels are excited. In
other words, harmonic oscillator remains valid for low enthalpy flows, but as the temperature
increases, it should be replaced by an anharmonic oscillator model.

4.2 Vibrational Modelling in DSMC

This section presents the numerical techniques employed to integrate the anharmonic oscillator
model into dsmcFoam+. The equilibrium sampling procedure remains largely unchanged and
the implementation of the anharmonic oscillator model can be viewed as a generalisation of
the technique presented in Chapter 3. Similarly, the redistribution of the vibrational energy in
the event of a collision is a relatively simple adaptation since the procedure is similar to the
treatment of the electronic energy. The primary challenge arises in the calculation of vibrational
temperature which requires the resolution of a non-linear system.
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4.2.1 Equilibrium Sampling

The harmonic oscillator model contributes two degrees of freedom and a similar treatment to
that of the rotational mode was adopted to initialise the vibrational quantum level of particle.
It is important to emphasise that this specific treatment is only applicable for a non-truncated
harmonic oscillator. Otherwise, the mean degree of freedom falls below two, necessitating a
distinct approach. In contrast, an anharmonic oscillator model contributes more than two degrees
of freedom, rendering the approach outlined in Chapter 3 inadequate for the initialisation of the
vibrational quantum levels. Instead, the vibrational quantum level of a particle is determined
based on a given temperature T , e.g. wall, boundary or initialisation temperatures, using the
distribution function,

f (εi) ∝
e−

εv,i
kT

∑
j

e−
εv, j
kT

δ (εv− εv,i). (4.9)

However, it is not possible to sample a vibrational quantum level directly from the distribution;
hence, an acceptance-rejection scheme is employed. This procedure involves sampling a random
vibrational quantum level from the following distribution,

f ′ =
f (εi)

fmax
=

e−
εv,i
kT

e−
εv,imax

kT

. (4.10)

where imax is the vibrational quantum level for which Eq. (4.9) is a maximum.
The sampling of the vibrational quantum level follows the procedure described in Chapter 3: A
random quantum level is sampled between 0 and imax; this random quantum level is accepted if
Eq. (4.10) satisfies f ′ > R; otherwise, the random quantum level is rejected and the preceding
steps are repeated until a suitable quantum level is returned.

4.2.2 Post-Collision Sampling

In a collision between two particles, the redistribution of the vibrational energy follows the pro-
cedures outlined in Chapter 3. First, the particle is tested for vibrational energy exchange; if the
particle is not accepted, the function returns the initial vibrational quantum level. If an inelastic
collision is accepted, the maximum available post-collision vibrational quantum level, i⋆max, is
computed and a post-collision quantum level is uniformly chosen between 0 and i⋆max. Finally, a
value of i⋆ is selected from the probability ratio using an acceptance-rejection technique.
As presented in Chapter 3, the first step consists in defining a quantized collision temperature
which is herein slightly modified to accommodate the use of an anharmonic oscillator such that
Eq. (3.27) becomes,

Tc =
εv,i⋆max

k(7
2 −ωA,B)

, (4.11)
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where the maximum vibrational quantum level is obtained by looping through the list of vibra-
tional energies and finding the vibrational quantum level that satisfies εv,i > εc.
If the vibrational collision number is based the collision temperature, Eqs. (3.29) and (3.30) are
calculated with the modified temperature, Eq. (4.11); otherwise, the vibrational energy exchange
is tested against a random number as described in Chapter 3. If the colliding partner is accepted
for vibrational relaxation, the potential post-collision vibrational quantum level of the particle is
uniformly chosen between i = 0 and the maximum possible level imax. The acceptance-rejection
method is applied to select a value of i⋆ from the distribution,

f (εc,εi⋆) =

(
1−

εv,i⋆

εc

) 3
2−ωA,B

, (4.12)

where εv,i⋆ refers to the vibrational energy at quantum level i⋆ calculated with Eq. (2.33) for the
harmonic oscillator model and with Eq. (4.3) for the anharmonic oscillator model.
These modifications of the original post collision sampling scheme can be seen as a generalisa-
tion of the procedure. The relations herein presented can be used by both harmonic and anhar-
monic oscillator models. The main differences lie in the calculation of the maximum allowed
vibrational quantum level, imax and the probability calculation where the vibrational energies
are calculated with Eq. (4.3) for the anharmonic oscillator model instead of Eq. (2.33) for the
harmonic oscillator model.

4.2.3 Vibrational Temperature

The measurement of the vibrational temperature under the hypothesis of an anharmonic oscilla-
tor represents a challenge. In contrast with its counterpart, an anharmonic oscillator model does
not benefit from a simple derivation of the vibrational temperature. The explanation lies in the
definition of the partition function which reads,

Qv = ∑
i

e
−εv,i
kTv . (4.13)

Due to the nature of the anharmonic oscillator model, the summation cannot be eliminated and
Eq. (4.13) represents its simplest form. Similarly, when evaluating the total mean vibrational
energy, an analytical expression analogous to the harmonic oscillator model is not feasible.
Instead, it is expressed as,

ev =

∑
i

εv,ie
−εv,i
kTv

∑
i

e
−εv,i
kTv

. (4.14)

The only means to obtain this temperature is through an iterative methodology to approximate
one of the thermodynamic properties. In this thesis, a new way of solving this issue is proposed;
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using a Newton iterative methodology. This method is versatile, exhibits fast convergence and
consumes minimal computational resources. It involves applying a Taylor expansion around a
specific value and truncating terms beyond the first order. As the series is truncated to retain only
first-order terms, the function must be smooth to be reasonably approximated by a tangent. For
the measurement of the vibrational temperature, it is convenient to define an objective function,
i.e. f , that comprises the total mean vibrational energy, as per Eq. (4.14) and the mean vibrational
energy in the cell denoted as ev,cell ,

f = ev,cell− ev. (4.15)

A Newton iterative approach consists in minimizing the objective function. By definition, the
mean vibrational energy is monotonic; hence, it does not contain local minima. Consequently,
utilizing a Newton iterative method to solve the vibrational temperature problem is well-suited.
However, this method is sensitive to the initial value set at the beginning of the process and a
coarse initial value can delay convergence. To avoid this, a pre-optimized procedure has been
designed to closely approach the DSMC value with a scanning process. Once this initial guess
is known, the value is transferred to the main Newton loop to refine the vibrational temperature
value by comparing the gradient of the function, the function itself and the initial guess to a
tolerance factor.

4.3 Adiabatic Reactor Simulations

The implementation of a new model in a numerical solver necessitates thorough verification
to ensure its accuracy and reliability. To achieve complete verification, this section presents a
series of four adiabatic reactor cases, involving both thermal equilibrium and non-equilibrium
scenarios. It is important to reiterate that, in all the cases presented here, the chemical reactions
are disregarded.

4.3.1 Vibrational Temperature

The measurement of the vibrational temperature represents an important property to verify. It
does not only inform on the measurement technique but also verifies the initialisation of the
correct vibrational energy to the particle. Therefore, adiabatic reactor simulations are conducted
with molecular oxygen as the working gas. These simulations involve a cubic cell with a volume
of about 6.65×10−12 m3. The time step employed for all cases is 1.0×10−9 s. The adiabatic
reactors are filled with one million of DSMC simulator particles where each DSMC DSMC
represents 5×106 real particles. Internal energies are redistributed through a serial application
of the quantum LB method [131]. The inter-molecular collisions are computed with the VHS
model [17] at a reference temperature of Tre f = 273 K with the species properties summarized
in Tab. 4.3. The rotational, vibrational and electronic collision numbers are set to unity since
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these play no role in the measurement of the vibrational temperature. The adiabatic reactors
are initialised in thermal equilibrium conditions, with temperatures ranging from 0 to 20,000 K.
The vibrational temperature is monitored and sampled over 106 time steps. Both the harmonic
and anharmonic oscillator models are employed for this verification case.

Table 4.3: Species properties at a reference temperature of 273 K.

Chemical Species m d ω ωe ωeχe θr θv θd
(×10−27 kg) (×10−10 m) (−) (cm−1) (cm−1) (K) (K) (K)

O2 53.12 4.07 0.77 1688.165 16.425 2.064 2256 59,500
O 26.56 3.00 0.80 − − − − −
N2 46.50 4.17 0.74 2419.322 17.867 2.869 3371 113,500
N 23.25 3.00 0.80 − − − − −

NO 49.81 4.20 0.79 1967.283 17.305 2.400 2719 75,500

Figure 4.3 shows the measurement of the vibrational temperature for the anharmonic oscillator
model, compared against those of the harmonic oscillator model. Excellent agreement is found
between the new measurement technique and the traditional technique presented in Chapter 3.
This demonstrates the correct implementation of the initialisation and post-collision sampling
and the new measurement technique.
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Figure 4.3: Comparison between the initialised vibrational temperature and the DSMC calcula-
tion.

4.3.2 Vibrational Density Function

The transition from a linear behaviour with a harmonic oscillator model to a non-linear be-
haviour signifies a distinct response to external excitation. As detailed in Sec. 4.1, it has been
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observed that, due to the negative non-linear term, a larger portion of the vibrational energy
concentrates in the high-lying vibrational quantum levels compared to the harmonic oscillator
model. This observation has significant implications for the high-lying vibrational quantum
level population. Since the population density is a function of the internal vibrational energy, a
modification of the distribution profile is expected. As it represents a fundamental characteristic
of the anharmonic oscillator model, this quantity is chosen as a verification test case for the
implementation of the anharmonic oscillator model.
Adiabatic reactor simulations are conducted to measure the population of the vibrational quan-
tum level of three molecules in thermal equilibrium conditions. These simulations consist of a
single cubic cell with edge length 1.88×10−4 m and periodic boundaries filled with one million
DSMC simulator particles. The inter-molecular collisions are computed with the VHS model
with the species properties summarised in Tab. 4.3 for a reference temperature of Tre f = 273 K.
The rotational and vibrational collision numbers are set to unity since these play no role in the
measurement of the quantum-level populations. A fixed time step size of 1×10−9 s is adopted.
The population of each quantum level is sampled for 106 time steps and recorded for three
different temperatures: 5000 K, 10,000 K and 15,000 K.
Since the system remains in thermal equilibrium conditions for the duration of the simulations,
the vibrational quantum levels are expected to follow the Boltzmann distribution,

f (εi) =
e
−εv,i

kT

∑
j

e
−εv, j

kT

. (4.16)

Figure. 4.4 presents a comparison between the DSMC calculations for the harmonic oscillator
and anharmonic oscillator models against the analytical expression, Eq. (4.16). The DSMC
results are denoted by markers, the analytical solutions are depicted by solid lines and each
temperature is associated with a respective colour. Figure. 4.4 shows that the numerical results
are in excellent agreement with the analytical solutions for all three molecules, demonstrating
the successful implementation of the anharmonic oscillator model in dsmcFoam+.

4.3.3 Adiabatic Relaxation

The second test involves verifying whether a correct equilibrium temperature can be reached
from a given thermal non-equilibrium situation. To do this, the adiabatic reactor is initialised
in thermal non-equilibrium conditions where Tt = Tr = 20,000 K and Tv = 0 K. The working
gas are the three diatomic molecules aforementioned, i.e. N2, O2 and NO. The adiabatic reactor
follows the previous setups with the exception that a constant fraction of 1/5 and 1/50 collisions
are allowed to result in rotational and vibrational relaxation, respectively.
Starting from thermal non-equilibrium conditions, a relaxation process is initiated by binary col-
lisions between particles and the corresponding exchange of internal energies. After a certain
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(a) Nitrogen molecule.
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(b) Oxygen molecule.
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(c) Nitric oxide molecule.

Figure 4.4: Probability distribution of vibrational quantum levels for three diatomic molecules.

time has elapsed, a thermal equilibrium state is reached and the theoretical equilibrium temper-
ature is formulated,

Teq =
ξt,iTt,i +ξr,iTr,i +ξv,iTv,i

ξt, f +ξr, f +ξv, f
, (4.17)

where the subscripts (.)i and (.) f refer to the initial and final times.
The results of the adiabatic reactor simulations are depicted in Fig. 4.5. Figure 4.5 follows the
colour convention established for all the figures presented in the thesis. The translational, rota-
tional, vibrational and electronic temperatures are distinguished by solid, dashed, dashed-dotted
and dotted lines. For completeness, the theoretical equilibrium temperatures for all working gas
and vibrational models are depicted in solid and dashed black lines.
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Figure 4.5: Relaxation to equilibrium of an adiabatic reactor initialised with Tt = Tr = 20,000 K
and Tv = 0 K for three molecules.

Figure 4.5 shows that for all three molecular systems, internal temperatures come into thermal
equilibrium after enough collisions have occurred. It can also be observed that the theoretical
predictions are correctly recovered by the two vibrational models. Figure 4.5 shows that a slight
increment of temperature differentiates these two models at equilibrium. The change in thermal
equilibrium state is readily derived from the internal mean energy of the molecules. Considering
the vibrational energy of a molecule, it is evident from Eqs. (2.33) and (4.3) that,

∀v ∈ N, ε
aHO
v ≤ ε

HO
v . (4.18)
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It follows,

∀T ∈ R, ∑
v

e−
εaHO
v
kT ≥∑

v
e−

εHO
v
kT , (4.19)

therefore,
∀T ∈ R, eaHO

v ≥ eHO
v . (4.20)

As a results, for an adiabatic process the equilibrium temperature of a gas modelled with an an-
harmonic oscillator model must be lower than that of a gas modelled with a harmonic oscillator
model,

T aHO
eq ≤ T HO

eq . (4.21)

It is important to emphasise that the temperature difference between the two vibrational models
depends on the spectroscopic constants of the molecule. As discussed in the context of specific
heat capacity, weakly bounded molecules, e.g. O2, exhibit significant deviations at lower tem-
peratures between the two vibrational models. In contrast, strongly bounded molecular systems,
e.g. N2 and NO, indicate a more pronounced contribution from their vibrational and electronic
modes to the mean internal energy at higher temperatures.

4.3.4 Thermodynamic Properties

In the development of statistical mechanics, the total partition function of a system represents
a fundamental role in bridging microscopic and macroscopic properties. Nevertheless, the par-
tition function offers limited physical insights. In contrast, the specific heat capacities and the
heat capacity ratio hold an important role in most engineering applications. Therefore, the mea-
surement of the specific heat capacities of three molecules in thermal equilibrium conditions is
considered as a verification case.
A series of adiabatic reactor simulations are conducted to measure the specific heat capacity of
the aforementioned three molecules. These simulations follow the same setup as the vibrational
density verification case. The specific heat capacity is measured for temperatures ranging be-
tween 2000 and 20,000 K and over 105 samples are taken to reduce the numerical scatter. The
electronic excited states of N2, O2 and NO are those suggested by Liechty [188]. The spec-
troscopy constants are extracted from the NIST database [25] with an exception for the ground
electronic state, where the spectroscopic constants are fitted on PES calculations as presented
in Sec. 4.1. It is important to emphasise that this contribution is sometimes omitted [195–197]
in the description of the molecular modes. The effects of this contribution on the thermody-
namic properties of the molecules are also highlighted throughout this chapter. Since the system
is in thermal equilibrium conditions, the DSMC results can be assessed against the analytical
formulation, Eq. (2.44). For completeness, the DSMC results are also compared against a se-
lection of theoretical studies that includes a coupling between the internal modes: McBride et

al. [24], Jaffe [30], Capitelli et al. [28] and Qin et al. [29]. These studies provide the thermody-
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namic properties for a variety of non-reactive gases for temperatures ranging from 2000 to over
20,000 K and more.
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Figure 4.6: Comparison of two vibrational models on the specific heat capacity of three
molecules.

Figure 4.6 compares the specific heat capacity of three molecules where vibrational excitation is
described with the harmonic oscillator and the anharmonic oscillator models, with the electronic
mode being either enabled or disabled. The two vibrational models are differentiated by the color
convention. It is shown that the DSMC results are in excellent alignment with the analytical
formulation of the specific heat capacity, Eq. (2.44), for all three molecular species under the
range of temperatures considered; hence verifying the implementation in dsmcFoam+.
Furthermore, Fig. 4.6 shows that the two vibrational models yield comparable results for low
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temperatures, however, for moderate-to-high temperatures, the two vibrational models exhibit
significant deviations from one to another. This discrepancy is merely the result of the distribu-
tion of the vibrational energy across the vibrational quantum levels. In Fig. 4.4, it was observed
that at low temperatures, the two vibrational models predict similar distributions of vibrational
quantum levels. Since the specific heat capacity of a system is derived from these distributions,
the two models are expected to predict similar specific heat capacities under these conditions.
In contrast, as the temperature increases, the population of the two vibrational models deviate
from one to another, leading to deviation in the thermodynamic properties.
Figure 4.6 also outlines the importance of considering the electronic mode within the calcula-
tion of the specific heat capacity. The inclusion of the electronic mode significantly improves
the reproduction of the compilation of high-fidelity calculations [24, 28–30]. Nevertheless, it
becomes apparent that even at moderate temperatures, the specific heat capacity of the gas de-
viates from the selection of theoretical studies. This discrepancy lies in the assumption made
at the beginning of this chapter, where it was assumed that molecular species follow the Born-
Oppenheimer approximation, allowing the internal modes of the molecular species to be treated
independently. This assumption prohibits the modelling of any interaction between the internal
modes such as the coupling between the vibronic and rovibronic couplings. These contributions
will be thoroughly examined throughout this thesis, commencing with the vibronic coupling in
Chapter 7 and investigating the rovibronic coupling in Appendix. A.

4.4 Hypersonic Flow

In the preceding sections, the anharmonic oscillator model has been verified for adiabatic re-
actor simulations. In the present section, a more complex scenario is considered involving a
nonreactive air mixture past a cylindrical body with freestream conditions extracted from the
US Standard Atmosphere [198] and summarised in Tab. 4.4. These conditions correspond to
a typical Earth atmospheric reentry at an altitude of 75 km. To follow the conclusions drawn
about Fig. 4.6, which has evidenced the importance of considering all the internal modes of the
chemical species, the electronic excited states of N2 and O2 are herein considered.
The hypersonic flow simulations are set up as follows. The geometry represents a two-dimensional
slice of a cylinder with a domain length equal to one diameter upstream of the stagnation point.
The computational domain extends to a length of one diameter upstream of the stagnation point.
The mesh is refined near the stagnation point to ensure the cell size, ∆x, remains smaller than the
local mean free path, λ , resulting in a total number of 65,516 cells. The numerical mesh is popu-
lated with a total number of 5.5×106 DSMC simulator particles at a steady state. The time step
is carefully chosen to be an order of magnitude smaller than the mean collision time and the cell
residence time which results in ∆t = 1× 10−8 s. Inter-molecular collisions are computed with
the VHS model [17] for a reference temperature of Tre f = 273 K. The redistribution of internal
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Table 4.4: Freestream conditions.

