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Abstract

Structured light, recognised for its intricate spatial patterns in amplitude, phase and
polarisation, has captivated researchers not only within the field of optics, but across
various other disciplines. In this thesis, I cover topics centred around vector beams,
known for their spatially varying polarisation distributions, highlighting some of the
not so obvious (hidden) properties and structures within shaped light.

Many key aspects of structured light will be explored, ranging from technical
considerations, more fundamental concepts (for example, geometric phases and op-
tical skyrmions), and applications. The technical aspects of this thesis surround the
generation of arbitrary vector beams using digital devices and their tomography.
Applications that will be presented include single-shot Mueller matrix determina-
tion and a quantum key distribution protocol.

In optics, additional phase shifts arise due to the geometry of the system in
which a beam propagates. Here, we present an experimental investigation into the
non-planar propagation of scalar and vector light fields, demonstrating the rotation
of both polarisation and intensity profiles and linking the rotations seen to geometric
phases. The geometric phase acquired upon non-planar propagation is proportional
to the total angular momentum number of the beam, allowing the concept of the
angular momentum redirection phase to be introduced.

Optical skyrmions are topological structures embedded within the polarisation
structures of vector light beams. We will present a new topological method for
identifying and characterising skyrmion beams, using polarisation singularities and
associated winding numbers. This approach provides an intuitive geometric insight
and can be more robust when analysing noisy experimental data. Additionally,
we present the propagation of optical skyrmions and a new method of generating
tunable optical multi-skyrmions.

The tomography of vector beams is normally carried out using multiple sequen-
tial measurements in order to determine spatially varying polarisation profiles as
well as spatial mode decomposition. Here, we present a system for the single-shot
characterisation of vector beams by performing positive operator valued measure-
ments, building on previous work. The measurements are performed using a Sagnac
interferometric setup with proven stability over hours. The single-shot nature al-
lows for superior acquisition speeds in comparison to other techniques, allowing for
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time-resolved measurements. This will be demonstrated through dynamic Muller
matrix polarimetry to measure changing optical activity, with a temporal resolution
limited only by the camera frame rate.

Towards the end of this thesis, I also explore how vector beams can be used to
implement a rotational reference frame invariant quantum key distribution protocol,
their invariance to unitary perturbations, and also introduce and characterise a new
family of orthonormal beams, the complex Zernike modes.

This thesis covers a diverse range of concepts, united by the theme of structured
light, specifically, the topological structures within vector beams, their fundamental
properties and applications. Here, we aim to show that by fully understanding and
engaging with the additional degrees of freedom offered by vector light beams, we
can unlock new possibilities, applications and theoretical insights that will further
the field of optics.
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Introduction

Optics is perhaps the oldest discipline of physics, with its roots lying within ancient
astronomy. The field began with the development of lenses made from polished
crystal, by the ancient Egyptians and Mesopotamians, or by filling glass spheres
with water, as done by the ancient Romans and Greeks. Shortly after, geometric
optics was born, describing light as propagating rays with the use of simple geometry.
A concise history of the field of light and optics up until the start of the 21st century
is given by Hecht in the first chapter of Ref. [1].

The diffraction of light was first recorded by Professor Francesco Maria Grimaldi
(1618–1663), which later led to the first hypothesis of the wave-like nature of light
in the late 17th century by Robert Hooke (1635–1703), after also observing the
diffraction phenomenon. At about the same time, Christiaan Huygens (1629–1695)
introduced the first mathematical description of light, derived the Laws of Reflec-
tion and Refraction and even discovered polarisation, all of which have become
fundamental concepts in optics.

In the mid-1900s, there were two significant inventions that are related to the
work that will be presented in this thesis and are therefore worth highlighting. The
first is that of holography, introduced by Gabor in 1948 [2], and is a technique
allowing the recording and reconstruction of wavefronts. The second is the devel-
opment of the laser in 1960 [3], which brought about significant advancements, in
not just optics but within science and technology more generally. Lasers produce
highly coherent light beams, and are available in a wide variety of specifications,
such as wavelength, power, and the option between continuous wave and pulsed
outputs. Laser technology has found many applications, from gas sensing [4, 5],
measuring object distances (LIDAR) [6, 7], spectroscopy [8], microscopy [9, 10] and
communication [11,12].

The invention of the laser also made an impact in the area of structured light
[13]. Structured light refers to the tailoring of the properties of a light beam, for
example, its intensity, phase, wavelength or polarisation [14]. In fact, it was the
advent of the laser along with holographic techniques that really propelled this sub-
field of optics, along with the emergence of small devices which allow the dynamic
spatial control of light beams, which in turn, allow the implementation of computer
generated holograms. Two such devices which have become popular in the optics
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Introduction 2

and structured light communities are spatial light modulators (SLMs) and digital
micromirror devices (DMDs) [15–18].

Classical optics has a long history, nevertheless, despite how developed the field
has become, modern optics continues to surprise and intrigue researchers. Whilst
some concepts, such as the wave nature of light, is rarely questioned, other optical
effects still intrigue us, and, it is perhaps surprising how much there is still to be
explored with classical light.

In contrast to the extensive history of optics overall, the field of structured
light as we recognise it today remains relatively young, accelerating in the early
to mid-2000s when photonic devices in the form of re-writable SLMs and DMDs
became commercially available, along with advances in readily accessible computing
power [13]. Structured light has many applications, arising from the flexibility in the
control of light fields. Examples include microscopy, where particular shaped light
beams have been shown to provide smaller focal spots [19,20], optical trapping and
tweezing of small particles [21], microstructure fabrication [22, 23], and for optical
communications, where structured beams can enable efficient data transmission by
offering additional degrees of freedom [24–27].

In this thesis, the focus will be less on the applications of structured light fields
but instead, more on the properties of the beams themselves. Specifically, this work
will concentrate mainly on a particular class of shaped light, known as vector beams,
which contain spatially varying polarisation. The experimental generation of these
beams will be discussed as well as ways of generating and controlling other arbitrary
structured light fields.

In Chapter 3, I will present the first project undertaken as part of my PhD,
looking at geometric phases of vector beams. Geometric phases are an important
and central concept in physics, particularly in optics, where optics played a vital role
in its discovery and in developing the theoretical framework. And it is in the field
of optics where the first experimental demonstrations were carried out [28]. For this
experiment, we look at the combined effects of two geometric phases, specifically
the spin- and orbital-redirection phases, by propagating vector beams along a non-
planar trajectory.

In recent years, topological structures that can be found in optics and structured
light fields have become of interest. In chapter 4, I focus on the experimental
generation and identification of vector beams containing skyrmionic structures. I
will provide a theoretical overview of the topological properties of such beams, with
a comparison to skyrmions found in other areas of physics, introduce a new way of
characterising them, and new ways of generating multi-skyrmions.

Chapter 5 concerns the tomography of vector beams using generalised measure-
ments. The experimental scheme I will introduce is based on a Sagnac interferometer
configuration and allows the spatially varying polarisation profiles of vector beams
to be obtained with a single camera frame. In this chapter, I will also demonstrate
an application of this experimental measurement system in the form of dynamic
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Introduction 3

Mueller matrix polarimetry. This is useful for determining optical activity changes
over time and could be applied to the investigation of biological samples or chemical
reaction processes.

Optics is widely used for communication applications and, due to the ability
to generate and control single photons and send them long distances using optical
fibres, optics provides a favourable platform for the implementation of quantum
key distribution (QKD) protocols, allowing for theoretically secure communication
channels [29–33]. In chapter 6, I present a QKD protocol using rotationally symmet-
ric vector beams as basis states, and a measurement system that makes the entire
protocol rotational reference frame invariant. The measurement system incorpo-
rates a solid glass optical component known as a Fresnel cone, which relies solely on
total internal reflection [34]. The Fresnel cone can also be used as a static device
for generating vector beams, and the mechanism behind this will be explained, and
examples shown.

Finally, in chapter 7, I will describe two additional short projects undertaken as
part of my PhD work. These projects were completed in collaboration with other
universities and as an aside to my main PhD work. Nonetheless, the experiments are
related to this thesis and my contribution will be discussed. The first project con-
cerned the experimental generation and characterisation of a new family of spatial
light beams - complex Zernike modes. The second project looked at the invariance
of the “vectorness” of vector beams to unitary perturbations. For my contribution, I
investigated the invariance of vector beams after propagating through chiral media.

All of these projects are linked in that they are concerned with structured light
beams and either their properties or applications. However, the theoretical aspects
of each are quite distinct. Therefore, I have chosen to structure this thesis such that
all the required theory for each project is contained within the relevant chapter. In
Chapter 1, I will give a broad overview of structured light and the basic background
theory common to all of the individual projects completed throughout my PhD.
In Chapter 2, I will give the details pertaining to the experimental generation and
analysis of vector beams with spatially varying polarisation, as well as some other
experimental details and considerations required for all of the different experiments
that will be discussed. The remaining chapters will then focus on the specific theory
and experimental details belonging to one individual project, presenting the relevant
results therein.
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Chapter 1

Background theory and
conventions

1.1 Chapter 1 introduction

In this chapter, I will provide the background theory that is relevant to all of the
individual projects completed throughout my PhD. The theory presented here forms
the foundation on which the work shown in this thesis is derived. I will start by
giving an overview of the wave nature of light as well as introducing the concept of
polarisation and the different ways in which it can be represented.

In § 1.4, I present the mathematical description of the Gaussian beam and its
higher order modes, before moving on to discuss structured light more generally
and the differences between scalar and vectorial light fields. Descriptions of general
vector beams will be given, along with how we can theoretically construct light
beams with spatially varying polarisation. With this, I will give a brief introduction
to some of the structures and topologies that can be found in beams with spatially
varying polarisation.

Finally, I will discuss the angular momentum of light, comparing both the spin
and orbital components.

1.2 The wave theory of light and the wave equation

The nature of light is central to the complete treatment and understanding of the
field of optics. Furthermore, understanding light as a wave is paramount to the
structuring of light fields in both the scalar and vectorial regimes.

Isaac Newton (1642-1727) proposed that light consists of particles (photons),
whereas Christian Huygens (1629–1695) took opposing views, believing that light
behaved as a wave, propagating perpendicular to its direction of motion [1]. This
brought about the much contested question: “Is light a particle or a wave?” The
concept of wave particle duality from quantum mechanics embraces the different
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properties of light, acknowledging that particles can exhibit wave-like qualities, and
waves particle-like qualities, depending on the experimental circumstances [35].

James Clerk Maxwell’s 1865 paper [36], and subsequent developments, made
evident the electromagnetic nature of light. The field of quantum electrodynamics
describes electromagnetic interactions and energy transport in terms of the mass-
less photons [37]. However, in optics, the quantum nature of light is not always
apparent, and it is more often than not, not a practical concern (as is the case for
the work presented in this thesis). Despite this, both the classical and quantum
mechanical approaches to the treatment of light use the mathematical description
of waves, as such, I will begin with a description of how the vectorial wave nature
of light emerges from Maxwell’s equations.

Normally, and for the work that will be presented here, we are concerned with
light travelling in free space, therefore, assuming a vacuum and in the absence of
free charges, Maxwell’s Equations can be written as [1],

∇ · E = 0 (1.1a) ∇× E = −∂B
∂t

(1.1b)

∇ ·B = 0 (1.1c) ∇×B = µ0ε0
∂E

∂t
(1.1d)

where E is the electric field, B the magnetic field, µ0 and ε0 are the permeability and
permittivity of free space, respectively, and ∇ is the nabla operator. Individually,
there four equations are the differential form of Gauss’s Law for electric fields and
magnetic fields (Eqs. 1.1a and 1.1c), the differential form of Faraday’s law (Eq. 1.1b)
and Ampere’s law (Eq. 1.1d), but together they formMaxwell’s equations, describing
electromagnetic waves in free space. These equations can now be used to derive the
free space wave equation, as outlined in Ref. [1].

By taking the curl of Eq. 1.1b and using Eq. 1.1d to eliminate B gives,

∇× (∇× E) = −µ0ε0
∂2E

∂2t
. (1.2)

Applying Lagrange’s formula for the vector triple product1, and recalling that∇·E =
0 when no charges are present, leaves us with,

∇2E− µ0ε0
∂2E

∂2t
= 0. (1.3)

Together, the term µ0ε0 has dimensions of (time/length)2 allowing us to define
c = 1√

µ0ε0
= 2.998 × 108ms−1, which is of course the speed of light in a vacuum.

1∇× (∇×V) = ∇(∇ ·V)−∇2V for any vector V [1, 38].
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Chapter 1. Background theory and conventions 6

From this and the fact that the above expression is a linear second-order partial
differential equation, we can recognise that Eq. 1.3 has the standard form of a wave
equation for the electric field,

∇2E− 1

c2
∂2E

∂2t
= 0. (1.4)

Following a similar procedure, we can also arrive at an expression for the wave
equation for the magnetic field component,

∇2B− 1

c2
∂2B

∂2t
= 0. (1.5)

The E and B-fields are always perpendicular to each other and are perpendic-
ular to the direction of propagation of the wave. Maxwell’s equations can be used
to describe how these waves propagate in space - a changing electric field induces a
changing magnetic field (Ampere’s law Eq. 1.1d) and a changing magnetic field cre-
ates a changing electric field (Faraday’s law Eq. 1.1b). It is this continual cycle that
allows light waves (and indeed all electromagnetic radiation) to propagate through
space.

One simple, but important solution to the wave equation Eq. 1.4, is that of a
sinusoidal plane wave. For such a wave travelling in the r̂ direction, and for spatial
and temporal coordinates r = [x, y, x] and t, the plane wave solution can be written
as,

E(r, t) = E0(r)e
i(k·r−ωt+ϕ0)er, (1.6)

where E0(r) is the amplitude, ϕ0 is the phase offset at time t = 0, and er is a unit
vector in the direction of the waves oscillation, defining the polarisation (see § 1.3).
The wave vector, k, indicates the direction of propagation and is perpendicular to
surfaces of constant phase (ϕ = k ·r−ωt+ϕ0 =constant). Its magnitude |k| is given
by the wave number k = ω/c = 2π/λ for monochromatic wavelength λ. Again, we
can write a similar expression for a plane wave in terms of the magnetic field. From
the requirements of Eqs. 1.1a and 1.1c, we can obtain the relation,

k · E0 = k ·B0 = 0, (1.7)

confirming that E and B are both perpendicular to each other and also to the
direction of propagation given by k. Waves that satisfy this condition are known as
transverse waves [39].

Substituting the plane wave solution into the wave equation (Eq. 1.4), results in
the Helmholtz equation [39],

∇2E(r) + k2E(r) = 0. (1.8)

This is just a time-independent version of the wave equation, valid for the case of
single frequencies. However, if we choose a fixed constant direction for the electric
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field, then we become only interested in its magnitude, denoted E(r). This allows
us to write a scalar form of the Helmholtz equation [40,41],

(∇2 + k2)E(r) = 0. (1.9)

The significance of the difference between the scalar and vectorial forms of the
Helmholtz equation will become evident in § 1.5.

One feature of the plane wave solution is that knowing the values of E(r) and ϕ in
a single transverse plane at any arbitrary position along the propagation axis z, fully
determines their values in any other plane. Therefore, controlling these two (spatial)
parameters plays a crucial role in the structuring of light beams. Additionally, it
is important to note that linear combinations of solutions of the form of Eq. 1.6,
are also solutions to the wave equation, which, as we will see, produces interesting
effects in terms of the spatial polarisation control. Without loss of generality, we can
consider propagation in the z direction, allowing a general solution to be written as,

E(z, t) =
∑
j

E0j(z)e
i(kz−ωt+ϕj)ej, (1.10)

where, we have assumed the same wavelength (therefore the same angular frequency
ω) between the superimposed waves, as this is the relevant case for the work pre-
sented here.

1.2.1 The paraxial approximation

For the work that will be presented in this thesis we will only be concerned with
paraxial light. In ray optics, the paraxial approximation assumes that a light ray
only ever makes small angles (θ) with the optical axis, allowing the small-angle
approximation to be exploited. It is often applied in Gaussian optics when tracing
rays of light through entire optical systems, assuming that θ remains small [1,41,42].

In the paraxial regime, the three spatial components of the light field (x, y and
z in a Cartesian system), never mix together, allowing for them to be independently
treated [41]. As the magnitude of the wave vector depends on the quadrature addi-
tion of its components, |k| = k =

√
k2x + k2y + k2z = 2π/λ, and assuming propagation

in the z-direction, the x and y components of the wave vector must be much smaller
than k, i.e., √

k2x + k2y
k

≪ 1. (1.11)

In fact, it is this approximation that leads to the scalar form of the Helmholtz
equation above (Eq. 1.9).
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1.3 Polarisation

It was Fresnel (in 1818) who first proposed a wave theory of light,2 postulating that
an optical field consisted of two orthogonal components, oscillating in the transverse
plane to the propagation direction [43]. This was later confirmed experimentally by
both Fresnel and Arago [44]. The oscillation of these orthogonal field components
will have a specific orientation, or direction, at any given time as the electromag-
netic field propagates. In the plane wave solution (Eq. 1.6) to the wave equation,
I included a unit vector er which describes this orientation of the oscillations. The
magnitude and orientation of this oscillation, described by er, is known as the po-
larisation.

To consider the direction of the electric field oscillation at any point in time,
we can follow on from Fresnel’s ideas by considering the orthogonal components of
the electric field. In a Cartesian coordinate system, it is conventional to consider a
beam propagating in the z direction, and the decomposition of the electric field into
orthogonal x and y components [44],

Ex(z, t) = E0x cos (kz − ωt+ ϕx)

Ey(z, t) = E0y cos (kz − ωt+ ϕy)

Ez(z, t) = 0,

(1.12)

where the x, y and z subscripts indicate the components in the x, y and z directions,
respectively. Additionally, Eq. 1.12 are all solutions to the wave equation, and a
graphical representation of the waves described by Ex and Ey is shown in Figure 1.1.

From Figure 1.1 it can clearly be seen that Ex describes sinusoidal oscillations in
the x-z plane and, similarly, Ey describes oscillations in the y-z plane. These waves
do not provide much insight when considered individually. However, by considering
them together, we can get an expression for the relation between Ex and Ey, rep-
resenting the curve traced out by the tip of the electric field vector. To do this, we
can start by rewriting Eq. 1.12 as,

Ex

E0x

= cos τ cosϕx − sin τ sinϕx

Ey

E0y

= cos τ cosϕy − sin τ sinϕy,
(1.13)

where the substitution τ = kz − wt has been made. Hence,

Ex

E0x

sinϕy −
Ey

E0y

sinϕx = cos τ sin (ϕy − ϕx)

Ex

E0x

cosϕy −
Ey

E0y

cosϕx = sin τ cos (ϕy − ϕx).

(1.14)

2Now known as Fresnel’s wave theory or the Huygens-Fresnel principle due to the influence of
Christiaan Huygens’s mathematical principles on Fresnel’s work.
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Figure 1.1: Representation of the oscillation of the orthogonal electric field compo-
nents as described by Eq. 1.12.

Squaring and adding the previous expressions gives,(
Ex

E0x

)2

+

(
Ey

E0y

)2

− 2
Ex

E0x

Ey

E0y

cos∆ϕ = sin2∆ϕ (1.15)

where ∆ϕ = ϕy − ϕx [45]. Equation 1.15 is the equation of an ellipse (although, in
its nonstandard form). Note that, we have eliminated the τ = kz − ωt term, but
the Ex(z, t) and Ey(z, t) are still both time and space dependent [44]. An example
of an ellipse described by Eq. 1.15 is shown in Figure 1.2. As it is a representation
of a polarisation state, it is referred to as the polarisation ellipse.

In Figure 1.2, I show the ellipse in reference to the Cartesian coordinate system
with x and y axes and also the rotated coordinate system of the ellipse with a and
b axes. The ellipse can be characterised using two angular parameters ψ and χ,
representing the orientation and ellipticity respectively. These parameters are given
by the expressions [44,45],

tan (2ψ) =
2E0xE0y

E2
0x − E2

0y

cos∆ϕ, 0 ≤ ψ ≤ π

sin (2χ) =
2E0xE0y

E2
0x + E2

0y

sin∆ϕ, −π
4
≤ χ ≤ π

4
.

(1.16)

For homogeneously polarised beams, the amplitudes E0x and E0y and the phase
difference ∆ϕ remains constant, meaning that the polarisation ellipse is unchanged
as the beam propagates under the paraxial regime. However, as we will see, this
is not always the case for beams with spatially varying polarisation, or when the
propagation is no longer paraxial.
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Figure 1.2: Representation of a polarisation ellipse with orientation ψ and ellipticity
χ. The Cartesian coordinate system of the plane wave decomposition is indicated
by the x-y axes. The a-b axes represent the rotated coordinate system of the ellipse.

In general, a polarisation state can have any ψ and χ, but there are some ‘simple’
polarisation states that are of particular interest, occurring for the two extreme
values of ellipticity, |χ| = 0 or π/4. This corresponds to the polarisation being
either completely linear (χ = 0) or circular (|χ| = π/4), examples of which are
shown in Figure 1.3.

When E0y = 0 or E0x = 0, we get linear horizontal or vertical polarisation,
respectively. When E0x = E0y = E0 and ∆ϕ = 0 or π, we get linear polarisation
orientated at ±45◦, which we refer to as diagonal or anti-diagonal polarisation. If we
still have equal amplitudes, but instead ∆ϕ = ±π/2 then we get either left-handed
or right-handed circular polarisation. With this, we have defined three sets of or-
thogonal polarisations, each comprising a set of mutually unbiased bases (MUBs).
For this reason, throughout this thesis I will often refer to these (normalised) polar-
isation states using bra-ket notation with |ĥ⟩, |v̂⟩, |d̂⟩, |â⟩, |r̂⟩ and |l̂⟩ corresponding
to the horizontal, vertical, diagonal, anti-diagonal, right-handed circular and left-
handed circular polarisation states respectively, as indicated in Figure 1.3. In the
following sections, we will see how these particular states become important for the
measurement and characterisation of polarisation and also for the representation of
polarisation in another way - by employing the Poincaré sphere (see § 1.3.3).

As mentioned, the tip of the electric field traces out a polarisation ellipse. The
individual oscillations of the electric field components are too fast to be measured
experimentally. Nonetheless, the polarisation state can still be measured, and this
measurement is an average over many oscillations. How polarisation can be mea-
sured experimentally will be discussed in § 2.3, but first, it is useful to detail the

10
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Figure 1.3: Polarisation ellipses for three sets of orthogonal polarisation states,
described by the Jones vectors in Eq. 1.21.
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most common formalism’s used for describing a polarisation state, namely, Jones
vectors and Stokes vectors.

1.3.1 Jones vector representation

R. Clark Jones, in 1941 [46], devised a two-dimensional matrix algebra for describing
fully polarised light and the action of polarisation altering optical elements. Note
that the limitation of this algebra only describing fully polarised light means that it
does not apply to the cases of unpolarised or partially polarised light (e.g. sunlight).
For this, the Stokes representation must be used, as outlined in the next section
(§ 1.3.2). However, the Jones representation is often preferred as it is very concise,
and is useful for situations in which field amplitudes (rather than intensities) must
be known, e.g. when considering interference.

For his mathematical representation, R. C. Jones used the property of a light
beam being entirely transverse in the paraxial regime. As such, the polarisation
can be decomposed into two orthogonal components. As mentioned above, in a
Cartesian coordinate system, it is conventional to consider a beam propagating in
the z direction, and the decomposition of the electric field into orthogonal x and y
components, allowing Eq. 1.10 to be written as,

E(z, t) = E0xe
i(kz−ωt+ϕx)ex + E0ye

i(kz−ωt+ϕy)ey,

=
(
E0xe

iϕxex + E0ye
iϕyey

)
ei(kz−ωt),

(1.17)

where the x and y subscripts indicate the components in the x and y directions,
respectively. The polarisation is not time-dependent, so the time-dependent ei(kz−ωt)

term can be neglected, allowing the above expression to be written in a vector form,

E =

[
Ex

Ey

]
=

[
E0xe

iϕx

E0ye
iϕy

]
. (1.18)

This is the Jones vector describing the polarisation state of the light beam. As it
is just the phase difference between the x and y components that is important to
describe the polarisation, an equivalent vector can be written as,

E =

[
E0x

E0ye
i∆ϕ

]
. (1.19)

If Ex and/or Ey are spatially varying, then E will also be spatially varying.
The Ex and Ey components are of course complex quantities, and can be used

to obtain the intensity I of the beam,

I =
[
E∗xE

∗
y

] [Ex

Ey

]
= ExE

∗
x + EyE

∗
y = |Ex|2 + |Ey|2. (1.20)
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The normalised Jones vectors for the six polarisation states shown in Figure 1.3
are,

|ĥ⟩ =
[
1
0

]
, |v̂⟩ =

[
0
1

]
,

|d̂⟩ = 1√
2
(|ĥ⟩+ |v̂⟩) = 1√

2

[
1
1

]
, |â⟩ = 1√

2
(|ĥ⟩ − |v̂⟩) = 1√

2

[
1
−1

]
,

|l̂⟩ = 1√
2
(|ĥ⟩+ i |v̂⟩) = 1√

2

[
1
i

]
, |r̂⟩ = 1√

2
(|ĥ⟩ − i |v̂⟩) = 1√

2

[
1
−i

]
,

(1.21)

where the imaginary i results from a phase difference of ∆ϕ = π/2. From Eq. 1.21,
it can be seen that the superposition of two Jones vectors results in an other Jones
vector.

Jones Matrices

Suppose we have a beam with polarisation described by a Jones vector Ein incident
on an optical element. If the action of the optical element changes the polarisation
then we end up with an output beam given by Eout. This process can be described
mathematically using Jones calculus [46]. As a polarisation state can be described
by 2× 1 vector, then we can describe transformations using a 2× 2 matrix [1],

Eout = JEin =

[
J11 J12
J21 J22

] [
Ein

x

Ein
y

]
, (1.22)

where J is known as the Jones matrix. We can obtain Jones matrices to describe the
action of any optical element, and some of the most common ones (e.g. for waveplates
and polarisers) will be given in § 2.2.3 in Chapter 2, where I focus on experimental
equipment and techniques. However, we can also obtain a Jones matrix to describe
the action of an entire optical system by using the product of n matrices for the n
individual elements that a beam interacts with in the system,

Jsystem = JnJn−1 . . .J3J2J1. (1.23)

The order of multiplication is important, as the matrices do no necessarily commute
[1]. They must be applied in the order in which the beam passes through the
elements, with J1 acting on the input Jones vector Ein first.

1.3.2 Stokes vector representation

Another mathematical representation of polarisation comes in the form of Stokes
vectors, devised from the work by Sir George Gabriel Stokes in 1852 [47].

13



Chapter 1. Background theory and conventions 14

One limitation of representing polarisation using ellipses, is that the orientation
(ψ) and ellipticity (χ) angles characterising the ellipse are not directly measur-
able [44]. G. G. Stokes introduced four quantities that depend only on measurable
observables of the electromagnetic field, from which the parameters of the ellipse
can be obtained. These four quantities are now known as the Stokes parameters [1].

A general Stokes vector, S, can be written as,

S =


S0

S1

S2

S3

 , (1.24)

where S0, S1, S2 and S3 are the Stokes parameters,3 which are related to intensities
after the beam has been projected into three sets of orthogonal polarisation bases
- i.e. six different polarisation states. Specifically, these polarisations correspond
to the horizontal, vertical, diagonal, anti-diagonal, right-handed circular and left-
handed circular polarisations as shown in Figure 1.3.

The Stokes parameters can be found from the following relations,

S0 = I|ĥ⟩ + I|v̂⟩ = I|d̂⟩ + I|â⟩ = I|r̂⟩ + I|r̂⟩ = I0, (1.25a)

S1 = I|ĥ⟩ − I|v̂⟩, (1.25b)

S2 = I|d̂⟩ − I|â⟩, (1.25c)

S3 = I|r̂⟩ − I|l̂⟩. (1.25d)

where I|ĵ⟩ correspond to intensities after projection into the |ĵ⟩ polarisation state and
I0 is the total intensity. As the Stokes parameters are dependent only on intensity
measurements, they are easy to obtain experimentally and methods for doing so
are outlined in § 2.3. However, they do not contain the phase information of the
polarised light (unlike Jones vectors).

The Stokes parameters can be related to the components of a Jones vector,
allowing one to be easily rewritten in the form of the other. For a Jones vector de-
scribed by E = [Ex, Ey]

T = [E0x, E0ye
i∆ϕ]T , the Stokes vector, in complex notation,

becomes,

S =


S0

S1

S2

S3

 =


ExE

∗
x + EyE

∗
y

ExE
∗
x − EyE

∗
y

2Re(ExE
∗
y)

2Im(ExE
∗
y)

 =


E2

0x + E2
0y

E2
0x − E2

0y

2E0xE0y cos∆ϕ
2E0xE0y sin∆ϕ

 , (1.26)

where Re and Im correspond to the real and imaginary components, respectively [44].

3Note that the Stokes parameters are sometimes called I, Q, U and V rather than S0, S1, S2

and S3.

14



Chapter 1. Background theory and conventions 15

There is also an alternative way to obtain the Stokes parameters, by employing
the Pauli spin matrices [48],

S0 = E∗σ0E, S1 = E∗σ3E, S2 = E∗σ1E, S3 = E∗σ2E (1.27)

where,

σ0 =

[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −1
i 0

]
, σ0 =

[
1 0
0 −1

]
, (1.28)

and it is easy to see that the normalised Stokes parameters (S1/S0, S2/S0, S3/S0)
correspond to the coordinates of a Bloch vector. This fact will come in useful for
yet another representation of polarisation (see § 1.3.3).

From Eq. 1.26 we can read off the relation,

S2
0 = S2

1 + S2
2 + S2

3 , (1.29)

demonstrating that the Stokes parameters are related to each other and only three
of the four of them are independent. However, a Jones vector can only describe fully
polarised light, whereas Stokes vectors can also describe partially polarised light. In
this scenario, the relation in Eq. 1.29 no longer holds, and we can replace it with a
more general inequality,

S2
0 ≥ S2

1 + S2
2 + S2

3 , (1.30)

which holds for both fully and partially polarised light. In this more general case, the
four Stokes parameters are independent from each other and therefore, each of them
must be measured. The degree of polarisation (DoP) P , is a quantity that defines
how polarised a light beam is, and is given by the ratio of the polarised component
of the intensity to the total intensity. Therefore, it can simply be calculated from
the Stokes parameters as,

P =
Ipol
Itot

=

√
S2
1 + S2

2 + S2
3

S0

, 0 ≤ P ≤ 1. (1.31)

For a completely polarised beam, P = 1, for a completely unpolarised beam, P = 0,
and for a partially polarised beam, P lies somewhere in the interval between 0 and
1.

Using the relationship between the Jones and Stokes vectors given in Eq. 1.26,
we can obtain Stokes vectors for the same six polarisations described by Eq. 1.21

15
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and shown in Figure 1.3,

S|ĥ⟩ = I0


1
1
0
0

 , S|v̂⟩ = I0


1
−1
0
0

 ,

S|d̂⟩ = I0


1
0
1
0

 , S|â⟩ = I0


1
0
−1
0

 ,

S|r̂⟩ = I0


1
0
0
1

 , S|l̂⟩ = I0


1
0
0
−1

 .

(1.32)

Here, I0 is the intensity, as above, but this is often normalised to unity [44]. These
Stokes vectors are all for fully polarised light. It may be interesting to note that the
Stokes vector for unpolarised light is simply I0[1, 0, 0, 0]

T , and partially polarised
light can be written as a mixture of fully polarised and unpolarised light,

S =


S0

S1

S2

S3

 = (1− P)


S0

0
0
0

+ P


S0

S1

S2

S3

 , (1.33)

where it is simple to see that this reduces to the Stokes vectors for unpolarised or
fully polarised light in the limits of P = 1 or 0 [44].

All that is left to do is relate the measurable Stokes parameters to the polarisation
ellipse. The orientation (ψ) and ellipticity (χ) angles describing the ellipse are
related to the Stokes parameters via,

S1 = S0 cos (2χ) cos (2ψ), S2 = S0 cos (2χ) sin (2ψ), S3 = S0 sin (2χ). (1.34)

Combining these gives,

2ψ = arctan

(
S2

S1

)
, 2χ = arctan

(
S3√

S2
1 + S2

2

)
= arcsin

(
S3

S0

)
. (1.35)

The factor of two in front of both of these angular variables represents that any
polarisation ellipse is indistinguishable from one rotated by 180◦ and also from one
with its semi-major and semi-minor axis lengths swapped followed by a 90◦ rotation.
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1.3.3 The Poincaré sphere and polarisation colour scheme

From the form of Eq. 1.34, we can notice that there is a resemblance to a spherical
coordinate system between the Stokes parameters and the ellipticity and orientation
angles. This leads to another useful representation of polarisation that was intro-
duced by Henri Poincaré in 1892 [49]. He provided an intuitively geometric way of
representing polarisation by employing a unit sphere, known as the Poincaré sphere,
in which every possible polarisation state exists. This sphere is created by mapping
S1, S2 and S3 onto a Cartesian coordinate system and associating the angles 2ψ and
2χ with the spherical angular coordinates, as shown in Figure 1.4(a).

Although the mapping to the Poincaré sphere is somewhat arbitrary, convention-
ally, the S1 parameter is chosen to lie along the x-axis, S2 along the y-axis and S3

along the z-axis, resulting in the points of circular polarisation being located at the
north and south poles, with the linear polarisation states located along the equator.
Any polarisation state described by a Stokes vector S can be plotted at a unique
point on, or within, the Poincaré sphere. All fully polarised states will lie on the
sphere’s surface, and partially polarised states will lie inside the sphere. The radial
distance from the origin being given by the degree of polarisation P , making P the
third variable (along with 2ψ and 2χ) describing the spherical coordinate system.

Using the Poincaré sphere provides a geometric way of describing polarisation,
and we will see that adopting this state space becomes useful tool in the character-
isation of structured light beams.

Throughout this thesis, I will use two ways of visually representing polarisation.
The first is simply using ellipses, this is useful for depicting the ellipticity of the
polarisation and orientation for linear and elliptical states but does not distinguish
between the handedness of circular polarisation. For the second, I have adopted a
colour scheme as depicted in Figure 1.4(b). This colour scheme assigns a unique
colour for every single point on the surface of the Poincaré sphere and therefore,
every possible polarisation state. In Figure 1.4(b) I show the Poincaré sphere from
two different view points, showing the colours as well as an unwrapped version of
the colour map indicating the ellipticity and orientation angles as well as polarisa-
tion ellipses for clarity. These are indeed the same colours that were used for the
polarisation ellipses shown in Figure 1.3. In this thesis, we will only be interested in
fully polarised light, which is why we have only defined a colour map for the surface
of the sphere, but throughout, I will use this colour scheme to visually represent
the polarisation of both simulated and experimentally measured polarised beams.
Additionally, I will represent the intensity distribution as opacity.

1.3.4 Mueller matrices

Above, I outlined how a Jones matrix can be used to describe the action of an optical
element on the polarisation state of light. In a similar way, Mueller matrices are a
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Figure 1.4: The Poincaré sphere and polarisation colour scheme. (a) The Poincaré
sphere with axes corresponding to the Stokes parameters, and the location of the |ĥ⟩,
|v̂⟩, |d̂⟩, |â⟩, |r̂⟩ and |l̂⟩ polarisations shown as ellipses. The orange point depicts the
location of an arbitrary elliptical polarisation state with orientation ψ and ellipticity
χ. (b) The polarisation colour scheme used throughout this thesis, identifying every
point on the surface of the Poincaré sphere with a unique colour. In the top right,
an unwrapping of the colour map is shown along with polarisation ellipses. When
this colour scheme is used to show polarisation, intensity is depicted as opacity.

18
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mathematical representation of the action of optical elements. They were developed
by Hans Mueller in 1943 [50] and are a matrix-based method for manipulating Stokes
vectors [51]. The output polarisation Sout after a beam, described by Sin interacts
with an optical element can be calculated from,

Sout = MSin, (1.36)

where M is the 4 × 4 Mueller matrix, describing either a single optical element or
an entire optical system. For an optical system containing n components, M is the
product of the separate components,

Msystem = MnMn−1 . . .M3M2M1, (1.37)

where the order of multiplication is important and depends on the order in which
the beam interacts with each element.

It is possible to transform a 2× 2 Jones matrix J into a Mueller matrix via,

M = A(J⊗ J∗)A−1, (1.38)

where,

A =


1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

 . (1.39)

and ⊗ represents the Kronecker product [52].
During the transformation given by Eq. 1.38, an overall phase factor is lost,

meaning that many Jones matrices can be mapped onto the same Mueller matrix.
However, depolarisation cannot be described by Jones matrices and, as a Mueller
matrix acts on a Stokes vector it has an advantage that the Stokes parameters are
experimentally measurable quantities, through simple intensity measurements, in
turn making the Mueller matrix experimentally measurable. In § 5.4, I will outline
an experiment with the aim of obtaining Mueller matrix measurements.

1.4 The Gaussian beam and higher order light modes

So far I have mainly focused on the polarisation property of light, however, the
amplitude and phase of a light beam are equally important properties. Above, in
Eq. 1.6, I provided the plane wave solution to the wave equation. This solution has
a single value for the amplitude and phase in any transverse plane. However, this
transverse plane extends out to infinity, which is of course, not physically realisable
in practice. For more realistic solutions, the intensity profile must tend towards
zero at infinitely large distances from the beam axis. This is where Gaussian optics
comes in.
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The framework of Gaussian optics (sometimes also referred to as first-order or
paraxial optics) was introduced by mathematician and physicist Carl Friedrich Gauss
in 1841 [1]. It relies heavily on the paraxial approximation, building on geometrical
optics, where light is treated as rays, and applies to systems where all the optical
surfaces are either flat or portions of a sphere [53].

1.4.1 Gaussian beam

Perhaps the most prevalent solution to the paraxial wave equation, in which the
amplitude tends to zero at infinity, is that of the simple Gaussian beam. The
complex electric field amplitude for a Gaussian beam propagating in free-space and
in the z-direction can be written as [53],

E(r, z) = E0
wo

w(z)
exp

(
− r2

w(z)2

)
exp

(
−i
(
kz + k

r2

2R(z)
− ψ(z)

))
, (1.40)

where r =
√
x2 + y2 is the radial distance from the centre of the beam, for Cartesian

coordinates x and y, and k is the wave number. The complex electric field at the
centre of the beam at time, t = 0, is described by E0. The beam size at a distance
z is denoted by w(z) and w0 = w(0) is the beam waist. Here, the Gouy phase,
ψ(z) = arctan (z/zR), is given in terms of the Rayleigh range, zR = πw2

0/λ, which
denotes the distance along the optical axis from the beam waist where the beam’s
cross-sectional area is double in size. The radius of curvature of the wavefronts at z is
denoted by R(z), which again depends on the Rayleigh range by, R(z) = z[1+( zR

z
)2]

[42].
Figure 1.5 shows a depiction of the cross-section of the Gaussian beam with

propagation, indicating some of the important features as defined above. The orange
line shows the “edge” of the beam, although, in reality, the tails of the Gaussian
function never truly reach zero as r → ∞. Instead, the beam edge is defined to be at
r = w(z), the radial distance at which the intensity has dropped to 1/e2 of the on-
axis value. From Figure 1.5, it can be seen that the overall profile remains Gaussian
as the beam propagates, only changing in size due to diffraction. The phase fronts of
a Gaussian beam (shown as dashed blue lines) form parabolic surfaces, apart from
at z = 0, where w(z) = w0. At this plane the phase fronts are flat.

1.4.2 Higher order Gaussian modes

The Gaussian beam is not the only solution to the paraxial wave equation, higher
order modes exist. Solutions that are of particular interest are those with the same
spherical wavefronts of the Gaussian beam, but with different intensity distribu-
tions. Two common sets of transverse modes are the Hermite-Gaussian (HG) and
Laguerre-Gaussian (LG) modes. The terms in the field equations which modify and
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Figure 1.5: Features of a Gaussian beam. Left: w(z) as a function of propagation
distance z. The orange lines indicate the radial distance at which the intensity falls
to 1/e2 of the on-axis value. The cone with apex angle Θ describes the angular
spread of the beam. Blue dashed lines represent the phase fronts. Right: Cross-
section of the intensity (|E|2) profile.

define these modes are the Hermite and Laguerre polynomials. These in turn deter-
mine the order of the individual mode [53]. The HG and LG modes are perhaps the
most commonly used spatial modes, and will be used throughout the work presented
in this thesis, and as such their mathematical details will be given in the following
sections. However, other interesting spatial modes exist, and complex beam shaping
is often based on the superpositions of interesting spatial light modes. Some exam-
ples include: Ince-Gauss beams4 [54], Bessel beams [55], Airy beams [56], as well as
Mathieu [57] and Pearcey beams [58].

As will be discussed in more detail in chapter 2, it is in theory possible to generate
a light beam with any profile you want in a single transverse plane, you do not need
to use one of aforementioned spatial light modes. However, the generated beam will
not necessarily be an eigenmode of propagation, with its intensity distribution not
conserved, or easily defined, with propagation. Generally, only exact solutions to
the wave equation will be well defined over all propagation distances.

Hermite-Gaussian modes

By deriving solutions to the paraxial wave equation using a rectangular coordinate
system, we arrive at a complete set of solutions known as the Hermite-Gaussian

4As we will see, HG and LG modes are solutions of the wave equation in Cartesian and cylin-
drical coordinates using Hermite and Laguerre polynomials, respectively. Ince-Gauss beams are
instead solutions in elliptical coordinates using Ince-polynomials. By changing the ellipticity pa-
rameter, Ince-Gauss beams offer a continuous transition between HG and LG modes, becoming
HG and LG modes at the two ellipticity extremes.
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(HG) modes. The complex amplitude of a Hermite-Gaussian beam is given by [53],

HGnm(x, y, z) = E0
w0

w(z)
Hn

(√
2x

w(z)

)
Hm

(√
2x

w(z)

)
exp

[
− (x2 + y2)

w(z)2

]
× exp (−ikz) exp

[
− ik

(x2 + y2)

2R(z)

]
exp

[
i(n+m+ 1)ψ(z)

]
,

(1.41)

where Hn and Hm are the nth and mth order Hermite polynomials, respectively, and
all the other variables have the same definitions as given previously. A HG beam
appears as a rectangular grid of intensity spots, with n+1 columns and m+1 rows
of spots. The positive integers n and m also define the mode number, or the order
of the mode, given by [42],

N = n+m, n, m ∈ N. (1.42)

By setting n = m = 0 in Eq. 1.41, we obtain the lowest order HG mode, which is
the fundamental Gaussian mode. Examples of the intensity and phase distribution
of different HG modes at z = 0 can be seen in Figure 1.6. From the phase profiles,
it can be seen that neighbouring intensity lobes are π out of phase. This phase step
is what causes the zero intensity regions between the lobes due to deconstructive
interference.

Laguerre-Gaussian modes

Another complete set of solutions to the paraxial wave equation can be obtained by
writing the wave equation in cylindrical coordinates (r, ϕ, z) and using separation of
variables in r and ϕ, instead of in x and y, as was done for the HG modes [42]. In
this case, we obtain beams with circular symmetry, known as the Laguerre-Gaussian
(LG) modes. The complex amplitude of an LG beam is given by [53],

LGℓ
p(r, ϕ, z) =

√
2p!

π(p+ |ℓ|)!
w0

w(z)

(
r
√
2

w(z)

)|ℓ|
exp

(
− r2

w(z)2

)
L|ℓ|p

(
2r2

w(z)2

)
× exp

(
−ik r2

2R(z)

)
exp (iℓϕ) exp

[
i(2p+ |ℓ|+ 1)ψ(z)

]
,

(1.43)

where, L
|l|
p are the generalised Laguerre polynomials. The LGl

p modes are indexed
using the radial integer p and the azimuthal integer l (also referred to as the topo-
logical charge or the orbital angular momentum (OAM) number), where p ≥ 0 and
l can be either positive, negative or zero. For an LG beam, the mode number is
given by,

N = 2p+ |ℓ|, p ∈ N, ℓ ∈ Z, (1.44)
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Figure 1.6: Intensity (left) and phase (right) distributions of Hermite-Gaussian
modes HGnm. The intensity has been peak normalised and the colour maps which
denote intensity and phase values are shown on the far right. These same colour
scales are used throughout this thesis.

where again, setting ℓ = p = 0 results in the fundamental Gaussian mode.
The intensity profile of an LG beam mode will have p+ 1 maxima in the radial

direction, with the first maximum appearing at the centre of the beam when l = 0.
Examples of the transverse intensity and phase profiles of various LG beams can
be seen in Figure 1.7. From the phase profiles in Figure 1.7, it can be seen that
adjacent intensity rings are π out of phase, resulting in intensity minima between
the rings. Additionally, the intensity profiles of beams with equal p and magnitude
of |ℓ| are the same.

The exp (iℓϕ) phase factor in Eq. 1.43 determines if the phase is advanced (ℓ > 0)
or retarded (ℓ < 0), with the magnitude of the topological charge number, ℓ, defining
the number of complete 2π phase cycles, or helical phase surfaces present about
the propagation axis. The LG beams are well known for carrying orbital angular
momentum (OAM) when ℓ ̸= 0 [59]. When ℓ ̸= 0, the phase rotates about the centre
of the beam, creating a phase singularity, and therefore an area of zero intensity at
the centre. This is known as an optical vortex.

