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Abstract

We provide a unified framework for studying two families of maps: the Birman–Craggs maps of the
Torelli group, and Sato’s maps of the level 2 congruence subgroup of the mapping class group. Our
framework gives new, elementary proofs that both families of maps are homomorphisms, gives a
direct method for evaluating these maps on Dehn twists, and relates the two families when restricted
to the Torelli group. Our methods involve 3-manifold techniques that do not depend on results in
4–manifold theory as in the original constructions, giving an answer to a question of Dennis Johnson.
We also find a relation between an extension of the Birman–Craggs maps to the level 2 congruence
subgroup, and Meyer’s signature cocycle.
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Chapter 1

Introduction

Background

Let Σg,n denote an oriented surface of genus g with n boundary components. When n = 0, we
abbreviate Σg,0 to Σg. These manifolds come up in many different contexts; for example, any degree

d curve in the projective plane is a surface of genus (d−1)(d−2)
2

, Seifert surfaces for links in S3 produce
invariants up to isotopy, and any 3–manifold is diffeomorphic to a Heegaard splitting, that is, two
handlebodies glued along their common boundary surface.

Let Modg,n = π0(Diff
+(Σg,n, ∂Σg,n)) denote the mapping class group of Σg,n, the group of

orientation–preserving diffeomorphisms of Σg,n fixing the boundary pointwise, modulo isotopy through
maps of the same form. This is a natural group to study; gluing two three manifolds with boundary
Σg along isotopic diffeomorphisms produces diffeomorphic 3–manifolds.

The natural action of Diff+(Σg,n, ∂Σg,n) on H1(Σg,n;Z) factors through the mapping class group
to give a representation Modg,n → Aut(H1(Σg,n;Z), QΣg,n), where Aut(H1(Σg,n;Z), QΣg,n) denotes
the orthogonal group of H1(Σg,n;Z) equipped with the intersection form; see [FM11, Ch. 6] for more
details. We focus on the case of an oriented surface with one boundary component.

Let Ig,1 denote the Torelli group, that is, the kernel of the action of Modg,1 on H1(Σg,1;Z). The
Torelli group arises in algebraic geometry as the fundamental group of Torelli space: the moduli space
whose points consist of pairs (C,B), where C is a Riemann surface of genus g with one boundary
component, and B is a symplectic basis of H1(C;Z); the abelianization of Ig,1 is the first homology
of this moduli space, and was calculated by Johnson in a series of papers. Johnson’s work is of
interest in the theory of 3– and 4–manifolds. For example, Morita showed that the tools developed
by Johnson have deep implications for the topology of homology 3–spheres [Mor89, Proposition
2.3]. More recently, Lambert–Cole used Johnson’s tools to obstruct intersection forms of smooth
4–manifolds, via trisections [Lam20].

Johnson found that all torsion in the abelianization of Ig,1 is characterised by the Birman–
Craggs homomorphisms : a family of maps µh : Ig,1 → Z/2, indexed by a Heegaard embedding
h : Σg → S3. These maps are constructed by cutting S3 along the Heegaard surface h(Σg), regluing
the two handlebodies via an element of Ig,1 to get a homology sphere, and then taking the Rochlin
invariant of its unique spin structure [Joh85b],[BC78], [Joh80b]; see Chapter 5 and Appendix 8.2.5
for more details.

LetM be an oriented Riemannian manifold, and let P (M) denote the oriented orthonormal frame
bundle of M . A spin structure on M is an element ξ ∈ H1(P (M);Z/2) = Hom(H1(P (M)),Z/2)
that evaluates to 1 on any homotopically non–trivial loop in a fibre of P (M). The Rochlin invariant
of a spin 3-manifold M is defined as the signature modulo 16 of any spin 4-manifold spin bounding
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M ; see Chapter 2 and Appendix 8.3. Let Spin(M) denote the set of spin structures on M ; there
is a simply–transitive action of H1(M ;Z/2) on Spin(M) that gives a bijection of Spin(M) with
H1(M ;Z/2), hence homology spheres have a unique spin structure.

Let Modg,1[L] denote the level L congruence subgroup of the mapping class group, that is, the
kernel of the action of Modg,1 on H1(Σg,1;Z/L), note that Ig,1 < Modg,1[L]; these subgroups are
defined in a similar way to the Torelli group, but they produce a family of finite index subgroups of
Modg,1. The subgroup Modg,1[L] arises in algebraic geometry as the orbifold fundamental group of
the moduli space of genus g Riemann surfaces with one boundary component and a level L structure.
As a natural generalisation of Johnson’s work, Farb posed the fundamental question of computing
the abelianizations of these subgroups [Far06, Problem 5.23].

Our focus is on the level 2 subgroup Modg,1[2]; this case often requires separate techniques. The
level 2 subgroup is of particular interest in the theory of 3-manifolds due to its connections with
rational homology spheres [PR21, Corollary 1.1]. To compute the abelianization of Modg,1[2], Sato
defines a family of maps to abelian groups, using a construction that is similar to the Birman–Craggs
maps [Sat10, Part II]; the natural extension of the Birman–Craggs maps to the subgroup Modg,1[2]
is no longer a homomorphism [BC78, p. 284]. Sato defines an analogous construction using mapping
tori instead. Mapping tori have many spin structures, so Sato constructs a spin structure on the
mapping torus Mf of [f ] ∈ Modg,1[2] that depends on a fixed spin structure σ ∈ Spin(Σg) for the
fiber. Sato’s maps βσ,x : Modg,1[2] → Z/8 are given by taking the Rochlin invariant of the spin
mapping tori obtained from his construction; see Chapter 2 for more details.

Sato shows that his maps βσ,x give homomorphisms by using deep results on the signature of
4–manifolds, such as Rochlin’s theorem and Novikov additivity. He then took direct summands
of a certain subfamily of the βσ,x, and found that those maps alone were enough to compute the
abelianization of Modg,1[2] [Sat10, Lemma 2.2, Propositions 5.2 and 7.1]. His computation has
applications in algebraic geometry. For example, Putman built on Sato’s work and computed the
Picard groups of moduli spaces of curves with level structures in many cases; see his paper [Put12]
for a more algebraic approach to computing abelianizations of congruence subgroups.

Outline and main results

In Chapter 2 we give an overview of spin structures and Sato’s definition of his maps βσ,x. The main
steps in our reconstruction of both maps are contained in Chapters 3, 4, and 5.

In Chapter 3 we use framed links in S3, tangle diagrams, and ribbon graphs to describe an
algorithm that gives framed link diagrams of mapping tori and Heegaard splittings. This uses the 3–
manifold constructions in [RT91, Section 4], and generalises the constructions in [KM94, Appendix] to
higher genus. For all the framed links obtained from our algorithm, the fiber surfaces for the mapping
tori (respectively Heegaard surfaces for the Heegaard splittings) lie in these surgery diagrams as the
standard embedding of a surface into S3.

In Chapter 4 we give a new definition of Sato’s maps θ : Spin(Σg) → Spin(Mf ), where [f ] ∈
Modg,1[2], and Mf denotes the mapping torus of the map f : Σg → Σg. Here, we fix a disk D ⊂ Σg,
and think of representatives of elements in Modg,1[2] as diffeomorphisms of Σg fixing D pointwise,
so that the mapping torus Mf is a closed manifold. We begin with a framed link L representing
S1 × Σg. Using Construction 3.0.1, we obtain a framed link Lf , containing L, that represents Mf .
Let MLf

denote the mapping torus obtained by Dehn surgery along Lf in S3. Then MLf
has a fixed

embedding Σg ↪→ MLf
representing a fiber surface, and a fixed embedding S1 × D ↪→ MLf

. For a
spin structure σ on Σg, we use Construction 4.0.5 to obtain a spin structure θLf

(σ) on MLf
. This

spin structure is characterised by the fact that it restricts to σ on the fiber surface, and restricts to
a fixed spin structure on the embedding of S1 ×D. This spin structure on MLf

gives an obstruction
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class ω2(WLf
,MLf

) (see [KM91, Lemma C.1]) that corresponds to a characteristic sublink C of Lf ,
characterised by the condition C · Li = Li · Li (mod 2) for all components Li of Lf .

We give a new definition of Sato’s maps βσ,x in terms of the characteristic sublinks obtained from
our map θLf

, using a combinatorial formula for the Rochlin invariant in [KM91, Appendix C.3]. Our
definition involves the Arf invariant; the Arf invariant is a Z/2–valued invariant of knots in S3, which
can be extended to an invariant of proper links in S3, see Chapter 8.4 for more details. The main
result is then the following:

Main Theorem. For g ≥ 1 let σ ∈ Spin(Σg), and let x ∈ H1(Σg;Z/2). Then Sato’s maps βσ,x :
Modg,1[2] → Z/8 can be evaluated as:

βσ,x(f) = (θLf
(σ+ x) · θLf

(σ+ x)− θLf
(σ) · θLf

(σ) + 8(Arf(θLf
(σ))−Arf(θLf

(σ+ x))))/2 (mod 8).

Here θLf
(σ) · θLf

(σ) and Arf(θLf
(σ)) denote the total linking number and the Arf invariant of the

characteristic sublink specified by θLf
(σ) in Construction 4.0.5, and we use the affine action of

H1(Σg;Z/2) on the set of spin structures.

Using our main result, we give a new proof that Sato’s maps are homomorphisms, and we obtain
a direct mechanism for evaluating Sato’s maps on any product of Dehn twists in Modg,1[2]; Sato
obtained a formula for evaluating his maps on squares of Dehn twists, but it is often difficult to
evaluate Sato’s maps on other mapping classes using this formula, as it requires the mapping class
be factored as a product of squares of Dehn twists. These factorizations can be very intricate, see
Chapter 7.0.1 for an example.

Applications to the Birman–Craggs maps and the Torelli group

In Chapter 5 we use the methods of Chapter 3 to give certain framed link presentations of Heegaard
splittings of homology spheres; see Construction 5.0.1. We use the combinatorial formula for the
Rochlin invariant in [KM91, Appendix C.3] to give a framework for studying the Birman–Craggs
maps. It is remarkable that the Birman–Craggs maps are homomorphisms [BC78, Theorem 8]. We
give a new proof that the Birman–Craggs maps are homomorphisms in Theorem 5.0.3. The idea of
the proof is that gluing along a composition of diffeomorphisms translates to concatenation of tangle
diagrams for framed links representing the Heegaard splitting constructions. We then conclude
Chapter 5 by calculating Sato’s maps on bounding pairs and separating twists in Corollaries 2 and
3. This relates Sato’s maps to the Birman–Craggs maps using direct methods. We get the following:

Main Corollary. Let a, b be a pair of simple closed curves on Σg,1 that bound a subsurface. Let
η be the spin structure on Σg with the characteristic sublink of θL

tat−1
b

(η) containing none of the

components from the link L that represents S1 × Σg (see Construction 4.0.5 and Chapter 5.0.3). If
we have that σ = f ∗(η) and σ + x = h∗(η) for [f ], [h] ∈ Modg,1, then

βσ,x(tat
−1
b ) = µι(tf(a)t

−1
f(b))− µι(th(a)t

−1
h(b)) (mod 2),

where µι denotes the Birman–Craggs map for the standard embedding ι : Σg ↪→ S3. In particular, we
have βσ,x = µι◦f − µι◦h (mod 2).

In his survey on the Torelli group, Johnson asks if there is a definition of the Birman–Craggs
maps that does not involve the implicit construction of a 4-manifold [Joh83a, p.177]. Our definition
uses Construction 5.0.1, and a formula computed from framed link diagrams of a 3–manifold [KM91,
Appendix C.3 and C.4]. To prove that this formula is well-defined, the fundamental theorem of
Kirby calculus is used, and there is no dependence on Rochlin’s theorem (see remark under [KM91,
Corollary C.5]). Furthermore, there are proofs of the fundamental theorem of Kirby calculus that
just use a presentation of the mapping class group [Lu92], [MP94]. We have given a definition of
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the Birman-Craggs maps that uses 3–manifold topology and knot theory, which removes the logical
dependence on Rochlin’s theorem. One question, then, is whether it is possible to push the 3–manifold
techniques down a dimension and give an inherently 2–dimensional description of the Birman-Craggs
maps. This would give a group theoretic description of the Rochlin invariant, as Johnson pointed
out.

The Birman–Craggs maps and Meyer’s signature cocycle

There is a natural extension of µh : Ig,1 → Z/2 to a map µh : Modg,1[2] → Z/16; if we cut
S3 along the Heegaard surface h(Σg), and reglue via an element [f ] ∈ Modg,1[2], we get a Z/2–
homology sphere S(f), so we can take the Rochlin invariant of its unique spin structure. This map
is no longer a homomorphism, but our methods imply that the failure of these extensions from
being homomorphisms is measured by Meyer’s signature cocycle, restricted to Modg,1[2]; Meyer’s
signature cocycle τg : Modg,1×Modg,1 → Z computes the signature of surface bundles with prescribed
monodromy [Mey73]. More precisely, in Chapter 6, we show the following:

Corollary 4. For the standard embedding ι : Σg → S3, there exists a well–defined map

αι : Modg,1[2] → Z/16
f 7→ Sign(Yf ),

where Yf is a cobordism between S(f) and Mf , defined in Chapter 6. Then we have τg ≡ ∂(αι + µι)
(mod 16), where τg is Meyer’s signature cocycle, and µι is the extension of the Birman–Craggs map
described above.

Chapter 6 also contains a formula for the extension µι : Modg,1[2] → Z/16 in terms of squares of
Dehn twists; see Theorem 6.0.3.

Abelianization of the level 2 congruence group

In Chapter 7 we give an alternative calculation of the image of Sato’s homomorphisms when viewed as
maps βσ : Modg,1[2] → Map(H1(Σg),Z/8). This approach gives a slightly different description of the
abelianization H1(Modg,1[2];Z). Our key observation here is that we can equip Map(H1(Σg),Z/8)
with its standard algebra structure and repeatedly apply a single relation that holds in the algebra
(see Lemma 7.0.2). In Chapter 7.0.1, we use the above observation to analyse the images of the maps
βσ, giving a description of a family of abelian quotients of the Torelli group and the Johnson kernel.

Relations between Rochlin invariants

Our computations in Corollaries 2 and 3 (see Sections 5.0.2 and 5.0.3) of Sato’s maps on elements of
the Torelli group, give relations between Rochlin invariants of mapping tori and Rochlin invariants
of homology spheres. Hence we can ask:

Question 1: Is there a sensible way to enumerate these relations?

Question 2: How do these relations depend on the initial choice of Heegaard embedding in S3?

Question 3: Is there a formula for evaluating the map αι : Modg,1[2] → Z/16 of Corollary 4?

8



Chapter 2

Overview of Sato’s homomorphisms

In this chapter, we review definitions of spin structures on manifolds, and Sato’s construction of his
homomorphisms.

We fix an embedded disc D ⊂ Σg, and think of Modg,1 as the group of orientation–preserving
diffeomorphisms fixing D pointwise, modulo isotopies through maps of the same form. We assume
that all homology groups are taken with Z/2 coefficients unless specified otherwise, and use the same
notation for a continuous map as its induced homomorphism on homology (f = f∗). Sato’s idea is
to take the mapping torus Mf = I × Σg/(1, x) ∼ (0, f(x)) for [f ] ∈ Modg,1 and analyze the spin
structures on Mf induced by a given spin structure on Σg. We begin by recalling definitions of spin
structures.

Spin structures on manifolds

Let π : E → V be a smooth oriented real vector bundle of rank n ≥ 2 equipped with a metric and

denote by SO(n)
i→ P (E)

p→ V the oriented orthonormal frame bundle associated to this bundle.
When the second Stiefel-Whitney class ω2(E) vanishes, we have the short exact sequence

0 → H1(SO(n))
i→ H1(P (E))

p→ H1(V ) → 0. (2.1)

A spin structure τ on E is a homomorphism τ : H1(V ) → H1(P (E)) such that p ◦ τ = idH1(V ). We
denote by Spin(E) the set of spin structures on E.

By the splitting lemma, the existence of τ as above is equivalent to the existence of a homomor-
phism τ ′ : H1(P (E)) → H1(SO(n)) such that τ ′ ◦ i = idH1(SO(n)). So we can equivalently think of a
spin structure as a cohomology class τ ∈ H1(P (E)) = Hom(H1(P (E),Z),Z/2). This class τ can be
evaluated on framed curves in V , and the condition τ ◦ i = id implies that τ evaluates to one on a
trivial loop in V with zero framing.

After identifyingH1(SO(n)) with Z/2, there is a simply transitive action ofH1(V ) = Hom(H1(V ),Z/2)
on Spin(E) given by taking a homomorphism c : H1(V ) → Z/2 and τ ∈ Spin(E) and constructing
another right splitting τ + i ◦ c. It follows that the number of spin structures for the oriented frame
bundle P (E)

p→ V is given by |H1(V )|. We refer to a smooth manifold M as spin if there exists a
spin structure on the tangent bundle TM . Denote by Spin(M) the set of all spin structures on the
tangent bundle TM of M , whenever M is a spin manifold.

Note that Diff+(M) acts on Spin(M) via pullback: for a diffeomorphism g ∈ Diff+(M) and spin
structure σ : H1(M) → H1(P (TM)) given as above, we get the spin structure g∗(σ) := dg−1 ◦ σ ◦ g.
See Appendix 8.3 for more details on spin structures.
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2.0.1 Sato’s construction.

To define the homomorphisms βσ,x, we must define a map θ : Spin(Σg) → Spin(Mf ) for every given
[f ] ∈ Modg,1[2]. We use the homotopy long exact sequence for the fibration Σg → Mf → S1 and
the fact that the abelianization functor is a right exact functor as well as a natural transformation
between π1 and H1. If we combine this with the Wang exact sequence (see [Hat02, Example 2.48]),
we get that the following sequence is exact:

0 → H1(Σg) → H1(Mf ) → H1(S
1) → 0, (2.2)

where the homomorphisms are induced by the inclusion and projection to S1 respectively. Since f
fixes D ⊂ Σg pointwise we have an embedding l : S1 ×D →Mf , giving a right splitting of the short

exact sequence (2.2). This is equivalent to an isomorphism H1(Mf )
h→ H1(S

1)
⊕

H1(Σg). We will
construct a right splitting of the sequence (2.1) for V =Mf using this splitting isomorphism h.

Choose p ∈ int(D) and an arbitrary orthonormal frame {b0, b1} for Tp(D). Pick a non-zero
tangent vector field v of TS1 and denote by vt ∈ TtS

1 the value of v at t ∈ S1. For S1 × D ⊂ Mf

define the framing l̂ : S1 → P (S1 ×D) by

l̂(t) = (vt, b0 cos(2πt) + b1 sin(2πt), b1 cos(2πt)− b0 sin(2πt)).

This frames the curve S1 × {p} with a tangent vector field to the curve, and two transverse vector
fields that rotate a total of 2π in one traverse of the curve. This framing induces the homomorphism

l̂ : H1(S
1)

l̂→ H1(P (S
1 ×D))

inc→ H1(P (Mf )), (2.3)

where the last map is induced by the differential of the inclusion l.

For the Σg factor, consider the smooth map P ((−ϵ, ϵ)×Σg) → P (Mf ) induced by the inclusion of
a tubular neighbourhood (−ϵ, ϵ)×Σg of the fiber intoMf for small ϵ > 0. Think of a spin structure σ
of Σg as a right splitting of the sequence (2.1) with V = (−ϵ, ϵ)×Σg, and let σ : H1(Σg) → H1(P (Mf ))
denote the following composition

σ : H1(Σg)
inc→ H1((−ϵ, ϵ)× Σg)

σ→ H1(P ((−ϵ, ϵ)× Σg))
inc→ H1(P (Mf )). (2.4)

Then we can construct the homomorphism H1(Mf ) → H1(P (Mf )) by combining (2.3) and (2.4),
obtaining a map θ : Spin(Σg) → Spin(Mf ). In summary, the map θ inputs a spin structure σ of

(−ϵ, ϵ)× Σg, and outputs the right splitting (l̂ ⊕ σ) ◦ h as in the following commutative diagram.

0 Z/2 H1(P (Mf )) H1(Mf ) 0

H1(S
1)⊕H1(Σg)

i p

h
l̂⊕σ

See Appendix 8.3.1 for more details on the spin mapping tori obtained this way.

Now we describe the homomorphisms βσ,x : Modg,1[2] → Z/8 for σ ∈ Spin(Σg), x ∈ H1(Σg).
Rochlin’s Theorem states that every spin 3-manifold bounds a spin 4-manifold. Fix a spin structure
τ on Mf and choose a compact spin 4-manifold V spin bounding (Mf , τ) and define the Rochlin
invariant

R(Mf , τ) = Sign(V ) (mod 16),

where Sign(V ) is the signature of the intersection form of V . This is well-defined by Novikov addi-
tivity, and Rochlin’s result that a closed spin 4-manifold has signature divisible by 16; see Appendix
8.3 for more information.
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Let σ ∈ Spin(Σg) and x ∈ H1(Σg), define the map βσ,x : Modg,1[2] → Z/8 to be

βσ,x([f ]) = (R(Mf , θ(σ))−R(Mf , θ(σ + x)))/2 (mod 8).

Sato showed that these maps are homomorphisms and that they have image in Z/8 [Sat10,
Lemmas 2.2 and 4.3]. He then examined the Brown invariant of a Pin− bordism class represented
by a surface embedded in Mf to arrive at a formula for the homomorphisms βσ,x on squares of Dehn
twists [Sat10, Prop. 5.2] (see Appendix 8.2.3 for the definition of a Dehn twist). To describe the
formula we need the following.

Spin structures and quadratic forms

A symplectic quadratic form is a map q : H1(Σg) → Z/2 that satisfies q(x+ y) = q(x) + q(y) + x · y
for all x, y ∈ H1(Σg), where x · y denotes the pairing given by the intersection form.

