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Abstract

Action potential duration alternans has been associated with the onset of one of the most common

forms of abnormal heart rhythm, atrial fibrillation (Cherry et al., 2012; Nattel, 2002). This thesis con-

cerns identifying variables and parameters responsible for inducing action potential duration alternans.

In order to achieve this, we apply asymptotic reduction methods to models of cardiac electrophysi-

ology described by a system of ordinary differential equations and derive explicit discrete restitution

maps which specify the action potential duration as a function of the preceding diastolic interval. The

bifurcations of equilibria of these maps are studied to determine regions in the parameter space of the

models where normal response and alternans occur. Furthermore, explicit parametric representations

of both the normal and the alternans equilibrium branches of the restitution map are found.

We also develop a framework formulated in terms of a boundary value problems for studying car-

diac restitution. This framework can be used to derive analytically or compute numerically different

branches of the action potential duration restitution map from the full excitable models. Our method

is validated by comparing the asymptotic restitution map with the boundary value problem formulated

restitution curves.

The proposed method is applied to investigate the restitution properties of three excitable models: one

generic excitable model and two ionic cardiac models. The first model is the McKean (1970) model

which is a simplified version of the classical FitzHugh (1961) model. The other two models are the

Caricature version of the Noble (1962) model derived by Biktashev et al. (2008) and an asymptotically

reduced version of the Courtemanche et al. (1998) model of the atrial cell, reduced by Suckley (2004).

After deriving the action potential duration restitution map for each of the mentioned model, the region

of the models parameters in which alternans occurs is determined.

We conclude that alternans appears if the dynamics in the diastolic stage of an action potential are

faster than the dynamics in the systolic stage. Furthermore, we show that the time scale for the slow

gating variable is responsible for inducing alternans. We outline that the oscillation in the slow acti-

vation of the K+ current and the slow inactivation of the L-type Ca+2 current can induce or suppress

alternans.
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Chapter 1

Introduction

1.1 Atrial fibrillation and alternans

Atrial fibrillation is a disturbance of the normally rhythmical electrical beating of the cardiac atria (Li

et al., 1999; Nattel, 2002). The electrical impulses (action potentials) that usually travel down the

normal pathways instead spread through the atria in a chaotic fashion, as illustrated in Figure 1.1.

This causes the atria to beat in a rapid, disorganised manner and the ventricles to contract in a rapid,

irregular way. This irregularity may be a precondition for heart failure and stroke. Hence, atrial

fibrillation may predispose to heart failure and stroke by completely different mechanisms: stroke by

increased tendency for blood clotting in the atria due to loss of atrial contraction and heart failure

from influences such as reduced ventricular filling because of reduced atrial contraction (Li et al.,

1999; Nattel, 2002) Indeed, heart failure and stroke are among the most common causes of death

in patients with atrial fibrillation (Leong et al., 2013; Tsadok et al., 2012). Current treatments for

atrial fibrillation have limited efficacy and also safety concerns (organ toxicity and/or ventricular pro-

arrhythmia risk). Therefore, there is an urgent need to develop new treatments for atrial fibrillation and

this requires an improved understanding of the various and complex electrophysiological mechanisms

of atrial fibrillation initiation and maintenance (Comtois and Nattel, 2012; Workman et al., 2008).

Studies suggest that action potential duration (APD) alternans which is a beat-to-beat alternation of the

action potential duration, may contribute to the development of atrial fibrillation (Franz et al., 2012).

Therefore, in order to understand possible triggers of atrial fibrillation, an improved understanding of

the mechanisms of APD alternans is required (Evans et al., 2000; Nattel, 2002).

Thus, the motivation for this work is to gain insight into the onset of atrial fibrillation and other

1
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Figure 1.1: A schematic depiction of regular and irregular electrical activity in the atria. A denotes a

healthy heart heartbeat. The electrical signals start from the sinoatrial node -the normal pacemaker-

in the heart as shown in (1). After spreading across the atria as denoted in (2) and passing through the

atrioventricular (AV) node in (3), the signals travel to the ventricles in (4). Figure B illustrates atrial

fibrillation. Multiple electrical signals fire in (1) and the atria are activated in a chaotic manner. The

extra signals reach the AV node as can be seen in (2) and some of them travel down to the ventricle as

shown in (3) (Waktare, 2002).

irregular cardiac rhythms. To this end, understanding alternans and other cardiac arrhythmias, requires

studying the restitution properties of cardiac cells. The term restitution describes the shortening of the

action potential durations as the heart rate increases and is one of the most important characteristics

of cardiac cells (Kalb et al., 2004; Schaeffer et al., 2007). In the following section we will introduce

some concepts needed to formulate and describe alternans. Then we present mathematical models

that have been developed to study restitution and alternans so far.

1.2 Preliminary concepts

In this subsection we will describe some basic phenomenology and introduce several concepts that

are needed in order to formulate the aims and objectives of this work.

Action potential When a cardiac cell is depolarised by an electrical stimulus, such as one arising

from the natural pacemaker the sinoatrial node, the transmembrane voltage rises rapidly and the cell

depolarises. This is followed by a plateau phase in which the cell cannot be reactivated and finally the

voltage returns to its resting potential which corresponds to the repolarisation of the cell. This is called



3

Basic cycle length (BCL)

D
ep

o
la

ri
sa

ti
o
n

R
ep

o
la

ri
sa

ti
o
n

Plateau

Resting potential

kst− stimulus (k+1)st− stimulus

time

M
em

b
ra

n
e

p
o
te

n
ti

al

Figure 1.2: A schematic representation of the cardiac action potential with the major cardiac ionic

currents. Depolarisation or ”fast upstroke”: during the fast upstroke phase the membrane potential

rises from negative to positive. Plateau: calcium Ca+2 ions enter the cell and potassium K+ ions leave

the cell. The balance between these two causes the membrane to shape the plateau phase of an AP.

Repolarisation: K+ ions leave the cell and the membrane potential reduces to a negative value. Resting

potential: there is almost no ion exchange across the cellular membrane and membrane potential is at

its resting value.

an action potential and is depicted in Figure 1.2. The movement of ions through the transmembrane

ion channels generates action potentials in the cardiac cells. The time required for the cell to achieve

repolarisation after a depolarising stimulus, is called the action potential duration (A). The period

between the end of one action potential and the start of the next is called the diastolic interval (D)

and the time between stimuli is called the basic cycle length which is B = A+D (Cain et al., 2004).

Throughout this thesis, the action potential duration is referred to as A, the diastolic interval is denoted

as D, B stands for basic cycle length and k refers to the number of action potentials.

Excitable cells All cells in the body can be divided into two groups of excitable cells and non-

excitable cells. When a sufficiently strong current is applied to the membrane of an excitable cell

for a short time, the cell’s membrane potential (voltage difference between inside and outside of the

cell) ascends rapidly before returning gradually to its resting state. Thus, resulting in the generation
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of an action potential. Excitable cells such as cardiac cells, most neurons and muscle cells, use the

membrane potential as a signal, hence their functions are dependent on the generation and propagation

of electrical signals (Alberts et al., 1994; Keener and Sneyd, 1998)

The rest of the cells in the body are non-excitable, meaning that if a current is applied to their mem-

brane, their potential changes but as soon as the current is removed their potential returns to its equi-

librium value. Non-excitable cells do not carry electrical information and do not generate action

potentials (Keener and Sneyd, 1998).

Cardiac cells under repeated simulation For a cardiac cell which has been subjected to a periodic

train of electrical stimuli a variety of periodic responses have been observed in experiments. Examples

include bullfrog cardiac muscles (Hall et al., 1999) and Langendorff-perfused rabbit hearts (Visweswaran

et al., 2013).

At a slow rate for example 75 beats per minute corresponding to a basic cycle length of 800 (ms),

every stimulus produces an identical action potential which is called a 1:1 response. At a faster pacing

rate, a 1:1 response is replaced with a response pattern in which every stimulus may excite an action

potential, but even and odd action potentials may be different. This is known as an alternans 2:2-

response. At an even faster pacing rate, the above mentioned responses become unstable and only

every second stimulus may excite an action potential, and all action potentials may be identical, this is

called a 2:1 response. It is commonly believed that the 1:1 response represents the healthy function of

the cardiac cell while the other responses are viewed as instabilities of the normal response that may

progressively lead to the onset of cardiac arrhythmias in tissue including atrial fibrillation (Cherry

et al., 2012). Figure 1.3 illustrates a sequence of action potentials. The membrane potential E is

plotted as a function of time for a 1:1 response and a 2:2 response in Figures 1.3(a) and 1.3(b),

respectively.

Restitution As explained previously, electrical restitution is one of the most crucial aspects of car-

diac cells in which action potential duration is shortened as the heart rate increases (Kalb et al., 2004).

The mechanism of restitution is not fully understood, but studies suggest that a decrease in the resti-

tution of ionic currents determines the action potential duration restitution (Qu et al., 1999). It has

been shown that restitution is associated with the role of repolarisation currents such that when D is

shortened, repolarisation currents do not reactivate fully i.e.decrease in Ca+2 current, or fail to de-

activate outward currents i.e. increase in K+ current, therefore generating a shorter action potential
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Figure 1.3: Typical examples of a normal 1:1 response in a healthy cardiac cell in Figure (a), where

Ak+1 = Ak ∀k ∈ N. Figure (b) is a 2:2 response called alternans where Ak+1 = Ak−1 but Ak ̸=

Ak+1 ∀ k ∈ N.

duration (Tolkacheva et al., 2006; Walker and Rosenbaum, 2003).

This indicates that at faster heart rates, the consequently shorter APD allows a long enough diastolic

interval for the cardiac cells, thus alternans occur. This property plays an essential role in the heart

function (Kalb et al., 2004). The electrical restitution is studied using the restitution curve which is

a graph of the action potential duration plotted against the preceding diastolic interval. Restitution

curves can be modelled in various ways, including: (i) exponential functions fitted to experimental

data (Guevara et al., 1984; Nolasco and Dahlen, 1968), (ii) difference equations derived from a sim-

plified ionic model of the cardiac membrane (Mitchell and Schaeffer, 2003; Tolkacheva et al., 2002).

Studying the restitution curve and analysing the stability of the restitution properties of cardiac

cells has been the focus of many studies (Aliev and Panfilov, 1996; Evans et al., 2000; Tolkacheva

et al., 2002, 2003). For example Aliev and Panfilov (1996) fitted a restitution curve to the experimental

data of the canine myocardium of Elharrar and Surawicz (1983) and found the parameter values for

a simplified model. They then studied the dynamics of propagation of action potential waves in 3-

dimensions.

Previous studies indicate that the restitution curve depends on the pacing protocol that is used to

obtain it, hence it is known as a phenomenon called ”rate-dependent” restitution (Cain et al., 2004;

Elharrar and Surawicz, 1983; Kalb et al., 2005). Therefore, prior to introducing different restitution

maps, we will explain different pacing protocols by which the restitution curve is obtained.
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Pacing protocols Two of the most commonly used pacing protocols are the dynamic protocol and

the S1 − S2 protocol. Tolkacheva et al. (2003) illustrated that restitution curves derived from each of

these protocols, capture different aspects of restitution dynamics.

The dynamic protocol is also called the steady state protocol, since it is a measure of the steady

state response. In this protocol the cardiac cell periodically receives an external stimulus at a fixed

interval known as the basic cycle length. When it settles into a stable periodic response, the steady

state is recorded for a given basic cycle length and the pair (Dss,Ass) is recorded for each basic cycle

length. Then the basic cycle length is changed and the process is repeated. By plotting the (Dss,Ass)

pairs, the dynamic restitution curve is obtained over a range of different values of the basic cycle

length.

The S1 − S2 protocol is a measure of the immediate response to a change in basic cycle length.

This protocol begins with applying a stimulus S1 and pacing the cardiac cell at B = B1 until it settles

down into a steady state response after k APs. Then at K = k+1 a stimulus S2 is applied to the cell at

an interval of B =B2. The diastolic interval of the S1 stimulus (Dk) and the action potential duration of

the S2 stimulus (AK) are recorded. The pairs (Dk,AK) are plotted. Note that, the dynamic restitution

protocol results in only one restitution curve, whereas the S1 − S2 restitution protocol produces a

different restitution curve for each B = B1 (Cain et al., 2004; Kalb et al., 2004; Schaeffer et al., 2007).

Modelling restitution by discrete iterative maps In order to model the electrical restitution be-

haviour of the cardiac cells, different restitution maps have been proposed.

One-dimensional restitution map without memory: The first mathematical formulation for the one-

dimensional restitution map without memory was proposed in 1984 by Guevara et al. (1984), in which

action potential duration is a function φ of the preceding diastolic interval as given in (1.1). Degree of

memory in the mapping models corresponds to the number of variables previous to diastolic interval

(DI). This means that only the previous beat plays a role in determining the action potential duration

of the next one.

Ak+1 = φ(Dk), (1.1)

where Ak+1 denotes the durations of the (k + 1)st action potential and Dk the kth diastolic interval.

Here the basic cycle length is kept fixed and φ(D) is an increasing function of the diastolic interval.

For each basic cycle length (B), Ak +Dk = B. Inserting Dk = B−Ak, we see that Ak+1 is determined

by an iteration of a one-dimensional map.
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One-dimensional restitution map with memory: The second type of restitution map was first pre-

sented based on experimental data by Gilmour and Otani (1997) when the Ak+1 was modelled as a

function of not only the preceding diastolic interval Dk but also the action potential duration Ak.

Ak+1 = F(Dk,Ak). (1.2)

Since B = Ak +Dk, this map is also one-dimensional but it contains one beat memory, i.e. memory

is considered as the dependence of the the action potential duration on more previous APDs and

DIs. These types of maps are called “one-dimensional restitution maps with memory” and can be

generalised to contain more variables previous to the Dk, i.e.

Ak+1 = F (Dk,Ak,Dk−1,Ak−1, ...) .

Two-dimensional restitution map with memory: in addition to these two types of maps, the third

map was introduced theoretically and experimentally by Gulrajani (1987), Chialvo et al. (1990)

and Gilmour et al. (2002) in which the role of the longer term memory was studied in more de-

tail. A memory variable Mk was added to the model which accumulates during the action potential

duration and dissipates during the diastolic interval. Thus, the model called the “Two-dimensional

restitution map with memory” and according to Chialvo et al. (1990) is described by:

Ak+1 = (1−Mk+1)G(Dk), (1.3a)

Mk+1 = ψ(Mk), (1.3b)

where

ψ(Mk) =

(
1− (1−Mk)exp

−Ak

τ2

)
exp

−Dk

τ2
,

and

G(Dk) = a1 −a2 exp
−Dk

τ1
.

The parameters a1,a2,τ1,and τ2 describe properties of the tissue. Scientists such as Kalb et al. (2004);

Schaeffer et al. (2007); Tolkacheva et al. (2002) suggested that memoryless one-dimensional maps

are not comparable with experimental data since they do not contain a sufficient amount of mem-

ory. Therefore, one-dimensional maps with memory or two-dimensional maps have been widely

researched and role of memory in the stability of these maps, has been investigated. These studies

argue that the more variables restitution maps have, the more history of the membrane potential is

taken into account and consequently the more qualitatively comparable to the experimental data they



8

are (Cain et al., 2004; Schaeffer et al., 2007; Tolkacheva et al., 2002, 2003). In contrast, little attention

has been paid to the fact that much of the the valuable predictions of the onset of instability in cardiac

cells, is based on analysis of the most simple restitution maps (Kalb et al., 2005). Hence, studies on

the maps of type (1.1), are still lacking. We believe that studying the most simple maps, are essen-

tial as they provide knowledge about the role of the parameters and variables of a model in inducing

alternans and ind establishing the normal responses of a cardiac cell.

Furthermore, once the right criteria is developed to study the stability of the one dimensional

memoryless map (1.1), one can always expand it and study the role of memory too. Restitution maps

that are derived from the ionic models and are based on the physiology of the cells can provide vital

information about different parameters or variables in the model. Focusing on this is one of the main

aims of this thesis.

We remark that, the restitution curve obtained from the one-dimensional memoryless map (1.1) is

independent of the pacing protocol. Since all the points (Dk,Ak+1) lie on a single curve Ak+1 = φ(Dk),

whereas the other two types of maps (1.2) and (1.3) provide different curves under different pacing

protocols. Thus, the pacing protocol does not play any role in memoryless restitution maps and the

use of either protocol will result in a same solution.

Prediction of Alternans The existence of alternans in the memoryless one-dimensional map (1.1)

was first found by Nolasco and Dahlen (1968) in which they explained the relationship between action

potential duration alternans and action potential duration restitution based on the slope of the restitu-

tion curve. They suggested that when the slope of the curve is less than one, the system is stable. At

the faster rates (smaller basic cycle length) the slope of the action potential duration restitution curve

is greater than one and the system becomes unstable and alternans occurs as can be seen in Figure 2.3.

This condition which is called the ”restitution condition” in Kalb et al. (2004) has been used by many

researchers such as Chialvo et al. (1990) to study the stability of arrhythmia. Karma (1994) also stud-

ied the breakup of spiral waves in two dimensions and the occurrence of cardiac arrhythmias, using

restitution condition. It was suggested by Evans et al. (2000) that studying the restitution curve pro-

vides more insight into an understanding of the occurrence of the arrhythmia and how the arrhythmia

can be controlled. Furthermore, based on the slope of an action potential duration restitution curve,

the onset of arrhythmia can be determined (Evans et al., 2000). However, in more recent experimental

and theoretical studies it has been suggested that the traditional restitution condition fails and does not
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predict alternans (Kalb et al., 2004). Hence, when the slope of the standard map is one, the prediction

of the origin of alternans is not accurate. This indicates that the study of temporal alternans needs to

be modelled by more complex maps Echebarria and Karma (2002). There are different criteria based

on the slope of restitution curves for the maps of (1.2) and (1.3), but since the focus of this thesis is

on the memoryless maps (1.1), we don’t concentrate on those criteria.

There are other types of cellular alternans that believed to cause arrhythmias such as Ca+2 al-

ternans, spatially-dis/concordant alternans (Fenton and Karma, 1998; Fox et al., 2002; Merchant and

Armoundas, 2012; Weiss et al., 2006). Ca+2 plays a vital role in excitation-contraction coupling,

therefore, it is an important ion in inducing cardiac arrhythmia and alternans. At the cellular level, the

relationship between membrane voltage and Ca+2 dynamics is complex. Membrane voltage and cal-

cium dynamics are bidirectionally coupled and it is not clear which leads to the other. There are data in

support of two main hypotheses (Merchant and Armoundas, 2012; Valdivia, 2015; Weiss et al., 2006):

(i) Alternation in ionic currents and membrane voltage leads to alternation in intracellular Ca+2 con-

centration.(ii) Alternation of intracellular Ca+2 concentration causes alternation of membrane voltage.

With respect to the first hypothesis, which is the influence of voltage on [Ca+2]i cycling, Weiss et al.

(2006) argue that the L-type Ca+2 current plays an important role such that if action potential du-

ration alternates, L-type Ca+2 current alternates and in response to this [Ca+2]i fluctuates. Fox et al.

(2002); Merchant and Armoundas (2012) also stated that alternation of sarcolemmal Ca+2 and K+

currents due to change in action potential morphology have an affect on alternation in [Ca+2]i cycling.

With regard to the second hypothesis, the role of Ca+2-alternans on producing voltage alternans is

considered and many experimental studies have demonstrated that [Ca+2]i alternans causes voltage

alternans (Merchant and Armoundas, 2012; Valdivia, 2015; Weiss et al., 2006).

1.3 Aims and objectives

In this section we outline the aims and objectives of this thesis. We will provide justifications for each

of the objectives by referring to and explaining the gaps in the current literature. We will then briefly

describe our approach. This is followed by introducing the outlines of each chapter in this thesis.

• We aim to develop an approach for the solution of the restitution boundary value problem which

will make it possible to derive discrete restitution maps directly from the set of ordinary differ-

ential equations (ODEs) via asymptotic reduction. Such low-dimensional maps have the advan-
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tage of being more directly related to the differential equations governing cell’s electrophysiol-

ogy. This approach has been employed previously by Tolkacheva et al. (2002) and Mitchell and

Schaeffer (2003), but they used a simplified version of the Fenton and Karma (1998) model.

Hence, their model does not closely match the real physiology of the cardiac cell. In our ap-

proach, however, we derive a map from more realistic models such as those of Noble (1962)

and Courtemanche et al. (1998), thereby providing more insights into these physiologically

based models, which are closer to the cardiac cell’s functions.

• We aim to apply the tools developed in this process to analyse typical models of atrial excitabil-

ity. We aim to identify mechanisms in which alternans, fibrillation and other irregular rhythms

appear and how they behave in these models.

• In complicated ionic models, one-dimensional maps act as a guide to determining the important

factors in producing alternans. Therefore it is vital to be able to compare the mapping results

directly to the ionic model and this provides testable predictions as a result of repetitive stim-

ulation of a cardiac cell (Michaels et al., 1990). We wish to propose a generally applicable

framework for studying cardiac restitution, formulated in terms of a boundary value problem

for forced periodic oscillations in the ordinary differential equations governing cellular elec-

trophysiology. This formulation should be applicable to any detailed cardiac excitation model.

Present day models for the electrical excitation of cardiac cells incorporate a huge wealth of

knowledge about the microscopic structure of the cells based on detailed experimental mea-

surements. If successful, our formulation will allow to better relate these cellular properties to

restitution properties and predict the onset of fibrillation and other irregular cardiac rhythms.

• In general, it will only be possible to solve such a boundary value problem for restitution numer-

ically. We aim to devise a suitable formulation of the problem that can be implemented using

standard numerical solvers for boundary value problems and software for numerical bifurca-

tion and branching. Cardiac excitation models are characterised by a certain set of asymptotic

properties and which we aim to exploit.

• We aim to draw conclusions on how this methodology can be applied to other related problems,

for instance, Calcium alternans, alternans in spatially extended domains and realistic cardiac

geometries.
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1.4 Structure of the thesis

In Chapter 2 we provide more background in the mathematical as well as physiological context of the

thesis. This is followed by Chapter 3 where we present the detailed methodology of this research. We

explain two different approaches to study alternans and we emphasise that the restitution maps and

the complete ionic models complement each other. The combined results of the studied models will

provide a good understanding of the cellular dynamics (Michaels et al., 1990).

In Chapter 4 we apply the proposed methods on a caricature version of the FitzHugh-Nagumo

system (FitzHugh, 1961; Nagumo et al., 1962) called the McKean (1970) model and we derive a

restitution map. We then study the stability of the map based on its parameters. Although the system

is very simple we show that at fast frequencies the diastolic interval can determine the behaviour of

the system. This is an important step to justify the use of our chosen methodology. Also we will

confirm this approach by applying our methodology on the more complicated models in Chapters 5

and 6.

In Chapter 5 we study a simplified version of Noble (1962) on the Purkinje fibres of the heart.

The model is originally introduced by Biktashev et al. (2008), is called the “Caricature Noble Model”.

It is based on the physiology of a cardiac cell and at the same time is simple enough to be solved

analytically. We apply the proposed method on this model and study the stability of the map derived

from the full system of ODEs.

In Chapter 6 a reduced version of a healthy human atrial model by Courtemanche et al. (1998) is

studied. The model was reduced via asymptotic reduction by Suckley (2004). The steps she followed

in order to reduce the full system, are repeated and explained briefly in this chapter. We then derive a

one-dimensional map of the form (1.1) and investigate different factors and mechanisms of alternans

using the methodology described in Chapter 3. This is followed by Chapter 7 which consists of the

conclusions and future research directions.



Chapter 2

Physiological and Mathematical

Background

Restitution dynamics of cardiac cells are studied using functions that relate the action potential dura-

tion to its preceding diastolic interval (Kalb et al., 2005; Shaeffer et al., 2008). These functions are

either empirical, therefore fitted to experimental data as it was done by Nolasco and Dahlen (1968), or

they are derived from a system of ordinary differential equations that describes the electrical activity

of the cells (Shaeffer et al., 2008; Tolkacheva et al., 2002).

In this chapter we begin by describing the physiology of excitable cells and explaining the basic

principles of modelling the electrical activity of these cells. We then expand on the details of the ionic

models, which are system of ordinary differential equations and we present the mapping approach in

modelling the electrical restitution of cardiac cell. This is followed by explaining the mathematical

tools that we use in order to study the asymptotic properties of these systems of equations and the

behaviour of their solutions. We conclude this chapter by elucidating the relevance of these models to

this research.

2.1 Physiology of excitable cells

As stated in Chapter 1 excitable cells have the ability to be electrically excited which results in the

generation of action potentials. In this section, we explain the physiology of the cell membrane and

the cellular mechanisms in each heartbeat.

12
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The cell membrane The cell membrane is the boundary around the cell separating the internal

environment of the cell from its external environment. It is a double layer of thick phospholipid

(about 7.5 nm) molecules that is selectively permeable, permitting passage of some materials and

restricting the passage of others. The cell membrane contains different types of pores. Protein-lined

pores called channels allow the passages of certain type of molecules, but small uncharged molecules

can pass between the phospholipid molecules by simple diffusion (Alberts et al., 1994; Keener and

Sneyd, 1998).

Electrically charged particles (ions) pass through ion-specific channels called ion channels. The cell

membrane has two kinds of ion channels: ”non-gated” channels that are always open and ”gated”

channels which can open and close. Opening and closing the gated ion channels is mostly dependent

on the membrane voltage. Hence, they are called voltage-gated ion channels. The cell membrane is

constantly regulating the exchange with the external environment by permitting the passage to some

materials and restricting the passage of others. The permeability of the membrane to a particular

ion is dependent on the number of open channels for that specific ion (Alberts et al., 1994; Ermen-

trout and Terman, 2010). A cardiac cell beats when a complex series of gates open and close in an

organised manner. When a cell is electrically stimulated, the cell membrane becomes selectively per-

meable/restrictive to certain ions and a transmembrane potential is formed which is called an action

potential (Keener and Sneyd, 1998).

According to Ermentrout and Terman (2010), non-gated channels are believed to be responsible for

the resting potential whereas most of the gated channels are considered to be closed during the resting

state. Action potential is formed when gated channels open and permit the passage of certain ions

across the cell membrane. The membrane potential at which a particular ion is in equilibrium across

the membrane, is called the Nernst potential for that ion.

Cellular mechanisms in each heartbeat In each heartbeat the electrical stimulus activates and

opens the voltage dependent Na+ channels. Since the concentration of Na+ outside the cell is sub-

stantially higher than inside the cell, Na+ enters the cytoplasm. The increase in membrane perme-

ability (conductance) to Na+, allows the membrane potential to depolarise. Voltage then approaches

Na+ Nernst equilibrium potential (ENa = +50 (mV)) at which Na+ ions are in equilibrium across

the membrane and the electrical and chemical driving forces balance. Na+ channels at positive mem-

brane potential close and voltage-dependent K+ channels open due to depolarisation of the membrane.
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Figure 2.1: A schematic representation of the cell membrane in a human atrial action potential model.

The extracellular, intracellular, cleft spaces, the uptake and release compartments within the sarcoplas-

mic reticulum are illustrated as well as the ionic currents and the ion exchanger currents. (Nygren et al.,

1998).

Hence, K+ ions leave the cell via Ito, causing the membrane potential a slight drop. A this stage, the

voltage-dependent Ca+2 channel called the L-type calcium channel -where L stands for long lasting-

(Bers., 2002) activates. Since the concentration of Ca+2 outside the cell is relatively high, Ca+2 enters

the cytoplasm via the L-type calcium channels (Bers., 2002). The outward flow of K+ and the inward

flow of Ca+2 balance and form a plateau phase.

As Ca+2 enters the cytoplasm and concentration of Ca+2 increases, it binds to protein structures

called ryanodine receptors (RyRs) and activates them. Then the Ca+2 stored in the sarcoplasmic retic-

ulum (SR) is released via ryanodine receptors, by calcium-induced-calcium-release (CICR) mecha-

nisms (Bers., 2002; Keener and Sneyd, 2008; Richards et al., 2011). This mechanism is such that if

one local L-type calcium channel opens, calcium ions bind to RyRs and this activates the process of re-

leasing Ca+2. The large efflux from the sarcoplasmic reticulum activates the neighbouring ryanodine

receptors and Ca+2 enters the cytoplasm. The Ca+2 inside the cell diffuses through the cytoplasm and

binds to the contractor compartments called myofilaments. Myofilaments are chains of proteins inside
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the muscle cells and cause contraction of the myocyte (Bers., 2002; Keener and Sneyd, 2008).

As stated before, the plateau phase of an action potential has a relatively large duration and K+ and

Ca+2 ions are believed to play vital role in maintaining this duration. After the plateau phase, there is a

repolarisation phase of an action potential at which the L-type Ca+2 channels close. Ca+2 channels are

voltage dependent and Ca+2 dependent, they inactivate and close while K+ channels remain open and

K+ enters the cell. The voltage dependent K+ channels are called delayed rectifier channels and are

classified based on the speed at which they activate. There are slow delayed rectifier current IKs, rapid

delayed rectifier current IKr and ultra rapid delayed rectifier current IKur. The currents responsible for

the repolarisation are IKr, IKs and IK1 and they cause the membrane potential to reach its resting value.

The delayed rectifier channels close after the repolarisation but the inward rectifier channels remain

open during the resting phase of the action potential.

The myocyte then has to relax and for relaxation to happen, the amount of Ca+2 which entered

the cytoplasm needs to be removed from the cytoplasm. If this didn’t happen, the cell would gain

or lose Ca+2 and the cell would lose its equilibrium state (Bers., 2002). Therefore in the relaxation

phase, Ca+2 either returns to the sarcoplasmic reticulum or is pumped out of the cell across the plasma

membrane. Figure 2.1 illustrates the intracellular compartments and the ionic currents in a human

atrial cell model (Nygren et al., 1998).

