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Abstract

We develop our understanding of topological full groups, a way of constructing examples of
infinite simple groups with finiteness properties from ample groupoids. Our results are con-
centrated in three main example classes. Firstly, the topological full groups of purely infinite
minimal groupoids share many properties with Thompson’s group V . In studying these groups
and the associated groupoids in detail, we formalise this phenomenon by relating dynamical
properties to group-theoretic properties. Secondly, interval exchange groups are an important
concrete example of topological full groups since many are amenable. We classify these groups
through computing associated Elliot invariants. Also, we find concrete generating sets and com-
pute the homology of these groups. Thirdly and finally, Stein’s groups were introduced by
Melanie Stein in 1992 as generalisations of Thompson’s group. We show these groups are topo-
logical full groups. We then analyse Stein’s groups through this framework, showing that the
(simple) derived subgroups of Stein’s groups are in many cases finitely generated. We study the
homology of Stein’s groups.
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Chapter 1

Introduction

1.1 Overview and summary of main results

The story of topological full groups begins with Giordano-Putnam-Skau [53], who introduced
the topological full group of a Cantor minimal system as the group of homeomorphisms of the
Cantor set that locally are powers of a homeomorphism T . Later, Matui (in [88]) defined the
topological full group F(G) of an ample groupoid G. The idea is to study the unitary subgroup
of the inverse monoid of compact open bisections, in effect piecing together partial symmetries
into global symmetries. D(G) denotes the derived subgroup of this group.

Since then, the framework of topological full groups has lead to the resolution of many exis-
tence questions for infinite simple groups with various finiteness properties. For example, they
provided the first examples of:

• Infinite simple, finitely generated amenable groups [61].

• Simple finitely generated groups of intermediate growth [92].

• Simple groups separated by finiteness properties [115].

The philosophy of the program of topological full groups is that we would be able to determine
information about F(G) by studying the underlying groupoids G. Many things are known now
in this direction [89] [79] [93] but some questions, especially determining amenability or the
existence of free subgroups, remain mysterious [60].

Ample Groupoid
G has property X

Topological Full Group
F(G) has property Y

This thesis adds to this exciting and growing field through the study of three different types of
topological full groups:

4
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• The topological full groups of purely infinite, minimal groupoids (Chapter 5).

• Interval exchange groups (Chapter 6).

• Stein’s groups (Chapter 7).

In order to understand the topological full groups of purely infinite minimal groupoids, it is
essential to first understand the relationship between topological full groups and Thompson’s
group V .

Thompson’s group V was the first known example of an infinite finitely presented simple
group [121]. Since the introduction and dissemination of Thompson’s work into the mathemat-
ical community, V has impacted mathematics in countless often disconnected and surprising
ways, leading Brin to call V “the chameleon group” for its breadth of impact [20]. Combina-
torial group theorists have been interested in Thompson’s group V because of the connection
to interesting open questions such as the Boone-Higman conjecture [6]. Computer scientists
have been interested in Thompson’s group from the perspective of cryptography, as a platform
group [112].

Since its conception, the framework of topological full groups has served as a bridge between
Thompson-like groups and the groupoid models of purely infinite C*-algebras, a line of research
that was pioneered by Matui [88]. In fact, promising observations by Nekrashevych [94] pre-
date, and even motivate, the definition of topological full groups of étale groupoids by Matui.
Because the underlying topological groupoids are often much more accessible to study than
the Thompson-like groups themselves, this new dynamical perspective has led to progress in
our understanding of the homology [79], finite presentation [78], and subgroup structure of
Thompson-like groups [16].

We summarise the correspondence between Thompson-like groups and purely infinite mini-
mal groupoids in the table below, where Ek is the Deacounu-Renault groupoid associated to full
shift on an alphabet with k letters,Rr is the full equivalence relation on r points, Ok is the Cuntz
algebra with k generators, andQλ is the class of Kirchberg algebras considered in [33,76]. Here
also, Vk,r is the Higman Thompson group and nVk,r is the Brin-Higman-Thompson group.

C∗-algebra Groupoid Thompson-like group
O2 E2 V

Mr(Ok) Rr ×Ek Vk,r
Mr(⊗

n
j=1Ok) Rr ×E

n
k nVk,r

Qλ Particular partial actions Stein’s groups with a cyclic group of slopes

Figure 1.1: Realisations of Thompson-like groups as topological full groups

The dynamical realisation of the Brin-Higman-Thompson groups is described in [90], while
the realisation of Stein’s groups as topological full groups is the subject of Chapter 7.

In light of this correspondence between groupoids and Thompson-like groups, Matui pro-
posed in [89] to regard the topological full groups of other generalisations of the full shift on
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two generators as generalisations of V , and in particular study them as Thompson-like groups.
In turn, analysing the topological full groups led us to the discovery of interesting new groups,
many of which exhibit properties enjoyed by Thompson’s group V . This vein of research is
summarised in the table below:

C∗-algebra Groupoid G Is D(G) simple and
finitely presented?

Cuntz-Krieger algebras SFT Groupoids Yes
Tensors of Cuntz-Krieger algebras Products of SFT groupoids Yes

Graph algebras Graph groupoids Yes
Katsura-Exel-Pardo algebras Katsura-Exel-Pardo groupoids Yes

Figure 1.2: New generalisations of Thompson’s group V from topological full groups

Very general structural properties have been studied for these examples in [90], and signif-
icant progress toward homological properties has been made in [79]. In particular, topological
full groups inside this class give rise to many new examples of finitely presented, simple, infinite
groups [78, 79, 86, 89, 96, 97].

C*-algebraists have a deep source of such groupoids which have been developed primarily
as a way to construct simple, purely infinite, nuclear C*-algebras – also known as Kirchberg
algebras. The relevance of these examples stems from their crucial role in the classification
theory of simple, nuclear C*-algebras; see [100]. Each of the underlying groupoids is minimal,
topological principal and purely infinite in the sense of Matui [89]. In Chapter 5, we study the
topological full groups of such groupoids abstractly. We show that this class of groupoids can be
characterised in a number of ways intrinsic to the topological full groups. We summarise these
characterisations in the following result:

Theorem 1.1.1. Let G be an essentially principal, ample groupoid. Then the following are

equivalent:

1. G is purely infinite and minimal.

2. D(G) is a vigorous subgroup of Homeo(G(0)) in the sense of Bleak-Elliott-Hyde [11].

3. For every x0 ∈ G
(0), the subgroup

D(G)x0 = {g ∈D(G)∶ there exists a neighbourhood Y of x0 such that g∣Y = 1}

acts compressibly on G(0)∖{x0} in the sense of Dudko-Medynets [45].

Moreover, if any of the above holds, then for every nontrivial compact open subset X ⊂ G(0),

there exists an embedding φX ∶V ↪D(G) such that X ⊂ suppφX(V).

Theorem 5.1.21 completely answers Question 6.1 of [22], which asks to determine when a
topological full group is vigorous.
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Already, the fact that V embeds into every such topological full group is entirely new and
in-and-of itself useful for understanding key properties of F(G). As a consequence, many free
products are in F(G), including the product F2 ×F2 of the free group on two generators with
itself. Also, it allows us to conclude that the generalised word problem is not solvable for F(G).
Crucially, this means that many of these topological full groups, for example many groupoids in
the Garside category framework introduced by Li in [78] (a broad class whose topological full
groups include all Brin-Higman-Thompson groups), have solvable word problem but not solv-
able generalised word problem. (For the precise definition of the (generalised) word problem,
see Definition 3.7.8.)

The fact that conditions (2) and (3) characterise minimality and pure infiniteness of G is
surprising since vigor and compressibility were introduced in a completely different context
without having groupoids in mind, and to further develop our understanding of Thompson’s
group V and its generalisations. We discuss both vigor and compressibility separately, since our
results have interesting applications in both settings.

Vigor was introduced in [11] in order to determine when a simple, finitely generated group is
two-generated. More specifically, said condition was introduced in order to study the following
open question:

Question 1.1.2. Is every simple, finitely presented group is two-generated?

Our first corollary answers this for a broad class of derived subgroups in topological full
groups; see Theorem 5.1.12.

Corollary 1.1.3. Let G be a minimal, expansive, purely infinite, essentially principal Cantor

groupoid. Then D(G) is two-generated.

On the other hand, compressibility was introduced in [45] in order to understand the repre-
sentation theory and dynamical properties of the Higman-Thompson groups Vk,r. This definition
is an analogue of compressibility in the realm of measurable dynamics, and the introduction of
this property follows the recent trend of ideas in measurable dynamics being imported directly
to topological dynamics. This gives us two main facts about F(G); see Theorem 5.1.18 and
Theorem 5.1.20:

Corollary 1.1.4. Let G be a minimal, purely infinite, essentially principal Cantor groupoid.

Then D(G) has no proper characters, and there are no nontrivial finite factor representations of

D(G).

One way to interpret this is that D(G) is highly nonlinear. This allows us to reduce the ques-
tion of understanding the representations of F(G) to understanding the abelianisation F(G)ab =

F(G)/D(G). This abelianisation can often be described via Matui’s AH conjecture, which has
recently been verified by Xin Li [79] for a general class of ample groupoids. We give a wealth
of concrete computations; see for example Theorem 4.4.6. The property of compressibility also
gives us dynamical information for actions of Thompson-like groups; see Theorem 5.2.1:
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Corollary 1.1.5. Let G be an essentially principal, purely infinite, minimal, Cantor groupoid

such that H1(F(G)) is finite (this is for example the case if H0(G) and H1(G) are finite). Then

every faithful ergodic measure-preserving action of F(G) is essentially free.

The methods we develop in this work allow us to give a complete abstract characterisation
of the full and derived subgroups of minimal purely infinite groupoids:

Theorem 1.1.6 (Theorem 5.1.27). Let C denote the Cantor space.

1. For a subgroup F ≤Homeo(C), the following are equivalent:

(F.1) There exists a minimal, purely infinite, essentially principal, Cantor étale groupoid

GF such that F(GF) realises F as a subgroup of Homeo(C).

(F.2) F is vigorous and locally closed.

2. For a subgroup D ≤Homeo(C), the following are equivalent:

(D.1) There exists a minimal, purely infinite, essentially principal, Cantor étale groupoid

GD such that D(GD) realises D as a subgroup of Homeo(C).

(D.2) D is vigorous and simple.

Moreover, the groupoids GF and GD as in (F.1) and (D.1) above are unique up to groupoid

isomorphism.

As an application, we show in Theorem 5.1.29 that if D ≤ F ≤Homeo(C) are nested groups
such that D is vigorous and simple, and F is locally closed, then any intermediate group D ≤H ≤

F is C*-simple. In particular, any vigorous, simple subgroup of Homeo(C) is C*-simple, and
the same applies to any vigorous subgroup which is locally closed. For Thompson’s group V ,
this had been shown by Le Boudec-Matte Bon in [74].

The second example class we study in great detail is a class of topological full groups which
have attracted much attention recently: groups of interval exchanges [87] [36] [60] [16].

Definition 1.1.7 (IE(Γ)). Let Γ be a countable dense additive subgroup of R, containing 1.

Then, let IE(Γ) denote the group of right continuous piecewise linear bijections f of (0,1] with

finitely many angles, all in Γ. That is, the right continuous piecewise linear bijections such that

{ f t − t ∶ t ∈ (0,1]} ⊂ f in Γ.

One reason for the interest in these groups is the connection to classical dynamics, where dy-
namical systems coming from interval exchanges have been popular to study for some time [63].
For further information about the dynamical perspective on interval exchanges, we recommend
the survey [125] and book [62].
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Also, these groups have been studied from the perspective of geometric group theory. The rea-
son for this is that due to results by Juschenko-Monod [61] and Matui [87], whenever Γ =Z⊕λZ
(for some irrational λ ) the derived subgroup of IE(Γ) is a rare example of a simple, finitely gen-
erated amenable group. The existence of such groups was first shown in [61].
In Chapter 6, we take a different perspective from the above papers. Instead of taking an ac-
tion of Γ/Z on the Cantor space, we define a partial transformation groupoid α ∶Γ↷X based on
groupoids considered in [76] which realise IE(Γ) as a topological full group. Let GΓ be the asso-
ciated partial transformation groupoids. We give a systematic study of the family of groupoids
GΓ, their reduced C*-algebras C∗r (GΓ), the groupoid homology H∗(GΓ), and their topological
full groups F(GΓ) = IE(Γ).

Theorem 1.1.8 (Lemma 6.2.11). C∗r (GΓ) is classifiable in the sense of the Elliott classification

program.

This answers a question posed in [76], Section 6, where Li asked if C∗r (GΓ) was Z-stable.
The Elliott invariant is computed (see Lemma 6.2.12). Through Elliott classification, this identi-
fies C∗r (GΓ) with concrete C*-algebras in certain cases (see Corollaries 6.2.15 and 6.2.16). The
Elliott invariant recovers Γ as a subset of R, so we obtain the following classification result for
the groups IE(Γ):

Theorem 1.1.9 (Classification of IE(Γ)). (Theorem 6.2.13) Let Γ,Γ′ be dense additive sub-

groups of R. Then, the following are equivalent:

• IE(Γ) ≅ IE(Γ′) as abstract groups

• Γ = Γ′ as subsets of R

We remark that this is much stronger than saying Γ ≅ Γ′ as abstract groups, for example, we
see that IE(2πZ⊕Z) /≅ IE(πZ⊕Z). Note that this classification in the case when Γ is finitely
generated can also be recovered as a Corollary of [16, Theorem 10.3].

We study the homology of GΓ. The groupoid homology of GΓ is a shifted version of the
group homology of Γ.

Theorem 1.1.10. (Lemma 6.4.1) Let Γ be a dense countable subgroup of R, containing 1. Then,

H∗(GΓ) =H∗+1(Γ)

The key point of inspiration here is the computation of homology for groupoids in work by
Li [76]. In Theorem 6.4.3, Matuis HK Conjecture is verified directly for GΓ i.e. it is shown there
are isomorphisms:

K0(C∗r (GΓ)) ≅
∞
⊕
i=1

H2i−1(Γ) K1(C∗r (GΓ)) ≅
∞
⊕
i=1

H2i(Γ)
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We also use the framework of topological full groups to obtain homological information about
IE(Γ) in terms of the groupoid homology of GΓ. For example, Matuis AH conjecture was
recently confirmed for a broad class of groupoids containing all of the groupoids GΓ by Li in
[ [79], Corollary E]. This gives us the first homology group of IE(Γ) in terms of the homology of
Γ. From this concrete picture of the abelianisation we can say when IE(Γ) is finitely generated.

Theorem 1.1.11. (Theorem 6.4.5) Let Γ be a dense countable subgroup of R containing 1. The

following are equivalent:

1. Γ is finitely generated.

2. D(IE(Γ)) is finitely generated.

3. IE(Γ) is finitely generated.

1. Ô⇒ 2. follows by results of Matui and Nekrashevych, and was observed histori-
cally [60] [16]. 2. Ô⇒ 1. is shown to be general behavior (Corollary 3.5.6 formalises this). 2.
Ô⇒ 3. is a consequence of our results in homology, in particular, the long exact sequence seen
in Lemma 6.4.4. 3. Ô⇒ 1. is an elementary observation presumably known to experts.

We also apply [ [79], Corollary C] to describe the rational homology of IE(Γ) and D(IE(Γ)) in
terms of the rational homology of Γ (See Lemma 6.4.6). This summarises our general results,
but we can be more precise for restricted example classes.

We study the case when Γ ⊂Q in Subsection 6.5.1. The corresponding class of groupoids GΓ are
conjugate to the canonical AF groupoid models of UHF algebras in this case (Corollary 6.2.15).
From this, we find an explicit infinite presentation of IE(Γ) as the inductive limit of finite sym-
metric groups (Lemma 6.5.1). In this case, we show IE(Γ) and D(IE(Γ)) are rationally acyclic.
We also compute the abelianisation to be Z2⊗Γ.

In Subsection 6.5.3, we study the case when Γ = Z[λ ,λ−1], taking the viewpoint that IE(Γ)

is the Lebesgue-measure-preserving subgroup of the Stein-Thompson groups with slopes all
powers of λ Vλ on the interval, as studied in [116] [31] [38]. In this case, we obtain a concrete
generating set for IE(Γ) (Lemma 6.5.4) and study the homology of IE(Γ).

The main result of Section 6.3 is to find an explicit finite generating set of such D(IE(Γ)).

Theorem 1.1.12. (Theorem 6.3.11 (See [36], Proposition 8)) Let Γ ≅ Zd+1 be a dense additive

subgroup of R such that 1 ∈ Γ. Then we have that Γ/Z ≅ Zd ⊕Zk. Let k > 9 and d > 1. Then we

describe a concrete generating set S of D(IE(Γ)) such that ∣S∣ = 2d+4.

The proof of this Theorem is to describe an explicit subshift of {0,1}Γ/Z realising IE(Γ)

as a topological full group and then apply the main result of [36]. The specific description of
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generators can be found in Theorem 6.3.11 and Theorem 6.3.9. In particular, we have a concrete
generating set S with four elements for the simple group D(IE(Z⊕λ1Z⊕λ2Z)) where λ1,λ2

are rationally independent (see Example 6.3.10). This group is also known to be amenable by
the main result of [60]. We believe this is the first concrete finite generating set of an infinite
amenable simple group.

In Subsection 6.5.2, we obtain homological information about IE(Γ) for the case when Γ ≅Zd .
We show D(IE(Γ)) is rationally acyclic iff d = 2, and compute the abelianisation explicitly for
the cases d = 2,3:

Γ ≅Zd⇒ IE(Γ)ab =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Z⊕Z2
2 d = 2

Z⊕Z3
2 d = 3

The final example class we study in great detail in Chapter 7 is a family of Thompson-like
groups that were first exhibited in a paper by Melanie Stein in 1992 [116], but whose study
originated in work by Bieri-Strebel [8]. This definition is sometimes also attributed to Brown,
as in [116] Stein mentions that Brown has unpublished work on these groups. However, we
choose to call these groups Stein’s groups since she was the first mathematician to have a pa-
per published about this class of groups. This class of groups vastly generalises Thompson’s
group V but still satisfies many of the properties that V satisfies. For example, they provide a
source of simple derived subgroups which often are finitely generated. Let us briefly recall her
construction.

Definition 1.1.13 (Stein’s groups). Let Λ be a subgroup of (R+, ⋅). Let Γ be a subgroup of the

group ring (Z ⋅Λ,+). Let ℓ ∈ Γ. Then, Stein’s group V(Γ,Λ,ℓ) associated to the triple (Γ,Λ,ℓ),

is the group of right continuous piecewise linear bijections of (0,ℓ], with finitely many slopes,

all in Λ and finitely many nondifferentiable points, all in Γ.

This family also encompasses many interesting examples that have been studied in great
detail such as:

• Thompson’s group V , which corresponds to choosing Λ = ⟨2⟩,Γ =Z[1/2] and ℓ = 1.

• The Higman-Thompson groups Vk,r [59] where k,r ∈ N, which correspond to choosing
Λ = ⟨k⟩, Γ =Z[1/k], and ℓ = r.

• Stein’s integral groups, which corresponds to choosing a finite collection of integers
{n1, ...,nk} and a length r ∈N, and taking Λ = ⟨n1, ...,nk⟩, Γ =Z ⋅Λ, and ℓ = r.

• Vτ , Cleary’s group [38], [37], [30], also known as the irrational slope Thompson group
[31], which corresponds to choosing Λ = ⟨τ⟩,Γ = Z ⋅Λ, and ℓ = 1 for τ =

√
5−1
2 , and other

related Stein-Thompson groups with cyclic slopes (corresponding to different choices of
τ).
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Stein’s groups are the primary object of study in this chapter but we take a different perspec-
tive from other authors who have studied Stein’s groups previously [116], [31]. We study Stein’s
groups as topological full groups. This example class is not an exception to the philosophy that
ample groupoids are often more accessible to study. These ample groupoids can be described as
full corners in the universal groupoid of the inverse hull of Γ+⋉Λ, which, as shown in work of
Li [75], we could equally describe as the partial transformation groupoid of Λ⋉Γ on the Cantor
space X , which is the description which we give throughout Section 4. See Lemma 7.2.2 for the
precise construction. This perspective is convenient because the partial action β ∶ Λ⋉Γ↷ X is
minimal and topologically free. This gives us the simplicity of the derived subgroups of these
groups by using standard results in the literature of topological full groups [89].

The partial action β is also expansive, in the sense of classical dynamics. We show that this
notion of expansivity for partial actions is closely related to Nekrashevych’s notion of expansiv-
ity for groupoids [93], even equivalent in the case of compactly generated partial transformation
groupoids. We also study the property of compact generation for groupoids, showing that it is
preserved under taking full compact open corners. This line of inquiry allows us to show that the
derived subgroups are finitely generated under very general circumstances, which is the main
result of this Chapter:

Theorem 1.1.14 (Theorem 7.3.12). Let Λ be a subgroup of (R+, ⋅) and Γ be a Z ⋅Λ-submodule

and ℓ ∈ Γ. Then, D(V(Γ,Λ,ℓ)) is simple. Moreover, the following are equivalent:

1. Λ⋉Γ is finitely generated.

2. (Λ⋉Γ)⋉(0+,ℓ−] is compactly generated for all ℓ ∈ Γ.

3. D(V(Γ,Λ,ℓ)) is finitely generated for all ℓ.

4. D(V(Γ,Λ,ℓ)) is 2-generated for all ℓ.

This generalises the known case due to Stein, who showed that D(V(Γ,Λ,ℓ)) is simple
and finitely generated in the case when Λ is generated by finitely many integers, Γ = Z ⋅Λ,
and ℓ ∈ N [116] who herself generalised work of Higman [59]. It is important to note here
that what Stein shows is a stronger statement, in fact that this particular subclass of groups
are of type F∞. The above result also generalises the result of Burillo-Nucinkis-Reeves who
showed D(V(Γ,Λ,ℓ)) is simple and finitely generated in the case of Cleary’s group, i.e. when
Λ = ⟨1+

√
5

2 ⟩, Γ = Z ⋅Λ and ℓ = 1 [31]. In particular, a consequence is that for all choices of
irrational number λ , the Stein-Thompson groups with cyclic slopes V(Z[λ ,λ−1],⟨λ ⟩,1) has a
simple and finitely generated derived subgroup.

In Section 6. we study the homology of Stein’s groups. Since the conception of topological
full groups, there has been a deep connection to groupoid homology, most notably in Matui’s
AH conjecture [88], [89]. This conjecture was recently confirmed by Li [79, Corollary E] under
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very minor regularity conditions which are satisfied by our groupoid model for Stein’s groups.
Inspired by Szymik-Wahl’s work on the homology of Higman-Thompson groups [118], the
framework of Li [79] found other connections between the group homology of a topological
full group to the underlying groupoid’s homology. In the case of Stein’s groups, the groupoid
homology is comparatively computable, making the homology of Stein’s groups accessible for
the first time.

Using this homology computation in combination with [79, Corollory E], we show that the
abelianisation of V(Γ,Λ,ℓ) is finite rank for the case of Γ,Λ generated by finitely many algebraic
numbers (Lemma 7.4.4). Combining this with Theorem 7.3.12 we prove a finite generation
theorem for the V -type groups:

Theorem 1.1.15. Let Λ be a subgroup of (R+, ⋅) generated by finitely many algebraic numbers.

Let Γ be a submodule of the group ring (Z ⋅Λ,+). Let ℓ ∈Γ. Then, V(Γ,Λ,ℓ) is finitely generated.

These homology computations are especially interesting from the perspective of homologi-
cal stability since we show that the natural inclusion of Stein’s groups acting upon compact inter-
vals into the noncompact Stein groups (say coming from the inclusion of (0,ℓ] in R) induces an
isomorphism on the level of homology. We consider this to be a generalisation of [118, Theorem
3.6].

Corollary 1.1.16. (Corollary 7.4.5) Let Λ be a subgroup of (R, ⋅), Γ be a submodule of (Z ⋅Λ,+).
Let U be any closed subset of R with nonempty interior. Let V(Γ,Λ,U) be the group of right

continuous piecewise linear bijections of R with finitely many slopes (all in Λ) and finitely many

nondifferentiable points (all in Γ) with finite support and that are the identity on Uc. Then for

all ∗ ∈N:

H∗(V(Γ,Λ,U)) ≅H∗(V(Γ,Λ,R))

For more specialised homology results, we turn our focus onto two subclasses of Stein’s
groups. The first subclass is the case where the group of slopes is cyclic, we refer to these
groups as Stein-Thompson groups with cyclic slopes.

The homology of Stein-Thompson groups with cyclic slopes is related to the homology
of certain ample groupoids which was computed by Li in [76]. This groupoid homology is
highly sensitive to the minimal polynomial of the underlying generator λ , which leads the Stein-
Thompson groups with cyclic slopes to exhibit diverse homological behaviour in the algebraic
case. In Corollary 7.4.8, we compute the abelianisation V(Z[λ ,λ−1],⟨λ ⟩,ℓ))ab for low degree
algebraic numbers λ explicitly, generalising and unifying the known results due to Higman [59]
(who computed the abelianisation for λ ∈N) and Burillo-Nucinkis-Reeves [31] (who computed
the abelianisation to be Z2 for λ =

√
5−1
2 ).
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We also compute the rational homology explicitly for certain Stein-Thompson groups with
cyclic slopes in Theorem 7.4.6. Notably, the Higman-Thompson groups were shown to all be
rationally acyclic [118, Corollary C] by Szymik-Wahl. The Stein-Thompson groups with cyclic
slopes vary dramatically:

• Cleary’s group Vτ is rationally acyclic.

• There are Stein-Thompson groups with cyclic slopes which are not rationally acyclic, or
even virtually simple. For example, if we take λ = 3+

√
5

2 , then V(Z[λ ,λ−1],⟨λ ⟩,1)ab = Z
by Corollary 7.4.8.

Groupoid homology itself is an invariant for topological full groups via Matui’s isomorphism
theorem. This allows us to distinguish different examples of Stein’s groups. For example,
see Corollary 7.4.2, which gives an invariant for Stein’s groups in terms of Γ,Λ and ℓ. This
invariant is fine enough to give one direction in the classification of Higman-Thompson groups
[98] and in combination with our explicit homology computations for Stein-Thompson groups
with cyclic slopes enable us to prove an analogue to Higman’s result [59] giving one direction
on the classification of Higman-Thompson groups [98], but generalised to those whose group
of slopes are ⟨λ ⟩, where λ is an algebraic number of degree less than or equal to 2, and more
arbitrary lengths ℓ of the compact intervals:

Corollary 1.1.17 (Corollary 7.4.18). Let λ ,µ < 1 be algebraic numbers with degree ≤ 2 and let

ℓ1 ∈Z[λ ,λ−1],ℓ2 ∈Z[µ,µ−1]. Suppose that V(Z[λ ,λ−1],⟨λ ⟩,ℓ1) ≅V(Z[µ,µ−1],⟨µ⟩,ℓ2).

Then, λ = µ , and ℓ1−ℓ2 ∈ (1−λ)Z[λ ,λ−1].

The second subclass we study in detail is the class of examples for which Λ is generated
by several integers, which we call Stein’s integral groups. To compute the groupoid homol-
ogy for this case, we rely on the framework of k-graphs, identifying our groupoid with the
groupoid of a single vertex k-graph. The observation that we can rephrase the groupoid model
of these particular groups in the language of k-graphs is also noted in upcoming work by Con-
chita Martınez-Pérez, Brita Nucinkis and Alina Vdovina, we include it here for completeness
in the literature and for our homology computations. Most notably, this allows us to use the
groupoid homology computations of Farsi-Kumjian-Pask-Sims [49] to obtain acyclicity results
on the level of Stein’s integral groups.

Corollary 1.1.18 (Corollary 7.4.22). Let k > 1 and n1, ..,nk be a finite collection of natural

numbers. Let ℓ ∈Z[ 1
n1n2...nk

]. Then V(Z[ 1
n1n2...nk

],⟨n1,n2, ...,nk⟩,ℓ) is rationally acyclic.

V(Z[ 1
n1n2...nk

],⟨n1,n2, ...,nk⟩,ℓ) is integrally acyclic if and only if gcd(n1−1, ...,nk−1) = 1.

This result falls under the context of the result of Szymik-Wahl [118, Corollary C] that the
Higman-Thompson groups are rationally acyclic and that Thompson’s group V is acyclic. The
key tool we use is the two acyclicity results in the paper of Li [79, Corollary C, Corollary D]
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1.2 Structure

In Chapter 2. “Ample groupoids and their C*-algebras”, we discuss the key preliminaries about
ample groupoids needed to understand topological full groups. We comment on the relationship
between ample groupoids and groupoid C*-algebras, which is relevant to the research conducted
in Chapter 6. This chapter is not based on original research, and has much overlap with classical
sources on groupoid C∗-algebras such as [114].

In Chapter 3. “Topological full groups of ample groupoids” we discuss the definition of a
topological full group and the key results needed. In Section 3.1 we give the definition of a topo-
logical full group. In Section 3.2 we discuss the subgroup structure of topological full groups,
in particular understanding the alternating and symmetric subgroups, and their relationship with
the derived subgroup of the topological full group. In Section 3.2 we discuss the simplicity of
the derived subgroup of a topological full group, and prove it is simple in the effective, mini-
mal purely infinite case without invoking the additional assumption of Hausdorffness. In Section
3.4. we discuss Matui’s reconstruction theorem, which proves that one may reconstruct an ample
groupoid (up to isomorphism) from its topological full group, under the conditions of minimal-
ity and effectiveness. In Section 3.5. we discuss the finite generation of the derived subgroup,
in particular the relationship to groupoid expansivity. We prove slightly more in the case of
expansive actions of finitely generated abelian groups, namely we describe the generators. In
Section 3.6. we describe the relationship between the homology of topological full groups and
the homology of ample groupoids. The purpose of Section 3.7. is to survey the significant ex-
amples of topological full groups which have closed major existence problems in group theory.
This section again is not based on original research, but to give an overview of the key results in
the literature of topological full groups and generalise/modernise them slightly where needed.

The purpose of Chapter 4. is to survey the research and history of the study of Thompson’s
group V and many other Thompson-like groups; Stein’s groups, the Brin-Higman-Thompson
groups. We then connect this research to topological full groups in Section 4.4., describing both
V and generalisations as topological full groups. This chapter is not based on original research.

Chapter 5. is the first chapter which is based on original research. This chapter is based
on the preprint written by the author and Professor Eusebio Gardella [51] and so the original
research is joint work. This chapter is aimed at understanding the topological full groups of
purely infinite minimal groupoids, which we consider as generalisations of Thompson’s group
V . In this paper, we prove Theorem 1.1.1, Theorem 1.1.6 and explore the consequences of these
results.

Chapter 6. is the second chapter based on original research. This chapter is heavily based
on the solo author preprint [119] which is currently available as a preprint on the ArXiv. In this
chapter we study interval exchange groups, and it is in this chapter we prove Theorem 1.1.9,
Theorem 1.1.9, Theorem 1.1.11 and Theorem 1.1.12.

Chapter 7. is the third and final chapter based on original research. This chapter is heavily
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based on the solo author preprint [120], currently available as a preprint on the ArXiv. In this
chapter we prove Theorem 1.1.14, Theorem 1.1.15 and explore the consequences of these results
in great detail.



Chapter 2

Ample groupoids and their C*-algebras

Let us introduce some notation:

• C is reserved for the Cantor set.

• Throughout, N refers to the natural numbers and we take the convention that 0 ∉N.

• When coefficients are omitted in homology, this means the underlying module A is taken
to be Z.

We begin by introducing groupoids, a relaxed notion of a group that allows for many units.
Groupoids are the central models for all the objects we study throughout this text. None of the
results in Chapter 2 are original work, we are simply giving a quick introduction to the key
preliminaries needed for understanding groupoids. For this reason, one might equally consult
several other sources for a deeper understanding of the fundamentals:

• The excellent notes of Aidan Sims [113].

• Books of Paterson [99] or Renault [103].

2.1 Algebraic groupoids

This subsection follows similar content to [113], Section 2.1.

Definition 2.1.1 (Groupoid- Category Theoretic). A groupoid G is a small category where every

morphism is an isomorphism.

This generalizes the notion of a group, which is a small category with one object where every
morphism is an isomorphism. It is well known that there is an equivalent algebraic definition.

Definition 2.1.2 (Groupoid - Algebraic). A groupoid is a set G together with a distinguished

subset G(2) ⊂ G ×G called the composable pairs, a composition map from

G(2)→ G (g,h)↦ gh,

17
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and an inverse map

G → G g↦ g−1,

such that the following hold:

• The product is associative. If (g, f ) ∈ G(2), ((g f ),h) ∈ G(2) then ( f ,h) ∈ G(2) and (g, f h) ∈

G(2) such that (g f )h = g( f h).

• The inverse map is involutive.

• For all g ∈ G,(g,g−1) ∈ G(2) and moreover for all (g,h) ∈ G(2)

h = g−1gh, and g = ghh−1.

We call the set G(0) = {gg−1 ∶ g ∈ G} the unit space of our groupoid. This terminology relates
to the third bullet point– that these elements act as (partial) identities algebraically. It follows
from the above axioms that we have two surjective maps, the range map

r ∶ G → G(0) g↦ g−1g

and the source map
s ∶ G → G(0) g↦ gg−1.

Using these, the following algebraic properties may be deduced:

Lemma 2.1.3. (Basic Algebraic Properties of Groupoids) Let G be a groupoid. Then:

1. G is cancellative. If (g,h),(g, f ) ∈ G(2) and gh = g f then f = h.

2. If (g,h) ∈ G(2) then (h−1,g−1) ∈ G(2) and (gh)−1 = h−1g−1.

3. For all g ∈ G, s(g)g = g = gr(g).

4. For all g ∈ G, s(g−1) = r(g) and r(g−1) = s(g).

5. For all u ∈ G(0), u = s(u) = r(u) = u−1.

6. For all (g,h) ∈ G(2), s(gh) = s(g), and r(gh) = r(h).

7. The composable pairs are exactly the pairs of groupoid elements with compatible ranges

and sources; G(2) = {(g,h) ∈ G ∶ r(g) = s(h)}.

Proof. See [114], Lemma 2.1.2, Lemma 2.1.3, Lemma 2.1.4, and Remark 2.1.5.

There is an intuitive way to visualise a groupoid. Namely, we think of elements as arrows
on our unit space from r(g) to s(g).
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G(0)

s(g) r(g)

g

In which case, the inverse g−1 is an arrow in the opposite direction (4.).

G(0)

s(g) r(g)

g−1

Then, if s(h) = r(g), we are able to compose our arrows g,h. In this case, we get a new arrow
gh from s(g) to r(h):

G(0)

s(g) r(g) = s(h)

g

r(h)

h

gh

Let us give some examples.

Example 2.1.4 (A set). We can think of any set X as a groupoid. This is by declaring X =X(0) =

X(2). Here then, nothing is composable; we just have a unit space.

Example 2.1.5 (A group). Another extreme would be to consider a discrete group G as a

groupoid. Here we only have one unit; the unit of the group G(0) = {1}. Then, we have ar-
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rows g ∶ 1↦ 1 labelled by elements of our group. Therefore, G(2) =G×G. In fact, the following

three properties are equivalent:

1. G is a group.

2. G(0) is a singleton.

3. G(2) = G ×G.

1. Ô⇒ 2. ⇐⇒ 3. follows directly from Lemma 2.1.3. Suppose we have that G(2) = G ×G and

that G(0) = {u} is a singleton. Let us show 1. by verifying the group axioms:

• The universal multiplication is associative, since groupoid multiplication is associative.

• The identity element is u ∈ G, by 2.1.3, 3. This is since for all g ∈ G, s(g) = r(g) = u.

• Given g ∈ G, the inverse element is the groupoid inverse g−1 ∈ G. This can be verified since

for all g ∈ G, s(g) = r(g) = u.

Therefore, groupoids generalise both sets and groups. We can combine the two previous
examples in the following way:

Example 2.1.6 (A group acting on a set). Suppose we have a group Γ acting on a set X. We

can encode this through a groupoid which we call a transformation groupoid and label by Γ⋉X

throughout this text. Our groupoid as a set is the Cartesian product Γ×X. For all x ∈X ,g ∈Γ we

have arrows x to g(x) labelled (g,x). Then, (g,x)−1 = (g−1,g(x)). Composition is only allowed

for pairs (g,x),(h,y) such that y = g(x). In this case, (g,x)(h,g(x)) = (hg,x). This makes the

unit space G(0) = {(1,x) ∶ x ∈ X}, which is canonically identifiable with X.

Another example arises from any equivalence relation on a set.

Example 2.1.7 (Equivalence relation groupoid). Let X be a set, and ∼ be an equivalence relation

on X. We can encode this through a groupoid. Let G∼ = {(x,y) ∈ X2 ∶ x ∼ y}. We say that

(x,y)(z,w) is composable iff y = z in which case the product (x,y)(y,w) = (x,w). As before, we

can identify X = G(0) and think of (x,y) as an arrow from x to y.

A particular example that we shall see later is the groupoid that comes from the full equivalence

relation on n points (the equivalence relation on {1, ...,n} that declares each element to be

equivalent), we denote this particular groupoid by Rn.

Example 2.1.8 (Groupoids are closed under disjoint unions, Cartesian products, restrictions of
unit space). Because of their relaxed structure, we can do many things to a groupoid to get new

groupoids. Say we have two groupoids G,H.



CHAPTER 2. AMPLE GROUPOIDS AND THEIR C*-ALGEBRAS 21

• G ⊔H is a groupoid, taking inverses and multiplication in the constituent groupoids.

g−1 =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

g−1 g ∈ G

g−1 g ∈H

The composable pairs are the pairs of the elements which are composable in G or H, i.e.

(G⊔H)(2) = G(2)⊔H(2). In this case multiplication occurs in G if (g,h) ∈ G(2) and inH if

(g,h) ∈H(2)

• G ×H is a groupoid with coordinate wise operations of inversion and composition.

• Let G be a groupoid and X ⊂ G(0). Then G∣XX ∶= {g ∈ G ∶ r(g),s(g) ∈ X} is a groupoid with

operations inherited from G.

It is trivial to show that the above examples are indeed groupoids.

We end with the notion of a groupoid homomorphism.

Definition 2.1.9 (Groupoid Homomorphism). A map Φ ∶G→H between two groupoids is called

a homomorphism if for all (g,h) ∈ G(2),(Φ(g),Φ(h)) ∈ H(2) and Φ(gh) = Φ(g)Φ(h). If Φ

is bijective, and its inverse is once again a groupoid homomorphism, it is called a groupoid

isomorphism.

Subsets of a given groupoid can be multiplied together pointwise. Given B1,B2 ⊂G we define
their product as the pointwise product

B1B2 = {gh ∈ G ∶ g ∈ B1,h ∈ B2 s(h) = r(g)}

and the inverse of B1 similarly

B−1
1 ∶= {g

−1 ∈ G ∶ g ∈ B1}.

We can visualise the multiplication and inversion of subsets in similar diagrams to groupoid
elements. The difference here is that a subset B1 maps one subset of the unit space to another:

G(0)

B1

s(B1) r(B1)
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And inversion gives an arrow which takes r(B1) back to s(B1). Therefore B1B−1
1 ,B−1

1 B1 acts as
partial identities on r(B1),s(B1) respectively.

G(0)

s(B1)

r(B1)

B−1
1

Composition B1B2 is given by the composition of collection of arrows gh where (g,h) ∈ B1 ×

B2∩G
(2).

G(0)

B1

s(B1) r(B1)

B2

r(B2)

s(B2)

Let us consider what the composition B1B2 may look like for this example. Note that not all of
r(B1)is contained in s(B2). To understand the composition B1B2, we are concerned only with
the subsets of B1,B2 we can compose here; U = s(B2)∩r(B1), it’s image under B2, and preimage
under B1.

G(0)

B1

B−1
1 U

B2

B2UUs(B1)
s(B2)

r(B1) r(B2)

Then B1B2 is the bisection taking B−1
1 U to B2U .
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G(0)

B1B2

B−1
1 U

B2Us(B1)

r(B2)

Note crucially in this example that r(B1B2) ⊊ r(B2) and s(B1B2) ⊊ s(B1).

2.2 Étale groupoids

This subsection follows similar content to [113], Section 2.3. and 2.4. In our text, the groupoids
we are concerned with have a topology. Just like the notion of a topological group, this topology
will need to respect inversion and composition.

Definition 2.2.1. (Topological Groupoids) A topological groupoid is a groupoid with a topology

making the composition and inversion maps continuous.

Some basic facts follow.

Proposition 2.2.2 (Basic Topological Properties). Let G be a topological groupoid. The follow-

ing hold.

• The inversion map is a homeomorphism of G.

• The range and source maps are continuous surjections.

Proof. • The inversion map is bijective and continuous, and is it’s own inverse as a contin-
uous map.

• The range and source maps are each the composition of continuous maps, and therefore
continuous. Since each u ∈ G(0) satisfies s(u) = r(u) = u, it is surjective.

Examples in this text tend to have a topology that makes G Hausdorff. We will signpost if
any examples fall outside the scope of this. We also often deal with groupoids which are étale.

Definition 2.2.3 (Étale Groupoids). A groupoid G is called étale if the range and source maps

are local homeomorphisms. In addition, we have a standing assumption the topology on G

makes our unit space G(0) second countable and Hausdorff.
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Note that the additional assumption that the unit space is second countable and Hausdorff is
not often given within the definition of étaleness, but is often a standing assumption in the liter-
ature in general since these restrictions of the unit space give groupoids which can be completed
to groupoid C∗-algebras.

Étale groupoids are often understood best by studying their open bisections.

Definition 2.2.4 (Open Bisections). A subset B of a topological groupoid G is called an open

bisection if r,s are injective when restricted to B. Let B denote the open bisections.

Since s∣B and r∣B are local homeomorphisms in the étale case, we can think of our bisection B

as a local homeomorphism of our unit space taking s(B) to r(B). As mentioned before, étaleness
means that open bisections then hold much of the topological information in G. One can make
this precise through the following lemma.

Lemma 2.2.5. (See [113], Lemma 2.4.9). Let G be a topological groupoid. The following are

equivalent:

• G is étale.

• The open bisections generate the topology of G.

We note that bisections are closed under several operations:

• If B is a bisection, so is B−1.

• If B′ is a bisection the compositon BB′ is again a bisection (so long as the groupoid is
étale).

• If B′ is a bisection with s(B′)∩ s(B) = r(B′)∩ r(B) = ∅ then B⊔B′ is a bisection; i.e. we
can think of the union of two open bisections.

We will draw a diagram to explain our third bullet point. The hypothesis is that we have two
bisections B,B′ with disjoint ranges and sources.

G(0)

s(B) s(B′)
r(B)r(B′)

BB′
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This allows us to consider their disjoint union as a single open bisection B⊔B′:

G(0)

r(B′)⊔ r(B)

B⊔B′

r(B)⊔ r(B′)

The compact open bisections play a crucial role in the study of topological full groups.

Definition 2.2.6 (Compact Open Bisections). Let Bk denote the compact open bisections.

Let us give some examples of étale groupoids, first by endowing our examples seen previ-
ously with a topology.

Example 2.2.7 (Discrete Group acting on a topological space). Let Γ be a discrete group acting

by homeomorphisms on some locally compact Hausdorff space X. Consider the transformation

groupoid Γ⋉X, as in example 2.1.6. Then we can topologise by declaring sets of the form (g,U)

where U is open in X to be open in our groupoid. This forms the basis of the topology. In turn

this makes Γ⋉X an étale groupoid. . See [113, Example 2.4.5].

Example 2.2.8 (Partial Transformation Groupoids). Continuing from the above example, let

us perform the third operation from example 2.1.8. Let Y ⊂ X be an open subset of X. The

restriction of Γ⋉X to Γ⋉X ∣YY is known as a partial transformation groupoid and is written

simply as Γ⋉Y . This will again be étale, in fact it is easy to see that étaleness is preserved by

each of the operations in example 2.1.8.

Unlike before, it is not necessarily true that for all g ∈ Γ,y ∈ Y that (g,y) ∈ Γ⋉Y since it

might be that g(y) ∉Y . In practice this makes working with these groupoids very subtle, since

it can be difficult to describe in terms of Γ and Y which elements (g,y) ∈ Γ×Y are in the par-

tial transformation groupoid. For example, it is a common occurence that (gh,x) ∈ G∣YY yet

(h,x),(g,h(x)) ∉ G∣YY . This fundamental difference can be visualised in the following way:
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X

Y

ygh(y)

h(y) h
g

gh

Lemma 2.2.9. Let G be an étale groupoid. Then, the compact open bisections form an inverse

semigroup acting upon the unit space by partial homeomorphisms.

Proof. Subset multiplication is associative, inherited by the associativeness of groupoid notifi-
cation. The pointwise inverse B−1 acts as an inverse in the sense of inverse semigroups, since
BB−1B = r(B)B = B,B−1BB−1 = B−1r(B) = B−1s(B−1) = B−1. As recalled above, open bisections
always act by partial homeomorphisms on the unit space for étale groupoids.

There are many key definitions we use for étale groupoids throughout that are given below..

Definition 2.2.10 (Orbit). Let u ∈ G(0). Then the orbit of u is the subset of G(0) given by Gu ∶=

{r(g) ∶ s(g) = u}.

Definition 2.2.11 (Isotropy Group). The isotropy group of a unit u ∈ G(0) is the group given by

Gu
u ∶= {g ∈ G ∶ s(g) = r(g) = u}.

Let G(0)triv ∶= {u ∈ G
(0) ∶ Gu

u = {u}} be the subset of the unit space that has trivial isotropy

groups. We let Iso(G) =⋃u∈G(0) G
u
u , which is referred to as the isotropy groupoid.

Definition 2.2.12 (Minimal). A topological groupoid is called minimal if for all u, the orbit of

u, Gu, is dense in G(0). This is equivalent to the unit space having no closed invariant subsets.

Definition 2.2.13 (Effective). An étale groupoid G is effective if the interior of the isotropy

groupoid, Iso(G)○ agrees with the unit space G(0).

Definition 2.2.14 (Principal). An étale groupoid is called principal if G(0)triv = G
(0).

Definition 2.2.15 (Topologically Principal). An étale groupoid is called topologically principal

if the points with trivial isotropy is dense in the unit space; G(0)triv = G
(0).

The relationship between effectiveness and topologically principal is somewhat subtle. How-
ever, the following is known:

Remark 2.2.16. For a Hausdorff second countable groupoid G, topologically principal is equiv-

alent to effective.
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Proof. Note the standing assumption of Hausdorffness in the text of Sims [114]. Therefore, this
result is proven in Lemma 4.2.3 of this text (see Remark 4.2.4).

The following rephrasing of effectiveness for étale groupoids is extremely useful for the
study of topological full groups.

Proposition 2.2.17. Let G be an étale groupoid. The following are equivalent:

• G is effective.

• For all open bisections B /⊂ G(0), there exists u ∈ s(B) such that Bu ≠ u.

Proof. If G is étale a basis for the topology is the open bisections.
Suppose the groupoid is effective. Then suppose B is a bisection such that for all g ∈ B,

s(g) = r(g). Then B is contained in the interior of the isotropy. Therefore, B ⊂ G(0).
Suppose the interior of the isotropy contains something other than G(0), i.e. the groupoid is

not effective. This implies there exists an open set, and therefore an open bisection B such that
for all g ∈ B,s(g) = r(g) but B /⊂ G(0).

One way to interpret this is that for effective groupoids, open bisections will encode much
of the algebraic information of G.

Example 2.2.18 (What do these definitions mean for transformation groupoids?). Étale groupoids

are often thought of as generalisations of classical dynamical systems, since transformation

groupoids are such an essential source of examples and inspiration. In turn, many of the above

definitions are generalisations of notions in classical dynamics, rephrased in terms of groupoids.

Let Γ be a discrete group acting by homeomorphisms on a locally compact Hausdorff space X,

and let Γ⋉X be the transformation groupoid:

• The orbits of an element x ∈ X under the action is in classical dynamics is the set {g(x) ∶

g ∈ Γ}. This agrees with the groupoid notion of orbit of x, Γ⋉Xx.

• In classical dynamics, the isotropy group of x ∈ X is the subgroup Γx ∶= {g ∈ Γ ∶ g(x) = x}.

This agrees with the isotropy group of the transformation groupoid at x, Γ⋉Xx
x .

• A group action is called minimal whenever there are no closed invariant subsets of X.

This is equivalent to minimality of the groupoid Γ⋉X.

• A group action Γ↷X is called free if for all g ∈Γ,x ∈X, g(x) = x Ô⇒ g = 1. This property

is equivalent to saying that the groupoid Γ⋉X is principal.
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• Likewise, an action is called topologically free if the set of points that it acts freely on,

{x ∈ X ∶ gx = x Ô⇒ g = 1}, is dense in X. Because such transformation groupoids are

Hausdorff and second countable (assuming the unit space X is second countable), using

Remark 2.2.16 it is therefore equivalent to say:

– A group action Γ↷ X is topologically free.

– The transformation groupoid {x ∈ X ∶ gx = x Ô⇒ g = 1} is topologically principal.

– The transformation groupoid {x ∈ X ∶ gx = x Ô⇒ g = 1} is effective.

A groupoid of germs is a way of attaching an effective étale groupoid to an arbitrary group
action.

Definition 2.2.19 (Groupoid of Germs). Let G be an infinite discrete group acting by homeomor-

phisms on a locally compact Hausdorff space X. Let G⋉X denote the transformation groupoid.

Let ∼ be an equivalence relation given by

(g,x) ∼ (h,y) ⇐⇒ x = y and there exists an open subset U ⊂ X containing x

such that g(z) = h(z) ∀z ∈U.

In other words, the germ at x under g agrees with the germ at x under h. Then, we let (G⋉X)germ

denote the groupoid of germs of the action G↷ X, which is given by the quotient of G⋉X under

the equivalence relation ∼.

Let us end with the definition of groupoid comparison, a regularity condition that is often
convenient to presume. Recall that on a locally compact Hausdorff space, a Radon measure is a
measure µ on the σ -algebra of Borel sets such that is finite on all compact sets, outer regular on
all Borel sets and inner regular on all open sets.

Definition 2.2.20. LetM(G) denote the space of nonzero invariant Radon measures on G(0),

that is Radon measures µ such that for all compact open bisections B,µ(s(B)) = µ(r(B)).

An ample groupoid G is said to have comparison if for every pair of compact open subsets

U,V ⊂ G(0) such that µ(U) < µ(V),∀µ ∈M(G), there exists a compact open bisection B such

that s(B) =U and r(B) ⊂V .

Comparison is a somewhat subtle condition, since it is difficult to find an example of an étale
groupoid without comparison. See Question 2.7.1 for a relevant open question.

2.3 Ample groupoids

Many groupoids we study have the Cantor space as their unit space. We call these groupoids
Cantor groupoids.
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Definition 2.3.1 (Cantor Groupoid). An étale groupoid is called a Cantor groupoid if the unit

space is a Cantor space.

More generally, an ample groupoid is a groupoid whose unit space is totally disconnected.

Definition 2.3.2 (Ample Groupoid). An étale groupoid is called ample if the unit space is totally

disconnected, i.e. such that the only connected subsets are the singletons.