From Figure 1.7, it is apparent that the LG beams are larger for larger N but
for the same beam waist w0. An expression for the “effective radius” of all orders
of LG beams was derived by Phillips and Andrews [60], which depends on the waist
of the Gaussian (LG0

0 mode) and the mode number,

reff(z) = w(z)
√
2p+ |ℓ|+ 1. (1.45)
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Figure 1.7: Intensity (left) and phase (right) distributions of Laguerre-Gaussian
modes LGℓ

p, where the intensity has been peak normalised. The intensity and phase
colour maps are shown on the far right.

For modes with p = 0, LGℓ
0, we can also define the radius at which the intensity is

maximum,

r0(z) =

√
|ℓ|
2
w(z) (1.46)

as given in Ref. [61]. This radial distance is indicated by an orange line in Figure 1.8,
for an LG3

0 beam.
For a simple Gaussian beam, the “edge” of the beam, where the intensity I falls

to 1/e2 of the maximum intensity Imax, is given by the simple expression for the
beam size w(z). The radial distance at which the intensity of an LGℓ

0 beam falls to
the same value is not so simple. Additionally, there will be two radii, one at smaller
(r1) and one at larger (r2) distances, at which the intensity is Imax/e

2. Nevertheless,
these radial distances can be calculated from [62],

r1(z) =

√
ℓ

2

√
−W

(
0,−(e−ℓ−2ℓℓ)1/ℓ

ℓ

)
w(z)

r2(z) =

√
ℓ

2

√
−W

(
−1,−(e−ℓ−2ℓℓ)1/ℓ

ℓ

)
w(z),

(1.47)

where we have employed the Lambert W function [63]. The locations of r1 and r2
for an LG3

0 beam are shown as blue and green circles in Figure 1.8, respectively.
Knowing the dimensional properties for LG beams, and indeed other spatial light
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Figure 1.8: Representation of the dimensional properties of an LG beam with ℓ = 3.
On the left is the intensity distribution and on the right a cross-section of the
intensity through the beam centre with the Imax/e

2 value indicated by a vertical
line. The radial distances described by r0, r1 and r2 are shown by orange, blue and
green circles, respectively.

modes, is valuable when considering the superposition of different modes, when a
particular spatial overlap may be required.

Both the Hermite- and Laguerre-Gaussian beams form a complete set of solutions
to the paraxial wave equation, meaning that any HG mode can be written as a
superposition of LG modes and vice versa [42, 48, 64]. Some examples of this are
shown in Figure 1.9. Generally, any HG or LG beam with mode order N can be
expressed as a superposition of N+1 modes from the other mode family, each also of
order N . This will come in useful for the consideration of orbital redirection phases
in Chapter 3.

1.4.3 Gouy phase

Upon propagation, a plane wave acquires a phase shift of eikz, for wavenumber k
and propagation distance z, where z = 0 corresponds to the position of the beam
waist. For a propagating Gaussian beam, there is also an additional axially-varying
phase shift, with respect to the waist location. This is described by the Gouy phase,
ψ(z) = tan−1(z/zR), where zR is the Rayleigh range. For higher order Gaussian
beams, this becomes,

ψ(z) = (N + 1) tan−1
(
z

zR

)
, (1.48)
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Figure 1.9: Examples of beam mode decomposition. (a) A HG12 mode expanded as
a sum of LG modes. (b) An LG−20 mode written in terms of HG modes.

for mode number N . The effect of the Gouy phase on the lowest order Gaussian
mode, is of an additional π phase shift on either side of the focus. For higher order
modes, this phase shift is larger [53].

The Gouy phase shift can also be seen to be geometric in nature. This particular
interpretation will be discussed in § 3.2.2.

1.4.4 Propagation

As briefly mentioned in § 1.2, knowing the amplitude and phase of a light beam in
any single transverse plane allows the values in any other plane to be determined,
arising because the electric field is fundamentally linked along its propagation di-
rection.

To consider the propagation of a light beam, we can employ Fourier optics,
which is a useful framework for analysing how light propagates through simple op-
tical components or free space. Fourier optics uses the argument that an arbitrary
function can be written as a superposition of harmonic functions of time of unique
spatial frequencies [42], i.e. we consider light as a combination of plane waves. In
fact, the Fourier plane of a beam corresponds to its plane wave decomposition, such
that, each point in the Fourier plane gives the amplitude and phase information of
one of its plane wave components [65]. By employing 2-dimensional spatial Fourier
transforms, and advancing the phase components appropriately, it is possible to
numerically simulate the propagation of any light beam.

By taking the paraxial propagation, we can consider the propagation of a light
beam to be entirely in one direction, let’s assume this to be the z direction. The
plane wave components are characterised by the k-vector, with magnitude given
by k = 2π

λ
=
√
k2x + k2y + k2z . For propagation in the z-direction by a distance ∆z

(where ∆z can be either positive or negative), the phase will advance by −kz∆z,
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where,

kz(x, y) =

√(
2π

λ

)2

− k2x(x, y)− k2y(x, y). (1.49)

For a light field E(x, y, z), where a particular transverse plane at z = z0 is known,
the propagated field at the z = z0 +∆z plane is therefore given by,

E(x, y, z0 +∆z) = F−1
{
F {E(x, y, z0)} e−ikz∆z

}
, (1.50)

where, F and F−1 denote the 2D Fourier transform and inverse Fourier transform,
respectively. The method summarised by Eq. 1.50 is often referred to as the angular
spectrum method, Fourier beam propagation or FFT-based angular spectrum method
due to the reliance on Fast Fourier Transforms (FFT) for numerical calculations
[42,65].

Equation 1.50 calculates E(x, y, z0 + ∆z) from E(x, y, z0) assuming the beam
was not altered in any way between these two planes, i.e. it was propagating in free
space. But we can also use it to propagate up to an optical component, apply the
action of the optical component, and then use Eq. 1.50 again to propagate further.
This recipe can be repeated many times in order to simulate the action of entire
optical setups on an input beam. The one condition to this, is that we remain in
the paraxial regime. If we instead are interested in non-paraxial propagation, then
other methods must be used. For example, the numerical methods introduced by
Richards and Wolf [66], for strongly focused light, and described clearly in Ref. [67].

Using FFT for beam propagation is highly advantageous due to its simplicity
and numerical speed, but one limiting characteristic occurs when a propagating
beam expands close to the full size of the computational grid size, resulting in
numerical aliasing. When we have non-zero amplitude regions close to the simulation
boundary, the implicit periodicity of the boundary produces false signals in the
simulation, producing edge effects and reducing accuracy. This can be overcome
by ensuring to create a sufficiently large numerical grid space. However, one other
option is to employ adaptive step size methods as outlined in Ref. [68]. For these
methods, we propagate a fraction of the required distance multiple times until the
total propagation distance is reached. At each step, an absorbing boundary is
applied, to suppress the unwanted signals from the periodicity at the edge of the
grid space.

For the propagation simulations presented in this thesis, it was generally suffi-
cient to use Eq. 1.50 directly.

1.5 Structured light: scalar and vectorial light fields

The idea of structured light has occupied a prominent position in optical research
in recent decades, mainly due to the development of optical technologies which have
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allowed the manipulation of the main light field parameters: amplitude, phase, and
polarisation [69]. Historically, many examples of shaped light fields only considered
scalar beams either by ignoring the polarisation component or by treating it as a
degree of freedom. Scalar beams represent solutions to the wave equation (more
specifically, the scalar Helmholtz equation, Eq. 1.9) that are independent of the
polarisation state, they are spatially structured in amplitude and phase but have a
homogeneous polarisation across the beam profile. Examples include the Hermite-
and Laguerre-Gaussian modes discussed above.

However, light is intrinsically vectorial in nature - the electric (E) and magnetic
(B) field components of an electromagnetic wave are vector quantities, having both
magnitude and direction [48].

Vector beams, on the other hand, take into account both the spatial distribution
and the polarisation state of light, and are solutions to the full vector form of the
Helmholtz equation (Eq. 1.8). They are formed from non-separable combinations
of spatial and polarisation modes [70], resulting in non-homogeneous polarisation
structures. Additionally, they are not limited to scalar solutions, can exhibit in-
teresting properties [71], and their enhanced modal space offers new effects and
applications [48,72–75].

The presence of either a scalar or a vector beam can be easily experimentally
verified by passing the beam through a rotating linear polariser, as shown in Fig-
ure 1.10. If only a change in intensity is observed, but the intensity distribution
remains constant, then a scalar beam has been revealed (Figure 1.10(a)). However,
if a varying intensity pattern for different polariser rotations is observed, then we
have a vector beam (Figure 1.10(b)). In this case, the polariser has revealed the
spatially varying nature of the polarisation structure.

1.5.1 Vectorial light fields

From Maxwell’s equations, and employing the paraxial approximation, the electric
field components, E = (Ex, Ey) in the transverse plane can be selected independently
from each other. The combination of the Ex and Ey components with various phase
and amplitude weightings gives rise to polarisation, as described in § 1.3. However,
if the chosen phase and amplitude weightings are spatially varying, then we end up
with a beam whose polarisation profile is also spatially varying [48].

Vector beams can be created from coaxial superpositions of multiple spatial light
modes (uj(r)) with different homogeneous polarisations (ej),

E(r, t) =
∑
j

uj(r)e
iϕjej. (1.51)

The polarisation can be described using any two orthogonal electric field com-
ponents, therefore, any general vector beam can be written as the superposition
of two spatial modes that are orthogonally polarised. It is common to use either
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Figure 1.10: Scalar beams vs. vector beams. Examples of the intensity patterns of
a homogeneously polarised scalar beam (a) and a (radially polarised) vector beam
(b) after passing through a linear polariser. The orientation of the polariser axis
in each case is denoted by the arrows above the images, and Imax is the maximum
intensity.

the horizontal and vertical linear polarisation basis (|ĥ⟩, |v̂⟩) or the right- and left-
handed circular polarisation basis (|r̂⟩, |l̂⟩), but any orthogonal basis can be used.
This allows a general vector beam, denoted |ψ⟩, to be written as,

|ψ⟩ = u0(r) |0⟩+ eiϕu1(r) |1⟩ (1.52)

where, |0⟩ and |1⟩ represent any two orthogonal polarisations, u0(r) and u1(r) the
amplitudes of any two spatial modes, and ϕ is the relative phase between them.

The polarisation degree of freedom is confined to a two-dimensional space, how-
ever, the spatial degree of freedom extends infinitely. Therefore, it is clear to see
that the set of vector beams described by Eq. 1.52 also form an infinite space. Al-
though there are an infinite number of possible vector beams, here I will illustrate
some of the most common examples.

First, lets restrict ourselves to a small subset of spatial modes, namely, LG beams
with p = 0 and ℓ = ±1, relative phase differences of ϕ = {0, π} and the right- and
left-handed circular polarisation basis. From combinations of these parameters, we
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can obtain four vector modes,

|ψ1⟩ =
1√
2

(
LG1

0 |r̂⟩+ LG−10 |l̂⟩
)
, (1.53a)

|ψ2⟩ =
1√
2

(
LG1

0 |r̂⟩ − LG−10 |l̂⟩
)
, (1.53b)

|ψ3⟩ =
1√
2

(
LG1

0 |l̂⟩+ LG−10 |r̂⟩
)
, (1.53c)

|ψ4⟩ =
1√
2

(
LG1

0 |l̂⟩ − LG−10 |r̂⟩
)
, (1.53d)

where I have used that eiϕ = ±1 when ϕ = {0, π}. The polarisation profiles of these
beams are shown in Figure 1.11. The vector modes described by |ψ1⟩ and |ψ2⟩ are
often referred to as radially and azimuthally polarised beams, the reason for which
can clearly be seen from inspection of their polarisation distribution, where as those
described by |ψ3⟩ and |ψ4⟩ are often referred to as hybrid beams [76].

The polarisation structures shown in Figure 1.11 are in fact well-known as the
modes of optical fibres [76,77]. However, note that although the polarisation struc-
tures are identical, their mathematical descriptions differ, since they result from
transverse localisation in the fibre due to total internal reflection at the interface
between the fibre’s core and cladding [78]. Additionally, it is generally difficult to ex-
cite these modes in an optical fibre without also exciting the fundamental mode [71].

Here, we can also make use of the fact that both the Laguerre- and Hermite-
Gaussian beams form a complete set of solutions to the paraxial wave equation,
meaning that one can be written in terms of the other. This allows the 4 vector
modes in Eq. 1.53 to be written as superpositions of HG beams, but this time using
a linear polarisation basis,

|ψ1⟩ =
1√
2

(
HG10 |ĥ⟩+HG01 |v̂⟩

)
, (1.54a)

|ψ2⟩ =
1√
2

(
HG01 |ĥ⟩ − HG10 |l̂⟩

)
, (1.54b)

|ψ3⟩ =
1√
2

(
HG10 |ĥ⟩ − HG01 |v̂⟩

)
, (1.54c)

|ψ4⟩ =
1√
2

(
HG01 |ĥ⟩+HG10 |v̂⟩

)
, (1.54d)

as illustrated visually in Figure 1.11. The ability to do this can come in useful for
some experimental applications where certain superpositions may be more readily
performed than others, as will be explored in Chapter 2.
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Figure 1.11: Examples of common low-order vector beams, known as radial |ψ1⟩,
azimuthal |ψ2⟩ and hybrid beams (|ψ3⟩ , |ψ4⟩). Theoretical polarisation plots are
shown on the left along with the required mode superpositions when using either
a circular polarisation basis and LG beams or a linear polarisation basis and HG
beams. Below the figure, the polarisation and intensity colour maps are shown again
for convenience.
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1.5.2 A zoo of vector beams and an introduction to their topologies

There is an infinite number of possible vector beams that can be created, leading to
some with particularly interesting structures, helping to forge a connection between
the fields of topology5 and structured light.

Recall that light can be described by its electric or magnetic fields. Vector fields,
from their mathematical description, are simply collections of vectors, spatially vary-
ing continuously and differentiably as functions of position, and are normally “well-
behaved”. However, in three-dimensions, this is not always the case, and we can
end up with singular points or isolated curves in which one (or more) variable is
undefined (such as phase or polarisation) [79, 80]. In fact, we have already seen an
example one of these singularities, in for form of a phase singularity at the centre
of LG beams with non-zero topological charge.

Some vector modes generated using superpositions of LG beams contain singu-
larities known as C points, V points and L lines [79,81–83]. Consider the orientation
of a polarisation ellipse given by arctan (S2/S1) (Eq. 1.35). There exist values of S1

and S2 in which the arctan function is undefined, meaning the polarisation does not
have a defined orientation. In this case, we must either have a point of zero inten-
sity or a point of pure circular polarisation, in order to satisfy the equation for the
ellipticity (arcsin (S3/S0)). The points of zero intensity (e.g. at the centre of a radial
beam) are known as V-points, whereas, the points of pure circular polarisation are
known as C points, and they can occur at areas with or without intensity [84].

In the top left of Figure 1.12, I show two examples of vector beams with right-
handed circular polarisation singularities in the centre.

Instead, when the handedness of the polarisation is not defined, i.e. when S3 = 0,
it is completely linear and L lines occur [79,82]. These trace out the points of pure
linear polarisation and generally form closed curves, often occurring at the boundary
between elliptical polarisation states with opposite handedness [79,81].

The orientation of the polarisation ellipse can be used to construct polarisa-
tion streamlines [85]. These continuous lines are created by drawing line segments
between the major axes of the polarisation ellipses, resulting in identifiable mor-
phologies. About a C point, three possible morphologies exist [86,87], called lemon,
star (as shown in Figure 1.12) and monstar (not shown here, but see for example
Ref. [48, 85]).

In Figure 1.12, I also show some other interesting structures formed from po-
larisation streamlines, which have adopted named such as spiral, spider, spider web
and flower [48,85].

Another way to reflect on the structures within vector beams is by employing
the Poincaré sphere. More specifically, by relating the polarisation states present
in the beam to the coverage of the sphere. For example, a radially polarised beam

5Topology is the study of the properties of geometrical objects and physical systems that remain
invariant under continuous transformations such as bending ans twisting.
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Figure 1.12: Vector beams and their topologies. Polarisation distributions (left) and
polarisation streamlines (right) shown on top of the beam intensity. The required
beam superpositions are shown below along with the common names for the mor-
phological structures.

(as shown in Figure 1.11), contains all of the polarisation states along the equator
of the Poincaré sphere. Indeed, all of the beams shown in Figure 1.11 contain
every possible orientation of linear polarisation, and so form great circles around
the equator. However, it is also possible to have beams whose polarisation covers
a great circle on the Poincaré sphere other than the equator. For example, the
other hybrid beams shown in Figure 1.13 also include polarisations along a great
circle. E.g. the beams in Figure 1.13(a) and (b) traverse a path including the north
and south poles of the Poincaré sphere as well as the points of horizontal/vertical
polarisation. Whereas, the beam in Figure 1.13(c) includes the poles and points of
diagonal/anti-diagonal polarisation, and (d) shows an example of a beam covering
the same great circle as in (c), however, this circle is traversed twice as we travel in
an azimuthal direction about the beam’s centre.

Rather than just covering a great circle on the sphere, we can generate beams that
cover the entire surface of the sphere, i.e. they contain every possible polarisation
state. These class of beams are known as Poincaré beams, and some examples are
the lemon and star beams shown in Figure 1.12. But, we can go one step further, by
also filling the entire interior of the sphere. In this case the beams must contain every
possible pure polarisation as well as every partially polarised stated. These beams
are known as full Poincaré beams [88, 89] and can be generated by passing beams
through spatially inhomogeneous birefringent materials [90] or using superpositions
of temporally incoherent beams [91].
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Figure 1.13: Examples of hybrid vector beams whose polarisation distribution tra-
verses a great circle on thee Poincaré sphere. Polarisation plots are shown above
and required beam superpositions below.

These are just some of the hidden structures that can be found within spatial
light fields. An other interesting topological structure - the optical skyrmion - will
be introduced and discussed in detail in Chapter 4.

1.6 The angular momentum of light

The vector nature of light means that, even if it is travelling in a straight line, it
can exhibit rotation, spinning, or twisting around its own axis, i.e., it can posses
angular momentum. This comes in two forms, namely: spin and orbital angular
momentum [41,92].

Spin angular momentum (SAM) is an intrinsic property of the beam relating
to the rotation of the electric and magnetic fields about its own propagation axis.
Therefore, SAM is associated with the polarisation state of light, in particular the
circular polarisation. It has a value of ±ℏ per photon, depending on the handedness
of the circular polarisation (note that the SAM is completely independent of the
photon energy [1]). Strictly, a photon’s spin is always 1 (in natural units, where
ℏ = 1), and refers to its intrinsic angular momentum, and the photon’s helicity
(often denoted σ) represents the projection of the photon’s spin onto its direction of
motion [41]. This is either positive, for left-handed circular polarisation, or negative,
for right-handed circular polarisation. For linear polarisation, which is an equal
combination of left- and right-handed circular polarisation, the SAM is zero.

Whilst the SAM of light has been known about for over a century (discovered by
Poynting in 1909 [93, 94]), orbital angular momentum (OAM) is a newer concept,
first experimentally verified by Allen, Beijersbergen, Spreeuw, and Woerdman in
1992 [59]. OAM is dependent on a beam’s spatial distribution, associated with
helical or twisted phase fronts, as seen in the familiar Laguerre Gaussian modes.
However, other beams, such as Bessel beams [55, 95], can also carry OAM. The
OAM has a value of ℓℏ per photon, where ℓ is the topological charge (as in Eq. 1.43
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for LG beams), denoting the number of helical wavefronts. In comparison to SAM,
which is an intrinsic property, depending on the polarisation, OAM is a global,
or extrinsic, property of a light beam, describing the dynamical rotation of the
wavefronts around the beam axis.

The total angular momentum is given by the sum of the spin and orbital com-
ponents, and is therefore (ℓ+ σ)ℏ per photon. This has importance for many appli-
cations, but in this thesis it will become particularly relevant in chapter 3.

1.7 Chapter 1 conclusion

This chapter began by introducing the wave nature of light, demonstrating how it
can be described as an oscillation of the electromagnetic field and in terms of its
amplitude, phase and polarisation. I then went on to describe polarisation in more
detail, providing two different representations (the Jones and Stokes formalisms),
both of which are useful in different scenarios, and the corresponding visual repre-
sentations of polarisation using the Poincaré sphere and polarisation ellipses.

In the second part of this chapter, I provided examples of higher order Gaussian
modes, shaped in both intensity and phase, before describing how we can theoret-
ically construct beams with spatially varying polarisation by using superpositions
of orthogonally polarised spatial modes. Section 1.5.2 gave a brief introduction to
some of the topologies (or “hidden” structures) that can be found within polarisation
distributions. This will be explored further in Chapter 4.

The content of this chapter covers the background theory applicable to all of
the individual projects undertaken throughout my PhD. More specific theory and
background knowledge will be provided in the chapters associated to each project.
However, first, it is important to discuss how vector beams can be experimentally
generated. This will be presented in the next chapter (chapter 2), along with other
relevant experimental considerations and measurement techniques.
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Chapter 2

Shaping light and measuring
polarisation

2.1 Chapter 2 introduction

In Chapter 1, I introduced the main background theory that is relevant for all of the
work that will be presented in this thesis. In this chapter, I will instead focus on the
required experimental aspects and analysis techniques that will be used throughout.

I will start off by explaining the mechanisms behind some of the most common
optical elements, and their uses, with a particular focus on their effect on the polari-
sation state of light. The relevant Jones and Mueller matrix representations of these
optical elements will be summarised in § 2.2.3. I will then introduce the concept
of Stokes tomography, a measurement procedure which can be used to determine
the (spatially varying) polarisation state of light, before outlining various image
processing and analysis techniques.

In § 2.5, I will outline methods of shaping light with a particular focus on devices
for implementing digital holography, such as spatial light modulators (SLMs) and
digital micromirror devices (DMDs). Finally, I will describe an experimental setup,
incorporating a DMD, which was used extensively for the work in this thesis, for
the generation of arbitrary vector beams with spatially varying polarisation.

2.2 Common optical elements and their interaction with po-
larisation

In this section I will discuss the effects of different optical elements on the polari-
sation state of light. Here, I will focus on the off-the-shelf optical components that
are commonly found in optics laboratories and that will be used extensively for the
work presented in this thesis.
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2.2.1 Waveplates and polarisers

Waveplates and linear polarisers are perhaps the most common optical elements
used for manipulating polarisation. They rely on effects known as dichroism and
birefringence, which are two optical properties exhibited by some materials.

Polarisers

Dichroism is the selective absorption of light based on its polarisation. When light
passes through a dichroic material, it is absorbed differently depending on its po-
larisation state. Linear polarisers employ linear dichroism, absorbing one linear po-
larisation and transmitting the other orthogonal polarisation component of a light
beam. The orientation of the transmitted (or absorbed) polarisation can be easily
selected by rotation of the polariser [1].

Linear polarisers use linear dichroism, but it is also possible to use circular
polarisers [96], which rely on circular dichroism. These filter the circular polarisation
components of a light beam.

There are three commonly used materials/mechanisms for linear polarisers: wire-
grid polarisers, Polaroid sheets and nano-particle film polarisers [97].

• Wire-grid polarisers are made up of many fine parallel wires, normally sand-
wiched between glass or silica panels. The electric field component aligned
with the wire-grid interacts with electrons in the conducting wires. As the
electrons are free to move, a current is induced, transferring energy. However,
movement of the electrons is restricted along the width of the wire. As such
the component of the electric field perpendicular to the wire orientation is
almost fully transmitted [1].

• Polaroid sheets can be used as linear polarisers due to unequal absorption
along the orthogonal transmission axes. They are made from a polyvinyl-
alcohol which is stretched, creating long chains of hydrocarbon molecules,
before being attached to plastic and dipped in an iodine solution to fix the
long-chain molecules in place [44]. The long chains of molecules function in a
similar way to wire-grid polarisers.

• Nano-particle films are a more modern type of polariser. They are manufac-
tured by embedding elongated, ellipsoidal silver nano-particles in thin glass
plates. Nano-particle polarisers offer better extinction ratios between the or-
thogonal linear polarisation components and higher damage thresholds [97].

Additionally, we can have polarisers not based on absorption, but on splitting
orthogonal polarisation components in different directions. This is the case for
polarising beam splitters (PBS), which transmit horizontally polarised light and
reflect vertically polarised light.
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Half- and quarter-wave plates

Optically anisotropic crystals (such as calcite or quartz) exhibit a phenomenon
known as birefringence. These crystals have different refractive indices for orthog-
onal polarisation components (termed the ordinary and extraordinary refractive
indices). If a beam is incident on such a material, the two orthogonal polarisa-
tion components will travel at different velocities1, resulting in an acquired phase
difference between them [1]. By changing the phase difference between orthogonal
polarisation components, the polarisation state can be altered, making the use of
birefringence a common method for manipulating polarisation.

By manufacturing slices of birefringent crystals to precise thicknesses, specific
phase differences can be obtained leading to controlled polarisation changes. It is
most common to find plates of crystalline quartz manufactured to induce phase shifts
equal to 1/2 or 1/4 of the wavelength, these are known as half- and quarter-wave
plates, respectively (abbreviated to HWP and QWP)2. Half-wave plates introduce
a π phase shift between the orthogonal polarisation components, rotating the ori-
entation of the polarisation ellipse, and can convert pure circular polarisation to
the opposite handedness. Quarter-wave plates, on the other hand, introduce a π/2
phase shift and change the ellipticity of a polarisation state (in the extreme case,
converting from linear to circular polarisation or vice versa).

The decomposition of the input polarisation into orthogonal components differs
depending of the orientation of the crystalline quartz axes corresponding to the
ordinary and extraordinary refractive indices. Therefore, different changes to the
input polarisation can be made by rotation of the waveplate.

There are two types of commercially available waveplate: zero-order and multi-
order. A multi-order QWP is manufactured to be a thickness that induces a phase
difference of ∆ϕ = 2πm+ λ/4, for some integer m and given operation wavelength
λ, and similar for a multi-order HWP. This is because it would be impractical to
manufacture and handle waveplates that impart phase shifts of only one half or one
quarter of a wavelength, as they would be very thin. Zero-order waveplates consist
of two multi-order waveplates joined together, but with their axes rotated 90◦ with
respect to each other, such that the differences in their retardance leads to phase
differences of exactly ∆ϕ = λ/4 or ∆ϕ = λ/2.

It is important to use the correct waveplate for the wavelength being used, as
the waveplates retardance depends on λ. This is particularly true for multi-order
waveplates, even for a small wavelength deviation, due to the cumulative erroneous
phase shifts. The error is less pronounced when using a zero-order waveplate, but
these are more expensive. Additionally, the incident angle of the input beam, is
important. Waveplates are manufactured for use at normal incidence, and increasing

1The speed of light (v) in a medium with refractive index n is given by the ratio v = c
n , where

c is the speed of light in a vacuum.
2Waveplates are also commonly called phase retarders.
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the angle of incidence (AOI) increases the distance propagated through the material,
resulting in unintended phase shifts. The effects of incident angle on a QWP are
investigated in § 5.4.6. Crystalline quartz waveplates are particularly sensitive to
AOI, however, it is possible to use polymer waveplates which are fabricated for
better stability over a larger range of AOI [98].

The change to an input polarisation state to a polariser or waveplate can be
described mathematically using either Jones matrices or Mueller matrices, as men-
tioned above. The matrices for these common optical elements will be summarised
in § 2.2.3.

2.2.2 Mirrors - choosing the right type

Mirrors play a crucial role in optical systems. They allow the easy adjustment of
a beam’s position and angle, and with as few as two mirrors, one can perform a
“beam walk,” directing a beam through any point in space.

Reflection from a mirror may seem intuitively simple, but in contrast to common
misconceptions, mirrors do not “swap left and right” but instead “near and far”.
A demonstration of this is shown in Figure 2.1(a) for a beam with initial wave
vector k1 incident on a mirror resulting in a reflected beam with wave vector k2. By
decomposing the wave vectors into two orthogonal components, denoted x and y3,
it can be seen that the direction of k1,y and k2,y are the same whereas k1,x and k2,x
are opposite - i.e. the reflection of a beam from a mirror results in the propagation
direction perpendicular to the mirror surface being reversed.

Upon reflection, a beam’s spin and orbital angular momentum is affected. The
angular momentum component perpendicular to the mirror surface is conserved,
whereas the parallel component is flipped. This has the effect of reversing the
projection of the angular momentum with respect to the propagation direction -
i.e., the sign of the OAM number and the photon’s spin (helicity) is flipped.

Reflection from a mirror causes a phase shift between the s- and p-polarisation
components. These are the polarisation components that are perpendicular and
parallel to the plane of incidence (see Figure 2.1(b)). Generally, for a mirror aligned
such that the incident and reflected beams remain parallel to the optical table, then
the s and p components correspond to the vertical and horizontal polarisations,
respectively. However, this is not always the case. A phase shift between the
orthogonal s and p components can introduce changes to the polarisation state,
changes of which depend on the input polarisation and the mirror normal (which
determines the decomposition into the s and p components). Even for an ideal
mirror, the p-polarisation component acquires a π phase shift [40]. This can, for
example, change diagonal polarisation to anti-diagonal, or left-handed circular to
right-handed circular, or vice versa. These phase shifts are not an issue if an input

3Note that this notation has been chosen for convenience, the components of k here do not
necessarily correspond to directions along the conventional x and y Cartesian coordinate system.
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Figure 2.1: Geometry of reflection from a mirror. (a) A beam, with wave vector k1

incident on a plane mirror surface with angle of incidence θ, resulting in a reflected
beam with wave vector k2. (b) Decomposition into s- and p-polarisation components
which are perpendicular and parallel to the plane of incidence, shown in blue. The
directions n̂ and â are the normals to the mirror surface and plane of incidence,
respectively.

beam is entirely s or p polarised, they however, pose an issue when we are interested
in beams with spatially varying polarisation, especially if the induced phase shift is
not predictable.

To investigate the polarisation changes due to reflection a preliminary exploratory
experiment was performed. This involved measuring the polarisation before and af-
ter two types of mirrors (dielectric and gold metallic) for different angles of incidence
(AOI). Full details on how polarisation profiles can be measured are given in § 2.3.

In Figure 2.2(a) and (b), I show measured polarisation profiles of an originally
diagonally polarised beam after reflection from a dielectric mirror in (a) and a gold
metallic mirror in (b), for AOI ranging from about 8◦ to 41◦. For each of the
measurements, the ellipticity and orientation of the polarisation was calculated and
averaged over the beam profile, the results of which are given in Figure 2.2(c). From
this, and the polarisation plots, it can be seen that the polarisation after the di-
electric mirror varies significantly for the different AOI. For the gold mirror, the
results are much more consistent. Upon reflection, a π phase shift has been ac-
quired between the horizontal and vertical polarisation components, converting the
diagonally polarised light into anti-diagonal, but the resulting ellipticity and orien-
tation of the polarisation are almost constant with AOI, offering more predictable
behaviour than the dielectric mirror.

In Figure 2.3 I show equivalent measurements but for a radially polarised beam.
Again, after reflection from the dielectric mirror, the polarisation varies greatly,
with the radial beam being converted into hybrid beams at certain AOIs. For the
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(a) Dielectric mirror

(b) Gold metallic mirror

(c) Measured ellipticity and orientation

Figure 2.2: Measured diagonally polarised beam after reflection from a dielectric
(a) and gold (b) mirror, for different AOI, as indicated on the plots. The original
beams before reflection are shown in the top left of (a) and (b). (c) The measured
ellipticity and orientation of the polarisation, averaged over the entire beam profile.
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gold mirror, the beam remains radial. This may seem puzzling at first, as above, it
was shown that a diagonally polarised beam becomes anti-diagonal after the gold
mirror. However, it must be recalled that a mirror will also flip the entire intensity
distribution. Therefore, the regions of diagonal (anti-diagonal) polarisation have
indeed become anti-diagonal (diagonal), but accompanied with a mirroring of the
intensity profile, the radial profile is recovered. This effect is not as clearly observed
for a homogeneously polarised Gaussian beam, as shown above, and in fact, it is
only seen for a radial beam as it is symmetric about a centred vertical axis. A radial
beam is just one example of a subclass of vector beams whose polarisation profile is
entirely conserved after reflection (azimuthal beams being another example).

Dielectric mirrors are made up of multiple thin layers of dielectric material, al-
ternating between materials with higher and lower refractive indices. The mirror
mechanism is based on the constructive interference of reflections from the different
layers, which have thicknesses of multiples of the operating wavelength, allowing for
high reflectivity (greater than 99% for a broadband mirror [99]). However, phase
shifts occur at each reflection, causing polarisation changes, with the retardance ex-
hibited varying as a function of AOI [100]. This is evident from the results discussed
above.

Metallic mirrors consist of a thin metal coating on a substrate. They provide
a single reflection from the mirror surface, and, as shown from the experimental
results, are insensitive to polarisation and AOI. However, metallic mirrors are more
susceptible to damage, they can be scratched easily due to their softer coating. They
also have lower heat damage thresholds and lower reflectivity. This can be a problem
if using high-powered lasers, or if intensity loss is a concern.

For all of the experimental projects that will be presented in this thesis, polari-
sation conservation is the main concern. Therefore, gold mirrors will be used.

2.2.3 Jones and Mueller matrices of optical components

As mentioned previously, Jones and Mueller matrices provide a convenient mathe-
matical description for the polarisation changes induced by an optical element, or
indeed, an entire optical setup. Whether the Jones or Mueller formalism is used
normally depends on the application - Jones matrices are more commonly used
for simulations and theoretical calculations when the full electric field information
is known, whereas, Mueller matrices are used to describe the true optical activity
of an optical element or sample, as they can be easily obtained through intensity
measurements.

However, it is often useful to know both representations for the most common
optical elements. These are summarised in Table 2.1, for an (ideal) mirror, a linear
polariser (LP), a HWP and a QWP. For the waveplates and polariser, the matrices
are given in terms of an angle θ, which is the angle of rotation with respect to the
horizontal. If instead we wanted to describe a non-idealised mirror, then the s- and
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(a) Dielectric mirror

(b) Gold metallic mirror

Figure 2.3: Measured polarisation profiles of a radially polarised beam after reflec-
tion from a dielectric (a) and gold (b) mirror, for different AOI, as indicated. The
original beams before reflection are shown in the top left of (a) and (b).
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Optical
element

Jones matrix Mueller matrix

Ideal
mirror

[
−1 0
0 1

] 1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



LP

[
c2(θ) c(θ)s(θ)

c(θ)s(θ) s2(θ)

]
1
2


1 c(2θ) s(2θ) 0

c(2θ) c2(2θ) c(2θ)s(2θ) 0
s(2θ) c(2θ)s(2θ) s2(2θ) 0
0 0 0 0



HWP e−
iπ
2

[
c(2θ) s(2θ)
s(2θ) −c(2θ)

] 1 0 0 0
0 c(4θ) s(4θ) 0
0 s(4θ) −c(4θ) 0
0 0 0 −1



QWP e−
iπ
4

[
c2(θ) + is2(θ) (1− i)s(θ)c(θ)
(1− i)s(θ)c(θ) s2(θ) + ic2(θ)

] 
1 0 0 0
0 c2(2θ) c(2θ)s(2θ) s(2θ)
0 c(2θ)s(2θ) s2(2θ) −c(2θ)
0 −s(2θ) c(2θ) 0



Table 2.1: Jones and Mueller matrices of common optical elements. For the linear
polariser (LP), half- and quarter-wave plates (HWP, QWP), θ indicates the angle
of the fast axis with respect to the horizontal. The sine and cosine functions have
been abbreviated to s and c, respectively.

General waveplate

Jones e−
iδ
2

[
cos2(θ) + e−

iδ
2 sin2(θ) (1− e−

iδ
2 ) sin(θ) cos(θ)

(1− e−
iδ
2 ) sin(θ) cos(θ) sin2(θ) + e−

iδ
2 cos2(θ)

]

Mueller


1 0 0 0
0 cos2(2θ) + sin2(2θ) cos(δ) cos(2θ) sin(2θ)(1− cos(δ)) sin(2θ) sin(δ)
0 cos(2θ) sin(2θ)(1− cos(δ)) cos2(2θ) cos(δ) + sin2(2θ) − cos(2θ) sin(δ)
0 − sin(2θ) sin(δ) cos(2θ) sin(δ) cos(δ)



Table 2.2: Jones and Mueller matrix for a general waveplate rotated by θ and with
retardance δ.
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p-reflection coefficients of the material would appear along the diagonal entries of
the matrices, instead of just ±1. This would account for any attenuation in the
intensity after reflection.

In Table 2.2, I show the matrices for a general waveplate with a phase difference
(retardance), given by δ between the two orthogonal polarisation components. From
this it can be seen, that if δ = π or π/2, then these matrices reduce to those for the
HWP and QWP respectively.

2.3 Stokes tomography - i.e. measuring polarisation

Generally, the word tomography refers to a technique used to image 3-dimensional
objects in sections or slices, using any type of penetrating wave. The full 3D volume
can then be reconstructed afterwards. Here, however, the term is perhaps used in
a more similar way as to how it was adopted in the field of quantum physics when
referring to the process of “quantum state tomography” [101]. This is a process in
which a quantum state is reconstructed by performing projective measurements on
a number of identical copies of the same state. In this case, we instead want to
measure polarisation states, which can be achieved by projecting a beam of light
onto different polarisation bases, as described in the following.

The Stokes parameters are a valuable representation of polarisation states and
there exist multiple ways in which they can be experimentally measured. Here, I will
outline the method used for almost all of the experiments presented in this thesis.

In Figure 2.4, I show a schematic of a simple automated polarimeter. The
beam to be measured passes through a quarter-wave plate (λ/4), a half-wave plate
(λ/2) and and finally a linear polariser (LP) before being detected by a camera.
Six intensity measurements are required, corresponding to the six polarisations,
|ĥ⟩ , |v̂⟩ , |d̂⟩ , |â⟩ , |r̂⟩ and |l̂⟩ (see Figure 1.3). These can be obtained from different
orientations of the waveplates, as given in Table 2.3. The linear polariser is not
rotated, with its axis always orientated along the horizontal. Alternatively, a polar-
ising beam splitter can be used, in place of the LP, with the transmitted intensity
being recorded. Each combination of the waveplate angles effectively converts the
polarisation state you are interested in measuring the contribution of into horizontal
polarisation, such that it now passes through the linear polariser.

In order to efficiently measure the Stokes parameters, an automated system is
used. The two waveplates are held in 3D-printed rotation stages. The rotation
motion is achieved using a stepper motor, driven by a stepper-driver board and
controlled using an Arduino, which is in turn connected to the experiment computer,
along with the camera being used. It is then possible to save six camera images at
select intervals once the waveplates are at the desired angles, as given in Table 2.3.
The technique for this measurement system was previously developed by members
of the Optics group at the University of Glasgow, but has since been improved for
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Figure 2.4: Stokes polarimeter measurement system. LP: linear polariser, λ/2: half-
wave plate, λ/4: quarter-wave plate.

Polarisation State λ/4 λ/2

|ĥ⟩ 0◦ 0◦

|r̂⟩ 0◦ 22.5◦

|v̂⟩ 0◦ 45◦

|l̂⟩ 0◦ 67.5◦

|â⟩ 45◦ 67.5◦

|d̂⟩ 45◦ 22.5◦

Table 2.3: Waveplate fast axis angles, with respect to the horizontal, for Stokes
parameter measurements using the automated setup shown in Figure 2.4.

simpler electronic control by reducing the number of Arduinos required to one. Full
details of the automated stages, including schematics of the electronic circuits and
3D-printed designs, can be found in Refs. [102] and [103].

The automation allows the six intensity measurements to be taken more quickly
(in a matter of seconds), and with more accuracy than if the waveplates were rotated
by hand.

For the automated Stokes measurements, an accurate calibration of the mea-
surement system is needed. A simple and straightforward method for this will now
be described. Calibration should be conducted regularly, as the ‘zero’ position of
the stepper motors will eventually change by one or more degrees with frequent use.

To begin with, we use the fact that the first measurement that the automated
system takes corresponds to I|ĥ⟩, the horizontal state. Therefore, a purely vertically
polarised beam should result in zero intensity falling on the camera sensor. A
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Figure 2.5: Example of polarisation measurement using Stokes tomography. Left:
experimentally measured intensity profiles corresponding to the six Stokes measure-
ments in Table 2.3 of a radial beam. Right: the reconstructed polarisation profile,
and polarisation colour map in terms of orientation (ψ) and ellipticity (χ) angles.
This beam was generated using the setup outlined in § 2.6.

uniformly vertically polarised beam is generated (either using the methods which
will be described in § 2.6, another calibrated linear polariser or the reflected output
form a polarising beam splitter). Each optical component shown in Figure 2.4 is
then placed one by one in the beam path, before the camera. Starting with the linear
polariser, the intensity detected by the camera is looked at, with the exposure time
set high in order to detect even small values. The polariser is then rotated until an
overall intensity minimum (ideally zero total intensity) is achieved. This process is
then repeated for the half-wave plate and quarter-wave plate.

Once the six intensity measurements have been made, the Stokes parameters for
each point of the beam profile can be calculated using Eq. 1.25. This then allows
the orientation and ellipticity to be calculated on a pixel-by-pixel basis (Eq. 1.35).

An example of an experimentally measured polarisation profile for a radially
polarised beam can be seen in Figure 2.5, along with the six recorded intensities.
This radial beam was generated using the setup and method for arbitrary vector
beam generation that will be described in § 2.6.

It is possible to obtain these six projections using only a LP and and QWP.
For obtaining the |ĥ⟩ , |v̂⟩ , |d̂⟩ and |â⟩ polarisation components, the beam is passed
through the LP at the angles shown in Table 2.4. For the |r̂⟩ and |l̂⟩ measurements,
the beam is passed through the QWP at 45◦ and LP at 90◦ and 0◦, respectively. This
approach should give the same results, and has the benefit of requiring one less op-
tical element. However, it has two disadvantages. The first is that the QWP is only
needed for two of the measurements, meaning that it must be added/removed from
the beam path. This makes it more difficult to perform automated measurements
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Polarisation State λ/4 LP

|ĥ⟩ - 0◦

|v̂⟩ - 90◦

|d̂⟩ - 45◦

|â⟩ - −45◦

|r̂⟩ 45◦ 90◦

|l̂⟩ 45◦ 0◦

Table 2.4: Waveplate fast axis angles, with respect to the horizontal, for measuring
Stokes parameters using only a linear polariser (LP) and quarter-wave plate. For
the first four measurements, the beam only passes through the LP, for the remaining
two it passes first through the QWP and then the LP.

as we do for the setup in Figure 2.4. The second, is that an unwanted property
of the polarisers we use is that they can displace the beam path. This occurs as
the polarising film is mounted between two relatively thick plates of glass, which, if
the incidence angle is not exactly 0◦, can displace the beam due to refraction [104].
We noticed this beam shift even for very small deviations of the angle of incidence.
This is not a problem if there is no need to move/rotate the polariser as it can
be placed and then any other optics aligned afterwards. However, rotating the po-
lariser changes the beam displacement, so, in this case, will change the position
of the beam on the camera. This is undesirable, as it would make it necessary to
align the recorded images in post-processing when calculating the Stokes parame-
ters, which, if not done carefully, could lead to errors in the resulting polarisation
profiles.

Recall from Eq. 1.29 (S2
0 = S2

1 + S2
2 + S2

3), that for pure polarisation, the Stokes
parameters are related to each other, and that only three of the four are independent.
Therefore, it is possible to obtain the Stokes parameters from only four intensity
measurements. There are multiple ways to do this, but one example is,

S0 = I0, S1 = 2I|ĥ⟩ − I0, S2 = 2I|d̂⟩ − I0, S3 = 2I|r̂⟩ − I0. (2.1)

This has the advantage of requiring two fewer measurements, however, as (in this
example) only |ĥ⟩, |d̂⟩ and |r̂⟩ are directly measured, our measurements only cover
one quadrant of the Poincaré sphere, meaning that it is possible for some polarisation
states to be favoured. Additionally, for some experimental analysis, we are interested
in the normalised Stokes vector S(N) = [S0, S1, S2, S3]

T/S0. In theory, the total
intensity, S0, can be found from the addition of any two orthogonal polarisation
intensities. However, in practice, there can be slight differences due to imperfect
optical components, e.g. some elements may absorb light differently for different
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polarisations. Therefore, we can obtain a (at least to some extent) more reliable
way of normalisation via,

SN
0 =

[
I|ĥ⟩ − I|v̂⟩

I|ĥ⟩ + I|v̂⟩
,
I|d̂⟩ − I|â⟩

I|d̂⟩ + I|â⟩
,
I|r̂⟩ − I|l̂⟩
I|r̂⟩ + I|l̂⟩

]T
, (2.2)

which of course requires all six intensity measurements.
However, in Chapter 5, I will present an alternative way of determining polari-

sation using a minimum number of measurements, that overcomes the problem of
non-symmetric Poincaré sphere coverage.

2.4 Image processing and analysis

For experimentally measured intensity profiles, it is common to get unwanted in-
terference fringes appearing, as shown in Figure 2.6(a) for a (rotated) HG1,0 mode.
This often occurs from self interference of the beam at the surfaces of the camera,
and is actually more likely to occur for better alignment. However, it is possible to
remove these artefacts in post-processing using a simple Fourier filter.

