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Abstract
We say that a homeomorphism f : X → X ′ between two smooth manifolds is non-
smoothable if it is not isotopic to any diffeomorphism. We produce many different
examples of non-smoothable homeomorphisms of various subtleties, and discuss their
properties. We show that there is a one-to-one correspondence between such non-
smoothable homeomorphisms and diffeomorphic but not isotopic smooth structures on
4-manifolds, and we give an explicit construction of an infinite family of diffeomorphic
but not isotopic smooth structures on the K3-surface.

In joint work with Roberto Ladu, we produce the first examples of non-smoothable
homeomorphisms of simply-connected 4-manifolds such that the homeomorphism acts
trivially on the homology of the manifold. The non-smoothability of these homeomor-
phisms is detected using gauge theory, and is unstable in the sense that these home-
omorphisms become smoothable after sufficiently connected-summing with S2 × S2.
We use this fact to create interesting diffeomorphisms of simply-connected 4-manifolds
with boundary which act trivially on the homology of the manifold, but do not arise
by inserting a loop of diffeomorphisms into the collar of the boundary. This ends the
joint work.

A key focus of this work is on the Casson-Sullivan invariant cs(f) ∈ H3(X;Z/2) of
a homeomorphism f : X → X ′, which is the obstruction to a homeomorphism being
stably pseudo-isotopic to a diffeomorphism. In particular, if a homeomorphism has
non-trivial Casson-Sullivan invariant then it is non-smoothable, even after connected-
summing with S2 × S2. This invariant has a distinctly different flavour to that of
gauge-theoretic invariants, and is more in-line with high-dimensional smoothing the-
ory. Using surgery theory, we realise this invariant in a number of contexts. Firstly,
we realise it for any orientable 4-manifold after a single connected-sum with S2 × S2.
Secondly, we realise it unstably for many examples of 4-manifolds, including those with
finite cyclic fundamental group.

We also discuss two applications of our work on the Casson-Sullivan invariant. The
first application is to embedded surfaces, and we prove that any two topologically iso-
topic, smoothly embedded surfaces in a simply-connected 4-manifold become smoothly
isotopic after externally connected-summing with S2 × S2 away from the surfaces.

The second application is to 3-manifolds. Let Y be a smooth 3-manifold. We
consider the inclusion induced map D̃iff(Y ) → H̃omeo(Y ) between the block dif-
feomorphism and block homeomorphism spaces, which are defined as geometric re-
alisations of simplicial spaces and whose connected components correspond to the
smooth and topological pseudo-mapping class groups, respectively. These spaces con-
tain the classical spaces Diff(Y ) and Homeo(Y ) as subspaces. We show that for certain
types of elliptic 3-manifolds, the inclusion induced maps D̃iff(Y ) → H̃omeo(Y ) and
Homeo(Y ) → H̃omeo(Y ) are not 1-connected.



Contents

1 Introduction 1
1.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Conventions and notation . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Smooth structures on manifolds 13
2.1 Equivalence relations on smooth structures on manifolds . . . . . . . . 13
2.2 Non-smoothable homeomorphisms . . . . . . . . . . . . . . . . . . . . . 17
2.3 Non-smoothable homeomorphisms and smooth structures . . . . . . . . 19
2.4 Comparing equivalence relations on smooth structures . . . . . . . . . . 23

3 Closed, simply-connected 4-manifolds 26
3.1 Knot surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Non-isotopic but diffeomorphic smooth structures on the K3 surface . . 35

4 Simply-connected 4-manifolds with boundary 40
4.1 Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Sufficient conditions for non-smoothability . . . . . . . . . . . . . . . . 45
4.3 Constructing examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Generalised Dehn twists . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 The Casson-Sullivan invariant 53
5.1 Microbundles and classifying spaces . . . . . . . . . . . . . . . . . . . . 53
5.2 Definition of the Casson-Sullivan invariant . . . . . . . . . . . . . . . . 54
5.3 Dependence of the Casson-Sullivan invariant on smooth structures . . . 58
5.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5 A connected-sum over a circle formula for the Casson-Sullivan invariant 66
5.6 A connected-sum formula for the Casson-Sullivan invariant . . . . . . . 74



6 Stable realisation of the Casson-Sullivan invariant 76
6.1 Ronnie Lee’s generator for L5(Z[Z]) . . . . . . . . . . . . . . . . . . . . 77
6.2 Proof of the stable realisation theorem . . . . . . . . . . . . . . . . . . 85

7 Stable isotopy of surfaces 91

8 Unstable realisation of the Casson-Sullivan invariant 96
8.1 The surgery exact sequence . . . . . . . . . . . . . . . . . . . . . . . . 97
8.2 Forming mapping cylinders from the surgery exact sequence . . . . . . 98
8.3 Proof of the unstable realisation theorem . . . . . . . . . . . . . . . . . 101
8.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.5 Partial unstable realisation of the Casson-Sullivan invariant . . . . . . . 104

9 Pseudo-isotopy of 3-manifolds 109
9.1 Block diffeomorphisms and block homeomorphisms . . . . . . . . . . . 110
9.2 Pseudo-mapping class groups of 3-manifolds . . . . . . . . . . . . . . . 113
9.3 Non-smoothable loops of homeomorphisms . . . . . . . . . . . . . . . . 115
9.4 Absolutely pseudo-smoothable homeomorphisms . . . . . . . . . . . . . 118



Acknowledgements
First and foremost, I would like to thank my supervisor Mark Powell. His guidance,
ideas and suggestions were instrumental in producing this thesis, and I am very grateful
for all of the time that he has given me over the past four years.

I thank the examiners, Daniel Ruberman and Ana Lecuona, for their insightful
comments and suggestions on this thesis.

I would also like to thank Stefan Friedl, Matthias Kreck, Alexander Kupers, Csaba
Nagy, Patrick Orson, Brendan Owens, Arunima Ray and Peter Teichner for various
helpful conversations, comments and observations which improved my mathematical
understanding. I would also like to thank the Max Planck Institute for Mathematics
in Bonn for hosting me a number of times during the course of my PhD. I thank
both Durham University and the University of Glasgow, particularly for facilitating
my transfer at the end of my second year.

Many of my fellow PhD students at both Durham University and the University of
Glasgow have made positive contributions to my time as a PhD student. In particular,
I thank Philipp Bader, Giulia Carfora, Gabriel Corrigan, Riccardo Giannini, Isacco
Nonino, Mark Pencovitch and Scott Stirling, for all of our discussions during our time
as students together.

My family’s assistance over the years is deeply appreciated. I thank them for all of
their efforts.

Lastly, I would like to thank Simona Veselá for all of her support, mathematical
and otherwise, the importance of which cannot be overstated.



Author’s declaration
I declare that, except where explicit reference is made to the contribution of others,
this dissertation is the result of my own work and has not been submitted for any other
degree at the University of Glasgow or any other institution.



Chapter 1

Introduction

§ 1.1 | Preamble
This thesis essentially concerns the following question, its generalisations and the ap-
plications of studying it.

Question 1.1.1. Given a homeomorphism f : X → X ′ between smooth 4-manifolds,
can f be isotoped (deformed through homeomorphisms) to a diffeomorphism?

If the answer to Question 1.1.1 is positive, we call f smoothable (see Definition 2.2.1).
Throughout this thesis we will see many examples of non-smoothable homeomorphisms
of 4-manifolds of various flavours and subtleties. This contrasts with dimensions below
four, where all homeomorphisms are smoothable. Question 1.1.1 strongly relates to
the Hauptvermutung, which will be described in Section 1.3.

We will initially state all of the results that will be presented in this thesis before
going over the background of this area e.g. what was known beforehand. However, it
should be noted that we are not claiming the first constructions of non-smoothable
homeomorphisms of 4-manifolds. Historically, the first examples of non-smoothable
homeomorphisms of 4-manifolds are due to Friedman-Morgan [FM88]. For any nota-
tion, conventions or symbols that are not defined/explained in the text, see Section 1.4.

§ 1.2 | Results
We begin by stating the results about the existence of non-smoothable homeomor-
phisms before moving on to the various applications of our results.

§ 1.2.1 | Non-smoothable homeomorphisms

We start by formalising Question 1.1.1. Let X be a compact, smooth 4-manifold and
denote by Homeo(X, ∂X) and Diff(X, ∂X) the topological group of homeomorphisms
and diffeomorphisms of X, respectively (see Definition 2.2.2). The inclusion induced
map

Φ: Diff(X, ∂X) → Homeo(X, ∂X)
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is continuous and it induces a map

Φ: π0 Diff(X, ∂X) → π0 Homeo(X, ∂X)

on the level of mapping class groups. We say a homeomorphisms f : X → X is non-
smoothable its mapping-class [f ] is not in the image of Φ, i.e. it is not isotopic to a
diffeomorphism. This definition means that we require our smoothing isotopy to fix the
boundary throughout. One might consider a concept of ‘absolute smoothability’ where
we allow the isotopy to move the boundary, but this can be shown to be equivalent to
the concept that we have defined here (see Proposition 4.4.2).

Previously, all known non-smoothable homeomorphisms of simply-connected 4-
manifolds acted non-trivially on homology (see Section 1.3). Our first result shows
that, if the boundary is non-empty, we can produce infinitely many examples of
non-smoothable homeomorphisms which act trivially on homology. We denote by
Tor(X, ∂X) ⊂ π0 Homeo(X, ∂X) the Torelli subgroup of the mapping class group,
i.e. the subgroup whose induced map on homology is trivial. This theorem is joint
work with Roberto Ladu [GL23].

Theorem 1.2.1. There exists an infinite family of pairwise non-diffeomorphic, com-
pact, oriented, smooth, simply-connected 4-manifolds {Zn}n∈N with fixed connected
boundary Y such that Tor(Zn, Y ) is of infinite order and every non-trivial element
is non-smoothable.

The manifolds in Theorem 1.2.1 are constructed by taking a fixed manifold Z and
performing knot surgeries (Definition 3.1.5) to construct the family Zn where Z1 = Z.
The manifold Z is constructed as a certain codimension zero submanifold of the K3
surface blown-up twice (i.e. K3#CP2)).

In [GL23], Roberto Ladu and the author also constructed another family of exam-
ples which possess pairwise non-diffeomorphic boundaries, but we will not present that
construction in this thesis.

Outside of the simply-connected case, there was much less known about non-
smoothable homeomorphisms (see Section 1.3). In [Gal24a] the author investigated
a certain invariant called the Casson-Sullivan invariant, which is an obstruction to a
homeomorphism being smoothable. We briefly introduce this now. The full definition
will be given in Section 5.2.

Let f : X → X ′ be a homeomorphism of smooth 4-manifolds. Then the mapping
cylinder

Wf := X × I ⊔X ′

X × I ∋ (x, 1) ∼ f(x) ∈ X ′

has a prescribed smooth structure on the boundary. The obstruction to extending this
smooth structure to the rest of Wf is denoted by cs(f) ∈ H3(X, ∂X;Z/2), and is called
the Casson-Sullivan invariant of f . The Casson-Sullivan invariant has the following
properties.
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1. A homeomorphism f is (stably) pseudo-isotopic to a diffeomorphism if and only
if cs(f) = 0. A pseudo-isotopy can be thought of as a not necessarily level-
preserving isotopy (see Definition 2.1.5). By stably we mean that we allow our
pseudo-isotopy to take place after taking connected-sums with S2 × S2. This is
proved in Proposition 5.4.1, Proposition 5.4.4 and Proposition 5.4.5. Proposi-
tion 5.4.5 is due to Freedman-Quinn.

2. If f and g are (stably) pseudo-isotopic, then cs(f) = cs(g). This is proved in
Proposition 5.4.1 and Proposition 5.4.4.

3. If we consider only self-homeomorphisms, then the Casson-Sullivan invariant de-
fines a crossed homomorphism

cs : π̃0 Homeo(X, ∂X) → H3(X, ∂X;Z/2)

where π̃0 Homeo(X, ∂X) denotes the pseudo-mapping class group, which is the
group consisting of self-homeomorphisms of X under composition considered up
to pseudo-isotopy relative to the boundary (see Definition 2.2.2). This is proved
in Proposition 5.4.2.

The Casson-Sullivan invariant provides a tool for finding non-smoothable homeo-
morphisms of 4-manifolds. We now state the relevant results. First, a stable realisation
result.

Theorem 1.2.2. Let X and X ′ be compact, connected, smooth, orientable 4-manifolds
such that X ∼= X0#(S2 × S2) and X ′ ∼= X ′

0#(S2 × S2) where X0 ≈ X ′
0, and let

η ∈ H3(X, ∂X;Z/2). Then there exists a homeomorphism f : X → X ′ with cs(f) = η.

In fact, we prove a stronger result which controls what these homeomorphisms look
like. This will be Theorem 6.2.2.

Remark 1.2.3. Theorem 1.2.2, combined with Proposition 5.4.5 (due to Freedman-
Quinn), recovers Gompf’s result [Gom84] that homeomorphic, compact, connected,
smooth, orientable 4-manifolds are stably diffeomorphic. The same reasoning also
shows that Theorem 1.2.2 cannot be extended to the non-orientable case, as there
exist compact, connected, smooth, non-orientable 4-manifolds which are homeomorphic
but are not stably diffeomorphic (see [Kre84], [CS76]). If one considers only self-
homeomorphisms of non-orientable smooth manifolds, then a result like Theorem 1.2.2
may still hold.

Remark 1.2.4. For such a general class of 4-manifolds, we cannot remove the stabilisa-
tion assumption in Theorem 1.2.2. For example, the Casson-Sullivan invariant is not
realisable for X = S1 × S3 = X ′ (see Lemma 6.2.4).

The methods we use to prove Theorem 1.2.2 lead us the following interesting exam-
ple, which demonstrates that the smoothability of a self-homeomorphism of a smooth
manifold depends on the isotopy class of the smooth structure (see Section 2.3).
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Corollary 1.2.5. Let X = (S1 × S3)#(S1 × S3)#(S2 × S2) with the standard smooth
structure and let g : X → X be the diffeomorphism which swaps the two S1 × S3

connected-summands and is the identity on the S2 × S2 connected-summand. Then
there exists a smooth structure S ′ on X, which is diffeomorphic to the standard smooth
structure, but is such that g is not stably pseudo-smoothable with respect to S ′. In par-
ticular, g is not smoothable with respect to S ′ (g is not isotopic to a diffeomorphism).

We now restrict to considering self-homeomorphisms. The next result concerns a
class of 4-manifolds where it is possible to remove the stabilisation assumption in The-
orem 1.2.2. This theorem will be stated in terms of a certain “realisability condition”,
which is defined fully in Definition 8.3.1. Instead of giving an informal definition of
this condition, we will state some classes of 4-manifolds for which it applies.

The Casson-Sullivan realisability condition is satisfied for 4-manifolds whose fun-
damental groups are in the following classes.

(i) Finite cyclic groups Z/n.

(ii) Groups of the form Z/(2n) × Z/2.

(iii) Groups of the form (Z/2)n.

(iv) Dihedral groups Dn.

The above list is not exhaustive (for more information see Section 8.4, c.f. Propo-
sition 9.3.2). It should also be noted that the condition holds for all manifolds with
odd order fundamental groups, however, this class is not interesting as in these cases
H3(X, ∂X;Z/2) = 0 and hence the Casson-Sullivan invariant is trivially realisable.

Theorem 1.2.6. Let X be a compact, connected, smooth, orientable 4-manifold with
π1(X) a good group such that X satisfies the Casson-Sullivan realisability condition
(Definition 8.3.1). Then for every class η ∈ H3(X, ∂X;Z/2) there exists a homeomor-
phism f : X → X with cs(f) = η.

Remark 1.2.7. By ‘good’ in Theorem 1.2.6 we mean in the sense of Freedman-Quinn
(see [FQ90, Chapter 2.9] or [BKK+21, §19] for a definition). It is known that the set of
good groups includes elementary amenable groups, as well as groups of sub-exponential
growth. In particular, all finite groups are good, so the groups listed above as satisfying
the Casson-Sullivan realisability condition are also good. However, it should be noted
that we do not show that the realisability condition implies that the group is good, nor
vice versa.

As a corollary to the proof of this theorem we obtain the following, which shows that
the homeomorphisms we realise in in Theorem 1.2.6 are homotopic to the identity. In
terms of subtlety of non-smoothable homeomorphisms, this improves on Theorem 1.2.1
at the expense of only applying to non-simply-connected 4-manifolds.
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Theorem 1.2.8. Let X be a compact, connected, smooth, orientable 4-manifold with
good fundamental group such that X satisfies the Casson-Sullivan realisability condition
(Definition 8.3.1). Then there exists a family of homeomorphisms {fη : X → X | 0 ̸=
η ∈ H3(X, ∂X;Z/2)} all distinct up to pseudo-isotopy (relative to the boundary) such
that each element fη is not stably pseudo-smoothable but each fη is homotopic to the
identity map.

Remark 1.2.9. We quickly demonstrate that the class of manifolds for which Theo-
rem 1.2.8 applies non-trivially is non-empty. Recall that for any finitely generated group
G there exists a closed, connected, smooth, oriented 4-manifold X with π1(X) ∼= G.
For n ≥ 2 let X be such a 4-manifold for G = Z/n (which is in case (i) above). For
n even we have that H3(X;Z/2) ∼= Z/2 and hence Theorem 1.2.8 applies non-trivially
to X.

§ 1.2.2 | Applications

We now discuss the various applications of the above results on non-smoothable home-
omorphisms. We start with an application to stable smooth isotopy of surfaces in
simply-connected 4-manifolds.

Theorem 1.2.10. Let X be a connected, compact, simply-connected, smooth 4-manifold
and let Σ1,Σ2 ⊂ X be a pair of smoothly, properly embedded surfaces which are topo-
logically isotopic relative to their boundaries. Then there exists n ≥ 0 such that Σ1

and Σ2 are smoothly isotopic relative to their boundaries in X#(#nS2 × S2), where
the connected-sums are taken away from Σ1 ∪ Σ2.

Results similar to Theorem 1.2.10 have been referred to previously (see the intro-
ductions in [AKMR15, AKM+19, HKM23]), but to the best knowledge of the author, a
proof of a result like this has never appeared in the literature. In the above references,
it seems to be implicit that the complement of the surfaces be simply-connected, but
we will need no such condition.

Remark 1.2.11. If the surface exteriors have trivial or cyclic fundamental groups, we
can pair Theorem 1.2.10 with results concerning when homologous surfaces of the same
genus whose exteriors have isomorphic fundamental groups are (stably) topologically
isotopic (see [LW90, HK93b, Sun15b]). This gives, in some cases, that smoothly em-
bedded homologous surfaces with the same boundaries and of the same genus and
whose exteriors have isomorphic fundamental groups are stably smoothly isotopic. See
Corollary 7.0.7 for the precise statement. This (in some sense) generalises the result in
[AKM+19], although the result there is stronger in the sense that only one stabilisation
is required.

Another application to simply-connected 4-manifolds with boundary is the fol-
lowing. Let X be a compact, simply-connected, smooth 4-manifold. Recall that
Tor(X, ∂X) denotes the subgroup of the topological mapping class group consisting
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of homeomorphisms which act trivially on homology. It is easy to describe a class of
smoothable maps in Tor(X, ∂X). Given a loop γ of orientation-preserving diffeomor-
phisms of the boundary based at the identity, we can form a diffeomorphism

φγ : (X, ∂X) → (X, ∂X)

by inserting γ into a collar of the boundary and extending via the identity map. Such
diffeomorphisms are called generalised Dehn twists, and, since they are supported on
a collar of the boundary, they represent (smoothable) elements in Tor(X, ∂X). The
following result shows that not all smoothable elements in Tor(X, ∂X) are realised by
generalised Dehn twists. This theorem is joint work with Roberto Ladu [GL23].

Theorem 1.2.12. There exists an infinite family of pairwise non-diffeomorphic com-
pact, oriented, smooth, simply-connected 4-manifolds {Z†

n}n∈N with connected bound-
ary Y and Tor(Z†

n, Y ) of infinite order, such that all mapping classes in Tor(Z†
n, Y ) are

smoothable, but only the identity map is supported on a collar of the boundary and, in
particular, only the identity map is realised by a generalised Dehn twist.

As suggested by the notation, these manifolds Z†
n are closely related to the man-

ifolds Zn in Theorem 1.2.1. These arise as stabilisations of the manifolds Zn. More
specifically, we have

Z†
n

∼= Zn#(#knS2 × S2)

where kn ≥ 0 is an integer depending on n. Accordingly, Y is the same Y as in
Theorem 1.2.1.

We now discuss an application concerning 3-manifolds. Let Y be a closed, oriented,
smooth 3-manifold. Then the well known result of Cerf [Cer59, Hat83] tells us that
the natural map

Diff(Y ) ≃−→ Homeo(Y )

is a homotopy equivalence. This is (part of) the reasoning behind the slogan “the
categories are the same” for 3-manifolds. Closely related to the homeomorphism and
diffeomorphism groups are the so-called block homeomorphism and block diffeomor-
phism groups H̃omeo(Y ) and D̃iff(Y ), which are defined as geometric realisations of
simplicial spaces such that their connected components correspond to the topological
and smooth pseudo-mapping class groups, respectively. We have the following result.

Theorem 1.2.13. Let Y be a closed, elliptic 3-manifold such that H1(Y ;Z/2) is not
trivial. Then the natural map

D̃iff(Y ) → H̃omeo(Y )

is not 1-connected. In particular, it is not surjective on π1.

As a corollary, we obtain the following.
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Corollary 1.2.14. Let Y be as in Theorem 1.2.13. Then the natural map

Homeo(Y ) → H̃omeo(Y )

is not 1-connected. In particular, it is not surjective on π1.

It was already known that there exist reducible closed 3-manifolds Y such that
the map in Corollary 1.2.14 is not 0-connected, as, for certain examples, Kwasik-
Schultz [KS96], using the work of Friedman-Witt [FW86], showed that the map was
not injective on π0 (see Theorem 9.2.6). However, Theorem 1.2.13 applies to a much
wider class of 3-manifolds than in [KS96], and, as we shall see in Proposition 9.2.3,
this map is an isomorphism on π0 for all manifolds in the class that Corollary 1.2.14
applies to.

The set of 3-manifolds that Theorem 1.2.13 and Corollary 1.2.14 apply to is non-
empty. In particular, it contains lens spaces which have even order fundamental group.
See Remark 9.0.3 for more details.

Studying this question concerning 3-manifolds leads to the following result con-
cerning non-pseudo-smoothability of homeomorphisms of 4-manifolds. Recall that we
usually consider smoothability to require the (pseudo)-isotopy to fix the boundary
throughout. One can consider absolutely (pseudo)-smoothable homeomorphisms where
we allow the (pseudo)-isotopy to move the boundary. For isotopies, this makes no dif-
ference (see Proposition 4.4.2). However, for pseudo-isotopies, these concepts are not
the same.

Theorem 1.2.15. There exists a 4-manifold X with boundary an elliptic 3-manifold
such that there exists a self-homeomorphism f : X → X which is not pseudo-smoothable
but is absolutely pseudo-smoothable.

Finally, we have our applications to smooth structures on 4-manifolds. We say that
two smooth structures are isotopic if there exists a diffeomorphism between the smooth
structures which is topologically isotopic to the identity, and hence a one-parameter
family of smooth structures interpolating between the two. We have similar concepts
for pseudo-isotopy, and stable (pseudo)-isotopy of smooth structures (see Section 2.1
for all of these definitions). We have the following result.

Theorem 1.2.16. There exists an infinite family of smooth structures {Sa}a∈Z on
the K3 surface such that K3Si

∼= K3Sj
for all i, j ∈ Z, but Si is not isotopic to Sj

for all i ̸= j.

Here the K3 surface is a famous 4-manifold which has many different constructions.
We will present some of these in Chapter 3.

We will see in Chapter 2 that there is a one-to-one correspondence between diffeo-
morphic but not isotopic smooth structures on a fixed smooth manifold and isotopy
classes of non-smoothable homeomorphisms (see Corollary 2.3.3, c.f. Corollary 2.3.7).
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Using this correspondence, and the generalisations of this correspondence for (stable)
pseudo-isotopy, we prove the following theorems, which follow from Theorem 1.2.2 and
Theorem 1.2.6.

Theorem 1.2.17. Let X be a 4-manifold such that X ∼= X ′#(S2 × S2) for some
compact, connected, smooth, orientable 4-manifold X ′ and let S denote the smooth
structure on X. Then for every non-zero η ∈ H3(X, ∂X;Z/2) there exists a smooth
structure Sη on X which is not stably pseudo-isotopic (relative to the boundary) to S

but XS is diffeomorphic to XSη . Furthermore, the elements of this family of smooth
structures {Sη} are pairwise distinct up to stable pseudo-isotopy.

Theorem 1.2.18. Let X be a compact, connected, smooth, orientable 4-manifold
with good fundamental group which satisfies the Casson-Sullivan realisation condition.
Let S denote the smooth structure on X. Then for every non-zero η ∈ H3(X, ∂X;Z/2)
there exists a smooth structure Sη on X which is not stably pseudo-isotopic to S

but XS is diffeomorphic to XSη . Furthermore, the elements of this family of smooth
structures {Sη} are pairwise distinct up to stable pseudo-isotopy.

§ 1.3 | Background
We will discuss the background in the simply-connected, closed case first, before moving
onto simply-connected with boundary, and then for non-simply-connected manifolds.

§ 1.3.1 | Simply-connected, closed

Understanding the smoothability of homeomorphisms in the closed, simply-connected
is simplified by us having a complete understanding of the topological mapping class
group of such manifolds, due to Freedman, Perron and Quinn [Fre82, Per86, Qui86].
Their results, when combined, say that we have an isomorphism

π0 Homeo(X)
∼=−→ Aut(H2(X), λX),

where Aut(H2(X), λX) denotes the automorphisms of the Z-valued intersection form
λX . This means that understanding the smoothability of a given homeomorphism
amounts to obstructing certain isometries of a smooth manifold’s intersection form
from being induced by a diffeomorphism. However, before continuing along this line,
we explain what can be said in a positive direction regarding smoothability.

If X is a closed, simply-connected 4-manifold (or has boundary a homology sphere)
with indefinite intersection form or the rank of H2(X) at most 8, then Wall [Wal64]
showed that all isometries of the intersection form Aut(H2(X#(S2 × S2)), λX#(S2×S2))
can be realised by diffeomorphisms (and hence all self-homeomorphisms of X#(S2×S2)
are smoothable). Ruberman and Strle [RS23] extended this result to show that any
self-homeomorphism of X#(S2 ×S2) that acts trivially on the homology of the S2 ×S2-
summand is smoothable.
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Now we return to considering non-smoothability. Gauge theory, developed in the
latter half of the 20th century, provides tools for obstructing certain isometries from
being realised by diffeomorphisms. Using Donaldson invariants (a gauge-theoretic in-
variant) Friedman and Morgan constructed the first examples of non-smoothable home-
omorphisms by considering self-homeomorphisms of Dolgachev surfaces [FM88], but
many more since then have been found, using similar arguments. In particular, Donald-
son [Don90] showed that the (standard, smooth) K3 surface admits a non-smoothable
homeomorphism.1 Further instances are known, see [MS97], [Bar21].

The downside of this approach is that, without an explicit construction (often
related to some symmetry of the manifold), it is very hard to show that a given isometry
is realisable by a diffeomorphism. This forms part of a general trend wherein gauge
theory only provides obstructions, and does not help to answer questions positively.

§ 1.3.2 | Simply-connected, with boundary

For simply-connected manifolds with non-empty boundary, the topological mapping
class group is more complicated than just the automorphisms of its intersection form.
Work of Saeki, Orson-Powell (still crucially using the results of Perron and Quinn)
gives the following isomorphism

π0 Homeo(X, ∂X)
∼=−→ V(H2(X), λX)

where V(H2(X), λX) denotes the group of Poincaré variations (see Definition 4.1.2),
which is a more complicated algebraic object than the automorphism group of the in-
tersection form. In particular, this means that the Torelli group, the subgroup of home-
omorphisms which induce the trivial map on homology, can be non-trivial. Before the
work in [GL23], however, no non-smoothable homeomorphisms had been constructed
which lie in this subgroup.

We remark that Konno and Taniguchi [KT22, Theorem 1.7] have constructed non-
smoothable homeomorphisms for a large class of 4-manifolds with boundary a rational
homology sphere. However, these homeomorphisms do not lie in the Torelli subgroup.
In fact, for connected boundary, the boundary must have b1(∂X) ≥ 2, where b1 denotes
the first Betti number (see Remark 4.1.8).

We end the discussion on simply-connected 4-manifolds by noting the following.
Non-smoothable homeomorphisms of simply-connected 4-manifolds are distinctively
unstable by Proposition 5.4.5, due to Freedman-Quinn. The consequence of this is that
there are no obstructions in the world of “formal smooth structures”, in the sense there
is no obstruction to smoothing the homeomorphism on the level of tangent bundles.
We will discuss the concept of formal smooth structures in Chapter 5.

1For non-standard smooth structures on the K3 surface, non-smoothable homeomorphisms also
exist. For example, see Theorem 1.2.16 and Corollary 2.3.3. Likely examples such as these were known
to experts after [FM88].
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§ 1.3.3 | Non-simply-connected case

The non-simply-connected case may well contain all of the unstable behaviour that
appears in the simply-connected case, however, we shall focus on a new phenomenon
that appears. Since the manifold is no longer simply-connected, an obstruction to
smoothing the homeomorphism on the level of tangent bundles arises called the Casson-
Sullivan invariant. We now recount what was previously known in the non-simply-
connected case regarding non-smoothable homeomorphisms.

Cappell-Shaneson-Lee [CS71, Lee70] and Scharlemann-Akbulut [Sch76, Akb99] pro-
duced examples of homotopy equivalences

f : (S1 × S3)#(S2 × S2) → (S1 × S3)#(S2 × S2)

which are not homotopic to diffeomorphisms. It was shown by Wang [Wan93, Chap-
ter 6.2] that the Cappell-Shaneson-Lee construction could be improved to finding a
non-smoothable self-homeomorphism of (S1 × S3)#(S2 × S2) (the reader should note
that Wang states that this implies the existence of an exotic smooth structure on
(S1 × S3)#(S2 × S2), when it actually gives a non-isotopic but diffeomorphic smooth
structure; see Section 2.3 for more information). In Section 6.2 we will show that this
homeomorphism has non-trivial Casson-Sullivan invariant.

History of the Casson-Sullivan invariant

The Manifold Hauptvermutung is the following conjecture: ‘every homeomorphism
f : M → N between two PL manifolds is homotopic to a PL-homeomorphism’. There is
also the related conjecture, called the Isotopy Manifold Hauptvermutung: ‘every home-
omorphism f : M → N between two PL manifolds is isotopic to a PL-homeomorphism’.
The work of Casson and Sullivan [Cas96, Sul96] showed that the Isotopy Manifold
Hauptvermutung is true for simply-connected n-manifolds of dimension n ≥ 5 pro-
vided that H3(N ;Z/2) = 0, by considering a certain obstruction class ω ∈ H3(N ;Z/2).
In fact, they also showed that the (homotopy) Manifold Hauptvermutung is true for
simply-connected n-manifolds of dimension n ≥ 5 provided that H4(N ;Z) contains no
2-torsion. Later work of Kirby-Siebenmann [KS77], crucially using the classification of
PL homotopy tori by Hsiang-Shaneson and Wall [HS71, Wal70], showed that the Man-
ifold Hauptvermutung is false in general in all dimensions n ≥ 5, and, in particular,
showed that the Casson-Sullivan class is precisely the obstruction to the Isotopy Man-
ifold Hauptvermutung. This also gave a very slick definition of the Casson-Sullivan
invariant of a homeomorphism as the Kirby-Siebenmann invariant of the mapping
cylinder of the given homeomorphism.

The Casson-Sullivan invariant can similarly be defined for 4-manifolds, where, since
there is no difference between the PL and smooth categories (for our purposes), we
can consider it as an obstruction to smoothing homeomorphisms. Freedman-Quinn
[FQ90] showed that the Casson-Sullivan invariant is the unique obstruction to stably
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pseudo-smoothing a homeomorphism (see Proposition 5.4.5). In the world of formal
smooth structures, the Casson-Sullivan is precisely the obstruction to smoothing the
homeomorphism on the level of tangent bundles.

§ 1.4 | Conventions and notation
Before we begin we will set up basic notation which will be used throughout this thesis.

(i) Let M and N be (smooth) manifolds. We write M ∼= N to mean M is diffeo-
morphic to N , M ≈ N to mean M is homeomorphic to N , M ≃ N to mean M

is a homotopy equivalent to N , and M ≃s N to mean M is simple homotopy
equivalent to N .

(ii) Let M be a topological manifold and S a smooth structure on M . Then we write
MS to mean the smooth manifold induced by S with underlying topological
manifold M .

(iii) Let M be a (smooth) manifold and let Σ be a (smooth) submanifold. We write νΣ
for the open tubular neighbourhood of Σ in X, and write νΣ for the corresponding
closed tubular neighbourhood.

(iv) Let M and N be topological manifolds of the same dimension. We write M#N
to mean the connected-sum of M and N . We write #kM for M# . . .k-times #M ,
the k-fold connected-sum of M .

(v) We will denote the classifying space ‘functor’ which sends topological groups to
spaces by B e.g. if G is a topological group, then principal G-bundles will be
classified by homotopy classes of maps into the space BG.

(vi) Our convention is to (usually) denote general manifolds as M , 3-manifolds as Y ,
4-manifolds as X, and 5-manifolds as W .

(vii) Given a ring R and an R-module M , we will often denote its dual module
HomR(M,R) as M∗. Given a map between two R modules Ψ: M → M ′, we
will often denote the dual map as Ψ∗ : (M ′)∗ → M∗. We consider an R-module
M to be a left R-module unless stated otherwise.

§ 1.5 | Organisation
This thesis is organised as follows.

• Chapter 2: we will discuss different equivalence relations on smooth structures:
diffeomorphism, isotopy, pseudo-isotopy, concordance etc. We will also explain
the relation that some of these equivalence relations have with the smoothability
of homeomorphisms. We will also discuss the relationship that all of these struc-
tures have with one another, with reference to what happens in other dimensions.
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• Chapter 3: we will present an explicit construction of non-isotopic but diffeomor-
phic structures on closed, simply-connected 4-manifolds (Theorem 1.2.16) We
will also discuss Fintushel and Stern’s knot surgery in a wider generality, and
prove that it preserves the homeomorphism types of 4-manifolds in many cases
outside of the closed, simply-connected case.

• Chapter 4: we will present joint work with Roberto Ladu on non-smoothable
homeomorphisms of simply-connected 4-manifolds with boundary which act triv-
ially on homology (Theorem 1.2.1). We will also discuss how to apply this work
to find diffeomorphisms of simply-connected 4-manifolds with boundary which
act trivially on homology, but are not generalised Dehn twists (Theorem 1.2.12).
The material from this chapter will mostly come from the paper [GL23].

• Chapter 5: we will discuss the Casson-Sullivan invariant for homeomorphisms of
4-manifolds, and prove many properties about it. We will also discuss formal
smooth structures. The material from this chapter will mostly come from the
paper [Gal24a].

• Chapter 6: we will prove that the Casson-Sullivan invariant can be realised stably
for orientable manifolds (Theorem 1.2.2). The material from this chapter will
mostly come from the paper [Gal24a] as well as the work of Ronnie Lee [Lee70]
(see also [Gal24b]).

• Chapter 7: we will present an application of the stable realisation theorem from
Chapter 6, that topologically isotopic surfaces in a simply-connected, smooth 4-
manifold are externally, stably, smoothly isotopic (Theorem 1.2.10). The material
from this chapter will mostly come from the paper [Gal24a].

• Chapter 8: we will discuss some cases where the Casson-Sullivan invariant can
be realised unstably, using the surgery exact sequence (Theorem 1.2.6, Theo-
rem 1.2.8). The material from this chapter will mostly come from the paper
[Gal24a].

• Chapter 9: we will discuss an application to the unstable realisation developed
in Chapter 8 to 3-manifolds (Theorem 1.2.13, Corollary 1.2.14, Theorem 1.2.15).