Theorem 2.0.1. [Joh80c, Theorems 3A, 3B] There is a bijection σ 7→ qσ between spin structures
σ ∈ Spin(Σg) and symplectic quadratic forms qσ : H1(Σg) → Z/2. Let H1(Σg) = Hom(H1(Σg),Z/2)
act affinely on Spin(Σg) as above, let f ∈ Diff+(Σg), and let x ∈ H1(Σg). Then qσ+x = qσ + x, and
qf∗(σ) = f ∗qσ.

Proof. We only sketch the bijection here: let σ ∈ Spin(Σg) and let x ∈ H1(Σg). Choose a simple
closed curve α ⊂ Σg representing x. Let N(α) denote the normal bundle of α in Σg. Pick a unit
tangent vector field s : α → T (α) and a nonzero section X : α → N(α). Viewing σ ∈ Spin(Σg) as
a left splitting of the short exact sequence (2.1) gives us a homomorphism kσ : H1(P (Σg)) → Z/2.
Since T (Σg)|α = N(α)

⊕
T (α), we can define the associated quadratic form qσ to be

qσ(x) = kσ(X ⊕ s) + 1.

Symplectic quadratic forms are determined by their values on a symplectic basis for H1(Σg), so
we can specify an arbitrary spin structure by choosing the values of qσ on a fixed symplectic basis.

We need the following function to state Sato’s formula for βσ,x(t
2
C). For a homology class z ∈

H1(Σg,r), define the map iz : H1(Σg,r) → Z/8 by

iz(y) =

{
1, z · y = 1 (mod 2)
0, z · y = 0 (mod 2)

where · denotes the intersection form on H1(Σg,r).

Proposition 2.0.2. [Sat10, Proposition 5.2] For a non-separating simple closed curve C ⊂ Σg \D,
we have

βσ,x(t
2
C) = (−1)qσ(C)i[C](PD(x)),

where qσ : H1(Σg) → Z/2 is the quadratic form associated to σ ∈ Spin(Σg) and PD(x) is the Poincare
dual of x ∈ H1(Σg).

Since Modg,1[2] is generated by squares of Dehn twists about non separating simple closed curves
this formula is enough to calculate the abelianization of Modg,1[2] (see [Hum92, Proposition 2.1]).
We give an alternative description of βσ,x that allows us to directly evaluate these maps. To find this
formula we need to write mapping tori as surgery diagrams.
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Chapter 3

Surgery diagrams and ribbon graphs

In this chapter, we describe an algorithm that finds a surgery diagram for Mf , [f ] ∈ Modg,1, where
[f ] is a product of Dehn twists. We think of f as an orientation–preserving diffeomorphism of the
closed surface Σg, fixing an embedded disk D pointwise, hence Mf is a closed 3–manifold with a
fixed embedding of S1 ×D.

To find surgery diagrams, we define ribbon graphs of Heegaard splittings, and give a procedure
that goes from a ribbon graph to a surgery diagram of Mf . For more information about the 3–
manifold constructions used here, see [KM94, Appendix], [RT91, Section 4] and [Wri94, Section 2.2].
The terminology in the next paragraph is consistent with [GS99].

An n-dimensional k-handle attached to a smooth manifold M will be a copy of Dk × Dn−k

attached to ∂M via an embedding (∂Dk) × Dn−k → ∂M . For a handlebody decomposition of a
smooth 4-manifold M , we assume there is one 0-handle, and that any 4-dimensional 1-handles are
attached to the boundary of this 0-handle; these 1-handles can be pictured as two copies of D3 in
S3 identified to each other via a reflection. Any 4-dimensional 2-handles D2 × D2 attached to the
manifold can be specified by drawing the attaching circle (∂D2) × {0}, along with a framing of its
normal bundle in ∂M . There is a bijection between these framings and the integers, explained below.
A collection of framed links in S3 with embedded pairs of D3 in S3 is called a Kirby diagram of M .

If M has only 4-dimensional 2-handles attached to a 0-handle, we call M a 2-handlebody. Every
2-handle D2 ×D2 is attached along an embedding η : (∂D2)×D2 → S3; the (∂D2 ×D2) part of the
boundary of D2 ×D2 is then in the interior of the new manifold, and the D2 × (∂D2) factor changes
the boundary 3-manifold. On the boundary it is equivalent to removing a tubular neighbourhood of
the attaching circle and gluing in a solid torus D2×(∂D2) by sending the meridian curves ∂D2×{pt}
to their images under the embedding η. This is referred to as Dehn surgery, and the corresponding
Kirby diagram forM is also a surgery diagram for ∂M . The Dehn-Lickorish theorem states that any
closed orientable 3-manifold is given by such a surgery diagram [Lic62].

3.0.1 Framings of 2-handles

Suppose we have an embedding φ̃ : ∂D2 → ∂M with trivial normal bundle in ∂M . Pick an or-
thonormal frame {s1, s2}, which gives a global trivialization of this normal bundle, and pick a
tubular neighbourhood N : ν(∂D2) → ∂M , where ν(∂D2) is the disc bundle associated to the
normal bundle. We can construct a gluing map φ : ∂(D2) ×D2 → ∂M for the 2-handle by setting
φ(x, a, b) = N(as1(φ̃(x)) + bs2(φ̃(x))). The meridians ∂(D2) × {pt} are glued to pushoffs of the
attaching circle φ̃ along these frames. Note that the core {0}× ∂D2 of this added solid torus is sent
to a meridian of the attaching circle φ̃ in the Kirby diagram.
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Figure 3.1: The ribbon graph ∆g, where all tangles are given the 0-framing

Suppose 4-dimensional 2-handles are attached to ∂D4 = S3; there is a bijection between framings
of a 4-dimensional 2-handle D2 ×D2 and π1(SO(2)) = Z, but this correspondence requires a choice
of an arbitrary framing. We define the 0-framing to be the non-zero transverse vector field to the
attaching circle φ(∂D2 × {0}) = K in S3 induced from the collar of any Seifert surface for K. Then
for the pushoffK ′ ofK in the direction of the 0-framing we have that lk(K,K ′) = 0, and the bijection
between framings and Z is realised by linking numbers of pushoffs. The vector field corresponding
to k ∈ Z is given by a vector field which deviates from the 0-framing by k full twists (right handed
twist is +1). Note that this framing integer is independent of the orientation chosen for the attaching
circle K, since reversing K also reverses the pushoff K ′ in the direction of the vector field.

3.0.2 Surgery diagrams for Heegaard splittings

We use tangle diagram to aid in the constructions below. A tangle is an embedding of an oriented
1-manifold in the unit cube I3 such that its boundary is contained in 1/2× I ×{0, 1}, up to isotopy
keeping the endpoints fixed. A tangle is equipped with a framing of its normal bundle that is standard
on the boundary, and is specified as above, via the correspondence given by linking number. We
allow coupons in our tangle diagrams, where a coupon is an embedding of I2 in I3. We allow tangles
to be connected to the boundary of this coupon, and assume that the framing of the normal bundle
of such a tangle is standard on the boundary of a coupon. We call a tangle diagram with coupons a
ribbon graph. A ribbon graph used often is given in Figure 3.1. From now on we refer to this ribbon
graph as ∆g and denote by −∆g its inversion.

Let Hg be an oriented handlebody of genus g; we assume that Hg has one 0-handle D3 and
g 3-dimensional 1-handles all attached to the 0-handle. Let −Hg denote the handlebody Hg with
opposite orientation. We fix our model of ±Hg to be a regular neighbourhood of ±∆g in S3, and we
fix ∂(Hg) = Σg as our model for a surface of genus g. Given an element [f ] ∈ Modg,1 we can form
the following closed 3-manifold

Sg(f) = Hg ∪f −Hg = Hg ⊔ I × Σg ⊔ −Hg/ ∼,

where (0, x) ∈ {0} × Σg ∼ x ∈ ∂(Hg) and (1, x) ∈ {1} × Σg ∼ f(x) ∈ ∂(−Hg). We refer to
the manifold Sg(f) as a Heegaard splitting of genus g. If the genus is clear from context then we
abbreviate Sg(f) to S(f). There is an embedding of Σg in this manifold given by ∂(Hg) that we refer
to as a Heegaard surface.

Suppose we choose a framed link L in S3 −±∆g such that Dehn surgery along L produces S(f)
with ±∆g embedded in S3\L as in Figure 3.1. Then we get a ribbon graph L∪∆g∪−∆g representing
the manifold S(f), which we think of as a Kirby diagram for S(f) with added data. To get a framed
link L representing S(f) in this way, note that #gS

1 × S2 = S(id) has a surgery diagram given by g
disjoint unknots with framing 0, and Hg,−Hg are given by tubular neighbourhoods of the copies of
±∆g in Figure 3.2 .

Take a positive normal to Σg in S3 and take an embedding of I × Σg into S3 specified by this

13



Figure 3.2: #gS
1 × S2 = Hg

⋃
id −Hg with ±∆g embedded in them.

Figure 3.3

framing. Think of {0}×Σg as ∂(Hg) and {t}×Σg as a pushoff of Σg in the direction of the positive
normal(pointing out of the page). Denote the image of this embedding of I × Σg into S3 by ν(Σg).
We make sure that ν(Σg) does not intersect any of the tangles in the diagram. Now we wish to
modify the gluing map from S(id) to S(f) using the neighbourhood ν(Σg).

Suppose we want to modify S(id) using Dehn surgery to get S(tic) for i ∈ {±1}, where c is a
simple closed curve in Σg \ D. Pick a fiber {pt} × Σg := F in ν(Σg) and choose an embedding of
c in F , then let A be an annular neighbourhood of c in F and write N for the solid torus obtained
by thickening A to one side of F in ν(Σg). Now we remove N and reglue it by the map of Figure
3.3; by construction this is Dehn surgery. Away from N the fibering is the same, but as we pass
across N a Dehn twist about c occurs. This changes the gluing from the identity to a Dehn twist
about c. This Dehn surgery corresponds to adding a 4-dimensional 2-handle to the Kirby diagram
with framing coefficient specified by the map of Figure 3.3. Alternatively, performing Dehn surgery
along c via the map given by Figure 3.3 is equivalent to cutting open the fiber surface F , and then
regluing via t±1

c .

Next, suppose we have f written as a product of Dehn twists tcn · · · tc1 . Since ν(Σg) = I×Σg, we
pick t1 < t2 < · · · < tn ∈ I and place the curve ci in the Kirby diagram at {ti}×Σg. Performing Dehn
surgery along these curves by the map given by Figure 3.3 will give us S(f). The framings on these
curves in the Kirby diagram, along with how these curves link will be captured by Seifert’s linking
form, which is described below. An example of the tangle diagrams obtained from this method is
given in Figure 3.4.
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Γt2a2
Γt2b1

Figure 3.4: Tangle diagrams for S(t2a2) (left) and S(t
2
b1
)(right).

Seifert pairing

Suppose that an oriented surface F has been embedded in S3; given a curve a on F representing a
cycle, let a+ denote the pushoff of a in the direction of the positive normal to F . We define Seifert’s
linking pairing

λ : H1(F ;Z)×H1(F ;Z) → Z
by the formula λ(a, b) = lk(a, b+). It turns out that λ is a well-defined bilinear pairing and is an
invariant of the ambient isotopy class of the embedding of F into S3. (See [Kau87, Chapter VII] for
more details). In our setup we orient S3 and F so that the positive normal points out of the page,
toward the reader.

On the boundary, attaching a 4-dimensional 2-handle with framing n along a knotK is equivalent
to removing a solid torus neighbourhood of K and gluing a solid torus back in by sending a meridian
to the pushoff K ′ of K in the direction of the transverse vector field of the framing.

For a curve c on a surface F embedded in S3, the self-linking form λ(c, c) can be computed
by lk(c, c∗), where c∗ is a parallel copy of c along the surface F . We want to remove a torus
neighbourhood of c and reglue by the map of Figure 3.3 and the discussion above implies that this
is equivalent to attaching a 4-dimensional 2-handle along c ⊂ F with framing λ(c, c)± 1, where the
±1 comes from the gluing being t±1

c .

3.0.3 Surgery diagrams of mapping tori

Now we explain how to go from ribbon graphs of S(f) to framed link presentations of the mapping
torus Mf . If we remove regular neighbourhoods ν(±∆g) in S3 of the copies of ±∆g in our ribbon
graph for S(f) we get a manifold diffeomorphic to I ×Σg cut open along {pt} ×Σg and reglued via
f . So if we identify the remaining boundary surfaces via the identity we get Mf . Suppose we specify
the manifold S(f) by a ribbon graph in S3 as above. Removing the ν(±∆g) and identifying the two
boundary surfaces is equivalent to adding a copy of D1 × Hg to the 2-handlebody specified by the
Kirby diagram of S(f), where we glue −1×Hg to ν(−∆g) and 1×Hg to ν(∆g); the ∂D

1 ×Hg part
of the boundary of D1 ×Hg is then in the interior of the new manifold, and the D1 × ∂Hg is a new
part of the boundary, that has been glued along ∂D1 × ∂Hg.

We assume that Hg has one 0-handle D3, so we add one 4-dimensional 1-handle D1 ×D3 to the
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Figure 3.5

Kirby diagram, along with g 4-dimensional 2-handles D1×D1×D2 coming from the g 3-dimensional
1-handles of Hg. These 4-dimensional 2-handles are attached with framing 0 (draw the relevant
portion ∂(D1 ×D1)×{pt} for pt ∈ ∂D2 that is visible in the Kirby diagram). This gives us a Kirby
diagram for a 4-manifold with boundary Mf .

Now we think of the two 3-balls ∂D1×D3 of the 4-dimensional 1-handle attached in Figures 3.2,
3.4 as tubular neighbourhoods of the coupons of ±∆g in S3. The 4-dimensional 2-handles are given
by the tangles attached to the coupons (these 2-handles run over the 1-handle). Here the endpoints
of the strands of the tangle of the bottom coupon are identified with the endpoint of the strand of
the tangle of the top coupon which is directly above it. We call the corresponding 4-manifold given
by this Kirby diagram Xf .

Dotted circle notation

We can now find Kirby diagrams of 4-manifolds with boundary Mf , where f : Σg → Σg is a
diffeomorphism. Next, we describe dotted circle notation, due to Akbulut [Akb77].

If we smooth corners so that D2 × D2 = D4 we have a diffeomorphism (D2 \ ν{0}) × D2 =
(S1 × D1) × D2 = S1 × D3, where ν{0} is a tubular neighbourhood of 0 ∈ D2. From this, we see
that adding a 1-handle to D4 is the same as removing an open tubular neighbourhood of a properly
embedded 2-disc {0}×D2, whose boundary {0}× ∂D2 is visible in the Kirby diagram as an unknot
in S3; draw this unknot as a dotted circle to indicate that it corresponds to a 1–handle.

The ν{0}×∂D2 part of the tubular neighbourhood is visible in ∂D4 = S3 as a solid torus and the
annulus (D2 \ ν{0})×{pt} allows us to isotope a curve running through the 1- handle to ∂ν{0}× pt,
which links once with the removed solid torus in ∂D4.

Note that ∂(S1×D3) = S1×S2 = ∂(D2×S2), where the Kirby diagram of D2×S2 is given by a
0-framed unknot. Moving from the dotted circle to the 0-framed unknot as in Figure 3.5 is done via
surgery in the interior of the 4-manifold, and the symbol ∼δ denotes that there is a diffeomorphism
between the two boundary 3-manifolds.

Given a Kirby diagram with 1-handles, we can switch to dotted circle notation by isotoping the
attaching circles of any 2-handles so that they avoid the regions between the attaching balls of the
1-handles. Then we can push the balls together and switch to dotted circle notation. When doing
this, we must remember that curves running through the 4-dimensional 1-handle are linked with the
dotted circle, and are joined together by the gluing data of the 4-dimensional 1-handles. We use the
convention of drawing dotted lines to indicate the paths taken to push any balls together (For more
information see [GS99, Section 5.4]). Applying this operation to the Kirby diagram of the 4-manifold
Xf we have found with ∂Xf =Mf , then changing the dotted circles to 0-framed unknots gives us a
surgery diagram for Mf . The framings are well-defined once we have drawn the dotted lines.
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Figure 3.6: A fiber in the surgery diagram for Mf obtained from Construction 3.0.1.

Note that there is a natural way to switch to dotted circle notation using the ribbon graphs
above; we simply push the two balls given by the coupons together along a dotted line running to
the right. An example is given by Figure 3.7. To summarise:

Construction 3.0.1. Let f : Σg → Σg be a diffeomorphism with [f ] = tkncn · · · tk1c1 ∈ Modg,1, where
ki = ±1 for all i. We have the following construction of framed link descriptions of S(f) and Mf :

1. Start with a ribbon graph for S(id) = Hg ∪id −Hg, as in Figure 3.2.

2. Pick a collar, I × F , of F = ∂(νS3(∆g)) in S3, and pick t1 < · · · < tn ∈ I. Then place ci in
{ti} × F with framing λ(ci, ci) + ki. Here λ : H1(F ;Z) × H1(F ;Z) → Z denotes the Seifert
pairing of F ⊂ S3. The closed components of this diagram give a framed link for S(f), and the
±Hg are thought of as regular neighbourhoods of ±∆g in S3.

3. To go from S(f) to Mf , think of the coupons of ±∆g as 4–dimensional 1–handles, and the
tangles of ±∆g as 4–dimensional 2–handles. Then change to dotted circle notation as in Figure
3.7, and replace the dotted circle by a 0–framed unknot.

After switching to dotted circle notation in Construction 3.0.1 (3), the surface F gets punctured,
and can be visualised in the following way: choose a disk D ⊂ S3, with boundary the dotted circle
component that intersects the components of the framed link transversely in pairs of punctures.
Take away small open disks in D around the punctures, and replace with annuli that run along the
components of the link intersecting D, to obtain a punctured fiber as in Figure 3.6. The remaining
part of the fiber, which is a disk, is in the surgered torus obtained from 0–surgery on the dotted circle
component. The complement of the dotted circle in S3 fibers into disks, and repeating the operation
above allows us to see the other fibers of the mapping torus.

3.0.4 Surgery diagrams from composing tangles

We can also construct surgery diagrams for Heegaard splittings and mapping tori by concatenating
tangle diagrams; this will be useful later on for studying the Birman–Craggs maps.

The ribbon graphs obtained as in Figure 3.4 give surgery diagrams for S(f) := Hg

⋃
f −Hg if

we surger along the closed components of the tangle diagram. The handlebodies ±Hg are viewed as
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Figure 3.7: Surgery diagrams for Mt2a2
and Mt2b1

obtained from Figure 3.4

tubular neighbourhoods in S3 of the ±∆g. This breaks S(f) into three pieces, ν(±∆g) and a copy
of I × Σg cut open along a {pt} × Σg and reglued via f . If we remove tubular neighbourhoods in
S3 of the ±∆g we get tangle diagrams for the mapping cylinder C(f) = I × Σg

⊔
Σg/ ∼, obtained

by gluing (1, x) ∈ {1} × Σg to f(x) ∈ Σg. Given such a ribbon graph of S(f) corresponding to
C(f), we denote by Γf the tangle diagram obtained by deleting the top and bottom coupons. The
following useful result is due to Reshetikhin-Turaev [RT91, Lemma 4.4], we include a proof of it here
for convenience.

Lemma 3.0.2. Let f, h : Σg → Σg be diffeomorphisms, and let Γf ,Γh be two tangle diagrams as
above representing C(f), C(h). Then the composition Γf ◦ Γh obtained by stacking Γf on top of Γh

and then putting coupons on the ends gives a ribbon graph for S(f ◦ h). Here, the g additional
unknotted components obtained from stacking are given the 0–framing.

Proof. For Γf ◦ Γh, consider the g 0–framed unknots L1, .., Lg obtained by gluing the top boundary
tangles of Γh to the bottom boundary tangles of Γf . Each of the Li transversally hits a plane R2× 1

2
⊂

R3, along which Γh is glued to Γf . Complete this plane into a 2–sphere S2 = R2 × 1
2
∪ {∞} ⊂ S3,

and take a cylinder, S2 × [0, ϵ], over this 2–sphere, such that each of the Li meet this cylinder in two
vertical segments {pt} × [0, ϵ].

Now, surger S3 along all the closed components of Γf ◦ Γh, using the given framings, to get a
closed 3–manifold M . In doing so, we cut out regular neighbourhoods U1, .., Ug of L1, .., Lg, and glue
in g solid tori W1, ...,Wg. Then

N := ((S2 × [0, ϵ]) \
g⋃

i=1

Ui) ∪
g⋃

i=1

Wi ⊂M

is identified with [0, 1]× ∂(ν(∆g)); compare with Figure 3.2, the complement of the ±Hg = ν(±∆g)
in Hg ∪id −Hg is a copy of I × ∂(ν(∆g)), and can be identified with N by construction. Hence,
M \ ν(±∆g) can be identified with ([0, 1

3
] × F )

⋃
h([

1
3
, 2
3
] × F )

⋃
f ([

2
3
, 1] × F ), where F = ∂(ν(∆g)),

and ([0, 1
3
]×F )

⋃
h([

1
3
, 2
3
]×F ) denotes that (1

3
, x) ∈ [0, 1

3
]×F has been glued to (1

3
, h(x)) ∈ [1

3
, 2
3
]×F ,

and similarly for the other union. This implies M \ ν(±∆g) is diffeomorphic to C(f ◦ h).

After composing the tangle diagrams and putting coupons on the two opposite ends, the result-
ing copies of ±∆g in our ribbon graph have regular neighbourhoods in S3 corresponding to ±Hg.
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Γt2a2

Γt2b1

Figure 3.8: Another surgery diagram for S(t2a2t
2
b1
), obtained by concatenating the tangles of Figure

3.4

Removing these copies of ±Hg gives us the mapping cylinder C(f ◦ h) so the ribbon graph obtained
gives a surgery diagram for S(f ◦ h).