Remark 2.3.3. Recall that in our definition of étale we include two topological regularity con-

ditions on the unit space, we ask that G(0) is locally compact and Hausdorff. Therefore, this is

also inherited into the definition of ample. In this case, the unit space of an ample groupoid is

locally compact, Hausdorff, and totally disconnected.

Note that locally compact, Hausdorff and totally disconnected spaces can equivalently be

described as the topological spaces that are locally compact, Hausdorff and zero-dimensional;

that is the locally compact, Hausdorff spaces who have a basis of compact open subsets (see [3,

Proposition 3.1.7]). Furthermore, suppose that an ample groupoid is second countable, and the

unit space does not have isolated points. In this case, we have that compact subsets of the unit

space are the Cantor space, by Brouwers theorem.

This terminology comes from the fact that there is an ample source of compact open bisec-
tions.

Lemma 2.3.4 (Equivalent Definitions). Let G be an étale groupoid. The following are equiva-

lent:

1. G is ample.

2. G has a basis of compact open bisections.

Proof. As discussed above, with the regularity imposed under being ample, a characterisation
of our groupoid’s unit space being totally disconnected is that it admits a basis of open compact
subsets. From these facts, the implication 2. Ô⇒ 1. is trivial.

Let us show 1. Ô⇒ 2. we have that G has a basis of open bisections, since it is étale. Let B

be an open bisection. Since G(0) is totally disconnected, it has a basis of open compact subsets.
Therefore, since s(B) is open in G(0), we can write s(B) =⋃i∈I Ki where each Ki is compact and
open in G(0). Then B =⋃i∈I B∣Ki is a decomposition of B into compact open bisections. Therefore
any open bisection can be written as a union of compact open bisections and we are done.

We end with important examples of ample groupoids.

Example 2.3.5 (Cantor Minimal Systems). Let T ∶ C → C be a minimal homeomorphism of the

Cantor set, that is, a homeomorphism such that for all x ∈ C, the orbit T n(x) n ∈N is dense in C.

One can use T to define an action of Z on the Cantor space by α(n)(x) = T n(x). Then, the

transformation groupoid Z⋉C as in Example 2.2.7 is an ample, minimal and principal groupoid.
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Example 2.3.6 (Transformation Groupoids). More generally, if we have a discrete group Γ↷α X

acting by homeomorphisms on a totally disconnected space X, the resulting transformation

groupoid Γ⋉X as in Example 2.2.7 is ample.

Example 2.3.7 (Partial Transformation Groupoids). Continuing Example 2.2.8, if we further-

more assume that Y is totally disconnected we can form an ample groupoid from this partial

action. Let Γ↷ X be an action of a discrete group on a locally compact Hausdorff space X. Let

Y ⊂ X be a totally disconnected subspace of X. Then the partial action of Γ↷Y gives rise to an

ample partial action groupoid Γ⋉X.

Example 2.3.8 (AF Groupoids). Let G be a second countable étale groupoid whose unit space

is totally disconnected and compact.

• We say that K ⊂ G is an elementary subgroupoid if K is a compact open principal sub-

groupoid of G such that K(0) ≅ G(0).

• We say that G is an AF groupoid if it can be written as an increasing union of elementary

subgroupoids.

See [103, Definition III.1.1] [52, Definition 3.7] [88] for further information on AF groupoids.

A more concrete, restricted class of these groupoids are the UHF groupoids, which we refer
to later in our chapter on interval exchange groups.

Example 2.3.9 (UHF Groupoids). Let {ki}i∈N be a sequence of natural numbers. Let k(n) =

∏
n
i=1. We associate an AF groupoid as follows.

For each n ∈N, let {1, ...,k(n)} =Xn. For each n ∈N let us associate a principal groupoid Kn

as the transformation groupoid Zk(n)⋉Xn of the action of the cyclic group α ∶Zk(n)↷ Xn by:

α(1)(n) = n+1 mod k(n)

Then, there are natural inclusionsKn↪Kn+1, which map the groupoid element (m,x) ∈Kn to the

compact open bisection (mkn+1,Sx) where Sx = {xkn+1,xkn+1 +1,xkn+1 +2, ...,xkn+1 + kn+1 −1}.
Let us take G to be the inductive limit via these inclusions G =⋃Kn. By construction, this is an

AF groupoid, since each Kn is a compact open principal subgroupoid of G.

This AF groupoid is known as a UHF groupoid. It is ample Cantor, minimal, and principal.

It is also the standard groupoid model of the UHF algebra associated with the supernatural

number∏∞i=1 ki, and the Bratelli diagram

k(1)
k(2)/k(1)
ÐÐÐÐÐ→ k(2)

k(3)/k(2)
ÐÐÐÐÐ→ k(3)

k(4)/k(3)
ÐÐÐÐÐ→⋯

k(n)/k(n−1)
ÐÐÐÐÐÐ→ k(n)

k(n+1)/k(n)
ÐÐÐÐÐÐ→⋯

See [41] III for more information about UHF algebras, Bratelli diagrams, and supernatural

numbers. For the purposes of this text, all one needs to understand is that Bratelli diagrams and
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supernatural numbers are a particular invariant one can associate with UHF algebras which

we use to identify certain UHF algebras and UHF groupoids in Chapter 6.

Example 2.3.10 (SFT groupoids). See [89], Chapter 6 for a detailed introduction and discus-

sion around SFT groupoids, as well as their key properties. Let (V,E) be a finite directed graph,

where V is a finite set of vertices, and E is a finite set of edges. For each e ∈ E, let i(e) denote

the initial vertex of e and t(e) denote the terminal vertex of e. Let M = (M(v,v′))v,v′∈V be the

adjacency matrix of (V,E), that is:

M(v,v′) = #{e ∈ E ∶ i(e) = v and t(e) = v′}.

Let us assume that for all v,v′ ∈ V there exists n ∈ N such that Mn(v,v′) > 0 (this property is

known as irreducibility) and that M is not a permutation matrix. Let us define a Cantor set by

endowing:

X = {(xk)k∈N ∈ EN ∶ t(xk) = i(xk−1) ∀k ∈N}

with the product topology. We call this Cantor set the path space. This comes with a natural

surjective continuous map

σ ∶ X → X σ(x)k = xk+1∀k ∈N, ∀x = (xk)k ∈ X .

This is known as the one sided shift on X, and is a local homeomorphism.

The étale groupoid G(V,E) is (as a set) given by

G(V,E) = {(x,n,y) ∈ X ×Z×X ∶ ∃k, l ∈N s.t. n = k− l,σ k(x) = σ
l(y)}.

The topology of G(V,E) is generated by the sets

{(x,k− l,y) ∈ G(V,E) ∶ x ∈ A,y ∈ B, σ
k(x) = σ

l(y)}

where A,B are open subsets of X and k, l ∈ N. Multiplication is defined only for elements

(x,n,y),(y′,n′,z) such that y = y′. In which case the multiplication and inverse are given by

(x,n,y)(y,n′,z) = (x,n+n′y) (x,n,y)−1 = (y,−n,x).

We identify X with the unit space of G(V,E) via x↦ (x,0,x).
A k-tuple µ = (e1, ...,ek) ∈ Ek such that t(ei) = i(ei+1) for i = 1, ...,k−1 is called a word. We

denote by ∣µ ∣ = k the length of µ . We extend i,t to words by saying that i(µ) = i(e1), t(µ) =

t(e∣µ ∣). This also allows us to compose words; if ν = ( f1, .., fl) and i(ν) = t(µ) then we let

µν = (e1, ...,ek, f1, ... fl). Moreover, for each word µ we associate an open set in X by

Cµ = {(xn)n∈N ∈ X ∶ xi = ei i = 1,2, ...,k}.



CHAPTER 2. AMPLE GROUPOIDS AND THEIR C*-ALGEBRAS 32

This set is known as the cylinder set of µ . For any µ,ν such that t(µ) = t(ν), we define a

compact open bisection Uµ,ν by

Uµ,ν = {(x, ∣µ ∣− ∣ν ∣,y) ∈ GV,E ∶ x ∈Cµ , y ∈Cν ,σ
∣µ ∣(x) = σ

∣ν ∣(y)}.

These subsets form a base for the topology of GV,E . The resulting groupoid is ample and topo-

logically principal.

Example 2.3.11 (Products of SFT Groupoids). Recall in Example 2.1.8, the second operation

was to consider the cartesian product two groupoids as a groupoid. We endow the product of

two topological groupoids with the product topology. One may also consider products of SFT

groupoids to obtain certain interesting topological full groups, following Matui [90].

Here, we consider a finite collection M1, ...,Mn of irreducible matrices associated to directed

graphs and construct the associated SFT groupoids G1, ...,Gn. The product of these groupoids

G1× ....×Gn is again ample and topologically free.

2.4 Groupoid homology

Ample groupoids admit a homology theory. Let us introduce this, following Matui [88, Section
3.1.]. We recommend this text, which introduces this notion of groupoid homology for further
information.
Let A be a topological abelian group. For a locally compact Hausdorff space X , let Cc(X ,A)

denote the continuous compactly supported A−valued functions. With respect to pointwise ad-
dition, this makes Cc(X ,A) an abelian group.

Recall that an étale map π ∶ X → Y between topological spaces is a local homeomorphism;
a map such that for every neighbourhood U of every point x ∈ X there exists a homeomorphism
given by the restriction πU ∶U → π(U). Note then, in particular, if π ∶X →Y is an étale map then
every point y ∈Y has a finite preimage π−1(y) = {x ∈ X ∶ π(x) = y}. Therefore, if π ∶ X →Y is an
étale map we can induce a map π∗ ∶Cc(X ,A)→Cc(Y,A) f ↦ π∗( f ), given by

π∗( f )(y) = ∑
π(x)=y

f (x),

since the sum is finite. This is a homomorphism; if π ∶ X → Y,π ′ ∶ Y → Z are étale maps then
π∗ ○π ′∗ = (π ○π ′)∗.
Let G be an étale groupoid. Then, we have (by definition) that r and s are étale maps G → G(0)

and the multiplication map m ∶ G(2) → G is étale. For n > 2 let G(n) be the n-composable tuples
i.e. G(n) = {(g1, ...,gn) ∶ (gi,gi+1) ∈ G

(2), i = 1, ...,n−1}. Then, let G(1) ∶= G. For i = 0,1, ...,n let
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di ∶ G
(n)→ G(n−1) be the maps given by:

di(g1, ...,gn) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

(g2, ...,gn) i = 0

(g1, ..,gigi+1, ...gn) 1 ≤ i < n

(g1, ...,gn−1) i = n

The maps di are étale, because they are compositions of étale maps, the range and source maps
r,s and the multiplication maps. For example, in the case n = 2 let us verify that d0,d1,d2 are
étale. d0 is just a composition of the source map s on the first component g1 composed with the
multiplication map. In the case d1 is just the multiplication map between the tuple (g1,g2). In
the case d2 is just the range map r on g1 composed with the multiplication map.

Let A be a topological abelian group. We define δn ∶Cc(G
(n),A)→Cc(G

(n−1),A) by:

δ1 = s∗− r∗ and δn =
n
∑
i=0
(−1)idi∗ n ≥ 1

Then,
0

δ0
←ÐCc(G

(0),A)
δ1
←ÐCc(G

(1),A)
δ2
←ÐCc(G

(2),A)...

is a chain complex. This is straightforward to see, the proof follows entirely analogously to
showing the bar resolution for groups is a chain complex (see e.g. [126, Page 178]). We define
groupoid homology as the homology of this chain complex.

Definition 2.4.1 (Groupoid Homology). Let Hn(G,A) ∶= Ker(δn)/Im(δn+1). In the case where

coefficients are committed we take the coefficients to be integral, i.e. Hn(G) ∶=Hn(G,Z).
Finally, we define the positive part of H0 to be H+0 (G) ∶= {[ f ] ∈H0(G,Z) ∶ f (u)≥ 0∀u ∈G(0)}.

Let us give the groupoid homology for some key examples of ample groupoids. The proto-
typical example of an ample groupoid is that of a (partial) transformation groupoid.

Example 2.4.2 ((Partial) Transformation Groupoids). The discussion in this example is folklore,

following the text in [88, Section 3.1.]. The proof is clear– one can concretely identify the two

underlying chain complexes.

Following from example 2.3.7, let α ∶ Γ↷ X be an action of a discrete group on a totally

disconnected locally compact Hausdorff space X. Let Y ⊂ X be a subspace of X. Consider the

groupoids Γ⋉X ,Γ⋉Y .

One can consider the abelian groups Cc(X ,Z),Cc(Y,Z) as Γ-modules. Moreover, one may

identify the groupoid homology with the group homology of Γ with coefficients in these modules,

as in [27], Chapter III.

H∗(Γ⋉X) ≅H∗(Γ,Cc(X ,Z))

H∗(Γ⋉Y) ≅H∗(Γ,Cc(Y,Z))
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Furthermore, if Y is Γ-full in X (that is, meets every Γ-orbit in X), the canonical inclusion Y ↷X

induces an isomorphism in homology H∗(Γ⋉Y) ≅H∗(Γ,Cc(X ,Z)).

Due to the above example, we see that in the cases where G is a group or G is a topological
space, the groupoid homology simplifies.

Example 2.4.3 (G a group.). If G is a group, the groupoid homology agrees with the regular

definition of homology for groups, since then by the above example we can consider this as a

transformation groupoid of G on its unit; G =G⋉G(0) and so H∗(G⋉G(0))=H∗(G,Cc(G
(0),Z))=

H∗(G,Z).

Example 2.4.4 (G a space.). The other extreme is if G = G(0) is just a topological space that is

totally disconnected. Consider this as a transformation groupoid of the trivial group acting on

G(0), i.e. {1}⋉G(0). Therefore, the groupoid homology is

H0(G) =Cc(G
(0),Z), and H∗(G) = 0 ∀∗ > 0.

A specific example of a transformation groupoid is a Cantor minimal system, which we can
be more precise:

Example 2.4.5 (Cantor Minimal Systems). Let (X ,T) be a Cantor minimal system. Let GT be

the associated ample groupoid. From the above example we have that this will be the homology

of Z with coefficients. This has been computed, see for example [27] Example III.1.1. The

homology is given by

H0(GT ) =
C(X ,Z)

{ f − f ○T ∶ f ∈C(X ,Z)}
,

H1(GT ) =Z,

and

H∗(GT ) = 0 ∗ ≥ 2.

Example 2.4.6 (AF Groupoids). Let G be an AF groupoid as in example 2.3.8. In in [88,

Theorem 4.10, Theorem 4.11], H0(G) was identified with the usual dimension group of G, i.e.

the K0 group of the associated C∗-algebra, K0(C∗r (G), and the higher homology groups vanish.

Example 2.4.7 (SFT groupoids). Let GA be an irreducible SFT groupoid associated to an N ×

N,{0,1}−Matrix A. Matui computed the homology of SFT groupoids, in [88, Theorem 4.14] to

be

H0(GA) = coker(I−A), H1(GA) = ker(I−A), Hn(GA) = 0 n > 1.

Similarly to the homology of groups, we also have that the homology of G1 ×G2 may be
expressed in terms of the homology of G1 and G2 via a Kunneth formula.
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Lemma 2.4.8 (Kunneth Formula for Groupoids [90], Theorem 2.4). Let G1,G2 be ample, effec-

tive groupoids. For all ∗ ∈N∪{0}, there exists a short exact sequence

0→ ⊕
i+ j=∗

Hi(G1)⊗H j(G2)→H∗(G1×G2)→ ⊕
i+ j=∗−1

Tor(Hi(G1),H j(G2))→ 0.

For example, this can be used to compute the homology of groupoids arising as the product
of shifts of finite type groupoids.

Example 2.4.9 (Product of SFT Groupoids). This example is based on [90, Proposition 5.4.].

Let A1, ...,An be irreducible 0-1 matrices associated to irreducible SFT groupoids GA1, ...,GAn .

Let G = GA1 × ...×GAn be the product of the SFT groupoids. By applying the Kunneth formula

iteratively we can compute the homology of these groupoids to be

Hk(G) = (Z
n−1Ck ⊗

n
⊗
i=1

H1(GAi))⊕(Z
n−1Ck−1⊗

n
⊗
i=1

H0(GAi)) 0 ≤ k ≤ n

and Hk(G) = 0 for k > n.

2.5 Groupoid C* -algebras

Locally compact Hausdorff étale groupoids can be completed to form groupoid C∗-algebras. We
need to recall some basic facts surrounding this topic. Note that this is not a detailed overview
but a very brief tour of what is itself a broad subtopic in the study of C* -algebras. For greater
depth and details we recommend the excellent notes of Aidan Sims [113].

For this subsection we assume that G is a locally compact, Hausdorff and étale groupoid. Let
Cc(UG) be the set of f ∶ G →C such that

∃U f ⊂ G open s.t. f↾U f
is compactly supported and continuous on U f

And elsewhere f = 0.
We view C (G) as a convolution algebra. A right Haar system on G is a family ν = {νu}u∈G(0)

where each νu is a positive regular locally finite Borel measure on Gu such that:

• supp(νu) = Gu for all u.

• ∫Gr(g)
f (hg)dνr(g)(h) = ∫Gs(g)

f (h)dνs(g)(h) for all g ∈ G, f ∈C (G).

• The maps
α f ∶ G

(0)→R+ u↦ ∫Gu
f (g)dνu(g)

Are such that α f ∈Cc(G
(0)) for any f ∈C (G).
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If ν = {νu} is a right Haar system, we may naturally assign a left Haar system associated with ν .
Define for A ⊂ Gu Borel νu as the measure νu(A) = νu(A−1).ν−1 = {νu} is the left Haar measure
induced by ν .
If ν = {νu}u∈G(0) is a left Haar system, then for fi ∈ C (G),g,h ∈ G we may define an involution
by

f ∗(g) ∶= f (g−1),

a product
f1∗ f2(g) ∶= ∫Gs(g)

f1(gh−1) f2(h)dνs(g)(h),

and a norm
∥ f ∥I ∶= sup

u∈G(0)
{max{∫Gu

∣ f (g)∣dνu(g),∫Gu
∣ f (g−1)∣dνu(g)}}

on C (G). Considering C (G) with respect to these operations, this becomes what is known as
the convolution algebra of G. Note that whilst this looks very similar to the convolution algebra
of a group there are many key differences. An important difference is that the Haar measure of a
locally compact group exists and is unique up to multiplication by a constant, whereas this may
not be true for all étale groupoids G. We use this to build the reduced groupoid C*-algebra of G.

Definition 2.5.1 (Reduced Groupoid C∗ - algebra). Let G be a Hausdorff, locally compact étale

groupoid and ν = {νu} be a fixed left Haar system. We may then define for each u a bounded

*-representation λu ∶ C (G) → B(L2(Gu,νu)) of the convolution algebra in B(L2(Gu,νu)), by

setting

λu( f )ξ(g) = ∫Gu
f (gh−1)ξ(h)dνu(h).

The reduced C∗-algebra of G with respect to ν denoted C∗r (G,ν) is the completion of C (G) with

respect to ∥⋅∥r given by:

∥ f ∥r ∶= sup
u
{∥λu( f )∥} f ∈C (G).

In understanding groupoid C∗-algebras it would be desirable to translate conditions from
the underlying groupoids to their reduced C∗-algebras. In particular, in light of the Elliot clas-
sification program, we have a good idea of what important regularity conditions there are for
C∗-algebras, and it is often desirable to show that groupoid C∗-algebras are classifiable. When
we say classifiable, we mean in the sense of the Elliott classification program see [ [123], Corol-
lary D]. Here we substitute finite nuclear dimension for Z-stability by using [ [34], Theorem
A]

Theorem 2.5.2 (Classification). Let A,B be simple, unital, separable, nuclear, infinite dimen-

sional, Z-stable C∗-algebras satisfying the UCT. Then,

A ≅ B ⇐⇒ Ell(A) ≅ Ell(B).
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Groupoids provide a natural source of classifiable C*-algebras, with many groupoid C*-
algebras satisfying some or all of the classifiability adjectives.

For example, it is known that there are the following sufficient conditions:

• An étale groupoid G is second countable iff C∗r (G) is separable, since in this case the
countable base of the topology gives rise to a countable basis of C∗r (G). Otherwise, the
support which gives a countable basis of C∗r (G) gives rise to the countable base of the
topology of G.

• A groupoid G is amenable iff C∗r (G) is nuclear (See [1, Theorem 3.3.7.], or [113, Theorem
4.1.5.]).

• Étale, amenable groupoid C*-algebras satisfy the UCT [124].

• A groupoid C∗-algebra C∗r (G) is unital iff G(0) is compact, in which one can see that the
inclusion of the constant map 1G(0) acts as the identity.

• A groupoid C∗-algebra C∗r (G) is simple if G is minimal and effective [113, Proposition
4.3.7].

• There are also sufficient conditions for C∗r (G) to purely infinite, as explored in Chapter 5.

A notable omission above is Z-stability. Understanding how to verify Z-stability on the level
of groupoid models is a fascinating active area of research. In fact, verifying Z-stability is
even difficult for discrete crossed products by amenable groups. There are many avenues of
possible routes including (but not limited to) the notion of dynamic asymptotic dimension [17,
19,55], almost finiteness [66,117] and comparison [2,64]. See the references therein for further
discussion. However, for this thesis, we need only the following result due to Kerr-Szabo.

Theorem 2.5.3. [66, Theorem C] Let Γ be a countably infinite amenable group whose finitely

generated subgroups have subexponential growth. Then every free action Γ ↷ X of Γ on a

compact metrizable finite-dimensional space is almost finite; the associated reduced groupoid

C∗-algebra C∗r (Γ⋉X) is classifiable (in particular Z-stable).

We end by discussing a conjecture of Matui, the so-called HK Conjecture, which relates the
homology of an ample groupoid to the K-theory of its groupoid C∗-algebra. It is often desirable
to understand the K-theory of groupoid C∗-algebras, but to compute this can be very difficult.
On the other hand, groupoid homology is relatively computable. Matui’s HK conjecture is that
the K-Theory of groupoid C∗-algebras can be computed in terms of groupoid homology. This
was first given in [88].

Conjecture 2.5.4 (Matui’s HK Conjecture). Let G be a minimal, essentially principal ample

groupoid. Then for ∗ = 0,1

K∗(C∗r (G)) ≅
∞
⊕
i=0

H∗+2i(G).
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Counterexamples have been found to this conjecture [109], even in the principal setting [43].
However, it is known that the conjecture holds in many interesting cases [17, 49, 76, 90, 129].

2.6 Cartan subalgebras

Recently, the notion of Cartan subalgebras has greatly enhanced our understanding of étale
groupoid C∗-algebras. Suppose G is an étale, locally compact Hausdorff effective groupoid.
Then we have that the canonical inclusion C0(G

(0)) ⊂C∗r (G) satisfies a number of regularity
properties:

• Since G(0) is locally compact, C0(G
(0)) contains an approximate unit for C∗r (G)– if {Un}n∈N

is a nested sequence of open subsets in G(0) such that each Un is contained in a compact
subset Vn of G(0), and such that ⋃n∈NUn = G

(0)

• C0(G
(0)) is a maximal abelian subalgebra; if one took any x ∈C∗r (G)∖C0(G

(0)) and con-
sidered the C∗-algebra generated by x and C0(G

(0)), this would not be abelian.

• The inclusion is regular, meaning that the set of normalisers:

NC0(G(0))(C
∗
r (G)) ∶= {n ∈C∗r (G) ∶ nC0(G

(0))n∗ ⊆C0(G
(0)) n∗C0(G

(0))n ⊆C0(G
(0))}

generate C∗r (G) as a C* -algebra.

This is since if the support of an element n ∈ C∗r (G) is an open bisection, then n is a
normaliser.

• A conditional expectation is an onto positive projection from one C*-algebra A to a sub-
algebra B of A, i.e. a projection P ∶ A→ B such that

P(b1ab2) = b1P(a)b2 ∀a ∈ A, b1,b2 ∈ B.

Here, there is a (unique) faithful conditional expectation

P ∶C∗r (G)→C0(G
(0))

given by f ↦ f ∣G(0) .

Such subalgebras are known as Cartan subalgebras, and were studied by Renault [104].

Definition 2.6.1 (Cartan Subalgebra [104]). A C*-subalgebra B of a C*-algebra A is a Cartan

subalgebra if:

• B contains an approximate unit for A.
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• B is a maximal abelian subalgebra of A.

• B is regular in A.

• There exists a faithful conditional expectation P ∶ A→ B.

In this case, the pair (A,B) is called a Cartan pair.

Suppose (A1,B1),(A2,B2) are Cartan pairs. A C*-isomorphism ϕ ∶ A1 → A2 such that

ϕ(B1) = B2 is called a Cartan isomorphism.

We therefore have in the case when G is an étale, Hausdorff, locally compact, second count-
able, topologically principal groupoid that C0(G

(0)) is a Cartan subalgebra of C∗r (G) suggesting
a link between groupoid C∗-algebras and Cartan pairs. The below theorem in its original form
is known to the community as Renault’s reconstruction theorem and sheds light on this relation-
ship.

Theorem 2.6.2. [104] Let (G,Σ) be a twisted étale, Hausdorff, locally compact, second count-

able, topologically principal groupoid. Then C0(G
(0)) is a Cartan subalgebra of C∗r (G,Σ).

Conversely, if (A,B) is a Cartan pair where A is separable, then there exists a twisted étale

Hausdorff locally compact second countable topologically principal groupoid (G,Σ) and a Car-

tan isomorphism ϕ ∶ (A,B)→ (C∗r (G,Σ),C0(G
(0))).

Renault’s reconstruction theorem has been since generalised in several interesting ways, see
for example [47, 70, 101].

A single C∗-algebra can have more than one Cartan subalgebra, in fact it can have groupoid
models with two unit spaces that are not homeomorphic, as seen in the below remark.

Remark 2.6.3. Consider the CAR algebra, that is the UHF algebra associated to the supernat-

ural number 2∞. There are two groupoid models for this C∗-algebra.

• The standard UHF groupoid model, as in Example 2.3.9. This is a Cantor groupoid.

• A transformation groupoid of a locally finite group Γ acting on {0,1}N×S1 [9].

Note that for these two groupoid models their unit spaces are not homeomorphic.

The study of the existence and uniqueness of Cartan subalgebras is a fascinating area of
active research. See the references [77, 81, 82] for interesting modern developments.

2.7 Outlook

Our first question was regarding comparison.

Question 2.7.1. Suppose G is a second countable, minimal, ample groupoid. Does G have

comparison?
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Our other two questions relate to groupoid C∗-algebras. A major theme is to understand the
following question more completely.

Question 2.7.2. For which étale groupoids G, is C∗r (G) Z-stable?

There are counterexamples to the HK conjecture, and simultaneously broad example classes
for which the HK conjecture holds. A natural question arises.

Question 2.7.3. For which ample effective groupoids G does the HK conjecture hold?

Also, in recent years a weakening of the HK conjecture has been suggested where instead of
coefficients in Z we are investigating the HK conjecture with coefficients in Q, notably appearing
as [17, Remark 5.12]. This weakened version of the HK conjecture known as the rational HK
conjecture remains open, and so we ask this below, for further visibility:

Question 2.7.4 (Rational HK Conjecture). Let G be an amenable, ample, second-countable

groupoid with torsion-free isotropy, and satisfying the strong Baum-Connes conjecture. Then

for i = 0,1 there exist homomorphisms

Ki(C∗r (G),Q) ≅
∞
⊕
k=0

Hi+2k(G,Q).



Chapter 3

Topological full groups of ample groupoids

3.1 Definition of a topological full group

As before, we have a standing assumption that whenever G is ample, the topology on the unit
space is Hausdorff and second countable. However, we do not have a standing assumption of
Hausdorffness in this Chapter. There are several interesting examples of topological full groups
arising from non-Hausdorff groupoids and so the study of such groupoids is essential. For
our definition, we follow Ortega-Nyland whose framework allows us to have non-compact unit
spaces.

Definition 3.1.1 (Ortega-Nyland [97]). Let G be an effective ample groupoid. For each K ⊂ G(0)

compact and open, let

F(G)K ∶= {B ∈ Bk ∶ s(B) = r(B) =K}.

Consider this group embedded in Homeo(G(0)) via the embedding

ιK ∶ F(G)K →Homeo(G(0)) ι(B)(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

B(x) x ∈K

x otherwise
.

Then, we define the topological full group to be the inductive limit

F(G) = ⋃
Kcompact

ιK(F(G)K) ⊂Homeo(G(0)).

If G(0) was already compact we have that F(G) = F(G)G(0) . For example, if G was a Cantor
groupoid, then we could take the definition to be

F(G) ∶= {B ∈ Bk ∶ s(B) = r(B) = G(0)}.

this definition in the case of Cantor groupoid is due to Nekrashevych [93].
Recall that the compact open bisections form an inverse semigroup acting by partial homeo-

41
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morphisms. Through this association, we have that elements B of topological full groups define
homeomorphisms fB of the unit space in the same way, where

fB = (r↾B)○(s↾B)
−1 ∶ (G)(0)→ (G)(0).

The reason we assume our groupoid is effective is the following:

Remark 3.1.2. Let G be an ample groupoid. The following are equivalent

• G is effective.

• The map f ∶ F(G)→Homeo(G(0)) B↦ fB is an injection.

This follows as an immediate consequence of Proposition 2.2.17. This movement between
perspectives is routinely used throughout this text, so we often assume that our groupoids are
effective. Let us discuss what happens outside the effective case for completeness of the litera-
ture.

As we saw in our section on étale groupoids, we can often consider the union of two or more
compact open bisections as an compact open bisection. So in some sense we can picture our
topological full group as the subgroup of Homeo(G(0)) that locally looks like compact open
bisections. In fact, in the effective case, an equivalent definition is the following:

F(G) = {g ∈Homeo(G(0)) ∶ ∀x ∈ G(0), ∃B ∈ Bk such that x ∈ s(B), and g∣s(B) = B}

So our topological full groups are global symmetries (homeomorphisms) built from local sym-
metries (compact open bisections).

Example 3.1.3 (Topological full group of a transformation groupoid). Let Γ be a discrete group

acting on the Cantor set X. Consider the associated transformation groupoid Γ⋉X. Recall that

the topology of this groupoid is generated by collections of arrows of the form (g,U) where g ∈Γ

and U is compact and open in X. Therefore Bk is disjoint unions of subsets of the form (g,U)

where g ∈ Γ,U is clopen in X. Therefore, topological full group elements are of the form:

n
⊔
i=1
(gi,Ui) ⊔Ui =⊔giUi = X ,

where gi ∈ Γ, and each Ui is a clopen subset in X.

In other words, F(Γ⋉X) can be naturally identified with the subgroup of homeomorphisms

g ∈Homeo(X) for which there exists a continuous map fg∶X →Γ such that g(x) = fg(x) ⋅x for all

x ∈ X. Such a map fg is called an orbit cocycle for g.
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We have below an example of a topological full group element for such a transformation

groupoid. Suppose we have a group action Γ ↷ X, and a partition of X into clopen subsets

U,V,W. Suppose furthermore there exists some group elements g, f ,h such that g(U)=V, f (V)=

W,h(W) =U. Then an example element of the topological full group would be (g,U)∪( f ,V)∪

(h,W).

U

V

W

g

f

h

X

For the associated groupoid of germs, as in Definition 2.2.19 it follows from [95, Proposition

4.6] that F((Γ↷ X)germ) agrees with F(Γ⋉X), so it can be computed using orbit cocycles for

Γ↷ X as in the previous paragraph.

Similarly, if we were to consider a restriction of the action Γ↷ X to a partial action Γ↷Y ,

then the topological full group of Γ⋉Y may be identified the subgroup of F(Γ⋉X) which act as

the identity on X ∖Y , i.e.

F(Γ⋉Y) = {γ ∈ F(Γ⋉X) ∶ γ(x) = x, ∀x ∈ X ∖Y}.

We end with one more illustrative example, which works well as a guiding example for the
next section. One might have noticed that there appears to be a connection with the symmetric
group, in the way that the topological full group permutes parts of the unit space of an ample
groupoid. In fact, the infinite symmetric group arises as a topological full group of a discrete
groupoid:

Example 3.1.4 (The full equivalence relation on N and S∞). Consider Rn, the full equivalence

relation on n points as in Example 2.1.7. The unit space is n labelled isolated points 1, ...,n and

there is exactly one arrow from every point to every point. Elements of the topological full group

are therefore any bijection from the unit space to itself, i.e. we have that the topological full

group F(Rn) = Sn is the symmetric group on n points. Considering the full equivalence relation



CHAPTER 3. TOPOLOGICAL FULL GROUPS OF AMPLE GROUPOIDS 44

on N groupoid RN, best described as the inductive limit RN = ⋃n∈NRn then, we obtain S∞ the

infinite symmetric group as the topological full group of RN. Note also then the derived subgroup

of S∞ is the infinite alternating group, an infinite simple group.

The main aim of the following section is to define two groups in analogy to the infinite
symmetric and alternating group.

3.2 Subgroups of topological full groups

The aim of this subsection is to describe what we understand about the subgroup structure of
topological full groups. Let G be an effective, Cantor groupoid with infinite orbits. We will begin
by explaining the key ideas behind Nekrashevych’s alternating and symmetric group, before
giving the formal definition. Let us first define an analogue of the infinite alternating group
in F(G), which we call the alternating group of G. For compact open bisection B1,B2 with
s(B1),r(B1) = s(B2),r(B2) pairwise disjoint, let

γB1,B2 = B1⊔B2⊔(B1B2)
−1⊔(G(0)∖ s(B1)⊔ s(B2)⊔ r(B2)) ∈ F(G).

Group elements of the form γB1,B2 have order 3, and play an analogous role to three cycles in

G(0)

s(B2) = r(B1)s(B1) r(B2)

B1 B2

(B1B2)
−1

Figure 3.1: A figure to visualise the construction of γB1,B2 from B1 and B2

the infinite alternating group; they generate the alternating group. We define

A(G) = ⟨γB1,B2 ∶ B1,B2 ∈ B
k, s(B1),r(B1) = s(B2),r(B2) are pairwise disjoint ⟩.

A similarly defined group is Nekrashevych’s symmetric group. Here, we take a single com-
pact open bisection B ∈Bk with s(B)∩r(B) =∅, and form an element γB ∈ F(G) from B,B−1 and
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what remains in the unit space,

γB ∶= B⊔B−1⊔(G(0)∖ s(B)∪ r(B)) ∈ F(G).

G(0)

s(B) r(B)

B

(B)−1

Figure 3.2: A figure to visualise the construction of γB, a typical generator of S(G)

Elements of the form γB have order 2, and play an analogous role to 2-cycles in the infinite
symmetric group; they form a generating set for the symmetric group. Then we define S(G) to
be the subgroup of F(G) generated by each γB;

S(G) = ⟨γB ∶ B ∈ Bk s(B)∩ r(B) =∅⟩.

We consider this to be an analogue of the infinite symmetric group in F(G), hence we call
S(G) the symmetric subgroup. We need to be more careful when we define the alternating and
symmetric group in the case when our orbits are not necessarily infinite. These formal definitions
are equivalent to those in the discussion above in the case where the orbits are infinite.

Definition 3.2.1 (Multisection, Alternating and Symmetric Group). Let G be an ample effective

groupoid. A collection of bisections M(d) = {Fi j}
d
i, j=1 is called a multisection of degree d if:

• Fi, jFj,k = Fi,k for all 1 ≤ i, j,k ≤ d.

• The subsets Fi,i are pairwise disjoint subsets of G(0).

Given a multisection of degree d there is a canonical inclusion of Sd into F(G) given by

ιM(d) ∶ Sd ↪ F(G) (i, j)↦ Fi, j.

Let Sd(G) denote the smallest subgroup of F(G) containing ιM(d)(S(d)) for all multisections

M(d). We take the symmetric subgroup to be the inductive limit S(G) ∶=⋃d→∞Sd(G).

Similarly, let Ad(G) denote the smallest subgroup of F(G) containing ιM(d)(A(d)) for all

multisections M(d). We take the alternating subgroup to be the inductive limit A(G)=⋃d→∞Ad(G).
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Comparison, a weak condition will already imply that the alternating and symmetric sub-
groups nontrivial.

Proposition 3.2.2 (Comparison Implies The Alternating and Symmetric Subgroups are non-
trivial). Suppose that G has comparison. Then the alternating and symmetric subgroups are

nontrivial.

Proof. It is enough to show that the alternating group is nontrivial, i.e. the existence of γB1,B2 or
bisections B1,B2 such that s(B1),s(B2) = r(B1),r(B2) are pairwise disjoint. Let us begin with
some proper compact open subset of the unit space U ≠G(0). Then, Uc is nonempty. There exists
some proper nonempty subset V1 of Uc such that for all µ ∈M(G),µ(V1) < µ(U). Given V1,
there exists some proper nonempty compact open subset V2 of Uc∩V c

1 such that µ(V2) < µ(U).
By comparison, there exists two bisections B1, B̂2 such that s(B1) =U = s(B̂2) and r(B1) =

V1,r(B2) =V2. Setting B2 = B̂2
−1
) we are done.

Another subgroup of a topological full group we study is the derived subgroup, which we
denote by D(G).

Definition 3.2.3. Let G be an effective Cantor groupoid. Let D(G) denote the derived subgroup

of F(G), that is D(G) = ⟨[γ1,γ2] ∶ γ1,γ2 ∈ F(G)⟩.

It can be seen that the alternating group is a subgroup of the derived subgroup of an ample
groupoid, since γB1,B2 = [γB1,γB2]. It is currently open whether there is always an inclusion in the
other direction or whether there exists an effective, étale, Cantor groupoid G such that A(G) ≠
D(G).

Let us remark that each of the groups we have defined thus far are normal in F(G). For
A(G),S(G) this follows from the observation that for all γ ∈F(G), and γB ∈S(G), γγBγ−1 = γγBγ−1 .

F(G)
S(G)

D(G)

A(G) =D(S(G))
⊊

⊊

⊆

⊆

Figure 3.3: A figure showing the relationship between the subgroups of topological full groups.

A recommendation to the reader is that when understanding the proofs of the Theorems
in Sections 3.3,3.4 and 3.5, one should be drawing the topological full group elements in the
proofs. Many of the proofs seem complex, but in the readers opinion, once drawing diagrams
such as those in this section, become much more straightforward.

3.3 Simplicity of derived subgroup

In this subsection, we discuss the relationship between minimality of an ample groupoid and the
simplicity of the derived subgroup of the topological full group. Let us first recall and prove a
related result of Nekrashevych.
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Theorem 3.3.1 ( [93]). Let G be a minimal, effective Cantor groupoid. Then every nonzero sub-

group of F(G) normalised by A(G) contains A(G). In particular, A(G) is simple and contained

in any nonzero normal subgroup of F(G).

Proof. Let U ⊂ G(0) be a clopen subset. Let us identify A(GU) with the natural subgroup of
A(G) by having the elements act as the identity on Uc.

Let N ⊂ F(G) be the subgroup normalised by A(G) and let g ∈N ∖{1}. By effectiveness, let
γ ∈ g be such that s(γ) ≠ r(γ). Then, there exists a clopen neighbourhood U of s(γ) such that
U and g(U) are disjoint. If F is any multisection with domain a subset of U , and h1,h2 ∈ A(F)

then we can note that:

• gFg−1 is a multisection with domain in g(U); gh1g−1 ∈A(gFg−1).

• [g−1,h1] = gh−1
1 g−1h1 has support in U ∪g(U), where it acts as h1 on U and g1h−1

1 g−1 on
g(U).

• Therefore, n = [[g−1,h1],h2] = [h1,h2]. However n ∈N, since g ∈N and h1,h2 ∈A(G).

• Since A(G) is perfect, we have proved there exists a nonempty clopen subset U of G(0)

such that A(GU) is contained in N.

We would like to show the normal close of A(GU) in A(G) is all of A(G). Let F = {Fi, j}
d
i, j=1 be

a multisection. Let x1 ∈ F1,1 be arbitrary. Let xi = r(F1,ixi). By minimality let γi,δi ∈ G be such
that s(γi) = s(δi) = xi, r(γi) ∈U and the units x1, ...,xd,r(γ1), ...,r(γd),s(δ1), ...,s(δd) all pairwise
different.

Let F ′ be a multisection such that F ′i, j ⊂ Fi, j. By ampleness let Gi,Di be compact open
bisections with γi ∈Gi,δi ∈Di with F ′ii = s(Gi) = r(Di) ⊂ Fi,i,r(Gi) ⊂U , and the sets

s(G1), ..,s(Gd),r(G1), ...,r(Gd),s(D1), ...,s(Dd)

pairwise disjoint. We have that F̂ = {G jF ′i, jG
−1
i } is a multisection with domain in U . Consider

Ci =Gi⊔D−1
i ⊔DiG−1

i ⊔(G
(0)∖s(Gi)⊔r(Gi)⊔r(Di)). Let gi be the associated element of A(G).

We have that gFi, jg−1 = G jF ′i, jG
−1
i hence gA(F)g−1 = A(H) ⊂ A(GU). Then A(F ′) ⊂ gA(G∣U).

Since we can do this for all x ∈ F1,1 and F1,1 is compact we are done.

Regarding the simplicity of the derived subgroup itself, Matui is the most commonly cited
for this result. In particular, [89, Section 4]. Matui proves this result for two cases:

• When G is a Hausdorff, effective minimal and almost finite Cantor groupoid.

• When G is Hausdorff, effective minimal and purely infinite.

In fact, Matui does not actually use that G is Hausdorff in the proof of this result, and so it can
be removed; the following Lemma holds:
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Theorem 3.3.2 (Matui). Let G be an effective minimal Cantor groupoid. Suppose that either:

• G is almost finite.

• G is purely infinite.

Then, any nonzero subgroup of F(G) normalised by D(G) is normalised by D(G); D(G) is

simple.

This subsection aims to exhibit a proof of this result in the case when G is purely infinite and
effective Cantor groupoid but not necessarily Hausdorff, following [89, Section 4.2.]. First, let
us note a useful lemma for understanding the property of being purely infinite and minimal.

Lemma 3.3.3. ( [89, Proposition 4.11]). Let G be an effective, étale, Cantor groupoid. The

following are equivalent:

1. G is purely infinite and minimal.

2. For all compact and open subsets X ,Y ⊆ G(0), there exists a compact open bisection B ⊆ G

such that s(B) = X and r(B) ⊆Y .

3. For all compact and open subsets X ,Y ⊆G(0) with X ≠G(0) and Y ≠∅, there exists α ∈F(G)

such that α(X) ⊆Y .

Proof. • 1. ⇒ 2. Let X ,Y be arbitrary, with Y ≠∅. Then, there exists bisections U,V such
that s(U) = s(V) =Y , r(U)∪r(V) ⊂Y and r(U)∩r(V) =∅, since Y is properly infinite. Let
V1 =U , and define Vn inductively by Vn+1 =VVn. Then we have that for all n ≠m, s(Vn) =Y ,
r(Vn) ⊂Y and r(Vn)∩ r(Vm) =∅. Using minimality, there exists bisections W1,W2, ... such
that r(Wi) ⊂ Y and ⊔i∈N s(Wi) = X with disjoint sources. Let B be the bisection given by
B =⋃i∈NViWi. Then s(B) = X ,r(B) ⊂Y .

• 2. ⇒ 3. First assume that Y ∖X is nonempty. Then there is a bisection U such that
s(B) = X , r(B) = Y ∖X . Hence we may take α =U ⊔U−1 ⊔ (G(0) ∖ s(U)∪ r(U)) ∈ F(G).
Otherwise, Y ⊂ X , in which case by the above argument we can choose α1,α2 ∈ F(G) with
α1(X) ⊂ Xc, α2(Xc) ⊂Y , and α1α2 satisfies the requirement.

• 3. ⇒ 1. It is clear that 3. implies minimality of G. Now let X be a nonempty clopen subset
of the unit space. Let Y0,Y1,Y2 be mutually disjoint subsets of X . Then, by 3. there exists
α1,α2 ∈ F(G) such that

α1(X ∖Y0) ⊂Y1, α2(B0⊔B1) ⊂ B2.

Let Ui be the bisection associated with αi. Let

V1 =Y0⊔U1∣(X∖Y0), V2 =U2V1.
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We have that s(V1) = s(V2) = X ,r(V1) ⊂Y0⊔Y1 and r(V2) ⊆Y2.

Lemma 3.3.4. [89, Section 4.2.] Let G be purely infinite and minimal, effective Cantor groupoid.

For all U,V ⊂ G(0) clopen with U ≠ G(0),V ≠∅ there exists α ∈D(G) with α(U) ⊂V .

Proof. First let us show there exists α ′ ∈ F(G) with α(U) ⊂ V and U ∪ suppα ≠ G(0). If we
take W clopen subset of the unit space, containing U and strictly larger than U , with nonempty
intersection with V . The groupoid G∣CC is again purely infinite and minimal hence by Lemma
3.3.3 there exists α ′′ ∈ F(G∣WW ) such that α ′′(U) ⊂ V ∩W . Extending α identically on W c we
prove the first claim.

Using this, we find an α ′ ∈F(G)with α(U) ⊂V and U ∪suppα ≠G(0). By Lemma 3.3.3 there
is a σ ∈ F(G) such that σ(U ∪suppα) ⊂ (U ∪suppα)c. Then [α−1,σ−1] =ασα−1σ(U) ⊂V .

Lemma 3.3.5. [89, Section 4.2.] Let G be an effective, purely infinite and minimal Cantor

groupoid. For any N ⊂ F(G) normalised by D(G), and any τ ∈ N, there is τ1,τ2 ∈ N such that

their supports are a proper subset of the unit space (suppτi ≠ G
(0)) and τ = τ1τ2.

Proof. Let us assume suppτ =G(0). Let U be a nonempty subset of G(0) moved completely by τ ,
as in τ(U),U are disjoint with their union not all of G(0). Let V be such that V ∩U =V ∩τ(U)=∅,

and V ∪U ∪ τ(U) ≠ G(0). Let σ1 be the element of S(G) given by στU . Let σ0 be the element
by Lemma 3.3.3 such that σ(τ(U)) ⊂V σ2 be the element of S(G) given by σσ0∣τ(U) . We have
that [σ2,σ1]∣A = τ ∣A, supp[σ2,σ1] ⊂U ∪ τ(U)∪V . By Lemma 3.3.4, let α ∈ D(G) be such that
α(U ∪τ(U)∪V) ⊂U . By assumption,

τ1 = α
−1[α[σ2,σ1]α

−1,τ]α ∈N.

Moreover:

• The support of τα[σ2,σ1]α
−1τ−1 is disjoint from U , since

supp(τα[σ2,σ1]α
−1

τ
−1) = τα(supp[σ2σ1]) ⊂ τ(α(U ∪τ(U)∪V)) ⊂ τ(U).

• Therefore, for all x ∈U , α(x) ∈U , hence τ1(x) = (σαα−1)(x) = σ(x) = τ(x).

• The support of τ1 is a proper subset of the unit space (α−1(U ∪τ(U))).

If we let τ2 = τ−1
1 τ we are done.

Lemma 3.3.6. [89, Section 4.2.] Let G be an effective, purely infinite and minimal Cantor

groupoid. For any N ⊂ F(G) normalised by D(G), and any τ ∈N,α ∈ F(G),ατα−1 ∈N.
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Proof. Let us reduce the proof to the case when τ,α do not have full support. For τ ∈N,α ∈F(G)

arbitrary, we have that by the previous Lemma there exists τ1,τ2 without full support such that
τ = τ1τ2. It is straightforward to find a decomposition of α =α1α2 in F(G) where neither αi have
full support. Then, ατα−1 = (α1α2τ1α−1

2 α−1
1 )(α1α2τ−1

1 α−1
2 α−1

1 ).
So, let us assume that α,τ do not have full support. By Lemma 3.3.3, there is σ ∈ F(G)

such that σ(suppα) ⊂ suppτ . Then since σασ−1 commutes with τ , ατα−1 = [α,σ]τ[α,σ]−1 ∈

N.

Theorem 3.3.7. [89, Section 4.2.] Let G be an effective, purely infinite and minimal Cantor

groupoid. For any N ⊂ F(G) normalised by D(G) contains D(G).

Proof. Let τ ∈ N be nontrivial, then there exists a clopen subset U of the unit space such that
τ(U) is disjoint from U .

Let α,β ∈ F(G) without full support. By Lemma 3.3.4, we may find γ such that γ(supp(α))
is disjoint from supp(β) and supp(α)∪supp(β) ≠ G(0). By Lemma 3.3.3, we can find σ ∈ F(G)

such that σ(supp(α)∪ supp(γ)) ⊂U . By Lemma 3.3.6, τ̂ = σ−1τσ is in N. It is straightforward
to see that τ̂ moves supp(α)∪ supp(γ) completely. Therefore τ̂γ τ̂−1 is the identity on supp(α).
Consider [γ̂ = [γ, τ̂] , an element of N by Lemma 3.3.6, we have that γ̂supp(α) is disjoint from
the support of β .

Therefore:

[α,β ] = αβα
−1

β
−1 = α(γ̂αγ̂

−1)β(γ̂αγ̂
−1)−1

α
−1

β
−1 = [[α, γ̂],β ] ∈N

If suppα = G(0) ≠ suppβ then we can find α1,α2 ∈ F(G) without full support and such that α =

α1α2. By the above proof [αi,β ] ∈N. Hence [α,β ]=α1α2βα−1
2 α−1

1 β−1 =α1[α2,β ]α−1[α1,β ] ∈

N. A similar algebraic manipulation can be made by taking β = β1β2.

Remark 3.3.8. Matui’s proof for almost finite groupoids similarly generalises to the non Haus-

dorff, effective case.

Remark 3.3.9. Since simplicity is preserved by unions, this result naturally extends to the non-

compact Cantor space, e.g. for ample, second countable effective groupoids whose unit space

does not contain any isolated points.

3.4 Matui’s reconstruction theorem

This section aims to prove the following theorem.

Theorem 3.4.1 (Matui’s Isomorphism Theorem). Let G and G′ be effective Hausdorff minimal

Cantor groupoids. Suppose that there exist isomorphic groups D(G) ⊂ Γ ⊂ F(G),D(G′) ⊂ Γ′ ⊂

F(G′). Then G and G′ are isomorphic as topological groupoids.
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This theorem fits into a theme of spatial reconstruction theorems such as Rubin’s theorem
[107], and can be proven using Rubin’s theorem.

Definition 3.4.2 (Rubin Action). Let G↷X be a faithful action of a group on a locally compact

Hausdorff space with no isolated points such that for each open set U ⊂ X and each p ∈U,

the closure of the orbit of p of the action of the subgroup of G that stabilises U contains a

neighbourhood of p, i.e. GU ⋉U p contains a neighbourhood of p. We call such an action a

Rubin action.

Theorem 3.4.3 (Rubin). Let G↷X ,G↷Y be two Rubin actions. Then there exists a G-invariant

homeomorphism φ ∶ X →Y . [107]

Remark 3.4.4. Let us sketch the proof that Matui’s isomorphism theorem is related to Rubins

theorem. The proof would be in two parts:

• Let G be an effective, Hausdorff, minimal Cantor groupoid. The action F(G)↷ G(0) is a

Rubin action. Note here it is enough to show that the orbit of any p ∈ G(0) under F(G)

contains a neighbourhood of p, since the restriction of an effective, Hausdorff, minimal

Cantor groupoid to an open compact subset U is again an effective, Hausdorff, minimal

Cantor groupoid. Since every orbit is dense in this case, this follows immediately by

minimality.