For this, we start by performing a fast Fourier Transform (FFT) of the raw cam-
era image. The logarithm of the absolute value of the FFT is shown in Figure 2.6(b),
in which several bright peaks can be seen. In this plot, the central regions represent
the low frequency components of the image and the peripheral regions the higher
frequency components. The central largest peak corresponds to the zero frequency
component (or DC value), and is the total intensity of the image. The other slightly
smaller peaks contain information corresponding to the periodic diagonal fringes
seen in the camera image. If we had instead measured a beam with completely
horizontal (vertical) fringes, then these additional peaks would only occur as a ver-
tical (horizontal) component in the frequency domain. However, here we have both
components.

Finding the location of the peaks, but ignoring the central zero frequency peak,
they can be used to create a mask to remove them from the FFT. Figure 2.6(c) shows
the FFT with the mask applied, having the effect of setting the unwanted peaks to
zero. Finally, the FFT with peaks removed can be inverse Fourier transformed to
obtain the final filtered beam, as shown in Figure 2.6(d).

For analysis of experimental data recorded by a camera, we generally want to
remove the background intensity occurring from stray light from the surrounding
environment, and containing no beam information. This background noise will vary
slightly over the camera sensor. To estimate it, we can look at a small region of
the recorded image (≈ 100× 100 pixels) at the edge of the camera sensor, far from
the beam profile, and average over this region. This average background value can
then be subtracted from the entire image, setting any pixels that now have negative
values to zero.
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Figure 2.6: Example of low-pass Fourier filtering of an experimentally measured
(rotated) HG1,0 mode. (a) The original raw camera image. (b) Logarithm of the
absolute value of the Fourier transform of the camera image and (c) with the bright
peaks corresponding to the fringe information removed. (d) Final filtered beam after
inverse Fourier transformation.

Throughout this thesis, where it is stated that Fourier filtering has been per-
formed on the data and a background subtracted, this is the process that has been
performed.

One final consideration that must be made in terms of image processing, is the
pixel position of the centre of the beam, which is not necessarily at the centre of
the camera display. This is particularly important if we want to overlay sequential
experimental images on top of each other (e.g. for the Stokes polarimetry described
in § 2.3) or find the location of multiple beams that are incident on a single camera
sensor at the same time (e.g. for the work that will be described in Chapter 5). A
simple way to locate the centre of a beam is by finding the weighted-centroid of a
select region of the total image. This will give pixels with higher intensity values
a greater “weight” than others within the computation region. This method works
well even when trying to find the centre of a beam with zero intensity in the middle
(for example those carrying OAM, or some HG modes) as long as there is an even
intensity distribution spread equally about the central point. When computing
the weighted-centroid, a more accurate centre can be found by only considering
pixels with values above a chosen threshold, in order to avoid any background light
impacting the results. A threshold of 20% of the peak intensity value proved to be
an effective choice.

2.5 Shaping light

As mentioned in Chapter 1, knowing the complex electric field information of a
beam in a single transverse plane, at any position along the propagation direction,
allows the full three-dimensional structure of the beam to be realised. This includes
its phase, intensity and polarisation. We can use this property of paraxial light to
our advantage. By controlling the intensity and phase of a laser beam in one plane,
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we can shape its entire three-dimensional volume. In fact, engineering the phase
profiles and/or intensity of light is at the heart of every optical element, including,
for example, the simple lens.

In the following, I will describe two important optical devices that can by used
for the dynamic spatial control of a light beam’s properties, namely, spatial light
modulators and digital micromirror devices. The ability to address these devices
with a computer makes them versatile tools in the fields of beam shaping and ma-
nipulation.

Furthermore, static light shaping devices exist such as q-plates [105–107], spiral
phase plates [108–110] and Fresnel cones [34]. Additionally, static holograms can
be constructed using lithography methods on transparent plates or etching tech-
niques [111, 112]. There are advantages and disadvantages to both static and dy-
namic light shaping tools, e.g. you are limited in the potential structures using static
light shaping elements, and with dynamic devices, you can change their action with-
out experimental realignment, however, they are often limited in their resolution in
comparison to the static counterpart. Here, the focus will be on the dynamic light
shaping devices, and for information on the static devices, the interested reader
should refer to the references provided. However, in Chapter 6, I present an exper-
iment that implemented a Fresnel cone, and the details on how a Fresnel cone can
be used to modify polarisation will be given therein (specifically in § 6.2).

2.5.1 Spatial light modulators

Reflective liquid crystal spatial light modulators (commonly abbreviated to LC-
SLMs or just SLMs) use liquid crystal on silicon (LCOS) technology, relying on the
physical properties of liquid crystals to control light beams.

The liquid-crystal state of matter was discovered by Friedrich Reinitzer in 1888
[113], the properties of which are as the name suggests - lying somewhere between
those of conventional isotropic liquids and those of solid crystals. Liquid crystal can
flow like a liquid, but its molecules (shaped like elongated ellipses) are orientated
in a common direction, meaning that they maintain a certain degree of structural
organisation akin to crystalline solids [114].

There are various types of liquid crystal phases, characterised both by their op-
tical properties and the type of ordering of the molecules, and occurring for different
temperatures and materials [114]. For the context of LC-SLMs, only the nematic
phase is of relevance. In this case, the molecules lack positional order, but are
aligned with their major axes almost completely parallel. The birefringence of the
liquid crystal depends on the molecular orientation, which, in turn can be controlled
by application of an electric field [115]. This has allowed LC-SLMs to be made based
on the principle of the electronically controllable birefringence of liquid crystals.

A schematic showing the working of a typical LC-SLM is shown in Figure 2.7.
The device is pixelated, with a liquid crystal layer lying between a cover glass
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Figure 2.7: Cross-section of the basic structure of a typical LC-SLM working at
normal incidence. The crystal molecule orientation is shown as ellipses, and the
orientation (hence birefringence) is a function of the applied voltage between the
common electrode and pixelated electrodes on the back plane. Minimal birefringence
occurs for maximal applied voltage (Vmax). The wave travelling through the liquid
crystal can acquire a spatially dependent phase between 0 and 2π in two passes of the
liquid crystal layer, one before and after reflection from the dielectric mirror. Note
that in reality, there is a smoother transition between the liquid crystal alignment
at the pixel boundaries.

window and a pixelated silicon backplane. Each pixel has electrodes on either side,
allowing different electric fields to be applied through them, and the orientation
of the molecules (hence birefringence) to be independently chosen [115, 116]. For
an incident light wave, the molecule orientation affects the effective optical path
through that pixel. For a maximum applied field (denoted Vmax in Figure 2.7), the
long axis of the crystals are perpendicular to the polarisation direction, minimising
the optical path and hence the phase delay. For no applied electric field, the crystal
molecules are rotated parallel to the polarisation direction, maximising the optical
path and phase retardance [116]. The applied phase retardation to an incoming
beam is then simply a function of applied voltage, and can be spatially varying due
to the SLM pixelation, as shown in Figure 2.7.

Due to the mechanism for phase modulation, an SLM can only modulate the
phase of input light whose polarisation is aligned with the major axis of the liquid
crystal molecules. Therefore, for spatial phase modulation, horizontally polarised
light is required (or vertical if the SLM is rotated by 90◦). However, if diagonally
(or anti-diagonally) polarised light is used, then retardation of only the horizon-
tal component occurs, and the phase difference between the horizontal and vertical
polarisation components can be changed. This in turn allows for polarisation mod-
ulation [117].
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A reflective SLM has a mirror at the back surface of the liquid crystal layer.
For increased efficiency, this is typically a dielectric mirror, chosen for the specific
working wavelength (or wavelength range) of the SLM. This means that the incident
wave travels twice through the liquid crystal layer, hence LC-SLMs are manufactured
to have a thickness such that the maximal phase retardation (2π) is obtained for
two passes through the layer.

For commercial LC-SLM devices, the crystal orientation can be set to one of
256 values. However, this full range may not be required for every wavelength. For
example, if we have an SLM that applies the full 0 to 2π phase shift for values of 0
to 255, for a particular wavelength λ, then a wavelength of 0.8λ, would only require
values of 0 to 204 to obtain phase modulation between 0 and 2π (although with less
resolution). Therefore, it is possible to use an SLM for phase modulation of a light
beam with a shorter wavelength than intended, however, not a longer wavelength.

2.5.2 Example SLM setup and hologram calculation for simultaneous
phase and amplitude modulation

As discussed, SLMs can be used to spatially modulate the phase of an incident
laser beam directly, however, techniques can be employed to also achieve amplitude
modulation. Here, I will provide an example of one such method, that will be used
in Chapter 7 of this thesis.

Phase-only hologram

One of the simplest ways to obtain both phase and amplitude modulation using an
SLM, is to design a hologram that will apply the phase modulation and simultane-
ously redirect some of the incident light, such that we are left with intensity only in
the places that we want. For this we employ a diffraction grating, using the fact that
the periodic structure of a diffraction grating can disperse a single light beam into
multiple beams travelling in different directions, known as diffraction orders. Using
a grating, it is therefore possible to deflect a tunable portion of the light away from
the straight reflection from the SLM and direct it into the first diffraction order. Not
only that, we can control the specifications of the grating to maximise the intensity
directed to the first order. For this we use what is known as a blazed grating.

Blazed diffraction gratings refer to phase gratings with a “sawtooth” profile
[118,119]. They are defined by two parameters, their phase depth (or height of each
“tooth”) and their pitch, the width of each triangular tooth (see Figure 2.8(b)).
If we consider a light beam incident on the SLM with a propagation direction de-
scribed by wave vector kin, then a direct reflection would result in a beam with wave
vector k′in However, the first diffraction order, containing the desired information
will propagate in a direction with wave vector kdes, as depicted in Figure 2.8(a).
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Figure 2.8: Diffraction from an SLM using a blazed diffraction grating. (a) Wave
vector directions of the incident beam (kin), the direct reflection (k′in) and desired
beam in the first diffraction order (kdes) after an SLM, with normal n̂. (b) Blazed
diffraction grating with pitch Λ, a depth of 2π, resulting in a tilt known as the blaze
angle θB.

The phase grating profile, periodic in the x direction, can be found from,

Φg(x, y) = mod

(
2πx

Λ
, 2π

)
, (2.3)

where Λ is the grating pitch or period, and, in this case, the grating depth has
been set to 2π. We want to maximise the purity of the desired field, by increasing
the spatial separation between the first and zeroth diffraction orders as much as
possible. For this, recall that in the Fourier plane of a periodic diffraction grating
the diffraction orders are more spatially separated for gratings with larger grating
periods, and vice versa. Experimentally, it has been found that grating periods of
Λ ≈ 4 pixels work well [120].

If the grating described by Eq. 2.3 is used directly, then the beam directed along
kdes will have the same intensity distribution as the incident beam. However, by
carefully tuning the depth of the phase grating (between 0 and 2π), the intensity
in the first diffraction order can be varied, without changing the diffraction angle.
Gratings with smaller depth diffract less light into the first order, leaving more
in the zeroth order, in comparison to those with a larger depth [119]. Therefore,
with spatial control of the grating depth, we can achieve a tunable spatially varying
amplitude in the first diffraction order.

This could be achieved by simply multiplying Φg with a spatially varying ampli-
tude, corresponding to our desired beam. However, this assumes the incident beam
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to be a plane wave with uniform intensity, and in reality, this is not the case. We
can then instead take into account the experimental input beam in the calculation
of the hologram, by dividing the desired beam by a simulated estimate of the input.
An expression for the hologram can then be given by,

H(x, y) = f

(
Ades(x, y)

Ain(x, y)

)
mod [ϕdes(x, y)− ϕin(x, y) + Φg(x, y), 2π] ,

= f (Arel(x, y))ϕrel(x, y),

(2.4)

where Arel and ϕrel are the relative spatially varying amplitude and phase respec-
tively, which take into account the desired beam, the incident beam and the required
blazed grating.

In Eq. 2.4, f represents some function of the relative amplitude, which can
be chosen to optimise the experimental results. The simplest choice is f(Arel) =
Arel, which assumes that there is a linear relationship between grating depth and
diffraction efficiency, but this is generally not the case for many SLMs. Nonetheless,
this simple approach works surprisingly well and is widely used [103,120].

Reference [120] performs a rigorous comparison of six different options for the
function f . One particular option that performed well had f of the form,

f(Arel(x, y)) = 1− 1

π
sinc−1(Arel(x, y)), (2.5)

which took inspiration from Davies et al. [119], who found that the amplitude in
the first diffraction order had a sinc variation4.

Together, Eqs. 2.4 and 2.5 form the method for hologram generation used in this
thesis. Figure 2.9 offers a pictorial illustration of the hologram generation process.
The final hologram is scaled to have values between 0 and 255 (corresponding to 8-
bits) before being displayed directly on the SLM, which will convert the 8-bit inputs
into the correct voltage and phase retardation.

SLM setup

Figure 2.10 shows a schematic of a simple setup using an SLM for arbitrary beam
shaping. A laser beam is expanded and cleaned5 (using lenses L1 and L2 and a
pinhole) before being directed onto the front surface of the SLM. Lenses L1 and
L2 are chosen such that the beam is magnified to overfill the SLM display and to
make wavefronts of the incident beam be as close to plane as possible. A linear

4Note that a direct inverse for the sinc function does not exist, but it can be defined on the
domain [0, π]. The easiest way to do this is to calculate the ideal sinc(x) = sinx/x function and
create a “lookup table” to obtain the sinc−1(x) values.

5The output from lasers are often beams with non-perfect quality. By spatially filtering using
a pinhole, we can “clean” the beam achieving beam profiles closer to that of an ideal Gaussian.
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Figure 2.9: Representation of the hologram calculation outlined by Eqs. 2.4 and 2.5.
The phase maps are scaled from 0 to 2π, the intensity from 0 to Imax and the final
hologram H has been scaled to values between 0 and 255, according to the greyscale
values accepted by the SLM.

polariser (LP) is also used to ensure linear horizontally polarised light, as the liq-
uid crystals of the SLM display can only modulate horizontal polarisation. The
calculated hologram is displayed on the SLM, designed to send our shaped beam
to the first diffraction order, as described above. After reflection from the SLM,
the beam propagates through a final telescope (lenses L3 and L4), allowing the first
diffraction order to be selected by placing a variable aperture in the focal plane after
L3, corresponding to the Fourier plane of the SLM. In the top right of Figure 2.10,
a simulation of the SLM Fourier plane is shown for an LG1

0 beam. From this, the
desired beam can be seen in the first diffraction order, and the “unwanted” inten-
sity remaining in the zeroth order. The higher diffraction orders have intensity (and
phase) distributions equal to higher order LG modes.

2.5.3 Digital micromirror devices

Digital micromirror devices (DMDs) consist of an array of several hundred thou-
sand micron-sized mirrors. These mirrors can be electronically addressed to allow
independent switching of the mirror direction. The mirrors can be directed in one
of two directions, usually ±12◦, corresponding to an “on” and “off” state. This
means that select parts of an incident light beam can be sent towards or away from
the intended direction in the experiment (corresponding to the on and off states,
respectively), allowing a binary pixel-by-pixel control of the intensity. Therefore, in
contrast to SLMs, which provide spatially varying control of the phase, DMDs only
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Figure 2.10: SLM setup for phase and amplitude modulation. LP: linear polariser,
M: mirror, L1,2,3,4 are lenses. The variable aperture sits in the Fourier plane of the
SLM and selects the first diffraction order, blocking all other orders. The inset,
labelled SLM FP, is a simulation of the SLM Fourier plane when a hologram for
an LG1

0 is used. This image has been saturated in order for the higher orders, with
lower intensity, to be more clearly viewed.

act on the amplitude6.
Figure 2.11 shows a representation of a DMD mirror array along with the spec-

ifications for a Texas Instruments DLP3000 LightCrafter DMD [121], which is the
model used for the work presented here. Figure 2.11(a) shows a close up of the
micro-mirror structure, highlighting their diagonal arrangement. Each individual
mirror is square with their axis of rotation being about their diagonal, and the di-
agonal arrangement means that the spacing between the rows and columns is not
equal. In Figure 2.11(b) and (c), I also show photographs of the micromirror ar-
ray displaying holograms for a checkerboard pattern and a beam with a doughnut
intensity distribution.

Digital micromirror devices are known for their speed, and DMD chips where
the mirrors can switch at rates of 32.5 kHz or faster, are possible (e.g, DLP7000).
Therefore, in applications where hologram changing speed is important, DMDs are
often chosen over LC-SLMs, which typically have response rates in the order of
tens of milliseconds. Although DMDs can only directly modulate intensity, using
diffractive techniques, the phase can also be shaped [17, 122, 123], however, this
usually comes with a reduction of efficiency in comparison to LC-SLMs.

6Note that, technically, DMDs are a subclass of spatial light modulator, as they offer spatial
control of a light beam. As such they are sometimes referred to as binary SLMs or mirror-based
SLMs. However, they are more commonly called DMDs, with the term SLM normally kept for
reference to the LC-SLMs described above.
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Figure 2.11: Digital micromirror device design. Product specifications for a Texas
Instruments DLP3000 LightCrafter DMD and mirror arrangement (a) with rows (r)
and columns (c) indicated. The mirrors can be independently rotated about their
vertical diagonal to ±12◦ and the pixel pitch, denoted p, is 7.6 µm. (b) and (c)
show photographs of the DMD chip displaying a checkerboard and doughnut beam
hologram, respectively.

Binary holograms

In a similar way in which phase-only holograms for SLMs can direct the desired
mode into the first diffraction order, it is possible to design binary holograms where
the first diffraction order will also contain the desired spatial intensity and phase
profile, as first demonstrated in 1966 [124]. Changing the pitch, or width, of the
diffraction grating can control the angle of the first diffraction order. By locally
varying the grating pitch, we can obtain spatially varying intensity, and by locally
varying the lateral offset or position of the grating, a spatially varying phase can be
achieved [125]. For example, we will have a π phase difference between two regions
of the beam if the “on” parts of the grating in the first region line up with the “off”
parts of the grating in the second region.

A binary hologram for obtaining a desired beam in the first diffraction order can
be calculated using [103,125],

H(x, y) =
1

2
+

1

2
sgn

[
cos (ϕrel(x, y)) + cos(sin−1 (Arel(x, y)))

]
(2.6)

where, Arel and ϕrel have the same definitions as above, and sgn is the sign function,
returning values±1 and resulting inH having values of 0 or 1, i.e. a binary hologram.

Due to the DMD mirror geometry, specifically, the diagonal layout causing un-
even spacing between the rows and columns, and the±12◦ tilt of the mirrors, causing
a beam at normal incidence to be reflected off at 24◦, the resulting shaped beam
will display a lateral compression. This can be compensated for by “stretching”
the hologram such that the beam in the image plane of the DMD has the desired
dimensions.
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2.6 Experimental generation of vector beams

Now that the workings of digital micromirror devices and binary holograms have
been outlined, I will now describe a way in which they can be used to generate
arbitrary beams with spatially varying polarisation.

Due to the mathematical description of a general vector beam (Eq. 1.52), gen-
erating beams with spatially varying polarisation boils down to encoding two fields
with orthogonal polarisation states into a single beam profile. Multiple methods
have been developed to do this, with some being “static”, only being able to gener-
ate a specific (or a select few) vector beams, and others “active”, where arbitrary
beams can be generated. The active methods commonly rely on devices such as
LC-SLMs and DMDs.

As mentioned in § 2.5.1, LC-SLMs can only modulate a single polarisation,
usually horizontal. Nonetheless, it is possible to use them to generate vector beams
through either interferometric methods [126–131] (independently shaping two beams
and then combining them at a beam splitter, for example) or implementing a double
pass of the SLM [132, 133], with a half-wave plate used in between, swapping the
vertical and horizontally polarised components, such that a different part of the
incident field is modulated each time.

One downside to these experimental systems using SLMs for vector beam gen-
eration, is that they often need very precise alignment and/or good interferometric
stability to ensure optimal mode overlap. For this reason, for the work presented in
this thesis, a DMD was employed to generate vector beams, as they will modulate
any incident light, regardless of its polarisation, providing easier polarisation control
with a (possibly) simpler setup. The experimental setup that will be explained in
the following section was previously developed in collaboration between the Optics
group at Glasgow and the University of Witwatersrand [70,134], and has since been
refined to optimise the generation process and resulting measured vector beams.

2.6.1 Experimental setup for vector beam generation and multiplexed
holograms

Figure 2.12 shows a schematic of the experimental setup used for arbitrary vector
beam generation using a DMD. An initially horizontally polarised laser beam (He-
Ne, λ = 633nm) is expanded and collimated to a spot size that will overfill the
active area of the DMD, before being passed through a half-wave plate to create
diagonally polarised light. The diagonal beam is split into its horizontal and ver-
tical components using a Wollaston prism (WP), where the resulting orthogonally
polarised beams exit the WP with a separation angle of 1◦ 20′. Both the |ĥ⟩ and
|v̂⟩ polarisation components are directed onto the DMD display using a 4f imaging
system (L1 and L2), where they overlap spatially (this overlap does not have to
be complete, but should be as large as possible and ideally centred on the DMD
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Figure 2.12: Experimental set-up for generating arbitrary vector beams using a
DMD. HWP: half-wave plate, WP: Wollaston prism, L1,2,3,4: lenses. Here, the pink
beam represents diagonal polarisation, blue beams horizontal polarisation, orange
vertical polarisation, and a mix of both represent beams with spatially varying
polarisation. (a) Example of a binary multiplexed hologram to generate a radially
polarised beam, calculated using Eq. 2.7. Black areas represent mirrors tilted to
+12◦ and white areas correspond to mirrors tilted to −12◦.

display). The DMD will then shape the amplitude and phase of the vertical and
horizontal beams independently, using a multiplexed hologram.

The multiplexed hologram is designed to diffract light into two different diffrac-
tion orders, corresponding to the |ĥ⟩ and |v̂⟩ beams, and they are reflected from the
DMD surface at two different angles. The hologram consists of the superposition of
two independent holograms corresponding to the desired beam profile of each polari-
sation component. Each hologram is superimposed with a different linear diffraction
grating, the period of which is chosen such that, in combination with the different
input angles, the first diffraction orders of the shaped horizontal and vertical light
fields overlap. Consider that we want to generate a beam from the superposition of
a horizontally polarised mode described by H = Ah(x, y)e

i(ϕh(x,y)+Φg,h(x,y)) and a ver-
tically polarised mode described by V = Av(x, y)e

i(ϕv(x,y)+Φg,v(x,y)), where Φg,h and
Φg,v are the linear diffraction gratings used to specify the direction of each order.
To calculate the binary multiplexed hologram we first find the form of a new multi
beam field, M, given by the weighted complex interferometric sum of H and V [125],

M(x, y) = W eiϕglobalH(x, y) + (1−W )V, (2.7)

where, W is a relative weighting between the two beams, controlling the fraction of
intensity sent into beams H and V. We will have equal intensity between them when
W = 0.5 (however, in reality, this is dependent on if the intensity ratio between
the horizontal and vertically polarised beams incident on the DMD is equal or
not). The phase term ϕglobal controls the relative global phase between the two
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modes. The expression for M can then be used in Eq. 2.6 to create the final binary
multiplexed hologram, which provides control over the intensity and phase of the
two orthogonally polarised beams as well as the position of the diffraction orders.
An example hologram for a radially polarised beam is shown in Figure 2.12(a) as
well as in Figure 2.11(c) where it can be seen displayed on the DMD itself.

As mentioned, the period of the linear diffraction gratings (Φg,h and Φg,v) are
chosen such that the first diffraction orders of the shaped horizontal and vertical light
fields overlap spatially, resulting in the desired vector beam appearing immediately
after the DMD. This means that after the DMD any unwanted diffraction orders, as
well as the zeroth orders, can be removed via spatial filtering. This is achieved by
placing an aperture in the Fourier plane of a lens (L3 in Figure 2.12). The beam is
then collimated again before imaging. The polarisation of the resulting beam can be
characterised using the Stokes tomography system (as described in § 2.3) by placing
it directly after L4.

During alignment, the spatial overlap of the beams in the first diffraction orders
after reflection from the DMD can be observed using a camera, and the overlap fine
tuned by varying the period of the gratings in the binary hologram displayed on the
DMD. This is most easily performed by looking in the Fourier plane of the DMD,
by placing the camera directly behind the aperture. A schematic depicting how the
modes are overlapped is shown in Figure 2.13 along with camera images of the DMD
Fourier plane.

Here, the generation of vector beams has been described using a superposition of
horizontal and vertical polarisation, mainly because these are the two polarisations
that a Wollaston prism splits a beam into. However, by simply placing a QWP
before (or after) the DMD, with its fast axis at 45◦ we can generate vector beams
using a right- and left-handed polarisation basis. Indeed, by placing a HWP and a
QWP before the DMD, we can generate beams using any orthogonal polarisation
basis we want.

2.7 Chapter 2 conclusion

In this chapter, I have focused on providing the relevant experimental details for
the work carried out for this thesis. This included how common optical elements
(e.g. waveplates and polarisers) interact with a light beams polarisation and can be
used to control it, and how mirrors can impart unwanted polarisation changes. The
Jones and Mueller matrix representations of these optical elements were provided,
which can be used to understand how a series of optical components will modify a
polarisation state.

In § 2.3, I described how polarisation can be experimentally measured via Stokes
tomography. For all of the work presented in this thesis polarisation is determined
using a simple automated set up consisting of two rotating waveplates and a sta-
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Figure 2.13: DMD Fourier plane when generating a radially polarised beam. Hor-
izontally polarised beams are shown in blue and vertical in orange. A depiction of
the Fourier plane before and after spatial overlap is shown in (a) and (b) respec-
tively, with the superimposed beam shown in green. (c) and (d) show equivalent
experimentally recorded images, where higher diffraction orders can also be seen.
In these images the zeroth order has been blocked to avoid over saturation of the
camera.

tionary linear polariser.
A large part of this chapter concentrated on the ways in which light beams can be

shaped using dynamic digital devices. The workings of LC-SLMs were explained and
an experimental system and phase-only hologram calculation presented for arbitrary
phase and amplitude modulation of light beams using LC-SLMs. A description of
digital micromirror devices, how they work, the concept of binary holograms and
how they can be used to shape light was given in §2.5.3.

Finally, the knowledge of light shaping and DMDs was combined in § 2.6 where
I detailed the experimental setup used at Glasgow for the generation of arbitrary
vector beams. This is perhaps the most important experimental setup presented
in this thesis, as it is the way in which the vector beams required for the other
experimental projects are generated.
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Chapter 3

Angular momentum redirection
phase and non-planar beam
propagation

3.1 Chapter 3 introduction

The experiment and theory contained within this chapter is what I worked on at the
very start of my PhD (and during the peak of Covid lockdowns). As my first project,
it is probably the one I learnt the most from, particularly in terms of experimental
techniques and analysis, and it is this project that led to my first, first-author
publication (Ref. [135]), and as such, I always think back to this experiment fondly.

For this work, we began with an interest in looking into what happens when
structured beams propagate along strange and unusual paths and linking this to
geometric phases. We started by investigating experimentally the propagation of
beams along an out of plane trajectory, connecting the rotations seen individually
in the intensity patterns and polarisation to separate geometric phases. It has
previously been shown that that geometric phases are independently linked to spin-
redirection, resulting in the rotation of polarisation [136–138], and to spatial mode
transformation, resulting in intensity rotation [139–142]. However, by looking at the
non-planar propagation of vector beams, we could study these rotations together. By
doing so, we discovered that these geometric phases can be linked to a more general
geometric phase, allowing us to introduce the concept of the angular momentum
redirection phase.

Here, I will discuss the concept of geometric phase, giving some common ex-
amples found in optics, before outlining the experiment, results and theoretical
explanations of our non-planar propagation investigations.

The work outlined in this chapter was completed in collaboration with my pri-
mary and secondary supervisors, Sonja Franke-Arnold and Robert Bennett, and
Claire M. Cisowski. My specific contributions to the work included setting up the
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beam generation system (Figure 2.12), building and aligning the non-planar system,
acquiring all the experimental data and performing the data analysis. I also per-
formed some of the simulations, including the simulated results shown in the final
section of this chapter. R. Bennett and C. M. Cisowski worked on the theoretical
framework, and R. Bennett also assisted with some of the simulations. S. Franke-
Arnold led the project and provided experimental guidance.

3.2 Geometric phase

A propagating electromagnetic field can be characterised by its amplitude and phase.
For a light beam travelling in free space, the phase advances by 2π in each cycle of the
oscillation, meaning that phase information can tell us what part of the oscillation
cycle the electric field is in. As the phase of a light beam varies as a function of
time, it is often referred to as the dynamic phase, and it is directly proportional to
the optical path length.

However, additional finite phase differences can also be acquired due to trans-
formations in either the state or parameter space. In 1984, Berry reported on the
phase that a physical system can acquire if it travels a path in state space, and is
directly related to the geometry of the path formed [143]. It is for this reason, that
these phase shifts are termed geometric phases.

The concept of geometric phase was first discovered in tandem, both in the field
of optics (by Pancharatnam in 1956) [144] and in molecular electronic degeneracies
(by Longuet-Higgins et al in 1958) [145], however, it was Sir Michael Berry who
generalised these ideas in his landmark paper [143], and in the decades that have
followed, the discovery has impacted many areas of both quantum and classical
physics, such as plasma [146,147], nuclear physics [148], condensed matter [149,150],
photonic crystals [151,152] and optics [28,153–155]. In optics alone, there are many
examples of geometric phases that occur due to the geometry of the system in
which a beam propagates. These include, the well-known Gouy phase [156], the
Pancharatnam-Berry phase, where an additional phase results from a cycling of
polarisation states [144,157], the spin-redirection phase1, where the phase shift arises
from variations of the wave vector direction [158,159] and phase shifts can also occur
from the cyclic manipulation of squeezed light [160,161]. Some of these phenomena
will be detailed in the sections below.

Initially, the idea of geometric phases seemed only to be relevant from a theo-
retical perspective [28], but they have been observed in many different areas, lead-
ing to various applications [162], such as within molecular and condensed matter
physics [163] and for quantum computations [164, 165]. Although, it is perhaps in
optics that the concept has had the greatest impact, with applications in wave-

1This geometric phase was named the spin-redirection phase for the first time by Jiao et al.
in [136], although it had been discovered by others before.
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Figure 3.1: Simple example of an experimental setup for measuring the PBP. Left:
Mach-Zehnder interferometer with arms of equal optical path length. In one arm
the beam passes through two QWPs (fast axes at 3π/4 and π/2) and a HWP (at
π/8), resulting in polarisation state changes, as depicted, and the acquisition of a
phase difference (∆ϕ) between the arms of the interferometer. Right: Path of the
polarisations traced on the Poincaré sphere, giving geometric interpretation. The
solid angle Ω is shown as a shaded area.

front shaping arising [166, 167]. Examples include structured metasurfaces [168],
Q-plates [105, 106], beam shaping elements based on liquid crystals [169–171], fre-
quency shifters [172, 173], phase compensators in interferometric sensors [174], and
the birefringent materials used to modulate polarisation [167,175].

3.2.1 Pancharatnam-Berry phase

In 1956, the Pancharatnam phase was introduced by Shivaramakrishnan Pancharat-
nam. He discovered this geometric phase (although not called this at the time)
while investigating the interference of beams with different polarisations, where he
found that a beam would acquire a phase dependent on the path travelled by the
polarisation on the Poincaré sphere [144]. After Berry introduced the concept of
geometric phase, providing a quantum interpretation, Ramaseshan and Nityananda
in 1986 [176] pointed out that the Pancharatnam phase is an early example of Berry
phase, and as such, it is now often referred to as the Pancharatnam-Berry phase
(PBP hereafter).

It is straightforward to realise the PBP experimentally, as it is simply based on
polarisation transformations. Consider the setup shown in Figure 3.1. Here, an
initially horizontally polarised beam is used as the input to a Mach-Zehnder inter-
ferometer with arms of equal optical path length. Normally, if the interferometer is
balanced, then there is no additional phase acquired by one of the beams (∆ϕ = 0),
leading to only one output. However, in one of the interferometer arms in Fig-
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ure 3.1, we have introduced a series of state transformations using waveplates. The
beam passes through two QWPs and a HWP, converting the polarisation first to
circular polarisation, then to anti-diagonal polarisation and finally returning back
to horizontally polarised light.

As mentioned above in 3.2, the geometric phase of a system depends on the
path travelled in state space. As we are considering polarisation states here, we
employ the Poincaré sphere as the state space, which allows for a comprehensive
visualisation of the phenomenon. The evolution of the polarisation from |ĥ⟩ to |r̂⟩
to |â⟩ and then back to |ĥ⟩ can be traced out on the Poincaré sphere as shown in
Figure 3.1, where it is clear that the path forms a closed curve. Pancharatmun [144],
Berry [157] and others [136, 177] have all shown that the geometric phase acquired
by a beam after travelling a closed cycle on the Poincaré sphere is given by,

∆ϕ = −ΩP

2
. (3.1)

where ΩP is the solid angle subtended by the closed path on the sphere (depicted
by the shaded area in Figure 3.1).

Pancharatnam first observed this phase when he was studying interference in bi-
axial crystal plates [144], but it wasn’t until 1988 that it was first observed in both
a Mach-Zehnder [177] and Michelson interferometer [178]. Since then, it has been
measured in many different experimental setups, including a non-planar interferom-
eter [136], using Young’ double slit interference [179] and using non-interferometric
methods [180].

For the example given in Figure 3.1, waveplates were employed to impose a
geometric phase, however, geometric phases can be observed in birefringent materials
by themselves. As an example, we can consider a HWP (which is simply a slice of
birefringent material, cut to a thickness such that it induces a relative phase shift of
half a wavelength, or π, between the two polarisation components aligned with the
fast and slow axes of the wave plate, respectively). For a linearly polarised beam
incident on a HWP, the resulting beam is also linearly polarised, but rotated by
2θ, where θ is the angle between the HWPs fast (or slow) axis and the angle of the
input polarisation. For an circularly polarised input beam, the handedness of the
polarisation flips after passing through the HWP, independent of the orientation
of the HWPs fast axis. However, the beam still acquires a global phase of 2θ.
This is the same as the geometric phase that was noted by Pancharatnum when
a polarisation state evolves from right-handed circular to left-handed circular or
vice-versa [154].
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Figure 3.2: Focusing of a Gaussian beam between two lenses of equal focal length
f . A geometric phase, the Gouy phase, is acquired upon focusing when the complex
radius of curvature is cycled in its parameter space. (a) Representation of the radius
of curvature which is weak both very close to and far from the focus. (b) Path on
the focusing sphere for a 4f imaging system.

3.2.2 Gouy phase

The Gouy phase is a well-known nπ/2 phase shift2 that is gradually acquired by a
converging beam as is passes through a focus propagating from −∞ to +∞ (where
n = 1 for cylindrical waves and 2 for spherical waves) [53, 181]. Although it has
been over a century since Gouy made his discovery in 1890 [182], it has still been
a focus of work in recent years to provide a simpler and perhaps more satisfying
physical interpretation to this phase anomaly [181]. It was Simon and Mukunda in
1993 [183] and Subbarao in 1995 [156] who were among the first to suggest that the
Gouy phase shift is a manifestation of a general Berry phase.

As a Gaussian beam is focused, a Gouy phase shift is acquired and its spot size
changes, as shown in Figure 3.2(a). We know that for the existence of an additional
phase of a geometric nature, there has to be a cyclic evolution of the system in its
parameter space. In the case of the Gouy phase, the parameter that is cycled is
the complex wave-front radius of curvature, q. For a beam propagating in the z
direction, q(z) = z + izR, however, it is often more useful to consider the reciprocal
of this complex beam parameter, given as,

1

q(z)
=

1

R(z)
− i

λ

πw2(z)
, (3.2)

which depends on the radius of curvature (R(z)) and beam size (w(z)), allowing for
a simplified version of the equation for the Gaussian beam amplitude (previously

2Note that this phase shift is only for the fundamental Gaussian beam. The Gouy phase is
increased by an additional factor of N + 1, for higher order modes with mode number N , as
described in § 1.4.3.
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Figure 3.3: Propagation through a helically-wound optical fiber. A spin-redirection
phase can arise from the cycling in the direction of the wave-vector in its parameter
space.

given as Eq. 1.40 in § 1.4) to be written as,

E(r, z) =
1

q(z)
exp

(
−ik r2

2q(z)

)
. (3.3)

To visualise the state space, the “focusing sphere” of unit diameter is employed.
This is just the Riemannian sphere, which is a stereographic projection of the ex-
tended complex plane, and hence can also be considered to be a representation of
the complex q-plane. Considering the stereographic projection, the south pole of the
focusing sphere corresponds to the origin of the q-plane. This point also corresponds
to the focusing of a point, whereas the north pole corresponds to the complete de-
focusing of a Gaussian beam and represents the infinity point of the q-plane. The
points that lie on the unit circle of the q-plane will lie on the equator of the fo-
cusing sphere. The equator then represents plane wave-fronts with constant beam
width [156]. A representation of this is shown in Figure 3.2(b) for a 4f imaging sys-
tem. It can clearly be seen that the path traced on the focusing sphere subtends a
solid angle of Ω = −2π, thus making the Berry phase factor ∆ϕ = −π (cf. Eq. 3.1),
which is equal to the Gouy phase [156,184].

3.2.3 Spin-redirection phase

As mentioned above, the spin-redirection phase is a phase shift of geometric origin
that results from the cycling of the wave vector direction, k, of a light beam. It was
first observed in 1938 by Rytov [185] in inhomogeneous media and again shortly
afterwards by Vladimirskiy [137]. A few decades later, the effect was witnessed in
optical fibres [158, 186]. A schematic is given in Figure 3.3 demonstrating how the
wave vector direction can be changed using a helically-wound fiber.

In both of these cases, we have examples of adiabatic transformations, i.e. a
gradually changing system. For example, if we had a photon with its spin initially
aligned with its wave vector, then, the spin will remain aligned with the wave vector

68



Chapter 3. Angular momentum redirection phase and non-planar beam
propagation 69

at all times as its direction is cycled. The geometric phase acquired in this instance,
is given by −σΩk, where Ωk is the solid angle subtended by the path traced out
on the sphere of wave vector directions, or the k-sphere, and σ is the photons
helicity which represents the projection of the photon’s spin onto the wave vector.
The helicity can either be 1 or −1 for left- or right-handed circular polarisation,
respectively [140].

However, later work [136, 187, 188] has also shown that a geometric phase can
be acquired for nonadiabatic changes in a wave vector’s direction (i.e. discontinuous
changes). This means that this additional phase shift can be observed in discrete
optical systems containing no waveguides, for example using mirror reflections. In
this case, we have a nonadiabatic transformation because a photon’s helicity will
flip upon reflection from a mirror (see § 1.6). To account for this, a slightly different
parameter space was introduced, focusing on the evolution of the direction of the
spin vector (S) [187, 188]. Due to this, this geometric phase is now termed the
spin-redirection phase and is given by,

∆ϕ = −σΩS, (3.4)

where ΩS is the solid angle enclosed on the spin-redirection sphere - the sphere
representing all the possible directions of the spin vector in real space [136,166].

For both adiabatic and non-adiabatic transformations, we have the same effect
for cyclic re-directions of k (or S), after its original orientation is recovered, that is,
the initial polarisation state will be rotated. This can be related to the concept of
circular birefringence, as the right- and left-circular polarisation components acquire
equal and opposite geometric phase, leading Berry to refer to this effect as geometric
circular birefringence [189,190]. This will be discussed further in § 3.5.

Here, and in § 3.2.1, I have outlined the concepts of the PBP and the spin-
redirection phase separately. However, Jiao et al. looked at the combined effects of
both of these using a nonplanar Mach-Zehnder interferometer, and in the process,
discovered that the two geometric phases are additive [136]. The experiment outlined
in the remainder of this chapter took inspiration from Jiao et al.’s work but we
also consider the geometric phases linked to mode transformations allowing us to
look in detail into the geometric phases acquired by beams with spatially varying
polarisation.

3.3 Experimental setup for non-planar beam propagation

The optical setup used to investigate intensity and polarisation rotation, and as a
result, the acquired geometric phase, is shown in Figure 3.4(a). This system was
inspired by earlier work [136, 188], and simply consists of four mirror reflections,
arranged such that the initial and final wave vectors, k0 and k4 point in the same
direction. This provides an axis around which to define rotations. Mirrors M2,
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Figure 3.4: Schematic of non-planar trajectory. (a) Optical setup comprising of
a series of mirror reflections to propagate a beam along a non-planar path, where
kn label the wave vectors after reflection from mirror n (Mn). Experimentally, we
can adjust the non-planarity of the beam path, parameterised by α, by moving the
position of M1 along the z-axis, as indicated by M′1. The corresponding k-sphere
shows how the k vectors change along the beam path. (b) Shows the same optical
setup as in (a) but interpreted in terms of the total angular momentum, J = L+S,
for the case where the initial angular momentum vector, J0, is aligned with k0.
Shown as inset is the angular momentum redirection sphere, where the rotation θ
is equal to the solid angle enclosed by the path. Figure adapted from [135].

M3 and M4 form a (vertical) plane, and we choose to parameterise the degree of
non-planarity of the system by the angle,

θNP =
π

2
− α, (3.5)

where, α is the angle between k0 and k1, as indicated in Figure 3.4, and corresponds
to twice the angle of incidence on M1. Experimentally, α can be changed by moving
M1 along the z-axis. An example of another possible position of the first mirror,
and resulting beam path, is indicated by M′1 in Figure 3.4.

As discussed previously in § 2.2.2, mirror coatings can cause unwanted optical
activity, leading to unwanted polarisation changes. To prevent this, we ensure to
use gold mirrors, which for the incidence angles used in the setup, do not alter the
polarisation, meaning that any polarisation change occurs directly from the system
geometry.

This setup is used to look at the non-planar propagation of homogeneously po-
larised beams with various intensity profiles, as well as vector beams, with more
complex spatially varying polarisation structures. All of these beams are generated
using an optical system incorporating a digital micromirror device (DMD), as shown
in Figure 2.12, and detailed fully in § 2.6.
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The polarisation profiles of the beams can be measured using Stokes tomogra-
phy, which allows polarisation rotation to be determined (as detailed previously in
§ 2.3). For image rotation, we can simply analyse the intensity measurements ob-
tained from the CMOS camera. The coordinate system indicated in Figure 3.4 is
used throughout. Therefore, when defining rotations, a positive rotation angle θ
corresponds to a clockwise rotation when looking in the direction of beam propaga-
tion (+ve z-direction). The rotation then appears anticlockwise when observed on
the camera, looking against the propagation direction.

3.4 Image rotation

Beams with structured intensity profiles were allowed to propagate along the non-
planar trajectory shown above. By choosing non-rotationally symmetric patterns,
any rotation can be easily observed. Examples of Hermite-Gaussian (HG) modes
before and after the setup are shown in Figure 3.5. Figure 3.5(a) shows a HG30

mode for multiple non-planar configurations, as indicated, and (b) shows various
HG modes for a fixed α. It was found that the amount of rotation did not depend
on the spatial mode, and the angle of rotation θ would always be equal to π/2− α.
This is the same as the non-planarity angle of our system, θNP , described in Eq. 3.5.

3.4.1 Describing image rotation using geometric phase

By considering the propagation of an intensity profile along the non-planar path, it
is straightforward to see how this rotation occurs due to the direct mirror reflections.
However, it is also possible to interpret this rotation in terms of geometric phase.

Consider an arbitrary mode, ψ(r, ϕ), where r and ϕ are cylindrical coordinates.
A rotation of this will simply give the resulting mode, ψ′(r, ϕ) = ψ(r, ϕ+ θ), for any
angle θ. If we want to understand this in terms of geometric phase, it becomes con-
venient to rewrite the expression in terms of Laguerre-Gaussian (LG) beam modes.
As LG modes form a complete basis, it is possible to write any intensity profile in
terms of them, doing this for the original mode we obtain,

ψ(r, ϕ) =
∑
p,ℓ

⟨LGℓ
p|ψ(r, ϕ)⟩LGℓ

p, (3.6)

where ⟨a|b⟩ denotes the inner product which can be evaluated from the mode overlap
and LGℓ

p = uℓp(r) exp(iℓϕ), for radial and azimuthal indices p and ℓ. Similarly, we
can write the rotated mode as,

ψ′(r, ϕ+ θ) =
∑
p,ℓ

⟨LGℓ
p|ψ(r, ϕ+ θ)⟩LGℓ

p. (3.7)
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Figure 3.5: Sample of experimental intensity measurements of HG modes showing
image rotation. (a) Rotation of a HG30 mode for different non-planarity angles,
as indicated. The original un-rotated mode can be seen on the left for θNP = 0◦.
(b) Rotation of a selection of HG modes for a fixed non-planarity angle θNP =
(21.4±0.5)◦, indicated by dashed line. The top row shows the original beam profiles
and the bottom row shows rotated modes after propagation through the system. (b)
adapted from [135].
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We can directly evaluate the inner product as,

⟨LGℓ
p|ψ(r, ϕ+ θ)⟩ = ⟨uℓp(r)eiℓϕ|ψ(r, ϕ+ θ)⟩

= ⟨uℓp(r)eiℓ(ϕ−θ)|ψ(r, ϕ)⟩
=e−iℓθ ⟨LGℓ

p|ψ(r, ϕ)⟩ ,
(3.8)

where the second line results from relabelling the angular variables, allowing us to
write Eq. 3.7 as,

ψ′(r, ϕ) =
∑
p,ℓ

e−iℓθ ⟨LGℓ
p|ψ(r, ϕ)⟩LGℓ

p. (3.9)

By comparing this to Eq. 3.6, we can see that a rotation by an angle θ is associated
with a phase −ℓθ. Namely, a spatial mode with a given orbital angular momentum
(OAM) acquires a phase proportional to its topological charge, ℓ. For this reason,
we refer to it as the orbital -redirection phase.