Chapter 2

Smooth structures on manifolds

We begin by discussing smooth structures on manifolds, and their various equivalence
relations. Let us start with the basic definitions.

§ 2.1 | Equivalence relations on smooth structures
on manifolds

Definition 2.1.1. Let M be a topological n-manifold. Then a smooth atlas {Uα, φα}α
for M is a collection of open subsets {Uα ⊂ M}α and homeomorphisms φα : Uα → Rn

such that

(i) ∪αUα = M ,

(ii) The transition functions φ−1
α′ ◦ φα : Rn → Rn are smooth for all intersections

Uα ∩ Uα′ .

We say that two smooth atlases {Uα, φα}α and {Vβ, ψβ}β for M are equivalent if
the union {Uα, φα}α ∪ {Vβ, ψβ}β is itself a smooth atlas for M . We define a smooth
structure on M to be a maximal smooth atlas.

One might imagine that ‘equality’ would be a good equivalence relation to put on
smooth structures, considering that we have already taken some closure of atlases. This
turns out not to be the case, as illustrated by the following example.

Lemma 2.1.2. There exists an uncountable number of smooth structures on the n-
dimensional real space, Rn.

Proof. We prove this only for n = 1 for simplicity, but it is not hard to extend this to
higher dimensions.

One can define an atlas for R with a single, global, chart φ : R → R. Let Sφ

denote the smooth structure which contains the atlas defined by φ, e.g. SId denotes
the standard smooth structure. Then, for 0 ≤ t ≤ 1, let ft : R → R be a non-smooth
homeomorphism defined as

ft(x) =

x
3 if x ≤ 0

x1+t if x > 0.
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Then the transition function for any two of these global charts is given as

φt′ ◦ (φt)−1(x) =

x if x ≤ 0

x
1+t′
1+t if x > 0

and it is routine to see that this is not smooth (at x = 0) if t ̸= t′. Hence, none of
these atlases are equivalent, and so it follows that the smooth structures Sφt are all
distinct.

A consequence of the above argument is the following.

Proposition 2.1.3. Let n ≥ 1 and suppose that M is an n-manifold that admits a
smooth structure. Then M admits uncountably many smooth structures.

Proof. We only sketch the proof. Pick an atlas A on M such that A contains a chart
φ : U → Rn with the property that U contains a contractible, open region V such that
V is disjoint from any other chart in A. Now. much like in the proof of Lemma 2.1.2,
create a 1-parameter family of charts φt for 0 ≤ t ≤ 1 such that

(i) φ0 = φ,

(ii) φt = φ outside of V ,

(iii) the transition function φt′ ◦ (φt)−1 is not smooth for some point in (φt)−1(V ) if
t ̸= t′, but is smooth otherwise.

By construction, each chart φt is compatible with all of the charts in A aside from φ.
Hence, creating new atlases At, where we substitute the chart φ for the chart φt, gives
a 1-parameter family of atlases which are all not pairwise equivalent. Considering their
corresponding smooth structures completes the proof.

This leads us to consider a more coarse equivalence relation on smooth structures,
namely that of diffeomorphism.

Definition 2.1.4. Let S1 and S2 be a pair of smooth structures on a topological mani-
fold M . We denote the resulting smooth manifolds from these structures by MSi

. Then
we say that S1 and S2 are diffeomorphic if there exists a homeomorphism f : M → M

such that f ∗(S2) = S1, where f ∗(−) denotes the pull-back operation on smooth struc-
tures, defined in the obvious manner. We then say that f is a diffeomorphism between
S1 and S2.

It is not hard to show that all of the smooth structures given in Proposition 2.1.3
are diffeomorphic. We leave this as an exercise. Often, diffeomorphism is the correct
notion of equivalence to consider for manifolds, however it is not the only sensible one.
We will now describe more equivalence relations. First, an intermediate definition.
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Definition 2.1.5. Let M and N be a pair of manifolds and let f, g : M → N be a pair
of homeomorphisms. If M has boundary then further assume that f and g restrict to
a fixed homeomorphism f0 : ∂M → ∂N . We say that f is (relatively) pseudo-isotopic
to g if there exists a homeomorphism, called a (relative) pseudo-isotopy

F : M × I → N × I

such that

(i) F |∂M×I = f0 × Id,

(ii) F |M×{0} = f : M × {0} → N × {0},

(iii) F |M×{1} = g : M × {1} → N × {1}.

If we drop condition (i), then we say that f and g are absolutely pseudo-isotopic. We
say that f and g are (relatively/absolutely) isotopic if they are (relatively/absolutely)
pseudo-isotopic via a level-preserving (relative/absolute) pseudo-isotopy.

Definition 2.1.6. Let S1 and S2 be a pair of smooth structures on a topological
manifold M . Then we say that S1 and S2 are isotopic {pseudo-isotopic} if there exists
a diffeomorphism f : M → M between S1 and S2 such that f is isotopic {pseudo-
isotopic} to the identity.

One can further show that all of the smooth structures given in Proposition 2.1.3
are all isotopic (the diffeomorphism is only supported in some contractible patch).

If M is even-dimensional, then we also have stable analogues of the equivalence
relations above. By stable we mean after connected-summing with Sn×Sn. It turns out
that this does not offer any additional equivalence relations outside of the 4-dimensional
case. To explain this notion, we must make a digression to discuss connected-sums.

The construction of the connected-sum for smooth manifolds and its well-definedness
are well-known (see [Kos93, §VI.1]). For topological 4-manifolds (which is all we will
consider), its well-definedness was demonstrated by Freedman-Quinn [FQ90, Section
8.6] as a consequence of the “Nebenvermutung” proved in [FQ90, Theorem 8.1A] (c.f.
Remark 7.0.5).

Definition 2.1.7. Let X1, X2 and X ′
1, X ′

2 be two pairs of connected, oriented 4-
manifolds and let f1 : X1 → X ′

1 and f2 : X2 → X ′
2 be two orientation-preserving home-

omorphisms, restricting to a fixed diffeomorphism on ∂X1 and ∂X2. Then, up to
isotopy, we may assume by uniqueness of normal bundles [FQ90, Chapter 9.3], and the
calculation of the mapping class group of S3 [Cer68], that fi restricts to the identity
map on some disc for i = 1, 2. Hence we get a homeomorphism

f1#f2 : X1#X2 → X ′
1#X ′

2,

called the connected-sum homeomorphism of f1 and f2.
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We will particularly care about the case where X := X1, X ′ := X ′
1, X2 = S2 ×S2 =

X ′
2, f := f1 and f2 = IdS2×S2 . This connected-sum operation then defines for us a map

f# := f1# Id: X#(S2 × S2) → X ′#(S2 × S2),

called the stabilisation of f . If f is not orientation-preserving (or X is not orientable)
then we may still define a stabilisation by extending f onto the S2 × S2 summand by
a fixed orientation-reversing diffeomorphism rather than the identity map.

We will see a similar construction again in Section 5.4 for connected-sums over a
circle.

Remark 2.1.8. Note that there are some additional subtleties concerning Definition 2.1.7
if we consider self-homeomorphisms. One would like to be able to take two self-
homeomorphisms f1 : X1 → X1 and f2 : X2 → X2 and form a connected-sum self-
homeomorphism f1#f2 : X1#X2 → X1#X2, but this is, in general, not well-defined.
To define a self-homeomorphism of the connected-sum, we first need to isotopy the
images of the two discs (that are used to perform the connected-sum) back to their
original positions. We do this by first choosing an isotopy of their centres, and then
using isotopy extension [EK71], but there are many choices for such an isotopy, and
different choices do not necessarily lead to isotopic self-homeomorphisms.

For certain manifolds, however, the connected-sum homeomorphism is well-defined.
For example, if one of the connected-summands is S2 ×S2, as we have for stabilisations
of homeomorphisms, then the connected-sum homeomorphism is well-defined. For
more information, see [AKMR15].

Let us now return to smooth structures. Let (S2 × S2)T be S2 × S2 with smooth
structure T , the standard smooth structure on S2 × S2 given as the product of the
standard smooth structures on S2. Further let XS be a smooth 4-manifold, and note
that, up to isotopy, we may assume that S is standard on some topologically embedded
disc D ⊂ X. Hence we may define a smooth structure (independent of choices) denoted
by S #T on the topological connected-sum X#(S2×S2). This motivates the following
definition.

Definition 2.1.9. LetXSi
for i = 1, 2 be two smooth manifolds with smooth structures

Si, respectively. Then we say that S1 and S2 are stably diffeomorphic if there exists
a diffeomorphism (in the sense of Definition 2.1.4)

f : XS1#(#k(S2 × S2)T ) → XS2#(#k(S2 × S2)T )

for some non-negative integer k.
We say that S1 and S2 are stably (pseudo-)isotopic if there exists a stable diffeomor-

phism (in the sense above) between S1 and S2 which is topologically (pseudo-)isotopic
to the identity.
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We now define a looser notion of equivalence for smooth structures.

Definition 2.1.10. Let M be a manifold. We say that smooth structures S and S ′ on
M are concordant if there exists a smooth structure T on M × I such that T |M×{0} =
S and T |M×{1} = S ′.

We say that S and S ′ are sliced concordant if they are concordant, as above, such
that the projection M × I → I is a submersion with respect to the smooth structure
T on M × I.

It is clear that a pseudo-isotopy between smooth structures gives a concordance,
since the pullback of the product smooth structure by the pseudo-isotopy produces
a concordance. We will only consider the stronger notion of sliced concordance in
Section 5.4.1.

We will compare these various equivalence relations on smooth structures in Sec-
tion 2.1.

§ 2.2 | Non-smoothable homeomorphisms
This section is devoted to introducing the concept of a non-smoothable homeomor-
phisms, and analogous thereof.

Definition 2.2.1. Let f : M → M ′ be a homeomorphism of smooth manifolds such
that f restricts to a fixed diffeomorphism f0 : ∂M → ∂M ′. We say that f is smoothable
if it is isotopic to a diffeomorphism. We say that f is pseudo-smoothable if it is pseudo-
isotopic to a diffeomorphism. If M is a 4-dimensional manifold, we say that f is stably
(pseudo-)smoothable if there exists a k ≥ 0 such that

f# : M#(#kS2 × S2) → M ′#(#kS2 × S2)

is (pseudo-)smoothable.

Another perspective on this concept can be described using the following spaces,
which will be important to consider in many sections throughout this thesis.

Definition 2.2.2. Let M be a (smooth) manifold. We define the homeomorphism
group of M to be the topological group

Homeo(M) := {f : M → M | f a homeomorphism},

with the compact-open topology (see [Hat02, Appendix A] c.f. [Hir76, Chapter 2]).
Similarly, we define the diffeomorphism group of M to be the topological group

Diff(M) := {f : M → M | f a diffeomorphism},

with the C∞ topology (sometimes called the Whitney topology) For details see [Hir76,
Chapter 2]).
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If M has boundary then we define Homeo(M,∂M) to be the sub topological group
consisting of homeomorphisms which fix the boundary pointwise. Similarly, if M has
an orientation then we define Homeo+(M) to be the sub topological group consisting
of orientation-preserving homeomorphisms. Similarly, we have the sub topological
groups Diff(M,∂M) and Diff+(M) for the diffeomorphism group of M , although for
Diff(M,∂M) we also have to control the derivatives near the boundary (see [Hir76,
Chapter 2]).

Taking connected components π0 Homeo(M,∂M) and π0 Diff(M,∂M) yields the
topological mapping class group and the smooth mapping class group, respectively.
We also define the topological pseudo-mapping class group π̃0 Homeo(X, ∂X) and the
smooth pseudo-mapping class group by taking so-called concordance homotopy groups
(see [ABK71]).

Remark 2.2.3. (i) This definition of the mapping class group means elements corre-
spond to diffeomorphisms/homeomorphisms up to relative/absolute isotopy. The
definition of the pseudo-mapping class group means that elements correspond to
diffeomorphisms/homeomorphisms up to relative/absolute pseudo-isotopy.

(ii) There is a separate definition for the pseudo-mapping-class group, where we
instead first define spaces D̃iff(M,∂M) and H̃omeo(M,∂M), called the block-
diffeomorphism space and block-homeomorphism space, respectively. These are
defined as geometric resolutions of simplicial spaces, such that there are inclusion
induced maps inducing isomorphisms

π̃0 Homeo(M,∂M)
∼=−→ π0H̃omeo(M,∂M)

and
π̃0 Diff(M,∂M)

∼=−→ π0D̃iff(M,∂M).

This viewpoint will be developed further in Chapter 9 (c.f. Definition 9.1.1).

An important map is given by the following lemma, which we state without proof.
See [Hir76, Chapter 2] for the details needed to produce a proof, which is clear once
all of the definitions have been unravelled.

Lemma 2.2.4. Let M be a smooth manifold. Then the inclusion induced map

Φ: Diff(M,∂M) → Homeo(M,∂M)

is continuous.

The map Φ induces a homomorphism of the (pseudo-)mapping class groups, and this
gives us an alternative formulation of smoothability. A homeomorphism f : X → X is
smoothable if and only if [f ] is in the image of

Φ: π0 Diff(M,∂M) → π0 Homeo(M,∂M)
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and pseudo-smoothable if and only if it lies in the image of the corresponding map of
pseudo-mapping class groups.

In the definition of (pseudo-)smoothability it was required that the (pseudo)-isotopy
fix the boundary throughout. If we relax this constraint, and allow the (pseudo-)isotopy
to move the boundary, we can define a (potentially) weaker notion of smoothability.

Definition 2.2.5. Let f : M → M ′ be a homeomorphism of smooth manifolds such
that f restricts to a fixed diffeomorphism f0 : ∂M → ∂M ′. We say that f is absolutely
smoothable if it is isotopic (not relative to the boundary) to a diffeomorphism. We
say that f is absolutely pseudo-smoothable if it is pseudo-isotopic (not relative to the
boundary) to a diffeomorphism.

In the case of isotopy this distinction makes no difference, as we will see in Propo-
sition 4.4.2. However, there exist homeomorphisms which are absolutely pseudo-
smoothable but not pseudo-smoothable, which will see in Theorem 9.0.4.

§ 2.3 | Non-smoothable homeomorphisms and smooth
structures

This section is devoted to writing up the correspondence between non-isotopic but
diffeomorphic smooth structures and non-smoothable homeomorphisms.

§ 2.3.1 | Non-isotopic but diffeomorphic smooth structures

We start with the basic notation. In this section, like in Section 2.1, it will be convenient
to let X denote a topological manifold, and to denote the smooth manifold induced by a
smooth structure S as XS . Throughout we will assume that X already has a smooth
structure on its boundary. For all of our applications, X will be a 4-manifold, and
hence its boundary admits a unique smooth structure up to isotopy (see Section 2.4.2).

Let XS be a smooth, compact 4-manifold. We denote the map induced on the
mapping class groups {pseudo-mapping class groups} by the inclusion Diff(XS , ∂X) ↪→
Homeo(X, ∂X) as

Φ: π0 Diff(XS , ∂X) → π0 Homeo(X, ∂X),
Φ̃ : π̃0 Diff(XS , ∂X) → π̃0 Homeo(X, ∂X).

(2.3.1)

We are particularly interested in the cokernel of this map which we will write as the
quotient

coker Φ = π0 Homeo(X, ∂X)
π0 Diff(XS , ∂X) , coker Φ̃ = π̃0 Homeo(X, ∂X)

π̃0 Diff(XS , ∂X)
which corresponds to self-homeomorphisms of X which are not topologically isotopic
{pseudo-isotopic} to any self-diffeomorphism of XS . We have that this is a well-defined
group, by the following lemma.

Lemma 2.3.1. Let Φ {Φ̃} be the map from 2.3.1. Then the subgroup im Φ {im Φ̃} is
a normal subgroup in π0 Homeo(X, ∂X) {π̃0 Homeo(X, ∂X)}.
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Proof. We show that the image of Diff(XS , ∂X) in Homeo(X, ∂X) is normal, and
the lemma then follows immediately. Let f : XS → XS be a diffeomorphism and let
g : X → X be a homeomorphism. Then we want to show that (g−1 ◦ f ◦ g)∗(S ) = S .
It suffices to show that f ∗(g∗(S )) = g∗(S ), i.e. that f is also a diffeomorphism with
respect to the smooth structure induced by g. This is true, since f being smooth with
respect to g∗(S ) is equivalent to the function ψ ◦ g ◦ f ◦ g−1 ◦φ−1 being a (classically)
smooth map for any charts ψ, φ. By maximality of smooth structures, ψ ◦ g and φ ◦ g
are both charts for S , and f being a diffeomorphism with respect to S finishes the
proof.

Proposition 2.3.2. Let XS be a smooth manifold, f : X → X be a self-homeomorphism
and let Φ {Φ̃} be the map from 2.3.1. Then the smooth structures f ∗(S ) and S are
isotopic {pseudo-isotopic} if and only if [f ] ∈ im Φ {[f ] ∈ im Φ̃}.

Proof. We prove this only for Φ, with the proof being exactly the same for Φ̃.
The reverse implication is straightforward. Let f be a smoothable homeomorphism

relative to S , i.e. f is topologically isotopic to a diffeomorphism f ′ : XS → XS . Then
the smooth structure f ∗(S ) is isotopic to (f ′)∗(S ), and we have (f ′)∗(S ) = S since
f ′ is a diffeomorphism.

Now for the forwards implication. Let f be such that S and f ∗(S ) are isotopic.
Then by the definition we have that there exists a diffeomorphism g : XS → Xf∗(S )

such that g is topologically isotopic to the identity. More specifically, there exists a con-
tinuous path of homeomorphisms gt : X → X such that g0 = IdX and (g−1

1 )∗(f ∗(S )) =
S . Consider the composition homeomorphism ft := f ◦ gt : X → X and note that
f0 = f and

f1 = f ◦ g : XS → XS

is a diffeomorphism by construction.

Corollary 2.3.3. Let XS be a smooth manifold and let S(XS , ∂X) {S̃(XS , ∂X)} de-
note the set of isotopy {pseudo-isotopy} classes of smooth structures on X diffeomor-
phic to S restricting to the given smooth structure on ∂X. Then there is a bijection
as defined below

π0 Homeo(X, ∂X)
π0 Diff(XS , ∂X) −→ S(XS , ∂X)

[f ] 7−→ f ∗(S ),

π̃0 Homeo(X, ∂X)
π̃0 Diff(XS , ∂X) −→ S̃(XS , ∂X)

[f ] 7−→ f ∗(S ).

Proof. The fact that the map written in the statement is well-defined and only maps the
trivial element to S follows directly from Proposition 2.3.2. That the second condition
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is enough to ensure that the map is injective follows from Lemma 2.3.1, That the map
is surjective follows from the definition of S(XS , ∂X) {S̃(XS , ∂X)}.

Note that since the quotient is a group (by Lemma 2.3.1), this means that we get
a group structure on S(XS ) {S̃(XS )} by Corollary 2.3.3.

Remark 2.3.4. There is an alternative interpretation of this section given recently by
Lin-Xie [LX23], where they instead construct a space of smooth structures, and now
interpret our S(XS , ∂X) as π0 of this space. We make this more precise. We have a
map

BDiff(XS , ∂X) → BHomeo(X, ∂X)

induced by the inclusion and we denote the homotopy fibre of this map by F (XS ).
From the long exact sequence of the fibration and the fact that πi(BG) = πi−1(G) for
any group G, we get the exact sequence

π0 Diff(XS , ∂X) → π0 Homeo(X, ∂X) → π0(F (XS )) → 0.

Since it is clear that the first map in this sequence is Φ we have that π0(F (XS )) =
coker Φ. We call F (XS ) the space of smooth structures on X diffeomorphic to S ,
and coker Φ corresponds to its path components. Using block diffeomorphisms and
block homeomorphisms (see Remark 2.2.3, Section 9.1), we can similarly define a space
F̃ (XS ) where π0(F̃ (XS )) corresponds to coker Φ̃. We will not explore this interpreta-
tion further in this thesis.

§ 2.3.2 | Stably non-isotopic but diffeomorphic smooth structures

Similarly, all of Section 2.3.1 can be considered stably. Let (S2 ×S2)T be S2 ×S2 with
smooth structure T , the standard smooth structure on S2 × S2 given as the product
of the standard smooth structures on S2. Further let XS be a smooth 4-manifold, and
note that, up to isotopy, we may assume that S is standard on some topologically em-
bedded disc D ⊂ X. Hence we may define a smooth structure (independent of choices)
denoted by S #T on the topological connected-sum X#S2 × S2. This motivates the
following definitions.

Definition 2.3.5. LetXSi
for i = 1, 2 be two smooth manifolds with smooth structures

Si, respectively. Then a stable diffeomorphism from XS1 to XS2 is a diffeomorphism
(in the sense of Definition 2.1.4)

f : XS1#(#k(S2 × S2)T ) → XS2#(#k(S2 × S2)T )

for some non-negative integer k. In this case, we say that the smooth structures Si

are stably isotopic {stably pseudo-isotopic} if S1#(#kT ) is isotopic {pseudo-isotopic}
to S2#(#kT ).

Analogously to the unstable case, we then have the stable mapping class groups.
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Definition 2.3.6. Let πStab
0 Homeo(X, ∂X) {π̃Stab

0 Homeo(X, ∂X)} denote the stable
topological mapping class group of X {stable topological pseudo-mapping class group
of X} which is defined as the quotient of Homeo(X, ∂X) via the equivalence relation:
f ∼ g if f is stably isotopic {pseudo-isotopic} to g.

Continuing the analogy with the unstable case, there is then the obvious inclusion
map which induces a map of the stable mapping class groups {pseudo-mapping class
groups}

ΦStab : πStab
0 Diff(XS , ∂X) → πStab

0 Homeo(X, ∂X),
Φ̃Stab : π̃Stab

0 Diff(XS , ∂X) → π̃Stab
0 Homeo(X, ∂X).

(2.3.2)

Again we are interested in the cokernel of this map which we write as the quotient of
the stable mapping class groups {stable pseudo-mapping class groups} in the obvious
manner:

coker ΦStab = πStab
0 Homeo(X, ∂X)
πStab

0 Diff(XS , ∂X) , coker Φ̃Stab = π̃Stab
0 Homeo(X, ∂X)
π̃Stab

0 Diff(XS , ∂X) .

This cokernel corresponds to self-homeomorphisms of X, up to stable isotopy {pseudo-
isotopy}, which are not stably topologically isotopic {pseudo-isotopic} to any stable
self-diffeomorphism of XS . The proofs of Lemma 2.3.1, Proposition 2.3.2 and Corol-
lary 2.3.3 follow through unchanged for ΦStab, and hence we have the following corollary.

Corollary 2.3.7. Let XS be a smooth manifold and let

SStab(XS , ∂X) {S̃Stab(XS , ∂X)}

be the set of stable isotopy classes of smooth structures on X {stable pseudo-isotopy
classes of smooth structures on X} stably diffeomorphic to S . Then there are bijections
as defined below

πStab
0 Homeo(X, ∂X)
πStab

0 Diff(XS , ∂X) −→ SStab(XS , ∂X)

[f ] 7−→ f ∗(S ).

π̃Stab
0 Homeo(X, ∂X)
π̃Stab

0 Diff(XS , ∂X) −→ S̃Stab(XS , ∂X)

[f ] 7−→ f ∗(S ).

Corollary 2.3.7 immediately gives that Theorem 1.2.2 and Theorem 1.2.6 imply
Theorem 1.2.17 and Theorem 1.2.18, respectively. Hence, when we prove Theorem 1.2.2
in Chapter 6 and Theorem 1.2.6 in Chapter 8, we will also prove Theorem 1.2.17 and
Theorem 1.2.18.
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§ 2.4 | Comparing equivalence relations on smooth
structures

We finish this chapter by discussing the various equivalence relations on smooth struc-
tures, which will present in the form of charts. The trivial implications are drawn
in black, whereas non-trivial implications are drawn in blue. Implications with known
counter-examples are drawn with crosses in red. Unknown implications are drawn with
question marks in green.

We start with the most relevant to us, the 4-dimensional case.

§ 2.4.1 | Equivalence relations on smooth structures on 4-manifolds

Isotopic Pseudo-isotopic Diffeomorphic

Concordant

Stably isotopic Stably
pseudo-isotopic

Stably
diffeomorphic

?

?

?

We will now make a series of remarks about this diagram.

• For orientable 4-manifolds, all smooth structures are stably diffeomorphic by
Gompf [Gom84], and hence all smooth structures on a fixed manifold become
equivalent in the bottom-right box. This does not hold in the non-orientable
case by Cappell-Shaneson and Kreck [CS76, Kre84].

• The fact that concordance does not imply diffeomorphism is due to the follow-
ing. By Kirby-Siebenmann (see [FQ90, Theorem 8.3B]), there exist only finitely
many structures up to concordance (in fact, for simply-connected 4-manifolds
all structures are concordant). Proving that concordance does not imply dif-
feomorphism then reduces to finding an infinite family of 4-manifolds which are
all homeomorphic but pairwise not diffeomorphic (and in the simply-connected
case, it suffices to construct a single exotic pair). Such examples are well-known
nowadays among experts, but the first example is due to Kreck [Kre84]. The first
example in the orientable case is due to Donaldson [Don87]. For infinite families
outside of the simply-connected case, one can use knot surgery (see Chapter 3
for more details).
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• The fact that diffeomorphism does not imply stable pseudo-isotopy is the main
result of this thesis, which we achieve by realising the Casson-Sullivan invariant
in many cases. It was already known that diffeomorphism does not imply pseudo-
isotopy. The first examples are due to Friedman-Morgan and Donaldson [FM88,
Don90], using Donaldson invariants.

• In the simply-connected case, the two horizontal unknown implications become
true, due to Quinn [Qui86, GGH+23]. The vertical unknown implication then
becomes false, in exactly the same cases where stable pseudo-isotopy does not
imply pseudo-isotopy.

• Outside of the simply-connected case, the unknown reverse implications on the
left of the diagram are all due to our current lack of understanding of the differ-
ence between topological pseudo-isotopy and topological isotopy for 4-manifolds.
Budney-Gabai have produced examples of homeomorphisms pseudo-isotopic to
the identity, but not isotopy to the identity, but their examples are smoothable
and hence are not useful for studying whether pseudo-isotopy implies isotopy for
smooth structures.

• Stable pseudo-isotopy implies concordance by the following argument. Stable
pseudo-isotopy implies trivially that the smooth structures are concordant stably.
Call our underlying topological manifold X. This means that we have produced
a smooth structure on X#(#k(S2 ×S2))× I for some k, such that on either ends
of the product it restricts to the given (stabilised) smooth structures. Since the
stable tangent bundle of S2 × S2 is trivial, this means we get a formal smooth
structure on X × I, restricting to the given formal smooth structures on each
end of the product (see Definition 5.2.5). By Kirby-Siebenmann [KS77, Theorem
10.2], this produces a smooth structure on X× I, restricting to the given smooth
structures on each end of the product, i.e. a concordance between the smooth
structures.

• Concordance implies stable pseudo-isotopy by Proposition 5.4.5, which is due to
Freedman-Quinn [FQ90, Theorem 8.2].

§ 2.4.2 | Equivalence relations on smooth structures in other dimensions

Dimensions three and below

In dimensions ≤ 3, the situation simplifies dramatically. Due to work of Rado, Cairns,
Moise, Bing and Epstein [Rad25, Cai40, Moi52, Bin54, Eps66] every surface or 3-
manifold admits a smooth structure which is unique up to isotopy. Hence, there is no
need for a flowchart-like diagram in these cases1.

1For 1-manifolds, the same result holds, though to the best of the author’s knowledge it is not
written down completely anywhere. There is an argument sketched (by the author) in unpublished
notes [GNR21]. The argument is roughly to follow what Hatcher does for surfaces [Hat14].
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Dimensions five and above

Isotopic Pseudo-isotopic Diffeomorphic

Concordant

We make some remarks on this diagram.

• The blue implication is an immediate consquence of the celebrated “concordance
implies isotopy” theorem, due to Kirby-Siebenmann [KS77, Essay I, Theorem
4.1].

• The fact that diffeomorphism does not imply concordance (and hence any of the
other equivalence relations) can be seen by considering the groups of homotopy
spheres (see [KM63]). For example, there are 28 different homotopy 7-spheres
up to concordance, but only 15 up to diffeomorphism. We elaborate. Let Σ be a
homotopy 7-sphere. Then Σ and −Σ are diffeomorphic (the identity map is an
orientation-reversing diffeomorphism between the two), but Σ is not concordant
to −Σ in general, as shown in the computations of these groups of homotopy
spheres.



Chapter 3

Non-smoothable homeomorphisms of
closed, simply-connected 4-manifolds

In the previous chapter, we established a correspondence between diffeomorphic but
not isotopic smooth structures and non-smoothable homeomorphisms. In this chapter,
we will explicitly construct diffeomorphic but not isotopic smooth structures on the
K3 surface, without appealing to this correspondence. This has the benefit of us being
able to describe the smooth structures more explicitly, although at the cost of making
the construction a bit more involved. This compares with previous examples which
only produce non-isotopic but diffeomorphic smooth structures via Proposition 2.3.2,
i.e. non-explicitly. We now state the results of this chapter, starting with the one
which was already stated in the introduction as Theorem 1.2.16.

Theorem 3.0.1. There exists a countably-infinite family of smooth structures {Sa}a∈Z

on the K3 surface such that K3Si
∼= K3Sj

for all i, j ∈ Z, but Si is not isotopic to
Sj for all i ̸= j.

Theorem 3.0.1 is deduced using the following technical theorem, which is inspired
by Fintushel-Stern and Sunukjian [FS98, Sun15a].

Theorem 3.0.2. Let XS be a closed, smooth 4-manifold with the following properties:

1. X is simply-connected.

2. XS contains near-cusp embedded (see Definition 3.1.1) tori T1 and T2 with [T1] ̸=
[T2] non-trivial in H2(X).

3. The tori Tk both have immersed dual spheres.

4. There exists a diffeomorphism f : XS → XS such that f(T1) = T2.

5. The Seiberg-Witten invariant of XS is non-vanishing.

Then performing knot surgery on T1 and T2 separately produces two smooth structures
S1,S2 on X such that XS1

∼= XS2 but S1 is not isotopic to S2.
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Remark 3.0.3. Condition (1) could be weakened to account for a wider class of funda-
mental groups, but we will only need the simplest case for proving Theorem 3.0.1. For
example, one could widen it to include π1(X) ∼= Z or Z ⊕ Z by using the classification
results of Freedman and Quinn in [FQ90, Theorem 10.7A] or of Hambleton, Kreck and
Teichner in [HKT09], respectively.

Remark 3.0.4. A useful class of manifolds to work with to ensure that condition (5)
is satisfied are symplectic manifolds. All simply-connected symplectic manifolds with
b+

2 ≥ 2 are known to have non-vanishing Seiberg-Witten invariant due to Taubes
[Tau94].

§ 3.0.1 | Chapter outline

In Section 3.1 we will prove Theorem 3.0.2 using knot surgery and the Seiberg-Witten
invariant. In Section 3.2, we then use this theorem to construct a family of examples
on the K3-surface which will prove Theorem 3.0.1.

§ 3.1 | Knot surgery
We prove Theorem 3.0.2 using knot surgery and the Seiberg-Witten invariant. In
Section 3.1.1 we define the knot surgery and show that under certain conditions it does
not change the homeomorphism type of the initial manifold. In Section 3.1.2 we define
the Seiberg-Witten invariant and state the effect of knot surgery on it. The proof of
Theorem 3.0.2 is then given in Section 3.1.3.

§ 3.1.1 | The knot surgery operation

We begin with a definition.

Definition 3.1.1. Let T be an embedded torus in a smooth 4-manifold X and let α
and β be embedded curves in T which represent generators of the fundamental group
π1(T ). We say that T is near-cusp embedded if both α and β bound discs of self-
intersection number −1 in X. The curves α and β are referred to as the vanishing
circles.

Remark 3.1.2. Equivalently, and more naturally, T being near-cusp embedded means
that there exists a neighbourhood of T which looks like the neighbourhood of a cusp
fibre in an elliptic fibration, where T is a regular fibre (see later in Section 3.2.1). Note
that a cusp-fibre neighbourhood is simply-connected, as it results from attaching two
2-handles of framing −1 to S1 × S1 ×D2 which kill the generators of the fundamental
group of S1 × S1.

We now formalise two setups that we will be using throughout.

Setup 3.1.3. (Smooth setup) Let X be a compact, orientable, smooth 4-manifold (if X
is not simply-connected assume ∂X = ∅), let T ⊂ X be a near-cusp embedded torus
with an immersed geometric dual sphere, and let K ⊂ S3 be a knot.
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Setup 3.1.4. (Topological setup) Let X be a compact, orientable 4-manifold (if X is
not simply-connected assume ∂X = ∅), let K ⊂ S3 be a knot, and let T ⊂ X be an
embedded torus satisfying the following two conditions.

(i) There exists a topologically immersed geometric dual sphere to T .

(ii) The inclusion induced map on fundamental groups π1(T ) → π1(X) is trivial.

From Definition 3.1.1, it is clear that the smooth setup implies the topological
setup.

Definition 3.1.5. The knot surgery with respect to (X,T,K) as in Setup 3.1.3 is
defined to be the manifold

XK := X \ νT ∪∂ EK × S1

where EK is the knot exterior of K and νT denotes the (trivial) tubular neighbourhood
of T in X, and the identification of the boundaries is made in the following manner.
We identify the boundary of EK × S1 with S1 × S1 × S1 as follows: a meridian to
K is identified with the first S1 factor, and the 0-framed longitude to K is identified
with the third S1 factor (the leftover S1 factor is then identified with the second S1

factor). The boundary ∂(X \ νT ) ∼= T × S1 is then identified with S1 × S1 × S1 in
the obvious way. At this point there are still some choices to be made to determine
the gluing map, but we will ignore these and instead call any resulting manifold after
making these choices to be the knot surgery. For more details on this, see Fintushel
and Stern [FS98, §1] or Scorpan [Sco05, §12.3].

The principal aim of knot surgery is to create exotic copies of manifolds, i.e. to
find XK homeomorphic but not diffeomorphic to X. First, we show that under certain
conditions knot surgeries give homeomorphic manifolds. We begin by showing that
knot surgery preserves the fundamental group.

Lemma 3.1.6. Let X, T , K be as in Setup 3.1.4. Then π1(XK) ∼= π1(X\νT ) ∼= π1(X).

Proof. Note that the second isomorphism is actually a consequence of the first, as
XU = X, where U denotes the unknot in S3. Let z denote the image inside π1(X \νT )
of the meridian to the torus in ∂X \ νT ∼= T × S1. A straightforward Seifert-Van
Kampen argument shows that π1(XK) ∼= π1(X \ νT )/⟨z⟩. However, the existence of a
geometric dual sphere for T implies that z is trivial, completing the proof.

If the fundamental group π1(X) has an associated homeomorphism classification
result for 4-manifolds with such a fundamental group which is sufficiently workable,
we can use this to conclude that Xk ≈ X. In this chapter, we will restrict ourselves to
the cases π1(X) ∼= 0,Z/d or Z ⊕ Z. We will assume that X is closed aside from in the
simply-connected case.
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We now briefly recap the terminology used in the relevant classification results. Let
X̃ denote the universal cover of X. We say that X has type (I) if w2(X̃) ̸= 0, type
(II) if w2(X) = 0, and type (III) if w2(X) ̸= 0 but w2(X̃) = 0. Type (I) manifolds are
called totally non-spin, type (II) manifolds are called spin, and type (III) manifolds
are called almost spin. A spin-structure s is a lift of the classifying map tX of the
topological tangent bundle of X

BTOPSpin

X BTOP .

s

tX

If X is smooth then this definition matches with the (many) classical definition(s) (see
[Kir89, Section IV]). In particular, a spin structure on X exists if and only if w2(X) =
0 ∈ H2(X;Z/2), and, if they exist, spin structures on X are in (non-canonical) bijection
with H1(X;Z/2). Given a spin structure s on X ′ and a homeomorphism f : X → X ′,
we write f ∗(s) for the pull-back spin structure. 1

In the simply-connected case with non-empty boundary we will need the following
definition.