• Suppose G1,G2 are two effective, Hausdorff, minimal Cantor groupoids such that F(G1) ≅

F(G2). By Rubin’s theorem, it follows that there is a F(G1)−equivariant homeomorphism

ϕ ∶ G
(0)
1 → G

(0)
2 . But note, by identifying each Gi with the groupoid of germs of the trans-

formation groupoid (F(Gi)⋉G
(0)
i )

germ ≅ Gi, ϕ extends to an isomorphism of groupoids.

However, we are aiming to prove this result without invoking Rubin’s theorem directly, as
in [89, Section 3]. To do this we need to study groups which move the Cantor space in a
nontrivial way.

Definition 3.4.5 (Class F). [89, Section 3] Let X be the Cantor space. A subgroup Γ ⊂

Homeo(X) is said to be of class F if:

1. For all α ∈ Γ s.t. α2 = 1, the support of α is clopen.

2. For all x ∈ X, and all clopen neighborhood A ⊂ X of x there exists α ∈ Γ such that x ∈

suppα ⊂ A and α2 = 1

3. For all α ≠ 1, such that α2 = 1, and nonempty clopen set A ⊂ there is β ≠ 1 such that

β(x) = α(x) for all x ∈ supp(β) ⊂ A∪α(A).

4. For all nonempty clopen sets A ⊂ X there exists α ∈ Γ such that supp(α) ⊂ A and α2 ≠ 1.
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For A ⊂ X we denote ΓA = {α ∈ Γ ∶ suppα ⊂ A}.

Lemma 3.4.6. Let Γ be a group of class F, for two regular closed sets A,B ⊂ X, we have that

Γ(A) ⊂ Γ(B) iff A ⊂ B [89, Section 3].

Proof. The direction A ⊂ B⇒ Γ(A) ⊂ Γ(B) is trivial. To prove the other direction by contra-
diction assume A∖B is nonempty. By regularity, A∖B has a nonempty interior. From the first
axiom there is an element α with support contained in A∖B.

Let τ ∈ Γ ⊂Homeo(X), with τ2 = 1 and Γ of class F . Let:

Cτ = {α ∈ Γ ∶ [α,τ] = 1}, Uτ = {σ ∈Cτ ∶ σ
2 = 1,[σ ,ασα

−1] = 1∀α ∈Cτ}

Sτ = {α
2 ∶ α ∈ Γ,[α,σ] = 1 ∀σ ∈Uτ}, and Wτ = {α ∈ Γ ∶ [α,β ] = 1, ∀β ∈ Sτ}.

We can show the following:

1. For any σ ∈Uτ ,supp(σ) ⊂ suppτ .

2. For any A clopen in supp(τ), there exists σ ∈Uτ whose support is in A∪τ(A) and σ ∣supp(σ) =

τ ∣supp(σ).

3. For any clopen subset A with nonempty intersection with supp(τ), there exists α ∈ Sτ such
that ∅ ≠ supp(α) ⊂ A.

4. For all α ∈ Sτ , suppα ⊂ (suppτ)c.

5. Wτ = Γ(supp(τ)).

Let us give an outline of the proof of these facts:

1. If σ ∈Uτ and the support is outside the support of τ , there is a clopen subset A in the
support σ and outside the support of τ . Then using property F we can find α ∈ Γ(A) that
permutes A in a nontrivial way such that [σ ,ασα−1] = 1.

2. If A is clopen by property F there is α ∈Cτ agreeing with τ on A∪ τ(A) and the identity
outside. It is easy to verify that α ∈Uτ directly.

3. If A is clopen with nonempty intersection with suppτ , using property F there is an element
α whose support is in A and does not have order 2. Then α2 is the desired element.

4. If α commutes with elements in Uτ , then for all x in the support of τ , we claim α(x) is
either x or τ(x). If we assume by contradiction that x,α(x),τ(x) are all different. Then
there is a neighbourhood A of x whose images are all different. Then by 2. we can find
σ ∈Uτ acting like τ on A∪τ(A). This element does not commute with α .
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5. Using 4. the inclusion Γ(suppτ) ⊂Wτ is clear. The other inclusion can be shown by
contradiction if σ ∈Wτ and it moves a clopen subset A, outside of suppτ completely, then
by 3. one can find an element of β ∈ Sτ whose support is in A. Well then, β ≠ αβα−1.

See the proof of [89, Lemma 3.3] for further details. We use the above claims to show the
following:

Lemma 3.4.7. Let Γi ⊂Homeo(Xi) i = 1,2 be subgroups of class F acting on Cantor sets Xi. Let

φ ∶ Γ1→ Γ2 be an isomorphism. Let τ,σ be elements of Γ1 of order 2 [89, Section 3].

• supp(τ) ⊂ supp(σ) ⇐⇒ supp(φτ) ⊂ supp(σ).

• The support of τ,σ are disjoint iff the support of φτ,φσ are disjoint.

• Note that φWτ =Wφτ . From Lemma 3.4.6 and the above claim 5) we have that:

supp(τ) ⊂ supp(σ)⇒ Γ1(suppτ) ⊂ Γ2(suppσ)⇒Wτ ⊂Wσ ⇒ φ(Wτ) ⊂ φ(Wσ).

The other direction follows similarly.

• Suppose the supports are not disjoint. By property F , we have that the intersection of
their supports have nonempty interior, and therefore there is an element ρ of Γ with order
2 whose support is contained in their intersection. Applying 1) to this element we see that
φ(ρ) ⊂ supp(φ(τ))∩ supp(φ(σ)).

We then are ready to prove a spatial realisation result for class F groups.

Theorem 3.4.8. Let Γi ⊂Homeo(Xi) i = 1,2 be subgroups of class F acting on Cantor sets Xi.

Let φ ∶ Γ1 → Γ2 be an isomorphism. Then there is a homeomorphism ϕ ∶ X1 → X2 such that

φ(α) = ϕαϕ−1 [89, Section 3].

Proof. For x ∈ Xi let T(x) be the elements of order 2 whose support contains x. We claim that
for all x ∈ X1 the set P(x) =⋂τ∈T(x) suppΦ(τ) is a singleton.

Let τ1, ...,τn be elements of T(x). We can find a clopen neighbourhood A of x in the support
of all of the τi. By property F we can find an element of T(x)∩Γ(A). By the above Lemma,
suppφτ is contained in all the supφτi and so they have nonempty intersection. By compactness
then, P(x) is nonempty.

Assume it contains two distinct points p1, p2. By property F there is an element σ of T(p1)

such that p2 is not in its support. There are two possibilities now:

• x ∉ suppφ−1(σ), in which case due to property F we can find an element τ ∈ T(x) whose
support is disjoint from the support of the preimage of σ . Considering this under φ ,
through the above lemma we have that φ(τ) has disjoint support from σ , a contradiction
because p1 is in both.
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• x ∈ suppφ−1(σ), then φ−1(σ) is in T(x), so P(x) is in supp(σ), a set which p′ is not in, a
contradiction.

We can therefore define a map ϕ ∶ X1→ X2 which sends x to the unique element of P(x). In the
exact same way we can construct a map ϕ ′ ∶ X2→ X1. It is clear that as a set ϕ ′ is the inverse of
ϕ , since

{ϕ ′ϕ(x)} = ⋂
σ∈T(ϕ(x))

⊂ ⋂
τ∈T(x)

suppφ
−1

φ(τ) = {x}.

Therefore it is enough to show that ϕ is continuous. Let x ∈ X and A be an open neighbourhood
of ϕ(x). By definition of P(x) there are τ1, ...,τn such that ⋂i≤n suppφ(τi) ⊂ A. As before, we
can find τ ∈ T(x) whose support is a subset of ⋂i≤n suppφ(τi) ⊂ A. Then supp(τ) is a clopen
neighbourhood of x and φ(supp(τ)) ⊂ suppφτ ⊂ A. It is straightforward to verify φα = ϕαϕ−1.

The only thing left to prove is that any subgroup Γ of the derived subgroup of certain topo-
logical full groups is indeed of class F .

The most complex part of this is to understand the support of elements of topological full
groups to verify the first condition of class F. The following Lemma is useful, appearing as [95,
Lemma 4.3].

Lemma 3.4.9. Let X be a locally compact Hausdorff space, Γ ⊂Homeo(X). The following are

equivalent:

• (Γ⋉X)germ is a Hausdorff groupoid.

• Every element of Γ has clopen support.

Proof. Note by Hausdorffness, it is only plausible that two elements of the form (g,x),(h,x) ∈
(Γ⋉X)germ might not be separated by an open set. In fact, one can show algebraically that this
reduces further, it is enough to understand elements of the form (g,x),(1,x) which might not be
separated by an open set.

Assume all elements have clopen support. If (g,x)≠ (1,x)we have that (g,suppg),(1,suppg)

are disjoint open neighbourhoods.
Assume there is a g without open support. Let x be on the boundary of its support. Then we

aim to show (g,x),(1,x) cannot be separated. Take any basic open neighborhoods (g,U),(1,V)
where U,V are open. Well C = (A∩B)∖ suppg ⊂U ∩V is a nonempty open set.

Since we may readily identify G with (F(G)⋉G(0))germ, provided G is effective, then we
have the following.

Corollary 3.4.10. Let G be effective Cantor groupoid. The following are equivalent.

• G is Hausdorff.
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• ∀α ∈ F(G),suppα is clopen.

Lemma 3.4.11. [89, Section 3] Let G be an effective Hausdorff minimal Cantor groupoid. Any

subgroup D(G) ⊂ Γ ⊂ F(G) is of class F.

Proof. • 1. Satisfied by the above Lemma.

• 2. Let A be clopen neighborhood of x ∈ G(0). Since G is minimal, there is a compact
open bisection U with x ∈ s(U),s(U0∪ r(U) ⊂ A and s(U)∩ r(U) = ∅. Take γU as in the
definition of the symmetric group. Similarly we can find V such that x ∈V , s(V)∪ r(V) ⊂

s(U) and s(V),r(V) are disjoint. Let γV be the element as in the symmetric group. Then
[γU ,γV ] = γU,V is an element proving condition 2.

• 3. Let α = γU be as in 3. Let V be a bisection such that s(V)∪r(V)⊂A, and the four subsets
s(V),r(V),α(s(V)),α(r(V)) are disjoint. Consider γV and γÛ where Û =Us(V)∪αs(V).
Then, [γÛ ,[γU ,γV ]] satisfies the requirement.

• 4. Since G is minimal, there are nonempty compact open bisections U1,U2 such that
s(Ui)∪ r(Ui) ⊂ A, s(Ui)∩ r(Ui) = ∅ s(Ui)∩ r(Ui) = ∅ and s(Ui)∩ r(Ui) = ∅ then γU1,U2 is
well defined and of order 3.

This concludes the proof of the main theorem of this section, Lemma 3.4.11 and Lemma
3.4.8 combine to make Matui’s isomorphism theorem. This theorem was later generalised by
Nyland-Ortega.

Theorem 3.4.12. [95, Theorem A] Say G1,G2 are minimal effective Hausdorff ample groupoids

whose unit space have no isolated points. The following are equivalent:

• F(G1) ≅ F(G2) as abstract groups.

• D(G1) ≅D(G2) as abstract groups.

• G1 ≅ G2 as ample groupoids.

Furthermore, they were able to show a version of this theorem which weakens minimality
to a nonwandering condition. A subset A ⊂ G(0) is called wandering if ∣A∩OrbG(x)∣ = 1 for all
x ∈ A.

Definition 3.4.13. [95] Let G be an ample groupoid. We say that G is nonwandering if each

G-orbit has length at least 3, and there are no nonempty clopen wandering subsets of G(0).

Theorem 3.4.14. [95, Theorem B] Say G1,G2 are nonwandering effective Hausdorff ample

groupoids whose unit space have is a (possibly noncompact) Cantor space. The following are

equivalent:
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• F(G1) ≅ F(G2) as abstract groups.

• G1 ≅ G2 as ample groupoids.

Let us end this section by noting that the removal of the Hausdorff condition seems to be
subtle due to Corollary 3.4.10. This has however been studied by Nekrashevych, in a proof
which involves invoking Rubin’s theorem to obtain the following stronger result in the (not
necessarily Hausdorff case).

Theorem 3.4.15 (Nekrashevych). Let G1,G2 be minimal effective Cantor groupoids. The fol-

lowing are equivalent:

• F(G1) ≅ F(G2) as abstract groups.

• D(G1) ≅D(G2) as abstract groups.

• A(G1) ≅A(G2) as abstract groups.

• G1 ≅ G2 as ample groupoids.

3.5 Finite generation

3.5.1 Groupoid expansivity

Nekrashevych showed that the alternating group of a topological full group is finitely generated
if the underlying ample groupoid has a technical condition known as expansivity. We recall the
definition of expansivity:

Definition 3.5.1 (Expansive [93]). For an étale Cantor groupoid G:

• A compact set K ⊂ G is called a compact generating set if G =⋃n∈N(K∪K−1)n.

• A finite cover B = {Bi}
N
i=1 of bisections is called expansive if ⋃n∈N(B∪B−1)n forms a basis

for the topology of G.

• G is called expansive if there is a compact generating subset K with an expansive cover

B.

In Nekrashevych’s paper [93], Nekrashevych showed that this notion of expansivity is related
to the finite generation of A(G).

Theorem 3.5.2. Let G be an expansive Cantor groupoid with infinite orbits. Then A(G) is finitely

generated [ [93], Theorem 5.6].
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We do not prove this result in this subsection. However, in the subsequent subsection we
exhibit the proof for the specific case of certain transformation groupoids. Instead our focus
now is on discussing on the verification of expansivity of étale groupoids, which can be a subtle
problem.

This notion of expansivity generalises the notion of expansivity for (finitely generated) group
actions.

Definition 3.5.3 (Expansive action [93]). Let α ∶G↷X be an action. We say that α is expansive

if there exists ε > 0 such that for all x,y ∈ X , x ≠ y, there exists g ∈G such that d(gx,gy) > ε .

Nekrashevych showed in [93] that a transformation groupoid of a finitely generated group
acting on the Cantor space is expansive iff the underlying action is expansive.

Lemma 3.5.4. Let G⋉X be a transformation groupoid of a discrete group on the Cantor space

X. Then G⋉X is compactly generated iff G is finitely generated.

Proof. ⇐ If G is finitely generated, then it has a generating set g1, ..,gn. Consider the compact
set K = ⊔i∈I(gi,X). This clearly will then generate the groupoid.
⇒ If G⋉X is compactly generated, there exists a compact subset K generating the groupoid.
But this groupoid is ample; it’s topology is generated by compact open bisections. Therefore
there exists a finite set of group elements {gi}

n
i=1 subsets {Yi}

n
i=1 such that K = ⊔n

i=1(gi,Yi). Then,
K ⊂ K′ = ⊔n

i=1(gi,X), so K′ is a compact generating set. Hence, {gi}
n
i=1 is a finite generating set

of G.

Lemma 3.5.5. Let G be an essentially principal ample groupoid with infinite orbits. Then A(G)

is finitely generated Ô⇒ G is compactly generated.

Proof. Let g ∈ G. It is enough to show that there exists some bisection B ∈ A(G) such that
g ∈ B, since then the generating set of A(G) also serves as a compact generating set for G. If
s(g) ≠ r(g), by ampleness, we have there exists some compact open bisection B̂1 such that
g ∈ B̂1. By restricting the source of B̂1 if necessary, we may assume that s(B̂1),r(B̂1) are disjoint
with s(B̂1)⋃r(B̂1) ≠ G

(0). By minimality, we have there exists some h ∈ G with s(h) = r(g)

and r(h) ∈ (s(B̂1)⋃r(B̂1))
c Then by ampleness, there exists some compact open bisection B2

with h ∈ B2. Again, by restricting s(B2) if necessary, we can assume s(B2) ⊂ r(B̂1) and r(B2) ⊂

(s(B2)⋃ B̂−1
1 (s(B2))

c. Now let B1 = B̂1∣B̂1
−1

s(B2)
. Then

γB1,B2 = B1⊔B2⊔(B1B2)
−1∪(G(0)∖ s(B1)∪ s(B2)∪ r(B2)) ∈A(G)

satisfies g ∈ γB1,B2 .
Otherwise s(g) = r(g). Then, there exists g1,g2 such that s(gi) ≠ r(gi) but g1g2 = g. Hence by
the above argument, there exists γ1,γ2 ∈A(G) such that g1 ∈ γ1,γ2 ∈B2 and hence g = g1g2 ∈ γ1γ2 ∈

A(G).
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Remark that the converse to Lemma 3.5.5 fails, an explicit counterexample would be any
Z-odometer. The above proof is inspired by the proof of [ [89], Lemma 3.7]. Combining the
previous two Lemmas, we obtain the following Corollary.

Corollary 3.5.6. Let α ∶ G↷ X be an expansive, minimal, essentially free action of a discrete

countable group on the Cantor set. Then G is finitely generated ⇐⇒ A(G⋉X) is finitely generated.

Proof. ⇐ Is a combination of Lemma 3.5.5 and Lemma 3.5.4.
⇒ Follows via Theorem 3.5.2.

Let us also remark a possible application to the algebraic world.

Remark 3.5.7. Let G be an ample groupoid such that every orbit has at least two elements.

Then the convolution algebra C (G) is the algebraic closure of the characteristic function on full

group elements and subsets of G(0) :

C (G) = {1B,1U ∶ U ⊂ G(0),B ∈ F(G)}

Proof. It is enough to show that for all compact open bisections B′ and all u ∈ s(B′), there exists
a full bisection F(G) and a compact open neighbourhood U of u such that B∣U = B′U .

• If B′u ≠ u then by continuity of B′ and Hausdorffness of G(0) we have there exists a com-
pact open neighbourhood U of u such that U and r(B′U) are disjoint. Then we can take
B = B′∣U ⊔B′−1∣r(B′U)⊔G(0)∖U ∪ r(B′(U)).

• Otherwise, there exists g ∈ G such that gu ≠ u. By ampleness, there exists compact open
bisections B′1 such that g ∈ B′1. By the first bullet point then, there exists full bisections
B1,B2 and open neighbourhoods U1,U2 of u,g(u) such that B′1∣U1 = B1∣U1 and B2∣U2 =

B′B′−1
1 ∣U2 . Hence B = B2B1 agrees with B′ on U1∩B′−1(U2).

This might be interesting to be able to write a presentation of associated Steinberg algebras
in the case when F(G) has good finiteness properties.

3.5.2 Expansive actions of finitely generated abelian groups

This subsection aims to describe the generating set of subshifts of finitely generated abelian
groups. First let us recall for a subshift the definition of a patch.

Definition 3.5.8. [36] Let G be an abelian group. Let A be a finite alphabet and X ⊂AG be a

closed G-shift invariant subset. Consider the subshift (G,X).
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• A patch is a map π ∶ S→A where {s1, ...,sn} = S ⊂G is a finite subset.

• We say an element x ∈ X contains the patch π if x∣S = π .

• With each patch π we associate a cylinder set Wπ ∶= {x ∈ X ∶ x∣S = π}.

• For each patch π we say the transformation Tπ is well defined if Wπ is nonempty and

{sWπ}s∈S are pairwise disjoint.

• If Tπ is well defined, then Tπ ∈ Homeo(X) is the homeomorphism of order 3 cyclically

permuting the sWπ in the canonical way i.e.

Tπ(x) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

(si+1− si)x x ∈ siWπ , i ≤ n−1

(s1− sn)x x ∈ snWπ

x else

.

• We say that two patches π1 ∶ S1 →A,π2 ∶ S2 →A are compatible if there exists x ∈ X con-

taining π1 and π2. In other words, if Wπ1 ∩Wπ2 is nonempty. In which case, we can define

their union, π1∪π2 ∶ S1∪S2→A.

Remark 3.5.9. If π ∶ S→A is a patch, then Wπ is equal to the disjoint union of all Wπ̂ where

π̂ ∣S = π .

Remark 3.5.10. If π ∶ S→A is a patch, and g ∈G, then we define π +g ∶ S+g→A (π +g)(s) =

π(s−g). Then we have that g(Wπ) =Wπ+g.

Definition 3.5.11. [36] Let X ⊂ {0,1}G a G subshift and a patch π i ∶ {0,g,g′}→ {0,1}, we say

Tπ is well defined if Wπ ,gWπ ,g′Wπ are nonempty and pairwise disjoint. In this case Tπ is the

homeomorphism of X given by

Tπ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x+g x ∈Wπ

x+g′−g x ∈ gWπ

x−g′ x ∈ g′Wπ

x else

.

Theorem 3.5.12 (Nekrashevych-Juschenko-Chornyi). Let X ⊂ {0,1}G be a G-subshift, where G

is a finitely generated abelian group with generators e1, ...,ed . Then the derived subgroup of the

groupoid GX , D(GX) is generated by Tπ i , where i = 1, ...,d and π i ranges over all π i such that

Tπ i is well defined. [ [36], Proposition 8]

Note that as stated in [36], the Theorem is only for the case G =Zd . However, extending this
proof for arbitrary finitely generated abelian groups is relatively straightforward, as explained in
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the proof of [ [36], Proposition 18]. For completeness, this subsection aims to prove the result
as stated above.

Lemma 3.5.13. [36] Let G be a finitely generated abelian group with respect to a finite gen-

erating set S. Let A ⊂ G be a subset not containing the identity and such that not all elements

of A have finite order. Then there exists B ⊂ G such that for all x ∈ X the patches (x∣B,B) and

((x+g)∣B,B) are not compatible.

Proof. Let us consider the ball metric on X , that is the distance between w,v is equal to 2r where
r is the largest number such that the restrictions of w,v to the ball of radius r (that is,∏n

i=1 S∪S−1

in G coincide.
Suppose for contradiction that for all ε > 0 there exists x ∈ X ,g ∈ A such that d(g(x),x) < ε .

Since A is finite, this implies there is a g ∈ A and a sequence xn ∈ X , such that d(g(xn),xn)→ 0,
i.e. g has a fixed point. This is a contradiction.

We need the following result about permutations, appearing as Lemma 5 of [36].

Lemma 3.5.14. [36] Let U1.U2,U3,V1,V2,V3 be subsets of X such that only U1,V1 have nonempty

intersections, otherwise each set is pairwise disjoint. Let a be a permutation of X of order 3 act-

ing trivially outside of ⋃3
i=1 Ai, such that a(U1) =U2,a(U2) =U3,a(U3) =U1. Similarly, let b act

the same way on the Vi.

Then

[[b−1,a−1],[b,a]] = a∣(A1∩B1)∪a(A1∩B1)∪a2((A1∩B1))

Proof. This proof is straightforward, and works very similarly to considering a= (1,2,3)(4,5,6)
in b = (1,7,8) in A8. See [36] for a rigorous proof.

Corollary 3.5.15. [36] Let π1,π2 be patches g1,g2,h1,h2 ∈Γ such that π1,π1+gi,π2,π2+hi are

incompatible apart from π1,π2. Then:

[[T−1
π2

,T−1
π1
],[Tπ2,Tπ1]] = Tπ1∪π2

Here, π1 is associated to (0,g1,g2),π2 to (0,h1,h2) and π1∪π2 to (0,g1,g2)

Let G be a finitely generated abelian group with respect to a finite generating set S. Let us
have the metric on X as in the proof of Lemma 3.5.13. By Lemma 3.5.13 there is r1 such that for
any x ∈AG the patches π = (B(r1),x∣B(r1)) and π +g are incompatible, For all g ∈G with length
less than or equal to 3.

Let Tr be the elements of the topological full group of the form Tπ as π runs through all
patches of the form π = (B(r),x∣B(r)) for x ∈AG.

Lemma 3.5.16. [36] Let r > r1+2. Then the group generated by Tr contains Tr+1
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Proof. Let S be the symmetric generating set of G. We have that B(r+1) = ∪h∈SB(r+h). It is
therefore enough to show that the group generated by:

T(π,0,g,−g) g ∈ S, (π = x∣B,B), x ∈AG

Contains all elements of the form

T(π,0,g,−g) g ∈ S, π = (x∣B∪B+h,B∪B+h) x ∈AG,h ∈ S.

We do this by applying Corollary 3.5.15 twice:

• First for π1 = (x∣B,B),π2 = (x∣B+h,B+h) g1 = g,g2 = −g, h1 = h,h2 = 2h with g ≠ h. This
obtains Tρ,(0,g,−g) where ρ = π1∪π2.

• Secondly we apply to π ′1 = (x∣B−g,B−g),π ′2 = (x∣B−2g,B−2g) g′1 =−2g,g′2 =−g, h′1 = h,h′2 =

−h. This obtains Tπ ′1∪π ′2,(0,−2g,g). Note that this is the same as Tρ,(0,g,−g) where ρ = π1∪π2

as before.

This shows the desired claim.

But note that the above Lemma shows that Tr1+2, a finitely generated group, contains Tr for
all r > r1+2. Therefore, Tr1+2 is finished by the proposition below.

Lemma 3.5.17. [36] The derived subgroup of the full group of the action of a finitely generated

abelian group G = ⟨S⟩ on X is generated by the set of elements of the form Tπ,(0,h,−h) where h ∈ S.

Proof. We know already that D(G⋉X) ≅ A(G⋉X) is simple in this case (see Theorem 3.3.2).
Therefore D(G⋉X) is generated by elements of order three, σ , cyclically permuting three dis-
joint clopen subsets U1,U2,U3 in X .

Given such a σ , there exists partitions of each Ui into cylindrical sets such that T maps each
piece of the partitions equal the restriction of an element of G. In other words, σ is a finite
product of elements of the form Tπ(g1,g2,g3).

We remain to show that any element of the form Tπ,(g1,g2,g3) is generated by elements of
the form Tπ,(0,h,−h),h ∈ S. We may assume that g1,g2,g3 are in the same direct factor in the
decomposition of G into cyclic groups, since An is generated by the three cycles (k,k+1,k+2).
In other words, this proof reduces to the cyclic case. In fact, one can see that this proof reduces
to a nontrivial fact about the classical symmetric groups.

Claim: Let Xd = {x1, ...,xd ∶ xi ∈ {0,1,2}} be the 3d element set of d letter words over the
alphabet {0,1,2}. Let SXd ,AXd be the symmetric and alternating group on Xd . Let Bd be the set
of all elements of the form (µ0ν ,µ1ν ,µ2ν) where µ,ν are (possibly empty) words such that
∣µ ∣+ ∣ν ∣ = d−1. Then AXd is generated by Bd .
Proof of Claim Let us prove this by induction. If d = 1, we are simply discussing A3 which is
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trivially generated by (0,1,2). Assume true for d, then for d +1 it is enough to show that every
3 cycle is generated by Bd+1. Let us have a cycle (µx,νy,αz) where µ,ν ,α ∈ Xd are pairwise
distinct and x,y,z ∈ {0,1,2}. We know that:

• Elements of the form (µx,νx,αx),(µy,νy,αy)(µz,νz,αz) are generated by Bk+1 (e.g. by
taking the elements of Bk generating (µ,ν ,α) and appending x.

• Elements of the form (µx,µy,µz) (and similarly for ν ,α) are in by definition of Bk+1

Therefore (µx,νy,αz) is in the group generated by Bk+1. The case where µ,ν ,α are not pairwise
disjoint can be deduced similarly, however with the subtlety that if say µ = ν then x ≠ y. This
completes the proof of the claim and therefore of the proof.

The above Lemma completes the proof as required.

3.6 Homology of topological full groups

Recally as in Section 2.4. the notion of homology for ample groupoids. In this section, as
throughout, where coefficients are ommitted we mean to take coefficients in the integers, Z. In
this context we use the same notation H∗ for the homology of groups and of groupoids, since
the homology theory of groupoids generalises that of groupoids, as seen in Section 2.4.

In 2022, Li launched an enquiry into the question:

Question 3.6.1. What homological information moves from G to F(G)?

His approach was to look to generalise techniques used by Szymik and Wahl [118] in study-
ing the homology of the Higman-Thompson groups.

First, Li was able to phrase the integral homology of an ample groupoid with that of certain
invariants arising from algebraic topology. Specifically, in [79, Theorem A], Li establishes
that the groupoid homology of an ample groupoid with locally compact Hausdorff unit space
(with no isolated points) can be identified with the reduced homology of the algebraic K-theory
spectrum K(BG) of a small permutative category of bisections BG constructed in section 3 of
the paper, which allows us to describe groupoid homology in terms of the algebraic K-Theory
spectrum;

H∗(G) = Ĥ∗(K(BG)).

If one assumes a little more, namely that our groupoid is minimal and has comparison, Li estab-
lishes a connection here with the group homology of the topological full group, here Ω∞0 K(BG)
refers to the connected component of the base point in the infinite loop space associated to
K(BG) giving rise to an identification

H∗(F(G)) =H∗(Ω∞0 K(BG)).
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This forms the content of [79, Theorem B]. The combination of these two theorems establishes
a deep relationship between groupoid homology and the group homology of a topological full
group. Groupoid homology is relatively computable compared to the group homology of topo-
logical full groups, which is somewhat mysterious.

Because of this relationship between groupoid homology and homology of topological full
groups, Li was able to establish several interesting transfers of homological information which
will be highly applicable in this text. In most areas of homology, rational homology is often
more accessible than integral homology. This is no exception, as demonstrated by the below
Corollary appearing as part of [79, Corollary C].

Corollary 3.6.2. [79] Let G be an ample groupoid. Let us define

Hodd
∗ (G,Q) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

H∗(G,Q) ∗ > 0 odd

0 else
, Hodd

∗>1(G,Q) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

H∗(G,Q) ∗ > 1 odd

0 else
,

and,

Heven
∗ (G,Q) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

H∗(G,Q) ∗ > 0 even

0 else
.

Let G be a minimal ample groupoid with locally compact Hausdorff unit space (with no

isolated points) and comparison. Then,

H∗(F(G),Q) ≅ Ext(Hodd
∗ (G,Q))⊗Sym(Heven

∗ (G,Q)),

and,

H∗(D(G),Q) ≅ Ext(Hodd
∗>1(G,Q))⊗Sym(Heven

∗ (G,Q))

as graded vector spaces over Q.

Here Ext,Sym denote respectively the Exterior and Symmetric algebras in the sense of Mul-
tilinear Algebra [54].

Another transfer of homological information shown in [79] was noticing that if the groupoid
homology vanishes, so does the group homology of the topological full group. This works both
integrally and rationally.

Corollary 3.6.3 (Vanishing Integral Homology). [79] Let G be a minimal ample groupoid with

locally compact Hausdorff unit space (with no isolated points) and comparison. Suppose that

for some k ∈N we have that H∗(G) = 0,∗ = 0,1, ...,k−1. Then, H∗(F(G)) = 0,∗ = 1, ...,k−1 and

Hk(F(G)) =Hk(G).

The above result appears as [79, Corollary D].
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Corollary 3.6.4 (Vanishing Rational Homology). [79] Let G be a minimal ample groupoid with

locally compact Hausdorff unit space (with no isolated points) and comparison. Suppose that

G is rationally acyclic i.e. H∗(G,Q) = 0 in all degrees. Then, F(G) is rationally acyclic i.e.

H∗(F(G),Q) = 0 in all degrees.

The above result appears as part of [79, Corollary C]. Finally, Li was able to show an
important stability result for the homology of topological full groups. The below result appears
as [79, Theorem F]

Theorem 3.6.5 (Homological Stability). [79] Let G be a minimal ample groupoid with locally

compact Hausdorff unit space (with no isolated points) and comparison. Then for all nonempty

compact open subspaces U ⊂V ⊂ G(0), the canonical inclusions,

F(GU
U )↪ F(GV

V ), D(GU
U )↪D(GV

V ),

induce an isomorphism in homology in all degrees.

The first homology group of a topological full group of a minimal ample groupoid is espe-
cially of interest, since it agrees with the abelianisation and therefore tells us what the quotient
F(G)/D(G) is. In light of this, Matui conjectured that there was a concrete relationship between
H1(F(G)) and the first two homology groups of G.

Let us define two maps, I, j: Note that if B ∈ F(G), it will be in the kernel of δ1 since

δ1(χB)(u) = s∗(χB)(u)− r∗(χB)(u) = ∑
s(g)=u

χB(g)− ∑
r(g)=u

χB(g) = 1−1 = 0.

Therefore, we may define a map

I ∶ F(G)→H1(G,Z) B↦ [B],

where [⋅] denotes the equivalence class in H1(G,Z). Note that since Ker(I) = K(G), which
contains D(G), we have that we can actually define I more precisely on the abelianisation

I ∶ F(G)/D(G)→H1(G,Z) B↦ [B].

Another map of interest is
j ∶H0(G)⊗Z2→ F(G)/D(G).

Suppose U is a bisection satisfying r(U)∩ s(U) = ∅. Then we can map U to an element of the
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full group with order two

U ↦ τ, τ(x) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Ux x ∈ s(U)

U−1x x ∈ r(U)

x else

,

then, j is the extension of this map to H0(G). This is well defined epimorphism onto S(G)/D(G)

whenever G has orbits that always have size bigger than 3 by [93], Theorem 7.2.

Conjecture 3.6.6 (Matui’s AH Conjecture). Let G be a minimal, étale Cantor groupoid. The

sequence

H0(G)⊗Z2
j
Ð→ F(G)/D(G)

I
Ð→H1(G)→ 0

is exact. If it is short exact, we say the strong AH property holds for G, i.e. if the sequence

0→H0(G)⊗Z2
j
Ð→ F(G)/D(G)

I
Ð→H1(G)→ 0

is exact. (See e.g. [88]).

The AH conjecture is an acronym – A stands for abelianisation– the abelianisation of the
topological full group, and H stands for groupoid homology. The conjecture gives one in terms
of the other. There are counterexamples to the strong AH conjecture [90, Section 5.5] [93,
Example 7.1], in the authors view the simplest counterexample is that of a Z3-Cantor minimal
system, (for example the interval exchange group as in Chapter 6 associated to Γ=Z⊕πZ⊕eZ⊕
√

2Z would be a concrete example). As of yet, no counterexamples for the AH conjecture have
been found. Much progress has been made since the conjecture was first made for particular
examples and cases [96] [97] [90]. Matui was also able to confirm the conjecture in general case
when G is minimal, ample, principal and with comparison [88].
A further breakthrough was made recently. Li was recently able to confirm the above conjecture
under very mild assumptions (losing principality) and provide a greater understanding of when
the strong AH property holds.

Theorem 3.6.7 (Li [79] Cor E ). Let G be minimal, ample, with comparison. Suppose G(0) is

locally compact Hausdorff with no isolated points. Then, there exists a long exact sequence

H2(D(G))
f
Ð→H2(G)→H0(G)⊗Z2

j
Ð→ F(G)/D(G)

I
Ð→H1(G)→ 0.

In particular, the AH conjecture is verified for this class of groupoids, and the strong AH con-

jecture is verified for this class of groupoids iff f is surjective (e.g. if H2(G) = 0).

This convenient theorem allows us to compute the abelianisation of many topological full
groups, which a priori would be very difficult to compute.
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3.7 Significant examples

Because topological full groups provide a source of infinite simple groups with finiteness prop-
erties, they have resolved many existence problems for infinite simple groups with finiteness
properties. The first of these major results is due to Juschenko-Monod [61], who established
that the topological full group of a Cantor minimal system is always amenable.

Theorem 3.7.1 (Juschenko-Monod). Let G be the transformation groupoid of a Cantor minimal

system. Then, F(G) is amenable. [61]

A corollary, since there are expansive Cantor minimal systems (for example, Sturmian sub-
shifts), is that there are amenable, finitely generated infinite simple groups.

Corollary 3.7.2 (Juschenko-Monod). Let G be the transformation groupoid of a Cantor minimal

system that is expansive. Then, D(G) is an amenable, finitely generated infinite simple group.

[61]

In particular then, D(G) is not elementary amenable. We note that the problem of establish-
ing amenability of topological full groups remains a very difficult problem in general.

Even for Cantor minimal Z2 systems, the situation is very subtle and poorly understood
in general. There are examples where the topological full group fails to be amenable, in fact
spectacularly so by admitting an embedding of the free group on two generators F2 [46]. On
the other hand, if one takes any Z2 odometer, one will obtain a topological full group that is
locally finite [39], and therefore elementary amenable. In fact the topological full groups of
an equicontinuous system is always locally finite [39]. It is also known that certain interval
exchange groups arising from expansive Cantor minimal Z2 systems are amenable, which will
be explored further in Chapter 6 [60].

One might ask if it is possible to find simple groups of intermediate growth. Nekrashevych
constructed the first examples of such groups via the topological full groups of certain Cantor
minimal dihedral systems [92].

Theorem 3.7.3 (Nekrashevych). There are simple groups of intermediate growth [92].

Some groups are finitely presented, which is a strengthening of finite generation. In fact,
these properties fit into a family of topological finiteness properties:

Definition 3.7.4 (Type Fn). Given n ∈N, a group Γ is said to be type Fn if there exists an aspher-

ical CW-complex whose fundamental group is isomorphic to Γ, whose n−skeleton is finite.

Γ is said to be type F∞ if it is type Fn for all n.

Remark 3.7.5. A group is type F1 iff it is finitely generated.

A group is type F2 iff it is finitely presented.

For all n, type Fn+1 is stronger than type Fn.
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Remark 3.7.6. Type Fn can be rephrased dynamically. A group Γ has type Fn iff it acts freely,

properly discontinuously and cocompactly on a CW-complex whose homotopy groups π0, ....,πn−1

vanish [115].

One might ask: if type Fn+1 is stronger than type Fn then can we construct examples of
simple groups that are type Fn but not Fn+1? This question was resolved by Skipper, Witzel and
Zaremsky by considering certain topological full groups.

Theorem 3.7.7 (Skipper-Witzel-Zaremsky). [115] For all n, there exists a simple group of type

Fn but not Fn+1.

Note another construction was later discovered by Belk-Zaremsky [7]. There are many other
interesting examples of topological full groups that the literature has seen. We highlight the
above three examples due to their influence and prominence in the field, but note the other
notable examples of groups with a combination of surprising properties unseen before:

• Examples of simple, finitely generated nonamenable groups with generalised forms of
amenability such as property Gamma, inner amenability [67], or more recently, whose
group von Neumann algebras have the McDuff property [65].

• Topological full groups of minimal subshifts which contain Grigorchuk’s group as a sub-
group [15].

Another important point to emphasise is that certain topological full groups, have served re-
cently as container groups for a longstanding conjecture of Boone and Higman, concerning a
rephrasing of the word problem for groups in terms of certain embeddings.

Definition 3.7.8. Let Γ be a finitely generated group with finite symmetric generating set S. We

say that Γ has

1. Solvable word problem, if given a finite word w ∈ Sn there exists an algorithm that deter-

mines, in finitely many steps, whether or not w is the identity.

2. Solvable generalised word problem with respect to a fixed finitely generated subgroup

Λ ⊆ Γ. Which asks, given a finite word w ∈ Sn, there exists an algorithm that determines,

in finitely many steps, whether w belongs to Λ.

Conjecture 3.7.9 (Boone-Higman Conjecture). A finitely generated group Γ has solvable word

problem iff it embeds into a simple finitely presented group. [6]

The use of the framework of topological full groups is due to the abundance of examples
of (derived subgroups of) topological full groups that are simple and finitely presented. See [6]
for a survey on recent progress on the Boone-Higman conjecture. See [5] for the resolution of
the Boone-Higman conjecture for hyperbolic groups, which relies heavily on the framework of
topological full groups, in particular twisted Brin Thompson groups [7].
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3.8 Outlook

One open question has already been explained in the subgroup structure section:

Question 3.8.1. Let G be an ample groupoid. Is D(G) =A(G)?

As explained in Section 3.5, understanding the finiteness properties of D(G) is important.
Finite generation of this group is relatively well understood due to the notion of groupoid expan-
sivity. However, many such D(G) are finitely presented, and understanding when this happens
seems altogether more complex. Therefore we ask:

Question 3.8.2. Is there a dynamical property, intrinsic to the ample groupoid G that guarantees

that D(G) is finitely presented?

Similarly, some topological full groups are amenable, and some are not. Determining whether
a topological full group is amenable or not remains a subtle question, so we ask:

Question 3.8.3. Is there a characterisation of between the amenability of topological full groups

and a dynamical property intrinsic to the ample groupoid G?

You could also ask the same question about growth:

Question 3.8.4. Is there a relationship between the growth of topological full groups and a

dynamical property intrinsic to the ample groupoid G?

Given the significant examples seen above, we can ask natural open existence questions for
simple groups with finiteness properties in this context, such as:

Question 3.8.5. Are there finitely presented amenable infinite simple groups?

Finally let us mention the major guiding open problem which is the Boone-Higman conjec-
ture.

Question 3.8.6. Does every finitely generated group with solvable word problem embed into a

finitely presented simple group?



Chapter 4

Thompson’s group and generalisations

4.1 Thompson’s group

Thompson’s group V can be described as a group of homeomorphisms of the Cantor space, or
certain piecewise linear maps on the unit interval.

Definition 4.1.1 (Thompson’s Group V). Thompson’s group V is the group of right continuous

piecewise linear bijections of (0,1] with finitely many slopes, all in ⟨2⟩= {2n ∶ n ∈Z}, and finitely

many nondifferentiable points, all dyadic (i.e. all in Z[1/2] = {a/2n ∶ a ∈Z, n ∈N}).

1/4

1/4 3/4

3/4

f

Figure 4.1: An example element of Thompson’s group V

This group was the first example of an infinite finitely presented simple group [121]. Since
then, it has been shown that V is type F∞ [25] (see [122] for a very general approach) and is
acyclic [118].

Thompson’s group V was defined alongside two notable subgroups called Thompson’s group
F,T . These groups nest as subgroups in alphabetical order, i.e. F ⊂ T ⊂V .

Definition 4.1.2 (Thompson’s Group T,F). Let ∼ be the equivalence relation on [0,1] which

identifies 0 ∼ 1 only, so that [0,1]/ ∼ is homeomorphic to a circle.

69
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Then, T ⊂V is the group of continuous piecewise linear homeomorphisms of [0,1]/ ∼ with

finitely many nondifferentiable points in Z[1/2] and slopes in ⟨2⟩.

Thompson’s group F is the subgroup of T consisting of all piecewise linear maps with finitely

many nondifferentiable points in Z[1/2] and slopes in ⟨2⟩ that are continuous on (0,1]

1/2

1/4 3/4

3/4

1/4

3/4

g
h

Figure 4.2: Examples of elements of Thompson’s group F and T . g is an element of F , and
therefore also g is an element of T . h is an element of T , but not an element of F .

The primary interest in Thompson’s group V is that it was the first known example of an
infinite, finitely presented simple group [121]. Let us give an outline of why these facts are true.
These results are due to Thompson, but since his notes are not publically available, the author is
unsure exactly how Thompson proved these results. A common method of proof can be found in
Section 6 of Cannon-Floyd-Parry’s excellent introductory notes [32]. Here we prefer to follow
the ideas of Bleak-Quick [14].

Let us begin with notation. Much the same as Nekrashevych, Bleak-Quick took the per-
spective that Thompson’s group V should be viewed simultaneously as a generalisation of the
infinite symmetric and alternating group.

Definition 4.1.3 (V as permutations). Let X = {0,1}N be the Cantor set. Let X∗ denote the

finite words in {0,1}. Given µ ∈ X∗, let µ +X denote the words in X with µ as a prefix. Given

µ = (µ1, ...,µlµ ),ν = (ν1, ...,νlν ) be such that such that µ +X ,ν +X have empty intersection. Let

(µ,ν) denote the homeomorphism X → X of order 2 where:

(µ,ν)(x) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

(µ1, ...,µlµ ,x1, ...,) x = (ν1, ...,νlν ,x1, ...,) ∈ ν +X

(ν1, ...,νlν ,x1, ...,) x = (µ1, ...,µlµ ,x1, ...,) ∈ µ +X

x otherwise

Let V be the group generated by all such homeomorphisms.
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Remark 4.1.4 (Identifying the definitions). One can identify this definition of V via the surjec-

tion

ϕ ∶ X → (0,1] (x1, ...,)↦
∞
∑
i=1

xi2−i.

Then, the isomorphism Φ can be defined by sending (µ,ν) to the unique PL map fµ,ν ∈V such

that fµiϕ = ϕ(µ,ν). The fact that this is injective is clear, and surjective takes an argument.

It’s sufficient to show that V as a group of PL homeomorphisms is generated by elements of

the form fµ,ν .

First note the measure-preserving subgroup IE(Z[1/2]) of Thompson’s group V where each

PL section has slope 1, is clearly generated by elements of this form. This corresponds to

the group generated by two cycles (µ,ν) with the length of µ equal to the length of ν . Then

S2n ≅ IE(2−nZ) is generated by the two cycles permuting the 2n intervals of length 2−n.

Since V is the Zappa-Szép product between its measure preserving subgroup IE(Z[1/2])
and Thompson’s group F (this is well known, however see Lemma 7.1.2 for a rigorous proof) it

is therefore enough to show that we may obtain any element of Thompson’s group F from such

permutations.

Let f ∈F be arbitrary. Let t = infsupp f and assume (by taking inverses if necessary) the right

derivative is less than 1 at t. Let n be large enough that f (t)= 2−mt for some m ∈N on [t,t+2−n]⊂

(0,1]. Then, there is µt ,µt+3⋅2−n+2 ∈ X∗ such that ϕ(µt) = t,ϕ(µt+3⋅2−n+2) = t +3 ⋅2−n+2 and the

length of µt+3⋅2−n+2 is one more than the length of µt , which is n+1. Therefore, fµt ,µt+3⋅2−n+2 is an

element of V with

• Support in [t,t +2n]

• Right derivative 1/2 at t

There exists a unique element of f ′ ∈ IE(Z[1/2]) such that f̂1 = f ′ fµt ,µt+3 ∈ F with support in

[t,t +2n]. Hence, f̂1
−m

f ∈ F has strictly smaller support than f . Repeating this argument to

obtain f̂2, f̂3 will eventually terminate as the support gets closer and closer to supsupp f , hence

all elements of F can be obtained as a finite string of two cycles.

Given µ,ν such that µ +X ,ν +X have empty intersection. Given a finite word γ ∈ X∗ we
define (µ,ν)(γ) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(µ1, ...,µlµ ,γ1, ...,γn) γ = (ν1, ...,νlν ,γ1, ...,γn)

(ν1, ...,νlν , ,γ1, ...,γn) γ = (µ1, ...,µlµ ,γ1, ...,γn)

γ (γ +X)∩(µ +X) = (γ +X)∩(ν +X) =∅

undefined otherwise

.

The above remark gives an idea of how we can prove:
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Theorem 4.1.5 ( [14], Theorem 1.1.). Let µ,ν be all symbols such that µ +X ,ν +X have empty

intersection. Let (µ,ν) denote the homeomorphism as above. There is an infinite presentation

for V given by

(µ,ν)2 = 1,

(µ,ν) = (µ0,ν0)(µ1,ν1),

(µ,ν)(α,β) = ((α,β)(µ),(α,β)(ν)),

where µ,ν ,α,β range over all sequences such that they are defined.

Given µ1, ...,µn such that µ j +X ,µ i+X have nonempty intersection for i ≠ j, one may simi-
larly define the homeomorphism (µ1, ...,µn) in the analogous way to the two cycles

(µ1, ...,µn)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(µ1
1 , ...,µ

1
l1
µ

,x1, ...,) x = (µn
1 , ...,µ

n
ln
µ
,x1, ...,) ∈ µn+X

(µ i
1, ...,µ

i
li
µ

,x1, ...,) x = (µ i−1
1 , ...,µ i−1

li−1
µ

,x1, ...,) ∈ µ i−1+X i = 2, ...,n

x otherwise

.

Using this notation one can show the following relation for the elements (00,01).(01,10,11),
and (1,00) of V :

R1 ∶ (00,01)2 = (01,10,11)3 = ((00,01)(01,10,11))4 = 1,

R2 ∶ ((1,00),(00,01))(1,00) = (00,01),

R3 ∶ (1,00) = (10,000)(11,001),

R4 ∶ [(00,010),(10,111)] = [(00,011),(10,111)] = 1,

R5 ∶ [(000,010),(10,110)] .

These are straightforward algebra to verify. Note that R1 follows since these elements generated
the copy of S4, IE(1/4Z) in IE(Z[1/2]). R5 simply describes the commuting nature of certain
elements of V with disjoint supports.

The remainder of the proof strategy is to show two nontrivial facts:

• The three elements (00,01).(01,10,11),(1,00) can be used to generate any two cycle,
(µ,ν) and therefore generate V .

• Let V ′ be a group generated by a,b,c such that a,b generate the symmetric group S4 (R1)
and c is related as in R2, ...,R5. Then V ′ = ⟨a,b,c⟩ is simple.

Since there is a canonical quotient map V ′→V , this then shows that:
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Theorem 4.1.6 (Thompson 1967). Thompson’s group V is finitely presented and simple. It is

generated by the elements (00,01).(01,10,11),(1,00) for which a finite presentation is given

by the relations R1, ...,R5

It is important to appreciate that infinite, simple groups with finiteness properties are difficult
to construct because a-priori examples of infinite groups do not have good finiteness properties
and the sorts of operations that preserve simplicity (direct limits) tend not to preserve finiteness
properties. Higman had only constructed the first example of an infinite finitely generated simple
group in 1951 [58].

In fact, V has stronger finiteness properties than finite presentation. In 1987, Brown showed
V was of type F∞, a fact the proof of which is beyond the scope of this thesis [25].

Theorem 4.1.7 (Brown 1987). Thompson’s group V is of type F∞.

Let us give an outline of the history of the homology of Thompson’s group V . In 1992 [26],
Brown showed that V was rationally acyclic.

Theorem 4.1.8 (Brown 1992). Thompson’s group V is rationally acyclic.

In the same paper, Brown conjectures that V is integrally acyclic. This remained an open
problem for 36 years until 2018 when Szymik-Wahl showed that Thompson’s group V was
integrally acyclic [118].

Theorem 4.1.9 (Szymik-Wahl). Thompson’s group V is integrally acyclic.

In 1974, Higman introduced a generalised class of Thompson’s groups which have become
known as Higman-Thompson groups [59].

Definition 4.1.10 (Higman-Thompson groups). For k > 1,k ∈ N, r ∈ N, the Higman-Thompson

group, denoted Vk,r is the group of piecewise linear, right continuous bijections of (0,r] with

finitely many nondifferentiable points, all in Z[1/k] and slopes in ⟨k⟩.

A key difference here is that Higman-Thompson groups are not always simple. Higman
shows already in [59]:

(Vk,r)ab =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Z2 k odd

0 k even
.

Therefore, whenever k is even, Vk,r is it’s own derived subgroup, otherwise if k is odd, Vk,r is
not simple. Higman was able to show that in either case their derived subgroups are simple and
finitely presented:

Theorem 4.1.11 (Higman). Let k,r ∈N with k > 2. Then, the derived subgroup of Vk,r is simple

and finitely presented [59].
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A full classification of Higman-Thompson groups has been obtained. In this notation, the
main result of [98] states that:

Vk,r ≅Vk′,r′ ⇐⇒ k = k′, gcd(k−1,r) = gcd(k−1,r′)

Here, we can see the isomorphism class of the Higman-Thompson group Vk,r depends on the
length r of the underlying interval. It is notable that the direction ⇒ was already known to
Higman, and the direction⇐, considered the hard direction by experts, used tools from Leavitt
path algebras [98].