From this, it can perhaps be seen that choosing to rewrite the arbitrary spatial
mode, ψ, in terms of LG modes was a convenient choice, as we end up with a
somewhat simple expression where we can identify the geometric phase acquired by
the mode. This was in fact a conscious choice, as LG modes are eigenmodes of the
angular momentum operator (−iℏ∂θ), which is the generator of rotations, hence,
making the modes themselves convenient for describing rotations.

Redirection phases occur from a cycling in the direction of a light beam. They
depend on the geometry of the path formed on the relevant sphere of angular mo-
mentum directions, consequently, these phase shifts are said to be geometric. For
a paraxial propagating light beam, its spin (S) and orbital angular momentum (L)
vectors and hence the total angular momentum, J = L+S are aligned with the wave
vectors, k. Upon reflection from a mirror, a photons helicity flips, and the direction
of OAM reverses. Hence, the component of J perpendicular to the mirror does not
change orientation, as indicated in Figure 3.4(b). Considering this, the k-redirection
sphere (as described in § 3.2.3), shown in Figure 3.4(a) can be translated into an
angular momentum redirection sphere, as shown in Figure 3.4(b). The solid angle,
Ω, traced out by J on the angular momentum redirection sphere, and indicated by
the blue curve, is equal to π/2−α. This is equivalent to the rotation angles, θ, seen
here.

3.4.2 Rotation of Hermite-Gaussian modes

For simple illustration of the orbital-redirection phase we can consider the rotation
of HG modes. These modes, defined by the positive integers n and m (HGn,m) and
LG modes can be characterised by a mode number, N = n+m = 2p+ |ℓ|.

Let a HG mode rotated by an angle θ be denoted as HG′. As described above,
it is easy to interpret the rotation of an LG mode in terms of an acquired orbital-
redirection phase, −ℓθ, and as HG and LG modes both form their own complete
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orthonormal basis, one can be written as a superposition of the other via [191],

|HGn,m⟩ =
∑
p,ℓ

⟨LGℓ
p|HGn,m⟩ |LGℓ

p⟩

|LGℓ
p⟩ =

∑
n,m

⟨HGn,m|LGℓ
p⟩ |HGn,m⟩ .

(3.10)

By calculating the overlaps directly, the mode transformations can be described by
mode conversion matrices, B. Generally, any transverse spatial mode of mode order
N can be expressed as a superposition of N +1 modes from a different mode family
with the same mode order, i.e. the relevant square matrix B will have dimensions
of N + 1.

Using this, the rotation of a HG mode can be described as a superposition of
fundamental HG modes by first expressing it in terms of the LG basis, applying a
rotation matrix, RLG(θ) then returning to the HG basis [191],

|HG′⟩ = BHG←LG ·RLG(θ) ·BLG←HG |HG⟩ , (3.11)

where, RLG(θ) = diag(e−iℓ1θ, e−iℓ2θ, . . . , e−iℓN+1θ). This rotation matrix results in the
rotation of each LG component with topological charge ℓ by imparting an orbital-
redirection phase of −ℓθ.

As an example, we can consider the first order mode HG0,1 rotated by θ in the
clockwise direction (as defined with beam propagation). An experimental measure-
ment of this is shown in the first column of Figure 3.5(b). For first order modes,
the explicit forms of the matrices describing the mode transformation are,

BN=1
HG←LG =

1√
2

(
1 1
i −i

)
, RN=1

LG (θ) =

(
e−iθ 0
0 e+iθ

)
, BN=1

LG←HG =
1√
2

(
1 −i
1 i

)
,

(3.12)
allowing the rotated mode to be expressed as,

HG′0,1 =
i√
2
(LG−10 eiθ − LG+1

0 e−iθ)

= cos θHG0,1 − sin θHG1,0,

(3.13)

in the LG basis and HG basis, respectively3.
Similarly, for second order modes (N = 2), the mode transformation matrices

3The expression given here in Eq. 3.13 is different to that given in [135], where a typo has been
corrected.
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are,

BN=2
HG←LG =


1
2

− 1√
2

1
2

i√
2

0 − i√
2

−1
2

− 1√
2

−1
2

, RN=2
LG (θ) =

 e−i2θ 0 0
0 1 0
0 0 e+i2θ

,

BN=2
LG←HG =


1
2

− i√
2

−1
2

− 1√
2

0 − 1√
2

1
2

i√
2

−1
2

.
(3.14)

This allows us to write an expression for a rotated HG2,0 mode, as shown in the last
column of figure 3.5(b),

HG′2,0 =
1

2
(LG+2

0 e−i2θ −
√
2LG0

1 + LG−20 e+i2θ)

= cos2(θ)HG2,0 +
sin(2θ)√

2
HG1,1 + sin2(θ)HG0,2. (3.15)

3.4.3 Experimental confirmation of image rotation

Experimentally, we confirm the relationship between the non-planarity of the system
and image rotation by setting α to various angles between 0◦ and 70◦ and identi-
fying the rotation of HG modes. For each angle, 14 separate HGn,m modes, with
mode numbers N = n +m ≤ 4 were used, with images recorded before and after
propagation through the system. The camera images were low-pass Fourier filtered
to remove artefacts due to diffraction and then converted to polar plots. The rota-
tion of each mode can then be easily realised from the angular offset between the
input and output beam profiles. A schematic displaying an example of the analysis
procedure for a HG1,0 mode is shown in Figure 3.6. From this, it was seen that the
rotation did not depend on the input beam mode, as expected. Due to this, the
rotation angle θ observed for each setup angle α could be determined by averaging
over the rotations found for each of the HG modes, and an error found from the
standard deviation. By plotting the measured θ for each α, shown as the blue data
points in Figure 3.7, the rotation relation, θ = θNP = π/2 − α could be confirmed,
and hence, that the image rotation is directly related to the degree of non-planarity
of the beam trajectory.

3.5 Polarisation rotation

In this section, I will now consider polarisation rotation after non-planar propagation
and link this effect to geometric phases.
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Figure 3.6: Example of intensity rotation analysis for a HG1,0 mode. Left: Measured
intensity before and after non-planar propagation in both Cartesian (x, y) and polar
(r, ϕ) co-ordinates. Right: Plot of normalised intensity against polar angle for the
beam before (blue) and after (orange) rotation. The intensity is taken as an average
over 10 rows either side of the location of maximum intensity, as indicated by the
lines on the polar intensity plots. The rotation of the intensity angle can be found
from the angular offset between the two profiles (θ = ∆ϕ).

Gaussian beams that were initially horizontally polarised were used as the inputs
to the system, again, for various non-planarity angles of θNP = π/2−α. Examples of
the resulting rotated polarisation profiles are given in Figure 3.8(a), where it can be
seen that the polarisation remains uniform across the beam profile. Additionally, an
initially horizontally polarised HG1,1 mode is given in Figure 3.8(b), showing that
polarisation rotation is independent of the spatial mode and that polarisation and
intensity rotate by the same angle, as expected.

To determine polarisation rotation, spatially resolved Stokes measurements are
performed on the beams before and after non-planar propagation. This was achieved
by implementing the rotating waveplate setup previously shown in Figure 2.4 and
discussed in § 2.3. As we can assume that the polarisation remains uniform over
the beam after propagation through the system, we average the measured polari-
sation over the entire Gaussian beam profile. The rotation θ is then found from
the orientation angle4 of the polarisation and the error in θ given by the standard
deviation.

4Here, the polarisation orientation angle is the same as discussed in § 1.3, denoted by ψ, and
defined by Eq. 1.35.
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Figure 3.7: Image and polarisation rotation for non-planar trajectories. Experi-
mental measurements of intensity (blue) and polarisation (orange) rotation and the
theoretical prediction (black) of the relationship between the non-planarity of the
system set by α and the rotation angle θ. The lower plot shows the difference
between the measured θ and the theoretically expected θNP. The error in α is esti-
mated to be smaller than 0.5◦. Figure adapted from [135].
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Figure 3.8: Polarisation rotation. (a) Experimental measurements of the rotation
of an initially horizontally polarised Gaussian beam (left) for different θNP. (b)
Measured polarisation of an initially horizontally polarised HG1,1 mode before (left)
and after (right) non-planar propagation.

The orange data points in figure 3.7 show measured α against measured polar-
isation rotation, θ. This confirms that polarisation rotation is equal to the non-
planarity angle, given by the relation θ = θNP = π/2 − α, and also demonstrates
that polarisation and image rotation is the same.

3.5.1 Three-dimensional polarisation ray tracing approach

One way to understand the origin of polarisation rotation is to first consider the
propagation of light through the non-planar trajectory in terms of Jones vectors [46],
which allows the action of each mirror on the incident polarisation vector to be
described by a Jones matrix. The advantage of using Jones matrix formalism is
that a single matrix describing the overall effect of an optical system on an input
polarisation state can simply be found from multiplication of the Jones matrix of
each optical component.

As we are considering non-planar propagation, we have a 3D geometry and
therefore, write the electric field in the form E = Eheh + Evev + Ezez, where eh,
ev and ez are unit vectors in the horizontal, vertical and propagation direction. To
begin to describe the effect of each mirror, we need three orthogonal vectors: the
incident wave vector, k, and two orthogonal polarisation components, one in the
plane of the mirror, p, and one perpendicular to it, s. However, the Jones matrix of
an optical element acts on the local Jones vectors. As we are considering an out of
plane path, the direction of the p and s vectors change at each mirror. Therefore,
for each mirror, we have to change from a global to a local coordinate system, apply
the action of the Jones matrix, and then transform back to the global coordinates.

Here, I will apply this three-dimensional polarisation ray tracing approach, as
also discussed in [192], to obtain a matrix describing the effect of our non-planar
system.

Let the action of an arbitrary optical element q on a polarisation vector eq, be
written as,

eq = Pq · eq−1, (3.16)

78



Chapter 3. Angular momentum redirection phase and non-planar beam
propagation 79

where Pq is a 3×3 matrix to be found, which describes the action of element q. This
equation is written using a global coordinate system, but can similarly be written
using a local coordinate system, leading to an equivalent equation, namely,

wq = Jq · wq−1. (3.17)

As Pq is a 3 × 3 matrix, it has 9 elements, and hence we require a set of 9 linear
equations to uniquely define it. For this, we can start from the fact that any po-
larisation state can be written in terms of two orthogonal basis states. Let’s call
these a and b. Therefore, Eq. 3.16 can be written as a pair of statements, each one
describing the change to one of the orthogonal polarisation components,

e′a = Pq · ea, e′b = Pq · eb, (3.18)

which gives us a total of 6 equations.
To get the last 3 equations required to define Pq, we use the matrix form of the

law of reflection,
kq = Pq · kq−1, (3.19)

written in global coordinates, which simply describes the change in direction of the
wave vector at each mirror interface. With Eqs. 3.18 and 3.19 together, we now
have our set of 9 linear equations with 9 unknowns, which can be solved to find the
elements of Pq.

As mentioned above, a Jones matrix describing an optical element acts on the lo-
cal Jones vectors, requiring transformations between the global and local coordinate
systems in order to apply the Jones matrix. This process should all be contained
within the matrix Pq, so we can write it in form,

Pq = OG←L · Jq ·OL←G, (3.20)

where OL←G transforms from global to local coordinates, OG←L from local to global
and Jq is the Jones matrix describing q.

To find the matrix OL←G, we use the orthogonal coordinate system before the
element, which is {sq,pq,kq−1, }, and project it onto the local z direction for the
element. This kind of basis transformation can be obtained using a matrix whose
rows are the coordinate vectors of the new basis vectors (local, {sq,pq,kq−1, }) in
the old basis (global, {x,y, z, }). Therefore, OL←G is of the form,

OL←G =

 sx,q sy,q sz,q−1
px,q py,q pz,q−1
kx,q ky,q kz,q−1

. (3.21)

Instead, to get the matrix describing the local to global coordinate transforma-
tion, we can take take the inverse of this, replacing the basis vectors with those after
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the element, resulting in,

O−1G←L = OT
G←L =

 s′x,q p′x,q kx,q
s′y,q p′y,q ky,q
s′z,q p′z,q kz,q

. (3.22)

Here, the relation A−1 = AT was used, where A is any orthogonal matrix. This
could be done as we know that we must be dealing with orthogonal matrices as
the basis vectors {sq,pq,kq−1, } are orthogonal to each other. This means that
Pq can be determined if the Jones matrix of the optical element and the basis
vectors {sq,pq,kq−1, } are known. However, the information needed can be simplified
further, as it turns out that the s and p polarisation components can be written in
terms of kq and kq−1,

sq =
kq−1 × kq

|kq−1 × kq|
s′q = sq

pq = kq−1 × sq p′q = kq × s′q. (3.23)

One advantage to this method of describing the action an optical element has
on a polarisation state, is that the effect of Q optical elements acting sequentially
on a beam can be combined into an overall matrix P , by multiplying the individual
Pq matrices together in order,

P = PQ · PQ−1 · · · · · Pq · · · · · P2 · P1. (3.24)

All of this together means that to describe an entire system, all we need are the
Jones matrices of each element and the k vectors after each optical component. In
our case, k can be determined by the direction of each mirror.

For an ideal mirror, the 3D Jones matrix describing reflection is,

Jq =

 1 0 0
0 −1 0
0 0 0

, (3.25)

and our 3D geometry, as shown in Figure 3.4, comprises of 4 mirrors, and 5 k vectors
given as,

k0 =

0
0
1

, k1 =

 sinα
0

− cosα

, k2 =

0
1
0

, k3 =

1
0
0

, k4 =

0
0
1

 = k0, (3.26)

where, α is the angle between the first and second k vectors (k0 and k1), and we
have used the same coordinate system as indicated in Figure 3.4.
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Using Eqs. 3.20 to 3.26, we can obtain P matrices for each element, and hence
the combined P matrix,

P = P4 · P3 · P2 · P1· =

 sinα − cosα 0
cosα sinα 0
0 0 1

. (3.27)

Above, we defined θ = π
2
−α, which described the non-planarity and rotation angle.

Substituting this in Eq. 3.27, results in,

P =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

. (3.28)

This matrix is in the form of a rotation matrix, representing a rotation in the
xy plane, about the z axis by an angle θ. From our coordinate system, we have
defined the beam as travelling in the positive z direction, hence we will observe a
clockwise direction when the rotation is viewed along the propagation axis of the
beam. However, when viewed against the propagation direction the rotation will
appear to be in the anticlockwise direction, as shown in Figure 3.8.

3.5.2 Interpreting polarisation rotation using geometric phase

Using the results of the previous section, we can now begin to interpret the po-
larisation rotation after non-planar propagation in terms of geometric phase. Any
uniformly linearly polarised paraxial light beam, propagating in the z direction can
be written in terms of its horizontal and vertical polarisation components as,

|E⟩ = E0(r, ϕ)
(
cos θ0 |ĥ⟩+ sin θ0 |v̂⟩

)
, (3.29)

where E0(r, ϕ) is the transverse spatial mode and 0 ≤ θ0 ≤ 2π is the angle of the
linear polarisation to the horizontal. If the beam described by Eq. 3.29 is allowed
to propagate along the non-planar trajectory, then an expression for the rotated
polarisation can be obtained by applying the rotation matrix given in Eq. 3.28,

|E′⟩ = E0(r, ϕ)
(
cos(θ0 + θ) |ĥ⟩+ sin(θ0 + θ) |v̂⟩

)
. (3.30)

However, as will be shown, it becomes simpler to consider this in terms of circular
polarisation when looking at geometric phase. Converting to the circular polarisa-
tion basis using, |r̂⟩ = (|ĥ⟩ − i |v̂⟩)/

√
2 and |l̂⟩ = (|ĥ⟩+ i |v̂⟩)/

√
2 we have,

|E⟩ = (E0(r, ϕ)/
√
2)
(
eiθ0 |r̂⟩+ e−iθ0 |l̂⟩

)
, (3.31)

|E′⟩ = (E0(r, ϕ)/
√
2)
(
ei(θ0+θ) |r̂⟩+ e−i(θ0+θ) |l̂⟩

)
, (3.32)
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for the initial and rotated fields, respectively. From this, it can be seen that for a
rotation of θ, the right and left handed polarisation components, with a spin angular
momentum of ∓ℏ per photon, have acquired a phase factor of exp(±iθ). Therefore,
we can link polarisation rotation by an angle θ, to a spin-redirection phase of −σθ
to each circularly polarised mode with helicity σ. Furthermore, θ is equal to the
solid angle enclosed by the path traced out by the spin vector on the spin redirection
sphere, as shown in Figure 3.4(b). Naturally, this result also holds for initial beams
with any arbitrary elliptical polarisation.

3.6 Rotation of vector beams

In sections 3.4 and 3.5 the rotation of intensity and homogeneous polarisation was
discussed. In this section, we will look at these two effects simultaneously by con-
sidering the non-planar propagation of vector beams, with an inhomogeneous po-
larisation distribution.

A general beam with structured polarisation can be formed from the superpos-
tion of two orthogonally polarised spatial modes. Here, to easily follow on from
the discussion in § 3.5.2, we choose to express the vector beams using a right- and
left-handed circular polarisation basis, |ψ⟩ = ψl(r, ϕ) |l̂⟩ + ψr(r, ϕ) |r̂⟩, and restrict
ourselves, for simplicity, to LG spatial modes, such that we consider beams of the
form,

|ψ⟩ = LGℓ1
p1
|l̂⟩+ eiφLGℓ2

p2 |r̂⟩ . (3.33)

Above, in § 3.4 and § 3.5 it was shown that non-planar propagation results a mode
with OAM ℓℏ acquiring an orbital redirection phase factor of exp(−iℓθ) and a mode
with a spin of σℏ along the propagation direction gaining a spin redirection phase
of exp(−iσθ). To consider the effect of non-planar propagation of a general vector
beam, we can apply the known acquired phases to Eq. 3.33, leading to the simulta-
neous rotation of the intensity pattern and polarisation by an angle θ,

|ψ′⟩ = e−i(ℓ1+1)θLGℓ1
p1
|l̂⟩+ eiφe−i(ℓ2−1)θLGℓ2

p2 |r̂⟩ . (3.34)

Therefore, it can be seen that the total geometric phase acquired is proportional to
the total angular momentum number, j = ℓ+ σ.

From further inspection of Eq. (3.34), we can see that if j = ℓ + σ = 0, then
after rotation, the original beam is recovered and the input and output beams will
be indistinguishable. The helicity, σ, can only take values of ±1, meaning that we
obtain j = 0 only for LG modes ℓ1 = −1 and ℓ2 = 1. As these modes are unchanged
after non-planar propagation through the system, they can be considered as eigen-
modes of the system and therefore, conserved quantities. This is true for all values
of p1,2 and φ. For p1,2 = 0, we obtain beams with rotationally symmetric intensity
and radial polarisation for φ = 0, azimuthal polarisation for φ = π and rotation-
ally symmetric polarisation with orientations in between radial and azimuthal for
0 < φ < π.
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Figure 3.9: Vector beam rotation. Polarisation plots of experimentally measured
vector beams before (top row) and after (bottom row) non-planar propagation
through the system, for a fixed rotation angle of θ = (24.1 ± 0.5)◦. Beams shown
in (a), and (b) are of the form LG±10 |l̂⟩+ e−iφLG±10 |r̂⟩ for φ = (0, π). The first col-
umn in (c) is a Poincaré beam, containing all possible polarisations, and the second
column shows a beam containing polarisations along a great circle on the Poincaré
sphere. The corresponding theory plots are given as smaller inserts. Figure adapted
from [135].

Examples of radially and azimuthally polarised beams are given in Figure 3.9(a),
showing that they do appear unchanged. However, for all other values of j, we have
a non-zero angular momentum redirection phase, resulting in a visible rotation of
the beam. Some examples of the rotation of general vector beams with j ̸= 0 are
given in Figure 3.9(b) and (c). In Figure 3.10, I provide examples of the recorded
camera intensities obtained from Stokes measurements of a LG0

0 |ĥ⟩+LG1
0 |v̂⟩ beam,

both before, and after non-planar propagation. The corresponding spatially varying
polarisation profile reconstructed from these measurements can be seen on the left
column of Figure 3.9(c). From inspection of these intensity measurements, it can
clearly be seen that the location of the individual polarisation components is rotated
clockwise about the beam centre.

3.7 Chapter 3 conclusion

Throughout this chapter, I have discussed some of the common geometric phases
found in optics and outlined an experiment looking at the non-planar propagation
of vector beams, and linking the rotations seen to geometric phases.

For this work, a closed out of plane optical trajectory was devised, consisting
solely of four mirror reflections, and the rotation of intensity, polarisation and vector
beam profiles was investigated, both experimentally and theoretically. With this
simple experiment, it was demonstrated (and confirmed through excellent agreement
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Figure 3.10: Experimental intensities obtained from Stokes measurements of an
LG0

0 |ĥ⟩+LG1
0 |v̂⟩ beam before (a) and after (b) non-planar propagation, for a rota-

tion angle of θ = 24.1◦. From left to right, we have the intensities corresponding to
horizontal, vertical, diagonal, antidiagonal, right- and left-handed circular polarisa-
tion components, respectively. These intensity measurements were used to construct
the polarisation profiles shown on the left of Figure 3.9(c).

between theory and experimental results) that polarisation and intensity rotate in
the same direction and by the same angle, dependent on the solid angle enclosed by
the traversed path on the associated redirection sphere.

We have seen that propagating a light beam along a non-planar trajectory affects
both the orbital and spin angular momentum in the same way, by adding a geometric
phase factor proportional to the observed rotation. This is perhaps surprising, as
the orbital and spin angular momentum are fundamentally different properties of
light. OAM is an extrinsic property, arising from twisted phase fronts, whereas SAM
is an intrinsic property, relating to the vector nature of electromagnetic fields (or,
more specifically, the handedness of their circular polarisation).

By looking at the rotation of vector modes, we saw that, to the overall light beam,
non-planar propagation has the affect of adding an angular momentum redirection
phase factor of e−ijθNP , where θNP characterises the non-planrity of the light path,
and j = ℓ + σ is the total angular momentum number of the beam, combining
both the spin and orbital components. When j = ℓ + σ = 0, no geometric phase
is acquired, and the polarisation profile appears unchanged by the experimental
system. This is the case for the popular radial and azimuthally polarised modes,
and as such, can be considered as eigenmodes of the system.

The findings presented here have some potential applications. For example, the
robustness of the radial and azimuthally polarised vector beams against aplanarity,
means that they could be ideal candidates for use within optical communication us-
ing fibres, which are inherently subject to twisting and bending [193], and also within
microscopy systems, which often contain many redirections of a light beam. Addi-
tionally, these particular vector modes can be tightly focused [194], again, making
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them useful for microscopy applications. The results are also relevant for twisted
optical cavities, mirror-based resonators [195–197] and quantum metrology [198].
Looking at intensity/polarisation rotations also provides a way to measure the ac-
quired geometric phase without the need for a reference beam, and infer the planarity
of a surface.
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Optical skyrmions

4.1 Chapter 4 introduction

There are many types of interesting structures and topological features that can be
found in structured light beams such as the phase vortex singularities seen in beams
carrying orbital angular momentum [92, 199] and polarisation singularities [200].
One such topological structure that has become of interest of late is known as the
skyrmion. It was as recent as 2020 when certain paraxial vector beams were shown
to have skyrmionic structures embedded within their polarisation profiles [201]. In
fact, this work was completed by members of the Quantum Theory Group here, at
the University of Glasgow. As part of my PhD, I collaborated with the Quantum
Theory Group to continue this project, where my main task was to experimentally
generate and analyse optical skyrmions, as well as aid in the development of a new
method by which they can be characterised.

Topology is a branch of mathematics which aims to quantify the geometric prop-
erties of objects and physical systems, which are conserved under continuous trans-
formations e.g. actions such as bending, twisting and stretching [202]. Topologies
and singularities appear in many different physical systems from the small scale vor-
tex singularities in Bose-Einstein condensates [203], to the other end of the length
scale, where they are seen in black holes [204]. Singularities are also present in day-
to-day life, existing in fingerprints [205], tornadoes [206] and hurricanes [207, 208].
Of late, optics has become a field in which interesting topologies are being stud-
ied. This is mainly due to the development of tools such as digital micromirror
devices, spatial light modulators and q-plates over recent decades, which allow com-
plex structures to be created at will through the control of a light beam’s amplitude,
phase and polarisation.

One such topological structure, known as the skyrmion, has been observed in
many areas of physics, but the accessible skyrmionic constructs are often limited
due to physical constraints of the system. However, paraxial optics offers an easily
re-configurable platform for the investigation of skyrmionic structures, made even
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more appealing by the accessible nature of experimental intensity and polarisation
measurements.

In this chapter, I will start by giving a brief history and introduction into the
concept of skyrmions as a whole before focusing on the field of optical skyrmions,
where I will discuss how they can be constructed and classified, using a topological
index known as the skyrmion number. In § 4.4 I outline a new topological method
that we derived to characterise optical skyrmions solely via their polarisation singu-
larities, and associated winding numbers, motivated by the difficulties that can arise
when evaluating skyrmion numbers by conventional means. Additionally, the new
proposed topological method provides interesting and intuitive geometrical insights
into the underlying skyrmionic structures.

In § 4.5 I present experimental results of the simplest skyrmionic beams, and
the propagation of such beams under weak focusing (in § 4.7), before outlining
an investigation performed to evaluate the performance of the different methods of
calculating skyrmion numbers in response to noise. I will then, finally, present a new
way in which optical multi-skyrmions can be generated, leading to the investigation
of interesting topologies in optics.

For this work, I had the role of experimentally generating the optical skyrmions,
acquiring experimental data, processing and analysing the data, evaluating skyrmion
numbers and I contributed to the development of the new topological approach to
determining skyrmion numbers. I performed simulations of skyrmion beams, in
order to test different analysis procedures and test the response when applying sim-
ulated noise, and I also suggested the new way of generating optical multi-skyrmions
with tunable polarisation textures. Members of the Quantum Theory group at the
University of Glasgow, including, Claire M. Cisowski, Zhujun Ye, Fiona C. Speir-
its, Jörg B. Götte, and lead by Stephen M. Barnett, contributed to the theoretical
aspects of the work, focusing on the development of the underlying theory behind
the new topological method and the fundamental properties of the skyrmion field.
Sonja Franke-Arnold guided the research and helped to integrate the theoretical and
experimental aspects.

Some of the work presented in this chapter can be seen in Refs. [209], [210], [211]
and [212].

4.2 Skyrmions

In 1961, Tony Skyrme proposed the idea of using a topological model to describe the
excitations in the non-linear field of the nucleon [213] . He believed that the stability
of hadrons could be explained by topological features and as such, interpreted them
as topological solitons due to their particle-like continuous 3D field. Today, these
structures are known as skyrmions.

Topological features, defects or solitons are field configurations that cannot be
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deformed into a simple smooth shape using continuous transformations and are often
characterised by their stability. They can take on many forms, such as points, lines
or surfaces [214]. Therefore, in their most basic form, skyrmions can be considered as
knots of twisting field lines [215,216], in which it is impossible to separate or untangle
these field lines without destroying the skyrmion. In the case of skyrmions, they
are often characterised by an integer topological number known as the skyrmion
number, n, which will not change through any deformation of the field unless the
skyrmion is destroyed [217–219].

In Skyrme’s model, he mapped the 3D real space onto the hypersphere (the unit
sphere in 4-dimensions [220]) in order to parameterise the continuous pion field. The
skyrmion configuration wraps around the hypersphere an integer number of times,
with the integer number of wrappings being equal to the skyrmion number. His the-
ory gave spatial structure to the protons and neutrons inside nuclei and a topological
explanation to the conservation of baryon number (an important principle in physics
preventing proton decay) [221], with each singularity in the field contributing one
unit to the baryon number [213]. By fixing the radius of the nucleus, Skyrme was
able to model low energy configurations of nucleons to a reasonable accuracy [222].
However, the theory struggled with some aspects of nuclear behaviour (e.g. over-
estimating nuclear binding energies and sometimes failing to match the clustering
structures in some nuclei [223]), and as such, the field of quantum chromodynam-
ics (QCD), which has been more successful at modelling subatomic particles, has
superseded Skyrme’s theories.

Although Skyrme’s ideas were never adopted for their intended purpose of de-
scribing sub-atomic particles, these topological quasi-particles have since been stud-
ied in many areas of physics, including the study of mesons and baryons, quantum
liquids [224], spintronics [225], string theory [226], Bose-condensates and atoms
[227, 228], and perhaps most notably, in magnetic materials [229–231]. More re-
cently, the optical analogue to skyrmions has become of interest where they have
been observed in evanescent fields [232] and paraxial beams [201,233,234].

For many of these other fields of physics, the focus is on the simplest version of
the skyrmion configuration, the 2D counterpart of the 3D Skyrmion model, often
termed “baby skyrmions”, the study of which is much more developed in both
theory and experiments. In this case, instead of considering a mapping from a real
3D space to the 4D hypersphere, we are interested in mapping a real 2D space to
the unit sphere in 3D [233]. This is in fact the case for the skyrmionic structures
typically seen in magnetic materials and in paraxial optics, as will be discussed in
the following sections1. It should be noted that the stereographic projection of the
unit sphere in 3D on to a 2D plane misses out a single point, i.e. at large radii
ρ→ ∞.

1It may be interesting to note that, although “baby” magnetic skyrmions are widely researched,
it is possible for magnetic skyrmions to extend into 3D in the form of skyrmion strings [235,236].
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4.2.1 Magnetic skyrmions

As mentioned briefly above, magnetism is perhaps the area in which Skyrme’s ideas
have had the most prominent impact. The construction of paraxial optical skyrmions
has features in common with magnetic skyrmions, and as such, a discussion of these
provides a natural starting point.

In magnetism, skyrmions are a type of topological defect formed on the surface
of a suitable magnetic material [237] (such as manganese monosilicide (MnSi) [238]
or thin films). They have shown promise for applications in the fields of magnetic
storage and spintronics [239–241]. These magnetic skyrmions have configurations
where the magnetisation is orthogonal to the plane of the sample, with the exception
of a finite region region in which the magnetic spins progressively rotate, leading to
the direction of the magnetisation being opposite at the centre and outskirts of the
skyrmion [229] - i.e. for a single skyrmion, the spin points up (down) at ρ = 0 and
down (up) at ρ = ∞ with only one “flip” of the spin direction between ρ = 0 and
ρ = ∞. A schematic representing a one-dimensional cross-section of the magnetic
spin directions is shown in Figure 4.1 (or indeed any 1D skyrmion).

In order to visualise these two-dimensional skyrmionic structures, the Bloch
sphere is employed, on which, the local magnetisation direction is mapped, with
every possible direction present at least at one point in space. Therefore, we have a
stereographic projection from the 3D Bloch sphere onto the 2D plane of the magnetic
surface [242–245]. Allowing M to describe the local direction of the magnetisation,
the mathematical form of the skyrmion number can be quoted as [237,246],

n =
1

4π

∫
A

M ·
(
∂M

∂x
× ∂M

∂y

)
dxdy, (4.1)

where the integration is performed over the entire plane of the magnetic surface A,
(here assumed to be at position z = 0). Physically, n counts the number of rotations
of M around the Bloch sphere as we traverse a closed circuit around the centre of
the Skyrmion. Note that M is a normalised vector field, hence, Eq. 4.1 depends
only on the direction of the magnetisation, not its magnitude.

The configurations of spin alignment observed within magnetic skyrmions arises
due to certain physical constraints defined by the film structure, such as energy min-
imisation and conservation laws. This results in structures with circular symmetry,
often subdivided into different categories (e.g. Néel-type, Bloch-type, anti-skyrmions
(n = −1), merons (or half-skyrmions with n = 1/2) and bimerons) depending on
the parameters describing them, namely, their vorticity and helicity [247]. However,
as will be seen, in optics, we do not have such limitations, therefore here, I will
not focus too much on the different subcategories of skyrmion. If the reader is in-
terested in the different categories of skyrmion permissible in magnetism and their
topological properties then, I refer them to Refs. [247], [248] and [249].
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Figure 4.1: Representation of the skyrmion field directions for a 1D skyrmion with
radial distance ρ. This also stands as an example of one possible configuration of
the spin directions through a cross section of a magnetic skyrmion.

4.3 Optical skyrmions

Recently, the idea from the topology of skyrmions has been translated into the field
of optics, where they were first seen as skyrmion lattices generated using evanes-
cent fields and demonstrated using surface plasmon polaritons [232]. However,
skyrmionic structures can also be found in paraxial optics, more specifically, in
vector beams with spatially varying polarisation.

The first paraxial skyrmions [201] closely followed the ideas of the skyrmionic
structures seen in the field of magnetism. To make this transition from magnetism
into optics, we replace the vector field representing the magnetic spin direction
M, with the vector field S, which is the spatially resolved reduced Stokes vector,
written as, S = [S1, S2, S3]

T . This vector field is composed of the normalised Stokes
parameters (SN

i = Si/S0, for i ∈ {1, 2, 3}, where I have dropped the N superscript for
simplicity, as for the remainder of this chapter, only normalised Stokes parameters
will be considered) and it represents the direction of the Stokes vector describing
the polarisation on the Poincaré sphere.

Therefore, instead of utilising the Bloch sphere as the parameter space onto which
to map the magnetic spin directions and to visualise the skyrmionic structures, the
Poincaré sphere is considered. The expression for the skyrmion number (Eq. 4.1)
can be re-written as,

n =
1

4π

∫
A

S ·
(
∂S

∂x
× ∂S

∂y

)
dxdy, (4.2)

where the surface A is now the entire transverse plane perpendicular to the propaga-
tion direction. Equation 4.2 counts the number of times the transverse polarisation
wraps the Poincaré sphere. For a beam to be considered an optical skyrmion and
to obtain an integer skyrmion number of n = 1, there must exist every possible po-
larisation state at least once in its transverse profile, in order to satisfy a complete
wrapping of the sphere. To obtain a higher integer skyrmion number of n, then the
polarisation distribution must wrap the Poincaré sphere n times, with each possible
polarisation state appearing at least n times in the beams transverse profile.

From these relations, the reader may see a link between optical skyrmions and
Poincaré beams, which are a class of structured beam containing every possible
polarisation state [250]. And, while it is true that every optical skyrmion is a
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Poincaré beam, the reverse is not. As well as containing every polarisation, the
polarisation profile of an optical skyrmion must be continuously varying, with the
distribution of the polarisation obeying a set of topological rules as discussed in
Ref. [251] and which will become more apparent as I continue these discussions
throughout this chapter.

The polarisation profiles of structured paraxial beams can take on many forms.
It is possible for the polarisation distribution between different beams to appear very
different, but have identical skyrmion numbers - n describes the underlying topology.
Therefore, the skyrmion number provides one way in which structured light beams
can be characterised, especially since the spatially varying Stokes vectors S(x, y) are
easily experimentally accessible. Explicit examples showing how we can construct
optical skyrmions with equal n but different polarisation profiles will be given in
§ 4.3.1 and 4.5, and examples covering ways in which we can change or deform the
polarisation distribution, but keep the skyrmion number constant will be § 4.7 and
§ 4.8.

The optical skyrmions that will be discussed in this thesis all (ideally) have in-
teger skyrmion number. However, in reality, it often happens that the simulated
or experimentally measured skyrmion number is smaller than the true number due
to an incomplete mapping from the transverse plane to the Poincaré sphere. The
incomplete mapping must always occur because of the missing singular point at
ρ → ∞, but is exaggerated in numerical simulations due to the chosen grid reso-
lution and finite grid space over which integration is performed. For experimental
measurements, under estimation of n occurs due to numerical apertures that limit
the accessible area, with further errors resulting from noise (particularly in low-
intensity regions), and insufficient measurement resolution that limits the ability to
capture small polarisation variations. All of this will be discussed in more detail in
§ 4.5.

The skyrmion field

For a paraxial light beam, we can also introduce the concept of the skyrmion field,
which we will denote Σ. The skyrmion field is defined in terms of the normalised
Stokes parameters S1, S2 and S3, with the direction of the field lines of Σ pointing
in the direction of the Stokes vector [201,252]. The i-th component of the skyrmion
field is,

Σi =
1

2
εijkεpqrSp

∂Sq

∂xj

∂Sr

∂xk
, (4.3)

or similarly, employing the vector notation of the Stokes parameters,

Σi =
1

2
εijkS ·

(
∂S

∂xj
× ∂S

∂xk

)
(4.4)
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where εijk is the alternating or Levi-Civita symbol and we have employed the Ein-
stein summation convention over multiple indices.

The form of Σ ensures that it is transverse (∇ ·Σ = 0)2, meaning that it has no
sources or sinks - i.e. the polarisation must be continuously spatially varying. As a
consequence, the associated skyrmion field lines must either form loops, or extend
to infinity, resulting in the integrated flux of the skyrmion field through any closed
surface being zero [201].

Using the definition of the skyrmion field, the skyrmion number can be expressed
as,

n =
1

4π

∫
Σ · dA, (4.5)

where A is, again, the entire transverse plane. Therefore, the skyrmion number is
in fact a property of the underlying skyrmion field of paraxial beams.

For paraxial beams, we are always concerned with a beam propagating in a de-
fined direction. Lets assume propagation in the z-direction, therefore, the transverse
polarisation varies only in the x- and y-directions. It then becomes useful to consider
one of the Cartesian components of Σ,

Σz =
1

2
εpqrSp

(
∂Sq

∂x

∂Sr

∂y
− ∂Sr

∂x

∂Sq

∂y

)
= S1

(
∂S2

∂x

∂S3

∂y
− ∂S3

∂x

∂S2

∂y

)
+ S2

(
∂S3

∂x

∂S1

∂y
− ∂S1

∂x

∂S3

∂y

)
+ S3

(
∂S1

∂x

∂S2

∂y
− ∂S2

∂x

∂S1

∂y

) (4.6)

from which it can be seen that each term of the z-component depends on the vari-
ation of all three Stokes parameters. In each transverse plane, the polarisation
distribution can form a skyrmion, with n in each z plane simply given by,

n(z) =
1

4π

∫
Σzdxdy. (4.7)

Before we conclude this subsection on the skyrmion field, there is one other
interesting (and, as will become evident, important) property ofΣ: it is independent
of the choice of physical coordinate system. We can rewrite Eq. 4.3 as a sum of
determinants [219],

Σi =
1

2
εijkdet

 Sx Sy Sz

∂jSx ∂jSy ∂jSz

∂kSx ∂kSy ∂kSz

 , (4.8)

2A proof of this can be seen in Ref. [212].
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from which it is clear that the Skyrmion field is closely related to the scalar triple
product3. From this relation, we can infer an important symmetry. Changing the
global orientation of S, obtained by multiplication of a global rotation matrix R,
does not affect Σ, as the determinant of a rotation matrix is one. This means that
Σ is not affected by the choice of physical coordinate system. An alternative way
to think about this, is that the Skyrmion field is invariant under a global rotation
of the polarisation on the Poincaré sphere, leading to many forms of polarisation
distributions with identical skyrmion fields [212].

4.3.1 Constructing optical skyrmions - the simplest case

In this section, I have chosen to begin with a discussion of an intuitive way to think
about the construction of optical skyrmions, by considering the properties that we
now know skyrmions must have, before moving on to more general polarisation
structures.

To begin this discussion into optical skyrmion construction, we first consider a
generic vector beam of the form,

|Ψ⟩ = u0 |0⟩+ eiφu1 |1⟩ , (4.9)

where |0⟩ and |1⟩ represent any two orthogonal polarisations, u0 and u1 are spatial
modes and φ is the global phase difference between them. Here, I have employed bra-
ket notation for the polarisation, drawing on the mathematical similarity between
the Poincaré sphere describing polarisation and the Bloch sphere.

In order to construct a vector beam that is also a skyrmion beam, first recall that
skyrmionic beams must have a continuously varying polarisation structure. Using
our knowledge of spatial light modes and vector beams accumulated so far, one
may speculate that spatial modes with a continuously varying spatial feature pose
as convenient building blocks. Perhaps the most obvious of these are the Laguerre
Gaussian modes, with their azimuthal phase profiles, superpositions of which will
always result in a polarisation distribution with spatial dependence as long as two
orthogonal polarisations are used for the constituent LG modes, and that these two
modes are not the same.

Also, recall that optical skyrmions are required to contain every possible po-
larisation state, Therefore, if LG modes are used for the superposition, then their
intensity must not entirely spatially overlap, such that the chosen orthogonal po-
larisations can dominate in some regions of the beam profile. As a simple example
of this, we could consider an LG0

0 and an LG1
0, the first of which has a Gaussian

intensity profile with on-axis intensity, and the latter has zero on-axis intensity, due

3Recall that the scalar triple product is unchanged after a circular shift of the three vectors
(a · (b × c) = b · (c × a) = c · (a × b)), and is also invariant under a global rotation of the three
vectors, as the volume described by them does not change.
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to the optical vortex, and a larger effective radius. A vector beam generated using
a superposition of these modes can therefore be written as,

|Ψ⟩ = 1√
2

(
LG0

0 |0⟩+ LG1
0 |1⟩

)
, (4.10)

where I have now included a normalisation factor. An example polarisation distribu-
tion for a choice of |0⟩ = |l̂⟩ and |1⟩ = |r̂⟩ is shown in Figure 4.2(a) and Figure 4.2(b)
shows the polarisation distribution for a choice of |0⟩ = |ĥ⟩ and |1⟩ = |v̂⟩.

From inspection of the polarisation profiles, it can be observed that they do in-
deed contain every polarisation state, with one polarisation dominating in the centre
and the opposite polarisation dominating on the outside. These two polarisations
correspond to the basis used to generate the beam. Due to the rate of fall off of
intensity at the beam periphery, it is difficult to observe the purely right-handed
circular (vertical) polarisation state in Figure 4.2(a) (4.2(b)). However, from the
plotted Stokes parameter distributions, specifically S3 in (a) and S1 in (b), it can be
seen that we reach values of ±1 at the edges of the distributions, and hence, these
polarisations are truly present far from the beam centre.

The beams presented here also satisfy the condition of possessing a continuously
varying polarisation distribution, as, if we pick any point in the beam, and travel
in any transverse direction, the polarisation state will have changed. This is not
always the case for vector beams. For instance, taking the example of a radially
polarised beam, if we start in the centre of the beam profile and travel upwards (or
downwards) in the transverse plane, then the polarisation is always vertical. In this
case the polarisation distribution is spatially varying but not continuously varying.

Of course, to be a skyrmion beam, the distribution of the polarisation states
must obey a set of topological rules, as mentioned above and explained fully in
Ref. [251]. But, to test whether these are skyrmion beams, it is perhaps easiest to
apply Eq. 4.2. By doing this, we find that both beams shown in Figure 4.2, and
in fact any beam described by Eq. 4.10 for any two orthogonal polarisations, are
indeed skyrmion beams with n = 1. These are perhaps the simplest examples of
optical skyrmions, the polarisation structure of which can be easily imprinted within
free-space paraxial light beams.

Link between optical skyrmions and OAM

To start to consider more general forms of optical skyrmion construction, and show
how they are linked to OAM, it becomes useful to rewrite Eq. 4.9 into a locally
normalised form,

|Ψ(N)⟩ = |0⟩+ µ(r) |1⟩√
1 + |µ(r)|2

(4.11)

as the skyrmion field and skyrmion number only depend on the spatial variation of
the local polarisation direction, and not its magnitude. Here, µ(r) = eiφu1(r)/u0(r),
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Figure 4.2: Polarisation profiles and Stokes parameter distribution of vector beams
described by Eq. 4.10 for the choice of |0⟩ = |l̂⟩, |1⟩ = |r̂⟩ in (a) and |0⟩ = |v̂⟩,
|1⟩ = |v̂⟩ in (b). These are examples of some of the simplest optical skyrmions, with
n = 1. On the right is the polarisation colour scheme in terms of orientation ψ, and
ellipticity χ, and the grey scale used to represent the value of the Stokes parameters.

is the ratio between the two complex spatial mode amplitudes, and the superscript
N is used to denote the locally normalised version of |Ψ⟩.

Still considering a superposition of two LG modes, with all parameters kept the
same between them (e.g. wavelength, beam waist and radial index p) except the
OAM number ℓ (see Eq. 1.43), then µ(r) can be written in terms of two functions
f and Φ, depending on the variables ρ, ϕ and z,

µ(r) = f(ρ, z)eiΦ(ρ,ϕ,z), (4.12)

or equivalently in terms of the functions f and Θ as,

µ(r) = f(ρ, z)eiΘ(ρ,z)ei(ℓ1−ℓ0)ϕ, (4.13)

From the above expression, it can be seen that µ(r) carries the azimuthal phase
dependence, ei∆ℓϕ, where ∆ℓ = ℓ1 − ℓ0 is the difference between the OAM values of
each mode u0 and u1.

The Stokes vectors describing the local direction of the polarisation of the nor-
malised beam |Ψ(N)⟩ can be obtained from the expectation value with the familiar
Pauli matrices σ,

S = ⟨Ψ(N)|σ|Ψ(N)⟩ (4.14)

as described in § 1.3.2. This results in three Stokes parameters with the following
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form,

Sx =
2f cos [Θ + (ℓ1 − ℓ0)ϕ]

1 + f 2

Sy =
2f sin [Θ + (ℓ1 − ℓ0)ϕ]

1 + f 2

Sz =
1− f 2

1 + f 2
.