Parameter Values

Altitude (km) 75
Temperature (K) 200.2

Number density (m−3) 9.33×1020

Speed (m.s−1) 7000
O2 mole fraction (%) 0.21
N2 mole fraction (%) 0.79

Ma∞ 24.6
Kn∞ 0.013

energies is modelled by a serial application of the quantum LB method [131, 150]. A finite
probability of Pr = 0.2, Pv = 0.02 and Pe = 0.002 are, respectively, considered for rotational,
vibrational and electronic relaxation, as suggested by Bird [17]. In this study, the electronic
temperature is calculated with the approach developed by Liechty and Lewis [141] and derived
from the ratio of the Boltzmann distribution of the ground state and the first electronic states.
The gas-surface interactions are treated as fully diffuse with an isothermal wall at temperature
Tw = 1000 K. A total of 105 samples are taken after steady-state to reduce the numerical scatter.
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Figure 4.7: Vibrational populations of three vibrational quantum levels of N2 and O2 along
the stagnation streamline for a nonreactive air mixture flow over a cylinder with freestream
conditions Ma∞ = 24.67 and Kn∞ = 0.013.

The influence of the vibrational models on the vibrational population of N2 and O2 of three
vibrational quantum levels along the stagnation streamline is depicted in Fig. 4.7. For reference,
the Boltzmann distribution of these three quantum levels is included. Figure 4.7 shows that
the two vibrational models exhibit distinct populations of the selection of vibrational quantum
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levels for N2 and O2. Specifically, the aHOe model present a larger population of the high-lying
vibrational quantum levels in comparison to its counterpart. Additionally, Fig. 4.7 shows that the
population of the vibrational quantum levels largely deviates from the Boltzmann distribution.
Note that this discrepancy is not surprising considering the assumptions made in the derivation
of the Boltzmann distribution, see Chapter 2. Specifically, it is assumed that the temperature of
the system is high enough to promote a spare distribution of the particle over the permissible
energy levels of the system such that the Bose-Einstein statistics and Fermi-Dirac statistics are
indistinguishable, and that the system is in thermal equilibrium. While the former assumption is
achieved in most aerothermodynamic applications, the latter is rarely encountered. In the present
scenario, Fig. 4.8 indicates that the air mixture flow exhibits strong thermal non-equilibrium
between the internal modes throughout the shock wave. This demonstrates the impracticality
of determining a vibrational temperature based on the assumption that the vibrational quantum
levels follow Boltzmann statistics.
Additionally, Fig. 4.7 indicates a significant excitation of the electronic states upstream of the
shock wave. This phenomenon is a consequence of the degree of rarefaction that is sufficient
for a particle to collide with the surface of the body and travel backwards without enough in-
elastic collisions to de-excite the particle; thus, carrying post-shock information upstream the
bow-shock. This phenomenon is a non-equilibrium effect occurring in high Knudsen numbers
and characterised by a non-Maxwellian velocity distribution. This phenomenon has also been
observed previously [53, 168, 169, 199–201] and will be further studied in Chapter 7.
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Figure 4.8: Internal temperatures and non-equilibrium factor of the air mixture along the stag-
nation streamline.

The surface heat flux and pressure are important parameters for various applications. The sur-
face heat flux and pressure are depicted in Fig. 4.9. The normalization of the surface heat flux is
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based on the freestream energy flux, while that of pressure is based on the freestream pressure.
The surface properties are plotted against the azimuthal angle measured from its centre, with an
angle of 0◦ denoting the stagnation point and an angle of 90◦ denoting the top of the cylinder.
The surface properties calculated with an anharmonic oscillator model show similar predictions
to the harmonic oscillator model. At the surface temperature of Tw = 1000 K, the translational
and rotational modes dominate the physics and the vibrational and electronic modes are only
partially activated. Therefore, the differences between the two vibrational models are insignifi-
cant since only the first few vibrational quantum levels are occupied.

0 10 20 30 40 50 60 70 80 90
Azimuthal Angle ( )

0

100

200

300

400

500

600

700

800

No
rm

ali
se

d 
Pr

es
su

re

HO
aHO

(a) Surface pressure.

0 10 20 30 40 50 60 70 80 90
Azimuthal Angle ( )

0.00

0.05

0.10

0.15

0.20

0.25

No
rm

ali
se

d 
He

at 
Fl

ux

HO
aHO

(b) Surface heat flux.

Figure 4.9: Comparison of the surface properties for a nonreactive air mixture flow over a cylin-
der with freestream conditions Ma∞ = 24.67 and Kn∞ = 0.013.
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4.5 Summary

The merits of different vibrational models for use in DSMC simulations have been discussed
and analysed. An anharmonic oscillator model has been implemented within dsmcFoam+ and
verified for a series of four adiabatic reactor simulations to reproduce fundamental parameters,
such as the vibrational population, the thermal equilibrium and thermodynamic properties of a
gas. Additionally, the anharmonic oscillator model has been applied to a hypersonic flow past a
cylindrical body at an Earth’s altitude of about 75 km.
The series of adiabatic reactor simulations have demonstrated a successful implementation of the
anharmonic oscillator model in dsmcFoam+. It has been shown that the harmonic and anhar-
monic oscillator models exhibit strong deviation in the population of the high-lying vibrational
quantum levels. Specifically, the anharmonic oscillator model predicts a higher population of
high-lying vibrational quantum levels which suggests a significant difference in the modelling of
the chemical activity of chemical species in comparison to the harmonic oscillator model. Fur-
thermore, the relaxation to thermal equilibrium has evidenced that the two vibrational models
exhibit different thermal equilibrium states. Additionally, the study of thermodynamic proper-
ties has outlined the importance of including all internal modes and describing the interaction
between the internal modes to recover the correct thermodynamic properties.
In the context of a canonical hypersonic Earth’s reentry flow, it has been observed that the two
vibrational models exhibit different population of the vibrational quantum levels downstream
the shock wave. It is also shown that the population of these quantum levels largely deviate
from the assumption of a Boltzmann distribution. Such a discrepancy is anticipated to lead
to deviation in the chemical activity of the chemical species. Therefore, further investigations
into the modelling of chemical reactions using the two vibrational models will be explored in
subsequent chapters.



Chapter 5

Quantum Kinetic Chemistry Model with
an Anharmonic Oscillator Model:
Derivation and Limitations *

This chapter presents a custom version of the original quantum-kinetic chemistry models, in
which vibrational excitation is modelled with an anharmonic oscillator model. The new QK
model is investigated for four of the most representative dissociation reactions occurring during a
reentry into Earth’s atmosphere. Firstly, the new formulations are compared against an extensive
compilation of well-established theoretical chemistry models, experimental measurements and
high-fidelity calculations in both thermal equilibrium and non-equilibrium conditions. Then, the
limitations of these formulations are assessed for thermal non-equilibrium conditions relevant
to planetary reentry applications.

5.1 Quantum-Kinetic Chemical Model

5.1.1 Original QK model

Consider the collision between a molecular species AB and an inert species M. A potential post-
collision vibrational quantum level for AB is selected through an acceptance-rejection routine
from the distribution,

f =
(

1− i⋆kθv

εc

) 3
2−ω

, (5.1)

where the collision energy of a particle pair (AB - M) is expressed as the sum of the relative
translational energy of the pair and the pre-collision vibrational energy of the molecule under
consideration, i.e. εc = εAB,M,t + εAB,v and i⋆ refers to the post-collision quantum level that is

*A large portion of the work presented in this Chapter is published in C. H. B. Civrais, C. White and R.
Steijl. Quantum kinetics chemistry models with an anharmonic oscillator model. Model derivation and limitations,
Physics of Fluids, 36(8):086120, 2024. doi: 10.1063/5.0215706.
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uniformly chosen between 0 and a maximum vibrational quantum level, imax, calculated as,

imax =

⌊
εt + εv,i

kθv

⌋
. (5.2)

If the maximum vibrational quantum level lies beyond the dissociation quantum level, a disso-
ciation reaction, e.g. AB + M −−→ A + B + M, occurs. The condition for AB to dissociate is
therefore,

imax >

⌊
θd

θv

⌋
. (5.3)

Consider colliding partner AB at a given vibrational quantum level i, the probability Pd of the
translational energy exceeding the difference between εv and εd is given by,

Pd =
Γ

[
5
2 −ω, (id−i)θv

kT

]
Γ
[5

2 −ω
] , (5.4)

where Γ(s,x) is the upper incomplete gamma function.
The corresponding dissociation reaction rate of AB is given by summing these probabilities up
to the dissociation energy, multiplying by the collision rate between chemical species AB and
M and dividing by the number density of the species, i.e. partition functions which read,

kd(T ) = RAB−M(T )γAB−M(T ). (5.5)

where RAB−M is the collision rate between species AB and M and γAB−M defines the fraction
of collisions between chemical species AB and M that possesses sufficient energy to meet the
dissociation criterion.
For a thermal equilibrium VHS gas, the collision rate between species AB and M is given by,

RAB−M(T ) =
2(rAB,re f + rM,re f )

2

ς

√
2πkTre f

µAB−M

(
T

Tre f

)1−ωAB−M

, (5.6)

where rre f is the VHS reference radius defined at a reference temperature Tre f and ς is a sym-
metry factor that is equal to 2 for similar chemical species and 1 for dissimilar chemical species.
For a thermal equilibrium VHS gas, with i as the pre-collision vibrational state of species AB,
γAB,M takes the form of,

γAB,M(T ) = (1− e
−θv

T )
imax

∑
i=0

e
−iθv

T Γ

[
5
2
−ωAB,M,

(id− i)θv

T

]
. (5.7)

In the particular situation where the translational and vibrational energies being distributed ac-
cording to their equilibrium distributions but at different temperatures, i.e. Tt = Tr ̸= Tv, an
analytical expression has been proposed by Bond et al. [202]. Recently, this formulation has



CHAPTER 5. QK MODEL: DERIVATION AND LIMITATIONS 87

been further extended by Civrais et al. [136] to incorporate anharmonicity and it reads,

kneq(Tt ,Tv) = RAB,M

imax

∑
i=0

Γ

[
5
2
−ωAB,M,

kθd− εv,i

kTt

]
e−

εv,i
kTv

Qv(Tv)
+B

∞

∑
imax+1

e−
εv,i
kTv

Qv(Tv)
. (5.8)

The second term, preceded by the parameter B, is suggested by Bond et al. [202] to take into
account whether the vibrational model is truncated to the dissociation limit or not. For truncated
vibrational models, the parameter B is set to zero and to unity for non-truncated vibrational
models.

5.1.2 QK-aHO model

The QK-aHO model is a new version of the original QK model [130] in which the vibrational
energy is modelled with an anharmonic oscillator model [135–137]. In this extension, the vibra-
tional energy is described with the Morse anharmonic oscillator model [34], defined as Eq. (4.8).
The QK-aHO model logically follows the conceptualisation of the original QK model. Neverthe-
less, the consideration of an anharmonic oscillator model to describe the vibrational excitation
of molecular species imposes three modifications to the original QK model: the post-collision
sampling, the dissociation probability, and the dissociation reaction rates.
Considering an anharmonic oscillator model requires sampling a potential post-collision vibra-
tional quantum level through an acceptance-rejection routine with probability

P′ =
P

Pmax
=

(
1−

εv,i⋆

εc

) 3
2−ω

, (5.9)

where the maximum vibrational quantum level is obtained by looping through the list of vibra-
tional energies calculated from Eq. (4.8) and finding the vibrational quantum level that satisfies
εc > εv,i⋆ .
As in the original QK model, a dissociation of AB occurs if the collision energy is greater than
the dissociation energy; hence, the corresponding dissociation probability yields,

Pd =
Γ

[
5
2 −ω,

εd−εv,i
kT

]
Γ
[5

2 −ω
] . (5.10)

The modelling of the vibrational energy with an anharmonic oscillator model solely applies to
the chemical procedures; consequently, the collision rate, Eq. (5.6), remains unchanged. Never-
theless, a modification of the dissociation probability readily imposes a change in the fraction of
collisions with sufficient energy to experience a dissociation reaction. Specifically, the change
from a linear to a non-linear distribution of the vibrational energy across the vibrational quantum
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levels constrain γAB,M to take the form of,

γAB,M(T ) =

imax
∑

i=0
e−

εv,i
kT Γ

[
5
2 −ωAB,M,

εd−εv,i
kT

]
jmax

∑
j=0

e−
εv, j
kT

. (5.11)

Similarly, in thermal non-equilibrium conditions, Eq. (5.8) is subject to similar modifications
and reads,

kneq(Tt ,Tv) = RAB−M

id

∑
i=0

G

[
5
2
−ωAB−M,

εd− εv,i

kTt

]
× e−

εv,i
kTv

Qv(Tv)
+B

∞

∑
id+1

e−
εv,i
kTv

Qv(Tv)
. (5.12)

5.2 Thermal Equilibrium

To verify the successful implementation of the new formulations and to compare the dissociation
reaction rates of the two QK models, a series of simulations are conducted in both thermal
equilibrium and non-equilibrium conditions. These simulations involve an adiabatic reactor
represented by a single cubic cell with a side length of 1.88× 10−4 m filled with one million
DSMC simulator particles and periodic boundaries. The VHS model is used to compute the
inter-molecular collisions with the species properties summarised in Table 4.3 for a reference
temperature of Tre f = 273 K. A fixed time step of 1×10−9 s is adopted. For each simulation, a
single dissociation reaction is considered, with the colliding partner assumed to be chemically
active, internal energy transfer between collision partners disabled and the reaction process itself
deactivated. This approach enables the sampling of reaction rates at a constant temperature. The
electronic excitation of the chemical species is disregarded and it is assumed that chemical
reactions occur from ground electronic excited states. The rotational and vibrational collision
numbers are set to unity since these play no role in the measurement of collision and reaction
rates. Simulations are run for over 104 iterations to reduce the numerical scatter.
In dsmcFoam+, the dissociation reactions are grouped into two categories [133]: Type I disso-
ciation reactions for molecule-molecule and Type II dissociation reactions for molecule-atom.
In the present study, the influence of modelling the vibrational excitation with an aHO model
on thermal equilibrium reaction rates is quantified for temperatures ranging from 4000 K to
20,000 K for two Type I dissociation reactions, Reaction 1 and Reaction 2 and two Type II
dissociation reactions, Reaction 3 and Reaction 4.

O2 +O2 −−→ O2 +O+O (Reaction 1)

N2 +N2 −−→ N2 +N+N (Reaction 2)
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O2 +O−−→ O+O+O (Reaction 3)

N2 +N−−→ N+N+N (Reaction 4)

The DSMC reaction rates for Reaction 1-Reaction 4 are compared against the analytical solu-
tion, Eq. (5.5), and the compilation of experimental results, QCT calculations, and DMS results
tabulated in Tab. 1.1. In its development, the QK model [130] was not intended to compete with
these sophisticated approaches but rather to provide a phenomenological model that accurately
predicts chemical reaction rates up to a certain degree of fidelity. Therefore, it is expected that
there may be cases in which the QK models are in disagreement with the QCT calculations. In
the present chapter, the experimental measurements are considered as a primary baseline. In
the situation where experimental measurements are not available for the temperature range of
interest, the high-fidelity calculations will be considered as an alternative baseline model.
Consider the dissociation of oxygen in a collision with another oxygen molecule, Reaction 1.
Figure 5.1a compares the DSMC reaction rates for the HO and aHO models against the analytical
solution, Eq. (5.5), and the aforementioned compilation of past studies. The abscissa shows the
inverse of the temperature, i.e. 20,000/T, with the reaction rates plotted on the ordinate axis.
Figure 5.1a demonstrates that the analytical expression of the QK models, Eq. (5.5), provides
an excellent alignment with the DSMC reaction rates for the range of temperature considered;
hence providing a verification of the implementation of the new QK models in dsmcFoam+.
Additionally, Fig. 5.1a indicates that the dissociation reaction is more likely to occur with the
aHO model than the HO model for the whole range of temperatures. As discussed in the previous
section about Fig. 4.2, this increase in the dissociation reaction rates results from the non-linear
distribution of vibrational energy across the vibrational quantum levels which, in turn, modifies
the dissociation quantum level and fraction of collision with enough energy to dissociate.
Figure 5.1a indicates that the QK models present a reasonable reproduction of the compilation
of past studies, even though, slight deviations are shown from from the experimental measure-
ments [77] and high-fidelity calculations [85,87,89].It is worth mentioning that this deviation is
not unique to the QK models; it is also observed in most of the selection of past studies, except
for Boyd’s reaction rates. This discrepancy can be attributed to the omission of the rotational
mode and the chemical activity of the electronic excited states. In the QCT calculations, the rota-
tional mode is treated with a quantum approach whereas in the QK model, the contribution of the
rotational mode to the reaction rates is disregarded. While for low temperatures, these quantum
effects may be insignificant, at high temperatures such a contribution influences the chemical
activity as shown in Grover et al. [89]. Furthermore, it is evident in Andrienko and Boyd [93],
Chaudhry et al. [85], and Jo et al. [99] that adding the contribution of electronic excited states to
the global dissociation rates significantly improves the reproduction of experimental measure-
ments from Streicher et al. [75,77]. The discrepancy between the QCT calculations and the QK



CHAPTER 5. QK MODEL: DERIVATION AND LIMITATIONS 90

model outlines the importance of modelling electronic excited states and their chemical activity
for accurately reproducing experimental measurements.
The study follows with the investigation of the Type I nitrogen dissociation, Reaction 2. The dis-
sociation reaction rates are depicted in Fig. 5.1b. Figure 5.1b shows that the QK models predict
higher reaction rates compared to the experimental results. This deviation from the experimental
measurements is also observable in the selection of past studies and QCT calculations. Simi-
lar justification to those provided for Reaction 1 can here be drawn. The QK models provide
close alignment with the QCT calculations for the whole range of temperatures. Similar to Type
I oxygen dissociation, Fig. 5.1b indicates that a nitrogen molecule has a higher probability of
dissociating with the aHO model.
Furthermore, Figs. 5.1a and 5.1b show that the QK-aHO model is in better agreement with
the compilation of high-fidelity calculations for N2 than it is for O2. The primary difference
between the QK models and the high-fidelity calculations lies in the mathematical considera-
tions about the internal modes. Specifically, the QK models solely promote chemical reactions
from the translational and vibrational modes whereas QCT or DMS incorporate the rotational
mode and the interactions between modes. Molecular oxygen is known to exhibit significant
rotational-vibrational coupling effects even at moderate temperatures whereas molecular nitro-
gen exhibits similar effects at much higher temperatures. Consequently, the difference shown
in Figs. 5.1a and 5.1b originates from the rotational-vibrational coupling effects which occur at
much lower temperatures for O2 than for N2 [85, 86, 107]. Note that this difference between the
two molecular systems is not unique to the dissociation reaction rates but it is also observable in
the corresponding specific heats, see Figs. 4.6.
Figures 5.1c and 5.1d repeat the comparison of Figs. 5.1a and 5.1b, with the corresponding atom
as the collision partner. DSMC reaction rates are consistent with the selection of past studies,
experimental measurements and the corresponding QCT calculations, see Tab. 1.1. The DSMC
results for Type II dissociation reactions present a reasonable agreement with the compilation of
past studies, leading to analogous conclusions as those drawn for Type I dissociation reactions.