The key difference that Higman-Thompson groups sometimes have nontrivial abelianisation
implies of course that they cannot always be acyclic. The homology of Higman-Thompson
groups is still yet to be fully understood. Brown’s proof that V is rationally acyclic is noted in
his paper to generalise to the Higman-Thompson groups. However, this result was first written
down by Szymik-Wahl [118].

Theorem 4.1.12. For all k > 1,r ∈N the Higman-Thompson groups Vk,r are rationally acyclic.

They were able to show was a homological stability result, that the homology of Vk,r does
not depend on r.

Theorem 4.1.13. Let k,r,r′ ∈N with k > 1, then we have that the homology of Vk,r is the same as

the homology of Vk,r′ , i.e. H∗(Vk,r) ≅H∗(Vk,r′). [118]

It still remains to understand the integral homology of Vk,r for k > 1 in totality. In fact, it is
open to compute the homology of V3,1.

4.2 Stein’s groups

We now turn to the piecewise linear homeomorphisms perspective of Thompson-like groups,
following Stein [116]. Note similar generalisations of Thompson’s group F have been studied
in detail by Bieri-Streibel [8].

Definition 4.2.1 (Stein’s Groups). Let Λ⊂R be a multiplicative subgroup of (0,+∞), Γ be a Z ⋅Λ
submodule ( i.e. such that Λ ⋅Γ = Γ) let 1 ≤ ℓ ∈ Γ. Then, V(Γ,Λ,ℓ) denotes the right continuous,

piecewise linear bijections of (0,ℓ] with slopes in Λ and finitely many discontinuities in Γ. In

addition, let us define two nested subgroups in analogy of Thompson’s groups F ⊂ T ⊂V :

• Let ∼ be the equivalence relation on [0,ℓ] which identifies only the endpoints 0 ∼ ℓ in order

that [0,ℓ]/ ∼ is homeomorphic to a circle. Then, T(Γ,Λ,ℓ) ⊂V(Γ,Λ,ℓ) is the group of

piecewise linear homeomorphismns of [0,ℓ]/∼ with finitely many nondifferentiable points,

all in Γ and slopes in Λ.
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• F(Γ,Λ,ℓ) ⊂ T(Γ,Λ,ℓ) ⊂V(Γ,Λ,ℓ) is the group of piecewise linear homeomorphisms of

(0,ℓ] with finitely many nondifferentiable points in Γ and slopes in Λ.

Note that the restriction of ℓ ≥ 1 does not limit the diversity of these groups. This defini-
tion due to Stein encompasses many generalisations of Higman-Thompson groups of interest to
geometric group theory. We list some specific examples below:

Example 4.2.2 (Thompson’s group V ). Let Γ=Z[1/2],Λ= ⟨2⟩ and ℓ=1. Then, V(Z[1/2],⟨2⟩,1)
is Thompson’s group V .

These groups were generalised by Higman.

Example 4.2.3 (The Higman-Thompson groups). Let n,r ∈N, with n>2. Then, V(Z[1/n],⟨n⟩,r)≅
Vn,r, the Higman-Thompson group.

But the class of Stein’s group studied in Chapter 7 is much more general than any of the
above example classes. We should therefore verify that whichever group Λ and module Γ we
choose, we obtain nontrivial groups.

Lemma 4.2.4. Let Λ be a multiplicative subgroup of R∩(0,+∞). Let Γ be a Z ⋅Λ submodule and

ℓ ∈ Γ. Then, all three of the groups F(Γ,Λ,ℓ) ⊂ T(Γ,Λ,ℓ) ⊂V(Γ,Λ,ℓ) are nontrivial, properly

nested groups.

Proof. This proof is entirely constructive. We show that for ℓ = 1, since the other cases are
analogous. For any choice of Λ,Γ, consider λ ∈Λ,λ < 1/2 then consider the following piecewise
linear functions:

f ∈ F b ∈ T g ∈ V

λ 2

λ 2+λ 3

λ 2+λ 3

λ 3
λ

1−λ

λ λ 2+λ

2λ 2+λ

f (t) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

λ−1t t ∈ (0,λ 2]

λ t +λ 2−λ 3 t ∈ (λ 2,λ 2+λ 3]

t otherwise

b(t) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

t +1−λ t ∈ (0,λ ]

t −λ t ∈ (λ ,1]
g(t) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

t +λ 2 t ∈ (λ ,λ +λ 2]

t −λ 2 t ∈ (λ +λ 2,λ +2λ 2]

t otherwise
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These clearly define nontrivial elements of V(Γ,Λ,1). Furthermore, we have that f ∈F(Γ,Λ,1),
b ∈ T(Γ,Λ,1)∖F(Γ,Λ,1), and g ∈V(Γ,Λ,1)∖T(Γ,Λ,1).

Remark that the existence of nontrivial elements of F also follows from [ [8], Theorem 1].
It is important to consider when Γ,Λ are generated by more than one number, i.e. when

Λ /≅ Z. The case where Λ is generated by multiple integers were the main object of study by
Stein, and so we accordingly name them Stein’s integral groups:

Example 4.2.5 (Stein’s Integral Groups). Let N = {n1,n2, ...nk} be a finite set of algebraically

independent integers, such that ni > 2 for all i. Let ℓ ∈ N. Then, we have that Stein’s integral

group is V(Z[∏k
i=1 1/ni],⟨ni⟩

k
i=1,ℓ).

Stein defined the groups V as generalisations of Thompson’s group V , or Higman-Thompson
groups. She was able to show a few key ways they are similar:

Theorem 4.2.6 (Stein [116], Theorem 5.2 ). Let Λ be a submultiplicative group of (R+, ⋅). Let

Γ be a ZΛ submodule and ℓ ∈ Γ∩(0,∞). Then, D(V(Γ,Λ,ℓ)) is simple.

These derived subgroups also enjoy a number of finiteness properties. In the same paper
[116], Stein wrote a proof, credited to Brown, which shows that the integral groups are of type
F∞.

Theorem 4.2.7. Let {n1,n2, ...nk} be a finite set of algebraically independent integers. Let ℓ ∈N.

Then, V(Z[∏k
i=1 1/ni],⟨ni⟩

k
i=1,ℓ) is of type F∞.

Finally, Stein was able to compute the abelianisation of her integral groups [116].

Lemma 4.2.8. Let {n1,n2, ...nk} be a finite set of algebraically independent integers. Let d =

gcd(n1−1, ...,nk−1) Let ℓ ∈N. Then,

V(Z[
k
∏
i=1

1/ni],⟨ni⟩
k
i=1,ℓ)ab ≅

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 d even

Z2 d odd
.

4.2.1 Cleary’s group

As well as including integers, one can consider arbitrary irrational numbers to generated the
group of slopes. The most studied group of this form is Cleary’s group [38] [37] [31] [30].

Example 4.2.9 (Cleary’s irrational slope Thompson Group). Let τ = 1+
√

5
2 denote the golden

ratio. The Stein’s group V(Z[τ,τ−1],⟨τ⟩,1), is known as Cleary’s group, denoted by Vτ [38].

This group is otherwise known as the irrational slope Thompsons group [31].
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Researchers have extensively studied the F-type subgroup Fτ = F(Z[τ,τ−1],⟨τ⟩,1). Like
Thompson’s group, it admits a presentation through carets [30].

Little is known about Cleary’s group Vτ , but there have been exciting developments in recent
years. For example, explicit finite generating sets have been found [31].

Theorem 4.2.10 (Burrilo-Nucinkis-Reeves). Vτ is finitely generated.

The abelianisation of this group was shown to be Z2 [31].

Theorem 4.2.11 (Burrilo-Nucinkis-Reeves). (Vτ)ab ≅Z2.

Vτ also has very different dynamical properties to that Thompson’s group V .

Remark 4.2.12. From a dynamical perspective, Vτ contains minimal homeomorphisms of the

Cantor space, a concrete example being the map

fτ ∶ (0,1]→ (0,1] t ↦ t +τ ( mod Z)

Thompson’s group V does not contain minimal homeomorphisms, since if we examine the orbit

structure of an element of Thompson’s group V , we will find that there are finite orbits and the

underlying homeomorphism of the Cantor space is therefore not minimal [108].

4.3 Brin-Higman-Thompson groups

In 2004, Brin introduced a class of groups nV [21] which have since become known as Brin-
Thompson groups. The variation in which we write below is the natural enveloping class of
groups including the Brin-Thompson groups and the Higman-Thompson groups.

Let n,k,r ∈N with k > 1. Let C = {1, ...,k}N be the Cantor space, and consider the n-product
Cn of this Cantor space. Let {1, ...,k}∗ denote the set of all finite strings in {1, ...,k}, including
the empty string. Given an n−tuple φ = (φ1, ...,φn) ∈ ({1, ...,k}∗)n we associate the cone B(φ) =

{x = (φ1x1, ...,φnxn) ∈ C
n}. Note each B(φ) is canonically homeomorphic to Cn. Given two

n-tuples φ ,φ ′, let

B(φ ,φ ′) ∶ B(φ)→ B(φ ′) (φ1x1, ...,φnxn)↦ (φ1x1, ...,φnxn)

Definition 4.3.1 (Brin-Higman-Thompson Groups). The Brin-Higman-Thompson nVk,r groups

are the groups of homeomorphisms f of the Cantor space Cn such that for all x ∈ Cn, there exists

φ ,φ ′ ∈ ({1, ...,k}∗)n such that f ∣B(φ) = B(φ ,φ ′).

Equivalently, one could describe the Brin-Higman-Thompson group as the group of piece-

wise linear bijections g on [0,r]n, such that for all i, j ∈ 1, ...,n and all x1, ...,xn−1 ∈ [0,r]n−1 the

map:

gi, j ∶ [0,r]→ [0,r] t ↦ (g(x1, ..,xi−1,t,xi+1, ...,xn−1)) j
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Is an element of the Higman-Thompson group Vk,r.

These groups have now been classified, with the final pieces of this jigsaw resolved by Dicks
Martinez-Perez [44] giving the following classification

nVk,r ≅ n′Vk′,r′ ⇐⇒ n′ = n,k′ = k and gcd(k,r−1) = gcd(k,r′−1).

Much like the Higman-Thompson groups, these groups were defined as a new class of infinite,
finitely presented simple groups. Not unlike the Higman-Thompson groups, the derived sub-
groups of nVk,r are usually the simple groups, although 1V2k,r is perfect for all k,r, and so is
nV2,r for all n,r. Brin-Thompson groups are of type F∞.

Theorem 4.3.2. Let n,k,r ∈N, with k > 2. Then, the Brin-Higman-Thompson group nVk,r is of

type F∞.

Let us explain the history that led to this result. In Brin’s original paper, he shows that
2V is simple and finitely presented [21]. Later, Hennig-Mattuci [57] show that nV is simple
and finitely presented for all n. Kochloukova, Martinez-Perez, and Nucinkis proved that the
Brin–Thompson groups 2V and 3V are of type F∞ [68], and Fluch, Marschler, Witzel, and
Zaremsky extended this result to all of the Brin–Thompson groups [50]. To the best of the
authors knowledge, the Brin-Higman-Thompson groups were not then dealt with separately,
although it is clear that the techniques of Fluch, Marschler, Witzel, and Zaremsky extend to
the Brin-Higman-Thompson groups. For written proof, the result above can be viewed as a
Corollary of work by Martinez-Perez, Mattuci and Nucinkis [83], or of Thumann [122].

4.4 Thompson-like groups as topological full groups

4.4.1 V as a topological full group

Let us first explain two perspectives on the groupoid model of Thompson’s group V . The classic
perspective is that V is This observation goes back to historic work of Nekrashevych [94] but
was first formalised by Matui [89]. Nekrashevych observed that Thompson’s group V can be
described inside the Cuntz algebra, which is the reduced groupoid C∗-algebra of E2; V2 ≅ {S ∈

U(O2) ∶ S =∑n
i=1 SµiS

∗
νi}.

Let us recall the canonical groupoid model E2 for O2, the SFT groupoid associated with the
directed graph E2, as in Example 2.4.7.

Let X = {0,1}N be cantor space. Consider the graph groupoid; for k ∈Z we say

(xn)n ∼k (yn)n ⇐⇒ ∃N ∈N s.t. n >N Ô⇒ xn = yn+k.
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● v

f1

f2

E2

Figure 4.3: The directed graph associated to O2

Then, the groupoid elements are given by:

((xn)n,k,(yn)n)) (xn)n ∼k (yn)n.

Composable pairs are of the form

((xn)n,k,(yn)n))((ŷn)n, k̂,(zn)n)) s.t. (yn)n ∼0 (ŷn)n.

Inverses are given by
((xn)n,k,(yn)n))

−1 = ((yn)n,−k,(xn)n)).

A basis for the topology on {0,1}N is given by:

Cµ = µ +{0,1}N

Where µ is some finite word- i.e. arbitrary sequences that start with µ . Then, a basis for the
topology on E2 is given by

Cµ,ν = {((xn)n,k,(yn)n)) ∶ (xn)n ∈Cµ , (yn)n ∈Cν , k = ∣ν ∣− ∣µ ∣}.

This groupoid is ample and the above form a basis for the compact open bisections. It is not
hard to see then that since s(Cµ,ν) =Cµ r(Cµ,ν) =Cν elements of our topological full group are
of the form

B =
N
⊔
i=1

Cµi,νi s.t. X =⊔
i

Cµi =⊔
i

Cνi,

i.e. so that every sequence starts with exactly one µi and exactly one νi. Now let us notice
something subtle. Any finite word in {0,1} corresponds uniquely to a dyadic number in (0,1)
via it’s binary expansion, for an explicit example:

0110↦ 0/2+1/4+1/8+0/16 = 3/8.
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This lets us define a map:
f ∶⋃

N
{0,1}N →Z[1/2]∩(0,1).

Furthermore, since every number has an infinite binary expansion, we can extend such a map to
a map {0,1}N→ (0,1). It is in this way that we see such an identification:

f (Cµ) = [ f (µ), f (µ)+2−∣µ ∣].

Therefore, each Cµ,ν gives us a pair of intervals with length in ⟨2⟩ and end points in Z[1/2]∩
(0,1], allowing us to define the map

Φ ∶ Bk
E2
→ {partial homeomorphisms of (0,1) by linear maps } Cµ,ν → fµ,ν ,

where

fµ,ν ∶ [ f (µ), f (µ)+2−∣µ ∣)→ [ f (ν), f (ν)+2−∣ν ∣) t ↦ f (ν)− f (µ)+2∣µ ∣−∣ν ∣t.

Considering Φ on the topological full group we get therefore an isomorphism

Φ ∶ F(E2)→V2.

It is easy to see that ker(Φ) = E0
2 = (X ,0,X). To see surjectivity, consider an arbitrary f ∈V2.

Since f is bijective, it is enough for each piecewise linear component to find a corresponding
cylinder set Cµ,ν . Let

fi ∶ [a,a+2−k)→ [c,c+2−m) t ↦ c+2k−m(t −a)

be some piecewise linear component of f . We may assume without loss of generality that
2ka,2mc ∈N since otherwise, we can just rewrite fi as the union of 2n functions of the form

fl ∶ [a+ l2−n,a+ l2−(n+k))→ [c+ l2−n,c+ l2−(n+m))) t ↦ c+2k−m(t −a)) l ∈ {0,1,2,3...,2n}

for suitably large n.

Then let µ be the binary expansion of 2ka, ν be the binary expansion of 2mc. We see that
fi =Φ(Cµ,ν) so that we are done.

The next observation we give is that the groupoid E2 is isomorphic to a transformation
groupoid. Recall [ [35], Proposition 8.5.]:

Lemma 4.4.1. There exists an amenable, topologically free action of Z2 ∗Z3 on the Cantor

space X such that Z2∗Z3⋉X ≅ E2 where E2 is the full shift on two generators.
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Proof. Let F,E2 be as in the below diagram.

●● v

f1

f2

w
e

F

● v

f1

f2

E2

Figure 4.4: The graphs F and E2

Note that E2 ⊂ F .
We first show that GF ≅ GE2 . Define

ϕ ∶ F∞→ E∞2 ϕ(x1,x2,x3, ...) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

( f1,x2,x3, ...) x ∉ E2

( f2,x1,x2...) x ∈ E2

,

and let χE2 be the indicator function of E∞2 on F∞. It is clear that ϕ is a homeomorphism.
Note that this behaves well with respect to shifts;

σ
2−χE2(x)
E2

(ϕ(x)) = σF(x)

This insures that the map

Φ∶GF → GE2 (x,k,y)↦ (ϕ(x),k+χE2(x)−χE2(y),ϕ(y))

is well defined. Say k =m−n and σm
F (x) = σn

F(y), then

σ
m+2−χE2(x)
E2

(ϕ(x)) = σ
m+1
F (x) = σ

n+1
F (y) = σ

n+2−χE2(y)
E2

(ϕ(y)).

Showing this is surjective and compatible with the binary maps ⋅,r,s is straightforward.
Our next claim is that there is an action Z2∗Z3↷ F∞ such that Z2∗Z3⋉X ≅ GF . Say a ∈Z2,b ∈

Z3 are the generators. Set

a ⋅(x1,x2,x3, ...) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(e,x1, ..) x ∈ E∞2
(x2,x3, ..) x ∈ eE∞2
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and

b ⋅(x1,x2,x3, ...) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

(e, f1,x1,x2,x3) x ∈ E∞2
(e, f2,x3, ..) x ∈ e f1E∞2
(x3,x4, ..) x ∈ e f2E∞2

.

It is clear this is an action by homeomorphisms on F∞. Let εa = 1−2χeE∞2 , εb = 2χE∞2 −2χe f2E∞2 .
Then for g =∏n

i=1 gi where each gi ∈ {a,b}, let εg∶F∞→Z be given by

εg(x) ∶=
n
∑
j=1

εg j(
n
∏

i= j+1
gix).

This is well-defined, and normalised by the conditions gx = x, εg(x) = 0 ⇐⇒ g = 1. Let g ∈

Z2∗Z3, we can define an action Ψ∶Z2∗Z3↷ GF by

Ψg(x,k,y) = (gx,k+εg(x),y).

Ψ is well-defined, bijective and Ψgh =Ψg ○Ψh. We claim the map

Ω∶(Z2∗Z3)⋉F∞→ GF

is a groupoid isomorphism. Note that this is injective–

Ω(g,x) =Ω(h,y) ⇐⇒ x = y, gh−1x = x, εgh−1(x) = 0.

The last two equalities together imply g = h. This finishes the second claim.
Combining both claims together we obtain that Z2∗Z3⋉X ≅ E2 ≅ GE2 . It follows that the action
is topologically free, and amenable, since E2 is amenable and effective. Furthermore, the action
is minimal since O2 is simple (and a crossed product).

Theorem 4.4.2. The topological full group of Z2∗Z3↷ X is isomorphic to V .

Proof. This follows via the above result combined with Matui’s isomorphism theorem (Theorem
3.4.12).

We may now employ results in Chapter 3, to reprove many of the key results of Thompson’s
group V using the literature surrounding topological full groups.

Example 4.4.3 (V is simple and finitely generated). One can observe that the derived subgroup

of V is simple and finitely generated as a consequence of Theorem 7.2.9, Theorem 3.5.2 since

the action of Z2∗Z3 on X is expansive and minimal.

Recall also that we computed the homology of the full shift on two generators in Example

2.4.7. We have that the groupoid is acyclic, i.e. the homology vanishes. Therefore, via Theorem

3.6.7, the abelianisation is 0. Hence, we recover that V is perfect.
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We also see here that Szymik-Wahl’s Theorem that V is acyclic is recovered through our
understanding of the homology of topological full groups.

Example 4.4.4. We are also able to explain why many of the results in Section 3.6. are a gener-

alisation of the work of Szymik-Wahl [118]. Note that the fact that G is acyclic in combination

with Corollary 3.6.3 recovers that V is acyclic.

4.4.2 Generalisations of V as topological full groups

Example 4.4.5. The Higman-Thompson groups Vk,r also arise naturally from SFT groupoids,

as explained in [89, Remark 6.3]. Namely, Vk,r is associated to the graph groupoid Rr × Ek

consisting of the r-stabilisation of the of the shift of finite type groupoid Ek associated to the

single vertex graph with k loops. Then F(Rr×Ek) has been explicitly identified with theHigman-

Thompson group Vk,r in [89, Remark 6.3]. The groupoid homology is independent of r, and it is

computable via the Künneth formula as in Example 2.4.9, yielding

Hi(Rr ×Ek) ≅

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Zk−1 i = 0

0 i > 0
.

One way to think about this in terms of a directed graph is the “flower with k petals and a stem

of length r−1”. For example, we draw the directed graph associated with V7,3 below.

● v1

f8

E7,3, the directed graph whose SFT groupoid is R3×E7.

f2

f3

f4

f6

f7

f5

● v2

● v3

Example 4.4.6. Let n,k,r ∈ N, with k > 2 and consider the groupoid Rr ×E
n
k consisting of the

r-stabilisation of the n-fold product of the shift of finite type groupoid Ek associated to the single
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vertex graph with k loops. Then F(Rr×E
n
k ) can been explicitly identified with the Brin-Higman-

Thompson group nVk,r (see, e.g. [90]). The groupoid homology of Rr ×E
n
k groupoid homology

is independent of r, and it is computable via the Künneth formula, as in Example 2.4.9 yielding:

Hi(Rr ×E
n
k ) ≅Z

n−1Ci
k−1

for all i ≥ 0, where nCi is the binomial coefficient nCi =
n!

(n−i)!i! .

Recall that we computed the homology of products of SFT groupoids in Example 2.4.9. In
light of our section on the homology of topological full groups, we can consider the homology
of the Brin-Higman-Thompson groups nVk,r. First we can use the vanishing results (Corollary
3.6.3 and Corollary 3.6.4) to understand the acyclity of Brin-Higman-Thompson groups.

Proposition 4.4.7. nV2,r is acyclic for all n,r ∈N. nVk,r is rationally acyclic for all n,r ∈N and

k ∈N, k > 2.

We can also apply Theorem 3.6.5 to understand the homological stability of the Brin-Higman-
Thompson groups:

Proposition 4.4.8. Let n,k,r,r′ ∈ N with n > 0,r > r′, and k > 2. The inclusion nVk,r′ ↪ nVk,r

induces an isomorphism in homology.

Note that the above result is a generalisation of the work of Szymik-Wahl, who proved the
above theorem restricted to the case n = 1 (in other words, the case of the Higman-Thompson
groups).

Whilst realising known groups that generalise V in various ways proves fertile, it loses out
on a lot of the creativity and enjoyment that one gets from studying topological full groups.
This is because as well as using topological full groups to study interesting groups, one can use
topological full groups to generate new examples of interesting groups.

Therefore, from the identification of V as a topological full group, a new philosophy emerged.
Let G be a groupoid that generalises the full shift on two generators in some kind of way, for
example by coming from one of these broader families of groupoids which the full shift comes
from. Then, one can study the topological full group of this groupoid as a new generalisation of
V , which might be otherwise hard to have found a-priori.

From C*-algebras there is a whole wealth of examples that generalise the Cuntz algebra in
all kinds of interesting ways. Many of these have groupoid models, and these groupoid models
give rise to V -like groups. We summarise some of this reasearch through examples below.

Example 4.4.9 (Matui-Matsumoto). Following on from Example 4.4.5, one might consider other

SFT groupoids as generalised Higman-Thompson groups. This was a philosophy taken by [89]
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Matui, and later in a collaboration of Matui-Matsumoto [86], a philosophy which proved fruit-

ful. In summary, they were able to show:

• The topological full groups are type F∞ (see [89], subsection 6.5).

• The derived subgroups are simple (see [89], subsection 4.2) but also remark this follows

from Theorem 7.2.9.

• Proof that these groups inherit the Haagerup property from embeddings into V (see [89],

subsection 6.3).

• Develop our understanding of the abelianisations via the AH conjecture (see [89], section

5).

• Representations of these groups in terms of certain PL-bijections on the unit interval (0,1]
(see subsection 6, [86]).

Example 4.4.10 (Matui-Matsumoto). The groupoids in example 4.4.5 also fall into the class of

groupoids arising from so-called β -expansions. Matui-Matsumoto studied the topological full

groups arising from other kinds of β -expansions in [85], with this observation in mind. In this

paper, they were able to show amongst other things:

• Such groups can be represented as groups of piecewise linear right continuous bijections

on (0,1] (Theorem 1.2. [85]).

• The derived subgroups are often simple (Theorem 1.1. [85]) and isomorphic to certain

Higman-Thompson groups (Theorem 1.3 [85]).

Example 4.4.11 (Matui). Following on from example 4.4.6, one might consider other products

of SFT groupoids as generalised Brin-Higman-Thompson groups. This was a philosophy taken

by Matui [90]. In this paper, he was able to show amongst other things:

• Classification and rigidity results ( [90], Theorem 5.12).

• A confirmation of the AH conjecture for this class of groupoids ( [90], Theorem 2.8).

He asks if they are, like the Brin-Higman-Thompson groups, of type F∞ but leaves this open. It

was confirmed to be true in a paper of Li [78].

Example 4.4.12 (Nyland-Ortega). A third perspective of the groupoids in the example 4.4.5 is

that they are the groupoids of directed graphs. One might consider other graph groupoids as

generalised Higman-Thompson groups. This was the approach of Nyland-Ortega [97] [95].

Here they were able to show:

• Generalisations of the classification theorem of Matui-Matsumoto in several directions

( [95] Theorem A, B, C and D).



CHAPTER 4. THOMPSON’S GROUP AND GENERALISATIONS 86

• A confirmation of the AH conjecture for such groupoids ( [97] Theorem A).

• A computation of groupoid homology for such groupoids ( [97], Theorem B).

Example 4.4.13. A final example class of interest is to observe that E2 may be viewed as the

tight groupoid of the bicyclic inverse monoid, or the universal groupoid of certain cancellative

semigroup. These groupoids have natural generalisations, which have been studied extensively

in work of Lawson [71], Lawson-Vdovina [73] and Lawson-Vdovina-Sims [72].

Example 4.4.14 (Belk-Zaremsky). In [7], Belk-Zaremsky introduced a very interesting new

class of groups called Twisted Brin-Thompson Groups. These are generalised Brin-Higman-

Thompson groups, which allow for “switching of cordinates” by permutations of some abstract

group G.

This class of groups constructed through topological full groups have proven incredibly use-

ful for embedding results, showing amongst other things:

• Every finitely generated group embeds quasi-isometrically as a subgroup of a two-generated

simple group.

• Further examples of simple groups of type Fn but not Fn+1.

• A resolution of the Boone-Higman conjecture for hyperbolic groups makes heavy use of

these groups [5].

4.5 Outlook

We note in addition to the examples listed above, there are other classes of groupoids which yet
to be studied in greater detail. We could, for instance, study the following as generalisations of
Thompson’s group V .

• The topological full groups of purely infinite crossed products of Rordram-Sierakowski.

• The tight groupoids of other classes of inverse monoids.

In studying Thompson-like groups through the framework of topological full groups, open
questions are abundant. The first is to notice a theme that we can understand many things about
topological full groups using techniques once used to understand Thompson’s group V . For
example, we generalised pre-existing literature on V as the basis to understand many things
about topological full groups in general:

• Matui’s proofs and theorems concerning simplicity and finite generation of derived sub-
groups are generalisations of well known arguments made for Thompson’s group V .
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• The research concerning C*-simplicity of topological full groups and the connection to
amenability [24] [110] is largely inspired by the work of Le Boudec-Matte Bon [74] on
Thompson’s group V .

• In homology the work of Li [79] was largely inspired by the work of Szymik-Wahl [118]
on Thompson groups V .

• The standard proof of finiteness properties for topological full groups, e.g. type F∞ proofs
contained in [95] [78] [89] still are generalisations of Brown’s original proof for V , and our
understanding of the Haagerup property for topological full groups remain based largely
on generalisations of Farley’s techniques [48].

Clearly, many of the techniques used to understand Thompson’s group V are useful to understand
topological full groups. There are many other interesting lines of inquiry about Thompson’s
group V which could give us insight into the properties of topological full groups in general. For
example, consider two veins of research around Thompson-like groups:

• Embedding and nonembedding results such as [13] [29] [111].

• Classification of Higman-Thompson groups, and of the Brin-Higman-Thompson groups,
via the associated Steinberg algebras [98] [44].

Such papers contain techniques that may generalise to other topological full groups. There are
of course also many interesting open questions about Thompson-like groups in their own right.
We list some well-known problems below:

Question 4.5.1. Is Thompson’s group F amenable?

This major open problem, open for decades can be rephrased in terms of C*-simplicity of T ,
see [56] [12].

Question 4.5.2. Is Thompson’s group T C*-simple?

There are also some less well-known open questions about Thompson-like groups.

Question 4.5.3. Does 2V2,1 have the Haagerup property?

This is interesting because of the abundance of groups which embed into the group 2V2,1, and
that the Haagerup property is hereditary. We also do not understand fully the integral homology
of the Higman-Thompson groups, which would be interesting to understand better.

Question 4.5.4. What is the homology of V3,1?

For Stein’s groups, we answer some questions in Chapter 7. What is left open is explored in
the outlook section of Chapter 7.



Chapter 5

Topological full groups of purely infinite
groupoids

5.1 Characterisations of pure infiniteness and minimality

We begin by recalling the notion of pure infiniteness for étale groupoids due to Matui [89]. All
groupoids in this section are effective and ample.

Definition 5.1.1. A groupoid G is said to be purely infinite if for every compact and open set

X ⊆G(0) there exist compact open bisections B,B′ ⊆G such that s(B) = s(B′) =X, and r(B),r(B′)

are disjoint and contained in X.

The terminology above is justified by the fact that the reduced groupoid C*-algebra of a
minimal, essentially principal, purely infinite étale groupoid is purely infinite and simple. The
following result is known to the experts [89], but we provide a proof nonetheless for the conve-
nience of the reader. Recall that a projection in a C*-algebra is said to be properly infinite if it is
Murray-von Neumann equivalent to two pairwise orthogonal subprojections of itself.

Proposition 5.1.2. Let G be a minimal, essentially principal, purely infinite, ample groupoid.

Then C∗r (G) is purely infinite and simple.

Proof. Simplicity of C∗r (G) is well-known, so we only prove pure infiniteness. By [18, Theo-
rem B], it suffices to show that every projection in C0(G

(0)) is properly infinite in C∗r (G). Let
p ∈C0(G

(0)) and let X denote its support, which is compact and open. Use pure infiniteness of
G to obtain compact open bisections B,B′ ⊆ G satisfying s(B) = s(B′) = X and r(B)⊔ r(B′) ⊆ X .
Set v = 1B and w = 1B′ , which belong to Cc(G) since B and B′ are compact. The conditions on B

and B′ easily give
v∗v =w∗w = p, vv∗ ⊥ww∗, and vv∗,ww∗ ≤ p.

Thus vv∗ and ww∗ are pairwise orthogonal subprojections of p which are Murray-von Neumann
equivalent to p. We conclude that p is properly infinite, and hence that C∗r (G) is purely infinite.

88
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Note that many ample groupoids are known to be purely infinite and minimal, for example:

1. Transformation groupoids of certain nonamenable groups acting amenably, such as those
studied in [46, 105].

2. Shift of finite type groupoids [89], or more generally, large classes of graph groupoids
[95].

3. Groupoids arising from Beta expansions [85].

4. Certain groupoids arising from left regular representations of Garside categories [78]; see
also [80, Theorem A].

Next, we recall the fact, due to Matui, that the subgroups A(G) and D(G) agree for the class
of purely infinite, minimal groupoids.

Proposition 5.1.3. Let G be an ample, effective, purely infinite and minimal groupoid. Then

D(G) is simple and thus A(G) =D(G).

Proof. Simplicity of D(G) follows from Theorem 3.3.2. Thus A(G) =D(G) since A(G) is nor-
mal in D(G).

For the remainder of this Chapter, we prefer the notation A(G) over D(G) for consistency
with the paper. Let us remark that as in the introduction theorems, we often use the notation
D(G) since the definition of A(G) is technical. We apologise to the reader for this discrepancy.

5.1.1 Embeddings of Thompson’s group V

In [89, Proposition 4.10], Matui proved that if G is purely infinite, then F(G) contains Z2 ∗Z3

as a subgroup (in fact, for this it suffices for G to be properly infinite). In particular, F(G) is
nonamenable. We will strengthen this result by showing that the Thompson group V always

embeds into F(G). In fact, we give a characterisation of pure infiniteness of G in terms of the
existence of certain embeddings of V into F(G); see Theorem 5.1.6.

We need some preparation first. The following notion is due to Bleak, Elliott and Hyde [11].

Definition 5.1.4. ( [11, Definition 1.1]). Let Γ ≤Homeo(C) be a subgroup of homeomorphisms

of the Cantor space C. We say that Γ is vigorous1 if whenever X ,Y1,Y2 ⊆ C are compact and open

with Y1 ≠ X and Y2 ≠∅, and satisfy Y1,Y2 ⊆ X, then there exists g ∈ Γ such that g is the identity on

C ∖X, and g(Y1) ⊆Y2.
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C

X

Y1

g(Y1)
Y2

g is the identity here

g

Figure 5.1: A diagram to visualise the property of vigor. Given Y1,Y2 ⊂ X compact open subsets
such that X ≠ C, Y2 ≠∅ there exists a group element g which maps Y1 inside Y2, whilst acting as
the identity outside of A.

We will need the following observations.

Proposition 5.1.5. Let Γ ≤Homeo(C) be a vigorous group. Then:

1. There is no Γ-invariant Borel probability measure on C. In particular, Γ is not amenable.

2. Γ has infinite conjugacy classes (ICC).

Proof. (1). Let µ be a Borel probability measure on C. Choose nontrivial compact and open
sets Y1,Y2 ⊆ C with µ(Y1) < µ(Y2). By vigor, taking X = C, there is g ∈ Γ with g(Y1) ⊆Y2. Then
µ(gY2) ≤ µ(Y1) < µ(Y2), so g ⋅µ ≠ µ and hence µ is not Γ-invariant.

The last claim follows since a discrete group is amenable if and only if every action on a
compact Hausdorff space admits an invariant Borel probability measure.

(2). Let g ∈Γ∖{1}; we will show that the conjugacy class of g is infinite. Find a compact and
open subset Y1 ⊆ C such that g(Y1)∩Y1 =∅, and find an infinite family {Y (n)2 ∶n ∈N} of pairwise
disjoint compact and open subsets of Y1. Use vigor, with X = C of Γ to find, for every n ∈N, a
group element hn ∈ Γ with support contained in C ∖Y1, such that hn(g(Y1)) ⊆Y (n)2 . One readily
checks that h−1

n ghn(Y1) ⊆ Y (n)2 for all n ∈ N; in particular, this implies that h−1
n ghn ≠ h−1

m ghm if
n ≠m, as desired.

Note that in the following theorem, we must exclude X = G(0), since the existence of an
embedding V ↪ F(G) with full support implies that G(0) has trivial homology class.

Theorem 5.1.6. Let G be an essentially principal, étale, Cantor, purely infinite and minimal

groupoid. Then, for every nontrivial compact and open subset X ⊆ G(0), there exists an embed-

ding ϕX ∶V ↪A(G) such that supp(ϕX(V)) contains X.
1It would be more technically correct to say that the action of Γ on C is vigorous, since vigor is not a property

of Γ, but rather of the way it sits in Homeo(C).
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Proof. Let X ⊆ G(0) be nontrivial, compact and open. Use Lemma 3.3.3 to find a compact and
open bisection B such that s(B) = G(0) and r(B) ⊊ G(0) ∖X . Set Y = G(0) ∖ r(B), which is a
compact and open subset of G(0) containing X . Moreover,

[Y ] = [G(0)]− [r(B)] = [s(B)]− [r(B)] = 0.

Denote by G∣Y the reduction of G to Y , namely

G∣Y = r−1(Y)∩ s−1(Y),

which is an étale subgroupoid of G with unit space equal to Y . Since Y is itself nonempty and
compact and open, there is an embedding F(GY )↪ F(G) whose support is exactly Y . Denote by
E2 the groupoid associated to the shift of finite type corresponding to the single vertex graph with
2 loops. (This groupoid is also called the Cuntz groupoid, since its C*-algebra is canonically
isomorphic to the Cuntz algebra O2.) Recall that F(E2) ≅V and that H0(E2) = {0}. Since the
class of the unit space of G∣Y is trivial in homology, by [90, Proposition 5.14] there exists a unital
homomorphism π ∶C∗r (E2)→C∗r (GY ) satisfying

(a) π(C(E(0)2 )) ⊆C(Y) =C(G(0)Y ), and

(b) for every compact, open bisection B ⊆ E2, there exists a compact, open bisection B′ ⊆ GY

such that π(1B) = 1B′ .

Since C∗r (E2) ≅O2 is simple, the map π is injective. In particular, π induces an embedding

ϕX ∶V ≅ F(E2)↪ F(GY ) ⊆ F(G).

It remains to show that the image of the embedding ϕX is actually contained in A(GX). By
Theorem 5.1.3, it suffices to show that the image of this embedding is contained in D(GX) =

[F(GX),F(GX)]. Since group homomorphisms map commutators to commutators, and since V

is equal to its own commutator (because it is simple), it follows that the image of the embedding
V ↪ F(G∣X) is contained in D(GX) =A(GX).

The last statement in the above proposition is not equivalent to the remaining ones. That is,
having sufficiently many embeddings of V into the topological full group does not imply pure
infiniteness of the groupoid. For example, if V was to act trivially on the Cantor space, then the
associated transformation groupoid admits an embedding of V on any subset of the unit space,
however, it is not purely infinite.

We also do not seem to be able to obtain much information of the dynamics of these embed-
dings of V . The next example, shows that V does not always act vigorously.
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Example 5.1.7. Consider the natural embeddings nV ↪ (n+1)V given by the subgroup of (n+

1)V which stabilises the 1st coordinate. Consider the inductive limit NV =⋃n∈NnV This group

agrees with the higher dimensional twisted Brin Thompson group NV1 taking the trivial action.

Let G denote the groupoid of germs for the action of NV ↷ C. Then G is purely infinite,

minimal, ample, Cantor groupoid and NV is the topological full group of this groupoid.

Then, let G be any finitely generated subgroup of NV . We have that G is contained in nV for

some n ∈N. Therefore, the action of G on C is not vigorous.

In particular, if G was isomorphic to V , we have that the action of V on C is not purely

infinite.

We now derive some conclusions regarding the (generalised) word problem for topological
full groups. Knowing that topological full groups contain V allows us to deduce that they have
unsolvable generalised word problem:

Corollary 5.1.8. Let G be a minimal, essentially principal, ample, purely infinite groupoid. Then

F(G) and A(G) do not have a solvable generalised word problem.

Proof. Note that unsolvable generalised word problems are inherited by containing groups.
Thus, it suffices to show the statement for the alternating group. In turn, since A(G) contains V

by Theorem 5.1.6, it suffices to argue that V has an unsolvable generalized word problem; this
follows from [91].

In contrast to the above corollary, in many cases F(G) does have a solvable word problem, for
example the topological full groups of many groupoids that arise as left regular representations
of Garside Categories (see [78, Corollary C]) are known to have solvable word problem. There-
fore, we obtain infinitely many nonisomorphic groups spanning many families that demonstrate
this boundary between the word problem and the generalised word problem.

5.1.2 Vigor

In fact, vigor of the derived subgroup is equivalent to the groupoid being purely infinite and
minimal even in the effective case. Vigor was introduced by Bleak-Elliot-Hyde to investigate
the property of 2-generation for simple grous. Their main theorem is recalled below:

Theorem 5.1.9. [11, Theorem 1.12] Let Γ be simple, finitely generated and vigorous. Let n ∈N
with n > 2. Then there exists group elements g1,g2 of finite order, with g2 of order n such that Γ

is generated by g1 and g2.

Proposition 5.1.10. Let G be an étale, effective Cantor groupoid. Then the following are equiv-

alent:

1. G is purely infinite and minimal.
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2. One (equivalently, both) of A(G) or F(G) is vigorous.

Proof. Note that vigor of A(G) implies vigor of F(G). Thus, it suffices to show that (1) is
equivalent to vigor of A(G) ≤Homeo(G(0)).

(1) implies (2). This proof is entirely constructive. Let X ,Y1,Y2 ⊆ G
(0) be compact and open

sets with Y1,Y2 ⊆X , Y1 ≠X and Y2 ≠∅. We aim to find a multisection α ∈F(G) of order 3 such that
α is the identity outside of X and takes Y1 inside Y2. Write Y2∖Y1 as a nontrivial disjoint union
Y2∖Y1 = Z2,1⊔Z2,2 of compact and open sets. Since G is minimal and purely infinite, part (2) of
Lemma 3.3.3 provides us with a compact open bisection B1 ⊆G with s(B1) =Y1 and r(B1) ⊆ Z2,1.
Use part (2) of Lemma 3.3.3 again to find a compact open bisection B2 with s(B2) = r(B1) ⊆ Z2,1

and r(B2) ⊆ Z2,2. Note that (B2B1)
−1 is also a bisection. Set

α = ((B2B1)
−1∪B1∪B2)∪(G

(0)∖ s(B1)∪ r(B1)∪ r(B2)).

One readily checks that α is a full bisection, so it defines an element of F(G). It is also clear
that it defines a multisection in the sense of Definition 3.2.1, since it satisfies

α(Y1) = Z2,1, α(Z2,1) = Z2,2, and α(Z2,2) =Y1,

while α acts trivially on the rest of G(0). Since α has order 3, it follows that α ∈ A(G). Note
that α is the identity outside of X , and that α(Y1) = r(B1) ⊆ Z2,1 ⊆Y2. This shows that A(G) is
vigorous.

(2) implies (1). We check condition (2) of Lemma 3.3.3. Let Y1,Y2 be nonempty compact
and open subsets of G(0). Use vigor with X = C to find g ∈ A(G) with supp(g) = Y1 ∪Y2 and
g(Y1)⊆Y2. If B⊆G denotes the compact open full bisection determining g, then B∣Y1 is a compact
open bisection satisfying s(B∣Y1) =Y1 and r(B∣Y1) ⊆Y2, as desired.

As an immediate consequence, we show that F(G) enjoys a strengthening of the ICC prop-
erty with respect to D(G); this will be needed later.

Corollary 5.1.11. Let G be a minimal, purely infinite, étale Cantor groupoid. Then the D(G)-

conjugacy class of every nontrivial element of F(G) is infinite.

Proof. This proof is similar to that of Lemma 5.1.5. Let g ∈ F(G)∖{1}. Find a compact and
open subset Y1 ⊆G

(0) such that g(Y1)∩Y1 =∅, and find an infinite family {Y (n)2 ∶n ∈N} of pairwise
disjoint compact and open subsets of Y1. Use vigor of A(G) to find, for every n ∈ N, a group
element hn ∈ A(G) with support contained in G(0)∖Y1, such that hn(g(Y1)) ⊆Y (n)2 . One readily
checks that h−1

n ghn ≠ h−1
m ghm if n ≠m, as they map Y1 to different subsets (namely Y (n)2 and Y (m)2 ,

respectively). This finishes the proof.

We obtain the following consequence of our results in combination with [11] and results
from Chapter 3.
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Corollary 5.1.12. Let G be an expansive, ample, essentially principal, minimal, purely infinite

groupoid. Given n > 2, there exist g1,g2 ∈A(G) such that g1 has order n, the order of g2 is finite,

and A(G) is generated by {g1,g2}.

Proof. Since G is minimal and essentially principal, it follows from Theorem 5.1.3 that A(G)
is simple. Moreover, since G is expansive, Theorem 3.5.12 implies that A(G) =D(G) is finitely
generated. By Lemma 5.1.10, A(G) is vigorous, so the result follows from Theorem 5.1.9.

5.1.3 Compressibility

The existence of compressible actions was shown to have relevance to the representation theory
of Thompson-like groups in [45]. We recall the definition below:

Definition 5.1.13. An action of a discrete group Γ on a locally compact Hausdorff space X is

said to be compressible, if there exists a subbase U for the topology on X such that:

1. for all g ∈ Γ, there exists U ∈ U such that supp(g) ⊆U;

2. for all U1,U2 ∈ U , there exists g ∈ Γ such that g(U1) ⊆U2;

3. for all U1,U2,U3 ∈ U with U1 ∩U2 = ∅, there exists g ∈ Γ such that g(U1)∩U3 = ∅ and

supp(g)∩U2 =∅;

4. for all U1,U2 ∈ U , there exists U3 ∈ U such that U1∪U2 ⊆U3.

Remark 5.1.14. Note that if Γ↷ X is compressible, then X cannot be compact. This is because

X cannot belong to U by (2), and at the same time X cannot be written as a finite union of

elements of U by (4). Therefore often when dealing with a group acting by homeomorphisms on

the Cantor space, we consider point-stabiliser subgroups.

Compressibility and vigor are closely related notions. For example, the following is essen-
tially a generalisation of the discussion in [45, Subection 3.2].

Lemma 5.1.15. Let C be a Cantor space and let D ≤ Homeo(C) be a vigorous subgroup. For

x0 ∈ C, set

Dx0 ∶= {g ∈D∶ there exists a neighbourhood Y of x0 such that g∣Y = IdY}.

Then Dx0 ↷ C ∖{x0} is compressible.

Proof. For an open set Y ⊆ C, we set DY = {g ∈ D∶g∣Y = IdY}. Fix x0 ∈ C, and let (Yn)n∈N be a
strictly decreasing sequence of compact and open subsets of C such that ⋂∞n=1Yn = {x0}. Then
Dx0 =⋃

∞
n=1 DYn .
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Let U be any basis of compact open subsets for the topology on C ∖ {x0} which is closed
under finite unions. We verify properties (1) through (4) in Definition 5.1.13 for Dx0 ↷ C ∖{x0}

below.
(1). Let g ∈Dx0 , and find a neighbourhood Y of x0 such that g∣Y = IdY . Find a basic open set

U ∈ U such that U ⊆Y ∖{x0}. Since C ∖Y is compact, there exist U1, . . . ,Un ∈ U such that the set
U =U1∪ . . .∪Un contains C ∖Y . Since U is closed under finite unions, it follows that U belongs
to U . Since g is supported on U , this shows (1).

(2). Let U1,U2 ∈ U be given. Since x0 ∉U1,U2, this follows immediately by using vigor of
D↷ C.

(3). Let U1,U2,U3 ∈ U satisfy U1∩U2 =∅. Since U1∪U2∪U3 ⊆ C ∖{x0}, we may find n ∈N
large enough so that U j ∩Yn =∅ for j = 1,2,3. Set X =U1∪Yn∖Yn+1. Noting that U2∩X =∅ and
that Xc contains the neighbourhood Yn+1 of x0, we use vigor to find an element g ∈Dx0 such that

g(U1) ⊆ g(U1) ⊆Yn∖Yn+1 ⊆Yn ⊆ (U1∪U2∪U3)
c ⊆Uc

3 .

Moreover, the support of g, which is a subset of X , contains a neighbourhood of x0 and is
contained in Uc

2 . Thus g ∈Dx0 satisfies the required properties.
(4). This follows by construction, as U is closed under finite unions.

We now obtain further characterisations of pure infiniteness for minimal groupoids:

Lemma 5.1.16. Let G be an essentially principal, étale Cantor groupoid. Then, the following

are equivalent:

1. G is purely infinite and minimal.

2. For all x0 ∈ G
(0), the action A(G)x0 ↷ G

(0)∖{x0} is compressible

Proof. If G is purely infinite and minimal, then A(G) is vigorous by Lemma 5.1.10, and thus
A(G)x0 ↷ G

(0) ∖{x0} is compressible for all x0 ∈ G
(0) by Lemma 5.1.15. Conversely, suppose

that A(G)x0 ↷ G
(0)∖{x0} is compressible for all x0 ∈ G

(0). Let X ,Y ⊆ G(0) be compact and open
subsets. Shrinking Y if necessary, we may assume that X ∪Y is strictly smaller than G(0). Fix
x0 ∈ G

(0) ∖ (X ∪Y), and use compressibility of A(G)x0 ↷ G
(0) ∖ {x0} to find a subbasis U for

the topology of G(0)∖{x0} satisfying the conditions in Definition 5.1.13. Given U1,U2 ∈ U with
U ⊆X and U2 ⊆Y , use (2) in Definition 5.1.13 to find g ∈A(G)x0 such that g(X) ⊆ g(U1) ⊆U2 ⊆Y .
Restricting the source of the bisection corresponding to g to X , this shows that there is a compact
and open bisection B ⊆ G(0) satisfying αB(X) ⊆ Y . Since X and Y are arbitrary, Lemma 3.3.3
shows that G(0) is purely infinite and minimal, as desired.

We now turn to the definition of proper characters in a group. We warn the reader that these
are not characters in the sense of Pontryagin duality, that is, they are not group homomorphisms
to the unit circle, and they are only assumed to be invariant under conjugation.
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Definition 5.1.17. Let Γ be a group. A character on Γ is a map χ ∶Γ→C satisfying the following

conditions:

(a) χ(gh) = χ(hg) for all g,h ∈ Γ;

(b) χ(1) = 1;

(c) for every finite collection {g1, . . . ,gn} of elements in Γ, the n×n matrix with (i, j)-th entry

(χ(gig−1
j )), is non-negatively definite.

A character χ is called decomposable if there exist characters χ1,χ2 and a real number

λ ∈ (0,1) such that χ = λ χ1+(1−λ)χ2. Otherwise, χ is called indecomposable.

The regular character is the indecomposable character given by χ(g) = 0 whenever g ≠ 1.

The identity character is the indecomposable character given by χ(g) = 1 for all g ∈ Γ. We say

that Γ has no proper characters if the only indecomposable characters are the identity character

and the regular character.

Using this definition, we deduce the following useful fact about derived subgroups in purely
infinite groupoids.

Corollary 5.1.18. Let G be a purely infinite and minimal Cantor groupoid. Then A(G) has no

proper characters.

Proof. Note that A(G) is vigorous by Proposition 5.1.10. Fix x0 ∈ G
(0). It follows from Lemma

5.1.15 that A(G)x0 ↷ G
(0)∖{x0} is compressible.

We claim that A(G)x0 is simple. Let (Zn)n∈N be an increasing sequence of compact and
open subsets of G(0) ∖{x0} such that ⋃n∈NZn = G

(0) ∖{x0}. Note that G∣Zn is a purely infinite
minimal Cantor groupoid for all n ∈N, and thus A(G∣Zn) is simple by Theorem 5.1.3. Therefore
A(G)x0 =⋃n∈NA(G∣Zn) is simple as well.

Applying [45, Theorem 2.9], we deduce that A(G)x0 has no proper characters. This implies
that A(G) has no proper characters: if χ was a character for A(G), then it restricts to a character
on A(G)x0 , therefore A(G)x0 ⊆ ker(χ), and by simplicity we then get ker(χ) =A(G), as desired.

We can also obtain some information about the finite factor representations of topological
full groups. Before we define these representations, we recall that for a subset S ⊆ B(H) of the
bounded operators on a Hilbert space H, the commutant S′ is the weak-∗ closed subalgebra of
B(H) given by

S′ = {a ∈B(H)∶as = sa for all s ∈ S}.