(4.15)

Using these Stokes parameters in the equation for the skyrmion number (Eq. 4.2)
and simplifying, we get the following expression,

n(z) = (ℓ1 − ℓ0)

(
1

1 + f 2(0, z)
− 1

1 + f 2(∞, z)

)
. (4.16)

Further details of this calculation can be seen in Ref. [201], [219] and [212].
From inspection of Eq. 4.16, it can be seen that the skyrmion number of vector

beams of this form depends only on the polarisation that is dominant at the centre
of the beam (ρ = 0) and at large distances from the centre (ρ = ∞). If the mode
u0 dominates on the optic axis, then limρ→0 µ(r) = 0 and therefore f(0, z) = 0,
and instead if mode u1 dominates at the centre, then limρ→0 µ(r) = ∞, giving
f(0, z) = ∞. Similarly, considering distances far from the beam centre, we find
f(∞, z) = 0 or ∞ depending on what mode dominates. It is always true that
f(0, z) and f(∞, z) will both be either 0 or ∞ unless ℓ0 = −ℓ1 (i.e. ∆ℓ = 0), as
in this case the beams have the same effective radius and so completely spatially
overlap (see § 1.4.2).

Typically, beams generated using a superposition of LGℓ
0 modes will have an

integer skyrmion number of n = ±(ℓ1− ℓ0) = ±∆ℓ or zero, determined by the mode
(u0 or u1) that dominates at these two extreme locations. We obtain non-zero n if
the polarisations at ρ = 0 and ρ→ ∞ are orthogonal to each other (as shown in the
examples in Figure 4.2), and will obtain n = 0 if either a single mode dominates in
both locations, or if the both modes have equal contribution4.

Using this relation, between skyrmion number and ∆ℓ, we can generate simple
optical skyrmions with any integer skyrmion number n using the superposition of a
Gaussian with an orthogonally polarised Laguerre-Gaussian with indices ℓ = n and
p = 0,

|Ψn⟩ =
1√
2

(
LG0

0 |0⟩+ LGn
0 |1⟩

)
. (4.17)

The orthogonal polarisations |0⟩ and |1⟩ used in the generation make up the Schmidt
basis [253] of the beam (using the same mathematical ideas as the Schmidt decom-
position from the study of entangled states in quantum theory, which allows the

4There is an exception to this that occurs when neither mode u0 or u1 is sufficiently dominant
at ρ = 0, in this case a non-integer skyrmion number is obtained. Examples of these optical
skyrmions will not be covered in this thesis, but theoretical details can be seen in Ref. [212].
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entanglement between the basis states to be quantified [254]). The relevance of the
Schmidt basis in reference to skyrmion number calculation will to touched upon
later in this chapter.

4.4 Topological definition of the skyrmion number

The skyrmion number of paraxial light beams can be evaluated using Eq. 4.2, which
involves integrating over the entire transverse plane, A. However, directly applying
this equation has two main difficulties: The first is that the experimentally accessible
region of A is limited, we clearly cannot image infinitely far from the beam centre
with a camera sensor. The second is that derivatives are inherently sensitive to noise,
particularly in low intensity regions, that can be dominated by noise, resulting in
the spatial derivative of fluctuating noise levels overwhelming the signal. Both of
these factors can make experimental evaluation challenging.

To try and over come these problems, we derived a new topological method for
calculating skyrmion numbers, avoiding the use of polarisation gradients. Instead,
the method is based on polarisation singularities and associated winding numbers,
providing an intuitive geometric insight into skyrmionic structures allowing for a
deeper understanding of their underlying topology. We verified this method by
evaluating n for a variety of experimentally generated optical skyrmions, with results
presented in § 4.5. In § 4.6 I will discuss the performance of the proposed method
in the presence of noise by applying noise to simulated data, and comparing results
to those obtained using the surface integral equation, Eq. 4.2, showing that the
topological approach does indeed outperform Eq. 4.2, and provides a robust and
accurate way to determine n. However, first, in this section, I will provide an
overview of the derivation of the new method.

To begin this discussion, we recall that the skyrmion number can be calculated
as a surface integral over the entire transverse plane A, utilising either the skyrmion
field, or Stokes parameters directly,

n =
1

4π

∫
A

Σ · dA =
1

4π

∫
A

SR ·
(
∂SR

∂x
× ∂SR

∂y

)
dxdy. (4.18)

The only difference between this expression and those quoted above, is that I have
now chosen to employ a generalised Stokes vector SR = RS = [Sx, Sy, Sz]

T that
relates to the conventional, normalised and spatially resolved, reduced Stokes vector,
S = [S1, S2, S3]

T through an arbitrary rotation described by the matrix R. The
reason that we are free to use a generalised Stokes vector here, is that a property
of the skyrmion field is that it is invariant under rotations (as discussed above in
§ 4.3). This means, that it does not matter how we orient our Poincaré sphere, or
choose the three orthogonal directions to describe the Stokes parameters, we will
still obtain the same correct skyrmion number.
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We can also exploit the fact that the skyrmion field is divergenceless (∇·Σ = 0).
This transverse property of Σ allows it to be expressed as the curl of a vector field,
which I will call V, such that Σ = ∇ × V. To draw analogies with the field of
magnetism, I will refer to V as the skyrmion vector potential5.

By applying Stokes’s theorem we can rewrite the above expression from a surface
integral of the curl of a vector field, to a line integral of the vector field. From this
we obtain,

n =
1

4π

∫
A

Σ · dA =
1

4π

∫
A

(∇×V) · dA =
1

4π

∮
C

V · dl. (4.19)

where C is a suitably chosen integration path across the transverse plane that avoids
any singularities in V.

The idea of writing the skyrmion field in terms of a curl of a vector field has
previously been exploited in the field of superfluids, where skyrmionic structures
have also been observed (although, in this area the language used is often different,
with the topological structures characterised by the quantised value circulation,
however the mathematical expressions are identical) [255–259]. The form of V is
not unique, but by turning to the study of superfluids, we can obtain a form of
V thanks to the Mermin and Ho relation [255, 260]. The i-th component of the
skyrmion potential is thus,

Vi = m · ∂

∂xi
n (4.20)

where m and n are any two orthogonal unit vectors that satisfy m× n = S, i.e. S,
m and n form an orthonormal triad. This non-uniqueness of the form of V means
that we have freedom in the choice of m and n, changing the vector potential but
not the skyrmion field [212].

One suitable choice is [212,219],

m =
1√

S2
x + S2

y

(Syx̂+ Sxŷ)

n =
1√

S2
x + S2

y

[
−SzSxx̂− SzSyŷ + (S2

x + S2
y)ẑ
] (4.21)

allowing Eq. 4.20 to be written as,

Vi =
Sz

S2
x + S2

y

(
Sy

∂

∂xi
Sx − Sx

∂

∂xi
Sy

)
, (4.22)

or equivalently in polar coordinates,

Vϕ =
Sz

S2
x + S2

y

1

ρ

(
Sy

∂

∂ϕ
Sx − Sx

∂

∂ϕ
Sy

)
. (4.23)

5In electromagnetism, the curl of the magnetic vector potential (A) is equal to the magnetic
field, B = ∇×A.
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It is now possible to define the skyrmion number as a line integral of the skyrmion
potential. However, the line integration path much be chosen carefully. We want
to include as much of the transverse plane as possible, but, as we shall explain, we
cannot simply choose an integration path with a suitably large radius centred on
the skyrmion. By inspection of Eq. 4.23, it can be seen that if the term in brackets
does approach zero as ρ→ 0, then Vϕ will diverge. To exclude these singular points
from the integration we use the same technique as to what is employed in complex
contour integration, where poles in the complex plane are avoided. An example
of this integration path is shown in Figure 4.3(a), where the chosen path passes
from large radii, towards the singular point, circles the singularity (in the opposite
direction), and then returns back to the larger circular contour, in order to close
the integration. If this integration is carried out, then the integrals along the two
straight lines cancel, leaving us with the difference of two circular line integrals, one
at large radii (denoted α) and small radii (β), both centred at the origin. Performing
this integration takes into account that Σz is finite everywhere. That is, the same
value for n is obtained if Σz is integrated over a surface, A,

∫
A
Σzdxdy, which omits

a very small region around (x, y) = (0, 0).
However, it is possible for the skyrmion field to have more than one singular

point, thus, the line integration of V, must exclude all of these points. An example
of a possible integration path when multiple singularities are present is shown in
Figure 4.3(b), following the same technique as before.

The skyrmion number can now be re-expressed as the difference between two (or
more) circular line integrals of V,

n =
1

4π

(∮
α

V · dl−
∑
j

∮
βj

V · dl

)
, (4.24)

where α is the integration path evaluated (counter-clockwise) at large radii and βj
is the integration path evaluated (clockwise) around the j-th singularity located at
(xj, yj).

It turns out that the previous equation can be simplified further in order to
remove the need for integration, or the direct calculation of V. To do this, we start
by introducing a pair of complex Stokes parameters, also referred to as the complex
Stokes field,

S± = Sx ± iSy = |S±|e±iΦ, (4.25)

allowing us to write,

Sx = S cosΦ

Sy = S sinΦ
(4.26)

where the ± subscript has been dropped for simplicity. From the above, we can
read off a phase term for this complex quantity, Φ, which is commonly termed the
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Figure 4.3: Illustration of possible line integration paths for evaluation of n using
Eq. 4.19, excluding the singular points in V.

Stokes phase and can be explicitly written as,

Φ = arctan (Sy/Sx). (4.27)

By direct substitution of Eq. 4.26 into Eq. 4.22, the i-th component of the skyrmion
field can be simply rewritten as,

Vi =
Sz

S2
x + S2

y

{
− S2 sin2Φ∇iΦ− S2 cos2Φ∇iΦ

}
=− Sz∇iΦ,

(4.28)

resulting in,
V = −Sz∇Φ. (4.29)

This allows us to express the skyrmion number as,

n =
∑
j

1

4π

∮
βj

Sz∇Φ · dl− 1

4π

∮
α

Sz∇Φ · dl, (4.30)

At the location (xj, yj), the position of the j-th inner singularity, we can simply take

the value of the local Stokes parameter S
(j)
z , and, as such, it can be taken out of

the integral. At the outside of the beam, the Stokes parameter converges to a single
value, S̄

(∞)
z , therefore, this can also be removed from the integral. The remaining

integrals are related to the polarisation winding number, given by [79,81],

N =
1

2π

∮
∇Φ · dl (4.31)

which counts the number of turns S completes on the Poincaré sphere when following
the respective circular paths. From the definition, N, must be an integer, therefore,
it has the benefit of being free from noise.
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Inserting all of this into the previous equation, we obtain our final topological
definition for the Skyrmion number [209,212],

n =
1

2

(∑
j

S(j)
z Nj − S̄(∞)

z N∞

)
, (4.32)

which depends only on the Stokes vector at the position of the singularities and at
the beam periphery, and the corresponding integer winding numbers on the Poincaré
sphere, around the singularity positions.

The derived expression for the skyrmion number given in Eq. 4.32 was obtained
using a generalised Stokes vector SR = [Sx, Sy, Sz]

T . As the Skyrmion field, Σ, is
invariant under rotations, the orientation of the Poincaré sphere is irrelevant, and
any SR can be chosen when calculating n, as long as Sx, Sy and Sz are orthogonal,
giving us unlimited options.

In the following subsection, I will give a detailed illustration of how to apply the
derived topological approach to evaluate skyrmion numbers. For this, I will use the
examples of n = 1 and n = 2 skyrmion beams, and in the process, illustrate how
Eq. 4.32 links to the topology of the polarisation profile and how the choice of SR

can make the topological features more apparent.

4.4.1 Simple illustration of using the topological approach for finding
skyrmion numbers

To highlight the simplicity and subtleties of the previously derived topological ap-
proach to finding skyrmion numbers, and how it links to the topology of the polar-
isation texture, let us consider two examples.

Firstly, let’s take the example of an n = 1 optical skyrmion of the form |Ψ1⟩
of Eq. 4.17 and a polarisation profile as shown in the top left of Figure 4.4. In
the top row of Figure 4.4, I also show the corresponding vectorial representation of
S(x, y), indicating the local direction of the Stokes vector on the Poincaré sphere
and a representation of the mapping of the unitary Stokes vectors onto the Poincaré
sphere. This in theory demonstrates a full coverage of the sphere, however, for
clarity, not every vector on the sphere has been plotted.

If we choose SR = [S1, S2, S3]
T , then Φ = arctan (S2/S1), the profile of which

is displayed in Figure 4.4(a). This choice results in a singularity in the centre at
the left-handed circular polarisation position, and a delocalised singularity at the
beam periphery, as we approach the orthogonal right-handed circular polarisation
state. To avoid the singularity locations in this case, we use an integration path
(C) as shown on the left of (a). At the central singularity location, S3 = −1 and
as ρ → ∞, S3 = 1, and the polarisation winding number, N = −1 in both cases,
allowing Eq. 4.32 to be evaluated as n = 1

2
{(−1)(−1)− (1)(−1)} = 1.

Alternatively, we can choose SR = [S2, S3, S1]
T , as illustrated in Figure 4.4(b).

This choice results in two singularities, located at the positions of the horizontal
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Figure 4.4: Illustration of the topological measurement of the skyrmion number for
an n = 1 beam. Top row shows the polarisation profile of an n = 1 skyrmion beam
represented as polarisation ellipses (left) and unitary Stokes vectors (centre) and on
the right is a representation of the Stokes vectors mapped onto the Poincaré sphere,
along with the polarisation colour scheme. (a), (b) and (c) show integration paths
(left) and Stokes phase profiles Φ (right) when evaluated for a choice of Sz = S1, S2

and S3. Parts of this figure have been adapted from [211].

and vertical linear polarisation states. To avoid the singularities in this instance,
we choose an integration path as shown in Figure 4.4(b), where we now have two
inner circular line integrals. Following the same procedure as before and using this
integration path gives n = 1

2
{[(1)(1) + (−1)(−1)]− 0} = 1. That is, we obtain the

same correct skyrmion number. Here, we have used that, for this choice, S1 = 1 at
β1, S1 = −1 at β2, and N = 0 around the beam periphery.

In Figure 4.4(c) I provide an illustration for a choice of SR = [S3, S1, S2]
T , where,

again, two singularities are obtained, this time at the locations of diagonal and
anti-diagonal linear polarisations. If the same procedure is followed and Eq. 4.32
evaluated, n = 1 will again be obtained.

In order to demonstrate how the number of singularities present in Φ changes
with skyrmion number and choice of SR, and to more explicitly show how the
polarisation winding number N is related to the path on the Poincaré sphere, we
will now consider the example of an n = 2 optical skyrmion. The polarisation
distribution of a beam of the form |Ψ2⟩ of Eq. 4.17 is shown in Figure 4.5(a), and
below it is the corresponding vectorial representation of S(x, y).

Figure 4.5(b) displays Φ when a choice of SR = [S1, S2, S3]
T is made, resulting

in a singularity in the centre. A chosen suitable integration path is also shown,
which yields contributions from the central singularity (S3 = −1) and at ρ → ∞
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(S3 = +1). By plotting the integration path on the Poncaré sphere (as shown on
the right of (b)), we can clearly see that the paths wind twice (backwards) around
the South and North pole, respectively, giving a visual representation of the winding
number in terms of the varying polarisation states. Substituting this information
into Eq. 4.32 as above results in n = 1

2
{(−1)(−2)− (1)(−2)} = 2.

It may have been noticed that the singularity location is the same as in Fig-
ure 4.4(a), appearing at the point of pure left-handed circular polarisation. This is
in fact a consequence of the Schmidt decomposition of the beam. Both of these op-
tical skyrmions were generated using Eq. 4.17 and a left- and right-handed circular
polarisation basis, i.e. |0⟩ = |l̂⟩ and |1⟩ = |r̂⟩. From Eq. 4.29, we can see that the
Sz component is singled out in the form of V, meaning that if we choose SR such
that Sz corresponds to the polarisation of the Schmidt basis of the beam (Sz = S3

in this case), then we obtain one singularity at the beam centre, with the magnitude
of the winding equal to |n|. This is true at least for skyrmion beams of the form of
Eq. 4.17.

Figure 4.5(c) provides an illustration of evaluating the n = 2 skyrmion beam
using a choice of SR = [S2, S3, S1]

T , resulting in four singularities located at the
horizontal and vertical linear polarisations. The corresponding integration path is
shown on the Poincaré sphere, however, this time it is traversed twice, alternatingly
winding around S1 = 1 (β1 and β3) and S1 = −1 (β2 and β4), with positive and
negative winding numbers respectively. At the periphery, N = 0, therefore giving
no contribution. This again results in the correct n = 2.

From these simple examples, it can be seen, that unlike the surface integral form
of the skyrmion number, given in Eq. 4.2, our topological definition does not require
any derivatives or integration and instead can be read directly from inspection of
the polarisation profile. In the following sections, I will provide experimental results
and further simulations, demonstrating that this new skyrmion number definition
can provide a significant increase in accuracy and precision.

4.5 Experimental evaluation of the skyrmion number

In this section, I will present measurements of optical skyrmions and compare the
skyrmion number measurement methods of Eq. 4.2 and Eq. 4.32 (the surface integral
and topological methods, respectively).

For experimental demonstration, we will consider beams with integer skyrmion
number n created using superpositions of orthogonally polarised Laguerre-Gaussian
modes,

|Ψn⟩ =
1√
2

(
LG0

0 |0⟩+ LGn
0 |1⟩

)
. (4.33)

This beam equation is equivalent to that given and discussed above, but is quoted
again here for convenience.
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Figure 4.5: Illustration of the topological measurement of the skyrmion number for
an n = 2 beam. (a) Polarisation profile of an n = 2 skyrmion beam and correspond-
ing distribution of unitary Stokes vectors S(x, y). (b) and (c) show path integrals
(left) phase profiles Φ (centre) and Poincaré spheres (right) with corresponding path
indicated when evaluated using either Sz = S3 (b) or Sz = S1 (c). Parts of this
figure have been adapted from [209].

Beams of the form of Eq. 4.33 were generated using the DMD setup (Figure 2.12)
described previously in § 2.6, and the spatially resolved Stokes parameters obtained
by performing a full Stokes tomography using a rotating waveplate setup (see § 2.3,
Figure 2.4). We chose to generate beams using either a circular (|0⟩ = |l̂⟩, |1⟩ = |r̂⟩)
or linear (|0⟩ = |ĥ⟩, |1⟩ = |v̂⟩) polarisation basis, resulting in polarisation textures
with either a skyrmionic or a bimeronic structure [261]. This choice of polarisation
basis could be made by either including, or not including, an additional quarter-
wave plate immediately after the DMD in the beam generation setup shown in
Figure 2.12. The measured polarisation profiles can be seen in Figure 4.6 for beams
with n = 1 to 5 where the top row shows the beams with skyrmionic structure and
bottom row bimeronic structures. The polarisation profiles show good qualitative
agreement with the corresponding theoretical profiles. On the right of Figure 4.6, I
provide simulated n = 5 profiles for comparison.

In Figure 4.7, I provide examples of the raw intensity images obtained from
Stokes measurements for two different skyrmion beams. Figure 4.7(a) shows polar-
isation projections of an n = 5 optical skyrmion of the form,

|Ψ5⟩ =
1√
2

(
LG0

0 |l̂⟩+ LG5
0 |r̂⟩

)
, (4.34)
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Figure 4.6: Experimentally measured polarisation profiles of skyrmion beams with
n = 1 to 5 and of the form of Eq. 4.33. The top row shows skyrmions generated in
the circular basis (|0⟩ = |l̂⟩ , |1⟩ = |r̂⟩) and the bottom row shows beams (bimerons)
generated using a linear basis |0⟩ = |ĥ⟩ , |1⟩ = |v̂⟩. The insert on the right shows
the theoretical polarisation profiles for the corresponding beams with n = 5. The
dashed circles around indicate the radius where the intensity falls to 5% of the peak
intensity. Figure adapted from [209].

and Figure 4.7(b) shows the experimental intensities for a beam of the form,

|Ψ2⟩ =
1√
2

(
LG0

0 |ĥ⟩+ LG2
0 |v̂⟩

)
. (4.35)

The reconstructed polarisation profile using the intensity measurements in (a) is
shown in the top row of Figure 4.6 under n = 5, and the corresponding polarisation
for Figure 4.7(b) can be seen in the bottom row of Figure 4.6 under n = 2.

4.5.1 Analysis process and results

As well as providing us with information in order to plot the polarisation profiles,
the measured spatially resolved Stokes vectors S(x, y), also form the foundation for
the quantitative analysis on n using the two different approaches.

The Stokes parameters are obtained from six intensity images corresponding to
horizontal, vertical, diagonal, anti-diagonal, right and left circular polarisations. The
background intensity (of approximately 1.5% of the peak intensity) was subtracted
from each of these images, with its exact value obtained by averaging over a small
number of camera pixels far from the beam. Fourier filtering is then applied to each
intensity image, to remove artefacts due to diffraction. Additional details of this
image processing can be found in § 2.4. To retrieve the spatially resolved normalised
reduced Stokes vector, we need to divide by the total intensity. This, in theory,
can be obtained the from addition of any two images corresponding to orthogonal
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Figure 4.7: Raw experimental intensities obtained from Stokes measurements of
optical skyrmions. From left to right, we have the intensities corresponding to hori-
zontal, vertical, antidiagonal, diagonal, right- and left-handed circular polarisation,
respectively. (a) Measurements of an n = 5 beam of the form of Eq. 4.34. (b)
Measurements of an n = 2 beam of the form of Eq. 4.35.

polarisation measurements. However, measured values may differ slightly depending
on the chosen basis, due to imperfect optical elements. Consequently, S(x, y) is
obtained by dividing each parameter by the total intensity obtained from the sum
of the corresponding polarisation states,

S(x, y) =

[
I|ĥ⟩ − I|v̂⟩

I|ĥ⟩ + I|v̂⟩
,
I|d̂⟩ − I|â⟩

I|d̂⟩ + I|â⟩
,
I|r̂⟩ − I|l̂⟩
I|r̂⟩ + I|l̂⟩

]T
, (4.36)

where I|̂i⟩(x, y) are the spatially resolved intensity measurements for each on the six
Stokes images, and the (x, y) has been left out of the equation for simplicity.

Before I discuss the remaining details of experimental evaluation on n, I would
like to point out the considerations that must be made when choosing a suitable
integration path for the topological approach, guided by both fundamental and
practical criteria. To obey Stokes’s theorem, the outside circular line integral should
ideally cover the entire transverse plane. Of course, in practice this is not possible,
but it should contain as much as possible of the beam profile. For practical reasons,
we want to choose a path that avoids very low intensity regions right at the beam
periphery, where the intensity measurements are dominated by noise, as well as the
immediate neighbourhood of the singularities.

To account for this, and to ensure a fair comparison between the evaluation
methods, the analysis was performed over a disk, outside of which the intensity falls
below 5% of the peak intensity. The size of these disks are indicated in Figure 4.6 as
dashed circled on top of the polarisation profiles. The reasoning behind the chosen
intensity cut-off value will be given in the following subsection.
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Table 4.1: Comparison of experimentally measured skyrmion numbers for the beams
shown in Figure 4.6 evaluated using the surface integral method Eq. (4.2) and the
topological method Eq. (4.32), respectively.

Type Method n = 1 n = 2 n = 3 n = 4 n = 5

sk
y
rm

io
n Eq. (4.2) 0.918 1.921 2.994 4.007 4.924

Eq. (4.32) (Sz = S3) 0.913 1.910 2.925 3.891 4.884

Eq. (4.32) (Sz = S1) 1.000 1.998 2.994 3.989 4.976

b
im

er
on

Eq. (4.2) 0.927 1.941 2.971 3.999 4.991

Eq. (4.32) (Sz = S1) 0.915 1.931 2.970 3.966 4.972

Eq. (4.32) (Sz = S3) 1.000 1.998 2.992 3.989 4.993

Equation 4.2 evaluates n directly using the numerical gradients of the measured
S(x, y) and performing the surface integral over the chosen disk centred on the beam
origin. The obtained skyrmion numbers using Eq. 4.2 are given in Table 4.1.

The topological method, Eq. 4.32, requires the identification of S̄
(∞)
z , S

(j)
z and

the corresponding winding numbers about these points. For this we need to identify
the location of the singularities. Recall that the winding numbers N in Eq. 4.32
describe the number of turns completed by S on the Poinceré sphere along a path
surrounding a singularity. Plotting the Stokes phase (Φ = arctan (Sy/Sx)) visually
gives the location of each singularity and the corresponding winding numbers, as
shown in Figures 4.4 and 4.5. However, computationally, the singularities can be
found at the positions where Sz → ±1, or equivalently, where Sx and Sy → 0.

To evaluate S
(j)
z , an average of the Sz values is performed over a square of 3× 3

pixels, centred on the location of the j-th singularity. The contribution from the
outside, S̄

(∞)
z , is taken taken to be the edge of the disk, as such the value of S̄

(∞)
z is

calculated by averaging the values of Sz lying along the circular path, where intensity
falls to 5% of the peak. By converting a small area about the j-th singularity into a
polar plot and integrating along the angular direction, the magnitude of the winding
number Nj can be obtained, with the sign of the gradient giving the sign of Nj. For
experimental data, N is calculated by averaging over 10 rows of the polar plot.
To find N∞, the entire grid space is converted into a polar plot and and the same
analysis performed near the edge of the beam profile. Alternatively, it is possible
to find |N | without the need for integration by simply numerically counting the
number peaks in the angular direction of the polar plots.

In Table 4.1, I present the results obtained using the topological approach to
evaluate the beams shown in Figure 4.6, for a choice of [Sx, Sy, Sz] = [S1, S2, S3] and
[Sx, Sy, Sz] = [S2, S3, S1].
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From Table 4.1 it is clear that for both methods, we obtain skyrmion numbers
that closely match the target n for each beam. Considering the results from the
topological approach, we obtain the highest accuracy when Eq. 4.32 is evaluated
using a choice of SR such that Sz is orthogonal to the Schmidt basis that defines the
skyrmion in Eq. 4.33, i.e. using Sz = S1 for the skyrmions generated in the left- and
right-handed polarisation basis, and using Sz = S3 for the bimerons generated in
the horizontal and vertical polarisation basis. The reason for this, is that this choice
of generalised Stokes vector shifts the relevant path integrals away from beam areas
of low intensity where noise could compromise the evaluation of the relevant Stokes
parameters. For the beams discussed here so far, this means that the outside circular
integral (previously labelled α) has a contribution of zero, as explicitly demonstrated
in the examples given at the end of § 4.4.1.

The Skyrmion number is a global property. Ideally, both calculation methods
should be evaluated over the entire transverse plane, extending to infinity. As such
any measurement (or indeed any simulation over a finite grid space) will be an
approximation, leading to one of the reasons for the inaccuracies seen in Table 4.1.
Differences from the target skyrmion number also arise from inaccuracies in the
experimental generation process and Stokes tomography, where imperfect optical
elements are undoubtedly used, as well as from the numerical evaluation.

It may be noticed from Table 4.1, that accuracy generally improves for higher
skyrmion numbers, particularly for Eq. 4.2. The is an artefact of our particular
skyrmion ‘recipe’ as defined in Eq. (4.33), as the intensity profile of the two consti-

tuting spatial modes LGn
0 and LG0

0 overlap less for higher n, so that S
(∞)
z is better

defined.
For the beams shown in Figure 4.6, we managed to achieve measured skyrmion

numbers with high accuracy, due to the high fidelity optical skyrmions we were able
to generate with the experimental beam generation techniques used here. However
in many situations one may not have this luxury, for example, when working at ex-
tremely low light levels, or when investigating light after propagation through noisy
environments. Comparisons of the response of the various calculation methods to
increasing noise levels are given in § 4.6, where it was confirmed that the topological
method proves more effective. This is perhaps no surprise, as noise amplification
is an inherent property of derivatives which are required for the surface integral
method Eq. 4.2.

Example of an n = 0 Poincaré beam

All of the beams shown so far have been optical skyrmions that are also Poincaré
beams, evident as they contain every possible polarisation state, and the relation
between Poincaré beams and the coverage of the Poincaré sphere has been discussed
by others including in Ref. [259]. However, as mentioned, not all Poincaré beams are
skyrmions, as the distribution of the polarisation must also follow a set of topological
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Figure 4.8: Polarisation profile of a beam with skyrmion number 0.

rules [251]. Here, I will provide an example showing that Poincaré beams and
skyrmion beams are not equivalent.

In Figure 4.8 I show the experimentally measured polarisation profile of a beam
of the form,

LG0
1 |l̂⟩+ LG1

0 |r̂⟩ (4.37)

where we are now considering an LG mode with a non-zero p index.
This beam contains every possible polarisation state and is therefore a Poincaré

beam. By inspection of the polarisation profile and considering a path starting at
the centre of the beam and travelling radially outwards, then we traverse a path
on the Poincaré sphere staring at the south pole, moving up to the north pole,
and back to the south pole again, such that an entire great circle is traversed. No
matter what radial direction is considered, a great circle is always traversed on the
Poincaré sphere, but corresponding to a different line of longitude. Therefore, the
polarisation of the beam presented here does indeed cover the Poincaré sphere.

However, if the skyrmion number is calculated using either of the methods men-
tioned above, then we obtain n = 0, and as such, this beam is not a skyrmion.

4.5.2 Variation of the skyrmion number with evaluation area

As the skyrmion number is a global property of a beam, relying on evaluation over
an infinite transverse plane, any measurement outcome will always be an approxima-
tion. In this section, I will illustrate this by evaluating the numerical and measured
skyrmion number over a restricted circular region of the transverse plane, accom-
plished by varying the radii ρ of the disk over which the evaluation is performed.

In Figure 4.9, I compare the response of the surface integral and topological
methods when ρ was increased from 0.1 up to 2.5 times the beam waist w0.

For this investigation, it was chosen to evaluate optical skyrmions of the form of
Eq. 4.33 generated in a circular polarisation basis (|0⟩ = |l̂⟩, |1⟩ = |r̂⟩), corresponding
to the beams in the top row of Figure 4.6. However, similar results would have been
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Figure 4.9: Comparison of skyrmion numbers obtained from the integral (Eq. 4.2)
and topological (Eq.4.32) definition calculated over varying evaluation areas with
radii ρ. We evaluate skyrmions of the form of Eq. 4.33 with |0⟩ = |l̂⟩, |1⟩ = |r̂⟩
and for skyrmion numbers n = 1 to 5. (a) Displays simulated (dashed lines) and
experimentally (crosses) obtained skyrmion numbers when using the topological
method and evaluating in an orthogonal polarisation basis (Sz = S1). (b) Compares
the two methods when choosing Sz to correspond to the Schmidt basis (Sz = S3).
Simulations are shown as solid lines, and experimental data as closed (Eq. 4.2)
and open (Eq. 4.32) data points. The lower plot shows the peak-normalised beam
intensity of the experimentally measured beams. The dashed line marks 5% of Imax,
and the beam radii where the various beams reach this intensity are indicated by
black crosses in (b). Figure adapted from the Supplemental material of [209].
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obtained if we used the horizontal/vertical linear polarisation basis, or indeed any
other orthogonal polarisation basis.

In Figure 4.9(a), the topological method, Eq. 4.32, has been used to evaluate
skyrmion beams with n = 1 to 5, with simulation shown as dashed lines and exper-
imental measurements as crosses. Here, SR = [S2, S3, S1]

T was chosen, such that in
the calculation was performed using a polarisation basis orthogonal to the Schmidt
basis of the beam. From Figure 4.9(a), it can clearly be seen from the simulated
results that the measured skyrmion number remains zero for restricted circular re-
gions, with lower radii. Once all the singularities are included within the evaluation
area, the correct skyrmion number is identified. The experimental results match the
simulation with very little deviation.

In Figure 4.9(b) the same investigation is performed, however, using the surface
integral method (Eq. 4.2) and again the topological method but this time evaluating
in using the Schmidt basis of the beam (SZ = S3) by choosing the generalised Stokes
vector to be SR = [S1, S2, S3]

T . The simulations are shown as solid lines, where it
was found that simulations based on both Eqs. 4.2 and 4.32 were indistinguishable.
The corresponding measured data using Eq. 4.2 is shown as solid data points, and
the measurements using Eq. 4.32 are given as open data points. The simulations
indicate that the obtained skyrmion numbers indeed approach their target values
when we increase the area of the beam used in the evaluation, where we have better
approximations to the transverse plane.

For both methods used in Figure 4.9(b), the experimental results initially very
closely follow simulation and approach the expected skyrmion number. However, as
we increase the evaluation area further, beyond certain values of ρ, the measurement
results are compromised by noise in the low intensity regions. Equation 4.2 can be
observed to produce fluctuating numbers for n, mainly due to the noise amplification
caused by the derivatives. For Eq. 4.32, the values steadily decrease. We observed
that the measurements began to deviate from simulation when a beam radius ρ is
reached where at which point the intensity falls to around 5% of the of the peak
intensity Imax. Due to this, this 5% intensity cut-off was used in the analysis process
outlined in § 4.5.1, and for the results presented in Table 4.1.

Additionally, the investigations presented here show that the response to noise
of the topological approach is more consistent. The skyrmion number is always
underestimated in the areas dominated by noise due to

∣∣ lim
ρ→∞

S̄z(ρ)
∣∣ ≤ 1 always

being true. Therefore, it is possible for the true value of n to be obtained by
identifying the radius where n is maximum and rounding to the nearest integer
(if indeed we are dealing with a scenario in which integer skyrmion numbers are
expected).
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4.5.3 Characterisation of a multi-skyrmion ring

One way in which we can highlight the geometric nature of the proposed topological
method is to apply it in the evaluation of multi-skyrmions.

From the results presented above, it has been seen that through a rotation of
the Poincaré sphere, i.e. via a different choice of SR, we can obtain different in-
terpretations of the skyrmion spin texture and its polarisation singularities. For
multi-skyrmions, using the topological method can lead to the identification of sub-
skyrmion structures and their corresponding attributions. I will choose to illustrate
this with a multi-skyrmion ring6 of the form,

|Ψring⟩ =
1√
2

(
LG2

0 |ĥ⟩ − LG5
0 |v̂⟩

)
, (4.38)

which should have a skyrmion number of ∆ℓ = 3. An experimentally measured
polarisation profile of this beam is shown on the left of Figure 4.10. While it may
be true that in the field of magnetism, it would be impossible to generate a multi-
skyrmion with this spin texture, in optics we are only restricted by Maxwell’s equa-
tions, and therefore have the luxury and ability to generate more exotic skyrmionic
structures. In magnetism however, it is common to have skyrmion lattices consisting
of periodic structures with n = 1 [231], and the subsequent discussion also extends
to these scenarios.

Using the surface integral method, a skyrmion number of n = 2.918 for the
measured multi-skyrmion ring was obtained, which is close to the expected value.
However, using the topological method, more accurate values of n = 2.958, 2.996
and 2.998 were obtained for the choices of Sz = S1, S2 and S3, respectively. The
Stokes phase profiles, Φ, and integration paths associated with these calculations
are given in Figure 4.10(a - c).

The choice of Sz = S1, as shown in Figure 4.10(a), correspond to evaluating in the
Schmidt basis of the beam, with only one singularity appearing in the centre of the
profile. In Figure 4.10(b), the beam is interpreted in terms of winging numbers about
polarisation singularities located at the diagonal/antidiagonal linear polarisations
and in (c), we instead have the singularities at the positions of right/left handed
circular polarisations, each time occurring where Sz → ±1. In both cases we have
six singularities in Φ, where the polarisation winging number is either N = ±1,
and each singularity represents the location of a meron, contributing a skyrmion
number of 1/2 to the total skyrmion number. For the choices of Sz = S2 and S3,
the contribution from the beam periphery to the total n is zero.

The experimentally measured skyrmion numbers obtained when evaluating using
the topological method and polarisation bases orthogonal to the beams Schmidt
basis deviate form the expected n only by an order of about 1/1000. This is an

6Named due to the similarity in structure with the intensity optical ring lattices used for atom
trapping.
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Figure 4.10: Interpretation of an optical multi-skyrmion in terms of different polari-
sation bases. An experimentally measured polarisation profile of |Ψring⟩ is shown on
the left and the measured skyrmion number, using Eq. 4.2, indicated. (a) The phase
of the complex Stokes field, Φ, when evaluated in the horizontal/vertical (Sz = S1)
polarisation basis, and the path of the chosen contour displayed on top of the po-
larisation map. (b, c) Equivalent to (a) but evaluated in the diagonal/antidiagonal
basis (b) and the right/left circular polarisation basis (c), by setting Sz = S2 and
Sz = S3, respectively. In each case, the skyrmion number determined from the
experiment measurement and Eq. 4.32 is indicated. The polarisation colour map is
shown as an insert on the left. Figure adapted from [209].

error reduced by an order of magnitude compared to evaluating in the Schmidt basis
(or indeed using the surface integral method). The reason for the improved values
results from the improved accuracy in determining Sz at locations of higher beam
intensity. This is particularly evident for the beam considered here, as, in addition
to the low intensity at the beams periphery, we also have a low intensity region at
the centre. These results provide further evidence that a careful and thought out
choice of generalised Stokes vector SR can allow for optimised measurements, as
will be confirmed in the next section through the application of artificial noise to a
simulated multi-skyrmion ring of the same form as |Ψring⟩.

In this section, I have presented results considering choices of Sz = S1, S2 or S3,
but of course, it is possible to evaluate using any arbitrary polarisation basis we
want.
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4.6 Investigations into evaluating the skyrmion number in
the presence of noise

Regions of low intensity directly affect the skyrmion number as the polarisation in
these areas (particularly at the beam periphery for the optical skyrmions presented
so far) can determine whether the mapping of the Poincaré sphere is complete over
the transverse profile. One of the aims of deriving the topological method was
to have a more robust way of finding skyrmion numbers compared to the surface
integral method, by removing the need for derivatives in which noise amplification
is an inherent property. To confirm that the topological identification of n proves
more effective in tackling noise, simulations were performed to analyse noisy data.

The experimental measurements contain two main sources of noise: artefacts
due to diffraction and background noise. Diffraction artefacts can be easily removed
using a low pass Fourier filter, however, background noise is more difficult to account
for, as it is challenging to ensure that only background noise, and no signal informa-
tion, is being removed. Due to this, we will consider the application of background
noise to simulated data.

To attempt to resemble the effects of background noise, random values ranging
between 0 and γImax were added to simulated Stokes intensity images (corresponding
to |ĥ⟩, |v̂⟩, |d̂⟩, |â⟩, |r̂⟩ and |l̂⟩ polarisation projection measurements). Here, Imax

is the maximum intensity in the entire beam, and γ is a parameter to control the
noise level. We choose to apply levels of artificial background noise ranging from 0
to 2% of Imax, i.e. for 0 ≤ γ ≤ 0.02.

Figure 4.11 compares the different methods at calculating skyrmion numbers
after applying noise to beams with n = 1 to 5 of f the form of Eq. 4.33 with |0⟩ = |l̂⟩
and |1⟩ = |r̂⟩, equivalent to the beams shown in the top row of Figure 4.6. For a
fair comparison, for each method we evaluate over a disk, the size which is given
by the radial distance from the beam centre at which the intensity falls to 0.05Imax,
corresponding to the distances marked by crosses in Figure 4.9. The values found
using Eq. 4.2 are displayed using solid lines and the dotted and dashed lines indicate
the values calculated using the topological approach either in the Schmidt basis of
the beam or an orthogonal polarisation basis.

From inspection of Figure 4.11, it was found that increasing noise levels leads to
an underestimation of n using both the surface integral method and the topological
method evaluated in the Schmidt basis, although, this underestimation is less so in
the latter case, particularly for higher skyrmion numbers. However, the simulation
indicates that by choosing to evaluate Eq. 4.32 in an orthogonal polarisation basis to
the Schmidt basis, we can obtain an almost noise-free skyrmion number (as shown
by the dashed lines). Additionally, it can be seen that there is an offset that is
present for low skyrmion numbers, which disappears for evaluation in an orthogonal
polarisation basis.

To provide additional insights, I will also show the response of the different
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Figure 4.11: Comparison of the performance of skyrmion measurement methods for
increasing noise levels. Increasing levels of background noise applied to simulated
skyrmions with n = 1 to 5 of the form of Eq. 4.33 with |0⟩ = |l̂⟩ and |1⟩ = |r̂⟩,
equivalent to the beams shown in the top row of Figure 4.6. Evaluation is performed
over a disk outside of which intensity falls to 5% of the peak intensity. The solid
lines indicate values calculated using Eq. 4.2. Dotted lines correspond to values
calculated using Eq. 4.32 in the Schmidt basis of the beam (Sz = S3) and dashed
lines when evaluating Eq. 4.32 using an orthogonal polarisation basis (Sz = S1).
Figure adapted from [209].

methods to a simulated multi-skyrmion with applied background noise. For this,
the same multi-skyrmion ring as described by |Ψring⟩ in Eq. 4.38 and shown in Fig-
ure 4.10, is used and background noise applied to the six simulated Stokes intensity
measurements as before. Figure 4.12 displays the calculated skyrmion numbers for
increasing levels of background noise (0 ≤ γ ≤ 0.02), and again evaluating using
either the surface integral approach (Eq. 4.2), or the topological approach with
Sz = S1, S2 or S3. We applied 100 iterations of each noise level, with n being
calculated each time, allowing the average of the obtained values to be plotted in
Figure 4.12. The standard deviation of the average is shown as error bars.

For each method, n was evaluated over a disk, outside of which intensity falls
to 5% of Imax. From the circle data points and corresponding error bars, it can be
seen that the surface integral method can either greatly under- or overestimate the
measured skyrmion number, with a large standard deviation being obtained even
over the 100 iterations used here. This large variation can mainly be attributed to
the low intensity region in the centre of |Ψring⟩. Due to this, it was decided to repeat
the analysis, but this time also excluding the central region, with intensity values
≤ 0.05Imax, from the performed integration. This was again repeated 100 times and
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the average values are shown as crosses in Figure 4.12, where it can again be seen
that the skyrmion number still deteriorates with increased nose, but we do this time
have a smaller standard deviation, and n is no longer overestimated at any point.

When the Eq. 4.32 is used to evaluate the multi-skyrmion and performed in
the Schmidt basis of the beam, the measured n was also found to deteriorate with
increased noise (as shown by the blue dashed line), with a steeper deterioration than
applying Eq. 4.2. However, with this method, there was less variation in the obtained
n, as evident from the negligible standard deviation after the 100 iterations. The
true advantage of the topological method is seen when choosing to evaluate using an
orthogonal polarisation basis to the Schmidt basis (orange and green dashed lines in
Figure 4.12). With this calculation it was possible to correctly identify the skyrmion
number of the multi-skyrmion ring for all levels of noise investigated here.

The simulations discussed and presented in this section indicate that the topo-
logical method is advantageous when dealing with noisy experimental data for a
suitable choice of Sz.

4.7 Propagation of paraxial skyrmionic beams under weak
focusing

In this section, I will present a discussion around the propagation of optical skyrmions
and corresponding measurement results, demonstrating the invariance of the skyrmion
number. For the purpose of this, I chose to observe the beam propagation under
weak focusing, still remaining within the paraxial regime, allowing any changes in
the beam profile to be observed over shorter distances rather than propagating to
the far field.

Consider the simplest case of a beam with a skyrmion number of 1 of the form,

|Ψ1⟩ =
1√
2

(
LG0

0 |0⟩+ LG1
0 |1⟩

)
. (4.39)

This beam was generated as before using either a circular (|0⟩ = |l⟩, |1⟩ = |r⟩) or
linear (|0⟩ = |h⟩, |1⟩ = |v⟩) polarisation basis, resulting in polarisation textures
with either a skyrmionic or a bimeronic structure. To view the propagation of such
structures with focusing, a 150 mm lens was used along with a camera mounted
on a motorised translation stage, allowing precise measurement of the transverse
polarisation at different propagation planes.

In Figure 4.13(a) and (b) I show the experimentally measured polarisation pro-
files of the focusing of the two n = 1 beams considered here at different transverse
planes after the 150 mm lens. The optical skyrmion generated in the circular po-
larisation basis is shown in (a) and (b) shows the bimeron, generated using the
horizontal/vertical linear polarisation basis. At a propagation distance of z = 0 cm,
we have the original skyrmion beam (c.f. Figure 4.6) and at 15 cm (z = f), we have
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Figure 4.12: Comparison of performance of the skyrmion measurement methods at
evaluating the multi-skyrmion ring (given by |Ψring⟩) for simulated increasing back-
ground noise levels. The red points show the average of 100 n values calculated
using Eq. 4.2 directly over a disk, outside of which intensity falls to 5% of Imax,
whereas red crosses show n calculated using Eq. 4.2, but omitting the central region
of the beam where intensity is also below 0.05Imax. Error bars indicate the standard
deviation of the 100 values. The three dashed lines show n evaluated using Eq. 4.32,
when using the Schmidt basis of the beam (blue), and the two orthogonal polari-
sation bases (orange and green). The standard deviation when using Eq. 4.32 re
too small to be seen, however, was calculated to be less than 0.04 for the maximum
noise level. Figure adapted from the Supplemental material of [209].

the polarisation profile at the focus. In Figure 4.13, the experimental images have
been cropped to different beam waist multiples, as indicated on each measurement,
to reflect the change in beam size with focusing, allowing the polarisation to be
resolved clearly.