CHAPTER 5. QK MODEL: DERIVATION AND LIMITATIONS 91

1 2 3 4 5 6 7 8
Inverse Temperature, 20,000/T (K 1)

10 20

10 19

10 18

10 17

10 16

10 15

Re
ac

tio
n 

Ra
te,

 (m
3 m

ol
ec

ul
e

1 s
1 ) 

Experimental Measurements
Streicher et al. (2021)
Shatalov (1973)
Ibraguimova et al. (2013)

QCT Calculations
Chaudhry et al. (2018)
Jo et al. (2023)

DMS Calculations
Grover et al. (2019)

Chemistry Models
Boyd (2007)
Dunn and Kang (1973)
Scanlon et al. (2015)
Park and Meness (1978)

QK Model
QK-HO
DSMC
QK-aHO
DSMC

(a) O2 + O2 −−→ O + O + O2.
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Figure 5.1: Thermal equilibrium dissociation reaction rates of Reaction 1-Reaction 4.
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5.3 Thermal Non-Equilibrium

5.3.1 Comparison to Non-Equilibrium Chemistry Models

In the previous section, the comparison of the two vibrational models was limited to chem-
ical reactions in thermal equilibrium. The previous four dissociation reactions, i.e. Reaction
1-Reaction 4, are now regarded in thermal non-equilibrium conditions, i.e. Tt = Tr ̸= Tv. These
reactions are studied for the three trans-rotational temperatures prescribed in Tab. 5.1 and for
vibrational temperatures ranging from 4000 K to 20,000 K. The validity of the QK model pre-
dictions is first verified against the thermal non-equilibrium quantum-kinetic model [202]. The
predictions of the QK model are then evaluated against a selection of thermal non-equilibrium
chemistry models: the Kuznetsov model [119], the Macheret-Fridman model [44] and the
Treanor-Marrone model [117]. Additionally, the results of the QK model are also compared
against the compilation of past studies shown in Tab. 1.2.

Table 5.1: Thermal non-equilibrium scenarios.

Reaction Tt,1 (K) Tt,2 (K) Tt,3 (K) Data type Reference

O2 + O2 −−→ O + O + O2 8000 10 000 15 000 DMS Grover and Schwartzentruber [88]
O2 + O−−→ O + O + O 5000 10 000 20 000 QCT Kulakhmetov et al. [91]

N2 + N2 −−→ N + N + N2 8000 10 000 20 000 Experimental Losev et al. [72]
N2 + N−−→ N + N + N 7500 10 000 15 000 QCT Jaffe et al. [107]

Multi-temperature models have adopted another formalism to describe the influence of non-
equilibrium conditions on the reaction rates through a dimensionless parameter Zneq(Tt ,Tv),
known as the thermal non-equilibrium factor, such that

Zneq(Tt ,Tv) =
kneq(Tt ,Tv)

keq(Tt)
. (5.13)

This factor is particularly appreciated in the community as it eliminates the influence of the
collision model and only retains the core contribution of non-equilibrium conditions on the
reaction rates. Therefore, this formalism will be adopted to compare the QK results against the
selection of chemistry models.
In this chapter, a selection of three chemistry models has been selected which are composed
of the Kuznetsov model [119], the Macheret-Fridman model [44] and the Treanor-Marrone
model [117]. An extensive description of these chemistry models can be consulted in Losev et

al. [119] along with the suggestion on the selection of the tunable parameters of these chemistry
models.
Figures 5.2-5.5 compare the DSMC thermal non-equilibrium dimensionless parameter against
the three chemistry models, DMS results [88], QCT calculations [85, 92, 102, 107] and exper-
imental fits [72] for Reaction 1-Reaction 4. The abscissa shows the inverse vibrational tem-
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perature and Zneq(Tt ,Tv) is plotted on the ordinate axis, blue lines and markers refer to the HO
model, red lines and markers to the aHO model. High fidelity calculations are denoted by black
solid lines with markers, the three chemistry models in black lines and experimental fits in open
symbols. Similar to the equilibrium sections, the experimental fits and QCT calculations are
assumed to be the most reliable thermal non-equilibrium parameters and are, thus, intended to
be reproduced.
Consider the dissociation of oxygen colliding with another oxygen molecule, Reaction 1. Fig-
ure 5.2 demonstrates that the DSMC results are in excellent agreement with the theoretical pre-
dictions of the non-equilibrium QK theory for all three trans-rotational temperatures; hence,
demonstrating successful implementation of the new formulation under thermal non-equilibrium
conditions. The DSMC results exhibit a notable deviation from the DMS results reported by
Grover and Schwartzentruber [88] for typical post-shock flow conditions (Tt > Tv). This devi-
ation is not exclusive to the QK models; it is also observed for all three trans-rotational tem-
peratures with the Kuznetsov and Macheret-Fridman models. While the definition of the ad-
justable parameter of the Treanor-Marrone model remains unclear [145, 203–206], it emerges
as the model that most closely reproduces the DMS results. For typical nozzle flow conditions
(Tt < Tv), the DSMC results demonstrate good abilities to reproduce the DMS results, unlike
the observed deviation in post-shock flow conditions. In nozzle flow conditions, the chemical
reactions are primarily influenced by the vibrational excitation of the molecular species. This
suggests that, in these flow conditions, the utilisation of the vibrational energy has enabled suffi-
cient dissociation reactions for the QK model to closely reproduce DMS results. For post-shock
flow conditions, the discrepancy between the QK model and the DMS results can therefore be
attributed to an excessive usage of the translational contribution. Additionally, Fig. 5.2 indicates
that the two QK models predict similar non-equilibrium factors. The two QK models originate
from the same chemistry model based on the assumption that chemical reactions occur from
the translational and vibrational contributions of the colliding pair. Figure 5.2 shows that the
QK models excessively rely on the translational contribution to promote chemical reactions,
thereby eliminating any benefits of modelling the vibrational excitation with a more detailed
approach. Note that this observation is not unique to Reaction 1, but it is also noticeable in all
other chemical reactions, i.e. Reaction 2–Reaction 4.
Figure 5.3 repeats the previous comparison with Type I nitrogen dissociation, Reaction 2. Fig-
ure 5.3 shows good agreement with the analytical expression of the modified QK model which
serves as a verification of the implementation of the new formulation in thermal non-equilibrium.
The baseline database for this chemical reaction is the experimental fit reported by Losev et

al. [72] for typical post-shock flow conditions (Tt > Tv) and the QCT calculations reported by
Bender et al. [102] for typical nozzle flow conditions (Tt < Tv). For Tt > Tv, the DSMC results
demonstrate poor reproduction of the baseline database, whereas, for near-equilibrium condi-
tions and Tt < Tv, the DSMC results are found to be in closer agreement with the baseline
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database. It must be emphasised that, in contrast with the QCT calculations and experimental
measurements, the QK model only accounts for dissociation reactions occurring by means of the
relative translational energy of the pair and the pre-collision vibrational energy of the molecule;
hence, real-gas effects such as rotational-vibrational coupling and/or non-adiabatic electronic
transitions are not included. Further improvements to the model are required to closely repro-
duce the baseline database.
Figures 5.4 and 5.5 repeat the comparison for Reaction 3 and Reaction 4, respectively. Similar
conclusions to those drawn for Figs. 5.2 and 5.3 also stand. Overall, the QK models show
similar predictive capabilities to the other chemistry models, all of which tend to over-predict
the reaction rates from QCT calculations for typical post-shock flow conditions. For typical
nozzle flow conditions, the DSMC reaction rates demonstrate reasonable alignment with the
QCT calculations.
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Figure 5.2: Comparison of thermal non-equilibrium dimensionless parameters for O2 + O2 −−→
O + O + O2.
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Figure 5.3: Comparison of thermal non-equilibrium dimensionless parameters for N2 + N2 −−→
N + N + N2.
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Figure 5.4: Comparison of thermal non-equilibrium dimensionless parameters for O2 + O−−→
O + O + O.



CHAPTER 5. QK MODEL: DERIVATION AND LIMITATIONS 98

0 2500 5000 7500 10000 12500 15000 17500 20000
Vibrational Temperature, (K)

10 2

10 1

100

101

102

103

104

105

No
ne

qu
ili

br
iu

m
 F

ac
to

r 

QCT Calculations
Jaffe et al. (2009)

Chemistry Models
Marrone-Treanor (1962)
Macheret-Fridman (1993)
Kuznetsov (Losev et al. (2002))

QK Model
Original QK
DSMC
QK-aHO
DSMC

(a) Tt,r = 7500 K

0 2500 5000 7500 10000 12500 15000 17500 20000
Vibrational Temperature, (K)

10 2

10 1

100

101

102

103

No
ne

qu
ili

br
iu

m
 F

ac
to

r 

QCT Calculations
Jaffe et al. (2009)

Chemistry Models
Marrone-Treanor (1962)
Macheret-Fridman (1993)
Kuznetsov (Losev et al. (2002))

QK Model
Original QK
DSMC
QK-aHO
DSMC

(b) Tt,r = 10,000 K

0 2500 5000 7500 10000 12500 15000 17500 20000
Vibrational Temperature, (K)

10 2

10 1

100

101

102

No
ne

qu
ili

br
iu

m
 F

ac
to

r 

QCT Calculations
Jaffe et al. (2009)

Chemistry Models
Marrone-Treanor (1962)
Macheret-Fridman (1993)
Kuznetsov (Losev et al. (2002))

QK Model
Original QK
DSMC
QK-aHO
DSMC

(c) Tt,r = 15,000 K

Figure 5.5: Comparison of thermal non-equilibrium dimensionless parameters for N2 + N−−→
N + N + N.
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5.3.2 Comparison to Experimental Non-Equilibrium Factor

A large number of chemical mechanisms relevant to typical hypersonic applications have re-
ceived significant attention through extensive experimental investigations, see Tab. 1.1. Under
thermal non-equilibrium, complexity arises for the measurement of reaction rates and only two
chemical reactions have been studied experimentally, see Tab. 1.2. A rare example of such mea-
surements exists in the work of Sergievskaya et al. [71], where reaction rates for the dissociation
of molecular oxygen, Reaction 1, is reported.
The measurements were conducted using the shock tube facilities of the Moscow State Univer-
sity. These measurements were carried out by means of multichannel UV and visible absorp-
tion spectroscopy. They involved maintaining the vibrational excitation of molecular oxygen
at a constant temperature, i.e. Tv = 4200 K, while ensuring that the translational and rotational
temperatures are in thermal equilibrium. The reaction rates were measured for trans-rotational
temperatures ranging from 4000 K up to 10,000 K.
Figure 5.6 presents a comparison of the QK models to the experimental measurements reported
by Sergievskaya et al. [71]. The triangle markers represent the upper and lower limits of the
measurements. For consistency with the experimental results, the non-equilibrium reaction rates
are represented in terms of the thermal non-equilibrium factor, Zneq(Tt ,Tv), expressed in loga-
rithmic scale. For completeness, the analytical predictions of the QK models, Eqs. (5.5)-(5.11)
and results produced by Gallis et al. [203] using the original QK model have been added for
reference.
For a trans-rotational temperature of 4200 K, the DSMC results, analytical predictions and re-
sults reported by Gallis et al. [203] intersect. At this temperature, the gas is in thermal equilib-
rium with the result that the thermal non-equilibrium factor equals unity. As the translational
temperature increases, the thermal non-equilibrium factor also increases. The QK models quali-
tatively predict the experimental measurements except for the original QK model at translational
temperatures in excess of 9000 K. Note that this behaviour is also reported by Gallis et al. [203].
The new QK model remains within the bounds of the experimental measurements for the range
of translational temperatures considered. This observation highlights an advantage of modelling
the vibrational excitation with an anharmonic oscillator model. Furthermore, it provides strong
evidence regarding the ability of the new QK model to reproduce non-equilibrium reaction rates.

5.4 Model Limitations

Figures 5.2-5.5 have demonstrated that for the four dissociation reactions, Reaction 1-Reaction
4, in post-shock flow conditions the QK model under-predicts QCT calculations [88, 92, 102,
107] whereas for nozzle flow conditions, the QK model exhibits reasonable reproduction of
QCT calculations. The justification for this discrepancy lies in an excessive utilisation of the
translational mode to promote dissociation reactions. The present section aims to assess the
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Figure 5.6: Comparison of the thermal non-equilibrium factor between DSMC and measured
reaction rates for O2 + O2 −−→ O + O + O2, Tt = Tr and Tv = 4200 K.

limitations of the QK-aHO model by demonstrating the contributions of the translational and
vibrational modes to the reaction rates of all four dissociation reactions, i.e. Reaction 1-Reaction
4, in thermal non-equilibrium conditions.
The pure translational contribution to the dissociation reaction rates can be extracted after math-
ematical manipulations of Eq. (5.12) and reads,

kd,t = RAB,MΓ

(
5
2
−ωAB,M,

εd

kTt

)
. (5.14)

Similarly, the pure vibrational contribution can be isolated from Eq. (5.12) and reads,

kd,v = RAB,M

∞

∑
imax+1

e−
εv,i
kTv

Qv(Tv)
. (5.15)

Note that Eqs. (5.14) and (5.15) have been extracted without consideration of the vibrational
model; hence, they can be used to predict the translational and vibrational contributions of both
QK-HO and QK-aHO models.
The influence of these two contributions on the dissociation reaction rates of Reaction 1-Reaction
4 are herein evaluated for thermal non-equilibrium conditions, i.e. trans-rotational temperature
of 10,000 K and for vibrational temperatures ranging from 4000 K to 20,000 K. The influence
of Eqs. (5.14) and (5.15) are depicted in Fig. 5.7. The translational contribution is denoted with
the dashed pink line and the vibrational contribution is denoted with the pink dash-dotted line.
The reaction rates of the high-fidelity calculations [85, 102, 107] are included for reference.
For such thermal non-equilibrium conditions, it becomes evident that the translational mode
contributes by a constant factor to the dissociation reaction rate, Eq. (5.14), whereas Eq. (5.15)
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varies with the vibrational temperature. This behaviour is illustrated in Fig. 5.7, where the
translational mode contributes by a constant fraction of the collision rates and the vibrational
contribution increases with higher vibrational temperatures.
It is apparent that for all dissociation reactions the QK model excessively relies on the relative
translational energy, leading to greater dissociation reaction rates than the QCT results. This
excessive use not only over-predicts the high-fidelity calculations [85,102,107] but also conceals
the advantages of modelling the anharmonic behaviour of chemical species. Note that the pure
vibrational contribution presents a similar trend to the high-fidelity calculations [85, 102, 107];
albeit, an order of magnitude lower. It is reasonable to suppose that the QK model could benefit
from a reduction in the translational contribution, compensated by an increase in the vibrational
contribution.
It is important to emphasise that the QK model was not originally designed to compete with high-
fidelity calculations derived from first principles. Furthermore, none of the models presented
herein achieves a reasonable reproduction of the dissociation reaction rates reported by high-
fidelity studies. However, in the view of Fig. 5.7, it can reasonably be concluded that excessive
utilisation of the relative translational energy is responsible for over-predicting the experimental
fits and high-fidelity calculations in both thermal equilibrium and non-equilibrium. Further
efforts will be presented in Chapter 6 to improve the reproduction of experimental measurements
and high-fidelity calculations in both thermal equilibrium and non-equilibrium.
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Figure 5.7: Limits of the QK model for dissociation reactions in thermal non-equilibrium.
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5.5 Summary

The merits of a custom version of the original quantum-kinetic model are discussed and anal-
ysed. A new expression for the dissociation reaction rates in which the vibrational excitation
is modelled with an anharmonic oscillator model has been derived and implemented in dsmc-

Foam+. The new formulations are tested for four dissociation reactions in the context of thermal
equilibrium and thermal non-equilibrium.
For thermal equilibrium conditions, the DSMC results are compared against results from the lit-
erature in the form of the modified-Arrhenius rates, semi-empirical models, experimental results
and QCT calculations. It is shown that the DSMC reaction rates are in excellent alignment with
the new quantum-kinetic model, demonstrating the successful implementation of the new QK
models in dsmcFoam+. The QK theory provides a good agreement with a compilation of nu-
merous studies, i.e. experimental, theoretical, QCT and DMS calculations. It is also found that
dissociation reactions are more likely to occur with an aHO model due to its non-linear nature.
The thermal non-equilibrium study shows that the DSMC results are in excellent agreement
with the corresponding analytical solution, again demonstrating the successful implementation
of the new formulations. The new QK formulations demonstrate equally good capabilities as
the selection of theoretical and empirical chemistry models in the reproduction of the high-
fidelity calculations, i.e. QCT calculations and DMS results. Furthermore, the comparison to the
experimental measurements for the dissociation of oxygen in thermal non-equilibrium indicates
that the prediction of QK-aHO remains within the bounds of the measurement uncertainties. In
contrast, for any translational temperatures in excess of 9000 K and a vibrational temperature
of about 4200 K, the original QK model overestimates the non-equilibrium factor. For both
Tt > Tv and Tt < Tv flow conditions, the new QK models provide closer reproduction to the
baseline model in comparison to the original QK models. However, the new QK models tend to
overestimate the reaction rates at low vibrational temperatures.
The assessment of the limitations of the QK models has highlighted an excessive utilisation of
the relative translational energy and under-utilisation of the pre-collision vibrational energy to
promote dissociation reactions. Therefore, the following chapter will focus on deriving new
expressions for the QK models to better reproduce experimental measurements and/or high-
fidelity calculations.