Definition 5.1.19. Let π ∶Γ→B(H) be a unitary representation of a group Γ on a Hilbert space

H. We say that π is a finite factor representation ifMπ = π(Γ)′′ is a factor, that is,M′π ∩Mπ =

CidH .
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It is well known that finite factor representations are in one-to-one correspondence with
proper characters. For a groupoid G, we write

π
G
ab∶F(G)→ F(G)ab ≅ F(G)/D(G)

for the canonical quotient map (the abelianisation).

Proposition 5.1.20. Let G be a purely infinite, minimal Cantor groupoid, and let χ ∶F(G)→T be

an indecomposable character. Then χ is either regular, or has the form χ(g) = ρ ○π
G
ab for some

group homomorphism ρ ∶F(G)ab→T. In particular, the finite factor representations of F(G) are

all of the form g↦ ρ(πGab(g))IdH , where ρ is a character on F(G)ab and H is a Hilbert space.

Proof. We verify the assumptions of [45, Theorem 2.11] for G = F(G) and R = A(G). Note that
A(G) is ICC by the combination of Theorem 5.1.10 and part (2) of Lemma 5.1.5; has no proper
characters by Corollary 5.1.18; and is normal in F(G).

Let g ∈ F(G)∖{1}. Find a compact and open subset Y1 ⊆ G
(0) such that g(Y1)∩Y1 =∅. Find

an infinite family {Y (n)2 ∶n ∈N} of nonempty pairwise disjoint compact and open subsets of Y1.
Since the canonical action of A(G) on G(0) is vigorous by Theorem 5.1.10, for every n ∈N there
exists hn ∈ A(G) with support contained in G(0) ∖Y1, such that hn(g(Y1)) ⊆ Y (n)2 . For n,m ∈ N
distinct, it follows that h−1

n ghn is different from h−1
m ghm. Moreover, we have

(hng−1h−1
n )(hmgh−1

m ) = (hng−1h−1
n g)(g−1hmgh−1

m ) = [hn,g−1][g−1,hm],

which therefore belongs to D(G) =A(G). The result now follows from [45, Theorem 2.11].

5.1.4 Proof of Main Theorems

In this subsection, we aim to complete the proofs of Theorems 1.1.1 and Theorem 1.1.6. We
begin with Theorem 1.1.1, whose statement we reproduce:

Theorem 5.1.21. Let G be an essentially principal, ample groupoid whose unit space has no

isolated points. Then the following are equivalent:

1. G is purely infinite and minimal.

2. A(G) ≤Homeo(G(0)) is vigorous.

3. For every x0 ∈ G
(0), the subgroup

A(G)x0 = {g ∈A(G)∶ there is a neighbourhood Y of x0 such that g∣Y = IdY}

acts compressibly on G(0)∖{x0}.
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Moreover, if one (or equivalently, all) of the above conditions hold, then for every compact open

subset X ⊊ G(0), there exists an embedding

φX ∶V →A(G)

such that X ⊆ supp(φX(V)).

Proof. What we have shown in the previous sections proves the result assuming that G(0) is a
Cantor set. Indeed, the equivalence between (1) and (2) is 5.1.10; the equivalence between (1)
and (3) is Lemma 5.1.16; and the fact that (1) implies the final part of the statement is Theorem
5.1.6.

Let us recall a fact from point set topology. In our hypothesis we have assumed that our unit
space is Hausdorff, locally compact, totally disconnected (as part of being ample). Therefore,
compact subsets of this unit space are Cantor spaces, by Brouwer’s theorem.

We now explain how to obtain the result in full generality from the Cantor case. Note that
the equivalence between (1) and (2) is automatic, since being purely infinite and minimal is
invariant under restrictions to compact subsets X ⊆ G(0). The same is true about (1) implying the
last part, since both of these are local properties.

It thus remains to show (1) is equivalent to (3). Let us begin by showing that (1) implies
(3). Let x0 ∈ G

(0) be given, and find a compact open cover (Xi)i∈I of G(0)∖{x0}. For all i ∈ I, it
follows from the compact case that the action

A(G)Xi∪{x0}↷ Xi∪{x0}∖{x0}

is compressible; compressibility of the overall action then follows easily.
Now let us show that (3) implies (1). Let X ,Y ⊆G(0) be nonempty compact open subsets. Let

us assume without loss of generality that X ∪Y ≠G(0). Let x0 ∉X ∪Y , and let U be a compressible
cover associated by the action of F(G){x0} ↷ G

(0) ∖{x0}. Let U1,U2 ∈ U with X ⊆U1, and Y ⊆

U2 be given (such Ui exist via condition (4) of compressibility). Then, using condition (2) of
compressibility there exists g ∈ F(G){x0} ⊂ F(G) such that g(U1) ⊆U2. Then, g(X) ⊆ g(U1) ⊆

U2 ⊆Y , and so the restriction g∣X gives a compact open bisection B with BX ⊆Y .

We stress the fact that for the groupoids covered by the above theorem, the alternating and
derived subgroups always agree by Theorem 5.1.3. In particular, the alternating group is always
perfect (meaning that it equals its commutator subgroup).

Remark 5.1.22. For Hausdorff groupoids, essential principality is equivalent to effectiveness.

On the other hand, effectiveness is the right notion to consider in the non-Hausdorff setting. We

expect the above theorem to hold in this case; however, this involves obtaining (mostly routine)

generalisations of many results from the Hausdorff to the non-Hausdorff case. Since for most

applications the Hausdorff case is sufficient, we focus on essentially principal groupoids.
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We now aim to complete our proof of Theorem 1.1.6. For this, we need to use that the
canonical action F(G)↷ G(0) is rigid in the sense of Rubin [107], so we define this notion first.

Definition 5.1.23. Let Γ be a discrete group and let C be a locally compact Hausdorff space

without isolated points. We say that an action Γ↷C is a Rubin action if for every open set U ⊆C

and every x ∈U, the closure of

{g ⋅x∶g ∈ Γ and supp(g) ⊆U}

contains an open neighbourhood of x.

Rubin’s reconstruction Theorem from [107] is extremely useful when working with Rubin
actions.

Theorem 5.1.24 (Rubin). Let Γ1 ↷ X1 and Γ2 ↷ X2 be Rubin actions of discrete groups on

locally compact Hausdorff spaces X1 and X2 without isolated points. If ρ ∶Γ1 → Γ2 is a group

isomorphism, then there exists a homeomorphism Φ∶X1→X2 satisfying Φ(g ⋅x) = ρ(g) ⋅Φ(x) for

all x ∈ X1 and all g ∈ Γ1.

We will the notion of a locally closed subgroup of homeomorphisms, due to Nyland-Ortega;
see [95, Definition 4.4].

Definition 5.1.25. Let X be a locally compact Hausdorff space and let Γ ≤Homeo(X) let be a

subgroup. We say that a homeomorphism φ ∈ Homeo(X) is locally in Γ if for all x ∈ X, there

exist a neighbourhood U of x and an element g ∈ Γ such that φ ∣U = g∣U . We say that Γ is locally

closed if any homeomorphism of X which is locally in Γ is automatically in Γ.

In other words, Γ is locally closed if homeomorphisms from it can be “glued" to get another
homeomorphism of Γ. It is not difficult to see that topological full groups satisfy this property,
essentially by construction; see [95, Theorem 4.5].

Proposition 5.1.26. Let G be an ample essentially principal groupoid. Then F(G) is locally

closed.

Next, we completely characterise the subgroups of Homeo(C) that arise as full groups of
minimal, purely infinite groupoids: they are precisely the vigorous groups which are also locally
closed. We can also abstractly characterise the derived subgroups of such groupoids: they are
the simple, vigorous groups.

The following is an existence and uniqueness theorem. While the existence part is com-
pletely new, the uniqueness part can be deduced from Matui’s isomorphism theorem. We never-
theless give a shorter proof using Rubin’s Theorem and Theorem 5.1.10, since it illustrates the
scope of our results. It should be pointed out that isomorphism arguments of this nature have
also been used in [97].
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Theorem 5.1.27. Let C denote the Cantor space, and let F ≤Homeo(C) be a subgroup. Then

the following are equivalent: Let C denote the Cantor space.

1. For a subgroup F ≤Homeo(C), the following are equivalent:

(F.1) There exists a minimal, purely infinite, essentially principal, Cantor étale groupoid

GF such that F(GF) realises F as a subgroup of Homeo(C).

(F.2) F is vigorous and locally closed.

2. For a subgroup A ≤Homeo(C), the following are equivalent:

(A.1) There exists a minimal, purely infinite, essentially principal, Cantor étale groupoid

GA such that A(GA) realises A as a subgroup of Homeo(C).

(A.2) A is vigorous and simple.

Moreover, the groupoids GF and GA as in (F.1) and (A.1) above are unique up to groupoid

isomorphism.

Proof. (F.1) implies (F.2). Let G be a minimal, purely infinite, essentially principal, Cantor étale
groupoid. Then F(G) is locally closed by Proposition 5.1.26, and it is vigorous by Theorem
5.1.10.

(F.2) implies (F.1). Let G be the groupoid of germs of the canonical action F ↷ C. We
claim that F = F(G). It is immediate that F ⊆ F(G), so we only prove the converse inclusion.
Given g ∈ F(G), we use the description of the topological full group of a germ groupoid given
in Example 3.1.3 to find a partition C = X1⊔⋯⊔Xn of C into compact and open sets, and group
elements f1, . . . , fn ∈ F such that g∣X j = f j∣X j for all j = 1, . . . ,n. Since F is locally closed, it
follows immediately that g belongs to F , as desired.

The fact that GF = (F ↷ C)germ is minimal and purely infinite follows from Theorem 5.1.10,
since its topological full group is vigorous.

(A.1) implies (A.2). Similarly to the first part of this proof, vigor of A follows from Theorem
5.1.10, while simplicity follows from Theorem 5.1.3.

(A.2) implies (A.1). Let FA ≤ Homeo(C) denote the smallest subgroup of Homeo(C) con-
taining A which is locally closed. Since A is vigorous, it is immediate to see that so is FA. By
the first part of this theorem, there is a minimal, purely infinite, essentially principal, Cantor
étale groupoid GA satisfying F(GA) ≅ FA. By the equivalence between (1) and (6) in [11, Theo-
rem 1.11], it follows that A is the commutator subgroup of FA, and in combination with Theorem
5.1.3 we get A = [FA,FA] ≅D(GA) =A(GA), as desired.

We now show the uniqueness part of the statement. We claim that if G is a purely infinite,
minimal Cantor groupoid, then A(G)↷ G(0) is a Rubin action. (This implies that F(G)↷ G(0) is
also a Rubin action, since F(G) contains A(G).) To show this, let U ⊆G(0) be a compact and open
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set and let x,y ∈U . Write U as a disjoint union U = X ⊔Y such that x ∈ X and y ∈Y . Let Yn ⊆Y

be a decreasing sequence of compact and open neighbourhoods of y such that ⋂n∈NYn = {y}.
Since A(G)↷ G(0) is vigorous by Lemma 5.1.10, for every n ∈ N there exists gn ∈ A(G) with
supp(gn) ⊆U such that gn(X) ⊆ Yn. Therefore gn ⋅ x ∈ Yn for all n ∈ N, and thus y = lim

n→I
gn ⋅ x

belongs to the closure of
{g ⋅x∶g ∈A(G) and g∣G(0)∖U = id}.

Since y ∈U is arbitrary, this shows that

U = {g ⋅x∶g ∈A(G) and g∣G(0)∖U = id},

and hence A(G)↷ G(0) is a Rubin action. This proves the claim.
We now show uniqueness of GF in (F.1). Note that, since GF is essentially principal, it is

isomorphic to the groupoid of germs of its canonical action F(GF)↷ G
(0)
F . Now, assume that H

is another minimal, purely infinite, essentially principal, étale groupoid with F(H) ≅ F . Since
F(GF) and F(H) act in a Rubin manner on the Cantor space by the previous paragraph, Theorem
5.1.24 implies that F(G)↷ G(0) is conjugate to F(H)↷H(0). In particular, their groupoids of
germs are clearly isomorphic, and thus G ≅H.

Finally, we turn to uniqueness of GA in (A.1), so let H be a minimal, purely infinite, essen-
tially principal, étale groupoid with A(H) ≅ A. Since A(G)↷ G(0) and A(H)↷H(0) are Rubin
actions, it follows from Theorem 5.1.24 that they are conjugate. Thus, if we denote by FA(H)
the smallest subgroup of Homeo(H(0)) which is locally closed and contains A(H), it follows
that FA ≅ FA(H). On the other hand, it is routine to check that FA(H) is precisely F(H). Putting
these things together, we conclude that

F(GA) ≅ FA ≅ FA(H) ≅ F(H).

Thus H ≅ GA by uniqueness in (F.1).

Remark 5.1.28. The proof above also shows that if A ≤ F ≤Homeo(C) are nested groups such

that A is vigorous and simple and F is locally closed, then there exists a unique minimal, purely

infinite, topologically principal, étale Cantor groupoid G such that A ≅ A(G) and F ≅ F(G). In

particular, normality of A in F follows from the remaining assumptions.

As a corollary, we can deduce that simple, vigorous subgroups of Homeo(C) are C*-simple.
More precisely:

Corollary 5.1.29. Let A ≤ F ≤Homeo(C) be nested groups such that A is vigorous and simple,

and F is locally closed. Then any intermediate group A ≤H ≤ F is C*-simple.

Proof. By Theorem 5.1.27 and the remark after it, there exists a minimal, purely infinite, topo-
logically principal, étale Cantor groupoid G such that A ≅ A(G) and F ≅ F(G). Using vigor of
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A(G)↷ G(0), and in particular the absence of invariant probability measures (Lemma 5.1.5),
the arguments in [110] can be adapted in a routine way to show that both A(G) and F(G) are
C*-simple. Instead of doing this, we give a more direct proof using the recent results in [4]; we
thank Eduardo Scarparo for sharing this argument with us and for allowing us to include it here.

By Corollary 5.1.11, the D(G)-conjugacy classes of F(G) are infinite. Hence, it follows
from [4, Theorem 6.2], that every intermediate C∗-algebra C∗r (A(G)) ≤ A ≤C∗r (F(G)) is simple.
Since C∗r (H) is of that form, the result follows.

Here is another direct application of Theorem 5.1.27.

Corollary 5.1.30. Vigorous simple groups have no proper characters.

One can combineTheorem 5.1.27 with Theorem 5.1.21 in order to obtain further equiva-
lent conditions for a group to be realized as the alternating group of a purely infinite, minimal
groupoid. More specifically:

Remark 5.1.31. Let C denote the Cantor space and let A ≤Homeo(C) be a subgroup. Then the

following are equivalent:

(A.1) There exists a minimal, purely infinite, essentially principal, Cantor étale groupoid GA

such that A(GA), realises A as a subgroup of Homeo(C).

(A.2) A is vigorous and simple.

(A.3) A is simple and for all x ∈ C, the subgroup

Ax = {g ∈ A∶ there exists a neighbourhood Y of x such that g∣Y = IdY}

acts compressibly on C ∖{x}

We close this section by pointing out that Theorem 5.1.27 can be generalized easily to non-
compact unit spaces, since Rubin’s theorem is also valid for locally compact spaces. Another
way to deal with non-compact spaces is to use the generalisation of Matui’s spatial isomorphism
proved by Nyland-Ortega in [95, Theorem 7.2] in the setting where we replace C with an ar-
bitrary totally disconnected locally compact Hausdorff space X . In this context, one must also
replace Homeo(C) with the group of compactly supported homeomorphisms:

Homeoc(X) = { f ∈Homeo(X)∶supp( f ) is compact}.

We omit the details, but stress the fact that these arguments also allow one to deal with non-
Hausdorff groupoids since they only depend on effectiveness.
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5.2 Examples and applications

For the purposes of this section, we use groupoid homology, primarily as a way to compute
the quotients F(G)/D(G) for key examples. Fortunately, groupoid homology has already been
computed in many interesting examples. For more on groupoid homology, we refer the reader
to [88].

Our first application giving us restrictions on what kinds of actions are possible for F(G).

Proposition 5.2.1. Let G be a purely infinite minimal groupoid such that F(G)ab is finite (for

example, if H1(G) is finite and H0(G) has finite rank). Then every faithful ergodic measure-

preserving action of F(G) is essentially free.

Proof. We saw in Theorem 5.1.20 that every finite factor representation factors through the
abelianisation F(G)ab. Therefore, whenever F(G)ab is finite, there are finitely many factor rep-
resentations. We may then apply [45, Theorem 2.11] to get the conclusion.

We can be even more concrete in some cases where homology has been computed.

Corollary 5.2.2. For each of the following groups, every faithful ergodic measure-preserving

action is essentially free:

1. The Brin-Higman-Thompson groups nVk,r.

2. More generally, topological full groups arising from products of shift of finite type groupoids.

Proof. It is shown in [90] that the abelianisations of the topological full groups of such groupoids
are finite. Therefore the result follows from Theorem 5.2.1.

As another application, we confirm Conjecture 1.1.2 for many natural examples including
the class of groups above.

Example 5.2.3. The following groups, which are already known to be finitely presented and

simple, are 2-generated.

1. Derived subgroups of the topological full groups of Graph groupoids .

2. Derived subgroups of the topological full groups of Katsura-Exel-Pardo groupoids.

3. Simple subgroups arising as subgroups of topological full groups arising from products of

shifts of finite type.

4. Derived subgroups of the topological full groups of Beta expansion groupoids.

5. Certain simple groups arising from groupoids that are left regular representations of Gar-

side categories.
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In particular, Conjecture 1.1.2 holds true for these examples.

Proof. The groups listed above are known to be the topological full groups of purely infinite,
minimal, ample, and effective groupoids: for (1), this is shown in [95]; for (2), this is shown
in [96]; for (3), this is shown in [90]; for (4), this is shown in [85]; and for (5) this is shown
in [78, Theorem C] and [80, Theorem A]. By Theorem 1.1.1, these groups act vigorously on the
Cantor set. It thus follows from [11, Theorem 1.12] that these groups are all 2-generated.

Next, we show C*-simplicity for many examples of Thompson-like groups.

Example 5.2.4. The following Thompson-like groups are C*-simple:

1. The Higman-Thompson groups Vk,r, for k ≥ 2 ∈N and r ≥ 1.

2. More generally, the Brin-Higman-Thompson groups nVk,r, for r,n ∈N and k ≥ 2.

3. Stein’s groups V(Λ,Γ,ℓ) for all subgroups Λ of (R, ⋅), all Z ⋅Λ submodules Γ and all

ℓ ∈ Γ∩(0,+∞).

Proof. All these groups act vigorously on the Cantor set and are locally closed; in other words,
they are topological full groups of minimal, purely infinite Cantor groupoids by 5.1.27. The
result then follows from 5.1.29.

Using Theorem 1.1.6, we can bring new groups into our framework. As an example, we dis-
cuss the twisted Brin-Higman-Thompson groups introduced by Belk and Zaremsky [7], which
were previously not known to be topological full groups of purely infinite, minimal groupoids.
We thank James Belk for bringing this example class to our attention and for an outline of this
proof.

Example 5.2.5 (Twisted Brin-Higman-Thompson groups). The twisted Brin-Higman-Thompson

groups SV were introduced in [7]. Already in their construction, we see that they are topological

full groups, and hence they are locally closed. In the case where S is finite, say ∣S∣ = n, it

follows that nV embeds into SV with full support, and therefore SV is vigorous. Similarly, if S

is countable, we have that nV embeds into SV for all n in a way that ⋃n∈N supp(nV) covers the

whole of the Cantor space. Therefore, SV is again vigorous. We conclude that SV is always a

locally closed, vigorous subgroup of Homeo(C). Applying Theorem 1.1.6, we deduce that SV

is the topological full group of an essentially principal, purely infinite, minimal Cantor étale

groupoid.

We end with an example that generalises Brin-Thompson groups, advertising the flexibility
that comes with working with topological full groups of étale groupoids, by explaining a new
construction of interesting groups.
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Example 5.2.6 (Perfect Brin-Higman-Thompson like groups). Consider the variation of the

Brin-Higman-Thompson groups on rn cubes such that on each dimension j = 1, . . . ,n we have

potentially different (integrally generated) slope sets generated by integers k j ≥ 2. Write k for

the n-tuple k = (k1, . . . ,kn), and denote the group described above by Vk,r. Note that, if k1 =⋯ =

kn =∶ k, then Vk,r is just the Brin-Higman-Thompson group nVk,r.

It is not difficult to see that Vk,r is the topological full group of the groupoid:

Gk,r ∶=Rr ×
n
∏
j=1
Ek j .

This subclass of products of shifts of finite type groupoids fits into the framework of [90], and it

is not difficult to see that if we set g = gcd(k1−1, . . . ,kn−1), then for j ≥ 0 we have:

H j(Gk,r) = (Z/gZ)
(n−1)C j .

In particular, if in the discussion above we have g = 1, for example if k j = 2 for some j, then
the homology vanishes.

Proposition 5.2.7. Let k1, . . . ,kn ≥ 2 satisfy gcd(k1−1, . . . ,kn−1) = 1. Then Vk,r has the following

properties:

1. It is acyclic, so in particular perfect and simple.

2. It is F∞; in particular it is finitely presented.

3. It is 2-generated and C*-simple,

4. It has no proper characters.

5. Every faithful ergodic measure preserving action of Vk,r is essentially free.

Proof. We observed above that gcd(k1−1, . . . ,kn−1) = 1 implies that the homology of Gk,r van-
ishes. Inserting this computation into the long exact sequence in Corollary 3.6.7, it is easily seen
that Vk,r = F(Gk,r) is perfect in this case. Moreover, by Corollary 3.6.3, it follows that Vk,r is
acyclic. The fact this group is of type F∞ follows due to [78], Theorem C. The fact this group
is C*-simple and two generated follows via Corollary 5.1.29 and Corollary 5.1.12. The fact that
this group has no proper characters follows via Corollary 5.1.30. The final claim follows from
Proposition 5.2.1.

Example 5.2.8 (V -absorption). An interesting property now well-documented operator alge-

braists is that many Kirchberg algebras are absorbed by O2. Using the framework of topologi-

cal full groups, we can capture this phenomenon group theoretically. Let V̂ be a generalisation

of V coming from a purely infinite minimal expansive groupoid G which can be described as
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piecewise linear maps on (0,1] (e.g. V̂ could be a Stein group, Cleary’s group or a Higman-

Thompson group Vk,1). Then form the groupoid product of this with V , that is, the piecewise

linear bijections of (0,1]2 that in the x direction look like V (have finitely many slopes in 2n)

and in the y direction look like V̂ . Then V ×Gpd V̂ is the topological full group of E2×G. Conse-

quently, this group is acyclic; perfect. It has no proper characters and V ×Gpd V̂ is 2-generated.

5.3 Outlook

A class of generalisations of Thompson’s group V which has recently been of interest is certain
full automorphism groups Vr(Σ) of Cantor algebras, as described in [84], which have been
shown to be type F∞ whenever the underlying Cantor algebras Ur(Σ) are valid, bounded and
complete. We ask:

Question 5.3.1. Can the family of groups Vr(Σ), for Ur(Σ) valid, bounded and complete, be

described as the topological full groups of purely infinite minimal groupoids?

Given Theorem 1.1.6, Question 5.3.1 is equivalent to asking whether the (simple) derived
subgroups of the groups described admit vigorous actions on the Cantor space. The difficulty in
both cases above is that the groups in question are not constructed as subgroups of homeomor-
phisms of the Cantor set.

The next question relates to Conjecture 1.1.2 in the introduction. Topological full groups
provide interesting examples of simple, finitely generated groups outside of the purely infinite
setting, but it is unknown if any example of a topological full group outside of the purely infinite
setting is finitely presented. We therefore ask:

Question 5.3.2. Are there finitely presented, simple derived subgroups of topological full groups

outside of the purely infinite setting?

Our final question addresses a potential generalisation of Corollary 5.1.18. In recent work
in preparation by Dudko-Medynets, they show that for AF-groupoids, there is a one-to-one cor-
respondence between proper characters of the topological full group and invariant probability
measures on the unit space. Corollary 5.1.18 shows that the same is true for purely infinite min-
imal groupoids (since these do not admit invariant probability measures). It seems reasonable to
believe that this correspondence may exist in full generality, so we ask:

Question 5.3.3. Let G be an étale, essentially principal Cantor groupoid. Is there a one-to-one

correspondence between invariant probability measuresM(G) on G and the proper characters

on A(G)?

Recall Question 2.7.1, which asks whether comparison is automatic for certain groupoids.
Restricting to the case of no measures, this is similar to the question asked by Bruce-Li [28,
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Question 4.21] “Let G be a second countable, topologically free, minimal ample étale groupoid
with compact unit space. If G has no invariant measures, is G purely infinite?”. Through the
results of this chapter, we can ask a related group theoretic question.

Question 5.3.4. Let Γ ⊂ Homeo(X) be a subgroup of the homeomorphisms on the Cantor set

such that:

• Γ is locally closed, (in other words, Γ is a topological full group).

• Γ acts minimally on X.

• There are no invariant measures on X with respect to the action on Γ.

Is Γ vigorous?



Chapter 6

Interval exchange groups

6.1 Interval exchange groups

Let us begin with the definition of interval exchange groups.

Definition 6.1.1 (Interval Exchange Groups). Let Γ be a countable additive subgroup of R,

containing 1. Then, IE(Γ) is the group of right continuous piecewise linear bijections f of

(0,1] with finitely many angles { f t − t ∶ t ∈ (0,1]} all in Γ.

These are so-called because we think of these as cutting the interval (0,1] at finitely many
points, all in Γ and exchanging them. A typical element is drawn below.

a1 a1+a2

a1+a2

a2

Figure 6.1: An example element of IE(Γ), where a1,a2 ∈ Γ

These groups have attracted much attention recently in the context of topological full groups
[87] [36] [60] [16]. However, the interest in interval exchange groups predates these papers.

One reason for the interest in these groups is the connection to classical dynamics, where dy-
namical systems coming from interval exchanges have been popular to study for some time [63].
For further information about the dynamical perspective on interval exchanges, we recommend
the survey [125] and book [62].

108
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Also, these groups have been studied from the perspective of geometric group theory. The rea-
son for this is that due to results by Juschenko-Monod [61] and Matui [87], whenever Γ =Z⊕λZ
(for some irrational λ ) the derived subgroup of IE(Γ) is a rare example of a simple, finitely gen-
erated amenable group. The existence of such groups was first shown in [61].

Another reason for the interest in IE(Γ) when Γ is finitely generated is to understand the group
of interval exchange transformations.

Definition 6.1.2 (IET). Let IET be the group of right continuous permutations g of (0,1] such

that the set {gt − t, t ∈ (0,1]} is finite.

Remark 6.1.3. IE(Γ) ≅V(⟨1⟩,Γ,1)

Remark 6.1.4 (IET Locally Embeds into IE(Γ), where Γ ≅ Zn). For any finite set of elements

γ1,γ2, ...,γn ∈ IET. Then S = {γit − t ∶ t ∈ (0,1], i = 1, ...,n} is finite. Note R is locally finitely

generated abelian. Therefore, there exists some finitely generated abelian subgroup of R, Γ(≅

Zn) such that S ⊂ f in Γ. Then, for all i, γi ∈ IE(Γ).

There are outstanding open questions about IET.

Question 6.1.5. Does IET contain any nonamenable free groups? Is IET amenable?

Through Remark 6.1.4, one approach to the above question is to study the same question
about IE(Γ) where Γ is finitely generated abelian. Note that the main result of [61] establishes
that IE(Γ) is amenable whenever Γ ≅ Z2 and the main result of [60] establishes that IE(Γ) is
amenable whenever Γ ≅Z3.

We take a different perspective from the above papers. Instead of taking an action of Γ/Z
on the Cantor space, we define a partial transformation groupoid α ∶ Γ↷ X based on groupoids
considered in [76] which realise IE(Γ) as a topological full group. There are two reasons we
prefer to think about these groupoids this way:

• The homology of these groupoids is easier to understand than of the transformation groupoid
of Γ/Z.

• The related C*-algebras fit into the class of semigroup C*-algebras, a perspective which
proves useful for analyzing them.

6.2 Interval exchange groups as topological full groups

Let us first adapt R so that we can allow discontinuities at some subset Γ, by including two
points τ+,τ−, separated in the topology, at each point τ ∈ Γ. This definition follows the notation
of [36].
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Definition 6.2.1. Let Γ ⊂ R. Let be the space obtained by splitting the real line at each point

a ∈ Γ into two points a+,a−, i.e. take RΓ ∶= {t,a+,a− ∶ t ∈ R∖Γ,a ∈ Γ}. Consider this with the

canonical quotient map q onto R identifying a+,a− for all a ∈R.

q ∶RΓ→R t ↦

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

t t ∈R

a t = a+ ∉R

a t = a+ ∉R

.

Let us define a total order on RΓ by setting

x < y ⇐⇒ q(x) < q(y) or q(x) = q(y) = a, x = a− and y = a+.

We may then topologise RΓ by the order topology, i.e. the topology generated by open intervals:

(x,y) = {z ∈RΓ ∶ x < z < y}, x,y ∈RΓ

Let Γ± ∶= {a+,a− ∶ x ∈ Γ} ⊂RΓ.

Lemma 6.2.2. Let Γ ⊂R be dense and countable. Then a (countable) basis for the topology on

RΓ is given by:

(a−,b+) a < b, a,b ∈ Γ

Moreover, each set of the form (a−,b+) with a < b is a Cantor set.

Proof. First let us remark that for all a < b that (a−,b+) = [a+,b−], so that each of these sets are
clopen. By density of Γ, these form a basis for the topology on RΓ. Thus we establish that RΓ

is second countable, with a basis of clopen sets. Note moreover that the basis elements clearly
separate points in RΓ. Note that q is continuous, indeed the preimage of (a,b) ⊂R is of the form
(x,y) for some x,y ∈RΓ. But since q(a−,b+) = q([a+,b−]) = [a,b], compactness follows. In total
then we have that for all a,b ∈ Γ (a−,b+) is compact, and has a countable basis of compact open
subsets; by Brouwer’s theorem, we are done.

This makes the topology of RΓ, when Γ is countable, identifiable with the disjoint union of
countably many Cantor spaces.

In [76], Section 2.3 Li constructs an analogous space as follows. Let Γ be an additive
subgroup of R. Let D(Γ+) be the (abelian) semigroup C*-algebra of Γ∩ (0,∞). This group
has the basis of idempotents {1a+Γ+ a ∈ Γ∩(0,+∞)} He then considers the Gelfand dual space
Ω(D(Γ+)), and removes the trivial character χ∞ such that for all a ∈ Γ χ∞(1a+Γ+) = 1. This
space is denoted OΓ+⊆Γ Concretely, this is the space of nonzero, nontrivial, characters χ ∶

D(Γ+)→ {0,1} that are strictly decreasing with on the basis (with respect to the partial order
1a+Γ+ ≤ 1b+Γ+ ⇐⇒ a ≤ b). This space is topologised in the weak operator topology, which is the
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topology generated by the basic compact open sets Ua,b ∶= {χ ∈Γ+⊆Γ ∶ χ(a) = 1,χ(b) = 0},a,b ∈Γ.
There is a canonical homeomorphism:

f ∶RΓ→OΓ+⊆Γ a+↦ χ
+
a , a−↦ χ

−
a , t ↦ χt a ∈ Γ,t ∈RΓ∖Γ±

Where for all a,b ∈Γ, t ∈RΓ∖Γ±, χ+a (1b+Γ+)=1 ⇐⇒ b≤a, χ−a (1b+Γ+)=1 ⇐⇒ b<a, χt(1b+Γ+)=

1 ⇐⇒ b < t. For all a,b ∈ Γ,a < b f [a+,b−]) =Ua,b.

Let ℓ ∈ Γ∩(0,+∞). Then, let:

q∗ ∶ (0,ℓ]↪ (0+,ℓ−] t ↦

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

t t ∉ Γ

t− t ∈ Γ∖{0}
.

Note then, for all a,b ∈ Γ with a < b, q∗((a,b]) ⊂ (a+,b−]. We are now ready to describe IE(Γ)

as the topological full group of a partial action. Recall the definition of a partial transformation
groupoid as in Example 2.3.7.

Lemma 6.2.3 (IE(Γ) as a topological full group of a partial action). Let Γ be a countable, dense

additive subgroup of R with 1 ∈ Γ. Let α ∶ Γ↷RΓ be the canonical additive action of Γ on RΓ

(i.e. given by for each c ∈ Γ+ αc(a±) = (a+c)±, αc(t) = t +c ∀a,c ∈ Γ, ∀t ∉ Γ) and consider the

restriction of α to a partial action on (0+,1−]. Then we have that

F(Γ⋉α (0+,1−]) ≅ IE(Γ)

Proof. A basis of the compact open bisections of the groupoid Γ⋉α (0+,1−] is given by:

(c,[a+,b−]) c ∈ Γ a,b ∈ Γ, max{−c,0} ≤ a < b ≤min{1−c,1}

Elements of F(Γ⋉α (0+,1−]) are therefore homeomorphisms f of (0+,1−] for which there exists
a finite subset {xi}

n
i=1 ⊂ Γ, with 0 = x1 < x2 < ... < xn = 1, and elements {ci}

n
i=1 ⊂ Γ such that

f ∣[(xi)+,(xi+1)−] = α(ci)∣[(xi)+,(xi+1)−]

Hence, making use of q,q∗ we can obtain the isomorphism:

ϕ ∶ F(Γ⋉α (0+,1−])→ IE(Γ) g↦ qgq∗

For any element f ∈ F(Γ⋉α (0+,1−]), ϕ( f ) is a right continuous piecewise linear bijection
of (0,1] with finitely many angles, c1, ...,cn, since on each interval (xi,xi + 1], we have that
q∗(xi−1,xi]⊂ ((xi−1)+,(xi)−], therefore gq∗(xi−1,xi]⊂ ((xi−1+ci)+,(xi+ci)−] and so qgq∗((xi−1,xi])=

(xi−1+ci,xi+ci].
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Moreover, if t ∈ (xi−1,xi]∩Γ, then

qgq∗(t) = qg(t−) = q((t +ci)−) = t +ci.

And, if t ∈ (xi−1,xi]∩Γc, then

qgq∗(t) = qg(t−) = q((t +ci)) = t +ci.

We note also then, that there are only finitely many ci ∈ Γ describing f . Note that ϕ is
indeed a group homomorphism since qq∗ = Id(0,1]. If ϕ( f ) = 1, then ci = 0 for all i, hence
f ∈ F(Γ⋉α (0+,1−]) is the identity, hence ϕ is an isomorphism.

Let us also remark that for α , we have that (0+,ℓ−] is Γ⋉RΓ full (by density, for all x ∈RΓ,
we can choose a ∈ Γ such that 0 < q(x)−a < ℓ).

Remark 6.2.4. The above partial action is conjugate (via the homeomorphism f ) to the groupoid

model Γ⋉OΓ+⊆Γ∣
N(Γ+)
N(Γ+) of Fλ in [76], Section 2.3.

It is also relatively straightforward to see an alternative, equivalent description of IE(Γ) in
terms of a group action.

Lemma 6.2.5 (IE(Γ) as the topological full group of an action). Let Γ be a countable, dense

additive subgroup of R with 1 ∈ Γ. Then

α̂ ∶ Γ/Z↷ (0+,1−]

Let [t] denote the equivalence class of t ∈R (mod Z). Then let

α̂([c])(t) = [t +c] α̂([c])(a±) = [a+c]±.

We have that IE(Γ) = F(Γ⋉α̂ (0+,1−])

We omit this proof since this perspective agrees with the perspective as in [16] [60] [36], and
the proof of this follows the same proof as that of Lemma 6.2.3.

It is time to remark on some basic facts for these partial action groupoids:

Lemma 6.2.6 (Regularity of α). Let Γ be a dense countable subgroup of R with 1 ∈ Γ. Then

α ∶ Γ↷RΓ is a free, amenable, minimal action.

Proof. The action is amenable since Γ is an amenable group. Suppose for some c ∈ Γ, and some
x ∈RΓ, α(c)(x) = x. Then in particular in R, q(α(c)x) = q(x)−c = q(x)⇒ c = 0. This establishes
that α is free.
Now let us establish minimality. First let us remark the following convergence rules in RΓ:

lim
n→∞

xn = x+ ⇐⇒ lim
n→∞

q(xn) = q(x) from above
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lim
n→∞

xn = x− ⇐⇒ limn→∞q(xn) = q(x) from below

lim
n→∞

xn = x s.t. x ∉ Γ± ⇐⇒ lim
n→∞

q(xn) = x

For all x ∈RΓ, the image of the orbit Γx under q, q(Γx)= q(x)+Γ⊂R is dense in R, so we can find
sequences in q(x)+Γ tending to any x′ ∈ Γ from above or below, and sequences approximating
any x′ ∉ Γ in q(Γx). Minimality follows.

Corollary 6.2.7. Let Γ be a dense countable subgroup of R with 1 ∈ Γ. As a groupoid, Γ⋉α

(0+,1−] is minimal, principal, and amenable.

Note in particular as a Corollary of Matui’s isomorphism Theorem (Theorem 3.4.12), and
the regularity established for α , α̂ the identification of the topological full groups implies the
groupoids coming from α and α̂ are conjugate.

Corollary 6.2.8. Let Γ be a dense countable subgroup of R with 1 ∈ Γ. As groupoids, Γ/Z⋉α̂

(0+,1−] ≅ Γ⋉α (0+,1−]

This identification establishes that the groupoid is almost finite.

Lemma 6.2.9. Let Γ be a dense countable subgroup of R with 1 ∈ Γ. Then the groupoid Γ⋉α

(0+,1−] is an almost finite groupoid.

Proof. Using that Γ⋉α (0+,1−] ≅ Γ/Z⋉α̂ (0+,1−] can be written as the transformation groupoid
of a free minimal action of Γ/Z (a countable amenable group) on the Cantor space. Moreover,
since Γ/Z is abelian, all finitely generated subgroups have polynomial growth. Free minimal ac-
tions of such groups were shown to be almost finite in [ [66], Theorem C], and so the underlying
groupoid is almost finite.

We then fit into the scope of Theorem 3.3.2, identifying A(Γ⋉α (0+,1−]) with D(Γ⋉α

(0+,1−]) and establishing simplicity.

Corollary 6.2.10. Let Γ be a dense countable subgroup of R with 1 ∈ Γ. Then D(IE(Γ)) =

A(Γ⋉α (0+,1−]) is simple.

Another corollary we have as a consequence of almost finiteness is that the associated
crossed product is Z-stable.

Lemma 6.2.11. Let Γ be a dense countable subgroup of R with 1 ∈Γ. Then the C∗ algebra given

by C((0+,1−])⋉α Γ is classifiable.

Proof. Z-stability is established by almost finiteness via [ [64], Theorem 12.4]. Let us note that
the group Γ/Z is always abelian, so, in particular, has polynomial growth. By construction, this
is the groupoid C*-algebra of an amenable groupoid hence by [ [124], Proposition 10.7] they
satisfy the UCT. The other classifiability conditions can be read off from Corollary 6.2.7; the
groupoid is minimal and principal (implying simplicity), with a compact unit space (implying
unital), second countable (implying separable), and amenable (implying nuclearity).



CHAPTER 6. INTERVAL EXCHANGE GROUPS 114

We can also compute the Elliott invariant in this case.

Lemma 6.2.12 (Li). Let Γ be a dense countable subgroup of R with 1 ∈ Γ. The Elliott invariant

for C((0+,1−])⋉α Γ is as follows.

(K0(C((0+,1−])⋉α Γ),[1]0,K1(C((0+,1−])⋉α Γ) ≅ (K1(C∗r (Γ),[U1]1,K0(C∗r (Γ)/Z[1]0)

Where [U1]1 here is a unique trace τ on K0 satisfying τ(K0(C((0+,1−])⋉α Γ))) = Γ.

In particular, C((0+,1−])⋉α Γ ≅C((0+,1−])⋉α Γ′ Ô⇒ Γ = Γ′ (as subsets of R).

Proof. This proof directly generalises via Corollary 3.3 and Proposition 3.6 of [76].

Since Ell(C∗r (GΓ)) recovers Γ as a subset of R, each of the C*-algebras are pairwise noni-
somorphic. In turn then, so are the groups IE(Γ):

Theorem 6.2.13. Let Γ be a dense countable subgroup of R with 1 ∈ Γ. Then, the following are

equivalent:

1. Γ = Γ′ (as subsets of R)

2. IE(Γ) ≅ IE(Γ′) (as groups)

3. D(IE(Γ)) ≅D(IE(Γ′)) (as groups)

4. Γ⋉α (0+,1−] ≅ Γ⋉α (0+,1−]′ (as groupoids)

5. C∗r (Γ⋉α (0+,1−]) ≅C∗r (Γ⋉α (0+,1−]′) (as C∗ -algebras)

6. Ell(C∗r (Γ⋉α (0+,1−])) ≅ Ell(Γ⋉α (0+,1−]′))

Proof. The implications 1.⇒ 2.⇒ 3., 4.⇒ 5.⇒ 6. are straightforward. 6⇒ 1. follows from
Lemma 6.2.12, since part of the Elliott invariant is the unique trace that recovers Γ. 3.⇒ 4. is
the Matui’s isomorphism Theorem (Theorem 3.4.12).

Remark 6.2.14. This classification result can already be seen for the case of Γ finitely generated

as a corollary of work by Matte Bon [ [16], Theorem 10.3].

Note that this also identifies, via Theorem 2.5.2 many of the associated crossed products with
concrete C*-algebras. The K-theory and tracial data of UHF algebras is computed in [ [41],
Chapter III]. Note also that it was recently shown that UHF algebras have unique AF Cartan
subalgebras [ [102], Theorem D], and hence the identification here is actually an identification
on the groupoid level, due to Renault’s reconstruction theorem [ [101], Theorem 1.1].
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Corollary 6.2.15. Let Γ⊂Q. Let {k(n)}n∈N be a strictly increasing sequence of natural numbers

such that k(n)∣k(n+1) and {1/(k(n))} is a generating set of Γ. Then, Γ⋉(0+,1−] is conjugate

to the UHF groupoid associated with the Bratelli diagram

k(1)
k(2)/k(1)
ÐÐÐÐÐ→ k(2)

k(3)/k(2)
ÐÐÐÐÐ→ k(3)

k(4)/k(3)
ÐÐÐÐÐ→⋯

k(n)/k(n−1)
ÐÐÐÐÐÐ→ k(n)

k(n+1)/k(n)
ÐÐÐÐÐÐ→⋯

As in Example 2.3.9. This limit is independent of the choice of generating set, therefore such

inductive limits of symmetric/alternating groups are classified by their supernatural numbers

∏
∞
i=1 ki.

In [33], Li constructs Fλ as in [76] and [33] as particular examples of our groupoids in the
case where Γ =Z[λ ,λ−1].

Corollary 6.2.16. Let Γ = Z[λ ,λ−1], where λ ∈ R. Then, C((0+,1−])⋉α Γ ≅ Fλ as in [76]

and [33].

6.3 Concrete generating sets in the finitely generated abelian
case

When Γ is finitely generated, so is D(IE(Γ)). The aim of this section is to find a concrete
generating set for D(IE(Γ)) in the case when Γ is finitely generated abelian. Let us first show
that indeed the derived subgroup is finitely generated.

Lemma 6.3.1. Let Γ be a dense countable subgroup of R with 1 ∈ Γ. The action α̂ ∶ Γ/Z↷
(0+,1−] as in Theorem 6.2.5 is an expansive action in the sense of Definition 3.5.3.

Proof. Let λ ∈ Γ∩ (0,1). Let x,x′ ∈ (0+,1−] be distinct. Let ε = d((0+,(λ)−],[(λ)−,1+]) We
separate into two cases:

• If q(x) ≠ q(x′), suppose wlog q(x) < q(x′). By density, suppose the difference of q(x′)−

q(x) > c > 0 for some c ∈ Γ. Also there exists some c′ ∈ Γ such that λ − c < q(x)− c′ < λ .
Hence, we have that q(c′x) = q(x)−c′ < λ and q(c′x′) = q(x′)−c′ > q(x)−c′+c > λ −c+c =

λ .

• If q(x) = q(x) ∈Γ, then c′ = q(x)−λ will separate the two characters into (0+,λ−],[λ+,1−].

Let us remark that this was observed already in [60]. Also, it is clear that Γ/Z is finitely
generated iff Γ is finitely generated. Hence by Theorem 3.5.6 we obtain:

Corollary 6.3.2. Let Γ be a dense countable subgroup of R with 1 ∈ Γ. The derived subgroup of

IE(Γ) is finitely generated iff Γ is finitely generated as a group.
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The fact that Γ finitely generated implies that D(IE(Γ)) is finitely generated was observed
in [60]. But recall that any finitely generated subgroups of R in particular embed into finitely
generated abelian subgroups of R. So we look to focus on the case where Γ ≅ Zn and obtain
a finite generating set in this case. Abstractly speaking, Lemma 6.3.1 establishes that the dy-
namical system α ∶ Γ/Z↷ (0+,1−] is a subshift in the case when Γ is finitely generated. This
is a classical result in dynamics, reproven by Nekrashevych in ( [93], Proposition 5.5). Let us
describe now how to obtain this picture concretely.
We are inspired by so-called Sturmian subshifts, a classical object in dynamics. See [10], Chap-
ter 1. for a discussion of Sturmian subshifts and the paper [23] in which Brix studied the asso-
ciated C∗ -algebras. Let Γ be a dense additive subgroup of R containing 1. Let λ ∈ Γ∩(0,1) be
arbitrary.

For t ∈ (0,1), set:

xt ∶ Γ/Z→ {0,1} b↦

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 0 ≤ t +b < λ < 1

0 else

Where t +b is taken modulo Z. Let

XΓ,λ = {xt ∶ t ∈ (0,1)} ⊂ {0,1}Γ/Z

Let EΓ,a = (XΓ,a,σ). The shift for c ∈ Γ/Z is given by:

σc ∶ XΓ→ XΓ σc(x)(b) = x(b+c)

Note that σc(xt) = xt+c (where addition is taken mod Z) since

σc(xt)(b) = xt(b+c) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 0 ≤ t +b+c < λ < 1

0 else

Let us examine further XΓ.

Lemma 6.3.3. Let Γ be a dense countable subgroup of R with 1 ∈ Γ. Let λ ∈ Γ∩ (0,1) be

arbitrary. Then XΓ = {xt ∶ t ∈ (0,1)}⊔ {x̂t ∶= limn→∞ xt−1/n ∶ t ∈ (0,1]∩Γ}. The topology is

generated by basic open sets of the form:

{xt ∶ t ∈ [a,b)} = {xt ∶ t ∈ [a,b)}⊔{x̂t ∶ t ∈ (a,b]}

Proof. First let us show that {xt ∶ t ∈ (0,1)}⊔{x̂t ∶ t ∈ (0,1]} ⊂XΓ. Consider first limn→∞ x1−1/n.
One has that this is convergent (for all t′ ∈ Γ/Z there exists some Nt′ ∈N such that n > Nt′ Ô⇒

x1−1/n(t′) = x1−1/Nt′
(t′), hence (limn→∞ x1−1/n)(t′) = x1−1/Ng(t

′) ). At the same time, this is
different from xt′ for any t′.
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Set x̂1 ∶= limn→∞ x1−1/n. Suppose for contradiction that x̂1 = xt for some t. Note first that
for n > 1/(1− λ), x1−1/n(0) = 0. Therefore, x̂1(0) = 0, hence t ∈ [λ ,1). Let c ∈ (0,1− t)∩

(0,λ), then σc(xt)(0) = xt+c(0) = 0. However, for any c ∈ (0,λ) we have that σc(x̂1)(0) =
σc(limn→∞ xt−1/n)(0) = limn→∞ xc−1/n(0) = 1. This is a contradiction hence x̂1 is distinct from
all the xt ,t ∈ (0,1).
Let t ∈ (0,1)∩Γ. Consider x̂t = limn→∞ xt−1/n. Since σt is continuous, it is enough to remark that
σt(x̂1) = σt(limn→∞ x1−1/n) = limn→∞σt(x1−1/n) = limn→∞ xt−1/n = x̂t . Therefore x̂t exists and is
distinct from any xt′ since we saw that {xt′ ∶ t′ ∈ (0,1)} is invariant under σt .

Now let us show that XΓ ⊂ {xt ∶ t ∈ (0,1)}⊔{x̂t ∶ t ∈ (0,1]}. Let (tn)n∈N be sequence in (0,1) such
that limn→∞ xtn exists. Then, for all t ∈Γ/Z, there exists some N ∈N such that xtn+N(t) is constant
(n ∈N). This implies that tn is a convergent sequence in (0,1) that is eventually monotone. If tn
is eventually monotone increasing to t ∈ Γ, limn xtn = x̂t . If tn is eventually monotone decreasing
to t ∈Γ, limn xtn = xt , finally if the limit of tn is some t ∉Γ, regardless of the direction, limn xtn = xt .

Now let us describe the topology on XΓ. The topology is generated by cylinder sets. These sets
come in two forms C(a,0) ∶= {x ∈XΓ ∶ x(a) = 0},C(b,1) = {x ∈XΓ x(b) = 1}where a,b ∈Γ∩(0,1)
are arbitrary. It is clear that C(a,0) = {xt ∶ t ∈ [1− a,1+ λ − a)∪ (0,λ − a)},C(b,1) = {xt ∶

t ∈ [λ − b,1− b)∪ [1+ λ − b,1)}. Therefore, for a < b, we have that {xt ∶ t ∈ [a,b)} is open,
and that cylinder sets can be written C(a,0) ∶= {xt ∶ t ∈ [1−a,1+λ −a)}∪ {xt ∶ t ∈ (0,λ −a)},
C(b,1) ∶= {xt ∶ t ∈ [λ −b,1−b)}∪{xt ∶ t ∈ [1+λ −b,1)}. Therefore the topology is generated by
the compact open subsets of the form {xt ∶ t ∈ [a,b)}

Lemma 6.3.4. Let Γ be a dense countable subgroup of R with 1 ∈ Γ. Let λ ∈ Γ∩ (0,1). Then,

EΓ,λ ≅ Γ/Z⋉ (0+,1−] (they are conjugate as groupoids). In particular, the groupoid conjugacy

class is independent of our choice of λ ∈ Γ∩(0,1).

Proof. Our groupoid conjugacy is concrete.

φ ∶ EΓ,λ → Γ/Z⋉U0,1 (c,x)↦

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

(c,t+) x = xt , t ∈ Γ

(c,t) x = xt , t ∉ Γ

(c,t−) x = x̂t , t ∈ Γ

Note that in particular, φ({xt t ∈ [c,d)}) = [c+,d−] so that φ restricts to a homeomorphism of
the unit spaces.

Our motivation for this description of the groupoid is the ability to apply results from [36],
specifically Theorem 3.5.12 to obtain a concrete generating set. To understand how to apply
this, we need to understand this groupoid as a subshift and analyse its patches. We first look to
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obtain a generating set of D(IE(Γ)) whenever Γ/Z ≅ Zd , d > 2. Our first step is to notice we
may assume our generators are in a prescribed subset (a,1/2):

Lemma 6.3.5. Let Γ be a dense countable subgroup of R with 1 ∈ Γ. Suppose Γ/Z ≅ Zd , with

d > 1. Then for any a ∈ (0,1/2)∩Q, Γ/Z is generated by a set {λi}
d
i=1, where a < λ1 < λ2 < ... <

λd < 1/2.