Excitable systems A system is excitable if the equations that describe the temporal behaviour of the

system, have one equilibrium point that is globally attracting the trajectories in the phase space. An

excitable system has a resting state and an excited state. Hence, in excitable cells, a sufficiently large

perturbation in voltage which is above a certain threshold, results in generating an action potential.

If the perturbation is not large enough, the voltage decays back to its resting value (Ermentrout and

Terman, 2010). In the next section mathematical models of action potentials and excitable systems

are described.

2.2 Mathematical models of action potential

Electric circuit model of the cell membrane In mathematical models of action potentials the cell

membrane is modelled as an electrical circuit. The cell membrane acts as an insulator for separating

charges, and as a conductor for its ability of selective conductance (Keener and Sneyd, 1998). As

illustrated in Figure 2.2, it is also assumed that the membrane acts like a capacitor in parallel with
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Figure 2.2: The electrical circuit model of the cell membrane where the capacitor and the resistor are

in parallel. Keener and Sneyd (1998).

a resistor. The capacitance of the membrane CM is a constant defined as the ratio of charge across a

capacitor Q to the voltage potential needed E to hold that charge and their relationship is given by

CM =
Q

E
.

Since the current is I =
dQ

dt
, the capacitive current in the circuit is CM

dE

dt
. The transmembrane poten-

tial E is defined as

E = Ei −Ee,

where Ei is the voltage inside the cell and Ee is the extracellular potential. In an electrically stimulated

cell by a stimulus current Istim, according to Kirchhoff’s voltage law there will be a change of charge

inside and outside of the membrane and to balance this change, the stimulus current will be

−Istim =CM
dE

dt
+ Iion.

In order to obtain the capacitive current and therefore the transmembrane voltage as a function of

time, it is vital to explain the ionic currents across the cell membrane.

The flow of any ion across the cell membrane is driven by the electrochemical gradient for that

ion. The voltage gradient and the concentration gradient of the ion across the cell membrane control

the electrochemical gradient for that ion. As stated previously, when these two forces balance each

other the electrochemical gradient is zero and there is no net flow of the ion through the ion channel.
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Hence, the membrane potential reaches its Nernst potential for that ion. At this equilibrium potential,

the chemical and electrical gradients are equal and opposite in direction. For each ion of type S the

Nernst potential is determined by the ratio of the concentrations of S on the two sides of the membrane

and is given by

ES =
RT

zF
ln

[S]o
[S]i

, (2.1)

where ES is the equilibrium potential for any ion of type S, [S]oand [S]i are the concentration of the

ion S outside and inside of the cell respectively, R is the universal gas constant 8.314 JK−1mol−1,

T is the absolute temperature in Kelvin, F is Faraday’s constant 96,485 Cmol−1, z is the charge of

the ion, where z is +1 for Na+, +1 for K+, +2 for Ca+2 and so on. According to (Keener and Sneyd,

1998) the membrane potential is assumed to drop due to the concentration difference given by (2.1)

as well as an electrical current rSIS provided the channel is ohmic. Hence, the membrane potential is

given by

E = rSIS +ES,

where rS is the resistance of the channel S and IS is the current of S. The current-voltage relationship

is derived as:

IS =
E −ES

rS
.

It is important to notice that this ionic current is zero when the membrane potential reaches its Nernst

potential i.e. when E = ES and hence IS = 0. The current IS in the above equation, is the product of

the single channel conductance times the number of channels per unit area of membrane (Keener and

Sneyd, 1998). In general the ionic current is described as below:

CM
dE

dt
=−∑

S

(

gS ∏
i

(yS,i)
kS,i(E −ES)

)

− Istim (2.2a)

where S is different types of ionic channels (i.e. sodium, calcium, ...), i is the type of gates for each

channel, k is the multiplicity of the gates, gS = 1/rS is the maximum conductivity for any ion channel

of type S when all gates are open and ES is at equilibrium voltage and yS,i is the gating variable for

channel S. According to physiologically based models like Luo and Rudy (1991) the evolution of

gating variable y(t) is described as below:

dyS,i

dt
=

yS,i(E)−yS,i

τyS,i(E)
(2.2b)
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where yS,i and τyS,i(E) as continuous functions of E , define the quasi stationary value and the time

in which the gate closes and opens respectively. As is clear from (2.2), mathematical models vary

significantly in terms of modelling the Iion. Some models like Courtemanche et al. (1998) and Nygren

et al. (1998) are based on the physiology of the cells, hence they considered as Reaslistic models.

In contrast, some models like Mitchell and Schaeffer (2003) model, mimic selected properties of

excitable cells (nerve, ventricle, atrium, SA, etc ...) but the equations do not directly represent the

physiological structures in the cell. Moreover, Istim is the stimulus current which is a function of

time. Stimulus current is applied experimentally to the cell membrane. A mathematical model for the

experimental Istim may be written as

Istim(t) =
∞

∑
k=0

Jδ(t − kB),

where δ is the Dirac delta function and this raises the voltage to J instantaneously. An alternative way

to achieve the same is to pace our models using initial condition for one of the dynamical variables.

In this thesis, Istim is omitted from the equations and instead the initial condition for voltage is set at a

stimulus value which may be called ”Stimulation by voltage”.

2.2.1 Realistic ionic models

Realistic models of excitable cells are sets of differential equations formulated in such a way that

they faithfully represent the latest knowledge of the physiological structures in the cell. Besides,

their solutions reproduce as many of the properties of the cells as possible. Realistic models of Iion

currents, incorporate the latest known details of the cardiac cells’ physiology, such as the different type

of ion channels, population of ion channels, changes in ionic concentration inside and outside of the

membrane, mechanisms that regulate movement of the ions across the cell membrane, the structure of

the cells, the geometry of the cells, temperature and volume. Hence, they are considered too detailed

and complicated to analyse.

The first quantitative model of electrical activity of the excitable cell was introduced by two Nobel

prize winner scientists Hodgkin and Huxley (1952). Their model was used to explain the action

potential in the long giant axon of a squid nerve cell. Their idea has been applied to a variety of

excitable cells ever since. One of the most important versions of their model is the Noble (1962)

model for mammalian Purkinje fibres. We study and analyse a version of this model in Chapter 4 of

this thesis.
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Different mathematical models have been developed over the past 50 years to study the role of cel-

lular and sub-cellular mechanisms in producing action potentials for different cells in the heart (Noble

et al., 2012). Some of these models are amongst the first cardiac models that established this field,

such as the Noble (1962) model of mammalian Purkinje fibres and the Beeler and Reuter (1977)

model of mammalian ventricular myocytes Beeler and Reuter (1977). Furthermore, many of the re-

alistic models are extensions of existing models. For example the Luo and Rudy (1991) model is a

model of the ventricle of a Guinea pig, the Winslow et al. (1999) model is for canine ventricular my-

ocytes. The Courtemanche et al. (1998) model and of the Nygren et al. (1998) model are the human

atrial models . In recent years, as the experimental data has improved and provided more information

about the cells, the mathematical models have been extended to fit these data (Noble et al., 2012).

One of the recent models of human atrial action potential is the Grandi et al. (2011) model, which

is a continuation of the Grandi et al. (2010) model of human ventricle. Although such detailed mod-

els are ground-breaking tools for computational modelling, the level of their complexity makes their

mathematical analysis rather challenging. Therefore, the simplified models that incorporate the pri-

mary elements of the complex ionic-based models provide a solid understanding of the behaviour of

the solutions.

2.2.2 Conceptual models

The conceptual models of excitable cells are considerably simpler than the realistic models. They

retain the essential features of the ionic-based models and present it in a simplified form. For example,

these models generate action potentials and exhibit a threshold of excitation. To mimic the properties

of excitable cells the mathematical models of excitable systems take the form

du

dt
= g(u)− v ≡ G(u,v), (2.3)

dv

dt
= bu− cv ≡ F(u,v), (2.4)

where b,c > 0. The variable u behaves qualitatively like the transmembrane potential E , and v is a

measure of the permeability. The function g is modeled such that captures the dynamical behavior of

excitable cells. Reasonable requirements on g are: (1) g(0) = 0 and g′(0) < 0 (for local stability of

the equilibrium u = 0), (2) there should exist an set S > 0 such that g(S) = 0 and g′(S) > 0 (allows

S to be a repelling threshold) and (3) g′(u) < 0 for large values of u (allows (u,v) to return to (0,0)).

Cubic polynomials and other cubic-like functions satisfies these requirements for g(u).
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An example of conceptual models, is a simple version of the Hodgkin and Huxley (1952) model

which was first introduced by FitzHugh (1961); Nagumo et al. (1962). The FitzHugh-Nagumo system

of equations is given by

ε
dE

dt
= f (E)−w, (2.5)

dw

dt
= E −βw,

where f (E) = E(E −α)(1−E), and α, β, ε are constants such that 0 < α < 1, 0 < ε ≪ 1 and β ≥ 0.

Since ε is small, the recovery variable w is much slower than the voltage E .

This system is a typical example of fast-slow systems with different time scales involving both

fast and slow motions. The fast processes correspond to the upstroke of the action potential and the

slow processes correspond to the plateau stage and the repolarisation of the action potential. The

conceptual models in general are either ad-hoc and thus suitable only for a particular application, or

are modifications of the FitzHugh-Nagumo system (FitzHugh, 1961; Nagumo et al., 1962) that are

relevant to nerve tissue but not to cardiac tissue. Therefore they contain parameters and variables that

cannot be translated into the physiology. However, analysing these systems enables us to understand

the behaviour of the solutions qualitatively. One of the examples of this type of model is the McKean

(1970) model which is a caricature version of the the FitzHugh-Nagumo system (FitzHugh, 1961;

Nagumo et al., 1962) model. In McKean’s model f (E) is a piecewise-linear function which allows

explicit solutions and analysis. We will study this model in Chapter 4.

2.2.3 Asymptotically simplified realistic models

Another approach for modelling the electrical activity of a cardiac cell is to derive simplified math-

ematical models from the realistic models. The asymptotically simplified models include the essen-

tial components of the more complex physiologically based models. Hence by applying asymptotic

analysis on the realistic models and separating time scale of their variables, complicated models for

membrane dynamics can be simplified. For instance the Fenton and Karma (1998) or the Caricature

Noble model derived byBiktashev et al. (2008), are amongst these models. The asymptotically sim-

plified models are directly related to relevant physiological structures of the cells. One of the useful

advantages of these models is their ability to reproduce essential features of cells and at the same time,

provide mathematical simplicity similar to conceptual models.

Asymptotically simplified models may offer a good introduction to membrane dynamics and quan-
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titatively reproduce the restitution behaviour of cardiac cells. In addition, due to the simplicity of their

functions, they are computationally faster than the realistic models.

Biktashev et al. (2008) used an asymptotic embedding approach to develop a caricature model of

the classical model of Purkinje fibres Noble (1962) model. The Caricature Noble model is amenable

to analytical study but at the same time preserves the essential features of contemporary ionic models

of cardiac excitation. This model is studied and analysed in Chapter 5 of this thesis.

Another, asymptotically simplified model studied in this thesis, is derived from the detailed human

atrial model of the Courtemanche et al. (1998). The reduced model is derived by Suckley (2004)

where she performed asymptotic analysis on the model to reduce it to a three variable model. Not

only are the generic properties of Courtemanche et al. (1998) model preserved but also the detailed

model of human atrial action potential is reduced to the extent that it can be studied and analysed with

mathematical tools. We study the reduced model in Chapter 6 of this thesis.

Two important mathematical tools that have been mentioned in this section are asymptotic analysis

and phase plane analysis. Later on in this chapter, these fundamental tools will be discussed.

2.3 Models of restitution

The functions that relate the action potential duration to its previous diastolic interval are of two types

namely either (a) proposed based on heuristic arguments and then fitted to experimental data (Nolasco

and Dahlen, 1968) or (b) derived from mathematical models of action potentials (Shaeffer et al., 2008;

Tolkacheva et al., 2002) where the models of the action potential may be ad hoc. In this section we

will describe these two types of mapping models. In addition, we will also provide justifications as to

why the maps derived from the ionic models provide more insight into the physiology of the cell than

the fitted maps.

2.3.1 Heuristic discrete restitution maps

The first theoretical explanation of action potential duration alternans was presented by Nolasco and

Dahlen (1968) where they used a feedback relationship between the action potential duration and

the diastolic interval. Nolasco and Dahlen (1968) considered the cardiac alternation’s features to be

similar to the oscillation in electrical circuits. They used negative feedback in the electrical circuit

where X as a signal is part of the input I. When the input I is amplified to the output O=G(I) that is a
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Figure 2.3: Projection method used by Nolasco and Dahlen (1968) to illustrate action potential dura-

tion alternans. D-lines are plotted for three different basic cycle lengths and the steady state for each

BCL which is the intersection of D-line and A-curve is shown.

function G of I. A fraction F of the output O feeds back to the input i.e. I=X- F(O), where F(O) is a

fraction of output O.

In the cardiac cells, the signal X is the stimulus interval (basic cycle length) and contributes to the

input that is the diastolic interval, and the diastolic interval influences the next action potential duration

by A1 = f (D0). The whole action potential duration feeds back into the next diastolic interval and

therefore D1 = B−A1. For a fixed basic cycle length the diastolic interval as a function of action

potential duration is a straight line with slope -1 which was called by Nolasco and Dahlen (1968)

the D-line. The D-lines are denoted in green in Figure 2.3. Consequently, they measured action

potential duration and diastolic interval at different basic cycle length in the steady state and drew

a graph A = f (D0) which is called the A-curve is plotted in blue in Figure 2.3. The intersection

of the A-curve and the D-line is the steady state (Dss,Ass) at that basic cycle length. In order to

get successive values of the action potential duration and the diastolic intervals Nolasco and Dahlen

(1968) used a projection method such that from the A-curve, a horizontal line is drawn to the D-line

(number (1) in the figure) and the intersection of these two is the value of D at the new basic cycle

length and a vertical line from this point to the A-curve (number (2) in the figure) is the value of action

potential duration at the new basic cycle length. By applying the cobweb methods and the conditions
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for stability (Strogatz, 2001), the slope of the A-curve (i.e. S =

[
dA

dD

]

(Dss,Ass)

) at the steady state was

studied by Nolasco and Dahlen (1968) and the following cases were established:

(i) If S < 0 the action potential duration reaches the steady state without oscillation.

(ii) If S = 0 the iteration converges immediately to the steady state.

(iii) If 0 < S < 1 the action potential duration and the diastolic interval oscillate around the steady

state. The steeper the A-curve, the slower the convergence to the steady state.

(iv) If S = 1 and the A-curve is symmetric around the D-line, therefore alternans with different

amplitude could be observed.

(v) If S > 1 the projection line quickly moves away from the intersection point. Either persistent

alternans occur or not every stimulus gets a response.

Using experimental data and drawing the A-curve for each of the above cases, Nolasco and Dahlen

(1968) showed that for slow rates the change in action potential duration is minimal and at rapid rates

the slope of the A-curve becomes very steep. Furthermore, they changed the rate, recorded the first

two cycles immediately after the change and observed non-steady state responses. At rapid rates and

at the slow rates the non-steady state curves were above and below the steady state curve, respectively.

Hence, a family of non-steady state curves was considered to be approaching the steady state curve.

They also performed further experiments to analyse how alternating the basic cycle length affects the

occurrence of persistent alternans. They concluded that at the persistent alternans, the slope of the

curve is greater than one, which is in agreement with their graphical model in Figure 2.3. Nolasco and

Dahlen (1968) reported that looking at the A-curve provides a greater understanding of the system

than the D-line, since the slope of the D-line is always -1 and the only important value of the D-line

is its intersection with the A-curve. Moreover, they concluded that when the slope of the A-curve

is negative or zero the system is stable and alternans does not occur, whereas at the faster rates the

system becomes unstable and alternans occurs. Since the A-curve can be drawn for different cardiac

tissues, studying the effect of different parameters of a tissue on the A-curve will certainly help to

understand the occurrence of alternans in cardiac cells. Figure 2.4 illustrates a typical action potential

duration restitution curve similar to that of Figure 2.3. The intersection of the A-curve and the D-line

is a steady state point (Dss,Ass). In Figure 2.4 two different basic cycle lengths are chosen and the

D-line for each of them is plotted in green. In order to see if action potential duration alternates at
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Figure 2.4: Analysing the stability of the steady states. The intersections of the blue A-curve with

the green D-line is the steady state. The point E corresponds to B = 200 (ms) and F corresponds

to B = 500 (ms). The stability of the points is examined under a small perturbation of −δ from the

steady state. E is unstable and F is a stable equilibrium.

these basic cycle lengths, the stability of the steady state point (Dn,An+1) = (Dss,Ass) is checked at

points E and F corresponding to B = 200 (ms) and B = 500 (ms) respectively. The local stability

can be determined by a small perturbation of the D. If we perturb the D by shortening it by a small

amount δ to Dn+1, this generates a shorter An+2 which can be determined by dropping a vertical line

(labelled (1) in the Figure 2.4) to the intersection with the action potential duration restitution curve.

The shorter An+2 creates a long Dn+2 and this can be determined by drawing a horizontal line (labelled

(2)) to its intersection with the D-line. This Dn+2 produces a long An+3 which is determined by the

intersection of the vertical line (3) with the action potential duration restitution curve and so on and

so forth. As can be seen in Figure 2.4, around the point E the amplitude of action potential duration

alternans progressively increases and finally settles at a steady-state alternans. This indicates that the

equilibrium point E is unstable.

Physiologically the process at the point E means that if the diastolic interval Dn+1 is short, the

cell needs enough time to fully recover its resting electrical properties before the next stimulus which

then produces a shorter An+2 Echebarria and Karma (2002). The period doubling nature of this

instability was demonstrated mathematically in Guevara et al. (1984) which we discuss here. The same

methodology applies to the point F. However, at the point F the action potential duration amplitude
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decreases and settles at the steady state indicating that F is a stable steady state.

Guevara et al. (1984) also performed an experimental study to derive the electrical restitution

curve. They used a mathematical approach and predicted the occurrence of alternans at the fast rate

where at a critical frequency the 1:1 response loses its stability and a 2:2 response occurs. They

periodically stimulated a heart cell and recorded the action potential duration and diastolic interval.

They did that with two sets of data: one for short stimulation frequencies and one for a wide range

of stimulation frequencies. The data sets were fitted respectively to single and double exponential

functions. The action potential duration was derived as

Ak+1 = g(Nts −Ak),

where ts is the BCL, N is the smallest integer such that Nts −Ak > θ, for θ the refractory period. It

was assumed by Guevara et al. (1984) that the electrical restitution curve is

g(D) = Amax −αexp(−D/τ),

where Amax is the maximum action potential duration at long recovery times, α and τ are positive

constants, and D > θ.

The fixed point of the restitution function occurs at A∗ when Ak+1 = Ak and is stable if

∣∣∣∣
dAk+1

dAk

∣∣∣∣< 1.

If the derivative at the steady state is -1 a period doubling bifurcation occurs and their experimental

data is in agreement with their theoretical approach. Therefore, Guevara et al. (1984) formulated the

response of the model to periodic stimulation as a bifurcation problem. The exponential maps do not

provide explicit information about the details of cardiac dynamics. Therefore, over the last few years

the maps that are derived from the system of ordinary differential equations have been studied more

than the above mentioned maps.

2.3.2 Maps derived from system of ordinary differential equations

As stated above, the electrical activity of cardiac cells is described by a system of ordinary differ-

ential equations that keeps track of the transmembrane voltage and ionic currents. The second type

of map is derived from this system of equations using a multi-scale analysis technique and asymp-

totic methods. One of the examples of this type of maps is presented in Tolkacheva et al. (2002)’s
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paper, where a one-dimensional map is derived from the Fenton and Karma (1998) to approximate

the response of the model. In the Fenton and Karma (1998) model voltage changes in the membrane

in response to three ionic currents: a fast inward current, a slow inward and a slow outward current.

By implementing asymptotic analysis they reduced the system and derived a map which describes

action potential duration as a function of the preceding diastolic interval as well as the previous action

potential duration

Ak+1 = G(Ak,Dk).

This was then followed by studying the stability of the map and illustrating different types of solutions

corresponding to various dynamical behaviour of the cardiac cell.

Another example of maps derived from the system of ordinary differential equations, is the Mitchell

and Schaeffer (2003) model. They used a simple version of the Fenton and Karma (1998) which has

only two currents. Mitchell and Schaeffer (2003) applied asymptotic techniques to reduce the model

and to derive an explicit action potential duration restitution map. They showed that the map derived

in the Mitchell and Schaeffer (2003) is qualitatively similar to the exponential restitution curves. How-

ever, they demonstrated that the exponential maps do not provide a good understanding for smaller

diastolic intervals. The one-dimensional action potential duration restitution map of this model has

one variable unlike Tolkacheva et al. (2002) map.

We derive action potential duration restitution maps from the models that have physiological

meaning. In Chapter 5 we use a version of the Caricature Noble model and in chapter 6 a reduced

version of the Courtemanche et al. (1998) is used.

2.4 Mathematical tools

In this section we describe the essential mathematical tools that are needed to study and analyse

solutions for models of action potentials. The asymptotic reduction method and phase plane analysis

are the two fundamental tools in this field. Asymptotic methods enables us to reduce the order of the

system to a readily solvable system and phase plane analysis helps us to study the behaviour of the

system in more detail (Ermentrout and Terman, 2010). In the following we explain these two tools for

a general dynamical system which is a family of differential equations of the form

ε
dx

dt
= f (x,y), (2.6a)

dy

dt
= g(x,y), (2.6b)
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where x ∈ Rm are fast variables, y ∈ Rn are slow variables and 0 < ε ≪ 1. The system has different

time scales as the dynamic variable x have fast motions and the variables y are slow. If we assume

that the variables are well separated into two groups of fast and slow variables at all times we can

apply the “Tikhonov” approach and reduce the system (Tikhonov, 1952). However, it was confirmed

by Biktashev et al. (2008) that in cardiac excitable systems some variables evolve differently dur-

ing the time course of one solution, i.e. one variable is fast in some part of the solution and is slow

in other regions of the solution. Tikhonov (1952)’s theorem cannot describe this feature, hence we

observe “non-Tikhonov” characteristics of the variables. Biktashev et al. (2008) employed an asymp-

totic embedding approach and proposed that a complicated system which contains Tikhonov and

non-Tikhonov features can be reduced in a systematic way until no further reduction is possible (Bik-

tashev and Suckley, 2004). The parameter embedding that was proposed in Biktashev et al. (2008) is

the following

Definition 2.1 A parameter embedding with parameter ε of a function f (x) is f (x;ε) such that

f (x;1) = f (x) for all x ∈ dom( f )

When ε → 0 the parameter embedding is called an asymptotic embedding.

2.4.1 Singular perturbation analysis

Realistic models of action potentials usually contain small parameters since they cover multiple scales

at the cellular and sub-cellular level. Therefore, there are two time scales in operation everywhere in

the domain (Keener and Sneyd, 1998). One possible way to take advantage of these small parameters

is to employ asymptotic methods and derive a simplified model from these detailed models.

Slow-fast systems A slow-fast system is a system whose variables evolve on two different timescales.

Consider the system of equations (2.6) in which the dynamics of the system is dependent on ε. In the

limit ε → 0, equations (2.6) become a slow-time subsystem with one algebraic equation i.e. f (x,y) =

0 =⇒ x = X (y) and one differential equation (2.7b) which is the essential dynamical variable.

0 = f (x,y), (2.7a)

dy

dt
= g(x,y). (2.7b)
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The equations (2.7) describe the motion along the slow manifold f (x,y) = 0. We now consider this

system in the fast-time and replace the independent variable t with T = t/ε:

d

dt
=

d

dT

dT

dt
=

1

ε

d

dT
,

to obtain

dx

dT
= f (x,y),

dy

dT
= εg(x,y).

Taking the limit ε → 0, the fast subsystem is obtained

dx

dT
= f (x,y), (2.9a)

dy

dT
= 0. (2.9b)

In the limit ε → 0, the essential dynamical variable is x and its evolution is obtained from equa-

tions (2.9a) and y is a constant according to the equation (2.9b).

2.4.2 Phase plane analysis

Phase plane analysis is a very useful tool in analysing excitable systems. The phase space for the

system (2.6) is the (x,y) plane. The solution (x(t),y(t)) corresponds to a trajectory in the phase plane

and the velocity vector of the solution curve at the point (xi,yi) is given by

(
dx

dt
,

dy

dt

)
=
(1

ε
f (xi,yi) ,g(xi,yi)

)
.

In order to understand how trajectories behave in a phase plane, the nullclines of the system are

studied. The x−nullcline is the curve
dx

dt
= f (x,y) = 0 and the y−nullcline is the curve

dy

dt
= g(x,y) =

0. As mentioned above, x is a fast variable and y is a slow variable. It is essential that the x-nullcline

has three branches of solutions f (x,y) = 0 x= X j(y) for j = 1,2,3. The middle branch is the unstable

(repelling) branch and acts as a threshold of excitation x = X2(y), while the other two branches, on the

right and the left, are stable (attracting), i.e. x = X j(y) where j = 1,3. In order to explain the phase

plane analysis, lets consider the FitzHugh-Nagumo system of equations given by (2.5) (FitzHugh,

1961; Nagumo et al., 1962). Then a typical example of the nullclines is shown in Figure 2.5

Since the dynamics of the system are defined by the slow variable y through
dy

dt
= g(X j(y),y) ,

the curve f (x,y) = 0 is called the “slow manifold”. Along the slow manifold the motion is governed
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Figure 2.5: Phase portrait and trajectories for the FitzHugh-Nagumo system FitzHugh (1961);

Nagumo et al. (1962) given by (2.5). The blue cubic curve is the E-nullcline, the red straight line

is the w-nullcline and the trajectories for different initial conditions are illustrated as green and blue

dashed curves. The parameter values are ε = 0.001, α = 0.139 and β = 0.2.

by the slow subsystem (2.7), therefore, the solution moves slowly in the direction determined by the

sign of
dy

dt
. If

dy

dt
> 0 the solution moves upward and if

dy

dt
< 0 the solution moves downward. Away

from the slow manifold (along the y-nullcline), the motion is governed by the fast subsystem (2.9).

Hence, the solution moves quickly in a horizontal direction, determined by the sign of
dx

dt
. If positive,

the solution moves to the right and if negative the solution moves towards the left (Ermentrout and

Terman, 2010; Keener and Sneyd, 1998).

The point (x∗,y∗) at which the two nullclines intersect is called a “fixed point” and after deter-

mining the stability of this point, via linearisation of the vector field around the point, we analyse the

behaviour of the solution of this dynamical system (2.6).

Consider the fixed point to be a stable equilibrium (x∗,y∗) that is situated on the left stable

branch x = X1(y) of f (x,y) = 0. A small perturbation can excite the system if and only if it lies on the

right of the middle branch. A perturbation that lies to the left of the middle branch of x-nullcline will

return to rest quickly. Therefore the middle branch of the x-nullcline separates the firing of an action

potential from the subthreshold return to rest (Ermentrout and Terman, 2010).

Now that we know the mathematical and physiological background and the necessary mathemat-

ical tools to study excitable system we introduce a methodology chapter. In the Methodology chapter
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we provide a general formulation to study alternans (2:2 response) and other instabilities in excitable

systems.



Chapter 3

Methods

3.1 Introduction

In this chapter we will summarise how action potential duration restitution maps can be used in order

to distinguish between various responses to periodic stimulation. We will then, formulate a set of

boundary value problems that can be applied to typical excitable models in order to derive analytically

or compute numerically various branches of their action potential duration restitution maps. This

methodology will be applied to investigate the restitution properties of several excitable models in

subsequent chapters.

3.2 Action potential duration restitution maps

As stated previously, action potential duration restitution maps are either postulated heuristically

which was explained in Section 2.3.1 or are derived from models of the action potentials as men-

tioned in Section 2.3.2. In this section deriving restitution maps from a system of ordinary differential

equations is presented. Furthermore, by analysing the bifurcation and stability properties of discrete

iterative maps, various responses to periodic stimulation are classified.

Consider the following system which is reduced systematically until it cannot be reducible any

further:

f (x,y) = 0

dy

dt
= g(x,y).

31
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Figure 3.1: A solution of the FitzHugh-Nagumo system (FitzHugh, 1961; Nagumo et al., 1962) model

in the (E,w)-plane (phase portrait(a)) and the (t,E)-plane (action potential (b)). In (a) the blue cubic

curve is the E-nullcline, the red line is the w-nullcline and the trajectories are shown in green for

different initial conditions. In (b) one of the trajectories from (a) is plotted as a function of time. E† is

a threshold value which is used to define the action potential duration and diastolic interval.

In a simplified model, an action potential consists of two separated time scales: the depolarisation and

repolarisation phases which are the fast parts of an action potential and the plateau and the resting

phases which are the slow parts of an action potential. In general the plateau phase and the resting

phase are described by
dy

dt
= g(x,y) along the slow manifold f (x,y) = 0. Hence, as stated previously

the long-time behaviour of the system evolves on a slow manifold. Consider the FitzHugh-Nagumo

system (FitzHugh, 1961; Nagumo et al., 1962) model. One selected solution of the FHN system (2.5)

is plotted in Figure 3.1, in the (E,w)-plane and in the (t,E)-plane and four phases of the action

potential are denoted (Mitchell and Schaeffer, 2003). Action potential duration is the time taken for

the solution to travel along the blue curve in phase two of the action potential. The diastolic interval is

the time taken for the trajectory to return to its resting potential (i.e. equilibrium point) in phase four

of the action potential. These phases of an action potential are labelled (2) and (4) in the figures 3.1(a)

and 3.1(b) respectively (Mitchell and Schaeffer, 2003). Therefore by integrating the slow variable

equation along these two branches we can get the APD restitution map, which is defined as follows

Ak+1 = F(Dk) (3.1)

= F(B−Ak) (3.2)

= F(a,B−Ak) = Φ(ã,Ak).
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Here ã = [a,B]T is a vector of model parameters and for completeness we define the action potential

duration Ak and the diastolic interval Dk of the k-th AP as follows.