Definition 3.1.7. Let X1, X2 be oriented, compact, simply-connected 4-manifolds.
Let (f,Ψ) be a pair consisting of a homeomorphism f : ∂X1 → ∂X2 and an isometry of
the intersection forms Ψ: H2(X1) → H2(X2). Then we say that f and Ψ are compatible
if the following diagram commutes.

H2(∂X1) H2(X1) H2(X1)∗ H1(∂X1)

H2(∂X2) H2(X2) H2(X2)∗ H1(∂X2)

f∗ Ψ f∗Ψ∗

Theorem 3.1.8 ([Fre82], [Boy86], [FQ90], [Wan93], [SW00], [HK93a], [HKT09]). First
fix π to be Z/d for some d ≥ 0 or Z ⊕ Z. Let X1, X2 be smooth, oriented, compact
4-manifolds with a fixed identification π1(X1) ∼= π ∼= π1(X2) and assume that ∂Xi = ∅
unless π is trivial, in which case assume ∂X1 ∼= ∂X2. This gives an identification
H2(Xi;Z[π1(Xi)]) ∼= H2(Xi;Z[π]). If X1 and X2 have the same type, we have the
following cases.

1. Assume π ∼= Z/d for d ̸= 0 or 1. Then given any isometry of the intersection
forms

Ψ: H2(X1)/Tors → H2(X2)/Tors

there exists a homeomorphism φ : X1 → X2 inducing Ψ (here Tors denotes the
torsion subgroup of the corresponding homology group).

1The fact that this defines a spin structure on X is not immediately apparent (note that f∗(s) is
a lift of f ◦ tX′ , not of tX) but this definition will in fact make sense by arguments similar to those
we will use in a later section (see Lemma 5.2.7).
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2. Assume π ∼= Z or Z⊕Z. Then given any isometry of the equivariant intersection
forms

Ψ: H2(X1;Z[π]) → H2(X2;Z[π]),

there exists a homeomorphism φ : X1 → X2 inducing Ψ.

3. Assume π is trivial and, if X1 is spin, let sX1, sX2 denote the spin structures on
X1 and X2, respectively. Then given any homeomorphism f : ∂X1 → ∂X2 and
any isometry of the intersection forms

Ψ: H2(X1) → H2(X2)

which are compatible and, if X1 is spin, satisfy that sX1 |∂X1 = f ∗(sX2|∂X2), then
there exists a homeomorphism φ : X1 → X2 such that φ|∂X1 = f and, if X1 is
spin, φ induces Ψ.

We will need the following technical lemmas. After which we will prove that knot
surgery preserves homeomorphism type.

Lemma 3.1.9. Let K be a knot in S3 and let U denote the unknot. Then there exists
a degree one map υ : EK → EU restricting to the identity map on the boundary.

The above lemma is well-known. For a proof see (for example) [BBRW16, Proposi-
tion 1]. For it to make sense for υ to be the “identity map” on the boundary, we have
fixed an identification of ∂EK = S1 ×S1 using the 0-framed longitude and a meridian.

Lemma 3.1.10. Let X, T and K be as in Setup 3.1.4. Assume X \ νT is spin. Then
XK is also spin. Furthermore, given a spin structure on X \ νT , we can find a spin
structure on XK which matches the spin structure on X \ νT .

Proof. Consider a given spin structure s on X restricted to ∂(X \ νT ) ∼= S1 ×S1 ×S1.
Note that s extends over νT ∼= T × D2, and hence there are four possibilities for
the restriction spin structure s|S1×S1×S1 . Conversely, there are four choices of spin
structures on EK × S1, and, by restricting to the boundary, these give rise to four
distinct spin structures on ∂(EK × S1) ∼= S1 × S1 × S1. Using the degree one map
EK ×S1 → EU ×S1 ∼= T ×D2, we see that these are precisely the four spin structures
which extend over T × D2, and so regardless of how s restricts to ∂(X \ νT ), we can
pick a spin structure on EK × S1 such that s|X\νT extends to a spin structure on XK .

The ‘furthermore’ part of the statement follows by the construction.

Lemma 3.1.11. Let X, T , K be as in Setup 3.1.4. Further assume that π1(X) ∼= Z/d
for some d ≥ 0 or π1(X) ∼= Z ⊕ Z, and, if π1(X) is not trivial, assume that ∂X = ∅.
Then X and XK have the same type.

Proof. We first show that XK is spin if and only if X is spin. Assume X is spin. Then
X \ νT is spin, and hence, by Lemma 3.1.10, XK is spin. Assume XK is spin. Then
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XK \ νT = X \ νT is spin and again, Lemma 3.1.10, XU = X is spin. This handles
types (I) and (II).

We now show that X̃K is spin if and only if X̃ is spin. Assume X̃ is spin. Since
π1(T ) → π given by the inclusion is trivial, T lifts into the cover as π1(X) many disjoint
copies. Denote these copies by Tt∈π. Repeatedly applying Lemma 3.1.10 to all of the
Tt∈π shows that (X̃)K is spin, where (X̃)K denotes the manifold formed by performing
the same knot surgery on all of the Tt∈π in X̃. Since the map π1(EK × S1) → π given
by the inclusion is trivial, it follows that X̃K

∼= (X̃)K . Hence, X̃K is spin. Assume now
that X̃K is spin. A similar reverse argument shows that X̃U = X̃ is also spin. This
handles type (III).

Proposition 3.1.12. Let X, T , K be as in Setup 3.1.4. Further assume that π1(X) ∼=
Z/d for some d ≥ 0 or π1(X) ∼= Z ⊕ Z, and, if π1(X) is not trivial, assume that
∂X = ∅. Then there exists a homeomorphism XK → X.

In this thesis we will only ever use Proposition 3.1.12 in the simply-connected, spin
case, so the reader may safely ignore the other cases if they wish.

Proof of Proposition 3.1.12. The aim here is to use Theorem 3.1.8. The first step is to
establish the existence of an isometry between the (equivariant) intersection forms on
XK and X. Let π := π1(X) and note that by Lemma 3.1.6 we have an identification
π1(XK) ∼= π. Recall that we only have to consider the equivariant intersection form
(and hence local coefficients) in the case π ∼= Z or π ∼= Z ⊕ Z, but we shall write out
the argument with local coefficients since this is the most complicated case.

Define F to be the identity map on XK \ νT and υ× Id on EK ×S1, where υ is the
degree one map from Lemma 3.1.9. Note that this means that F sends the fundamental
class ofXK to the fundamental class ofX. Consider the following commutative diagram
formed out of the Mayer-Vietoris sequences for XU = X and XK . The horizontal maps
are induced by F and its restrictions.

H2(T 3;Z[π]) H2(T 3;Z[π])

H2(X \ νT ;Z[π]) ⊕H2(EK × S1;Z[π]) H2(X \ νT ;Z[π]) ⊕H2(EU × S1;Z[π])

H2(XK ;Z[π]) H2(X;Z[π])

H1(T 3;Z[π]) H1(T 3;Z[π])

H1(X \ νT ;Z[π]) ⊕H1(EK × S1;Z[π]) H1(X \ νT ;Z[π]) ⊕H1(EU × S1;Z[π])

∼=

∼=

F∗

∼=

∼=

In the π trivial case it is easy to see that the four outer horizontal maps are iso-
morphisms. The fact that they are still isomorphisms with local coefficients follows
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because the local coefficients here are trivial in all but two cases by the assumption on
T in Setup 3.1.4. In the two cases where the local coefficients are not trivial, the maps
H∗(X\νT ;Z[π]) → H∗(X\νT ;Z[π]), these maps are induced by the identity, and hence
are still isomorphisms. By the five lemma, the map F∗ : H2(XK ;Z[π]) → H2(X;Z[π]) is
an isomorphism. One can similarly show that F ∗ is an isomorphism. In the case where
π is finite cyclic, F∗ induces an isomorphism on the quotient by the torsion subgroups.
We now show that F∗ is an isometry of the equivariant intersection form.

Let λXK
and λX denote the equivariant intersection forms on XK and X, respec-

tively, and denote the fundamental classes of X and XK as [X] and [XK ], respectively.
Observe that, since F is degree one and F∗ and F ∗ are isomorphisms, the following
diagram commutes.

H2(XK ;Z[π]) H2(XK ;Z[π])

H2(X;Z[π]) H2(X;Z[π])

PD−1

F∗

PD−1

F ∗ (3.1.1)

To see this, note that the corresponding diagram with Poincaré duality maps rather
than Poincaré duality inverses commutes by naturality of cap product and the fact
that F is degree one. It is an exercise to see that changing the horizontal maps to
their inverses still yields a commutative diagram. This implies that, for any x, y ∈
H2(XK ;Z[π]), we have

λX(F∗x, F∗y) =(PD−1 F∗x)(F∗y)
=(PD−1 F∗x)

(
(PD−1 F∗y) ⌢ [X]

)
=(PD−1 F∗x)

(
F ∗((PD−1 F∗y) ⌢ [XK ])

)
=(F ∗ PD−1 F∗x)

(
F ∗((PD−1 F∗y) ⌢ [XK ])

)
= PD−1 x

(
(PD−1 y) ⌢ [XK ]

)
=λXK

(x, y).

The first equality comes from the definition of the equivariant intersection form on
XK ; the second by the definition of the equivariant Poincaré duality isomorphism;
the third by the naturality of the cap product with local coefficients; the fourth by
the definition of the induced map on cohomology; the fifth from the commutativity of
Equation (3.1.1); and the final one by the definition of the equivariant intersection form
on X. For a reference on equivariant intersection forms, cap products and Poincaré
duality with local coefficients, see [Ran02, Chapter 4.5] (c.f. [Ste43]). Note that the
above argument still works in the case where π is finite cyclic, as the Poincaré duality
isomorphism induces an isomorphism on the quotients by the torsion subgroups.

In the closed case, it suffices to show now that X and XK have the same type, but
this was precisely established by Lemma 3.1.11. We are then done by Theorem 3.1.8.

We finish with the simply-connected case with non-empty boundary, and consider
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the issue of trying to extend the identity map on the boundary to a homeomorphism
X → XK . First, since F∗ restricts to the identity map on XK \ νT , it follows that the
pair (Id∂X , F∗) are compatible. If X is non-spin, then this means we are already done
by 3. of Theorem 3.1.8, although the homeomorphism XK → X may not induce the
same isometry as given by F∗ (one could likely improve this, but we will not attempt
to do so). If X is spin, then Lemma 3.1.10 implies that the additional hypothesis on
spin structures in 3. of Theorem 3.1.8 is satisfied, and hence we have a homeomorphism
XK → X, inducing F∗.

Remark 3.1.13. We could drop the requirement for X to be a smooth manifold in
Proposition 3.1.12 by considering the Kirby-Siebenmann invariant ks(X) (see Defini-
tion 5.2.1), which is an obstruction to X being smoothable (i.e. it vanishes if X admits
a smooth structure). The Kirby-Siebenmann invariant is additive across unions (see
[FQ90, §10.2B]) and so

ks(XK) = ks(X \ νT ) + ks(EK × S1)
= ks(X) + ks(νT ) + ks(EK × S1).

Since EK × S1 and νT both admit an obvious smooth structure, we have that

ks(EK × S1) = 0 = ks(νT )

and hence ks(XK) = ks(X). Therefore XK is homeomorphic to X, even if we start
with a non-smoothable X. Whilst all of this true, it is not particularly useful since knot
surgery is only really interesting for its effect on the smooth structure on a manifold.

§ 3.1.2 | The Seiberg-Witten invariant

As is standard, we will consider the Seiberg-Witten invariant of a manifold X as an
element of the group ring Z[H2(X)]. The following theorem demonstrates that knot
surgery can be used to produce exotic 4-manifolds, but first we recall the definition of
the Seiberg-Witten invariant.

Definition 3.1.14. Let X be a smooth 4-manifold and let Spinc(X) denote the
set of Spinc structures on X. The Seiberg-Witten invariant is defined as a map
SW : Spinc(X) → Z which counts the number of solutions (the number of points
in the moduli space of solutions) to the Seiberg-Witten equations on X given a par-
ticular choice of Spinc structure. Provided that H2(X) has no 2-torsion, there is a
one-to-one correspondence between Spinc(X) and LX ⊂ H2(X) the subset consisting
only of cohomology classes congruent to the second Stiefel-Whitney class w2(X) mod
2 (see Nicolaescu [Nic00, Exercise 1.3.12]). Note that for a spin manifold X this means
that LX consists precisely of the even classes in H2(X). In this chapter we will only
ever deal with cases in which H2(X) has no 2-torsion, and so we will make this identi-
fication implicitly in what follows throughout. A cohomology class c ∈ LX is called a
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basic class if SW(c) ̸= 0.
We can then define the total Seiberg-Witten invariant as an element of Z[H2(X)]

in the following way. Define

SW(X) =
∑

c basic class
SW(c)c∗

where c∗ ∈ H2(X) denotes the Poincaré dual of c.
Since we will only deal with the total invariant, we will refer to this instead as the

Seiberg-Witten invariant.

We now state Fintushel and Stern’s result describing how the Seiberg-Witten in-
variant changes after performing knot surgery.

Theorem 3.1.15 ([FS98, Theorem 1.5]). Let X, T , K be as in Setup 3.1.3 and let
φ : XK → X be the homeomorphism from Proposition 3.1.12. Then

φ∗(SW(XK)) = SW(X) · ∆K(2[T ])

where ∆K is the Alexander polynomial of K.

§ 3.1.3 | Proof of Theorem 3.0.2

After one final lemma, we conclude this section by providing a proof for our technical
theorem.

Lemma 3.1.16. Let X be an oriented, closed, smooth 4-manifold containing two near-
cusp embedded tori T1, T2, each with an immersed geometric dual sphere, and let
f : X → X be a diffeomorphism with f(T1) = T2. Fix a knot K and perform the
same knot surgery with respect to K using T1 and T2 to form two manifolds X1 and
X2, respectively. Then there exists a diffeomorphism of the respective knot surgeries
f̃ : X1 → X2 which matches f outside of a neighbourhood of T1.

Proof. Let νT1 be a tubular neighbourhood of T1 (note that this is trivial as being
near-cusp embedded implies the tori Ti have zero self-intersection numbers), and we
take νT2 := f(νT1) to be the tubular neighbourhood of T2. Choose a knot K and
define the knot surgeries as before:

Xi = (X \ νTi) ∪θi
(EK × S1).

where θ1 is defined following the identifications made in Definition 3.1.5, and θ2 :=
θ1 ◦ f−1. We define θ2 in this way to ensure that the exact same choices are made
for the gluing maps in the two separate knot surgery operations (see Definition 3.1.5).
Now the desired diffeomorphism is given by the map f̃ : X1 → X2, defined as f on
X \ νT1 and as the identity on EK × S1 (the map f̃ is smooth and has an obvious
smooth inverse).
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Proof of Theorem 3.0.2. Let X,T1, T2, f be as in the statement of the theorem and
let K be a knot with ∆K ̸= 1. Then by Theorem 3.1.15 and Proposition 3.1.12,
knot surgeries with respect to K on T1 and T2 produce smooth manifolds X1 and X2

respectively, that are homeomorphic but not diffeomorphic to X. By Lemma 3.1.16
the diffeomorphism f induces a diffeomorphism f̃ : X1 → X2. Let h1 : X1 → X be the
homeomorphism obtained via Proposition 3.1.12 and define another homeomorphism
h2 := f ◦ h1 ◦ (f̃)−1, to give the following commutative (by definition) diagram:

X X

X1 X2

f

h1

f̃

h2

The homeomorphisms h1 and h2 then induce smooth structures S1 and S2, respec-
tively, on X, but these smooth structures are not equal as their Seiberg-Witten invari-
ants are different. Indeed, using Theorem 3.1.15 we see that SW(XS1) = SW(X) ·
∆K(2[T1]), whereas SW(XS2) = SW(X) ·∆K(2[T2]), and these cannot be equal, as we
assumed that SW(X) ̸= 0, [T1] ̸= [T2] and ∆K ̸= 1. Furthermore, any diffeomorphism

XS1 → XS2

isotopic to the identity must induce the trivial map on H2(X), but a diffeomorphism
must send the Seiberg-Witten invariant of one to the Seiberg-Witten invariant of the
other. This prevents any diffeomorphism from inducing the trivial map on H2(X) and
hence prevents any diffeomorphism from being isotopic to the identity, completing the
proof.

§ 3.2 | Non-isotopic but diffeomorphic smooth struc-
tures on the K3 surface

We now use Theorem 3.0.2 to construct an infinite family of non-isotopic but diffeo-
morphic smooth structures on the K3 surface. To do this, we will need to understand
the topology of the K3 surface more carefully. First though, we briefly recall some
concepts about elliptic fibrations.

§ 3.2.1 | Elliptic fibrations

What follows here is intentionally intuitively stated and short on details. For a detailed
treatment of elliptic fibrations see [GS99, §3], or for something more intermediary see
[Sco05, §8].

Let X be a smooth, closed, oriented 4-manifold and C a complex curve. We say a
map π : X → C is an elliptic fibration if each fibre π−1(t) for t ∈ C generically looks
like an elliptic curve (a 2-torus) in a holomorphic fibration. This definition allows
for the existence of so-called singular fibres which were subsequentially classified in
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[Kod63]. Non-singular fibres are referred to as regular fibres. For our purposes, the
only singular fibres we care about are ‘cusp fibres’ which look like 2-spheres away from
a singular point whose neighbourhood looks like the cone on a trefoil knot. We defined
a cusp-fibre neighbourhood earlier in Definition 3.1.1, which gives an alternative way
of viewing this. In that context, the cusp fibre results from the simultaneous collapse
of both of the vanishing circles.

Two elliptic fibrations X1, X2 may be glued together as a fibre-sum by removing the
neighbourhoods of two regular fibres Fi ⊂ Xi and identifying the resulting boundaries
via an orientation-reversing diffeomorphism θ. In symbols this is written as

X1#fibX2 := (X1 \ νF1) ∪θ (X2 \ νF2).

The resulting manifold then also has the structure of an elliptic fibration. We now
move on to understanding the K3 surface.

§ 3.2.2 | A model for the K3 surface

This is the standard model for the K3 surface where we exhibit it as an elliptic fibration
explicitly.

Definition 3.2.1. We define the manifold E(1) := CP2#9CP2 as the complex pro-
jective plane blown up nine times. This can be made into an elliptic fibration in the
following way. First, take two generic cubics p0 and p1 on CP2 that intersect in nine
points Pi for i = 1, . . . , 9. For any point Q ∈ CP2 \ {P1, . . . , P9} there exists a unique
[t0 : t1] ∈ CP1 such that Q lies on the curve p[t0:t1] := t0p0 + t1p1 = 0. This gives
the elliptic fibration map from CP2 \ {P1, . . . , P9} → CP1 which can be ‘extended’
onto the missing points by performing blow-ups at each Pi. We then form E(n) by
performing fibre sums on n copies of E(1), and define the K3 surface to be E(2).

The K3 surface is a closed, simply-connected, symplectic 4-manifold with b+
2 ≥ 2,

with intersection form given as

QK3 := −E8 ⊕ −E8 ⊕H ⊕H ⊕H

where

H :=
0 1
1 0

 , E8 :=



2 1
1 2 1

1 2 1
1 2 1

1 2 1 1
1 2 1

1 2 1
1 1 2


are the standard hyperbolic matrix and E8 matrix, respectively.
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To use Theorem 3.0.2 to produce an infinite family of non-isotopic but diffeomorphic
smooth structures on K3, we need two things: a near-cusp embedded torus T ⊂
K3 with a geometric dual sphere, and a countably infinite family of diffeomorphisms
fi : K3 → K3 such that (fi)∗[T ] ̸= (fj)∗[T ] for all i ̸= j. First, we describe the torus.

Setup 3.2.2. For this setup, we follow Gompf and Mrowka [GM93, §2]. We start by
taking E(1) such that its only singular fibres are cusp fibres (see [GS99, Corollary
7.3.22]) and as in Definition 3.2.1 we remove neighbourhoods of regular fibres and
identify the boundaries together, but this time we will be more explicit. Choose a copy
of the regular fibre F near a cusp fibre and identify its neighbourhood with F × D2,
then identify F = S1 × S1 such that the vanishing circles specifically correspond to
S1 × {1} and {1} × S1. After removing the regular fibre neighbourhoods, we are left
with two manifolds which we call L and L′. Write ∂L = F × S1 = S1 × S1 × S1,
identifying in the obvious manner, and glue this to ∂L′ via

∂L = S1 × S1 × S1 ∋ (z1, z2, z3) → (z1, z2, z
∗
3) ∈ S1 × S1 × S1 = ∂L′.

Now we define the torus T to be the regular fibre F × {1} ⊂ ∂L.

Since this will be useful in the following proposition, we briefly recall the mapping
class group of the 3-torus T 3. Since T 3 is an Eilenberg-Maclane space, the group of
self-homotopy equivalences is isomorphic to the group of automorphisms of Z3, which
is isomorphic to GL(3,Z). Since T 3 is orientable, sufficiently large and irreducible (i.e.
Haken) the main theorem in [Hat76] by Hatcher implies that the mapping class group
is given as π0(Diff+(T 3)) ∼= SL(3,Z). We now describe how a matrix M ∈ SL(3,Z)
determines a self-diffeomorphism of T 3 in this identification. Choose a basis for H1(T 3),
which then gives a basis for the universal cover R3 considered as a vector space over
R. The matrix M then describes a self-diffeomorphism of R3 which descends to a
diffeomorphism on T 3.

Proposition 3.2.3. There exists an infinite family of diffeomorphisms fi : K3 → K3
such that (fi)∗[T ] ̸= (fj)∗[T ] for all i ̸= j.

Proof. First we construct an infinite family of diffeomorphisms of the 3-torus, which
we will then extend to a family of diffeomorphisms of K3. The mapping class group
of the 3-torus is SL(3,Z) as described above. Choose the basis

{e1 := S1 × {1} × {1}, e2 := {1} × S1 × {1}, e3 := {1} × {1} × S1}

for H1(T 3) so that we can write isotopy classes of orientation-preserving diffeomor-
phisms of T 3 via matrices in SL(3,Z). For any a ∈ Z let

Ma :=


1 1 0
a 1 1
2 1 0

 ∈ SL(3,Z).
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By a result of Matumoto [Mat84, Theorem 1], all orientation-preserving diffeomor-
phisms of ∂(E(1) \ νF ) extend over E(1) \ νF and so the diffeomorphism represented
by Ma extends to a diffeomorphism fa : K3 → K3. The induced map from the in-
clusion H2(T 3) → H2(L) is injective (the three generators map to generators in the
hyperbolic summands of the intersection form [GS99, §3.1]) and so it suffices to show
that the images of T under the family Ma are all homologically distinct in H2(T 3).
We pick a basis for H2(T 3) by taking wedge products of our basis for H1(T 3), i.e.
{e1 ∧ e2, e1 ∧ e3, e2 ∧ e3}, with [T ] = e1 ∧ e2. A simple computation gives

Ma(e1 ∧ e2) =


1 − a

−1
a− 2

 ∈ H2(T 3) ∼= Z3

and so the images are homologically distinct, completing the proof.

Lemma 3.2.4. The regular fibre T in K3 has an immersed dual sphere.2

Proof. Consider one of the self-intersection number −1 spheres in E(1) corresponding
to one of the blow-ups. This sphere intersects every regular fibre of E(1) exactly once.
When we form E(2) = L ∪ L′ there is now a new sphere formed from the sum of two
of these spheres (one from each copy of E(1)) which now has self-intersection number
−2 but still intersects the regular fibre geometrically once.

§ 3.2.3 | Proof of Theorem 3.0.1

The proof of the existence of non-isotopic but diffeomorphic smooth structures on the
K3 surface using Theorem 3.0.2 now follows easily.

Proof of Theorem 3.0.1. Let T again be as in Setup 3.2.2 and let {fa}a∈Z be the family
of diffeomorphisms obtained from Proposition 3.2.3. Pick a knot K with ∆K ̸= 1.
Then performing knot surgery using K separately on each tori in {fa(T )}a∈Z produces
a countably-infinite family of smooth structures {Sa}a∈Z on K3. To complete the
proof, we need to verify all of the properties required to use Theorem 3.0.2 on all of
the pairs of tori in {fa(T )}a∈Z.

Property (1) is clear. Property (2) follows from observing that since T is already
near-cusp embedded, all of the images fa(T ) must also be since the diffeomorphism
sends a near-cusp neighbourhood to another near-cusp neighbourhood. By the same
argument, property (3) follows directly from Lemma 3.2.4, and property (4) follows
from Proposition 3.2.3 using the diffeomorphism fb ◦ fa−1 for a, b ∈ Z, which clearly
sends fa(T ) to fb(T ). Finally, property (5) holds since K3 is symplectic, and hence
holds as b+

2 ≥ 2 (see Remark 3.0.4). In fact SW(K3) = 1, also due to Taubes [Tau94].
Since all of the properties hold for all pairs of tori in {fa(T )}a∈Z, applying Theo-

rem 3.0.2 to the pair {fa(T ), fb(T )} for a, b ∈ Z using the knot K produces smooth
2Daniel Ruberman tells me that, in fact, the regular fibre can be arranged to have an embedded

dual sphere, but we will not need this.
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structures Sa and Sb from the family above which now must be diffeomorphic but not
isotopic. Repeating this for all such pairs of tori completes the proof that all of the
smooth structures in {Sa}a∈Z are pairwise diffeomorphic but pairwise not isotopic.



Chapter 4

Non-smoothable homeomorphisms of
simply-connected 4-manifolds with bound-
ary

This chapter concerns non-smoothable homeomorphisms of simply-connected 4-manifolds
which act trivially on the homology of the manifold. In particular, we will prove Theo-
rem 1.2.1 and Theorem 1.2.12 from the introduction. The work in this chapter is joint
with Roberto Ladu, and all of the content can be found, sometimes verbatim, from
[GL23].

Recall that the Torelli subgroup Tor(X, ∂X) ⊂ π0 Homeo+(X, ∂X) is the subgroup
of the topological mapping class group consisting of homeomorphisms whose induced
map on homology is trivial. Recall that, by the work of Perron-Quinn [Per86, Qui86]
the Torelli subgroup in the closed, simply-connected case is always trivial. We wish to
study non-smoothable homeomorphisms which lie in the Torelli subgroup, and hence
we must consider 4-manifolds with non-empty boundary.

We start by restating the theorems that we will prove. First, Theorem 1.2.1.

Theorem 4.0.1. There exists an infinite family of pairwise non-diffeomorphic, com-
pact, oriented, smooth, simply-connected 4-manifolds {Zn}n∈N with fixed connected
boundary Y such that Tor(Zn, Y ) is infinite order and every non-trivial element is
non-smoothable.

In [GL23] we produced two such families, one such that the boundaries are pairwise
not diffeomorphic, and another family {Zn}n∈N such that the boundaries ∂Zn are all
diffeomorphic and the Zn are all homeomorphic relative to their boundaries (Theo-
rem 4.3.1). Furthermore, the first of these families is minimal in the sense that the
produced manifolds have the simplest possible intersection forms. See Remark 4.1.8
for more details. We will only present the second of these families in this chapter. For
more details on the first family, see [GL23].

Recall that the non-smoothability of a homeomorphisms for a manifold with bound-
ary means that it is not isotopic (relative to the boundary) to any diffeomorphism. As
stated previously, this actually implies that the homeomorphism is non-smoothable in
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a stronger sense, in that it is also not isotopic to any diffeomorphism even through
isotopies that do not fix the boundary. We will show this fact in Section 4.4 (see
Definition 2.2.1 and Definition 2.2.5 for the relevant definitions).

Recall that generalised Dehn twists are one way of producing smoothable elements
of Tor(X, ∂X). These are constructed by inserting a loop of diffeomorphisms of the
boundary into a collar of the boundary of the 4-manifold and extending by the identity.
We restate Theorem 1.2.12, which says that this construction does not provide all
smoothable elements of the Torelli group.

Theorem 4.0.2. There exists an infinite family of pairwise non-diffeomorphic com-
pact, oriented, smooth, simply-connected 4-manifolds {Z†

n}n∈N with connected bound-
ary Y and Tor(Z†

n, Y ) of infinite order, such that all mapping classes in Tor(Z†
n, Y ) are

smoothable, but only the identity map is supported on a collar of the boundary and, in
particular, only the identity map is realised by a generalised Dehn twist.

§ 4.0.1 | Chapter outline

In Section 4.1 we recall the classification of Tor(X, ∂X) in terms of algebraic objects
called variations, and prove a key lemma (Lemma 4.1.9) which we will use to detect
elements of the Torelli group. In Section 4.2 we prove technical conditions under which
we can guarantee the existence of non-smoothable elements of the Torelli group. In
Section 4.3 we use the conditions from the previous section to produce our family of
examples and hence prove Theorem 4.0.1. Then in Section 4.4 we consider generalised
Dehn twists and prove Theorem 4.0.2.

§ 4.0.2 | Specific chapter acknowledgements

I thank Roberto Ladu for agreeing to me including this joint work in my thesis. I
specifically thank Mark Powell, Simona Veselá and Burak Özbağcı for their suggestions
for the paper [GL23], where this material comes from.

§ 4.1 | Variations
§ 4.1.1 | Definitions

The aim of this section is to describe the classification of homeomorphisms up to
isotopy for simply-connected, topological, oriented 4-manifolds with boundary. This
classification is due to the work of Osamu Saeki, Patrick Orson, and Mark Powell
[Sae06, OP23]. We will begin by defining what a variation is, which is the central
object involved in the classification.

Definition 4.1.1. Let X be a simply-connected, oriented 4-manifold with boundary
and let f ∈ Homeo+(X, ∂X) be an orientation-preserving homeomorphism relative to
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the boundary ∂X. Then the variation induced by f , denoted as ∆f , is defined as

∆f : H2(X, ∂X) → H2(X)
[Σ] 7→ [Σ − f(Σ)],

where Σ denotes a relative 2-chain. Note that the homology class [Σ − f(Σ)] does not
depend on the choice of representative relative 2-chain Σ [OP23, Section 2.2].

We can also define variations without reference to a homeomorphism.

Definition 4.1.2. Let X be a simply-connected, oriented 4-manifold with boundary
and let ∆: H2(X, ∂X) → H2(X) be a homomorphism. Then we say that ∆ is a
Poincaré variation if

∆ + ∆! = ∆ ◦ j∗ ◦ ∆! : H2(X, ∂X) → H2(X),

where j is the inclusion map of pairs (X, ∅) → (X, ∂X) and ∆! denotes the ‘umkehr’
homomorphism to ∆, defined as the following composition:

∆! : H2(X, ∂X) PD−1
−−−→ H2(X) ev−→ H2(X)∗ ∆∗

−→ H2(X, ∂X)∗ ev−1
−−→ H2(X, ∂X) PD−−→ H2(X).

Following the notation of Orson-Powell, we will denote the set of Poincaré variations
of (X, ∂X) as V(H2(X), λX), where λX denotes the intersection form of X. This
notation is used because it is shown in [OP23, Section 7] that the set of variations only
depends on the isometry class of the intersection form (H2(X), λX), rather than on the
4-manifold specifically.

We can give V(H2(X), λX) the structure of a group due to the following lemma of
Saeki.

Lemma 4.1.3 ([Sae06, Lemma 3.5]). The set V(H2(X), λX) forms a group with mul-
tiplication given by

∆1 · ∆2 := ∆1 + (Id −∆1 ◦ j∗) ◦ ∆2,

identity the zero homomorphism, and inverse given by

∆−1 = −(Id −∆ ◦ j∗) ◦ ∆.

Further, we have

Lemma 4.1.4 ([Sae06, Lemma 3.2]). Let X be a compact, simply-connected, oriented,
topological 4-manifold with boundary ∂X and let f ∈ Homeo+(X, ∂X). Then ∆f is a
Poincaré variation.

The converse of the above result, that all Poincaré variations are induced via home-
omorphisms, is given by [OP23, Theorem A].
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§ 4.1.2 | The Torelli group

The map which sends a homeomorphism to its variation gives a factorisation of the
map which takes the induced automorphism of the form for a homeomorphism:

π0 Homeo+(X, ∂X) f 7→∆f−−−→ V(H2(X), λX) ∆ 7→Id −∆◦q−−−−−−−→ Aut(H2(X), λX), (4.1.1)

where q : H2(X) → H2(X, ∂X) is the quotient map. It is the result of Freedman–
Perron–Quinn [Fre82, Per86, Qui86] that, for a closed, simply-connected 4-manifold
X, the above composition is a bijection. In particular, all homeomorphisms of a closed
simply-connected 4-manifold that map to the trivial element of Aut(H2(X), λX) are
isotopic to the identity map. For manifolds with non-empty boundary, the classification
is more subtle [OP23, Theorem A], and in particular we can have homeomorphisms that
are not isotopic to the identity but still induce the trivial element of Aut(H2(X), λX)
under 4.1.1.

Definition 4.1.5. Let X be a compact, simply-connected, oriented, 4-manifold with
boundary ∂X. We define the Torelli group Tor(X, ∂X) ⊂ π0 Homeo+(X, ∂X) to be
the subgroup of homeomorphisms that induce the trivial element of Aut(H2(X), λX)
under 4.1.1.

The subgroup of variations which are induced by elements in the Torelli group is
exactly the subgroup of variations satisfying that ∆ ◦ q : H2(X) → H2(X) is the zero
map (note that a variation being induced by a Torelli group element also implies that
q ◦ ∆ is also the zero map). For such Poincaré variations, we can construct a skew-
symmetric pairing in the following way. Let ∆ be a Poincaré variation. Then this gives
rise to a map

(η∆)ad : H1(∂X) → H2(∂X) ∼= H1(∂X)∗

(note that the last isomorphism is given by Poincaré duality and universal coefficients)
by first lifting an element in H1(∂X) to an element in H2(X, ∂X), mapping to H2(X)
using ∆ (note that this image does not depend on the choice of lift) and then noting
that, since q ◦ ∆ = 0 and H3(X, ∂X) = 0, this element lifts uniquely to an element in
H2(∂X). As suggested by the notation, we can interpret this map as the adjoint of a
pairing:

η∆ : H1(∂X) ×H1(∂X) → Z

and it is stated in [Sae06, Proposition 4.2] that this form is skew-symmetric. To see
this, it is enough to verify that ηad

∆ (x)(x) = 0 for any x ∈ H1(∂X), and this fact is
geometrically clear from the definition of ηad. More crucially, we can go the other way.
Let η : H1(∂X) × H1(∂X) → Z be a skew-symmetric pairing. Then we can define a
variation ∆η as the following composition:

H2(X, ∂X) ∂−→ H1(∂X) ηad
−−→ H1(∂X)∗ ev−1

−−→ H1(X) PD−−→ H2(∂X) i∗−→ H2(X) (4.1.2)
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where the map ∂ denotes the connecting homomorphism in the long exact sequence of
the pair and i : ∂X → X denotes the inclusion. We have the following sequence, due
to Saeki.

Proposition 4.1.6 ([Sae06, Proposition 4.2],[OP23, Theorem 7.13]). Let X be a com-
pact, simply-connected, oriented, topological 4-manifold with connected boundary ∂X.
Then the following is a short exact sequence:

0 → ∧2H1(∂X)∗ −→ V(H2(X), λX) −→ Aut(H2(X), λX) → 0.

So it follows that, in the connected boundary case, we have that the variations
which induce the trivial map on homology are in one-to-one correspondence with skew-
symmetric forms on H1(∂X).

We have the following classification of the Torelli group, due to Orson-Powell.

Theorem 4.1.7 ([OP23, Corollary D]). Let X be a compact, simply-connected, ori-
ented 4-manifold with connected boundary ∂X. Then there is an isomorphism of groups:

Tor(X, ∂X)
∼=−→ ∧2H1(∂X)∗,

[f ] 7→ η∆f
.

Remark 4.1.8. It follows from this that Tor(X, ∂X) is non-trivial if and only if b1(∂X) ≥
2. In fact, we can say more. Since X is simply-connected, it must also have b2(X) ≥
b1(∂X) and, if b2(X) = b1(∂X), vanishing intersection form. This follows from the
exact sequence

0 → H2(∂X) → H2(X) λad
−−→ H2(X)∗ → H1(∂X) → 0,

where λad is the adjoint of the intersection form and the penultimate map is the com-
position of the inverse of the evaluation map, Poincaré duality and the connecting
morphism of the long exact sequence of the pair. After tensoring with Q and using
that b2(X) = b1(∂X), the claim is clear. It follows that examples of 4-manifolds with
Tor(X, ∂X) non-trivial must have b2(X) ≥ 2.