For an example of the constructions in the proof of Lemma 3.0.2, the tangle diagram for C(t2a2t
2
b1
)

given in Figure 3.8 is obtained using the tangle diagrams for C(t2a2) and C(t
2
b1
) given in Figure 3.4.

To summarise, we have outlined the following inductive construction:

Construction 3.0.3. Let f = fn · · · f1 be a diffeomorphism, where each fi is a composition of Dehn
twists (or their inverses). Then, by concatenating tangle diagrams, we have the following inductive
construction of framed link diagrams for S(f) and Mf .

1. Use part (2) of Construction 3.0.1 to obtain ribbon graphs of the S(fi), for i = 1, .., n. Let Γfi

denote the tangle diagrams obtained by deleting any coupons, as above.

2. The composition Γfn ◦ · · · ◦Γf1, obtained using Lemma 3.0.2 inductively, with coupons added to
the top and bottom, gives a ribbon graph for S(fn · · · f1); surgering along the closed components
of Γfn ◦ · · · ◦ Γf1 gives a framed link for S(fn · · · f1).

3. We obtain a framed link for Mfn···f1 by viewing the coupons as 4–dimensional 1–handles, and
the tangles (nonclosed components) as 4–dimensional 2–handles, then changing to dotted circle
notation as in Figure 3.7, and changing the dotted circle into a zero framed unknot.

Note that the mapping tori obtained from constructions 3.0.1 and 3.0.3 are diffeomorphic. This
can be seen using Kirby calculus [MP94, Fig. 3 (K3 move)]; an example for genus 1 is given in
Figure 3.9. This argument can be generalised as in Figure 3.9(rightmost); isotope the components
corresponding to Dehn twists so that they lie as in Figure 3.9(rightmost), then slide each strand over
L′.
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Figure 3.9: Two diffeomorphic surgery diagrams for Mt2at
2
b
. The first move is to slide the components

L1, L2 corresponding to t2b over L3. The second move is [MP94, K3 move]. A similar argument works
for diagrams of Mt2bt

2
a
; the order of concatenation matters.

20



Chapter 4

Rewriting Sato’s maps

In this chapter, we define Construction 4.0.5, that outputs a framed link diagram of a mapping torus,
along with a characteristic sublink (defined below). This construction plays the role of Sato’s map θ
in Chapter 2. Construction 4.0.5 allows us to evaluate the Rochlin invariant of a given spin structure
from the link diagram.

4.0.1 Spin structures and characteristic sublinks

For an arbitrary framed link L in S3, write ML for the 3–manifold obtained via Dehn surgery on
L. There is a 2–handlebody WL with Kirby diagram L, and ∂WL = ML. The linking matrix of L
is the matrix of the intersection form of WL with respect to a basis of H2(WL) obtained from the
components Li of L; use · to denote this intersection form. See Appendix 8.5 for more details.

Definition 4.0.1. Let L be an oriented framed link with components L1, .., Ln, and let C be a
sublink of L. Define (wi)

n
i=1 ∈ (Z/2)n by wi = 1 if and only if Li is in C. Then C is characteristic if

piwi +
∑
j ̸=i

lk(Li, Lj)wj ≡ pi (mod 2),

for all 1 ≤ i ≤ n. Here pi denotes the integer specifying the framing of Li. We abbreviate these
conditions to C · Li ≡ Li · Li (mod 2).

Lemma 4.0.2. [KM91, Lemma C.1], [GS99, Prop. 5.7.11] There is a natural bijection between spin
structures on ML and characteristic sublinks of L

Proof. The correspondence is given by taking a spin structure s of ML, and defining C to be the
union of all components Li of L such that the spin structure s does not extend over the 2–handle in
WL attached to Li.

4.0.2 Rewriting Sato’s constructions

Let Lf be a framed link for the mapping torus of f , obtained from Construction 3.0.1, where f is
a product of squares of Dehn twists, bounding pairs, or separating twists. By Figure 3.6, we see a
punctured fiber F for the mapping torus MLf

, where F lies in S3 \ Lf as the standard embedding
of a surface into S3. Let L be the framed link obtained from Construction 3.0.1 (3) with f = id,
then ML

∼= S1 ×Σg, and L is a sublink of Lf . The framed link Lf is obtained from L by placing the
curves appearing in the factorisation of f in pushoffs of the fiber surface, and framing them using
the Seifert pairing of F ⊂ S3.
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In Chapter 2.0.1, for a spin structure σ ∈ Spin(Σg), we obtained a spin structure θ(σ) as a right
splitting of the short exact sequence

0 → H1(SO(3))
i→ H1(P (MLf

))
p→ H1(MLf

) → 0. (4.1)

Under the splitting of H1(MLf
) obtained from the exact sequence (2.2), it is given by l̂ ⊕ σ, where

l̂ is obtained from the fixed embedding of S1 × D ↪→ Mf in the notation of Chapter 2.0.1. This
construction gives a spin structure on Mf that restricts to σ ∈ Spin(Σg) on a fiber, and restricts to
a fixed spin structure on S1 ×D ⊂Mf .

For the framed link Lf obtained from Construction 3.0.1, we have a fixed embedding of a punc-
tured fiber F ⊂ S3 \ Lf , and a fixed embedding of S1 × D ↪→ S3 \ Lf that is identified with a
neighbourhood α of a meridian of the dotted circle component; see Figure 3.6. Let B = {ai, bi}gi=1

denote the standard basis for H1(F ;Z) as in Figure 5.1. When placed in the fiber, the curves in B
go to meridians of the components of L, the sublink corresponding to S1 × Σg. We can frame these
curves using a spin structure σ ∈ Spin(Σg) and a positive normal to the fiber F .

To specify σ ∈ Spin(Σg), we use Theorem 2.0.1, which says that spin structures on Σg are
in bijection with symplectic quadratic forms. Let σ ∈ Spin(Σg) have associated quadratic form
qσ : H1(Σg) → Z/2. For an embedded circle K ⊂ Σg, the restriction of σ to K defines a spin
structure on TΣg|K , since H1(S1) = Z/2, there are only two types up to homotopy. One is the
bounding spin structure induced by the product framing on D2. For a spin structure σ ∈ Spin(Σg),
and an embedded curve K ⊂ Σg, we have that qσ([K]) = 0 if and only if the spin structure σ
restricted to K is spin bounding [BM96, Remark 2.3].

Lemma 4.0.3. Let µj ∈ B ⊂ F be a meridian of a component Lj of L that doesn’t come from a
dotted circle, and let σ ∈ Spin(Σg). If qσ([µj]) = 0, then the spin structure on MLf

extends over the
2–handle in WLf

attached along Lj.

Proof. Since qσ([µj]) = 0, the spin structure σ restricted to µj is spin bounding. As noted in Chapter
3.0.1, after surgery along Lj, the meridian µj can be isotoped to the core {0}× ∂D2 of the 2–handle
h = D2 ×D2 attached along Lj. The spin structure restricted to h has to be the product framing,
which agrees with the spin bounding structure on µj.

Following Lemmas 4.0.2 and 4.0.3, we define the characteristic sublink of Lf in the following
way: we set the components Li of L, with meridians µi ∈ B in the fiber F , satisfying qσ(µi) = 1 to
be in the characteristic sublink of Lf . We set the dotted circle component of Lf to never be in the
characteristic sublink, this corresponds to fixing the spin structure on the embedding of S1×D given
by the meridian α. The conditions of definition 4.0.1 determine whether the additional components
of Lf are in the characteristic sublink, by the following.

Proposition 4.0.4. Let f : Σg → Σg be a product of squares of Dehn twists, bounding pairs, or
separating twists. Let Lf be the framed link for Mf obtained from Construction 3.0.1, and let L
be the sublink corresponding to S1 × Σg. Then once we have defined which components of L are
in the characteristic sublink, the conditions of definition 4.0.1 uniquely determine if the additional
components of Lf are in the characteristic sublink.

Proof. We prove the case where f is a product of squares. Let Lf have components L1, ..., Ln, and
suppose that the components Li, Li+1 correspond to a t±2

c factor of the monodromy f , via construction
3.0.1 (2). Then pi = pi+1 = λ(c, c)± 1, where λ is the Seifert pairing for the punctured fiber surface
F that lies in S3 \ Lf . Applying the relations of definition 4.0.1, we have

piwi + (pi − 1)wi+1 +
∑

j ̸=i,i+1

lk(Li, Lj)wj ≡ pi (mod 2).

22



The components Li and Li+1 have the same linking number up to signs with all other components,
since they are isotopic to each other in the fiber that lies ambiently in S3, so applying definition 4.0.1
to Li+1 we get

piwi+1+(pi−1)wi+
∑

j ̸=i,i+1

lk(Li+1, Lj)wj ≡ piwi+1+(pi−1)wi+
∑

j ̸=i,i+1

lk(Li, Lj)wj ≡ pi+1 ≡ pi (mod 2).

But then
wi ≡ wi+1 ≡ pi −

∑
j ̸=i,i+1

lk(Li, Lj)wj (mod 2).

The result follows since the other components corresponding to the monodromy come in pairs, so
they contribute zero to the right hand side of the last equation. The general case, where bounding
pair and separating twist factors are involved, follows from a similar argument, since the linking
number of the components of Lf is determined by the Seifert pairing on homology.

Note that for the symplectic quadratic form qσ : H1(Σg) → Z/2 associated to σ ∈ Spin(Σg), the
affine action of x ∈ Hom(H1(Σg),Z/2) = H1(Σg) on σ satisfies the following identity: qσ+x = qσ + x
[Joh80c, Theorem 3A]. For example, if x ∈ H1(Σg) satisfies x([c]) = 1 for c ∈ B, then qσ+x([c]) =
qσ([c])+1, so we switch whether the component of L with meridian c is in the characteristic sublink.

In summary, we have the following construction; recall that any element of Modg,1[2] can be
written as a product of squares of Dehn twists [Hum92, Prop.2.1].

Construction 4.0.5. Let [f ] ∈ Modg,1[2] be a mapping class, written as a product of squares of
Dehn twists.

1. We start with a framed link L representing S1 × Σg, obtained by applying Construction 3.0.1
(3) to f = id. A punctured fiber surface F for {pt} × Σg is visible in S3 \ L as in Figure
3.6. Construction 3.0.1 gives a framed link Lf representing Mf , obtained by placing the curves
appearing in the factorisation of f in pushoffs of the fiber surface F in S3 \ L, and framing
these curves using the Seifert pairing; Lf has L as a sublink.

2. For σ ∈ Spin(Σg) with associated quadratic form qσ : H1(Σg) → Z/2, define a map Spin(Σg) →
{Characteristic sublinks of L} in the following way: a component Lj of L with meridian µj ∈ B
in the fiber F , is in the characteristic sublink if and only if qσ(µj) = 1. The dotted circle
component of L is never in the characteristic sublink.

3. Denote our map θ : Spin(Σg) → {Characteristic sublinks of Lf} by θLf
to indicate the depen-

dence on the monodromy f , and our chosen framed link L for S1 ×Σg. Then θLf
(σ) is defined

by declaring which components of L are in the characteristic sublink as in (2), and the rela-
tions of definition 4.0.1 determines if the additional components of Lf are in the characteristic
sublink, by Proposition 4.0.4.

It remains to show that for two different factorizations of [f ] ∈ Modg,1[2] into products of squares
of Dehn twists, the spin mapping tori obtained from Construction 4.0.5 are spin diffeomorphic.

Theorem 4.0.6. The map that sends [f ] ∈ Modg,1[2] to the spin diffeomorphism class of (Lf , θLf
(σ)),

where (Lf , θLf
(σ)) is obtained via Construction 4.0.5, is well–defined.

Proof. Suppose, for example, that [f ] = t2cn · · · t
2
c1
, [h] = t2dm · · · t2d1 , and that [f ] = [h] in the mapping

class group. In the construction above, the monodromy is modified via Dehn surgery in a single
tubular neighbourhood of the punctured fiber surface F obtained from ∂(ν(∆g)) after switching to
dotted circle notation (see Figure 3.6). Identify this neighbourhood with I × F , and set N(f) to be
the manifold obtained from I × F by modifying the monodromy by Dehn surgery along the curves
ci ⊂ ti × F as in construction 3.0.1 (2). Define N(h) similarly.
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If we isotope the pair of surgery components corresponding to the t2ci part of the gluing to lie on
the same pushoff of F , we see that N(f) = ([0, 1

n+1
]×F )∪t2c1

([ 1
n+1

, 2
n+1

]×F )∪t2c2
· · ·∪t2cn

([ n
n+1

, 1]×F ).
Here, ([ k−1

n+1
, k
n+1

] × F ) ∪t2ck
([ k

n+1
, k+1
n+1

] × F ) means that ( k
n+1

, x) ∈ [ k−1
n+1

, k
n+1

] × F has been glued to

( k
n+1

, t2ck(x)) ∈ [ k
n+1

, k+1
n+1

] × F . To see this, note that performing Dehn surgery along ci ⊂ {ti} × F ,
using the framing λ(ci, ci) ± 1 coming from the Seifert pairing of F ⊂ S3, is equivalent to cutting
along {ti} × F , and regluing via t±1

ci
, see Figure 3.3.

We have a map ψ : N(f) → C(f) := I × F ⊔ F/(1, x) ∼ f(x), defined on the decomposition
of N(f) above, as ψ|[0, 1

n+1
]×F = id × id, and ψ|[ k

n+1
, k+1
n+1

]×F = id × (t−2
c1

· · · t−2
ck
), for k > 0. This

map has inverse ψ−1 : C(f) → N(f), where ψ−1|[ k
n+1

, k+1
n+1

]×F = id × (t2ck · · · t
2
c1
) for k > 0, and

ψ−1|[0, 1
n+1

]×F = id× id on the I × F part of C(f), and ψ−1(x) = (1, x), for x ∈ F ⊂ C(f).

Since [f ] = [h], there is a map H : I × F → I × F given as H(s, x) = (s,Hs(x)), where Hs is an
isotopy withH0 = idF , andH1 = f−1h. This defines a map ϕ : C(h) → C(f), by ϕ(s, x) = H(s, x) for
(s, x) ∈ I ×F , and ϕ(x) = x, for x ∈ F . The map G : I ×F → I ×F given by G(s, x) = (s,H−1

s (x))
induces an inverse map to ϕ.

The maps of the previous two paragraphs descend to maps of the relevant mapping tori; the
3–manifold specified by Lf via construction 4.0.5 can be identified with N(f)/(1, x) ∼ (0, x), and
the abstract mapping torus Mf can be identified with C(f)/(1, x) ∼ (0, f(x)). We have ψ(1, x) =
(1, f−1(x)) ∼ (0, f ◦ f−1(x)) = (0, x) = ψ(0, x). The inverse of ψ also induces a diffeomorphism
between the mapping tori by a similar argument. The ϕ±1 also descend to diffeomorphisms of
mapping tori, since ϕ(1, x) = (1, f−1h(x)) ∼ (0, ff−1h(x)) = (0, h(x)) = ϕ(0, h(x)) when ϕ is
projected to the mapping torus using the identifications above.

Composing the diffeomorphisms obtained this way gives a diffeomorphism between the mapping
tori specified by Lf and Lh. Locally, the total derivative of this diffeomorphism is of the form
idR⊕ de, for some e ∈ Diff(F ) which preserves the spin structure restricted to F , and fixes pointwise
a neighbourhood of the meridian of the dotted circle component. Hence, the spin mapping tori
(Lf , θLf

(σ)) and (Lh, θLh
(σ)) obtained from construction 4.0.5 are spin diffeomorphic, for fixed σ ∈

Spin(Σg).

4.0.3 Sato’s homomorphisms

Denote by Map(H1(Σg),Z/8) the free Z/8–module consisting of all functions H1(Σg) → Z/8, and
recall H1(Σg) = H1(Σg;Z/2). Define

βσ : Modg,1[2] → Map(H1(Σg),Z/8)

by βσ([f ])(x) = βσ,PD(x)([f ]). In this section, we prove that the maps βσ are homomorphisms using
a formula for computing the Rochlin invariant from a surgery diagram with a labelled characteristic
sublink. The proof sheds light on why it is a homomorphism on the subgroup generated by squares
of Dehn twists, which coincides with Modg,1[2] [Hum92, Prop.2.1].

From now on we use construction 4.0.5, and think of θLf
as a map from Spin(Σg) to framed

links with characteristic sublink (Lf , θLf
(σ)), such that the corresponding spin manifold is spin

diffeomorphic to (Mf , θ(σ)). We use the following formula for the Rochlin invariant of (Lf , θLf
(σ)),

found by Kirby–Melvin.

Theorem 4.0.7. [KM91, (C.3), Theorem C.4, Corollary C.5] Let (L,C) denote a framed link L, with
a characteristic sublink C as in definition 4.0.1. Suppose L is oriented, then the Rochlin invariant
of the corresponding spin manifold is given by

R(L,C) = ΛL − C · C + 8Arf(C) (mod 16),
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Figure 4.1: A surgery diagram for Mt2a2 t
2
b1

obtained from construction 3.0.1, where a2 and b1 are the

curves of Figure 3.4

where ΛL is the signature of the linking matrix of L, C ·C is the sum of all entries in the linking matrix
of C, and Arf(C) ∈ Z/2 is the Arf invariant of C, defined below. The formula above gives a spin
diffeomorphism invariant for spin 3–manifolds, and in particular, the formula above is independent
of the choice of orientations for the components of L.

The Arf invariant of a proper link

We call a link L proper if lk(K,L −K) is even for every component K of L. Let F be an oriented
Seifert surface for L, and let i : L → ∂F denote the inclusion. Then im(i∗) is the radical of the
intersection form on H1(F ) and the Seifert self–linking form

λ : H1(F ) → Z/2
[a] 7→ lk(a, a+)

satisfies λ|im(i∗) = 0 if and only if L is a proper link. We can define Arf(L) to be the Arf invariant of
the form on H1(F )/ im(i∗) induced by λ. See Appendix 8.4 for more details.

For a proper link L, we can produce a knot K by band connecting together all the components
of L, as long as the bands respect the orientations chosen for the components of L. It is a fact that
Arf(L) = Arf(K); see [Rob65] or [Hos84] for more details.

Another definition of Sato’s maps

Using Theorem 4.0.7, we write the Rochlin invariant of the spin mapping torus (Lf , θLf
(σ)) obtained

from construction 4.0.5 as

R(Lf , θLf
(σ)) = ΛLf

− θLf
(σ) · θLf

(σ) + 8Arf(θLf
(σ)) (mod 16). (4.2)

Now, substitute formula (4.2) into Sato’s definition of the homomorphisms, to get:
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Lemma 4.0.8. Let σ ∈ Spin(Σg) be a spin structure, let x ∈ H1(Σg), and let [f ] ∈ Modg,1[2]. Let
(Lf , θLf

(σ)) and (Lf , θLf
(σ+x)) denote the spin mapping tori obtained from construction 4.0.5, then

βσ,x([f ]) = (θLf
(σ+x) · θLf

(σ+x)− θLf
(σ) · θLf

(σ)+8(Arf(θLf
(σ))−Arf(θLf

(σ+x))))/2 (mod 8).

Here θLf
(σ)·θLf

(σ) denotes the sum of all the entries in the linking matrix of the characteristic sublink
of θLf

(σ), and Arf(θLf
(σ)) ∈ {0, 1} is the Arf invariant of the characteristic sublink of θLf

(σ). This
formula is well–defined by Theorems 4.0.7 and 4.0.6, and is independent of the orientations chosen
for the components of Lf .

We often choose orientations for Lf to simplify calculations for the above formula; examples of
these orientation choices are given in the proof of Lemma 4.0.9 below. Using our description of θLf

,
a spin structure for these surgery diagrams is given by declaring which curves in the framed link L
representing S1×Σg are in the characteristic sublink; the defining relations C ·Li ≡ Li ·Li (mod 2) of
definition 4.0.1 determines whether the additional components of Lf are in the characteristic sublink,
by Proposition 4.0.4. For Figure 4.1, giving this diagram a spin structure is equivalent to declaring
whether the zero framed components are in the characteristic sublink. The dotted circle component
is never in the characteristic sublink for our map θLf

.

Lemma 4.0.9. Let σ ∈ Spin(Σg) be a spin structure, and let βσ : Modg,1[2] → Map(H1(Σg),Z/8)
denote Sato’s maps, where βσ([f ])(x) = βσ,PD(x)([f ]), for PD(x) ∈ H1(Σg), and βσ,PD(x)([f ]) is given
by Lemma 4.0.8. Then the maps βσ are homomorphisms.

Proof. The set S = {t±2
c | c nonseparating simple closed curve} is a generating set for Modg,1[2].

Let x ∈ H1(Σg), we will show that βσ,x(f1 · · · fn) =
∑n

i=1 βσ,x(fi), for fi ∈ S. We have a framed
link L for S1 × Σg described in construction 4.0.5. We then place curves corresponding to f1, .., fn
in pushoffs of a single (punctured) fiber surface, F that lies in S3 \ L. Note that the framed link L
has linking matrix the zero matrix, hence components of L do not contribute to the θLf

(σ) · θLf
(σ)

terms in Lemma 4.0.8.

The components corresponding to the monodromy come in pairs: let Lc, L
′
c be two components

corresponding to a tϵcc factor of f , where ϵc = ±2. By construction 4.0.5, Lc and L
′
c can be isotoped

to lie in a single fiber surface such that they bound an annulus in this fiber. Now the relations

piwi +
∑
j ̸=i

lk(Li, Lj)wj ≡ pi (mod 2)

of definition 4.0.1 applied to Lc, L
′
c ⊂ Lf imply that Lc and L

′
c are either both in, or both out, of the

characteristic sublink for θLf
(σ) by Proposition 4.0.4.