Proof. Let us prove this by induction on d. If d = 2, suppose we have an algebraically inde-
pendent generating set λ̂1, λ̂2. Then, since Z⊕λ1Z is dense in R, there exists n,m ∈ Z such
that λ2 = λ̂2 + n+mλ̂1 ∈ (a,1/2). Then it is clear that λ̂1,λ2 form an algebraically indepen-
dent generating set for Γ/Z. Since Z⊕ λ2Z is dense in R, there exists n,m ∈ Z such that
λ1 = nλ2 +m+ λ̂1 ∈ (a,λ2). Then again, it is clear that λ1,λ2 form an algebraically indepen-
dent generating set of Γ/Z of the required form.
Assume the statement is true for d and let us suppose that Γ/Z ≅ Zd+1. Then let us assume
by the inductive hypothesis that our generators of Γ/Z are of the form 1/3 < λ1 < ... < λd < 1/2
and λ̂d+1. Since Z⊕⊕d

i=1 λiZ is dense in R, we may find some γ ∈ Z⊕⊕d
i=1 λiZ such that

λd+1 = γ + λ̂d+1 ∈ (λd,1/2). Then {λi}
n
i=1 is a generating set of the required form.

Let us fix notation for our patch maps, and look to remove patches π such that Wπ is
nonempty. For (0,ei,−ei) let the patch π i

a,b,c with a,b,c ∈ {0,1} be the patch such that π i
a,b,c(0) =

a, π i
a,b,c(ei) = b,π i

a,b,c(−ei) = c.

Lemma 6.3.6. Let Γ be a dense countable subgroup of R with 1 ∈Γ. Suppose further that Γ/Z ≅
Zd,d > 1 is generated by λi with 1/3 < λ1 < λ2 < ... < λd < 1/2. Take λ = λ1 in our construction of

the subshift (Lemma 6.3.4). Then for all i we have that,

W
π i

1,1,0
=W

π i
1,0,1
=W

π i
1,1,1
=W

π i
1,1,0
=W

π i
0,0,0
=∅

Proof. Let us begin with i arbitrary. We show that W
π i

a,b,c
= ∅ by showing that there exists no

xt such that xt ∈W
π i

a,b,c
. Suppose first xt ∈W

π i
1,1,0
⋃W

π i
1,1,1

. Then in particular xt(0) = xt(λi) = 1.
Hence t ∈ (0,λ1) and t +λi ∈ (0,λ1). This is a contradiction since then λ1 ≤ λi ≤ t +λi < λ1.
Therefore W

π i
1,1,0
⋃W

π i
1,1,1
= ∅. Now suppose xt ∈W

π i
1,0,1

. Then in particular xt(0) = xt(−λi) = 1.
It follows that t,t − λi ∈ (0,λ1). But then λ1 ≤ (t − λi)+ λ1 < t + (−λi + λ1) ≤ t < λ1. This is
a contradiction, hence W

π i
1,0,1

is empty. Now let us suppose xt ∈W
π i

0,0,0
. Then we have that

xt(0)= xt(λi)= xt(−λi)=0. Then t,t±λi ∈ [λ1,1). Note in particular then, λ1 < t−λi < t < t+λi <1.
This is impossible since 1−λ1 < 2/3 but 2λi > 2/3.

Lemma 6.3.7. Let Γ be a dense countable subgroup of R with 1 ∈Γ. Suppose further that Γ/Z ≅
Zd,d > 1 is generated by λi with 1/3 < λ1 < λ2 < ... < λd < 1/2. Take λ = λ1 in our construction of

the subshift (Lemma 6.3.4). Then for all i we have:

1. xt ∈W
π i

1,0,0
⇐⇒ t ∈ (0,λ1)
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2. xt ∈W
π i

0,1,0
⇐⇒ t ∈ [λ1+λi,1+λ1−λi)

3. xt ∈W
π i

0,1,1
⇐⇒ t ∈ [1−λi,λi+λ1)

4. xt ∈W
π i

0,0,1
⇐⇒ t ∈ [λi,1−λi)

Proof. 1. If xt ∈W
π i

1,0,0
, xt(0) = 1 Ô⇒ t ∈ (0,λ1). Moreover, if t ∈ (0,λ1) then xt(0) = 0,

t +λi ∈ [λi,λ1 +λi) ⊂ [λ1,1) hence xt(λi) = 0. t −λi ∈ [1−λi,1+λ1 −λi) ⊂ [λ1,1) hence
xt(−λi) = 0.

2. xt(0) ⇐⇒ t ∈ [λ1,1). xt(λi)= 1 ⇐⇒ t ∈ [1−λi,1+λ1−λi), xt(−λi)= 0 ⇐⇒ t ∈ [λ1+λi,1).
Note that 1−λi < 2/3 < 2λ1 < λ1+λi, hence the intersection of these sets is [λ1+λi,1+λ1−

λi).

3. xt(0) ⇐⇒ t ∈ [λ1,1). xt(λi)= 1 ⇐⇒ t ∈ [1−λi,1+λ1−λi), xt(−λi)= 1 ⇐⇒ t ∈ [λi,λ1+λi).
λi < 1/2 < 1−λi. Also note that λi+λ1 < 1+λ1−λi. Hence, the intersection of these sets is
[1−λi,λi+λ1).

4. xt(0) ⇐⇒ t ∈ [λ1,1). xt(λi) = 0 ⇐⇒ t ∈ [λ1,1−λi), xt(−λi) = 1 ⇐⇒ t ∈ [λi,λ1 +λi).
Noting that 1−λi < 2/3 < 2λ1 ≤ λ1+λi, it is clear the intersection of these sets is [λi,1−λi).

Lemma 6.3.8. Let Γ be a dense countable subgroup of R with 1 ∈Γ. Suppose further that Γ/Z ≅
Zd,d > 1 is generated by λi with 2/5 < λ1 < λ2 < ... < λd < 1/2. Take λ = λ1 in our construction

of the subshift (Lemma 6.3.4). Then for all i the only a,b,c such that W
π i

a,b,c
is nonempty and the

sets W
π i

a,b,c
,λiWπ i

a,b,c
,−λiWπ i

a,b,c
are pairwise disjoint are W

π i
0,1,0

and W
π i

0,0,1
.

Proof. Note the following equivalences, since intersections of cylinder sets are cylinder sets:

• W
π i

a,b,c
,±λiWπ i

a,b,c
are pairwise disjoint.

• There exists no t such that xt is in the intersection of one of the above sets.

• By Lemma 6.3.7, xt ∈Wπ i
a,b,c

iff t ∈ [d, f ) for some d, f ∈Γ. It follows that [d, f ),[d+λi, f +

λi),[d−λi, f −λi) are disjoint intervals in (0,1] mod Z.

Note that if the interval in Lemma 6.3.7 is greater than 1/3, these three sets cannot be disjoint,
since this would imply there are 3 disjoint subintervals of (0,1] all of have Lebesgue measure
greater than 1/3. Therefore W

π i
1,0,0

can be excluded for all i, since we assumed λ1 > 1/3.
The other intervals are all less than 1/3 in length. In particular then, when we translate by
1/2 > λi > 1/3, we have that λiWπ i

a,b,c
∩W

π i
a,b,c
= ∅,−λiWπ i

a,b,c
∩W

π i
a,b,c
= ∅. It is for this reason

enough to check if λiWπ i
a,b,c
∩−λiWπ i

a,b,c
=∅.

• If (a,b,c) = (0,1,0), the sets to compare are [λ1,1+λ1−λi) and [λ1+2λi−1,λ1). These
sets are disjoint clearly.
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• If (a,b,c) = (0,1,1), the sets to compare are (1−2λi,λ1] and (0,2λi+λ1−1]. These have
nonempty intersection ⇐⇒ 1−2λi > 2λi+λ1−1 ⇐⇒ 2 > 4λi+λ1 > 5λ1. We assumed that
λ1 > 2/5, hence this never occurs and these sets always have nonempty intersection.

• If (a,b,c)= (0,0,1), the sets to compare are (0,1−2λi] and (2λi,1]. These sets are disjoint
since 1−2λi < 1/3 < 2/3 < 2λi.

We are now ready to apply Theorem 3.5.12 to obtain a generating set.

Theorem 6.3.9. Let Γ be a dense countable subgroup of R with 1 ∈ Γ. Suppose further that

Γ/Z ≅Zd,d > 1. Then there exists a generating set {λi}
d
i=1 of Γ/Z with 2/5 < λ1 < λi < λi+1 < λd <

1/2. Then, D(IE(Γ)) is generated by

σi(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t +λi t ∈ (λ1,1−2λi+λ1]

t +λi−1 t ∈ (λ1+λi,1+λ1−λi]

t +1−2λi t ∈ (λ1+2λi−1,λ1]

t else

, σ̂i(t) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

t +λi t ∈ (0,1−2λi]⊔(λi,1−λi]

t −2λi t ∈ (2λi,1]

t else

Where i = 1, ..,d.

Proof. First, note that the generating set λi of Γ/Z is indeed a generating set due to Lemma 6.3.5.
We have for all i, the only patches π i ∶ {0,λi,−λi}→ {0,1} such that Tπ is defined are π i

0,1,0 and
π i

0,0,1 by Lemma 6.3.8. Hence, the result follows by Theorem 3.5.12 that D(IE(Γ)) is generated
by T

π i
0,1,0

,T
π i

0,0,1
. It is a straightforward computation to check that T1,i = ϕ ○φ(T

π i
0,0,1
), T1,i = ϕ ○

φ(T
π i

0,1,0
).

Example 6.3.10. Let Γ ≅Z3, and suppose Γ ≅Z⊕λ1Z⊕λ2Z (where wlog we assume 2/5 < λi <

1/2 and that λi are rationally independent). Then the main result of [60] says that D(IE(Γ)) is

a simple finitely generated amenable group. Moreover, we have an explicit generating set given

by:

σ1(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t +λ1 t ∈ (λ1,1−λ1]

t +λ1−1 t ∈ (2λ1,1]

t +1−2λ1 t ∈ (3λ1−1,λ1]

t else

, σ̂1(t) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

t +λ1 t ∈ (0,1−2λ1]⊔(λ1,1−λ1]

t −2λ1 t ∈ (2λ1,1]

t else
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1−2λi
λi 2λi

1−λi

1−2λi

1−λi

λi

2λi

σ̂i
σi

λ1+2λi−1

λ1

λ1+1−2λi

λ1+λi

1+λ1−λi

1+λ1−λi

λ1+λi

λ1+1−2λi

λ1

λ1+2λi−1

Figure 6.2: A pictoral representation of σi, σ̂i as defined in Theorem 6.3.9

σ2(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t +λ2 t ∈ (λ1,1−2λ2+λ1]

t +λ2−1 t ∈ (λ1+λ2,1+λ1−λ2]

t +1−2λ2 t ∈ (λ1+2λ2−1,λ1]

t else

, σ̂2(t) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

t +λ2 t ∈ (0,1−2λ2]⊔(λ2,1−λ2]

t −2λ2 t ∈ (2λ2,1]

t else

It would be interesting to find independent proof that this group is amenable by using this con-

crete picture of its generators.

Theorem 6.3.11. Let Γ be a dense countable subgroup of R with 1 ∈Γ. Suppose Γ ≅Zd+1, d > 1.

Suppose further that Γ/Z ≅ Zd ⊕Zk,d > 1, where k > 9. Using Lemma 6.3.5, we may take the

generators of Γ/Z to be 1/k and irrational numbers λi, with 2/5 < λ1 < ... < λd < 1/2. Take λ = λ1

in our construction of the subshift (Lemma 6.3.4). Then a generating set for D(IE(Γ)) is given

by:

S = {σi, σ̂i,rk,a ∶ i ∈ {1,2, ..,d} a ∈ {λ1−1/k,λ1−2/k,1−2/k,1−1/k}}

Where σi, σ̂i are as in Theorem 6.3.9, and rk,a is given by:

rk,a(t) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

t +1/k mod Z t ∈ (a,a+2/k]

t −2/k mod Z t ∈ (a+2/k,a+3/k]

t else

Proof. Let πa,b,c ∶{0,1/k,−1/k}→{0,1} be the patch such that πa,b,c(0)=a,πa,b,c(1/k)=b,πa,b,c(−1/k)=
c. As before we fix the picture of this dynamical as a subshift where xt(0) = 1 ⇐⇒ t ∈ (0,λ1).
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• xt ∈ ⊔b,c∈{0,1}Wπ1,b,c ⇐⇒ t ∈ (0,λ1)

• xt ∈ ⊔a,c∈{0,1}Wπa,1,c ⇐⇒ t ∈ (0,λ1−1/k)⊔ [1−1/k,1)

• xt ∈ ⊔a,b∈{0,1}Wπa,b,1 ⇐⇒ t ∈ [1/k,1/k+λ1)

Therefore ∅ =Wπ1,0,0 =Wπ0,1,1 . Note some of the translated cylinder sets are also not disjoint–
x1/k ∈Wπ1,1,1 ∩−1/kWπ1,1,1 and x1−2/k ∈Wπ0,0,0 ∩+1/kWπ0,0,0 The other corresponding Tπa,b,c are well
defined. It is straightforward to verify that:

ϕ ○φ(Tπ0,1,0) = rk,1−2/k, ϕ ○φ(Tπ1,1,0) = rk,1−1/k,

ϕ ○φ(Tπ1,0,1) = rk,λ1−2/k, ϕ ○φ(Tπ0,0,1) = rk,λ1−1/k.

Then, the proof follows via Theorem 6.3.9 and Theorem 3.5.12.

Let us remark how these generating sets behave with respect to inclusions Γ′ ⊂ Γ:

Corollary 6.3.12. Let Γ′ ⊂ Γ be dense, nested cyclic subgroups, finitely generated subgroups of

R containing 1. Given a subset P ⊂R, Let RankQ(P) denote the number of rationally indepen-

dent numbers in P. Then there exists generating sets S,S′ of Γ, Γ′ such that:

• S′ ⊂ S

• ∣S∖S′∣ ≤ 2RankQ(Γ′∖Γ)+4.

• ∣S∣ ≤ 2RankQ(Γ)+4

Let us remark that IET locally embeds into groups of the form Γ = 1/kZ⊕⊕d
i=1 λiZ, where

d > 1,k > 9. This is because finitely generated subgroups of R are finitely generated abelian,
hence if we let k being arbitrarily large enough to contain all the rational angles of a given finite
subset of IET. Note also that D(IE(Γ)) is amenable iff IE(Γ) is amenable. Hence, we have the
following reductions of Question 6.1.5:

Corollary 6.3.13. The following are equivalent:

• IET is nonamenable.

• There exists k > 9, and a finite collection of irrational numbers λ1, ...,λd ∈ [2/5,1/2) such

that the group generated by S as in Theorem 6.3.11 is nonamenable.

And similarly for the existence of a nonamenable free subgroup, the question will reduce to
the finitely generated abelian case.
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6.4 Homology of interval exchange groups

We look to apply the results of Section 3.6 to further our understanding of the interval exchange
groups. Let us first compute the homology of the underlying groupoids. Let us remark that as
with all globalisable partial actions we saw in Example 2.4.2 that our groupoid homology will
reduce to group homology with certain coefficients:

H∗(Γ⋉α (0+,1−]) ≅H∗(Γ⋉RΓ∣
(0+1−]
(0+1−]) ≅H∗(Γ⋉RΓ) ≅H∗(Γ,Cc(RΓ,Z))

In other words, the groupoid homology with coefficients in Z reduces to the group homology
with coefficients in Cc(RΓ,Z). It is for this reason we did not introduce groupoid homology. In
fact, in our case the groupoid homology is just a shifted version of the homology of Γ:

Lemma 6.4.1. Let Γ be a dense additive subgroup of R containing 1. Then, k ≥ 0 Hk(Γ⋉α

C((0+,1−])) ≅Hk+1(Γ).

Proof. We follow a similar technique to that used in ( [76], Proposition 5.8). Let R̂Γ =RΓ⋃{+∞}

be the one sided compactification of RΓ, i.e. the basic open sets in R̂Γ are [a+,b−],[a+,∞],a,b ∈
Γ . Let Γ↷ R̂Γ by acting as α on RΓ and by fixing∞.

The set {1[a+,∞] ∶ a ∈ Γ} is a Z-basis of Cc(R̂Γ,Z) that Γ acts freely and transitively on.
Hence, Cc(R̂Γ,Z) ≅ZΓ as ZΓ modules.

H∗(Γ,Cc(R̂Γ,Z)) ≅
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Z ∗ = 0

0 else
.

Then note that
0→Cc(RΓ,Z)→Cc(R̂Γ,Z)→Z→ 0

Is a short exact sequence of ZΓ modules. By Proposition 6.1, Chapter III of Brown [27], we get
that there is a long exact sequence:

...→H1(Γ,Cc(R̂Γ,Z))→H1(Γ)→H0(Γ,Cc(RΓ,Z))→H0(Γ,Cc(R̂Γ,Z))→H0(Γ)→ 0

But we already know that H1(Γ)=Γab =Γ,H0(Γ)=Z, H0(Γ,Cc(R̂Γ,Z))=Z and for Hi(Γ,Cc(R̂Γ,Z))=
0 for i ≥ 1. Hence we get that there is a long exact sequence of the form:

→ 0→Hi+1(Γ)→Hi(Γ⋉α C((0+,1−]))→ 0→ ...

...→ 0→ Γ→H0(Γ,Cc(RΓ,Z))→Z→Z→ 0

The section around Hi(Γ⋉α C((0+,1−])) looks like this for all i ≥ 0, forcing an isomorphism
Hi+1(Γ) ≅ Hi(Γ ⋉α C((0+,1−])). Around H0(Γ,Cc(RΓ,Z)), exactness forces the map from
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H0(Γ,Cc(RΓ,Z)→Z to be 0:

H0(Γ,Cc(RΓ,Z)
0
Ð→Z ≅

Ð→Z 0
Ð→ 0

hence, there is also an isomorphism Γ ≅H0(Γ,Cc(RΓ,Z). The conclusion follows.

Note in particular that H0(Γ⋉α (0+,1−]) =H1(Γ) = Γab = Γ.

Corollary 6.4.2. Let Γ be a dense additive subgroup of R containing 1. Then, H0(Γ⋉α (0+,1−])≅
Γ

For this class of groupoids, the HK conjecture (Conjecture 2.5.4) holds.

Theorem 6.4.3. Let Γ be a dense countable subgroup of R containing 1. Then, the HK conjec-

ture holds for Γ⋉α (0+,1−], i.e.

K0(C∗r (Γ⋉α C((0+,1−]))) ≅K1(C∗r (Γ)) ≅
∞
⊕
i=0

H2i(Γ⋉α (0+,1−]) ≅
∞
⊕
i=0

H2i+1(Γ)

K1(C∗r (Γ⋉α C((0+,1−]))) ≅K0(C∗r (Γ))/Z[1]0 ≅
∞
⊕
i=0

H2i+1(Γ⋉α (0+,1−]) ≅
∞
⊕
i=1

H2i(Γ)

Proof. This was observed in the case where Γ is a ring in [76], Remark 5.8. One can verify the
case where Γ is finitely generated abelian by direct computation. This is in fact enough, since
we can write any Γ as an inductive limit of finitely generated abelian groups. Set Γ = limn→Γn,
where Γn is finitely generated abelian. It follows that Ki(C∗r (Γ⋉α (0+,1−])) ≅ limn→Ki(Γn ⋉α

C∗r ((0+,1−])),Hi(Γ⋉α (0+,1−]) ≅ limn→Hi(Γn⋉α (0+,1−]); both the K-theory and groupoid ho-
mology decompose as direct limits of this case.

We would also like to understand the homology of IE(Γ) in terms of the homology of Γ. Let
us construct certain maps I, j appearing in the AH conjecture. Let B be a compact open bisection
of Γ⋉α (0+,1−] with s(B)∩ r(B) =∅.

j ∶ Γ⊗Z2 ≅H0(Γ⋉α (0+,1−])⊗Z2→ IE(Γ)ab [1s(B)]H0 → γB

Where γB is the generator of the symmetric group, as in 3.2.1.

I ∶ IE(Γ)ab→H1(Γ⋉α) ≅H2(Γ) B̂↦ [1B]H1

Let us now some information about the homology of IE(Γ) in terms of the homology of Γ⋉α

(0+,1−] using I, j. First we note that since Γ⋉α (0+,1−] is a minimal, almost finite groupoid,
with a Cantor unit space, we fall into the scope of Theorem 3.6.7 allows us to describe the
abelianization of these groups in terms of groupoid homology. Substituting what we know, we
have that:
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Lemma 6.4.4. Let Γ be a dense additive subgroup of R containing 1. Then, I and j are well

defined and moreover there exists a long exact sequence:

H2(D(IE(Γ))→H3(Γ)→ Γ⊗Z2
j
Ð→ IE(Γ)ab

I
Ð→H2(Γ)→ 0

Theorem 6.4.5. Let Γ be a dense countable subgroup of R containing 1. The following are

equivalent:

• Γ is finitely generated.

• D(IE(Γ)) is finitely generated.

• IE(Γ) is finitely generated.

Proof. We also showed already that Γ is finitely generated iff D(IE(Γ)) is finitely generated
(Corollary 3.5.6). If Γ is finitely generated, then H2(Γ) is also finitely generated. By extension,
IE(Γ)ab is finitely generated by Theorem 3.6.7. It follows that IE(Γ), the extension of IE(Γ)ab

by D(IE(Γ)) is finitely generated whenever Γ is finitely generated.

Now suppose IE(Γ) is finitely generated. Let f1, ..., fn ∈ IE(Γ) be the generators. Let A be the
union of all the angles in each fi. We then have that ZA ⊂ Γ since each fi in IE(Γ), conversely,
every g ∈ IE(Γ) is a finite string of fi, hence Γ ⊂ ZA. It follows that A is a finite generating set
of Γ.

Notice that we can describe the rational homology of IE(Γ) in terms of the rational homol-
ogy of Γ by applying Corollary 3.6.2.

Lemma 6.4.6. Let Γ be a dense additive subgroup of R containing 1. For a group G, let

Heven
∗ (G) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

H∗(G) ∗ even

{0} else
Hodd
∗ (G) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

H∗(G) ∗ odd

{0} else

and, let

Heven
∗>2 (G) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

H∗(G) ∗ > 2 even

{0} else

Then,

H∗(IE(Γ),Q) ≅ Ext(Heven
∗+1 (Γ,Q))⊗Sym(Hodd

∗+1(Γ,Q))

H∗(D(IE(Γ)),Q) ≅ Ext(Heven
∗+1>2(Γ,Q))⊗Sym(Hodd

∗+1(Γ,Q))

Corollary 6.4.7. Let Γ,Γ′ be dense additive subgroups of R containing 1. Then, H∗(Γ,Q) ≅
H∗(Γ′,Q) Ô⇒ H∗(IE(Γ),Q) ≅H∗(IE(Γ′),Q)
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We can also say the following about integral homological stability by applying Theorem
3.6.5.

Lemma 6.4.8. Let Γ be a dense countable subgroup of R containing 1 and some x ≠ 0. Then, the

isomorphism Γ→1/xΓ t↦ t/x induces an isomorphism in homology H∗(IE(Γ))≅H∗(IE(1/xΓ))

Proof. Assume wlog that x > 1. Then, it is clear that IE(Γ) is isomorphic to the subgroup
IE(1/xΓ)(0,1/x] ={ f ∈ IE(1/xΓ) ∶ t >1/x Ô⇒ f (t)= t} by conjugating via the homothety t↦ t/x.

Also, IE(1/xΓ)(0,1/x] = F(1/xΓ⋉α (0+,1−]∣
(0+,1/x−]
(0+,1/x−]). Therefore, the result follows Theorem

3.6.5.

6.5 Concrete examples of interval exchange groups

6.5.1 Rational acting group and UHF groupoids

An easy case for computing an explicit generating set is when Γ ⊂Q, by identifying IE(Γ) with
a certain increasing sequence of symmetric groups.

Lemma 6.5.1. Let Γ ⊂ Q be dense with 1 ∈ Γ . Then Γ is generated by a strictly decreas-

ing sequence of rational numbers {1/ki}
∞
i=1 ⊂Q. Moreover, set k(n) =∏n

i=1 ki. Then, IE(Γ) ≅

limn→∞Sk(n). The connecting map is given by (letting σn
i, j be the element of Sk(n) permuting the

i and jth element):

ιn ∶ Sk(n)↪ Sk(n+1) σ
n
i,i+1↦

kn−1
∏
k=1

σ
n+1
ikn+k,(i+1)kn+k

An explicit generating set is given by:

{σn
i,i+1 ∶ 0 < i < k(n),n ∈N}

Subject to the (infinitely many) relations:

• σn
i,i+1 =∏

kn−1
k=1 σn+1

ikn+k,(i+1)kn+k, 1 ≤ i < k(n)

• (σn
i,i+1)

2 = 1, 1 ≤ i < k(n)

• 1 = [σi,i+1,σ j, j+1] 1 ≤ i < i+2 ≤ j < k(n)

• σn
i,i+1σn

i+1,i+2σn
i,i+1 = σn

i+1,i+2σn
i,i+1σn

i+1,i+2, , 1 ≤ i < k(n)−1

In terms of piecewise linear bijections, one can take σn
i, j(t) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

t + j−i
k(n) t ∈ ( i

k(n) ,
i+1
k(n)]

t + i− j
k(n) t ∈ ( j

k(n) ,
j+1

k(n)]

t else
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Proof. If Γ ⊂Q, it is clear that Γ is generated by the (strictly decreasing) sequence of rational
numbers {1/ki}

∞
i=1. Let Γn = 1/(k(n))Z. It is clear that Γ =⋃Γn. Then note we have:

IE(Γ) = F(Γ/Z⋉U0,1) = ⋃
n∈N

F(Γn/Z⋉U0,1) ≅ ⋃
n∈N

Sk(n)

And that the generators of F(Γn/Z⋉U0,1) are σn
i, j

Implicitly in the above proof we also realize independently IE(Γ) for Γ⊂Q cannot be finitely
generated. We also verify that IE(Γ) is amenable in this case. Via Theorem 3.4.12, we also ob-
tain an alternative proof of Corollary 6.2.15.

This Corollary establishes that Γ⋉α (0+,1−] in this case is the unique AF groupoid associated
with the following Bratelli diagram:

1
k1
Ð→ k1

k2
Ð→ k(2)

k3
Ð→ k(3)

k4
Ð→ ...

kn
Ð→ k(n)

kn+1
ÐÐ→ ...

With each ki > 1. The supernatural number associated with this AF algebra is always infinite and
given by∏∞i=1 ki = limn→∞ k(n).

If Γ is generated by a strictly decreasing sequence of rational numbers {1/ki}
∞
i=1, then Γ is the

direct limit of the sequence: Z k1
Ð→ Z k2

Ð→ Z
k3
Ð→ .... From this one can observe H0(Γ) = Γ and

H∗(Γ) = 0 for all ∗ ≥ 1. Therefore, via Lemma 6.4.1 we obtain that

H∗(Γ⋉(0+,1−]) ≅H∗+1(Γ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Γ ∗ = 0

0 else

We have then that the 5-term exact sequence in Theorem 3.6.7 collapses to an isomorphism

IE(Γ)ab ≅ Γ⊗Z2

Therefore IE(Γ) ≅ Z2 iff Γ is 2-divisible. This demonstrates that IE(Γ) ≅ S(Γ⋉(0−,1+]) since
the map j in Theorem 3.6.7 is the zero map. This can also be verified via the generating set in
Lemma 6.5.1, since it is clear that each σn

i, j ∈ S(Γ⋉(0−,1+]). There is also only one nontrivial
quotient homomorphism, given by the sign homomorphism:

sgn ∶ IE(Γ)→ (Z2,+) σ
n
i, j ↦ 1

As with the classical symmetric group on n-generators. Let us also apply Lemma 3.6.4. We
have that D(IE(Γ)) is rationally acyclic immediately. Noting then IE(Γ) is the extension of a
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rationally acyclic group by a rationally acyclic group:

0→D(IE(Γ))
ι
Ð→ IE(Γ)Ð→ Γ⊗Z2→ 0

If Γ is rationally acyclic, IE(Γ) is also rationally acyclic.

Example 6.5.2 (Measure Preserving V and the CAR algebra). Let n ∈N, n≥2 and Γ=Z[1/n]⊂Q
be the ring generated by 1/n. Then, IE(Z[1/n]) is canonically isomorphic to the group of

the measure-preserving subgroup of the Higman-Thompson group Vn,1 (that is, the subgroup

elements which preserve the Lebesgue measure on (0,1]).. The associated Bratelli diagram is

given by:

1
n
Ð→ n

n
Ð→ n2 n

Ð→ n3 n
Ð→ ...

And the corresponding UHF algebra is ⋃∞k=1 Mnk(C), where the inclusion maps are given by

block diagonal inclusions:

Ank ↦

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A(1)
nk 0nk . . . 0nk

0nk A(2)
nk . . . 0nk

⋮ ⋮ ⋱ ⋮

0nk 0nk . . . A(n)
nk

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Moreover, if n = 2, the groupoid Z[1/2]⋉ (0+,1−] is isomorphic to the standard groupoid

model of the CAR algebra with supernatural number 2∞.

Example 6.5.3 (Q and the universal UHF algebra Q). A final example to highlight is that of Q
and the universal UHF algebra Q. Here, we are discussing the groupoid associated with the

following Bratelli diagram:

1
2
Ð→ 2

3
Ð→ 6

4
Ð→ ...

n
Ð→ n!

n+1
ÐÐ→ ...

This groupoid is the standard model of the universal UHF algebra Q and IE(Q) =⋃n∈NSn!.

6.5.2 Finitely generated abelian acting group

Now let us suppose that we are in the case where Γ is finitely generated abelian and generated by
irrational numbers that is, let Γ = Z⊕⊕d

i=1 λiZ where λi are Q-independent numbers and d ≥ 1.
As an abstract group Γ ≅Zd+1. Therefore, we have that:

H∗(Γ⋉(0+,1−]) ≅H∗+1(Zd+1) ≅Z
d+1C∗+1

By d+1C∗+1 we mean the combinatorial “choose” function. For example, if d = 1 we have H0(Z⊕
λ1Z⋉(0+,1−]) ≅Z2, H1(Z⊕λ1Z⋉(0+,1−]) ≅Z. Otherwise, the homology vanishes. Plugging
this into Theorem 3.6.7 we obtain the short exact sequence:

0→Z2⊗Z2 =Z2
2

j
Ð→ IE((Z⊕λ1Z)ab

I
Ð→Z→ 0
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It follows that IE(Z⊕λ1Z)ab ≅Z⊕Z2
2.

Rationally then, H1(IE((Z⊕λ1Z),Q) ≅H0(IE((Z⊕λ1Z),Q) ≅Q, and for ∗ ≥ 1,H∗(IE((Z⊕
λ1Z),Q) = 0 by Lemma 6.4.6. In other words, when d = 1, we can see that D(IE((Z⊕λ1Z)) is
rationally acyclic through Lemma 6.4.6.

This is contrast to the case d > 1. If d > 1 one has that Hd(Z⊕⊕d
i=1 λiZ⋉ (0−,1+]) ≅ Z and

for all ∗ > d,Hd(Z⊕⊕d
i=1 λiZ⋉ (0−,1+]) ≅ 0. This implies Hd(D(IE(Z⊕⊕d

i=1 λiZ),Q) ≠ 0 by
Lemma 6.4.6.

Suppose d = 2. Then H2(Z⊕λ1Z⊕λ2Z⋉(0+,1−]) ≅ Z H0(Z⊕λ1Z⊕λ2Z⋉(0+,1−]) ≅H1(Z⊕
λ1Z⊕λ2Z⋉(0+,1−]) ≅ Z3 and all other homology terms vanish. Via Theorem 3.6.7 we obtain
a short exact sequence:

0→Z3
2

j
Ð→ IE(Z⊕λ1Z⊕λ2Z)ab

I
Ð→Z→ 0

We again have that this short exact sequence splits and that IE(Z⊕λ1Z⊕λ2Z)ab ≅Z⊕Z3
2.

If d > 2, H3(Z⊕⊕d
i=1 λiZ) ≠ 0, and so we do not get a short exact sequence in Theorem 3.6.7.

However, we may still obtain some information from the long exact sequence, which shall look
like:

H2(D(IE(Z⊕
d
⊕
i=1

λiZ))→Z
d+1C4 →Zd+1⊗Z2

j
Ð→ IE(Z⊕

d
⊕
i=1

λiZ)ab
I
Ð→Z

d+1C3 → 0

We need a more concrete description of I, j. We have established already that D(IE(Γ)) ≅

A(Γ⋉ (0+,1−]) (Corollary 6.2.10). Then, [79], Corollary 6.17 identifies Ker(I) = Im( j) with
S(Γ⋉(0+,1−]). This can also be verified explicitly, if γB is a generator of S(Γ⋉(0+,1−]) then,
j([1s(B)]) = γB. This demonstrates that S(Γ⋉(0+,1−]) is at most d+1 generated.

Note that we have only considered the case where Γ/Z is torsion free and Γ is finitely gen-
erated abelian. The reason this is enough is that for any Γ finitely generated abelian with Γ/Z
having torsion, there exists some k ∈ N such that kΓ/Z is torsion free. Applying Lemma 3.6.5
thus reduces the torsion free to the torsion case.

6.5.3 Acting group the ring generated by an algebraic number

Let λ ∈ R be algebraic with degree d. Consider the ring generated by λ , i.e. Γ = Z[λ ,λ−1].
In this case, we have that IE(Z[λ ,λ−1]) is canonically isomorphic to the measure-preserving
subgroup of the Stein-Thompson groups with cyclic slopes Vλ with slope ⟨λ ⟩ and breakpoints
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Z[λ ,λ−1] as studied in [ [116], [38], [31]].
Let us describe a concrete generating set for D(IE(Z[λ ,λ−1])).

Lemma 6.5.4. Let λ be irrational and Γ =Z[λ ,λ−1]. Then there exists a countable, generating

set {1,λi}
n
i=1 for Γ such that 4/5 < λi < λi+1 < 1/2 for all i. Then, let σi, σ̂i be as in Theorem 6.3.9.

IE(Z[λ ,λ−1]) is generated by S = {σi, σ̂i}i∈N.

Proof. Let Γn =⊕
n
i=−n λ nZ. For each n, Γn ≅ Z2n+1 hence by Theorem 6.3.9 and Lemma 6.3.5

we have that for all n there exists 2n+1 generators of Γn where one of them is 1, and the others
are a collection of rationally independent irrational numbers {λi}

2n
i=1 in the interval (4/5,1/2).

Then, by iteratively applying the argument in the proof of Lemma 6.3.5, we may assume, that
for all n there is a generating set of Γn given by 1 and a collecton of rationally independent
irrational numbers {λi}

2n
i=1 such that 4/5 < λi < λi+1 < 1/2 for all i. Since Γ =⋃n∈NΓn, the proof

follows. By Theorem 6.3.9 we also have that D(IE(Γn)) = ⟨σi, σ̂i i = 1, ...,n⟩. The result then
follows from the observation that D(IE(Γ)) = ∪∞n=1D(IE(Γn)).

Remark 6.5.5. Note that in certain cases, (for a concrete example if λ = n
√

a for a ∈ Q), we

have that RankQ(Γ) is finite. In this case, Γ is finitely generated abelian, with generating set

{λ i}
RankQ(Γ)
i=1 . In this case, we may apply Theorem 6.3.11 to find a finite generating set.

Let us compute homological information for examples of the form Z[λ ,λ−1]. Let the mini-
mal polynomial of λ be given by: λ d +∑

d−1
i=0 aiλ

i = 0 be the minimal polynomial of λ . Consider
the map φλ given by:

φλ ∶Zd ≅
d−1
⊕
i=0

λ
iZ→

d−1
⊕
i=0

λ
iZ t ↦ λ t

Moreover, Γ is the direct limit of the sequence:

Zd φλ
Ð→Zd φλ

Ð→Zd φλ
Ð→⋯

It follows that H∗(Γ) = limφλ
H∗(Zd). Then, H∗(Γ) = 0 whenever ∗ > d, and Hd(Γ) = 0. There-

fore, IE(Γ) is not rationally acyclic by 3.6.2.

Example 6.5.6 (d = 2). If d = 2, one obtains that H3(Z[λ ,λ−1]) = 0 through the above compu-

tation. Hence, Theorem 3.6.7 reduces to a (split) short exact sequence of abelian groups:

0→Z[λ ,λ−1]⊗Z2
I
Ð→ IE(Z[λ ,λ−1])ab

j
Ð→H2(Z[λ ,λ−1])

(Z[λ ,λ−1]⊗Z2)⊕H2(Z[λ ,λ−1]) ≅ IE(Z[λ ,λ−1])ab

6.6 Outlook

We finish with the main open question in this area, which is whether the interval exchange groups
are always amenable, and the related question of whether IET contains F2. See for [42], [60].
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Question 6.6.1. Is IET amenable? Equivalently, for all Γ finitely generated abelian, is IE(Γ)

amenable?

Similarly, does IET contain the free group on two generators? Equivalently, for all Γ finitely

generated abelian, does IE(Γ) contain the free group on two generators?

Given our analysis, we have reduced this to groups generated by concrete elements of IE(Γ).
Therefore, it would be interesting to understand these groups more concretely:

Question 6.6.2. Let Γ be a dense countable subgroup of R such that Γ ≅ Zd+1, Γ/Z ≅ Zd ⊕Zk

(with k > 9). Let S be as in Theorem 6.3.11. What are the relations between the elements in S?



Chapter 7

Stein’s groups

7.1 Relationship with interval exchange groups

There is a relationship between interval exchange groups and Stein’s groups. In Chapter 6, the
author explored groups of so-called interval exchanges on (0,1]. We need to slightly adapt the
definition to account for the different lengths of intervals as experienced by Stein’s groups.

Definition 7.1.1. Let Γ be a countable subadditive group of R, and ℓ ∈ Γ. Then, IE(Γ,ℓ) is

the group of right continuous piecewise linear bijections f of (0,ℓ] with finitely many angles

{ f t − t ∶ t ∈ (0,ℓ]} all in Γ.

Let us explain the relationship between V(Γ,Λ,ℓ) and IE(Γ,ℓ). One perspective on these
groups is that you could consider these groups to be the measure-preserving subgroups of
V(Γ,Λ,ℓ) for their actions on (0,ℓ]. It is notable also, that on a groupoid level, there is an
action of Λ on the groupoid model for IE(Γ,ℓ) which gives us a groupoid model for V(Γ,Λ,ℓ).
The algebraic relationship between these V -like groups and their measure-preserving subgroups
is formalised through a Zappa-Szép product decomposition.

Lemma 7.1.2. Let Λ be a multiplicative subgroup of R∩ (0,+∞). Let Γ be a Z ⋅Λ submodule

and ℓ ∈ Γ. Then:

V(Γ,Λ,ℓ) = F(Γ,Λ,ℓ)& IE(Γ,ℓ)

Proof. We show that ⋅ ∶ IE(Γ,ℓ)×F(Γ,Λ,ℓ) → V(Γ,Λ,ℓ) (g,h) ↦ g ⋅ h is bijective. Let f ∈

V(Γ,Λ,ℓ). Then there exists a finite partition of (0,ℓ], [x0,x1],(x1,x2], ...(xn−1,xn] such that on
each Ii = (xi,xi+1], f (t) = µit+ci where µi ∈Λ,ci ∈Γ. Let us construct an element of f̂ ∈F(Γ,Λ,ℓ)

as follows. On I0 let f̂ (t) = µ1t then on Ii, i > 0, let f̂ (t) = µit −µixi+∑
i−1
k=0 µk(xk+1−xk), then let

the element of IE(Γ,ℓ) be f̃ (t) = t +µixi−∑
i−1
k=0 µk(xk+1−xk)+ci for t ∈ Ii. It is clear that f = f̃ f̂

and that this decomposition is unique- one would need an element of F(Γ,Λ,ℓ) with the same
derivative on each Ii as f , and f̂ is the unique group element with this property.

132
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Remark 7.1.3 (Juschenko-Monod groups in Cleary’s group). One can see that in Cleary’s group

Vτ , we have a canonical embedding the interval exchange group IE(Z⊕τZ)↪Vτ . The derived

subgroup of IE(Z⊕τZ) is known, due to results by Juschenko-Monod [61] to be a (rare) exam-

ple of an infinite, finitely generated, amenable simple group as in Corollary 3.7.2.

This means that Cleary’s group exhibits dynamical behaviours not seen in Thompson’s group
V . Thompson’s group V does embed into Cleary’s group Vτ , as shown in [31], (this can also be
seen as a consequence of Theorem 1.1.1). It would be interesting to understand whether there
are groups that embed into Vτ but not V . Throughout this text, we study V(Γ,Λ,ℓ), with the
perspective that this group is the topological full group of a certain ample groupoid.

7.2 Construction of Stein’s groups as topological full groups

We aim to construct a Stein’s groups V(Γ,Λ,ℓ) as topological full groups where Λ is a subgroup
of the positive reals, Γ is a Z ⋅Λ submodule and ℓ ∈ Γ. The construction of Stein’s groups as
topological full groups mirrors the construction of the interval exchange groups as in the previ-
ous chapter. To construct V(Γ,Λ,ℓ) as a topological full group, we make use of the construction
of RΓ as in Definition 6.2.1. Noting that since Λ is nontrivial, Γ is dense in R. Therefore,
using Lemma 6.2.2, we have that a basis for the topology on RΓ. As in the previous chapter,
these groupoids can be studied from a number of perspectives. Another perspective given by Li
in [76], is that they are the groupoids associated to the inverse semigroups Γ∩(0,+∞)⋊Λ, i.e.
the positive cone of Γ⋊Λ. Let us explain the relationship between the space RΓ and the space
of characters here.

Remark 7.2.1 (Relationship between RΓ,OΓ+⊆Γ). In [76], Section 2.3 Li constructs an analo-

gous space to RΓ as follows. Let Γ be an additive subgroup of R. Let D(Γ+) be the (abelian)

semigroup C*-algebra of Γ∩ (0,∞). This group has the basis of idempotents {1a+Γ+ a ∈ Γ∩

(0,+∞)} He then considers the Gelfand dual space Ω(D(Γ+)), and removes the trivial charac-

ter χ∞ such that for all a ∈ Γ χ∞(1a+Γ+) = 1. This space is denoted OΓ+⊆Γ Concretely, this is the

space of nonzero, nontrivial, characters χ ∶D(Γ+)→ {0,1} that are strictly decreasing with on

the basis (with respect to the partial order 1a+Γ+ ≤ 1b+Γ+ ⇐⇒ a ≤ b). This space is topologised

in the weak operator topology, which is the topology generated by the basic compact open sets

Ua,b ∶= {χ ∈OΓ+⊆Γ ∶ χ(1a+Γ+) = 1,χ(1b+Γ+) = 0},a,b ∈Γ. There is a canonical homeomorphism:

f ∶RΓ→OΓ+⊆Γ a+↦ χ
+
a , a−↦ χ

−
a , t ↦ χt a ∈ Γ,t ∈RΓ∖Γ±

Where for all a,b ∈Γ, t ∈RΓ∖Γ±, χ+a (1b+Γ+)=1 ⇐⇒ b≤a, χ−a (1b+Γ+)=1 ⇐⇒ b<a, χt(1b+Γ+)=

1 ⇐⇒ b < t. For all a,b ∈ Γ,a < b f [a+,b−]) =Ua,b.
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Recall the map q∗ ∶

q∗ ∶ (0,ℓ]↪ (0+,ℓ−] t ↦

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

t t ∉ Γ

t− t ∈ Γ∖{0}
.

Note then, for all a,b ∈Γ with a < b, q∗((a,b]) ⊂ (a+,b−]. Let Λ be a multiplicative subgroup
of (0,+∞) and Γ a Z ⋅Λ-submodule, let us form the semidirect product in the following way.
Let Λ↷ Γ by multiplication, and for us to form the semidirect product:

(a,µ)(b,λ) = (λ−1a+b,µλ) ∀(a,µ),(b,µ) ∈Λ⋉Γ

Note (a,µ)−1 = (−µa,µ−1), ∀(a,µ) ∈ Λ⋉Γ. Then, using the canonical action of Λ⋉Γ on RΓ,
we can define a partial action that realises V(Γ,Λ,ℓ) as a topological full group.

Lemma 7.2.2 (V(Γ,Λ,ℓ) as the topological full group of a partial action). Let Λ be a countable

submultiplicative group of (0,+∞), and Γ be a Z ⋅Λ-submodule. Let 1 < ℓ ∈ Γ. Consider the

following canonical action of Λ⋉Γ on RΓ:

β ∶Λ⋉Γ↷RΓ

Where for all a± ∈ q−1(Γ)∩RΓ,t ∈ q−1(Γc)∩RΓ and all (c,µ) ∈Λ⋉Γ

(c,µ)(a±) = (µ(a+c))± (c,µ)(t) = µ(t +c)

Consider the restriction of β to a partial action on (0+,ℓ−]. We have that:

F((Λ⋉Γ)⋉(0+,ℓ−]) ≅V(Γ,Λ,ℓ)

.

Proof. First let us note that β does define an action on RΓ. For all t ∈RΓ∩q−1(Γc)

(c,µ)((b,ν)(t)) = (c,µ)(νt +b) = µ((νt +b)+c) = µν(t +b+ν
−1c) = ((c,µ)(b,ν))(t)

And similarly for a± ∈ RΓ ∩ q−1(Γ). Now let us follow Example 3.1.3 for understanding the
ample groupoid. From here, we essentially follow as with the proof of Lemma 6.2.3. A basis of
the compact open bisections of (Λ⋉Γ)⋉(0+,ℓ−] is given by

((c,µ),[a+,b−]) c ∈ Γ a,b ∈ Γ max{−c,0} ≤ a < b ≤min{µ−1−c,1}

Hence elements of F((Λ⋉Γ)⋉ (0+,ℓ−]) are homeomorphisms f of (0+,ℓ−] for which there
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exists a finite subset {xi}
n
i=1 ⊂ Γ with 0 = x1 < ... < xn = 1 and elements {(ci,µi)}

n
i=1 such that

f ∣[(xi)+,(xi+1)−] = β(ci,µi)[(xi)+,(xi+1)−] = [(µixi+ci)+,(µixi+1+ci)−]

From here, the proof follows since

ϕ ∶ F((Λ⋉Γ)⋉α (0+,1−])→V(Γ,Λ,ℓ) g↦ qgq∗

provides an explicit isomorphism. For any element f ∈ F(Γ⋉α (0+,1−]), ϕ( f ) is a right continu-
ous piecewise linear bijection of (0,1] with slopes µi and translations ci on each interval (xi,xi+

1], this is since q∗(xi−1,xi]⊂ ((xi−1)+,(xi)−], therefore gq∗(xi−1,xi]⊂ ((µixi−1+ci)+,(µixi+ci)−]

and so qgq∗((xi−1,xi]) = (µixi−1+ci,µixi+ci].
Moreover, if t ∈ (xi−1,xi]∩Γ, then

qgq∗(t) = qg(t−) = q((µit +ci)−) = µit +ci.

And, if t ∈ (xi−1,xi]∩Γc, then

qgq∗(t) = qg(t−) = q((µit +ci)) = µit +ci.

We note also then, that there are only finitely many µi ∈Λ,ci ∈ Γ describing g, that there are
only finitely many such linear segments, and they map all of (0,ℓ] onto all of (0,ℓ].

Remark 7.2.3. There is a canonical embedding of groupoids describing the interval exchange

groups and Stein’s groups, following from the canonical embedding of the larger groupoids:

Γ⋉RΓ↪ (Λ⋉Γ)⋉RΓ

Let us also remark that (0+,ℓ−] is always Γ⋉RΓ full (in fact, it meets every Γ orbit in RΓ, by
density, since for all x ∈RΓ, we can choose a ∈ Γ such that 0 < q(x)−a < ℓ). It is time to remark
on some basic facts for these partial action groupoids:

Lemma 7.2.4. β ∶Λ⋉Γ↷RΓ is a topologically free, amenable, minimal action. In other words,

as a groupoid, Λ⋉Γ⋉β (0+,ℓ−] is topologically principal, amenable and minimal.

Proof. The action β is amenable since Λ⋉Γ is an amenable group.
Now let us establish minimality. First let us remark the following convergence rules in RΓ:

lim
n→∞

xn = x+ ⇐⇒ lim
n→∞

q(xn) = q(x) from above

lim
n→∞

xn = x− ⇐⇒ limn→∞q(xn) = q(x) from below

lim
n→∞

xn = x s.t. x ∉ Γ ⇐⇒ lim
n→∞

q(xn) = x
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For all x ∈ RΓ, the image of the orbit Γx under q, q(Γx) = q(x)+Γ ⊂ R is both left-dense and
right-dense in R, so we can find sequences in q(x)+Γ tending to any x′ ∈Γ from above or below,
and sequences approximating any x′ ∉ Γ in q(Γx). Minimality follows.

It remains to show that β is topologically free. Let (c,µ) ∈ Λ⋉Γ, with (c,µ) ≠ (0,1).
Suppose that (c,µ)x = x for x ∈ RΓ. This occurs ⇐⇒ q((c,µ)x) = q(x) ⇐⇒ q(x)(1− µ) =

cµ . Note then µ ≠ 1, otherwise this forces c = 0. Otherwise, we have that (c,µ) fixes only
q−1(cµ/(1− µ)) = {cµ/(1− µ)±}. In particular, (c,µ) does not fix x such that q(x) ∉ Γ, so
RΓ∖{x± ∶ x ∈ Γ} is a dense set which Λ⋉Γ acts freely on.

Note in particular as a Corollary of Matui’s isomorphism Theorem (Theorem 3.4.12), and
the regularity established for β are conjugate to some known groupoids. Let Ek denote the full
shift on k generators, andRr be the full equivalence relation on r points. We have the following:

Corollary 7.2.5. Up to groupoid conjugacy, Λ⋉Γ⋉β (0+,ℓ−] is the unique ample groupoid of

germs G such that F(G) ≅ V(Γ,Λ,ℓ). In particular, for all 2 < k ∈ N, r ∈ N, Z[1/k]⋉ ⟨k⟩⋉β

(0+,r−] ≅Rr ×Ek.

Remark 7.2.6. Following on from Remark 7.2.1, let us make the point that there are equivalent

but nonetheless alternative ways to construct this groupoid (up to groupoid conjugacy). One

such description arises from cancellative semigroups. Let Γ+ denote the positive cone of Γ.

Consider the subsemigroup Γ+ ⋊Λ of Λ⋉Γ, and the universal groupoid (in the sense of Li)

G(Γ+ ⋊Λ) of this semigroup. This groupoid is the semigroup transformation groupoid of the

canonical action of the semigroup on the dual of the semilattice of idempotents, which in this

case is just the dual of Γ+. If we take the full corner of this groupoid restricted to the subset U of

characters χ such that χ(ℓ) = 1, this describes a conjugate groupoid. See [ [76], [40], Chapter

5] for more information on the universal groupoids of semigroups that embed into groups.