Chapter 6

Quantum Kinetic Chemistry Model with
an Anharmonic Oscillator Model:
Extension and Validation *

This chapter presents an extension of the QK-aHO models following the suggestion drawn in the
preceding chapter to accurately reproduce recent experimental measurements and high-fidelity
calculations. Firstly, these new formulations are extensively investigated for 19 chemical reac-
tions, dissociation and exchange reactions, for Earth’s upper-atmospheric reentry under thermal
equilibrium and non-equilibrium conditions. Then, the new models are validated against an
extensive compilation of well-established theoretical chemistry models, experimental measure-
ments and QCT calculations. Finally, the extended QK models are utilised to reproduce flight
conditions of the space transport system second mission at an altitude of 92.35 km.

6.1 Quantum Kinetic Chemical Models

6.1.1 Dissociation Reactions

The QK-aHO model is now extended to accurately reproduce high-fidelity calculations and ex-
perimental measurements based on the findings reported in Chapter 5. This extension consists
of introducing two constant tunable parameters, namely, υ1 and υ2, to compensate for the exces-
sive use of the relative translational energy. These modifications apply solely to the chemistry
procedures; consequently, inelastic collisions, Eq. (5.1), and collision rates, Eq. (5.6), remain
unchanged.
Consider the generic dissociation reaction AB + M −−→ A + B + M. The condition for a dis-
sociation reaction to occur and its corresponding dissociation probability are adjusted by means

*A large portion of the work presented in this Chapter is published in C. H. B. Civrais, C. White and R.
Steijl. "Quantum kinetics chemistry models with an anharmonic oscillator model. Model extension and validation".
(submitted)
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of the two tunable parameters. Specifically, a dissociation reaction now occurs if the modified
collision energy exceeds the modified dissociation energy,

εAB−M,t +υ2εAB,v > υ1εd. (6.1)

Considering that the dissociation reaction operates in thermal equilibrium, the corresponding
probability Pd of dissociation occurring is obtained from

Pd =
Γ[5

2 −ω, υ1εd−υ2εv
kT ]

Γ[5
2 −ω]

. (6.2)

Similarly, the fraction of collisions with sufficient energy for AB to dissociate, Eq. (5.11), is
revisited and it reads,

γAB−M(T ) =

id
∑

i=0
e−

εv,i
kT Γ

[
5
2 −ωAB−M,

υ1εd−υ2εv,i
kT

]
jmax

∑
j=0

e−
εv, j
kT

+

∞

∑
i=imax

e−
εv,i
kT

jmax

∑
j=0

e−
εv, j
kT

. (6.3)

The primary objective of υ1 to act upon the dissociation energy with the intention to diminish
the contribution of the translational mode on the reaction rate, while υ2 acts upon the vibrational
energy to artificially boost its contribution to the dissociation reaction. The introduction of these
two parameters not only affects the translational and vibrational contributions but also imposes
a redefinition of the dissociation quantum level. Specifically, for Eq. (6.3) to be fully defined,
the dissociation quantum level, imax, must satisfy,

υ2εv > υ1εd. (6.4)

Note that Eq. (6.4) has significant implications on the dissociation quantum level, id . Specifi-
cally, in the QK-aHO model, the dissociation quantum level is obtained as the last vibrational
quantum level immediately below the dissociation energy, such that id represents the last vi-
brational quantum satisfying εv > εd . Since υ2 acts upon the vibrational energy and υ1 on the
dissociation energy, the last vibrational quantum level satisfying Eq. (6.4) may differ from that
obtained from the condition εv > εd . For instance, in the case of molecular oxygen colliding
with molecular oxygen, id = 34 satisfies Eq. (6.4), while id = 43 satisfies the condition εv > εd .
Moreover, the vibrational energies have been fitted on PES calculations [194], restricting these
to values below the dissociation energy, with the last vibrational quantum level corresponding to
the dissociation quantum level. By adjusting the dissociation energy, Eq. (6.4), there exist cases
where some vibrational quantum levels lie beyond the modified dissociation quantum level.
Consider the previous example, there are 9 vibrational quantum levels lying beyond the modified
dissociation limits, i.e. υ1εd . In another word, dissociation reactions can now occur from lower
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vibrational quantum levels compared to the original QK models, leading to vibrational energy
extending beyond the modified dissociation quantum level. Therefore, a second term in Eq. (6.3)
must be included to account for the contribution of these vibrational quantum levels. Note that a
similar treatment has been suggested by Bond et al. [202] for deriving an analytical expression
for the QK models in thermal non-equilibrium conditions, Eqs. (5.8) and (5.12).
Similarly, in thermal non-equilibrium conditions, Eq. (5.12) is subject to similar modifications
to that applied for Eq. (6.3) and reads,

γAB−M(Tt ,Tv) =
id

∑
i=0

Γ

[
5
2
−ωAB−M,

υ1εd−υ2εv,i

kTt

]
e−

εv,i
kTv

Qv(Tv)
+

∞

∑
id+1

e−
εv,i
kTv

Qv(Tv)
. (6.5)

6.1.2 Exchange Reactions

An exchange reaction involves one stable molecule and one radical before and after the reaction
occurs. These reactions are formulated as

AB+C
k f−−⇀↽−−
kb

AC+B, (Reaction 5)

where B and C are atoms and AB and AC are molecules.
Each of these reactions has a forward and a backward direction with an associated forward,
k f (T ) and backward, kb(T ), reaction rate. The phenomenological DSMC procedure for these
reactions is similar to the aforementioned dissociation procedure. An exchange reaction, e.g. Re-
action 5, with activation energy Ea, takes place if, the collision energy between two colliding
partners, i.e. AB – C, is greater than the activation energy, with a probability,

Pex =

(
1− Ea

εc

) 3
2−ω

imax
∑

i=0

(
1− εv

εc

) 3
2−ω

. (6.6)

The forward macroscopic reaction rate for this process is given by Bird et al. [130] as,

k f (T ) = RAB−C
e
−Ea, f

kT

QAB,v

(
T

Tre f

)1−ωAB−C

, (6.7)

and the backward reaction rate as,

kb(T ) = RAC−B
e
−Ea,r

kT

QAC,v

(
T

Tre f

)1−ωAC−B

, (6.8)

where Ea, f and Ea,b are the activation energies of the forwards and backward exchange reaction.
Bird [130] suggests to adjust the QK exchange reaction rate by redefining the activation en-
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ergy as a function of the temperature to ensure the equilibrium constant is consistent with that
predicted by the most representative reaction rates and statistical mechanics. For the forward
reactions, the adjusted activation energy, E

′
a, takes the form of,

E
′
a, f = |h f , f |

(
1+a

(
T

Tre f

)b
)

(6.9)

and for the backward reactions, it is,

E
′
a,b = a|h f ,b|

(
T

Tre f

)b

, (6.10)

where h f , f and h f ,b are the forward and backward heat of formation, respectively.
In DSMC, it is good practice to avoid the utilisation of macroscopic temperature [130]; therefore,
Eqs. (6.9) and (6.10) are evaluated at the collision temperature, that is,

Tc =
µAB−Mc2

r

2k(5
2 −ωAB−M)

, (6.11)

where cr is the relative speed.
Under such circumstances, Bird [130] recommends the exchange factor a in Eqs. (6.9) and (6.10)
to be substituted with

a
′
= a

(5
2 −ωAB−C)

bΓ(5
2 −ωAB−C)

Γ(5
2 −ωAB−C +b)

. (6.12)

These new formulations, Eqs. (6.9) and (6.10) in tandem with Eqs. (6.11) and (6.12), supersede
the default activation energy, Ea, in Eq. (6.7) and introduce two tunable quantities, a and b. It
is important to notice that the exchange reaction rates are highly sensitive to the choice of the
exponent parameter b. Averaging Eq. (6.11) over all collisions, the result is that Tc = Tmacro.
However, T b

col = T b
macro only stands for b equal to either zero or unity. As shown in Scanlon et

al. [133], the exchange reaction rates tuned with an exponent parameter different to zero or unity
substantially deviate from the QK analytical expressions.

6.2 Thermal Equilibrium

To verify the implementation of the extended QK-aHO model and validate its predictions, a
series of adiabatic reactor simulations are performed. These simulations are setup as follows.
A single cubic cell with edge length 1.88× 10−4 m, filled with one million DSMC simulator
particles and using periodic boundaries in all directions is used for this purpose. A fixed time step
size of 1×10−9 s is adopted. The inter-molecular collisions are computed with the VHS model
with the species properties summarised in Table 4.3 for a reference temperature of Tre f = 273 K.
The rotational and vibrational collision numbers are set to unity since these play no role in the
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measurement of collision and reaction rates. Only one reaction is considered per simulation,
collisions are enabled, the internal energy transfer between collision partners is disabled and the
splitting of colliding partners is deactivated. This technique allows reaction rates to be sampled
at a constant temperature.

6.2.1 Dissociation Reactions

In the present section, the implementation of the extended QK-aHO model is verified against
its analytical expression, Eq. (6.3), and its predictions are validated against a compilation of
experimental measurements and high-fidelity calculations for 12 dissociation reactions for tem-
peratures ranging from 2500 K to 20,000 K.
The tunable parameters υ1 and υ2 are inferred using a non-linear least square fit approach on the
most representative database to best reproduce both thermal equilibrium and non-equilibrium
dissociation reaction rates. Experimental measurements are regarded as a primary baseline,
however, in the absence of such databases, QCT calculations are considered as an alternative
baseline model. The temperature range on which the tunable parameters υ1 and υ2 have been
inferred, the database and the values of the two tunable parameters are reported for 12 dis-
sociation reactions in Tab. 6.1. No experimental measurements or QCT calculations have yet
been reported in the literature for the remaining 3 dissociation reactions, i.e. O2 + NO, N2 +
NO and NO + O2. Consequently, both tunable parameters υ1 and υ2 are set to unity for these
reactions.
It is important to mention that in the development of the QK model [130] and its extended ver-
sions [135, 136, 141], only translational and vibrational modes are considered for a dissociation
reaction to occur. Real gas effects, such as rovibrational coupling, i.e. centrifugal force and
change in moment of inertia, and non-adiabatic, i.e. vibronic and rovibronic, transitions are not
taken into account. While the primary aim of this chapter is to reproduce experimental measure-
ments and high-fidelity calculations of dissociation reaction rates, it is crucial to acknowledge
that the QK models may require further investigation to incorporate these real-gas effects.
Figures 6.1-6.3 compare DSMC reactions rates against the analytical solution, Eq. (6.3), and the
compilation of experimental results, QCT calculations, and DMS results tabulated in Tab. 1.1 for
the 12 dissociation reactions for which the values of υ1 and υ2 have been reported in Tab. 6.1.
Note that the DMS method presents a comparable standard of accuracy to the QCT method
as both methods are based on ab initio potential energy surfaces. Therefore, in the absence
of experimental measurements and/or QCT calculations, DMS results are regarded as the most
representative dataset available. The abscissa shows the inverse of the temperature, i.e. 20,000/T,
with the reaction rates plotted on the ordinate axis. To ease the readability of the plots, a colour
convention is adopted for the entire article. The extended QK model is denoted by solid red
lines and the corresponding DSMC results in red markers. The predictions of the original QK
model are included for reference and denoted by solid blue lines. Experimental measurements
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Table 6.1: Fitting coefficients of the extended QK-aHO model and reference database for a
selection of dissociation reactions.

Reaction υ1 υ2 Temperature Range Data type Reference

O2 + O2 −−→ O + O + O2 1.850 2.050 6000-14 000 Experimental Streicher et al. [77]
O2 + O−−→ O + O + O 1.098 1.090 6000-14 000 Experimental Streicher et al. [77]

O2 + N2 −−→ O + O + N2 1.950 1.850 8000-20 000 QCT Chaudhry et al. [85]
O2 + N−−→ O + O + N 1.748 1.878 4000-20 000 QCT Torres et al. [90]

O2 + NO−−→ O + O + NO 1.000 1.000 - - -

N2 + O2 −−→ N + N + O2 1.481 1.430 8000-20 000 QCT Chaudhry and Candler [86]
N2 + O−−→ N + N + O 1.727 1.718 4000-20 000 QCT Jo et al. [99]

N2 + N2 −−→ N + N + N2 1.646 1.751 8000-15 000 Experimental Appleton et al. [67]
N2 + N−−→ N + N + N 1.344 1.354 8000-15 000 Experimental Appleton et al. [67]

N2 + NO−−→ N + N + NO 1.000 1.000 - - -

NO + O2 −−→ N + O + O2 1.000 1.000 - - -
NO + O−−→ N + O + O 6.323 6.412 4000-20 000 QCT Torres et al. [90]

NO + N2 −−→ N + O + N2 11.285 11.667 4600-7300 Experimental Streicher et al. [79]
NO + N−−→ N + O + N 4.138 4.252 4000-20 000 QCT Jo et al. [99]

NO + NO−−→ N + O + NO 0.920 0.998 4600-7300 Experimental Streicher et al. [78]

are denoted by open symbols and the most representative high-fidelity calculations, i.e. QCT or
DMS, are denoted by black solid-marker lines.
Figures 6.1-6.3 show an excellent agreement between the DSMC reaction rates and the analyti-
cal expression, Eq. (6.3), for the 12 dissociation reactions. This verifies the implementation of
the extended QK-aHO model. Additionally, the extended QK-aHO models present an excellent
reproduction of the baseline database for all dissociation reactions whether it be experimental
measurements or high-fidelity calculations. This suggests that the numerical procedure em-
ployed to determine the two tunable parameters has been successful.
For all 12 dissociation reactions, the extended QK model presents a significant improvement
to the original QK model in the reproduction of the compilation of past studies. Specifically,
while the original QK model tends to overestimate the dissociation reaction rates, e.g. O2 + N2

or NO + N2, the extended QK model lies within the experimental bounds of all dissociation
reactions for the entire temperature range. This satisfactory reproduction of the compilation
of experimental measurements and high-fidelity calculations demonstrates the benefits of the
extended QK models over the original QK model. Nonetheless, for some chemical reactions,
e.g. N2 + N2 and N2 + N, experimental measurements [58, 59, 66, 67] present a large scatter
lying within orders of magnitude. Therefore, new experimental measurements of these chemical
reactions with reduced uncertainties are required to differentiate between models.
Additionally, Figs. 6.1-6.3 indicate that the extended QK-aHO model generally suggests slower
reaction rates compared to the original QK model, except for NO+NO. This observation implies
a slower chemical activity in typical hypersonic flow conditions compared to the original QK
model, leading to a slower depletion of molecular species, i.e. O2 and N2. In the context of
hypersonic flows, this implies an increased shock stand-off distance which would result in a
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thicker thermal non-equilibrium region, thus resulting in a substantial increase in the surface
heat flux.
The QCT calculations reported by Jo et al. [87] for O2 +O2 are based on ab-initio PESs presented
by Pakku et al. [207]. This description of O2 + O2 involves the modelling of the adiabatic rovi-
brational transition with anharmonic vibrational energy. For weakly bounded molecules such
as O2, the assumption of adiabatic transitions, i.e. no electronic-vibrational-rotational effects, is
particularly restrictive considering that the first six electronic excited states of O2 lie below the
dissociation limit. Consequently, to account for dissociation from electronically excited states,
these QCT calculations incorporate a correction factor of 16/3 corresponding to the degeneracy
of the electronic excited states. This factor follows the method developed by Nikitin [208] which
assumes that the time scale for electronic and vibrational excitation is comparable in high ther-
mal conditions. This approach has also been adopted in other studies involving the dissociation
of O2 such as Torres et al. [90], Chaudhry et al. [85], and Andrienko and Boyd [93]. Note that
the addition of a correction factor is not unique to O2 + O2 but it is utilised for many more chem-
ical reactions [90]. These studies demonstrate the importance of this correction factor to achieve
satisfactory reproduction of the experimental measurements provided by Streicher et al. [76,77].
Considering these studies, it is reasonable to suppose that dissociation reactions may not only
arise from the ground excited state but also from electronic excited states.
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(b) O2 + O−−→ O + O + O.
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(d) O2 + N−−→ O + O + N.

Figure 6.1: Thermal equilibrium dissociation reaction rates of oxygen.
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(a) N2 + O2 −−→ N + N + O2.
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(b) N2 + O−−→ N + N + O.
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(c) N2 + N2 −−→ N + N + N2.
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(d) N2 + N−−→ N + N + N.

Figure 6.2: Thermal equilibrium dissociation reaction rates of nitrogen.
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(a) NO + O−−→ N + O + O.
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Figure 6.3: Thermal equilibrium dissociation reaction rates of nitric oxide.
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6.2.2 Exchange Reactions

The investigation of the QK models in thermal equilibrium follows with a study of the formation
of nitric oxide, NO. In high-enthalpy air flow, such as hypersonic Earth re-entry, nitric oxide
is known to be one of the primary radiators [209]; hence, an accurate prediction of its forma-
tion is crucial. It has been established that NO is generated through the Zeldovich chemical
mechanism [8] with the global chemical reaction described by Reaction 6,

N2 +O2 −−⇀↽−− 2NO (Reaction 6)

It is constituted of two elementary chemical reactions, Reaction 7 and Reaction 8.