Orient Lc and L
′
c oppositely in the fiber, then Lc and L

′
c contribute ϵc to the θLf

(σ) ·θLf
(σ) terms

if they are both in the characteristic sublink, and 0 otherwise; let λ : H1(F ;Z) × H1(F ;Z) → Z
denote the Seifert linking form for the punctured fiber F ⊂ S3. In the case βσ,x(t

ϵc
c ), the linking

matrix of the framed link obtained from construction 4.0.5, with the orientation convention given
above, is 

0 . . . . . . 0 0 0
0 . . . . . . 0 l1 −l1
0 . . . . . . 0 l2 −l2
0

. . . . . . 0
...

...
0 . . . . . . 0 l2g −l2g
0 l1 . . . l2g m+ ϵc/2 −m
0 −l1 . . . −l2g −m m+ ϵc/2


,

where m = λ(c, c), and the li are given by the linking numbers between Lc and the components of L.
For the general case, pairs of rows and columns are adjoined to this linking matrix, corresponding
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to modifying the monodromy by squares of Dehn twists. Suppose that tϵcc and tϵdd are factors of
the monodromy, then the relevant block of the linking matrix corresponding to the components
Lc, L

′
c, Ld, L

′
d in the notation/orientation conventions above, has the form

λ(c, c) + ϵc/2 −λ(c, c) l −l
−λ(c, c) λ(c, c) + ϵc/2 −l l

l −l λ(d, d) + ϵd/2 −λ(d, d)
−l l −λ(d, d) λ(d, d) + ϵd/2

 ,
where l = λ(c, d) or λ(d, c), after fixing orientations. So linking with other components corresponding
to the monodromy has no effect on the θLf

(σ) · θLf
(σ) terms. The proof of Proposition 4.0.4 also

implies that whether Lc and L
′
c are in the characteristic sublink only depends on the components of

L, and not on other components corresponding to the monodromy. So the θLf
(σ) · θLf

(σ) terms are
additive with respect to products of squares of Dehn twists.

For the Arf invariant terms in Lemma 4.0.8, note that the Arf invariant is preserved under
orientation–preserving band sums. In the convention above, Lc and L′

c bound an annulus, and are
oriented oppositely, so after band summing Lc with L

′
c, we get an unknot that can be isotoped to be

disjoint from the rest of the link. Apply this to all pairs of sublinks corresponding to the monodromy,
and note that the sublink of L that is in the characteristic sublink is a disjoint union of unknots,
since the dotted circle component is never in the characteristic sublink. Therefore, the Arf invariant
terms are always zero in Lemma 4.0.8.

We have a formula for βσ on squares of Dehn twists on nonseparating curves, that follows from
the proof of Lemma 4.0.9. This formula is analogous to Sato’s [Sat10, Proposition 5.2].

Corollary 1. Let c be a nonseparating simple closed curve in Σg,1 then we have that

βσ,x(t
2
c) =


0, c1 ∪ c2 ∈ θL

t2c
(σ) and ∈ θL

t2c
(σ + x)

0, c1 ∪ c2 /∈ θL
t2c
(σ) and /∈ θL

t2c
(σ + x)

1, c1 ∪ c2 ∈ θL
t2c
(σ + x) and /∈ θL

t2c
(σ)

−1, c1 ∪ c2 ∈ θL
t2c
(σ) and /∈ θL

t2c
(σ + x),

where c1 and c2 are pushoffs of c in the fiber surface, framed using the Seifert pairing via construction
4.0.5, and c1∪ c2 ∈ θL

t2c
(σ) denotes that the components corresponding to the monodromy are in the

characteristic sublink for construction 4.0.5 applied to σ ∈ Spin(Σg).
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Chapter 5

The Birman–Craggs maps

In this chapter, we use our framework to calculate the Birman–Craggs maps, and to give a proof that
these maps are homomorphisms. Then, we calculate Sato’s maps on elements of the Torelli group,
and find relations between Sato’s maps and the Birman–Craggs maps.

5.0.1 The Birman–Craggs homomorphisms.

Birman and Craggs [BC78] associated to every element k ∈ Ig,1 a 3-manifold M(k) defined via a
Heegaard splitting. They proved that taking the Rochlin invariant produces a family of homomor-
phisms from the Torelli group to Z/2. Johnson then reformulated the family of homomorphisms in
the following way [Joh80b, Section 5 and 6].

Let h : Σg → S3 be a Heegaard embedding. Split S3 along h(Σg) into two handlebodies A
and B. Take k ∈ Ig,1 and reglue A to B along their boundaries by the map k to get the closed
3-manifold M(h, k); since k acts trivially on the homology of the Heegaard surface, M(h, k) is a
homology 3-sphere, we then take the Rochlin invariant of the unique spin structure

µ(h, k) = R(M(h, k)) (mod 2).

This rewrites every Birman–Craggs homomorphism in the form µ(h,−) : I → Z/2. Johnson was
able to enumerate all the maps µ(h,−) using the Seifert pairing induced by the Heegaard embedding
h. He collected all these maps into one homomorphism, often referred to as the Birman–Craggs–
Johnson map [Joh80b, Section 9]. It turns out that this map is enough to calculate the torsion part
of the abelianization of the Torelli group.

We begin our discussion by writing a model for computing the Birman–Craggs maps using the
formula in Theorem 4.0.7

µ(L,C) = ΛL − C · C + 8Arf(C) (mod 16). (5.1)

Here L is a framed link for M(h, k), C is the unique characteristic sublink, ΛL denotes the signature
of the linking matrix of L, C ·C denotes the sum of all entries in the linking matrix of C, and Arf(C)
denotes the Arf invariant of C.

A model for calculating the Birman–Craggs maps.

First, we describe a Heegaard splitting of S3. Take handlebodies ±Hg = ν(±∆g), and fix Σg =
∂(ν(∆g)) as in Chapter 3.0.2. Let {ai, bi} denote the standard symplectic basis for H1(Σg;Z), as
pictured in Figure 5.1. We fix our Heegaard splitting for S3 to be

S3 = Hg

⋃
ig

−Hg = S(ig),
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Figure 5.1 Figure 5.2

where ig :=
∏g

j=1 tbj taj tbj . Then, for any k ∈ Ig,1, we set

M(h, k) = Hg

⋃
ig◦k

−Hg = S(ig ◦ k),

where h : Σg → S3 denotes the inclusion map. Since we fix our Heegaard embedding h to be the
inclusion from now on, we simplify the notation by letting V (k) denote the 3−manifold M(h, k)
described above. If we use construction 3.0.1 (2), we find that our model for S3 is given by Figure
5.2.

By Johnson, the Torelli group Ig,1 is generated by bounding pair maps [Joh79, Theorem 1].
Here a bounding pair d1, d2 is a pair of simple closed curves on the surface which bound a nontrivial
subsurface, and the bounding pair map is given by td1t

−1
d2
. Suppose that k ∈ Ig,1 is given as a product

of bounding pair maps. We wish to use the method of composing tangles as in construction 3.0.3 (2)
to compute µ(V (k)). Here is the construction we use:

Construction 5.0.1. Suppose k = fn−1 · · · f1 : Σg → Σg is a diffeomorphism, where each fi is a
bounding pair map, or its inverse.

1. Use construction 3.0.3 (2) with f = fnfn−1 · · · f1, where fn = ιg =
∏g

j=1 tbj taj tbj , and fi as
above for i ̸= n, to obtain a tangle diagram for V (k). Let L denote the closed components of
this diagram; surgery along L gives V (k).

2. Let Lg,n denote the closed components obtained from construction 3.0.3 (2) applied to fn = ιg
and fi = id for i = 1, .., n− 1. Then surgery on Lg,n gives S3, and Lg,n is always a sublink of
L. The relations of definition 4.0.1 imply that the unique characteristic sublink of Lg,n is the
union of the components corresponding to the tbj factors of ιg in the surgery diagram for S(ιg)
obtained from construction 3.0.3 (1); see Figure 5.3 for the n = g = 3 case, and compare this
with Figures 5.1 and 5.2.

3. The components of L−Lg,n come in pairs corresponding to the bounding pairs fi, i = 1, .., n−1
via construction 3.0.3 (1). Let Li, Li+1 be a pair of components of L corresponding to the
bounding pair tdt

−1
e in the factorisation of k. Now [d] = [e] ∈ H1(Σg;Z), and the linking

numbers of Li, Li+1 with the other components is determined by the Seifert pairing λ for Σg =
∂(ν(∆g)) ⊂ S3. So Li and Li+1 have the same linking number with the other components of L up
to sign. Using definition 4.0.1 we have piwi+(pi−1)wi+1+

∑
j ̸=i,i+1 lk(Li, Lj)wj ≡ pi (mod 2)

and pi+1wi+1 + (pi+1 − 1)wi +
∑

j ̸=i,i+1 lk(Li, Lj)wj ≡ pi+1 (mod 2). By (2), the components

of Lg,n in the characteristic sublink are disjoint from Li, Li+1, so
∑

j ̸=i,i+1 lk(Li, Lj)wj = 0.
Since pi = λ([d], [d]) + 1 and pi+1 = λ([d], [d])− 1, we conclude that wi ≡ wi+1 ≡ λ([d], [d]) + 1
(mod 2). Therefore, Li and Li+1 are in the characteristic sublink if and only if λ([d], [d]) is
even.
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Figure 5.3: The framed link L3,3, the coloured components give the characteristic sublink.

To show that the Birman–Craggs maps are homomorphisms, we must first analyse the linking
matrix of the sublink Lg,n obtained in construction 5.0.1.

Lemma 5.0.2. The signature of the linking matrix of Lg,n, using the orientation convention of Figure
5.3, is 2g.

Proof. Note that Lg,n is the disjoint union of g copies of L1,n; c.f. Figure 5.3. In the orientation
convention of Figure 5.3, one can show, using Sylvester’s law of inertia, that

ΛL1,n
= Sign

(
0 −1
−1 0

)
+ ΛL1,n−1

.

For example, add the first row to the third, then add the first column to the third in the linking

matrix of L1,n in the ordering of Figure 5.3. Since ΛL1,1
= ΛL1,2

= 2, and Sign

(
0 −1
−1 0

)
= 0, we

conclude that ΛL1,n
= 2, therefore ΛLg,n

= 2g.

Theorem 5.0.3. [BC78, Theorem 8] Let µ : Ig,1 → Z/2 be given by k 7→ µ(L,C), where (L,C) is
obtained from construction 5.0.1 applied to k, and µ(L,C) is the formula given in Theorem 4.0.7.
Then µ is a well–defined homomorphism.

Proof. To prove that the map is well–defined, note that for any two factorisations of k into bounding
pairs, the manifolds obtained from construction 5.0.1 are diffeomorphic by Lemma 3.0.2. There is
only one spin structure, so the corresponding values of µ(L,C) must be equal modulo 16, by Theorem
4.0.7.

To show that the maps are homomorphisms, we analyse the pair (L,C) obtained from con-
struction 5.0.1. Additivity of the 8Arf(C) terms in formula (5.1) follows from the components
corresponding to the bounding pairs in construction 5.0.1 being disjoint from each other.
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To deal with the ΛL − C · C terms in formula (5.1), we orient a pair of components Li and Li+1

corresponding to a bounding pair factor tdt
−1
e , as in construction 5.0.1 (3), oppositely on the Heegaard

surface. Fix the orientation conventions for the components Lg,n obtained from construction 5.0.1
(2) as in Figure 5.3. The linking matrix for the closed components in the tangle diagram for V (k)
obtained from construction 5.0.1 can be written as

R =



A . . . . . . 0 A1,1 A2,1
... An−1,1

0
. . .

... 0 A1,2 A2,2
... An−1,2

0 . . .
. . .

...
...

...
...

...
0 0 . . . A A1,g A2,g . . . An−1,g

A′
1,1 A′

1,2 . . . A′
1,g A1 0 . . . 0

A′
2,1 A′

2,2 . . . A′
2,g 0 A2 . . . 0

...
...

...
... 0 0

. . . 0
A′

n−1,1 A′
n−1,2 . . . A′

n−1,g 0 0 . . . An−1


.

The top diagonal is the linking matrix of Lg,n, which is the direct sum of g copies of the linking
matrix A of L1,n. Note that L1,n has 2(n− 1) + 4 components. The Ai are the linking matrices of a
pair of components corresponding to a bounding pair factor fi in construction 5.0.1. Suppose that
fi = tdt

−1
e , then

Ai =

(
λ([d], [d]) + 1 −λ([d], [d])
−λ([d], [d]) λ([d], [d])− 1

)
,

in our orientation convention. The Ai,j are (2(n− 1)+4)× 2 matrices corresponding to how the pair
of components coming from fi link with the components of Lg,n. In our orientation convention, the
Ai,j have identical columns but with opposite signs. The A′

i,j are the transpose of the Ai,j, so they
have identical rows but with opposite signs.

Recall that if E is an elementary matrix for a row operation, then ERET is obtained from the
matrix R by simultaneous row and column operations. Sylvester’s law of inertia states that the
signatures of R and ERET are equal. We repeatedly apply these operations to get a matrix of the
form

R′ =



A . . . . . . 0 0 0 . . . 0

0
. . . . . . 0 0 0 . . . 0

0 . . .
. . . 0 0 0 . . . 0

0 0 . . . A 0 0 . . . 0
0 . . . . . . 0 A′

1 0 . . . 0
0 0 . . . 0 0 A′

2 . . . 0

0 0 . . . 0 0 0
. . . 0

0 0 . . . 0 0 0 0 A′
n


.

Here the signature of the matrices A′
i are the same as the signature of the matrices Ai. Since the

signature of any matrix of the form Ai is zero, we get that ΛL = 2g by Lemma 5.0.2. The only
components of C that contribute to the C · C terms are the ones contained in Lg,n. So we have
ΛL − C · C = 2g − 2g = 0.

5.0.2 Evaluation on separating twists

The aim of the rest of this section is to refine formulas for evaluating Sato’s maps on elements of the
Torelli group. In some cases, we can relate Sato’s maps to the Birman–Craggs maps. See Appendix
8.2.5 for the definition of a separating twist.
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We need the following evaluation of µ(h,−), due to Johnson. Here h is the inclusion, so we think
of the Heegaard surface as being in S3.

Theorem 5.0.4. [Joh80b, Theorem 1] Let γ be a separating simple closed curve on the Heegaard
surface, then

µ(h, tγ) = Arf(γ).

Here Arf(γ) can be evaluated by taking the subsurface S ⊂ Σg which γ bounds and calculating the
Arf invariant of the quadratic form induced by the Seifert pairing on the Heegaard surface.

We can now begin relating Sato’s maps to the Birman–Craggs maps.

Corollary 5.0.5. Let γ be a separating simple closed curve in Σg, then

βσ,x(tγ) = 4(Arf(θLtγ
(σ))− Arf(θLtγ

(σ + x))).

Proof. We can apply construction 3.0.1 to f = tγ to get a framed link Ltγ for Mtγ . Then the method
of construction 4.0.5 allows us to define a characteristic sublink θLtγ

(σ). The method of proof of
Theorem 4.0.6 implies that the corresponding spin manifold (Ltγ , θLtγ

(σ)) obtained this way is spin
diffeomorphic to construction 4.0.5 applied to any factorisation of tγ into squares of Dehn twists.
We can evaluate βσ,x(tγ) using Theorem 4.0.7 applied to (Ltγ , θLtγ

(σ)) and (Ltγ , θLtγ
(σ + x)) as in

Lemma 4.0.8.

Let L be the framed link for S1 ×Σg obtained from construction 3.0.1 (3) with f = id, then L is
a sublink of Ltγ . Let F be the fiber surface pictured in Figure 3.6. The components of L can all be
isotoped in S3 to the canonical basis for H1(F ;Z) in the fiber. Let Li be the component of Ltγ − L
that corresponds to the monodromy. Then the linking number of Li with any of the components of L
is determined by the Seifert pairing λ of the surface F ⊂ S3. Since [γ] = 0 ∈ H1(F ;Z), Li has linking
number 0 with any component of L. This implies that the linking matrix of Ltγ is zero everywhere
except for one entry on the main diagonal, which is the framing of the curve Li. We compute that
this framing is given by λ(γ, γ) + 1 = λ(0, 0) + 1 = 1. For any spin structure σ ∈ Spin(Σ), using the
relations of definition 4.0.1 we have that

wi + 0 ≡ 1 (mod 2).

So Li is always in the characteristic sublink. This gives us that θLtγ
(σ + x) · θLtγ

(σ + x)− θLtγ
(σ) ·

θLtγ
(σ) = 0 always, so we have that

βσ,x(tγ) = 4(Arf(θLtγ
(σ))− Arf(θLtγ

(σ + x))).

The previous proof gives the following relation between the Rochlin invariant and the Arf invari-
ant:

R(MLtγ
, θLtγ

(σ)) = 8Arf(θLtγ
(σ)) (mod 16),

when γ is separating. Let η denote the spin structure on Σg with θLtγ
(η) containing none of the

components of the link L that represents S1 × Σg. We get

R(MLtγ
, θLtγ

(η)) = 8Arf(γ) (mod 16),

the right side can be evaluated using the cut surface of γ ⊂ F = Σg,1 and the quadratic form on
H1(F ) induced by the Seifert pairing λ of F ↪→ S3.

Note that for [h] ∈ Modg,1[2] and [f ] ∈ Modg,1, the diffeomorphism id × f descends to a dif-
feomorphism Mh → Mfhf−1 of mapping tori. Under this diffeomorphism the spin structure θ(σ) on
Mfhf−1 pulls back to the spin structure θ(f ∗σ) on Mh. This implies that

R(Mfhf−1 , θ(σ)) = R(Mh, θ(f
∗σ)),
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for all [f ] ∈ Modg,1 and [h] ∈ Modg,1[2] (in the notation of Chapter 2).

Johnson proved that Spin(Σg) is in bijection with symplectic quadratic forms (see Theorem 2.0.1).
Arf showed that two symplectic quadratic forms are in the same orbit under the symplectic group
if and only if they have the same Arf invariant. So there are exactly two Modg,1 orbits in Spin(Σg).
Suppose we chose x ∈ H1(Σg) such that η+x ∈ Spin(Σg) is in the same orbit as η; write η+x = f ∗η
for some [f ] ∈ Modg,1, then

βσ,x(tγ) = (R(MLtγ
, θLtγ

(η))−R(MLtγ
, θLtγ

(f ∗η)))/2 = (R(MLtγ
, θLtγ

(η))−R(MLftγf−1 , θLftγf−1 (η)))/2,

where ftγf
−1 = tf(γ), and f(γ) is also a separating curve of the same genus on the fiber surface. So

we have
βσ,x(tγ) = 4(Arf(γ)− Arf(f(γ))) (mod 8).

Note that surgery along γ ⊂ Σg,1 with framing 1 is equivalent to cutting S3 open along a Heegaard
surface and regluing by tγ. Since tγ acts trivially on homology, this gives a homology sphere. So this
relates the Rochlin invariant of mapping tori to the Rochlin invariant of homology spheres, and to
Johnson’s description of the Birman-Craggs homomorphisms [Joh80b]. In summary, if we combine
Theorem 5.0.4 and Corollary 5.0.5 with the discussion above, we get the following.

Corollary 2. Let c be a separating curve on Σg,1. Let η be the spin structure on Σg with the
characteristic sublink of θLtc

(η) containing none of the components from the link L that represents
S1 × Σg. Suppose σ = f ∗(η) and σ + x = h∗(η) for [f ], [h] ∈ Modg,1 , then

βσ,x(tc) = µ(tf(c))− µ(th(c)) (mod 2),

where µ denotes the Birman-Craggs homomorphism for the standard embedding Σg ↪→ S3.

5.0.3 Evaluation on bounding pairs

A bounding pair is a pair of disjoint, homologous, non-separating simple closed curves a, b on Σg,1,
and the bounding pair map is f = tat

−1
b ; see Appendix 8.2.5 for more details.

To calculate βσ,x(tat
−1
b ), use construction 3.0.1 with f = tat

−1
b to obtain a framed link Lf for Mf .

Apply the method of construction 4.0.5 to obtain the pair (Lf , θLf
(σ)) for any σ ∈ Spin(Σg). The

method of proof of Theorem 4.0.6 implies that the manifold (Lf , θLf
(σ)) obtained this way, is spin

diffeomorphic to any manifold obtained from construction 4.0.5 applied to any factorisation of f into
squares of Dehn twists. Hence we can calculate βσ,x(f) by using Theorem 4.0.7 to get

βσ,x(f) = (θLf
(σ+ x) · θLf

(σ+ x)− θLf
(σ) · θLf

(σ) + 8(Arf(θLf
(σ))−Arf(θLf

(σ+ x))))/2 (mod 8).

Let L be the sublink of Lf corresponding to S1 × Σg, and let F be a punctured fiber surface
pictured as in Figure 3.6. Suppose that λ([a], [a]) = λ([b], [b]) = λ([a], [b]) = lk(a, b) = m, where
λ(−,−) is the Seifert linking form for F ⊂ S3. The framed link Lf is obtained from L by placing
the curves a, b in F , and framing them using the Seifert pairing, to get Li, Li+1. For any component
Lj of L, we have lk(Lj, Li) = lk(Lj, Li+1). To specify (Lf , θLf

(σ)), we fix which components of L are
in the characteristic sublink, and use definition 4.0.1 to find the full characteristic sublink. We have

(m+1)wi+
∑

j ̸=i,i+1

lk(Li, Lj)wj+mwi+1 ≡ (m−1)wi+1+
∑

j ̸=i,i+1

lk(Li, Lj)wj+mwi ≡ m+1 (mod 2),

which simplifies to

(m+ 1)wi +mwi+1 = (m− 1)wi+1 +mwi ≡ m+ 1−
∑

j ̸=i,i+1

lk(Li, Lj)wj (mod 2). (5.2)
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So we see that Li and Li+1 are always either both in, or both out of any characteristic sublink of Lf .
Now orient Li and Li+1 oppositely in the fiber surface, this does not change the framings of Li, Li+1,
but changes the sign of the linking number of Li+1 with every other component. Then, up to the
ordering of the components, the linking matrix for Lf is

0 . . . . . . 0 0 0
0 . . . . . . 0 l1 −l1
0 . . . . . . 0 l2 −l2
0

. . . . . . 0
...