§ 4.1.3 | Applying variations to closed manifolds

Let W be a simply-connected, oriented manifold with boundary ∂W . In Section 4.2 we
will want to use variations to prove that a homeomorphism f : (W,∂W ) → (W,∂W ) is
non-smoothable. In doing so, we will need the following lemma.

Lemma 4.1.9. Let W1 be a simply-connected, oriented 4-manifold with boundary
∂W1 ∼= Y , W2 be an oriented 4-manifold with boundary ∂W2 ∼= −Y and let X :=
W1 ∪Y W2 be the closed, oriented union. Let η : H1(∂W1) × H1(∂W1) → Z be a skew-
symmetric pairing, denote by ∆η the induced variation (given by 4.1.2) and denote by
φη : W1 → W1 the induced homeomorphism (given by Theorem 4.1.7). Consider the
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umkehr map to the inclusion i1 : W1 → X,

i!1 : H2(X) PD−1
−−−→ H2(X) i∗1−→ H2(W1) PD−−→ H2(W1, Y ).

Then for any class x ∈ H2(X) we have that

(φη ∪ IdW2)∗(x) = x− (i1)∗∆η(i!1(x)) ∈ H2(X), (4.1.3)

where φη ∪ IdW2 : X → X is the homeomorphism defined as φη on W1 and as IdW2 on
W2.

Proof. Let Σ ⊂ X be an embedded, closed, oriented surface representing x, transverse
to Y (for topological transversality see [FQ90, Theorem 9.5A]).

The statement i!1(x) = [Σ ∩W1] ∈ H2(W1, Y ) is equivalent to the commutativity of
the following diagram:

H2(X) H2(X,W2) H2(W1, Y )

H2(X) H2(W1)

q∗ ∼=

i∗1

PD ∼= PD
∼=

where q∗ is the map induced by the inclusion q : (X, ∅) → (X,W2) which sends [Σ] to
[Σ ∩W1] and the written isomorphism H2(W1, Y ) → H2(X,W2) comes from excision.

We now prove the commutativity of the diagram. Let y ∈ H2(X). Going first to
the right, this maps to i∗1(y) ⌢ [W1, Y ] ∈ H2(W1, Y ) and then to y ⌢ (i1)∗[W1, Y ] ∈
H2(X,W2) by naturality of the (relative) cap product. Going the other way, y ∈
H2(X) is mapped to q∗(y ⌢ [X]) = y ⌢ q∗[X] ∈ H2(X,W2), again by naturality
of the (relative) cap product. It remains to be shown that these are equal, i.e. that
q∗[X] = (i1)∗[W1, Y ], but this is clear by the definition of q∗. This completes the proof
that the diagram commutes.

As a singular 2-chain, Σ = (Σ ∩ W1) + (Σ ∩ W2) ∈ C2(X). Similarly, the singular
2-chain induced by (φη ∪ IdW2)(Σ), i.e. the left hand side of 4.1.3, is equal to the sum
φη(Σ ∩W1) + (Σ ∩W2) in C2(X). Hence we have that:

Σ − (φη ∪ IdW2)(Σ) = (Σ ∩W1) − φη(Σ ∩W1) ∈ C2(X).

The right hand side is homologous to the cycle induced by the glued-up surface

(Σ ∩W1) ∪ −φη(Σ ∩W1)

which is equal to (i1)∗∆η([Σ ∩W1]) by Definition 4.1.1.

§ 4.2 | Sufficient conditions for non-smoothability
In this section, all manifolds will be considered to be smooth. For any closed, oriented,
4-manifold X, we will denote by Spinc(X) the set of isomorphism classes of spinc-
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structures on X, and by I(X, ·) : Spinc(X) → Y a map taking values in an abelian
group Y such that the action of Diffeo+(X) on H2(X) by pull-back preserves the set
of I-basic classes, defined as

BI(X) := {c1(s) ∈ H2(X) | I(X, s) ̸= 0, s ∈ Spinc(X)},

and moreover this set is finite. For example, if b+
2 (X) ≥ 2, and s ∈ Spinc(X), I(X, s)

may be taken to be the Seiberg-Witten invariant SW(X, s) [Wit94], the Ozsváth-Szabó
mixed invariant [OS06], or the Bauer-Furuta invariant [BF04]. The finiteness of Bauer-
Furuta basic classes is not stated explicitly in [BF04], but can be proved using curvature
inequalities as observed in the proof of [MMP20, Theorem 4.5]. For us, we will only
be interested in taking I(X, s) to be the Seiberg-Witten invariant, which was already
introduced in Section 3.1.2.

We now prove the proposition that we will use to detect non-smoothability for
homeomorphisms in the Torelli group.

Proposition 4.2.1. Let W 4 be a compact, oriented 4-manifold with connected boundary
Y . Suppose that π1(W ) = 1 and that b1(Y ) ≥ 2. If W embeds in a closed, oriented
4-manifold X such that for some s ∈ Spinc(X),

1. I(X, s) ̸= 0,

2. i∗Y,X(c1(s)) ∈ H2(Y ) is non-torsion where iY,X : Y ↪→ X is the inclusion,

3. H1(X \W ) = 0,

then there exists infinitely many non-smoothable mapping classes in Tor(W,Y ). If in
addition b1(Y ) = 2 then any non-trivial element of Tor(W,Y ) is non-smoothable.

Proof. To avoid clutter, it is convenient to denote ζX := c1(s) and its restrictions by
ζW := i∗W,Xc1(s) and ζY := i∗Y,Xc1(s).

Since ζY ∈ H2(Y ;Z) is not torsion PD(ζY ) = dv1, for some d ∈ Z \ {0} and an
indivisible element v1 ∈ H1(Y ;Z). Extend v1 to v1, . . . , vb1(Y ) ∈ H1(Y ), a lift of a basis
of H1(Y )/Torsion(H1(Y )). Now we set η := v∗

1 ∧v∗
2 ∈ ∧2(H1(Y )∗) where v∗

i denotes the
Hom dual with respect to the above basis (note that v2 ̸= 0 exists since we assumed
b1(Y ) ≥ 2).

By Theorem 4.1.7, for each k ∈ Z\{0}, there is a unique mapping class in Tor(W,Y )
associated to kη, and we define φk ∈ Homeo+(W,Y ) to be an arbitrary representative
of that class. By construction, each φk acts trivially on H2(W ). The rest of the proof
is devoted to showing that φk is non-smoothable for infinitely many values of k.

For each k, we define φ̂k := φk ∪ IdX\int(W ) ∈ Homeo+(X) as in Lemma 4.1.9 to
be the homeomorphism obtained by extending φk as the identity on X \W . The non-
smoothability of φ̂k for infinitely many k, which we are now going to prove, implies the
analogous statement for φk.
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We will show that {φ̂∗
kζX}k∈Z\{0} is infinite. Since BI(X) is finite, and is preserved

by the action of Diff+(X), we will reach a contradiction.
It follows from Lemma 4.1.9 that

(φ̂k)∗(PD(ζX)) = PD(ζX) − (iW,X)∗ ◦ ∆φk
(PD(ζW )) ∈ H2(X). (4.2.1)

From 4.1.2 we see that

(iW,X)∗ ◦ ∆φk
(PD(ζW )) = k · (iY,X)∗ ◦ PD ◦ev−1 ◦ ηad ◦ ∂ ◦ PD(ζW ) ∈ H2(X).

We claim that the right hand side is equal to a non-torsion element times k. This will
imply the desired result by 4.2.1. We have that

(iW,X)∗ ◦ ∆φk
(PD(ζW )) = k · (iY,X)∗ ◦ PD ◦ev−1 ◦ ηad ◦ ∂ ◦ PD(ζW )

= k · (iY,X)∗ ◦ PD ◦ev−1 ◦ ηad ◦ PD(ζY )
= k · (iY,X)∗ ◦ PD ◦ev−1 ◦ ηad(dv1)
= kd · (iY,X)∗ ◦ PD ◦ev−1(v∗

2).

Since v2 is non-torsion and the maps ev−1 and PD are isomorphisms, the claim will
follow if we prove that

(iY,X)∗ : H2(Y ) → H2(X)

is injective. Note that
(iY,X)∗ = (iW,X)∗ ◦ (iY,W )∗.

The kernel of (iY,W )∗ is equal to the image of H3(W,Y ) → H2(Y ) in the long exact
sequence of the pair, which is trivial since H3(W,Y ) ∼= H1(W ) = 0. Similarly the
kernel of (iW,X)∗ is equal to the image of H3(X,W ) → H2(W ) which is zero because
H3(X,W ) ∼= H3(X \ int(W ), Y ) by excision and, by assumption, 0 = H1(X \ W ) ∼=
H3(X \ int(W ), Y ). Being the composition of injective maps, iY,W is injective. This
completes the proof that there are infinitely many non-smoothable mapping classes in
Tor(W,Y ).

To prove the last statement we assume now that b1(Y ) = 2. Then, under the
isomorphism from Theorem 4.1.7, we can identify Tor(W,Y ) with the infinite cyclic
group generated by η. Above we showed that there exists k0 > 0 such that φkη is non-
smoothable for any |k| > k0. The non-smoothability of Tor(W,Y )\{IdX} follows from
this by using the fact that smoothable mapping classes form a subgroup of Tor(W,Y )
and that all non-trivial subgroups of Z are infinite.

§ 4.3 | Constructing examples
In this section we will construct the infinite family of examples of non-smoothable
homeomorphisms which lie in the Torelli subgroup, hence proving Theorem 4.0.1.

Let Z be the 4-manifold with boundary defined by the Kirby diagram in Fig-
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Figure 4.1: (a) Kirby diagram for the 4-manifold Z, (b) Kirby diagram showing an
embedding of Z into K3#2CP2.

ure 4.1 (a). Let T ⊂ int(Z) be the embedded torus obtained by capping the genus one
Seifert surface for the red trefoil knot with the core of the handle attached along it.
From the diagram it is clear that [T ] ̸= 0 ∈ H2(Z) and [T ]2 = 0.

For any n ∈ N we define the knot K(n) to be the twist knot with Alexander
polynomial ∆K(n) = −(2n− 1) +n(t+ t−1), and EK(n) to be the knot exterior of K(n)
in S3. Then we define Zn := E(K) × S1 ∪∂ (Z \ νT ) to be the manifold obtained by
performing knot surgery Definition 3.1.5 on the torus T using the knot K(n). Since
the knot surgery only changes the manifold in the interior, we have an identification
∂Zn ∼= Y := ∂Z.

Theorem 4.3.1. The 4-manifolds {Zn}n∈N are all homeomorphic relative to Y , but
pairwise not diffeomorphic relative to Y . They are all simply-connected with intersec-
tion form (Z2 ⊕ Z2, [ 0 1

1 −2 ] ⊕ 0) and have infinite Tor(Zn, Y ). Moreover, all non-trivial
elements of the Torelli group Tor(Zn, Y ) are non-smoothable.

Proof. The torus T ⊂ Z embeds in a Gompf nucleus N(2) [Gom91] by construction
and so, in particular, it is near-cusp embedded (see Definition 3.1.1). Hence, the first
part of the first statement follows directly from Proposition 3.1.12. In Figure 4.1(b)
we depict an embedding of Z into X := K3#2CP2, whose Kirby diagram has been
taken from [GS99, Figure 8.16] (see also [AKMR15]). Hence Zn embeds into the closed
manifold Xn obtained by performing knot surgery on T ↪→ X using K(n). From
Theorem 3.1.15 and the blow-up formula [FS95], it follows that the manifolds Xn are
pairwise non-diffeomorphic. Indeed, the Seiberg-Witten invariant of Xn, seen as an
element of the group ring Z[H2(Xn)], is equal to

SW(Xn) = (E1 + E−1
1 )(E2 + E−1

2 )
(
−(2n− 1) + n(F 2 + F−2)

)
, (4.3.1)

where Ei ∈ H2(Xn) are the classes coming from the two blow-ups and F := PD[T ] is
the Poincaré dual to the torus T . Now, since Xn is obtained by capping Zn with a
fixed manifold Q := X \ Z independent from n, the manifolds Zn are pairwise non-
diffeomorphic relative to their boundaries.
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It remains to prove the last statement of the theorem. We want to apply Propo-
sition 4.2.1, so we check that the hypotheses hold. We have that H1(Y ) is iso-
morphic to Z2 generated by v1 := µ2 + µ3 and v2 := µ5, where the µi are the
meridians to the components as shown in Figure 4.1(a). From 4.3.1 we see that
E1 +E2 ∈ H2(Zn) (E1E2 in group ring notation) is a Seiberg-Witten basic class for Xn,
which restricts to ∂ ◦ PD(E1 +E2) = µ3 + µ5 = −2(v1 + v2) in Y . Moreover, the com-
plement Q is obtained by adding only 2-handles and a single 4-handle to Y and hence
H3(Xn, Zn) ∼= H3(Q, Y ) ∼= H1(Q) = 0. Now the final statement of the theorem follows
from Proposition 4.2.1.

§ 4.4 | Generalised Dehn twists
§ 4.4.1 | Absolute non-smoothability and generalised Dehn twists

We begin by reviewing absolute and relative smoothability from the point of view of
spaces of maps.

Let X be an compact, smooth, oriented 4-manifold with boundary ∂X. We will
denote by

Φ : π0 Diff+(X) → π0 Homeo+(X)
Φ∂ : π0 Diff+(X, ∂X) → π0 Homeo+(X, ∂X)

the induced maps on the mapping class groups (see Definition 2.2.2).
Recall the definition of (relative) smoothability (Definition 2.2.1) and absolute

smoothability (Definition 2.2.5). If we let i : π0 Homeo+(X, ∂X) → π0 Homeo+(X)
be the map induced by the inclusion. We can see that φ ∈ π0 Homeo+(X, ∂X) is
absolutely non-smoothable if i(φ) ∈ π0 Homeo+(X) does not belong to im Φ.

Explicitly, the difference between a relatively and an absolutely smoothable home-
omorphism is that in the latter case the isotopy at each time does not need to fix
the boundary pointwise. We now aim to prove that, for 4-manifolds, the concepts of
relative and absolute smoothability coincide. An important role in the proof is played
by generalised Dehn twists [OP23, Section 1.2], which we now review.

Definition 4.4.1. Let X be a compact, smooth, oriented n-manifold with boundary.
Given [γ] ∈ π1 Diff+(∂X), we define the generalised Dehn twist with respect to [γ] to
be the smooth isotopy class of the diffeomorphism φγ : X → X defined on a collar
of ∂X as φ(y, t) = (γ(t)(y), t) ∈ (∂X) × I and extended outside of the collar as the
identity map.

Another point of view is the following. The sequence of inclusion and restriction

Diff+(X, ∂X)→ Diff+(X) → Diff+(∂X)

and the equivalent sequence in the topological category are fibration sequences. This
can be proved using results of Lashof [Las76] and this proof is carried out in [OP23,
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Appendix A] in the topological case. It can be shown that the connecting morphism
π1 Diff+(∂X) → π0 Diff+(X, ∂X) of the long exact sequence of homotopy groups is
precisely the map that associates to a loop of diffeomorphisms [γ] its generalised Dehn
twist [φγ] [OP23, Section 1.4].

Proposition 4.4.2. Let X be a compact, smooth, oriented 4-manifold. Then a home-
omorphism f : X → X ′ is (relatively) non-smoothable if and only if it is absolutely
non-smoothable.

Proof. We will prove that relative non-smoothability implies absolute non-smoothability,
the other implication is clear.

Taking the associated long exact sequences and using the map Φ (and analogies
thereof) we obtain the following commutative diagram with exact rows.

π1 Diff+(∂X) π0 Diff+(X, ∂X) π0 Diff+(X) π0 Diff+(∂X)

π1 Homeo+(∂X) π0 Homeo+(X, ∂X) π0 Homeo+(X) π0 Homeo+(∂X)

∼=

i

Φ∂

∂

Φ ∼=

i ∂

where i denotes the maps induced by the inclusion and ∂ denotes the restriction to the
boundary. We are also using here that the inclusion induced map Homeo(Y ) → Diff(Y )
is a homotopy equivalence for any 3-manifold Y [Cer59, Hat83] (we will revisit this fact
in Chapter 9).

Let ϕ ∈ π0 Homeo+(X, ∂X) be absolutely smoothable, i.e. assume that there exists
ψ ∈ π0 Diff+(X) such that Φ(ψ) = i(ϕ). Then since ∂(i(φ)) = Id∂X , the commutativity
and exactness of the diagram implies that there exists ψ′ ∈ π0 Diff+(X, ∂X) such
that i(ψ′) = ψ. Hence Φ∂(ψ′) is equal to ϕ modulo composition with an element in
the image of π1 Diff+(∂X) → π0 Homeo+(X, ∂X). Thus Φ∂(ψ′) = [φγ] ◦ ϕ for some
generalised Dehn twist [φγ], but then ϕ = [φγ]−1 ◦ Φ∂(ψ′) presents ϕ as a composition
of diffeomorphisms, contradicting the non-smoothability of ϕ.

§ 4.4.2 | Realising smoothable elements of the Torelli group by generalised
Dehn twists

Since generalised Dehn twists are supported in a collar of the boundary, it is clear
that these give rise to smooth elements in the Torelli group of the 4-manifold. One
could ask whether generalised Dehn twists generate the whole Torelli group. The next
proposition gives an answer under the assumption that the boundary is connected and
prime; the general case is still unknown to the authors’ best knowledge.

Proposition 4.4.3. Let X be a smooth, compact, simply-connected, oriented 4-manifold
with connected and prime boundary Y . Then the topological Torelli group Tor(X, Y )
is realised by generalised Dehn twists if and only if one of the following holds:

1. b1(Y ) < 2,
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2. b2(Y ) = 2 and Y is Seifert fibered with base orbifold T 2,

3. Y = T 3,

where T n denotes the n-torus.

Proof. We begin by showing that (1) or (3) implies that Tor(X, Y ) is realised by gen-
eralised Dehn twists. First suppose that b1(Y ) < 2. Then ∧2H1(Y )∗ = 0 and hence
Tor(X, Y ) is trivial. The case Y = T 3 can be handled by applying [OP23, Proposition
8.9] to the three generalised Dehn twists induced by the three S1-factors. More pre-
cisely, let α1, α2, α3 be the basis of H1(Y ) induced by the S1-factors of T 3 = S1×S1×S1

and let α∗
1, α

∗
2, α

∗
3 ∈ H1(Y )∗ be the dual basis. Then the element of ∧2H1(Y )∗ associated

to a rotation of the i-th S1-factor is ±α∗
k ∧ α∗

j , where k, j ̸= i [OP23, Proposition8.9],
and hence the three rotations generate the whole Torelli group.

We now show that if neither (1) nor (3) hold, then either (2) holds or Tor(X, Y )
is not realised by generalised Dehn twists. So assume that Y ̸= T 3 and b1(Y ) ≥ 2.
In this case Y is Haken [Wal68, 1.1.6] (therein called sufficiently large), and [Hat76]
implies that π1 Diff(Y ) ∼= Z(π1(Y )), hence in particular is abelian. Then it follows
from [Wal67, Satz 4.1] that either the center Z(π1(Y )) is trivial or Y is Seifert fibered
over an orientable orbifold. In the former case, b1(Y ) ≥ 2 implies that the Torelli
group, being non-trivial, cannot be generated by generalised Dehn twists. In the latter
case, Z(π1(Y )) ∼= Z generated by a principal orbit of the S1-action [Wal67], hence
π1 Diff(Y ) → Tor(X, Y ) cannot be surjective if b1(Y ) > 2, for in this case Tor(X, Y )
has rank at least two.

We finish by showing that (2) implies that Tor(X, Y ) is realised by generalised
Dehn twists. When b1(Y ) = 2 and Y is Seifert fibered over an orientable orbifold,
the quotient is necessarily T 2 [BLPZ03]. Moreover the variation associated to the S1-
action is computed in [OP23, Proposition 8.9] and in this case it generates the whole
of ∧2H1(Y )∗ ∼= Z.

In particular, if the boundary satisfies any of the three conditions of Proposi-
tion 4.4.3 then it is impossible to find a non-smoothable homeomorphism in the Torelli
group.

Given the existence of non-smoothable elements of the Torelli group, we can say
more. It is possible to find smoothable elements of the Torelli group which are not
isotopic to any diffeomorphism supported on a collar of the boundary, let alone are
realised by generalised Dehn twists.

Theorem 4.4.4. Let X be a smooth, simply-connected, oriented, compact 4-manifold
such that there exists a non-smoothable self-homeomorphism φ ∈ Tor(X, ∂X). Then
there exists an integer m ≥ 1 such that

φ# Id: X#(#mS2 × S2) → X#(#mS2 × S2)
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is a smoothable homeomorphism not isotopic to any smooth map supported on a collar
of the boundary.

The proof relies on the following result, which is a direct consequence of Proposi-
tion 5.4.5, due to Freedman-Quinn. We will prove in Proposition 5.4.5 in Chapter 5,
but we state its consequence for simply-connected 4-manifolds now. Note that this also
uses the pseudo-isotopy implies isotopy theorem of Perron and Quinn [Per86, Qui86].

Proposition 4.4.5. Let X be a smooth, simply-connected, compact 4-manifold with
boundary and φ : X → X a self-homeomorphism. Then there exists an integer m ≥ 1
such that

ψ := φ# Id: X#(#mS2 × S2) → X#(#mS2 × S2)

is isotopic to a diffeomorphism relative to the boundary, i.e. φ is stably smoothable.

Proof of Theorem 4.4.4. Let φ ∈ Tor(X, ∂X) be one of the non-smoothable mapping
classes. By Proposition 4.4.5 there exists an integer m ≥ 1 such that

ψ := φ# Id: X#(#mS2 × S2) → X#(#mS2 × S2)

is isotopic to a diffeomorphism. Since ψ was defined by extending φ via the identity
onto the S2 ×S2 summands, we also have that ψ ∈ Tor(X#(#mS2 ×S2)). Now assume
for a contradiction that ψ is supported on a collar of ∂X#(#mS2×S2) ∼= ∂X. Then we
can remove the S2 ×S2 summands and obtain a diffeomorphism ψ′ : X → X. However,
since we have an identification

Tor(X, ∂X) ∼= Tor(X#(#mS2 × S2))

we can see that ∆ψ′ = ∆φ. Hence, by Theorem 4.1.7 we see that ψ′ and φ must be
isotopic relative to the boundary. This contradicts the assumption that φ was not
isotopic to a diffeomorphism, and so we conclude that ψ is not isotopic to any smooth
map supported on a collar of the boundary.

We now obtain Theorem 4.0.2 as a corollary.

Proof. Note that Tor(Zn, Y ) ∼= Z, since H1(Y ) ∼= Z2. Let φn denote the generator of
Tor(Zn, Y ). Applying Theorem 4.4.4 to φn gives a diffeomorphism

ψn : Z†
n

∼=−→ Z†
n

where Z†
n

∼= Zn#(#knS2 × S2) with the integer kn only depending on n. By the iden-
tification Tor(Zn, Y ) ∼= Tor(Z†

n, Y ), we see that ψn generates Tor(Z†
n, Y ) and hence all

of Tor(Z†
n, Y ) is smoothable but only the trivial element can be realised by a diffeo-

morphism supported away on a collar of the boundary.



Chapter 5

The Casson-Sullivan invariant

In this section we define the Casson-Sullivan invariant and prove some of its fundamen-
tal properties. The Casson-Sullivan invariant is named for Andrew Casson and Dennis
Sullivan, and the canonical reference is the collection of papers edited by Andrew
Ranicki [RCS+96].

§ 5.0.1 | Chapter outline

We begin in Section 5.1 by stating the relevant theory about microbundles and classi-
fying spaces which we will need to define the invariant in Section 5.2. In Section 5.3
we investigate to what extent the Casson-Sullivan invariant of a homeomorphism de-
pends on the choice of smooths structures on the manifolds involved. We then establish
the Casson-Sullivan invariant’s fundamental properties in Section 5.4, before proving a
“connected-sum along a circle” formula (Theorem 5.5.3) for the invariant in Section 5.5.

§ 5.1 | Microbundles and classifying spaces
Let TOP(k) = {g : Rk ≈−→ Rk|g(0) = 0} and let O(k) be the group of orthogonal
k-dimensional matrices. Then there are obvious inclusions TOP(k) ↪→ TOP(k + 1)
and O(k) ↪→ O(k + 1), and we denote the corresponding direct limits as TOP and O,
respectively. We will use the notation CAT to stand in for TOP and O. The classifying
spaces BTOP and BO then classify stable Rn fibre bundles and stable vector bundles,
respectively. The universal stable vector bundle has an underlying stable topological
Rn fibre bundle and its classifying map will be denoted as ξ : BO → BTOP. Similarly,
let BDIFF and BTOP denote the classifying spaces of stable DIFF-microbundles and
stable TOP-microbundles, respectively (see [KS77, Essay IV, §10]), and let ξ′ denote
the classifying map of the universal DIFF-microbundle’s underlying TOP-microbundle.

Lemma 5.1.1. Let CAT stand in for TOP or O. Let uCAT : BCAT → BCAT de-
note the classifying map of the universal stable CAT-bundle’s underlying stable CAT-
microbundle. Then uCAT is a homotopy equivalence.

Proof. The Kister-Mazur theorem [Kis64, KL66, SGH73] gives that isomorphism classes
of stable CAT bundles over a CW-complex X are in one-to-one correspondence with
isomorphism classes of stable CAT-microbundles over X. This means that there is
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a natural bijection κCAT : [X,BCAT] ↔ [X,BCAT] defined as the composition of the
natural bijections

[X,BCAT] → CAT(X) → MicCAT(X) → [X,BCAT]

where CAT(X) denotes the set of isomorphism classes of stable CAT-bundles over X
(i.e. stable Rn fibre bundles if CAT = TOP and stable vector bundles if CAT = DIFF)
and MicCAT(X) denotes the set of isomorphism classes of stable CAT-microbundles over
X. In fact, by the definition we can conclude that κCAT = (uCAT)∗. Then naturality
gives the following commutative diagram.

[BCAT,BCAT] [BCAT,BCAT]

[BCAT,BCAT] [BCAT,BCAT]

(uCAT)∗

(uCAT)∗

(uCAT)∗ (uCAT)∗

By a simple diagram chase one can see that there exists an element f ∈ [BCAT,BCAT]
such that (uCAT)∗(f) = IdBCAT and such that (uCAT)∗(f) = IdBCAT . Hence f is the
homotopy inverse of uCAT, completing the proof.

Now replace BO and BDIFF by homotopy equivalent spaces (which we still denote in
the same manner) such that ξ and ξ′ become fibrations. We have the following square
which is a homotopy pullback

BO BDIFF

BTOP BTOP

uDIFF

ξ ξ′

uTOP

and it follows that the fibres of ξ and ξ′ are homotopy equivalent. We will denote this
space as TOP/O. Boardman-Vogt [BV68] showed that we can ‘deloop’ this fibre to
obtain a space B(TOP/O) and that we can extend ξ to the right to obtain the fibration
sequence

TOP/O → BO ξ−→ BTOP p−→ B(TOP/O).

By the above exposition, we can dispense with considering BTOP and BDIFF and we
will consider the classifying map of a TOP-microbundle to be a map to BTOP and the
classifying map of a DIFF-microbundle to be a map to BO. This is helpful as much
is known about the homotopy types of BO, BTOP and TOP/O, whereas it is useful
to work solely with CAT-microbundles, rather than passing between microbundles and
vector bundles depending on the category.

§ 5.2 | Definition of the Casson-Sullivan invariant
Let X be an n-dimensional topological manifold with (potentially empty) boundary
∂X. Further assume that we already have a smooth structure on the boundary ∂X.
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The manifold X admits a stable topological tangent microbundle tX : X → BTOP.
The first obstruction for X to be smoothable is to be able to lift tX to a stable DIFF-
microbundle τX : X → BO which extends the lift τ∂X which is already defined on ∂X,
which we have since we already supposed the existence of a smooth structure on the
boundary. We have the following diagram

BO

∂X X BTOP

B(TOP/O)

ξ

τ∂X

τX

tX
p

It is known [KS77, Essay IV, §10.12] that there is a 6-connected map TOP/O →
K(Z/2, 3), and this means we can consider the composite p ◦ tX as a map X →
K(Z/2, 4) since X is 4-dimensional. The lift τ∂X corresponds to a null-homotopy
ht(τ∂X) of p ◦ (tX|∂X) and, since the inclusion ∂X → X is a cofibration, this homotopy
extends to a homotopy

h̃t(τ∂X) : X × I → B(TOP/O)

such that h̃0(τ∂X) = p ◦ tX and such that h̃1(τ∂X) defines an element

h̃1(τ∂X) ∈ [(X, ∂X), (K(Z/2, 4), ∗)] ∼= H4(X, ∂X;Z/2).

Definition 5.2.1. Let (X, ∂X) be as above. We define the Kirby-Siebenmann invari-
ant

ks(X, ∂X) := h̃1(τ∂X) ∈ H4(X, ∂X;Z/2).

Theorem 5.2.2 ([KS77, Essay IV, §10], [FQ90, Corollary 8.3D]). The stable tangent
microbundle of Xn for 4 ≤ n ≤ 7, written as tX : X → B TOP, lifts to a stable
tangent bundle τX extending the already specified lift on ∂X if and only if ks(X) = 0 ∈
H4(X, ∂X;Z/2).

Remark 5.2.3. In the high-dimensional case (n ≥ 5) this is the first in a sequence of
obstructions (and for n = 5, 6, 7 it is the only one), and the vanishing of all of these
obstructions implies the existence of a smooth structure on X extending the given one
on ∂X. However, for n = 4 we do not have the corresponding geometric outcome
if ks(X) = 0. For example, the manifold E8#E8 has vanishing Kirby-Siebenmann
invariant but does not admit a smooth structure. Instead, one gets that ks(X) = 0
implies that there exists some k ≥ 0 such that X#k(S2×S2) admits a smooth structure
[FQ90, Section 8.6].

Remark 5.2.4. The Kirby-Siebenmann invariant is usually defined as the obstruction
to lifting the stable TOP-microbundle to a stable PL-microbundle, where PL denotes
the piecewise linear category. However, in the dimensions that we will examine there
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is no difference between the DIFF and PL categories, so we will ignore this. Indeed,
there is a 6-connected map from TOP/O to TOP /PL, and TOP /PL is homotopy
equivalent to K(Z/2, 3). We will say no more about the PL category in this thesis.

Definition 5.2.5. Let X be a 4-manifold with (potentially empty) boundary ∂X. We
say that X is formally smoothable if there exists a lift of the stable tangent microbundle
tX : X → BTOP to a stable DIFF-microbundle τX : X → BO extending the already
specified lift on ∂X. We call any such lift a formal smooth structure. Equivalently (by
Theorem 5.2.2), X is formally smoothable if the Kirby-Siebenmann invariant ks(X) =
0 ∈ H4(X, ∂X;Z/2). We say that X is formally smooth if it is equipped with a choice
of lift τX .

Remark 5.2.6. A smooth structure on a topological manifold determines a canonical
formal smooth structure after choosing a Riemannian metric on the manifold. This is
proved by first showing that after choosing a Riemannian metric we have a canonical
bundle isomorphism between a smooth manifold’s tangent bundle and its normal bundle
in the diagonal embedding (see [MS74, Lemma 11.5]), and then observing that the
normal bundle of the diagonal embedding’s underlying topological microbundle has a
canonical microbundle isomorphism to the tangent microbundle of the manifold. Since
the space of Riemannian metrics on a smooth manifold is contractible, this means that
a smooth structure on a topological manifold determines an essentially unique formal
smooth structure.

We wish to define the Casson-Sullivan invariant as the Kirby-Siebenmann invariant
of the mapping cylinder of a homeomorphism, but there is a subtlety that must be
addressed first. Let f : X → X ′ be a homeomorphism of (formally) smooth manifolds.
Let tX , tX′ denote the classifying maps of the TOP-microbundles of X and X ′ and
let τX and τX′ denote their corresponding lifts to BO given by their (formal) smooth
structures. The pullback f ∗(τX′) = τX′ ◦ f is not a lift of tX immediately (rather, it is
a lift of tX′ ◦ f), but there is a homotopy which is unique up to homotopy to make it
a lift of tX .

Lemma 5.2.7. There is a homotopy h(f)t : X × I → BTOP such that h(f)0 = tX′ ◦ f
and h(f)1 = tX , which is unique up to homotopy.

Proof. The homeomorphism f induces a canonical microbundle isomorphism between
the microbundles tX and the pullback bundle f ∗(tX). Use this isomorphism to form
the mapping cylinder of microbundles on X × I and denote this by X(f). By Kirby-
Siebenmann [KS77, Essay IV, Proposition 8.1], TOP-microbundles over X × I which
restrict to tX and f ∗(tX) on either end are in one-to-one correspondence with homotopy
classes of maps X×I → BTOP restricting to the classifying maps tX and tX′ ◦f . Since
X is such a TOP-microbundle, we get a well-defined up to (relative) homotopy map
h′(f) : X × I → BTOP such that h′(f)0 = tX and h′(f)1 = tX′ ◦ f , i.e. a homotopy
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between these classifying maps that is well-defined up to (relative) homotopy. Taking
the reverse homotopy gives the desired homotopy from tX′ ◦ f to tX .

To get uniqueness of this homotopy up to homotopy, one can again use Kirby-
Siebenmann [KS77, Essay IV, Proposition 8.1] on (X × I) × I, and then use the same
argument as above.

Since the map ξ : BO → BTOP is a fibration, we can lift the homotopy h(f)t from
Lemma 5.2.7 to a homotopy h̃(f)t such that h̃(f)0 = τX′ ◦ f = f ∗(τX′) and such that
h̃(f)1 is a lift of tX . Since this homotopy is unique up to homotopy, we will cease to
mention this and instead whenever we write f ∗(τX′) it should be taken to mean that
we have homotoped this such that it is a lift of tX (in the unique way). In fact, one can
extend the argument in the proof of Lemma 5.2.7 to see that all higher homotopies are
unique up to homotopy, etc., and hence there is an essentially unique classifying map
for the tangent microbundle. We will not need this stronger statement.

Remark 5.2.8. Lemma 5.2.7 gives us immediately that the Kirby-Siebenmann invari-
ant is natural with respect to homeomorphisms. More precisely, it implies that for a
homeomorphism of topological manifolds f : X → X ′ we have that ks(X) = f ∗ ks(X ′),
since the homotopy classes of maps representing these cohomology classes are clearly
homotopic by Lemma 5.2.7. By an analogous argument, the Kirby-Siebenmann invari-
ant is also natural with respect to inclusion of open submanifolds (see the last part of
[KS77, Essay IV, Theorem 10.1]).

We now define the Casson-Sullivan invariant.

Definition 5.2.9. Let X and X ′ be n-dimensional (formally) smooth manifolds with
(potentially empty) boundaries ∂X ∼= ∂X ′ and let f : X → X ′ be a homeomorphism
restricting to a fixed diffeomorphism on the boundary. Let Mf be the mapping cylinder

Mf := (X × I) ⊔X ′

({x} × {1}) ∼ f(x)

and note that τX ∪∂ f
∗(τX)′ defines a lift of tMf

on ∂Mf . The reduced suspension (of
pairs) construction gives an isomorphism

ϖ : H3(X, ∂X;Z/2)
∼=−→ H4(Mf , ∂Mf ;Z/2). (5.2.1)

We then define the Casson-Sullivan invariant cs(f) as

cs(f) := ϖ−1(ks(Mf , ∂Mf )) ∈ H3(X, ∂X;Z/2).

The isomorphism ϖ has other constructions. For example, by Poincaré duality we
have H3(X, ∂X;Z/2) ∼= Hn−3(X;Z/2), and by the homotopy equivalence given by the
inclusion X ↪→ Mf , we have that Hn−3(X;Z/2) ∼= Hn−3(Mf ;Z/2). Poincaré duality
inverse then gives an isomorphism Hn−3(Mf ;Z/2) ∼= H4(Mf , ∂Mf ;Z/2). Composing
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all of these isomorphisms gives ϖ. It can also be identified with a connecting homo-
morphism in the appropriate long exact sequence of a triple. We will not need either
of these alternate definitions.
Remark 5.2.10. It will often be useful for us to think of cs(f) instead as the element

ϖ(cs(f)) ∈ H4(Mf , ∂Mf ;Z/2).