Definition 3.1 Consider an action potential sequence, let the beginning of the k-th AP be at time kB,

and let t†k be the first subsequent moment such that E(t†k) = E†, where E† is a threshold value to

calculate APD and DI. We define

Ak = t†k − (k−1)B, Dk = kB− t†k, k ∈N. (3.3)

In direct numerical simulations and in physiological measurements 90% of the total course of repo-

larisation is often the value at which the “cut-off” is considered and action potential duration and

diastolic interval are calculated. In Figure 3.1 the role of the “cut-off” is assigned to E†.

Whether postulated heuristically or derived from models of the action potentials like (3.1), we end

up with a discrete iterative map of type (3.1) as a model for restitution. Based on the stability and

bifurcation of these maps, different responses of the system to periodic stimulation, are categorised

below. We note that based on the work presented by Chialvo et al. (1990), in the notation m:n, m is

the number of stimuli, n is the number of action potentials or responses and

1:1 response A normal 1:1 response is the one where every stimulus excites an action potential and all

the action potentials are similar and have equal durations. It can be represented by a superthreshold,

stable fixed point A = F(A) of map (3.1),

A = F(a,B−A), (3.4a)
∣∣∣∣
[
∂AF(a,B−A)

]

A

∣∣∣∣< 1, (3.4b)

B > Bthr. (3.4c)

The first condition (3.4a) requires that Ak = Ak+1 which is true for a sequence of identical action

potentials. The second condition (3.4b) asserts that this fixed point must be stable to be physically

realisable. Furthermore, condition (3.4c) is a “threshold” condition for excitation of such an AP

sequence. This condition ensures the solutions of the map are stable and find the minimum basic

cycle length at which the solution loses its stability. Thus, for any action potential with cycle length

smaller than Bthr, the 1:1 solution loses its stability.

2:2 response (alternans) A 2:2 response, also known as alternans, is one where every stimulus ex-

cites an action potential but even and odd action potentials are different. Analogously, this can be rep-

resented by a superthreshold, stable fixed point of the composed second-generation map Φ2 = Φ◦Φ,
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called a 2-cycle of Φ,

A = F
(
a,B−F(a,B−A)

)
, (3.5a)

∣∣∣∣
[
∂AF

(
a,B−F(a,B−A)

)
]
A

∣∣∣∣< 1, (3.5b)

B > Bthr. (3.5c)

The condition (3.5a) requires that Ak = Ak+2, the condition (3.5b) states that this fixed point must

be stable and (3.5c) is a “threshold” condition for existence of stable 2:2 solution.

2:1 response A 2:1 response is the one where only every second stimulus excites an action potential

and all the action potentials are identical. Since every second stimulus fails to initiate an action

potential, the basic cycle length between successful action potentials is effectively doubled to 2B

and this case can be represented by

Ã = F(a,2B− Ã), (3.6a)
∣∣∣∣
[
∂AF(a,2B− Ã)

]

Ã

∣∣∣∣< 1, (3.6b)

2B > Bthr. (3.6c)

where (3.6a) requires Ak = Ak+2 such that APk+1 is not initiated in the first place. The condi-

tion (3.6b) indicates the stability of this fixed point and (3.6c) is a “threshold” condition for excitation

of action potential after one unsuccessful stimulus.

Further instabilities Other periodic responses can be described in a similar way. For instance An+N =

ΦN(An) is the key to understand the beginning of the period N-cycle. A fixed point A = ΦN(A) rep-

resents a N-periodic cycle. Furthermore, the slope of ΦN(An) at the fixed point A, determines the

stability of the response (i.e. for a stable fixed point the slope is less than 1) (Strogatz, 2001)

Conditions such as (3.4), (3.5) and (3.6) can be used to partition the parameter space ã of the

action potential duration map (3.1), thus they provide a direct correspondence between the model

parameters and types of response. Action potential duration maps act as a guide to determine the

important parameters in inducing instabilities. The results obtained from a one-dimensional map

must be comparable to the full excitable models (Mitchell and Schaeffer, 2003; Schaeffer et al., 2007;

Tolkacheva et al., 2002).
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3.3 Boundary Value Problem formulation

In this section, we formulate a set of boundary value problems for generic excitable models. Our

proposed formulation can be used to derive analytically or compute numerically various branches of

the action potential duration restitution maps in the full excitable systems.

The experimental protocols for measuring restitution encounter a number of difficulties including

that of distinguishing the ultimate periodic regime from transient behaviour. By formulating boundary

value problems with periodic boundary conditions, we consider an idealised version of the dynamic

restitution protocol i.e. we consider strictly periodic wave solutions. In this case, the dependence

between the basic cycle length and action potential duration is well defined mathematically via solv-

ability of the corresponding boundary-value problem with periodic boundary conditions. We consider

the following general model

dE

dt
= f (E, y, r, ε), (3.7a)

dy

dt
= g(E, y, r, ε), (3.7b)

where E is voltage, the variables y are generalised gating variable, r are generalised parameters of

the model and ε are asymptotic embedding parameters. This is subject to an idealised stimulation

protocol given by

E(kB) = Estim, k ∈ N, (3.7c)

where B is the basic cycle length. The equations are completed by the following initial conditions

E(0) = Estim, y(0) = yequilibrium, (3.7d)

The equations (3.7) represent the general form of the models of the action potential in excitable sys-

tems as discussed in Section 2.2.2. Therefore, the functions f and g have certain properties as stated

in the Section 2.2.2. The vector of parameters r may be the time-scaling function of a particular gating

variable. For example in the McKean (1970) which is studied in Chapter 4 of this thesis, the parame-

ter r determines the time scale at which the slow recovery gating variable evolves. In the Caricature

Noble (Biktashev et al., 2008) model, the parameterr defines the amplitude of the K+ current and this

will be discussed in Chapter 5. Moreover, in the Courtemanche et al. (1998) model, the parameter r

defines the slow inactivation in the L-type Ca+2 current.
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The boundary value problem should be well posed such that given the input to the problem, there

exists a unique solution which depends continuously on the input. Possible periodic solutions, known

as orbits, can be found by imposing the following boundary conditions on one basic cycle length.

1-cycle solution (1:1 response, normal) Boundary conditions that can be imposed on the system of

equation (3.7) to obtain the normal response is as follows:

E (kB, r, ε) = E ((k+1)B, r, ε) , (3.8a)

y(kB, r, ε) = y((k+1)B, r, ε) , (3.8b)

where k ∈ N, B is the basic cycle length and Estim is a threshold value of excitation for voltage. The

normal response with the imposed boundary condition is well illustrated in Figure 3.2.
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Figure 3.2: A normal response where the black curve is voltage and the green curve is a gating

variable y. The gating variable reaches its initial value after one basic cycle length which is shown in

red circles. This is a solution of the Caricature Noble model (Biktashev et al., 2008) for B = 290 (ms).

2-cycle solution (2:2 response, alternans) Imposing the following boundary conditions on the sys-

tem (3.7), results in a 2-cycle solution for the system.

E (kB, r, ε) = Estim, (3.9a)

E ((k+1)B, r, ε) = Estim, (3.9b)

y(kB, r, ε) = y((k+2)B, r, ε) , (3.9c)

y((k+1)B, r, ε) = y((k+3)B, r, ε) , (3.9d)

where, again k ∈ N and the case y(kB, r, ε) = y((k+2)B, r, ε) describes alternans. An example of

this response is shown in Figure 3.3 where the beginning of the odd solutions (the end of the even
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Figure 3.3: A typical 2:2 response where the action potential is illustrated in black and the gating

variable y is shown in green. The blue and the red circles indicate the points in which the gating

variable y rests at the end of each AP. This is a solution of the Caricature Noble Biktashev et al.

(2008) model for B = 250 (ms).

solutions) are indicated by blue circles and the beginning of the even solutions (the end of the odd

solutions) are shown in red circles.

P-cycle solution (P:P-response) The P-cycle solution may be obtained by imposing the following

The 3-,4-, .. P-cycles can be obtained by constructing boundary value problem with boundary con-

ditions similar to (3.9).

∞-cycle solution (∞ : ∞-response, chaos) If the solution of the system (3.7) does not satisfy the

above mentioned periodic boundary conditions, the system may expect a chaotic solution.

3.3.1 Enlarged 2:2 Boundary Value Problems

Looking at the conditions in (3.9), can be seen that the time t = (k+1)B is in the middle of the (3.9a)

and the t = (k+ 2)B is in the middle of the (3.9b), hence, the boundary is imposed on the middle of

the time interval and not at the end of it. Therefore, in order to apply these conditions on the system

of equations, we need to convert them to a standard boundary value problem.

Let E1, y1 and E2, y2 be the solutions of the system (3.7) for the first and the second action

potential respectively. We are interested in the situation when all transients have died out, then t = kB

can be replaced by t = 0 as this is just a translation in time. Hence, the equations for E1, y1 and E2, y2

are solved on the same time interval t ∈ [0,B]. The boundary conditions at 0 and B are as in (3.9),
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hence the resulting enlarged 2:2 boundary value problem for t ∈ [0,B] is formulated as:

dE1

dt
= f (E1, y1, r, ε) , (3.10a)

dy1

dt
= g(E1, y1, r, ε) , (3.10b)

dE2

dt
= f (E2, y2, r, ε) , (3.10c)

dy2

dt
= g(E2, y2, r, ε) , (3.10d)

E1(0, ...) = Estim, (3.10e)

E2(0, ...) = Estim, (3.10f)

y1(0, ...) = y2(B, ...), (3.10g)

y2(0, ...) = y1(B, ...). (3.10h)

The above equation is well illustrated in Figure 3.3 where red circles denote y1(0) = y2(B) and

the blue circles show y2(0, ...) = y1(B, ...), when k = 0.

3.3.2 Solutions and construction of the action potential duration restitution curve

In order to construct the action potential duration restitution curve, the equations (3.10) are solved

simultaneously using the solution of the initial value problem as an initial guess. The action potential

solution E(t) is dependent on the basic cycle length B, the model parameters r, ε and constants of the

model.

In order to obtain the action potential duration restitution curve as a function of the basic cycle

length, the parameters of the model are fixed and duration of each action potential is calculated for

different basic cycle length.

The action potential duration restitution curve is constructed from the solution such that the du-

ration of action potential is calculated for each basic cycle length, while other parameters r and ε

are fixed. In the following chapters the action potential duration restitution curve for each model is

constructed as a function of basic cycle length.

We remark that in order to measure restitution, it is possible to use quantities other than the

action potential duration. For example y2(t = 0,B) for different values of B provides an equivalent

representation of the action potential duration restitution curve.

In the next chapter, the above methods are applied to the McKean (1970) model which is a cari-

cature version of the FitzHugh-Nagumo system (FitzHugh, 1961; Nagumo et al., 1962).



Chapter 4

Restitution and alternans in the McKean

model

4.1 Introduction

In this chapter, the methodology that was described in Chapter 3 is assessed by applying it to a simpli-

fied model of spiking neurons proposed by McKean (1970). The McKean model is a piecewise-linear

version of the FitzHugh-Nagumo model (FitzHugh, 1961; Nagumo et al., 1962) and despite being

simple, the essential features of the FitzHugh-Nagumo model are preserved. We study this model

since its simplicity enables us to find the exact solution of the system and to do explicit calculations.

Furthermore, this two dimensional model is a simple example of a slow-fast system and has a well-

defined geometrical construction in the phase plane. Hence, with analyzing this system, we aim to

gain more insight into systems in which two time scales are involved.

4.2 Formulation

The McKean model has two dynamical variables E(t) and w(t) representing voltage and a recovery

gating variable, respectively. The model equations are as follows:

dE

dt
= g(E,w) =

1

b
( f (E)−w), (4.1)

dw

dt
= h(E,w) = E −Cw, (4.2)

39
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where

f (E) =−E +H(E −a),

H is a Heaviside function, 0< a< 1 and b and C are positive real numbers. The McKean (1970) model

will be used to study the restitution properties in an excitable model, hence the following adjustments

are made to the system:

(i) Parameter embedding based on the work of Biktashev and Suckley (2004); Biktashev et al.

(2008), is used to introduce a small parameter ε > 0 to the model. The parameter b is replaced

by εb so that the original problem corresponds to ε = 1.

(ii) The results offered by Mitchell and Schaeffer (2003), suggested that variation of the voltage-

dependent time function in the slow gating variable, induces instabilities in the system. In order

to investigate the role of the voltage-dependent time function in the McKean model, we modified

the constant C in (4.2) with a function of voltage and a dimensionless parameter r > 0 as follows:

C(E,r) = cw (rH(a−E)+H(E−a)) ,

where cw is a constant and the parameter r changes the speed at which the slow gating variable

w(t) evolves during the diastolic phase of an action potential. As shown in Figure 4.1, the

amplitude of C(E,r) for E < a (i.e. during diostolic interval), is dependent on r. Moreover, r

determines the time required for w(t) to reach its resting value.
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Figure 4.1: The effects of parameter r on the solution of the McKean model. In (a), C(E,r) is plotted

as a function of E for different values of r. (b) illustrates the effects of r on the solution of the gating

variable w and consequently on the voltage E .
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The modified version of the McKean model is:

dE

dt
= g(E,w) =

1

εb

(
f (E)−w

)
(4.3a)

dw

dt
= h(E,w) = E −C(E,r)w. (4.3b)

with the following periodic forcing:

E(kB) = Estim, w(kB) = w0, ∀k ∈ N (4.4)

where Estim is the threshold value for the membrane voltage to become depolarized and action poten-

tial is formed.

4.3 Phase portrait and parameter ranges

The McKean model is a two-dimensional model and can be studied in the (E,w) phase plane. The

nullclines of the model are given by

−E +H(E −a)−w = 0 (4.5a)

E −C(E,r)w = 0. (4.5b)

The E-nullcline has two branches, the left branch is E +w = 0, and the right branch is w+E −1 = 0.

The left and the right branches are stable and are separated at E = a, where a ∈ (0,0.5) and in this

case is considered as a = 0.25. The discontinuity at E = a can be considered as a threshold region,

where the firing state is separated from the resting state.

The nullclines (4.5) always have a “stable” intersection at the origin of the E −w plane. They may

intersect elsewhere as well depending on the values of r and cw, as can be seen in Figures 4.2(c)

and 4.2(d). Since the interest of this research is on analyzing excitable models, therefore the desired

parameter space for cw and r are the regions where the origin is the only intersection between the two

nullclines. Thus, cw and r are found such that there is only one equilibrium point located on the left

branch of the E-nullcline. This is well illustrated as region γ in Figure 4.2(a) where the red line is the

E-nullcline and the green lines are the w-nullcline for different values of cw.

In Figure 4.2(a), (α) and (β) are regions where w-nullcline crosses the right branch of E-nullcline.

Hence, parameters cw and r should be chosen such that the cases (α) and (β) are avoided. These cases

are depicted in Figures 4.2(c) and 4.2(d) and are described below:
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Figure 4.2: Phase space of the McKean (1970) model, when a= 0.25 and for different values of cw. In

(a) the red curve is the E-nullcline and the green lines are w-nullclines for cw ∈ (−1,
a

1−a
) and r = 1.

(b) shows the region (γ), where for cw = 0.15 and r = 0.5,1,1.5, two nullcline have one intersection

at the origin. In panel (c), cw is chosen from the region (α), i.e. cw =−1.5. For figure in panel (d), cw

is selected in region (β), i.e. cw = 0.7.

(i) For E < a, the slope of w-nullcline should be more than the the slope of the E-nullcline. Other-

wise two lines coincide and have many intersections. Therefore, two nullclines lie on the top of

each other if rcw =−1. Hence, in order to avoid this situation, cw is chosen such that
1

rcw
>−1.

(ii) For E > a, E-nullcline and w-nullcline intersect at

(
cw

1+ cw
,

1

1+ cw

)
if −1 <

1

cw
≤

1−a

a
. To

avoid intersections, cw must be
1

cw
< −1 or

1

cw
>

1−a

a
. This yields to −1 < cw < 0 and cw <

a

1−a
.
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Combining the above conditions and considering r > 0, cw must be chosen as follows:

cw ∈

(
max(

−1

r
,−1),

a

1−a

)

Based on the above limitations, the McKean model (4.3) as an excitable system with a resting state

and a firing state is studied.

Figure 4.3(a) outlines the nullclines of the system and the trajectories with attached arrows de-

scribing their directions. E-nullcline is shown in red and the w-nullcline for r = 1 is illustrated in

blue. w-nullclines for different values of r > 0 are outlined in different colours to show the role of the

parameter r in the phase portrait of the system. E(t) and w(t) are also shown in red and blue respec-

tively in Figure 4.3(b). The other parameters of the model in Figure 4.3, are cw = −0.15, a = 0.25,

b = 0.05 and ε = 1.
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Figure 4.3: A solution of the McKean (1970) model in (E,w)- and (t,E)-planes. Parameter values are

a = 0.25, b = 0.05, ε = 1, cw = 0.15 and r = 1. Panel (a) is the phase portrait of the system (4.3), E-

nullcline is plotted in solid red and the dashed lines are w-nullclines for different values of r > 0. The

dotted black curves with attached arrows, represent trajectories with various initial conditions (4.4).

(b) shows the E(t) and w(t) in red and blue respectively. The Initial condition is E(0) = Estim = 0.3

and w(0) = 0. The black dotted curves in panel (b) correspond to the exact solution of the E(t) and

w(t) (4.23) and is presented in Section 4.5.

As stated before and illustrated in Figure 4.3(a) the “diastolic” branch or resting state is when

E ∈ (−∞,a] and the ”systolic” branch or excited state is E ∈ [a,+∞]. The threshold state which is the

middle branch of the E-nullcline, is discontinuity at E = a. Thus, there is no threshold region in this
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version of the McKean model. The concept of threshold region and its dependency on the voltage,

will be discussed in the following chapters in more details.

A sufficiently large perturbation from the steady state (Ess,wss)= (0,0), produces action potential.

A trajectory starting from the region E > a is attracted by the right branch of the E-nullcline, thus

making a relatively large excursion, then travels slowly along the systolic branch and at w∗ jumps to

the diastolic branch. (E∗,w∗) is called a turning point where the recovery gating variable w takes it

maximal value at E∗ = a as given by the below equation:

w∗ = 1−E∗. (4.6)

The trajectory then has another slow movement along the diastolic branch and approaches the steady

state, where the motion will stops. The cycle is repeated if there is sufficiently large perturbation from

the steady state.

In the next section, we apply asymptotic reduction method to the model, we derive the asymptotic

action potential duration restitution map.

4.4 Asymptotic action potential duration restitution map

Asymptotic reduction The variables of the McKean model (4.3) have two different time scales, in

the limit ε → 0 the variable E is much faster than w, hence E is the fast variable and the recovery

variable w is the slow variable. The system is a typical fast-slow system and its asymptotic properties

are studied as below:

The slow system: In the limit ε → 0, the variable E is fast and the slow recovery gating

variable w is slow. Therefore in the equation (4.3).

0 =
1

b

(
H(E −a)−w−E

)
, (4.7a)

dw

dt
= E −C(E,r)w. (4.7b)

The slow manifold of the McKean system is defined by

w = W (E) = H(E −a)−E. (4.8)

and in t ∼ 1 equation (4.7b) describes the motion along this manifold and the essential dynam-

ical variable w describes the plateau and the recovery stages of the action potential.
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The fast system is obtained by rescaling time in equation (4.3). Setting

τ = t/ε we get dτ =
dt

ε
,

d

dt
=

d

dτ

dτ

dt
=

1

ε

d

dτ
,

and so

dE

dτ
=

1

b

(
H(E −a)−w−E

)

dw

dτ
= ε
(
E −C(E,r)w

)
. (4.9)

Taking ε → 0 the system becomes a fast system with only one equation for membrane potential,

as follows:

dE

dτ
=

1

b

(
H(E −a)−w−E

)

dw

dτ
= 0. (4.10)

The fast system (4.10) describes the front and the back of the action potential.

Map The action potential duration restitution map is now derived for the slow system (4.7) on the

domain of the problem in general is t ∈ [kB,(k+1)B] and the boundary conditions are (4.4).

Remark 1 As explained in Chapter 3, the domain t ∈ [kB,(k+1)B] is just a translation in time of the

interval t ∈ [0,B].

Using maps of type (3.1), i.e. Ak+1 = Φ(Ak), where Ak is the action potential duration of the k-th

action potential, the asymptotic restitution map is derived as follows:

Lemma 4.1 For an action potential sequence generated in problem (4.3)

Ak = a(wk−1), a(x) ≡
1

1+ cw
ln

∣∣∣∣
1− (1+ cw)x

1− (1+ cw)w∗

∣∣∣∣ , (4.11a)

Dk = d(wk), d(x) ≡
1

1+ rcw
ln
∣∣∣
w∗

x

∣∣∣ , (4.11b)

wk ≡ w(kB), k ∈N.

where wk = w(kB) denotes the value of the gating variable w at the beginning of the (k+1)-st action

potential and k ∈ N.
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Proof The action potential duration is defined to be the time during which the voltage is greater

than a. According to the Figure 4.2, the voltage exceeds a during phase two of the action potential

and during parts of phases one and three. However, phases one and three are very fast and negligible.

Thus, the action potential duration is approximately equal to the length of phase two which is the time

required for w to increase from its resting value at the end of the preceding action potential w((k−1)B)

to w∗. And the diastolic interval is equal to the length of phase four which is the time required for w

to decrease from w∗ to its resting value at the end of the action potential which is w(kB). The result

follows by integration of (4.7) along the two branches of the slow manifold (4.8):

Ak =
∫ (k−1)B+Ak

(k−1)B
dt =

∫ w∗

w((k−1)B)

dw

1− (1+ cw)w
=

1

1+ cw
ln

∣∣∣∣
1− (1+ cw)wk−1

1− (1+ cw)w∗

∣∣∣∣ , E > a, (4.12)

where wk−1 = w((k−1)B), (4.13)

Dk =
∫ kB

(k−1)B+Ak

dt =−
1

(1+ rcw)

∫ w(kB)

w∗

dw

w
=

1

1+ rcw
ln

∣∣∣∣
w∗

wk

∣∣∣∣ , E < a (4.14)

w∗ = 1− a is the point where the gating variable w is at its turning point (the maximal value on the

systolic branch of the slow manifold (4.7a)), e.g. w((k− 1)B+Ak) = w(kB+Ak+1) = w∗ for any

k ∈ N. We also note that the end of a plateau phase coincides with the beginning of the next recovery

stage and this can be seen by the phase portrait in Figure 4.2(a).

Proposition 4.1 An action potential duration restitution map relating Ak+1 to Ak is given by

Ak+1 = Φ(Ak),

Φ(Ak) = F(ã,B−Ak) =
1

1+ cw
ln

∣∣∣∣∣
1− (1+ cw)w∗ exp

(
− (1+ rcw)(B−Ak)

)

1− (1+ cw)w∗

∣∣∣∣∣
, (4.15)

where ã is a vector of parameters in this model ã = [cw,r]T .

Proof The result is obtained by eliminating wk between expression (4.11a) written for Ak+1 and

expression (4.11b) written for Dk = B−Ak.

Lemma 4.1 provides a parametric form of the action potential duration restitution map and the Propo-

sition gives an equivalent explicit representation.

Fixed points Lemma 4.1 is the general solution of the equations (4.7) on the domain t ∈ [0,B]

before imposing the boundary condition w(0) = w(B). When this boundary condition is imposed, the

particular solution of interest is obtained as it will be explained in the following Proposition.
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Proposition 4.2 The equation A = Φ(A) has a unique solution branch given in parametric form by

A = a(w), D = d(w), (4.16)

so that a(w) = B−d(w) and a parameter w ∈ [0,1].

Proof In order to solve A = Φ(A) we use the equivalent parametric representation of Lemma 4.1.

In a 1:1 response

Ak = Ak+1 and Dk = Dk+1,

which is equivalent by (4.11) to

a(wk−1) = a(wk) and d(wk) = d(wk+1),

respectively.

By the bijectivity of the logarithmic function, solutions are wk−1 = wk ≡ w and wk = wk+1 ≡ w,

respectively. It follows that in a 1:1 response all the action potentials start from identical values of the

w gate, w thus expressions (4.16) hold. The parameter w is a gating variable hence w must be in the

range [0,1].

The fixed points of Φ2 corresponds to a case when asymptotic action potential duration restitution

map exhibits a 2:2 response. This is demonstrated below.

Proposition 4.3 The equation A = Φ ◦Φ(A) has three solution branches: the first one is identical

to (4.16), and the other two are given in parametric form by

Aeven = a(wo), Deven = d(we) = d(αwo), (4.17a)

Aodd = a(αwo), Dodd = d(wo), (4.17b)

where

wo =
α

(
1+ cw

1+ rcw

)

−1

(1+ cw)

⎛

⎜⎝α

(
1+ cw

1+ rcw

)

+1

−1

⎞

⎟⎠

(4.17c)

with a parameter α ∈ (0,∞).
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Proof In order to prove this proposition, similar to the previous proof, rather than solving the tran-

scendental equation A=Φ◦Φ(A) directly, we use the equivalent parametric representation of Lemma

4.1. In a 2:2 response,

A2k = A2k+2 and A2k+1 = A2k+3, ∀k ∈N

as well as

D2k = D2k+2 and D2k+1 = D2k+3, ∀k ∈ N.

Applying expressions (4.11), we find w2k−1 = w2k+1 ≡ wo and w2k = w2k+2 ≡ we. Since the basic

cycle length B is fixed, it is also required

B = A2k +D2k = A2k+1 +D2k+1 ⇔ a(wo)+d(we) = a(we)+d(wo), (4.18)

and explicitly
1

1+ cw
ln
∣∣∣
1− (1+ cw)wo

1− (1+ cw)we

∣∣∣=
1

1+ rcw
ln
∣∣∣
we

wo

∣∣∣.

By the bijectivity of the logarithm and after the change of variable we = αwo this equation reduces to

(1+ cw)wo

⎛

⎜⎝α

(
1+ cw

1+ rcw

)

+1

−1

⎞

⎟⎠−α

(
1+ cw

1+ rcw

)

+1 = 0. (4.19)

Equation (4.19) can be solved for wo and its exact solution is (4.17c), where wo is a function of α

and model’s parameters. Equations (4.17a) and (4.17b) then follow, since equation (4.18) is invariant

with respect to exchanging we and wo. In addition, since we and wo are positive, the range of α is

established as
we

wo
= α ∈ (0,∞). If we ≥ wo then α ∈ [1,∞) and if we < wo then α ∈ (0,1). In order

to compute the two branches of A = Φ ◦Φ(A), a more straight forward approach is considered such

that the equation (4.19) is solved for α when wo varies from 0 to 1. This is followed by calculating

we = αwo and consequently the even and odd branches (4.17a) and (4.17b), respectively.

Finally, a fixed point of Φ is also a fixed point of Φ ◦Φ, hence (4.16) is a third solution branch of

A = Φ ◦Φ(A). The solutions (4.16) and (4.17) can be verified by back-substitution into A = Φ(A)

and A = Φ◦Φ(A), respectively.

Remark 2 This is a general procedure that makes it possible to derive exact parametric solutions for

the fixed points of the higher-generation compositions of Φ.
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Stability and bifurcations of equilibria We now impose conditions (3.4b) and (3.5b) to establish

the stability properties of 1:1 and 2:2 responses.

Proposition 4.4 The equilibrium (4.16) of the action potential duration restitution map (4.15) loses

stability in a flip (period-doubling) bifurcation at

wbif =
1

2+ cw(1+ r)
(4.20a)

or in terms of the BCL, alternatively at

Bbif = a(wbif)+d(wbif) = ln

∣∣∣∣∣∣∣∣

(
1− (1+ cw)wbif

1− (1+ cw)w∗

)
(

1

1+ cw

)
(

w∗

wbif

)
(

1

1+ rcw

)∣∣∣∣∣∣∣∣
(4.20b)

Bbif as a function of r is the region where 2:2-response bifurcates from the 1:1-response and is shown

in Figure 4.4.

Proof The expression (4.16) is substituted in (3.4b) and
∣∣∣∂AF(a,A)

∣∣∣
A
= 1, is solved as below

∣∣∣∣
w∗(1+ rcw)exp(−(1+ rcw)Dbif

1− (1+ cw)w∗ exp(−(1+ rcw)Dbif

∣∣∣∣= 1, (4.21)

we write wbif = w∗ exp(−(1 + rcw)Dbif), since at this value w recovers during the time Dbif. By

rewriting (4.21) in terms of wbif, we obtain

wbif(1+ rcw)

1− (1+ cw)wbif
= 1

which provides an expression for wbif in terms of models parameters:

w = wbif =
1

2+ cw(1+ r)
.

Evaluating (4.16) at wbif we then find

Abif = a(wbif) =
1

1+ cw
ln

∣∣∣∣
1− (1+ cw)wbif

1− (1+ cw)w∗

∣∣∣∣ , (4.22a)

Dbif = d(wbif) =
1

1+ rcw
ln

∣∣∣∣
w∗

wbif

∣∣∣∣ , (4.22b)

Bbif = a(wbif)+d(wbif) = ln

∣∣∣∣∣∣∣∣

(
1− (1+ cw)wbif

1− (1+ cw)w∗

)
(

1

1+ cw

)
(

w∗

wbif

)
(

1

1+ rcw

)∣∣∣∣∣∣∣∣
(4.22c)
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Figure 4.4: Bifurcation set in the r-B parameter space. The black curve is Bbif (4.20b) as a function

of r, this is the region where 2:2 response bifurcates from the 1:1 response. The green line is r = 1

which separates stable from unstable 2:2 responses. For r > 1, 2:2 solution is stable and for r = 0.5,

2:2 solution is unstable. Restitution curves, illustrating bifurcation regions, are plotted for the two

value of r.