...
0 . . . . . . 0 l2g −l2g
0 l1 . . . l2g m+ 1 −m
0 −l1 . . . −l2g −m m− 1


.

Suppose that wi ≡ wi+1 ≡ 1, then since θLf
(σ) · θLf

(σ) is the sum of the entries in the linking
matrix of the characteristic sublink specified by θLf

(σ), we have that

θLf
(σ) · θLf

(σ) = m+ 1 +m− 1− 2m = 0.

If wi ≡ wi+1 ≡ 0, then θLf
(σ) · θLf

(σ) = 0. These are all the cases, so we have

βσ,x(tat
−1
b ) = 4(Arf(θL

tat−1
b

(σ))− Arf(θL
tat−1

b

(σ + x))) (mod 8).

Let η ∈ Spin(Σg) denote the spin structure with the characteristic sublink of θL
tat−1

b

(η) containing

none of the components from the link L for S1 × Σg. Using the relations of (5.2), we have that if
m = lk(a, b) is even then

wi ≡ wi+1 ≡ 1 (mod 2),

so Li and Li+1 are in the characteristic sublink, and we have

R(ML
tat−1

b

, θL
tat−1

b

(η)) = ΛL
tat−1

b

+ 8Arf(a ∪ b) = 8Arf(a ∪ b),

where ΛL
tat−1

b

is the signature of the linking matrix given above. Here Arf(a ∪ b) can be evaluated

using the cut surface of a ∪ b ⊂ F = Σg,1 and the quadratic form induced by the Seifert pairing λ.

If m is odd then
mwi+1 = 0 (mod 2),

so Li and Li+1 are not in the characteristic sublink, and we have

R(ML
tat−1

b

, θL
tat−1

b

(η)) = ΛL
tat−1

b

= 0.

Note that for a ∪ b ⊂ Σg,1, surgery with coefficients m ± 1 is equivalent to cutting S3 open along a
Heegaard surface, and regluing by tat

−1
b . Since tat

−1
b acts trivially on homology the resulting space

is a homology sphere. So we have a relation between the Rochlin invariants of a mapping tori, and
Rochlin invariants of homology spheres.

Now, we relate Sato’s maps on bounding pairs to the Birman–Craggs maps, using the same
method as in the case of separating curves. Suppose we have a spin structure σ ∈ Spin(Σg) and
a class x ∈ H1(Σg) such that there exists mapping classes [f ], [h] ∈ Modg,1 with σ = f ∗(η) and
σ + x = h∗(η). We have, in the notation of Chapter 2,

βσ,x(tat
−1
b ) = (R(Mtat

−1
b
, θ(f ∗(η)))−R(Mtat

−1
b
, θ(h∗(η))))/2 = (R(Mtf(a)t

−1
f(b)
, θ(η)))−R(Mth(a)t

−1
h(b)
, θ(η)))/2.

We also need the following calculation of the Birman–Craggs maps, due to Johnson; this calculation
also follows from the proof of Theorem 5.0.3.
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Lemma 5.0.6. [Joh80b, Theorem 1] Let a, b be a pair of simple closed curves on Σg,1 that bound
a subsurface, and let λ : H1(Σg;Z) × H1(Σg;Z) → Z denote the Seifert linking form for the stan-
dard embedding Σg ↪→ S3. Then for the Birman-Craggs map µ : Ig,1 → Z/2 corresponding to the
embedding Σg ↪→ S3 we have that:

1. µ(tat
−1
b ) = 0, if λ(a, a) is odd,

2. µ(tat
−1
b ) = 8Arf(a ∪ b), if λ(a, a) is even.

In summary, if we combine Lemma 5.0.6 with the calculations of this subsection, we get the
following.

Corollary 3. Let a, b be a pair of simple closed curves on Σg,1 that bound a subsurface. Let η be the
spin structure on Σg with the characteristic sublink of θL

tat−1
b

(η) containing none of the components

from the link L that represents S1 × Σg. If σ = f ∗(η) and σ + x = h∗(η) for [f ], [h] ∈ Modg,1, then

βσ,x(tat
−1
b ) = µι(tf(a)t

−1
f(b))− µι(th(a)t

−1
h(b)) (mod 2),

where µι denotes the Birman–Craggs map for the standard embedding ι : Σg ↪→ S3. In particular,
we have βσ,x = µι◦f − µι◦h (mod 2).
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Chapter 6

Relation to Meyer’s signature cocycle

In this chapter, we apply the methods developed above to study Meyer’s signature cocycle restricted
to Modg,1[2]. The extension of the Birman–Craggs maps to Modg,1[2] no longer give homomorphisms,
but we can find a relation between these extensions and Meyer’s signature cocycle.

Let P denote a pair of pants, that is, a sphere with three boundary components. Pick two
based loops that run around one distinct boundary component each as in Figure 6.1, call them α, β.
Identify π1(P ) with the free group generated by α, β. Let [f ], [h] ∈ Modg,1 be mapping classes, and
consider the Σg–bundle Ef,h over P with monodromy ρ : π1(P ) → Modg,1 given by α 7→ [f ], β 7→ [h].
The diffeomorphism type of Ef,h does not depend on the choice of representatives for the mapping
classes [f ], [h]. Furthermore, Ef,h has a natural orientation coming from that of Σg and P .

Meyer’s signature cocycle is defined by

τg : Modg,1×Modg,1 → Z
([f ], [h]) 7→ Sign(Ef,h),

where Sign(Ef,h) denotes the signature of the 4–manifold Ef,h [Mey73]. Note that ∂Ef,h = Mf ⊔
Mh ⊔M(f◦h)−1 . Now, construction 4.0.5 and Theorem 4.0.6 give us a well–defined map

Rσ : Modg,1[2] → Z/16
[f ] 7→ R(MLf

, θLf
(σ)),

where R(MLf
, θLf

(σ)) denotes the Rochlin invariant of the spin 3–manifold (MLf
, θLf

(σ)) obtained
from construction 4.0.5. Sato shows in [Sat10, Lemma 2.2] that for any σ ∈ Spin(Σg), there exists

Figure 6.1
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a spin structure on Ef,h that spin bounds the mapping tori Mf ⊔Mh ⊔M(f◦h)−1 with spin structure
θ(σ) (in the notation of Chapter 2). Then we have

R(Mf , θ(σ)) +R(Mh, θ(σ))−R(Mf◦h, θ(σ)) ≡ Sign(Ef,h) (mod 16),

or, in the language of group cohomology τg ≡ ∂(Rσ) (mod 16), for any σ ∈ Spin(Σg).

Recall that in defining Rσ using construction 4.0.5, we start with a framed link L representing
S1 × Σg. We have the monodromy f written as a product of Dehn twists, and our method gives
a framed link Lf representing Mf , obtained by placing the curves appearing in the factorisation in
pushoffs of the fiber surface in S3 \ L, framed using the Seifert pairing; Lf has L as a sublink. Let
η denote the spin structure on Σg such that the characteristic sublink of θLf

(η) contains none of the
components from the framed link L. For any component added to our diagram of S1×Σg to modify
the monodromy, the relations of definition 4.0.1 determine whether this component is added to the
characteristic sublink.

We wish to relate the above construction to the Birman–Craggs map for the standard inclusion
ι : Σg ↪→ S3. Recall Johnson’s definition of this map

µι : Modg,1[2] → Z/16
[f ] 7→ R(M(ι, f)),

where R(M(ι, f)) is the Rochlin invariant of the manifoldM(ι, f), obtained by cutting S3 along ι(Σg)
into two handlebodies, and regluing them along their boundaries by the map f . Since [f ] ∈ Modg,1[2],
the manifold M(ι, f) is a Z/2–homology sphere, so it has a unique spin structure.

Let L̃f = Lf \ L denote the framed link given by the union of the components corresponding to
the monodromy f . The fiber surface in our diagram for S1×Σg lies in S

3 as the standard embedding

ι : Σg,1 ↪→ S3 by Figure 3.6. Surgery along the framed link L̃f is equivalent to cutting S3 along this
Heegaard surface, and regluing via [f ] ∈ Modg,1[2], which gives the Z/2–homology sphere M(ι, f).
We begin relating Rη and µι with the following Lemma.

Lemma 6.0.1. The characteristic sublink of L̃f for M(ι, f) coincides with the characteristic sublink

for (Lf , θLf
(η)) obtained from construction 4.0.5. For a pair of components Li and Li+1 in L̃f

that corresponds to a factor of the form t±2
a appearing in f , we have that Li and Li+1 are in the

characteristic sublink of L̃f if and only if λ([a], [a]) is even. Here, λ denotes the Seifert pairing for
ι : Σg ↪→ S3.

Proof. Take a pair of components Li, Li+1 in L̃f , that corresponds to factor of the form t±2
a , or tat

−1
b

for a bounding pair a, b, in the monodromy f . Using construction 4.0.5 to find the characteristic
sublink for our chosen η ∈ Spin(Σg), we set wj = 0 if Lj is a component from the link L representing
S1 × Σg. Using definition 4.0.1, and that Li and Li+1 have the same linking number with other
components up to sign, we get

(m+ 1)wi +mwi+1 ≡ mwi + (m+ 1)wi+1

≡ m+ 1−
∑

j ̸=i,i+1

lk(Li, Lj)wj (mod 2),

where m = λ([a], [a]) and λ is the Seifert pairing for the punctured fiber surface in S3. This implies

that wi ≡ wi+1 ≡ m+1−
∑

j ̸=i,i+1 lk(Li, Lj)wj (mod 2). The other components of L̃f come in pairs

corresponding to factors of the form t±2
c , td1t

−1
d2

appearing in f . Since any such pair is either both in,
or both out of the characteristic sublink by above, we get that

∑
j ̸=i,i+1 lk(Li, Lj)wj = 0 (mod 2),

hence wi ≡ wi+1 ≡ m+1. So Li and Li+1 are in the characteristic sublink if and only if m is even.
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Figure 6.2: The handlebody WL̃f
is shaded red, the rest of the handlebody is given by the cobordism

Yf .

There exists a cobordism Yf between ML̃f
and MLf

, given in the following way: take ML̃f
×D1

and attach 2–handles toML̃f
×{1} along the framed link L to obtain Yf . Then ∂Yf =ML̃f

⊔MLf
. So

the boundary of Yf is the union ofM(ι, f) and the mapping torusMf . LetWLf
be the 2–handlebody

specified by Lf , with boundary MLf
, and define WL̃f

similarly. Then WLf
is the union of WL̃f

and

Yf along ML̃f
, since we can identify WL̃f

∪M
L̃f

(ML̃f
×D1) with WL̃f

by thinking of ML̃f
×D1 as a

collar of the boundary. See figure 6.2.

Recall that for the framed link Lf , the term ΛLf
in the formula of Theorem 4.0.7 is also the

signature of the intersection form of the 2–handlebody WLf
specified by Lf . Then, using Novikov

additivity (see Theorem 8.3.2 in Appendix 8.3) and Lemma 6.0.1, we have

R(MLf
, θLf

(η)) = Sign(WLf
)− θLf

(η) · θLf
(η) + 8Arf(θLf

(η))

= Sign(Yf ) + Sign(WL̃f
)− θLf

(η) · θLf
(η) + 8Arf(θLf

(η))

= Sign(Yf ) +R(M(ι, f)).

In summary, we have shown:

Corollary 4. Define the map

αι : Modg,1[2] → Z/16
f 7→ Sign(Yf ),

where Yf is the cobordism described above. Then we have Rη(f) = αι(f) + µι(f), where µι :
Modg,1[2] → Z/16 denotes the extension of the Birman–Craggs map for the standard embedding
ι : Σg ↪→ S3. Consequently, αι is well–defined, and τg ≡ ∂(αι + µι) (mod 16).

We finish with a formula for evaluating µι on an element of Modg,1[2]. We use the following
construction to evaluate µι:

Construction 6.0.2. Let [f ] = tϵncn · · · t
ϵ1
c1

∈ Modg,1[2], where ϵi = ±2 for all i. We evaluate
µ(M(ι, f)) in the following way:

1. Start with the standard Heegaard embedding Σg = ∂(ν(∆g)) as in Chapter 3. The unit normal to
Σg in S

3 that points out of the page, defines an embedding of I×Σg in S
3. Pick t1 < · · · < tn ∈ I
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and place two parallel copies of ci in {ti} × Σg, both with framing λ([ci], [ci]) + ϵi/2 to obtain

L̃f . Here, λ denotes the Seifert pairing for Σg.

2. Use Lemma 6.0.1 to find the unique characteristic sublink C of L̃f . Then orient each pair of
components corresponding to tϵici oppositely on the Heegaard surface.

3. Evaluate µ(L̃f , C) using Theorem 4.0.7.

Example: Let a, b, c be the curves given in Figure 6.3.

Figure 6.3: Let a denote the black curve, b denote the blue curve, and c denote the red curve. Here,
a, b, and c are curves on the torus, standardly embedded in S3

Then using construction 6.0.2, we obtain the following surgery diagram L̃f , where f = t2ct
2
bt

2
a.

Figure 6.4: A surgery diagram for M(ι, t2ct
2
bt

2
a) obtained from construction 6.0.2, where t2ct

2
bt

2
a ∈

Mod1,1[2], and a, b, c are the simple closed curves given in Figure 6.3.
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In the ordering of Figure 6.4, the linking matrix of L̃f is given by
1 0 1 −1 1 −1
0 1 −1 1 −1 1
1 −1 2 1 1 −1
−1 1 1 2 −1 1
1 −1 1 −1 1 0
−1 1 −1 1 0 1

 .

Using Lemma 6.0.1, we see that the characteristic sublink C in Figure 6.4 is given by the union
of the red and black curves. We can then evaluate µ(L̃f , C) using Theorem 4.0.7.

Theorem 6.0.3. Let [f ] = tϵncn · · · t
ϵ1
c1
∈ Modg,1[2], where each ci is a simple closed curve, and ϵi = ±2

for all i = 1, .., n. Then

µι([f ]) = ΛL̃f
−

∑
λ([ci],[ci])≡0 (mod 2)

ϵi (mod 16),

where L̃f is obtained using construction 6.0.2, and λ : H1(Σg;Z)×H1(Σg;Z) → Z denotes the Seifert
pairing for the standard inclusion ι : Σg ↪→ S3.

Proof. Using Lemma 6.0.1, we find the unique characteristic sublink of L̃f to be the union of each
pair of components corresponding to tϵici with λ([ci], [ci]) even. For a pair of components Li and Li+1

of this form, note that Li is isotopic to Li+1 ambiently in the Heegaard surface in S3. Since Li and
Li+1 are oriented oppositely, a similar argument to the proof of Lemma 4.0.9 implies that Li and
Li+1 contribute ϵi to the C · C terms in Theorem 4.0.7, and that Arf(C) = 0 always.
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Chapter 7

The abelianization of the level 2
congruence group

In this chapter, we give an alternative description of H1(Modg,1[2];Z) by defining a family of poly-
nomial algebras indexed by a spin structure σ ∈ Spin(Σg). We rewrite Sato’s homomorphisms as
maps from Modg,1[2] to this algebra. We can then use a single relation in this polynomial algebra
repeatedly to calculate the image of Sato’s maps on certain subgroups. Let us begin by recalling
some of the results in Sato’s paper [Sat10].

For z ∈ H1(Σg), define iz : H1(Σg) → Z/8 (whereH1(Σg) is always assumed with Z/2 coefficients,
unless specified otherwise) by

iz(y) =

{
1, z · y = 1 mod 2
0, z · y = 0 mod 2.

This function is not a homomorphism, but we have the following two identities

ia(x) + ib(x)− 2ia(x)ib(x) = ia+b(x), (7.1)

((−1)qσ(C)iC(x))
2 = (−1)qσ(C)((−1)qσ(C)iC(x)) (7.2)

where qσ is the symplectic quadratic form associated to σ ∈ Spin(Σg) as in Theorem 2.0.1. Both
identities are checked by comparing both sides of the equation elementwise.

We need to make use of the following results of Sato.

Proposition 7.0.1. [Sat10, Lemma 2.2, Propositions 5.2 and 7.1] Fix a spin structure σ ∈ Spin(Σg)
and let qσ be the associated quadratic form on H1(Σg). The map βσ : Modg,1[2] → Map(H1(Σg),Z/8)
given by βσ(t

2
C) = (−1)qσ(C)i[C] is a homomorphism and |H1(Modg,1[2];Z)| ≤ |Z/82g

⊕
Z/4(

2g
2 )

⊕
Z/2(

2g
3 )|.

Recall that Map(H1(Σg),Z/8) is the free Z/8-module consisting of all functions H1(Σg) → Z/8.
If we add the operation of function multiplication, this turns Map(H1(Σg),Z/8) into a Z/8-algebra.
Lemma 7.0.2 gives the two relations we use to analyse the image of Sato’s maps.

Lemma 7.0.2. Let σ ∈ Spin(Σg) and denote by qσ the associated quadratic form. Then in the
subalgebra Wσ of Map(H1(Σg),Z/8) generated by C = (−1)qσ(C)iC for all C ∈ H1(Σg), the following
relations hold:
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1. C1 + C2 = (−1)C1·C2((−1)qσ(C2)C1 + (−1)qσ(C1)C2 − 2C1C2), for all C1 ̸= C2 ∈ H1(Σg).

2. C
2
= (−1)qσ(C)C, for all C ∈ H1(Σg).

Proof. Using the identity (7.1), we have

(−1)qσ(C1+C2)iC1+C2(x) = (−1)qσ(C1+C2)(iC1(x) + iC2(x)− 2iC1(x)iC2(x))

= (−1)qσ(C2)+C1·C2((−1)qσ(C1)iC1(x)) + (−1)qσ(C1)+C1·C2((−1)qσ(C2)iC2(x))

− 2(−1)qσ(C1+C2)iC1(x)iC2(x). (7.3)

We also have that

(−1)qσ(C1)iC1(x)(−1)qσ(C2)iC2(x) = (−1)qσ(C1+C2)−C1·C2iC1(x)iC2(x). (7.4)

Set C = (−1)qσ(C)iC and substitute (7.4) into the last line of (7.3) to get,

C1 + C2 = (−1)qσ(C2)+C1·C2C1 + (−1)qσ(C1)+C1·C2C2 − 2(−1)C1·C2C1C2

= (−1)C1·C2((−1)qσ(C2)C1 + (−1)qσ(C1)C2 − 2C1C2).

Fix a symplectic basis B = {A1, B1, ...., Ag, Bg} for H1(Σg) with Ai · Bj = δij, Ai · Aj = 0 and
Bi · Bj = 0. Any C ∈ H1(Σg) can be written uniquely as a linear combination of the Ai, Bi’s, so
iteratively applying the relations of Lemma 7.0.2, we see that any element in the Z/8-submodule
im βσ spanned by the Ci’s can be written as a linear combination of elements of the form

Xi, 2XiXj, 4XiXjXk, (7.5)

where Xi, Xj and Xk are distinct elements from B. We wish to prove that

im βσ = Z/82g
⊕

2Z/8(
2g
2 )

⊕
4Z/8(

2g
3 )

as a submodule, this will follow from the following result.

Proposition 7.0.3. If a Z/8-linear combination of elements of the form (7.5) is equal to zero, then
the coefficients of the monomial terms must be 0 and the coefficients of the 2XiXj, 4XiXjXk terms
must be either 0 or zero divisors.

Proof. Suppose that we had such a linear combination f ∈ Map(H1(Σg),Z/8) that was equal to the
constant zero function. Since B is a symplectic basis, the definition of the functions i[C] gives us the
following.

(i) If Xi ∈ B then iXi
(Xj) = 1 for the unique Xj ∈ B with Xi · Xj = ±1, and it is 0 on every

other element of B. This implies that for distinct Xi, Xj, Xk in B we have that iXi
(Xl)iXj

(Xl) =
iXi

(Xl)iXj
(Xl)iXk

(Xl) = 0 for any Xl ∈ B.

Using (i), if we evaluate f on all elements of B we see that all the monomial coefficients are zero.
So f has no monomial terms.

(ii) Similarly we have that if Xi, Xj, Xk, Xl ∈ B with Xi, Xj distinct, then iXi
(Xl +Xk)iXj

(Xl +
Xk) can only be nonzero if up to reordering indices we have that Xi · Xl = ±1 and Xj · Xk = ±1.
Since B is a symplectic basis this tuple (Xl, Xk) is unique, so for Xi, Xj, Xk ∈ B distinct, we have
that iXi

(Xl +Xn)iXj
(Xl +Xn)iXk

(Xl +Xn) is zero for all Xl, Xn ∈ B and iXi
(Xl +Xk)iXj

(Xl +Xk)
is only non-zero for one element Xr +Xs.

42



Using (ii), evaluate f on all elements of the form Xl +Xk to get that all the coefficients of the
quadratic terms of f must be either 0 or zero divisors, and so f can only contain cubic terms.

(iii) If Xi, Xj, Xk ∈ B are distinct then iXi
(Xa+Xb+Xc)iXj

(Xa+Xb+Xc)iXk
(Xa+Xb+Xc) can

only be nonzero if, up to reordering, we have that Xi ·Xa = ±1, Xj ·Xb = ±1, Xk ·Xc = ±1. Since
B is a symplectic basis, this sum is unique, so evaluating f on all elements of the form Xa+Xb+Xc

gives the result.

Combining this result with the last statement of Proposition 7.0.1 gives us that

H1(Modg,1[2];Z) = Z/82g
⊕

2Z/8(
2g
2 )

⊕
4Z/8(

2g
3 ).