We next verify that the groupoid (Λ⋉Γ)⋉β (0+,ℓ−] is purely infinite, in the sense of Defini-
tion 5.1.1.

Lemma 7.2.7. Let Λ a nontrivial multiplicative subgroup of R, Γ a Z ⋅Λ-submodule and ℓ ∈ Γ.

Then (Λ⋉Γ)⋉β (0+,ℓ−] is a purely infinite groupoid.

Proof. By compactness, any clopen subset can be written as a finite disjoint union of sets of the
form [a+,b−]. Therefore, let A = ∪n

i=1[(ai)+,(bi)−] where each ai,bi ∈ Γ. Then let λ ∈ Λ with
0 ≤ λ ≤ 1/2, set

U =
n
⊔
i=1
((ai(1−λ

−1),λ),[(ai)+,(bi)−]), V =
n
⊔
i=1
(bi(1−λ

−1),λ),[(ai)+,(bi)−]).

It is straightforward to verify that U,V are indeed bisections.
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We compute

U−1 =
n
⊔
i=1
((−λai(1−λ

−1),λ),[(ai)+,(ai+λ(bi−ai))−])

V−1 =
n
⊔
i=1
(−λbi(1−λ

−1),λ),[(bi−λ(ai−bi))+,(bi)−])

This gives us exactly what we need. s(U)= s(V)=⊔n
i=1[(ai)+,(bi)−]=A, r(U)=⊔n

i=1[(ai)+,(ai+

λ(ai−bi)−], r(V) =⊔n
i=1[(bi−λ(ai−bi))+,(bi)−] and so r(V)∩r(U) =∅ whilst simultaneously

r(U)∪ r(V) ⊂ A.

Remark 7.2.8. An alternative, (group theoretic) proof that (Λ⋉Γ)⋉β (0+,ℓ−] is a purely infinite,

minimal groupoid is to observe that V(Γ,Λ,ℓ) is vigorous for all choices of Γ,Λ,ℓ and apply

Theorem 5.1.21 (proven in Chapter 5).

Hence, by Theorem 3.3.2 we obtain that D(V(Γ,Λ,ℓ)) is always simple. We also have via
Corollary 5.1.18 that D(V(Γ,Λ,ℓ)) has no proper characters.

Corollary 7.2.9 (Simple, Vigorous Derived Subgroup). Let Γ,Λ,ℓ be arbitrary. Then, D(V(Γ,Λ,ℓ))

is simple and vigorous. Moreover, it is identified with the alternating subgroup A(Λ ⋉Γ ⋉

(0+,1−]). Finally, D(V(Γ,Λ,ℓ)) has no proper characters.

7.3 Finite generation of the derived subgroup

7.3.1 Expansivity of partial transformation groupoids

There is also a natural notion of expansivity for partial actions, which generalises the natural
notion of expansivity of global actions.

Definition 7.3.1 (Expansive partial action). Let α ∶ G↷ X be a partial action. We say that α

is expansive if there exists ε > 0 such that for all x,y ∈ X , x ≠ y, there exists g ∈ G such that

d(gx,gy) > ε .

Nekrashevych showed that a transformation groupoid of a finitely generated group acting
on the Cantor space is expansive if and only if the underlying action is expansive. We give an
analogous result for partial actions.

Lemma 7.3.2. Let α ∶G↷ X be an expansive partial action, of a discrete group on the Cantor

space and suppose G⋉α X is compactly generated. Then, the partial transformation groupoid

G⋉α X is expansive in the sense of Definition 3.5.1.

Proof. Let ε > 0 be as in definition 7.3.1. Let K be a compact generating set for the groupoid
G⋉α X . By ampleness, there exists a finite cover of K by compact open bisections. Moreover,
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we may refine this cover to a cover S of K by bisections such that for each S ∈ S, both r(S)

and s(S) have diameter less than ε . We claim that this cover is expansive. It follows that for all
A ∈ ⋃∞n=1(S ∪S−1)n, r(A) and s(A) have diameter less than ε with respect to the metric, since
r(A′A) ⊂ r(A′) and s(AA′) ⊂ s(A′). Note that also for all A ∈ ⋃∞n=1(S ∪S−1)n, we can assume
A = (g,U) where U ⊂ G(0) and g ∈G.

Recall [ [93], 5.3]. We have that S is expansive if and only if for every x ≠ y, there exists
a subset of the form s(A) such that x ∈ s(A), y ∉ s(A) and A ∈ (S ∪S−1)n for some n. (This is
condition (4)).

Let g be such that d(gx,gy) > ε . For n large enough, by compact generation we have that
there exists A such that (g,x) ∈ A ∈ (S ∪S)n. By construction then, (1,x) ∈ s(A). Suppose
(1,y) ∈ s(A). Then (g,y) ∈ A, (1,gy) ∈ r(A). But A must have diameter with length less than ε

by construction. Therefore, we have d(gx,gy) < ε , a contradiction. Therefore (g,y) ∉ A, and so
the underlying groupoid is expansive in the sense of Nekrashevych.

In contrast to global actions, understanding when a partial transformation groupoid is com-
pactly generated is a subtle question. For transformation groupoids on compact spaces, G⋉α X ,
compact generation of the groupoid is equivalent to the finite generation of G. One does not
have an analogous result in the case of partial actions. However, we below show that restricting
compactly generated groupoids to certain subsets of the unit space preserves compact genera-
tion:

Theorem 7.3.3. Let G be an ample compactly generated groupoid. Let U be a full clopen subset

of G(0) (i.e. U meets every G orbit). Then G∣UU is compactly generated.

Proof. Let S1 = {B1, ...,Bk} be the compact generating set of G. For i = 1, ...,k let:

Si = Bi∣
U
U Ei = Bi∣

Uc

Uc Ti = Bi∣
U
Uc ⊔B−1

i ∣
U
Uc

Then S2 = {Si,Ei,Ti}
k
i=1 is a compact generating set of G, since for all 0 < i ≤ k, Bi = Si ⊔Ei ⊔

Ti∣Uc ⊔T−1
i ∣U .

By fullness, for all x ∈Uc there exists a groupoid element g ∈G such that s(g)= x,r(g) ∈U . By
ampleness then, there exists a compact open bisection Fx containing g, such that x ∈ s(Fx) ⊂Uc

and r(Fx) ⊂U . Then {s(Fx)}x∈Uc is an open cover of Uc. Since G is compactly generated, G(0)

must be compact. Then Uc, a closed subset of G(0) must be compact. By compactness, we can
refine our open cover s(Fx),x ∈Uc of Uc to a finite cover. Therefore, there exists a finite subset
Fj, j = 1, ...,m of the Fx such that ∪m

j=1s(Fj) =Uc,∪m
j=1r(Fj) ⊂U . Our claim is that the finite

collection of compact open bisections given by:

SU = {Si,TiF−1
j ,FjE±1

i F−1
l } i=1,...,k

j,l=1,...,m

forms a compact generating set for G∣UU .



CHAPTER 7. STEIN’S GROUPS 139

Let g ∈ G∣UU . Then there exists a finite word W in S2 such that g ∈W . Let us examine the form
of a word in Si,Ei,Ti with source and range in U . We have that after each Ti, we will be followed
by a (possibly empty) word of E±1

j followed by a Tl . Therefore, let 2n be the number of letters
in W of the form Ti,T−1

i i = 1, ...,k. By induction on n, we will show that g ∈⋃k∈N(SU ∪S
−1
U )

k.
Base case: If n = 0, we have that W is a finite word in {Si,S−1

i }
k
i=1, and so we are done, since

Si ∈ SU for all i.
Inductive step: assume true for n, then for n+1 we have that we may rewrite W in the form:

W0Tj(E±1
k1

E±1
k2
...E±1

kn
)T−1

i Wn

Where W0 is a word in {Si,S−1
i }

k
i=1, and Wn is a word in SU such that there are 2n letters

in {Ti,T−1
i }

k
i=1. By inductive hypothesis we have that the groupoid element (Wn)s(g) is in

some finite word W̃n in SU ∪ S
−1
U . We have that r((T−1

i Wn)s(g)) ∈ Uc, therefore there ex-
ists ln such that r((T∗i Wn)s(g)) ∈ s(Fln). Similarly, for j = 0, ...,n− 1 there exists l j such that
r(E±1

k j
E±1

k j+1
...Ek±1

n )T−1
i Wn)s(g)) ∈ s(Fln− j) Then we have that:

g ∈W0Tj(F−1
l1 Fl1)E

±1
k1
(F−1

l2 Fl2)E
±1
k2
...(F−1

ln−1
Fln−1)E

±1
kn
((F−1

ln Fln)T
−1

i W̃n

Which we may rewrite in the form:

W0Tj(F−1
l1 )(Fl1E±1

k1
F−1

l2 )...(Fln−1E±1
kn

F−1
ln )(TiF−1

ln )
−1W̃n,

a finite word in SU .

Combining this with our expansivity result for partial actions we obtain:

Corollary 7.3.4. Let α ∶G↷X be an expansive action of a finitely generated group on a compact

space X. Let U be α-full open subset of X. Then the partial transformation groupoid G⋉U is

expansive in the sense of Nekrahsevych.

7.3.2 Finite generation of Stein’s groups

In the case of our action, the partial action β is indeed expansive, as shown below.

Lemma 7.3.5. Let Γ, Λ, ℓ be arbitrary. Then β is expansive in the sense of Definition 7.3.1

Proof. Let λ ∈ Γ∩ (0,1). Let x,x′ ∈ (0+,ℓ−] be distinct. Let ε = d((0+,(λ)−],[(λ)−,1+]) > 0.
We separate into two cases:

• If q(x) ≠ q(x′), suppose without loss of generality that q(x) < q(x′). By density, suppose
the difference of q(x′)−q(x) > c > 0 for some c ∈Γ. Also there exists some c′ ∈Γ such that
λ −c < q(x)−c′ < λ . Therefore we have that q(c′x) = q(x)−c′ < λ and q(c′x′) = q(x′)−c′ >

q(x)−c′+c > λ −c+c = λ . Therefore, (c′,1) ∈ Γ⋊Λ is a group element separating x,x′.
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• If q(x) = q(x) ∈Γ, then for c′ = q(x)−λ , (c′,1) ∈Γ⋊Λ is a group element that will separate
the two characters into (0+,λ−],[λ+,1−].

Applying Theorem 7.3.3, Lemma 7.3.2 and Theorem 3.5.2 from the previous subsection, it
is enough for us to consider compact generation in the case when ℓ = 1.

Corollary 7.3.6. Let Λ be a submultiplicative group of (0,+∞), Γ be a Z ⋅Λ-submodule. The

following are equivalent:

1. The groupoid Λ⋉Γ⋉(0+,1−] is compactly generated.

2. The groupoid (Λ⋉Γ)⋉(0+,ℓ−] is compactly generated for all ℓ ∈ Γ.

3. D(V(Γ,Λ,ℓ)) is finitely generated for all ℓ ∈ Γ.

4. D(V(Γ,Λ,ℓ)) is 2-generated for all ℓ ∈ Γ.

Proof. • 1. Ô⇒ 2. Suppose Λ⋉Γ⋉(0+,1−] is compactly generated and let ℓ be arbitrary.
Let µ ∈ Λ be such that µ > ℓ. Note that Λ⋉Γ⋉ (0+,1−] ≅ Λ⋉Γ⋉ (0+,µ−], therefore Λ⋉

Γ⋉ (0+,µ−] is compactly generated. (0+,ℓ−] is full and open as a subset of (0+,µ−].
Applying Theorem 7.3.3, we have that (Λ⋉Γ)⋉(0+,ℓ−] is compactly generated.

• 2. Ô⇒ 3. follows directly as a combination of Lemma 7.3.2 and Theorem 3.5.2.

• 3. Ô⇒ 1. Note then in particular, D(V(Γ,Λ,1) is finitely generated. Hence by Lemma
3.5.5, Λ⋉Γ⋉(0+,1−] is compactly generated.

• 4. ⇐⇒ 3. follows from noting that D(V(Γ,Λ,ℓ) is simple and vigorous (Corollary 3.3.2),
and applying [11, Theorem 5.15].

These groupoids are not always compactly generated.

Lemma 7.3.7. If Λ⋉Γ is not finitely generated (for example, if Λ is of infinite rank) then Λ⋉Γ⋉

(0+,1−] is not compactly generated and thus D(V(Γ,Λ,ℓ)) is not finitely generated.

Proof. Suppose there is a compact generating set for Λ⋉Γ⋉ (0+,1−]. Then, this compact
generating set may be written as a finite collection of our basis elements for the topology
((ci,µi),[(ai)+,(bi)−]), i = 1, ...,n and therefore there is a finite string in (ci,µi) that gives every
group element in the set M = {(c,1) (0,µ)µ ∈ Λ∩ (0,1],c ∈ (0,1]}, since there are bisections
((c,1),(0+,(1− c)−]),((0,µ),(0+,1−]). But note that M generates Λ⋉Γ as a group. Hence
(ci,µi) also forms a finite generating set of the group Λ⋉Γ.



CHAPTER 7. STEIN’S GROUPS 141

For this reason, the question of compact generation is only relevant when Λ is finitely gen-
erated. Let us begin with the simplest case, namely the case when Λ is cyclic. Here we show
explicitly that the groupoid is always compactly generated. Set Λ = ⟨λ ⟩, Γ = Z[λ ,λ−1], where
λ < 1. Let Gλ = ⟨λ ⟩⋉Z[λ ,λ−1]⋉ (0+,1−]. Let K ∈ N be large enough that λ +λ K < 1. Let
µ1 = λ−1− ⌊λ−K−1⌋λ K:

c = ((0,λ),(0+,1−])

fi = ((λ
i,1),(0+,(1−λ

i)−])⊔((λ i−1,1),[(1−λ
i)+,1−])

g1 = ((µ1,1),(0+,(1−µ1)−])⊔((µ1−1,1),[(1−µ1)+,1−])

Let S = {c, f1, ..., fK,g1}. Note that S is compact. Let GS
λ

be the subgroupoid of Gλ generated
algebraically by S . We aim to show that Gλ = G

S
λ

. Our first claim is that for all i ∈N we have the
bisection fi which adds λ i(modZ).

Lemma 7.3.8. Let λ < 1 be arbitrary, let S = {c, f1, ..., fK,g1}, and let GS
λ

be the subgroupoid of

Gλ = ⟨λ ⟩⋉Z[λ ,λ−1]⋉(0+,1−] generated by S . Then, for all i ∈N, the bisection

fi = ((λ
i,1),(0+,(1−λ

i)−])⊔((λ i−1,1),[(1−λ
i)+,1−]) ∈ GSλ .

Proof. We prove this by induction. We know it is true for i = 1, ...,K. Assume true for i ≥K, for
i+1 we have that:

fi+1∣(0+,(λ−λ i+1)−] = c fic−1∣(0+,(λ−λ i+1)−].

Let us verify this on each domains:

(0+,(λ −λ
i+1)−]

c−1

ÐÐ→ (0+,(1−λ
i)−]

fi
Ð→ [λ i

+,1−]
c
Ð→ [λ i+1

+ ,λ−].

Similarly,
fi+1∣[(λ−λ i+1)+,λ−] = f1c fic−1∣[(λ−λ i+1)+,λ−].

Let us verify this on each domains:

[(λ −λ
i+1)+,λ−]

c−1

ÐÐ→ [(1−λ
i)+,1−]

fi
Ð→ (0+,λ i

−]
c
Ð→ (0+,λ i+1

− ]
f1
Ð→ [λ+,(λ +λ

i+1)−].

Using that λ i+1 < λ i < λ K < 1−λ . Taking the union of these two bisections, we have fi+1∣(0+,λ−].
In order to obtain fi+1∣(0+,1−], note that for all n = 0, ...,⌊λ−1⌋−1:

fi+1∣[(nλ)+,((n+1)λ)−] = f n
1 fi+1∣(0+,λ−] f

−n
1 .
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Finally, we have that for n = ⌊λ−1⌋,

fi+1∣[(nλ)+,1−] = f n
1 fi+1∣(0+,λ−] f

−n
1 ∣[(nλ)+,1−].

This covers fi+1 on (0+,1−], completing our inductive step.

Our second claim is that for all i ∈N we have the bisection f−i which adds λ−i(modZ).

Lemma 7.3.9. Let λ < 1 be arbitrary, let S = {c, f1, ..., fK,g1}, and let GS
λ

be the subgroupoid of

Gλ = ⟨λ ⟩⋉Z[λ ,λ−1]⋉(0+,1−] generated by S . Then, for all i ∈N we have that the bisection f−i =

((λ−i − ⌊λ−i⌋,1),(0+,(1− (λ−i − ⌊λ−i⌋))−])⊔ ((λ−i − ⌊λ−i⌋−1,1),[(1− (λ−i − ⌊λ−i⌋))+,1−]) ∈
GS

λ
.

Proof. For all i ∈ N let (as before) K be large enough that λ +λ K < 1, and set µi+1 = λ−1µi −

⌊λ−1µiλ
−K⌋λ K . Our first aim is to show that for all i, we have that the bisection gi = ((µi,1),(0+,(1−

µi)−])⊔((µi−1,1),[(1−µi)+,1−]) ∈ GSλ . Let us prove the statement by induction. We have that
the statement is true by assumption for i = 1, (g1 ∈ S) so let us proceed with the inductive step,
assuming true for i and aiming to show it is true for i+1. Let mi = ⌊λ

−1µiλ
−K⌊. We claim that:

gi+1∣(0+,λ−] = f −mi
K c−1gic∣(0+,λ−].

Let us verify on our domains, note µi < λ K . Therefore,

λ
2+µi < λ

2+λ
K = λ(λ +λ

K) < λ .

Therefore, [(µi)+,(λ 2+µi)−] ⊂ (0+,λ−]. Using this we can verify our domains:

(0+,λ−]
c
Ð→ (0+,λ 2

−]
gi
Ð→ [(µi)+,(λ 2+µi)−]

c−1

ÐÐ→ [(λ−1
µi)+,(λ +λ

−1
µi)−]

f−mi
K
ÐÐ→ [(µi+1)+,(λ +µi+1)−].

Note that for all n = 0, ...,⌊λ−1⌋−1:

gi+1∣[(nλ)+,((n+1)λ)−] = f n
1 gi+1∣(0+,λ−] f

−n
1 .

Finally, we have that for n = ⌊λ−1⌋

gi+1∣[(nλ)+,1−] = f n
1 gi+1∣(0+,λ−] f

−n
1 ∣[(nλ)+,1−].

This covers gi+1 on (0+,1−].
Let us finish by observing that for all i we can recover f−i as a finite word in g1, ....,gi and

f j, j ∈N which are themselves elements of GS
λ

by the above argument and Lemma 7.3.8. This is
because µi are polynomials in λ of the form µi = λ−i+∑

N
k=1 akλ−i+k where N ∈N and ak ∈Z.
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Using the above Lemmas, we have all additive germs in Gλ are also in GS
λ

. We use this to
conclude that Gλ = G

S
λ

.

Lemma 7.3.10. Let λ < 1 be arbitrary, let S = {c, f1, ..., fK,g1}, then, Gλ = ⟨λ ⟩⋉Z[λ ,λ−1]⋉

(0+,1−] is generated by S; Gλ is compactly generated.

Proof. Lemma 7.3.8 and 7.3.9 say that the (full) bisections:

fi, f−i ∈ G
S
λ
,

for all i ∈ N, where GS
λ

is the subgroupoid of Gλ generated by S . It is clear that fi, f−i span a
subgroup of V(Z[λ ,λ−1],⟨λ ⟩,1) isomorphic to Z[λ ,λ−1]/Z. Therefore, GS

λ
has all germs of

the form:
((α,1),x) ∈ GS

λ
.

Let g = ((α̂,λ−n),x) ∈ Gλ be arbitrary, with n > 0. Then 0 < q(r(g)) = λ−n(q(x)+ α̂) < 1, so in
particular, 0 < q(x)+ α̂ < λ n. Then, ((α̂,1),x) ∈ GS

λ
. Then q(r((α̂,1),x) < λ n⇒ r((α̂,1),x) ∈

s(c−n). Therefore g = c−n((α̂,1),x) ∈ GS
λ

.

It remains to understand the case when Λ is finitely but not singly generated. In fact, we can
reduce the case when Λ is finitely generated abelian to the case when Λ is cyclic by using the
following Lemma.

Let us first explain the inclusion of our groupoids in one another. Let G = ⟨λ1, ...,λn⟩⋉

Z[λ±1
1 ,λ±1

n ]⋉(0+,1−] be a groupoid where Λ is finitely generated abelian. Let N = {λk1 , ..,λkK}

be a finite collection of λi. Let B be a compact open bisection in GN = ⟨λk1, ...,λkK ⟩⋉Z[λ±1
k1

,λ±1
kK
]⋉

(0+,1−]. We can consider B as a compact open bisection in G via the canonical inclusion. More-
over, the canonical inclusion map is an inclusion on the level of the inverse semigroup of com-
pact open bisections, so that if K was a compact generating set for GN then K is a compact set in
G which generates a subgroupoid containing all compact bisections of the form ((c,µ),[a+,b−])
where (c,µ) ∈ ⟨λk1, ...,λkK ⟩⋉Z[λ±1

k1
,λ±1

kK
] and a,b ∈Z[λ±1

1 ,λ±1
n ] are arbitrary.

Lemma 7.3.11. Let λ1, ...,λN ∈ (0,1] be a collection of real numbers. Then, the groupoid

⟨λ1, ...,λN⟩⋉Z[λ±1
1 , ...,λ±1

N ]⋉ (0+,1−] is compactly generated, and therefore the derived sub-

group D(V(⟨λ1, ...,λN⟩,Z[λ±1
1 , ...,λ±1

N ],1)) is finitely generated.

Proof. Let us prove this by induction. The base case N = 1 is covered by Lemma 7.3.10 and
Corollary 7.3.6. Assume true for N, let us show for N +1.

By inductive hypothesis there is a compact generating set SN for the groupoid ⟨λ1, ...,λN⟩⋉

Z[λ±1
1 , ...,λ±1

N ]⋉ (0+,1−] By Lemma 7.3.10 and Corollary 7.3.6 there is a compact generating
set SN+1 which generates the groupoid ⟨λN+1⟩⋉Z[λN+1,λ

−1
N+1]⋉ (0+,1−]. Let S = SN ⊔SN+1,

considering the bisections in the subgroupoids as bisections in the enveloping groupoid. Let
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GS ⊂ G ∶= ⟨λ1, ...,λN+1⟩⋉Z[λ±1
1 , ...,λ±1

N+1]⋉ (0+,1−] be the subgroupoid generated by S . By
construction then, we have that

(c,µ) ∈Z[λN+1,λ
−1
N+1],⋉⟨λN+1⟩,a,b ∈Z[λ±1

1 ...,λ±1
N+1]⇒ ((c,µ),[a+,b−]) ∈ G

S (7.1)

and,

(c,µ) ∈Z[λ±1
1 , ...,λ±1

N ]⋉ ⟨λ1, ...,λN⟩,a,b ∈Z[λ±1
1 ...,λ±1

N+1]⇒ ((c,µ),[a+,b−]) ∈ G
S . (7.2)

Let us proceed to prove two claims, in analogy to Lemma 7.3.8 and Lemma 7.3.9.

1. Our first claim is that for all (suitable) additive germs in GS we may multiply them by posi-
tive powers of λN , we proceed in analogy to Lemma 7.3.8. More precisely, let us show that
for all α ∈ (0,1)∩Z[λ±1

1 , ...,λ±1
N+1] such that the bisection fα = ((α,1),(0+,(1−α)+])⊔

((α −1,1),[(1−α)−,1+] ∈ GSλ , we have that fλN+1α = ((λN+1α,1),(0+,(1−λN+1α)−]⊔

((λN+1α −1,1),[(1−λN+1α)−,1+] ∈ GSλ .

Let cN+1 = ((0,λN+1),(0+,1−]) ∈ GS by (7.1). We have that fλN+1α ∣(0+,(λN+1(1−α))−] =

cN+1 fαc−1
N+1∣(0+,(λN+1(1−α))−] ∈ G

S . Note fλN+1
= ((λN+1,1),(0+,(1−λN+1)−]⊔ ((λN+1 −

1,1),[(1−λN+1)−,1+] ∈ GS by (7.1). We have that:

fλNα ∣[(λN+1(1−α))+,(λN+1)−] = f −1
λN+1

cN+1 fαc−1
N+1∣[(λN+1(1−α))+,(λN+1)−]

Therefore, fλN+1
∣(0+,(λN+1)−] = fλN+1α ∣(0+,(λN+1(1−α))−]⊔ fλNα ∣[(λN+1(1−α))+,(λN+1)−] ∈ G

S .

We have that for all n ∈ 0,1, ...,⌊λ−1
N+1⌋−1

fλN+1α ∣[(nλN+1)+,((n+1)λN+1)−] = f n
λN+1

fλNα ∣(0+,(λN)−] f
−n
λN+1
∈ GS

And for n = ⌊λ−1
N+1⌋,

fλNα ∣[(nλN+1)+,1−] = f n
λN+1

fλNα ∣(0+,(λN)−] f
−n
λN+1
∣[(nλN+1)+,1−] ∈ G

S .

2. Our second claim is that for all (suitable) additive germs in GS we may multiply them
by negative powers of λN , proceeding in analogy to Lemma 7.3.9. More precisely, let us
show that for all α ∈ (0,λN+1)∩Z[λ±1

1 , ...,λ±1
N+1] such that the bisection

fα = ((α,1),(0+,(1−α)+])⊔((α −1,1),[(1−α)−,1+] ∈ GS ,

we have that f
λ−1

N+1α
= ((λ−1

N+1α,1),(0+,(1−λ−1
N+1α)−]⊔((λ−1

N+1α−1,1),[(1−λ−1
N+1α)−,1+]) ∈

GS .
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Let cN+1 = ((0,λN+1),(0+,1−]) ∈ GS by (7.1). We have that:

f
λ−1

N+1α
∣(0+,(1−λ−1

N+1α)−] = c−1
N+1 fαcN+1∣(0+,(1−λ−1

N+1α)−]

Let K be large enough that λ K
N+1 < 1−λ−1

N+1α . We have that

f
λ K

N+1
= ((λ K

N+1,1),(0+,(1−λ
K
N+1)−]⊔((λ

K
N+1−1,1),[(1−λ

K
N+1)−,1+] ∈ G

S

by (7.1). Then, conjugating f
Λ−1

N+1α
∣(0+,(1−λ−1

N+1α)−] by ( f
λ K

N+1
)n, as before, will cover f

λ−1
N+1α

on (0+,1−].

Using the above claims we next establish that for all m1, ....,mN+1 ∈Z, for µ =∏
N+1
i=1 λ

mi
i we have

that the bisection:

fµ−⌊µ⌋ = ((µ − ⌊µ⌋,1),(0+,(1−µ + ⌊µ⌋)−]⊔((µ − ⌊µ⌋−1,1),[(1−µ + ⌊µ⌋)−,1+] ∈ GS

Case where ∣mN+1∣ = 0 follows by (7.2), since µ − ⌊µ⌋ ∈Z[λ±1
1 , ...,λ±1

N ]. Let us prove the induc-
tive step separately for the cases mN+1 > 0 and mN+1 < 0

• Let us do the case when mN+1 > 0 by induction. Assuming we have for ν = λ−1
N+1µ , fν−⌊ν⌋ ∈

GS .

Then use claim 1) from above, we have that f
λN+1µ−⌊λ−1

N+1µ⌋λN+1
∈ GS . But we have already

established that fλN+1
∈ GS , hence

fµ−⌊µ⌋ = f ⌊λ
−1
N+1µ⌋

λN+1
f
µ−⌊λ−1

N+1µ⌋λN+1
∈ GS

• The case when mN+1 < 0 is completely analogous, assume that we have fλN+1µ−⌊λ N+1µ⌋ ∈G
S

we have that λN+1µ − ⌊λ N+1µ⌋ ∈ [nλN+1,(n+1)λN+1], for some n. Hence,

fλN+1µ−⌊λ N+1µ⌋−nλN+1
= f −n

λN+1
fλN+1µ−⌊λN+1µ⌋ ∈ G

S

Now using claim 2) we have that

f
µ−λ−1

N+1⌊λN+1µ⌋−n ∈ G
S

But note that f
λ−1

N+1−⌊λN+1⌋ ∈ G
S , it is generated by elements in SN+1. Hence, we have that:

fµ−⌊µ⌋ = f ⌊λN+1µ⌋
λ−1

N+1−⌊λN+1⌋
f
µ−λ−1

N+1⌊λN+1µ⌋−n ∈ G
S

Since for all µ as above, we have that fµ−⌊µ⌋ ∈ GS . These elements span a subgroup of the
topological full group isomorphic to Z[λ±1

1 , ...,λ±1
N+1]/Z
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Let µ ∈ ⟨λ1, ...,λN+1⟩. Then we may rewrite µ as µNλ k
N+1 where k ∈ Z and µN ∈ ⟨λ1, ...,λN⟩.

Then, cµN = ((0,µN),(0+,1−]∩ (0+,µ−1
N ]) ∈ G

S by (7.2) and cN+1 = ((0,λN+1),(0+,1−]) ∈ GS

by (7.1). If λ k > µN , then cµ = ((0,µ),(0+,1−]∩ (0+,µ−1
− ]) = ck

N+1cµN ∈ G
S . Otherwise cµ =

cµN ck
N+1 ∈ G

S .
Therefore to obtain any line segment corresponding to any (a,µ) ∈Z[λ1, ...,λN+1]⋉⟨λ1, ...,λN+1⟩,

where µ < 1 one may write in the form fµ−1acµ ∣D(a,µ) where D(a,µ) is the maximal domain.
However, up to taking inverses, this is all possible slopes, hence, GS = G = ⟨λ1, ...,λN+1⟩ ⋉

Z[λ±1
1 , ...,λ±1

N+1]⋉(0+,1−], completing our inductive step and our proof.

We summarise our discussion in the below theorem, by combining the above Lemma 7.3.11
and Corollary 7.3.6.

Theorem 7.3.12. Let Λ be a subgroup of (R+, ⋅) and Γ be a Z ⋅Λ submodule. The following are

equivalent:

• Λ⋉Γ is finitely generated.

• (Λ⋉Γ)⋉(0+,ℓ−] is compactly generated for all ℓ ∈ Γ.

• D(V(Γ,Λ,ℓ)) is finitely generated for all ℓ ∈ Γ.

• D(V(Γ,Λ,ℓ)) is 2 generated for all ℓ ∈ Γ.

Note that our discussion does not investigate the higher finiteness properties of Stein’s
groups, but these have been partially studied. Notably, Stein showed the derived subgroup is
type F∞ in the case when Λ is generated by finitely many integers, Γ =Z ⋅Λ, and ℓ ∈N [116]. We
therefore ask:

Question 7.3.13. Suppose Λ is a finitely generated subgroup of (R+, ⋅) let Γ = Λ ⋅Z ℓ ∈ Γ∩R+.

Under what conditions is D(V(Γ,Λ,ℓ)) finitely presented?

7.4 Homology of Stein’s groups

7.4.1 Initial observations

Let us again exploit the results of Section 3.6 to understand the homology of Stein’s groups.
Recall as in Example 2.4.2 that we already understand the homology of partial transformation
groupoids. Therefore the homology of the groupoids Λ⋉Γ⋉β (0+,ℓ−] is related to the homology
of the groups Λ⋉Γ:

H∗(Λ⋉Γ⋉β (0+,ℓ−]) =H∗(Λλ⋉,Cc(RΓ,Z))

Let us try to compute these homology groups. We begin with our analogy of Lemma 5.5. [76],
wherein we compute H0(Λ⋉Γ⋉β (0+,ℓ−]).
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Lemma 7.4.1. Let Λ = ⟨λ1, ...,λk⟩, Γ =Z[λ±1
1 , ....,λ±1

k ] be the canonical groups and submodules

generated by finitely many algebraic numbers, assuming without loss of generality that the finite

collection of algebraic numbers {λi}
N
k=1 are pairwise algebraically independent. Then,

H0(Λ⋉Γ,Cc(RΓ,Z)) ≅ Γ/NΛ

Where NΛ is the normal subgroup given by NΛ =∑i(1−λi)Γ. Considering H0 as an ordered

group, the order unit is given by the equivalence class of ℓ, [ℓ] ∈ Γ/NΛ.

Moreover, H1(Λ⋉Γ,Cc(RΓ,Z)) is finitely generated.

Proof. Let R̂Γ = RΓ ∪{∞}, and let us extend β to an action of Λ⋉Γ↷ R̂Γ by setting ∞ to be
a fixed point. Let us topologise R̂Γ with the order topology, where we say that ∞ > a, a ∈ RΓ.
Then, a Z-basis of Cc(R̂Γ,Z) which Γ will always act on freely and transitively is given by

χ(a+,∞](t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 a+ < t ≤∞

0 else
a ∈ Γ.

For this reason, Cc(R̂Γ,Z) ≅ZΓ. Consequently,

Hq(Γ,Cc(R̂Γ,Z)) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Z q = 0

0 else

Now note by construction of Λ⋉Γ we have the split short exact sequence:

1→ Γ→Λ⋉Γ→Zn→ 1

It follows by the Hochschild-Serre spectral sequence (Chapter VII, Theorem 6.3) that

Hi(Λ⋉Γ,Cc(R̂Γ,Z)) ≅Hi(Λ) =Hi(Zn) =Z
iCn

The final equality follows by the Kunneth formula, and this is where n is the number of genera-
tors of Λ. Now let us apply the Hochschild-Serre spectral sequence again, this time choosing as
the module M =Z =MΓ. Then all coefficients are in Z. We obtain the following exact sequence:

H2(Λ⋉Γ)→H2(Zn)→H1(Γ)Zn →H1(Λ⋉Γ)→H1(Zn)→ 0

But since the SES of groups with Λ⋉Γ in the middle splits, the map from H2(Λ⋉Γ)→H2(Zn) is
a surjection. Therefore, the next map must be the zero map, revealing the short exact sequence:

0→H1(Γ)Zn = Γ→H1(Λ⋉Γ)→Zn→ 0.
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Therefore, H1(Λ⋉Γ) =Zn⊕Γ/N where N =∑i(1−λi)Γ Then,

0→Cc(RΓ,Z)→Cc(R̂Γ,Z)→Z→ 0

Is a short exact sequence of Z(Λ⋉Γ) modules. By proposition 6.1, Chapter III of Brown, we
get that there is a long exact sequence:

...→H1(Λ⋉Γ,Cc(R̂Γ,Z))→H1(Λ⋉Γ)→H0(Λ⋉Γ,Cc(RΓ,Z))

→H0(Λ⋉Γ,Cc(R̂Γ,Z))→H0(Λ⋉Γ)→ 0

Plugging in what we know:

→Zn→Zn⊕Γ/N
f
Ð→H0(Λ⋉Γ,Cc(RΓ,Z))

g
Ð→Z→Z→ 0

Is an exact sequence. The map Zn→Zn⊕Γ/N is just the canonical inclusion z↦ (z,0). Then the
map into H0(Λ⋉Γ,Cc(RΓZ)) is 0 exactly on Zn⊕0; the kernel is Γ/N. Also, the map Z→Z must
be an isomorphism, so one has that g is the zero map. But also, im( f ) = ker(g). Therefore, by
the first isomorphism theorem, we get that H0(Λ⋉Γ,Cc(RΓ,Z) ≅ Im( f )/ker(g) = Im( f ) = Γ/N,
as required.

Let us show the first homology group is finite rank. Let us reconsider the long exact se-
quence, this time around H1(Λ⋉Γ,Cc(RΓ,Z)) ∶

...H2(Λ⋉Γ,Cc(R̂Γ,Z))→H2(Λ⋉Γ)→H1(Λ⋉Γ,Cc(RΓ,Z)→H1(Λ⋉Γ,Cc(R̂Γ,Z)→ ...

H2(Λ⋉Γ) and H1(Λ⋉Γ,Cc(R̂Γ,Z)) ≅ Zn are both finite rank. Therefore it follows that H1(Λ⋉

Γ,Cc(RΓ,Z) is finite rank.
It remains to determine the position of the unit in H0((Λ⋉Γ)⋉ (0+,ℓ−]). This is given by

considering (0+,ℓ−] as a bisection. It follows from the above computation that the position of
the unit is exactly the equivalence class of ℓ [ℓ] ∈ Γ/∑i(1−λi)Γ.

It would be interesting to compute the higher groupoid homology groups in this much gener-
ality, but the methods of Lemma 5.5. [76] do not generalise directly here. Therefore, one would
need a new methodology for computing the group homology H∗(Λ⋉Γ,Cc(RΓ,Z)) in general.

The good news is that even from just the computation of H0, one may already distinguish
many of these groups.

Corollary 7.4.2. Suppose Λ = ⟨λ1, ...,λn⟩, Λ̂ = ⟨λ̂1, ..., λ̂m⟩ be multiplicative subgroups of R+,

generated by algebraic numbers. Let Γ, Γ̂ be (respectively) Z ⋅Λ,ZΛ̂ submodules and ℓ ∈Γ, ℓ̂ ∈ Γ̂.

Let NΛ =∑
n
i=1(1−λi)Γ, and N

Λ̂
=∑

n
i=1(1−λi)Γ̂. Suppose V(Γ,Λ,ℓ) ≅V(Γ̂,Λ̂, ℓ̂). Then Γ/NΛ ≅

Γ̂/N
Λ̂

and ℓ− ℓ̂ ∈NΛ.
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The above Corollary recovers for example, the fact observed by Higman [59] that Vk,r ≅

Vk′,r′⇒ k = k′ and r−r′ ≅ 0 mod kZ. We remark upon some transfers of homological information
from Λ⋉Γ⋉(0+,1−] to V(Γ,Λ,ℓ). This is Theorem 3.6.7 applied to this particular circumstance.

Theorem 7.4.3 (AH Exact Sequence ). Let Γ,Λ,ℓ be arbitrary. Then, there is a 5-term exact

sequence:

H2(D(V(Γ,Λ,ℓ))→H2(Λ⋉Γ,Cc(RΓ,Z))→H0(Λ⋉Γ,Cc(RΓ,Z))⊗Z2→H1(V(Γ,Λ,ℓ)) =

=V(Γ,Λ,ℓ)ab→H1(Λ⋉Γ,Cc(RΓ,Z))→ 0

We can use this to determine that many of the V -type groups are finitely generated. This is
Theorem 1.1.15, our second main result.

Theorem 7.4.4. Let Λ be a finitely generated multiplicative subgroup of the positive algebraic

numbers. Let Γ be a Z ⋅Λ submodule, and let ℓ ∈ Γ. Then V(Γ,Λ,ℓ) is finitely generated.

Proof. By Lemma 7.4.1, we have that whenever Γ and Λ are generated by finitely many al-
gebraic numbers H0 and H1 of the underlying groupoids are finite rank. Plugging this into
the 5-term exact sequence in Theorem 3.6.7, it follows that the abelianisation is finite rank.
Therefore V(Γ,Λ,ℓ), the extension of D(V(Γ,Λ,ℓ)) (finitely generated by Theorem 7.3.12) by
V(Γ,Λ,ℓ)ab must be finitely generated.

Using Theorem 3.6.5, we can obtain a homological stability result that generalizes [118,
Theorem 3.6] to this more general setting.

Lemma 7.4.5 (Homological Stability). Let Γ,Λ,ℓ, ℓ̂ be arbitrary then, there are isomorphisms

H∗(V(Γ,Λ,ℓ)) ≅H∗(V(Γ,Λ, ℓ̂))

Proof. Suppose without loss of generality that ℓ̂ < ℓ. Then we have that there is an inclusion as
in Theorem 3.6.5:

Λ⋉Γ⋉β (0+,ℓ−]∣
(0+,ℓ̂−]
(0+,ℓ̂−]

=Λ⋉Γ⋉β (0+, ℓ̂−]

Then Theorem 3.6.5 implies the above theorem.

Finally, let us apply Corollary 3.6.2, to obtain an expression for the rational homology of
Stein’s groups.

Theorem 7.4.6 (Rational Homology Computation). Let Γ,λ ,ℓ be arbitrary. For a group G, let

Heven
∗ (G) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

H∗(G) ∗ even

{0} else
Hodd
∗ (G) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

H∗(G) ∗ odd

{0} else



CHAPTER 7. STEIN’S GROUPS 150

and, let

Hodd
∗>1(G) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

H∗(G) ∗ > 1 odd

{0} else

Then,

H∗(V(Γ,Λ,ℓ),Q) ≅ Ext(Hodd
∗ (Λ⋉Γ,Cc(ZΓ,Q))⊗Sym(Heven

∗ (Λ⋉Γ,Cc(ZΓ,Q))

and

H∗(D(V(Γ,Λ,ℓ)),Q) ≅ Ext(Hodd
∗>1(Λ⋉Γ,Cc(ZΓ,Q))⊗Sym(Heven

∗ (Λ⋉Γ,Cc(ZΓ,Q))

7.4.2 Homology for Stein-Thompson groups with cyclic slopes

Let λ ∈ (0,1). Consider Λλ = ⟨λ ⟩,Γλ = Z[λ ,1/λ ]. Let ℓ ∈ Γλ Consider the group Vλ ,ℓ ∶=

V(Λλ ,Γλ ,ℓ). Such groups are natural generalisations of Thompson’s group V or Cleary’s group
Vτ , and the analogous F-type subgroups, also known as Bieri-Strebel groups have been studied
for example in [31], [127], [8], [37]. The associated groupoids and their associated C*-algebras
have also been studied extensively by Li in [76]. In particular, there were many concrete homol-
ogy computations by Li, which we recall now.

Lemma 7.4.7 ( [76], Prop 5.5 ). Let Γλ ,Λλ ,r be as above. Then,

H0(Λλ ⋉Γλ ⋉β (0+,ℓ−]) ≅ Γλ /(1−λ)Γλ

with distinguished order unit [ℓ].

Hk(Λλ ⋉Γλ ⋉β (0+,ℓ−]) ≅Hk+1(Λλ ⋉Γλ ) ∀k ≥ 1

In particular, if λ is transcendental, we have that:

Hk(Λλ ⋉Γλ ⋉β (0+,1−]) =
∞
⊕
i=1

Z ∀k

Let us be more explicit. If λ be an algebraic number that is the root of the minimal polynomial
f (t) = td +ad−1td−1 + ...+a1t +a0. Let Γ = Z[λ ,λ−1], Λ = ⟨λ ⟩ and let ℓ be arbitrary. If d < 4,
homology has been computed explicitly see the table of [76], Page 19. Using these results,
we may compute many of the abelianisations of Stein-Thompson groups with cyclic slopes
concretely, generalising results of [59], [31], [38].

Corollary 7.4.8. Let λ have the minimal polynomial td + ad−1td−1 + ....+ a0 = 0. Let Λλ =
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⟨λ ⟩,Γλ = Z[λ ,λ−1] and ℓ ∈ Γλ . Let V(Γλ ,Λλ ,ℓ) be the Stein-Thompson groups with cyclic

slopes with slopes ⟨λ ⟩.

• If d = 1, then V(Γλ ,Λλ ,ℓ)ab =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Z2 f (1) even

0 f (1) odd

• If d = 2,a0 = 1, and a1 is odd (i.e. the minimal polynomial is of the form t2+(1−2n)t +1
where n ∈Z) then V(Γλ ,Λλ ,ℓ)ab =Z

• If d = 2,a0 ≠ 1, then V(Γλ ,Λλ ,ℓ)ab =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Z2⊕Z/(1+a0)Z f (1) even

Z/(1+a0)Z f (1) odd

• If d = 3,a0 = −1 and a2+a1 is odd, (i.e. the minimal polynomial is of the form t3+(m)t2+

(m+2n+1)t −1) then V(Γλ ,Λλ ,ℓ)ab =Z/(a1+a2)Z

Proof. These results follow from the computations as in the table of [76], Page 19, and the AH
long exact sequence (Theorem 3.6.7). If d = 1, then the groupoid homology is

H∗(Λλ ⋉Γλ ⋉(0+,1−]) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Z/ f (1)Z ∗ = 0

0 ∗ > 0

Therefore the exact sequence reduces to an isomorphism: Z/ f (1)Z⊗Z2 = (V(Γλ ,Λλ ,ℓ))ab. If
d = 2, a0 = 1 then the groupoid homology is

H∗(Λλ ⋉Γλ ⋉(0+,1−]) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Z/ f (1)Z =Z/(2+a1)Z ∗ = 0

Z ∗ = 1,2

0 ∗ > 2

Therefore if a1 is odd, then the exact sequence reduces to an isomorphism (V(Γλ ,Λλ ,ℓ))ab =Z.
If d = 2,a0 ≠ 1 then the groupoid homology is given by

H∗(Λλ ⋉Γλ ⋉(0+,1−]) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Z/ f (1)Z ∗ = 0

Z/(1−a0)Z ∗ = 1

0 ∗ > 1

Therefore the exact sequence reduces to a short exact sequence that splits, and (V(Γλ ,Λλ ,ℓ))ab =

(Z2⊗Z/ f (1)Z)⊕Z/(1−a0)Z. Finally if d =3,a0 =−1. We have the groupoid homology is given
by:

H∗(Λλ ⋉Γλ ⋉(0+,1−]) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Z/ f (1) =Z/(a2+a1)Z ∗ = 0,1

Z ∗ = 2,3

0 ∗ > 3
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Therefore if a2 +a1 is odd, the exact sequence reduces to an isomorphism (V(Γλ ,Λλ ,ℓ))ab =

Z/(a2+a1)Z

Remark 7.4.9. The above Corollary recovers the computation of the abelianisation of Cleary’s

group seen in [31], and of the Higman-Thompson groups seen in [59].

We see that in contrast to the Higman-Thompson groups, or Brin-Higman-Thompson groups
that are either perfect or have an index 2 derived subgroup, theStein-Thompson groups with
cyclic slopes can have a variety of abelianisations. In particular, not all Stein-Thompson groups
with cyclic slopes are virtually simple:

Example 7.4.10. For n ∈N∪{0}∪{∞} there exists an algebraic number λn such that the first

homology group, (or in other words the abelianisation) V(Γλn,Λλn,ℓ)ab is a cyclic group of

order n. For n = 0, we can take λ0 = 2, for n = 2, we can take λ2 = 3. λ3 must be irrational, we

can take for example λ3 the smallest positive root of t3 +3t −1. We could take λ4 =
7−
√

37
2 the

smallest positive root of t2−7t +3. We can take λ5 to be the smallest positive root of t3+5t2−1.

For n ≥ 6, we can take λn to be the smallest root of t2 − (n−1)(1− t), n−1+
√

n2−6n+5
2 . For the

infinite cyclic group we can take λ∞ to be smallest real root of t2−3t +1.

Example 7.4.11. Suppose n isnt a square number and ℓ ∈Z[
√

n,1/
√

n]. Then

V(Γ√n,Λ
√

nℓ)ab =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Z2⊕Zn+1 n odd

Zn+1 n even

Whenever k is even, the Brin-Higman-Thompson group nVk,r is perfect. There are actually
no examples of "true" irrational slope Thompson groups (that is Stein-Thompson groups with
cyclic slopes and an irrational generator of the slope group) that are perfect. This is because if
d > 1, then H1(Λλ ⋉Γλ ⋉RΓ) ≠ 0, and so the abelianisation admits a nontrivial quotient.

Corollary 7.4.12. Let λ be an irrational number and let ℓ ∈Z[λ ,λ−1]. Then V(Γλ ,Λλ ,ℓ) is not

perfect.

A final corollary is that we may use this abelianisation in conjunction with Corollary 7.2.9
to describe all finite factor presentations, or proper characters of V(Γλ ,Λλ ,ℓ):

Lemma 7.4.13 (Proper Characters of V(Γλ ,Λλ ,ℓ)). Let λ have the minimal polynomial td +

ad−1td−1+ ...+a0 = 0. Then every proper character of V(Γλ ,Λλ ,ℓ) factors through the abeliani-

sation, as computed in Theorem 7.4.8. In particular, Cleary’s group Vτ has one proper character.

The other advantage of having a concrete picture of groupoid homology is that this simplifies
also the rational homology computation of the underlying groups.
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Corollary 7.4.14 (Rational Homology Computation Stein-Thompson groups with cyclic slopes).
Suppose λ is transcendental. Then,

H∗(V(Γλ ,Λλ ,ℓ),Q) =⊕
n∈N

Q

Suppose λ is algebraic. Then, let

Heven
∗ (Λλ ⋉Γλ ,Q) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

H∗(Λλ ⋉Γλ ,Q) ∗even

0 otherwise
,

Heven
∗>2 (Λλ ⋉Γλ ,Q) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

H∗(Λλ ⋉Γλ ,Q) ∗ > 2, even

0 otherwise

and

Ĥodd
∗ (Λλ ⋉Γλ ,Q) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Γλ /(1−λ)Γλ ⊗Q ∗ = 1

H∗(Λλ ⋉Γλ ,Q) ∗ > 1, odd

0 otherwise

then,

H∗(V(Γλ ,Λλ ,ℓ),Q) = Ext(Heven
∗+1 (Λλ ⋉Γλ ))⊗Sym(Ĥodd

∗+1(Λλ ⋉Γλ ))

H∗(D(V(Γλ ,Λλ ,ℓ),Q)) = Ext(Heven
∗+1>2(Λλ ⋉Γλ ))⊗Sym(Ĥodd

∗+1(Λλ ⋉Γλ ))

Where Ext,Sym denote respectively the Exterior and Symmetric algebras in the sense of Multi-

linear Algebra [54].

Like the Higman-Thompson groups Vk,r, certain low degree Stein-Thompson groups with
cyclic slopes are rationally acyclic.

Example 7.4.15. Let λ be the root of the minimal polynomial t2 +a1t +a0. The following are

equivalent:

• a0 ≠ 1.

• V(Γλ ,Λλ ,ℓ) and D(V(Γλ ,Λλ ,ℓ)) are rationally acyclic.

Similarly, let λ be the root of a minimal polynomial t3 +a2t2 +a1t +a0. The following are

equivalent:

• a0 ≠ −1.

• V(Γλ ,Λλ ,ℓ) and D(V(Γλ ,Λλ ,ℓ)) are rationally acyclic.

In particular, Cleary’s group is rationally acyclic, being associated to the minimal polyno-

mial t2+ t −1.
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However, in contrast to behaviour that is seen for the rational homology of the Higman-

Thompson groups [118] or more generally the Brin-Higman-Thompson groups Proposition

4.4.7, Stein-Thompson groups with cyclic slopes are not rationally acyclic in general. Concrete

calculations are shown below:

• If λ is transcendental,

H∗(V(Γλ ,Λλ ,ℓ),Q) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⊕
∞
i=1Q ∗ > 0

Q ∗ = 0
, H∗(D(V(Γλ ,Λλ ,ℓ)),Q) ≅

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

⊕
∞
i=1Q ∗ > 1

0 ∗ = 1

Q ∗ = 0

• If λ has minimal polynomial of the form t2+a1t +1 we have that:

H∗(V(Γλ ,Λλ ,ℓ),Q) =Q, H∗(D(V(Γλ ,Λλ ,ℓ)),Q) ≅
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Q ∗ ≠ 1

0 ∗ = 1

• If λ has minimal polynomial of the form t3+a2t +a1t −1

H∗(V(Γλ ,Λλ ,ℓ),Q) =H∗(D(V(Γλ ,Λλ ,ℓ)),Q) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Q ∗ ≠ 1

0 ∗ = 1

Theorem 7.4.16 ( [76], Theorem 1.3 and 1.4). It is clear that for all choices of λ , C∗r (Λλ ⋉

Γλ ⋉β (0+,1−]) ∶=Qλ is a UCT Kirchberg algebra. For more information on these C∗-algebras,

we refer the reader to the references [76], [33]. The (ordered) K-theory was computed by Li

in [76], Theorem 1.3.