Proposition 4.5 The equilibria (4.17) of the second-generation map Φ◦Φ bifurcate from the equilib-

rium (4.16) of the action potential duration restitution map (4.15) at (4.20) and lose their stability at

r = 1.

Proof To confirm that equilibria (4.17) bifurcate from equilibrium (4.16) it is enough to evaluate

(4.17c) at α = 1, the value where (4.17) first emerges. Since

lim
α→1

wo =
1

2+ cw(1+ r)
(H)
= wbif,

then (4.16) and (4.17) intersect at wbif.

Rather than using (3.5b) directly, we recall that a flip bifurcation for Φ is a pitchfork bifurcation

for the second generation map Φ◦Φ. A pitchfork bifurcation (and the corresponding flip bifurcation)

can be either supercritical if [∂3
AΦ ◦Φ]Abif

< 0 or subcritical if [∂3
AΦ ◦Φ]Abif

> 0. Substituting (4.22)
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into [∂3
AΦ◦Φ]Abif

= 0 and solving this equation for r we find that r = 1 is the boundary between the

subcritical and the supercritical cases. The subcritical case is characterised by one stable branch on

one side and no stable branches on the other side of the bifurcation point. The supercritical case is

characterised by one stable branch on one side and two stable and one unstable branches on the other

side of the bifurcation point.

4.5 Exact solution of the restitution boundary value problem

The equations of the system (4.3) are piecewise-linear meaning that they take a slightly different form

on different intervals. Also, on each interval the equations are first-order linear and at the time intervals

t ∈ [0, ta] and t ∈ [ta,∞), E(ta) = a and w(ta) = a. Therefore, the system can be solved analytically as

it is explained below.

General solution The general solution of the system (4.3) is given by

w(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1
w(t) = M1 exp(α1t)+N1 exp(β1t)+

1

1+ cw
t ∈ [0, ta]

2
w(t) = M2 exp(α2t)+N2 exp(β2t) t ∈ [ta,∞)

(4.23a)

E(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1
E(t) = M1(α1 + cw)exp(α1t)+N1(β1 + cw)exp(β1t)+

cw

1+ cw
t ∈ [0, ta]

2
E(t) = M2(α2 + rcw)exp(α2t)+N2(β2 + rcw)exp(β2t) t ∈ [ta,∞)

(4.23b)

where M1, M2, N1 and N2 are functions of the model’s parameters cw,ε, ,
¯

and. Furthermore, α1, α2,

β1 and β2 are real eigenvalues and are found as below:

α1, β1 =
(
− (cw +

1

εb
)±
√

∆1

)
/2

and

α2, β2 =
(
− (rcw +

1

εb
)±
√

∆2

)
/2

provided that ∆1 = (cw +
1

εb
)2 −4(

1+ cw

εb
)> 0 and ∆2 = (rcw +

1

εb
)2 −4(

rcw +1

εb
)> 0.

Particular solution of the initial value problem As is shown in (4.24), the functions M1, M2, N1

and N2 can be found using the initial conditions:

E(0) = Estim, w(0) = w0,
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and also
1
E(ta) =

2
E(ta),

1
w(ta) =

2
w(ta)

M1 = w0 −N1 −
1

cw +1
, (4.24)

N1 =
(α1w0 + cww0 −Estim)(1+ cw)−α1

(α1 −β1 − cw)(1+ cw)
,

M2 =
M1 exp(α1ta)+N1 exp(β1ta)+

1
1+cn −N2 exp(β2ta)

exp(α2ta)
,

N2 =
M1(α1 + cw)exp(α1ta)+N1(β1 + cw)exp(β1ta)+

cw

cw +1
−M2(α2 + rcw)exp(α2ta)

exp(β2ta)(β2 + rcw)
,

The exact solution is plotted in Figure 4.3(b) for E(0) = 0.3, w(0) = 0, b = 0.05, cw = 0.15, r =

1, a= 0.25, ε= 1. The parameter ta can be found numerically as the solution of either of the equations

1
E(ta) = a,

2
E(ta) = a.

Particular solution of the periodic 1:1-restitution boundary value problem Applying the peri-

odic forcing condition given in (4.4), the functions M1, M2, N1 and N2 in the solutions (4.23) can be

found as functions of basic cycle length.

The expressions M1, M2, N1 and N2 can be found numerically as solutions of transcendental

equations. Therefore, in the next section, we impose the boundary value formulations (3.8) and (3.10),

and construct the restitution curves for 1:1 and 2:2 response, respectively.

4.5.1 Constructing restitution curves

Constructing 1:1 solution In order to produce the 1:1-response restitution curve, the condition (3.8)

must be satisfied ∀k ∈ N :

⎧
⎪⎨

⎪⎩

E(kB, r, ε) = E((k+1)B, r, ε) = Estim,

w(kB, r, ε) = w((k+1)B, r, ε).
(4.25)

Hence, by imposing the above condition for k = 0, the functions M1, M2, N1 and N2 are found.

w(0, r, ε) = w(B, r, ε), (4.26)
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Figure 4.5: The 1:1 restitution curve for the McKean system of equations (4.3). The parameters of

the model are a = 0.25, b = 0.05, cw = 0.15. and r = 1.5in Figure (a) whilst r = 0.5 in Figure (b). In

both figures, as ε → 0 the numerical solutions via the BVP formulation approach the asymptotic map.

By finding the value of ta for each B, the action potential duration restitution curve is constructed. It

can be seen from Figure 4.5 that as ε decreases, the exact analytical solution approaches the asymptotic

map (4.11) which corresponds to ε = 0.

Constructing 2:2 solution As stated in Chapter 3, in order to construct the 2:2 restitution curve, the

condition (3.10) must be satisfied. This is given as below where numbers (1) and (2) denote the first

and the second action potentials.

E1(0, r, ε) = Estim, (4.27)

E2(0, r, ε) = Estim, (4.28)

w1(0, r, ε) = w2(B, r, ε), (4.29)

w2(0, r, ε) = w1(B, r, ε). (4.30)

The value of ta can be found now for each basic cycle length and the action potential duration restitu-

tion can be constructed for the 2:2 response. The parameters are selected using the information from

Figure 4.4 so that the different situations can be found in the parameter space. As can be seen in

Figure 4.6, for r > 1 there is a supercritical bifurcation, i.e. persistent alternans. When r < 1 there

is a subcritical bifurcation, i.e. transient alternans. As ε → 0 the curves constructed by the BVP

formulation approach the asymptotic map (4.11).
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Figure 4.6: Restitution curves and selected solutions of the McKean model (4.3). The parameters

are a = 0.25, b = 0.05, cw = 0.15, Estim = 0.3. Plots (a) and (c) illustrate the restitution curves

for super-critical alternans at r = 1.5 and subcritical alternans at r = 0.5, respectively. When ε → 0

and the numerical curves approach the asymptotic maps. In plots (b) and (d) ε = 1, the red curve is

action potential E(t) and the blue curve is the recovery gating variable w(t). Plot (b) shows persistent

alternans for B= 1.6989 when r = 1.5 and (d) illustrates transient alternans for B= 1.66 when r = 0.5.



55

4.6 Summary

In this Chapter, we have modified the recovery gating variable w(t) (4.3b) by replacing its constant

C with a heaviside function of voltage E and a parameter r. We have derived a one-dimensional

memoryless map using asymptotic reduction methods and studied the stability of the map. We have

outlined the region of parameters where the system loses its stability and alternans occurs. Moreover,

we have shown that the asymptotic solution is in agreement with the McKean ODEs predictions.

The reason behind the above mentioned modification is that w(t) plays an important role during the

relaxation of an action potential. We have introduced a parameter r such that its role is to change the

speed of evolution of w(t) in the diastolic interval phase. The parameter r describes the ratio of the

two branches of the w-nullcline.

We have studied the stability of the model based on changes in r. As r increases, the motion along

the slow manifold (4.8) in the diastolic part, E < a, decreases quickly and w(t) reaches its resting value

very as shown in Figure 4.6(b). Therefore, the next action potential starts while the gating variable

w(t) has not recovered fully. As a result, it reaches its maximum value very quickly, hence the next

action potential has a short duration. This is followed by a longer diastolic interval and consequently

a longer action potential duration and so on so forth.

As it is illustrated in Figures 4.4, r = 1 is the boundary between stable alternans for r > 1 and

unstable alternans for r < 1. Having described the above stages, we confirm that the evolution of

the slow gating variable during the diastole phase of an action potential, determines the existence of

alternans.

However, a key limitation of the McKean model is that it does not address the role of Estim in

inducing and maintaining instabilities. This is due to simplicity of the model and its piecewise linear

functions. The threshold of excitation, Estim, is an important factor in the cardiac cell functioning,

therefore, studies on the effect of voltage threshold in alternans, is still lacking.

To address this issue, in the next chapter, we will study a caricature model of a cardiac action

potential, proposed by (Biktashev et al., 2008). That caricature Noble model is more complex math-

ematically than the McKean model but solvable analytically. It parameters and variables are physi-

ologically meaningful and the effect of threshold of excitation (Estim) in inducing instabilities in the

model, can be studied.



Chapter 5

Restitution and alternans in the

Caricature Noble model

5.1 Introduction

In this chapter a simple model of a cardiac action potential proposed by Biktashev et al. (2008) is

studied. The model is an accurate approximation of the classical Noble (1962) model of cardiac

Purkinje fibers and is called the Caricature Noble model (Biktashev et al., 2008). The Noble (1962)

is the first mathematical model of cardiac action potentials which is a development from the Hodgkin

and Huxley (1952) model and is the prototype of all contemporary voltage-gated cardiac models.

The Noble (1962) model has three currents: an inward INa, an outward IK and a leak or background

current. Its system consists of four ordinary differential equations describing the transmembrane

voltage E , a slow potassium activation gate n, a sodium activation gate m and a sodium inactivation

gate h.

The Noble (1962) model is used by Biktashev et al. (2008) as an initial step to construct the

Caricature model by applying a well-justified asymptotic embedding method. The procedure of em-

bedding artificial small parameters are discussed in a series of publications by Biktashev et al. (2008);

Biktasheva et al. (2006); Simitev and Biktashev (2011). As a result, the modified version of the Noble

(1962) model presented by Biktashev et al. (2008) can be considered as a detailed ionic model where

the generic properties of cardiac excitability are preserved while the model is amenable to analytical

study. Another advantage of the Caricature Noble model over realistic cardiac models, is the presence

of small parameters in its system, therefore it can be reduced asymptotically. The realistic cardiac

56
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models do not have explicit small parameters already present in them or they have so many parame-

ters that it is not a straightforward task to determine which of them to use for asymptotic reduction.

The main features of the caricature system, which make it an appropriate model to study and analyse,

are as follows:

(a) It reproduces exactly the asymptotic structure of the authentic Noble (1962), which is guaranteed

by the embedding of the artificial small parameters.

(b) It has the simplest possible functional form consistent with property (a) and allows analytical

solutions to be obtained.

(c) It has all the essential features of contemporary ionic models of cardiac excitation and, unlike

the FitzhHugh-Nagumo type systems, it reproduces all the stages of a cardiac action potential,

including the following:

(i) Slow repolarisation In cardiac action potentials the depolarisation phase, known as the “up-

stroke”, is very fast while other phases including repolarisation, known as “downstroke”,

are much slower. A FitzHugh-Nagumo type system will have a fast upstroke and a fast

downstroke of the action potential. Therefore these types of models, although simplified, do

not reproduce the actual shape of a cardiac action potential. The Caricature model has small

parameters in such a way that the downstroke of an action potential is slower than the fast

upstroke but faster than the other phases of that action potential.

(ii) Slow sub-threshold response When a sub-threshold stimulus is applied to an excitable sys-

tem it returns immediately to its resting state. In FitzHugh-Nagumo type systems sub-

threshold return and super-threshold upstroke are very fast. However, the sub-threshold

return in real cells and realistic models is slower than the upstroke stage and its speed is

comparable to the slow stages of the action potential.

(iii) Fast accommodation Accommodation occurs when a cell is depolarised by a slowly rising

stimulus current such that, if the threshold of excitation increases, the system fails to gen-

erate an action potential. In real cells and realistic models, accommodation is observed for

a very fast stimulus which can be compared to the upstroke duration of an action poten-

tial. Whereas, in the FitzHugh-Nagumo type systems accommodation is observed for the

stimulus which has a time scale of the duration of the whole action potential.
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The Caricature Noble model as a system of three ordinary differential equations, is introduced in Sec-

tion 5.2. This is followed by Section 5.3 where the model is asymptotically reduced and the phase

portrait of the reduced model is studied. In Section 5.4 an asymptotic action potential duration resti-

tution function is derived from the ordinary differential equations and the responses of the model

under repeated stimulations, are described as a bifurcation problem (Guevara et al., 1984; Mitchell

and Schaeffer, 2003). Following applying the methods described in the Chapter 3, the stability of

the restitution function is studied and the regions of the model’s parameters where different responses

occur, are identified. This is followed by Section 5.5 where by applying the methods in Chapter 3, the

Caricature Noble model is solved and different branches of the action potential duration restitution

map, are derived analytically. The results are presented in this section, where it is shown that the

asymptotic action potential duration restitution curve and the full boundary value formulated restitu-

tion curves agree closely.

Since the variables and parameters in the Caricature Noble model, have physiological roots, studying

this model provides insight into realistic model. Section 5.6 summarises the results of this work, out-

lines the connection between this model and the physiology of the atrial cells and draws conclusions.

5.2 Formulation

The Caricature Noble model (Biktashev et al., 2008) contains three functions of time, the transmem-

brane voltage E(t), a gating variable h(t) which mimics the sodium inactivation gate and gating vari-

able n(t) that acts as the slow potassium activation gate n(t). The system is governed by the following

set of ordinary differential equations:

dE

dt
=

1

ε1ε2
GNa (ENa −E)H(E−E∗)h+

1

ε2

(
g̃2(E)n4 + G̃(E)

)
, (5.1a)

dh

dt
=

1

ε1ε2
Fh

(
H(E† −E)−h

)
, (5.1b)

dn

dt
= ε2Fn

(
H(E −E†)−n

)
, (5.1c)

where the functions of the model are given by:

g̃2(E) = g21H(E† −E)+g22H(E −E†), g21 =−2,g22 =−9,

G̃(E) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k1(E1 −E), E ∈ (−∞,E†),

k2(E −E2), E ∈ [E†,E∗),

k3(E3 −E), E ∈ [E∗,+∞),

(5.1d)
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k1 = 3/40, k2 = 1/25, k3 = 1/10,

E1 =−280/3, E2 = (k1/k2 +1)E† −E1k1/k2 =−55, E3 = (k2/k3 +1)E∗ −E2k2/k3 = 1,

Fh = 1/2, Fn = 1/270,

ENa = 40, E† =−80, E∗ =−15, GNa = 100/3.

Here H(·) is the Heaviside step function and ENa, E1, E2, E3, E∗, E† are constant voltages measured

in mV. Time t is measured in ms, the units for g̃2, g21, g22 are Vs−1 and the units of GNa, Fh and Fn

are ms−1. Note that in the general excitable system Fh and Fn can be represented as 1/τn and 1/τh.

The constant Fn in (5.1c) is changed to voltage-dependent function Fn(E) as follows:

Fn(E) = fn (r H(E† −E)+H(E−E†)) ,

hence (5.1c) becomes

dn

dt
= Fn(E)

(
H(E −E†)−n

)
, (5.1e)

This modification is done in order to investigate the role of voltage-dependent time function in the

slow gating variable (Mitchell and Schaeffer, 2003).The reason this change is applied to Fn rather

than Fh, lies in the fact that h(t) is a fast gating variable as it will be seen in the section 5.3. Therefore,

it does not play a crucial role during the repolarisation phase of an action potential.

Note that in the above modified system when ε1 = ε2 = 1, r = 1 and fn = 1/270 the original Cari-

cature Noble model (Biktashev et al., 2008) is recovered. The modified Caricature Noble system is

complemented by the following initial conditions

E(0) = Estim, h(0) = h0, n(0) = n0. (5.2a)

and a “pacing” condition with basic cycle length B

E(kB) = Estim, ∀k ∈ N. (5.2b)

5.3 Asymptotic reduction

Consider the system of (5.1), in the limits ε1,ε2 → 0+ the model simplifies to a hierarchy of asymp-

totically reduced systems. The fast transient corresponding to the action potential upstroke and slow

sub system corresponding to the repolarization and resting state of the action potential are described

below.
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Super-fast subsystem: The “super-fast” subsystem can now be obtained by changing the indepen-

dent time variable t to a stretched time parameter T = t/(ε1ε2). Since

d

dt
=

dT

dt

d

dT
=

1

ε1ε2

d

dT
,

equations (5.1) become

dE

dT
=GNa (ENa −E)H(E −E∗)h+ ε1

(
g̃2(E)n4 + G̃(E)

)
, (5.3a)

dh

dT
=Fh

(
H(E† −E)−h

)
, (5.3b)

dn

dT
=ε1ε2Fn(E)

(
H(E −E†)−n

)
. (5.3c)

Taking the limit ε1 → 0+, yields the super-fast subsystem,

dE

dT
=GNa (ENa −E)H(E −E∗)h, (5.4a)

dh

dT
=Fh

(
H(E†−E)−h

)
, (5.4b)

dn

dT
=0. (5.4c)

The system of equations (5.4) describes the upstroke stage of the action potential where E and h are

the essential dynamical variables as can be seen in Figure 5.1(a). The gating variable n is constant and

its variations during the upstroke stage is negligible.

Slow subsystem: The “slow” subsystem is obtained from equations (5.1) by rescaling time t to

τ = t/ε2:
d

dt
=

dτ

dt

d

dτ
=

1

ε2

d

dτ
,

this yields:

dE

dτ
=

1

ε1
GNa (ENa −E)H(E −E∗)h+ g̃2(E)n4 + G̃(E), (5.5a)

dh

dτ
=

1

ε1
Fh

(
H(E† −E)−h

)
, (5.5b)

dn

dτ
= ε2Fn(E)

(
H(E −E†)−n

)
. (5.5c)

Taking the limit ε1 → 0+, (5.5b) becomes:

Fh (H(E† −E)−h = 0) which holds if and only if h = H(E†−E).
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When h = H(E† −E) the first term in (5.5a) vanishes as H(E −E∗)H(E† −E)≡ 0 despite the large

factor ε1
−1 in front of it i.e. when E < E† =−80 then E < E∗ =−15 therefore H(E −E∗) = 0. When

E >E† but E <E∗, H(E−E∗)=H(E†−E)= 0, finally when E >E† but E >E∗, then H(E†−E)= 0.

The evolution of the essential dynamical variables E and n are then governed by

dE

dτ
= g̃2(E)n4 + G̃(E), (5.6a)

h = H(E† −E), (5.6b)

dn

dτ
= ε2Fn(E)

(
H(E −E†)−n

)
. (5.6c)

This system describes the post-overshoot drop, the plateau, repolarization and recovery stages of

the action potential. As can be seen from the equation (5.6) the slow subsystem still has a small

parameter ε2. Therefore the evolution of the system can be studied in the limits of ε2 → 0+ and the

slow subsystem, as shown in Figure 5.1(b)-(d), can be studied as “fast-” and “slow-” slow subsystems

as follows:

• Fast-slow subsystem:In the limit ε2 → 0+ the Equations (5.6) become:

dE

dτ
= g̃2(E)n4 + G̃(E), (5.7a)

h = H(E† −E), (5.7b)

dn

dτ
= 0. (5.7c)

This essential dynamical variable is E and the system describes the post-overshoot drop and the

repolarisation stages of the action potential where the variable n is a parameter and its variation

is negligible. This is illustrated in Figure 5.1(c).

• Slow-slow subsystem:This system is obtained by rescaling back to t2 = ε2τ in (5.6). Since

d

dt2
=

1

ε2

d

dτ
,

equations (5.6) become:

dE

dt2
=

1

ε2

(
g̃2(E)n4 + G̃(E)

)
, (5.8a)

h = H(E† −E), (5.8b)

dn

dt2
= Fn(E)

(
H(E −E†)−n

)
. (5.8c)
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Taking the limit ε2 → 0+, equations (5.8) become:

0 = g̃2(E)n4 + G̃(E), (5.9a)

h = H(E† −E), (5.9b)

dn

dt2
= Fn(E)

(
H(E −E†)−n

)
. (5.9c)

The algebraic equation (5.9a) defines the super-slow branch and the equation (5.9c) describes

the motion along this branch. This system describes the plateau (Figure 5.1(b)) and the recovery

(Figure 5.1(d)) of the action potential.
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Figure 5.1: Action potential solutions of the Caricature Model (5.1) and its different regimes. (a) in the

super-fast time T = t/(ε1ε2) ∈ [0,7], described by system (5.4). (b), (c) and (d) in the slow-time scale

τ = t/ε2 ∈ [7,600], described by system (5.6). (c) illustrates the fast-slow subsystem (5.7) with E as

the fast variable of the slow-subsystem, describing post-overshoot drop and the repolarisation stages

in t ∈ [310,350]. (b) and (d) in the slow timescales t2 = ε2τ ∈ [7,310] and t ∈ [350,600], described by

the slow-slow subsystem (5.9c) describing plateau and the recovery stages of the action potential.

5.3.1 Phase portraits

Phase portrait of the supper-fast subsystem The system (5.4) demonstrate the evolution of the

two fast variables E and h. The h-nullcline and E-nullcline are shown in Figure 5.2(a). E∗ acts as

a threshold of excitation, therefore, if Estim > E∗ leads to excitation of the super-fast upstroke. If
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Figure 5.2: Phase portrait of the super-fast subsystem (5.4) and slow subsystem (5.6) are plotted in

(a) and in (b), respectively. The red curve is nullclines dE
dt = 0 and black lines with attached arrows

represent trajectories. One selected trajectory corresponding to initial conditions (5.47) is plotted in

green. The blue lines represent nullclines dh
dt = 0 in (a) and dn

dt = 0 in (b).

Estim < E∗ the super-fast subsystem is not activated, hence the action potential will be generated by

the slow-time subsystem alone Biktashev et al. (2008).

Phase portrait of the slow subsystem The phase portrait of the slow subsystem (5.6) is shown in

Figure 5.2(b). The super-slow manifold is a curve, given implicitly by equation (5.9a) as follows:

n = N (E) =
(
−G̃(E)/g̃2(E)

)1/4
, (5.10a)

and for t ∼ 1 equation (5.9c) describes the motion along this manifold. As illustrated in Figure 5.2(b)

the super-slow manifold is split into two parts by the condition n4 ≥ 0, namely the “diastolic” branch

E ∈ (−∞,E1] and the “systolic” branch for E ∈ [E2,E3]. The stability of the fast-slow equilibrium

is determined by the sign of ∂Ė/∂E: the stable branches of the super-slow manifold correspond to

regions in the (n,E) plane where its graph has a negative slope. These are the regions of the entire

diastolic branch and the upper part of the systolic branch, in the range E ∈ (E∗,E3]. Here E∗ is a

cusp point since N ′(E∗) ̸= 0 and N ′(E) changes its sign at the neighbourhood of the point E∗. The

super-slow gating variable n takes its maximal value in the interval E ∈ [E2,E3], at (n∗,E∗):

n∗ =
(
k3(E3 −E∗)/g22

)1/4
. (5.10b)
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These considerations determine the excitability properties in terms of the slow-slow-time subsystem

(5.9). As seen in Figure 5.2(b), a trajectory starting from Estim > E2 will be repelled by the lower

systolic branch and attracted to the upper one, thus making a relatively large excursion if the following

conditions are satisfied:

When Estim ∈ [E2,E∗], n(Estim) is defined via threshold branch of n. Therefore, for Estim ∈ [E2,E∗),

n(0) must be chosen in [0,nthr(Estim)] to have an action potential. For Estim ∈ [E∗,∞], n(Estim) is

defined by the excitable branch of the n-nullcline and n(0) ∈ [0,n∗]. Figure 5.3 illustrates these two

regions of the phase portrait where the threshold branch as a function of stimulus voltage, plays an

important role in forming the action potential. For a particular voltage stimulus, there is a threshold

value for the gate variable n. For n(0) > nthr an action potential is formed, this is shown as the red

regions in Figure 5.3. If n(0) < nthr decay back towards zero.

n(t0)> nthr ≡
(
k2(E2 −Estim)/g22

)1/4
, nthr ∈ [0,n∗). (5.11)

00.250.50.751
n

E1

E

E1

E2

E†

E∗

n∗

Figure 5.3: Phase portrait of the slow subsystem (5.6). The red curve is nullclines dE
dt = 0 and the blue

lines represent n-nullcline. The green hatched area represent the region in which Estim ∈ [E∗,∞] and

n(0) ∈ [0,n∗]. The red hatched area, describes the role of the threshold branch (red dashed curve). For

Estim ∈ [E2,E∗], n(0) ∈ [0,nthr(Estim)].

This will be followed by a slow movement along the upper systolic branch. Then a jump to the
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diastolic branch at (n∗,E∗) and then another slow movement along the diastolic branch approaching

the global equilibrium, (Ess, nss) = (E1,0), where the motion will eventually stop unless another

super-threshold external stimulus is applied, in which case the entire cycle is repeated.

5.4 Asymptotic action potential duration restitution map

Similar to the previous chapter and following the description of the action potential duration restitu-

tion map in (3.1), the restitution map for the slow subsystem of the Caricature Noble model (5.6) is

derived. The stability of the map is studied and the regions of the model parameters for the occurrence

of a normal responses and alternans responses are outlined.

A simple action potential duration restitution map from the slow subsystem The simplest action

potential duration restitution map of (5.6) is obtained in the limits ε1,ε2 → 0+ as follows.

Lemma 5.1 For an action potential sequence generated as in problem (5.6) with (5.2), we have:

Ak = a(nk−1), a(x) ≡ fn
−1 ln

∣∣∣∣
1− x

1−n∗

∣∣∣∣ , (5.12a)

Dk = d(nk), d(x)≡ (r fn)
−1 ln

∣∣∣
n∗

x

∣∣∣ , (5.12b)

nk ≡ n(kB), k ∈ N,

where nk = n(kB) denotes the value of the gating variable n at the beginning of the (k+ 1)-st action

potential for k ∈ N.

Proof The time during which the voltage in greater than E∗ is the action potential duration as

can be seen in Figure 5.2. Although the voltage during parts of the phase (3) exceeds E∗, as stated

previously, the motion away from the slow manifold is very fast and this phase like the phase (1) of

the action potential is very brief. As a result, the time required for the n gating variable to travel from

its preceding value to n∗ is considered to be the duration of phase (2) and is obtained by integration

of
dn

dt
along the systolic branch E ∈ [E∗,+∞]. The time required for the motion at the phase four of

the action potential is diastolic interval Dk and is obtained by integration of Equation (5.9c) along the

diastolic branches of the super-slow manifold. Thus the following equations are obtained:

Ak =
∫ (k−1)B+Ak

(k−1)B
dt = fn

−1
∫ n∗

n((k−1)B)

dn

1−n
= fn

−1 ln

∣∣∣∣
1−nk−1

1−n∗

∣∣∣∣ , E > E†, (5.13a)
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Dk =
∫ kB

(k−1)B+Ak

dt =−
1

r fn

∫ n(kB)

n∗

dn

n
=

1

r fn
ln

∣∣∣∣
n∗

nk

∣∣∣∣ , E < E†. (5.13b)

The crucial observation in deriving expressions (5.12) is that in this limit the end of any plateau

phase coincides with the beginning of the next recovery stage when the slow gating variable n takes

its maximal value nmax on the systolic branch of the super-slow manifold (5.10a), that is

n((k−1)B+Ak) = n(kB+Ak+1) = n∗, for any k ∈ N.

This is well illustrated by the phase portrait in Figure 5.2(b).

Proposition 5.1 An action potential duration restitution map relating Ak+1 to Ak is given by

Ak+1 = Φ(Ak),

Φ(A) = F(ã,D) = F(a,B−A) =
1

fn
log

(
1−n∗ exp

(
− r fn (B−A)

)

1−n∗

)

, (5.14)

where ã is a vector of the Caricature Noble model’s parameters, i.e. ã = [a,B]T = [r, fn,n∗,B]T .

Proof The result is obtained by eliminating nk between expression (5.12a) written for Ak+1 and

expression (5.12b) written for Dk = B−Ak.

Lemma 5.1 gives a parametric representation of the action potential duration restitution map and

Proposition (5.1) gives an equivalent explicit representation.

Fixed points We now find the fixed points of Φ and A = Φ ◦Φ(A) corresponding the 1:1- and

2:2-responses

Proposition 5.2 The equation A = Φ(A) has a unique solution branch given in parametric form by

A = a(n), D = d(n), (5.15)

for a parameter n ∈ [0,nthr].

Proof In order or obtain the solution of the equation A = Φ(A), the equivalent parametric repre-

sentation of Lemma 5.1 is used. In a 1:1 response Ak = Ak+1 and Dk = Dk+1, equivalent by (5.12)

to a(nk−1) = a(nk) and d(nk) = d(nk+1), respectively. By the bijectivity of the logarithm function,

solutions are nk−1 = nk ≡ n and nk = nk+1 ≡ n, respectively. Note that in a 1:1 response all action po-

tentials start from identical values of the n gate, n, therefore expressions (5.15) hold. As the parameter

n is a gating variable it must be in the range [0,1]. Furthermore, no action potential can be excited

above nthr so n ∈ [0,nthr].
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Perturbation solution of A = Φ(A) It is also possible to find an explicit approximation to the so-

lution of A = Φ(A) by using a regular perturbation approach. Note that equation (5.14) is exactly

solvable in the case r = 1. Expanding the unknown A in a Taylor series near r = 1 yields

A =
∞

∑
m=0

(1− r)mAm.