7.0.1 Abelian quotients of the Torelli group and Johnson kernel

Write Sato’s maps in the form βσ : Modg,1 → Wσ, where Wσ is the subalgebra of Map(H1(Σg),Z/8)
generated by C = (−1)qσ(C)iC , for all C ∈ H1(Σg). In Chapter 5.0.3, we saw that these maps have
image in a Z/2–vector space when restricted to the Torelli group. The aim of this subsection is to
compute the image of the Torelli group, and Johnson kernel under βσ in Wσ, using the relations of
Lemma 7.0.2. To do this, we need a few results about bounding pair maps, and separating curves.

Factoring bounding pairs into squares

We can use the result under Proposition 4.12 of [FM11] to factor a genus 1 bounding pair into a
product of squares of Dehn twists. We define a chain of simple closed curves c1, c2, c3 to be a triple
such that i(c1, c2) = i(c2, c3) = 1 and all other pairwise geometric intersection numbers are zero.
Let c1, c2, c3 be a chain of simple closed curves and let d1, d2 be the boundary curves of a regular
neighbourhood of c1 ∪ c2 ∪ c3, then the chain relation gives that

(t2c1tc2tc3)
3 = td1td2 .

So we have that

(t2c1tc2tc3)
3 = t2c1(tc2tc3t

2
c1
t−1
c3
t−1
c2
)(tc2tc3)

2(t2c1tc2tc3)

= t2c1(tc2tc3t
2
c1
t−1
c3
t−1
c2
)(tc2tc3)

2t2c1(tc2tc3)
−2(tc2tc3)

3.

Using the braid relation we also have that the rightmost term in the last equality can be written
as

(tc2tc3)
3 = tc3tc2t

2
c3
tc2tc3

= (tc3tc2t
2
c3
t−1
c2
t−1
c3
)(tc3t

2
c2
tc3)

= (tc3tc2t
2
c3
t−1
c2
t−1
c3
)(tc3t

2
c2
t−1
c3
)t2c3 ,

and so we have the following factorisation

td1t
−1
d2

= t2c1t
2
tc2 tc3 (c1)

t2(tc2 tc3 )2(c1)t
2
tc3 tc2 (c3)

t2tc3 (c2)t
2
c3
t−2
d2
.

Image of the Torelli group

To calculate the image of the Torelli group, we use a result of Johnson [Joh79, Theorem 1], that says
that the maps td1t

−1
d2

(running over all d1, d2 bounding pairs of genus 1) generate Ig,1; if we evaluate

βσ on one such bounding pair map, and use the fact that βσ(φt
2
cφ

−1) = βσ(t
2
φ(c)) = (−1)qσ(φ∗[c])iφ∗[c],

we describe the image, since bounding pairs of genus 1 are all in the same orbit under the conjugation
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action Modg,1 on Ig,1. Note that βσ,x(t
2
c) only depends on the homology class C ∈ H1(Σg) of the

curve c. From now on we will denote Ci by the homology class of the curve ci. Motivated by the
formula for bounding pairs written above, we compute that in H1(Σg) we have that

tc2tc3(C1) = C1 + C2,

(tc2tc3)
2(C1) = C1 + C2 + C3,

tc3tc2(C3) = C2,

tc3(C2) = C2 + C3.

Note that C1, C2, D1 = D2 can be completed into a symplectic basis for H1(Σg). We compute
βσ(td1t

−1
d2
) using the relations of Lemma 7.0.2. Substituting in the factorisation of a bounding pair

we get that

βσ(td1t
−1
d2
) = C1 + C1 + C2 + C1 + C2 + C3 + C2 + C2 + C3 + C3 −D1.

So im βσ|Ig,1 is the submodule generated by {C1+C1 + C2+C1 + C2 + C3+C2+C2 + C3+C3−D1}
running over all chains c1, c2, c3 of simple closed curves with d1 ∪ d2 = ∂(ν(c1 ∪ c2 ∪ c3)). The
computations of Chapter 5.0.3 imply that this submodule is a Z/2-vector space.

Let us choose a spin structure σ with qσ(C1) = qσ(C2) = qσ(D1) = 0, then we have that
qσ(C3) = qσ(C1+D1) = 0. For any such spin structure, the formula above simplifies and we get that

βσ(td1t
−1
d2
) = 4C1C2 + 4C1C2D1.

Image of the Johnson kernel

Recall that the Johnson kernel Kg,1 ⊂ Ig,1 is the subgroup of the mapping class group generated by all
separating twists. Suppose we have a chain c1, .., ck of simple closed curves in Σg,1, so i(ci, ci+1) = 1,
and i(ci, cj) = 0 for |i − j| > 1. When k is even, the boundary of a regular neighbourhood of the
union of the ci is a separating curve d. The following relation holds [FM11, Proposition 4.12]

td = (t2c1tc2 · · · tck)
2k.

For k = 2, we have

(t2c1tc2)
4 = t2c1(tc2t

2
c1
t−1
c2
)t2c2(t

2
c1
tc2)

2 = t2c1t
2
tc2 (c1)

(t2c2t
2
c1
t−2
c2
)t3c2(t

2
c1
tc2) = t2c1t

2
tc2 (c1)

t2t2c2 (c1)
t2t3c2 (c1)

t4c2 .

For even k, set ti = tci , f2k = t2 · · · tk, and
∏n

j=1 xj = x1 · · · xn, then the previous computation
generalises to

td = (t21f2k)
2k = (

2k−1∏
j=0

t2
fj
2k(c1)

) · (f2k)2k.

Note that for the k = 2 case, the C1, C2 ∈ H1(Σg) can be completed to a symplectic basis, and we
have t2(C1) = C1 + C2, t

2
2(C1) = C1, and t

3
2(C1) = C1 + C2. Therefore

βσ(td) = 2C1 + 2C1 + C2 + 2C2

= 2(1 + (−1)C1·C2+qσ(C2))C1 + 2(1 + (−1)C1·C2+qσ(C1))C2 − 4(−1)C1·C2C1C2,

implying that βσ(Kg,1) is non–trivial. It would be of interest to calculate the isomorphism type of
the image of Kg,1 explicitly.
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Chapter 8

Appendix

In the appendix, we describe many preliminary notions used throughout the text. We begin with a
summary of the relation between cohomology of subgroups of the mapping class group, and charac-
teristic classes of surface bundles.

8.1 Characteristic classes of surface bundles

A fiber bundle is a continuous surjection π : E → B such that, for all x ∈ B, there exists a
neighbourhood U ⊂ B of x such that

π−1(U) U × F

U

φ

π
pr1

commutes, where φ is a homeomorphism. The space of all open sets of the form above will be denoted
by {(Ui, φi)}i∈I , and any such (Ui, φi) is called a local trivialization. The space E is called the total
space, B the base space, and F the fiber.

Transition functions: Given two local trivializations (Ui, φi), (Uj, φj), with x ∈ Ui ∩ Uj, we
have the following commutative diagram

(Ui ∩ Uj)× F π−1(Ui ∩ Uj) (Ui ∩ Uj)× F

Ui ∩ Uj

φj

π
pr1

φ−1
i

pr1

so pr1 ◦ φj ◦ φ−1
i (x, f) = π ◦ φ−1

i (x, f) = pr1(x, f) = x, implying that φj ◦ φ−1
i (x, f) = (x, tij(f)).

Here, the maps tij : Ui ∩ Uj → Homeo(F ) are continuous, where Homeo(F ) has been equipped with
the compact–open topology. We call the maps tij transition functions.

Pullback of a bundle: Given a continuous map f : B → X, and a fiber bundle π : E → X
with fiber F , we can form the pullback bundle

f ∗(E) := {(b, e) | f(b) = π(e)} ⊂ B × E,

here f ∗(E) has the subspace topology, and B × E has the product topology. The two projection
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maps of B × E induce maps in the following commutative diagram

f ∗(E) E

B X
f

π

where the left vertical arrow f ∗(E) → B is a fiber bundle over B with fiber F .

Fact: If f, g : B → X are homotopic maps, then f ∗(E) is isomorphic to g∗(E) as a bundle over
B.

Classifying spaces

Let G be a topological group, then a classifying space for G is a principal G–bundle π : EG → BG
that satisfies the following property: given any principal G–bundle γ : Y → Z, there exists a
classifying map φ : Z → BG, such that the bundle γ is isomorphic to the pullback of π along φ. This
universal property uniquely determines BG up to homotopy equivalence, and such a map π always
exists.

When M is a compact manifold, we can turn Diff(M) into a topological group via the Whitney
topology, or via the compact–open topology; both topologies coincide when M is compact [Hir76,
Ch.2]. Note that an arbitrary M–bundle π : E → B need not be a principal Diff(M)–bundle. There
is, however, a bijection between homotopy classes of maps B → BDiff(M), and isomorphism classes
ofM–bundles over B. The bijection is given by sending a map B → BDiff(M) to the bundle E → B
defined by pullback:

E (E Diff(M)×M)/Diff(M)

B BDiff(M)

where (E Diff(M) ×M)/Diff(M) is the quotient by the diagonal action, with bundle map induced
by the universal bundle E Diff(M) → BDiff(M).

One important property of classifying spaces is functoriality: let ϕ : H → G be a homomorphism
of topological groups, then this induces a map B(ϕ) : BH → BG; construct the following G–bundle
over BH:

EH ×H G := EH ×G/(a, b) ∼ (h · a, ϕ(h−1)b),

with bundle projection EH ×H G→ BH induced by EH → BH. This is a principal G–bundle over
BH, so it is the pullback of a classifying map B(ϕ) : BH → BG.

Reduction of structure groups

Suppose we have a fiber bundle F ↪→ E
π−→ X, and a topological subgroup H ⊂ Diff(F ), then a

reduction of the structure group to H is a choice of local trivializations (Ui, φi : π
−1(Ui) → Ui×F )i∈I

such that the transition functions tij : Ui ∩ Uj → Diff(F ) have image in H, for all i, j ∈ I. This
family of transition functions defines an isomorphism between π and

P ×ρ F := P × F/(a, f) ∼ (h · a, ρ(h−1)f) → X

where P → X is a principal H–bundle obtained from
⊔

i∈I H×Ui by identifying (h, x) ∈ H×Ui with
(tij(x)h, x) ∈ H ×Uj for all x ∈ Ui ∩Uj. Here ρ : H ↪→ Diff(F ) is the inclusion, and P ×ρ F → X is
induced by the bundle map P → X.
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Note that P → X is the pullback of EH → BH along some map X → BH; the constructions
above imply that isomorphism classes of fiber bundles F ↪→ E

π−→ X with reduction of structure
group to H ⊂ Diff(F ) are in bijection with homotopy classes of maps f : X → BH such that

BH

X BDiff(F )g

f
B(ρ)

commutes up to homotopy, where g : X → BDiff(M) is the classifying map corresponding to
π : E → X.

For any c ∈ H∗(BH;Z), we get a characteristic class f ∗(c) ∈ H∗(X;Z) for the bundle π : E → X
with a reduction of the structure group to H ⊂ Diff(F ).

We introduce the monodromy representation here: let π : E → X be a fiber bundle with fiber
F , and a reduction of the structure group to H ⊂ Diff(F ). There exists two classifying maps
f : X → BH, and g : X → BDiff(F ) such that B(ρ) ◦ f = g, up to homotopy, as above. Applying
the π1 functor, we get a homomorphism

g∗ : π1(X) → π1(BDiff(F )) ∼= π0(Diff(F ))

where the isomorphism in the target comes from applying the long exact sequence for homotopy
groups to the universal bundle Diff(F ) ↪→ E Diff(F ) → BDiff(F ), and using that E Diff(F ) is
contractible. The group π0(Diff(F )) := Mod(F ) is the mapping class group of F . The commutative
diagram above imples g∗ has image in B(ρ)∗(π1(BH)), which we identify with a subgroup of Mod(F ).

The case of surface bundles.

Consider a fiber bundle with fiber F = Σg a 2–manifold of genus g ≥ 2. In this case, work of
Earle–Eells implies that the path components of Diff(F ) are contractible [EE67], so the natural
map Diff(F ) → Mod(F ) that sends a diffeomorphism to its mapping class, is a homotopy equiv-
alence, where Mod(F ) is thought of as a discrete group. This implies that BDiff(F ) is homotopy
equivalent to BMod(F ). The remark above implies that cohomology classes in H∗(Mod(F );Z) =
H∗(BMod(F );Z) ∼= H∗(BDiff(F );Z) give characteristic classes of surface bundles. This seems much
more tractable since Mod(F ) is a discrete group, so we have K(π, 1) theory at our disposal.

We single out subgroups of Diff(F ) which have added importance with regard to F–bundles with
reduction of structure to H:

Let R be a ring, and define IR ⊂ Diff(F ) to be the kernel of the action of Diff(F ) on H1(F ;R).
Let P be a path component of Diff(F ), and suppose there is an f ∈ P with f ∈ IR, then for any other
g ∈ P , there is an isotopy between f and g, and since H∗(−;R) is a homotopy invariant functor, g
must also be in IR. Therefore P ⊂ IR. Let Mod(F )[R] denote the subgroup of Mod(F ) that is the
kernel of the action of Mod(F ) on H1(F ;R). We get a surjection IR → Mod(F )[R] sending f ∈ IR to
its mapping class. We know that the path components of Diff(F ) are contractible, and IR contains
a subset of those path components, therefore the surjection IR → Mod(F )[R] is also a homotopy
equivalence, implying that BIR ∼= BMod(F )[R].

The discussion above implies that elements of H∗(BMod(F )[R];Z) ∼= H∗(BIR;Z) give cohomol-
ogy classes for F–bundles with a reduction of the structure group to IR. The groups Mod(F )[R] are
of particular importance because for an F–bundle with monodromy lying in Mod(F )[R], the Serre
spectral sequence can be applied to understand the cohomology of the total space, with coefficients
in R, in terms of the cohomology of the base and fiber.
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Now, let D ⊂ F be an embedded 2–disk in our 2–manifold F . Let Diff+(F,D) denote the
subgroup of Diff+(F ) given by orientation–preserving diffeomorphisms that fix D pointwise. Let
π : E → X be an F–bundle with a reduction of the structure group to Diff+(F,D), then we have
the following.

Lemma 8.1.1. There exists a D–family of sections sr : X → E, r ∈ D, of π : E → X.

Proof. Let r ∈ D, x ∈ X, and pick a local trivialization (Ui, φi : π
−1(Ui) → Ui × F ) with x ∈ Ui.

Define
sr(x) = φ−1

i (x, r).

We claim that sr is independent of choice of trivialization: if (Uj, φj : π
−1(Uj) → Uj × F ) is another

choice, with x ∈ Uj, then

φ−1
i (x, r) = φ−1

j ◦ φj ◦ φ−1
i (x, r) = φ−1

j (x, tij(r)) = (x, r)

since the transition function tij : Ui ∩ Uj → Diff(F ) has image in Diff+(F,D).

Hence, BDiff+(F,D) classifies isomorphism classes of oriented F–bundles E → X with a distin-
guished D–family of sections. These sections often give a splitting of H∗(E) in terms of H∗(X) and
H∗(F ); see Chapter 2 on Sato’s homomorphisms, for example. Since these spaces have geometric
meaning, we should study their cohomology.

Corollary 8.1.2. Diff+(F,D) with the compact–open topology, is isomorphic as a topological group
to Diff+(W,∂W ). Here W = F \ int(D), and Diff+(W,∂W ) is the group of orientation–preserving
diffeomorphisms of W that fix the boundary pointwise.

Proof. The restriction map

ψ : Diff+(F,D) → Diff+(W,∂W )

f 7→ f |W

is a homomorphism. ψ is invertible because we can extend g ∈ Diff+(W,∂W ) over D via the identity.
Furthermore, ψ pulls back subbases of the compact–open topology to subbases, similarly for ψ−1, so
ψ and ψ−1 are also continuous.

Theorem 8.1.3. When F is a surface of genus g ≥ 2, and D ⊂ F is an embedded 2–disk, then the
path components of Diff+(F,D) are contractible.

Proof. This follows from the corresponding result for Diff+(W,∂W ) (see [EE69] and [ES70, Thm.C]),
and Corollary 8.1.2.

The arguments above imply thatBDiff+(F,D) ∼= Bπ0(Diff
+(F,D)); set Modg,1(F ) := π0(Diff

+(F,D)),
when F is a closed surface of genus g. We can define analogues of the groups IR, and Modg,1(F )[R]
defined above, where R is a ring. The arguments given above imply that cohomology classes of
Modg,1(F )[R] give characteristic classes of bundles with a reduction of the structure group to IR,
and a D–family of sections.

Surface bundles in algebraic geometry.

We end this section with a construction of surface bundles that naturally appears in complex geom-
etry.

48



Let P (x, y, z), Q(x, y, z) be homogeneous polynomials with complex coefficients in three variables.
Suppose both P and Q have degree d ≥ 1, then we obtain a rational map

f : CP 2 99K CP 1

[x : y : z] 7→ [Q(x, y, z) : −P (x, y, z)],

called a Lefschetz pencil. This map is undefined at the common zeroes of P and Q, and if P and
Q have no common factor, Bezout’s theorem implies there are d2 common zeroes in CP 2, counting
multiplicity. Let B = {p1, .., pd2} be the set of common zeroes of P and Q, and let ϵ : S → CP 2 be
the blowup of CP 2 at p1, .., pd2 .

For a generic point [a : b] ∈ CP 1, the fiber

f−1([a : b]) = {[x : y : z] | aP (x, y, z) + bQ(x, y, z) = 0} := F[a:b]

is a surface of genus (d−1)(d−2)
2

by the degree–genus formula. The union of the fibers F[a:b] is CP 2,
and they all intersect at the points of B. Take the proper transforms

F ′
[a:b] = cl(ϵ−1(F[a:b] −B)),

where cl denotes the Zariski closure in S. Each of the F[a:b] correspond to different complex lines
through the points of B, hence the proper transforms F ′

[a:b] are disjoint in S. We get a regular map

π : S → CP 1 given by π(F ′
[a:b]) = [a : b].

Recall that for a smooth map f : X → Y between smooth manifolds X and Y , a point y ∈ Y is
a regular value if dfx is surjective for all x ∈ f−1(y). Sard’s Theorem states that the complement in
Y of the set of regular values has measure zero; generic points of Y are regular values [Lee00, Ch.6].

In our situation, we have the regular map π : S → CP 1 which is smooth when viewed as a map
between smooth 4–manifolds. Let D denote the complement of the set of regular values of π. Since
π is regular, D forms a projective subvariety with nonzero codimension, and CP 1 has dimension 1,
so D must be a finite set of points. Hence, the restriction of π to π−1(CP 1 − D) is a fiber bundle
by the Ehresmann fibration lemma, which states that a smooth proper submersion is a fiber bundle
[Ehr50]. We obtain in this way a Σd2–bundle over CP 1 −D.

8.2 Mapping class groups

To begin our discussion of mapping class groups, we recall some results from differential topology.

8.2.1 Isotopy extension theorem

Let M be a smooth n–manifold, and let X ∈ Γ(TM) be a smooth vector field. A curve γ : (−ϵ, ϵ) →
M is an integral curve for X if γ′(t) = X(γ(t)) for all t ∈ (−ϵ, ϵ). Suppose the vector field X satisfies
the following property: for all p ∈ M , X has a unique integral curve starting at p, and defined for
all t ∈ R. Then we get the flow

F :M × R →M

(m, t) 7→ γm(t),

where γm : R → M is the unique integral curve for X with γm(0) = m. For fixed t ∈ R, the flow
map F (−, t) :M →M slides points of M along the integral curves until time t.

Pick a chart φ = (x1, ..., xn) : U → Rn, and let γ : (−ϵ, ϵ) → M be a curve with image in U ,
then write φ ◦ γ(t) = (γ1(t), ..., γn(t)). Write the vector field X locally as X =

∑n
i=1Xi

∂
∂xi with
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respect to the local frame { ∂
∂xi} for TM , where the functions Xi : U → R are smooth. The condition

γ′(t) = X(γ(t)) is then written as

n∑
i=1

γ′i(t)
∂

∂xi
|γ(t) =

n∑
i=1

Xi(γ(t))
∂

∂xi
|γ(t).

Comparing coefficients gives a system of ordinary differential equations

γ′1(t) = X1(γ1(t), ..., γn(t)), ..., γ
′
n(t) = Xn(γ1(t), ..., γn(t)),

this system must be solved in order to find the integral curves.

The notion of integral curves and flow is used to prove an important theorem in differential
topology, the isotopy extension theorem. To prove the Isotopy extension theorem, we adapt the
following argument: let V be compact, and let H : V × I → M be an isotopy, so H is a smooth
map, and for t ∈ I, the map H(−, t) : V → I is an embedding. Construct a vector field on an open
neighbourhood of H(V × I) that has integral curves H({x} × I) for all x ∈ V . Then take the flow
of this vector field to obtain the extended isotopy.

The problem with this argument is the following: H : V × I → M itself might not be injective,
we only have that H(−, t) : V → M is injective for all t ∈ I. So there might be multiple curves of
the form H(pt × I) going through an m ∈ H(V × I) ⊂ M . So we need to pass to an intermediate
notion of a time–dependent vector field, to deal with this complication.

The idea is: if H : X × I → X is smooth, and H(−, t) : X → X is injective for all t ∈ I, then
the map

Ĥ : X × I → X × I

(x, t) 7→ (H(x, t), t)

is injective. To see this, if Ĥ(x, t) = Ĥ(y, s), then (H(x, t), t) = (H(y, s), s), so t = s, but H(−, t) is
injective, so x = y too.

A time–dependent vector field is a smooth map G :M × I → TM such that G(x, t) ∈ TxM , and
G(∂M × I) ⊂ T (∂M). A time–dependent vector field G : M × I → TM has bounded velocity if M
has a complete Riemannian metric such that |G(x, t)| < K for some constant K.

Theorem 8.2.1. [Hir76, Thm. 1.1., p.179] Let G be a time–dependent vector field on M with
bounded velocity. Then G generates an isotopy of M , that is, there exists a unique isotopy F :
M × I →M such that

∂F

∂t
(x, t) = G(F (x, t), t).