From inspection of Figure 4.13, a continuous rotation can be seen in the po-
larisation profiles as the beam propagates. This can be explained by the different
relative Gouy phase,

ψ(z) = (N + 1) tan−1
(
z

zR

)
, (4.40)

between the constituent modes used to construct the beam, arising due do the
different mode numbers of the Gaussian (N = 0) and LG1

0 mode (N = 1).
For both the skyrmion and bimeron, the entire polarisation profile rotates by

±π
2
as it propagates from the far field to the focus, with the majority of the rotation

happening close to the focal point, within about two Rayleigh ranges (zR). This is,
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Figure 4.13: Propagation of optical skyrmions. Experimentally measured transverse
polarisation profiles of focusing using a 150 mm lens. (a,b) Optical skyrmions
(bimerons) with n = 1 generated using Eq. 4.17 and a circular polarisation basis
(|0⟩ = |l⟩, |1⟩ = |r⟩) (a) or a linear polarisation basis (|0⟩ = |h⟩, |1⟩ = |v⟩) (b). The
propagation distance after the lens is indicated on the top row as a fraction of focal
length (f) and the numbers on the bottom right of each beam profile represent the
the real width and height of the images as a multiple of the original beam waist
(w0). (c) Trace of the lines of constant polarisation for the focusing skyrmion beam
given in (a). Figure adapted from [211].

of course, due to the dependence of the Gouy phase on tan−1(z/zR) [53]. However,
despite the visual change in the polarisation pattern, the skyrmion number should
remain unchanged. Interestingly, it is possible to trace out lines of constant polari-
sation, as shown in Figure 4.13(c), where they can be seen to twist together as we
approach the focus, and it has recently been demonstrated in Ref. [252] that these
constant polarisation lines are equivalent to skyrmion field lines (Σ).

To show the invariance of the skyrmion number with propagation under weak
focusing, n was evaluated using the spatially resolved Stokes parameters and both
Eq. 4.2 and our topological method (Eq. 4.32). The results are summarised in
Table 4.2. Both evaluation methods are carried out in the same way as before
- the background noise is subtracted, unwanted diffraction artefacts are removed
via Fourier filtering of the camera images, with the images then cropped to a disk,
outside of which, the intensity is ≤ 5% of the peak intensity. For Eq. 4.2, the surface
integral was performed over the entire grid space in order to find the skyrmion
number. For Eq. 4.32 it was chosen to perform the evaluation by assigning either
Sz = S3 or Sz = S1.

For both methods, we achieve experimental skyrmion numbers close to 1 for every
propagation distance, as can be seen in Table 4.2, demonstrating the invariance of
the skyrmion number under paraxial propagation. In all cases, the highest accuracy
in the skyrmion number was attained when using the topological approach Eq. 4.32,
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Table 4.2: Comparison of experimentally measured skyrmion numbers at different
propagation distances for the n = 1 skyrmion and bimeron shown in Figure 4.13
and evaluated using Eqs. 4.2 and 4.32.

Type Method
Propagation distance

0 0.8f 0.93f f

sk
y
rm

io
n Eq. 4.2 0.915 0.942 0.930 0.929

Eq. 4.32 (Sz = S3) 0.914 0.946 0.947 0.943

Eq. 4.32 (Sz = S1) 0.999 0.998 0.988 0.998

b
im

er
on

Eq. 4.2 0.922 0.931 0.921 0.905

Eq. 4.32 (Sz = S1) 0.955 0.964 0.960 0.949

Eq. 4.32 (Sz = S3) 0.999 0.985 0.971 0.995

and evaluating it using a mutually unbiased basis to the Schmidt basis used to define
the beam in Eq. 4.39 (i.e. assigning Sz = S1 for the skyrmion shown in Figure 4.13(a)
and Sz = S3 for the bimeron shown in Figure 4.13(b)). The reason for this improved
accuracy is the same as discussed earlier in this chapter - it is due to the relocation
of the relevant path integrals away from beam areas with low intensity, which are
dominated by noise, to higher intensity areas with better signal-to-noise ratios.

Side note on propagation under weak focusing: A comparison to non-
planar propagation

In Figure 4.13(b) I show the weak focusing of a LG0
0 |ĥ⟩+LG1

0 |v̂⟩ beam, upon which
a rotation in the over all polarisation profile is observed, of course due to the differing
Gouy phase between the two LG modes.

Previously, back in Chapter 3, I also presented the rotation of vector beams but
through a different mechanism: Non-planar propagation. In fact, in Figure 3.9(c),
the result of the non-planar propagation of this same skyrmion beam was shown.
Interestingly, if we only look at the polarisation profiles of the beams shown in
Figure 3.9 and Figure 4.13, in both cases we observe a rotation, but you cannot tell
directly from the measurements themselves what process has occurred. For non-
planar propagation, the rotation occurs from physically moving the beam, and is
related to the total geometry of the propagation path and hence can be interpreted in
terms of an additional geometric phase. During focusing, the propagation direction
instead remains constant, and the rotation occurs due to differences in Gouy phase
of the two contributing modes. However, both of these acquired phases leading to
the observed effects are geometric in nature, as discussed in Chapter 3.
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4.8 Generation of tunable optical multi-skyrmions

Typically, optical skyrmions are generated such that the centre and periphery of their
transverse polarisation distributions have orthogonal polarisations, with all other
polarisation states appearing in a winding arrangement in the regions in between.
This has been the case for all the optical skyrmion examples shown in this chapter so
far and also for the optical skyrmions investigated in other work [233,234,262–264].
The reason for this is, perhaps, due to the resemblance of the skyrmion field of this
class of beam and that seen in the more familiar magnetic skyrmions, which formed
the basis under which paraxial optical skyrmions were first modelled [201]. As
discussed in § 4.2.1, magnetic skyrmions are subject to certain physical constraints
(e.g. energy minimisation and conservation laws), resulting in circularly symmetric
configurations in magnetic films where the spins are all aligned orthonormal to the
plane of the film, with the exception of a specific, finite region in which the spins
progressively rotate [229]. However, unlike magnetic skyrmions, paraxial beams
are limited only by Maxwell’s equations, so, in principle, it is possible to generate
arbitrary polarisation patterns, embedded with any type of structure that we desire.
This freedom could allow the field of free space optics to provide a versatile platform
for investigating interesting topological structures.

In this section, I will present a new way of generating optical skyrmions using
split-vortex beams and show how the skyrmion number and its topology is related
to the OAM of the constituent beam. To begin this discussion, I will start by giving
a brief introduction to the concept of split vortex beams in the following section.

4.8.1 Split vortex beams

It is known that the coherent mixture of an LG1
0 mode with a Gaussian beam

can displace the location of the phase vortex singularity from the centre of the
beam [265,266], as is shown in Figure 4.14(a). This addition of the two beams results
in us no longer having a doughnut intensity distribution commonly associated with
beams carrying orbital angular momentum, instead leaving us with intensity that
is not rotationally symmetric. One interesting application of these beams is that,
due to their non rotationally symmetric intensity distributions, they have been used
to observe the mechanical rotational motion of beams carrying OAM about their
propagation axis [265], of course, resulting from the fact that a rotation of a non-
rotationally symmetric distribution can be easily observed.

However, if we consider the addition of a Gaussian beam to LG modes with
higher OAM values, we have the effect of vortex splitting, where an LG beam with
a single central vortex of order ℓ will now have |ℓ| vortices of order 1 (or −1). This
behaviour is shown in Figure 4.14(b-d) for LGℓ

0+ Gaussian beams, for ℓ = 2, 3 or
5. From the corresponding phase profiles, we can see the individual phase vortex
singularities, resulting in the same number of null intensity regions. Additionally,
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Figure 4.14: Intensity (top row) and phase distributions (bottom row) of equal
superpositions of LGℓ

0 modes and a Gaussian. (a-d) show the superposition of an
LG1

0, LG
2
0, LG

3
0 and LG5

0 with a Gaussian of equal waist w0, respectively, whereas in
(e) an LG3

0 mode is superimposed with a Gaussian with a beam waist of 0.7w0. The
intensity and phase maps used are shown on the right. Figure adapted from [211].

as shown by the example in Figure 4.14(e), by changing the ratio between the
beam waists of the two superimposed beams, we can control the vortex singularity
positions in reference to the beam centre.

4.8.2 Optical multi-skyrmions generated using split-vortex beams

We can now consider what happens if we try to make optical skyrmions using these
split-vortex beam. It turns out, that it is simple to create beams with integer n by
employing a similar recipe as before,

|Ψmulti⟩ = LG0
0(w0) |0⟩+ eiφ0

(
LGℓ

0(w0) + eiφ1LG0
0(δw0)

)
|1⟩ , (4.41)

where the term in the bracket now corresponds to a split vortex beam with |ℓ|
singularities, instead of an LG beam with a single vortex or order ℓ. Here φ0 is an
overall phase factor between the two orthogonally polarised beams, φ1 is a phase
factor between the modes used to create the split vortex beam and δ is the ratio
between the beam waist of the additional Gaussian beam used to create the split
vortex beam and the other LG modes which have the same waist w0. This provides
control over the position of the polarisation singularities, as will become evident in
§ 4.8.3.

Here, we will restrict ourselves slightly in the form of these beams, only consid-
ering those created using a circular polarisation basis. Figure 4.15 shows simulated
polarisation profiles of beams of the form,

|Ψmulti⟩ = LG0
0(w0) |l̂⟩+

(
LGℓ

0(w0) + LG0
0(δw0)

)
|r̂⟩ , (4.42)
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Figure 4.15: Simulated polarisation profiles and Stokes phase (Φ) distributions of
optical skyrmions generated using split vortex beams as described by Eq. 4.42. The
left of (a) shows an n = 2 skyrmion created using ℓ = 2 and δ = 0.7 in Eq. 4.42
and (b) shows an n = 5 skyrmion created using ℓ = 5 and δ = 0.7. On the right of
(a) and (b), the relevant Φ is displayed when interpreting the skyrmion in different
polarisation bases by assigning Sz = S1, S2, S3, as indicated. Figure adapted
from [211]

with skyrmion numbers 2 and 5 in (a) and (b) respectively. In Figure 4.15 I also show
the associated Stokes phase profiles Φ for interpretation in different polarisation
bases by assigning Sz = S1, S2 or S3 in the generalised Stokes vector SR. The
polarisation profile of these beams are reminiscent of the multi-skyrmions created
using rational maps as seen in Ref. [251].

From inspection of the polarisation in Figure 4.15(a) and comparing it to the
n = 1 beams shown in Figures 4.2(a), 4.4 or 4.6, we can see that it appears similar
to two partially overlapping n = 1 optical skyrmions. Indeed, if we choose to
calculate the skyrmion number of this beam using the topological method and a
choice of SR = [S1, S2, S3]

T , as shown in the far right of Figure 4.15(a), we can
see that Φ contains two singularities located at the left handed circular polarisation
locations (the Φ distribution has pick up the centre locations of the two components
reminiscent of n = 1 beams). Both of these areas contribute a value of 1/2 to the
overall skyrmion number and the outside contributes a value of 1. This shows how
the topological approach to finding n can allow multi-skyrmions to be interpreted
as a combination of individual skyrmion structures (as also demonstrated for the
example of a multi-skyrmion ring above in § 4.5.3).
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4.8.3 Tuning the polarisation singularity positions

In § 4.8.1 above, I discussed how it is possible to move the position of the vortex phase
singularities in a split vortex beam in relation to the beam centre by changing the
relative beam waists between the Gaussian and LG mode used. We can now consider
using this characteristic of split vortex beams to make optical multi-skyrmions with
interesting polarisation textures.

In Figure 4.16, I show the effect of changing the ratio between the beam waists
δ on the resulting polarisation distributions and the singularities in Φ for a beam
of the form of Eq. 4.42 with ℓ = 3. On the bottom row of Figure 4.16 I show
the corresponding Stokes phase profiles Φ when setting Sz = S3, for each of the
polarisation textures shown on the top row for each indicated δ. From this, it
can be seen that the singularities in Φ move further from the beam centre, along
with the pure left-handed circular polarisation components, as δ increases from 0
to 1. In fact, the location of these singularities is, perhaps to no surprise, the
same as the location of the phase singularities in the split vortex beam, displaying
the link between skyrmionic structures and the underlying differential OAM of the
contributing modes [201]. Despite the difference in appearance of the polarisation
patterns, all of the beams shown in Figure 4.16 have the same skyrmion number of
n = 3, confirmed by both application of the surface integral method for evaluating
skyrmion numbers Eq. 4.2, and the topological approach Eq. 4.32.

As well as being able to control the radial positions of the polarisation singular-
ities relative to the beam centre, we can also choose to control where they appear
azimuthally. This can simply be done by altering the φ1 term in Eq. 4.41, which
has the effect of rotating the locations of the phase singularities in the split vortex
beam around its axis.

Beams of the form of those shown throughout this section (in Figures 4.15
and 4.16) and described by Eq. 4.42 give a further example of beams that can
be added to the growing field of paraxial optical skyrmions. Additionally, they pro-
vide an example of ways in which optics can be used to investigate topologies not
permitted in other fields.

4.9 Chapter 4 conclusion

I began this chapter by introducing the concept of a particular interesting topolog-
ical structure, the skyrmion, often characterised by an integer topological number,
known as the skyrmion number. These topological features have been seen in many
areas of physics, but the work presented in this thesis has centred around an area
of physics in which they have been more recently demonstrated - paraxial optics.

In § 4.3, I provided the theoretical details and properties of paraxial skyrmionic
beams, describing how skyrmionic structures can lie within the spatially varying
polarisation of vector beams, ultimately showing that optical skyrmions fall into a
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Figure 4.16: Simulated n = 3 optical skyrmions of the form of Eq. 4.42 for ℓ = 3
and varying δ. The top row shows the polarisation profiles and the bottom row the
Φ profiles when Sz = S3 is chosen. Figure adapted from [211].

specific category of structured light beams. I then went on to describe the ways
in which they can be created. In their simplest from, optical skyrmions can be
constructed from the superposition of orthogonally polarised coaxial Gaussian and
LG modes, with indices ℓ = n and p = 0. More generally, they can be constructed
using the superposition of two orthogonally polarised LGℓ

0 modes, with the resulting
skyrmion number given by ∆ℓ.

The skyrmion number is a global property, dependent on the underlying skyrmion
field, which points in the direction of the local Stokes vectors, S. It counts the num-
ber of complete wrappings of S around the Poincaré sphere. From evaluation of
the skyrmion number, we can examine the topological properties of paraxial beams,
as such, accurate determination is crucial. In previous work, n has been evaluated
using Eq. 4.2, which relies on the the surface integral of polarisation gradients over
the entire transverse plane. Here, I introduced a novel method that we derived
for calculating skyrmion numbers, with the full derivation outlined in § 4.4, and
first published in [209]. This simple method is based on polarisation singularities
and associated polarisation winding numbers, removing the need for derivatives and
surface integration. Additionally, we find that the method provides an intuitive
geometric insight into optical skyrmions by capturing the topological texture via
contours along which the analysis is performed. This allows individual skyrmionic
structures to be identified within multi-skyrmions, rather than just providing a sin-
gle topological number to characterise the full transverse profile.

The topological method was confirmed by analysing an array of experimentally
measured optical skyrmions and bimerons with different theoretical skyrmion num-
bers, as well as beams propagating under weak focusing, showing excellent agree-
ment with theory, and compared to results obtained by applying the surface integral
method.
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One of the main incentives which inspired this new topological approach to
skyrmion numbers was the inherent sensitivity of Eq. 4.2 to noise. In § 4.6, I
presented an investigation based on applying background noise to simulated data to
confirm that the new method is indeed more robust and predictable when evaluating
noisy data. It was demonstrated, that by choosing a suitable basis in which to
evaluate the topological method, then it becomes possible to obtain the correct
skyrmion number for noise levels under which the surface integral method would
fail.

Towards the end of this chapter, in § 4.8, I introduced a new way of generating
optical multi-skyrmions with tunable polarisation textures using split-vortex beams.
By superimposing oppositely polarised Gaussian and split-vortex beams of different
waists, it was found that the skyrmion number is conserved as a function of waist
scaling. For the examples of these beams, it could again be shown that the topo-
logical approach to finding n allows the individual skyrmion structures to be easily
identified.

Research within the field of optical skyrmions is still in its infancy, but we believe
that our new method to identify skyrmion numbers could directly benefit the growth
of the discipline, particularly due to its performance in the presence of noise and the
intuitive understanding it brings. Additionally, we believe that the tunable multi-
skyrmions presented here could be an interesting addition to the growing research
field.
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Chapter 5

Polarisation tomography using
generalised measurements

5.1 Chapter 5 introduction

The tomography of vector beams is generally performed using projection measure-
ments (for example using Stokes polarisation tomography as discussed previously in
§ 2.3) and is carried out to determine both polarisation and the constituent spatial
modes. In this chapter, I am going to focus on another way in which vector light
beams can be characterised by performing positive operator valued measurements
(POVMs) using interferometric systems, and give details of a potential application.

Throughout this chapter, I will adopt a quantum language to emphasis the strong
connection with quantum tomography. Even though the experiments that will be
discussed here were performed entirely for classical light, the techniques could also
be applied to single photons, and the theory presented is valid in both the classical
and quantum domains.

The work that will be presented here started with an interest in previous theo-
retical work on minimal qubit tomography [267], which proposed a highly efficient
scheme for the determination of a single-qubit state. This scheme implementing a
minimal POVM was later carried out experimentally for uniformly polarised beams
by Ling et al [268]. Within the Optics group at the University of Glasgow, it be-
came an aim to employ some of the ideas presented in the previous work to design
an experimental system which could perform spatially dependent POVMs, allowing
the determination of the spatially varying polarisation of vector beams with a single
camera image [269]. This research was undertaken in collaboration with a visiting
professor, Sebastião Pádua, from the Universidade Federal de Minas Gerais and was
successful in accurately characterising vector beams, with superior data acquisition
speeds in comparison to traditional Stokes tomography. However, the experimental
setup used for this project had some issues in terms of stability, as will be discussed.

As part of my PhD research, I became involved in this project, where the desire
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was now to redesign the experimental setup in order to improve stability. As mea-
surements were already obtained with a single camera frame, an improved stability
over time would allow the possibility of time-resolved measurements, for example
investigating temporal changes in optical activity.

This chapter is split into three main parts. The first part outlines the theoretical
concept of generalised measurements and provides a summery of the previous work.
The second part introduces the new improved experimental setup for single-shot1

vector beam characterisation employing POVMs and details the experimental pro-
cedures and features. Finally, the third part will present a possible application in
the form of dynamic Mueller matrix polarimetry.

The work that will be outlined in parts two and three of this chapter was com-
pleted in collaboration with my supervisor, Sonja Franke-Arnold, visiting professor,
Sebastião Pádua from the Universidade Federal de Minas Gerais, and fellow PhD
students form the University of Glasgow Optics group, Mustafa A. Al Khafaji and
Sphinx J. Svensson. For the project, I was responsible for building and aligning the
optical setup and improving on initial designs of the system, the beam generation,
acquiring and processing experimental data, developing the dynamic Mueller matrix
method with accompanying analysis process and error calculation. I also performed
theoretical simulations, both for the vector beam characterisation and Mueller ma-
trix determination. M. A. Al Khafaji helped with the initial optical system de-
sign and provided insights from the previous work performed within the group,
S. J. Svensson assisted with acquiring some of the experimental data, S. Franke-
Arnold lead the project, providing ideas for improving and building on the previous
work, and S. Pádua also helped guide the project, bringing theoretical insights, and
assisted with the first iteration of building the experimental system.

Some of the work presented in this chapter can be seen in Ref. [270].

5.2 Chapter 5 Part 1: Generalised measurements

Before I discuss the the implementation of generalised measurements to characterise
polarisation, it is beneficial to first visit the idea of measurements in quantum me-
chanics. Some of the basics of this are covered in the following subsection. I will
then show how these concepts can be taken and applied within the field of polari-
sation tomography, by considering a polarisation state as a qubit, with the benefit
of reducing the required number of measurements from 6 to 4. Finally, I will start
the discussion of how this can be implemented experimentally.

1Note that throughout this chapter, whenever the term single-shot is used, we are referring to
experimental measurements obtained from an individual camera frame.
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5.2.1 Measurements in quantum mechanics

In quantum mechanics, it is important to be able to create, encode and manipulate
quantum states, and it is equally important to be able to characterise them. This
has implications in areas of research such as quantum computing, quantum cryp-
tography and communications [271–275]. A feature of quantum mechanics is that
the outcomes of measurements are probabilistic, and that the process of taking a
measurement is active - i.e. the post-measurement state will be changed.

In quantum theory, we are often interested in using measurements to determine
the properties of a system. It is usually assumed that we have access to a large
enough quantity of identically prepared systems on which repeat measurements can
be performed in order to build up statistics, and obtain a reasonable approximation
of the quantum state of the system. Therefore, expectation values are normally used
(the weighted average of all the possible outcomes, as weighted by their probability)
[254,276].

However, the expectation value is only meaningful in the limit of a large number
of measurements on identically prepared quantum systems. In some applications
(such as in quantum information) you only have access to one copy of the state
you would like to characterise, or very few copies, meaning that the choice of mea-
surement becomes important. Ideally, the goal is to extract maximal information
from as few measurements as possible, with the minimum number of measurements
determined by the size of the state space [254,277].

Projective measurements

The simplest form of measurements are referred to as projective measurements or
von Neumann measurements after the mathematician2 who gave gave the approach
its mathematical formulation [254].

For an operator Â, its relationship with its eigenstates and eigenvalues can simply
be expressed using the eigenvalue equation,

Â |λi⟩ = λi |λi⟩ . (5.1)

When dealing with a small numbers of states, we are now instead interested only
in probability distributions (P ) rather than expectation values. In terms of a set of
projectors, P̂i = |λi⟩ ⟨λi|, the probability distribution of obtaining an outcome λi is,

P (λi) = Tr(ρ̂P̂i), (5.2)

where ρ̂ is the density operator and Tr represents the trace operator.

2As well as being a mathematician, John von Neumann was also a physicist, computer scientist,
engineer and polymath.
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The projectors P̂i can be thought of as operators that project onto the basis
vector corresponding to the measurement outcomes and have the following proper-
ties [254],

Table 5.1: Properties of projectors

1. Hermitian P̂ †i = P̂i

2. Positive P̂i ≥ 0

3. Complete
∑

i P̂i = Î

4. Orthonormal P̂iP̂j = P̂iδij

From property 4, the projectors form an orthonormal basis for the Hilbert space
describing the physical system, with each possible outcome of that measurement
corresponding to one of the vectors comprising the basis.

As an example, we can relate this to polarisation, which can be represented
in a two-dimensional Hilbert space, visualised using the Poincaré sphere (or Bloch
sphere), and Stokes parameters. Physically, these parameters directly correspond
to a select pair of projective measurements [276],

S0 = P|ĥ⟩ + P|v̂⟩ (5.3)

S1 = P|ĥ⟩ − P|v̂⟩ (5.4)

S2 = P|d̂⟩ − P|â⟩ (5.5)

S3 = P|r̂⟩ − P|l̂⟩ (5.6)

This is equivalent to the form of the Stokes parameters written before in § 1.3.2, but
rewritten using the notation used in this section, and to make it clear that these are
probabilities obtained as a result of projective measurements.

Therefore, using projective measurements to fully determine a polarisation state
requires 6 individual projections - i.e. 2 measurements for each of the 3 orthonormal
bases which comprise a set of mutually unbiased bases (MUBs) fully describing the
2d Hilbert space.

The number of MUBs required scales with the dimension of the Hilbert space,
however, the relation between the two is not simple. In fact, the maximal set of
MUBs is only known for Hilbert spaces with certain dimensions d. More specifically,
it is only known when we have a prime-power dimension, d = pm, where p is a prime
number and m a positive integer. For more details, the reader is referred to [278].
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Generalised measurements

Another useful way of performing measurements in quantum information uses prob-
ability operators πi, the set of which is known as a positive operator value measure
(POVM). The set of operators {π̂i} are defined by the following properties outlined
in Table 5.2,

Table 5.2: Properties of POVM operators

1. Hermitian π̂†i = π̂i
2. Positive π̂i ≥ 0

3. Complete
∑

i π̂i = Î

The POVM element π̂i is associated with an outcome i, and the probability of ob-
taining i, when performing a measurement on a system prepared in a state described
by the density operator ρ̂ is,

P (i) = Tr(ρ̂π̂i). (5.7)

These types of probability measurements are often termed generalised measure-
ments as they are a generalisation of projective measurements. The main difference
between projective measurements and POVM measurements is that the POVM op-
erators need not be orthogonal. As such, there is no restriction on the number
of elements in a POVM (it can be greater or less than the dimension of the state
space), whereas the number of projectors cannot exceed the dimension of the state
space [254].

One way to obtain the full tomography of a quantum state by employing gener-
alised measurements [254, 279, 280], is by ensuring the use of informationally com-
plete POVMs (IC-POVMs) [281–283]. However, we may want to be able to uniquely
determine a state using a minimum number of measurements. For this, the mea-
surements are chosen to form a minimum informationally complete positive operator
value measure (MIC-POVM) [283, 284]. An IC-POVM and a MIC-POVM are re-
lated in that, if we have d-dimensional Hilbert space, then an IC-POVM is said to
be a MIC-POVM if it contains exactly d2 linearly independent elements [277].

5.2.2 Applying generalised measurements to polarisation

Due to the fact that the polarisation degree of freedom can be represented by a
two-dimensional Hilbert space, there exists an entire class of experiments that use a
photon’s polarisation state as the carrier of the quantum bit, or qubit [267,285–287].
In fact, it can be argued that the first experimental technique for determining the
state of a quantum system was devised in 1852 by George Stokes, as his well-known
four Stokes parameters allow the easy experimental determination of a polarisation
state [47].
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As well as quantum optics and quantum information applications [288], polarisa-
tion profiling also plays a crucial role in various metrological applications, such as the
characterisation and stress analysis of materials [289–291], ellipsometry [292, 293],
pharmaceutical ingredient analysis [294] and biological microscopy [295,296]. There-
fore, accurate determination of polarisation is important in both classical as well as
quantum optics.

As mentioned above, a state belonging to a Hilbert space of dimension d requires
a minimum of d2 measurements for the state reconstruction. Therefore, polarisation
requires a minimum of d2 = 4 measurements for reconstruction [271], which are
associated with the 4 parameters of a Stokes vector. For experimental convenience3,
Stokes parameters are generally obtained using six measurements, corresponding
to projections into the horizontal, vertical, diagonal, anti-diagonal, right- and left-
handed circular polarisation bases (|ĥ⟩ , |v̂⟩ , |d̂⟩ , |â⟩ , |r̂⟩ and |l̂⟩). These projections
form an overcomplete set of measurements composed from three pairs of mutually
unbiased bases.

We can instead adopt the mathematical ideas from the measurements used in
quantum mechanics to identify a quantum state, to polarisation tomography. By
applying generalised measurements in the form of MIC-POVMs to polarisation
determination, the number of required measurements can be reduced from 6 to
4. For this we must have operators that satisfy the conditions outlined in Ta-
ble 5.2 and are written in the form of projection operators as π̂i =

1
d
|ϕi⟩ ⟨ϕi|, where

| ⟨ϕi|ϕj⟩ |2 = (dδij + 1)/(d + 1), for associated states |ϕi⟩. Here, |ϕi⟩ are the states
associated with the POVM outcomes, often referred to as POVM states from here
on.

To satisfy these requisites, we choose 4 POVM states that correspond to the
four corners of a tetrahedron lying on the surface of the Poincaré sphere, as the
equally spaced and symmetric distribution of the states ensures no privilege in the
reconstruction. The chosen states are given by,

|ϕ1⟩ = a |ĥ⟩+ b |v̂⟩ , |ϕ2⟩ = a |ĥ⟩ − b |v̂⟩ ,
|ϕ3⟩ = b |ĥ⟩+ ia |v̂⟩ , |ϕ4⟩ = b |ĥ⟩ − ia |v̂⟩ ,

(5.8)

where,

a =

√
1

2
+

1

2
√
3
, b =

√
1

2
− 1

2
√
3
. (5.9)

These are the same states introduced by [267] and implemented by [268] for the
tomography of homogeneously polarised beams using an optimal polarimeter. The
polarisations associated with these states and their related locations on the Poncaré
sphere are shown in Figure 5.1.

3Indeed, this is what is used for all the other polarisation measurements throughout this thesis.
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Figure 5.1: Polarisation profiles of the four POVM states described by Eq. 5.8 and
their positions on the Poincaré sphere. The states form a tetrahedron on the sphere,
as indicated in blue. The polarisation colour map is shown in the top right where ψ
and χ represent the polarisation orientation and ellipticity angles, respectively, and
intensity is shown as opacity. Figure adapted from [270].

There exist an infinite number of possible tetrahedrons, but from Figure 5.1, it
can be seen that two of the polarisation states are linear, (they lie on the equator
of the Poincaré sphere) and can be accessed relatively easily using conventional
polarisation optical elements. Keeping two of the states located on the equator
offers experimental convenience, but still provides a large selection of the infinitely
possible tetrahedral configurations to choose from.

The probability of obtaining an outcome i on a system that is prepared in state
|ψ⟩ is then simply given by,

Pi = ⟨ψ|π̂i|ψ⟩ = Tr(π̂iρ̂). (5.10)

In Eq. 5.8, 5.10 and throughout this chapter, I have adopted a quantum notation
to describe the polarisations to emphasise the strong connection with quantum to-
mography. Even though here we will only be dealing with classical light beams, in
theory, this could also be applied to single photons.

In order to perform measurements on the non-orthogonal POVM states |ϕi⟩, a
common strategy is to form a Naimark extension of the measurement [254, 279] by
increasing the Hilbert space of the input states with the addition of an auxiliary
state. This action is carried out such that the extended Hilbert space now contains
a set of orthogonal projection operators. The Naimark extension has the physical
interpretation of the extended Hilbert space being a combination of the states we
want to measure and another known system (the auxiliary state) [297]. Here we
use the path degree of freedom [268, 280, 298], such that the input state has two
propagation directions available. Full details on how the process of a Naimark
extension can lead to the four necessary outcomes of the POVM measurement can
be seen in Ref. [269] and the associated Supplementary Documentation [299].

In the case of spatially resolved light beams, performing a measurement imple-
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menting the desired POVM will result in four output intensity profiles, Ii, which
can be detected by a camera. This allows the normalised four component intensity
vector,

I(N) = (I1, I2, I3, I4)
T/It, (5.11)

to be obtained, where It is the total intensity given by It =
∑i=4

i=1 Ii.
These four intensities are all that is needed to determine the Stokes vector of the

state. First, we need an expression for the density operator, which, for a single-qubit,
can be written in terms of the normalised Stokes vector (S(N)) as [276],

ρ̂ =
1

2

3∑
i=0

Siσ̂i =
1

2

(
1 + S

(N)
1 S

(N)
2 − iS

(N)
3

S
(N)
2 + iS

(N)
3 1− S

(N)
1

)
, (5.12)

where σi are the Pauli matrices and S(N) = (S0, S1, S2, S3)/S0. Recalling Eq. 5.10,
we can now obtain a relationship between the intensity distribution and the (nor-
malised) Stokes vector of the polarisation to be measured by,

I(N) = Π · S(N), (5.13)

where Π is the 4× 4 instrumentation matrix, given by

Π =
1

4


1

√
1
3

√
2
3

0

1
√

1
3

−
√

2
3

0

1 −
√

1
3

0 −
√

2
3

1 −
√

1
3

0
√

2
3

 , (5.14)

for an ideal experimental polarimeter. The horizontal entries of Π correspond to the
Stokes vectors of each of the POVM states, |ϕi⟩. By inverting Eq. 5.13, spatially
varying Stokes vectors can be recovered from the four spatially varying intensity
measurements.

The first experimental implementation of these POVM states to measure polar-
isation was realised by Ling et al [268], where they made use of a custom partially
polarising beam splitter. This work only concerned homogeneously polarised states.
In section § 5.2.4, I will give an overview of the work previously carried out within
the Optics group in order to perform the tomography of vector beams implement-
ing the same POVM states. But first, it is useful to visit the idea of a partially
polarising beam splitter in more detail, and how it is possible to build these using
standard optical elements. This will be covered in the following section.

5.2.3 Concept of a partially polarising beam splitter

There are two main types of beam splitter that are readily available commercially:
a non-polarising beam splitter (NPBS), which transmits 50% of the input intensity
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and reflects the other 50%, and a polarising beam splitter (PBS), which is a crucial
element for spatially splitting or extracting the horizontal and vertical polarisation
components of a beam by transmitting one (horizontal), and reflecting the other
(vertical).

However, there exist applications, particularly within quantum optics, in which
a particular set of transmission and reflection coefficients are required for each of the
horizontal and vertical polarisation components. Examples of this include, quan-
tum logic gates [300–302], quantum walks [303, 304], techniques for quantum state
estimation [268, 269, 305] and even experimental studies into wave-particle dual-
ity [306, 307]. For these applications an element known as a partially polarising
beam-splitter (PPBS) is used.

To illustrate the properties of a PPBS, first consider a diagonally polarised beam
(with equal |ĥ⟩ and |v̂⟩ components) incident on an arbitrary beam splitter, as shown
in Figure 5.2. The outputs from both arms will depend on the polarisation depen-
dent transmission (T ) and reflection (R) coefficients. For a PBS (Figure 5.2(a)),
all of the input horizontally polarised light is transmitted and the vertically po-
larised light reflected, therefore, to satisfy this, we must have Th = Rv = 1 and
Rh = Tv = 0. If instead, Th = Tv = Rh = Rv =

1
2
, as in Figure 5.2(b), then both the

horizontally and vertically polarised components of the light are equally transmitted
and reflected, leaving us with a non-polarising beam splitter4. However, in theory,
we can choose any splitting ratio, T :R, between the two beam splitter output ports
for the horizontal and vertical polarisations independently. An example of this is
illustrated in Figure 5.2(c) for Th = Rv =

2
3
and Rh = Tv =

1
3
. Therefore, two-thirds

and one-third of the horizontal and vertical light, respectively, is transmitted, with
the rest reflected. In this case, we have partially split the individual polarisation
components, creating a PPBS.

It is possible to make PPBS using layers of dielectric coatings with different
T and R coefficients for each polarisation. However, such optical elements must
be custom made and are therefore expensive, and once fabricated, the coefficients
cannot be changed. Nevertheless, it turns out that it is possible to make a simple
optical setup using widely available components that performs the same as a PPBS
[308]. A schematic of which is given in Figure 5.3 and is based on a Mach-Zehnder
interferometer.

Consider, as an input to PBS1 in Figure 5.3, a beam with horizontal and vertical
polarisation components of the form,

Ein =

(
Eh

in

Ev
in

)
.

The PBS will divide the beam into its horizontal and vertical components, so we

4 It should be noted that Figure 5.2(b) depicts an idealised version of a non-polarising beam
splitter. Real NPBSs that are often used in optics labs will transmit/reflect half of the intensity,
but the polarisation is not necessarily conserved.

134



Chapter 5. Polarisation tomography using generalised measurements 135

Figure 5.2: Illustration of a partially polarising beam splitter and the dependence
on transmission and reflection coefficients. (a) For Th = Rv = 1, we have a PBS,
with all horizontally (vertically) polarised light transmitted (reflected). (b) When
all transmission and reflection coefficients are 1

2
, we have a NPBS with half of all

intensity transmitted and the other half reflected4. However, if Th = Rv = 2
3
and

Rh = Tv =
1
3
, as in (c), then we have a PPBS, with two-thirds of the horizontal and

one-third of the vertical light transmitted, and the rest reflected.

will deal with the transmitted and reflected paths separately, labelled as A and B
in Figure 5.3 respectively. Following path A up until the second PBS we get,

EA = JHWP(α)JM

(
Eh

in

0

)
,

= iEh
in

(
cos (2α)
sin (2α)

)
,

(5.15)

where JM is the Jones matrix of a mirror, JHWP(α) is the Jones matrix of a half-wave
plate with its fast axis rotated to an angle α. Both of these matrices are given in
§ 2.2.3.

Now following path B up until the second PBS, in a similar manner, but first
applying a π/2 phase shift to the reflected beam from the input PBS, we obtain,

EB = JHWP(β)JM

(
0
iEv

in

)
,

= Ev
in

(
sin (2β)

− cos (2β)

)
,

(5.16)

where, in this case, the HWP is at an angle β.
To get output 1, we combine the transmitted (horizontal) component of the

beam from path B, the reflected (vertical) component of the beam from path A and
apply HWP3 which is set to 45◦,

Eout,1 = JHWP(45
◦)

(
Ev

in sin (2β)
−Eh

in sin (2α)

)
,

=

(
−Eh

in sin (2α)
Ev

in sin (2β)

)
.

(5.17)

135



Chapter 5. Polarisation tomography using generalised measurements 136

Figure 5.3: Schematic of a partially polarising beam splitter (PPBS) based on a
Mach-Zehnder interferometer configuration and constructed using readily available
polarisation beam splitters (PBS) and half-wave plates (HWP). HWP1 is rotated
to an angle α, HWP2 to an angle β and HWP3 to 45◦. The angles α and β can be
chosen to individually control the proportion of horizontal and vertical polarisation
at outputs 1 and 2.

Finally, to obtain output 2, we need to combine the transmitted (horizontal) com-
ponent from path A and the reflected (vertical) component of path B, giving us,

Eout,2 = i

(
Eh

in cos (2α)
−Ev

in cos (2β)

)
. (5.18)

By inspection of Eout,1 and Eout,2 and comparing them to Ein, it is evident that
each output has a horizontal and vertical polarisation component, the magnitude of
which is completely dependent on the angle of the HWPs within the interferometer.
Therefore, the HWPs have introduced polarisation-dependent phases between the
two paths, and the simple setup shown in Figure 5.3 provides an example of a way in
which a partially polarising beam splitter can be constructed using common optical
components.

A similar example of a PPBS but implemented using NPBSs instead of PBSs
can be seen in Ref. [308].

The ideas described in this section will be applied to the experimental designs
presented later in this chapter used to implement generalised measurements.

It should be noted, that it is possible in some cases to use a normal PBS to extract
and measure a single POVM element, however, afterwards, only the orthogonal
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component of the state remains, making it impossible to measure later elements.
This is one of the reasons that PPBS’s are useful for quantum state estimation, as
they make possible the partial projection onto each element, leaving the remaining
state mostly unaltered [305].

5.2.4 Summary of previous work

As I mentioned in the introduction of this chapter, the generalised measurements
discussed above were performed within the Optics group to characterise vector
beams [269]. This work was the first time that spatially dependent POVM measure-
ments have been demonstrated. Additionally, the measurements were implemented
such that all the required information could be acquired with a single camera im-
age, providing improved data acquisition speeds in comparison to Stokes tomography
which is often carried out using six sequential images.

In this section, I will give a brief overview of the experimental system used for
this work, in order to provide a baseline for my own work that will be discussed in
§ 5.3 and § 5.4.

Figure 5.4 shows a schematic of the setup used in Ref. [269] to experimentally re-
alise the instrumentation matrix given in Eq. 5.14 and perform spatially dependent
POVM measurements using a Mach-Zehnder interferometric design. The exper-
imental system follows the general outline of the polarimeter for homogeneously
polarised states in Ref. [268], however applied to beams with spatially varying po-
larisation. Additionally, this experimental system does not use a custom PPBS but
instead builds a PPBS using common optical elements using the methods described
above in § 5.2.3.

For this experiment, arbitrary vector beams of the form,

|ψ⟩ = |uh⟩ |ĥ⟩+ eiϕ |uv⟩ |v̂⟩ , (5.19)

were generated using the same DMD beam generation setup as described in § 2.6.
The polarisation of the beam was confirmed using Stokes polarimetry, which also
provided a control over which to assess the performance of the POVM polarisation
tomography.

The generated vector beams were directed towards the measurement system in
Figure 5.4 where a polarising beam splitter (PBS1) splits the beam into its |ĥ⟩ and
|v̂⟩ components. The light now travels along two paths (α and β), introducing a
path degree of freedom, and hence realising the Naimark extension as mentioned
above. After PBS1, the state can now be represented as,

|uh⟩ ⊗ |ĥ⟩ ⊗ |kα⟩+ eiϕ |uv⟩ ⊗ |v̂⟩ ⊗ |kβ⟩ , (5.20)

where |kα⟩ and |kβ⟩ are the linear momenta along the associated paths. The first
Mach-Zehnder interferometer in Figure 5.4, consisting of PBS1, HWP1, HWP2 and
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Figure 5.4: Schematic of experimental setup for single-shot spatially dependent
POVM measurements using a Mach-Zehnder interferometer. The colour of the
beams represent the polarisation, blue for horizontal, orange for vertical and a mix
for a superposition of both. HWP and QWP are half- and quarter-wave plates. PBS
are polarising beam splitters and QP are quartz plates, rotated about their vertical
axis. HWP1 and HWP2 are rotated to angles θ1 = 1

2
sin−1(a) and θ2 = 1

2
sin−1(b),

respectively. HWP3 is at 67.5◦ and the QWP is at 45◦. The insert of the camera
display shows the arrangement of the four quadrants recording the intensities of the
POVM projections.
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closed by PBS2 makes up the PPBS (with the aid of HWP3 on one of the outputs).
HWPs 1 and 2 are rotated to angles,

θ1 =
1

2
sin−1(a)

θ2 =
1

2
sin−1(b),

(5.21)

where a and b are the coefficients given in Eq. 5.9. This ensures that the ĥ : v̂
amplitude ratio becomes a :b in path α and b :a in path β. Experimentally, this can
be checked by measuring the respective intensities at the two outputs5.

The half-wave plate in path α (HWP3) has its fast axis rotated to 67.5◦, and
prepares states |ϕ1⟩ and |ϕ2⟩. States |ϕ3⟩ and |ϕ4⟩ are prepared by the QWP in path
β which is rotated to 45◦.

Therefore, the full state transformation is realised by the four waveplates in the
system and can be written as,

|ĥ⟩ ⊗ |kα⟩ 7→

(
−ia

√
2

2

(
|ĥ⟩+ |v̂⟩

)
⊗ |kα⟩ − ib

√
2

2

(
|ĥ⟩ − i |v̂⟩

)
⊗ |kβ⟩

)
eiϕα

|v̂⟩ ⊗ |kα⟩ 7→

(
ib

√
2

2

(
|ĥ⟩ − |v̂⟩

)
⊗ |kα⟩ − a

√
2

2

(
|ĥ⟩+ i |v̂⟩

)
⊗ |kβ⟩

)
eiϕβ

|ĥ⟩ ⊗ |kβ⟩ 7→

(
a

√
2

2

(
|ĥ⟩ − |v̂⟩

)
⊗ |kα⟩+ b

√
2

2

(
−i |ĥ⟩+ |v̂⟩

)
⊗ |kβ⟩

)
eiϕβ

|v̂⟩ ⊗ |kβ⟩ 7→

(
−b

√
2

2

(
|ĥ⟩+ |v̂⟩

)
⊗ |kα⟩+ a

√
2

2

(
|ĥ⟩ − i |v̂⟩

)
⊗ |kβ⟩

)
eiϕα

(5.22)

Here, ϕα and ϕβ are additional phases that are acquired due to the differing
optical path length of the two interferometer arms. Experimentally, these phase
shifts can be cancelled by tilting the quartz plates (QP in Figure 5.4) about their
vertical axes.

Lastly, PBS3 performs the final projection measurement by splitting the hori-
zontal and vertical components from paths α and β and thus separating |ϕ1⟩ and
|ϕ2⟩ from path α and |ϕ3⟩ and |ϕ4⟩ from path β. The four resulting intensity pro-
files from the projection are directed onto a single camera sensor, where they are
recorded in for separate quadrants, as shown in the inset of Figure 5.4. This allows
the POVM measurements of the input beam to be measured in a single-shot, and
the spatially varying polarisation to be recovered using the inverse of Eq. 5.13.

5When measuring the ratio between the horizontal and vertical intensities at the outputs of the
PPBS, recall that intensities are amplitudes squared, i.e. we are interested in the values a2 and
b2. We expect to obtain 79% : 21% of ĥ : v̂ after HWP3 in path α and 21% : 79% after PBS2 in
path β.
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Before measurements could be taken, the interferometric system must be cali-
brated to remove any unwanted phase shifts and the experimental instrumentation
matrix measured. The process of this is very similar to that which is used for the
updated experimental system introduced in Chapter 5 Part 2, and as such, the
calibration process will be discussed in detail in § 5.3.2.

A selection of vector beams were used to test the performance of the spatially
resolved POVM measurements using the setup in Figure 5.4, with the resulting
polarisation compared to both the polarisation measured using Stokes tomography
and theoretically simulated polarisation distributions. The polarisation obtained
using the POVMmeasurements showed excellent agreement to both. The full results
of this can be seen in [269]. Although the experiment discussed here provided a
good tomography, and proof of principle demonstration of the technique, achieving
interferometric stability was challenging. It was found to be particularly challenging
for the case of the spatially extended beams we are interested in here, as a greater
transverse coherence needs to be maintained throughout the entire setup, compared
to that required for homogeneously polarised beams with much smaller waists. The
inherent sensitivity of the Mach-Zehnder interferometer to phase shifts (caused by,
for example, vibrations or air currents) meant that the system needed frequent
realignment and a new instrumentation matrix measured each time. This poses an
issue if stability over time would be required, for example, when taking time resolved
measurements.