Upon substitution of the expansion in equation (5.14), collecting powers of the small quantity (1− r),

and solving for the expansion coefficients Am, the fixed point A is obtained as follows

A = A0 +(1− r)A1 +O
(
(1− r)2

)
, (5.16)

where

A0 =B−
1

fn
ln(γ),

A1 =−
1

fn
ln(γ)

(
1+

n∗

γ
(1− r)

)
,

γ =(1− exp(B fn))n∗+ exp(B fn).

Proposition 5.3 The equation A = Φ◦Φ(A) has three solution branches: the first branch is obtained

by the Proposition (5.15) and the other two are given in parametric form by

Aeven = a(αne), Deven = d(ne), (5.17a)

Aodd = a(ne), Dodd = d(αne), (5.17b)

ne =
α1/r −1

α(r+1)/r −1
, (5.17c)

with a parameter α ∈ (0,∞).

Proof Similar to the proof of the Proposition (5.15), the transcendental equation A = Φ ◦Φ(A)

is not solved directly and the equivalent parametric representation of Lemma 5.1 is used. In a 2:2

response

A2k = A2k+2 and A2k+1 = A2k+3, ∀k ∈ N

as well as

D2k = D2k+2 and D2k+1 = D2k+3, ∀k ∈ N.

Thus, by applying the expressions (5.12), the following equations are obtained:

n2k−1 = n2k+1 ≡ no and n2k = n2k+2 ≡ ne.
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The basic cycle length B is assumed to be fixed, therefore it is required that

B = A2k +D2k = A2k+1 +D2k+1 ⇐⇒ a(no)+d(ne) = a(ne)+d(no), (5.18)

and explicitly ln
(
(1− no)/(1− ne)

)
= r−1 ln

(
ne/no

)
. By the bijectivity of the logarithm function

and after the change of variable no = αne this equation reduces to α(1−αne)r = (1−ne)r with exact

solution (5.17). Equations (5.17a) and (5.17b) follow immediately. To establish the range of α note

that (5.18) is invariant with respect to exchanging no and ne, so without loss of generality the case

no ≥ ne is considered and since no and ne are positive it follows that no/ne = α ∈ (1,∞). Finally, a

fixed point of Φ is also a fixed point of Φ◦Φ, hence (5.15) is a third solution branch of A = Φ◦Φ(A).

Remark 3 The solutions (5.15) and (5.17) can be verified by back-substitution into A = Φ(A) and

A = Φ◦Φ(A), respectively.

Stability and bifurcations of equilibria We now impose conditions (3.4b) and (3.5b) to establish

the stability properties of 1:1 and 2:2 responses.

Proposition 5.4 The equilibrium (5.15) of the action potential duration restitution map (5.14) loses

stability in a flip (period-doubling) bifurcation at

nbif = 1/(1+ r) (5.19a)

or in terms of the basic cycle length, alternatively at

Bbif =
1

fn
log

(
r n∗

1/r(1+ r)(1−r)/r

(1−n∗)

)

. (5.19b)

Equation (5.19b) defines a surface where 2:2 response bifurcates from the 1:1 response and is denoted

as S1 in figure 5.4.

Proof Inserting (5.15) into (3.4b), the border of stability is obtained as

n = nbif = 1/(1+ r) ∈ (0,1) if
[
∂AΦ(a,A)

]

A
=−1

or

n = nbif = 1/(1− r) ∈ (−∞,0)∪ (1,∞) if
[
∂AΦ(a,A)

]

A
= 1.
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Since the gating variables are defined in the interval [0,1], the second solution which is outside this

interval, is rejected. The first solution is valid and since it is obtained at

[∂AΦ(a,A)]A =−1 (5.20)

At the end of the the k-st action potential, nk = 1− (1− n∗)exp fn(B−D) and when D = Dbif then

nbif = 1− (1− n∗)exp fn(Bbif −Abif). Rewriting the expression in (5.20) in terms of nbif, we obtain

the point at which stability is lost in a flip bifurcation of the action potential duration restitution

map (5.14). Evaluating (5.15) at nbif = 1/(1+ r) we then find

Abif = a(nbif) = fn
−1 ln

(
nbif −1

n∗ −1

)
, (5.21a)

Dbif = d(nbif) = (r fn)
−1 ln

(
n∗

nbif

)
, (5.21b)

Bbif = a(nbif)+d(nbif) = fn
−1 ln

(
rn∗

1/r(1+ r)(1−r)/r

(1−n∗)

)

. (5.21c)

Proposition 5.5 The equilibria (5.17) of the second-generation map Φ◦Φ bifurcate from the equilib-

rium (5.15) of the action potential duration restitution map (5.14) at (5.19) and lose their stability at

r = 1.

Proof To confirm that the equilibria (5.17) bifurcate from the equilibrium (5.15), we evaluate

(5.17c) at α = 1, which is the value where ne = n0. Since

ne(α) = ne(1) = 1/(1+ r) = nbif

then (5.15) and (5.17), intersect at nbif, where (5.17) first emerges. Recall that a flip bifurcation for Φ is

a pitchfork bifurcation for the second generation map Φ◦Φ (Strogatz, 2001). A pitchfork bifurcation

can be either supercritical if [∂3
AΦ◦Φ]Abif

< 0 or subcritical if [∂3
AΦ◦Φ] Abif

> 0. Substituting (5.21)

into [∂3
AΦ◦Φ]Abif

= 0 and solving it for r, we find that r = 1 is the boundary between the subcritical

and the supercritical cases. The subcritical case is as it was explained before, has one stable branch

on one side and no branches on the other side of the bifurcation point. The supercritical case has one

stable branch on one side and two stable branches and one unstable branch on the other side of the

bifurcation point.
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Thresholds As stated in the previous chapter, the 1:1 responses are stable when condition (3.4c) is

satisfied where Bthr < B is the threshold value of basic cycle length for excitation of a 1:1 response.

The 2:2 responses are stable for B > Bthr which is the condition (3.5c) such that Bthr is the threshold

value for excitation of 2:2 response. These conditions are explained in propositions and respectively.

Proposition 5.6 The threshold value of basic cycle length B for excitation of a 1:1 response is

Athr = a(nthr) = fn
−1 log

(
(1−nthr)/(1−n∗)

)
, (5.22a)

Dthr = d(nthr) = (r fn)
−1 log(n∗/nthr), (5.22b)

Bthr = Athr +Dthr. (5.22c)

The surface given by the equation (5.22c) is the threshold for existence of the 1:1 response. It is

illustrated as a blue surface in Figure 5.4 and denoted by S2.

Proof The k-th action potential can only be excited by a super-threshold stimulus that rises the voltage

sufficiently to pass the nullcline i.e. Estim > E2 for which nk−1 < nthr where nthr is a function of

Estim and it is given by (5.11). The result then follows by evaluation of (5.15) at n = nthr. Since

nthr = nthr(Estim), then

Athr = Athr(nthr) = Athr (Estim,r)

Dthr = Dthr(nthr) = Dthr (Estim,r)

Bthr = Bthr(nthr).

Hence (5.22c) a function of Estim and r.

Proposition 5.7 The threshold value of basic cycle length for the excitation of a 2:2 response is

Bthr = a(nthr)+d (α(nthr)nthr) = a(α(nthr)nthr)+d (nthr) , (5.23a)

where α(nthr) is the solution of the equation

nthr =
(

α1/r −1
)
/
(

α(r+1)/r −1
)
. (5.23b)

Equation (5.23a) is the threshold for existence of the 2:2 response and is a function of Estim and r.

This surface is shown in a black transparent surface in Figure 5.4 and is denoted by S3.
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Proof Similar to the proof of the Proposition (5.6), Estim must be greater than E2 for which nk−1

is smaller than nthr given by (5.11). Evaluating (5.17) at ne = nthr and treating nthr as a parameter,

equation (5.17c) is inverted.

The surfaces Bbif, Bthr and Bthr are plotted in Figure 5.4 as red, blue and black surfaces. The

parameter regions where 1:1 and 2:2 response occur, are well illustrated in Figure 5.4 where the

dimensionless parameter r changes from 0 to 3.5 and Estim changes from -55 (mV) to -15 (mV).

Boundary between normal response and 2:2 response is the surface r = 1 and is plotted as a green

surface in Figure 5.4. When r < 1 the responses of the system is a norm 1:1 response. For r > 1 the

system exhibits instability in 1:1 response.

Remark 4 The range of Estim is chosen based on the phase portrait of the slow subsystem in Fig-

ure 5.2.

In order to gain a better understanding of Figure 5.4 various 2 dimensional slices of the figure are

depicted in Figure 5.5. Column (a) of Figure 5.5 shows the cross sections given by B = 250 (ms) and

B = 300 (ms) respectively. In the first diagram alternans occurs in the gray region where r ≈ 1.8. As

the basic cycle length increases the gray region of occurrence of alternans shrinks and has completely

disappeared by the time B = 300 (ms), as is visible in the lower diagram. Column (b) shows the

cross sections given by Estim = −20 (mV) and Estim = −50 (mV) respectively. In each case the gray

region between Bbif and Bthr is where alternans occurs. This region shrinks as Estim decreases. As

stated previously, the value of Estim determines whether an action potential can be formed or there

is no action potential. Column (c) shows the cross sections in Estim-B space, given by r = 2.5 and

r = 0.5 respectively. As r decreases from 2.5, the gray region of alternans becomes smaller and has

completely disappears by r = 0.5. We now have the solution of the system (5.9), in the next section,

we analyse the slow-system (5.6)

5.5 Exact solution of the restitution boundary value problem

In this section the slow subsystem and the full system are solved analytically, their general solutions

are obtained and by imposing boundary conditions described in the Chapter 3, particular solutions for

different responses are derived. In addition, the restitution curves for 1:1 response and 2:2 response

are constructed.
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Figure 5.4: Bifurcation set in the Estim-r-B parameter space. The red surface S1 is defined by (5.19b)

and illustrates the region where 2:2 response bifurcates from the 1:1 response. The blue surface S2 is

defined by (5.22c) and indicates the threshold for existence of the 1:1 response. The transparent black

surface S3 given by (5.23a) is the threshold for existence of the 2:2 response. The green surface S4

with equation r = 1 separates region of alternans (r > 1) from healthy response (r < 1)

Remark 5 Depending on the initial value of the transmembrane voltage, Simitev and Biktashev

(2011) described three types of solutions for the slow subsystem (5.6) and the full system (5.6). The

cases are well illustrated in Figure 5.2 and described below:

Case 1 The initial value of the voltage is greater than the threshold of the beginning of the fast

system (5.4), that is E0 > E∗. In this case, the fast current is activated and a normal

fast-upstroke action potential is initiated.

Case 2 The initial value of the voltage E0 is greater than the threshold value of E2 of the beginning

of the slow subsystem (5.6) but less than the threshold of the beginning of the fast system

(5.4). Then the fast current is not involved and the slow subsystem is sufficient enough to

describe the action potential.

Case 3. If the initial value of the voltage E0 is less than the threshold value E2 of the slow subsystem
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Figure 5.5: Projections of the 3 dimensional figure are shown in 2 dimensional visualisations. The

colour code is the same as in Figure 5.4. Reading each column from top to bottom, the projections

are (a) B = 250 (ms), B = 300 (ms), (b) Estim = −20 (mV), Estim = −50 (mV), (c) r = 2.5, r = 0.5,

respectively. The region in which alternans occurs is shaded in gray in each plot.

(5.6). Then the voltage decays and no action potential is excited.

Cases 1 and 2, which are description of action potentials for different initial values of voltage, are

solved analytically in this chapter. Case 3 does not exhibit an action potential, therefore we do not

study this case.

5.5.1 The slow subsystem

It is possible to solve the slow system of the caricature model (5.6) analytically and obtain an exact

solution. Equation (5.6c) is linear and simple enough to be easily solved. After its solutions are

substituted into the voltage equation (5.6a), the equation also becomes a first-order linear ODE which

can be solved analytically.
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5.5.1.1 Case 1. Normal fast-upstroke action potential

In this case, since we do not have the fast system here, the voltage increases but does not reach ENa.

The action potential is formed but it does not have an upstroke.

E(0) = E0 > E∗, n(0) = n0. (5.24)

Solution of the initial value problem The system (5.6) has the following solutions for the time

intervals t ∈ [0, t∗], [t∗, t†] and [t†,∞).

n(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1− (1−n0)exp(− fnt), t ∈ [0, t†]

(
1− (1−n0)exp(− fnt†)

)
exp
(

fnr(t† − t)
)
, t ∈ [t†,∞)

(5.25a)

E(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
E(t) = (N(t)−N(0)+E0) exp(−k3

ε2
t), t ∈ [0, t∗]

2
E(t) = w(t)+ (E∗ −w(t∗)) exp( k2(t−t∗)

ε2
), t ∈ [t∗, t†]

3
E(t) = m(t)+ (E† −m(t†)) exp

(
k1
ε2
(t† − t)

)
, t ∈ [t†,∞)

(5.25b)

where

N(t)≡ E3 exp(
k3t

ε2
)+g22

4

∑
l=0

(n0 −1)l

(
4

l

)
exp((−ε2l fn + k3)t)

k3 − l ε2 fn
,

w(t)≡ E2 +g22

4

∑
l=0

(n0 −1)l

(
4

l

)
exp(−l fnt)

−k2 − l ε2 fn
,

m(t)≡ E1 +
g21

k1 −4ε2 fnr

4

∑
l=0

(n0 −1)l

(
4

l

)
exp
(
(4 fnr− l fn)t†

)
exp(−4 fnrt),

This exact analytical solution is plotted in Figure 5.6 for E(0) =−10 (mV), n(0) = 0 and all other

parameters as in (5.1). The parameters t∗ and t†are found numerically to be t∗ = 292.815 (ms) and

t† = 345.240 (ms). They are obtained as solutions of

1
E(t∗) =

2
E(t∗) = E∗,

2
E(t†) =

3
E(t†) = E†. (5.26)

The effect of ε2 in the repolarisation of the action potential is apparent from the figure, where in

Figure 5.6(a) ε2 = 1 and in Figure 5.6(b) ε2 = 0.1.
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Figure 5.6: The exact solution (5.25) of the slow subsystem (5.6) for the range t ∈ [0,600]. The red

curve is voltage E and the blue curve is the evolution of n-gating variable. In (a) ε2 = 1 and in (b)

ε2 = 0.1.

Solution of the periodic boundary value problem In this case the conditions are

E(0) = E0 > E∗, n(0) = n(kB) ∀k ∈N. (5.27)

Imposing conditions (5.27), the general solutions are as follows

n(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1−C1 exp(− fnt), t ∈ [0, t†]

(
1−C1 exp(− fnt†)

)
exp
(

fnr(t† − t)
)
, t ∈ [t†,∞)

(5.28a)

E(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
E(t) = (N(t)−N(0)+E0) exp

(
−k3
ε2

t
)
, t ∈ [0, t∗]

2
E(t) = w(t)+ (E∗ −w(t∗)) exp( k2(t−t∗)

ε2
), t ∈ [t∗, t†]

3
E(t) = m(t)+ (E† −m(t†)) exp

(
k1
ε2
(t† − t)

)
, t ∈ [t†,∞)

(5.28b)

where

N(t)≡ E3 exp(
k3t

ε2
)+g22

4

∑
l=0

(−C1)
l

(
4

l

)
exp((−ε2l fn + k3)t)

k3 − l ε2 fn
,

w(t)≡ E2 +g22

4

∑
l=0

(−C1)
l

(
4

l

)
exp(−l fnt)

−k2 − l ε2 fn
,

m(t)≡ E1 +
g21

k1 −4ε2 fnr

4

∑
l=0

(−C1)
l

(
4

l

)
exp
(
(4 fnr− l fn)t†

)
exp(−4 fnrt),
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Constructing the restitution curves

1:1 restitution curve In order to construct the 1:1 restitution curve, the condition (3.8) must be

satisfied ∀k ∈ N, i.e. we require that

E(0, r, ε2) = E(B, r, ε2) = Estim, (5.29)

n(0, r ε2) = n(B, r, ε2),

By imposing the condition (5.29) for k = 0, the constant C1 as a function of B and t† is found.

1
n(0) =

2
n(B),

1−C1 =(1−C1 exp(− fnt†))exp( fnr(t† −B)) .

Thus the following expression for the constant function C1 is obtained

C1 =
1− exp( fnr(t† −B))

1− exp((− fnt†)− fnr(B− t†))
. (5.30)

Substituting the function (5.30) into the voltage (5.28b) gives an expression for E(t) as a function

of B and t†. In order to construct the restitution curve, the value of t† is found numerically. Figure 5.7

illustrates t† against basic cycle length B for different values of ε2. As ε2 decreases from 1 to 0, the

1:1 restitution curves approach the asymptotic map (5.14). The value of t† in Figures 5.7(a) and 5.7(b)

differs slightly since the is understandable from the formula (6.9). It can be seen in the Figure 5.7 that

as r increases, the action potential duration also increases. Note that although the 1:1 restitution curve

is constructed for a wide range of basic cycle length, this solution is not stable for all the values of B

and it loses its stability at some basic cycle length B = Bthr. The occurrence of the “unstable” solution

is explained as below.

2:2 restitution curves We now apply condition (3.10) to the solutions of (5.28) and the 2-cycle

solution corresponding to the 2:2 response is derived. The following condition must be satisfied

Eeven(0, r, ε2) = Estim, (5.31a)

Eodd(0, r, ε2) = Estim, (5.31b)

neven(0, r, ε2) = nodd(B, r, ε2), (5.31c)

nodd(0, r, ε2) = neven(B, r, ε2), (5.31d)
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Figure 5.7: Action potential duration restitution curves for 1:1 response in comparison with the

asymptotic restitution curve. The red, blue, green, violet and magenta curves are for ε2 values of

1, 0.6, 0.2,0.05 and 0.001, respectively. The black solid curve is the asymptotic action potential dura-

tion restitution map (5.14). In (a) r = 1.8 and in (b) r = 0.8.

where “even” and “odd” refer to two succeeding action potentials with different durations. Now the

conditions (5.31) are applied on the exact solution of the n-gating variable. Recall the exact solution

for (5.28a), hence it yields:

⎧
⎪⎨

⎪⎩

1
neven(0) =

2
nodd(B),

2
neven(B) =

1
nodd(0),

(5.32)

The equations (5.32) are solved simultaneously using the solution of the initial value problem as

an initial guess. Thus, similar to the previous part, we formulate the E(t) solution as a function of B

and t†. By decreasing the value of B and finding the t† for each basic cycle length, the restitution

curves for different ε2 are constructed. For r > 1 the bifurcation is Supercritical and stable alternans

occur. The restitution curves for this condition are illustrated in Figure 5.8(a) and when r < 1 the

bifurcation is subcritical and alternans is unstable as can from Figure 5.8(c). Different action potential

duration-restitution curves from the exact analytical solutions are plotted in figure 5.8(a). As ε2 → 0

the exact solution reaches the asymptotic solution (5.14).
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Figure 5.8: The restitution curves from the exact analytical solution are compared with the asymptotic

map. The red, blue, green, purple and magenta correspond to ε2 = 1, 0.6,0.2,0.05,0.005, respectively

and the black curve is the asymptotic map corresponding to ε2 = 0. In (a) r = 1.8 and in (b) stable

alternans at B = 331 (ms) is illustrated. In (c) r = 0.8 and in (d) an unstable alternans at B = 214 (ms).

5.5.1.2 Case 2. Slow over-threshold response

The slow over-threshold response is when the initial value of the voltage is less than the threshold of

the beginning of the fast system and the following initial conditions are considered:

E(0) = E2 < E0 < E∗, n(0) = n0, (5.33)
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Solution of the initial value problem The system (5.6) has the following solutions for the time

intervals t ∈ [0, t∗1], t ∈ [t∗1, t∗2], [t∗2, t†] and [t†,∞).

n(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1− (1−n0)exp(− fnt), t ∈ [0, t†]

(
1− (1−n0)exp(− fnt†)

)
exp
(

fnr(t† − t)
)
, t ∈ [t†,∞)

(5.34a)

E(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
E(t) = w(t)+ (E0 −w(0)) exp

(
k2
ε2

t
)
, t ∈ [0, t∗1]

2
E(t) = N(t)+ (E∗ −N(t∗1)) exp

(
k3
ε2
(t − t∗1)

)
, t ∈ [t∗1, t∗2]

3
E(t) = w(t)+ (E∗ −w(t∗2)) exp

(
k2
ε2
(t − t∗2)

)
, t ∈ [t∗2, t†]

4
E(t) = m(t)+ (E† −m(t†)) exp

(
k1
ε2
(t† − t)

)
, t ∈ [t†,∞)

(5.34b)

where

N(t)≡ E3 exp(
k3t

ε2
)+g22

4

∑
l=0

(n0 −1)l

(
4

l

)
exp((−ε2l fn + k3)t)

k3 − l ε2 fn
,

w(t)≡ E2 +g22

4

∑
l=0

(n0 −1)l

(
4

l

)
exp(−l fnt)

−k2 − l ε2 fn
,

m(t)≡ E1 +
g21

k1 −4ε2 fnr

4

∑
l=0

(n0 −1)l

(
4

l

)
exp
(
(4 fnr− l fn)t†

)
exp(−4 fnrt).

The exact analytical solution is plotted in Figure 5.9 for E(0) = −30 (mV), n(0) = 0, ε2 = 1 and

all other parameters as in (5.1). The parameters t∗1, t∗2 and t† are determined numerically to be

t∗1 = 11.750 (ms), t∗2 = 292.815 (ms) and t† = 345.240 (ms), as solutions of

1
E(t∗1) =

2
E(t∗1) = E∗,

2
E(t∗2) =

3
E(t∗2) = E∗,

3
E(t†) =

3
E(t†) = E†. (5.35)

Solution of the periodic boundary value problem In this case the conditions are:

E(0) = E∗ < E0 < E2, n(0) = n(kB)∀k ∈ N, (5.36)

n(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1−C2 exp(− fnt), t ∈ [0, t†]

(
1−C2 exp(− fnt†)

)
exp
(

fnr(t† − t)
)
, t ∈ [t†,∞)

(5.37a)
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Figure 5.9: The exact solution (5.34) of the slow subsystem (5.6) for the range t ∈ [0,600]. The red

curve is voltage E(t) and the blue curve is the evolution of n-gating variable. In (a) ε2 = 1 and in (b)

ε2 = 0.1.

E(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
E(t) = (E0 −w(0)) exp( k2

ε2
t)+w(t), t ∈ [0, t∗1]

2
E(t) = (E∗ −N(t∗1)) exp

(
k3

ε2
(t − t∗1)

)
+N(t), t ∈ [t∗2, t†]

3
E(t) = (E∗ −w(t∗2)) exp

(
k2
ε2
(t − t∗2)

)
+w(t), t ∈ [t∗2, t†]

4
E(t) = (E† −m(t†)) exp

(
k1
ε2
(t† − t)

)
+m(t), t ∈ [t†,∞)

(5.37b)

where

N(t)≡ E3 exp

(
k3t

ε2

)
+g22

4

∑
l=0

(−C2)
l

(
4

l

)
exp((−ε2l fn + k3)t)

k3 − l ε2 fn
,

w(t)≡ E2 +g22

4

∑
l=0

(−C2)
l

(
4

l

)
exp(−l fnt)

−k2 − l ε2 fn
,

m(t)≡ E1 +
g21

k1 −4ε2 fnr

4

∑
l=0

(−C2)
l

(
4

l

)
exp
(
(4 fnr− l fn)t†

)
exp(−4 fnrt),

Having obtained the exact analytical solution for the slow system in case two, similar to the previous

part, we can now impose the boundary conditions and demonstrate restitution curves.

Constructing the restitution curves Similar to the previous Case, the conditions (5.29) and (5.31)are

applied to the solutions (5.37). Note that the exact solution for n-gating variable is identical for cases

1 and 2 therefore, the constant function C2 is identical to C1. Consequently the 1:1 restitution curves

in Figure 5.10 and 2:2 restitution curves in Figure 5.11 are similar to the case 1.
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Figure 5.10: Action potential duration restitution curves with boundary conditions (5.29) imposed

on the solutions (5.37). The red, blue, green, violet and magenta curves are for ε2 values of 1, 0.6,

0.2, 0.05 and 0.001, respectively. The black solid curve is the asymptotic action potential duration

restitution map (5.14). In (a) r = 1.8 and in (b) r = 0.8.

1:1 restitution curve The 1:1 restitution curve for this case is illustrated in figure 5.10. Similar to

the case 1, as ε2 decreases, the exact analytical solution approaches the asymptotic map (5.14).

2:2 restitution curves The 2:2 restitution curves are shown in Figure 5.11, where similar to the

previous part, the restitution curves for different ε2 are constructed. For r > 1 the bifurcation is

Supercritical and stable alternans occur. The restitution curves for this condition are illustrated in

Figure 5.11(a) and action potentials illustrating alternans are plotted in Figure 5.11(b) for B = 330

ms. When r < 1 the bifurcation is subcritical and alternans is unstable as can be seen in Figure 5.11(c)

and action potentials are plotted in Figure 5.11(d) for B = 317 ms. As ε2 → 0 the exact solution

reaches the asymptotic solution (5.14).

Figures 5.8(a) and 5.11(a) are illustrations of the top row of Figure 5.5(c). When r is greater than 1,

there is alternans at B = 250 (ms) for the asymptotic solution and for exact solutions with ε2 = 0.001.

These solutions depicted by black curve and magneta curves respectively in Figures 5.8(a) and 5.11(a).

As ε2 increases from 0 to 1, the position of the bifurcation value of B gets deformed. The defor-

mation of Bbif is illustrated in red curve in Figure 5.12(a) as a function of ε2 and the following formula

for Bbif is derived by fitting the data to a curve:

Bbif = 368.32−114.08exp(−1.1ε2). (5.38)
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Figure 5.11: The restitution curves from the exact analytical solution are compared with the asymp-

totic map. The blue, red, green and magenta correspond to ε2 = 1, 0.6, 0.2, 0.05, 0.005, respectively

and the black curve is the asymptotic map corresponding to ε2 = 0. In (a) r = 1.8 and in (b) stable

alternans at B = 330 (ms) is illustrated. In (c) r = 0.8 and in (d) an unstable alternans at B = 317 (ms).

According to Figure 5.12 the bifurcation occurs at Bbif = 330 when ε2 = 1. This finding is confirmed

with action potentials in Figures 5.8(b) and 5.11(b), in which bifurcation occurs at B = 331 (ms) for

case 1 and B = 329 (ms) for case 2.

The threshold Bthr for the existence of the 1:1 response also changes its position as ε2 increases from

0 to 1. This displacement is shown as blue curve in Figure 5.12(a) and the following formula for Bthr

as a function of ε2 is derived:

Bthr = 397.71−148.2exp(−0.67ε2). (5.39)

Figures 5.8(c) and 5.11(c) are illustrations of the bottom row of Figure 5.5(c). When r is less
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Figure 5.12: Several data points for Bbif and Bthr together with their approximating curves. The red

squares are data points for Bbif and the blue circles are the data points for Bthr. The region between

these two curves is the region where stable alternans occurs. In plot (a) Bbif and Bthr are functions of

ε2 as (5.38) and (5.39), respectively. Plot(b) shows Bbif and Bthr as functions of ε1.

than 1 alternans does not occur. The system undergoes an unstable pitchfork bifurcation over a very

small interval r ∈ [0.7,1). The bifurcation is compared for different values of ε2 in Figures 5.11(c)

and 5.11(c). The restitution curve as a function of r for the slow subsystem is plotted in Figure 5.13.

The Basic cycle length and Estim are fixed and the curve is obtained for different values of r. When

B = 250 (ms) and Estim = −10 (mV) there is a bifurcation at r = 1.8. This is in agreement with

Figure 5.5(a) and 5.5(c). As basic cycle length increases from 250 (ms) to 320 (ms) the value of r

at which bifurcation occurs increases. At large basic cycle length, even if r increases, there is no

bifurcation as can be seen in Figure 5.13 where for B ≥ 350 there is no alternation of action potential

duration.

5.5.2 The full system of the Caricature Noble model

In this section the approach presented in Section 5.5.1 is used and the full Caricature Noble sys-

tem (5.1) is analysed. Two cases based on the initial value of voltage E0 are considered and the full
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Figure 5.13: The action potential duration restitution curve as a function of r. Estim =−10 (mV) and

from the top to bottom the values of basic cycle length are 800, 500, 350, 300, 280, 260, 250 (ms).

system is solved analytically. Since the fast gating variable h is included in the full system, hence the

role of the fast current and the fast subsystem is also studied in this section.

