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Abstract

Gaussian process (GP) is a widely used machine learning model for optimising online
surrogate model-assisted antenna design. Despite many successes, two improvements
are essential for the GP-based antenna global optimisation methods. First, the GP
model training costs when there are many design variables and specifications. Second
is the convergence speed (i.e., the number of necessary electromagnetic (EM) simula-
tions to obtain high-performance designs). In both aspects, the state-of-the-art GP-
based methods show practical but undesirable performance, particularly for optimising
modern antennas, which often have many design variables and specifications.

Therefore, a behavioural study of a potential surrogate model alternative, Bayesian
neural network (BNN), which has yet to be paid attention to, is presented in this
thesis. Through empirical studies, the properties of the BNNs, their co-work with pre-
screening methods, and their comparison with other machine learning model altern-
atives are investigated with a typical surrogate model-assisted evolutionary algorithm
(SAEA) model management framework. The behaviour of BNNs regarding surrogate
model prediction accuracy, the availability of prediction uncertainty estimation, and
the training cost are demonstrated in the experiments, showing the potential of BNNs
to be a competitive alternative for online surrogate model-assisted antenna design op-
timisation.

Thus, this thesis presents an upgraded antenna design optimisation method called self-
adaptive Bayesian neural networks surrogate model-assisted differential evolution for
antenna design exploration (SB-SADEA). The key innovations include (1) the intro-
duction of the BNNs-based antenna surrogate modelling method into the research area,
replacing widely used GP modelling, and (2) a bespoke self-adaptive lower confidence
bound (LCB) method for antenna design landscape making use of the BNNs-based
antenna surrogate model. A slotted monopole antenna (ultra-wideband, 40% area re-
duced), a 5G mm-wave antenna (20 design variables, 12 design specifications, four
operating bands), a sub-6 GHz outdoor base station antenna (23 design variables, 18
design specifications including S-parameters, front-to-back ratio and half-power beam-
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width) and a microstrip patch antenna (quasi-digitally coded, 62 design variables) are
used to test the performance of SB-SADEA in the thesis. The results show consider-
able improvement in convergence speed and machine learning cost compared with the
state-of-the-art GP-based antenna global optimisation methods.

Furthermore, the proposed BNN-based SAEA has been tested against global optim-
isation applications on a broader scope. A supercontinuum generation waveguide and
a holistic radar signal processing and classification system (12 design variables, includ-
ing data pre-processing and feature extraction parameters in binary, continuous and
discrete forms) are used to test the performance of the proposed algorithm. The ex-
periments show that the proposed algorithm is efficient in optimising not only antenna
structures but also components, structures and systems in other domains. Moreover,
the proposed algorithm is compatible with discrete and categorical design variables.
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Chapter 1

Introduction

In this chapter, introductions to antenna optimisation are broken into several sections.
Section 1.1 explains what an antenna is, what it does and how it does it. Section 1.2 in-
troduces traditional antenna design methodologies, some off-the-shelf global optimisers
that can be used in antenna design optimisation, and their advantages and disadvant-
ages. Section 1.3 reviews antenna design exploration techniques in the past. Section
1.4 introduces surrogate model-assisted antenna design explorations methods. Section
1.5 reviews the SADEA series of algorithms, upon which the major contribution of
this dissertation is built. At last, Section 1.6 introduces challenges and opportunities
provided by the current development of the antenna design optimisation algorithms.

1.1 Introduction to electromagnetism and antennas

An antenna is a fundamental component of radio frequency (RF) and telecommunic-
ations engineering. It serves as a pivotal physical interface between electromagnetic
waves and electronic systems. Its main functionality is transmitting and receiving elec-
tromagnetic (EM) signals, converting them into electrical current or vice versa (Wolff
1966). Typically, the performance of EM systems can be analysed by their EM field
characteristics. EM fields are generated by time-varying electric and magnetic fields
produced by charged particles in motion. When these fields change over time, they cre-
ate electromagnetic waves propagating through space (Maxwell 1864, 1865; Hammond
1954). The classical equations of EM can be mathematically expressed in integral and
differential forms and thus can be solved in the time domain and frequency domain
(Hammond 1954).
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2 Introduction