Proof. Form the vector field

X :M × I → T (M × I)

(x, t) 7→ (G(x, t),
∂

∂s
|t)

where s is a coordinate function on I centred at t.

The assumptions imply that for x ∈ M , there is an integral curve of X having the form t 7→
(F (x, t), t), defined for all t ∈ I, since the vector field X is constant in the I direction. Then

F :M × I →M

(x, t) 7→ F (x, t),

is the required isotopy.
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The support of a time–dependent vector field G :M × I → TM is

Supp(G) = {x ∈M | G(x, t) ̸= 0 for some t ∈ I}.

If the support of G is compact, then G has bounded velocity, hence generates an isotopy by Theorem
8.2.1. So every time–dependent vector field on a compact manifold generates an isotopy.

Theorem 8.2.2. [Hir76, Thm. 1.3] Let V ⊂ M be a compact submanifold, and F : V × I → M be
an isotopy. If either F (V × I) ⊂ ∂M , or F (V × I) ⊂M − ∂M , then F extends to an isotopy of M .

Proof. Let

F̂ : V × I →M × I

(x, t) 7→ (F (x, t), t)

be the track of F . Construct a vector field X on F̂ (V × I) in the following way: fix x ∈ V , and take
the curve

γx : I →M × I

t 7→ F̂ (x, t),

and define the vector field

X(F̂ (x, t)) = dγx(
∂

∂s
|t).

In other words, X is the vector field with integral curves t 7→ F̂ (x, t). Extend X to a vector field Y
on a neighbourhood of F̂ (V × I) in M × I.

The hypotheses on F allow us to assume that Y(x,t) is tangent to ∂M × I whenever x ∈ ∂M .
After restricting to a smaller neighbourhood, dpr1(Y ) is extended to a compactly–supported time–
dependent vector field on M , where pr1 : M × I → M is the canonical projection. The isotopy is
then constructed from Theorem 8.2.1.

Corollary 8.2.3. Let V ⊂ M be a compact submanifold, and let f, g : V ↪→ M be embeddings such
that f is isotopic to g, then there exists a diffeomorphism F : M → M , isotopic to idM , such that
F ◦ f = g.

Proof. LetH : V ×I →M be the isotopy withH(x, 0) = f(x), andH(x, 1) = g(x), for all x ∈ V . Use
Theorem 8.2.2 to obtain an isotopy Ĥ :M×I →M extending H. The diffeomorphism F = Ĥ1◦Ĥ−1

0

is isotopic to the identity, where Ĥt = Ĥ(−, t) :M →M . Then

F ◦ f(x) = Ĥ1 ◦ Ĥ−1
0 (f(x)) = Ĥ1(x) = g(x).

8.2.2 Tubular Neighbourhood Theorem

Let M be a smooth manifold, and let i : A ↪→M be a smooth, closed submanifold of M . Then

TM |A = i∗(TM) ∼= TA⊕ νM(A),

where νM(A) is the normal bundle to A in M . If we pick a Riemannian metric on M , then νM(A)
can be identified with T (A)⊥.
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An open tubular neighbourhood of A in M is a diffeomorphism ϕ : νM(A) → M onto some
neighbourhood of A in M , such that the restriction of ϕ to the 0–section of νM(A) is the inclusion
i : A ↪→M .

The restriction of ϕ to the unit disc bundle of a metric on νM(A) is called a closed tubular
neighbourhood of A.

Theorem 8.2.4. [Bre72, Ch.VI, Thm.2.2] Open tubular neighbourhoods of a closed submanifold
always exist.

Now we discuss uniqueness: two tubular neighbourhoods ϕ1 : νM(A) →M and ϕ0 : νM(A) →M
of a closed submanifold A ⊂M are isotopic if there exists tubular neighbourhoods ϕt : νM(A) →M ,
for all t ∈ I, such that the map

νM(A)× I →M

(v, t) 7→ ϕt(v)

is smooth.

Theorem 8.2.5. [Bre72, Ch.VI, Thm.2.6] Suppose A ⊂ M is a closed submanifold, then any two
(open or closed) tubular neighbourhoods of A are isotopic.

Example. Let γ : S1 → R3 be a knot K in R3, and suppose γ′(t) ̸= 0 for all t. Since R3 has a
global coordinates (x1, .., xn), we get a global frame ∂

∂xi for TR3, giving a vector bundle isomorphism
T (R3) ∼= R3 × R3; identify these two vector bundles. The tangent curve γ′ : S1 → T (R3) has the
description

γ′(t) = (γ(t), γ′(t)) ∈ R3 × R3,

and {(γ(t), cγ′(t)) : c ∈ R} ⊂ {γ(t)} × R3 is the tangent space to K at γ(t).

Give R3 ×R3 the flat Riemannian metric given by the standard dot product on {pt}×R3. Then
write

νS3(K) = {(γ(t), v) | γ′(t) · v = 0}.

A transverse vector field to the knot K in R3 is given by a map P : S1 → T (R3), where P (t) =
(γ(t), p(t)) with p(t) · γ′(t) = 0 in γ(t) × R3. We obtain another vector field Q : S1 → T (R3) given
by Q(t) = (γ(t), γ′(t)× p(t)), where γ′(t)× p(t) is the cross product of the vectors γ′(t) and p(t) in
{γ(t)} × R3. The P,Q : S1 → T (R3) give an orthonormal frame for νS3(K).

We obtain a vector bundle isomorphism

ηP,Q : S1 × R2 → νS3(K)

(t, a, b) 7→ (γ(t), aP (t) + bQ(t)),

that depends on the smooth isotopy class of the orthonormal frame {P,Q}.

We construct a tubular neighbourhood of K in S3 as a map

α : νS3(K) → R3

(γ(t), v) 7→ γ(t) + v

where v · v << 1. The composition α ◦ ηP,Q : S1 ×D2 → R3 defines us an embedding.

For an example a tubular neighbourhood of a simple closed curve on a surface, see Figure 8.1
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Figure 8.1: Closed tubular neighbourhood of a simple closed curve on a torus.

Figure 8.2: Action of T on the red arc I × {1} ⊂ A.

8.2.3 Dehn twists

Let Σ be an oriented surface, in this section, we analyse certain elements of π0(Diff
+(Σ, ∂Σ)) sup-

ported on tubular neighbourhoods of curves, called Dehn twists.

First, consider the annulus A = I × S1. Embed A in C via the map

A→ C
(x, e2πiy) 7→ (x+ 1)e2πiy,

and orient A using the standard orientation of the plane. Let

T : A→ A

(x, e2πiy) 7→ (x, e2πi(x+y))

denote the Dehn twist about an annulus. See Figure 8.2 for a picture of how this map acts on arcs
in A.

We can use T to define infinite order mapping classes with representatives supported in annular
neighbourhoods of curves in Σ. To do this, let α : S1 → Σ denote an oriented simple closed curve in
Σ. Let ϕ : νΣ(α) → Σ be a tubular neighbourhood of α in Σ. Now α is an oriented codimension 1
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submanifold of Σ, so there exists a nowhere–zero section s : α → νΣ(α) that agrees with the chosen
orientation. This section induces a diffeomorphism

ψ : R× S1 → νΣ(α)

(r, t) 7→ rs(α(t)).

So we obtain an embedding

η = ϕ ◦ ψ : I × S1 → Σ.

Pull–back the orientation on Σ to an orientation on A, and consider the following diffeomorphism of
Σ,

τα(x) =

{
η ◦ T ◦ η−1(x) , if x ∈ η(A)

x , else
.

Define a Dehn twist about α to be

tα = [τα] ∈ π0(Diff
+(Σ, ∂Σ)).

Lemma 8.2.6. The mapping class tα is independent of

1. The choice of tubular neighbourhood ϕ : νΣ(α) → Σ.

2. The choice of section s : α → νΣ(α).

3. The representative of the isotopy class of α : S1 → Σ.

Proof. (1) Given an isotopy ϕt : νΣ(α) → Σ of tubular neighbourhoods of α, as above, we obtain the
isotopy

I × Σ → Σ

(t, x) 7→

{
ηt ◦ T ◦ η−1

t (x) , x ∈ ηt(A)

x , else
,

where ηt = ϕt ◦ ψ. This isotopy is a smooth map because

ϕ : I × νΣ(α) → Σ

(t, v) 7→ ϕt(v)

is smooth, implying that

ϕ ◦ (id× ψ) : I × A→ Σ

is smooth. Then the track

F : I × A→ I × Σ

(t, x) 7→ (t, ϕ ◦ (id× ψ)(x))

is injective, and restricts to ηt on {t}×A. The isotopy above can be written as pr2 ◦F ◦ (id×τ)◦F−1

on F (I × A), and the identity elsewhere, where pr2 : I × Σ → Σ is the canonical projection. Hence,
if τα is defined using either identifications ϕ0 ◦ ψ or ϕ1 ◦ ψ of A with a neighbourhood of α, then the
resulting maps are isotopic.
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Figure 8.3: A left Dehn twist of the red curve about the blue curve.

(2) If we choose two non–zero sections s1, s2 : α → νΣ(α) that agree with the orientation, then
we get a map

S1 → R>0

t 7→ s1(α(t))/s2(α(t)).

Since π1(R>0) = 0, this choice doesn’t matter up to isotopy.

(3) Suppose α is isotopic to β : S1 → Σ. Then by Corollary 8.2.3 there exists a diffeomorphism
f : Σ → Σ, isotopic to the identity, such that f ◦ α = β. But then

fταf
−1 = τf(α) = τβ;

f−1 maps a neighbourhood of β to a neighbourhood of α, does the Dehn twist there, then maps back
to a tubular neighbourhood of β.

Given an isotopy Ft with F0 = id and F1 = f , we get the isotopy Ft ◦ τα ◦ F−1
t from τα to τβ,

since Diff(Σ, ∂Σ) is a topological group.

The proof of the third claim in Lemma 8.2.6 gives the following fact about Dehn twists.

Corollary 8.2.7. Let α be a simple closed curve on Σ, and let [f ] ∈ Mod(Σ) be a mapping class,
then

[f ]tα[f ]
−1 = tf(α).

See Figure 8.3 for an example of a Dehn twist on a torus.

8.2.4 Action on homology

Since Dehn twists have small support, we can calculate their action on homology using functoriality.
Let α denote a simple closed curve embedded in Σ. If we pick an oriented curve γ : S1 → Σ such
that γ∗([S

1]) = v ∈ H1(Σ;Z) represents a basis vector. Then by functoriality

tα(v) = (τα ◦ γ)∗([S1]).

Since homotopic maps induce the same morphism on homology, we calculate tα(v) by drawing τα ◦ γ
and homotoping to a concatenation of curves whose homology class is understood.

To describe the action of tα on homology, recall the intersection pairing

H1(Σ;Z)×H1(Σ;Z) → Z
(a, b) 7→ ⟨PD(a) ∪ PD(b), [Σ, ∂Σ]⟩ = a · b.

Proposition 8.2.8. [FM11, Prop. 6.3] Let a and b be isotopy classes of oriented simple closed curves
in Σ. For any k ≥ 0, we have

tkb ([a]) = [a] + (k[a] · [b])[b].
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8.2.5 Torelli groups

We fix our 2–manifold Σ to be an oriented surface of genus g with one boundary component, and
denote its mapping class group by Modg,1. The Torelli group is the kernel of the action of Modg,1

on H1(Σ;Z), and is denoted by Ig,1. In this subsection, we discuss the abelianization of Ig,1 in more
detail. This was calculated by Johnson in a series of papers [Joh80b], [Joh80a], [Joh83b], [Joh85a],
[Joh85b]; see Putman’s notes [Put11] for a more thorough discussion.

We begin by discussing elements of Ig,1. Suppose we have two non–isotopic, oriented, non–
separating simple closed curves d, e on Σ such that [d] = [e] ∈ H1(Σ;Z). Then by Proposition 8.2.8,
the mapping classes td and te have the same action on homology, hence tdt

−1
e is in the Torelli group.

For another example, let c denote a separating simple closed curve on Σ, so [c] = 0 ∈ H1(Σ;Z), then
by Proposition 8.2.8 the mapping class tc is in the Torelli group. Elements of the form tdt

−1
e are

called bounding pair maps, and elements of the form tc are called separating twists. These elements
form the building blocks of all mapping classes in the Torelli group, by the following.

Theorem 8.2.9. For g ≥ 1, the group Ig,1 is generated by bounding pair maps and separating twists
[Pow78]. For g ≥ 3, bounding pair maps generate Ig,1 [Joh79], and there exists a generating set with
only finitely many bounding pair maps [Joh83b].

Now we outline the construction of the Birman–Craggs–Johnson homomorphism, which deter-
mines all torsion in the abelianization of the Torelli group. We begin by sketching the original
construction of the Birman–Craggs maps: let Hg be an oriented handlebody of genus g, and let −Hg

denote the same handlebody with reversed–orientation. Identify Σg = ∂(Hg) as in Chapter 5, but
denote by Modg the group π0(Diff

+(Σg)).

For h ∈ Modg, let M(h) denote the 3–manifold obtained from the disjoint union of Hg and
−Hg with the indentification ih(x) = x, where i denotes the identity function, thought of as a map
i : ∂(Hg) → ∂(−Hg). Note that M(id) = #gS

1 × S2. Now suppose that h1, h2 ∈ Modg are a pair
of mapping classes with M(h2h1) a Z/2–homology sphere. By taking the Rochlin invariant, Birman
and Craggs construct a homomorphism

ρh2,h1 : Ig → Z/2
k 7→ R(M(h2kh1))−R(M(h2h1)),

where Ig is the kernel of the action of Modg on H1(Σg;Z).

To show that the maps ρh2,h1 are homomorphisms, they constructed a fundamental triple, defined
for any pair (h2, h3) ∈ Modg ×Modg, as the triple of Heegaard splittings (M(h3),M(h2),M(h3h

−1
2 )).

To a fundamental triple, they associate a 4–manifold N(h2, h3) with boundary the disjoint union
−M(h3) ∪M(h2) ∪M(h3h

−1
2 ). By analysing the signature of the 4–manifolds N(h2, h3), they show

that the ρh2,h1 are homomorphisms. Interestingly, the 4–manifolds N(h2, h3) were among the first
examples of trisections; see [Gay22].

Johnson gave an alternative description of the Birman–Craggs maps and studies their extension
to the groups Ig,1: define a Heegaard embedding h : Σ → S3 to be an embedding such that h(Σ) is
contained in some closed Heegaard surface Σ′ for S3. Let k ∈ Ig,1. Form the 3–manifold M(h, k)
by cutting S3 along Σ′ into two handlebodies A and B, and regluing A to B along their boundaries
by the map k, where k has been extended along the rest of Σ′ by the identity. Since k ∈ Ig,1, the
3–manifold M(h, k) is a Z–homology 3–sphere, and we obtain a map

R(h,−) : Ig,1 → Z/2
k 7→ R(M(h, k)).

Let h : Σ′ → S3 denote the inclusion map of the Heegaard surface containing h(Σ). Let Σ′′ =
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cl(Σ′ − h(Σ)). The embedding h : Σ → Σ′ induces a splitting of H1(Σ
′) into H1(Σ)⊕H1(Σ

′′), where
x · x′′ = 0 for all x ∈ H1(Σ) and x′′ ∈ H1(Σ

′′). Now any symplectic quadratic form ω′ on H1(Σ
′)

can be restricted to forms ω, ω′′ on H1(Σ), H1(Σ
′′) respectively. The condition above implies that

ω′ = ω ⊕ ω′′ .

Johnson shows that every Birman–Craggs homomorphism is of the form R(h,−) for some Hee-
gaard embedding h : Σ′ → S3 that contains h(Σ). Here, any element of Modg,1 is extended over
Σ′ − h(Σ) by the identity [Joh80b, Lemma 7].

For a Heegaard embedding h : Σ → S3, let ωh : H1(Σ;Z/2) → Z/2 denote the symplectic
quadratic form induced by the Seifert linking pairing. Johnson shows that R(h, k) only depends on
ωh and k [Joh80b, Cor. 1, Cor. 1’]. He then introduces the notation

ρω(k) = R(ω, k) = R(M(h, k))

which is justified by [Joh80b, Lemmas 5 and 16], stating that any symplectic quadratic form on
H1(Σ;Z/2) is induced by some Heegaard embedding h : Σ → S3.

Let Ψ denote the set of all symplectic quadratic forms on H1(Σ;Z/2). Then in [Joh80b, Thm.2],
he obtains the result that the ρω, ranging over all ω ∈ Ψ, is the set of all Birman–Craggs homomor-
phisms, and that ρω ̸= ρω′ if ω, ω′ ∈ Ψ are distinct.

In [Joh80b, Section 9], he introduces the following map

ζk : Ψ → Z/2
ω 7→ R(ω, k),

for every k ∈ Ig,1, and showed that the map

ζ : Ig,1 → Map(Ψ,Z/2)
k 7→ ζk,

is a homomorphism, where Map(Ψ,Z/2) is the Z/2–vector space of functions Ψ → Z/2. Let W
denote the image of Ig,1 under ζ. Then in [Joh80b, Theorem 6], he shows that W has dimension∑3

i=0

(
2g
i

)
as a Z/2 vector space, hence

W ∼= (Z/2)
∑3

i=0 (
2g
i ),

whenever g ≥ 2. This completely determines torsion in the abelianization of Ig,1 by the following
result of Johnson.

Theorem 8.2.10. [Joh85b] For g ≥ 3, we have H1(Ig,1;Z) = W ⊕
∧3H1(Σ;Z). The torsion part

is given by the image of the homomorphism ζ above. The torsion free part is given by the Johnson
homomorphism Ig,1 →

∧3H1(Σ;Z); see [Joh80a], [CF12], [Joh83a] for constructions of the Johnson
homomorphism.

Let Kg,1 ⊂ Modg,1 denote the normal subgroup generated by Dehn twists about separating
curves. We end by noting that the kernel of the Johnson homomorphism is precisely Kg,1 [Joh85a].
In [Joh80b, Thm. 6], Johnson also shows that the image of Kg,1 under the Birman–Craggs–Johnson
homomorphism ζ has dimension

∑2
i=0

(
2g
i

)
as a Z/2–vector space.

8.3 Spin structures and spin bordism

Now we explain spin structures, and what it means for a spin n + 1–manifold to spin bound a spin
n–manifold.
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Let M be a smooth n–manifold. Then M is orientable if M admits an atlas {(Uα, φα : Uα →
Rn)}α∈I such that, for every α, β ∈ I with Uα ∩ Uβ non–empty, the determinant of the Jacobian
matrix J(φβ ◦ φ−1

α ) is positive.

Let φα = (x1, .., xn), and let φβ = (y1, .., yn), then, by abuse–of–notation, write

φβ ◦ φ−1
α (x1, .., xn) = (y1(x1, ..., xn), ..., yn(x1, .., xn)).

We have that J(φβ ◦ φ−1
α )|φα(p) = ( ∂y

i

∂xj )
n
i,j=1|φα(p) is the change–of–basis matrix between the bases of

partials { ∂
∂xi |p} and { ∂

∂yi
|p} for TpM . The transition function for the tangent bundle TM on Uα∩Uβ

is also induced by d(φβ ◦ φ−1
α ). Hence, the orientability condition implies there is a reduction of the

structure group of TM from GL(n,R) to GL+(n,R).

For an orientable n–manifold M , an orientation of M is a consistent choice of orientation of the
tangent space TpM , at every point p ∈ M . It can be shown that an n–manifold M is orientable
if Hn(M,∂M ;Z) ∼= Z, and an orientation of M is given by a choice of generator [M,∂M ] for
Hn(M,∂M ;Z), called a fundamental class.

Let (M, g) be an oriented Riemannian manifold with ω2(M) = 0. Let SO(n)
i−→ P (M)

π−→ M
denote the oriented orthonormal frame bundle associated to TM equipped with the metric g. A
spin structure is a class ξ ∈ H1(P (M);Z/2) such that i∗(ξ) ∈ H1(SO(n);Z/2) = Z/2 is a generator
[Mil63].

By the universal coefficient theorem, we have H1(P (M);Z/2) = Hom(H1(P (M)),Z/2). Let
γ : S1 →M be a curve inM , after framing this curve, we obtain a map γ̃ : S1 → P (M), and γ̃∗([S

1])
represents a homology class of H1(P (M)). Hence, a spin structure ξ ∈ H1(P (M)) can be evaluated
on a framed curve. The condition that i∗(ξ) ∈ H1(SO(n);Z/2) is a generator can be interpreted as
saying that ξ evaluates to 1 on a homotopically non–trivial loop in the fiber, SO(n), of P (M).

Given an orientation–preserving diffeomorphism f : M → M , the total derivative df induces a
diffeomorphism df : P (M) → P (M), and hence an isomorphism

df ∗ : H1(P (M);Z/2) → H1(P (M);Z/2).

We say that f preserves the spin structure ξ ∈ H1(P (M);Z/2) if df ∗(ξ) = ξ.

Let W be an oriented (n + 1)–manifold, and suppose ∂W = M . Let ι : M → W denote the
inclusion ofM as the boundary ofW . The outward normal to ∂W induces a map dι : P (M) → P (W );
take a basis Tp(M) and complete to a basis of Tp(W ) using the outward normal. Using this, we say
that a spin (n+ 1)–manifold (W,ψ) spin bounds (M, ξ) if ∂W =M and dι∗(ψ) = ξ.

We mostly focus on the case when W is a spin 4–manifold, with ∂(W, τ) = (M,σ), where (M,σ)
is a spin 3–manifold. Let R be a commutative ring, then we have a symmetric R–bilinear form

QW : H2(W,∂W ;R)×H2(W,∂W ;R) → R

(a, b) 7→ ⟨a ∪ b, [W,∂W ]⟩,

called the intersection form of W . Here, a ∪ b denotes the cup product of a, b ∈ H2(W,∂W ;R),
and ⟨a ∪ b, [W,∂W ]⟩ denotes the evaluation of a ∪ b on the relative fundamental class [W,∂W ] ∈
H4(W,∂W ;R) via the universal coefficient theorem. By Poincare duality,H2(W ;R) ∼= H2(W,∂W ;R),
hence QW gives a symmetric R–bilinear form on H2(W ;R) as well.