5.5.2.1 Case 1. Normal fast-upstroke action potential

Solution of the initial value problem In this case the following initial conditions are applied to the

full Caricature system (5.1):

E(0) = E0 > E∗, h(0) = h0, n(0) = n0, (5.40)

Equations (5.1b) and (5.1c) are separable and can be easily solved. After their solutions are substi-

tuted into the voltage equation (5.1a) it becomes a first order ordinary differential equation and the

system (5.1) has the following exact analytical solutions for the time intervals t ∈ [0, t∗], t ∈ [t∗, t†]

and t ∈ [t†,∞).

n(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1− (1−n0)exp(− fnt), t ∈ [0, t†]

(
1− (1−n0)exp(− fnt†)

)
exp
(

fnr(t† − t)
)
, t ∈ [t†,∞)

(5.41a)
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h(t) =

⎧
⎪⎪⎨

⎪⎪⎩

h0 exp
(
−Fht/(ε1ε2)

)
, t ∈ [0, t†]

1− (exp(Fht†/(ε1ε2))−h0)exp(−Fht/(ε1ε2)), t ∈ [t†,∞)

(5.41b)

E(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
E(t) = exp

(
GNah0

Fh
exp

(
−

Fht

ε1ε2

)
−

k3t

ε2

)

×

[

E0 exp

(
−

GNah0

Fh

)
− k3E3 u(−k3ε1, t)

−g22

4

∑
l=0

(
4

l

)
(n0 −1)l u(−k3ε1 + ε1 ε2l fn, t)

−
GNa h0ENa

ε1
u(−k3ε1 +Fh, t)

]

, t ∈ [0, t∗]

2
E(t) = w(t)+ (E∗ −w(t∗)) exp

(
k2
ε2
(t − t∗)

)
, t ∈ [t∗, t†]

3
E(t) = m(t)+ (E† −m(t†)) exp

(
k1
ε2
(t† − t)

)
, t ∈ [t†,∞)

(5.41c)

where

u(κ, t)≡
ε1

Fh

(
Fh

GNah0

) κ

Fh

[

Γ

(
κ

Fh
,
GNah0

Fh

)

−Γ

(
κ

Fh
,
GNah0

Fh
exp

(
−

Fht

ε1ε2

))]

,

w(t)≡ E2 +g22

4

∑
l=0

(n0 −1)l

(
4

l

)
exp(−l fnt)

−k2 − l ε2 fn
,

m(t)≡ E1 +
g21

k1 −4ε2 fnr

4

∑
l=0

(n0 −1)l

(
4

l

)
exp
(
(4 fnr− l fn)t†

)
exp(−4 fnrt),

and Γ(a,x) is the upper incomplete Gamma function,Γ(a,x) ≡
∫ ∞

x za−1e−z dz for ℜ(a) > 0 and

Γ(a+ 1,x) = aΓ(a,x) + xa e−x as defined in Abramowitz and Stegun (1965). The exact analytical

solution of the Caricature model is plotted in Figure 5.14 for E0 =−10 (mV), h0 = 1 and n0 = 0. The

parameters t∗ and t† are found numerically according to the equations

1
E(t∗) = E∗,

2
E(t†) = E†. (5.42)

For t ∈ [0,600], the parameters are found as t∗ ≈ 292.81 (ms) and t† ≈ 345.24 (ms).

Solution of the periodic boundary value problem Applying the following periodic boundary con-

ditions

E(0) = E0 > E∗, h(0) = h(B), n(0) = n(B), (5.43)
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Figure 5.14: The numerical solution of the Caricature Model (5.1) in comparison with its analytical

solution (5.41) for t ∈ [0,600]. The red, green and blue curves correspond to the numerical solution

of E(t), h(t) and n(t) respectively and the black dotted lines are the analytical solutions. In (a)

ε1 = ε2 = 1, and in (b) ε1 = ε2 = 0.1.

the exact solution of the full system is given by

n(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1−C3 exp(− fnt), t ∈ [0, t†]
(

1−C3 exp(− fnt†)

)
exp
(

fnr(t† − t)
)
, t ∈ [t†,∞)

(5.44a)

h(t) =

⎧
⎪⎪⎨

⎪⎪⎩

D3 exp
(
−Fht/(ε1ε2)

)
, t ∈ [0, t†]

1−

(
exp(Fht†/(ε1ε2))−D3

)
exp(−Fht/(ε1ε2)), t ∈ [t†,∞)

(5.44b)

E(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
E(t) = exp

(
GNaD3

Fh
exp

(
−

Fht

ε1ε2

)
−

k3t

ε2

)

×

[

E0 exp

(
−

GNaD3

Fh

)
− k3E3 u(−k3ε1, t)

−g22

4

∑
l=0

(
4

l

)
(−C3)

l u(−k3ε1 + ε1 ε2l fn, t)

−
GNa D3ENa

ε1
u(−k3ε1 +Fh, t)

]

, t ∈ [0, t∗]

2
E(t) = (E∗ −w(t∗)) exp

(
k2
ε2
(t − t∗)

)
+w(t), t ∈ [t∗, t†]

3
E(t) = (E† −m(t†)) exp

(
k1
ε2
(t† − t)

)
+m(t), t ∈ [t†,∞)

(5.44c)
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where

u(κ, t)≡
ε1

Fh

(
Fh

GNaD3

) κ

Fh

[

Γ

(
κ

Fh
,
GNaD3

Fh

)

−Γ

(
κ

Fh
,
GNaD3

Fh
exp

(
−

Fht

ε1ε2

))]

,

w(t)≡ E2 +g22

4

∑
l=0

(−C3)
l

(
4

l

)
exp(−l fnt)

−k2 − l ε2 fn
,

m(t)≡ E1 +
g21

k1 −4ε2 fnr

4

∑
l=0

(−C3)
l

(
4

l

)
exp
(
(4 fnr− l fn)t†

)
exp(−4 fnrt),

Constructing restitution curves The 1:1 and 2:2 restitution curves are now derived by imposing

the conditions (5.45) and (5.46) on the exact solutions (5.44) respectively.

1:1 restitution curve The condition (5.45) must be satisfied, i.e.

E (0, r, ε1, ε2) = Estim, (5.45a)

E (B, r, ε1, ε2) = Estim, (5.45b)

h(0, r, ε1, ε2) = h(B, r, ε1, ε2) , (5.45c)

n(0, r, ε1, ε2) = n(B, r, ε1, ε2) . (5.45d)

Therefore, we impose the condition (5.45) on the solution (5.44) and obtain:

⎧
⎪⎨

⎪⎩

1
n(0) =

2
n(B),

1−C3 = (1−C3 exp(− fnt†))exp( fnr(t† −B)) ,
⎧
⎪⎨

⎪⎩

1

h(0) =
2

h(B),

D3 exp
(
−FhB
ε1ε2

)
= 1−

(
exp
(

Fht†
ε1ε2

)
−D3

)
exp(−FhB(ε1ε2)).

Hence the coefficients C3 and D3 as functions of B and t† are found:

C3 =
1− exp( fnr(t† −B))

1− exp((− fnt†)− fnr(B− t†))

D3 =
1− exp

(
Fh(t†−B)

ε1ε2

)

1− exp
(
−FhB
ε1ε2

) .

Substituting functions C3 and D3 into E(t), the voltage is expressed as a function of B and t†. The

action potential duration restitution curve is illustrated in Figure 5.15 where t† is plotted against basic
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Figure 5.15: Action potential duration restitution curves exhibiting 1:1 response for the full system in

case 1, in comparison with the asymptotic restitution curve (5.14). ε2 changes from 1 to 0 from top to

bottom. In (a) r = 1.8 and in (b) r = 0.8.

cycle length B. The restitution curves are plotted for r > 1 and r < 1 in Figures 5.15(a) and 5.15(b)

respectively. Since ε1 does not have an affect on the restitution curve, we set it to 1 and the curves

are plotted for different values of ε2. As can be seen from the figure, for small values of ε2 the exact

analytical solution is close to the asymptotic map (5.14).

2:2 restitution curves In order to construct the 2:2 restitution curve, condition (3.10) is applied on

the solutions of (5.44):

Eeven(0, r, ε1, ε2) = Estim, (5.46a)

Eodd(0, r, ε1, ε2) = Estim, (5.46b)

heven(0, r, ε1, ε2) = hodd(B, r, ε1, ε2), (5.46c)

hodd(0, r, ε1, ε2) = heven(B, r, ε1, ε2), (5.46d)

neven(0, r, ε1, ε2) = nodd(B, r, ε1, ε2), (5.46e)

nodd(0, r, ε1, ε2) = neven(B, r, ε1, ε2). (5.46f)

Thus, it yields:

⎧
⎪⎨

⎪⎩

1
neven(0) =

2
nodd(B),

2
neven(B) =

1
nodd(0),
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Figure 5.16: The restitution curves from the exact analytical solutions are compared with the asymp-

totic map (5.14) which is a solid black curve. The blue, red, green and magneta curves correspond to

ε2 = 1, 0.4, 0.2, 0.1, 0.05, respectively. In (a) r = 1.8 and in (b) stable alternans is plotted at B = 260

ms. In (c) r = 0.7 and in (d) unstable alternans at B = 92 ms is plotted.

⎧
⎪⎨

⎪⎩

1

heven(0) =
2

hodd(B)

2

heven(B) =
1

hodd(0)

These equations are solved simultaneously using the solution of the initial value problem as an initial

guess. The voltage E(t) is then formulated as a function of B and t†. The restitution curve is con-

structed as t† against B. By decreasing the basic cycle length the restitution curve bifurcates. For r > 1

the bifurcation is Supercritical as can be seen in 5.16(a) and when r < 1 the bifurcation is subcriti-

cal 5.16(c). Since the value of ε1 does not have an affect on the restitution curve is it fixed at 1 and

different action potential duration restitution curves from the exact analytical solutions are plotted in

Figure 5.16(a). As ε2 → 0 the exact solution approaches the asymptotic solution (5.14).
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5.5.2.2 Case 2. Slow over-threshold response

As described earlier, the initial value of the voltage in this case is smaller than the threshold of the fast

subsystem (5.4) and greater than the threshold of the slow subsystem (5.6) i.e. E2 < E0 < E∗. We now

find the solution of the full Caricature system and construct the restitution curves.

Solution of the initial value problem Assuming the following initial conditions,

E(0) = E2 < E0 < E∗, h(0) = h0, n(0) = n0, (5.47)

the system (5.6) has the following solutions for the time intervals t ∈ [0, t∗1], [t∗1, t∗2], [t∗2, t†] and [t†,∞).

n(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1− (1−n0)exp(− fnt), t ∈ [0, t†]

(
1− (1−n0)exp(− fnt†)

)
exp
(

fnr(t† − t)
)
, t ∈ [t†,∞)

(5.48a)

h(t) =

⎧
⎪⎪⎨

⎪⎪⎩

h0 exp
(
−Fht/(ε1ε2)

)
, t ∈ [0, t†]

1− (exp(Fht†/(ε1ε2))−h0)exp(−Fht/(ε1ε2)), t ∈ [t†,∞)

(5.48b)

E(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
E(t) = w(t)− (w(0)−E0) exp(

k2

ε2
t), t ∈ [t ∈ [0, t∗1]

2
E(t) = exp

(
−k3t

ε2
+ GNah0

Fh
exp(−Fht

ε1ε2
)

)
×

[

E∗ exp

(
k3t∗1

ε2
−

GNah0

Fh
exp(

−Fht∗1

ε1ε2
)

)
+ENa u(−k3ε1 +Fh, t)

g22ε1

GNah0

4

∑
l=0

(
4

l

)
(n0 −1)l u(−k3ε1 + ε1 ε2l fn, t)

+
k3ε1E3

GNa h0
u(−k3ε1, t)

]

, t ∈ [t∗1, t∗2]

3
E(t) = (E∗ −w(t∗2)) exp

(
k2
ε2
(t − t∗2)

)
+w(t), t ∈ [t∗2, t†]

4
E(t) = (E† −m(t†)) exp

(
k1
ε2
(t† − t)

)
+m(t), t ∈ [t†,∞)

(5.48c)

where

u(κ, t)≡
GNah0

Fh

(
Fh

GNah0

) κ

Fh

[

Γ

(
κ

Fh
,
GNah0

Fh
exp

(
−

Fht

ε1ε2

))

−Γ

(
κ

Fh
,
GNah0

Fh
exp

(
−

Fht∗1

ε1ε2

))]

,



91

0 200 400 600
t

-100

-50

0

(a) (b)

0 200 400 600
t

-100

-50

0

E

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

h
, 

n

Figure 5.17: Exact solution of the full Caricature Noble model with voltage initial value considered

in case 2. The numerical solution in comparison with the analytical solution of the full Caricature

system (5.1). E0 =−30, h0 = 1 and n0 = 0 for t ∈ [0,600]. In (a) ε1 = ε2 = 1 and in (b) ε1 = ε2 = 0.1.

w(t)≡ E2 +g22

4

∑
l=0

(n0 −1)l

(
4

l

)
exp(−l fnt)

−k2 − l ε2 fn
,

m(t)≡ E1 +
g21

k1 −4ε2 fnr

4

∑
l=0

(n0 −1)l

(
4

l

)
exp
(
(4 fnr− l fn)t†

)
exp(−4 fnrt),

and Γ(a,x) is the upper incomplete gamma function, Γ(a,x)≡
∫ ∞

x za−1e−z dz for ℜ(a)> 0 and Γ(a+

1,x) = aΓ(a,x)+ xa e−x as defined in Abramowitz and Stegun (1965).

The exact analytical solution is plotted in Figure 5.17 where it is compared with the numerical

solutions of the caricature model (5.1). Similar to the case 1 the parameters t∗1, t∗2 and t† can be

found numerically as solutions of

1
E(t∗1) =

2
E(t∗1) = E∗,

2
E(t∗2) =

3
E(t∗2) = E∗,

3
E(t†) =

4
E(t†) = E†. (5.49)

For the standard values of parameters, E0 = −30, h0 = 1 and n0 = 0 we obtain t∗1 ≈ 24.5 ms, t∗2 ≈

292.8 ms and t† ≈ 345.24 ms.

Solution of the periodic boundary value problem The periodic boundary conditions for this case

are

E(0) = E† < E0 < E∗, h(0) = h(B), n(0) = n(B), (5.50)
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Similar to the Case 1, the above boundary conditions (5.50) are imposed and the general solution is

obtained as below

n(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1−C4 exp(− fnt), t ∈ [0, t†]

(
1−C4 exp(− fnt†)

)
exp
(

fnr(t† − t)
)
, t ∈ [t†,∞)

(5.51a)

h(t) =

⎧
⎪⎪⎨

⎪⎪⎩

D4 exp
(
−Fht/(ε1ε2)

)
, t ∈ [0, t†]

1− (exp(Fht†/(ε1ε2))−D4)exp(−Fht/(ε1ε2)), t ∈ [t†,∞)

(5.51b)

E(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
E(t) = w(t)− (w(0)−E0) exp(

k2

ε2
t), t ∈ [0, t∗1]

2
E(t) = exp

(
−k3t

ε2
+ GNaD4

Fh
exp(−Fht

ε1ε2
)

)
×

[

E∗ exp

(
k3t∗1

ε2
−

GNaD4

Fh
exp(

−Fht∗1

ε1ε2
)

)
+ENa u(−k3ε1 +Fh, t)

g22ε1

GNaD3
∑4

l=0

(
4

l

)
(−C3)l u(−k3ε1 + ε1 ε2l fn, t)

+ k3ε1E3

GNa D4
u(−k3ε1, t)

]

, t ∈ [t∗1, t∗2]

3
E(t) = (E∗ −w(t∗2)) exp

(
k2
ε2
(t − t∗2)

)
+w(t), t ∈ [t∗2, t†]

4
E(t) = (E† −m(t†)) exp

(
k1
ε2
(t† − t)

)
+m(t), t ∈ [t†,∞)

(5.51c)

where

u(κ, t)≡
GNaD3

Fh

(
Fh

GNaD3

) κ

Fh

[

Γ

(
κ

Fh
,
GNaD3

Fh
exp

(
−

Fht

ε1ε2

))

−Γ

(
κ

Fh
,
GNaD3

Fh
exp

(
−

Fht∗1

ε1ε2

))]

,

w(t)≡ E2 +g22

4

∑
l=0

(−C3)
l

(
4

l

)
exp(−l fnt)

−k2 − l ε2 fn
,

m(t)≡ E1 +
g21

k1 −4ε2 fnr

4

∑
l=0

(−C3)
l

(
4

l

)
exp
(
(4 fnr− l fn)t†

)
exp(−4 fnrt),

and Γ(a,x) is the upper incomplete gamma function Γ(a,x) ≡
∫ ∞

x za−1e−z dz for ℜ(a) > 0 and Γ(a+

1,x) = aΓ(a,x)+ xa e−x as defined in Abramowitz and Stegun (1965).

Constructing restitution curves
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Figure 5.18: Action potential duration restitution curves exhibiting 1:1 response for the full system in

case 2, in comparison with the asymptotic restitution curve (5.14). The value of ε2 changes from 1 to

0 from top to bottom. In (a) r = 1.8 and in (b) r = 0.8.

1:1 restitution curves Imposing the conditions (5.45) on the exact solution of slow over-threshold

response (5.51) and determine the coefficient functions C4 and D4 as below:

C4 =
1− exp( fnr(t† −B))

1− exp((− fnt†)− fnr(B− t†))

D4 =
1− exp

(
Fh(t†−B)

ε1ε2

)

(
1− exp

(
−FhB
ε1ε2

))

The 1:1 restitution curve for this case is illustrated in Figure 5.18 with curves denoted by diamond

symbol. As can be seen in Figure 5.18 and 5.15, the curves for these two cases are identical. Since

action potentials for both of these cases have similar duration. change in the value of ε2 the action

potential duration becomes shorter.

The 2:2 restitution curve Similar to the previous case, in order to construct the 2:2 restitution

curve, the following conditions must be satisfied

⎧
⎪⎨

⎪⎩

1

heven(0) =
2

hodd(B),

2

heven(B) =
1

hodd(0),
(5.52)

⎧
⎪⎨

⎪⎩

1
neven(0) =

2
nodd(B),

2
neven(B) =

1
nodd(0),

(5.53)
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The above equations are solved simultaneously using the solution of the initial value problem as an

initial guess. Thus, similar to the previous part, we formulate the E(t) solution as a function of B

and t†. By decreasing the value of B and finding the t† for each basic cycle length, the restitution

curves for different ε2 are constructed. For r > 1 the bifurcation is Supercritical and stable alternans

occur. The restitution curves for this condition are illustrated in Figure 5.19(a) and when r < 1 the

restitution curves demonstrate 1:1 response as can be seen in Figure 5.8(c). As ε2 → 0 the exact

solution reaches the asymptotic solution (5.14).
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Figure 5.19: Action potential duration restitution curves from the exact analytical solution in com-

parison with asymptotic map. The red curve corresponds to the full model. The blue curve is for

ε1 = 0 and ε2 = 1. The green curve corresponds to ε1 = 0, ε2 = 0.2, the magneta curve is for ε1 = 1

and ε2 = 0.001 and the black curve is for asymptotic map i.e.ε1 = ε2 = 0. In (a) r = 1.8 and in (b)

stable alternans at B = 331 (ms) is shown. Plot (c) is for r = 0.8 and in (d) 1:1 response for r = 0.8 at

B = 244 (ms).
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5.6 Summary

In this chapter, a version of the classical model of Purkinje fibers (Noble, 1962) are studied. The No-

ble (1962) model was simplified by Biktashev et al. (2008) to a caricature model using asymptotic

embedding approach. The caricature Noble model is simple enough to be solved analytically but at

the same time it contains the essential time scales and parameters relevant to the physiology of the

cardiac cell. Following the results described in the previous chapter and also the direction suggested

by Mitchell and Schaeffer (2003), a dimensionless parameter r is introduced to the function of the

slow gating variable n. We remark that Mitchell and Schaeffer (2003) described a procedure in the

case of a simple model but in this chapter, we have applied the procedure to the Caricature Noble

model which is a more relevant cardiac model.

Applying asymptotic reduction methods, the full Caricature Noble system (5.1) is reduced to two

subsystems, the phase portrait of the system is studied and an explicit restitution map is derived from

the model where the relevant parameters of the model are still present in the map. The stability of

the map and bifurcations of equilibria of the map have been studied to determine the regions and

the parameter space where normal response and alternans occur. We have found that the parameter

r in the slow gating variable n, plays an important role in inducing instabilities including alternans.

It has been presented that the map losses its stability at r = 1 and exhibits 2:2 response for r > 1.

The results of the asymptotic action potential duration restitution curve is validated by comparing

it with the full solutions of the system. The attention was focused not only on the role of the slow

subsystem in inducing alternans but also on the role of the fast subsystem. We have found that the

fast subsystem (5.4) determines the voltage stimulus, such that, since the nthr is a function of Estim

according to (5.11), it can be large enough to prevent alternans in the full system.

Since the Caricature model (Biktashev et al., 2008) is a version of Noble (1962) model, its pa-

rameters and variables could have physiological meaning. Hence our results could be translated into

Physiology. The variable n is activation gating variable for K+ current. As stated previously, in more

physiologically based models gating variables satisfy equations of the form

dn

dt
=

n(E)−n(E)

τn(E)
,

where n(E) and τn(E) are continuous function of voltage E . It follows from the equation (5.1c) that:

Fn(E) =
1

τn(E)
.
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Recall that n is activation gating variable, therefore, when n = 1 the channel is open and K+ ions

leave the cell causing the voltage to decrease. For n = 0, the channel closes and there is no IK current.

Parameter r is present in the Fn(E) equation and in particular it appears at the diastolic phase of the

model’s action potential i.e. when t > t† and E < E†. Thus, r determines the speed in which the

n-gating variable decreases during the diastolic phase. When r > 1, Fn(E) increases, consequently

τn(E) reduces which means the time needed for activation of n-gating variable is small. As a result

n-gating variable reaches its resting value quickly. Physiologically this means that the channel closes

and the outward IK current decreases. Thus alternans occurs.

When r < 1 the time scale at which the n gating variable evolves increases and the evolution of n

gating variable slows down. Hence, n-gating variable closes slowly resulting in more K+ ion leaving

the cell and the membrane potential becoming more negative. As a result, increase in magnitude of

the IK suppresses alternans. Although literature supports the role of an increase in the IK current in

suppressing alternans (Fox et al., 2002), we wish to emphasise that there are other ionic mechanisms

that play more important roles in inducing or suppression of alternans. For example Ca+2 as an

important ion in excitation-contraction of cardiac cells believed to be responsible for inducing action

potential duration alternans in cardiac cells. However, it is not included in the Noble (1962) model

in the first place. Therefore, one interpretation of our finding in this chapter could be the fact that

the slow gating variable responsible for inducing alternans in this model, is a combination of slow

recovery variables of Ca+2 and K+ channels.



Chapter 6

Restitution and alternans in the

Courtemanche-Ramirez-Nattel model of

a human atrial cell

6.1 Introduction

In this chapter the methods introduced and developed in the previous chapters are applied to a reduced

version of the detailed Courtemanche et al. (1998) model of the human atrial cell action potential. The

model of Courtemanche et al. (1998) is much more detailed than the models considered previously.

Therefore, the results obtained from this model might be transferable to the physiology of the atrial

cells. The model was reduced by Suckley (2004) where she used asymptotic methods and qualitative

analysis to eliminate the variables of the system of Courtemanche et al. (1998) with 21 equations,

called CRN-21, to a system with 3 equations (CRN-3).

A short summary of the reduction process of Suckley (2004) is given in the first section of this

chapter where the steps are repeated to confirm that Suckleys reduction remains valid in the case

of multiple periodic simulation not only for one single action potential. Then the system is further

reduced to two equations, called CRN-2. The methodology presented in Chapter 3 is applied to the

CRN-2 model and an asymptotic map describing the action potential duration as a function of the

preceding diastolic interval for a fixed basic cycle length is derived. The stability of this map is

studied and the region(s) of the model’s parameters where instabilities occur are outlined. The CRN-2

97
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is a simplified version of CRN-21, therefore the parameters and variables present in the CRN-2, are

relevant to the physiology of the atrial cell. Moreover, the 2 equations in CRN-2 are expected to

represent the membrane voltage and the slow inactivation gating variable for L-type Ca+2 current.

Although the reduced version does not contain all the details present in the full Courtemanche model,

since it is successful in inducing instability, we are therefore able to identify a factor responsible for

alternans.

6.2 Courtemanche-Ramirez-Nattel model

The Courtemanche et al. (1998) is based on ionic current data obtained directly from human atrial

cells. When human data were not available or were inadequate to describe an atrial ion current, they

employed animal data. In particular they used the model of Luo and Rudy (1991) which is based

on measurements of guinea pig ventricular cells. The Courtemanche et al. (1998) model action

potential resembles action potentials recorded in human atrial samples. A schematic representation of

the currents and subcellular compartments of a cardiac cell that is included in the Courtemanche et al.

(1998) model is shown in Figure 6.1. As was explained in Section 2.2.1, in each heartbeat the Na+

channels are activated by a stimulus current, Na+ enters the cell and the cell membrane is depolarised.

The voltage-dependent Ca+2 channels open due to the change in the membrane potential (Bers., 2002)

and Ca+2 enters the cytoplasm. Ca+2 binds to ryanodine receptor (RyR) and activates them. Then the

Ca+2 stored in the sarcoplasmic reticulum SR is released into the intracellular space. Courtemanche

et al. (1998) used a similar approach to Luo and Rudy (1991) and represented the SR Ca+2 uptake and

SR Ca+2 release as a two-compartment model. The intracellular Ca+2 is taken up into an SR uptake

compartment called the network SR (NSR) and the SR Ca+2 release is released from a compartment

called the junctional SR (JSR). The membrane potential for an equipotential cell is given by

dE

dt
=−

Iion

CM
, (6.1a)

where CM is the membrane capacitance and Iion is the total ionic current given by

Iion = INa + IK1 + Ito + IKur + IKr + IKs + ICa,L + Ip,Ca + INa,K + Ib,Na + INaCa + Ib,Ca, (6.1b)

where notations are presented below
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Figure 6.1: Diagram of intracellular compartments and ion fluxes included in the Courtemanche et al.

(1998) model. The model considers the cell with 3 intracellular compartments: the myoplasm, the

sarcoplasmic reticulum release compartment labeled JSR and the sarcoplasmic reticulum uptake com-

partment labeled NSR.

INa: fast inward Na+ current, IK1: inward rectifier K+ current,

Ito: transient outward K+ current, IKur: ultrarapid delayed rectifier K+ current,

IKr: rapid delayed rectifier K+ current, IKs: slow delayed rectifier K+ current,

ICa,L: inward Ca+2 current, Ip,Ca: sarcoplasmic Ca+2 pump current,

INa,K: Na+−K+ pump current, INaCa: Na+−Ca+2 exchanger current,

Ib,Na: background Na+ current, Ib,Ca: Background Ca+2 current,

Ib,K: Background K+ current, Irel: Ca+2 release current from the JSR,

Iup: Ca+2 uptake current into the NSR, Itr: Ca+2 transfer current from NSR to JSR,

Iup,leak: Ca+2 leak current from the NSR.

The model has 15 gating variables satisfying

dyi

dt
=−

yi − yi

τyi

, for i = 1, ..,15, (6.1c)

yi ∈ [0,1].



100

For each gating variable yi, yi is the steady state -activation and inactivation- relations for the gating

variable yi and τyi
is time. The gating variables included in this model are the following:

m: activation gating variable for INa, h: fast inactivation gating variable for INa,

j: slow inactivation gating variable for INa, oa: activation gating variable for Ito,

oi: inactivation gating variable for Ito, ua: activation gating variable for IKur,

ui: inactivation gating variable for IKur, xr: activation gating variable for IKr,

xs: activation gating variable for IKs, d: activation gating variable for ICa,L,

u: activation gating variable for Irel,

v: Ca+2-dependent inactivation gating variable for Irel,

w: E-dependent inactivation gating variable for Irel,

f : E-dependent inactivation gating variable for ICa,L,

fCa: Ca+2-dependent inactivation gating variable for ICa,L.

In addition, the model keeps track of the intracellular concentrations of [Na+]i, [Ca+2]i and [K+]i

of Na+, Ca+2 and K+ while the extracellular ion concentrations are fixed. The evolution of these

intracellular concentration are given by

d[Na+]i
dt

= (FVi)
−1 (−3INa,K +3INaCa + Ib,Na + INa) , (6.1d)

d[K+]i
dt

= (FVi)
−1 (2INa,K − IK1 − Ito − IKur − IKr − IKs − Ib,K) ,

d[Ca+2]i
dt

=
B1

B2
,

B1 = (2FVi)
−1
(
2INaCa − Ip,Ca − ICa,L − Ib,Ca

)
+(Vi)

(−1)
(
Vup(Iup,leak − Iup)+ IrelVrel

)
,

B2 = 1+
[Trpn]maxKm,Trpn

([Ca+2]i +Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

[Ca+2]i +Km,Cmdn)2
.

where F is the Faraday constant, Vi is the intracellular volume intracellular volume is the cytosolic vol-

ume, Vup is the SR uptake compartment volume, Vrel is the SR release compartment volume, [Trpn]max

is the total troponin concentration in the myoplasm, Km,Trpn is the Ca+2 half-saturation constant for

troponin, [Cmdn]max is the total calmodulin concentration in the myoplasm and Km,Cmdn is the Ca+2

half-saturation constant for calmodulin.
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The change in the concentration of Ca+2 released from SR, denoted [Ca+2]rel, and the concentra-

tion of Ca+2 uptake to the SR, denoted [Ca+2]up, are also included in the Courtemanche et al. (1998)

model with the following equations

d[Ca+2]up

dt
= Iup − Iup,leak − Itr

Vrel

Vup
, (6.1e)

d[Ca+2]rel

dt
=

(Itr − Irel)(
1+

[Csqn]maxKm,Csqn

([Ca+2]rel +Km,Csqn)2

) .

Here [Csqn]max is total calsequestrin concentration in JSR and Km,Csqn is Ca+2 half-saturation constant

for calsequestrin. The Courtemanche model is a sophisticated system of ordinary differential equa-

tions as can be seen from the system of equations (6.1). Hence a reduced version of this model with

fewer variables would be an ideal tool to study and understand the role of physiological parameter.

The reduced Courtemanche et al. (1998) model reproduces the four phases of the cardiac action poten-

tial, hence analysing its parameters provides insight into the initiation, plateau, decay, and recovery.