In the rest of this thesis, we will reserve the symbol ϖ to always mean the isomorphism
given in Equation (5.2.1) so that is clear when we are going between these two elements.
Remark 5.2.11. We now explicitly describe the homotopy class of the map corre-
sponding to the Casson-Sullivan invariant in the following way which will be useful
for proofs. Take the map p ◦ τX×I and then use the null-homotopies defined by τX

and f ∗(τ ′
X) (glued over the null-homotopy for ∂X × I) to construct a relative map

(X × I, ∂(X × I)) → (B(TOP/O), ∗), which is relatively homotopic to ϖ cs(f) by con-
struction. We will refer to this relative class as the homotopy class of p◦τX×I extended
by the null-homotopies τX and f ∗τX .

In this thesis we will generally only consider homeomorphisms of 4-manifolds. In
this case it is clear by Poincaré duality that the Casson-Sullivan invariant vanishes for
all homeomorphisms if X is simply-connected.

§ 5.3 | Dependence of the Casson-Sullivan invariant
on smooth structures

This subsection is devoted to describing the extent to which the Casson-Sullivan in-
variant depends on the choice of a (formal) smooth structure. We will begin by giving
a different definition for the Casson-Sullivan invariant which more naturally exhibits it
as an element of H3(X, ∂X;Z/2).

Let f : X → X ′ be a homeomorphism and let X be a smoothable 4-manifold with
boundary ∂X. For any choice of lifts τX , τX′ of the topological tangent bundles tX , tX′

we have the following (very non-commutative) diagram, augmented from Section 5.2.

TOP/O

BO

∂X X BTOP

B(TOP/O)

ι

ξ

τ∂X

δ(f,τX ,τX′ )

τX

f∗(τX′ )

tX p

We will now work to define δ(f, τX , τX′) in the diagram, but roughly one should think of
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it as the ‘difference’ between the lifts τX and f ∗(τX′). First, note that we have an action
of [X, ∂X; TOP/O] on homotopy classes of lifts of the stable tangent microbundle to
BO, defined using the H-space structure on BO which we will denote by the symbol
⊕.

Lemma 5.3.1. Let (X, ∂X) be a topological 4-manifold with boundary and stable tan-
gent microbundle tX . There is a well-defined action of [X, ∂X; TOP/O] on lifts of the
stable tangent microbundle to BO defined by

δ · τX := τX ⊕ ιδ

and furthermore this action is free and transitive.

Proof. Let τX : X → BO be a lift of tX and let [X, ∂X; BO, ∗]tX denote homotopy
classes of lifts of tX (i.e. lifts of tX up to homotopy through lifts of tX). By [Bau77,
Theorem 1.3.8], and the surrounding discussion, there is a bijection

[X, ∂X; TOP/O] → [X, ∂X; BO, ∗]tX

given by δ 7→ τX ⊕ ιδ. This induces an action via the H-space structure on TOP/O
and it being free and transitive follows by the above map being a bijection.

We can now define δ(f, τX , τX′). By Lemma 5.3.1 the lifts τX and f ∗(τX′) deter-
mine a unique element which we denote as δ(f, τX , τX′) in [X, ∂X; TOP/O] such that
δ(f, τX , τX′) · τX = f ∗(τX′).

Proposition 5.3.2. Let X be a formally smoothable topological 4-manifold and f : X →
X ′ a homeomorphism. Let τX and τ̃X be two lifts of the stable tangent microbun-
dle of X, let τX′ and τ̃X′ be two lifts of the stable tangent microbundle of X ′, let
a ∈ [X, ∂X; TOP/O] be the unique element given by Lemma 5.3.1 such that a ·τX = τ̃X

and similarly let b be such that b · τX′ = τ̃X′. Then

a+ δ(f, τ̃X , τ̃X′) = f ∗(b) + δ(f, τX , τX′).

Hence it follows that if X = X ′, τX = τ ′
X , τ̃X = τ̃X′, and f acts trivially on

H3(X, ∂X;Z/2) then δ(f) is defined and does not depend on the choice of lift of the
stable tangent microbundle of X.

Proof. We have that

(a+ δ(f, τ̃X , τ̃X′)) · τX = δ(f, τ̃X , τ̃X′) · (a · τX) = δ(f, τ̃X , τ̃X′) · τ̃X = f ∗τ̃X′ ,

where the first equality is given by using the action, the second from the definition of
a, and the third from the definition of δ(f, τ̃X , τ̃X′). We also have that

(f ∗(b)+δ(f, τX , τX′))·τX = f ∗(b)·(δ(f, τX , τX′)·τX) = f ∗(b)·f ∗τX′ = f ∗(b·τX′) = f ∗τ̃X′ ,
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where the first equality is again given by using the action, the second from the definition
of δ(f, τX , τX′) ·τX), the third by the fact that the H-space structure is compatible with
taking pre-composition by the homeomorphism f , and the final equality comes from the
definition of b. Since the action of [X,TOP/O] is free by Lemma 5.3.1, this completes
the proof.

It remains to be seen that this definition for δ(f) matches up with the definition of
the Casson-Sullivan invariant, given as the Kirby-Siebenmann invariant of the mapping
cylinder.

Proposition 5.3.3. Let X and X ′ be formally smooth topological 4-manifolds with
formal smooth structures τX and τX′, respectively. Furthermore, let f : X → X ′ be a
homeomorphism. Then δ(f, τX , τX′) = cs(f).

Proof. By Remark 5.2.11 we can consider the Casson-Sullivan invariant as a relative ho-
motopy class cs(f) ∈ [(ΣX+, {pt}),B(TOP/O)], where Σ denotes the reduced suspen-
sion and X+ denotes X with a disjoint basepoint added. By the loopspace-suspension
adjoint (and that B(TOP /O) is the delooping of TOP /O), this gives an element
cs(f) ∈ [(X+, {pt}),TOP/O]. By construction, this element sends τX to f ∗(τX′) under
the action of Lemma 5.3.1, completing the proof.

If we put together the previous two propositions, we immediately derive the follow-
ing corollary.

Corollary 5.3.4. Let X and X ′ be topological manifolds each with two (formal) smooth
structures S 1

X and S 2
X , and S 1

X′ and S 2
X′, respectively. Denote the corresponding lifts

of the stable tangent microbundle by τX and τ̃X , and τX′ and τ̃X′, respectively. Let
f : X → X ′ be a homeomorphism, and let cs(f,S 1

X ,S
1
X′) and cs(f,S 2

X ,S
2
X′) denote

the Casson-Sullivan invariants of f with respect to the corresponding (formal) smooth
structures. Let a ∈ [X, ∂X; TOP/O] be the unique element given by Lemma 5.3.1 such
that a · τX = τ̃X , and similarly let b be the unique element such that b · τX′ = τ̃X′. Then
we have that

a+ cs(f,S 1
X ,S

1
X′) = f ∗(b) + cs(f,S 2

X ,S
2
X′).

Proof. The proof is immediate from Proposition 5.3.2 and Proposition 5.3.3.

If we only consider self-homeomorphisms, then τX = τX′ , τ̃X = τ̃X′ and a = b,
giving the formula

a+ cs(f,S 1
X) = f ∗(a) + cs(f,S 2

X).

This means, for f a self-homeomorphism, we can define cs(f) not only for smooth 4-
manifolds, but also for smoothable manifolds in the case where all self-homeomorphisms
must act trivially on H3(−;Z/2). For example, this occurs if the fundamental group is
cyclic. In fact, in these cases one could also define cs(f) for non-smoothable manifolds
by first removing a point, and then using the fact that all topological 4-manifolds admit
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a smooth structure away from a point [FQ90, Section 8.2]. We will not pursue this in
the rest of the thesis, and instead simplify matters by only considering our manifolds
to be smooth.

§ 5.4 | Properties
We now establish properties of the Casson-Sullivan invariant. We begin by showing
that it is a pseudo-isotopy invariant.

Proposition 5.4.1. Let X and X ′ be smooth manifolds and let f, g : X → X ′ be a
pair of homeomorphisms.

1. If f is pseudo-smoothable then cs(f) = 0.

2. If f is pseudo-isotopic to g then cs(f) = cs(g).

Proof. We begin with the proof of (1). Let SX and SX′ denote the smooth structures
on X and X ′, respectively. Note that W (f) is homeomorphic to X × I but with
the additional specified smooth structures on the boundary, so cs(f) = 0 if we can
find a smooth structure on X × I which restricts to the given smooth structures SX

and f ∗(SX′) on the two boundary pieces (glued along the product smooth structure
S∂X×I). Let F be the hypothesised pseudo-isotopy between f and the diffeomorphism
and denote this diffeomorphism by f̃ . Use the pseudo-isotopy F to pull back the
product structure SX′ × I to F ∗(SX × I) on X × I. We then have that F ∗(SX ×
I)|X×{0} = (f̃)∗(SX′) = SX since f̃ is a diffeomorphism and F ∗(SX × I)|X×{1} =
f ∗(SX′) and together these mean that cs(f) = 0.

Now we prove (2). As in Remark 5.2.11, ϖ cs(f) is the homotopy class of p ◦ τX×I

extended by the null-homotopies given by SX and f ∗(SX′). Similarly, ϖ cs(g) is the
homotopy class of p◦ τX×I extended by the null-homotopies given by SX and g∗(SX′).
Let F be the pseudo-isotopy from g to f . Then F ∗(SX′ ×I) describes a null-homotopy
of p ◦ τX×I extended by the null-homotopies given by f ∗(SX′) and g∗(SX′), i.e. a
homotopy between the null-homotopies given by f ∗(SX) and g∗(SX). This gives us
a homotopy relative to the boundary between the relative homotopy classes defining
ϖ cs(f) and ϖ cs(g), and hence cs(f) = cs(g).

We can say more in the case of self-homeomorphisms. Let π̃0 Homeo(X, ∂X) denote
the pseudo-mapping class group of X relative to ∂X, i.e. the quotient of Homeo(X, ∂X)
by those homeomorphisms which are pseudo-isotopic to the identity (see Definition 2.2.2
and Remark 2.2.3). Then we have the following result.

Proposition 5.4.2. Let X be a smooth 4-manifold. Then the map

cs : π̃0 Homeo(X, ∂X) → H3(X, ∂X;Z/2)

sending a representative of a pseudo-isotopy class of self-homeomorphisms to its Casson-
Sullivan invariant is a crossed homomorphism. In other words, if f, g : X → X are
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representatives of pseudo-isotopy classes of self-homeomorphisms then

cs(g ◦ f) = cs(f) + f ∗ cs(g).

Proof. We first note that the well-definedness of the above map follows directly from
Proposition 5.4.1. It suffices to show that for two self-homeomorphisms f, g : X → X,
we have that cs(g ◦ f) = cs(f) + f ∗ cs(g).

We begin by giving a method for describing the group operation on

[X × I, ∂(X × I);K(Z/2, 4)].

The normal way to define this is by using the highly-connected map B(TOP/O) →
ΩK(Z/2, 5) and then using composition of loops to define the group operation (see
[Hat02, Section 4.3]). However, we also have that

[(X × I, ∂); (K(Z/2, 4), ∗)] = [ΣX+, {pt};K(Z/2, 4), ∗],

where X+ := X ⊔ {pt} and ΣX+ denotes the reduced suspension of X+. Hence,
[(X × I, ∂);K(Z/2, 4)] has a natural operation by ‘stacking’ cylinders given by the
natural group operation coming from the reduced suspension. By the suspension-
loopspace adjoint relation,

[ΣX+, {pt};K(Z/2, 4), ∗] = [X+, {pt}; ΩK(Z/2, 4), ∗] = [X+, {pt}; ΩΩK(Z/2, 5), ∗]

and the group operation given by ‘stacking’ corresponds to the group operation given
by the outermost loopspace on the right. The standard group operation comes from
the inner loopspace structure, but these two are equivalent.

Let SX denote the smooth structure on X. Consider the homotopy class of maps
corresponding to ϖ(cs(f) + f ∗ cs(g)) = ϖ cs(f) + (f × Id)∗ϖ cs(g). (Here we used the
definition of ϖ from Definition 5.2.9). We again use the terminology in Remark 5.2.11.
This corresponds to stacking the homotopy class of p ◦ τX×I extended by the null-
homotopies given by SX and f ∗(SX) with the homotopy class of p ◦ τX×I extended by
the null-homotopies given by f ∗(SX) and (g◦f)∗(SX). But this is relatively homotopic
to the homotopy class of p ◦ τX×I extended by the null-homotopies given by SX and
(g ◦ f)∗(SX). The relative homotopy is given by the null-homotopy corresponding to
(f × Id)∗(SX × I). This completes the proof.

Remark 5.4.3. If X is such that all self-homeomorphisms of X must act trivially
on H3(X, ∂X;Z/2), for example if π1(X) is cyclic, then Proposition 5.4.2 actually gives
that the Casson-Sullivan invariant defines a group homomorphism from the pseudo-
mapping class group. In such cases, one can combine this result with Corollary 5.3.4
to obtain that the Casson-Sullivan invariant defines a group homomorphism even if we
start with a smoothable X, i.e. without picking a smooth structure.

Let X and X ′ be 4-dimensional smooth manifolds and let f : X → X ′ be an
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orientation-preserving homeomorphism restricting to a fixed diffeomorphism on ∂X.
Then, up to isotopy, we may assume by isotopy extension [EK71], uniqueness of nor-
mal bundles [FQ90, Chapter 9.3], and the calculation of the mapping class group of S3

[Cer68], that f restricts to the identity map on some disc. Hence we get a well-defined
homeomorphism

f# : X#(S2 × S2) → X ′#(S2 × S2)

by extending f onto the S2 × S2 summand via the identity map.

Proposition 5.4.4. The standard degree one map that collapses the S2×S2 connected-
summand ℓ : X#(S2 × S2) → X induces an isomorphism

ℓ∗ : H3(X, ∂X;Z/2) → H3(X#(S2 × S2), ∂X;Z/2)

such that ℓ∗(cs(f)) = cs(f#).

Proof. Let SX denote the smooth structure on X and let SX#S2×S2 denote the induced
smooth structure on X#(S2 × S2). Consider the following diagram.

∂((X#(S2 × S2)) × I) ∂(X × I) BO

(X#(S2 × S2)) × I X × I BTOP

B(TOP/O)

ℓ∪ℓ τX∪τX◦f

ξ

ℓ×Id

t(X#(S2×S2))×I

τ(X#(S2×S2))×I
τX×I

tX×I

p

Since f# restricts to the identity map on the S2 × S2 summand and the tangent
bundle of S2 × S2 is stably trivial, the stable tangent microbundle t(X#(S2×S2))×I is
homotopic to the stable tangent microbundle tX×I precomposed with the map ℓ× Id.
This means that ϖ cs(f#), the homotopy class of p ◦ t(X#(S2×S2))×I extended by the
null-homotopies given by SX#(S2×S2) and f ∗

#(SX′#(S2×S2)) is relatively homotopic to
the homotopy class of p ◦ tX×I ◦ (ℓ × Id) extended by the null-homotopies given by
precomposing the null-homotopies corresponding to SX and f ∗SX′ with the map ℓ.
Since (ℓ× Id) ∗ (ϖ cs(f)) = ϖ(ℓ∗ cs(f)), it follows that ℓ∗(cs(f)) = cs(f#).

Proposition 5.4.5. Let X and X ′ be a pair of smooth 4-manifolds and let f : X → X ′

be a homeomorphism restricting to a fixed diffeomorphism on ∂X. If cs(f) = 0 then
there exists a non-negative integer k such that f# : X#(#kS2 ×S2) → X ′#(#kS2 ×S2)
is pseudo-isotopic to a diffeomorphism.

This result is stated and proved in [FQ90, Section 8.6]. However, the proof is
somewhat dispersed in the book and many of the details are not given. For this
reason, we give the full proof below.
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Proof of Proposition 5.4.5. Let W := W (f) be the mapping cylinder of f . Since
cs(f) = 0, then by definition we can smooth the topological stable normal bundle
of W relative to the given smoothings of the stable tangent bundles of the boundary.
By Kirby-Siebenmann [KS77, Essay IV, Theorem 10.1], we can realise this by a smooth
structure on W extending the given structures on the boundary. Note that here we
have crucially used that the dimension of W is at least five and at most seven. This
allows us to view W as a (relative) smooth h-cobordism (W,X,X ′). Note that W is
topologically a product (by definition) but that it is not necessarily a product smoothly,
and that W already restricts to a smooth product on ∂X. We aim to turn W into a
smooth product cobordism via stabilisations.

We may assume in the standard way that W has only 2- and 3-handles in its relative
handle decomposition (for a reference, see [BKK+21, §20.1]). Since W is topologically a
product we know that the 2- and 3-handles algebraically cancel. Let W be the collection
of immersed Whitney discs in X × {1/2} for the pairs of cancelling intersections of the
descending manifolds for the 3-handles and the ascending manifolds for the 2-handles.
If these discs were embedded disjointly then we could use Whitney moves on the discs
to force the 2- and 3-handles to geometrically cancel and hence W could be made into a
smooth product cobordism. Let p ∈ D1 ∩D2 be an intersection point for two Whitney
discs D1, D2 ∈ W (potentially D1 = D2) and let α be an arc in W from X × {0} to
X × {1} which intersects D1 and D2 exactly once at p and is disjoint from all other
discs in W . Let q = (q1, q2) be a point in S2 × S2. Then we form a new cobordism

W ′ :=
(
W \ να

)
∪∂να=(∂νq)×I

(
(S2 × S2 \ νq) × I

)
.

Let W ′ be the set of Whitney discs for the pairs of cancelling intersections of the 2-
and 3- handles of W ′. Note that W ′ is the same as W except we can replace D1 and
D2 with D′

1 and D′
2, respectively, defined as

D′
1 :=

(
D1 ∩ (W \ να)

)
∪

(
(S2 × {q2}) ∩ (S2 × S2 \ νq)

)
,

D′
2 :=

(
D2 ∩ (W \ να)

)
∪

(
({q1} × S2) ∩ (S2 × S2 \ νq)

)
.

The number of intersections between D′
1 and D′

2 is one fewer than the number of inter-
sections between D1 and D2; we have effectively removed an intersection point. This
is known as the Norman trick. Repeating this procedure for all intersections between
Whitney discs, eventually we produce a smooth cobordism W ′′ which is topologically a
product W ′′ ≈ X#(#kS2 × S2) × I for some non-negative integer k. The set of Whit-
ney discs for the pairs of cancelling intersections of the 2- and 3-handles W ′′ consists
now of disjointly embedded Whitney discs, and hence (as noted above) we may assume
that W ′′ is smoothly a product cobordism.

Let X# := X#(#kS2 × S2), X ′
# := X ′#(#kS2 × S2) and let S , S ′ denote the

smooth structures on X# and X ′
#, respectively. Now W ′′ is the mapping cylinder

of f#, i.e. W ′′ ∼= X# × I, with the smooth structure SW ′′ where SW ′′ |X#×{0} = S
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and SW ′′ |X#×{1} = f ∗
#(S ′). In the previous paragraph, we concluded that W ′′ was

diffeomorphic to a product. In other words, we have a homeomorphism

F : X# × I → X# × I

such that F ∗(S ′ × I) = S ′′
W . In the language of Section 2.3 this means we have

produced a pseudo-isotopy between the smooth structures S and f ∗
#(S ′) and, by the

same argument as in the third paragraph of the proof of Proposition 2.3.2, this means
that f# is pseudo-isotopic to a diffeomorphism.

To summarise, Proposition 5.4.4 and Proposition 5.4.5 together tell us that the
Casson-Sullivan invariant is the stable obstruction to pseudo-smoothing homeomor-
phisms of 4-manifolds, much as the Kirby-Siebenmann invariant is the stable obstruc-
tion to smoothing 4-manifolds.

§ 5.4.1 | Non-compact 4-manifolds

Non-compact 4-manifolds have the property that they are easier to smooth than their
compact counterparts, in the sense that non-compact 4-manifolds always admit smooth
structures (and hence compact 4-manifolds can always be smoothed away from a point)
[FQ90, Chapter 8.2]. In light of this, one might wonder whether a stronger result than
Proposition 5.4.5 holds if we assume our manifold is non-compact. We briefly explain
what happens in this case. It will be helpful to recall the definition of concordance and
sliced concordance of smooth structures (see Definition 2.1.10).

Proposition 5.4.6. Let X be a topological 4-manifold with S and S ′ smooth struc-
tures on X, and let f : X → X be a homeomorphism restricting to a fixed diffeomor-
phism on ∂X with respect to the smooth structures S |∂X and S ′|∂X . If cs(f) = 0,
then S and f ∗(S ′) are concordant. If X is non-compact and cs(f) = 0, then S and
f ∗(S ′) are sliced concordant.

This proposition essentially follows (in the non-compact case) from the following
theorem.

Theorem 5.4.7 ([Sie71, Theorem 4.4],[FQ90, Theorem 8.7B]). There is a one-to-
one correspondence between sliced concordance classes of smooth structures on a non-
compact 4-manifold with homotopy classes of liftings of the stable tangent microbundle
to BO.

Remark 5.4.8. Note that although in [FQ90] they state the above theorem for concor-
dance classes rather than sliced concordance classes, the references they refer to for the
proof give it for sliced concordance classes.

Proof of Proposition 5.4.6. The fact that S and f ∗(S ′) are concordant is clear in the
context of the proof of Proposition 5.4.5. In fact, this is exactly what the the first
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paragraph of the proof establishes. If cs(f) = 0, then by Lemma 5.3.1 and Proposi-
tion 5.3.3 the lifts of the stable tangent microbundle corresponding to S and f ∗(S )
are homotopic, so by Theorem 5.4.7 these smooth structures are sliced concordant.

Remark 5.4.9. Note that an important part of the proof of Theorem 5.4.7 is that the
map

TOP(4)/O(4) → TOP /O

is 5-connected [FQ90, Theorem 9.7A], and this theorem rests on the result of Quinn
[Qui86] that π4(TOP(4)/O(4)) = 0, the proof of which was found to contain a gap.
The proof, however, was recently corrected in [GGH+23].

A concordance, sliced or otherwise, between the smooth structures S and f ∗(S ′)
does not obviously give any nice statement about the properties of f itself. Hence,
the author does not know of an interpretation of Proposition 5.4.6 in terms of the
smoothability of the homeomorphism (c.f. Section 2.3).

§ 5.5 | A connected-sum over a circle formula for the
Casson-Sullivan invariant

This subsection is devoted to proving a connected-sum along a circle formula for the
Casson-Sullivan invariant. We shall start by giving the necessary definitions.

Definition 5.5.1. Let X1 and X2 be a pair of smooth 4-manifolds and let γi ⊂ Xi be
a pair of framed, embedded circles. Then we define the connected-sum over γ1, γ2 to
be the smooth manifold

X1#γ1=γ2X2 := (X1 \ νγ1) ∪φ (X2 \ νγ2)

where the gluing is performed using the orientation reversing map φ : S1×S2 → S1×S2

which sends (x, y) → (x, a(y)) for a : S2 → S2 the antipodal map. For a precise
description of how this gives a well-defined smooth manifold, see [Kos93, §VI.4].

Let X1, X2, X ′
1 and X ′

2 be two pairs of smooth, orientable, compact 4-manifolds
and let γi ⊂ Xi and γ′

i ⊂ X ′
i be two pairs of embedded circles for i = 1, 2. Since our

manifolds are orientable, these circles admit framings which we will use implicitly (the
choice of framings will not be important). Furthermore, let fi : Xi → X ′

i be a pair
of homeomorphisms such that (fi)∗[γi] = [γ′

i] ∈ π1(X ′
i). Then, up to isotopy, we may

assume by isotopy extension ([EK71]), uniqueness of normal bundles ([FQ90, Chapter
9.3]), and the calculation of the mapping class group of S1 × S2 [Glu62] that the fi
are either the identity map on a tubular neighbourhood of the curve γi or they are the
Gluck twist map

T : S1 ×D3 →S1 ×D3 (5.5.1)
(t, x) 7→(t, Rt(x))
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where Rt denotes the (positive) rotation map of D3 around the (oriented) straight line
from the south pole to the north pole by an angle of t (we have used the identification
S1 ∼= [0, 2π]/0 ∼ 2π). If the homeomorphisms fi are both of the same type as above
(i.e. both are identity maps or both are twist maps on tubular neighbourhoods of γi)
we may then define the connected-sum of these homeomorphisms over the curves γi to
be

f# : X1#γ1=γ2X2 → X ′
1#γ′

1=γ′
2
X ′

2

as fi on (Xi \ νγi).

Lemma 5.5.2. We have the following isomorphism of groups.

H3(X1#γ1=γ2X2, ∂;Z/2) ∼=
H3(X1, ∂X1;Z/2) ⊕H3(X2, ∂X2;Z/2)

PD−1[γ1] ∼ PD−1[γ2]

Proof. Let X# := X1#γ1=γ2X2. By considering the long exact sequence for the triple

(X#, ∂X# ⊔ ∂νγ1, ∂X#)

and the Mayer-Vietoris sequence for the decomposition

(X#, ∂X# ⊔ ∂νγ1) = ((X1 \ νγ1) ∪ (X2 \ νγ2), ∂(X1 \ νγ1) ∪ ∂(X2 \ νγ2)) ,

we obtain the following commutative diagram (with Z/2-coefficients suppressed).

H2(∂νγ1) H2(∂νγ1) ⊕H2(∂νγ1)

0 H3(X#, ∂X# ⊔ ∂νγ1) H3(X1 \ νγ1, ∂) ⊕H3(X2 \ νγ2, ∂)) 0

H3(X#, ∂)

H3(∂νγ1) H3(∂νγ1) ⊕H3(∂νγ1)

0 H4(X#, ∂X# ⊔ ∂νγ1) H4(X1, ∂X1) ⊕H4(X2, ∂X2) 0

∆

∼=

0

∆

∼=∼=
∼=

Here the vertical maps on the left are from the previously stated long exact sequence of
the triple, the horizontal isomorphism comes from the previously stated Mayer-Vietoris
sequence, and ∆ denotes the diagonal map. That the map marked as the zero map is
such follows from seeing that the vertical maps in the lower square are injective.

Poincaré duality maps and the map induced by the inclusion Xi \ νγi ⊂ Xi give
isomorphisms

H3(Xi \ νγ1, ∂) ∼= H1(Xi) ∼= H1(Xi \ νγi) ∼= H3(Xi, ∂)
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for i = 1, 2. Using this, we get an exact sequence

Z/2 ∼= H2(∂νγ1)
H3(X1, ∂X1)

⊕
H3(X2, ∂X2)

H3(X#, ∂X#) 0

and so to prove the lemma it suffices to understand the first map. From the definition
one can see that this is the map which sends the generator of H2(∂νγ1) ∼= Z/2 to the
element

(PD−1[γ1],PD−1[γ2]) ∈ H3(X1, ∂X1) ⊕H3(X2, ∂X2).

From Lemma 5.5.2 we have a map

Q : H3(X1, ∂X1) ⊕H3(X2, ∂X2) → H3(X1#γ1=γ2X2, ∂(X1#γ1=γ2X2)) (5.5.2)

given by taking the quotient.
The rest of this subsection will be devoted to proving the following theorem.

Theorem 5.5.3. Let X1, X2, X ′
1 and X ′

2 be two pairs of compact, connected, smooth,
orientable 4-manifolds and let γi ⊂ Xi and γ′

i ⊂ X ′
i be two pairs of embedded circles,

with fi : Xi → X ′
i a pair of homeomorphisms such that (fi)∗[γi] = [γ′

i] ∈ π1(X ′
i), and

such that the connected-sum homeomorphism

f# := f1#γ1=γ2f2 : X1#γ1=γ2X2 → X ′
1#γ′

1=γ′
2
X ′

2

is defined. Let Q be the map in Equation (5.5.2). Then

cs(f#) = Q(cs(f1), cs(f2)).

The proof of this theorem relies on a sequence of diagram chasing, using the relevant
Mayer-Vietoris exact sequences and long exact sequences of the triple. Although we
have already used these, the setup here will be more complicated and so we recall them.
The long exact sequence for the triple of CW -complexes W ⊃ B ⊃ A in cohomology
(with Z/2-coefficients suppressed) is

· · · → Hk(W,B) → Hk(W,A) → Hk(B,A) → Hk+1(W,B) → · · · (5.5.3)

and the fully relative Mayer-Vietoris sequence for the pair of CW -complexes (W,Y ) =
(A ∪B,C ∪D) (with Z/2-coefficients suppressed) is

· · · → Hk(W,Y ) →
Hk(A,C)

⊕
Hk(B,D)

→ Hk(A ∩B,C ∩D) → Hk+1(W,Y ) → · · · (5.5.4)

See [Hat02, p.200/204] for these standard exact sequences.
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First we give the notation for the setup.

Setup 5.5.4. Let X1, X2, X ′
1 and X ′

2 be two pairs of compact, connected, smooth,
orientable 4-manifolds, let γi ⊂ Xi be a pair of embedded circles, and let fi : Xi → X ′

i

be a pair of homeomorphisms such that (fi)∗[γi] = [γ′
i] ∈ π1(X ′

i) and such that the
fi restrict to fixed diffeomorphisms (fi)0 : ∂Xi → ∂X ′

i. Denote by X# and X ′
# the

connected-sum X1#γ1=γ2X2 and X ′
1#γ1=γ2X

′
2, respectively, and by f# : X# → X ′

# the
connected-sum homeomorphism (which we assume to be defined). We then set up the
following notation:

(i) Let W := Mf# = (X#×I)∪∂X
′
#

(x,1)∼f#(x) .

(ii) Let E := ∂(νγ1) × I ⊂ W .

(iii) Let F := ∂W = (X# × {0}) ∪ (∂X# × I) ∪ (X# × {1}) ⊂ W .

(iv) Let A := (X1 \ ∂(νγ1)) × I ⊂ W and let B := (X2 \ ∂(νγ2)) × I ⊂ W .

(v) Let FA := F ∩ A and let FB := F ∩B.

(vi) Let C := FA ∪ E ⊂ A and let D := FB ∪ E ⊂ B.

(vii) Let Y := C ∪D.

Note that W = A ∪B and A ∩B = C ∩D = E. See Figure 5.1.

Figure 5.1: A dimension-reduced picture of Setup 5.5.4 where the pictured tori denote
the connected-sum S1 × S2. Note that the labels for C and D have been omitted.

Combining the sequences (5.5.3) and (5.5.4) for the triples (W,Y, F ), (A,C, FA),
and (B,D, FB) and the pairs (W,Y ) = (A ∪ B,C ∪ D), (W,F ) = (A ∪ B,FA ∪ FB),
and (Y, F ) = (C ∪ D,FA ∪ FB) we obtain the following commutative diagram which
we will use extensively. In what follows, for all of our cohomology groups we are using
Z/2-coefficients but we will suppress these in the diagrams.
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H3(Y, F ) H3(C,FA) ⊕H3(D,FB)

H3(A ∩B,C ∩D) H4(W,Y ) H4(A,C) ⊕H4(B,D) H4(A ∩B,C ∩D)

H3(A ∩B,FA ∩ FB) H4(W,F ) H4(A,FA) ⊕H4(B,FB) H4(A ∩B,FA ∩ FB)

H4(Y, F ) H4(C,FA) ⊕H4(D,FB)

It will be useful to simplify this diagram. First, note that the leftmost and rightmost
groups on the second line vanish because A∩B = C∩D (further observe that this means
the remaining non-trivial horizontal map on the second line must be an isomorphism).
The topmost groups and the leftmost group on the third line are all isomorphic to
H3(E, ∂E) ∼= Z/2. We can replace all of the remaining outer groups with zeroes since
these maps must be zero maps (one can explicitly see this by continuing the sequences
and using commutativity along with Poincaré duality). To illustrate this, we will show
that the bottom vertical maps are zero. Showing that the map to H4(A∩B,FA∩FB) is
zero is analogous. We start by continuing the sequences at the bottom of the diagram
to obtain the following diagram.

H4(W,F ) H4(A,FA) ⊕H4(B,FB)

H3(C ∩D,FA ∩ FB) H4(Y, F ) H4(C,FA) ⊕H4(D,FB)

0 H5(W,Y ) H5(A,C) ⊕H5(B,D) 0

a b

f c

d e

∼=

We want to show that the maps a and b are both the zero maps. It suffices to show
that d and e are injections. By Poincaré duality, e is dual to direct sum of inclusion
induced maps

H0(E) ⊕H0(E) → H0(A) ⊕H0(B)

which is clearly an isomorphism since both A, B and E are connected. Hence e is
injective. Now we claim that f is the zero map, since the previous map in the Mayer-
Vietoris sequence is the diagonal map and hence is injective. This means that c is
injective, and so by commutativity d must be injective also, and hence a and b are
both the zero maps. The preceding simplification yields the following diagram.
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Z/2 Z/2 ⊕ Z/2

0 H4(W,Y ) H4(A,C) ⊕H4(B,D) 0

Z/2 H4(W,F ) H4(A,FA) ⊕H4(B,FB) 0

0 0

r

∆

iBiA

q

∼=

jBjA
(5.5.5)

We note that the topmost horizontal map is the diagonal map ∆: x 7→ (x, x).

Proof of Theorem 5.5.3. We will use the notation from Setup 5.5.4 throughout. Con-
sider the pair (W,Y ) = (A ∪ B,C ∪D). First, we will consider a special case, namely
when X2 = S1 × S3, γ2 = S1 × {pt} and f2 = IdX2 . We will then prove the general
case of the theorem via our consideration of the special case.

Let X2 = S1×S3 = X ′
2, let γ2 = S1×{pt} and let f2 = IdX2 . Then X2\(νγ2) ∼= S1×

D3, so hence X# ∼= X1 and f# = f1. The map iB is then Poincaré dual to the inclusion
induced map H1(S1 × S2 × I) → H1(S1 × D3 × I) and hence is injective. It follows
by commutativity that r is injective. Consider any element x ∈ H4(W,F ). From the
diagram and injectivity of r, we can see that there are two possible lifts of x in H4(W,Y )
that differ by r(z) where Z/2 = Z/2⟨z⟩. We will define a preferred lift t(x) by specifying
that the element t(x) = (t1(x), 0) ∈ H4(A,C)⊕H4(B,D), which uniquely determines t.
Now consider ϖ cs(f1) ∈ H4(W,F ). By naturality of the Kirby-Siebenmann invariant
(Remark 5.2.8), q maps ks(W,Y ) = (ks(A,C), ks(B,D)) ∈ H4(W,Y ) to ϖ cs(f1), and,
by the definition of f2, we have that ks(B,D) = 0. This means that t(ϖ cs(f1)) =
ks(W,Y ).

Now consider general X1, X2, X
′
1, X

′
2, f1, f2. What we have described above is a

map
a : H3(X1, ∂X1) → H4(A,C)

which sends ϖ cs(f1) to an element α := a(ϖ cs(f1)) for any homeomorphism f1 : X1 →
X1. Similarly, by considering the reverse special case where X1 = S1 × S3 = X ′

1,
f1 = IdX1 and where f2 is any homeomorphism f2 : X2 → X ′

2, we obtain a map
b : H3(X2, ∂X2) → H4(B,D) and consequently an element β := b(ϖ cs(f2)) ∈ H4(B,D).
This produces an element

(α, β) ∈ H4(A,C) ⊕H4(B,D) ∼= H4(W,Y )

and then we map this down using q to an element q(α, β). We have that q(α, β) =
ϖ cs(f#), as by construction (α, β) = (ks(A,C), ks(B,D)) and by naturality of the
Kirby-Siebenmann invariant, this must map to ks(W,F ) = ϖ cs(f#) via q, since q is
inclusion induced.
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So we have constructed a map

P : H3(X1, ∂X1) ⊕H3(X2, ∂X2) → H3(X1#γ1=γ2X2, ∂(X1#γ1=γ2X2))

which sends (cs(f1), cs(f2)) 7→ cs(f#).
It remains to show that this map is equal to the map Q (see 5.5.2). We show this

now. First, analogously to in Setup 5.5.4, consider the long exact sequences for the
triples

(i) (X#, ∂X# ⊔ ∂νγ1, ∂X#),

(ii) (Xi \ νγi, ∂(Xi \ νγi), ∂Xi),

and the relative Mayer-Vietoris sequences for the pairs

(i) (X#, ∂X#) = ((X1 \ νγ1) ∪ (X2 \ νγ2), ∂X1 ∪ ∂X2)

(ii) (X#, ∂X# ⊔ ∂νγ1) = ((X1 \ νγ1) ∪ (X2 \ νγ2), ∂(X1 \ νγ1) ∪ ∂(X2 \ νγ2)).