N2 +O −−⇀↽−− NO+N (Reaction 7)

O2 +N −−⇀↽−− NO+O (Reaction 8)

Considering a generic exchange reaction Reaction 5, the forward rate of change of reactant AB
is,

dnAB

dt
=−k f (T )nABnc, (6.13)

and similarly, the backward rate of change is formulated,

dnAB

dt
=−kb(T )nACnb, (6.14)

where nAB, nC, nAC and nB denote the number density of the reactants or products in the generic
exchange reaction and k f (T ) and kb(T ) refer to the forward and backward reaction rates, re-
spectively.
Statistical mechanics theory shows that the equilibrium constant of a chemical reaction, e.g. Re-
action 5, is given by the ratio of the forward and the backward reaction rates,

Keq =
k f

kb
. (6.15)

In thermal equilibrium conditions, statistical mechanics theory also demonstrates that the equi-
librium constant satisfies,

Keq =

(
mACmB

mABmC

)3/2 QAC,r

QAB,r

QAC,v

QAB,v

QAC,e

QAB,e

QB,e

QC,e
e−

E f
kT , (6.16)

where E f is the reaction energy of the forward chemical mechanism, QAB,r and QAC,r are the
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rotational partition function of species AB and AC, respectively.
In the classical limit, i.e. T > θAB,r, the rotational partition function of a diatomic species AB
is Eq. (2.50), see Tab. 4.3. Finally, the electronic partition function is formulated as Eq. (2.60).
In the present chapter, the 7, 11, 15, 32, and 35 lowest electronic excited states of O2, N2, NO,
O and N, respectively, are considered. The spectroscopic constants of these electronic excited
states are extracted from the NIST database [25].
Past studies [130, 133, 180, 185] have reported the tunable parameters for the two Zeldovich
exchange reactions, Reaction 7 and Reaction 8. Table 6.2 summarises a compilation of the
tunable parameters for adjusting the activation energies of the Zeldovich reactions. In Scanlon et

al. [133], these values have been selected as the optimum values to match the forward and
backward rate of changes of nitric oxide, Eqs. (6.13) and (6.14), and the analytical expressions
of the QK model for the forward and backward reactions, Eqs. (6.7) and (6.8). In Bird [130,180],
these values are tuned such that the QK model reproduces the most representative reaction rates.
Recently, Streicher et al. [80] have reported experimental measurements of the endothermic Zel-
dovich reactions, Reaction 7 (forward) and Reaction 8 (backward), with a high level of fidelity
for temperatures ranging between 2500 K to 6600 K. These measurements are therefore con-
sidered as a reference to improve the accuracy of the QK model for the Zeldovich exchange
reactions. The parameters for the endothermic reactions, Reaction 7 (forward) and Reaction 8
(backward), are inferred from the experimental measurements [80] by means of a least-square
fit technique. No direct measurement of the exothermic exchange reactions exists; hence, the
exothermic reaction rates must be estimated from the equilibrium constant and the endothermic
reaction rates [87, 99, 116, 210]. Therefore, the tunable parameters for the exothermic reactions
are obtained by searching for the optimum couple (a,b) for the equilibrium constant calculated
as the ratio of the forward and the backward reaction rates, Eq. (6.15), to match the prediction
of statistical mechanics theory, Eq. (6.16). The new set of tunable parameters is tabulated in
Tab 6.2. It is important to reiterate that these parameters are highly dependent on the number
of electronic excited states and their respective spectroscopic constants for the calculation of the
vibrational energy and the number of vibrational quantum levels considered for each molecular
species. Additionally, for consistency with the QK model, a fully uncoupled approach of the par-
tition function has been considered; hence, any interactions between modes such as rovibronic
coupling effects are disregarded, see Eqs. (2.50) and (2.60).

Table 6.2: Parameters for adjusting the activation energies of the Zeldovich reactions.

Reaction
Bird [180] Scanlon et al. [133] White [185] This thesis
a b a b a b a b

N2 + O−−→ NO + N 0.150 0.000 0.150 0.150 0.150 0.000 0.030 0.000
NO + N−−→ N2 + O 0.033 0.800 0.033 0.800 0.070 0.620 0.003 1.183
O2 + N−−→ NO + O 0.100 0.480 0.100 0.100 0.250 0.000 0.177 0.362
NO + O−−→ O2 + N 0.100 0.680 0.085 0.650 0.085 0.650 0.100 0.680
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Figure 6.4 compares the DSMC reaction rates using the suggested parameters in Tab. 6.2 to
the selection of past studies shown in Tab. 1.1, and the analytical QK expressions, Eqs. (6.7)
and (6.9), with the parameters presented in Tab. 6.2 for the endothermic Zeldovich reactions,
Reaction 7 (forward) and Reaction 8 (backwards). As in the previous section, the abscissa
shows the inverse of the normalised temperature, 20,000/T , and the reaction rates are plotted
on the ordinate axis.
Figure 6.4 shows a good agreement for the entire range of temperature between the analytical
expression of the QK model and the DSMC reaction rates, verifying the newly implemented
chemistry models. It can also be observed that the extended QK model presents a significant
improvement to the original QK model in the reproduction of the compilation of past studies.
Specifically, for the two endothermic Zeldovich reactions, the extended QK model shows excel-
lent agreement with experimental measurements and lies within the experimental bounds for the
entire temperature range. This suggests that the fitting procedure of the tunable parameters for
the endothermic exchange reactions has been successful.
Figures 6.5a and 6.5b present the equilibrium equilibrium constant of the Zeldovich reactions.
This quantity is important in the determination of the tunable parameters for the exothermic re-
actions. It can be noticed that the DSMC results perfectly align with the analytical expression
with the suggested parameters, demonstrating that the new expressions for the forward and the
backward exchange reactions are correctly implemented in dsmcFoam+. These results also indi-
cate a relatively good agreement with the prediction of statistical mechanics theory, Eq. (6.16),
with the vibrational excitation model being either HO or aHO.
For completeness, the exothermic exchange reaction rates are depicted in Fig. 6.6 for Reaction
7 (backwards) and Reaction 8 (forward), respectively. The DSMC reaction rates are calculated
with the parameters reported in Tab. 6.2 and compared against the compilation presented in
Tab. 1.1, and the analytical QK expressions, Eqs. (6.7) and (6.10). Despite variations observed
in the compilation of past studies, some of which deviate from the DSMC predictions, the re-
action rates lie on a quasi-plateau for most of the temperature range. It is noteworthy that the
reaction rates generally fall within a certain range, the latter reaction rates can be considered
in reasonable agreement with the QK predictions. In some cases, the variations are within one
order of magnitude, while for others, they are within a factor of 3 to 4, for most of the tempera-
ture range. Figures 6.6a and 6.6b also show that the QK model for the exothermic reactions is
non-monotonic. It is worth mentioning that a similar trend has also been reported by Bird [130],
Mallikarjun et al. [19], Scanlon et al. [133], and White [185]. Additionally, this behaviour is
only encountered for the exothermic reaction rates and appears to be a feature of the QK model
for these reactions. This can be attributed to the low activation energy of the exothermic ex-
change reactions.
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Figure 6.4: Thermal equilibrium endothermic exchange reaction rates of the Zeldovich reac-
tions.
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(a) N2 + O−−⇀↽−− NO + N.
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Figure 6.5: Equilibrium constant of the Zeldovich reactions.

6.3 Thermal Non-Equilibrium

6.3.1 Dissociation Reactions

In the previous sections, the reproduction of the dissociation reactions with the extended QK
models was limited to chemical reactions in thermal equilibrium. A selection of six dissoci-
ation reactions is now regarded in thermal non-equilibrium. These dissociation reactions are
studied for the conditions summarised in Tab. 6.3 involving three trans-rotational temperatures
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Figure 6.6: Thermal equilibrium exothermic exchange reaction rates of the Zeldovich reactions.

and vibrational temperatures ranging from 4000 K to 20,000 K. The validity of the extended
QK models predictions is first verified against the thermal non-equilibrium quantum-kinetics
model, Eq. (6.5). The predictions of the QK model are then validated against the selection of
experimental measurements, QCT calculations and DMS results summarised in Tab. 1.2.

Table 6.3: Thermal non-equilibrium scenarios and baseline database.

Reaction Tt,1 (K) Tt,2 (K) Tt,3 (K) Data type Reference

O2 + O2 −−→ O + O + O2 8000 10 000 15 000 DMS Grover and Schwartzentruber [88]
O2 + O−−→ O + O + O 5000 10 000 20 000 QCT Kulakhmetov et al. [91]

O2 + N2 −−→ O + O + N2 8000 10 000 20 000 QCT Andrienko and Boyd [95]
N2 + O2 −−→ N + N + O2 8000 15 000 20 000 QCT Andrienko and Boyd [95]
N2 + N2 −−→ N + N + N2 8000 10 000 20 000 Experimental Fit Losev et al. [72]
N2 + N−−→ N + N + N 7500 10 000 15 000 QCT Jaffe et al. [107]

Figures 6.7-6.12 compare the DSMC thermal non-equilibrium dimensionless parameter against
the compilation of past studies shown in Tab. 1.2 for the reactions and conditions presented in
Tab. 6.3. The extended QK model is tuned with the parameters summarised in Tab. 6.1. The
abscissa shows the vibrational temperature and the thermal non-equilibrium factor, Z(Tt ,Tv), is
plotted on the ordinate axis. The extended QK model is denoted by solid red lines and DSMC
results by red markers. The predictions of the original QK model are included for reference and
denoted by solid blue lines.
Figures 6.7-6.12 demonstrate that the DSMC results are in excellent agreement with the the-
oretical predictions of the extended non-equilibrium QK theory, Eq. (6.8); hence, demonstrat-
ing successful implementation of the new formulation under thermal non-equilibrium condi-
tions. Furthermore, the DSMC results present a satisfactory reproduction of the QCT calcu-
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lations [85, 91, 95, 102, 107], DMS results [88] and experimental measurements [72] for both
post-shock flow conditions, i.e. Tt > Tv, and nozzle flow conditions, i.e. Tt < Tv, for all three
trans-rotational temperatures and all six chemical reactions. It is worth mentioning that, for low
vibrational temperatures, QCT calculations inherently carry uncertainties of about a factor of 3
at best [145, 146], supporting the qualitative reproduction of these calculations by the extended
QK model.
The values tabulated in Tab. 6.1 have been determined as the best compromise for qualitative
reproduction of both thermal equilibrium and non-equilibrium reaction rates. Figures 6.7-6.12
demonstrate that the fitting procedure has been successful. However, it is important to reiter-
ate that these tunable parameters have been obtained for temperatures up to 7300 K in some
chemical reactions, e.g. NO + NO and NO + N2, and extrapolations toward higher temperatures
are performed due to the lack of a validation database. Additional experimental measurements
and high-fidelity calculations are therefore required to further differentiate between chemistry
models.
Additionally, it is important to stress that the extended QK models provide a significant improve-
ment to the QK models, i.e. QK-HO [130] and QK-aHO [136], for both low and high vibrational
thermal non-equilibrium conditions. This improvement has been achieved without the inclusion
of typical real-gas effects such as rotational-vibrational coupling and non-adiabatic transition
correction factors, which are incorporated in experimental measurements, QCT calculations,
and DMS results. While a good reproduction of the baseline database is herein presented, fur-
ther investigations are warranted to include these real-gas effects in the extended QK models.
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(a) Tt,r = 8000 K.
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(c) Tt,r = 15,000 K.

Figure 6.7: Thermal non-equilibrium factor for O2 + O2 −−→ O + O + O2.
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(a) Tt,r = 5000 K.
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(b) Tt,r = 10,000 K.
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(c) Tt,r = 20,000 K.

Figure 6.8: Thermal non-equilibrium factor for O2 + O−−→ O + O + O.
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(a) Tt,r = 8000 K.
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(b) Tt,r = 10,000 K.
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(c) Tt,r = 20,000 K.

Figure 6.9: Thermal non-equilibrium factor for O2 + N2 −−→ O + O + N2.
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(a) Tt,r = 8000 K.
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(b) Tt,r = 15,000 K.
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(c) Tt,r = 20,000 K.

Figure 6.10: Thermal non-equilibrium factor for N2 + O2 −−→ N + N + O2.
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(a) Tt,r = 8000 K.
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(b) Tt,r = 10,000 K.
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(c) Tt,r = 20,000 K.

Figure 6.11: Thermal non-equilibrium factor for N2 + N2 −−→ N + N + N2.
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(a) Tt,r = 7500 K.
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(b) Tt,r = 10,000 K.
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(c) Tt,r = 15,000 K.

Figure 6.12: Thermal non-equilibrium factor for N2 + N−−→ N + N + N.
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6.3.2 Exchange Reactions

The thermal non-equilibrium study follows with an investigation of the endothermic Zeldovich
reaction, Reaction 7 (forward). This reaction is evaluated for the condition prescribed by Luo et

al. [98], i.e. three trans-rotational temperatures, 5000 K, 10,000 K, and 15,000 K, and for vibra-
tional temperatures ranging from 4000 K to 20,000 K. Considering that there exists no analytical
expression of the QK models for the exchange reactions in thermal non-equilibrium, the present
comparison is solely based on the DSMC reaction rates. The original QK model is tuned with
the set of parameters suggested by Scanlon et al. [133] and the extended QK model with a set of
parameters a and b previously introduced, see Tab. 6.2. The DSMC results are compared against
a compilation of QCT calculations (Bose and Candler [113] and Luo et al. [98]) and chemistry
models (α model [119] and Macheret [119]). Both chemistry models have tunable parameters
whose values are those suggested in Losev et al. [119]. Specifically, for the α model, the tunable
parameter is equated to 0.51 and for Macheret’s model, the tunable parameter is equated to 0.25.
An extensive presentation of the two chemistry models can be found in Losev et al. [119].
Figure 6.13 present a comparison between the DSMC reaction rates and the selection of past
studies. The ordinate refers to the thermal non-equilibrium factor, the vibrational temperature,
the blue markers refer to the HO model, and the red marker refers to the aHO model. As
in the previous sections, chemistry models are denoted by black lines and QCT calculations are
denoted by black solid-marker lines. The uncertainty of the QCT calculations reported by Luo et

al. [98] is included for reference.
Figure 6.13 shows that the extended QK models present a good reproduction of the QCT calcu-
lations and chemistry models for typical post-shock flow conditions (Tt > Tv) whereas for typical
nozzle flow conditions (Tt < Tv), the extended QK models exhibit a less favourable agreement
with the QCT calculations. Interestingly, the original QK model presents a marginally bet-
ter reproduction of Luo et al. [98] calculations compared to the extended QK models for all
regimes. These results contrast with the studies of the Zeldovich exchange reactions in thermal
equilibrium conditions where the tunable parameters for the endothermic reactions have been
set to closely reproduce the most recent experimental measurements [80] for temperatures up
to 7000 K. Once again, it is important to emphasise that QCT calculations incorporate real gas
effects which, for consistency with the formulation of the QK models, have been disregarded for
the determination of the parameters a and b, see Eq. (6.16). While this chapter presents a major
improvement to the original QK models, it is evident that further efforts should be devoted to
incorporating such effects into its core formulations. Additionally, it is important to emphasise
that there exist very few studies involving QCT calculations of exchange reactions in thermal
non-equilibrium to differentiate between the two models.
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(a) Tt,r = 5000 K.
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Figure 6.13: Thermal non-equilibrium factor for N2 + O−−→ NO + N.

6.4 Space Shuttle Forebody at 92.35 km

The validation of chemistry models for typical hypersonic flow conditions remains a chal-
lenging task due to the limited availability of experimental data and theoretical calculations.
Gimelshein and Wysong [211] have shown an inconclusive comparison between the bias model
fitted on QCT calculations and experimental measurements of the surface properties of a double-
cone geometry and low sensitivity to the choice of the chemistry models for the comparison
to experimental measurements of internal temperatures of the flow downstream of a reactive
normal shock flow. Considering the difficulties in reproducing typical hypersonic flow con-
ditions at ground level, the choice has been made to validate the extended QK-aHO model
on in-flight measurements. Specifically, this section attempts to reproduce in-flight measure-
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ments of the surface heat flux experienced by the Space Shuttle Columbia during its second
mission [52, 212, 213] at an altitude of about 92.35 km.
The freestream conditions are extracted from Moss and Bird [212] and summarised in Tab. 6.4.
Note that for reentry speeds in excess of 7.5 km/s, the effect of ionisation reactions and radiative
heat transfer on the flow, e.g. Stardust reentry [214], cannot be neglected. For this flight altitude,
ionisation reactions, charged species and electronic excited states can reasonably be omitted.
Therefore, the air mixture is modelled with the five most dominant species in the air, i.e. N2, O2,
NO, N and O and the chemical activity is constituted of a total of 19 chemical reactions, i.e. 15
dissociation reactions and 4 exchange reactions. The extended QK-aHO models are tuned with
the parameters summarised in Tabs. 6.1 and 6.2. In contrast, original QK model is tuned with
parameters a and b reported by Scanlon et al. [133], see Tab. 6.2, for the exchange reactions.

Table 6.4: Freestream conditions of the space transport system’s second mission at an altitude
of 92.35 km.

Parameter Values

Altitude (km) 92.35
Temperature (K) 188

Number density (kg.m−3) 2.184×10−6

Speed (km.s−1) 7.50
O2 mole fraction (%) 0.217
N2 mole fraction (%) 0.783

Ma∞ 27.89
Kn∞ 0.028

The geometry follows the equivalent axisymmetric body concept presented by Moss and Bird [212]
to model the windward centerline of the Space Shuttle at a given angle of attack with an appro-
priate axisymmetric geometry at zero angle of attack. The geometry is a 5◦-wedge slice of the
equivalent axisymmetric body constructed with a hyperboloid with radius, RN = 1.296 m and
asymptotic body half angle θ = 41.15◦. The equation of the hyperboloid body is reported by
Adams et al. [215] to accurately reproduce the original geometry of the Shuttle.
The computational domain extends to a length of 75 cm upstream of the stagnation point. The
mesh is refined near the stagnation point to ensure the cell size, ∆x, remains smaller than the
local mean free path, λ , resulting in a total number of 117,945 cells. The time step is carefully
chosen to be an order of magnitude smaller than the mean collision time and the cell residence
time which results in ∆t = 1× 10−7 s. Inter-molecular collisions are computed with the VHS
model [17] for a reference temperature of Tre f = 273 K. A finite probability of Pr = 0.2 and
Pv = 0.02 are, respectively, considered for rotational and vibrational relaxation, as suggested
by Bird [17]. The gas-surface interactions are partially diffusive with a wall temperature Tw =

1043 K and an accommodation coefficient of 0.8. The numerical mesh is populated with a total
number of 1.59×107 DSMC simulator particles at steady state.
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The comparison of the extended QK-aHO models and the original QK models are depicted
in Fig. 6.14 for the mean internal temperatures and the concentration of the chemical species
along the stagnation streamline. Note that the species densities are normalised by the local total
number density at steady state. The extended QK-aHO models are denoted by dashed lines
and the original QK models by solid lines. The flow properties along the stagnation streamline
reported by Carlson and Bird [52] with a modified TCE model are included for reference and
denoted with colour symbols.
Figure 6.14 shows that the extended QK models suggest a slower chemical activity compared
to the original QK models. Specifically, it suggests a slower depletion of molecular species
and a slower production of atomic species. Note that these results concur with the conclusion
stated in the preceding sections. Furthermore, the extended QK models suggest higher mean
internal temperatures compared to the original QK models which highlights the difference in
the modelling of the chemical reactions.
Additionally, the two QK models suggest a larger shock stand-off distance in comparison to the
TCE results reported by Carlson and Bird [52]. Carlson and Bird [52][Tab. I] have reported
the use of species-specific vibrational relaxation numbers, which relies on the colliding partner,
macroscopic temperature and two fitting parameters. In DSMC, it is good practice to avoid the
use of macroscopic temperatures and instead rely solely on microscopic information. Conse-
quently, a decision was made to adopt a constant vibrational relaxation number for all chemical
species. This discrepancy in the modelling of vibrational relaxation significantly impacts both
the shock stand-off distance and the variation in chemical activity.
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Figure 6.14: Comparison of the QK models for the flow properties along the stagnation stream-
line.