With this motivation, we use a version of the Courtemanche et al. (1998) model which was reduced

by Suckley (2004). We repeat the steps that she took to obtain the reduced system. The next section is

a summary of the process we followed in order to reduce the system as Suckley did in her PhD thesis.

We emphasise that in order to confirm that Suckleys reduction remains valid in the case of multiple

periodic simulation not only for one single action potential, we repeated the process of reducing the

model of Courtemanche et al. (1998).

6.3 Reduction of the CRN-21 model

The main idea of this reduction is to identify small and large terms and slow and fast time scales in

the problem. Therefore, according to Definition (2.1) a set of small parameters can be introduced

accordingly. This process was explained in Chapter 2. The first step in reducing the Courtemanche

et al. (1998) model is to classify the dynamical variables according to their speed, using the following

definition due to Biktashev and Suckley (2004); Suckley (2004).

Definition 6.1 For a system of differential equations

dy

dt
= f(y) y = (y1,y2, ...,yN),

the characteristic time-scale coefficients τyi
are
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Figure 6.2: Graph of the ln(τ)’s for all the variables of the CRN-21 for t ∈ [0,600].

τyi
≡

∣∣∣∣∣

(
∂

∂yi
(
dyi

dt
)

)−1
∣∣∣∣∣
.

The characteristic time-scale coefficients τyi
for all the dynamical variables of the Courtemanche et al.

(1998) model is plotted in Figure 6.2. For gating variables yi = m, h, j, oa, oi, ua, ui, xr, xs, d, f , fCa, u,

v, w in the system (6.1), the time-scale coefficients τyi
corresponds to the τyi

already presented in the

equations (6.1c). For the other variables in the system (6.1) such as E , [Ca+2]i, [Na+]i, [K+]i, [Ca+2]up

and [Ca+2]rel the above definition is used. The variables with very small and very large time-scale

coefficients are categorised into two groups of fast and slow variables, respectively. Having said that,

some of the model’s variables do not exactly fit into either of the two groups; during the time course

of one action potential their speeds vary, behaving at times like fast variables and at other times like

slow. This can be seen in Figure 6.2.

It is vital to remark that the focus of Suckley (2004) was on one particular solution rather than

a series of solutions, whereas in this thesis each reduced system is solved many times to make sure

that the reduced system is in agreement with the original system. The reason for doing this process is

that, in order to study the restitution properties of the cardiac cells, the cell must be excited repeatedly.

Hence, the system of equations must be solved for a series of solutions rather than one solution. As
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can be seen in Figure 6.2 the largest time-scale coefficients are the super-slow variables [Na+]i, [K+]i,

[Ca+2]up and ui. Variables with the smallest characteristic time-scales are the super-fast variables m, ua

and w. Super-fast variables are m, ua and w. The green dashed dotted line that you mentioned in the

correction list, corresponds to the variable d, it is considered fast variable but since at the beginning

of the action potential, its time scale is very large, it is not considered as a super-fast variable. In

Figure 6.3, the bottom part of the Figure 6.2 is zoomed in, to illustrate the time-scale coefficient for

fast and super-fast variables.
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Figure 6.3: Graph of the ln(τ)’s for all the variables of the CRN-21 for t ∈ [0,600].

The super-slow variables don’t differ significantly from their initial values, therefore they can be

replaced with their initial conditions and the system of CRN-21 is reduced to CRN-17. The super-

fast variables reach their quasi-stationary values m, ua, w, very quickly. Since the speed of these

variables remains fast at all times during the action potential solution, Suckley (2004) introduced a

small parameter ε > 0 to their equations as follows:

ε
dyi

dt
=−

yi − yi

τyi

, for yi = m,ua,w.

As ε tends to zero, yi tends to yi and the super-fast variables are replaced with their quasi-stationary

functions. This allows the CRN-17 to be reduced to the new system of 14 variables (CRN-14). The

solution of CRN-17 and CRN-14 are plotted in Figure 6.4 with red and blue curves, respectively and

can be seen to agree closely with the CRN-21 solution.

It should be noted that the evolution of the super-fast variables m, ua, w can be studied by re-scaling

the independent time variable t to T = t/ε. When ε → 0 all the other variables are parameters as



104

0 100 200 300 400 500 600
Time (mS)

-80

-40

0

40

E
 (

m
V

)

Figure 6.4: The human atrial action potential generated by the model of Courtemanche et al. (1998).

A selected solution for the CRN-21, CRN-17 and CRN-14 is plotted in black, red and blue curves,

respectively, when t ∈ [0,600]

their change during the fast time-scale T is negligible. For further details see Biktasheva et al. (2006);

Simitev and Biktashev (2006); Suckley (2004). Since the focus of this research is to study alternans

in the repolarisation phase of an action potential, the fast subsystems are not studied here. After

obtaining the reduced Courtemanche system with 14 variables (CRN-14), Suckley (2004) divided the

action potential solution of this system into three time stages corresponding to different time-scales.

The stages are explained briefly as follows and are also illustrated in Figure 6.5.

i. The fast stage [t0, t1]: This is the fastest stage of an action potential where INa enters the system

and the variables h, oa and d are fast as can be seen in Figure 6.5(a). The rest of the variables

are slow and are taken as their initial value. So, a system of 4 equations for voltage E , gating

variables h, oa and d, describes this stage of an action potential.

ii. Intermediate stage [t1, t2]: During this stage INa is over and the fast gating variables h, oa and d are

replaced with their quasi-stationary values. This stage is described by the CRN-11 system, as can

be seen in Figure 6.5(b). The gating variables f , xr and xs are slow during this stage, hence they

are replaced with their initial values. The variables u and v are replaced with explicit functions of

time. Therefore the CRN-6 system describes this stage of an action potential.
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Figure 6.5: Graph of the ln(τ) for various τ for the three stages of an action potential. Plots (a) is

of CRN-14 for the fast stage t ∈ [0,1.2], plot (b) and (c) show CRN-11 during the intermediate stage

t ∈ [1.2,33] and the slow stage t ∈ [33,600] of the action potential, respectively.

iii. Slow stage [t2,∞): The system of CRN-11 is valid for this stage too (Figure 6.5(c)). The variables

fCa, j, u and v are fast during this stage, so they can be replaced with their quasi-stationary values

and the system of CRN-7 is obtained.

The asymptotic methods that Suckley (2004) applied to the CRN-21 system are summarised in the

following system. She used small parameters εj for j = 1, ...,4, to obtain the reduced systems for three

stages of the action potential.

dE

dt
=−

Iion

CM
,

Iion =
1

ε3
INa(E,m,h, j)+ IK1(E, [K+]i,ε4)+ Ito(E, [K+]i,oa,oi)

+ IKur(E, [K+]i,ua,ui)+ IKr(E, [K+]i,xr,ε4)+ IKs(E, [K+]i,xs,ε4)

+ ICa,L(E,d, f , fCa)+ Ip,Ca([Ca+2]i,ε4)+ INa,K(E, [Na+]i,ε4)

+ INaCa(E, [Na+]i, [Ca+2]i,ε4)+ Ib,Na(E, [Na+]i,ε4)+ Ib,Ca(E, [Ca+2]i,ε4),

dui

dt
=ε1ε4

ui(E)−ui

τui
(E)

,

d[Na+]i
dt

=ε1ε4(FVi)
(−1) (−3INa,K +3INaCa + Ib,Na + INa) ,

d[K+]i
dt

=ε1ε4

(
(FVi)

(−1) (2INa,K − IK1 − Ito − IKur − IKr − IKs − Ib,K)
)
,
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d[Ca+2]up

dt
=ε1ε4

(
Iup − Iup,leak − Itr

Vrel

Vup

)
,

ε2ε3
dm

dt
=

m(E,ε3)−m

τm(E)
, m(E,0) = H(E −Em),

ε2ε3
dua

dt
=

ua(E)−ua

τua(E)
,

ε2ε3
dw

dt
=

w(E)−w

τw(E)
,

ε3
dh

dt
=

h(E,ε3)−h

τh(E)
, h(E,0) = H(Eh −E),

ε3
doa

dt
=

oa(E)−oa

τoa(E)
,

ε3
dd

dt
=

d(E)−d

τd(E)
,

du

dt
=

u(Fn)−u

τu
, u(Fn,0) = H(Fn −F1),

dv

dt
=

v(Fn)− v

τv(Fn)
, v(Fn,0) = H(Fn−F2), τv(Fn,0) = 2+2H(Fn−F1),

dxr

dt
=ε4

xr(E)− xr

τxr(E)
,

dxs

dt
=ε4

xs(E)− xs

τxs(E)
,

d f

dt
=ε4

f (E)− f

τ f (E)
,

d j

dt
=

j(E)− j

τ j(E)
,

d fCa

dt
=

fCa([Ca+2]i)− fCa

τ fCa

,

doi

dt
=

oi(E)−oi

τoi
(E)

,

d[Ca+2]i
dt

=
B1

B2
,

d[Ca+2]rel

dt
=

(Itr − Irel)(
1+

[Csqn]maxKm,Csqn

([Ca+2]rel +Km,Csqn)2

) ,

where

B1 =(2FVi)
(−1)

(
2INaCa − Ip,Ca − ICa,L − Ib,Ca

)
+(Vi)

(−1)
(
Vup(Iup,leak − Iup)+ IrelVrel

)
,

B2 =1+
[Trpn]maxKm,Trpn

([Ca+2]i +Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

[Ca+2]i +Km,Cmdn)2

Fn =10−12VrelIrel −
5×10−13

F

(
1

2
ICa,L −

1

5
INaCa

)
,
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Figure 6.6: Solution of the full CRN-21 system denoted in black is compared with the reduced systems

of CRN-11, CRN-7 and CRN-5 in red, blue and green respectively.

u =(1+H exp(
−Fn

a
))−1, v = 1− (1+Gexp(

−Fn

a
))−1,

F1 =a lnG, F2 = a lnH.

A description of the εj for j = 1, ...,4 is as follows.

ε1 separates the super-slow variables from the slow variables, CRN-21 becomes CRN-17.

ε2 distinguishes the super-fast variables from the fast variables, CRN-17 becomes CRN-14.

ε3 classifies the fast variables from the intermediate variables, CRN-14 becomes CRN-11.

ε4 separates the intermediate variables from the slow variables and CRN-14 gives CRN-6.

The reduced system CRN-7 obtained from the slow stage of an action potential is reduced further

by Suckley (2004) where she proposed a series of less accurate reductions compared to the above

reduction process. She showed that the [Ca+2]rel equation in CRN-7 is decoupled and can be solved

separately since it only contains [Ca+2]rel. This leads to the system CRN-6. Then speed analysis is

applied as before and the remaining variables of the CRN-6 system are categorised into two groups of

slow and fast variables. The variable oi is identified as a fast variable that reaches its quasi-stationary

value, relatively quick. Therefore, the variable is replaced with its quasi-stationary function and the

system of CRN-5 is obtained. Figure 6.6 compares the solutions of the systems CRN-21, CRN-11,

CRN-7 and CRN5 which are plotted with black, red, blue and green curves, respectively. From this
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(a) (b)

Figure 6.7: Plot (a) is a chart describing the reduction process of the CRN-21 model. Plot (b) shows

the The solution of the full Courtemanche et al. (1998) model in comparison with CRN-3 and CRN-2,

when BCL = 1500(ms).

figure it can be seen that during the repolarisation phase of the action potential, the solution of the

reduced CRN-5 system is in agreement with the full CRN-21 model. The variables xr and xs are

also identified as the fast variables of the system CRN-5 and are replaced with their quasi-stationary

functions. Following this series of same accurate and same less accurate reductions, the system of

CRN-3 involving only three variables E , f and [Ca+2]i is obtained. Furthermore, we reduced the

CRN-3 model one step further by replacing [Ca+2]i with its initial value [Ca+2]i(0) and the system of

CRN-2 is obtained. A simple chart outlining the reduction process is plotted in Figure 6.7(a). The

CRN-21, CRN-3 and CRN-2 systems are solved for series of solutions and their last solution is plotted

in Figure 6.7(b). It can be seen that despite a difference between the shape of the action potential in

these three systems, the solution of CRN-2 in the repolarisation phase agrees closely with the solution

of the CRN-21 system. As a result, this system is studied and the role of its parameters in inducing

repolarisation alternans are investigated.
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6.4 The reduced Courtemanche system with two variables

The system of CRN-2 has two dynamical variables, the transmembrane voltage E(t) and a gating

variable f (t). The voltage E(t) is governed by

dE

dt
=−

I1(E)+ I2(E, f )

CM
, (6.3a)

where I1(E) is a combination of all the voltage dependent currents and I2(E, f ) is a function of voltage

E and variable f . The currents are given by

I1(E) =IK1

(
E, [K+]i(0)

)
+ Ito

(
E,oa,oi, [K

+]i(0)
)
+ IKur

(
E,ua,ui, [K

+]i(0)
)

+ IKr

(
E, [K+]i(0),xr

)
+ IKs

(
E, [K+]i(0),xs

)
+ INa,K

(
E, [Na+]i(0)

)

+ Ib,Na

(
E, [Na+]i(0)

)
+ INaCa

(
E, [Na+]i(0), [Ca+2]i(0)

)
+ Ib,Ca

(
E, [Ca+2]i(0)

)
,

I2(E, f ) =ICa,L(E, f ,d, fCa) = gCa,Ld f fCa(E −65).

(6.3b)

The current I2(E, f ) is the inward Ca+2 current ICa,L and includes terms involving the maximum

ICa,L conductance, denoted as gCa,L, the voltage-dependent activation gate d, the voltage-dependent

inactivation gate f and the Ca+2-dependent inactivation gate fCa. As explained earlier, the gating

variables d and fCa are replaced with their quasi-stationary functions and the only gating variable on

which ICa,L depends is the voltage-dependent inactivation gating variable f which satisfies

d f

dt
=

f (E)− f

τ f (E)
, (6.3c)

where

f (E) =

(
1+ exp

(
E +28

6.9

))−1

, (6.3d)

τ f =9
(
0.0197exp

(
−0.03372(E +10)2

)
+0.02

)−1
.

The following initial conditions are imposed on the CRN-2 system (6.3)

E(0) = Estim, f (0) = 1. (6.3e)

The behaviour of the gating variable f affects the ICa,L and consequently the membrane potential.

When f decreases, the inward ICa,L increases and the voltage rises. Hence an excursion occurs which

happens during the depolarisation phase of an action potential. When f increases, the ICa,L decreases
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and the voltage decays back towards its resting potential. This occurs during the repolarisation phase.

The functions τ f (E) and f (E) are continuous functions of voltage E . In order to understand their

behaviour and their effect on the membrane potential, these functions and the voltage E(t) are plotted

as black curves in Figures 6.8(a), 6.8(b) and 6.8(c), respectively. As can be seen in Figure 6.8(a),

the range of τ f (E) is large, therefore the voltage-dependent inactivation of ICa,L is a slow process.

According to Courtemanche et al. (1998) the ICa,L activates very quickly, due to its voltage-dependent

activation d. Then it has rapid inactivation process mediated by Ca+2 and this is followed by a slow

voltage-dependent inactivation process which occurs when voltage decays to its resting potential.

From the Figure 6.8, it can be seen that the functions τ f (E) and f (E) can be replaced by step func-

-80 -60 -40 -20 0

400

600

r=1

r=0.7

r=1.2

r=1.5

-80 -40 0

0

1

0

-80

0

(a) (b) (c)

600
t (ms)E (mv)E (mv)

E
(m

V
)

τ
f f

Figure 6.8: The original and modified functions for τ f (E), f (E) and the membrane voltage E are

plotted in (a), (b) and (c) respectively. The black curves correspond to the original functions and the

red curves denote the modified functions where the model’s constants are E f = −40, F1 = 450 and

r = 1
2 . In plot (a) the green curves correspond to different values of the parameter r.

tions (6.3f) and (6.3g) as follow

τ f (E) = F1 (rH(E −E f )+H(E f −E)) , (6.3f)

f (E) = H(E f −E), (6.3g)

where the values E f = −40, F1 = 450 and r = 1
2 give the closest match to the original system.

In Mitchell and Schaeffer (2003) it was determined that the voltage-dependent time function (τ(E)

as a function of τopen and τclose) plays an important role in changing the behaviour of a system and

inducing instabilities. Therefore in modifying the voltage-dependent inactivation time function τ f (E)

in CRN-2 system, a dimensionless parameter r is introduced into the function τ f (E) and the role of r

is studied. The parameter r determines the amplitude of the time function during the slow inactivation
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Figure 6.9: Graph of the timescale coefficient for CRN-2. The red curve is the time-scale coefficient

function of voltage and the orange curve corresponds to f .

process of ICa,L. When r < 1 the time required for the inactivation process to occur is small and conse-

quently the gating variable f evolves quickly. For r > 1 the time required for the inactivation process

is large. The dependence of τ f (E) on the parameter r is illustrated in Figure 6.8(a). Now that the

functions of CRN-2 have been modified using appropriate step functions and that the resulting mem-

brane potential has been seen to agree closely with the original CRN-2 model, the system of CRN-2

is studied in more details. An explicit formula for its restitution curve is derived and the responses of

the map are studied.

6.4.1 Asymptotic reduction

The CRN-2 system (6.3) is now considered in the domain t ∈ [0,B] and when the boundary condition

is E(0) = Estim, f (0) = f (B). The speed of the voltage E and the gating variable f are compared.

As described previously, the timescale coefficient can be plotted against time to analyse the speed of

each variable during one solution. It can be seen in Figure 6.9 that the voltage E , despite having two

peaks during the time course of one action potential, has a smaller timescale coefficient than the gating

variable f . Therefore it is considered as the fast variable in the CRN-2 system. On the other hand the

gating variable f has the larger timescale coefficient which indicates that f is the slow variable. As a

result of the speed analysis, a small parameter ε > 0 can be introduced into the system (6.3) such that

when ε = 1 the system CRN-2 (6.3) is recovered and in the limit ε → 0 the variable E becomes much
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faster then the gating variable f . Introducing ε, the system (6.3) becomes

ε
dE

dt
=−

I1(E)+ I2(E, f )

CM
,

d f

dt
=

f (E)− f

τ f (E)
.

This indicates that the CRN-2 system can be analysed as fast and slow subsystems as follows.

The slow subsystem: When ε → 0, the asymptotically reduced system becomes as follows

0 = I1(E)+ I2(E, f ), (6.4a)

d f

dt
=

f (E)− f

τ f (E)
, (6.4b)

where f is the only dynamical variable and (6.4b) describes its evolution along the slow branch (6.4a).

As stated in previous chapters, the slow subsystem describes the plateau and the recovery stages of

the action potential.

The fast subsystem: The fast transient of the system can be studied if the independent time variable

is changed to T = t
ε . The fast subsystem is obtained as follows

dE

dT
=−

I1(E)+ I2(E, f )

CM
,

d f

dT
= ε

f (E)− f

τ f (E)
.

Taking the limit ε → 0 the system (6.5) becomes:

dE

dT
=−

I1(E)+ I2(E, f )

CM
, (6.5a)

d f

dT
= 0, (6.5b)

where the evolution of f during the fast time scale is negligible since it is constant. The only dy-

namical variable in the fast time scale T is voltage E and its equation (6.5a) describes the upstroke

and repolarisation stage of the action potential. In the next section, the phase portrait of the CRN-2

system (6.3) is studied.

6.4.2 Phase portrait

The phase portrait of the CRN-2 system (6.3) is shown in Figure 6.10 where the phase portrait for

the original functions of CRN-2 (6.3d) and the modified functions (6.3f) and (6.3g) in Figures 6.10(a)
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Figure 6.10: Phase portrait of CRN-2 system (6.3) with selected trajectories for different initial condi-

tions (E0, f0). The black curve is the E-nullcline. The green f -nullcline is the original function (6.3d)

in plot (a) and is the modified function (6.3g) in plot (b).in both (a) and (b) ε = 1, in (b) r = 1.

and 6.10(b), respectively are plotted. A few selected trajectories of the system (6.3) with original

and modified functions are also shown in Figures 6.10(a) and 6.10(b) to outline the effects of the

modification on the f -nullcline and the trajectories. Equation (6.4a) defines the slow manifold of the

system which is plotted with a black solid curve in Figure 6.10 and is explicitly given by:

F (E) =
−I1(E)

gCa,L d fCa(E −65)
. (6.6)

The f -nullcline
d f

dt
= 0 is shown with green curves in plots (a) and (b) of Figure 6.10, and is defined

by

fOriginal(E) =

(
1+ exp

(
E +28

6.9

))−1

,

fModified(E) =

⎧
⎪⎨

⎪⎩

1 if E < E f

0 if E > E f .

The slow manifold is split into two parts with positive slope separated by a part with a negative slope.

The positive slope branches, labelled E1 and E3, are stable and the negative slope branch E2 is unstable.

The stable and unstable branches are separated at the point (E∗, fmin) = (−15,0.66) where E∗ is the

root of the equation F ′(E∗) = 0, where the slow gating variable f takes its minimum value at E∗.

d f

dE
(E∗) = 0 (6.7)
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fmin =
−I1(E∗)

gCa,L d fCa(E∗ −65)
.

The E1 branch corresponds to the “diastolic” part E ∈ (−∞,E f ] and the E3 branch is the “systolic”

phase of an action potential when E ∈ [E f ,+∞]. On the time scale t ∼ 1 there is a slow movement

along the slow manifold with its evolution described by (6.4b).

Consider the two nullclines intersect at the steady state S = (Ess, fss). The point S is the equilib-

rium of the system (6.3) and as is shown in Figure 6.10, it is at the “diastolic” branch of the slow

manifold. The direction of the trajectories are dependent on the signs of
dE

dt
and

d f

dt
as described in

Chapter 2. If the equilibrium point is perturbed the resulting trajectory converges back to the steady

state.

If the initial condition is chosen such that there is a sufficiently large perturbation from the steady

state, then an action potential will be elicited. The initial condition for voltage must be large enough

to pass the unstable middle branch E2 of the E-nullcline. For a specific Estim there is a threshold value

for the gating variable f that is exactly the value of f on the E-nullcline when E = Estim. The equation

that describes the threshold value of f , is as follows

fthr ≡
−I1(Estim)

gCa,L d fCa(Estim −65)
. (6.8)

The k-th action potential will be formed if fk > fthr. If this condition is not satisfied then the voltage

decays back to its resting potential as it is illustrated in Figures 6.10 with red dashed curves. A

trajectory starting from Estim > E2 -satisfies the above condition- is repelled by E2 and attracted by E3

branch of the slow manifold. The trajectory then travels along the systolic branch of the slow manifold

and at (E∗, fmin) leaves the stable branch and jumps towards the diastolic branch. This is followed by

another slow movement along the diastolic branch of E-nullcline approaching the global equilibrium,

where the motion would eventually stops. As mentioned above, the entire cycle is repeated if the

initial conditions are chosen in the excitable region of the phase portrait and the condition (6.8) is

satisfied. The successful trajectories are shown in Figure 6.10 with blue curves. It is vital to note

that fthr is constrained to satisfy fthr ∈ ( fmin,1], since below the minimum value for f the solution is

outside the excitable region. In the next section the action potential duration restitution map is derived

from the modified CRN-2 system.
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Figure 6.11: A typical action potential solution for CRN-2 system (6.3). Figure (a) illustrates the

solution in (E, t) plane with action potential duration (APD) and diastolic interval (DI) shown as

phases (2) and (4), respectively. In (b) the solution is shown in the ( f ,E) plane. The fast motion

occurs at the phases (1) and (3), whereas the phases (2) and (4) are motion along the slow manifold.

6.5 Asymptotic action potential duration map

Figure 6.11 presents one selected trajectory corresponding to a typical action potential solution of

the CRN-2 system (6.3) with modified functions (6.3f) and (6.3g) and initial conditions (6.3e). Four

phases of the action potential are labelled 14 and are shown in the (t,E) plane and (E, f ) plane. As

mentioned earlier, the phase one of the action potential is a fast initial movement corresponding to

the upstroke of the action potential. This phase is labelled as (1) in Figures 6.11(a) and 6.11(b).

The movement of the trajectory along the systolic branch of the slow manifold (6.6) is labelled as

phase (2) and corresponds to the plateau phase of the action potential. This phase occurs on a time

scale of τ f = rF1 and the inactivation gating variable f reaches its smallest value f = 0. At the

point (E∗, fmin) the trajectory leaves the stable branch and jumps towards the diastolic branch which

corresponds to the repolarisation phase of the action potential and it is shown as phase (3) of the action

potential. Then at the phase (4) the trajectory travels slowly along the diastolic branch of the slow

manifold (6.6) and stops at the steady state i.e. the action potential returns to its resting potential. This

phase occurs on a time scale of τ f = F1 in which the voltage-dependent inactivation gating variable f

reaches its largest value, i.e. f = 1. The action potential duration map of type (3.1) is now constructed

in this section and the stability of the map is studied. Similar to the previous chapters, the approach in
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obtaining the map is based on Mitchell and Schaeffer (2003).

Map The APD restitution map of the CRN-2 system (6.3) is obtained using the equation (6.4).

Lemma 6.1 For an AP sequence generated in problem (6.3)

Ak = a( fk−1), a(x) ≡ rF1 ln

∣∣∣∣
x

fmin

∣∣∣∣ , (6.9a)

Dk = d( fk), d(x)≡ F1 ln

∣∣∣∣
1− fmin

1− x

∣∣∣∣ , (6.9b)

fk ≡ f (kB), k ∈ N.

where fk−1 = f ((k−1)B) is the value of gating variable f at the beginning of the k-st AP and k ∈ N.

Proof As can be seen in Figure 6.11 the time during which the voltage in greater than E f is the

action potential duration. The figure 6.11 is modified so that it can illustrate the APD. In general APD

can be considered as the sum of phase 2 and some part of phase 3 of the action potential. But, here

we considered phase 2 only. The value of the voltage also exceeds E f during parts of the phase (3)

but as stated previously, the motion away from the slow manifold is very fast and this phase like the

phase (1) of the action potential is very brief. As a result, the time required for the f gating variable

to travel from its preceding value to fmin is considered to be the duration of phase (2) and is obtained

by integration of
d f

dt
along the systolic branch E ∈ [E f ,+∞]. The time required for the motion at the

phase four of the action potential is diastolic interval Dk and is obtained by integration of (6.4b) along

the diastolic branch of the slow manifold E ∈ (−∞,E f ]. Thus the following equations are obtained:

Ak =
∫ (k−1)B+Ak

(k−1)B
dt =

∫ fmin

f ((k−1)B)
(rF1)

d f

− f
= rF1 ln

∣∣∣∣
fk−1

fmin

∣∣∣∣ , E > E f , (6.10a)

Dk =
∫ kB

(k−1)B+Ak

dt =
∫ f (kB)

fmin

(F1)
d f

1− f
= F1 ln

∣∣∣∣
1− fmin

1− fk

∣∣∣∣ , E < E f . (6.10b)

Where fk−1 = f ((k − 1)B) and fmin is the turning point for gating variable f , at which f is at its

minimum value on the systolic branch of the slow manifold (6.6). Furthermore, fmin is the value in

which the end of any plateau phase coincides with the beginning of the next recovery stage i.e.

f ((k−1)B+Ak) = f (kB+Ak+1) = fmin for any k ∈ N

.

The propositions explained in this chapter are similar to those of previous chapters. However,

since the equations are different, proofs are given for each proposition and the new terms are ex-

plained.
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Proposition 6.1 An action potential duration restitution map for the CRN-2 model is given by

Ak+1 = Φ(Ak),

Φ(Ak) = F(ã,B−Ak) = rF1 ln

∣∣∣∣∣∣

1− (1− fmin)exp
(
−(B−Ak)

F1

)

fmin

∣∣∣∣∣∣
, (6.11)

where ã is a vector of CRN-2 parameters, i.e. ã = [r, B, Estim, fthr]T .

Proof fk is eliminated between expression (6.9a) written for Ak+1 and expression (6.9b) written for

Dk = B−Ak and an action potential duration restitution map relating Ak+1 to Ak is obtained. This

Proposition gives an equivalent explicit representation of Lemma 6.1.

Fixed points The fixed point of the maps Φ and Φ2 correspond to the 1:1- and 2:2-responses as

follows.

Proposition 6.2 The equation A = Φ(A) has a unique solution branch given in parametric form by

A = a( f ), D = d( f ), (6.12)

so that a( f ) = B−d( f ) with a parameter f ∈ [ fthr,1].

Proof In order to solve A = Φ(A), the parametric representation of Lemma 6.1 is used. Since in

a 1:1 response

Ak = Ak+1 and Dk = Dk+1,

which is equivalent by (6.9) to

a( fk−1) = a( fk) and d( fk) = d( fk+1),

therefore, the solutions are fk−1 = fk ≡ f and fk = fk+1 ≡ f , respectively. Hence all the action

potentials start from identical values of the f gate, f in 1:1 response. The parameter f is a gating

variable hence f must be in the range [0,1]. Furthermore, we stated in the equation (6.8) that no AP

can be excited below fthr so f ∈ [ fthr,1].

Proposition 6.3 The equation A = Φ◦Φ(A) has three solution branches: the first one is identical to

(6.12), and the other two are given in parametric form by

Aeven = a( fe) = a(α fo), Deven = d( fo), (6.13a)
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Aodd = a( fo), Dodd = d( fe) = d(α fo), (6.13b)

fo =
1−αr

1−αr+1
, (6.13c)

with a parameter α ∈ (0,∞).

Proof Similar to 5.3 rather than solving the equation A = Φ◦Φ(A) directly, the equivalent para-

metric representation of Lemma 6.1 is used. In a 2:2 response

A2k = A2k+2 and A2k+1 = A2k+3, ∀k ∈ N

as well as

D2k = D2k+2 and D2k+1 = D2k+3, ∀k ∈ N.

Applying expressions (6.9), yields

f2k−1 = f2k+1 ≡ fe and f2k = f2k+2 ≡ fo.