To try and overcome these problems, improvements to the experimental setup
were proposed, by replacing the Mach-Zehnder interferometer with a Sagnac inter-
ferometer configuration. This new experimental system will be discussed in the next
section, measurement results presented and the stability assessed.

5.3 Chapter 5 Part 2: Experimental realisation using an
improved system

As part of my PhD research, it became my task to work on building an updated
experimental system for performing POVM measurements, with the main aim of
improving stability, such that it could then be used for some potential applications
(see § 5.4). In the following sections, I will outline the new setup and give full details
of the experimental calibration process and in § 5.3.3 I will discuss an experimental
investigation performed in order to asses the stability of the new setup. The un-
derlying theory to this experiment is identical to that discussed above (with some
slight differences to account for differing mirror reflections) and hence will not be
repeated here. Finally, in § 5.3.4, I will present the polarisation tomography results
using the updated system.
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5.3.1 Sagnac interferometer for spatial POVM tomography

If we consider the geometric beam path of an interferometer as a means of charac-
terisation6, then we end up with two main classes of interferometer, namely, double
path and common path. The difference between these two types of interferome-
ter is exactly as the names suggest: A double path interferometer, is one in which
the reference and sample beams travel along different physical paths before being
recombined (examples include Michelson, Mach-Zehnder and Twyman–Green [311]
interferometers), whereas, in a common path interferometer, the two beams traverse
the same geometric trajectory (for example, Sagnac interferometers and the fibre
optic gyroscope [312]). Although the beams travel the same path, depending on the
interferometer type and application, they may travel in opposite directions, or in
the same direction but with orthogonal polarisations.

Generally, common path interferometers are more robust to environmental vibra-
tions than their double-path analogues, as each beam experiences the same physical
path in space and any noise that comes with it. Double-path interferometers are
extremely sensitive to any optical path length changes between the two paths, which
does make them useful for applications involving the measurement of small displace-
ments (e.g. gravitational wave detection [313] and surface quality testing [314,315]).
However, there are some instances in which this sensitivity is not desirable, such as
the POVM measurements discussed above. For this reason it was decided to try
to improve the stability of the POVM measurement system by redesigning it to be
based on a Sagnac configuration rather than a Mach-Zehnder interferometer. The fi-
nal experimental design is shown in figure 5.5 where we use a path-displaced Sagnac
interferometer. Strictly speaking, this path-displacement violates the common path
criterion, but it is expected that the differences between the two paths should be
minimal in comparison to a Mach-Zehnder interferometer.

Again, vector beams with spatially varying polarisation are generated using the
DMD setup discussed in § 2.6 and shown in Figure 2.12, and enter the interferom-
eter via PBS1. This separates the horizontal and vertical polarisation components,
allowing them to propagate in opposite directions around the split path Sagnac in-
terferometer, before exiting again through PBS1. Within the Sagnac are two half
waveplates (HWP1 and HWP2), each only intersecting one of the beam paths, as
shown in Figure 5.5. These waveplates are rotated to control the ratio of horizontal
to vertical polarisation exiting each arm of the interferometer. The rotation angles
θ1 and θ2 are equivalent to those given in Eq. 5.21 and depend on the coefficients a
and b as given in Eq. 5.9. This has the overall effect of transforming the initial PBS
into a partially polarising beam splitter (PPBS) (along with the help of HWP3).
The resulting ĥ : v̂ amplitude ratios are the same as before, a :b at output 1 and b :a

6Of course, there exist several other ways in which we can categorise interferometer tech-
niques, such as homodyne vs. heterodyne (same vs. different wavelength interference) or amplitude
vs. wavefront splitting [309,310].
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at output 2.
The beam from output 1 of the interferometer passes through a HWP (HWP3)

with its fast axis set to 67.5◦, and the beam from output 2 is directed through a
QWP, with its fast axis set to −45◦. These four waveplates (HWP1, HWP2, HWP3

and the QWP), perform the full state transformation, with POVM states |ϕ1⟩ and
|ϕ2⟩ being prepared along the path of output 1 and |ϕ3⟩ and |ϕ4⟩ prepared after
the QWP on the path of output 2. All that is left to do is separate these states
from each other. In the same way as in Figure 5.4, PBS2 in Figure 5.5 performs
the final projection by splitting the horizontal and vertical components of the two
beams. The resulting four intensity profiles are directed onto four quadrants of a
single camera sensor (as shown in Figure 5.5(a)), to allow a complete and spatially
dependent polarisation tomography in a single-shot measurement.

It will be noticed that the setup in Figure 5.5 includes some additional optical
elements in the form of a quartz plate (QP) and glass microscope slides withing
the Sagnac interferometer. These are used to aid in the experimental calibration
by adjusting for optical path length differences. This process is discussed in the
following section.

5.3.2 Experimental calibration

The change in the experimental design from using a Mach-Zehnder to a Sagnac inter-
ferometer was carried out with the aim to improve stability and remove unwanted
phase shifts. The difference in path lengths in a Mach-Zehnder interferometer,
means that phase differences in the two beams have to be corrected. Additionally,
as the beams travel spatially different paths, any noise experienced by one beam (for
example, table or optical element vibrations or air currents) is not necessarily expe-
rienced by the other. Therefore, the system requires frequent realignment. However,
in a Sagnac interferometer, both beams travel the same physical path (although in
opposite directions), helping to eliminate optical path differences to first order, and
improves the resilience to common noise, as any vibration experienced by one beam
is experienced by the other.

Nevertheless, due to the split path utilised within the interferometer presented
here, experimentally, we found that there is a small difference between the clock-
wise and anticlockwise optical path lengths, requiring periodic calibration and mea-
surements of the instrumentation matrix Π. The calibration procedure for this is
outlined below.

Firstly, homogeneously polarised beams with polarisations orthogonal to the
POVM states are generated. These orthogonal states, |ϕi⟩, can be expressed by,

|ϕ1⟩ = b |h⟩ − a |v⟩ , |ϕ2⟩ = b |h⟩+ a |v⟩ ,
|ϕ3⟩ = a |h⟩ − ib |v⟩ , |ϕ4⟩ = a |h⟩+ ib |v⟩ .

(5.23)

For an ideal, perfectly aligned interferometer, measurement of each orthogonal
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Figure 5.5: Experimental design for single-shot, spatially dependent polarisation
tomography and Muller matrix determination using POVM measurements. PBS:
polarising beam splitter, HWP: half waveplate, QWP: quarter waveplate, QP: quartz
plate. The outputs from PBS1 are indicated by the numbers in circles and the inset
shows the arrangement of the four quadrants on the camera display. The colour of
the beams represent the polarisation state, blue for horizontal, orange for vertical
and a mix for a superposition of both.
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state |ϕi⟩ should result in Ii = 0, and equal intensities in the other 3 camera quad-
rants, as Pi = ⟨ϕi| π̂i |ϕi⟩ = 0 for i ∈ {1, 2, 3, 4}. The observation and minimising
of the intensity levels therefore allows for an easy way to calibrate the instrument.
The main aim of the calibration process is to remove any phase difference between
the clockwise and anticlockwise arms of the interferometer which can be achieved by
tilting one of the glass microscope slides within the interferometer and the quartz
plate (QP), as labelled in Figure 5.5. In theory, only having a glass slide in one of
the interferometer arms is sufficient to compensate for path differences, however, it
is beneficial to have identical glass slides in each arm to balance any intensity loss,
especially as the intensity ratio of the Sagnac outputs are important for constructing
the PPBS.

When a light beam passes from one medium into another, the direction of prop-
agation changes due to the different light propagation speeds of the two medium.
As glass has a higher refractive index than air, light travels slower within it. For
this reason, the use of a thin piece of glass can remove unwanted phase differences
by increasing the optical path length in one interferometer arm such that it matches
the other. This is possible within the interferometer as the beam has been split
into its horizontal and vertical components and we want to apply a phase shift to
the entire beam. However, once we exit the interferometer, we now have two of the
POVM states travelling along the same path (one encoded in the horizontal polari-
sation and the other in the vertical). If we need to implement phase compensation
between these two beams, then we can no longer rely on a simple glass slide, as we
now require polarisation dependent calibration. For this we employ a quartz plate,
which, for normal incidence, introduces a π/2 phase difference between the orthog-
onal wavefronts. But, by simply rotating the quartz plate about its vertical axis,
and thus varying the angle of incidence, we can vary the phase difference introduced
between the ĥ and v̂ components, therefore compensating for any unwanted optical
path differences.

The calibration process is simple and is as follows: We start by tilting only one
of the glass slides (the choice of which shouldn’t matter) until the I3 (I4) camera
quadrant records minimum intensity when measuring |ϕ3⟩

(
|ϕ4⟩

)
, while the other

glass slide is kept stationary, at normal incidence. Afterwards, the quartz plate is
tilted to ensure minimum intensity in the I1 (I2) camera quadrant for |ϕ1⟩

(
|ϕ2⟩

)
.

Experimental images of the orthogonal states after calibration can be seen in the
top row of Figure 5.6.

After calibration, an experimental instrumentation matrix Π can be obtained.
From Eq. 5.13, we know that Π relates normalised Stokes vectors to the normalised
output intensities. We generate the 4 POVM states (Eq. 5.8) as the input beams,
and record the resulting intensity profiles, as shown in the bottom row of Figure 5.6.
The normalised intensities, I

(N)
i = (I1, I2, I3, I4)/It are found for each beam by sum-

ming over each camera quadrant and dividing by the total intensity incident on
the camera. As the ideal Stokes vectors S(N) are known, the experimental Π can
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Figure 5.6: Experimental calibration measurements. Camera images of the homoge-
neously polarised orthogonal states, |ϕi⟩ (top row) and POVM states, |ϕi⟩ (bottom
row). The intensity measurements Ii (i ∈ {1, 2, 3, 4}) are in the positions as indi-
cated in the insert of Figure 5.5. Figure adapted from [270].

simply be found by inverting Eq. 5.13. An example of an experimentally measured
instrumentation matrix is,

Πexp =
1

4


0.950 0.826

√
1
3

0.786
√

2
3

−0.015

1.041 0.867
√

1
3

−0.804
√

2
3

−0.017

0.955 −0.810
√

1
3

0.007 −0.875
√

2
3

1.053 −0.883
√

1
3

0.008 0.915
√

2
3

 . (5.24)

Comparison with the ideal instrumentation matrix Eq. 5.14, it is evident that Πexp

is not exactly the same as theoretically expected, suggesting that there exist some
imperfections in the optical components and the alignment. From the discrepancy
between Π and Πexp, it can be assumed that the experimental system just projects
the input state onto slightly different polarisation states than the intended tetra-
hedral POVM states. However, polarisation tomography can still be performed as
long as a mapping between the Stokes vectors and measured POVM states exists
and there is a large enough coverage of the Poincaré sphere.

In addition, it should be noted that the calibration method is also sensitive to
any discrepancies in beam generation Therefore, care has to be taken to ensure high
fidelity operation of the DMD-based vector beam generation. The beam generation
was always calibrated using the methods outlined in § 2.6, and the POVM polari-
sation states measured and confirmed using Stokes polarisation tomography before
completing the calibration process, to ensure a system with optimal alignment and
instrumentation matrix as possible.
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5.3.3 Investigation of experimental stability

As mentioned previously, a Sagnac-based interferometric setup was developed to
perform one-shot polarisation tomography using generalised measurements, with the
aim of improving the stability over the previous setup incorporating a Mach-Zehnder
interferometer. Having a stable system over time removes the need for frequent re-
calibration and has benefits when wanting to take time-resolved measurements of
slowly varying processes, which requires the system to be optically stable during the
entire evaluation process. This longer term stability becomes more relevant for the
application of Mueller matrix polarimetry, which will be discussed in § 5.4.2, and
is useful for measuring changes in optical activity over time (e.g. investigation of
bio-chemical samples).

In this section, I will briefly outline an experimental investigation that was per-
formed in order to assess the stability of the experimental setup.

As for the experimental calibration, we can make use of the orthogonal states
|Φi⟩. Recall that, in theory, for a perfectly aligned system, these states should
produce zero intensity in the corresponding camera quadrant. Therefore, if the
alignment of the interferometer drifts over time, the intensities in these camera
quadrants are expected to increase. By taking periodic measurements of |Φi⟩ over
time the stability of the interferometer can be inferred. The findings of this simple
experimental investigation are shown in Figure 5.7.

The data points in Figure 5.7 show measured Pi = ⟨ϕi| π̂i |ϕi⟩, in the correspond-
ing camera quadrant as the fraction of the total intensity, with the dashed black
line showing a smoothing spline fit to the average. The main figure shows measure-
ments taken over 8 hours at 30 minute intervals in a quiet laboratory, and in the
inset over 3 hours at 15 minute intervals during times of intense activity and traffic
next to the experiment. After initial alignment and calibration, we typically achieve
probabilities as low as Pi ≈ 2%. In a quiet laboratory, the calibration quality does
change slightly over the whole 8 hour period, but these changes are insignificant.
Whereas, in a busy laboratory calibration deteriorated markedly, as can be seen in
the inset graph in Figure 5.7. This gradual misalignment is assumed to be attributed
to slight shifts of the glass slides due to vibrations in the laboratory. This may be
further suppressed in a custom-built monolithic interferometer setup, however, for
the measurements reported in here, in § 5.3.4 and 5.4.2, the stability is entirely
sufficient.

5.3.4 Results of single-shot polarisation tomography

Once the setup has been calibrated, and instrumentation matrix measured, the
system can be used to measure the spatially varying polarisation of any vector
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Figure 5.7: Investigating the stability of the Sagnac interferometer with time using
the alignment states. The data points show the normalised total intensity, I(N) in
camera quadrant Ii for the measured orthogonal state |ϕi⟩, where i ∈ {1, 2, 3, 4},
and the black dashed line shows a smoothing spline fit to their average. The main
plot shows data taken at 30 minute intervals over a total time of 8 hours during a
quiet time in the laboratory. Stability decreases when there is a lot of traffic in the
laboratory, as indicated in the inset, showing data taken at 15 minute intervals over
3 hours. Figure adapted from [270].

beam. Here, the results of three beams of the form,

|ψ1⟩ = HG1,0 |ĥ⟩+HG0,1 |v̂⟩ ,
|ψ2⟩ = HG0,2 |ĥ⟩+HG2,0 |v̂⟩ ,
|ψ3⟩ = LG0

1 |ĥ⟩+ LG2
0 |v̂⟩ ,

(5.25)

will be presented, where HGn,m are Hermite-Gaussian modes with indices n and m,
and LGℓ

p Laguerre-Gaussian modes with radial index p and and topological charge
ℓ. The equations for these higher order Gaussian modes can be found as Eqs. 1.41
and 1.43 in Chapter 1.

Single-shot camera images are acquired of the three vector beams, resulting in
four intensity profiles from the four camera quadrants. The experimentally measured
intensities can be seen in the odd columns of Figure 5.8, along with the theoretically
expected results (even columns), for comparison. The total intensity distributions
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Figure 5.8: Experimental (odd columns) and simulated (even columns) intensity
measurements of the POVM states for the three vector beams described by |ψ1⟩,
|ψ2⟩ and |ψ3⟩ in Eq. 5.25. The bottom row shows the total intensity distributions.

are obtained by overlapping the four individual projections. These are shown in the
bottom row of Figure 5.8.

From the measured intensities and experimental instrumentation matrix, we can
invert Eq. 5.13 to obtain the spatially varying Stokes vectors, hence, allowing the
reconstruction of the vector beam. The resulting polarisation profiles obtained from
the POVM state projection measurements are given in Figure 5.9 along with the
theoretical profiles, showing excellent agreement. Additionally, the results are of
equal quality to those presented in Ref. [269], confirming that the new Sagnac-based
setup performs as well as the Mach-Zehnder-based setup, but with an improved
stability.
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Figure 5.9: Polarisation distributions of the three vector beams described by |ψ1⟩,
|ψ2⟩ and |ψ3⟩ in Eq. 5.25. Top row: Experimental polarisation profiles obtained
using POVM tomography and the resulting measured intensities shown in Figure 5.8.
Bottom row: Simulated polarisation profiles.

5.4 Chapter 5 Part 3: Application: Dynamic Mueller ma-
trix polarimetry using generalised measurements

Now that we have an experimental system that is able to perform POVM measure-
ments in a single-shot and with a proven inerferometric stability over a time scale
of hours, thought can be put towards potential applications.

There are many fields in which polarisation determination plays a crucial role.
This is partly due to one interesting characteristic of polarisation in particular -
it contains information regarding a light beam’s source as well as any interac-
tion with materials that it has encountered. Additionally, polarisation informa-
tion can be acquired without the need for invasive techniques. Therefore, it is
perhaps not surprising that this feature of light is utilised for a variety or metro-
logical applications. Some examples of possible applications include the character-
isation and stress analysis of materials [289–291], ellipsometry [292, 293], astron-
omy [316–318], pharmaceutical ingredient analysis [294], monitoring of soil condi-
tions and crop growth [319], chiral symmetry [320], biomedical studies and clini-
cal applications [321–328], biological microscopy [295,296] and quantum optics and
quantum information [285,288,329–332].

Mueller matrix polarimetry is a powerful experimental technique often used to
determine the optical activity of a material or medium (such as its linear/circular
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birefringence or dichroism), by identifying the changes it makes to polarisation. Of
late, the dynamic determination of Muller matrices has attracted attention as a tool
for studying rapid phenomena which are polarisation sensitive [333–338]. For this
reason, we decided to apply the POVM measurement system described above to
perform single-shot Mueller matrix measurements using a Poincaré beam.

In the following sections, I will describe how a Mueller matrix is commonly
measured, how our polarimetry is performed to obtain the Mueller matrix of a
homogeneous sample and why using generalised measurements could be advanta-
geous. I will then use the examples of tilted and rotated wave plates to illustrate
the working of our Mueller matrix polarimetry, where we find excellent agreement
with predictions as well as alternative Stokes measurements.

5.4.1 Overview of common techniques for Mueller matrix polarimetry

Any fully or partially polarised state of light can be expressed in terms of a 4 × 1
Stokes vector S. The optical behaviour of an optical element or sample is fully
described by a 4 × 4 (real) Mueller matrix, such that, in a similar way onto which
a Jones matrix acts on a Jones vector, an initial polarisation state Sin becomes
Sout = MSin after passing through a sample described by the Mueller matrixM [52].
A simple way to measure a Mueller matrix uses 36 intensity measurements. This is
accomplished by generating uniformly polarised beams of |ĥ⟩ , |v̂⟩ , |d̂⟩ , |â⟩ , |r̂⟩ and
|l̂⟩ before the element to be investigated, and then analysing |ĥ⟩ , |v̂⟩ , |d̂⟩ , |â⟩ , |r̂⟩
and |l̂⟩ polarisations after the element [292,339]. However, as we have a 4×4 matrix,
with 16 elements, taking 36 measurements results in an over-complete determina-
tion7. Indeed, we only require (at least) 16 measurements, taken with linearly
independent combinations of settings of the polarisation state generator before the
sample and the analyser after the sample, to determine the elements of M.

There exist three common approaches to polarimetry - using either spatial split-
ting, temporal modulation or encoding information into different degrees of freedom.
Polarimetry achieved by temporal modulation requires sequential measurements,
such as the rotating wave plate approach, which is the technique most commonly
found in commercial polarimeters. However, the sequential nature of temporal mod-
ulation techniques deems them inadequate if the optical activity of the sample varies
with time. In contrast, the techniques based on spatial splitting divide the beam
and analyse each part using different polarisation optics at once, but deliver infe-
rior signal to noise ratios. Hence, spatial splitting techniques are less suitable for
applications requiring weak probe light.

Some other noteworthy developments into polarimeters include the recent work
on ellipsometers based on photoelastic modulators [340] which, due to their quick

7However, if the number of measurements is not a concern then this over-complete determination
of the components of M allows further analysis and reduction of errors in relation to experimental
determination of a Mueller matrix.
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switching time, allow rapid sequences of individual Stokes measurements, leading to
time resolutions in the range of microseconds [341].

As mentioned, another method for Mueller matrix polarimetry uses additional
degrees of freedom, such as spectral encoding [342], where different polarisation
states of different wavelength are used and Stokes measurements simultaneously
carried out at the different wavelengths, with time resolutions feasible at tens of
nanoseconds [343]. Other methods use spatial information as the additional degree
of freedom, relying on vector light beams with a spatial polarisation dependence,
allowing polarisation information to be deduced from spatial intensity measure-
ments [344–346]. If we are interested in analysing a sample with homogeneous
optical activity, then it is possible obtain a Mueller matrix using only one probe
beam. The only requirement of this, is that the beam must contain at least 4 lin-
early independent polarisation states that together span the complex polarisation
space. Poincaré beams are a class of beams that contain every possible polarisation
across their transverse profile (therefore, must satisfy this requirement), and there
have been two recent examples of work on Poincaré based polarimetry: Ref. [347]
sequentially analysed 4 regions of the Poincaré beam, corresponding to 4 linearly
independent polarisations, with a commercial polarimeter, and Ref. [348] used a
CCD camera and Stokes tomography to analyse the Poincaré beam after passing
through the sample. The work outlined in both of these papers reduced the number
of required probe beams but still needed multiple measurements of the resulting
beam.

By using a Poincaré beam as a probe beam, and the POVM measurement system
described previously in § 5.3.1, we can realise single-shot polarimetry of homoge-
neous samples. This enables dynamic Mueller matrix measurements with potential
applications in the investigation of fast physical, chemical or biological processes as
well as material stress analysis. The time resolution of the optical activity evolution
is therefore only limited by the camera frame rate.

5.4.2 Dynamic Mueller matrix determination using generalised mea-
surements and a full Poincaré beam

As mentioned, the optical behaviour of any optical element or unknown sample can
be described by a 4×4 Mueller matrix M, such that the transformation of an initial
polarisation state passing through the sample can be described by [52],

Sout = MSin (5.26)

This relation holds for any input polarisation, Sin, thus, every point across the
transverse profile of the input probe beam. Therefore, while Eq. 5.26 is almost al-
ways applied to homogeneously polarised light, it can equally be applied to spatially
varying vector light, so that we can now write,

Sout(x, y) = MSin(x, y), (5.27)
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where x and y are the spatial coordinates on the transverse plane.
Here, a Poincaré beam will be used as the probe beam, as it contains every

possible polarisation, including the POVM polarisation states, allowing us to observe
the way a material alters every polarisation state at once. We could choose to analyse
selected areas of the resulting Poincaré beam corresponding to 4 linearly independent
polarisations (such as the POVM polarisations themselves, or any rotated POVM
tetrahedron), similar to the work performed in Ref. [347]. However, we instead
choose to maximise the information obtained from our measurement by using all
polarisations of the probe beam, and analysing its components using the POVM
strategy.

The intensity profile, and hence Stokes parameters of the beam are continuous,
however, measurement performed with a camera (in this case, a CMOS camera with
1920×1200 pixels) has the effect of parameterisation by pixel number. Consequently,
for N camera pixels used to measure the input and output beams, the measured
Stokes vectors can be arranged into 4×N matrices S, with matrix entries Si,n. Here,
i ∈ {1, 2, 3, 4} denote the Stokes parameter and n ∈ {1, N} the pixel number. This
allows us to obtain a set of 4N linear equations:

Sout = MSin. (5.28)

The matrices Sin and Sout can be easily acquired from spatially resolved intensities
by implementing POVM measurements before and after the sample and obtaining
the corresponding Stokes parameters using the methods described previously.

In order to find M, we follow a similar procedure as outlined in [348]. By
inspection of Eq. 5.28, we notice that we require an inverse for Sin, but, Sin is a non-
square matrix. However, as a Poincaré beam is used as the input beam, then it is
possible to find a set (or multiple sets) of 4 polarisation states across the beam profile
which are linearly independent. Therefore, Sin(Sin)

T must be invertible, allowing the
right Moore-Penrose pseudo-inverse of Sin to be calculated via [349],

(Sin)
† = (Sin)

T
[
Sin (Sin)

T
]−1

. (5.29)

Following on from Eqs. 5.28 and 5.29, the Mueller matrix can be obtained using,

M = Sout(Sin)
†. (5.30)

The benefits of Eq. 5.30 is that it uses the full information contained within the
Poincaré beams which can be analysed simultaneously by projecting into the 4
POVM polarisations with the interferometric setup.

5.4.3 Experimental single-shot Mueller matrix measurement procedure

For the experimental determination of the Mueller matrix, we need to know how the
sample to be measured will affect input polarisation. This requires measurement of
the Stokes parameters of the beam itself and after interaction with the sample.
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Figure 5.10: Experimentally measured with the Sagnac interferometer (top) and
simulated (bottom) polarisation profiles Sin of an LG0

1 |ĥ⟩+ LG2
0 |v̂⟩ Poincaré beam

before (left) and Sout after passing through either a half waveplate or quarter wave-
plate with their fast axis rotated with respect to the horizontal to the angle indicated
in the figure. Figure adapted from [270].

To test the proposed Mueller polarimetry method, we choose to use a Poincaré
beam generated from a superposition of horizontally and vertically polarised La-
guerre Gaussian (LGℓ

p) modes, of the form,

|Ψ⟩ = LG0
1 |ĥ⟩+ LG2

0 |v̂⟩ , (5.31)

where p and ℓ are the radial and azimuthal mode numbers, respectively. The equa-
tion for the LG modes is given in § 1.4.2 as Eq. 1.43. This particular Poincaré
beam was chosen as the mode orders of the two contributing LG modes are identi-
cal, N = 2p + |ℓ| = 2, so they have the same Gouy phase. This means that upon
propagation the beam maintains its shape (apart from an overall change of size) and
there is no rotation of the polarisation distribution due to differing Gouy phases (see
§ 1.4.3). The experimentally measured polarisation profile Sin of |Ψ⟩ is shown in the
top left of Figure 5.10, with the simulated ideal polarisation profile displayed below.

Now that we have a measurement of Sin (and hence Sin), we can detail the
single-shot procedure for Mueller matrix determination. The sample to be analysed
is placed in the beam path, before the beam enters the interferometric system, as
indicated by the dashed box in Figure 5.5, and the resulting Stokes parameter Sout

is obtained as before. The Mueller matrix of the sample can then be obtained from
Eq. 5.30.

As we are utilising a Poincaré beam including every polarisation state, the re-
solved Stokes vectors provide an overcomplete measurement, allowing us the ability
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to eliminate from the calculation camera pixels at low intensities that may be com-
promised by noise. This is acceptable, and will not affect the resulting matrix as
long as the remaining sections of the Poincaré beam still span the full polarisation
state space. Specifically, we choose to only include camera pixels in the analysis
with an intensity greater than 5% of the peak intensity.

5.4.4 Mueller matrix measurement of rotated waveplates

As an illustration of the single-shot Mueller matrix polarimetry, it was chosen to
use half and quarter waveplates at various angles as the samples to be measured,
for the simple reason that the theoretical matrices describing these components are
readily available, providing a benchmark for which to compare results.

The theoretical Mueller matrix MT of a waveplate can be found using,

MT(δ, θ)=


1 0 0 0
0 cos2(2θ) + sin2(2θ) cos(δ) cos(2θ) sin(2θ)(1− cos(δ)) sin(2θ) sin(δ)
0 cos(2θ) sin(2θ)(1− cos(δ)) cos2(2θ) cos(δ) + sin2(2θ) − cos(2θ) sin(δ)
0 − sin(2θ) sin(δ) cos(2θ) sin(δ) cos(δ)

, (5.32)

where δ is the phase difference between the fast and slow axis and θ is the angle of
the fast axis with respect to the horizontal. For a HWP and QWP, δ = π and π/2,
respectively.

Measurements were taken for normal incidence on a HWP and QWP for different
fast axis angles of θ = 0◦ to 90◦ in 10◦ increments and the Mueller matrices obtained
as described above. A selection of the measured polarisation profiles of the chosen
Poincaré beam after passing through the waveplates at different θ are shown in
Figure 5.10 along with the corresponding theoretical plots.

The results of measured Mueller matrix entries mi,j against waveplate fast axis
angle are plotted as data points in Figure 5.11(a) for the HWP and in Figure 5.11(b)
for the QWP. In both figures, the theoretically expected values are given as solid
blue lines, showing that the measured values follow theory well, with just some slight
deviations for some fast axis angles.

In Figure 5.12, a bar chart representation is provided of a selection of the mea-
sured Mueller matrices and comparison to theoretically expected matrices, where
theoretical values are given as transparent columns, and measured values as nar-
rower opaque columns. The results given here are for the same waveplates and fast
axis angles as shown in Figure 5.10 with the bar charts in Figure 5.12(a) and (b)
showing results for the HWP results and 5.12(c) and (d) showing the QWP results.

To asses the performance of the single-shot Mueller matrix measurements we
calculate an error value that quantifies the discrepancy between the Mueller matrices
obtained using the single-shot POVM measurements and the theoretically predicted
quantities. One possible way to globally quantify the error of the 16 Mueller matrix

154



Chapter 5. Polarisation tomography using generalised measurements 155

(a)

(b)

Figure 5.11: Measured Mueller matrix entries mi,j, where i, j ∈ {1, 2, 3, 4}, against
HWP (a) and QWP (b) angle. Orange data points show values obtained using the
single-shot procedure and solid blue lines are theoretical values.
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Figure 5.12: Comparison of experimental and theoretical Mueller matrices. The
bar graphs show the mi,j entries of Mueller matrices where i, j ∈ {1, 2, 3, 4} are
the row and column indices, respectively. Theoretical values are indicated by the
transparent columns and experimental values given by narrower opaque columns.
The positive and negative values are indicated by an orange-to-blue colour gradient
as indicated on the right. Examples are given for a HWP with fast axis at 0◦ (a)
and 70◦ (b) and a QWP at 0◦ (c) and 20◦ (d). Figure adapted from [270].

entries is to evaluate the root mean square (rms) of the individual errors as [348],

rms(δ̂M) =
1

4

√√√√ 4∑
i,j=1

|δMij|2, (5.33)

where, δ̂M = δ̂ME − δ̂MT is the difference between the experimentally measured
Mueller matrix and the theoretically expected matrix, and i and j are the row
and column indices. Note that the obtained error from Eq. 5.33 not only includes
a measure of uncertainty between the experimental and expected Mueller matrix
but also includes small uncertainties in determining the exact rotation angle of the
retardation plates θ (encompassing both errors in the calibrated fast axis position
and in the manual rotation to the correct θ under investigation).

The rms(δ̂M) of the single-shot Mueller matrix measurements are shown as green
data points in Figure 5.13(a) for the HWP and Figure 5.13(b) for the QWP.

Comparison to different Mueller matrix measurement techniques

To asses the performance of the single-shot POVM measurements, the obtained
error values were compared to rms(δ̂M) values of Mueller matrices acquired using
two other experimental techniques. For both, the resulting light beam after the
waveplate was analysed using sequential Stokes measurements, projecting into each
of the |ĥ⟩ , |v̂⟩ , |d̂⟩ , |â⟩ , |r̂⟩ and |l̂⟩ polarisation bases in turn. These measurements
were performed using a rotating wave plate setup consisting of a rotating QWP,
HWP and stationary polariser, as described in § 2.3.

For the first technique, the sequential Mueller analysis was performed using
the same Poincaré beam used above, and as described by Eq. 5.31, as the probe
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(a) (b)

Figure 5.13: Comparison of calculated errors of the measured Mueller matrices of
a HWP (a) and QWP (b) for the different methods used. Green data points show
errors for the single shot POVM measurements, blue and orange data points are
the errors when Stokes measurements are used either using the 4 POVM states as
input beams (blue) or a Poincaré beam (orange). The errors are calculated using
Eq. 5.33. Figure adapted from [270].

beam. The beam was first measured before the sample and then again afterwards,
requiring 12 intensity measurements in total, but 6 for the Mueller analysis. From
the resulting intensities, we obtain spatially resolved Stokes parameters, with one
Stokes vector associated to each camera pixel, from which the Mueller matrices
could be calculated using Eq. 5.30. This is analogous to the data processing for
the single-shot measurements. The corresponding rms(δ̂M) values were calculated
using Eq. 5.33, and are shown as orange data points in Figure 5.13(a) and (b).

The second technique used four homogeneously polarised beams as the probe
beams, as this is the minimum number of required linearly independent polarisa-
tions. For this, we choose the four POVM polarisations themselves (as shown in
Figure 5.1). Again, the polarisations of the beams were measured before the sam-
ple, and after interaction with the sample. Cycling through the four beams and
recording the Stokes projections requires a series of 24 (4 × 6) consecutive images
per sample. Stokes parameters were acquired for each of the four homogeneously
polarised beams by averaging over the entire intensity profiles, resulting in four in-
put and output Stokes vectors, allowing us to construct two 4 × 4 matrices, and
solve Sout = MSin directly. The corresponding error values were calculated for the
resulting matrices, and are shown as blue data points in Figure 5.13(a) and (b).

The comparison of the rms(δ̂M) in Figure 5.13 shows that the Mueller matri-
ces obtained using single-shot POVM approach have an error of similar magnitude
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(within a factor of two) as those measured with traditional Stokes polarimetry,
despite the large gain in measurement speed. It is not surprising that the Stokes
tomography based analysis executed here performs slightly better, given that it con-
sists of a simple sequence of three optical elements (where slight shifts of the beam
path should not affect the results) compared to the Sagnac setup shown in Figure
5.5, which requires more optical components. Additionally, the Sagnac setup fea-
tures more alignment challenges, and any slight shift in the overall beam path that
could be caused by the Mueller sample has the possibility to change the alignment
and overlap of the beams within the interferometric system. By inspection of the
graphs in Figure 5.13, it is noticed that there appears to be a fast axis angle depen-
dence on the accuracy of the measured Mueller matrix. This dependence is present
for all three measurement techniques, with a maximal error occurring in the range
θ = 40◦ to 50◦ depending on the technique and waveplate used. This suggests a
possible alignment error, potentially caused by a slight tilt of the waveplates relative
to the beam path (therefore changing the effective δ of the waveplates).

5.4.5 Dynamic measurements

All of the above Mueller matrix results were obtained from stationary images. How-
ever, as only one image is required for each measurement, it is possible to apply this
method to time resolved analysis (e.g. for the investigation of time varying chemical
or biological processes). To give a controllable demonstration of this application,
we looked at the continuous rotation of a HWP. A HWP was mounted in a rotation
mount controlled by a stepper motor and placed in the sample location, as high-
lighted in Figure 5.5. The stepper motor allowed the automation of the waveplate
rotation, in turn allowing a live video to be recorded. A video was recorded of the
probe beam passing through the HWP as it rotated a full 360◦. The raw video can
be seen in Ref. [270] as Visualisation 1 which also shows a video of the reconstructed
polarisation profile.

The camera and exposure time that were used meant that we recorded 39.68
frames per second and the stepper motor rotated the entire 360◦ in 1.13 seconds.
This meant that each frame of the video shows the altered intensity distributions
after the HWP had advanced by 8◦. Here, we are clearly only limited by the frame
rate of the camera, and employing a faster camera, with higher sensitivity, allowing
for a lower exposure time, would provide more time resolution. Visualisation 1 in
Ref. [270] shows the recorded video slowed down by a factor of 10, in order to clearly
view the changes to the recorded intensity and reconstructed polarisation profiles.

5.4.6 Measuring the retardance of a tilted quarter waveplate

In the previous section, Mueller matrices of waveplates were measured as they pro-
vided an easy way to asses the performance of the proposed experimental setup and
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Figure 5.14: Schematic of experimental setup for retardance measurements. Mount-
ing a quarter waveplate on a rotation stage allows for easy change of the incident
angle of the input beam.

method. Here, I will provide a slightly more practical example of how we can use
these measurements, by measuring the retardance of a birefringent material in rela-
tion to the material thickness. For this, a QWP with its fast axis set to 0◦ is used,
and the angle of incidence (AOI) of the probe beam changed by tilting the QWP
about its vertical axis by an angle α, as indicated in Figure 5.14. By tilting the
QWP in this way, we increase the optical path length through the material, hence
allowing variations of material thickness to be investigated.

Birefringent materials impart a phase shift between two orthogonal polarisation
components of incident polarised light. For this reason, they are commonly used to
make HWPs and QWPs to allow easy polarisation modulation. This phase shift (or
retardance) depends on the properties of the material, such as the thickness, and the
ordinary (no) and extraordinary (ne) refractive indices at the relevant wavelength.
Due to the dependence on material thickness, birefringent waveplates are designed
for use at normal incidence, as increasing the AOI increases the distance travelled
through the material. With increased distance, the optical path difference between
the ordinary and extraordinary rays changes, imparting an unintended phase shift
between the rays. The significance of the this change in retardance with incident
angle is material dependent. For example, polymer waveplates are fabricated to
allow better stability for a large range of AOI, whereas waveplates made of crystalline
quartz are less stable, with the greater retardance changes for smaller AOI [98].

The Mueller matrix of a waveplate with its fast axis at 0◦ and arbitrary retar-
dance (δ) is,

MT (δ, θ = 0) =


1 0 0 0
0 1 0 0
0 0 cos(δ) − sin(δ)
0 0 sin(δ) cos(δ)

 . (5.34)

For a matrix of the form of Eq. 5.34, the correct sign and magnitude of the retardance
can be obtained, simply using the fact that δ = tan−1(sin(δ)/ cos(δ)). Therefore,
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from a measured Mueller matrix, there are 4 ways to compute the retardance,

δ1 = tan−1
(
−m34

m33

)
, δ2 = tan−1

(
−m34

m44

)
,

δ3 = tan−1
(
m43

m33

)
, δ4 = tan−1

(
m43

m44

)
,

(5.35)

where, mi,j are the matrix elements of MT with row and column indices i and j
respectively.

A multi-order crystalline quartz quarter waveplate (ThorLabs WPMQ05M-633)
was used for testing the Mueller matrix procedure for measuring retardance. The
fast axis of the QWP was set to 0◦ and it was mounted on a rotation stage to allow
varying incidence angles (see Figure 5.14). The same Poincaré beam as described
by Eq. 5.31 was used as the probe beam allowing the same procedure as described
above to be implemented in order to find the Mueller matrix for incident angles
ranging from 0◦ to 40◦ in 5◦ increments.

Once the Mueller matrices are obtained, the retardance can be determined using
matrix entries m33, m34, m43, m44 and Eq. 5.35 which gives 4 separate values.
Ideally, these values should all be the same, but due to experimental errors, there
are slight deviations between them, as expected. In order to get a final value for
the retardance, we find the average of δ1, δ2, δ3 and δ4 and compute the standard
deviation to obtain an associated error. The results of the experimentally measured
δ in relation to the QWP tilt angle are shown in Figure 5.15 as orange data points.

In Figure 5.15, we also plot a fit to the data and the theoretical fit to the
retardance against tilt angle for comparison. To determine the theoretically expected
retardance and also the correct fitting function, we follow a similar procedure as
outlined in [350], but modified for a multi-order waveplate rather than a zero-order
waveplate, as used in the mentioned paper. The theoretical retardance can therefore
be calculated as,

δT (θ, α) =
2πT

λ

√n2
e −

n2
e cos

2(θ) + n2
o sin

2(θ)

n2
o

sin2(α)−
√
n2
o − sin2(α)

, (5.36)
where θ is the angle of the waveplates fast axis, α is the angle of incidence, T is the
thickness of the waveplate, no and ne are the ordinary and extraordinary refractive
indices and λ is the wavelength, which, in our case, λ = 632.8 nm. The refractive
indices are wavelength dependent, and for this wavelength, the relevant refractive
indices of crystalline quartz are no = 1.543 and ne = 1.552 [351]. The thickness of
the QWP can be found from the manufacturers website [98].

For a waveplate with its fast axis at 0◦, Eq. 5.36 reduces to,

δT (θ = 0, α) =
2πT

λ

(√
n2
e

(
1− sin2(α)

n2
o

)
−
√
n2
o − sin2(α)

)
. (5.37)
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Figure 5.15: Retardance against angle of incidence for a QWP with its fast axis at
0◦. Measured retardance from Mueller matrix measurements are shown as orange
data points with the corresponding fit given as a dashed orange line. Solid blue line
shows the theoretical values calculated using Eqs. 5.37.

To obtain δT in units of waves, we can simply apply the modulo operation, to get
the result in the range [0, 2π] and divide by 2π. As an equation, this unit conversion
can be written as,

δ′T (θ = 0, α) =
1

2π

(
δT − 2π

⌊
δT
2π

⌋)
, (5.38)

where δ′T is in units of waves, as plotted in Figure 5.15.
The theoretical retardance vs. tilt angle relation obtained using these equations

is shown as the blue line in Figure 5.15. We note however, that the values for ne and
no available from Ref. [351] are only known to 4 significant figures. Therefore, a fit
was also performed to the experimentally measured retardance using Eqs. 5.37 and
5.38, and is shown as the dashed orange line in Figure 5.15. Allowing the refractive
indices to be determined as n0 = 1.54302± 0.00032 and ne = 1.55199± 0.00033 and
the thickness of the material to be T = 1.0023± 0.0001 mm, all of which are similar
to the expected values quoted above.

5.5 Chapter 5 conclusion

To conclude, this chapter began by discussing the concept of measurement in quan-
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tum mechanics and some of the different measurement processes that exist, before
focusing on generalised measurements in the form of minimum informationally com-
plete positive operator value measures (MIC-POVMs). A way in which these ideas
from quantum mechanics could be applied to polarisation was then outlined. To-
wards the end of Chapter 5 part 1 (in § 5.2.4), I provided a summary of the work
performed previously within the group to develop an experimental system for realis-
ing spatially resolved POVM measurements, allowing the characterisation of vector
beams in a single-shot. This experimental setup implemented a Mach-Zehnder in-
terferometric system in order to construct the variable partially polarising beam
splitter.

In Chapter 5 part 2 (§ 5.3), I then began to discuss my own contribution to the
work. This first involved building on and developing the ideas from the previous
experimental system to try and improve one of its practical challenges - its stability.
The solution ultimately proposed, was to redesign the setup to be based on a Sagnac
interferometer rather than a Mach-Zehnder, as Sagnac configurations are naturally
more stable due to the common geometric beam path. The polarisation tomography
results produced from this setup were of equal quality to those presented in Ref [269]
using the previous setup, but we could now achieve an improved interferometric
stability, with the new system remaining suitably aligned over a period of hours in
a quiet lab, rather than minutes.

The improved experimental stability allowed this single-shot technique for spa-
tially varying polarisation characterisation to be considered for more practical ap-
plications. In Chapter 5 part 3 (§ 5.4), one such application was proposed and
performed: single-shot Mueller matrix polarimetry. Mueller matrix polarimetry is
an important technique for determining the optical activity of media. By imple-
menting generalised measurements and using a full Poincaré beam as a probe beam,
the Mueller matrix can be determined in a single-shot, allowing the possibility for
dynamic measurements.

The method was tested for stationary HWPs and QWPs rotated to different an-
gles, and a tilted QWP, obtaining excellent agreement with theoretical predictions
with comparable errors to conventional rotating wave plate measurements. There-
fore, this method, could provide a convenient alternative approach for the real-time
monitoring of rapid optical activity changes. For example, those caused by biological
phenomena, physical or chemical reaction processes, and complex fluid studies, but
equally for the long-time non-invasive investigation of slow biochemical processes
relevant e.g. for monitoring in agriculture and food industries. The implementa-
tion of the method is wavelength independent, as with only a simple change of the
wavelength-dependent optical elements used in the system, and a suitable camera
chosen, it can be applied for studies at any wavelength. Additionally, its tempo-
ral resolution is only limited by the video refresh rate of the camera, promising
resolutions in the range of nanoseconds with commercial scientific cameras.
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Chapter 6

BB84 protocol using rotationally
symmetric states

6.1 Chapter 6 introduction

In this chapter, I will outline a short project that was undertaken in order to develop
a BB84 protocol using rotationally symmetric states, with the aim of removing the
need for shared coordinate reference frames between the sender and receiver. For
this, we developed a new measurement system for projecting onto the rotationally
symmetric bases. This system incorporates an optical component known as a Fresnel
cone [34], which provides advantages such as being wavelength-independent, unlike
other polarisation optics.

Here, I will begin with an introduction to the Fresnel cone and how it can be
used to shape light, and give a general overview of quantum key distribution and
the BB84 protocol. Afterwards, I will introduce the chosen rotationally symmetric
basis, and provide details of the devised measurement system for implementation of
the BB84 protocol, before presenting some preliminary experimental results.

The experimental work presented in this chapter is not complete, and as such, is
not yet published. Additionally, the experiment was performed using classical light,
as opposed to single photons required for quantum experiments. Nonetheless, the
early experimental data shows a working experimental system providing results in
line with theory and stands as a proof-of-principle experiment, allowing for further
work to be undertaken. A manuscript outlining this work is currently in preparation
and more experimental measurements will be performed using an optimised system,
as will be briefly described in § 6.6.1.

6.2 The Fresnel cone

The Fresnel cone, is a solid glass cone with an apex angle of 90◦ [34, 345], the
geometry of which is shown in Figure 6.1. A beam incident on the cone will be
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Figure 6.1: Geometry of the Fresnel cone. The left image shows a side view of
the cone, with an apex angle of 90◦ and the right demonstrates the total internal
reflection from the back surface of the cone for an off-centre incident beam.

completely reflected from the back surface, as the angle of incidence is greater than
that required for total internal reflection. Just like with a mirror (c.f. § 2.2.2),
upon reflection from a surface, a phase shift occurs between the orthogonal s and
p polarisation components, where the p component lies parallel to the plane of
incidence, and s perpendicular to it. Due to the cones geometry, the angle of the
plane of incidence varies azimuthally around the tip of the cone, therefore, the
decomposition into the s and p polarisation components also varies azimuthally,
resulting in azimuthally varying changes to the polarisation. It has previously been
shown that back reflection from a Fresnel cone also results in a spin redirection
phase, occurring due to conversion from spin to orbital angular momentum [34]. As
the Fresnel cone only relies on geometry and total internal reflection, the way in
which it can alter polarisation is not wavelength dependent, making it suitable for
applications using broadband light.