Figure 6.15 repeats the comparison of the two QK models on the flow field for the mean trans-
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lational and vibrational temperatures and the fraction of O2, N2, O and N. The two QK models
readily differ for all six flow fields showing strong deviations in the shock thickness, stand-off
distance and species concentration throughout the shock. Additionally, the extended QK models
demonstrate a significantly non-equilibrium region downstream of the shock compared to its
counterpart. This region is characterised by warm translational and vibrationally cold molecules
which correspond to the left-hand side of Figs. 6.7-6.13. While the two models have shown
minimal differences in the exchange reactions in such conditions, see Fig. 6.13, for the disso-
ciation reactions in similar conditions, the two QK models have shown large differences, see
Figs. 6.7-6.12. Consequently, the differences observed in the species fraction in Fig. 6.15 are
merely the result of the dissociation reactions occurring downstream of the shock. Specifically,
the extended QK models exhibit a slower depletion of molecular species and a slower production
of atomic species compared to its counterpart.

(a) Mean translational temperature. (b) Mean vibrational temperature.

Figure 6.15: Flow field over the STS-II geometry at an altitude of about 92.35 km with the
original QK (top) and extended QK (bottom) models.

Figure 6.16 compares the predictions of the original QK models and extended QK-aHO models
against the surface heat flux in-flight measurements during the STS-II mission. The surface
properties are plotted on the ordinate axis and the abscissa shows the azimuthal angle. The
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(c) Molecular oxygen fraction. (d) Molecular nitrogen fraction.

Figure 6.15: Flow field over the STS-II geometry at an altitude of about 92.35 km with the
original QK (top) and extended QK (bottom) models. (Cont.)

surface heat flux reported by Moss and Bird [212] with the TCE model is included for reference.
The surface heat flux was measured to be approximately 6.3× 104 J.m−2 at an axial distance
of about 22 cm downstream of the stagnation point. For the STS-I mission, the uncertainties
in-flight measurements of the surface heat flux have been assessed to be about 10% for surface
temperatures in excess of 811 K [216]. For the STS-II mission, no uncertainties have been
reported for the surface heat flux. However, Zoby [217] has reported the use of similar error
bands to the STS-I mission for the surface heat flux measurements of the STS-II mission for
altitudes comprised between 86.0 and 43.0 km. Despite the absence of uncertainty information
in the reports by Moss and Bird [212] and Carlson and Bird [52], an error of 10% is herein
considered for the in-flight measurements, even though altitude differs from that reported by
Zoby [217].
Figure 6.16 shows that the extended QK-aHO models predict higher surface heat flux compared
to the original QK models. At the location of the in-flight measurement, the extended QK-aHO
models predict a surface heat flux of about 7.97×104 J.m−2 which represents an over-estimation
of about 26.5 % of the in-flight measurements. The primary explanation for this increase has
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(e) Atomic oxygen fraction. (f) Atomic nitrogen fraction.

Figure 6.15: Flow field over the STS-II geometry at an altitude of about 92.35 km with the
original QK (top) and extended QK (bottom) models. (Cont.)

been stressed throughout this chapter. The extended QK-aHO models suggest slower dissocia-
tion reaction rates in comparison to the original QK models, see Figs. 6.1-6.3 and Figs. 6.7-6.8.
This results in a displacement of the stand-off distance and a substantial increase in the mean
translational temperature of the gas mixture, see Fig. 6.14, which imposes an increase in the
surface heat flux. Note that this behaviour is not unique to the extended QK models as similar
behaviour has also been reported by Carlson and Bird [52] for the validation of a new version of
the TCE model, where their updated chemical reaction framework also significantly increased
the heat flux. They noted that reducing the surface accommodation coefficient will reduce the
heat flux.
For the extended QK models to lie in the bounds of the in-flight measurements, it would require
an unrealistic accommodation coefficient and/or vibrational relaxation constant. Note that sim-
ilar conclusions can be drawn from reconstruction of post-flight measurements of the heat flux
of the the Intermediate eXperimental Vehicle during the rarefied portion of its reentry [197].
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Figure 6.16: Comparison of the QK models for the surface heat flux.

6.5 Summary

Significant progress in high-temperature non-equilibrium flow research has been achieved over
the last two decades through experimental, theoretical and computational studies to provide
high-fidelity data allowing for model development, parameter adjustment and model valida-
tion. In the present chapter, an extension of the quantum-kinetic chemistry models under the
assumption of an anharmonic oscillator model was developed. The merits of the extended QK
models are investigated for the most representation of chemical reactions in an Earth atmo-
spheric reentry involving a total of 19 chemical reactions, i.e. 15 dissociation reactions and 4
Zeldovich exchange reactions. The new formulations of the extended QK models involve a set
of tunable parameters to closely reproduce experimental measurements and/or high-fidelity cal-
culations. The extended QK models are extensively validated against a selection of experimental
measurements, QCT calculations and DMS simulations for both thermal equilibrium and non-
equilibrium conditions. Additionally, the extended QK models are validated against in-flight
measurements of the STS-II mission.
In thermal equilibrium conditions, the tunable parameters for the dissociation reaction rates are
determined by means of a non-linear least square fit on the baseline database. For the Zeldovich
reactions, a similar technique is adopted to propose a new set of tunable parameters to reproduce
the most representative experimental measurements. The DSMC reaction rates are in excellent
agreement with the new formulation of the extended QK models, demonstrating the success-
ful implementation of the new QK models in dsmcFoam+. Furthermore, the DSMC results
are compared against an extensive selection of chemistry models in the form of the modified-
Arrhenius rates, high-fidelity calculations and experimental measurements. For most of the
dissociation reactions, the extended QK models present a significant improvement of the repro-
duction of the compilation of past studies. However, for some chemical reactions, e.g. N2 + N2
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and N2 + N, experimental measurements experimental measurements exhibit substantial scat-
ter, spanning several orders of magnitude, making it difficult to distinguish between different
chemistry models. Therefore, new experimental measurements of these chemical reactions with
reduced uncertainties is required to differentiate between models. For the dissociation reactions,
the extended QK models suggest a slower depletion of molecular species in comparison with
the original QK models for all dissociation reactions with the exception of NO + NO. For the
exchange reactions, the extended QK models suggest faster exchange reaction rates for Reaction
7 and slower exchange reaction rates for Reaction 8 in comparison to the original QK models.
In thermal equilibrium conditions, the DSMC results are in excellent agreement with the cor-
responding analytical solution, again demonstrating the successful implementation of the new
formulations. For the dissociation reactions, the extended QK models indicate an excellent
reproduction of experimental measurements, QCT calculations and DMS calculations for both
typical post-shock flow conditions, i.e. Tt > Tv and for typical nozzle flow conditions, i.e. Tt < Tv.
Note that this constitutes a significant improvement to the original QK models which show re-
productions of QCT calculations only for Tt < Tv conditions. Additionally, the extended QK
models show very good agreement with the α model for the two Zeldovich endothermic reac-
tions, especially at low vibrational temperatures.
The extended QK models are validated for the reproduction of the in-flight measurements of
surface heat flux during the STS-II mission. The study shows that the extended QK models
suggest a slower depletion of molecular species which, in turn, imposes higher mean internal
temperatures. Consequently, this leads to the extended QK models predicting higher surface heat
flux in comparison to the original QK model. The extended QK models lie above the bounds
of the in-flight measurements. In-flight measurements may be reproduced with the extended
QK models with the use of unrealistic accommodation coefficients and vibrational relaxation
numbers.



Chapter 7

Electronic Excited States Modelling *

Previous chapters of this thesis have considered the vibrational and electronic modes to be un-
coupled, as is common in DSMC codes, however, Chapters 1, 5, 6 and Appendix A have evi-
denced that they are in reality coupled. This chapter presents a new mathematical model for cou-
pling the electronic and vibrational modes of molecular species in DSMC. The model involves
the development of new numerical techniques for the initialisation of particles in the domain, the
redistribution of the internal energy after a collision and the measurement of the corresponding
internal temperature. Firstly, the new model is verified against an extensive compilation of the-
oretical studies and compared against the uncoupled approach utilised in previous chapters for
the reproduction of thermodynamic properties of molecular oxygen. Then, the model is applied
to a typical hypersonic flow condition in Earth’s atmosphere past an infinite cylindrical body at
an altitude of 85 km.

7.1 Theoretical Background

The new model assumes a coupling between the vibrational and electronic modes which carries
significant implications. Specifically, each electronic excited state has a unique set of vibrational
levels described by

εve = hcκe,i +hcωe,i

(
j+

1
2

)
−hcωe,iχe,n

(
j+

1
2

)2

, (7.1)

where κe,i, ωe,i and ωe,iχe,i are the spectroscopic constant of electronic states i and j is the
vibrational quantum level. Note that throughout this chapter, indexes i and j will refer to the
electronic and vibrational modes, respectively.
Considering an electronic state i, the maximum vibrational quantum level permissible is de-

*A large portion of the work presented in this Chapter is published in C. H. B. Civrais, M. Pfeiffer, C. White
and R. Steijl. Modelling of the electronic excited states in direct simulation Monte Carlo, Physics of Fluids,
36(8):086112, 2024. doi: 10.1063/5.0215853.
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termined as the vibrational quantum immediately before the dissociation energy of electronic
state i, i.e. εve(i)< εd(i). For some electronic configurations, all the vibrational quantum levels
lie below the corresponding dissociation energy. In this specific scenario, the maximum vibra-
tional quantum level is determined as the last vibrational quantum level before the gradient

∂εve(i)
∂ j

changes sign.
Since the electronic excited states allow for vibrational excitation, the corresponding distribution
function consists of a coupled Boltzmann distribution such that,

f (εi, j) =
Ni, j

N
=

gie−εi, jβ

imax
∑
i

jmax(i)
∑
j

gie−εi, jβ

=
gie−εi, jβ

Q
. (7.2)

Additionally, adjusting the distribution function of the internal quantum numbers has implica-
tions for the thermodynamic properties. As shown in Eq. (7.2), the partition function becomes,

Qve =
imax

∑
i

jmax

∑
j

gie−
εi, j
kT . (7.3)

with the mean internal energy formulated as,

eve =−
∂ (lnQ)

∂β
=

imax
∑
i

jmax

∑
j

giεi, je−
εi, j
kT

imax
∑
i

jmax

∑
j

gie−
εi, j
kT

. (7.4)

and the isochoric specific heat capacity,

cV = cV,t + cV,r +
R
k

∂eve

∂T
. (7.5)

As illustrated by Eqs. (4.16) and (7.2), the new model yields distinct distribution functions to the
uncoupled approach presented in Chapters 3 and 4 for the vibrational and electronic modes. The
uncoupled approach uses a single one-dimensional distribution function for each mode whereas
the coupled approach introduces a two-dimensional distribution function that accounts for the
coupling between the vibrational and electronic modes. This fundamental difference between
the two approaches leads to significant consequences. Specifically, in the new coupled approach,
a unique partition function, mean internal energy and specific heat capacity can be defined.
From a numerical perspective, it imposes the definition of a unique mean internal temperature,
i.e. Tve. This contrasts with the traditional uncoupled approach which requires separate internal
temperatures for each mode, i.e. Tv and Te.
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7.2 Electronic Excited States Modelling in DSMC

As highlighted in the previous section, the coupled approach has a two-dimensional distribution
function which requires sampling of both the electronic and the vibrational quantum numbers
simultaneously. The coupled approach is implemented in dsmcFoam+ based on the procedure
reported by Liechty and Lewis [141]. Three procedures are revisited to accommodate the vibra-
tional excitation of the electronic excited states. These functions are the equilibrium sampling,
the post-collision sampling, and the measurement of the corresponding mean temperature.

7.2.1 Equilibrium Sampling

To initially populate the numerical mesh, each particle is assigned a set of properties, includ-
ing its quantum numbers. The distribution of these quantum numbers follows the Boltzmann
distribution, Eq. (7.2). However, a set of quantum numbers, i.e. (i, j), cannot be directly sam-
pled from Eq. (7.2), hence, an acceptance-rejection scheme is employed. This scheme involves
selecting a pair of quantum numbers from the normalised distribution,

f ′ =
f (εi⋆, j⋆)

fmax
=

gi⋆e−
εi⋆, j⋆

kT

gise
−

εis, js
kT

, (7.6)

where (is, js) are the electronic and vibrational quantum numbers, respectively, for which Eq. (7.2)
has a maximum. Note that the degeneracy differs from one electronic excited state to another,
see Tab. 7.1. As a result, the maximum of Eq. (7.2) cannot be determined beforehand but must
be searched for in each iteration.
Figure 7.1 illustrates the general procedure to assign the initial electronic and vibrational quan-
tum numbers. The first step consists of searching for the electronic and vibrational quantum
numbers, i.e. (is, js), for which Eq. (7.2) has a maximum. Then, a pair of electronic and vi-
brational quantum numbers, i.e. (i⋆, j⋆), uniformly distributed between 0 and imax− 1 and 0
and jmax−1, respectively, are independently chosen randomly. Finally, an acceptance-rejection
scheme is used to select a pair of electronic and vibrational quantum numbers, i.e. (i⋆, j⋆), from
the distribution, Eq. (7.6), that satisfies f ′ > R(0,1).

7.2.2 Post-Collision Sampling

In the DSMC method [17], the internal energies are commonly redistributed through a serial
application of the quantum LB method [150]. The LB method samples the post-collision quan-
tum numbers, i.e. i and j, from a combined distribution of the translational and the electronic-
vibrational mode of the colliding particle. The translational distribution function inherently
depends on the inter-molecular model employed as it defines the collision probability. The base
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Figure 7.1: Flowchart of the equilibrium sampling function implemented in dsmcFoam+.

collision scheme is the VHS collision model developed by Bird [17]. For the VHS model, the
probability distribution of translational energy during a collision is given by Eq. (3.17).
Following the approach of Bergemann and Boyd [150], a Dirac delta function is applied to the
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Boltzmann distribution, Eq. (7.2), to define the following continuous distribution function,

f (εi, j) =
gie−

εi, j
kT

∑
i

∑
j

gie−
εi, j
kT

δ
(
εve− εi, j

)
. (7.7)

Using Eqs. (7.7) and (3.17), the combined distribution for sampling post-collision quantum vi-
brational and electronic levels from the collision energy, εc = εt + εi, j = εt⋆ + εi⋆, j⋆ , is,

f (εc,εi, j) =
gi

Γ(5
2 −ω)∑

i
∑
j

gie−
εi, j
kT

(
εc− εi, j

kT

) 3
2−ω

e−
εc
kT . (7.8)

The LB scheme assumes that local thermodynamic equilibrium prevails and the collision energy
remains constant across the redistribution process. Under these assumptions, the sampling of
the post-collision quantum numbers can therefore be performed on a simplified distribution, i.e.

f (εc,εi, j) ∝ gi
(
εc− εi, j

) 3
2−ω (7.9)

For similar reasons to that of the equilibrium sampling, an acceptance-rejection scheme is ap-
plied. The normalisation of the distribution is similarly obtained by searching for the pair of
quantum numbers for which Eq. (7.9) has a maximum. The acceptance-rejection scheme is,
therefore conducted on,

f ′ =
f (εc,εi⋆, j⋆)

fmax
=

gi⋆
(
εc− εi⋆, j⋆

) 3
2−ω

gis
(
εc− εis, js

) 3
2−ω

. (7.10)

Figure 7.2 presents the general procedure for assigning post-collision quantum numbers within
the dsmcFoam+ framework. Two inelastic mechanisms are distinguished depending on whether
the particle experiences a vibrational excitation/de-excitation, Reaction 9,

AB(i, j)+M−−→ AB(i, j′)+M, (Reaction 9)

or electronic and vibrational excitation/de-excitation, Reaction 10,

AB(i, j)+M−−→ AB(i′, j′)+M. (Reaction 10)

In Reaction 9, the energy exchange occurs from a change in the vibrational quantum number. In
Reaction 10, the energy exchange involves an electronic transition, see Tab. 7.1, which, in turn,
also necessitates a modification of the vibrational quantum number.
Typically, in DSMC simulations, a relaxation probability of Pv = 0.02 is allowed to result in
vibrational excitation/de-excitation while a relaxation probability of Pe = 0.002 is allowed for



CHAPTER 7. ELECTRONIC EXCITED STATES MODELLING 140

electronic energy exchange [151]. For the coupled approach to reproduce the two separate redis-
tributions of internal energy in the uncoupled approach, two relaxation mechanisms, Reaction 9
and Reaction 10, are implemented in dsmcFoam+. Each mechanism operates with a relaxation
probability, namely P1 for Reaction 9 and P2 for Reaction 10. Note that the relaxation probabil-
ity P2 is a conditional probability on P1 to be true, see Fig. 7.2. Therefore, to reproduce the two
separate redistributions of internal energy, P1 must be set to 0.02 and P2 to 0.1. Note that these
relaxation probabilities are user-defined; hence, they can be modified to reproduce any baseline
relaxation model.
The energy exchange involving vibrational energy, i.e. Reaction 9, follows the quantum LB
approach. A detailed explanation for the vibrational excitation/de-excitation during an inelastic
collision under the assumption of an anharmonic oscillator model can be found in Civrais et

al. [31]. For brevity, the present section focuses on the redistribution of internal energy involving
electronic and vibrational excitation/de-excitation.
If an inelastic collision is accepted for Reaction 10 energy exchange, the first step is to search
the maximum allowed vibrational quantum number for each electronic excited state, i.e. (is, js),
that satisfies εc < εis, js and to determine a pair of quantum numbers for which the distribution
function, Eq. (7.10), is maximum. Then, an acceptance-rejection procedure is performed to
sample (i⋆, j⋆) from the distribution, Eq. (7.10). Finally, a pair (i⋆, j⋆) is accepted if Eq. (7.10)
satisfies f ′ >R; otherwise, the procedure is repeated until values for (i⋆, j⋆) are obtained.