These sequences give the following commutative diagram analogous to (5.5.5) (note
that we have simplified the notation by writing ∂ on its own to refer to the boundary
of a manifold when it is clear by context which manifold is being referred to).

Z/2 Z/2 ⊕ Z/2

0 H3(X#, ∂X# ⊔ ∂νγ1) H3(X1 \ νγ1, ∂) ⊕H3(X2 \ νγ2, ∂)) 0

Z/2 H3(X#, ∂) H3(X1 \ νγ1, ∂X1) ⊕H3(X2 \ νγ2, ∂X2) 0

0 0

∆

∼=

(5.5.6)
One can see that this diagram (5.5.6) is isomorphic to (5.5.5) using the isomorphism

given in Definition 5.2.9 (or the analogous isomorphisms). Since those isomorphisms
come from Poincaré duality and inclusion maps, the two parallel diagrams must com-
mute. This allows us to reinterpret the construction of our map P on the level of the
4-manifolds themselves, rather than the mapping cylinders, which then allows us to
relate this map to Q.

Consider the following diagram which, aside from the lowermost map and group,
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splits as a direct sum of exact sequences.

H3(X1, ∂X1 ⊔ ∂νγ1)
⊕

H3(X2, ∂X2 ⊔ ∂νγ2)
H3(X1, ∂) ⊕H3(X2, ∂)

H1(X1)
⊕

H1(X2)

H3(X1 \ νγ1, ∂) ⊕H3(νγ1, ∂)
⊕

H3(X2 \ νγ2, ∂) ⊕H3(νγ2, ∂)

H1(X1 \ νγ1) ⊕H1(νγ1)
⊕

H1(X2 \ νγ2) ⊕H1(νγ2)

H3(X1 \ νγ1, ∂) ⊕H3(X2 \ νγ2, ∂)

H3(X#, ∂)

∼=
t t′

PD
∼=

∼=
((PD,PD),(PD,PD))

(pr1,pr1) (PD−1 ◦ pr1,PD−1 ◦ pr1)

(5.5.7)
The two vertical maps are direct sums of the respective Mayer-Vietoris sequences.
The top-left horizontal map comes from the direct sum of the respective long exact
sequences of triples. Ignoring the notated lifts t and t′ for now, we show that this
diagram commutes. The commuting of the lower triangle is trivial. We now show that
the top rectangle commutes. Since the rectangle is a direct sum of two diagrams, it
suffices to show that one of the diagram summands commutes. We write this below,
where we will drop the indices (i.e. X1 = X, etc.).

H3(X, ∂) H1(X)

H3(X, ∂X ⊔ ∂νγ)

H3(X \ νγ, ∂) ⊕H3(νγ, ∂) H1(X \ νγ) ⊕H1(νγ)

PD
∼=

∼=

(PD,PD)
∼=

Let x ∈ H3(X, ∂X ⊔ ∂νγ) and let y denote its image in H3(X, ∂). By the vertical
isomorphism, we see that x maps to an element (PD−1 α1,PD−1 α2) ∈ H3(X \ ν, ∂) ⊕
H3(νγ, ∂), where α1 is the homology class of some curve in X and α2 is trivial or is
the homology class of γ. Mapping this pair to the right and then up gives the class
α1 + α2, which is the homology class of some curve in X. We now need to show that
y is Poincaré dual to α1 + α2. Since we are using Z/2-coefficients, we will view these
cohomology groups as the hom-duals of the respective homology groups. The element
y is defined such that it evaluates on the relative cycle s in X first by considering s

as a further relative cycle s′ ∈ H3(X, ∂X ⊔ ∂νγ) and then evaluating using x. By the
isomorphism in the corresponding Mayer-Vietoris sequence in homology, any such cycle
splits as a pair (s1, s2) of relative cycles in H3(X \ νγ, ∂) and H3(νγ, ∂), respectively.
Hence, evaluating x(s′) is the same as evaluating α1(s1) + α2(s2), and so y is Poincaré
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dual to α1 + α2. This completes the proof that the diagram commutes.
Consider again diagram 5.5.7 and let (x1, x2) ∈ H3(X1, ∂) ⊕ H3(X2, ∂). This pair

is mapped by P by sending it down the left of the diagram, first by using the preferred
lift t, and then using the given maps. The lift t is such that t(x1, x2) is of the form
((t(x1), 0), (t(x2), 0)). Reversely, the pair (x1, x2) is mapped by Q by sending it down
the right of the diagram, first by using the preferred lift t′, where t′(x1, x2) is of the
form ((t′(x1), 0), (t′(x2), 0)), which is naturally given by first taking Poincaré duality
and then the inverse of the map induced by the inclusion map (and then including into
the direct sum). Then t′(x1, x2) is mapped down again twice to H3(X#, ∂).

To finish the proof, we need to know that the middle triangle formed by the two
lifts, t and t′, commutes. The fact that the diagram commutes shows that

((PD,PD), (PD,PD)) (t(x1, x2))

is a lift of (PD,PD)(x1, x2), and the definition of the lifts t and t′ shows that it is the
same lift as determined by t(x1, x2), and hence the triangle commutes.

§ 5.6 | A connected-sum formula for the Casson-Sullivan
invariant

Before finishing this section we will note the following. Similarly to Theorem 5.5.3, we
also have a formula for the Casson-Sullivan invariant under the actual connected-sum
operation. Since all of the arguments are the same or simpler than for connected-
summing over a circle, we will not give many details. Let X1, X2, X ′

1 and X ′
2 be two

pairs of compact, connected topological 4-manifolds and let fi : Xi → X ′
i be a pair of

homeomorphisms. In exactly the same way as for connected-summing over a circle (in
fact it is simpler since we do not have to worry about embeddings of circles), we can form
a connected-sum homeomorphism f# : X1#X2 → X ′

1#X ′
2. If we let qi : X1#X2 → Xi

denote the collapse maps onto the ith connected-summand, then we have the following
formula.

Theorem 5.6.1. Let X1, X2, X ′
1 and X ′

2 be two pairs of compact, connected, smooth,
orientable 4-manifolds with fi : Xi → X ′

i a pair of homeomorphisms such that the
connected-sum homeomorphism

f# := f1#f2 : X1#X2 → X ′
1#X ′

2

is defined. Let qi be the pair of collapse maps defined above. Then

cs(f#) = q∗
1 cs(f1) + q∗

2 cs(f2).

We will not give the proof here, as it is exactly the same method as for proving
Theorem 5.5.3 but with simpler arguments. In particular, having the degree one col-
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lapse is very useful (such collapse maps do not always exist for connected-sums over
circles). This result will only be used for proving Corollary 6.0.2 in Section 6.2.3.



Chapter 6

Stable realisation of the Casson-Sullivan
invariant

In this chapter we will prove that the Casson-Sullivan invariant is stably realisable. In
particular, we will prove Theorem 1.2.2 from the introduction. We restate this theorem
now.

Theorem 6.0.1. Let X and X ′ be compact, connected, smooth, orientable 4-manifolds
such that X ∼= X0#(S2 × S2) and X ′ ∼= X ′

0#(S2 × S2) where X0 ≈ X ′
0, and let

η ∈ H3(X, ∂X;Z/2). Then there exists a homeomorphism f : X → X ′ with cs(f) = η.

The idea of the proof is to first show that we can realise the Casson-Sullivan in-
variant in a specific case, and then to use Theorem 5.5.3 to realise the invariant in all
cases stably. We will construct a homeomorphism

σ : (S1 × S3)#(S2 × S2) → (S1 × S3)#(S2 × S2)

with cs(σ) ∈ H3((S1 × S3)#(S2 × S2);Z/2) the non-trivial element. This will be
Proposition 6.2.1. For this, we will use the work of Ronnie Lee from an unpublished
letter [Lee70] (see also Scharlemann and Akbulut [Sch76, Akb99]). The material nec-
essary from [Lee70] was typed up by the author in [Gal24b] and we will present that
information here.

As a corollary of our methods to prove Theorem 6.0.1, we will demonstrate that
smoothability of a homeomorphism depends on the isotopy class of the smooth struc-
ture, as is expected by Section 5.3. We state this now.

Corollary 6.0.2. Let X = (S1 × S3)#(S1 × S3)#(S2 × S2) with the standard smooth
structure and let g : X → X be the diffeomorphism which swaps the two S1 × S3

connected-summands and is the identity on the S2 × S2 connected-summand. Then
there exists a smooth structure S ′ on X, which is diffeomorphic to the standard smooth
structure, but is such that g is not stably pseudo-smoothable with respect to S ′.

§ 6.0.1 | Chapter outline

We begin with Section 6.1, where we present the material from Ronnie Lee’s note. In
Section 6.2, we prove the stated results of this chapter.
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§ 6.1 | Ronnie Lee’s generator for L5(Z[Z])
As was stated previously, the material here was originally presented in a letter [Lee70]
addressed to Martin Scharlemann from some time in the 1970s.1

We begin with the definition of Wall’s surgery obstruction groups, the L-groups.

Definition 6.1.1. Let n ∈ Z and π a finitely-presented group. Then the quadratic
L-group Ln(Z[π]) is defined differently depending on the residue of n modulo 4.

Even case (if n ≡ 0, 2 (mod 4)): Ln(Z[π]) is defined as the set of stable equivalence
classes of (−1)n/2-quadratic forms over stably free Z[π]-modules.

Odd case (if n ≡ 1, 3 (mod 4)): Ln(Z[π]) is defined as the set of stable equivalence
classes of (−1)(n−1)/2-quadratic formations over stably free Z[π]-modules.

For a reference on (quadratic) forms and formations see [Ran81, §1.6]. There are
also simple L-groups, denoted by Lsn(Z[π]). We will not give the definition here, but
for a reference see [Lüc23, §9.10].

Remark 6.1.2. The notation used here for the L-groups matches up with the notation
used for K-theory. In principle one could consider L-groups of arbitrary rings with
involution, but for our purposes we will only consider the L-theory of group rings with
the standard involution and trivial orientation character. One should be careful when
reading other sources, as Ln(Z[π]) is often written instead as Ln(π). In particular,
Lee’s note [Lee70] uses the other convention i.e. refers to L5(Z[Z]) instead as L5(Z).

§ 6.1.1 | Constructing any generator

The aim of this section is to give a ‘nice’ description for the generator of L5(Z[Z]), but
first we simply need to construct any generator. Shaneson splitting [Sha69, Theorem
5.1] gives us that

L5(Z[Z]) ∼= L5(Z) × L4(Z).

Wall [Wal70, Theorem 13A.1] computes that L5(Z) = 0 and similarly that L4(Z) ∼=
L0(Z) ∼= Z, hence L5(Z[Z]) ∼= Z, generated by the image of the generator of L4(Z) in
L5(Z[Z]). The injection L4(Z) ↪→ L5(Z[Z]) is given by taking a surgery problem and
multiplying it by S1. We have an isomorphism L4(Z) ∼= Z⟨σ/8⟩ where σ denotes the
signature, and so it is generated by the standard surgery problem associated to the E8

manifold. Hence, L5(Z[Z]) is generated by the induced surgery problem on E8 × S1.
We will now be more precise.

Consider the manifold P formed by plumbing along the E8-lattice. The created
manifold P is a manifold with boundary ∂P a homology 3-sphere Y , and by Freedman
[FQ90, Corollary 9.3C] Y also bounds a contractible manifold which we will denote by
B. In a slight abuse of notation, we then define E8 := P ∪Y B. By construction, E8

1I would like to thank Ian Hambleton for providing me with a copy of this letter.
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has intersection form given by the E8-lattice

λE8 =



2 1
1 2 1

1 2 1
1 2 1

1 2 1 1
1 2 1

1 2 1
1 1 2



(6.1.1)

and one can diagonalise this matrix to read off its signature (the computation can be
found in full detail in [Sco05, Section 3.2]). This gives σ(E8) = 8. This means that by
Rokhlin’s theorem [Rok52] this manifold is non-smoothable. By Wall, this means that
the surgery problem corresponding to the standard degree-1 normal map

φ′ : E8 → S4

has surgery obstruction the generator of L4(Z) and hence the surgery problem corre-
sponding to the map

φ := φ′ × IdS1 : E8 × S1 → S4 × S1

has surgery obstruction the generator of L5(Z[Z]).
Now that we have constructed a surgery problem with the required generator as

its obstruction, the aim is to find an algebraic description for this element in L5(Z[Z]).
For this, we follow the method given in [Wal70, §6]. It is not hard to see that our map
φ is already 2-connected, since it is clearly an isomorphism on π1, and π2(S4 ×S1) = 0.
The surgery kernel is therefore π3(φ) ∼= H2(E8 × S1; Λ), where Λ := Z[π1(E8 × S1)] =
Z[Z] = Z[T 1, T−1]. Choose a Λ-basis for this, represented by eight disjoint embeddings
hi : S2 × D3 ↪→ E8 × S1 corresponding to the basis given for the intersection form in
(6.1.1), and let U denote the union of all of these embeddings U := ∪ihi(S2 ×D3).

We have now split our manifold E8 × S1 into two pieces: E8 × S1 \ U and U .
Furthermore, after cellular approximation we can assume that our map φ takes the
form of a map of triads

φ : (E8 × S1; (E8 × S1 \ U), U) → (S4 × S1; (S4 × S1 \D5), D5).

An element of L5(Z[Z]) is a formation. Every formation is equivalent to a formation
of the form (Hε(F );F,G), but we can see this explicitly in our case. Since ∂U ∼=
⊔iS

2 × S2, a disjoint union of embedded copies of S2 × S2, H2(∂U ; Λ) is already the
standard hyperbolic form over Λ with sixteen generators, where ei corresponds to the
ith copy of S2 × {pt} and fi corresponds to the ith copy of {pt} × S2.
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More specifically, the formation corresponding to this surgery problem is given by
(H;F,G) where

H := ker
(
(φ |∂U)∗ : H2(∂U ; Λ) → H2(∂D5;φ∗Λ)

)
,

F := ker
(
(φ |U)∗ : H3(U, ∂U ; Λ) → H3(D5, ∂D5;φ∗Λ)

)
,

G := ker
(
(φ |

E8×S1\U)∗ : H3(E8 × S1 \ U, ∂U ; Λ) → H3(S4 × S1 \D5, ∂D5;φ∗Λ)
)
.

All of the restriction maps that we take above are the zero maps on their respective ho-
mology groups because their targets vanish, hence H ∼= H2(∂U ; Λ), F ∼= H3(U, ∂U ; Λ)
and G ∼= H3(E8 × S1 \ U, ∂U ; Λ). It is not too hard to see that F is isomorphic to
the standard Lagrangian of H, generated by the fi basis elements. Thus, all of the
information about the formation as an element in L5(Z[Z]) is contained in G. We shall
describe G in terms of a basis e′

i which can be viewed as the upper half of a 16 × 16
matrix. For demonstrative purposes, we can describe F in the same way as the bottom
half of the same matrix easily as f ′

i := fi which corresponds to the matrix[
0 Id

]
where Id denotes the 8 × 8 identity matrix.

Lemma 6.1.3. The matrix corresponding to G by describing a basis {e′
i} for G in

terms of the elements ei and fi is given below (the additional horizontal and vertical
rules have been added for readability).

T−1 T+1 1

T−1 T+1 1

T−1 T T+1 1

T−1 T T T+1 1

T−1 T T+1 1

T−1 T T+1 1

T−1 T T+1 1

T−1 T T+1

i.e. e′
1 = (T − 1)e1 + (T + 1)f1 + f4, e

′
2 = (T − 1)e2 + (T + 1)f2 + f3 etc.

Remark 6.1.4. By construction (which will be seen below), the form should die on the
e′
i, but perhaps it is helpful to explicitly see this. Let λ denote the standard Z[Z]-valued

intersection form on H. Then

λ(e′
1, e

′
1) = λ((T − 1)e1, (T + 1)f1) + λ((T + 1)f1, (T − 1)e1)

= (T − T−1) + (T−1 − T ) = 0,
λ(e′

1, e
′
4) = λ((T − 1)e1, T f1) + λ(f4, (T − 1)e4) = (T − 1)T−1 + T−1 − 1 = 0,

and all other cases are analogous.
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Proof of Lemma 6.1.3. Since we are describing a basis for G = H3(E8 × S1 \ U, ∂U ; Λ)
we will work in the universal cover of E8 × S1 which is E8 × R. First arrange the
embeddings hi : S2 × D3 ↪→ E8 × R such that each hi(S2 × {pt}) lies in the slice
E8 × { i−1

8 } and then write ei = hi(S2 × {pt}) and similarly write fi = hi({pt} × S2).
Furthermore, we may assume that the projections pi of ei onto the E8-factors give a
basis for H2(E8) corresponding to the basis used for (6.1.1). We will now describe eight
distinct elements in G.

Let Ai := pi × [ i−1
8 , 1 + i−1

8 ] be annuli in E8 × R and note these have ∂Ai =
(T − 1)ei. The annuli Ai are not disjoint from U , but Ai ∩ U consists of disjoint
3-balls corresponding to the intersection form given in (6.1.1). However, note that
because of how we chose to make the ei disjoint in E8 ×R, if pi and pj have non-trivial
intersection then Ai intersects U at ej for j > i, at Tej for j < i, and twice at ej
and Tej for j = i. Remove all of these 3-balls from Ai to form the element A′

i which
picks up extra boundary components as the boundaries of the removed 3-balls, which
can be seen by taking the duals fj for every ej that appeared above. We now see that
∂A′

i = e′
i as defined by the matrix in the statement of the lemma.

It remains to be seen that these eight elements generate the whole of G. Con-
sider the following diagram, made out of the long exact sequence of the triple (E8 ×
S1, E8 × S1 \ U, ∂U) and the pair (E8 × S1, ∂U) (with Λ-coefficients suppressed).

0

H2(E8 × S1)

H2(∂U)

0 H3(E8 × S1 \ U, ∂U) H3(E8 × S1, ∂U) H3(U, ∂U) 0

0

∂

Further, the horizontal short exact sequence splits via the map on homology induced
by the inclusion of pairs (U, ∂U) ↪→ (E8 × S1, ∂U). Hence

H3(E8 × S1, ∂U) ∼= H3(E8 × S1 \ U, ∂U) ⊕H3(U, ∂U).

Let B ∈ H3(E8 × S1 \ U, ∂U). Write ∂B = ∑
k=1,...,8 λkek + µkfk. Further assume
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λk = (T − 1)λk for all k (for some λk ∈ Λ), then

∂(B −
∑
k

λkAk) =
∑
k

(T − 1)λkek + µkfk −
∑
k

λk∂Ak

=
∑
k

µkfk

for some µk ∈ Λ. Let Ck for k = 1, . . . , 8 denote the basis for H3(U, ∂U) such that
∂Ck = fk. Then

∂(B −
∑
k

λkAk −
∑
k

µkCk) =
∑
k

µkfk − µkfk = 0,

and hence the injectivity of ∂ implies that B − ∑
k λkAk − ∑

k µkCk = 0 ∈ H3(E8 ×
S1, ∂U). Since this group splits as a direct sum, we see that B can be written as a
Λ-linear combination of the Ai.

We now claim that the assumption that λk = (T − 1)λk holds for all B, which
will complete the proof. Consider the following commutative diagram (where we are
explicit about the coefficients).

H3(E8 × S1 \ U, ∂U ; Λ) H3(E8 × S1, ∂U ; Λ) H2(∂U ; Λ) ⟨ei⟩Λ

H3(E8 × S1 \ U, ∂U ;Z) H3(E8 × S1, ∂U ;Z) H2(∂U ;Z) ⟨ei⟩Z

Here the vertical maps are the augmentation maps (given by setting T = 1). To prove
the claim, it suffices to show that mapping any element B ∈ H3(E8 × S1 \ U, ∂U ; Λ)
horizontally along the diagram and vertically down to ⟨ei⟩Z gives the zero element.
By considering the long exact sequence of the pair (E8 × S1, ∂U) with Z-coefficients,
one can see that the map H3(E8 × S1, ∂U ;Z) → H2(∂U ;Z) only hits the subgroup
generated by the fi, and hence the composition of the final two lower horizontal maps
in the diagram is the zero map. This completes the proof of the claim, and hence the
proof of the whole lemma.

§ 6.1.2 | Constructing the specific generator

The aim of this subsection is to take the generator for L5(Z[Z]) that we constructed
in the last subsection and show that it can be realised algebraically by a much smaller
matrix. To do this, we will perform a sequence of row and column operations on the
matrix from Lemma 6.1.3.

Let Σi = 1−T i+1

1−T = 1+T+· · ·+T i and let T ′ := T−1. We then perform the following
sequence of row and column operations on the 8×16 matrix from Lemma 6.1.3, though
we have given the initial matrix again below. Naturally, empty spaces denote zeroes
but we have particularly noted zeroes when they have first appeared from the previous
stage of row or column operations. We will sometimes use ⋆ to denote an entry whose
value is too lengthy to succinctly state but whose precise value is not important to the
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calculation. We also give the row and column operations used to go between each step.
For example, the notation

Rn→Rn+ΣkRn−1

means add Σk times the (n − 1)th row to the nth row. Similarly, we denote the nth
column by Cn.

We now begin the operations.

T ′ T+1 1

T ′ T+1 1

T ′ T T+1 1

T ′ T T T+1 1

T ′ T T+1 1

T ′ T T+1 1

T ′ T T+1 1

T ′ T T+1

R8→R8−Σ1R7

T ′ T+1 1

T ′ T+1 1

T ′ T T+1 1

T ′ T T T+1 1

T ′ T T+1 1

T ′ T T+1 1

T ′ T T+1 1

−Σ1T ′ T ′ −TΣ1 −Σ2 0

R8→R8+Σ2R6−Σ3R5+Σ4R4−Σ5R3+Σ6R2

T ′ T+1 1

T ′ T+1 1

T ′ T T+1 1

T ′ T T T+1 1

T ′ T T+1 1

T ′ T T+1 1

T ′ T T+1 1

Σ6T ′ −Σ5T ′ Σ4T ′ −Σ3T ′ Σ2T ′ −Σ1T ′ T ′ TΣ4 Σ7 0 0 0 0 0

R3→R3−Σ1R2
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T ′ T+1 1

T ′ T+1 1

−Σ1T ′ T ′ Σ2 0 1

T ′ T T T+1 1

T ′ T T+1 1

T ′ T T+1 1

T ′ T T+1 1

Σ6T ′ −Σ5T ′ Σ4T ′ −Σ3T ′ Σ2T ′ −Σ1T ′ T ′ TΣ4 Σ7

R1→R1−R3

T ′ Σ1T ′ −T ′ T+1 Σ2 0

T ′ T+1 1

−Σ1T ′ T ′ −Σ2 1

T ′ T T T+1 1

T ′ T T+1 1

T ′ T T+1 1

T ′ T T+1 1

Σ6T ′ −Σ5T ′ Σ4T ′ −Σ3T ′ Σ2T ′ −Σ1T ′ T ′ TΣ4 Σ7

C1→C1+T−1C2

C10→C10−TC9

T ′(2 + T−1) Σ1T ′ −T ′ T+1 1

T ′T−1 T ′ T+1 1

−T ′T−1Σ1 −Σ1T ′ T ′ −Σ2 1

T ′ T −T 2 T T+1 1

T ′ T T+1 1

T ′ T T+1 1

T ′ T T+1 1

T ′T−1Σ6 Σ6T ′ −Σ5T ′ Σ4T ′ −Σ3T ′ Σ2T ′ −Σ1T ′ T ′ TΣ4 Σ7 − T 2Σ4

R8→R8−(Σ7−T 2Σ4)R1

T ′(2 + T−1) Σ1T ′ −T ′ T+1 1

T ′T−1 T ′ T+1 1

−T−1Σ1 −Σ1T ′ T ′ −Σ2 1

T ′ T −T 2 T T+1 1

T ′ T T+1 1

T ′ T T+1 1

T ′ T T+1 1

β(T ) ⋆ ⋆ Σ4T ′ −Σ3T ′ Σ2T ′ −Σ1T ′ T ′ α(T ) 0
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0 0 0 0 1

0 0 0 1

0 0 0 0 1

0 0 0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

β(T ) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ α(T )

The last step uses the 1s on the right of the matrix to erase all non-zero entries to
the left of them.

This concludes the matrix operations. The polynomials given in the last two ma-
trices are defined as2

α(T ) = −1 − T + T 3 + T 4 + T 5 − T 7 − T 8,

β(T ) = (T − 1)(−2 − T + T 2 + T 3 + T 4 + T 5 − T 6 − 2T 7).

We conclude that we can represent the generator of L5(Z[Z]) by a 2-dimensional form
H over Λ, and a pair of lagrangians F ′ and G′ given by the matrix

M :=
α(T ) β(T )

0 1
.

Note that although we have used a matrix to encode the information about the
lagrangians, this matrix does not correspond to the automorphism of the form which
sends F ′ to G′. By Wall [Wal70, Corollary 5.3.1] we know that such an automorphism
exists, and we can write it as the following matrix

M ′ :=
γ(T ) α(T )
δ(T ) β(T )

 .
where we know the α(T ) and β(T ) are as above, but γ(T ) and δ(T ) are unknown. We
can, however, say something about the augmentation of this automorphism, which will
be useful to us in Chapter 7.

Lemma 6.1.5. The matrix M ′ augments to the matrix

M ′(1) :=
γ(1) α(1)
δ(1) β(1)

 =
 0 −1
−1 0

 .
Proof. First note that α(1) = −1 and β(1) = 0. Now, since the matrix M ′(1) must
represent an automorphism of the Z valued hyperbolic form, the values of γ(1) and

2In the original note, Lee’s α(T ) differs from the α(T ) here by multiplication by −1. As far as I
can tell, this was a sign error in the original computation in the very last step of the computation,
since Lee’s computation agrees with the computation here until the very last step.
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δ(1) are already determined. A simple calculation shows that these values are γ(1) = 0
and δ(1) = −1.

Presumably it is also possible to compute the exact Laurent polynomials γ(T ) and
δ(T ), but we have not attempted to do so.

§ 6.1.3 | Interpretation

Wall realisation [Wal70, Theorem 6.5] and Cappell-Shaneson [CS71, Theorem 3.1] tells
us that we can represent the generator of L5(Z[Z]) in the following way. Let W1 be
the standard cobordism between S1 × S3 and (S1 × S3)#(S2 × S2) and let W2 be the
reversed cobordism. Let (W ; ∂0W = S1 ×S3, ∂1W = S1 ×S3) be the cobordism formed
by gluing these via a homeomorphism

σ : S1 × S3#S2 × S2 → S1 × S3#S2 × S2

whose induced map on H2(S1 × S3#S2 × S2; Λ) is exactly the 2 × 2-matrix M ′ above.
Such a homeomorphism exists by Stong-Wang [SW00, Theorem 2]. Then the degree-
one normal map

f : (W ; ∂0W,∂1W ) → (S1 × S3 × I;S1 × S3 × {0}, S1 × S3 × {1})

has surgery obstruction θ(f) the generator of L5(Z[Z]) defined by M ′.

§ 6.2 | Proof of the stable realisation theorem
In this section we will prove Theorem 6.0.1 which shows that the Casson-Sullivan
invariant can always be realised stably. The idea is to use Theorem 5.5.3 along with
the following proposition, which relies on the work of developed in the previous section.

Proposition 6.2.1. There exists a homeomorphism

σ : (S1 × S3)#(S2 × S2) → (S1 × S3)#(S2 × S2)

such that cs(σ) is the generator of H3(S1 × S3;Z/2), the dual to the generator of
H1(S1 × S3;Z/2) which is represented by θ = S1 × {pt}. Furthermore, σ|νθ = Idνθ.

We postpone the proof of this proposition until Section 6.2.2. Now we use The-
orem 5.5.3 and Proposition 6.2.1 to prove the following theorem, from which Theo-
rem 6.0.1 will immediately follow.

Theorem 6.2.2. Let f0 : X0 → X ′
0 be a homeomorphism of compact, connected,

smooth, orientable 4-manifolds and define η0 := cs(f0). Let η ∈ H3(X0, ∂X0;Z/2),
and let γ ⊂ X be a (framed) embedded curve dual to η− η0 ∈ H3(X0, ∂X0;Z/2). Then
we have the following cases.

(i) If f0|νγ is the identity map, then the connected-sum homeomorphism

f0#γ=θσ : X0#(S2 × S2) → X ′
0#(S2 × S2)
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is defined and cs(f#γ=θσ) = η.

(ii) If f0|νγ is the Gluck twist map, then the connected-sum homeomorphism

f0#γ=θ(σ ◦ t) : X0#(S2 × S2) → X ′
0#(S2 × S2),

where t denotes the Gluck twist map extended onto the (S2 × S2)-summand, is
defined and cs(f0#γ=θσ) = η.

Proof (assuming Proposition 6.2.1). That we only have to consider the two cases above
comes from the exposition at the beginning of Section 5.5. In both cases the connected-
sum homeomorphism (as above) is defined by the last part of Proposition 6.2.1, and
because there are natural diffeomorphisms

X0#γ=θ((S1 × S3)#(S2 × S2)) ∼= X0#(S2 × S2)

and
X ′

0#(f0)∗(γ)=θ((S1 × S3)#(S2 × S2)) ∼= X ′
0#(S2 × S2).

Let Q be the map in the statement of Theorem 5.5.3 for the above decomposition. In
case (i), by Theorem 5.5.3 and Proposition 6.2.1 we have

cs(f0#γ=θσ) = Q(cs(f0), (cs(σ))) = η0 + (η − η0) = η.

Similarly, in case (ii), by Proposition 5.4.2, Theorem 5.5.3 and Proposition 6.2.1 we
have

cs(f0#γ=θ(σ ◦ t)) = Q(cs(f0), cs(σ ◦ t))
= Q(cs(f0), cs(σ) + cs(t))
= Q(cs(f0), cs(σ))
= η0 + (η − η0) = η.

In the above formulae we have used the isomorphism

H3(X0, ∂X0;Z/2) ∼= H3(X0#(S2 × S2), ∂X0;Z/2)

induced by the map collapsing the S2 × S2 summand.

Proof of Theorem 6.0.1. Using the isomorphism H3(X0, ∂X0;Z/2) ∼= H3(X, ∂X;Z/2)
induced by collapsing the S2 × S2 summand, we can consider the given class η ∈
H3(X, ∂X;Z/2) as an element η ∈ H3(X0, ∂X0;Z/2). By assumption there exists a
homeomorphism f0 : X0 → X ′

0, and applying Theorem 6.2.2 to the class η immediately
gives the result.
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§ 6.2.1 | Surgery

Now we fundamentally make use of the result from Section 6.1, where we presented
Ronnie Lee’s proof that the generator of L5(Z[Z]) could be represented by a 2 × 2
matrix. Using this, we receive the following corollary.

Corollary 6.2.3. There exists a homeomorphism

σ : (S1 × S3)#(S2 × S2) → (S1 × S3)#(S2 × S2)

realising the generator of L5(Z[Z]). More precisely, let N be the standard cobordism
between S1 × S3 and (S1 × S3)#(S2 × S2). Then the surgery problem

W = (N ∪σ −N) → (S1 × S3) × I

has surgery obstruction the generator of L5(Z[Z]). Furthermore, σ|νθ = Idνθ, where
θ = S1 × {pt} ⊂ S1 × S3.

Proof. By Section 6.1 we have a matrix M with entries in Z[Z] which represents the
generator of L5(Z[Z]). By [SW00, Theorem 2] there exists two pseudo-isotopy classes
of self-homeomorphisms of (S1 ×S3)#(S2 ×S2) which induce the map M on H2((S1 ×
S3)#(S2 × S2);Z[Z]), one which preserves the spin structures on S1 × S3 and one
which swaps them. Let σ be a representative self-homeomorphism that fixes the spin
structures. Since σ fixes the spin structures, σ can be isotoped such that σ|νθ = Idνθ.
It follows from [CS71, Theorem 3.1] that W has surgery obstruction the generator of
L5(Z[Z]).

§ 6.2.2 | Proof of Proposition 6.2.1

Throughout this subsection, let σ : (S1 × S3)#(S2 × S2) → (S1 × S3)#(S2 × S2) and
W be as in Corollary 6.2.3. The aim is to prove Proposition 6.2.1 by showing that that
this σ has cs(σ) the generator of H3((S1 × S3)#(S2 × S2);Z/2). This will be done
by performing operations on W given in Corollary 6.2.3 and keeping track of what
happens to the relative Kirby-Siebenmann invariant of the cobordism along the way.
We begin with some lemmas.

In what follows, we will also need the following lemma.

Lemma 6.2.4. Every homeomorphism f : S1 × S3 → S1 × S3 is pseudo-smoothable
and hence has cs(f) = 0.

Proof. Stong-Wang classified homeomorphisms of 4-manifolds M with π1(M) ∼= Z
up to pseudo-isotopy [SW00, Theorem 2]. This directly gives us that there are four
homeomorphisms on S1 ×S3 up to pseudo-isotopy represented by (1) the identity map;
(2) conjugation on the S1-factor composed with the reflection map on the S3-factor;
(3) the corresponding Gluck twist map S1 × S3 → S1 × S3 (Equation (5.5.1)); and (4)
the composition of the two previously stated non-trivial maps. All of these maps are
clearly smooth, hence every self-homeomorphism of S1 ×S3 is pseudo-smoothable.
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Lemma 6.2.5. Under the standard identification

H4(W,∂W ;Z/2) ∼= H4(Mσ, ∂Mσ;Z/2) ϖ−1
−−→ H3((S1 × S3)#(S2 × S2);Z/2)

(see Definition 5.2.9) we have that ks(W,∂W ) = ϖ cs(σ) where Mσ denotes the map-
ping cylinder.

Proof. Note that N is smoothable relative to the standard smooth structure on the
boundary. It is clear that we have a homeomorphism relative to the boundary

W ≈ N ∪(S1×S3)#(S2×S2)
(
((S1 × S3)#(S2 × S2)) × I

)
∪σ −N.

i.e. inserting a product (S1 × S3#S2 × S2) × I to the right end of N does not change
the relative homeomorphism type of W . We now see that the identification

H4(W,∂W ;Z/2)
∼=−→ H4(Mσ, ∂Mσ;Z/2)

gives ks(W,∂W ) = ks(Mσ) = ϖ cs(σ) where Mσ is the mapping cylinder of σ (note
that here we write “=” as there is only one isomorphism between groups isomorphic
to Z/2.).

Lemma 6.2.6 ([FQ90, Proof of 11.6A]). Let S1 ×E8 → S1 ×S4 be the surgery problem
which has surgery obstruction the inverse of the generator of L5(Z[Z]), let γ ⊂ W be
an embedded curve representing the generator of H1(W ), and let γ′ be the embedded
curve S1 × {pt} ⊂ S1 × E8. Then the connected-sum surgery problem

W#γ=γ′(S1 × E8) → (S1 × S3) × I

has vanishing surgery obstruction.

Remark 6.2.7. Note that the generator of L5(Z[Z]) being representable by a surgery
problem S1×E8 → S1×S4 (as in Lemma 6.2.6) follows from Shaneson splitting [Sha69,
Theorem 5.1].

We can now prove the proposition.

Proof of Proposition 6.2.1. Start with the cobordism W and modify the surgery ob-
struction to be trivial using Lemma 6.2.6. Since the result has vanishing surgery
obstruction, we can surger it relative to the boundary to an s-cobordism W ′. Since
π1(W ′) ∼= π1(S1 × S3) ∼= Z is good we can use the s-cobordism theorem [FQ90, The-
orem 7.1A], which gives that W ′ is homeomorphic to the mapping cylinder Mf for
some homeomorphism f : S1 × S3 → S1 × S3. By Lemma 6.2.4, cs(f) = 0 and hence
ks(W ′, ∂W ′) = 0.