For a symmetric Z–bilinear form Q : A × A → Z on a finitely generated free abelian group A,
the signature of Q is defined in the following way: extend Q to an R–bilinear form on A ⊗Z R, let
b+2 denote the number of positive eigenvalues for any matrix representing Q, and let b−2 denote the
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number of negative eigenvalues for the same matrix representing Q. The difference b+2 − b−2 is the
signature of Q. Sylvester’s law of inertia states that the signature is independent of the choice of
basis used to represent Q as a matrix.

We deal with the case whereW is an oriented 4–manifold, and (A,Q) = (H2(W ;Z)/torsion, QW ).
Firstly, we collect a few facts about the intersection form. The following result of Rochlin has
many applications; for example, it implies that the simply–connected topological 4–manifold with
intersection form the E8 lattice, obtained by Freedman, has no smooth structure.

Theorem 8.3.1. [Roc52] If X is a smooth, closed spin 4–manifold, then the signature of (H2(X), QX)
is divisible by 16.

The following result is also also very useful, and is referred to as Novikov additivity.

Theorem 8.3.2. [Kir89] Let X1 and X2 be two compact, oriented 4–manifolds, and denote by X =
X1 ∪N X2 the 4–manifold obtained by gluing X1 and X2 along a common connected component N of
the boundaries of X1 and X2. Then the signature of X is the sum of the signatures of X1 and X2.

Signatures play an important role in spin cobordism theory as well. Let (M1, s1) and (M2, s2)
denote two closed spin n–manifolds. Then (M1, s1) and (M2, s2) are spin cobordant if there is
a compact spin manifold (W, s) such that its boundary ∂W , with its induced spin structure, is
(M1, s1)⊔ (M2, s2). Spin cobordism forms an equivalence relation, and the cobordism classes of spin
n–manifolds forms an abelian group ΩSpin

n under disjoint union; the cobordism class of the empty set
is the identity element, and the inverse of (M, s) is M with the spin structure induced by s, where
M denotes the n–manifold M with opposite orientation.

Theorem 8.3.3. [Mil63] [Kir89] We have ΩSpin
3 = 0; any spin 3–manifold spin bounds a spin 4–

manifold. The map

ΩSpin
4 → Z

[(X, s)] 7→ Sign(X)/16

is a group isomorphism, where Sign(X) denotes the signature of X. The class of the K3 surface
generates ΩSpin

4 .

Theorems 8.3.1, 8.3.3, and 8.3.2 imply that the Rochlin invariant of a spin 3–manifold (M,σ) is
well–defined. The Rochlin invariant of (M,σ) is the signature (mod 16) of any spin 4–manifold spin
bounding (M,σ). To show well–definedness: suppose we have two spin 4–manifolds (W1, ψ1) and
(W2, ψ2) spin bounding (M,σ), then we glue W1 and W2 along M to get a closed spin 4–manifold
(W = W1 ∪M W2, ψ). Then Novikov additivity, and Rochlin’s theorem, imply that

Sign(W ) = Sign(W1) + Sign(W2) = Sign(W1)− Sign(W2) ≡ 0 (mod 16),

hence Sign(W1) ≡ Sign(W2) (mod 16).

8.3.1 Spin structures on mapping tori

We prove some facts about mapping tori, since they feature heavily throughout the text.

Lemma 8.3.4. Let Σg be an oriented surface, and let f : Σg → Σg be an orientation–preserving
diffeomorphism, then the mapping torus is given by

Mf = I × Σg/(1, x) ∼ (0, f(x)).

Then
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1. Mf is an orientable 3–manifold, and is a Σg–bundle over S1, hence it inherits a natural orien-
tation from that of Σg and S1.

2. Mf−1 =Mf .

3. For [h] ∈ Modg,1[2] and [f ] ∈ Modg,1, the diffeomorphism id× f :Mh →Mfhf−1 pulls back the
spin structure (Mfhf−1, θ(σ)) to the spin structure (Mh, θ(f

∗(σ))), in the notation of Chapter
2.

Proof. 1. Let (Ui, φi : Ui → R2)i∈I be an orientable atlas for Σg. We use this atlas to build an atlas
for Mf . for (t, x) ∈Mf with t ̸= 0, 1, let φ : U → R2 be a chart of Σg at x, then

ψ : (t− ϵ, t+ ϵ)× U → R3

(t, x) 7→ (t, φ(x))

gives a chart at (t, x) ∈Mf .

For (1, x) ∼ (0, f(x)) ∈Mf , let φi : Ui → R2 be a chart for Σg at x, and let

V1 = (1− ϵ, 1]× Ui

V2 = [0, ϵ)× f(Ui).

Then V1 ∪ V2 ⊂Mf is open, and define

ψi : V1 ∪ V2 → R3

(t, x) 7→

{
(t, φi(x)), if (t, x) ∈ V1

(t+ 1, φi ◦ f−1(x)), if (t, x) ∈ V2
.

Then ψi is well–defined: if (1, x) ∈ V1, then ψi(1, x) = (1, φi(x)), and if (0, f(x)) ∈ V2, then
ψi(0, f(x)) = (1, φi ◦ f−1 ◦ f(x)) = (1, φi(x)). These charts are also orientable: suppose φi, φj are
two charts for Σg at x. Then for (t, x) ∈ [1, 1 + ϵ)×R2, we have ψ−1

j (t, x) = (t− 1, f ◦ φ−1
j (x)), and

ψi ◦ ψ−1
j (t, x) = (t, φi ◦ φ−1

j (x)),

which is orientation–preserving. Hence Mf is an orientable 3–manifold.

Now we show that the map

p :Mf → I/0 ∼ 1 = S1

(t, x) 7→ t

turnsMf into a Σg–bundle over S
1. For t ∈ S1 with t ̸= 0, 1, take an interval of the form (t−ϵ, t+ϵ),

that does not contain 0, 1. Then p−1((t − ϵ, t + ϵ)) = (t − ϵ, t + ϵ) × Σg. For 0 ∼ 1 ∈ S1, write
S1 = R/Z, where Z acts on R by translation. Take the open neighbourhood U0 = (1− ϵ, 1+ ϵ) ⊂ S1

of 0. Then
p−1(U0) = {(t, x) ∈Mf | 0 ≤ t ≤ ϵ or 1− ϵ ≤ t ≤ 1}.

Define a homeomorphism

Ψ : p−1(U0) → U0 × Σg

(t, x) 7→

{
(t, x) , if 1− ϵ ≤ t ≤ 1

(t+ 1, f−1(x)) , if 0 ≤ t ≤ ϵ
.
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This map is well–defined because Ψ(1, x) = (1, x), and Ψ(0, f(x)) = (1, f−1f(x)) = (1, x). Further-
more pr1 ◦ Ψ(t, x) = p(t, x), since t + 1 ∼ t ∈ S1 = R/Z. Hence we have described a family of local
trivializations for p :Mf → S1, so the claim follows.

2. The map

Mf →Mf−1

(t, x) 7→ (1− t, x)

is well–defined, and is an orientation–reversing diffeomorphism due to the I factor.

3. The diffeomorphism id × f : Mh → Mfhf−1 is well defined, since id × f(1, x) = (1, f(x)) ∼
(0, fh(x)), and id×f(0, h(x)) = (0, fh(x)). Then, in the language of Chapter 2, the pullback satisfies

(id× f)∗(θ(σ)) = d(id× f−1) ◦ θ(σ) ◦ (id× f) = θ(df−1 ◦ σ ◦ f) = θ(f ∗(σ)),

for any spin structure σ ∈ Spin(Σg).

8.4 The Arf invariant

Our exposition of the Arf invariant follows [Sav11] very closely.

8.4.1 The Arf invariant of a quadratic form

Let V be a finite dimensional vector space over Z/2. A function q : V → Z/2 is a quadratic form if

I(x, y) := q(x+ y)− q(x)− q(y)

is a bilinear form over Z/2. We have that I(x, y) = I(y, x), I(x, x) = 0, and q(0) = 0.

We call a quadratic form q non–degenerate if the associated bilinear form I is non–degenerate.

Given two quadratic forms q1, q2 : V → Z/2, both with associated bilinear form I : V ×V → Z/2.
We say that q1 and q2 are equivalent if there exists a Z/2–linear isomorphism α : V → V such that
q1(x, y) = q2(α(x), α(y)) for all x, y ∈ V .

The quadratic forms given by the two examples below are very important for the theory that
follows. Let U = (Z/2)2 with basis a, b, and let I : U × U → Z/2 denote the non–degenerate
symmetric bilinear form given by I(a, a) = I(b, b) = 0, and I(a, b) = 1. The following two examples
both have I as their associated bilinear form.

Example 1: Define the quadratic form q0 : U → Z/2 by q0(a) = q0(b) = 0, and q0(a+ b) = 1.

Example 2: Define the quadratic form q1 : U → Z/2 by q1(a) = q1(b) = q1(a+ b) = 1.

Lemma 8.4.1. The quadratic forms q0, q1 : U → Z/2 are not equivalent. Furthermore, any other
non–degenerate quadratic form q on U is equivalent to either q0 or q1.

Proof. If q0 and q1 were equivalent, then the number of vectors in U = (Z/2)2 sent to zero by the qi
would be equal, this gives a contradiction.

For the second claim, note that to define a quadratic form q : U → Z/2, we need only specify
its values of the four elements of U . The only case left to consider then is the case q(a) = 0 and
q(b) = 1. There exists a change of basis a′ = a and b′ = a + b with q(a′) = 0 and q(b′) = 0. So q is
equivalent to q0.
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The following lemma is used to define the Arf invariant of a quadratic form. For a proof, see
[Sav11, Lemma 9.1].

Lemma 8.4.2. For any non–degenerate quadratic form q : V → Z/2, there exists a symplectic basis
{ai, bi}ni=1 for V such that I(ai, aj) = I(bi, bj) = 0 and I(ai, bj) = δij. In particular, dim(V ) is always
even.

Let q : V → Z/2 be a non–degenerate quadratic form, and let {ai, bi}dim(V )/2
i=1 be a symplectic

basis for V . Define the Arf invariant of q by

Arf(q) :=

dim(V )/2∑
i=1

q(ai)q(bi) ∈ Z/2.

We sketch below why Arf(q) is independent of the choice of symplectic basis for V .

Example: We have Arf(q0) = 0, and Arf(q1) = 1 for the two examples above. This implies that
non–degenerate quadratic forms on U are classified up to equivalence by the Arf invariant.

The following Lemma can be shown by finding an appropriate change of basis; see [Sav11, Lemma
9.2].

Lemma 8.4.3. On U ⊕ U , the forms q0 + q0 and q1 + q1 are equivalent.

Lemma 8.4.4. Let q : V → Z/2 be a non–degenerate quadratic form, where dim(V ) = 2m. Then q
is equivalent to q1 + (m− 1)q0 if, with respect to some basis, Arf(q) = 1. The form q is equivalent to
mq0 if Arf(q0) = 0.

Proof. Let {ai, bi}mi=1 be a symplectic basis for V , and let Vi = Z/2{ai, bi}. Let ψi denote the
restriction of q to Vi, then q =

∑m
i=1 ψi, and each ψi is equivalent in Vi to either q0 or q1 by Lemma

8.4.1. By Lemma 8.4.3 2q0 = 2q1, so q must be equivalent to either mq0 or q1 + (m− 1)q0. We can
compute that Arf(q1 + (m− 1)q0) = 1, and Arf(mq0) = 0.

To complete the classification of non–degenerate quadratic forms q : V → Z/2, it remains to
show that q1 + (m − 1)q0 and mq0 are not equivalent. We introduce the following notation to deal
with this problem: Let V be a vector space over Z/2, and let Ω denote the space of quadratic
forms φ : V → Z/2. Then the group GL(V ) of all Z/2–linear isomorphisms of V acts on Ω via
precomposition, and two forms in Ω are equivalent if they are in the same orbit under this action.

Define p : Ω → Z by p(φ) = the number of elements of V sent to 1 by φ. Define n : Ω → Z by
n(φ) = the number of elements of V sent to 0 by φ. These two functions play an important role in
the following Lemma.

Lemma 8.4.5. The form q1 + (m− 1)q0 sends a majority of elements of V to 1, while mq0 sends a
majority of elements of V to 0.

Proof. Proceed by induction on m. The case m = 1 was discussed above. For the inductive step,
note that the functions p, n : Ω → Z defined above satisfy the following identities:

p(φ+ q0) = 3p(φ) + n(φ)

n(φ+ q0) = 3n(φ) + p(φ),

where φ+ q0 is a quadratic form on V ⊕ U .
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Set r(φ) = p(φ)− n(φ), then

r(φ+ q0) = 3p(φ) + n(φ)− 3n(φ)− p(φ)

= 2(p(φ)− n(φ))

= 2r(φ).

This identity implies that if r(φ) > 0, then r(φ+ q0) > 0. Similarly, if r(φ) < 0, then r(φ+ q0) < 0.
We have r(q1) = 2, and r(q0) = −2, implying that r(q1 + (m− 1)q0) > 0, and r(mq0) < 0.

Using the above, we arrive at the following result of Arf.

Theorem 8.4.6. [Arf41] Two non–degenerate quadratic forms on a Z/2–vector space V of finite
dimension are equivalent if and only if they have the same Arf invariant.

Proof. Let R : Ω → Z/2 be given by R(φ) = sign(r(φ)), where r : Ω → Z is the function given in the
proof of Lemma 8.4.5. Then R is invariant under the action of GL(V ) on Ω. Since R takes different
values on q1 + (m− 1)q0 and mq0, these two forms are not equivalent.

Arf’s result is very useful, for example, if we combine Theorem 8.4.6 with Theorem 2.0.1, we get
that there are only two spin structures on a Riemann surface Σg, up to spin–diffeomorphism.

8.4.2 The Arf invariant of a knot

To define the Arf invariant of a knot, recall the following notions from knot theory.

A Seifert surface for an oriented link in S3 is a connected, compact, oriented surface smoothly
embedded in S3, with oriented boundary equal to the link. Seifert’s algorithm implies that every
oriented link in S3 bounds a Seifert surface. How are two Seifert surfaces for the same link related?
To answer this, recall the following two operations on Seifert surfaces:

1. Cut out two 2–discs D1 and D2 in the Seifert surface.

2. Take a copy of S1 × I embedded in S3 disjointly from the surface, but with S1 × ∂I attached
to ∂D1 and ∂D2.

Call this process 1–surgery on a Seifert surface. The other process is the following:

1. Find a curve α on the Seifert surface F such that α bounds a disc in S3 − F .

2. Cut out a copy of α× I in F , and cap off the two new boundary circles with discs.

Call this process 0–surgery.

If F and F ′ are two oriented Seifert surfaces for the same link in S3, we say that F and F ′ are
S–equivalent if F ′ can be obtained from F by combinations of 0–surgery, 1–surgery, and ambient
isotopy. It turns out that S–equivalence is enough to describe all Seifert surfaces for a fixed link.

Theorem 8.4.7. [Kau87, Theorem 7.7] Let F and F ′ be Seifert surfaces for ambient isotopic links
L and L′ in S3. Then F and F ′ are S–equivalent.

Seifert’s linking form. Let F be a Seifert surface for an oriented link in S3. Given a curve
a ⊂ F , let a∗ denote the pushoff of a into S3 − F using the positive normal to F in S3. The Seifert
pairing of F is given by

λ : H1(F ;Z)×H1(F ;Z) → Z
([a], [b]) 7→ lk(a∗, b).
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Figure 8.4: Let γ1 denote the red curve, and let γ2 denote the blue curve. Then [γ1], [γ2] gives a
symplectic basis for H1(F ;Z/2), where qF (γ1) = 1 and qF (γ2) = 0.

It is a well–defined bilinear pairing that satisfies the identity:

λ([a], [b]) = λ([b], [a]) + [a] · [b],

where [a] · [b] denotes the intersection form on H1(F ;Z); see [Kau87, Ch. VII].

Given a Seifert surface F ⊂ S3 for a knot, define the quadratic form

qF : H1(F ;Z/2) → Z/2
[a] 7→ λ([a], [a]).

Its associated bilinear form is the intersection from on H1(F ;Z/2).

To calculate qF , pick a collection of curves in F that represents a basis for H1(F ;Z/2). Let x be
one of these curves, then qF ([x]) is the number of full twists (mod 2) in a neighbourhood of x in
F ⊂ S3. To see this, note that the pushoff x∗ of x can be isotoped to a curve in F that is parallel to
x. This curve is isotopic to x, hence we get an embedding of an annulus in F with boundary x and
x∗. The isotopy class of this annulus need not be trivial, and it can have an even number of twists
in S3; see Figure 8.4 for an example.

Lemma 8.4.8. For an oriented knot K ⊂ S3, and a Seifert surface F for K, the Arf invariant
Arf(qF ) only depends on the knot K.

Proof. We need only show that Arf(qF ) doesn’t change under 1–surgery applied to F , since 0–surgery
is an inverse operation to 1–surgery, and λ is an invariant of the ambient isotopy class of the Seifert
surface. So let F ′ be the result of 1–surgery applied to F .

Fix a symplectic basis B for H1(F ;Z), and let P denote the matrix representing the Seifert
pairing λ : H1(F ;Z)×H1(F ;Z) → Z. Then 1–surgery replaces P with the matrixP a 0

b c 1
0 0 0

 ,
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where a = (a1, .., a2g) is a column vector with g = g(F ) and entry ai in the ith row, b = (b1, ..., b2g)
is a row vector with entry bi in the ith column, and the bottom right is a 2 × 2 matrix, with c an
integer.

Using elementary row and column operations, we can make c = 0 and ai+bi = 0, for all i = 1, .., g.
This corresponds to a completion of the symplectic basis B for H1(F ;Z) to a symplectic basis for
H1(F

′;Z), with
Arf(qF ′) = Arf(qF ) + Arf(q0) = Arf(qF ) (mod 2).

Using Lemma 8.4.8, we define the Arf invariant of a knot K ⊂ S3 to be the Arf invariant of the
Seifert self linking pairing qF , for any Seifert surface F for K in S3.

8.5 The intersection form of a 2–handlebody

For an oriented, framed link L = (Li)
n
i=1 in S3, a 2–handlebody WL is the compact 4–manifold

obtained in the following way: start with the 4–disc D4, and attach a 2–handle hi = D2 ×D2 along
an embedding ∂D2 × D2 ↪→ ∂D4 specified by the framed knot Li. This embedding is determined
by sending ∂D2 × {0} to Li, and sending ∂D2 × {pt} to a pushoff of Li along the framing. In this
section, we explain a nice relation between the intersection form of WL, and the linking matrix of L.
We begin by recalling results about intersection forms of 4–manifolds.

Let X be a compact, oriented 4–manifold, and let a, b ∈ H2(X, ∂X;Z). Take surfaces Σa and
Σb representing the Poincare duals of a and b respectively. Suppose Σa and Σb intersect transversely
at every p ∈ Σa ∩ Σb, so that TpΣa and TpΣb span TpX. Attach a sign to every point of Σa ∩ Σb in
the following way: concatenate a positively oriented basis of TpΣa and TpΣb to get a basis for TpX.
Assign 1 if this basis is positively oriented in TpX, and −1 otherwise.

Proposition 8.5.1. [GS99, Prop. 1.2.5] For a, b ∈ H2(X; ∂X;Z), and Σa,Σb as above, we have
that QX(a, b) is the number of points in Σa ∩ Σb, counted with sign as above.

To compute the intersection form of WL, recall that the linking matrix of L is the symmetric
n× n matrix (aij), where aij = lk(Li, Lj) if i ̸= j, and aii is the framing coefficient of Li.

Up to homotopy, attaching a 2–handle to D4 is the same as attaching a 2–cell to a point, so
WL is homotopy equivalent to a wedge sum of n two spheres. Hence WL is simply–connected, and
H2(WL;Z) ∼= Zn. We obtain a basis for H2(WL;Z) by constructing surfaces in WL as follows:

Identify I ×S3 with a collar of ∂D4 in D4, with {1}×S3 = ∂D4. Take a Seifert surface Fi for Li

in S3, and place it at {t} × S3 for some t < 1. Then cap off this surface with the union of D2 × {0}
in the 2–handle hi = D2 ×D2, and the annulus [t, 1]× (∂D2 ×{0}) = [t, 1]×Li. We obtain a closed

surface F̃i in this way, with an orientation induced by that of Fi. The classes [F̃i]
n
i=1 give a basis for

H2(WL;Z).

Proposition 8.5.2. [GS99, Prop. 4.5.11] The matrix of QWL
with respect to the basis [F̃i]

n
i=1 obtained

above is given by the linking matrix of L.

Proof. Fix i ̸= j, and assume that F̃j was obtained from {s}×Fj ⊂ I×S3, and that F̃i was obtained
from {t} × Fi ⊂ I × S3, where s < t. Then

[F̃i] · [F̃j] = ({t} × Fi) · ({t} × Lj) = lk(Li, Lj).
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To compute [F̃i]
2, construct a surface F̃i

′
, isotopic to F̃i, in the following way: begin with a disc

D2×{p} ⊂ hi = D2×D2, parallel to D2×{0}. Then ∂D2×{p} is a pushoff L′
i of Li in the direction

of the framing. Take a Seifert surface F ′
i for L

′
i in {r}×S3, and cap off with ([r, 1]×L′

i)∪ (D2×{p}),
to get a closed surface F̃i

′
. The D2 × {p} part of F̃i

′
intersects ∂D4 in L′

i, so

[F̃i] · [F̃i

′
] = Fi · L′

i = lk(Li, L
′
i).
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