7.2.3 Vibronic Temperature

Finally, a point should be made about the calculation of the vibronic temperature. In the uncou-
pled approach, the vibrational and electronic modes, i.e. Tv and Te, are treated separately leading
to the one mean temperature for each mode. To maintain mathematical consistency with the
two-dimensional distribution function, Eq. (7.2), a unique temperature, Tve, must be defined for
the vibronic mode. The difference between the two approaches will be assessed in the following
sections.
The vibronic temperature ultimately represents a mean excitation of the vibronic mode. Since
the electronic mode admits a set of vibrational levels the vibronic temperature is unable to reflect
the vibrational excitation of each electronic excited state but, rather, a mean excitation of the
electronic excited states and their corresponding vibrational quantum levels. Despite its minimal
physical insights, the vibronic temperature serves the purpose of retaining the mean energy of a
molecular system, making it valuable for verification exercise.
Furthermore, in the derivation, Eqs. (7.2)-(7.5), no assumption has been made regarding thermal
equilibrium between the vibrational and electronic modes. Thus, these modes can exhibit ther-
mal non-equilibrium with each other. These considerations contrast with the definition of Tve

employed in the vast majority of multi-temperature extended Navier-Stokes equations solvers
based on Gnoffo et al. [218]; albeit, there exist high-speed and high-temperature CFD methods
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Figure 7.2: Flowchart of the post-collision sampling function implemented in dsmcFoam+.

which do not impose thermal equilibrium between modes [219–221].
In the uncoupled approach, where vibrational excitation is modelled with an infinite harmonic
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oscillator, the mean vibrational degrees of freedom can be computed using the equipartition the-
orem, and the vibrational temperature is derived analytically from the mean vibrational quantum
number. However, with an anharmonic oscillator model, the vibrational temperature cannot be
derived analytically [31]. Specifically, it must be determined by solving an implicit equation.
Similarly, to account for the vibrational excitation of the electronic excited states, the vibronic
temperature cannot be directly calculated using the equipartition theorem. A similar approach
to that described in Chapter 4 is herein adopted.
Consider a volume filled with chemical species s and a corresponding mean vibronic energy
denoted es. Calculating the corresponding vibronic temperature involves resolving,

es−

imax
∑
i

jmax(i)
∑
j

giεi, je−
εi, j
kT

imax
∑
i

jmax(i)
∑
j

gie−
εi, j
kT

= 0. (7.11)

This implicit equation, Eq. (7.11), is numerically resolved with a Newton iterative approach. It
involves initially evaluating Eq. (7.4) at a guessed temperature and comparing it to the mean
vibronic energy in a cell. The procedure is repeated until a user-defined tolerance factor is
reached.

7.3 Adiabatic Reactor Simulations

A series of adiabatic reactor simulations are conducted to verify the derivation and implementa-
tion of the coupled approach. A single cubic cell with edge length 1.88×10−4 m filled with one
million DSMC simulator particles and periodic boundaries are used for this purpose. A fixed
time step size of 1×10−9 s is adopted. The working gas is molecular oxygen with the electronic
excited states summarized in Tab. 7.1. The inter-molecular collisions are processed with the
VHS model [17] with the properties at a reference temperature Tre f of 273 K, see Tab. 4.3. The
probabilities for a particle to experience Reaction 9 or Reaction 10 are those presented in the
previous section unless stated otherwise.
The electronic excited states of molecular oxygen are those suggested by Liechty and Lewis [222].
The spectroscopy constants are extracted from the NIST database [25] with the exception of the
ground state, i.e. O2(X3Σ−g ), which is extracted from Civrais et al. [136]. The spectroscopic
constants of the electronic excited states of O2 are summarized in Tab. 7.1. In addition, it is
assumed that the electronic excited states conserve the collision properties of the ground state;
hence, the mass, diameter and viscosity exponent of the electronic excited states are those of the
ground state.



CHAPTER 7. ELECTRONIC EXCITED STATES MODELLING 143

Table 7.1: Spectroscopy constants of the electronic excited states for molecular oxygen.

States κe (eV) g ωe (cm−1) ωeχe (cm−1) θv (K) θr (K) εd (eV) jmax

X3Σ−g 0.0 3 1688.17 16.43 2423.91 2.06 5.2 46
a1∆g 0.98 2 1483.5 12.9 2130.05 2.05 5.2 33
b1

Σ+
g 1.63 1 1432.8 14.0 2057.25 2.01 5.2 29

c1Σ−u 4.09 1 794.2 12.73 1140.33 1.31 5.2 16
A′3∆u 4.29 6 850.0 20.0 1220.45 1.38 5.2 13
A3

Σ+
u 4.38 3 799.07 12.16 1147.32 1.31 5.2 10

B3Σ−u 6.16 3 709.3 10.65 1018.43 1.18 7.16 15

7.3.1 Vibronic Temperature

The first verification involves the measurement of the vibronic temperature. The adiabatic reac-
tor is initialised in thermal equilibrium conditions for temperatures ranging between 2000 and
20,000 K. The vibronic temperature is monitored and sampled for 105 iterations.
Table 7.2 shows that the measurement technique implemented for the calculation of the vibronic
temperature is accurate across the temperature range considered. The numerical scatter of the
measured temperature is inversely proportional to the square root of the sampling size [223];
hence, for a sampling size of about 105, the numerical scatter is about 0.3%. Table 7.2 shows
that the difference between the initialised and measured temperatures reduces as expected. This
demonstrates the correct implementation of both the initialisation algorithm and the new mea-
surement technique.

Table 7.2: Comparison of the measured vibronic temperature against the initialised temperature.

Initialised Temperature (K) Measured Temperature (K) Error (%)

2000 1999.02 0.05
4000 4000.89 -0.02
6000 6002.21 -0.04
8000 7998.08 0.02

10 000 10 005.26 -0.05
12 000 12 003.56 -0.03
14 000 14 002.66 -0.02
16 000 16 001.78 -0.01
18 000 18 008.9 -0.05
20 000 20 003.35 -0.02

7.3.2 Adiabatic Relaxation

The next verification case assesses the capabilities of the model to reproduce the theoretical
thermal equilibrium of a system initially in a state of thermal non-equilibrium. Two scenarios
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are herein considered. The adiabatic reactor is initialised with a vibronic temperature greater
or lower than the translational and rotational temperatures such that excitation or de-excitation
of the electronic excited states and their vibrational quantum levels occurs as a result of the
relaxation process. The two scenarios are of major interest in hypersonic flow conditions as
the former is encountered in post-shock flow conditions (Tt > Tve) and the latter is typically
encountered in nozzle flow conditions (Tt < Tve). For the excitation scenario, the adiabatic
reactor is initialised in the following thermal non-equilibrium conditions: Tt = Tr = 20,000 K
and Tve = 5000 K, and for the de-excitation scenario with Tt = Tr = 5000 K and Tve = 20,000 K.
Under such conditions, a relaxation process towards a thermal equilibrium state is driven by
inelastic collisions between particles and the corresponding exchange of internal energies. After
a number of collisions have occurred, kinetic theory demonstrates that a system relaxes towards
an equilibrium temperature that is defined as

Teq =
ξt,iTt,i +ξr,iTr,i +ξve,iTve,i

ξt, f +ξr, f +ξve, f
, (7.12)

where ξve is the mean degree of freedom of the vibronic mode.
Figure 7.3 demonstrates that the DSMC results achieve excellent reproduction of the theoretical
predictions for both the excitation and de-excitation scenarios. Quantitatively, for the excitation
scenario, the theoretical equilibrium temperature is T theo

eq,ex = 13,740 K and the equilibrium tem-
perature measured in DSMC is T DSMC

eq,ex = 13,741 K. For the de-excitation scenario, the theoreti-
cal equilibrium temperature is T theo

eq,de−ex = 10,521 K and the equilibrium temperature measured
in DSMC is T DSMC

eq,de−ex = 10,518 K. Both scenarios show good reproduction of the theoretical
prediction which demonstrates the successful implementation of the post-collision sampling
technique.

7.3.3 Population of the Electronic Excited States

Figure 7.4 shows further verification of the model for the population of the electronic excited
states and their corresponding vibrational quantum numbers. The adiabatic reactor is initialised
in thermal equilibrium conditions, i.e. Tt = Tr = Tve = 10,000 K and the population of each
quantum number is sampled for 105 time-steps to reduce the scatter. The theoretical and DSMC
two-dimensional distribution of energy across all electronic excited states and their correspond-
ing vibrational quantum levels are depicted in Figs. 7.4a and 7.4b, respectively. Additionally,
the total population of each electronic excited state, i.e. fi = ∑

j

ni, j
ntot

, and the population of the

vibrational quantum numbers of all seven electronic excited states are respectively depicted in
Figs. 7.4c and 7.4d.
Figures 7.4a and 7.4b show that the DSMC achieves a good reproduction of the two-dimensional
theoretical distribution for all quantum levels. Figure 7.4c demonstrates an excellent agreement
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Figure 7.3: Thermal relaxation of an adiabatic reactor into equilibrium for (a) electronic and
vibrational excitation (Tt = Tr = 20,000 K and Tve = 5000 K) and (b) electronic and vibrational
de-excitation (Tt = Tr = 5000 K and Tve = 20,000 K).

between the population of the electronic excited states and statistical mechanics theory. The
consistency between DSMC results and the theoretical calculations, Eq. (7.2), serves as a further
verification of the implementation of the model in the DSMC code. Similarly, Fig. 7.4d also
confirms the accuracy of the model for the population of the vibrational quantum numbers in all
seven electronic excited states. Some scatter is evident at the tails of the distributions. This is
expected in a DSMC simulation, because the probability of finding a molecule in these higher
vibrational levels is relatively small, resulting in a low signal-to-noise ratio.

7.3.4 Thermodynamic Properties

The uncoupled and coupled approaches are examined for the calculation of the isochoric-specific
heat capacity. The adiabatic reactor is initialised in thermal equilibrium for temperatures ranging
from 2000 K to 20,000 K and the thermodynamic properties are sampled for 105 time-steps to
reduce the scatter. These results are compared against four numerical studies, i.e. Capitelli et

al. [28], Jaffe [30], Qin et al. [29], and McBride et al. [24]. This represents a selection of many
works available in the literature. Additionally, the specific heat capacity results presented in
Civrais et al. [32] are included for reference.
Figure 7.5 compares the uncoupled and coupled approaches for the calculation of the isochoric
specific heat capacity of molecular oxygen. The DSMC results are in excellent agreement with
the theoretical calculations, Eq. (7.5), for the entire range of temperatures considered which
serves as a verification of the implementation of the model in the DSMC code. Figure 7.5 illus-
trates the benefits of the coupled approach. This approach provides a more accurate description
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(b) DSMC.
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Figure 7.4: Comparison of the population of the electronic excited states for molecular oxygen
in thermal equilibrium (Tt = Tr = Tve = 10,000 K).

of the specific heat capacity compared to its counterparts. Figure 7.5 emphasises the impor-
tance of including the electronic mode of molecular systems and modelling their corresponding
vibrational excitation to yield accurate predictions in low to moderate temperatures.
For temperatures in excess of 7000 K, the coupled approach deviates from the prediction of
past studies [24, 28–30]. In the derivation of the coupled approach, the rotational-vibrational
coupling effects of the electronic excited modes have been disregarded. While this assumption
holds for low-to-moderate temperatures, it becomes evident that as the temperature increases the
coupled approach deviates from the compilation of past studies due to the omission of rotational-
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vibrational coupling effects. To improve the accuracy of the coupled approach, further investiga-
tion should be directed towards incorporating the contribution of rotational-vibrational coupling
effects [107, 224, 225]. Note that rotational-vibrational coupling involves the addition of nu-
merous quantum levels to the molecular systems which would result in a noticeable increase
in computational expense. Further discussions on the limitations of the coupled approach are
developed in Appendix. A and exemplified with a canonical air mixture modelled with the five
most representative species.
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Figure 7.5: Comparison of the normalised isochoric specific heat capacity of molecular oxygen.

7.4 Hypersonic Flow

The present section aims to compare the uncoupled and coupled approaches for the simulation
of a canonical nonreactive oxygen hypersonic flow past a cylindrical body entering Earth’s at-
mosphere at an altitude of about 85 km. The freestream conditions are extracted from the US
Standard Atmosphere [198] and summarised in Tab. 7.3.
The geometry represents a two-dimensional slice of a cylindrical body with diameter d = 0.1 m,
with a domain length equal to two and a half radii upstream of the stagnation point. The mesh
is refined near the stagnation point to ensure that the cell size, ∆x, remains around one-quarter
of the local mean free path, λ , throughout, resulting in a total of 32,400 cells. The time step is
carefully chosen to be an order of magnitude smaller than both the mean collision time and the
cell residence time, the latter of which corresponds to the time for a DSMC simulator particle
to cross a cell length under the freestream conditions. To maintain a minimal number of 100
particles per cell throughout, the numerical mesh is populated with a total number of 8.59×106

DSMC simulator particles at steady state. Similar to the adiabatic reactor simulations, the inter-
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Table 7.3: Free stream parameters.

Parameter Values

Altitude (km) 85
Temperature (K) 186.95

Number density (m−3) 1.45×1020

Pressure (Pa) 0.374
Speed (km s−1) 7.50

Ma∞ 28.76
Kn∞ 0.085

molecular collisions are computed with the VHS model [17] for a reference temperature of
Tre f = 273 K. To reproduce the typical relaxation behaviour of the uncoupled approach, a con-
stant probability of P1 = 0.02 and P2 = 0.1 for a particle to undergo Reaction 9 and Reaction 10,
respectively, is applied. The gas-surface interactions are fully diffusive with an isothermal wall
at temperature Tw = 1000 K. A total of 105 samples are taken after steady-state to reduce the
numerical scatter. To illustrate the structure of the flow, the internal temperatures and velocity
magnitude along the stagnation streamline are presented in Fig. 7.6. The distance to the stagna-
tion point is normalised by the diameter of the cylinder. A value of 0 refers to the inlet boundary
conditions and 2.5 refers to the stagnation point.
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Figure 7.6: Flow properties along the stagnation streamline.

As mentioned in Chapter 1, the standard approach to couple DSMC and radiation transport
solvers consists of transferring the uncoupled internal temperatures, i.e. rotational, vibrational,
and electronic, calculated by the DSMC solver into a radiation solver. Note that these internal
temperatures are calculated by assuming a Boltzmann distribution and resolving an implicit
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equation for both vibrational and electronic temperatures [31]. However, radiation solvers,
e.g. NEQAIR [160], PARADE/PICLas [49, 159], Specair [161], integrate a fully coupled ap-
proach. Specifically, these solvers compute the radiative properties in a cell from the distribution
function of the internal quantum levels. To compute these radiative properties, an assumption
on the distribution function is made where it is assumed to follow Boltzmann statistics [49, 53]
or the non-equilibrium quasi-steady-state method [156, 165].
The main objective of this section is twofold: to compare the two approaches for the distribution
of the internal quantum levels measured by the DSMC method and to assess the assumption
that the internal quantum levels are distributed according to the Boltzmann distribution. For
both approaches, the vibrational and electronic density functions are calculated with the local
internal temperatures, namely f = fi(Tv) f j(Te) for the uncoupled approach and f = fi, j(Tve) for
the coupled approach.
Figure 7.7 compares the DSMC results for the population of the internal quantum levels and
the corresponding Boltzmann distribution along the stagnation streamline. The DSMC results
are denoted by colour markers, where solid symbols refer to the uncoupled approach and open
symbols to the coupled approach, and the Boltzmann distributions are denoted by colour lines
where solid lines refer to the uncoupled approach and dashed lines refer to the coupled approach.
Similar to Fig. 7.6, the distance to the stagnation point is normalised by the diameter of the
cylinder. A value of 0 refers to the inlet boundary conditions and 2.5 refers to the stagnation
point.
Downstream of the shock wave, Fig. 7.7 shows that the highest vibrational and electronic quan-
tum levels exhibit large deviations from the assumption of a Boltzmann distribution. These
high-lying quantum levels are of primary importance for the modelling of the radiative prop-
erties of molecular species. Furthermore, a noticeable discrepancy arises between assuming a
Boltzmann distribution corresponding to the cell temperature and density, and the actual dis-
tribution observed in DSMC simulations, which could represent a source of error in typical
flow-radiation coupling.
Figure 7.7 also indicates a significant population of the high-lying quantum levels in the up-
stream region. This non-equilibrium effect manifests itself in Knudsen number regimes in which
the degree of rarefaction is sufficient for a particle to collide with the surface of the body and
travel backwards without undergoing sufficient collisions with any other particles to de-excite
the quantum levels to return to an equilibrium distribution; hence, carrying post-shock infor-
mation upstream of the bow-shock. This non-equilibrium effect is characterised by a strong
deviation from a Maxwell velocity distribution to the extent of quasi-Maxwellian or bi-modal
distributions [156]. Note that this phenomenon has also been observed previously [53,199–201].
The deviation from the Boltzmann distribution is further investigated at four locations through-
out the shock wave denoted by vertical red lines in Fig. 7.6 with thermal conditions summarised
in Tab. 7.4. A series of adiabatic reactor simulations initialised with the thermal conditions
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Figure 7.7: Comparison of the DSMC results against Boltzmann distribution along the stagna-
tion streamline.

Table 7.4: Thermal flow conditions in four cells along the stagnation streamline.

x
D Tt (K) Tr (K) Tve (K)

2.000 1902.70 423.40 550.06
1.500 5813.31 1059.91 795.58
1.000 17 168.40 3273.69 1311.87
0.500 31 031.00 9390.44 2518.74

summarised in Tab. 7.4 is performed. Figure 7.8 shows the Boltzmann distribution and DSMC
measurements of the coupled approach for the first three electronic states of O2 obtained along
the stagnation line. Contrastingly, Fig. 7.9 shows the Boltzmann distribution and DSMC mea-
surements obtained from the series of adiabatic reactor simulations. The DSMC results are
denoted by colour markers and the Boltzmann distributions by colour lines.
Figure 7.8 shows that the Boltzmann distributions at all four locations are significantly different
to the DSMC measurements along the stagnation streamline whereas, Fig. 7.9 indicates that the
DSMC simulations precisely reproduce the theoretical vibrational density function for the same
thermal conditions in an adiabatic reactor. This demonstrates that the different distributions
in the hypersonic case are due to non-equilibrium effects that a radiation solver would not be
capturing using solely the temperatures.
So far, the comparison of the two approaches was limited to the population of the quantum levels
along the stagnation streamline. In Fig. 7.10, the total number density of the first six electronic
states of O2, i.e. ni = ∑

j
ni, j, measured in the DSMC simulations are regarded for the flow field.
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Figure 7.8: Vibrational density function of the first three electronic excited states at four loca-
tions along the stagnation streamline.