We now need to keep track of how we modified the Kirby-Siebenmann invariant
throughout this process. The main tool for doing so will be the long exact sequence of
the triple (see Equation (5.5.3)) with Z/2-coefficients suppressed throughout. When
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we used Lemma 6.2.6 to kill the surgery obstruction, the connected-sum over a circle
was induced by a relative cobordism C between W ⊔ (E8 ×S1) and W#γ=γ′(S1 ×E8).
Let W# := W#γ=γ′(S1 × E8). This relative cobordism C is formed by attaching a
single 1-handle (at one point on γ and at one point on γ′) and then a single 2-handle
which attaches by going along γ, then the 1-handle, then γ′, and then back along the
1-handle. From the long exact sequence of the triple (C,W ⊔ S1 × E8, ∂W ) we have
the sequence

H4(C,W ⊔ S1 ×E8) → H4(C, ∂W ) → H4(W ⊔ S1 ×E8, ∂W ) → H5(C,W ⊔ S1 ×E8).

The outer groups H4(C,W ⊔ S1 × E8) and H5(C,W ⊔ S1 × E8) must both vanish
since the cobordism C was made by only attaching 1- and 2-handles. Hence we get an
isomorphism

H4(C, ∂W )
∼=−→ H4(W ⊔ S1 × E8, ∂W ) ∼= H4(W,∂W ) ⊕H4(S1 × E8) ∼= Z/2 ⊕ Z/2.

(6.2.1)
By considering the long exact sequence of the triple (C,W#, ∂W#) we have the following
commutative diagram

H4(C,W#) H4(C, ∂W#) H4(W#, ∂W#)

Z/2 Z/2 ⊕ Z/2 Z/2.

∼= ∼= ∼=
17→(1,1) (a,b)7→a+b

The leftmost vertical isomorphism again comes from the relative handle decomposition
of C, and the rightmost vertical isomorphism is clear by the definition of W#. The mid-
dle vertical isomorphism comes from Equation (6.2.1) and the fact that H∗(C, ∂W#) ∼=
H∗(C, ∂W ). The leftmost horizontal map can be seen to be the diagonal map since
the generator of H4(C,W#) is Poincaré-Lefschetz dual to the annulus with boundaries
homologous to the generators of H1(W ) and H1(S1 × E8). The rightmost horizontal
map is then given by exactness. Using this and naturality of the Kirby-Siebenmann
invariant, we can deduce that

ks(W#, ∂W#) = ks(W,∂W ) + ks(S1 × E8),

where we can naturally identify the groups as there is only one isomorphism between
groups isomorphic to Z/2.

Using a similar argument, one can see that the surgeries used to surger W# to
the s-cobordism W ′ do not alter the Kirby-Siebenmann invariant (the relative handle
decomposition for the relative cobordism given by the trace of any given surgery consists
of only a single handle, so the computation is greatly simplified). Hence, since by
naturality ks(S1 × E8) = 1,

ks(W ′, ∂W ′) = ks(W#, ∂W#) = ks(W,∂W ) + ks(S1 × E8) = ks(W,∂W ) + 1
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As we already concluded that ks(W ′, ∂W ′) = 0 ∈ Z/2, this implies that ks(W,∂W ) = 1,
and hence, by Lemma 6.2.5, cs(σ) is the generator of H3((S1 × S3)#(S2 × S2);Z/2),
as claimed.

§ 6.2.3 | An interesting example

We can use the objects and tools that we have developed so far to illustrate an interest-
ing example involving the Casson-Sullivan invariant that demonstrates its dependence
on smooth structures, as is expected by Section 5.3. This will also prove Corollary 6.0.2.

Example 6.2.8. Let X = (S1 ×S3)#(S1 ×S3)#(S2 ×S2). Let f := IdS1×S3 #σ : X →
X be a homeomorphism where σ denotes the homeomorphism constructed by Corol-
lary 6.2.3, and let g : X → X be the homeomorphism which swaps the S1 × S3 sum-
mands and leaves the S2 × S2 summand fixed.

Let S denote the standard smooth structure onX and (in an abuse of notation) also
denote the induced formal smooth structure (see Remark 5.2.6). Then g : XS → XS

is (isotopic to) a diffeomorphism, and hence cs(g) = 0 with respect to the smooth
structure S . However, let f ∗(S ) be the smooth structure on X induced by f . Using
Proposition 5.3.2 we can compute the Casson-Sullivan invariant of g with respect to the
smooth structure f ∗(S ). As in Proposition 5.3.2, let a ∈ [X,TOP/O] be the unique
element such that a · S = f ∗(S ). We then have that

cs(g) = δ(g, f ∗(S ))
= a+ g∗(a) + δ(g,S )
= a+ g∗(a)
= δ(f,S ) + g∗(δ(f,S ))
= cs(f) + g∗(cs(f)),

which is equal to the element (1, 1) ∈ Z/2 ⊕ Z/2 ∼= H3(X;Z/2) by Theorem 5.6.1 and
Proposition 6.2.1. So g is no longer smoothable with respect to the smooth structure
f ∗(S ).

Corollary 6.0.2 follows immediately from this example.

Proof of Corollary 6.0.2. Take S ′ := f ∗(S ). Let XS denote X with the standard
smooth structure, and let XS ′ denote X with the smooth structure S ′. By definition,
f : XS → XS ′ is a diffeomorphism, so the two smooth structures are diffeomorphic
(see Definition 2.1.4). By the calculation in Example 6.2.8, g is not stably pseudo-
smoothable with respect to the smooth structure S ′, since its Casson-Sullivan invariant
is non-trivial.



Chapter 7

Stable isotopy of surfaces

This chapter is devoted to proving Theorem 1.2.10. We begin with a definition.

Definition 7.0.1. Let X be a connected, compact, orientable smooth 4-manifold and
let Σ1,Σ2 ⊂ X be a pair of smoothly embedded surfaces, such that ∂Σ1 = ∂Σ2 =
L ⊂ ∂X a fixed link in ∂X (which may be disconnected). We say that Σ1 and Σ2 are
topologically isotopic {smoothly isotopic} if there exists a homeomorphism {diffeomor-
phism} of pairs F : (X,Σ1) → (X,Σ2) such that F is isotopic {smoothly isotopic} to
the identity. We say that Σ1 and Σ2 are externally stably smoothly isotopic if there
exists n ≥ 0 such that Σ1 and Σ2 become smoothly isotopic in X#(#nS2 ×S2), where
we perform the connected-sums in the complement of Σ1 ∪ Σ2.

Now we restate Theorem 7.0.2 from the introduction.

Theorem 7.0.2. Let X be a connected, compact, simply-connected, smooth 4-manifold
and let Σ1,Σ2 ⊂ X be a pair of smoothly, properly embedded, orientable surfaces which
are topologically isotopic relative to their boundaries. Then Σ1 and Σ2 are externally
stably smoothly isotopic.

The idea of proving Theorem 7.0.2 is as follows: first, we find a stable diffeomor-
phism between the exteriors of the surfaces. Then, we show that we can modify this
diffeomorphism to find one such that when we glue back in the tubular neighbourhoods
of the surfaces, we have a diffeomorphism which is the identity on H2(X;Z). Then we
use the following result of Saeki and Orson-Powell which says when a diffeomorphism
of a simply-connected 4-manifold is stably isotopic to the identity.

Theorem 7.0.3 ([Sae06, OP23]). Let X be a connected, compact, simply-connected
smooth 4-manifold with (potentially disconnected) boundary ∂X and let f : X → X be
a diffeomorphism (restricting to the identity on ∂X) such that the variation induced
by f is trivial, and such that the induced map on relative spin structures (see [OP23,
Definition 2.5]) is trivial. Then f is stably smoothly isotopic to the identity.

The above theorem crucially relies on the theorem of Quinn [Qui86] that smooth
pseudo-isotopy implies stable smooth isotopy (c.f. [Gab22, Section 2], and [GGH+23]).
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Since in Theorem 7.0.2 we assume that our surfaces are topologically isotopic, this
means that we have a homeomorphism of the surface exteriors, and we will take this
as our starting point. First, however, we need to arrange that our homeomorphism is
smooth near the surfaces.

Lemma 7.0.4. Let X, Σ1 and Σ2 be as in the statement of Theorem 7.0.2 and let
Ĝ : X → X be a homeomorphism which sends Σ1 to Σ2. Then Ĝ is isotopic relative
∂X ∪ Σ1 to a homeomorphism which sends νΣ1 to νΣ2 by a diffeomorphism.

Proof. Let U := Ĝ(νΣ1). We begin by isotoping Ĝ|Σ1 to a diffeomorphism, which
is always possible since homeomorphisms of surfaces are isotopic to diffeomorphisms
[Eps66] (see also [Hat14]). This isotopy extends to Ĝ by extending it first to a tubular
neighbourhood (perform the isotopy less and less as you extend radially from Σ1) and
then as the constant isotopy on the complement of the tubular neighbourhood of Σ1 (of
course, it was clear, by the isotopy extension theorem [EK71], that this extended, but
we can see the extension explicitly and easily in this case). Denote the result of this
isotopy still by Ĝ. By the uniqueness of topological tubular neighbourhoods [FQ90,
Chapter 9.3], U and νΣ2 are isotopic by an isotopy that fixes Σ2, and hence we can
isotope Ĝ relative to ∂X ∪ Σ1 such that Ĝ(νΣ1) = νΣ2 as bundles. We now smooth
the map on the fibres of the normal bundles relative to the 0-section Σ1, which we can
do since any map Σ1 → O(2) can be isotoped to a smooth map. The result of this
isotopy now sends νΣ1 to νΣ2 via a diffeomorphism.

Remark 7.0.5. It should be noted that one cannot always smooth homeomorphisms
of 4-manifolds near arbitrary codimension 2 submanifolds. In general, one can only
smooth a homeomorphism near a codimension 2 submanifold after a small topological
isotopy (see [FQ90, Theorem 8.1A]). Lemma 7.0.4 does not contradict this since we
have a much stronger hypothesis (it is a self-homemorphism of a smooth manifold
and our homeomorphism already maps the submanifold in question to another smooth
submanifold).

The following lemma will handle most of the technical aspects of the proof of
Theorem 7.0.2.

Lemma 7.0.6. Let X, Σ1 and Σ2 be as in the statement of Theorem 7.0.2 and let
G : X \ νΣ1 → X \ νΣ2 be the homeomorphism of the surface exteriors and Ĝ : X → X

the extension of G. Then for some k ≥ 0 there exists a diffeomorphism

F : (X \ νΣ1)#(#kS2 × S2) → (X \ νΣ2)#(#kS2 × S2)

which restricts to the identity on ∂X. Furthermore, F extends to a diffeomorphism

F̂ : X#(#kS2 × S2) → X#(#kS2 × S2),
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and the induced maps on second homology fit into the following commutative diagram.

H2(X \ νΣ1) ⊕ Z2 ⊕ Z2k−2 H2(X \ νΣ2) ⊕ Z2 ⊕ Z2k−2

H2((X \ νΣ1)#(#kS2 × S2)) H2((X \ νΣ2)#(#kS2 × S2))

H2(X#(#kS2 × S2)) H2(X#(#kS2 × S2))

H2(X) ⊕ Z2 ⊕ Z2k−2 H2(X) ⊕ Z2 ⊕ Z2k−2

∼=

(G∗,A,Id)

∼=

(i1)∗

F∗

(i2)∗

∼=

(F̂ )∗

∼=

(Id,A,Id)

(7.0.1)

where i1 and i2 denote the inclusions of the exteriors, and A : Z2 → Z2 is either the
identity map if cs(G) = 0, or is given by the map sending (x, y) 7→ (−y,−x) if cs(G) ̸=
0. Furthermore, F̂ is topologically pseudo-isotopic to a map which differs from the
stabilisation of Ĝ only on a neighbourhood of a curve in X \ νΣ1 and a single S2 × S2

summand.

Proof. We assume, by Lemma 7.0.4, that Ĝ : X → X already restricts to a diffeomor-
phism of the tubular neighbourhoods Ĝ|νΣ1 : νΣ1 → νΣ2.

We begin by showing the existence of a stable diffeomorphism of the exteriors, and
that the top square in Equation (7.0.1) commutes. Assume that cs(G) ̸= 0, and let
γ ⊂ X \ νΣ1 be a framed embedded curve such that [γ] ∈ H1(X \ νΣ1;Z/2) is dual
to cs(G). By Theorem 6.2.2, the connected-sum homeomorphism (using the notation
therein)

G′ := G#γ=θσ̂ : (X \ νΣ1)#(S2 × S2) → (X \ νΣ2)#(S2 × S2)

has cs(G′) = cs(G) + cs(G) = 0, where σ̂ = σ or σ ◦ t, depending on G.
By Proposition 5.4.5, G′ is stably pseudo-isotopic to a diffeomorphism

F : (X \ νΣ1)#(#kS2 × S2) → (X \ νΣ2)#(#kS2 × S2)

for some k ≥ 1. By Lemma 6.1.5, σ̂ induces the map sending (x, y) 7→ (−y,−x) on
H2((S1 × S3)#(S2 × S2)) and hence the top square in Equation (7.0.1) commutes.

If cs(G) = 0 then we may immediately apply Proposition 5.4.5 and similarly obtain
a diffeomorphism F , though potentially needing no stabilisations, and the top half of
Equation (7.0.1) commutes with A given by the identity map.

Now F extends to a diffeomorphism on X#(#kS2 × S2) since we already assumed
that Ĝ restricted to a diffeomorphism νΣ1 → νΣ2. More specifically, we can fill back
in the tubular neighbourhoods of the surfaces Σ1 and Σ2 to obtain a diffeomorphism
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F̂ which fits into the following diagram.

(X \ νΣ1)#(#kS2 × S2) (X \ νΣ2)#(#kS2 × S2)

X#(#kS2 × S2) X#(#kS2 × S2)

F

i1 i2

F̂

This means that the middle square in Equation (7.0.1) must commute, and the com-
mutativity of the bottom square then follows immediately. The final statement is clear
by the construction.

Proof of Theorem 7.0.2. By Lemma 7.0.6, we have that for some k ≥ 0 there exists a
diffeomorphism

F̂ : X#(#kS2 × S2) → X#(#kS2 × S2)

such that on second homology it induces the map

(Id, A, Id) : H2(X) ⊕ Z2 ⊕ Z2k−2 → H2(X) ⊕ Z2 ⊕ Z2k−2

where A is either the identity map or the map sending (x, y) 7→ (−y,−x). Since F̂ is
an extension of a diffeomorphism of the exteriors, it must send Σ1 to Σ2.

We want to apply Theorem 7.0.3, and so we need to show that the variation induced
by F̂ , as well as the induced map on relative spin structures, is trivial. By the last
statement of Lemma 7.0.6, the variation induced by F̂ can only differ by the variation
induced by Ĝ by its action on relative homology classes which cannot be represented by
a relative surface disjoint from the neighbourhood of a curve union a single (S2 × S2)-
connected-summand. Such a class x ∈ H2(X#(#kS2 × S2), ∂) can be represented as
x = x′ + x′′, where x′ is represented by a relative surface disjoint from a curve union a
single (S2×S2)-connected-summand, and x′′ is a (potentially trivial) homology class on
that (S2 × S2)-connected-summand. Since the variation induced by Ĝ is topologically
isotopic to the identity, its induced variation is trivial, and hence the action of the
variation induced by F̂ on all relative classes disjoint from a curve union a single
(S2 × S2)-connected-summand is trivial. Putting these facts together, this means that
the variation induced by F̂ can only differ from the trivial variation if its induced map
on homology is non-trivial.

If A is the identity map, then F̂ acts trivially on homology, and hence (by the
above) its induced variation is trivial. If A is not the identity map, then post-compose
F̂ with the map

a := Id #a′# Id: X#(S2 × S2)#(#kS2 × S2) → X#(S2 × S2)#(#kS2 × S2),

where a′ : S2 × S2 → S2 × S2 is the map defined as the antipodal map on both S2-
factors, composed with the diffeomorphism that swaps the two S2-factors, and obtain
an orientation-preserving diffeomorphism a ◦ F̂ . This new diffeomorphism still sends
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Σ1 to Σ2, since a is supported away from Σ1, but now induces the trivial map on
homology. In either case, this means the map we have created now induces the trivial
variation.

That the induced map on relative spin structures by F̂ is trivial follows again from
the last statement in Lemma 7.0.6 and that every arc between two distinct boundary
components of X can be made disjoint from a curve union a single (S2 ×S2)-summand.

Now apply Theorem 7.0.3 to obtain that F̂ is stably smoothly isotopic to the
identity, and hence Σ1 and Σ2 are stably smoothly isotopic.

As was mentioned in Remark 1.2.11, Theorem 7.0.2 has the following consequence
when paired with certain results concerning when embedded surfaces are (stably) topo-
logically isotopic.

Corollary 7.0.7. Let X be as in Theorem 7.0.2. Let Σ1, Σ2 be a pair of homologous,
smoothly embedded surfaces in X with the same genus and same boundaries, such that
π1(X \ νΣ1) ∼= π1(X \ νΣ2). Then if any of the following conditions are satisfied, the
surfaces are stably smoothly isotopic relative to their boundaries (below b2(X) denotes
the second Betti number of X and sig(X) denotes the signature of X).

(i) Σ1 and Σ2 are both spheres and π1(X \ νΣ1) ∼= Z/d for some d ≥ 0.

(ii) π1(X \ νΣ1) is trivial.

(iii) π1(X \ νΣ1) ∼= Z and b2(X) ≥ |sig(X)| + 6.

(iv) π1(X \ νΣ1) ∼= Z/d for some d ≥ 2 and b2(X) > |sig(X)| + 2 and the genus of Σ1

is not the minimal genus needed to represent that homology class among surfaces
with the same fundamental group of the exterior.

Proof. If case (i) is satisfied then [HK93b, Theorem 4.8] (or [LW90, Corollary 1.3] if d
is odd and X is closed) shows that the surfaces are stably topologically isotopic. Then
Theorem 7.0.2 applied to the stabilisation shows that the surfaces are stably smoothly
isotopic. If any of the other cases are satisfied, then [Sun15b, Theorem 7.1, 7.2, 7.4]
shows that the surfaces are topologically isotopic, and then applying Theorem 7.0.2
shows that they are stably smoothly isotopic.



Chapter 8

Unstable realisation of the Casson-
Sullivan invariant

In this chapter we aim to realise the Casson-Sullivan invariant unstably in some cases.
The main result that we will prove is the following, which was Theorem 1.2.6 from the
introduction.

Theorem 8.0.1. Let X be a compact, connected, smooth, orientable 4-manifold with
π1(X) a good group such that X satisfies the Casson-Sullivan realisability condition
(Definition 8.3.1). Then for every class η ∈ H3(X, ∂X;Z/2) there exists a homeomor-
phism f : X → X with cs(f) = η.

The Casson-Sullivan realisability condition will be given in Definition 8.3.1. We
will also prove the following theorem, which was Theorem 1.2.8 from the introduction.

Theorem 8.0.2. Let X be a compact, connected, smooth, orientable 4-manifold with
π1(X) a good group such that X satisfies the Casson-Sullivan realisability condition
(Definition 8.3.1). Then there exists a family of homeomorphisms {fη : X → X | 0 ̸=
η ∈ H3(X, ∂X;Z/2)} all distinct up to pseudo-isotopy (relative to the boundary) such
that each element fη is not stably pseudo-smoothable but each fη is homotopic to the
identity map.

These are the most subtle non-smoothable homeomorphisms that we can produce,
in the sense that they are “homotopically smoothable” but not actually smoothable.
Compare this to the non-smoothable homeomorphisms produced in Theorem 4.0.1,
which were trivial on homology but were still homotopically non-trivial, being detected
by Poincaré variations.

§ 8.0.1 | Chapter outline

In Section 8.1 we will introduce the background necessary to give the proofs of the
above two theorems. In Section 8.2 and Section 8.3 we will prove Theorem 8.0.1 and
Theorem 8.0.2. In Section 8.4 we will describe when Theorem 8.0.1 and Theorem 8.0.2
apply, and in Section 8.5 we will describe some techniques for partial realisation of the
Casson-Sullivan invariant.
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§ 8.1 | The surgery exact sequence
For a reference, see [Ran02, Chapter 13] in high-dimensions and for the 4-dimensional
surgery exact sequence see [FQ90, Chapter 11] or [BKK+21, Chapter 22]. We will use
the surgery sequence in both the smooth and topological categories, so to simplify the
notation we will use CAT to stand in for both DIFF and TOP.

The surgery exact sequence consists of three types of objects, which we now recall:
the structure set, the normal invariants, and the L-groups.

Definition 8.1.1. Let (M,∂M) be a connected CAT n-manifold with (potentially
empty) boundary. Then the CAT-structure set of M , denoted as SCAT(M,∂M) is the
set of all equivalence classes of pairs (N,φ) where N is a CAT-n-manifold and φ a
homotopy equivalence φ : N ≃−→ M such that the restriction φ|∂N : ∂N → ∂M is a
CAT-isomorphism. The equivalence relation is that (N,φ) ∼ (N ′, φ′) if there exists a
(relative) CAT-h-cobordism (W ;N,N ′) with a homotopy equivalence

Φ: W → M × [0, 1]

such that Φ|N = φ : N → M × {0} and Φ|N ′ = φ′ : N ′ → M × {1} and such that

Φ|∂N×[0,1] = (φ|∂N × Id[0,1]) : ∂N × [0, 1] → ∂M × [0, 1].

Similarly, there is a simple CAT-structure set, denoted Ss
CAT, which is defined anal-

ogously to the regular structure set but with all homotopy equivalences replaced with
simple homotopy equivalences (and hence all h-cobordisms replaced with s-cobordisms).
Sometimes will we write Sh

CAT to specify that we mean the regular structure set.

We now define the normal invariants.

Proposition 8.1.2. Let G(k) be the monoid of homotopy equivalences Sk−1 → Sk−1,
let G denote the direct limit of the inclusions G(k) ↪→ G(k+1). Then there are fibration
sequences

G/O → BO → BG → B(G/O)

and
G/TOP → BTOP → BG → B(G/TOP).

Proof. See [Ran02, Chapter 9] and [FQ90, Chapter 11]. Note that again G/O and
G/TOP are defined as the homotopy fibres of O → G and TOP → G, respectively,
and that B(G/O), B(G/TOP) and the rightmost fibrations exist by Boardman-Vogt
[BV68].

Definition 8.1.3. Let (M,∂M) be a connected n-manifold with (potentially empty)
boundary ∂M which already has a CAT-structure. Then the normal invariants of M ,
denoted as NCAT(M,∂M) is the set of homotopy classes of maps [(M,∂M), G/O] if
CAT = DIFF or [(M,∂M), G/TOP] if CAT = TOP.
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Remark 8.1.4. The above definition is one way of defining the normal invariants for
a given manifold. An equivalent formulation is that a CAT normal invariant for a
CAT-manifold (M,∂M) is a CAT-manifold (N, ∂N) together with a so-called degree
one normal map f : N → M which restricts to a CAT-isomorphism on ∂N . For more
information, see [Ran02, Chapter 9].

The reader should recall the definition of the surgery obstruction groups (see Defi-
nition 6.1.1).

We can now state the surgery exact sequence, due to Browder, Novikov, Sullivan
and Wall (and Freedman-Quinn in dimension 4).

Theorem 8.1.5 ([Wal70, Theorem 10.8], [FQ90, Theorem 11.3A]). Let M be a com-
pact, connected, oriented n-dimensional CAT-manifold. Then for CAT = DIFF and
n ≥ 5 we have the following exact sequence of pointed sets, which continues to the left
in the obvious manner:

· · · Ln+2(Z[π]) SDIFF(M × I, ∂) [(M × I, ∂), G/O] Ln+1(Z[π])

SDIFF(M,∂) [(M,∂), G/O] Ln(Z[π]).

And for CAT = TOP and n ≥ 5 (and n = 4 provided that π is a good group; see
Remark 1.2.7) we have the following analogous exact sequence of abelian groups:

· · · Ln+2(Z[π]) STOP(M × I, ∂) [(M × I, ∂), G/TOP] Ln+1(Z[π])

STOP(M,∂) [(M,∂), G/TOP] Ln(Z[π]).

Furthermore, there are simple versions of both of these exact sequences where the L-
groups are replaced by the simple L-groups and the structure sets are replaced by the
simple structure sets.

§ 8.2 | Forming mapping cylinders from the surgery
exact sequence

Now we specialise to the case of interest. Let X be a compact, connected, smooth 4-
manifold with boundary ∂X. The obstruction to lifting an element of NTOP to NDIFF

is given by the map ξ∗ induced by the fibration

G/O → G/TOP ξ−→ B(TOP/O).

We will consider the following augmented part of the TOP and DIFF surgery exact
sequences for X:
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[(X × I, ∂), G/O]

Ss
TOP(X × I, ∂) [(X × I, ∂), G/TOP] Ls5(Z[π])

[(X × I, ∂),B(TOP/O)]

ξ∗

θ

The idea is to construct a mapping cylinder for a homeomorphism with non-trivial
Casson-Sullivan invariant from this sequence. The way we will do this is by finding
an element N ∈ NTOP(X × I, ∂) which has vanishing surgery obstruction θ(N), but
has ξ∗(N) ̸= 0. First, we need to understand the map ξ∗ more, which we do via the
following two lemmas.

Lemma 8.2.1. We have an isomorphism

[(X × I, ∂), G/TOP] ∼= H2(X × I, ∂;Z/2) ⊕H4(X × I, ∂;Z).

Proof. This follows from the work of Sullivan [Sul96], which can be found in [Ran02].
Instead though, we will refer to [MM79] for its exposition on this topic. In particular,
it follows from [MM79, Remark 4.36] that

(G/TOP[2])6 ≃ K(Z(2), 4) ×K(Z/2, 2)

where G/TOP[2] denotes the 2-localisation of G/TOP and (G/TOP)6 denotes its 6th
Postnikov stage. From this, one can use [MM79, 4.35] to see that

(G/TOP)6 ≃ K(Z, 4) ×K(Z/2, 2)

and, together with the fact that X × I is a 5-dimensional CW-complex, a standard
obstruction theoretic argument completes the proof of the lemma.

Lemma 8.2.2. We have the following commutative diagram.

[(X × I, ∂), G/TOP] H2(X × I, ∂;Z/2) ⊕H4(X × I, ∂;Z)

[(X × I, ∂),B(TOP/O)] H4(X × I, ∂;Z/2)

∼=

ξ∗ m

∼=

where m is the map sending (x, y) 7→ (red2(y)).

Proof. First, note that the bottom horizontal isomorphism is given by there being a 7-
connected map from B(TOP/O) → K(Z/2, 4) (see Section 5.2), and the top horizontal
isomorphism is given by Lemma 8.2.1.

Morita [Mor72, Proposition 3] gives us that m is the map sending (x, y) 7→ Sq2(x)+
red2(y). Now it suffices to show that Sq2(x) = 0. We have the following commutative
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diagram (by the naturality of Steenrod squares):

H̃2(X × I, ∂;Z/2) H̃4(X × I, ∂;Z/2)

H̃1(X;Z/2) H̃3(X;Z/2)

Sq2

Sq2

∼= ∼=

and the lower horizontal map must vanish since Sqi : Hj(−;Z/2) → Hj+i(−;Z/2) is
the zero map for i < j.

Now we construct the mapping cylinder.

Proposition 8.2.3. Let X be a compact, connected, smooth 4-manifold with good
fundamental group. Let N ∈ NTOP(X × I, ∂) be an element of the normal invariants
which has θ(N) = 0. Then N can be lifted to an element of the structure set which is
homeomorphic to a mapping cylinder Mf = (X× I) ∪f X for some homeomorphism f .

Proof. Assume that we have an element N ∈ NTOP(X × I, ∂). By Remark 8.1.4 this
means we can consider N to be a manifold (N, ∂N) together with ∂N homeomorphic
to ∂(X × I), and hence ∂N has an induced smooth structure given by X. Further we
assume that θ(N) = 0. This means that we can lift N to an element (also denoted
by N) in the structure set Ss

TOP(X × I, ∂). The homeomorphism ∂N ≈ ∂(X × I) ∼=
X×{0}∪∂X×I∪X×{1} induces a decomposition ∂N = ∂+N∪∂0N∪∂−N . If we define
D := ∂(∂+N), then we may assume that ∂0N ∼= D × I. By the relative s-cobordism
theorem [FQ90, Theorem 7.1A] (which applies since X has good fundamental group
by assumption) there exists a homeomorphism relative to ∂+N ∪ (D × I)

(N, ∂+N) ≈−→ (∂+N × I, ∂+N × {0})

such that this homeomorphism restricts to the identity on ∂+N∪(D×I) . Let f̃ denote
the restriction of this homeomorphism to ∂−N → ∂+N×{1}. SinceN ∈ Ss

TOP(X×I, ∂),
we also have a (simple) homotopy equivalence, restricting to a homeomorphism on the
boundary

(N ; ∂+N, ∂0N, ∂−N) ≃−→ (X × I;X × {0}, ∂X × I,X × {1})

Putting this together, we have the commutative diagram

∂−N ∂+N

X X

f̃

≈ ≈

f

where f is defined such that the diagram commutes.
It follows that our constructed element N ∈ Ss

TOP(X × I, ∂) is homeomorphic to
the mapping cylinder Mf := (X × I) ∪f X, restricting to a diffeomorphism on the
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boundary by construction.

§ 8.3 | Proof of the unstable realisation theorem
We now define the technical “realisability condition” which was mentioned in the in-
troduction.

Definition 8.3.1. Let X be a closed, connected, smooth, orientable 4-manifold with
π1(X) ∼= π where π is a good group. We say that X satisfies the Casson-Sullivan
realisability condition if the surgery obstruction map (after reidentifying the normal
invariants using Lemma 8.2.1)

θ : H2(X × I, ∂;Z/2) ⊕H4(X × I, ∂;Z) → L5(Z[π])

is such that for every y ∈ H4(X × I, ∂;Z) there exists an x ∈ H2(X × I, ∂;Z/2) such
that θ(x, y) = 0.

We begin with a simple but essential observation.

Lemma 8.3.2. Let N be an element as in Proposition 8.2.3 and let Mf be the associ-
ated mapping cylinder. Then cs(f) = ϖ−1ξ∗(N).

Proof. Note that ξ∗(N) is the obstruction to lifting N to an element of the smooth
structure set Ss

DIFF(X × I, ∂) and hence ξ∗(N) = ks(Mf ). The lemma follows by the
definition of the Casson-Sullivan invariant (Definition 5.2.9).

Now it only remains to prove the main theorem, but most of the work has already
been done.

Proof of Theorem 8.0.1. Let X be as in the statement of the theorem and let η ∈
H3(X;Z/2).

Recall the diagram from Lemma 8.2.2. We claim that for any z ∈ H4(X×I, ∂;Z/2)
there exists a y ∈ H4(X × I, ∂;Z) such that m(0, y) = red2(y) = z. By the universal
coefficients theorem, we have the following diagram

0 Ext1(H3(X × I, ∂),Z) H4(X × I, ∂;Z) Hom(H4(X × I, ∂),Z) 0

0 Ext1(H3(X × I, ∂),Z/2) H4(X × I, ∂;Z/2) Hom(H4(X × I, ∂),Z/2) 0

red2 red2 red2

where the rows are short exact sequences and the vertical maps are given by reduction
of coefficients. Both the leftmost and rightmost vertical maps are surjective, and hence,
by the five-lemma, the middle vertical map is surjective. This completes the proof of
the claim.

So, given any η ∈ H3(X, ∂X;Z/2), we can find an element y ∈ H4(X × I, ∂;Z)
such that

ϖ−1m(0, y) = η.



CHAPTER 8. UNSTABLE REALISATION OF THE CASSON-SULLIVAN
INVARIANT 102

By the realisability condition, there exists an x ∈ H2(X×I, ∂;Z/2) such that θ(x, y) =
0. Define Nη such that Nη maps to (x, y) under the isomorphism given in Lemma 8.2.1.
By Lemma 8.2.2, it follows that ξ∗(Nη) = ϖη. Hence, by Proposition 8.2.3 and
Lemma 8.3.2, we have that there exists a homeomorphism f : X → X with cs(f) =
η.

We finish this section by proving Theorem 8.0.2, which follows easily from the con-
struction of the non-pseudo-smoothable homeomorphisms produced by Theorem 8.0.1.

Proof of Theorem 8.0.2. Let X be as in the statement of the theorem. Then, as in
the above proof of Theorem 8.0.1, for every non-zero η ∈ H3(X;Z/2) there exists a
mapping cylinder Mf = (X × I) ∪f X such that cs(f) = η ̸= 0. Hence f is not
stably pseudo-isotopic to a diffeomorphism by Proposition 5.4.1 and Proposition 5.4.4.
However, now also note that Mf ∈ Ss

TOP(X × I, ∂) and hence we have a homotopy
equivalence

((X × I) ∪f X;X × {0}, X × {1}) ≃ (X × I;X × {0}, X × {1})

which by construction restricts to the identity IdX on X × {0} and f on X × {1}. By
post-composing this homotopy equivalence with the projection to X, this produces a
homotopy between f and IdX .

§ 8.4 | Applications
In light of the previous section, it is natural to ask for which 4-manifolds do the
results Theorem 8.0.1 and Theorem 8.0.2 apply. This section is devoted to giving
such examples. In all that follows, let X be a closed, connected, smooth, orientable
4-manifold with π1(X) ∼= π.

Let Γ be a finite cyclic group. Then it follows from Bak [Bak76] that Ls5(Z[Γ]) = 0.
Hence, for π ∼= Γ we have that the surgery obstruction vanishes trivially and hence
Theorem 8.0.1 and Theorem 8.0.2 apply. We can say more, however.

Proposition 8.4.1. Let X be a compact, connected, smooth, orientable 4-manifold with
π1(X) ∼= Γ with Γ a finite group such that SK1(Z[Γ]) = 0 or such that SK1(Z[ρ]) = 0
where ρ denotes the Sylow 2-subgroup of Γ. Then Theorem 8.0.1 and Theorem 8.0.2
both apply to X.

Remark 8.4.2. For a group ring Z[Γ] we define SK1(Z[Γ]) to be a certain subgroup of
the algebraic K-theory group K1(Z[Γ]). More specifically, it is defined as the kernel
of the inclusion induced map K1(Z[Γ]) → K1(Q[Γ]). If Γ is abelian, then this is
equivalently defined as the kernel of the determinant map det : K1(Z[Γ]) → Z[Γ]×.

Proposition 8.4.1 follows from a result of Hambleton-Milgram-Taylor-Williams,
which we now restate the relevant part of (adapted to our situation).
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Theorem 8.4.3 ([HMTW88, Theorem A]). Let M be a 5-dimensional manifold with
boundary ∂M such that π1(M) ∼= π is finite and im(SK1(Z[ρ]) → SK1(Z[π])) = 0,
where ρ is the Sylow 2-subgroup of π. Then the surgery obstruction map

θ : [(M,∂M), G/TOP] → Ls5(Z[π])

is given by
x 7→ κs3(c∗(Arf3(x))).

In the above theorem, κs3 denotes the map (constructed in [HMTW88, §1])

κs3 : H3(Bπ;Z/2) → Ls5(Z[π]),

where c : M → Bπ is defined as the classifying map for the universal cover of M , and
Arf denotes the Arf invariant.

Before we prove Proposition 8.4.1, we state a few groups Γ for which SK1(Γ) van-
ishes. This is the work of many mathematicians, and we direct the reader to [Oli88,
p.3-4] and the citations within for references.

(i) Γ = Z/2n

(ii) Γ = Z/2n × Z/2

(iii) Γ = (Z/2)n.

(iv) Γ = D2n, the dihedral group of order 4n.

So Proposition 8.4.1 applies to any of the above groups. It also follows that Theo-
rem 8.0.1 and Theorem 8.0.2 also apply to any Γ that has any of the above groups as
its Sylow 2-subgroup. For example, let ρ be isomorphic to one of the above groups
and let O be an odd-order group. Then Γ := ρ×O has ρ as its Sylow 2-subgroup and
hence Proposition 8.4.1 also applies to Γ.