A light ray entering the cone will experience two total internal reflections. As
the incidence angle is above the critical angle, only the phase is affected (i.e. there
is no reduction in intensity), allowing the Jones matrix of the two reflections to be
written as,

Jwedge =

(
r2p 0
0 r2s

)
= r2p

(
1 0
0 e2iδ

)
, (6.1)

where rp and rs are the Fresnel reflection coefficients and δ describes the differential
phase shift between the s and p polarisation and is given by,

δ = arg(rs)− arg(rp) = arg

(
n2 − i

√
1− 2n2

1− n2

)
, (6.2)

where n relates to the refractive indices of air and the glass cone via n = nair/ncone

[34].
In the following experiments, a 633 nm laser was used. At this wavelength,

ncone = 1.56, giving δ = 0.26π [339]. For two reflections, this is close to 2δ = π/2,
the phase shift induced by a quarter wave plate, meaning that the cone has an effect
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Figure 6.2: Simulated polarisation profiles before (left) and after (right) reflection
from the Fresnel cone for three different homogeneously polarised input beams. (a)
Horizontal, (b) anti-diagonal and (c) right-handed circular polarised input beams.

on the polarisation similar to that of a quarter-wave plate (Jwedge ≈ JQWP) but in
the azimuthal direction.

The Jones matrix describing the entire effect of the cone, Jcone, is given by [34],

Jcone = R(−θ)JwedgeR(−θ). (6.3)

Here, a polarisation state written in terms of an x-y coordinate system is rotated
to the local s − p polarisation coordinate system of the cone using a standard 2D
rotation matrix denoted by R(θ). The two reflections are applied (using Jwedge) and
then a final rotation is performed in order to get back to the original x-y coordinate
system. As the back reflection has changed the beams propagation direction, the
sense of rotation has changed, requiring the final rotation to be applied in the same
direction as the first.

In Figure 6.2, I give simulated examples of homogeneously polarised beams after
reflection from the cone, where it is evident that the cone does indeed act like a
QWP but with an azimuthally varying fast axis. Additionally, from Figure 6.2(c),
it can be seen that the circularly polarised beam has resulted in one containing all
the possible orientations of linear polarisation, spanning the equator of the Poincaré
sphere. Using a series of half-wave plates after this beam we can convert it to the
familiar radially and azimuthally polarised beams.

Work fully describing all of the different vector beams that can be generated
using a Fresnel cone, looking at their focusing properties, and using a Fresnel cone
as a broadband polarimeter can be seen in Refs. [34], [20] and [345].

6.3 Quantum key distribution

Quantum key distribution (QKD) is an implementation of quantum cryptography,
promising secure communications, where data is encrypted using a secret key gener-
ated between two parties [352, 353]. By using quantum entanglement, the presence
of a third party trying to obtain the key can be detected, making entanglement
desirable for information processing and communication. However, entanglement is
known for being unstable - when quantum systems interact with an environment,
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entanglement decays through decoherence [354]. Due to this, it is appealing to use
photonic quantum states which exploit the weak interacting properties of photons.
Within optics, it has been traditional to use polarisation as the degree of freedom
to implement QKD protocols, as polarisation is well understood, can be easily con-
trolled and measured using standard optical elements, and is robust to atmospheric
turbulence, [354,355].

The first protocol for quantum cryptography was proposed by Bennett and Bras-
sard in 1984 (BB84) [356], and almost all subsequently proposed QKD protocols can
be viewed as adaptations of the original BB84 method [357]. In this section, I will
briefly summarise the BB84 key distribution protocol, in terms of photon polari-
sation, before moving on to § 6.4 and § 6.5 where I outline one way in which this
protocol can be implemented using rotationally symmetric states and a Fresnel cone
as a measurement device, which together, have the benefit of making the protocol
rotational reference frame invariant.

6.3.1 General overview of the BB84 protocol

For a BB84 protocol, two bases must be chosen with the same dimension, d. If the
first basis is chosen to be |Ψi⟩ , i = 1, ..., d, then the second must be chosen to satisfy,

| ⟨Ψi|Φj⟩ |2 =
1

d
, (6.4)

such that we now have a set of mutually unbiased bases (MUB). MUBs are commonly
used within quantum state tomography as they are beneficial for designing efficient
QKD protocols [358], as projective measurements provide no knowledge of the state
in any other basis. This means that if a state belonging to one basis is prepared,
and a measurement is performed in the other basis, then all outcomes will occur
with equal probability, losing all stored information.

Traditionally, the rectilinear and diagonal polarisation bases are used. The for-
mer is formed of horizontal and vertical (|ĥ⟩, |v̂⟩) polarisation states, with unit
vectors (1, 0) and (0, 1), whereas, the diagonal basis consists of diagonal and an-
tidiagonal (|d̂⟩, |â⟩) polarisation states, with (1/

√
2, 1/

√
2) (1/

√
2,−1/

√
2) as the

corresponding unit vectors. It is apparent that these form an MUB as we cannot
simultaneously measure polarisation in the rectilinear and diagonal bases.

The BB84 protocol is usually described with the aid of a named sender and
receiver, conventionally named Alice and Bob. The sender, Alice, prepares photons
polarised in one of the four directions, which she sends to Bob, the receiver. Bob will
then choose to make a measurement either in the |ĥ⟩/|v̂⟩ or |d̂⟩/|â⟩ basis, recording
the basis chosen and the corresponding result. Whenever Bob measures in the same
basis that Alice used to prepare the state, they get perfectly correlated results.
When different bases are used, they get uncorrelated results, leaving Bob with a
string of bits with a 25% error rate [352]. However, it is straightforward for Alice and
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Bob to account for these errors. By using classical communication, they announce
which basis they used for each photon, disregarding any bits when the bases were
different, as they know that their results will be perfectly correlated when the basis
is the same. At the end of this procedure, only around 50% of the bit string is kept.

Here, the BB84 protocol was described for 2 particular polarisation bases, but
of course any MUB can be used. Another obvious choice is to use the circular
polarisation basis along with one of the two bases mentioned above. However, other
MUBs have been used, such as those consisting of OAM states [358–361], or vector
beams, exploiting the entanglement between spatial modes and polarisation [362,
363]. When fibres are used for transmission, it is inconvenient to use polarisation
states, as fibres are not always polarisation maintaining. Instead, phase encoding
may be used, where the MUB contain phase differences that are realised through
use of an asymmetric Mach-Zehnder interferometer [364].

6.4 Rotationally symmetric basis

Many QKD protocols have the need for a shared reference frame between the sender
and receiver. For polarisation encoding, we require alignment of polarisation states,
or interferometric stability for phase encoding [365]. However, there are some sce-
narios in which establishing a shared reference frame for QKD becomes impracti-
cal. An example of which includes earth-to-satellite QKD, in which only one axis
of the reference frame (aligned along the propagation direction) is well defined,
with a rotation between the others [365]. Another being handheld QKD devices,
where again, the relative orientation between the emitter and receiver can be vari-
able [366]. Previously, this problem has been addressed by encoding information
in angular momentum states which are invariant under rotation [367], or by using
entanglement [368].

It is evident that by performing a QKD protocol employing MUBs with rota-
tionally symmetric states, we can discard the need for a shared coordinate reference
frame, with only the direction of the axis along the propagation direction needing
to be known. If polarisation encoding is to be used, then using circular polarisa-
tion becomes an obvious choice, as it is rotation independent, however, beams with
spatially varying polarisation have also been used [369, 370]. Here, I will also use
vector beams with rotational symmetry to implement the BB84 protocol, where the
difference from previous work lies within the measurement system. The previous
work relied on optical elements such as q-plates [369,370] which are wavelength de-
pendent, whereas, for the system being presented here, a wavelength independent
Fresnel cone is implemented.

It is possible to generate rotationally symmetric polarisation profiles using su-
perpositions of orthogonally polarised LG modes. Here, we chose beams of the
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form,
1√
2

(
|LG1

0⟩ |r̂⟩+ eiϕ |LG−10 ⟩ |l̂⟩
)
, (6.5)

for ϕ = 0, π,±π
2
. This allows us to construct two mutually unbiased bases with di-

mension d = 2. The first of which corresponds to radially and azimuthally polarised
beams,

|Ψ0⟩ =
1√
2

(
|LG1

0⟩ |r̂⟩+ |LG−10 ⟩ |l̂⟩
)
,

|Ψ1⟩ =
1√
2

(
|LG1

0⟩ |r̂⟩ − |LG−10 ⟩ |l̂⟩
)
,

(6.6)

and the second corresponds to clockwise rotational and anticlockwise rotational
polarised beams,

|Φ0⟩ =
1√
2

(
|LG1

0⟩ |r̂⟩+ i |LG−10 ⟩ |l̂⟩
)
,

|Φ1⟩ =
1√
2

(
|LG1

0⟩ |r̂⟩ − i |LG−10 ⟩ |l̂⟩
)
,

(6.7)

examples of which are shown in Figure 6.3. To verify that |Ψi⟩ and |Φi⟩ form a set
of MUBs, we can explicitly calculate the mode overlap. In doing so the relation
| ⟨Ψi|Φj⟩ |2 = 1/2, as given in Eq. 6.4, was confirmed.

Experimentally, these beams are generated using the DMD setup, as described
previously in § 2.6 and shown in Figure 2.12. In terms of performing a BB84
protocol, the sender would randomly generate one of these 4 rotationally symmetric
modes which are then sent to, and measured by, the receiver.

6.5 Measurement system

The BB84 protocol requires a measurement system in which the basis to measure
in can be chosen at random. For the rotationally symmetric states described above,
this reduces to splitting a beam into either its radial and azimuthal components or,
its clockwise/anticlockwise rotational components. A schematic of the setup used
for this is shown in Figure 6.4.

Letting the Jones vector of the input mode to be denoted by Jin, the action of the
measurement system up to and including the quarter wave plate can be described
by,

Jout = JQWP

(π
4

)
JconeJHWP(φ)JHWP(0)Jin, (6.8)

where, JHWP and JQWP represent the Jones matrices for a half waveplate and quar-
ter waveplate with their fast axis rotated to the angle indicated in brackets, with
respect to the horizontal, and Jcone is the Jones matrix for the Fresnel cone. In the
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Figure 6.3: Two-dimensional MUBs consisting of rotationally symmetric polarisa-
tion states. |Ψi⟩ are radial and azimuthally polarised modes, described by Eq. 6.6.
|Φi⟩ are clockwise and anticlockwise rotational modes as described by Eq. 6.7.
Smaller inserts show the equivalent simulated polarisation plots. On the left, the
colour map used to depict polarisation is shown, where ψ and χ represent the ori-
entation and ellipticity if the polarisation ellipses, respectively. Intensity is shown
as opacity.

measurement system, the second half waveplate, as indicated by the blue box in
Figure 6.4, is used to select the measurement basis. To perform measurements in
|Ψ⟩, the radial/azimuthal basis, φ is set to π/8 and φ = π/4 for the |Φ⟩ basis.

A telescope (lenses f1 and f2) is used to expand the input beams to fill as much of
the cone as possible, avoiding the noisy cone centre. The beams are then demagnified
again such that they fit on the camera sensor and the back surface of the cone is
imaged.

It is possible to write the Jones vectors of the basis modes as,

JΨ0 =

(
cosα
sinα

)
, JΨ1 =

(
i sinα
−i cosα

)
,

JΦ0 =
1√
2

(
cosα− sinα
cosα + sinα

)
, JΦ1 =

1√
2

(
sinα + cosα
sinα− cosα

)
,

(6.9)

which describes the polarisation as you travel in an azimuthal direction around the
beams centre, characterised by the angle α. By using these as Jin in Eq. 6.8, it can
be shown that Jout will correspond to either horizontal or vertical polarisation if the
correct measurement basis is used. This can be translated to intensity measurements
by using a polarisation beam splitter (PBS), as shown in Figure 6.4. However, if
the incorrect measurement basis is used, then Jout will contain equal weightings of
horizontal and vertical polarisation components over the entire beam profile, but
with different phases between them.

Figures 6.5 and 6.6 show simulated polarisation profiles of the beams after each
optical component. Figure 6.5 corresponds to measurements made in the |Ψ⟩ basis,
when the second HWP is set to 22.5◦. From this it can be seen that intensity is
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Figure 6.4: Measurement system for BB84 protocol using rotationally symmetric
states. Input modes are generated to the left, using the digital micromirror device
setup discussed previously. λ/2 : half waveplate, λ/4 : quarter waveplate, BS: 50:50
beam splitter, PBS: polarising beam splitter. T and R label the transmitted and
reflected outputs after the PBS, corresponding to horizontal and vertical polarisation
components, respectively. The fast axis of the first half waveplate and the quarter
waveplate are set at 0◦ and 45◦ to the horizontal, respectfully. The second half
waveplate, indicated with the blue box, is used for choosing the measurement basis
by rotating to either 22.5◦ or 45◦.

expected in only one arm after the PBS for the radial and azimuthal beams, and the
intensity is split equally between the transmitted and reflected outputs when the
clockwise and anticlockwise rotational beams are used as inputs. Equivalent plots
are shown in Figure 6.6 for the |Φ⟩ measurement basis, when the second HWP is
set to 45◦

One benefit of using a measurement system implementing a Fresnel cone, is that
it is not wavelength dependent, as mentioned above. If broadband light is to be
used, then the entire system in Figure 6.4 can be made wavelength independent by
replacing the HWP and QWP with Fresnel rhombs [1, 371]. These are glass prisms
which impart phase shifts using total internal reflection, rather than relying on the
birefringent materials used in waveplates.
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Figure 6.5: Simulated polarisation profiles of the input beams given in Figure 6.3
after each optical element of the set up shown in Figure 6.4, for measuring in the
|Ψ⟩ by setting φ = 22.5◦. The last column shows the expected intensity profiles
and fraction of total intensity after transmission (T) and reflection (R) from the
polarising beam splitter.
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Figure 6.6: Same as Figure 6.5 but for measurements performed in the |Φ⟩ basis by
setting φ = 45◦.
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6.6 Early BB84 measurement results

Preliminary results obtained from implementing the BB84 protocol with rotationally
symmetric polarised beams will now be discussed. The rotationally symmetric vector
beams were generated using the DMD setup shown in Figure 2.12 (with an additional
QWP after the DMD to allow generation of the beams using the right- and left-
handed circular polarisation basis) and directed towards the measurement system
described above and shown in Figure 6.4. The setup in Figure 6.4 was used, but with
the slight modification of a linear polariser in place of the PBS. Therefore, for each
input beam, two measurements had to be taken, one for the polariser rotated to allow
horizontal polarisation to pass, and another for vertical. However, if information is
to be sent using single photons, then a PBS would be required.

For both bases, a horizontal (transmitted) and vertical (reflected) measurement
was recorded using a CMOS camera for each of the four input modes, corresponding
to a total of sixteen measurements. For each pair of measurements, the fraction of
the total intensity in the horizontal and vertical polarisation images was found. The
results of this can be seen in Table 6.1, and a visual representation of the results is
given in Figure 6.7.

Table 6.1: Experimental data for BB84 protocol using rotationally symmetric vector
beams. For each measurement basis, |Ψ⟩ and |Φ⟩, selected by HWP angles of 22.5◦

and 45◦, respectively, the fraction of intensity found in the transmitted (T) and
reflected (R) outputs is given for each of the input modes described by equations
6.6 and 6.7.

Measurement basis |Ψ0⟩ |Ψ1⟩ |Φ0⟩ |Φ0⟩
|Ψ⟩ T

R
0.131
0.869

0.824
0.176

0.464
0.536

0.486
0.514

|Φ⟩ T
R

0.526
0.474

0.460
0.540

0.854
0.146

0.120
0.880

Ideally, when measuring in the correct basis, all of the intensity will be in either
the T or R output, and when measuring in the incorrect basis, the intensity should
be split equally between the two outputs. In order to quantify the quality of the
experimental results we can employ a measure known as the quantum bit error rate
(QBER) [372, 373]. For a BB84 protocol carried out using single photons, this is
the fraction of bits (photons) that disagree when comparing the state of the photon
generated to the state detected. Therefore, the QBER can be calculated using,

QBER =
number of error bits

total number of bits received
. (6.10)

This ratio should be as small as possible, but must be less than the maximum
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Figure 6.7: Visual representation of the BB84 intensity results given in Table 6.1.

tolerable error rate for the specific protocol being carried out, in order to have
secure, reliable communication.

In our case, classical light beams were used and so, the probabilities that would be
obtained over multiple sequential single photon measurements are contained within
the intensity measurements. As such, the QBER can be calculated directly from
the values in Table 6.1. From this we obtain a QBER of 14.3%, which is greater
than the maximum of 11% that a BB84 protocol, as it is carreied out here, can
tolerate1 [373,374].

6.6.1 Discussion of results and proposed experimental improvements

From Table 6.1, and Figure 6.7 it can be seen that the proposed measurement sys-
tem has been demonstrated to give results close to expected, however they are not
perfect, as confirmed by the 14.3% QBER obtained. Looking at the measured inten-
sity profiles directly (Figure 6.8), it is evident that there exists an uneven intensity
distribution over some of the measured output profiles, where as, from simulation
(Figure 6.5 and 6.6), we know that we should expect to have rotationally symmetric
intensity distributions (or zero intensity) in all cases. This was thought to be due to
small misalignments of optical components, non-ideal optical components or errors
within the beam generation. To confirm this suspicion and investigate it further,
“bad” simulations of the entire experimental system were performed. This included
simulating imperfect input beams, imperfect optical components, misaligned optical
components (either aligned off centre or at non-normal incidence) and waveplates

1Note that it is possible to increase the tolerable QBER using various methods, such as advan-
tage distillation protocols [374].
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Figure 6.8: Raw experimental intensity images for the BB84 protocol using rota-
tionally symmetric states. The generated beam is indicated at the top and the
measurement basis used indicated on the left, where T and R correspond to the
transmitted (horizontally polarised) or reflected (vertically polarised) experimental
outputs.

at incorrect fast axis angles.
We can generate vector beams with high fidelity using the DMD system, and by

comparison of the measured input beams to theoretical plots in Figure 6.3, it can
be seen that they are appear very similar. From the simulations, it was found that
simulating imperfect input vector modes would not result in the particular uneven
intensity distributions as seen in Figure 6.8, confirming that the experimental errors
obtained were not a result of the beam generation. Similarly, modelling misaligned
lenses, waveplates, imperfect waveplates or a misaligned Fresnel cone, would give
errors in the results but not with the the same “lobe”-type intensity distributions
seen in the experimental data. From this thorough simulation-based investigation,
it was concluded that the errors present in the experimental data most likely arose
from a non-ideal 50:50 beam splitter.
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50:50 beam splitters are well known for introducing unwanted phase shifts upon
reflection [375], resulting in unwanted polarisation changes. In fact, in a similar
optical setup implementing a Fresnel cone [345], it was found that one of the main
sources of polarisation shifts originated from the 50:50 BS. To counteract this, the
Mueller matrices of the beam splitter in transmission and reflection were included
in the equation representing the system. This is something that could also be
considered here. Alternatively, the Mueller matrix of the BS could be measured,
and the effects of this precompensated, using the methods outlined in Ref. [376],
by incorporating an additional HWP and QWP in the system just before the BS.
By doing this, we can effectively make the Mueller matrix of the combined HWP,
QWP and 50:50 BS equal to that of an ideal 50:50 BS. This is the method that will
be used for future measurements, with the aim of reducing the QBER to below the
11% threshold.

One other aspect to note about the measurement system being used here is that
it has an efficiency of only 25%, arising due to the use of a 50:50 beam splitter and
that light travels through this element twice. This results in low output intensities
that are sensitive to noise. Redesigning the system to accounting for this, by perhaps
removing the BS and instead incorporating a pick-up mirror to retrieve the reflected
beam from the cone, could improve results, and also allow the system to be more
easily used for single photon QKD protocols.

6.7 Chapter 6 conclusion

To conclude, in this chapter, I have presented a proof-of-concept experiment for
the implementation of a BB84 protocol using rotationally symmetric states and a
Fresnel-cone based measurement system.

I began by introducing the Fresnel cone, its Jones matrix description and pro-
vided examples of the way in which it can alter polarisation. I then provided an
overview of QKD focusing on the BB84 protocol, and introduced the rotationally
symmetric basis that will be used. These basis states were in the form of vec-
tor beams, with spatially varying polarisation, where it is the polarisation profiles
themselves that have rotational symmetry. Here, the familiar radial and azimuthally
polarised beams were used as well as those with a “swirly” clockwise and anticlock-
wise rotating polarisation distribution.

In § 6.5, I outlined the measurement system for implementing the BB84 proto-
col, where we could perform projections into either the radial/azimuthal or clock-
wise/anticlockwise rotational bases. This measurement system incorporated a Fres-
nel cone, which, due to its geometry, is ideal for performing projections into bases
where its states have rotational symmetry. Additionally, the rotational symmetric
basis and measurement system presented in this chapter provides a way of imple-
menting a rotational reference frame invariant BB84 protocol, useful for situations
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where it is difficult or impractical to establish a shared rotational reference frame
between the sender and receiver, e.g., for earth-to-satellite QKD. The polarisation
modifications by the Fresnel cone result only from phase shifts induced by total in-
ternal reflection at the cones back surface, and does not rely on birefringence, unlike
other polarisation optics. Therefore, it is largely wavelength independent, meaning
that by changing the waveplates in the the setup in Figure 6.4 to Fresnel rhombs,
we would have a broadband system.

The results presented in this chapter are in the form of preliminary experimen-
tal data, and contain slight deviations from theoretical predictions. Nonetheless,
the results follow simulations closely enough to demonstrate a working principle,
warranting further experimental effort. Simulations were carried out to identify
possible sources of experimental error, concluding that they most likely result from
unwanted phase shifts upon reflection from the 50:50 beam splitter. A plan has
been put in place to experimentally precompensate for these phase shifts (as de-
tailed above), hopefully allowing improved data to be acquired with a lower QBER,
and a manuscript is currently in preparation.
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Chapter 7

Short projects

7.1 Chapter 7 Introduction

In this chapter, I will briefly introduce two shorter projects that I contributed to.
Both of these projects were undertaken in collaboration with research groups from
other universities, where I played a role in some of the experimental data collection
and analysis. Although the experiments discussed here were undertaken as an aside
to my main PhD work, they nevertheless incorporate some of the main themes
discussed throughout: Namely, holography and beam shaping, and the propagation,
analysis and classification of vector beams.

7.2 Complex Zernike modes

For 2 months the University of Glasgow Optics Group had a visiting PhD student,
Kerr Maxwell, from the Theoretical Physics Research Group at the University of
Birmingham. In a collaboration with this student, we looked at the generation,
propagation and characterisation of complex Zernike modes, where I was responsible
for working on the experimental side of the project (building the experimental setup,
hologram design, beam generation, and data acquisition). I also performed the
simulations required for the figures in this thesis. K. Maxwell was responsible for
the more theoretical aspects of this work, along with his PhD supervisor, Mark
R. Dennis. A manuscript detailing this work is currently in preparation, and the
following sections will summarise some of the results.

7.2.1 Zernike polynomials and complex Zernike modes

Over the last two decades, the development of light shaping tools such as spatial
light modulators, digital micromirror devices and q-plates, have allowed complex
families of spatial modes to be experimentally generated and explored. Some of
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the most well established mode-families are the Hermite-, Laguerre- [53] and Ince-
Gaussian [54] modes, all of which are solutions to the paraxial wave equation in
Cartesian, cylindrical and elliptical coordinates, respectively. However, although
HG and LG modes are often the most commonly used mode sets, other examples
include Bessel [55], Mathieu [57], Airy [56] and Pearcey beams [58].

Here, yet another family of beams, the complex Zernike modes, will be discussed.
These modes are defined on a circular domain, or aperture, and are constructed by
combining the well-known Zernike polynomials

(
Rℓ

p

)
[377] with an azimuthal phase

factor,
Zℓ

p(r, ϕ) = eiℓϕRℓ
p(r) for |ℓ|, p ∈ N and 0 ≤ r ≤ w0. (7.1)

Here, r denotes the radial distance from the optical axis, which is constricted to a
disk with maximum radius w0, the chosen beam waist, and the eiℓϕ factor means that
each mode can carry orbital angular momentum (OAM). The Zernike polynomials,
Rℓ

p, can be evaluated using,

Rℓ
p(r) =

p∑
k=0

(−1)k(2p+ ℓ− k)!

k! (ℓ+ p− k)! (p− k)!
r2p+ℓ−2k, (7.2)

where we chose to index using a radial polynomial number p and an OAM number ℓ.
As Zernike polynomials are defined on a unit disk, they are often used for describing
aberrations in apertured systems [378–380]. For this they are conventionally labelled
using an (n,m) indexing scheme (Rm

n ) [377]. However, here the choice of (ℓ, p) brings
the modes more in line with the way in which the familiar LG modes are indexed,
with the mode order being given by N = 2p+ |ℓ|, and we can easily convert between
the indexing schemes via (ℓ, p) = (m, n−m

2
).

One property of the complex Zernike modes, that differs from other beams car-
rying OAM, such as Bessel beams or LG modes, is that any Zp can be embedded
with an arbitrary value of orbital angular momentum while maintaining it’s chosen
apertured radius.

7.2.2 Experimental generation, results and propagation measurements

For the experimental generation of Zernike modes, we employ a liquid-crystal-based
phase-only spatial light modulator (SLM) along with well established digital holog-
raphy techniques (as seen in Refs. [119, 381–385] and as discussed previously in
§ 2.5.1), which allows us to modulate both the intensity and phase of an incident
beam. SLM’s are unable to modulate all of he incident light, typically having a
conversion efficiency between 79% and 97% [386]. Therefore, modulating the phase
and amplitude directly will result in contamination of the shaped beam with unmod-
ulated light. To overcome this, it is possible to superimpose the desired hologram
with a blazed diffraction grating. This has the effect of separating the converted
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Figure 7.1: Experimental setup for generating complex Zernike modes using an SLM.
LP: linear polariser, Li: Lens, M: mirror, FL: Fourier lens. An example hologram for
a Z1

1 mode is shown as an inset (grating not to scale). The hologram has greyscale
values of 0-255, corresponding to 8-bits.

from the unconverted light, with the desired shaped beam appearing in the first
diffraction order.

A schematic of the experimental setup can be seen in Figure 7.1. We use an
external cavity diode laser with a 795 nm wavelength, which is cleaned, expanded
and collimated (using lenses L1 and L2 and a 40 µm pinhole) to overfill the active
area of the SLM (Hamamatsu X13138-02, 1270 × 1024 pixels, effective active area of
15.9 × 12.8 mm). It is only possible for the phase of incident light to be modulated
if the orientation of its polarisation is aligned with the liquid crystals of the SLM. As
such, a linear polariser (LP) is used after the laser to ensure horizontally polarised
light.

On the SLM, a hologram to generate a desired Zernike mode is displayed, using
techniques described in [120,387] and § 2.5.1, to effectively modulate both the phase
and intensity of the incident Gaussian beam. An example of which is shown in the
inset of Figure 7.1. After the SLM, we have a telescope (L3 and L4) to demagnify
the beam to fit on the camera sensor, in the Fourier plane of which, a variable
aperture is used to select the first diffraction order and block all other unwanted
orders. The desired beam can then be viewed and recorded by a CMOS camera (jAi
GO-5000M-USB) in the image plane of the SLM. To view the Fourier transform
of the experimentally generated Zernike modes we include an additional Fourier
lens. To observe the full propagation, the camera is mounted on a translation stage
controlled by a stepper motor, allowing precise displacement along the optical axis.

The left of Figure 7.2 shows experimentally measured Zernike beams for p ∈ [0, 3]
and ℓ ∈ [0, 4] and the right shows an experimentally measured and simulated Z4

4 ,
for comparison. Here, only beams with positive ℓ are shown, but the intensity
distributions for negative ℓ are identical. The only difference in the beams with
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Figure 7.2: Experimentally measured Zernike modes, Zℓ
p. On the right is an exper-

imentally measured Z4
4 mode (top) compared to simulation (bottom).

either ±ℓ is in the handedness of the helical phase fronts. From Figure 7.2, we can
see that the Zernike modes consist of p + 1 radial oscillations, including a sharp
peak at the beam periphery as well as a slightly smaller central peak if ℓ = 0.
As mentioned previously, increasing ℓ does not increase the size of the mode, but
instead shifts the peaks closer towards the beam edge.

Figure 7.3 shows the behaviour of a Z4
3 mode upon propagation. For this, multi-

ple transverse planes were imaged (at 1 mm intervals), and slices through the centre
of these images stitched together to display the longitudinal intensity profiles. The
free space, paraxial propagation over a distance of 360 mm is given in Figure 7.3(a),
displayed as a half and half comparison with theory (top), as the modes are radially
symmetric. Figures (b-d) show the propagation under weak focusing using a 100
mm lens. Experimental results are given in (b), and intensity profiles of the original
beam (at 0 mm) and the focused beam (at 100 mm) are given in (c). Simulation of
the Z4

3 mode propagating to the focus and an additional focal length past the focus
is given in (d), where a clear bottle beam [388–390] is created around the focus.

Unlike other structured light beams (e.g. the HG and LG modes), Zernike modes
change form upon propagation, as apparent from Figure 7.3. Another difference
that should be noted, is that the Zernike beams are are only well defined by closed
mathematical expressions in the aperture plane and the Fourier plane. However,
their form in the far field can be approximated using the Zernike-Nijboer theory
[377,391] and the extended Zernike-Nijboer theory, developed by Augustus J. E. M.
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Figure 7.3: Longitudinal cross-sections of a propagating Z4
3 mode. (a) Half and half

comparison between theory (top) and experiment (bottom) of paraxial, free space
propagation, over a distance of 360 mm. (b) Experimental results of propagation
after a 100 mm lens, with transverse profiles of the original beam and focused beams
given in the left and right of (c), respectively. (d) Simulated propagation over 2 focal
lengths, with the focus occurring at a distance of 100 mm.

Janssen, can be used for approximating their propagation more generally [392,393].
The details of these these approximations will be covered in the manuscript currently
in preparation.

7.2.3 Measuring orbital angular momentum

Being able to extract the orbital angular momentum (OAM) of vortex beams is of
great importance in many application involving OAM carrying beams. For example,
OAM modes can be used as a basis for mode-division multiplexing in both free space
and fibre communications. Many different techniques exist for measuring OAM, such
as interfering the mode with a Gaussian beam [394,395], self-interference [396], using
annular gratings [397], or via mode separation [398–400]. Here, to determine the
magnitude and sign of the orbital angular momentum number ℓ of the generated
complex Zernike modes, we employ the the tilted lens method [401]. This method
provides a simple but robust way to measure the average topological charge of a
beam from a single camera image. In the focal plane behind the tilted lens, the
number of lobes is given by |ℓ| + 1, and thus the number of dark stripes directly
corresponds to |ℓ|. Additionally, the sign of the OAM number can be determined
from the direction of the tilt of the intensity pattern.
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Figure 7.4: Experimentally measured and theoretically predicted intensity distribu-
tions in the focal plane of a tilted lens for complex Zernike modes Z±11 , Z±20 and
Z±41 . The top row shows results for positive ℓ, and negative ℓ are given in the bot-
tom row.

Experimental measurements were taken using a 100 mm lens, the results of which
show excellent agreement to theory as shown in Figure 7.4.

7.3 Measuring the invariance of vector beams in chiral me-
dia

In this section, I will give a brief overview of a project I contributed to in collabora-
tion with the Structured Light group at the University of the Witwatersrand. This
work looked at the invariance of vectorial structured light to unitary perturbations
and can be seen in Ref. [402].

A propagating light beam can experience distortions in both amplitude and
phase. These can occur from misalignments or imperfections in optical components
or from propagation through perturbing media, such as turbulent air or optical
fibres. Any distortions in amplitude and phase can result in changes to polarisa-
tion patterns, however, the work outlined in [402] aims to show that although the
polarisation structure changes, its inhomogeneous nature remains unaltered.

We begin by writing a vectorial structured light beam using a quantum notation,

|Ψ⟩ = |u1⟩A |v1⟩B + |u2⟩A |v2⟩B , (7.3)

where A and B denote the spatial and polarisation degrees of freedom (DoF), re-
spectively. In this form, the non-separable form of the two DoF is highlighted -
mimiking local quantum entanglement. Aditionally, from Eq. 7.3 it can be seen
that the light field resembles a pair of qubits. For qubit pairs, the entanglement
can be determined through a simple measure, namely, the concurrence [403]. This
measure of entanglement in two dimensions has been shown to be a good measure
of the degree of non-separability of vector beams [70, 404, 405]. Hence, concurrence
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Figure 7.5: Examples of theoretical vector beams and associated VQF. The middle
row shows polarisation profiles of beams of the form of Eq. 7.5 with ℓ = 1 and
different θ values as indicated. Below is a plot depicting the relationship between
θ in Eq. 7.5 and VQF. The top row displays the coverage on the Poincaré sphere,
where it can clearly be seen that VQF = 1 when the beam contains all polarisations
along a great circle on the sphere.

is often referred to as non-separability or vector quality factor (VQF), as it will be
in the rest of this section to keep in line with Ref. [402].

We can define the vector quality factor (VQF), using global Stokes parameters
S̄i, as,

VQF =

√
1−

(
S̄2
1

S̄2
0

+
S̄2
2

S̄2
0

+
S̄2
3

S̄2
0

)
. (7.4)

The VQF can give values ranging from 0 to 1, corresponding to completely homoge-
neous polarisation (VQF = 0), or to ideally inhomogeneous polarisation (VQF = 1),
containing all polarisations along a great circle on the Poincaré sphere. Figure 7.5
gives examples of vector beams with different VQF values and shows how the VQF
changes in relation to the weighting between the two polarisation DoF. To deter-
mine the VQF of a measured beam profile, only the global Stokes parameters are
required, so we integrate over the entire beam profile, i.e. S̄i =

∫
Si(r)dr.

For my contribution to the work, I performed measurements of vector beams of
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the form,
|Ψin⟩ = sin(θ)LG+ℓ

0 |̂r⟩+ cos(θ)LG−ℓ0 |̂l⟩ , (7.5)

for θ = π/12 and π/4, corresponding to beams with VQF = 0.5 and 1, respectfully.
Examples of the polarisation plots for beams with ℓ = ±2,±4 are shown in in the
first two columns of Figure 7.6. I then allowed the beams to propagate through a
5 cm glass cell containing various liquid medium. One of which was D-Limonene,
which is known for its chiral properties, causing a rotation of the polarisation, depen-
dent on the length of the medium propagated through. The resulting polarisation
profiles of this can be seen in the third and fourth columns of Figure 7.6, showing
that we do indeed observe a rotation of the polarisation structures.

After propagation through various liquids, the VQF was measured for beams
with ℓ = ±1,±2 and ±4, the results of which are plotted in Figure 7.6. For this,
we used a variation of Eq. 7.4, relying on the fact that theoretically S0 = Ih + Iv =
Id + Ia = Ir + Il,

VQF =

√
1−

(
S̄2
1

(Ih + Iv)2
+

S̄2
2

(Id + Ia)2
+

S̄2
3

(Ir + Il)2

)
. (7.6)

This allows us to account for any variations in the experimental Stokes measure-
ments due to optical elements absorbing different ways for different polarisations,
as discussed in chapter 2.

Regardless of the medium, the non-separability of the beam remains invariant,
which is particularly evident for the beams with VQF = 1. Any deviation from
theory in the results can primarily be explained due to the presence of background
noise. In the low intensity beam areas, there is a lower signal-to-noise ratio (SNR),
and because of the normalisation in both Eq. 7.4 and 7.6, these areas can cause
large fluctuations in the measured Stokes parameters. The VQF gives a measure of
the non-separability of the polarisation and spatial DoF, which, interestinly, means
that any spatial fluctuation due to partial polarisation or noise, results in the over-
estimation of VQF. This is evident in the experimental results for the VQF = 0.5
beams and was also an effect seen and discussed previously in [70,103].

The other components of the work also demonstrate the robustness of the “vec-
torness” of vectorial light to complex media by simulating atmospheric turbulence
on a DMD, and propagation through a tilted lens, an optical fibre and turbulent
air created using a temperature controlled hot plate. All the details of this can be
found in [402].
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Figure 7.6: Experimentally measured polarisation profiles of beams corresponding
to Eq. 7.5, with VQF = 1 (top row) and VQF = 0.5 (bottom row), before and after
propagating through a 5 cm glass cell containing D-Limonene. The calculated VQF
values are indicated for each beam. The plot shows calculated VQF for beams with
ℓ = ±1,±2 and ±4 after propagation through various liquids.
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Chapter 8

Conclusions

The work presented in this thesis centred around the generation, characterisation
and properties of vectorial light fields, in some cases highlighting the properties
that are not obvious at first glance. In the following sections, I will first summarise
the main outcomes of each of the individual experiments performed throughout the
course of my PhD and then briefly suggest some of the future work that could be
carried out as an extension to this work.

8.1 Thesis summary

Chapter 1 focused on the background theory that formed the foundation of the
work in this thesis. In this chapter, I introduced the wave nature of light, describing
how a light field can be described in terms of its amplitude, phase and polarisation.
The concept of polarisation was discussed in detail, providing explanations of the
different ways it can be represented, both mathematically and visually. I provided
examples of higher-order Gaussian modes and described how we can theoretically
construct vector beams with spatially varying polarisation by using superpositions
of orthogonally polarised spatial modes.

Chapter 2 focused more on the relevant experimental details. This included
how simple optical elements work (e.g. waveplates) and their uses, as well as an
exploration of the ways in which a light beam can be shaped using digital devices.
Specifically, the mechanisms for the use liquid crystal spatial light modulators for
arbitrary phase and amplitude modulation was discussed, and an experimental setup
incorporating a digital micromirror device for the generation of arbitrary vector
beams was presented.

Geometric phases are an important concept in physics. In optics, they mani-
fest in additional phase shifts acquired by a light beam relating to the geometry of
the system in which it propagates. In chapter 3, I presented an experiment that
investigated the non-planar propagation of both scalar and vector beams. The ro-
tations seen in both the polarisation and intensity were linked to geometric phases,
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namely, spin- and orbital-redirection phases, respectively, with the magnitude of the
rotation dependent on the non-planarity of the system. From the non-planar prop-
agation of vector beams it was shown that the beams acquire an additional phase
dependent on the total angular momentum number, j, of the beam, allowing us to
introduce the concept of the angular momentum redirection phase. Additionally,
beams with j = 0, such as the radial and azimuthally polarised modes, acquire no
geometric phase, and are unaffected by non-planar propagation, allowing them to
be considered as eigenmodes of the system.

Chapter 4 began with an introduction to a topological structure that has become
of interest in the field of optics in recent years, the skyrmion. Skyrmionic structures
can be found in paraxial light beams with a continuously varying polarisation distri-
bution and can be characterised by the skyrmion number. In chapter 4, I discussed
ways in which the simplest optical skyrmions can be constructed as well as ways to
generate optical multi-skyrmions. However, the main focus of this chapter was to
present a derivation of a new topological approach of calculating skyrmion numbers.
It was shown that our topological approach is more robust and predictable when
evaluating skyrmion numbers from noisy data compared to the traditional surface
integral approach. Additionally, the topological method provides an intuitive geo-
metric insight into optical skyrmions, allowing individual skyrmionic structures to
be identified. The field of optical skyrmions is still in the early stages of develop-
ment, however, we believe that our new method to identify skyrmion numbers could
benefit its growth, particularly due to the methods performance in the presence of
noise and the intuitive understanding it brings. Additionally, it is believed that
the tunable multi-skyrmions presented in § 4.8 are an interesting addition to the
growing research field, and present one example of the ways in which optics can be
used to investigate topologies not permitted in other fields.

In chapter 5, I moved away from looking at some of the properties and topologies
of vector beams (as in chapters 3 and 4) and focused on their tomography and using
them to measure optical activity. I introduced an experimental system capable of
determining spatially resolved polarisation profiles in a single-shot. For this, gen-
eralised measurements were performed using a Sagnac interferometer-based setup,
building on previous experimental work. It was shown that we could achieve inter-
ferometric stability over a number of hours. A method for performing single-shot
Mueller matrix measurements was then proposed, using generalised measurements
and a Poincaré beam as a probe. Muller matrix polarimetry is an important tech-
nique for determining the action of optical elements or optically active media on a
light beam by monitoring polarisation changes. Here, a proof-of-principal experi-
ment was carried out to validate the method by obtaining Mueller matrices of tilted
and rotated waveplates. The single-shot nature of this method means that it is
suitable for real-time monitoring of rapid optical activity changes due to biologi-
cal phenomena, physical or chemical reaction processes, with a temporal resolution
limited only by the frame rate of the camera.
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In chapter 6, I again focused on the measurement of vector beams but this time
it was for the implementation of a BB84 protocol in a proof-of-principle experi-
ment. This protocol used rotationally symmetric states and a Fresnel cone based
measurement system. The benefits of this implementation is that it is entirely ro-
tational reference frame invariant and the measurement system can be easily made
wavelength independent, as the Fresnel cone relies only on total internal reflection.

Finally, in chapter 7, I outlined two shorter projects that I was involved in as part
of my PhD work. The first involved the generation, propagation and characterisation
of a new orthonormal mode family - the Zernike beams - based on the complex
Zernike polynomials. We were able to generate these modes with high fidelity, using
a spatial light modulator, and accurately determine their orbital angular momentum
using the tilted lens method. The second project looked at the invariance of vector
beams under unitary transformations and perturbations. For this, I investigated
the propagation of vector beams with different vector quality factors (VQF) through
various liquid media, including a chiral liquid. From this it was shown that although
the polarisation distributions were altered, the VQF remained unchanged.

8.2 Closing remarks and future work

Despite the progress and discoveries made in the field of structured light in recent
decades, there is still much more left to explore. In terms of the projects presented
in this thesis, there are a few key areas in which I think further investigations and
work could be carried out.

The first is related to the work on optical skyrmions. At the end of chapter 4,
I introduced a new way of generating tunable optical multi-skyrmions using split-
vortex beams. All of the examples shown for these specific beams were simulation,
therefore, it would be good to generate these experimentally and investigate further
any possible applications or benefits of creating multi-skyrmions in this way. Addi-
tionally, I think there is more scope to explore the propagation of optical skyrmions,
both in free space, in different media, and under strong focusing conditions to study
the conservation (or not) of the skyrmion number. In this thesis, only the prop-
agation of n = 1 beams were shown under weak focusing, therefore investigating
the propagation of beams with higher n and of multi-skyrmions could be interest-
ing. The fields of optics and structured light provide an ideal platform for studying
topologies not permitted in other research areas, hence I see the research into optical
skyrmions, as well as other topological beams, continuing to grow.

The second relates to the BB84 protocol using rotationally symmetric states. As
outlined in chapter 6, the main experimental errors arose from unwanted phase shifts
upon reflection from the 50:50 beam splitter. It is believed that these phase shifts,
resulting in undesired polarisation changes can be experimentally removed for by the
addition of an extra quarter- and half-wave plate. By placing the waveplates before
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the measurement system, it should be possible to precompensate for the phase shifts.
It order to obtain the correct waveplate angles, a Mueller matrix measurement will
be performed of the 50:50 beam splitter.

In the field of structured light more generally, the recent emergence of pro-
grammable light shaping devices such as spatial light modulators and digital mi-
cromirror devices has allowed for many developments and interesting studies. This
includes fundamental physics research in areas such as cold atom trapping and ma-
nipulation [406, 407], the storage of vector beams in atomic vapours [408], or using
structured light as analogues to the quantum regime [409]. More practical appli-
cations lie within imaging and microscopy, where structured light can be used to
overcome the diffraction limit [71,410] or image through scattering media [411,412],
as well as within metrology [292] and microstructure fabrication [22,23].

By fully understanding the additional degrees of freedom offered by vector light
beams, I believe that it is possible to to unlock new possibilities and applications,
whether in the form of improved imaging techniques, enhanced data transmission
rates, or precise control over light propagation for free-space communication. Struc-
tured light and vector light beams will hopefully continue to offer exciting opportu-
nities for advancement in photonics and related fields.
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S. Franke-Arnold, “Single-shot characterization of vector beams by generalized
measurements: supplement,” Optics Express, vol. 30, no. 13, p. 22396, 2022.
https://doi.org/10.6084/m9.figshare.19771954.

[300] N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics
controlled-phase gate made simple,” Phys. Rev. Lett., vol. 95, p. 210505, 2005.
https://doi.org/10.1103/PhysRevLett.95.210505.

[301] R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of
an optical quantum controlled-not gate without path interference,” Phys. Rev.
Lett., vol. 95, p. 210506, 2005. https://doi.org/10.1103/PhysRevLett.95.
210506.

[302] N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L.
O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entan-
gling optical gate and its use in bell-state analysis,” Phys. Rev. Lett., vol. 95,
p. 210504, 2005. https://doi.org/10.1103/PhysRevLett.95.210504.

[303] T. Kopyciuk, M. Lewandowski, and P. Kurzyński, “Pre- and post-selection
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