As anticipated, Fig. 7.10 indicates that the ground electronic state is the most populated. Both
approaches offer a similar description of the distribution of the ground state throughout the
domain. However, the two approaches differ in the distribution for all the electronic excited
states herein considered. Specifically, the coupled approach predicts lower populations of the
electronic excited states in comparison to the uncoupled approach. This discrepancy arises from
the difference in the modelling of the vibrational energies of the electronic excited states in each
approach. The coupled approach implies that each electronic state can excite a unique set of
vibrational levels, see Fig. 7.4. In contrast, the uncoupled approach assumes that each electronic
state can only excite the same set of vibrational energies as the ground electronic state. In the
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Figure 7.9: Vibrational density function of the first three electronic excited states measured in a
series of adiabatic reactor simulations with thermal conditions corresponding to four locations
along the stagnation streamline.

context of a flow-radiation coupling, such a difference between the two approaches in terms of
the distribution of the electronic excited states throughout the domain could lead to a significant
difference in the radiation properties.
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(a) Ground electronic state. (b) First electronic excited state.

Figure 7.10: Population of the electronic states of O2. Uncoupled approach (top) and coupled
approach (bottom).
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(c) Second electronic excited state. (d) Third electronic excited state.

Figure 7.10: Population of the electronic states of O2. Uncoupled approach (top) and coupled
approach (bottom). (Cont.)
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(e) Fourth electronic excited state. (f) Fifth electronic excited state.

Figure 7.10: Population of the electronic states of O2. Uncoupled approach (top) and coupled
approach (bottom). (Cont.)
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7.5 Summary

A new model for modelling the vibrational excitation of the electronic excited states is developed
and implemented in a DSMC solver. The new model is verified against an extensive compilation
of theoretical studies for both thermal equilibrium and non-equilibrium conditions. Additionally,
the new model is evaluated against the traditional uncoupled approach utilised in DSMC for a
canonical hypersonic non-reactive oxygen gas flow past a cylindrical body at an altitude of about
85 km.
The series of adiabatic reactor simulations has shown excellent agreement between theoretical
predictions and DSMC results, thereby demonstrating the successful implementation of a DSMC
solver. Furthermore, the coupled approach has been shown to improve the reproduction of a
compilation of past studies for the specific heat capacity of molecular oxygen compared to the
uncoupled approach.
The hypersonic flow scenario has revealed that the assumption of the quantum levels being
distributed according to the Boltzmann distribution is not adequate. In high Knudsen number
regimes, non-equilibrium effects lead to significant deviations between the local distribution of
quantum levels and that predicted by the Boltzmann distribution calculated from internal tem-
peratures. Consequently, one should benefit from the capability of DSMC solvers to keep track
of the local distribution of energy across the internal quantum levels and solely rely on these dis-
tributions for the determination of the radiative properties. Furthermore, the coupled approach
has demonstrated a lower population of electronic excited states compared to the uncoupled ap-
proach. This discrepancy is attributed to the possibility for each electronic excited state to allow
vibrational excitation; hence, providing additional channels for redistributing internal energy
during collisions. Such a difference in the distribution of electronic excited states between the
two approaches is expected to result in significant modifications in the radiation properties.



Chapter 8

Conclusions & Perspectives

8.1 Conclusions

This thesis focuses on the development and implementation of new aerothermodynamics models
for moderately to highly rarefied flow regimes using the DSMC method. Three key models were
developed and integrated into a DSMC solver, focusing on vibrational modelling of molecular
species, chemical reaction modelling, and modelling of electronic excited states. The implemen-
tation of all models was verified for a compilation of systematic adiabatic reactor simulations.
Subsequently, each model was validated against the most representative experimental measure-
ments, high-fidelity calculations, and analytical models. Finally, all three models were applied
to numerically investigate realistic applications. A detailed summary of findings was provided
at the end of each chapter. All objectives of this thesis were satisfied. An overview of the main
conclusions is as follows.

Vibrational Modelling

In Chapter 4, an anharmonic oscillator model has been implemented into a DSMC solver. The
vibrational energies have been fitted on high-fidelity potential energy surfaces. The model has
been verified against the probability distribution of vibrational quantum levels, specific heat ca-
pacity and thermal relaxation of a gas to equilibrium. The study shows that the anharmonic
oscillator model predicts a larger population of high-lying vibrational quantum levels which
carry significant implications in the modelling of the chemical activity of chemical species. Fur-
thermore, the anharmonic oscillator model is applied to a canonical Earth atmospheric reentry
at an altitude of 75 km in which the anharmonic oscillator model exhibits different topologies
of internal mode excitation in the flow field in comparison to the traditional harmonic oscillator
model.

157
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Chemistry Modelling

In Chapters 5 and 6, a custom version of the QK models has been proposed in which the vi-
brational excitation is modelled with an anharmonic oscillator model. While the new formu-
lations have demonstrated a reasonable reproduction of most representative reaction rates in
thermal equilibrium conditions, they have shown some limitations in reproducing the baseline
model in thermal non-equilibrium conditions. It has been demonstrated that the QK models
excessively rely on the relative translational energy of the colliding pair to promote chemical
reactions. These findings have motivated the development of an extension to the QK models
with the addition of tunable parameters. The numerical evaluation of the models has shown ex-
cellent reproduction of the baseline database for both thermal equilibrium and non-equilibrium
conditions. These new formulations are major improvements over the original QK models for
modelling chemical reactions with the DSMC method. Furthermore, the new formulations have
been applied to reproduce in-flight measurements of the surface heat flux of the second mission
of the Space Shuttle Columbia. The extended QK models is shown to predict a surface heat flux
beyond the bounds of the in-flight measurements.

Internal Mode Coupling

In Chapter 7, a new model for modelling the interactions between the vibrational and electronic
modes of molecular species has been proposed. Specifically, it assumes that each electronic
excited state allows for vibrational excitation described by an anharmonic oscillator model. The
model has been verified against the probability distribution of vibrational and electronic quantum
levels, specific heat capacity and thermal relaxation of a gas to equilibrium. Furthermore, the
new model has been applied to simulate a canonical hypersonic flow past a cylindrical body,
entering Earth’s atmosphere at an altitude of about 85 km. The study shows that the traditional
assumption of the quantum levels being distributed according to the Boltzmann distribution is
inaccurate. Additionally, the coupled approach suggests a lower population of electronic excited
states compared to the uncoupled approach, which may carry significant implications to the
radiative heat flux when coupling DSMC and radiation transport solver.

8.2 Perspectives

The main area of future work from the present thesis arises from the modelling of the interac-
tions between the internal modes which spans across three major research topics: internal mode
coupling, chemistry modelling and DSMC-radiation coupling.
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Internal Mode Coupling

Chapter 1 and Appendix A have outlined the importance of describing the interaction between
the internal modes to correctly reproduce the thermodynamic and transport properties of chem-
ical species. In Chapter 7, the first step towards such a sophisticated approach has been derived
and successfully implemented in a DSMC solver. However, further improvement is required to
fully describe the interaction between the internal modes. Specifically, the rotational mode is tra-
ditionally modelled with a continuous approach in the DSMC method; hence, requiring to be ad-
dressed in the first place before considering any more sophisticated modelling. Boyd [226, 227]
has proposed a quantised approach of the rotational mode, however, this model remains lim-
ited to a quantised rigid-rotor model which corresponds to the first term in Eq. (A.12). It is
evident in Appendix A that a non-rigid rotor is required to correctly describe the interactions
between the rotational and vibrational modes. Therefore, further improvement should be made
to develop and implement in a DSMC solver a non-rigid rotor based on Boyd [226,227]. Subse-
quently, a fully coupled approach of the internal modes following the mathematical derivations
in Appendix A could be implemented in a DSMC solver.

Chemistry Modelling

While the modelling of the internal modes with a fully coupled approach readily improves the
description of the flow physics, one point should be made regarding the chemistry modelling
under such a sophisticated approach. As discussed in Chapters 5 and 6, the QK models assume
that chemical reaction only occurs from the contribution of the translational and vibrational
modes of the colliding partners and that each internal modes are individually treated. These as-
sumptions limit the QK models to describing only a fraction of the real-gas effects occurring in
aerothermodynamic applications. For a more realistic approach to be considered that accounts
for such real-gas effects, chemical reactions would occur not only from translational and vibra-
tional contributions but also from rotational, and electronic contributions giving rise to a larger
set of chemical processes. Therefore, for the coupled approach developed in Appendix A to be
fully implemented in a DSMC solver, an extension of the QK models that incorporates these
additional contributions to the chemical reactions is required.

Radiation

In recent years, there has been a growing interest in coupling DSMC methods with radiation
transport solvers, e.g. PARADE [159], NEQAIR [160], or Specair [161], for various investiga-
tions [49, 53, 162–165]. The standard approach to couple DSMC and radiation solvers consists
of transferring the uncoupled internal temperatures, i.e. rotational, vibrational and electronic,
calculated by the DSMC solver into the radiation solver. Unlike DSMC solvers, these radiation
solvers adopt a fully coupled approach, incorporating all types of interactions between internal
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modes. Specifically, these solvers compute the radiative properties in a cell from the distribution
function of the internal quantum levels. To compute these radiative properties, an assumption
on the distribution function is made whether it is assumed to follow Boltzmann statistics [49,53]
or the QSS method [156, 165]. With the development of a fully coupled approach derived from
similar considerations to that applied in radiation solvers, a new coupling between DSMC and
radiation transport solvers solely relying on the distribution of the quantum levels in the cell
without additional assumptions on the form of the distribution function would then be feasible.
Such a sophisticated approach would ultimately be validated against experimental measurements
for the reproduction of radiation flux, e.g. NASA electric arc shock tube (EAST) [228–231].



Appendix A

Rovibronic Modelling

Throughout this thesis, two approaches have been extensively discussed: one where the internal
modes were fully uncoupled, i.e. Chapter 4, and another one where the internal modes were
partially coupled, i.e. Chapter 7. It has been evidenced that adopting a coupled approach for the
description of the internal modes leads to a more accurate reproduction of the thermodynamic
and transport properties. This appendix introduces an approach based on a past study reported
by Jaffe [30] where the internal modes are fully coupled, i.e. rotational-vibrational-electronic
coupling. A graphical illustration of the traditional approach (Chapters 4-6), vibronic modelling
(Chapter 7), and rovibronic modelling is depicted in Fig. A.1.

Mathematical Description

Consider a chemical species with a given triplet of quantum levels (n,v,J). Statistical mechanics
theory demonstrates that the distribution function of its internal energy is governed by,

fn,v,J =
gngJe−

εn,v,J
kT

nmax
∑
n

vmax(n)
∑
v

Jmax(n,v)
∑
J

gngJe−
εn,v,J

kT

=
gngJe−

εn,v,J
kT

Q
, (A.1)

where εn,v,J is the internal energy of such configuration expressed as a summation of all its
contributions,

ε(n,v,J) = εe(n)+ εv(n,v)+ εr(n,v,J). (A.2)

The electronic contribution εe(n) is the minimal amount of energy required to promote an elec-
tron from the ground electronic configuration to a higher electronic state. This energy is calcu-
lated from Eq. (2.37).
The vibrational contribution εv(n,v) describes the vibrational excitation of an electronic state.
The traditional approach to describe the vibrational excitation of a given electronic state with a
polynomial expression such as the Dunham model [35]. For the ground electronic configuration
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Figure A.1: Illustration of the modelling of the internal modes of a diatomic molecule.

of a diatomic molecule, the Dunham model describes the vibrational excitation of such molecule
as a rotating vibrator which takes the form,

εvr(v,J) = ∑
i

∑
j

K(i, j)
(

v+
1
2

)i

J j (J+1) j , (A.3)

where K(i, j) gives the spectroscopic constant of indexes (i, j), i.e. K(0,0)=ωe, K(1,0)=ωeχe,
K(2,0) = ωeγe and so on.
The most popular sources for obtaining the spectroscopic constants, i.e. ωe, ωeχe and ωeγe,
are the NIST [25] or the Huber and Herzberg tables [26]. However, Chapter 4 has evidenced
that these spectroscopic constants over-estimate the number of vibrational quantum levels and
under-estimate the dissociation quantum level. Considering the large uncertainties and the lack
of spectroscopic constants beyond ωeχe, the infinite summations have been truncated for both
rotational and vibrational contributions to the second order which allows to recover the non-rigid
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rotor and Morse anharmonic oscillator model. Following these considerations, εv(n,v) follows
the description adopted in Chapter 7, see Eq. (7.1), in which the vibrational energy is calculated
as,

εv(n,v) = hc

[
ωe(n)

(
v+

1
2

)
−ωe(n)χe(n)

(
v+

1
2

)2
]
. (A.4)

The rotational contribution εr(n,v,J) describes the rotational-vibrational interaction of the nth

electronic states which is calculated as,

εr(n,v,J) = Bv(n,v)J (J+1)−Dv(n,v)J2 (J+1)2 , (A.5)

with,

Bv(n,v) = Be(n)+αe(n)
(

v+
1
2

)
, (A.6)

and,

Dv(n,v) = De(n)+βe(n)
(

v+
1
2

)
. (A.7)

If one of the spectroscopic constants is not reported by any of the spectroscopic databases [25,
26], the constant is taken to zero except for De and βe which are calculated as,

De =
4B3

e
ω2

e
, (A.8)

βe = De

(
8ωeχe

ωe
− 5αe

Be
− α2

e
24B3

e

)
. (A.9)

The main challenge associated with the derivation of the thermodynamic properties from Eq. (A.1)
is to determine the maximum electronic, vibrational and rotational quantum levels, namely nmax,
vmax(n) and Jmax(n,v) respectively.
The total number of electronic quantum levels, namely nmax, is limited to the availability of the
electronic configurations reported in the aforementioned tables.
For a given electronic excited state, the maximum vibrational quantum level is determined as
the last vibrational quantum level immediately below the dissociation quantum level such that it
satisfies,

εv(n,v)< εd(n,J = 0), (A.10)

where εd(n,J = 0) is the rotationless dissociation energy of the nth electronic excited state. For
some electronic configurations, all the vibrational quantum levels lie below the corresponding
dissociation energy. In this specific scenario, vmax is determined as the last vibrational quantum
level before the gradient ∂ε(n,v)

∂v changes sign.
For a given electronic excited state, the allowed rotational and vibrational quantum levels are
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defined by the inequality,

εe(n)+ εv(n,v)+ εr(n,v,J)<U (rmax(n,J),n,J) , (A.11)

where U(r,n,J) is the potential energy function and rmax(n,J) is the position at which the po-
tential energy function admits a maxima for r > req.
For any triplet of quantum levels (n,v,J) that satisfies ε(n,v,J)< De(n), the molecular remains
bounded and these states are termed bounded states. Furthermore, there exist combinations of
triplets (n,v,J) for which ε(n,v,J) > De(n) that does not necessarily result in a dissociation of
the diatomic molecule. These triplets are referred to as quasi-bounded states. Beyond a certain
rotational quantum level namely Jlim, the potential energy function becomes completely repul-
sive. This region of the potential energy function is referred to as free-bounded states. In this
representation, all rotational quantum levels lying below Jlim can be populated. An illustration
of the bound, quasi-bound and free bound state regions of N2, O2 and NO are shown in Fig. A.2.
For consistency with the truncation of the internal energy to the second order, the potential
energy function is assumed to be a summation of the Morse potential function [34] and the
centrifugal potential [174],

U(r,n,J) = εd(n)
(

1− e
−2α(n) r−req(n)

req(n)

)2

+Be(n)
(

req(n)
r

)2

J(J+1), (A.12)

where Be is a spectroscopic constant, α is a spectroscopic constant that controls the width of the
potential function and it is derived from,

α(n) =
ωe(n)

4
√

Be(n)εd(n)
. (A.13)

The rotational quantum level separating the possible quasi-bound state to the free-states regions,
Jlim, is defined, for r > req, as the last quantum level before the gradient, ∂U(r,n,J)

∂ r , changes sign
that is, 

∂U(r)
∂ r ≤ 0 ∀ r

∂U(r)
∂ r > 0 ∃ r ≥ req.

(A.14)

The outer position of the quasi-bound state region rmax(n,J) is determined by searching the
maximum of the potential energy function for r > req such that,

U(rmax(n,J),n,J) = max(U(r,n,J)) . (A.15)

Finally, Eq. (A.11) allows to determine the maximum rotational quantum level Jmax for each
vibrational quantum level that satisfies v < vmax.
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(a) Nitrogen molecule.
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(b) Oxygen molecule.
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(c) Nitric oxide molecule.

Figure A.2: Potential energy curves at different rotational quantum levels for the ground elec-
tronic state of N2, O2 and NO.

Results and Discussion

Figure. A.3 compares the normalised isochoric specific heat capacity, i.e. cV
R , of N2, O2 and

NO against a compilation of theoretical studies [24, 28–30] for temperatures ranging from 0
to 20,000 K. The theoretical predictions of the previous approaches presented throughout this
thesis are included for reference.
Figure. A.3 shows that a complete description of the interaction between the internal modes
provides a better reproduction of the compilation of past studies for the entire range of temper-
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atures. The discrepancy between the theoretical calculations and the past studies is the results
of the assumption applied about the truncation of the vibrational energy and the selection of the
electronic excited states. These calculations are herein reported to serve as a verification exercise
for future implementation of the third approach presented in Fig. A.1 in a DSMC solver.
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Figure A.3: Normalised isochoric specific heat capacity of N2, O2 and NO.

Table. A.1 summarises the total number of quantum levels considered for each approach for N2,
O2 and NO. The description of the interactions between the internal modes adds complexity to
the mathematical modelling, to the extent of the addition of significant quantum levels. From a
numerical perspective, the coupling of N internal modes results in a N-dimensional distribution
function, see Eq. (A.1), on which sampling procedures, e.g. equilibrium and post-collisions, are
performed. From Fig. A.3, it is clear that a fully coupled approach provides the best reproduction
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of the past studies; however, it involves a total number of quantum levels that is two to three
orders of magnitude higher than the uncoupled approach. This significant increase in the total
number of quantum levels motivates the development of efficient sampling routines for such an
approach to be considered in a DSMC solver.

Table A.1: Comparison of the total number of quantum levels considered for the three ap-
proaches for the most dominant diatomic species in Earth’s atmosphere for each approach.

Chemical Species Uncoupled∗ Partially coupled† Fully coupled‡

N2 67 374 54,284
O2 48 146 17,512
NO 59 245 28,477

∗Continuum treatment of the rotational mode, anharmonic oscillator model and inclusion of the electronic modes.
†Continuum treatment of the rotational mode and coupling between the vibrational and electronic modes.
‡Quantised treatment of the rotational mode and full coupling between the internal modes.
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