Proof of Proposition 8.4.1. LetX satisfy the hypotheses of Proposition 8.4.1 and let b ∈
H4(X × I;Z). We need to show that there exists an a ∈ H2(X × I;Z/2) such that
θ(a, b) = 0. We claim that we can simply take a = 0 regardless of b.

Note that X × I is a 5-dimensional manifold with boundary and by assumption we
have that im(SK1(Z[ρ]) → SK1(Z[Γ])) = 0, hence Theorem 8.4.3 applies to X × I.
Theorem 8.4.3 then tells us that the surgery obstruction map θ factors as

[(X×I, ∂), G/TOP] → H2(X×I, ∂;Z/2) ∼= H3(X;Z/2) → H3(Bπ;Z/2) κs
3−→ Ls5(Z[π]),

where the first map is the projection, using Lemma 8.2.1. Hence, θ(a, b) does not
depend on b, and so for all b ∈ H4(X×I, ∂;Z/2) we have that θ(0, b) = θ(0, 0) = 0.
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§ 8.5 | Partial unstable realisation of the Casson-Sullivan
invariant

The purpose of this section is to find examples where we can partially realise the
Casson-Sullivan invariant using the method described in Section 8.2. The way we will
do this is by considering the assembly maps for the surgery obstruction map θ and
comparing them using spectral sequences to surgery obstruction maps that we have
full realisation for. In all that follows, let X be a closed, connected, smooth, orientable
4-manifold with π1(X) ∼= π.

First we give the relevant notation. Let ε ∈ {−∞} ∪ {. . . ,−1, 0, 1, 2} be the dec-
oration, and recall that ε = 2 refers to ε = s and ε = 1 refers to ε = h. For
more information about decorations, see [Lüc23]. Let Lε•(R) denote the quadratic
L-theory spectrum of a ring R with decoration ε (this is a spectrum that has homo-
topy groups πk(Lε•(R)) = Lεk(R)) and let L• := L•(Z) (note that, as suggested by
the notation, this is independent of our choice of decoration). We will use L•⟨1⟩ to
denote the 1-connective cover of L• (a spectrum which has πk(L•⟨1⟩) = 0 for all k < 1
and has πk(L•⟨1⟩) = πk(L•) for k ≥ 1). Then these spectra determine a generalised
(co)homology theory and we have the following factorisation of the surgery obstruction
map θε (note that the notation used will be explained below).

NTOP(X × I, ∂) Lε5(Z[π])

H0(X × I, ∂;Lε•⟨1⟩) Hπ
5 (∗ALL;Lε•)

H5(X × I;Lε•⟨1⟩) Hπ
5 (∗T RIV ;Lε•)

H5(Bπ;Lε•⟨1⟩) H5(Bπ;Lε•)

θε

∼=a

∼=b

∼= g

c

σε

d

∼= e

The isomorphism a arises via the definition of cohomology with coefficients in a spec-
trum. Since we have that (L•⟨1⟩)0 ≃ G/TOP we have that

H0(X × I, ∂;L•) ∼= [X × I, ∂;G/TOP] ∼= NTOP(X × I, ∂).

The isomorphism b is given by Sullivan-Ranicki duality. To define the map c, we factor
it as the composition of maps given in the diagram below where X̃ × I denotes the
universal cover of X × I.

H5(X × I;Lε•⟨1⟩) Hπ
5 (X̃ × I;Lε•⟨1⟩) H5(Eπ ×π (X̃ × I);Lε•⟨1⟩)

H5(Bπ;Lε•⟨1⟩) H5(Eπ ×π {pt};Lε•⟨1⟩)

c

∼= ∼=

c′

∼=
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To define the map d, recall that we have a map Lε•⟨1⟩ → Lε• by the definition of a 1-
connective cover. Then d is the induced map on homology via this map. The definition
of the isomorphism e follows from the definition of the π-equivariant homology of the
Orb(π)-space ∗T RIV with coefficients in a spectrum. For details on this, see [DL98,
Ex 5.5]. The isomorphism g is again given by the definition of the π-equivariant
homology. The map σε is what we will call the ε-assembly map. Since we need to use
the s-cobordism theorem to construct our mapping cylinders, we will need to consider
the case ε = s, for which this assembly map is certainly not an isomorphism in general.
Composing all of these maps together we get a factorisation of θs.

Now we want to use this formalism to try to understand θs for some groups for
which we cannot use Proposition 8.4.1. Let Γ be a finite cyclic group such that we
have a non-trivial homomorphism h : Γ → π. In what follows we will condense the
‘assembly map’ by setting σ := g ◦ σs ◦ e.

Consider the following diagram.

NTOP(X × I, ∂) Ls5(Z[π]) Ls5(Z[Γ]) = 0

H5(X × I;Ls•⟨1⟩) H5(Bπ;Ls•) H5(BΓ;Ls•)

θs

∼=a σ

h∗

σ

By naturality of the assembly maps, if a normal invariant is hit by the map h∗ after
being mapped down to H5(Bπ;Ls•), then its surgery obstruction must be zero. It follows
that if the map h∗ is surjective then θs is the zero map. To try to understand this map
h∗ better we will use the Atiyah-Hirzebruch spectral sequence (AHSS). Recall that the
AHSS is a homology spectral sequence that computes the generalised homology of a
space in terms of the regular homology of that space with coefficients in the generalised
homologies of a point. In our particular case it computes, for a space K,

E2
p,q = Hp(K; πq(L•⟨1⟩)) =⇒ E∞

p,q = Hp+q(K;L•⟨1⟩).

Recall that πq(L•⟨1⟩) = Lq(Z) for q > 0 and is zero otherwise. We first wish to compute
H5(BG;L•⟨1⟩) for the cases G = π and G = Γ. We show the relevant terms below of
the E3-page, along with the relevant third-page differentials, in Figure 8.1.

The conclusions we can draw from this spectral sequence are contained in the
following lemma.

Lemma 8.5.1. Let Γ be a finite cyclic group of order 2n, let π ∼= Z × Γ and let dG
denote the differential d4,3

3 denoted above. Then we have the following commutative
diagram where the rows are exact.

0 coker dΓ H5(BΓ;L•⟨1⟩) H3(BΓ;Z/2) 0

0 coker dπ H5(Bπ;L•⟨1⟩) H3(Bπ;Z/2) 0
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Figure 8.1: The E3-page of the spectral sequence for computing H∗(BG;L•⟨1⟩) with
the relevant terms and differentials shown for computing H5(BG;L•⟨1⟩).

0 1 2 3 4 5 p

0

1

2

3

4

5
q

0 0 0 0 0 0

0 0 0 0 0 0

H3(BG;Z/2) H4(BG;Z/2)

0 0 0 0 0 0

H0(BG;Z) H1(BG;Z)

0 0 0 0 0 0

d3,2
3

d4,3
3

and H3(BΓ;Z/2) ∼= Z/2, coker dΓ ∼= Z/2n or Z/n, H3(Bπ;Z/2) ∼= Z/2 ⊕ Z/2, and
coker dπ ∼= Z ⊕ Z/2n or Z ⊕ Z/n.

Proof. First note that for any group G the differential d3,2
3 vanishes since it is map from

a torsion group to a torsion-free group. Then recall that a model for BΓ is given by the
infinite lens space L(2n), and that a model for Bπ is given by the space S1 × L(2n).
We have that dΓ : Z/2 → Z/2n is either the zero map or is injective. Similarly, we get
that dπ : Z/2⊕Z/2 → Z⊕Z/2n is either the zero map or the map (a, b) 7→ (0, nb) (the
other possibilities may be ruled out by further comparing with the spectral sequence
for G = Z and using naturality). From this we can conclude that the isomorphism
types of the cokernels are as described in the lemma.

Finally, the diagonal p + q = 5 computes the associated graded for H5(BG;L•⟨1⟩)
and hence we have the short exact sequences which form the rows of the stated com-
mutative diagram. The vertical maps are then induced by the obvious inclusion map
Γ → π and the diagram commutes by naturality of spectral sequences. This completes
the proof.

We have that H4(X × I, ∂;Z/2) ∼= H3(X;Z/2) ∼= Z/2 ⊕ Z/2 and the aim is now
to realise the element (0, 1) as the Casson-Sullivan invariant of a homeomorphism
f : X → X. Following the realisation procedure laid out in Section 8.2 and Section 8.3,
by Proposition 8.2.3 and Lemma 8.3.2 it suffices to show that there exists an element
y ∈ NTOP(X × I, ∂) ∼= [(X × I, ∂), G/TOP] such that the map m from Lemma 8.2.2
sends y to (0, 1) ∈ H4(X × I, ∂;Z/2) and such that θ(y) = 0.

Lemma 8.5.2. Let Γ be a finite cyclic group of order 2n, π = Z× Γ and let ι : Γ → π

be the obvious inclusion map. The leftmost vertical map in the commutative diagram
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from Lemma 8.5.1 is then ι∗ and is given by

ι∗ :

Z/2n

Z/n
→

Z ⊕ Z/2n

Z ⊕ Z/n

a 7→(0, a).

Proof. We see this from the following commutative diagram, where we have identified
H1(BG;Z) ∼= ab(G) for any group G, where ab(G) denotes the abelianisation of G.

Γ ab(Γ) coker dΓ

π ab(π) coker dπ

ι

∼=

ι∗

∼=

Since ι(a) = (0, a), the commutativity of the above diagram gives the result regardless
of the isomorphism types of the cokernels given in Lemma 8.5.1.

Proposition 8.5.3. Let X be a closed, connected, smooth, orientable 4-manifold with
π1(X) ∼= π = Z × Γ. Then H3(X;Z/2) ∼= Z/2 ⊕ Z/2 and there exists a self-
homeomorphism f : X → X such that cs(f) = (0, 1) ∈ H3(X;Z/2).

Proof. First, note that we can similarly use the AHSS to compute H5(X×I;L•⟨1⟩). Of
course, we already know the answer since H5(X × I;L•⟨1⟩) ∼= H1(X;Z) ⊕H3(X;Z/2)
by Lemma 8.2.1, but this means that we can fit this data into a larger commutative
diagram with the one from Lemma 8.5.1, which we do now below.

coker dΓ H5(BΓ;L•⟨1⟩) H3(BΓ;Z/2)

Ls5(Z[Γ])

coker dπ H5(Bπ;L•⟨1⟩) H3(Bπ;Z/2)

Ls5(Z[π])

H1(X;Z) H5(X × I;L•⟨1⟩) H3(X;Z/2)

ι∗

θs

ι∗ ι∗

θs

a

Note that we have omitted the zeroes from the ends of the rows, but the rows are
still split exact sequences. Let x ∈ H5(X × I;L•⟨1⟩) be the element corresponding to

((0, 1), 0) ∈ H4(X × I, ∂;Z) ⊕H2(X × I, ∂;Z/2)

via the isomorphism from Lemma 8.2.1. If we can show that the surgery obstruction
θs(x) = 0, then by Proposition 8.2.3 we can construct a homeomorphism f : X → X

which has cs(f) = m((0, 1), 0) = (0, 1).
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Using the fact that x is hit by an element from H1(X;Z) and the description of the
leftmost map denoted by ι∗ from Lemma 8.5.2, a simple diagram chase tells us that
a(x) is in the image of ι∗. Hence by naturality of assembly maps, and the fact that
Ls5(Z[Γ]) = 0, we have that θ(x) = 0, completing the proof.

Proposition 8.5.3 tells us that we can also find examples of homeomorphisms that
are not stably (pseudo-)smoothable but are homotopic to the identity for 4-manifolds
with fundamental group Z × Z/2n. Note also that the above arguments would have
worked just as well with Z replaced with Zn, so we can also find non-smoothable
homeomorphisms in those cases as well.



Chapter 9

Pseudo-isotopy of 3-manifolds

The aim of this chapter is to understand the difference between the smooth and topo-
logical categories for 3-manifolds. Let Y be a closed, oriented, smooth 3-manifold.
We recall from the introduction the result of Cerf [Cer59, Hat83] which says that the
natural map1

Diff(Y ) → Homeo(Y )

is a homotopy equivalence. A consequence of this result is that topological isotopies
and smooth isotopies are “the same” for 3-manifolds. We wish to study whether the
same holds also for pseudo-isotopies. To this end, we will look at spaces which are
closely related to the homeomorphism and diffeomorphism groups, the so-called block
homeomorphism and block diffeomorphism groups H̃omeo(Y ) and D̃iff(Y ), which we
will define later. These will be spaces such that connected components correspond to
the topological pseudo-mapping class group and smooth pseudo-mapping class group,
respectively. The existence of these spaces were previously referred to in Remark 2.2.3.

In this chapter, we will prove Theorem 1.2.13 and its corollary Corollary 1.2.14, as
well as the related Theorem 1.2.15. We now recall these.

Theorem 9.0.1. Let Y be a closed, elliptic 3-manifold such that H1(Y ;Z/2) is not
trivial. Then the natural map

D̃iff(Y ) → H̃omeo(Y )

is not 1-connected. In particular, it is not surjective on π1.

This was Theorem 1.2.13. We recall its corollary, which was Corollary 1.2.14 from
the introduction.

Corollary 9.0.2. Let Y be as in Theorem 9.0.1. Then the natural map

Homeo(Y ) → H̃omeo(Y )

is not 1-connected. In particular, it is not surjective on π1.
1Whilst this map is an inclusion of sets, it is not an inclusion of spaces, since the topology on

Diff(Y ) is finer than the topology on Homeo(Y ) restricted to the subset of diffeomorphisms. Cerf
calls such a pair of spaces “une paire topologique”.
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Remark 9.0.3. The classes of 3-manifolds that Theorem 9.0.1 and Corollary 9.0.2 apply
to are the following.

(i) Lens spaces with even order fundamental group.

(ii) Metacyclic prism manifolds.

(iii) Octahedral manifolds.

See the proof of Proposition 9.3.2 for the different types of elliptic 3-manifolds and their
descriptions. Metacyclic prism manifolds are additionally defined in Definition 9.2.4.

Finally, as an application of the work in this chapter to 4-manifolds, we will prove
the following theorem, which was Theorem 1.2.15 from the introduction.

Theorem 9.0.4. There exists a 4-manifold X with boundary an elliptic 3-manifold
such that there exists a self-homeomorphism f : X → X which is not pseudo-smoothable
but is absolutely pseudo-smoothable.

This theorem demonstrates that Proposition 4.4.2 does not hold if we replace iso-
topy with pseudo-isotopy. It is a corollary of Theorem 9.0.1 that the proof method for
Proposition 4.4.2 fails, since Theorem 9.0.1 implies that there exist non-smoothable
“pseudo-loops” of homeomorphisms of 3-manifolds. A specific construction, and our
work on the Casson-Sullivan invariant form Chapter 5 is required though to actually
show that it fails, and hence prove Theorem 9.0.4.

§ 9.0.1 | Chapter outline

We start with Section 9.1, where we define and introduce the block diffeomorphism and
block homeomorphism groups. In Section 9.2, we survey what is known about pseudo-
mapping class groups of 3-manifolds. We then prove Theorem 9.0.1 and Corollary 9.0.2
in Section 9.3. Finally, we finish this chapter (and this thesis) by proving Theorem 9.0.4
in Section 9.4.

§ 9.1 | Block diffeomorphisms and block homeomor-
phisms

Recall the definition of the homeomorphism group and diffeomorphism group from
Definition 2.2.2.

We define the block diffeomorphism group and block homeomorphism group via
semi-simplicial spaces.

Definition 9.1.1. Let M be a (smooth) manifold with (potentially empty) boundary
∂M and let ∆p denote the standard p-simplex with face maps si : ∆p → ∆p−1 for
i = 0, . . . , p and inclusions ri : ∆p−1 → ∆p for i = 0, . . . , p. Let H̃omeo(M,∂M)• be
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the simplicial space defined as follows. We define H̃omeo(M,∂M)0 := Homeo(M,∂M)
as a space. Then we define the space of p-simplices inductively as

H̃omeo(M,∂M)p := {f : M × ∆p ≈−→ M × ∆p |

(f |M×si(∆p) : M × ∆p−1 ≈−→ M × ∆p−1) ∈ H̃omeo∂(M)p−1 for i = 0, . . . , p},

where the topology is given by the compact-open topology. Then the simplicial space
structure on ∪p=0,1,...H̃omeo(M,∂M)p is given by the face maps

s̃i : H̃omeo(M,∂M)p →H̃omeo(M,∂M)p−1

f 7→f |M×si(∆p),

for i = 0, . . . , p, and the degeneracy maps

r̃i : H̃omeo(M,∂M)p−1 → H̃omeo(M,∂M)p

for i = 0, . . . , p. The degeneracy maps r̃i are defined as follows. Fix a face ri(∆p−1) of
∆p. Then write

∆p = ri(∆p−1) × I

(0, t1) ∼ (0, t2)
,

where “0” means the image of the first vertex of ∆p−1 (with the standard ordering)
under the map ri. Now, using this identification, we define

r̃i(f)(m, (x, t)) := (projM(f(m,x)), (proj∆p(f(m,x)), t))

where projM : M × ∆p−1 → M and proj∆p−1 : M × ∆p−1 → ∆p−1 are the standard
projection maps.

We then define the block homeomorphism group of M to be the topological group

H̃omeo(M,∂M) := ||H̃omeo(M,∂M)•|| =
(

⊔pH̃omeo(M,∂M)p × ∆p
)
/ ∼

i.e. the geometric realisation of the simplicial space we have just built, where the
equivalence relation ∼ is given by the face maps and degeneracy maps.

We similarly define the simplicial space D̃iff(M,∂M)• and the block diffeomorphism
group of M as the geometric realisation

D̃iff(M,∂M) := ||D̃iff(M,∂M)•||.

Again (as in Definition 2.2.2), there are orientation preserving variants H̃omeo+(M,∂M),
D̃iff+(M,∂M), and if ∂M = ∅ we will omit the boundary from the notation.

Remark 9.1.2. The group structure on H̃omeo(M,∂M) is defined as follows. Any
pair of points in H̃omeo(M,∂M) can be represented by a pair of homeomorphisms
f : M × ∆p → M × ∆p and g : M × ∆q → M × ∆q for some p, q ≥ 0. Further, we may
assume that p = q by using the degeneracy maps if necessary. Then define f ·g := f ◦g.
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The group structure on D̃iff(M,∂M) is defined analogously.

Lemma 9.1.3. Let M be a (smooth) manifold. Then the maps given by the inclusions

(i) Homeo(M,∂M) → H̃omeo(M,∂M),

(ii) Diff(M,∂M) → D̃iff(M,∂M),

(iii) D̃iff(M,∂M) → H̃omeo(M,∂M)

are all continuous.

Proof. We only prove (i); the proofs for (ii) and (iii) are similar. Let ι̃ denote the
inclusion map in question. It suffices to show that the preimage under ι̃ of any sub-
basis element of H̃omeo(M,∂M) is open in Homeo(M,∂M). We start by describing a
sub-basis.

Since Homeo(M,∂M) has the compact-open topology, a sub-basis is given by
CM(K,U) for all K ⊂ M compact and all U ⊂ M open, where CM(K,U) consists
of all homeomorphisms which map K into U . By the definition of H̃omeo(M,∂M)
as a geometric realisation, a sub-basis for its topology is given by all subsets C ⊂
H̃omeo(M,∂M) such that the preimage of C under the quotient map

q : ⊔p H̃omeo(M,∂M)p × ∆p → H̃omeo(M,∂M)

is a sub-basis element. A sub-basis element of ⊔pH̃omeo(M,∂M)p × ∆p consists of
a union of sub-basis elements for the connected components, i.e. sets of the form
⊔p (CM×∆p(K,U) × V ) where V ⊂ ∆p ranges over all sub-basis elements for ∆p.

The preimage of such a set C under ι̃ is given by the intersection

q−1(C) ∩
((

H̃omeo(M,∂M)0 × ∆0
)

= Homeo(M,∂M)
)
,

and by the definition this is a sub-basis element of Homeo(M,∂M), completing the
proof.

The proofs for (ii) proceeds almost identically, with the Whitney topology replacing
the compact-open topology. The proof for (iii) is also similar, but one needs to use the
fact that the inclusion Diff(M,∂M) → Homeo(M,∂M) is continuous.

Lemma 9.1.4. Let M be a smooth manifold. Then the following square commutes.

Diff(M,∂M) Homeo(M,∂M)

D̃iff(M,∂M) H̃omeo(M,∂M)

(9.1.1)

Proof. This is clear from the definitions.
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Remark 9.1.5. Another approach (that might make Lemma 9.1.3 arise more naturally)
is to also use simplicial spaces to define Homeo(−) and Diff(−). One could take the
Definition 9.1.1 and additionally require that every simplex commutes with the projec-
tion to the standard simplex, i.e. turn all of the simplices into higher-order isotopies.
One can show that the geometric resolution of such a simplicial space is homotopy
equivalent to Homeo(−) or Diff(−), but now the first two maps in Lemma 9.1.3 can
be induced by maps of simplicial spaces. We will not pursue this viewpoint further.

§ 9.2 | Pseudo-mapping class groups of 3-manifolds
We now restrict to considering 3-manifolds. The following result is basic.

Lemma 9.2.1. Let Y be a smooth, compact 3-manifold. Then Equation (9.1.1) induces
the following diagram on π0.

π0 Diff(Y, ∂Y ) π0 Homeo(Y, ∂Y )

π0D̃iff(Y, ∂Y ) π0H̃omeo(Y, ∂Y )

∼=

Proof. The top horizontal map is an isomorphism due to Cerf [Cer59]. The bottom
horizontal map being surjective is equivalent to every homeomorphism Y → Y being
pseudo-isotopic to a diffeomorphism, which is true, since the work of Bing, Cairns and
Moise [Cai40, Moi52, Bin54] says that every homeomorphism Y → Y is isotopic to a
diffeomorphism. The two vertical arrows are clearly surjective by the definitions.

An obvious question to ask is: which of the maps are injective? It turns out that,
in many cases, they all are, due to the following deep theorem.

Theorem 9.2.2. Let Y be a prime, compact 3-manifold, and let f : Y → Y and
g : Y → Y be self-homeomorphisms. Then f is homotopic to g if and only if f is
isotopic to g.

We should say a few words about the citation for the above theorem, which the
author did not find stated in the literature explicitly. Kwasik-Schultz and Hong-
McCullough [KS89, HM13] collected references for certain classes of manifolds for which
the “homotopy implies isotopy” theorem holds. We list these now.

(i) Haken manifolds, due to [Wal68].

(ii) Elliptic 3-manifolds, collectively due to Asano, Birman, Boileau, Bonahon, Cap-
pell, Hodgson, Otal, Rubinstein and Shaneson. [Asa78, Rub79, Bon83, RB84,
HR85, BO86].

(iii) Non-Haken Seifert fibred manifolds with infinite fundamental group, due to Scott
and Boileau-Otal [Sco83, BO86, BO91].
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(iv) Hyperbolic manifolds, due to Gabai, Meyerhoff and Thurston [Gab01, GMT03].

Proof of Theorem 9.2.2. Suppose Y is Haken. Then we know that Y satisfies the
homotopy implies isotopy property by (i) above. Now assume Y is non-Haken but
irreducible. If π1(Y ) is finite, then geometrisation implies that Y is an elliptic 3-
manifold, and hence we know it satisfies the theorem by (ii) above. Otherwise, π1(Y )
is infinite, and then geometrisation implies that either Y is hyperbolic or it is Seifert
fibred. By (iii) and (iv) above, both of these cases satisfy the theorem.

Proposition 9.2.3. Let Y be a prime, compact 3-manifold. Then the diagram in
Lemma 9.2.1 becomes the following.

π0 Diff(Y, ∂Y ) π0 Homeo(Y, ∂Y )

π0D̃iff(Y, ∂Y ) π0H̃omeo(Y, ∂Y )

∼=

∼= ∼=

∼=

Proof. By Lemma 9.2.1, it suffices to show that the rightmost vertical map is injec-
tive. Then the top horizontal and the rightmost vertical maps are isomorphisms, and
hence, since the remaining two maps are already known to be surjections, commu-
tativity implies that the remaining maps are isomorphisms. The rightmost vertical
map in Lemma 9.2.1 being injective is equivalent to the statement: if f : Y → Y is
pseudo-isotopic to the identity, then f is isotopic to the identity. Since pseudo-isotopy
implies homotopy (trivially), this means that pseudo-isotopy implies isotopy (by The-
orem 9.2.2) and hence the rightmost vertical map is injective.

The condition that Y be prime in Proposition 9.2.3 and Theorem 9.2.2 is, in general,
necessary. In other words, there exist examples of closed 3-manifolds where pseudo-
isotopy does not imply isotopy, which we will now introduce.

Definition 9.2.4. Let Γ be a finite group. We say that Γ is metacyclic if it is non-
abelian but has finite cyclic Sylow-2 subgroup.

Metacyclic groups are one of the types of finite groups which act on S3 freely, and
hence give rise to elliptic manifolds (see [Thu97, Chapter 4.4])2. We call the class
of 3-manifolds which arise as quotients of S3 by metacyclic groups metacyclic prism
manifolds.

We now describe a certain diffeomorphism of reducible 3-manifolds.

Definition 9.2.5. Let Y be compact, smooth 3-manifold such that Y ∼= Y1#Y2 and
let S ⊂ Y denote the connected-sum S2 for the given decomposition. Then we can
write

Y ∼= (Y1 \D3) ∪ (S2 × I) ∪ (Y2 \D3).
2An alternative description of metacyclic groups is as extensions of dihedral groups by certain

cyclic groups. This is what is used in [Thu97].
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We define a diffeomorphism on the S2 × I as

TS : S2 × I → S2 × I

(x, t) 7→ (Rt(x), t),

where Rt denotes the (positive) rotation map of S2 around the (oriented) straight line
from the south pole to the north pole by an angle of t. The map TS then extends to
the rest of Y as the identity map, and we call this extension the Dehn twist about S,
which we will also denote by TS.

We then have the following result, which uses a result of Hatcher [Hat03].

Theorem 9.2.6 ([FW86, KS96]). Let Y1 and Y2 be metacyclic prism manifolds. Fur-
ther, let Y := Y1#Y2, and let S be the connected-sum sphere. Then TS : Y → Y is
topologically pseudo-isotopic to the identity, but not topologically isotopic to the iden-
tity.

Corollary 9.2.7. Let Y := Y1#Y2 a connected-sum of metacyclic prism manifolds.
Then the rightmost vertical map in Lemma 9.2.1 is not injective. Hence, at least one
of the maps

π0 Diff(Y ) → π0D̃iff(Y )

or
π0D̃iff(Y ) → π0H̃omeo(Y )

is not injective.

Proof. The corollary is immediate from Lemma 9.2.1 and Theorem 9.2.6.

In light of the above, we have the following natural question.

Question 9.2.8. Let Y := Y1#Y2 be a connected-sum of metacyclic prism manifolds
and let S denote the connected-sum sphere. Is the Dehn twist TS : Y → Y smoothly
pseudo-isotopic to the identity?

We do not answer the above question here, but we hope to investigate it in future
work.

§ 9.3 | Non-smoothable loops of homeomorphisms
We finish this chapter by proving the theorem stated at the start of the chapter, that,
for elliptic 3-manifolds, the inclusion induced map

D̃iff(Y ) → H̃omeo(Y )

is not 1-connected. Compare this with the previous section, where we discussed a
certain family of reducible 3-manifolds such that the composition

Diff(Y ) → D̃iff(Y ) → H̃omeo(Y )
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is not 0-connected. We also explained that for prime 3-manifolds, the map Section 9.3
induces an isomorphism on π0.

Lemma 9.3.1. Let M be a compact, smooth manifold and let f : M × I → M × I be a
homeomorphism restricting to the identity on the boundary. Then [f ] ∈ π1H̃omeo(M)
is in the image of π1D̃iff(M) → π1H̃omeo(M) if and only if f is pseudo-isotopic to a
diffeomorphism.

Proof. If f is pseudo-isotopic to a diffeomorphism, then there is a homeomorphism
F : (M × I) × I → (M × I) × I such that FM×I×{0} = f and FM×I×{1} =: f ′ is a diffeo-
morphism, i.e. f ′ is in the image of π1D̃iff(M) → π1H̃omeo(M). The homeomorphism
F then gives a 2-simplex in H̃omeo(M) connecting f and f ′, and hence [f ] = [f ′].

Now assume [f ] is in the image of π1D̃iff(M) → π1H̃omeo(M). This means there
is a homotopy in H̃omeo(M) from f to a diffeomorphism f ′, which we may assume
lies in 2-simplices of H̃omeo(M). In other words, there is a sequence of 2-simplices
connecting f and f ′ in H̃omeo(M), and by concatenating these simplices we produce
a pseudo-isotopy from f to a f ′.

For Y an elliptic 3-manifold, we want to use Theorem 8.0.1 to construct a home-
omorphism Y × I → Y × I which is not pseudo-isotopic to a diffeomorphism, and
hence prove Theorem 9.0.1 (by Lemma 9.3.1). To do this, we need to know that The-
orem 8.0.1 applies to manifolds Y × I where Y is an elliptic 3-manifold. We show this
now.

Proposition 9.3.2. Let Γ be a fundamental group of an elliptic 3-manifold and let ρ
denote the Sylow 2-subgroup of Γ. Then SK1(Z[ρ]) is trivial.

Proof. The class of fundamental groups of elliptic 3-manifolds are exactly the class
of finite groups which act freely on S3. This class is well-understood, and splits into
five subclasses: (i) finite cyclic groups, (ii) metacyclic prism groups, (iii) tetrahedral
groups, (iv) octahedral groups, and (v) icosahedral groups. We elaborate on and deal
with these cases separately.

(i) The Sylow 2-subgroup of a finite cyclic group is always cyclic and hence SK1(Z[ρ])
is trivial in these cases.

(ii) Metacyclic prism groups are exactly those groups which are non-abelian but have
cyclic Sylow 2-subgroups. Hence, SK1(Z[ρ]) is trivial again in these cases.

(iii) This class of groups corresponds to products of the binary tetrahedral group
(order 24) with a cyclic group of order coprime to 6. The Sylow 2-subgroup of
such a group is isomorphic to Q8 where Q8 denotes the quarternion group. By
Oliver [Oli88, Example 14.4] SK1(Z[Q8])(2) is trivial. The Sylow p-subgroups
of Q8 are clearly trivial for p ̸= 2, and hence by Oliver [Oli88, Theorem 14.2],
SK1(Z[Q8])(p) is trivial for all p. Hence, SK1(Z[ρ]) is trivial.
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(iv) This class of groups corresponds to products of the binary octahedral group (order
48) with a cyclic group of order coprime to 6. The Sylow 2-subgroup of such a
group is isomorphic Q16 where Q16 denotes the generalised quarternion group.
The same analysis (and references) as in (iii) yields that SK1(Z[ρ]) is trivial.

(v) This class of groups corresponds to products of the binary icosahedral group
(order 120) with a cyclic group of order coprime to 30. Like in the tetrahedral case,
the Sylow 2-subgroup of such a group is isomorphic to Q8, and hence SK1(Z[ρ])
is trivial.

This concludes the proof.

Proof of Theorem 9.0.1. The proof is an application of Theorem 8.0.1 and Proposi-
tion 8.4.1. We will use these to construct a homeomorphism Y ×I → Y ×I, restricting
to the identity on the boundary, which is not pseudo-isotopic to any diffeomorphism.
Such a homeomorphism represents an element in π1H̃omeo(Y ), and this element is in
the image of π1D̃iff(Y ) → π1H̃omeo(Y ) if and only if the homeomorphism is pseudo-
isotopic to a diffeomorphism.

By Proposition 8.4.1 and Proposition 9.3.2, Theorem 8.0.1 applies to all manifolds
Y × I where Y is an elliptic 3-manifold. By our assumption, H1(Y ;Z/2) is non-trivial,
and hence H3(Y × I, ∂;Z/2) is non-trivial. Applying Theorem 8.0.1 then produces the
required non-smoothable homeomorphism, completing the proof.

Proposition 9.3.3. The classes of elliptic 3-manifolds that Theorem 9.0.1 applies to
are exactly the classes given in Remark 9.0.3 i.e. lens spaces with even-order funda-
mental group, metacyclic prism manifolds and octahedral manifolds.

Proof. If Y is a lens space with odd-order fundamental group, tetrahedral or icosahedral
then H1(Y ;Z/2) = 0. For odd-order fundamental group lens spaces, this is clear. For
tetrahedral manifolds and icosahedral manifolds, this is because the abelianisation of
their fundamental group is always an odd-order cyclic group.

If Y is a lens space with even-order fundamental group, a metacyclic prism manifold,
or octahedral, then H1(Y ;Z/2) is non-trivial. For even-order fundamnetal group lens
spaces, this is clear. For metacyclic prism manifolds and octahedral manifolds, this is
because the abelianisation of their fundamental group is always an even-order cyclic
group.

The above two paragraphs cover all cases of elliptic 3-manifolds, hence we are
done.

Remark 9.3.4. If Y ∼= S3, then we know that the map π1D̃iff(Y ) → π1H̃omeo(Y ) is
surjective. This can be deduced from [OP23, Corollary D], which shows that every
self-homeomorphism of S3 × I restricting to the identity on the boundary is isotopic,
relative to the boundary, to the identity or the Dehn twist. Both of these are smooth,
and hence there can be no non-smoothable loops of homeomorphisms of S3.
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p copies

p− 2 copies4p

−1 −1

0

−1 −1 −1

Figure 9.1: On the left: a surgery diagram for Y#(#pS3). On the right: the surgery
diagram after performing the handle slides described in the proof of Lemma 9.4.1.

§ 9.4 | Absolutely pseudo-smoothable homeomorphisms
We finish this chapter by proving our stated application to 4-manifolds, Theorem 9.0.4.
First, we prove a lemma which gives specific fillings of certain elliptic 3-manifolds.

Lemma 9.4.1. Let Y := L(4p, 1) be a lens space. Then there exists a smooth, compact,
oriented 4-manifold X = X(4p) such that ∂X ∼= Y and such that the inclusion induced
map on homology

Z/2 ∼= H1(Y ;Z/2) → H1(X;Z/2) ∼= Z/2

is an isomorphism.

Proof. We build the filling using Kirby calculus. A surgery diagram for Y is given
by one 4p-framed unknot and p unlinked −1-framed unknots. Sliding the 4p-framed
unknot over each of the other components twice each produces the diagram shown
on the right in Figure 9.1. A filling X(4p) is then made by surgery on the 0-framed
component of the link trace. One can compute that π1(X(4p)) ∼= Z/2 and that the
inclusion induced map on fundamental groups sends the generator of π1(Y ) to the
generator of π1(X).

Proof of Theorem 9.0.4. Let X := X(4p) be as in the proof of Lemma 9.4.1. One can
verify that π1(X) ∼= Z/2, and so we can apply Theorem 8.0.1 to produce a homeomor-
phism φ : X → X which has cs(φ) ̸= 0 ∈ H3(X, ∂X;Z/2).

Similarly, there exists a homeomorphism f : ∂X × I → ∂X × I with cs(f) ̸= 0 ∈
H3(∂X × I, ∂;Z/2). Let f ′ : X → X denote the extension of this homeomorphism by
the identity map (here we have viewed ∂X × I as a collar of the boundary of X). By
Proposition 5.4.2 and Lemma 9.4.1 it follows that

cs(f ′ ◦ φ) = cs(f ′) + cs(φ) = 0 ∈ H3(X, ∂X;Z/2)

and hence by Proposition 5.4.5 f ′ ◦ φ is stably pseudo-smoothable. In other words,
there exists a k ≥ 0 such that

(f ′ ◦ φ)# Id#k(S2×S2) : X#(#kS2 × S2) → X#(#kS2 × S2)
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is pseudo-isotopic to a diffeomorphism.
The above means that φ# Id#k(S2×S2) is absolutely pseudo-smoothable, since it is

absolutely pseudo-isotopic to (f ′ ◦ φ)# Id#k(S2×S2), which is pseudo-smoothable. But,
by Proposition 5.4.4, φ# Id#k(S2×S2) is not pseudo-smoothable, and hence this com-
pletes the proof.
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