Since the basic cycle length is fixed, it is required that

B = A2k +D2k = A2k+1 +D2k+1 ⇐⇒ a( fe)+d( fo) = a( fo)+d( fe). (6.14)

Let fe and fo be rearranged as fe = α fo, where α ∈ (0,∞) then the results can be written as:

Aeven = a( fe) = a(α fo), Deven = d( fo),

Aodd = a( fo) Dodd = d( fe) = d(α fo),

fo =
1−αr

1−αr+1

It is now vital to establish the range of α. Clearly (6.13c) is invariant with respect to exchanging fe

and fo, therefore without loss of generality the case fe ≥ fo is considered and since fe and fo are

positive it follows that fe/ fo = α ∈ (1,∞).

Stability and bifurcations of equilibria Again, similar to the previous chapters, in order to es-

tablish the stability properties of 1:1 and 2:2 responses, the condition (3.4b) and (3.5b) are imposed

on (6.12) and (6.13), respectively.

Proposition 6.4 The equilibrium (4.16) of the APD restitution map (6.11) loses stability in a flip

(period-doubling) bifurcation at

fbif =
r

1+ r
(6.15a)
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or in terms of the BCL, alternatively at

Bbif = a( fbif)+d( fbif) = F1 ln

∣∣∣∣
fbif

r(1− fmin)

fmin
r(1− fbif)

∣∣∣∣ . (6.15b)

Bbif corresponds to the region where 2:2-response bifurcates from the 1:1-response and it is denoted

as S1 in Figure 6.12.

Proof Substitution of (6.12) into (3.4b) and solve
∣∣∣∂AF(a,A)

∣∣∣
A
= 1, which is the border of

stability, the following condition is obtained

∣∣∣∣∣∣
−

r(1− fmin)exp
(
−(B−A)

F1

)

1− (1− fmin)exp
(
−(B−A)

F1

)

∣∣∣∣∣∣
= 1 (6.16)

Clearly, at the end of the the k-st action potential, fk = 1− (1− fmin)exp
(
− D

F1

)
. It follows from

D = Dbif that fbif = 1− (1− fmin)exp

(
−
(Bbif −Abif)

F1

)
. Thus by rewriting (6.16) in terms of fbif, the

following equation is obtained
r(1− fbif)

fbif
= 1

which provides an expression for fbif in terms of the models parameter r:

f = fbif =
r

(1+ r)
.

Evaluating (6.12) at fbif yields:

Abif = a( fbif) = rF1 ln

∣∣∣∣
fbif

fmin

∣∣∣∣ , (6.17a)

Dbif = d( fbif) = F1 ln

∣∣∣∣
1− fmin

1− fbif

∣∣∣∣ , (6.17b)

Bbif = a( fbif)+d( fbif) = F1 ln

∣∣∣∣
fbif

r(1− fmin)

fmin
r(1− fbif)

∣∣∣∣ . (6.17c)

Proposition 6.5 The equilibria (6.13) of the second-generation map Φ◦Φ bifurcate from the equilib-

rium (6.12) of the APD restitution map (6.11) at (6.15a) and lose their stability at r = 1.

Proof It is evident that fo = fe when α = 1, therefore the intersection of (6.12) and (6.13) can be

obtained if the expression (6.13c) is evaluated at α = 1. Thus the following equation for the value

where (6.13) first emerges, is obtained:

fo(α = 1) =
r

1+ r
= fbif,
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In order to determine the stability of the equilibria, the methods explained in the previous chapters

are employed. Thus, according to Strogatz (2001) a pitchfork bifurcation can be either supercritical

if [∂3
AΦ◦Φ]Abif

< 0 or subcritical if [∂3
AΦ◦Φ] Abif

> 0. It is important to mention that a flip bifurcation

for Φ is a pitchfork bifurcation for the second generation map Φ ◦Φ as well. Substituting (6.17)

into [∂3
AΦ ◦Φ]Abif

= 0 and solving this equation for r, the boundary between the subcritical and the

supercritical cases is determined to be r = 1. As before, the subcritical case is characterised by one

stable branch on one side and no stable branches on the other side of the bifurcation point. The

supercritical case is characterised by one stable branch on one side and two stable and one unstable

branches on the other side of the bifurcation point.

Thresholds The 1:1 responses are stable for B > Bthr (condition (3.4c)), where Bthr is the threshold

value of BCL for excitation of a 1:1 response. Furthermore, the 2:2 responses are stable for B > Bthr

(condition (3.5c)) such that Bthr is the threshold value for excitation of 2:2 response. These conditions

are explained in propositions and respectively.

Proposition 6.6 The threshold value of BCL for excitation of a 1:1 response is

Bthr = Athr +Dthr = rF1 ln

∣∣∣∣
fthr

fmin

∣∣∣∣+F1 ln

∣∣∣∣
1− fmin

1− fthr

∣∣∣∣ . (6.18)

The Bthr given by the above equation, is a function of r and Estim and is shown in Figure 6.12 as a blue

surface denoted by S2.

Proof Recall that Estim is a value of the stimulus voltage which means the voltage must be large

enough to generate the k-st action potential. Therefore Estim must satisfy Estim > E2 for which fthr >

fk−1 where fthr is given by (6.8). The result then follows by evaluation of (6.12) at f = fthr.

Proposition 6.7 The threshold value of BCL for excitation of a 2:2 response is

Bthr = a( fthr)+d (α( fthr) fthr) = a(α( fthr) fthr)+d ( fthr) , (6.19a)

where α( fthr) is the solution of the below equation

fthr =
1−αr

1−αr+1
. (6.19b)

Bthr in (6.19a) is the threshold for existence of the 2:2 response and is a function of Estim and r. The

black surface denoted as S3 in Figure 6.12, is the Bthr.
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Proof As described in Section 6.4.2 in order to excite the k-th action potential Estim must be greater

than E2 branch for which fk−1 > fthr where fthr is given by (6.8). The result then follows by evaluation

of (6.13) at fo = fthr. The equation (6.13c) is inverted and fthr is used as a parameter. In order to obtain

the exact solution of the equation (6.19b) for α, an approximation obtained by regular perturbations

about r = 1 is represented below

Perturbation solution of equation (6.19b): Equation (6.19b)for r = 1 has two roots α1 = 1 and α2 =

(1− fthr)/ fthr. When α1 = α2, fthr = 1/2 = 0.5 which is below the fmin in CRN-2 model with the

present parameters. Therefore, this solution is discarded as no action potential can be excited. The

other solution α2 corresponds to the threshold 2:2 response and it can be used as the basis of the

perturbation expansion. The Taylor series expansion of the unknown α2 -which is a function of r and

fthr- about r = 1 is as follows:

α2(r, fthr) = α2(1, fthr)+ (1− r)
∂α2(r, fthr)

∂r

∣∣∣
r=1

+O
(
(1− r)2

)
.

Equation (6.19b) is rewritten as

fthrα2 (r, fthr)
r+1 −α2 (r, fthr)

r +1− fthr = 0,

and
∂α2(r, fthr)

∂r
which is the expansion coefficient, is obtained. Hence α2(r, fthr) is described by the

following equation

α2( fthr) =
1− fthr

fthr
− (1− r)

1− fthr

1−2 fthr
log

(
1− fthr

fthr

)
+O

(
(1− r)2

)
. (6.20)

As explained earlier, fthr this a function of Estim, therefore for each Estim and each r, there is a unique

α2( fthr). By inserting α2 into equation 6.3, the threshold value of basic cycle length for excitation of

a 2:2 response is obtained. This finding is in contrast with Mitchell and Schaeffer (2003) approach

where they claimed that 2:2 sequence exists until the threshold condition (6.18) for a 1:1 response is

violated.

The four surfaces Bbif, Bthr, Bthr and r = 1 are plotted in Figure 6.12 as red, blue, black and

green surfaces, respectively and the regions of parameters where the 1:1 and 2:2 responses occur, are

illustrated. The figure is created by changing the dimensionless parameter r from 0 to 4 and Estim

from −30 mV to 0 mV. Note that the range of Estim is chosen based on the phase portrait of the

CRN-2 system (Figure 6.10). When r < 1 the responses of the CRN-2 system is stable 1:1 and this

corresponds to the right side of the green surface (r = 1) in the Figure 6.12. As can be seen in this

plot, the blue surface Bthr corresponding to the threshold of 1:1 response is well above the red surface
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Figure 6.12: The bifurcation diagram of CRN-2 model in r-Estim-B parameter space. The red surface

S1 is Bbif (6.15b). The blue surface S2 is (6.18) and the black surface S3 corresponds to (6.19a). The

boundary between stable response and unstable response is denoted by a green surface S4 which is

r = 1.The intersection of three surfaces is shown in black lines.

Bbif as the basic cycle length decreases. This indicates that the if the parameters are chosen in this

region, the system exhibits 1:1 response. Note that the bifurcation in fact occurs at a negative basic

cycle length which does not even have a physiological meaning.

On the other hand when r > 1, depending on the range of Estim the existence and the stability

of 2:2 response changes. In order to gain better understanding of the bifurcation set in the Estim-r-B

parameter space, the restrictions to the hyperplanes B = constant, Estim = constant and r = constant

are shown in Figure 6.13. The column (a) in Figure 6.13 illustrates a slice of the 3D Figure to the

Estim-r plane when B is fixed at B = 127 ms for the top figure and B = 50 ms for the bottom Figure.

It can be seen that as r increases from 1 to 4, bifurcation occurs and the region of alternans is shown
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as gray regions in Figure 6.13(a). When B decreases, alternans disappears. Another important point

to remark is the the range of Estim in which alternans occur which decreases by decreasing the basic

cycle length and this is illustrated in Figure 6.13(a) bottom. Figures in column (b) are slices of 6.12 to

the r-B plane. The top figure is a hyperplane Estim =−20 mV and the gray area between Bbif and Bthr

is the region of alternans. By increasing the value of Estim this area disappears as it is illustrated in

Figure 6.13(b) bottom for Estim =−5 mV. In a large range of r ∈ (0,3), alternans does not occur since

the blue Bthr is above the Bbif and Bthr and this simply means first bifurcation occur and then it reaches

the threshold value for 1:1 solution and this is not correct. Therefore, the region at which instability

arises is when r is chosen much bigger than three.

Furthermore, Figures in column (c) of 6.13 show hyperplanes r = 2.5 and r = 0.8 for the top

and the bottom figure, respectively. When r = 2.5 2:2 response occurs and this is shown as gray

area, whereas at r = 0.8 there is no alternans as it was explained above. It is important to mention

that the Bthr depends on Estim which indeed indicates the strength of the stimulus current. Hence by

increasing the stimulus strength and consequently increasing the Estim, the range of 1:1 response can

be extended. This also indicates the importance of the fast system which is responsible for the Estim

in the full system.

6.6 Numerical solution of the restitution boundary value problem

In this section the BVP formulation (3.8) and (3.10) are imposed on the full CRN-2 system for 1:1

and 2:2 responses, respectively, in order to verify the validity of the asymptotic results. The 1:1 and

2:2 restitution curves are constructed by imposing the boundary conditions (3.8) and (3.10) on the

gating variable f , respectively. These conditions are not applied on the voltage equation since as

stated in the previous chapters, at the beginning of each action potential, the voltage is prescribed at

(or greater than) the threshold value of excitation Estim (6.3e). Furthermore, no action potential is

formed if this condition is not satisfied.

In deriving the map (6.11), the voltage at which f gating variable changes its behaviour and

separates the systole part from the diastole part i.e. E f = −40 mV, is used as a measure to construct

the restitution curves as can be seen in the proof of the Lemma (6.1). Hence, in constructing the

restitution curves t f is plotted against B, such that

E(t f ) = E f .
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Figure 6.13: Restriction of the 3D figure to various hyperplanes. The colour coding is the same as in

Figure 6.12. Figures in each column (a), (b) and (c), correspond to a projection of the figure in Estim-r

plane, r-B plane and Estim-B plane, respectively. Top (a) B = 127 ms, bottom (a) B = 50 ms, top (b)

Estim = −20 mV, bottom (b) Estim = −5 mV, top (c) r = 2.5 and bottom (c) r = 0.8. The region of

alternans is denoted by gray surfaces in each plot.

Constructing 1:1 solution In order to produce the 1:1-response restitution curve, the condition (3.8)

must be satisfied:
⎧
⎪⎨

⎪⎩

E(kB, r, ε) = E((k+1)B, r, ε) = Estim,

f (kB, r, ε) = f ((k+1)B, r, ε),
(6.21)

The restitution curves for r = 0.5 and r = 1.5 are plotted in Figure 6.14, where t f is plotted against

the basic cycle length. The black solid curve is the asymptotic action potential duration map (6.11)

which corresponds to ε = 0 and the thick red curves illustrate the restitution curve for the full CRN-2

model which corresponds to ε = 1. The coloured curves describe the restitution curves for different

values of ε from 1 to 0 and it can be seen that as ε decreases, the exact analytical solution approaches

the asymptotic map (6.11). The difference between the value of t f in Figures 6.14(a) and 6.14(b), is

understandable from the formula (6.9). As r increases, the action potential duration also increases.
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Figure 6.14: The 1:1 restitution curves for the CRN-2 system of equations (6.3) as ε → 0. The

parameters of the model are Estim = −20 mv, E f = −40 mv and F1 = 350. The black solid curve is

the solution of the asymptotic map (6.11) (i.e. ε = 0) and the solid red curve corresponds to ε = 1.

The coloured curves denote different values of ε. As ε → 0 the numerical solutions formulated as

boundary value problem, approach the asymptotic map. In plot (a) r = 0.5 and in (b) r = 1.5.

Although the 1:1 restitution curve is constructed for all the values of B, this solution loses its stability

at some basic cycle length B = Bthr. The occurrence of the “unstable” solution is explained as below.

Constructing 2:2 solution As demonstrated in Chapter 3, in order to construct the 2:2 restitution

curve, the condition (3.10) must be satisfied. (1) denotes the first action potential (2) indicates the

second action potential.

E1(0, r, ε) = Estim, (6.22)

E2(0, r, ε) = Estim, (6.23)

f1(0, r, ε) = f2(B, r, ε), (6.24)

f2(0, r, ε) = f1(B, r, ε). (6.25)

The boundary value formulated restitution curves for r = 0.8 and r = 2.5 are illustrated in plots (a)

and (b) in Figure 6.15. The red solid curve corresponds to the restitution curve for the full CRN-2

system (ε = 1) with the imposed above boundary conditions. The black solid curve shows the stable

solutions of the map A = Φ(A) and the stable solutions of the second generation map A = Φ◦Φ(A).

These solutions in the parametric form are explained in (6.12) and (6.13), respectively. It can be seen
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Figure 6.15: The 2:2 restitution curves for the CRN-2 system (6.3) when ε → 0. The parameters of

the model are Estim = −20 mv, E f = −40 mv and F1 = 350. The thick black curve is the solution of

the asymptotic map ε = 0 and the thick red curve corresponds to the solution of the full CRN-2 system

ε = 1. Plot (a) illustrates the curves for r = 0.8 and (b) shows the restitution curves for r = 2.5.

from the plots (a) and (b) in Figure 6.15 that as ε → 0, the numerical solution approaches the asymp-

totic solutions. Another key point to mention here is the occurrence of supercritical bifurcation and

subcritical bifurcation for r > 1 and r < 1, respectively. For r = 2.5 the 2:2 solution has a supercrit-

ical bifurcation which corresponds to a persistent alternans. The solution of the CRN-2 system (6.3)

when alternation of action potential occurs is shown in Figure 6.16. When r = 0.8, the bifurcation

is subcritical which indicates a transient alternans. However, as it can be seen in Figure 6.15(a), the

transient alternans appear on the negative basic cycle length which does not make sense. Hence the

action potential solutions plotted in 6.16 show a normal and healthy response when r < 1.

6.6.1 Preliminary results of CRN-21

Now that the system of CRN-2 produces alternans, the simplified functions for τ f (E) and f (E) are

fitted to the full model and for different values for r, the system of CRN-21 is solved numerically.

When r > 1, the modified full model produces alternans. Figure 6.17 illustrates the last 1200 (ms)

of the solutions after 300 pacing times, for two different basic cycle lengths. As can be seen from

Figure 6.17(a), the original system of CRN-21 at B = 400 (ms) does not produce alternans whereas

the modified version of the full system with r > 1, has shown action potential duration alternans.

Figure 6.17(b) illustrates the solutions for B = 600 (ms), where the change in r does not affect the

behaviour of the system at this basic cycle length. Figure 6.17 demonstrates the correspondent ICa,L
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Figure 6.16: The action potential and f-gating variable for the CRN-2 system (6.3). The solid blue

curve is the membrane potential E and the red curve illustrates the evolution of the f -gating variable.

The parameters are Estim =−20 (mv), E f =−40 (mv), F1 = 350, ε = 1 and B = 1000 (ms). In Figure

(a) r = 0.8 and in Figure (b) r = 2.5 and alternans occur.

for these basic cycle length. From this figure it can be seen that for B = 400 (ms) there is alternation

in the L-type Ca current. Based upon the preliminary results from the full physiological model, we

found alternans as predicted by the analysis of the simplified models. This acts as a validation of our

analysis. The identified mechanism is increasing r and subsequently increasing τ f as the inactivation

time for f -gating variable is slow. The slow inactivation of the f -gating variable leads to an increase

in Ca+2 that enters the cell via L-type Ca+2 channel. Therefore, [Ca+2]i will rise and this leads to

alternans in the system (Fox et al., 2002; Weiss et al., 2006)

6.7 Summary

In this chapter, after reducing a detailed physiology-based model to a simplified system following the

steps done by Suckley (2004), the role of the remaining variables was studied. The reduced CRN-2

system was modified such that a dimensionless parameter r was introduced to the time function of the

gating variable f (t). The parameter r determines the amplitude of the time required for the inactivation

of the Ca+2 channel. The sequence of action potential duration was determined by iteration of the map

Ak+1 = Φ(Ak) and the stability of the map was studied. It was clearly shown that the map loses its

stability at r = 1 and exhibits 2:2 response for r > 1. Furthermore, a parameter space specifying

different regions corresponding to different responses, was presented.

The voltage-dependent time function is thought to play an important role in inducing instabilities



128

-80

-40

0

E
 (

m
V

)

1200 ms

-80

-40

0

E
 (

m
V

)

1200 ms

(a) (b)

-400

-300

-200

-100

0

I_
C

a,
L

-400

-300

-200

-100

0

I_
C

a,
L

1200 ms 1200 ms

(a) (b)

Figure 6.17: The last 1200 ms of the solutions, after 300 times pacing. The solid black curve is

the solution for the original system and the dashed red curve indicates the solutions for the modified

CRN-21 system when r = 4. (a) Action potential duration alternans when B = 400 (ms), (b) B = 600

(ms).

in the CRN-2 model. Therefore an increase in r and subsequently in τ f implies that the voltage-

dependent inactivation process of ICa,L becomes slower. The slow inactivation of the f -gating variable

leads to an increase in Ca+2 which enters the cell via L-type Ca+2 channel, since total calcium influx

during each action potential depends on the area under the ICa,L curve. Therefore, [Ca+2]i may rise

and this could lead to action potential duration alternans.

On the other hand, as r decreases and τ f decreases, the voltage-dependent inactivation gating

variable f (t) evolves faster. This indicates fast inactivation and less activation which leads to less

inward ICa,L. Furthermore, the equation that describes the evolution of the gating variable f (t) is as

follows:

f (t) = exp(−t/rF1).

When r > 1, the gating variable f (t) stops before reaching its resting value which results in a short
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diastolic interval. Therefore, the next action potential starts while the gating variable f (t) has not

recovered fully. Thus, for the next action potential the variable f (t) starts at the point it was stopped

before, rather than its resting value. Consequently it reaches its minimum value very quickly and

it results in a short action potential duration. This is followed by a longer diastolic interval and

consequently a longer action potential duration and so on so forth. When r increases the gating

variable f (t) decreases, consequently inactivation in ICa,L decreases. Thus, there is more activation

which means more ICa,L. For r < 1 the gating variable f (t) decreases, the inactivation decreases

and activation increases. Therefore, the inward current increases which leads to having a positive

membrane voltage. When f (t) increases, the inactivation becomes large, there is less inward current

and the membrane goes toward negative potentials.

For long diastolic intervals, the inactivation recovers to its maximum value and long ICa,L during

the next action potential causes Long action potential duration. This leads to a short diastolic inter-

val, hence inactivation gate does not recover fully by the time the next action potential is generated.

Therefore ICa,L was smaller and APD shorter. To conclude it should be mentioned that an increase in

ICa,L, increases alternans and the before the reduction in ICa,L may decrease the alternans magnitude.

These results establish an ionic basis for action potential alternans which could help the development

of pharmacological approaches to eliminate alternans.



Chapter 7

Conclusion and future work

In this thesis, we have studied the characteristics and potentials underlying mechanisms of action po-

tential duration alternans in several mathematical models of action potentials. The models that are

studied in this research are the McKean (1970) model which is a simplified version of the classi-

cal FitzHugh (1961) model in Chapter 4, the Caricature version of the Noble (1962) model derived

by Biktashev et al. (2008) in Chapter 5 and an asymptotically reduced version of the Courtemanche

et al. (1998) model of the atrial cell, reduced by Suckley (2004) in Chapter 6.

We have applied asymptotic reduction methods to reduce theses systems and to derive an explicit

formula for action potential duration as a function of preceding diastolic interval. We have studied

the stability of the map and have investigated the existence of bifurcations of equilibria. For each of

the above mentioned models, the parameter regions where normal response and alternans occur, are

presented.

In addition, we have developed a general framework formulated in terms of a boundary value

problem and we have classified different responses of general excitable systems. We have applied the

methods to the full excitable systems mentioned above, to derive analytically or compute numerically

different branches of the action potential duration restitution curve. Finally we have presented that

the asymptotic action potential duration restitution map and the boundary value problem formulated

restitution curve for each model, are in close agreement. This indicate that the technique we have

developed here, are applicable to general excitable systems.

The summary of the results is presented in the next section, followed by the last section as open

questions and future directions.

130
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7.1 Summary of results

While each of the models studied in this research provide a better understanding of the variables and

parameters of excitable systems in inducing instabilities, the results obtained from all the of models

has an important factor in common. All the models have demonstrated that the time scaling function

in the voltage dependent slow gating variable is responsible for inducing alternans. In other words,

the time that atrial cells need to relax, determines the time required for the next excitation.

In Chapter 4, a plausible explanation for the occurrence of alternans on a simplified model of

spiking neurons is provided. Although the McKean model is simple and consists of two functions, we

have been able to produce alternans by altering the time scale of the slow recovery gating variable.

We have shown that the slow recovery dynamic suppresses electrical instabilities. In addition, the

gating variable in the McKean model is analogous to the slow gating variables responsible for the

repolarisation of the action potential in detailed cardiac models. Hence, in Chapters 5 and 6, we have

assessed this finding by applying our methodology to two mathematical models of Cardiac action

potentials.

The Caricature Noble model with three variables, has been studied in Chapter 5. The additional

variable in Caricature Noble model is a superfast variable, thus, the whole action potential with the

fast upstroke phase is presented. Biktashev et al. (2008) indicate that the asymptotic properties of the

super fast variable in Caricature Noble model, is similar to Na+ current in modern detailed models.

Therefore, in order to investigate the role of the superfast system in inducing alternans, the Caricature

Noble model with and without the super fast variable has been studied. We have found that the super

fast variables -its existence is dependent on ε1 in the Caricature Noble model- affects the region of

alternans. Although we have shown that the role of ε1 is mostly on the fast depolarisation and fast

repolarisation of the action potential i.e.the front and back of the action potential, these two phases

also contribute to the duration of an action potential (Mitchell and Schaeffer, 2003; Tolkacheva et al.,

2002). In deriving the asymptotic maps, the role of these phases were neglected, but the bifurcation

diagram of the full model in Chapter 5, well illustrated that the bifurcation point of the basic cycle

length is displaced when the superfast variable is included in the system. Moreover, the superfast

variable can shift the region of alternans by affecting the Estim such that in the system without superfast

variable, the Estim of the system equals to the Estim of the slow system. In contrast, for the full model

(with superfast, fast and slow variables), the Estim of the slow system is the value that superfast variable

imposed on the system which in the case of the Caricature Noble model this is ENa. This finding



132

suggests that the region of Estim is affected by the super fast system and this system can suppress or

promote instabilities which are produced by the slow system.

Furthermore, we have taken into account that the Caricature Noble model is based on the first

mathematical model of cardiac action potentials and its parameters have physiological meaning.

Hence, we have shown that the variable responsible for inducing instabilities in cardiac action po-

tential, is the slow activation of outward IK current. We have found that decreasing the K+ current

via shortening the recovery of the slow activation gating variable in Caricature Noble model, pro-

motes alternans. Furthermore, by increasing the recovery time of the activation gating variable, it

evolves slowly, therefore, the outward K+ current increases and consequently suppresses alternans.

This finding is in agreement with experimental results that suggest the variation of K+ currents do not

promote alternans but increasing this current can suppress alternans (Fox et al., 2002; Merchant and

Armoundas, 2012).

In Chapter 6 we have assessed our methodology on a reduced version of the detailed human

atrial action potential (Courtemanche et al., 1998). Hence, our results provide concurrence to the real

physiology of the cardiac cell and we expect the existence of these responses to be directly observable

experimentally.

We have found that the slow inactivation time in L-type ICa,L current, has a crucial role in promot-

ing and suppressing action potential alternans. Although the literature suggests that Ca+2-mediated

process may play a more important role than the voltage-dependent mechanism in inactivating Ca+2

channels, the role of voltage-dependent inactivation mechanism is not negligible (Sun et al., 1997).

We have demonstrated that the time course of the voltage dependent inactivation of ICa,L is identified

as a pro-alternans factor based on studying a restitution map. Furthermore, we have shown that our

reduced version of the Courtemanche et al. (1998) model with only one gating variable -the voltage-

dependent inactivation variable for ICa,L- is capable of producing alternans.

At the cellular level, the relationship between membrane voltage and Ca+2 dynamics is complex.

Membrane voltage and calcium dynamics are bidirectionally coupled and it is not clear whether alter-

nation in ionic currents and membrane voltage leads to alternation in intracellular Ca+2 concentration,

or alternation of intracellular Ca+2 concentration causes alternation of membrane voltage (Merchant

and Armoundas, 2012; Valdivia, 2015; Weiss et al., 2006). According to Weiss et al. (2006) alternation

in ionic currents and membrane voltage leads to alternation in intracellular Ca+2 concentration. Fox

et al. (2002); Merchant and Armoundas (2012) also stated that alternation of sarcolemmal Ca+2 and
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K+ currents due to change in action potentials morphology have an affect on alternation in [Ca+2]i

cycling.

The role of alternation in [Ca+2]i in producing voltage alternans is considered as a stronger rationale

and one of the mechanisms inducing [Ca+2]i alternans considered as variations of [Ca+2]i influx into

the cytoplasm. Consequently, alternation of intracellular Ca+2 concentration causes alternation of

membrane voltage Merchant and Armoundas (2012); Valdivia (2015); Weiss et al. (2006). Our finding

is in agreement with this mechanism as we have shown that the slow inactivation of the f -gating

variable leads to an increase in Ca+2 which enters the cell via L-type Ca+2 channel. Therefore [Ca+2]i

will rise and this leads to alternans in the system. Moreover, alternans of ICa,L due to change in voltage-

dependent inactivation properties of ICa,L, can show how voltage-alternans and [Ca+2]i-alternans are

interconnected.

Although literature suggests that Ca+2-mediated process may play a more important role than the

voltage-dependent mechanism in inactivating Ca+2 channels, the role of voltage-dependent inactiva-

tion mechanism is not negligible (Sun et al., 1997). In fact, an increase in ICa,L, increases alternans and

therefore reduction in ICa,L may decreases the alternans magnitude. These results establish an ionic

basis for action potential alternans which could help the development of pharmacological approaches

to eliminate alternans.

We conclude that the slow gating variables play important role in determining the slope of the

action potential duration restitution curve. In other words, the time scale at which the slow gating

variable evolves has a direct effect on the duration of the action potential and consequently on the

occurrence of alternans. This finding is in agreement with the research done by Mitchell and Schaeffer

(2003). However, we derive action potential duration restitution maps from the models that have

physiological meaning. The novel contribution to the knowledge of this study is formulating methods

that enable us to relate the cellular properties of cardiac cells in detailed cardiac models. Consequently

we are able to predict the onset of alternans by controlling the amplitude of two important currents

during the repolarisation phase of the action potential; the slow activation of the IK or the L-type

calcium current slow phase of inactivation or combination of both. This result is also in agreement

with Fox et al. (2002); Merchant and Armoundas (2012). Our overall results establish an ionic basis

for action potential alternans which could help the development of pharmacological approaches to

eliminate alternans.
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7.2 Open questions and future direction

The proposed method presented in this research, is applicable to any detailed cardiac model. The

findings suggest that this approach could also be useful for studying other instabilities and irregular

cardiac rhythms for prevention, control and suppression of abnormal rhythms. For example Ca+2

alternans or spatially extended alternans.

Another important direction is to investigate the role of the fast subsystem in promoting or sup-

pressing alternans in more detailed model. For instance including the fast subsystem to the re-

duced Courtemanche et al. (1998) model would certainly extend our knowledge of the whole system

of the cardiac cell.

It would be interesting to investigate coupling between voltage and the Ca+2 subsystem, in differ-

ent reduced versions of the Courtemanche et al. (1998) model. Deriving asymptotic action potential

duration restitution maps similar to Schaeffer et al. (2007) and Tolkacheva et al. (2006) and construct-

ing restitution curves based on the formulation proposed in Chapter 3, would be the first step.
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