(K0(Q
λ ),[1]0,K1(Q

λ )) ≅K1(C∗(Γλ )/Z[U0,λ ]1,[U1,1]
⋅
1,K0(C∗(Γλ )/Z[1]0)

Here, by [U1,1]
⋅
1 we mean the class of [U1,1]1 in the quotient K1(C∗(Γλ )/Z[U0,λ ]1, and by Z[1]0

we mean the group generated by the unit in K0(C∗(Γλ ).

Let λ be algebraic. Then the ordered K-Theory simplifies: (K0(Q
λ ),[1]0,K1(Q

λ ))

≅ (Γλ )/(1−λΓλ )⊕
∞
⊕
j=1

H2 j+1(Λλ ⋉Γλ ),(1,0),
∞
⊕
j=1

H2 j(Λλ ⋉Γλ ))

By the Kirchberg-Phillips classification Theorem [ [106], Chapter 8], this is a complete

*-isomorphism invariant of the C*-algebras Qλ .

It is not hard to show that if we introduce flexibility on the length ℓ of our interval, this would
induce morita equivalent C*-algebras with (possibly) different order units in K0.
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Now that we have seen that we can compute many homological or topological invariants
that we associate to the groupoids Λλ ⋉Γλ ⋉β (0+,ℓ−], let us describe what we know about
distinguishing groups up to isomorphism for this class. The groupoid homology recovers the
initial choice of algebraic number λ . First note that we can see that λ is algebraic through our
homology results.

Corollary 7.4.17. Let λ be a real number and ℓλ ∈ Γλ be arbitrary. The following are equiva-

lent:

• λ is transcendental.

• V(Γλ ,Λλ ,ℓλ )ab ≅Z∞

The algebraic case is a complex problem in general to classify, but due to the groupoid
homology computations we can say something if we restrict to algebraic numbers with degree
≤ 2.

Corollary 7.4.18. Let λ ,µ < 1 be algebraic numbers with degree ≤ 2 and let ℓ1 ∈ Γλ ,ℓ2 ∈ Γµ . If

V(Γλ ,Λλ ,ℓ1) ≅V(Γµ ,Λµ ,ℓ2)

Then λ = µ , and ℓ1−ℓ2 ∈ (1−λ)Γλ .

Proof. Our first step is to recover λ from the abstract group V(Γλ ,Λλ ,ℓ1). Let us examine
the groupoid Λλ ⋉Γλ ⋉ (0+,(ℓ1)−], and attempt to recover the minimal polynomial from the
groupoid homology. H∗(Λλ ⋉Γλ ⋉(0+,(ℓ1)−]). Let us consider two cases:

1. If Λλ ⋉Γλ ⋉(0+,(ℓ1)−] is rationally acyclic. Then:

• If H1(Λλ ⋉Γλ ⋉(0+,(ℓ1)−])=0, d =1 and a0 is determined by H0(Λλ ⋉Γλ ⋉(0+,(ℓ1)−])≅

Z/(1+a0)Z.

• Otherwise, d = 2 and a0 ≠ −1. Then a0 is determined by H1(Λλ ⋉Γλ ⋉(0+,(ℓ1)−]) ≅

Z/(1−a0)Z and a1 is determined by H0(Λλ ⋉Γλ ⋉(0+,(ℓ1)−]) ≅Z/(1+a1+a0)Z

2. If Λλ ⋉Γλ ⋉(0+,(ℓ1)−] is not rationally acyclic then we have that H1(Λλ ⋉Γλ ⋉(0+,(ℓ1)−])=

H2(Λλ ⋉Γλ ⋉(0+,(ℓ1)−]) = Z, then d = 2, a0 = 1. Moreover, H0(Λλ ⋉Γλ ⋉(0+,(ℓ1)−]) ≅

Z/(2+a1)Z, which uniquely determines a1.

This shows we may recover λ from the groupoid homology. Groupoid homology is an invariant
for groupoids. By Theorem 3.4.12, these groupoids are uniquely determined by the abstract
groups V(Γ,Λ,ℓ) and so for any isomorphism of the abstract groups, we must necessarily have
that λ = µ . It remains to understand how the length of the underlying interval affects the iso-
morphism class of these groups. One may be precise here, considering H0(Λλ ⋉Γλ ⋉(0+,ℓ−]) ≅
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Γ/(1−λ)Γ as an ordered group, with the class of (0+,ℓ−], [ℓ] ∈ Γ/(1−λ)Γλ determining the
positive cone. We therefore have an isomorphism as ordered groups, this occurs if and only if
ℓ−ℓ′ ∈ (1−λ)Γλ .

This Corollary showcases the diversity of cyclic slope Stein’s group, even for the case when
λ has degree 2. We can also distinguish some cyclic slope Stein’s groups of higher degrees
using groupoid homology. However, in general, this classification remains open for degree 3
algebraic numbers; our methods do not generalise. For a concrete example we cannot distinguish
using groupoid homology, consider λ ,µ to be the algebraic numbers with respective minimal
polynomials:

t3+ t2−1, t3+ t −1

The resulting groupoids have the same homology. We, therefore, ask if one can determine
whether V(Γλ ,Λλ ,1) ≅V(Γµ ,Λµ ,1) for this specific choice of λ ,µ? Another similarly subtle
question is to try to distinguish groups with different transcendental slopes, e.g. is V(Γπ ,Λπ ,1)≅
V(Γe,Λe,1)?

7.4.3 Homology for Stein’s integral groups

Let N = {n1, ...nk} be a finite collection of integers. Let r ∈ N, let ΛN = ⟨n1, ..,nk⟩ and ΓN =

Z[1/(n1n2...nk)]. Consider the group V(ΛN ,ΓN ,r). These groups have been studied in detail by
Stein [116], and are known to fit into many other frameworks of generalized Thompson’s groups,
for example, those explored in [84]. Because they have been more heavily studied, much more
is known about the finiteness properties and presentations of these groups, for example, it was
shown already by Stein in [116] that they are all of type F∞. However, the homology of these
groups remains mysterious. For us to better understand this, it is useful to change perspectives
on the underlying groupoids.

The approach we take here is related to work involving the topological full groups of k-
graphs, which has notably also been explored (though not for this reason) in work by Lawson-
Sims-Vdovina [72], Lawson-Vdovina [73], and Dilian Yang [128]. The observation that we can
rephrase the groupoid model of these exact groups in the language of k-graphs is also noted in
Conchita Martınez-Pérez, Brita Nucinkis and Alina Vdovina, we include it here for complete-
ness in the literature and for our homology computations. Let N = {n1, ...,nk} be a collection
of integers where k > 1,ni > 1,∀k. Consider the single vertex k-graph that has ni loops for each
i = 1, ...,k. Let us label these loops a(ni)

0 , ...,a(ni)
ni−1 and let them be colored in the i-th color. We

then include commutation relations as follows. Between color i and color j there are nin j com-
mutation relations, given by:

a(ni)
k a(n j)

l = a( j)
k′ a(i)l′ ⇐⇒ k/ni+ l/nin j = k′/nin j + l′/ni
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For all 0 < k < ni,0 < l < n j. These commutation relations induce a description of the fac-
torisation map d. Notice there is a relationship already between the edges a(ni)

k of our k-graph
and (k,1/ni) ∈ ⟨n1, ..,nk⟩⋉Z[∏k

i=1 1/ni]: these commutation relations are the same as saying, for
(k,1/ni),(k′,1/ni),(l,1/n j),(l′,1/n j) ∈ ⟨n1, ..,nk⟩⋉Z[∏k

i=1 1/ni]:

a(ni)
k a(n j)

l = a( j)
k′ a(i)l′ ⇐⇒ (k,1/ni)(l,1/n j) = (l′,1/n j)(k′,1/ni)

Since it is single-vertex, the paths in this k-graph form a left-cancellative monoid with respect
to concatenation, and the identifications from our equivalence relation. This monoid considered
as a left-cancellative category fits directly into Kumjian-Pask’s framework of k-graphs [69]. Let
us denote the above k-graph by (Λ(n1, ..,nk),d) For more information on k-graphs and their
groupoids, we refer the reader to this source.
Let us describe the associated path groupoid, introduced in [69]. For k > 1, Let Ωk be the small
category with objects in Nk and morphisms Ω ∶= {(m,n) ∶Nk ×Nk,m ≤ n}, the range and source
maps of this morphism being r(m,n) = n,s(m,n) = n. Let d(m,n) = n−m.

The path space Λ∞(n1, ..,nk) refers to all k-graph morphisms (that is, structure-preserving
morphisms):

x ∶ (Ωk,d)→ (Λ(n1, ...,nk),d)

The topology on this is the natural cylinder sets (paths that begin with a finite path λ ):

Z(λ) = {λx ∈Λ
∞(n1, ..,nk)}

For each m ∈Nk we associate a shift map σm ∶Λ∞(n1, ..,nk)→Λ∞(n1, ...,nk) x↦σmx, where
σmx is the function given by

σ
mx(n1,n2) = x(n1 +m,n2 +m)

Notice then that this is a semigroup homomorphism: σm1+m2 = σm1 ○σm2 . Our groupoid is of
the form:

G(n1, ...,nk) ∶= {(x,m1 −m2,y) x,y ∈Λ
∞(n1, ...,nk)m1,m2 ∈Nk, σ

m1(x) = σ
m2(y)}

The source of (x,m1 −m2,y) ∈ G(n1, ...,nk) is (x,0− 0,x). The range of (x,m1 −m2,y) ∈

G(n1, ...,nk) is (y,0−0,y). The inverse of (x,m1 −m2,y) ∈ G(n1, ...,nk) is (y,(−m2)−(−m1),x) ∈
G(n1, ...,nk). Our unit space is identified with the path space by the canonical identification, as
with Deacounu-Renault groupoids of graphs ( (x,0,x)↦ x,∀x ∈Λ∞).

A basis for the topology is coming from the open bisections (the groupoid is étale), which
are the inverse semigroup generated by partial bijections of the form:

Z(λ ,µ) = {(x,m1 −m2,y) x ∈ Z(λ) y ∈ Z(µ), m1,m2 ∈Nk, σ
m1(x) = σ

m2(y)}
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Now let us describe why this groupoid agrees with our description of the same groupoid,
namely Z[∏k

i=1 1/ni]⋉ ⟨n1, ...,nk⟩⋉ (0+,1−]. The first step is to identify the unit spaces. To do
this, let us notice the following distinguished elements of Λ∞:

x0 ∶Nk ↦Λ(n1, ..,nk) (l1, l2.., lk)↦ (a
(n1)
0 )l1(a(n2)

0 )l2...(a(nk)
0 )lk

x1 ∶Nk ↦Λ(n1, ..,nk) (l1, l2.., lk)↦ (a
(n1)
n1−1)

l1(a(n2)
n2−1)

l2...(a(nk)
nk−1)

lk

Note that since for all i, j a(ni)
0 a(n j)

0 = a(n j)
0 a(ni)

0 and a(ni)
ni−1a(n j)

n j−1 = a(n j)
n j−1a(ni)

ni−1 so that these are well
defined paths. x0 will map to 0+ and x1 to 1−. Let us first define a map on finite paths

φ0 ∶Λ(n1, ...,nk)→Z[
k
∏
i=1

ni] (a
(ni1)
l1

, ...,a(nim
lm ))↦

m
∑
i=1

ni

i
∏
j=1

1
n j

Due to the commutation relations, this map is well-defined and bijective. From here, the map is
extended to become ϕ0.

ϕ0 ∶Λ
∞(n1, ...,nk)→ (0+,1−] ⊂RZ[∏k

i=1 1/ni]

x = [(a
(ni1)
l1

,a
(ni2)
l2

, ...)]↦

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

φ0(a
(ni1)
l1

, ..,a(nim)
lm )+ x = (a

(ni1)
l1

, ..,a(nim)
lm )x0

(∏
m
i=1

1
ni
+φ0(a

(ni1)
l1

, ..,a(nim)
lm )− x = (a

(ni1)
l1

, ..,a(nim)
lm )x1

∑
∞
m=1 φ0(a

(ni1)
l1

, ..,a(nim)
lm ) otherwise

Remark that this does not depend on the choice of representative for x, due to our canonical com-
mutation relations. Note also this map is a homeomorphism, since it is a continuous bijection
between compact Hausdorff spaces:

ϕ0(Z(a
(ni1)
l1

, ..,a(nim)
lm )) = [φ0(a

(ni1)
l1

, ..,a(nim)
lm )+,(

m
∏
i=1

1
ni
+φ0(a

(ni1)
l1

, ..,a(nim)
lm )−]

Every open set in (0+,1−] can be written as a finite union of sets of the above form since φ0 is
bijective. The next step is to identify the arrow spaces. Consider the map:

µ ∶Zk → ⟨n1, ...,nk⟩ (m1, ..,mk)↦
k
∏
i=1

nmi
i

ϕ ∶ G(n1, ...,nk)↦Z[
k
∏
i=1

1/ni]⋊ ⟨n1, ...,nk⟩⋉(0+,1−]

(x,m1 −m2,y)↦ ((−ϕ0(x)+
ϕ0(y)

µ(m1 −m2)
,µ(m1 −m2)),ϕ0(x))
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Notice then in particular:

ϕ(Z(∅,ani
0 )) = ((0,1/ni),(0+,1−])

ϕ(Z(a(ni)
ni−1,a

(ni)
ni−1)⊔⊔

ni−2
l=0 Z(a(ni)

l ,a(ni)
l+1 ))

= ((1/ni−1,1),[(1−1/ni)+,1−])⊔((1/ni,1),(0+,(1−1/ni)−])

As shown in the previous section (Theorem 7.3.12), these bisections form a compact gener-
ating set of the groupoid Z[∏k

i=1 1/ni]⋊ ⟨n1, ...,nk⟩⋉(0+,1−], hence ϕ is a groupoid conjugacy.
The discussion above can be summarised in the form of the Lemma below.

Lemma 7.4.19. Let k > 1, and N = {n1, ...,nk} be a collection of algebraically independent inte-

gers. Then Stein’s integral group V(ΓN ,ΛN ,1) the topological full group of the path groupoid

model of the k-graph above, G(n1, ...,nk).

This identification will give us many interesting new facts about Stein’s groups. Notably, this
identification is an identification of the underlying left cancellative monoids- the paths space
of the k-graph may be identified with the underlying monoid seen in the universal groupoid
description. Let us first explore in greater detail the simplest nontrivial case, namely k = 2,n1 =

2,n2 = 3 for exposition purposes.

Example 7.4.20 (V(2,3)). Let us construct V(2,3) =V(Z[16],⟨2,3⟩,1) using k-graphs. Here,

k = 2. We consider the single vertex 2-graph with 2-loops in the first color (in the case of the

diagram below, blue) labelled a(2)1 ,a(2)1 and 3-loops in the second color (in the case of the

diagram below, red) labelled a(3)0 a(3)1 ,a(3)2 .

●

a(2)0

a(2)1

a(3)0

a(3)1

a(3)3

By drawing the related diagram below:



CHAPTER 7. STEIN’S GROUPS 160

0/2 1/2

a(2)0 a(2)1

0/6 2/6

a(3)0 a(3)2

1/6
a(3)1

3/6 5/6

a(3)0 a(3)2

4/6
a(3)1

0/3

a(2)0 a(2)1

0/6 2/61/6 3/6 5/6

a(3)0 a(3)2

4/6

a(3)1
1/3 2/3

a(2)0 a(2)1 a(2)0 a(2)1

We can read the 6 necessary commutation relations:

a(2)0 a(3)0 = a(3)0 a(2)0 , a(2)0 a(3)1 = a(3)0 a(2)1 , a(2)0 a(3)2 = a(3)1 a(2)0 ,

a(2)1 a(3)0 = a(3)1 a(2)1 , a(2)1 a(3)1 = a(3)2 a(2)0 , a(2)1 a(3)2 = a(3)2 a(2)1

This describes the relevant k-graph to V(2,3). So let us describe the associated path groupoid

G(2,3).

• The unit space is formed of infinite paths x ∈Λ∞(2,3) alternating between the two colours,

up to the equivalence relation induced by the commutation relations.

• Elements of the groupoid are triples:

(x,m1 −m2,y) ∈Λ
∞(2,3)×Z2×Λ

∞(2,3)

Let m1−m2 = (m1,1,m1,2)− (m2,1,m2,2). The arrow takes the infinite path x, removes the

first m2,1 sections of blue path in x, replacing them with the first m1,1 sections of blue path

in y. Similarly, it removes the first m2,2 sections of red path in x, replacing them with the

first m2,2 sections of red path in y. In doing this, x is mapped to y (they are necessarily tail

equivalent).

• The topology (topologically) and the inverse semigroup of bisections (algebraically) are

generated by the cylinder sets of the form Z(λ ,µ), is a homeomorphism Z(λ)→Z(µ),λx↦

µx.

Elements of the topological full group are therefore disjoint unions of the form ⊔l
i=1Z(λi,µi)

where ⊔l
i=1Z(λi),⊔l

i=1Z(µi) form a partition of the entire path space.

Let us sketch a direct isomorphism:

f ∶ F(G(2,3))→V(2,3)

f takes an element ⊔l
i=1Z(λi,µi) of the topological full group to the piecewise linear map

f (⊔l
i=1Z(λi,µi)) in Stein’s group formed of l linear sections, corresponding to each Z(λi,µi).

These linear sections for each i are the unique linear maps that map the interval (φ0(λi),ϕ0(λix1]

associated with λi to the interval (φ0(µi),ϕ0(µix1)] associated with µi. The endpoints of these
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intervals are in Z[1/6]∩ (0,1] and the ratio of the lengths is in ⟨2,3⟩. Their union therefore

defines a unique element of V(2,3).

Lemma 7.4.21 (Homology of groupoids with integral slope sets). Let N = {n1, ...,nk} be a finite

collection of integers, where k > 1. Let d = gcd(n1−1, ...,nk−1). Let ℓ ∈ ΓN be arbitrary.

H∗(ΛN ⋉ΓN ⋉(0+,ℓ−]) ≅

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(Z/dZ)kC∗ ∗ = 0, ...,k−1

0 ∗ ≥ k

Proof. First let us apply Lemma 3.6.5. We have that:

H∗(ΛN ⋉ΓN ⋉(0+,ℓ−]) ≅H∗(ΛN ⋉ΓN ⋉(0+,1−])

Then by combining Lemma 7.4.19 and Corollary 7.2.5, we have that:

H∗(ΛN ⋉ΓN ⋉(0+,ℓ−]) ≅H∗(G(n1,n2, ...,nk))

The homology of the groupoids of single vertex k-graphs was computed in [49], and was shown
to not depend on the underlying commutation relations. Therefore, let d = gcd(n1−1, ...,nk−1).
We have that:

H∗(G(n1, ..,nk)) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(Z/dZ)k−1Ci i = 0, ...,k−1

0 i ≥ k

Corollary 7.4.22. Let N = {n1, ..,nk} be a finite collection of integers with k > 1. Let ℓ ∈ ΓN .

Then V(ΓN ,ΛN ,ℓ) is rationally acyclic. Moreover, V(ΓN ,ΛN ,ℓ) is integrally acyclic if and only

if d = gcd(n1−1, ...,nk−1) = 1.

Proof. Observe that in Lemma 7.4.21, we have that the groupoid ΛN ⋉ΓN ⋉ (0+,ℓ−] is always
rationally acyclic, and is acyclic if and only if d = gcd(n1 − 1, ...,nk − 1) = 1. Then, Theorem
3.6.4 confirms that the topological full group is always rationally acyclic. Similarly, Corollary
D confirms that the topological full group is acyclic if d = 1. Finally, if d ≠ 1, the original
abelianization computation of Stein [116], shows that in this case, the group is not acyclic.

Example 7.4.23. Stein’s integral group V(2,3) is integrally acyclic. Stein’s integral group

V(3,5) is rationally acyclic, but not integrally acyclic.

We end this section by remarking that this realisation of Stein’s groups gives a different
perspective on two of Stein’s key results in [116], namely the higher finiteness properties of
Stein’s integral groups and the computation of their abelianisation.
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Remark 7.4.24 (Alternative Proof of Abelianisation). Let N = {n1, ..,nk} with k > 1. We can

recover Stein’s computation of the abelianization of V(ΓN ,ΛN ,ℓ) in [116] by examining the

exact sequence in Theorem 3.6.7. Let d = gcd(n1, ...,nk) It is clear the abelianisation sur-

jects onto H1(G(n1, ..,nk) = (Z/dZ)k−1. Also, we have that the map H2(G(n1, ..,nk)) =Z
k−1C2
d →

H0(G(n1, ..,nk))⊗Z2 =Zd⊗Z2 is the zero map whenever d is odd, ensuring the surjection is an

isomorphism. If d is even, the image of the above map is Z2 = Zd ⊗Z2. In this case, we get a

split exact sequence that recovers Stein’s computation of the abelianisation.

Remark 7.4.25 (Left regular representations of Garside categories, Type F∞ simple groups).
In Stein’s original paper [116], she was able to show that the integral groups are of type F∞
and are virtually simple. It is interesting to remark that the realisation of Stein’s groups as

the topological full groups arising from certain k-graphs also gives rise to this fact, due to the

Garside framework of Li [78], one may alternatively apply [Theorem C, [78]] to reach the same

conclusion.

Corollary 7.4.26. Let N1 = {n1, ...,nk},N2 = {m1, ...,m j} be two collections of integers. Let

ℓ1 ∈ ΓN1 , ℓ2 ∈ ΓN2 . Then,

ΓN1/NΛN1
≅ ΓN2/NΛN2

≅Zgcd(n1−1,...,nk−1) ≅Zgcd(m1−1,...,m j−1),

and [ℓ1] = [ℓ2] ∈Zgcd(n1−1,...,nk−1).

The converse is unknown.

7.5 Further generalisations

7.5.1 Thompson-like groups acting on noncompact intervals

A modest generalization of our groupoid model allows us to have noncompact unit spaces–
taking for example piecewise linear bijections on R, or on (0,+∞) as in [8], [116].

Definition 7.5.1 (Noncompact V(Γ,Λ,U)). Let Λ be a multiplicative subgroup of R∩ (0,∞),
and Γ be a Z ⋅Λ submodule. Let U be some closed, not necessarily compact, interval in Γ (for

example (0,ℓ], (−∞,0], (0,∞), R). Then, let V(Γ,Λ,U) denote the group of right continuous

piecewise linear bijections of U with compact support, finitely many slopes (all in Λ) and finitely

many nondifferentiable points, (all in Γ).

Using the definition of the topological full group as in Chapter 3, we can realize these gen-
eralisations:

Lemma 7.5.2. Let Λ be a multiplicative subgroup of (0,+∞). Let Γ be a Z ⋅Λ submodule. Let

U be a closed interval of R with endpoints in Γ. Then, V(Γ,Λ,U) ≅ F(Λ⋉Γ⋉U). The derived

subgroup, D(V(Γ,Λ,U)) is simple and vigorous.
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Such groups cannot be finitely generated because they act with full support on noncompact
intervals; the underlying groupoids are not compactly generated.

Remark 7.5.3. Suppose G is a minimal ample groupoid such that A(G) is finitely generated.

Then G is compactly generated by Lemma 3.5.5. A consequence of this is that G(0) is compact,

since then if K was our compact generating set of our groupoid, K only moves a compact subset

of G(0), contradicting minimality. The same argument holds for any minimal ample groupoid.

For this reason, the generalisations do not behave well algebraically with respect to the
natural inclusions. However, these changes are stable under group homology, giving rise to our
most general homological stability result, which appears as Corollary 1.1.16 in the introduction.

Corollary 7.5.4. Let Γ,Λ be arbitrary. Let U1,U2 ⊂ R be closed intervals with endpoints in

Γ∪{−∞,+∞}. Then for all ∗, H∗(V(Γ,Λ,U1)) ≅H∗(V(Γ,Λ,U2)) and H∗(D(V(Γ,Λ,U1))) ≅

H∗(D(V(Γ,Λ,U2)))

Proof. Let U1 be arbitrary let Û1 ⊂RΓ be the unique cylinder set such that q(Û1) =U1. Then the
canonical inclusion:

Λ⋉Γ⋉Û1↪Λ⋉Γ⋉RΓ

is inducing an isomorphism in groupoid homology. Hence by Theorem 3.6.5 this induces an
isomorphism in group homology:

H∗(V(Γ,Λ,U1)) ≅H∗(V(Γ,Λ,R))

H∗(D(V(Γ,Λ,U1))) ≅H∗(D(V(Γ,Λ,R)))

But since U1 was arbitrary, we are done.

We see how to apply this result in practice, by computing the homology of the analogy of
Thompson’s group V that acts on R rather than (0,1].

Example 7.5.5. V(Z[1/2],⟨2⟩,R) is integrally acyclic and simple.

7.5.2 Brin-Stein groups

Another modest generalization of our groupoid model of Stein’s groups gives rise to a broad
class of groups including Brin’s higher-dimensional Thompson groups. We call these groups
Brin-Stein groups, being a cross between Brin’s and Stein’s generalisations of Thompson’s
group V

Definition 7.5.6 (Brin-Stein Groups). Let n ∈N. For 1 ≤ i ≤ n, let Λi be a multiplicative subgroup

of R, Γi be a Z ⋅Λi-submodule. Let ℓ ∈ ⋂n
i=1 Γi. Then let V(n,{Λi}

n
i=1,{Γi}

n
i=1,ℓ) denote the
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bijections f ∶ (0,ℓ]n→ (0,ℓ]n such that, for all i = 1, ..,n and all x = (x1, ..,xn−1) ∈ (0,ℓ]n−1, if we

consider the map:

fi,x ∶ (0,ℓ]→ (0,ℓ] t ↦ f (x1, ..,xi−1,t,xi, ..,xn−1)i

This map describes a right continuous piecewise linear bijection of (0,ℓ] with finitely many

slopes, all in Λi and nondifferentiable points all in Γi.

This definition encompasses the classical Brin-Higman-Thompson groups.

Example 7.5.7 (Brin-Higman-Thompson Groups). Let n,r ∈N,k > 2. For all 1≤ i≤ n, let Λi = ⟨k⟩,

Γi =Z[1/k]. Then,

V(n,{⟨k⟩}n
i=1,{Z[1/k]}

n
i=1,r) ≅ nVk,r

Where nVk,r are the regular Brin-Higman-Thompson groups, as in [21], [90]

We also describe interesting new examples in two main veins. The first is higher dimensional
Thompson groups with irrational slopes:

Example 7.5.8 (nVτ ). For example, if we take τ to be the small golden ratio, n ∈N then we define

nVτ to be V(n,{⟨τ⟩}n
i=1,{Z[τ,τ−1]}n

i=1,1)- a higher dimensional analogue of Cleary’s group Vτ .

The second class of examples is higher dimensional Thompson groups with mixed slopes:

Example 7.5.9 (V3×2). Let n = 2, Λ1 = ⟨2⟩,Λ2 = ⟨3⟩, Γ1 = Z[1/2],Γ2 = Z[1/3]. Then V(2,{⟨i+
1⟩}2

i=1,{Z[1/(i+1)]}2
i=1,1) describes a higher dimensional Thompson group whose slopes are

in ⟨2⟩ parallel to the x-axis and in ⟨3⟩ parallel to the y-axis. Concrete examples in the above

class remain mysterious. For example, we cannot determine if the group V3×2 described above

is isomorphic to 2V .

We realize these groups as topological full groups by considering Cartesian products of
groupoids, inspired by Matui [90]:

Lemma 7.5.10 (Brin-Stein groups as Topological Full Groups). Let n ∈N. For 1 ≤ i ≤ n, let Λi

be a multiplicative subgroup of R, Γi be a Z ⋅Λi-submodule. Let ℓ ∈ ⋂n
i=1 Γi. For each i, let

Gi =Λi⋉Γi⋉(0+,ℓ−] be the groupoid as in Lemma 7.2.2.

Then let V(n,{Λi}
n
i=1,{Γi}

n
i=1,ℓ) be the higher dimensional Stein groups as in Definition

7.5.6. We have that:

V(n,{Λi}
n
i=1,{Γi}

n
i=1,ℓ) ≅ F(G1× ....×Gn)

Much of the study of these groups as topological full groups reduces to studying the com-
ponent of groupoids Gi in the Cartesian product. This is because many groupoid properties are
preserved by Cartesian products.
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Lemma 7.5.11 (Groupoid Properties Preserved by Cartesian products). Let G1,G2 be effective,

ample groupoids with G(0)1 homeomorphic to the Cantor space.

1. If G1,G2 are minimal, G1×G2 is minimal.

2. If G1 is purely infinite, G1×G2 is purely infinite.

3. If G1,G2 are expansive, G1×G2 is expansive.

Proof. Let us prove these properties one by one.

1. If G1,G2 are minimal, let (x1,x2),(y1,y2) ∈ (G1 ×G2)
(0) be arbitrary. For x1,y1 ∈ G

(0)
1 ,

by minimality, there exists g ∈ G1 such that s(g) = x1,r(g) = y1. Simultaneously, for all
x2,y2 ∈ G

(0)
2 , by minimality, there exists h ∈ G2 such that s(h) = x2,r(h) = y2. Therefore for

all (x1,x2),(y1,y2) ∈ (G1×G2)
(0), (g,h) satisfies s(g,h) = (x1,x2), r(g,h) = (y1,y2).

2. This is straightforward. Let A1×A2 be an arbitrary compact open subset of (G1×G2)
(0).

Then A1 is a compact open subset of G(0)1 . Appplying the definition of pure infiniteness,
we have there exists compact open bisections B,B′ G1 such that s(B) = r(B′) = A1, r(B)∩

r(B′) = ∅, r(B)⊔ r(B′) ⊂ A. Therefore for the compact open bisections B×A2,B′ ×A2 in
G1×G2, it satisfies the definition of pure infiniteness.

3. To show this, one just considers the Cartesian product of the compact generating sets
K1,K2 of the groupoids G1,G2, to obtain a compact generating set K1 ×K2 of G1 ×G2.
Moreover, one can consider the (pairwise) Cartesian product of the expansive cover, and
this will be an expansive cover for G1×G2.

It would be interesting to understand the other properties of topological full groups that are
preserved under Cartesian products of the underlying groupoids.

We obtain via the Kunneth formula the following results for higher-dimensional analogues
of Stein’s groups:

Theorem 7.5.12. Let n ∈N. For 1 ≤ i ≤ n, let Λi be a multiplicative subgroup of R, Γi be a Z ⋅Λi-

submodule. Let ℓ ∈ ⋂n
i=1 Γi. Then let V(n,{Λi}

n
i=1,{Γi}

n
i=1,ℓ) be the higher dimensional Stein

groups as in Definition 7.5.6. The derived subgroups D(V(n,{Λi}
n
i=1,{Γi}

n
i=1,ℓ)) are simple,

vigorous. Moreover, if the groups D(V(Λi,Γi,ℓ)) are finitely generated for i = 1, ...,n, then

D(V(n,{Λi}
n
i=1,{Γi}

n
i=1,ℓ)) is finitely generated.

Proof. The first statement follows by observing that the groupoids forming the product are al-
ways minimal and purely infinite, by Lemma 7.2.4 and Lemma 7.2.7. Then by Lemma 7.5.11
the product of the groupoids is purely infinite minimal and so by Theorem 5.1.21, the topo-
logical full group is simple and vigorous. The final statement follows from Lemma 7.5.11 and
Corollary 7.3.6, in conjunction with Theorem 3.5.2.
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Corollary 7.5.13. Let n ∈N. For 1≤ i≤ n, let Λi be a multiplicative subgroup of R+, generated by

finitely many numbers and Γi be a Λi-submodule. Then D(V(n,{λi}
n
i=1,{Γi}

n
i=1,ℓ)) is a simple

finitely generated vigorous group.

Remark 7.5.14. One can also “twist” these groupoids in an entirely analogous way to the

topological full groups introduced by Belk-Zaremsky [7], seen in Example 4.4.14 and used sub-

sequently in the resolution of the Boone-Higman conjecture for hyperbolic groups [5]. It is

notable that these twisted Brin-Stein groups have interesting embeddings which do not obvi-

ously appear in the usual twisted Brin-Thompson groups, such as Juschenko-Monod groups,

as demonstrated in Remark 7.1.3. The study of such groups could therefore be interesting in

studying the Boone-Higman conjecture.

Also via the Kunneth formula (Lemma 2.4.8), we can study the homology of these groups.

Corollary 7.5.15. Let n ∈ N. For 1 ≤ i ≤ n, let Λi be a multiplicative subgroup of R, Γi be a

Z ⋅Λi-submodule. Let ℓ ∈ ⋂n
i=1 Γi. Then let V(n,{Λi}

n
i=1,{Γi}

n
i=1,ℓ) be the higher dimensional

Stein groups as in Definition 7.5.6.

• Suppose that for some i, the groupoid Λi⋉Γi⋉(0+,ℓ−] is acyclic.

Then, V(n,{Λi}
n
i=1,{Γi}

n
i=1,ℓ) is acyclic.

• Suppose that for some i, the groupoid Λi ⋉Γi ⋉ (0+,ℓ−] is rationally acyclic. Then, the

group V(n,{Λi}
n
i=1,{Γi}

n
i=1,ℓ) is rationally acyclic.

Proof. This proof is simple application of Lemma 2.4.8, combined with Corollary 3.6.3 and
Corollary 3.6.4.

Note that the above result confirms the result of Li that the Brin-Thompson groups nV are
integrally acyclic, but also that mixed groups such as V2×3 from Example 7.5.9 are integrally
acyclic.

Corollary 7.5.16 (Embedding into simple finitely generated groups). Let V(Γ,Λ,ℓ) be finitely

generated. Consider the 2 dimensional analogue that combines V(Γ,Λ,ℓ)with V(Z[1/2],⟨2⟩,ℓ),
i.e.

V(2,{Γ,Z[1/2]},{Λ,⟨2⟩},ℓ)

This is a simple, finitely generated group which V(Γ,Λ,ℓ) embeds into.

Similar ideas can be used to show certain facts about the homology of the higher dimensional
analogues of Stein’s groups. For example, there are ways to describe the abelianization of
these higher-dimensional analogues of Steins groups in terms of the constituent one-dimensional
groups. Let us show by example how one can compute the abelianisation of one of these Brin-
Stein groups:
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Example 7.5.17 (nVτ is perfect simple and finitely generated for n > 1.). Following on from Ex-

ample 7.5.8, let us first compute (2Vτ)ab. Recall that the groupoid homology of ⟨τ⟩⋉Z[τ,τ−1]⋉

(0+,1+] has been computed previously:

H∗(⟨τ⟩⋉Z[τ,τ−1]⋉(0+,1+]) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Z2 ∗ = 1

0 otherwise

Let G1 = G2 = ⟨τ⟩⋉Z[τ,τ−1]⋉(0+,1+]. By the Kunneth formula for ∗ = 0, we have.

0→H0(G1)⊗H0(G2)→H0(G1×G2)→ 0→ 0

So H0(G1×G2) = 0. Similary, if we apply the Kunneth formula for ∗ = 1

0→H1(G1)⊗H0(G2)⊕H0(G1)⊗H1(G2)→H1(G1×G2)→ Tor(H0(G1),H0(G2))→ 0

So H1(G1×G2)= 0. Hence by Theorem 3.6.7, (2Vτ)ab = 0. So assume that H0(G
×n
1 )=H1(G

×n
1 )= 0

is true for n ≥ 2. For n+1 we have by the Kunneth formula around ∗=0, that there is a short

exact sequence:

0→H0(G1)⊗H0(G
×n
1 )→H0(G

×n+1
1 )→ 0

so that H0(G
×n+1
1 ) = 0 by inductive hypothesis. Similarly, for ∗ = 1, and n+1 we have by the

Kunneth formula:

0→H1(G1)⊗H0(G
×n
1 )⊕H0(G1)⊗H1(G

×n
1 )→H1(G1×G

×n
1 )→ Tor(H0(G1),H0(G

×n
1 ))→ 0

Which reveals that H1(G
×n+1
1 ) = 0 by inductive hypothesis. Therefore, due to the AH long exact

sequence (Theorem 3.6.7) ((n+1)Vτ)ab = 0, concluding the proof by induction.

We claim this group is, in addition, simple and finitely generated. This follows as a conse-

quence of Corollary 7.5.13 in combination with Theorem 7.3.12.

7.6 Outlook

Many things remain to be understood about Stein’s groups. Notably, their classification remains
open in general:

Question 7.6.1. Let Λ0,Λ1 be nontrivial multiplicative subgroups of R+, Γi be Z ⋅Λi submodules

for i = 1,2 and ℓi ∈ Γi be arbitrary. When is V(Γ1,Λ1,ℓ1) ≅V(Γ2,Λ2,ℓ2)?

A smaller goal would be to ask if the converse to Corollaries 7.4.18 and 7.4.26 holds, i.e.
there are isomorphism when the (pointed) homology of the groupoids are isomorphic (as in the
Higman Thompson case). An immediate counterexample would be to show that the integral
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groups V(2,3) /≅V(2,5) which is already unclear. One step towards understanding their classi-
fication would be to compute various invariants associated to the groupoids. We do not yet fully
understand the groupoid homology:

Question 7.6.2. Let Λ be a multiplicative subgroup of R+, Γ be a Z ⋅Λ-submodule ℓ ∈ Γ be

arbitrary. What is the homology of (Λ⋉Γ)⋉(0+,ℓ−]?

We also do not understand the Elliot invariant (K-theory) of the associated C*-algebras,
which also may be thought of as an invariant of V(Γ,Λ,ℓ).

Question 7.6.3. Let Λ be a multiplicative subgroup of R+, Γ be a Z ⋅Λ-submodule ℓ ∈ Γ be

arbitrary. What is the K-theory of Λ⋉Γ⋉C((0+,ℓ−])?

We also do not completely understand the higher finiteness properties of Stein’s groups. We
ask:

Question 7.6.4. Let Λ be a multiplicative subgroup of R+, Γ be a Z ⋅Λ-submodule ℓ ∈ Γ be

arbitrary. Is D(V(Γ,Λ,ℓ)) finitely presented?

A final thing to notice is that, due to Li’s perspective of the underlying groupoids, that they
are full corners in the universal groupoids of cancellative semigroups, it would be interesting to
make a systemic study into the topological full groups of such groupoids in general, since they
are a natural class of groupoids generalising the groupoid model for Stein’s groups.



Bibliography

[1] Claire Anantharaman and Jean Renault. Amenable groupoids. Contemporary Mathemat-

ics, 282:35–46, 2001.

[2] Pere Ara, Christian Bönicke, Joan Bosa, and Kang Li. The type semigroup, comparison,
and almost finiteness for ample groupoids. Ergodic Theory and Dynamical Systems,
43(2):361–400, 2023.

[3] AV Arkhangel skiui and Mikhail Tkachenko. Topological groups and related structures,
volume 1. Atlantis press, 2008.

[4] Erik Bédos and Tron Omland. C∗-irreducibility for reduced twisted group C∗-algebras.
Journal of Functional Analysis, 284(5):109795, March 2023.

[5] James Belk, Collin Bleak, Francesco Matucci, and Matthew CB Zaremsky. Hyperbolic
groups satisfy the Boone-Higman conjecture. arXiv preprint arXiv:2309.06224, 2023.

[6] James Belk, Collin Bleak, Francesco Matucci, and Matthew CB Zaremsky. Progress
around the Boone-Higman conjecture. arXiv preprint arXiv:2306.16356, 2023.

[7] James Belk and Matthew CB Zaremsky. Twisted Brin–Thompson groups. Geometry &

Topology, 26(3):1189–1223, 2022.

[8] Robert Bieri and Ralph Strebel. Groups of piecewise linear homeomorphisms of the real

line, volume 215. Mathematical Surveys and Monographs, 2016.

[9] Bruce Blackadar. Symmetries of the CAR algebra. Annals of Mathematics, 131(3):589–
623, 1990.

[10] François Blanchard, Alejandro Maass, Arnaldo Nogueira, et al. Topics in symbolic dy-

namics and applications, volume 279. Cambridge University Press, 2000.

[11] Collin Bleak, Luke Elliott, and James Hyde. Sufficient conditions for a group of homeo-
morphisms of the cantor set to be two-generated. Journal of the Institute of Mathematics

of Jussieu (to appear), 2024.

169



BIBLIOGRAPHY 170

[12] Collin Bleak and Kate Juschenko. Ideal structure of the C*-algebra of Thompson group T.
London Mathematical Society Lecture Note Series. Cambridge University Press, United
Kingdom, April 2016.

[13] Collin Bleak, Francesco Matucci, and Max Neunhöffer. Embeddings into Thompson’s
group V and co CF groups. Journal of the London Mathematical Society, 94(2):583–597,
2016.

[14] Collin Bleak and Martyn Quick. The infinite simple group V of Richard J. Thomp-
son: presentations by permutations. Groups, Geometry, and Dynamics, 11(4):1401–1436,
2017.

[15] Nicolás Matte Bon. Topological full groups of minimal subshifts with subgroups of in-
termediate growth. Journal of Modern Dynamics, 9(1):67–80, 2015.

[16] Nicolás Matte Bon. Rigidity properties of full groups of pseudogroups over the Cantor
set. arXiv preprint arXiv:1801.10133, 2018.

[17] Christian Bönicke, Clément Dell’Aiera, James Gabe, and Rufus Willett. Dynamic asymp-
totic dimension and Matui’s HK conjecture. Proceedings of the London Mathematical

Society, 126(4):1182–1253, 2023.

[18] Christian Bönicke and Kang Li. Ideal structure and pure infiniteness of ample groupoid
C∗-algebras. Ergodic Theory and Dynamical Systems, 40(1):34–63, 2020.

[19] Christian Bönicke and Kang Li. Nuclear dimension of subhomogeneous twisted groupoid
C∗-algebras and dynamic asymptotic dimension. arXiv preprint arXiv:2309.17178, 2023.

[20] Matthew G Brin. The chameleon groups of Richards J. Thompson: automorphisms and
dynamics. Publications Mathématiques de l’IHÉS, 84:5–33, 1996.

[21] Matthew G Brin. Higher dimensional Thompson groups. Geometriae Dedicata, 108:163–
192, 2004.

[22] Kevin Aguyar Brix. Open problems from the GLASGOW workshop, august 2022,
https://sites.google.com/view/glasgow2022/open-problems.

[23] Kevin Aguyar Brix. Sturmian subshifts and their C∗-algebras. Journal of Operator The-

ory, 90:523–544, 2023.

[24] Kevin Aguyar Brix and Eduardo Scarparo. C∗-simplicity and representations of topolog-
ical full groups of groupoids. Journal of Functional Analysis, 277(9):2981–2996, 2019.

[25] Kenneth S Brown. Finiteness properties of groups. Journal of Pure and Applied Algebra,
44(1-3):45–75, 1987.



BIBLIOGRAPHY 171

[26] Kenneth S Brown. The geometry of finitely presented infinite simple groups. In Algo-

rithms and classification in combinatorial group theory, pages 121–136. Springer, 1992.

[27] Kenneth S Brown. Cohomology of groups, volume 87. Springer Science & Business
Media, 2012.

[28] Chris Bruce and Xin Li. Algebraic actions I. C∗ -algebras and groupoids. Journal of

Functional Analysis, 286(4):110263, 2024.

[29] José Burillo, Sean Cleary, and Claas E Röver. Obstructions for subgroups of Thompson’s
group V. Geometric and cohomological group theory, 444:1, 2017.

[30] José Burillo, Brita Nucinkis, and Lawrence Reeves. An irrational-slope Thompson’s
group. Publicacions Matemàtiques, 65(2):809–839, 2021.

[31] José Burillo, Brita Nucinkis, and Lawrence Reeves. Irrational-slope versions of
Thompson’s groups T and V. Proceedings of the Edinburgh Mathematical Society,
65(1):244–262, 2022.

[32] James W Cannon, William J Floyd, and Walter R Parry. Introductory notes on Richard
Thompson’s groups. Enseignement Mathématique, 42:215–256, 1996.

[33] Alan Carey, John Phillips, I. Putnam, and Adam Rennie. Families of type III KMS
states on a class of C∗-algebras containing On and QN. Journal of Functional Analy-

sis, 260:1637–1681, 03 2011.

[34] Jorge Castillejos, Samuel Evington, Aaron Tikuisis, Stuart White, and Wilhelm Winter.
Nuclear dimension of simple C*-algebras. Inventiones mathematicae, 224(1):245–290,
2021.

[35] Yemon Choi, Eusebio Gardella, and Hannes Thiel. Rigidity results for lp-operator alge-
bras and applications. arXiv preprint:1909.03612, 2019.

[36] Maksym Chornyi, Kate Juschenko, and Volodymyr V Nekrashevych. On topological full
groups of Zd-actions. Groups, Geometry, and Dynamics, 14(1):61–79, 2020.

[37] Sean Cleary. Groups of piecewise-linear homeomorphisms with irrational slopes. The

Rocky Mountain Journal of Mathematics, 25(3):935–955, 1995.

[38] Sean Cleary. Regular subdivision in Z((1+
√

5)/2). Illinois Journal of Mathematics,
44(3):453–464, 2000.

[39] María Isabel Cortez and Konstantin Medynets. Orbit equivalence rigidity of equicontin-
uous systems. Journal of the London Mathematical Society, 94(2):545–556, 2016.



BIBLIOGRAPHY 172

[40] Joachim Cuntz, Siegfried Echterhoff, Xin Li, and Guoliang Yu. K-theory for Group C*-

algebras and Semigroup C*-algebras. Springer, 2017.

[41] Kenneth R Davidson. C∗-algebras by example, volume 6. American Mathematical Soci-
ety, 1996.

[42] Yves de Cornulier. Groupes pleins-topologiques, d’aprs Matui. In Juschenko,

Monod,...,(written exposition of the Bourbaki Seminar of January 19th, 2013, available

at http://www. normalesup. org/˜ cornulier/plein. pdf), 2013.

[43] Robin J Deeley. A counterexample to the HK-conjecture that is principal. Ergodic Theory

and Dynamical Systems, 43(6):1829–1846, 2023.

[44] Warren Dicks and Conchita Martínez-Pérez. Isomorphisms of Brin-Higman-Thompson
groups. Israel Journal of Mathematics, 199(1):189–218, 2014.

[45] Artem Dudko and Konstantin Medynets. Finite factor representations of Higman-
Thompson groups. Groups, Geometry, and Dynamics, 8(2):375–389, 2014.

[46] Gabor Elek. Amenable purely infinite actions on the non-compact Cantor set. Ergodic

Theory and Dynamical Systems, 40(6):1619–1633, 2020.

[47] Ruy Exel and David R Pitts. Characterizing groupoid C∗-algebras of non-Hausdorff étale

groupoids, volume 2306. Springer Nature, 2022.

[48] Daniel S Farley. Proper isometric actions of Thompson’s groups on Hilbert space. Inter-

national Mathematics Research Notices, 2003(45):2409–2414, 2003.

[49] Carla Farsi, Alex Kumjian, David Pask, and Aidan Sims. Ample groupoids: Equivalence,
homology, and Matui’s HK conjecture. Münster Journal of Mathematics, 12(2), 2019.

[50] Martin Fluch, Marco Marschler, Stefan Witzel, and Matthew Zaremsky. The Brin–
Thompson groups sV are of type F infinity. Pacific Journal of Mathematics, 266(2):283–
295, 2013.

[51] Eusebio Gardella and Owen Tanner. Generalisations of Thompson’s group V arising from
purely infinite groupoids. arXiv preprint arXiv:2302.04078, 2023.

[52] Thierry Giordano, Ian Putnam, and Christian Skau. Affable equivalence relations and
orbit structure of Cantor dynamical systems. Ergodic Theory and Dynamical Systems,
24(2):441–475, 2004.

[53] Thierry Giordano, Ian F Putnam, and Christian F Skau. Full groups of Cantor minimal
systems. Israel Journal of Mathematics, 111(1):285–320, 1999.



BIBLIOGRAPHY 173

[54] Werner Greub. Multilinear Algebra. Springer, 1978.

[55] Erik Guentner, Rufus Willett, and Guoliang Yu. Dynamic asymptotic dimension: rela-
tion to dynamics, topology, coarse geometry, and C∗-algebras. Mathematische Annalen,
367(1-2):785–829, 2017.

[56] Uffe Haagerup and Kristian Knudsen Olesen. Non-inner amenability of the Thompson
groups T and V. Journal of Functional Analysis, 272(11):4838–4852, 2017.

[57] Johanna Hennig and Francesco Matucci. Presentations for the higher-dimensional
Thompson groups nV. Pacific Journal of Mathematics, 257(1):53–74, 2012.

[58] Graham Higman. A finitely generated infinite simple group. Journal of the London

Mathematical Society, 1(1):61–64, 1951.

[59] Graham Higman. Finitely presented infinite simple groups, volume 8. Department of
Pure Mathematics, Department of Mathematics, IAS, Australian . . . , 1974.

[60] Kate Juschenko, Nicolás Matte Bon, Nicolas Monod, and Mikael De La Salle. Extensive
amenability and an application to interval exchanges. Ergodic Theory and Dynamical

Systems, 38(1):195–219, 2018.

[61] Kate Juschenko and Nicolas Monod. Cantor systems, piecewise translations and simple
amenable groups. Annals of mathematics, pages 775–787, 2013.

[62] Anatole Katok and Boris Hasselblatt. Introduction to the modern theory of dynamical

systems. Cambridge University Press, 1995.

[63] Anatole B Katok and Anatolii M Stepin. Approximations in ergodic theory. Russian

Mathematical Surveys, 22(5):77, 1967.

[64] David Kerr. Dimension, comparison, and almost finiteness. Journal of the European

Mathematical Society, 22(11):3697–3745, 2020.

[65] David Kerr and Spyridon Petrakos. Mcduff factors from amenable actions and dynamical
alternating groups. arXiv preprint arXiv:2311.08192, 2023.

[66] David Kerr and Gábor Szabó. Almost finiteness and the small boundary property. Com-

munications in Mathematical Physics, 374(1):1–31, 2020.

[67] David Kerr and Robin Tucker-Drob. Dynamical alternating groups, stability, property
gamma, and inner amenability. Annales Scientifiques de L’école Normale Supériure,
1(56):59–90, 2023.



BIBLIOGRAPHY 174

[68] Dessislava H Kochloukova, Conchita Martínez-Pérez, and Brita EA Nucinkis. Cohomo-
logical finiteness properties of the Brin–Thompson–Higman groups 2V and 3V. Proceed-

ings of the Edinburgh Mathematical Society, 56(3):777–804, 2013.

[69] Alex Kumjian and David Pask. Higher rank graph-algebras. The New York Journal of

Mathematics [electronic only], 6:1–20, 2000.
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