For a given electric charge, the EM fields can be described in four laws, namely, Gauss’s
Law, which describes the relationship between electric fields and electric charges;
Gauss’s Law for Magnetism, which states the absence of magnetic charge; Faraday’s
Law of Induction, which describes how changing magnetic fields induce electromotive
force and electric fields, and Ampere’s Circuital Law (with the addition of the dis-
placement current), which relates magnetic fields and electric currents and the rate of
change of electric fields, and are expressed mathematically in equations as (Maxwell
1864, 1865) 

−→
∇ ·
−→
E =

ρ

ϵ0
Gauss’s Law

−→
∇ ·
−→
B = 0 Gauss’s Law for Magnetism

−→
∇ ×

−→
E = −∂

−→
B

∂t
Faraday’s Law of Induction

−→
∇ ×

−→
B = µ0(ϵ0

∂
−→
E

∂t
+
−→
J ) Ampere’s Circuital Law

(1.1)

where −→E is the electric field, −→B is the magnetic field, ρ is the electric charge density and
−→
J the current density. ϵ0 is the vacuum permittivity and µ0 the vacuum permeability.

(1.1) is referred to as Maxwell’s equations, which play a fundamental role in the analysis
and design of antennas. Antennas are physical devices that radiate or receive EM waves,
and their behaviours are governed by the four laws outlined in Maxwell’s equations. In
essence, Maxwell’s equations provide theoretical support for the underlying operations
of antennas.

Besides RF engineering and telecommunication engineering, antennas also play an es-
sential role in wireless communications, such as satellite communication, radar systems,
broadcasting and more. The design and characteristics of antennas vary based on their
applications. Antennas can have different sizes, geometries, materials and configura-
tions and thus have different directional properties, radiation patterns, operational fre-
quency bands, etc. (King et al. 1981). With modern technological advancements, such
as 5G and the internet of things, antennas continue to evolve to the more complex,
allowing improved signal propagation efficiency, reliability, connectivity, versatility,
adaptability and compatibility in modern communication networks (Gao et al. 2009;
Balanis 2011; Lim and Leung 2012; Fujimoto and Morishita 2013).
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1.2 Classical antenna design methodologies: pros
and cons

Traditionally, antenna design methods rely on parameter studies and manual design
experience, such as rules of thumb (Blank 1990; Lytle and Laine 1978), for practical and
intuitive antenna behaviours as for their well-established theoretical foundation. The
physical dimensions are tuned to meet desired design specifications and often take real-
world factors into account (Blank and Hutt 2005). Such methodologies are available for
obtaining initial designs for simple antennas and can be helpful for quick prototyping.
For example, to model a simple microwave patch antenna with a waveguide port by
rules of thumb, the width of the waveguide should be empirically from 6 to 10 times
the width of the micro-strip feed line as illustrated in Figure 1.1 (Weiland et al. 2008)

𝒘patch

𝒘feedline

Figure 1.1: An illustration of a simple patch antenna design.

Moreover, simple methods like parametric sweep can be used to search for an ini-
tial design for antenna design cases with few design parameters. Nevertheless, this
is not usually the case for most modern antenna designs, which usually have many
design parameters and complex interdependencies. Traditional approaches are mostly
considered trial-and-error practices and have limited applicability on complex or un-
conventional modern antenna design structures, thus not guaranteeing the success of
the antenna design in these cases.
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Besides, optimisation techniques are proven efficient or available in other optimisa-
tion problems. These off-the-shelf methods, however, are not often suitable for antenna
optimisations. Most antennas involve complex EM interactions, and non-linear, multi-
modal and discontinuous behaviours usually characterise the design spaces. Further-
more, unlike most function evaluations with negligible computational cost, the evalu-
ation of antennas requires EM simulations, which involve partial differential equation
(PDE) solvers and are computationally expensive. Therefore, off-the-shelf optimisation
methods are not often capable of efficiently handling antenna optimisation problems
(Werner et al. 2014).

1.3 Antenna design exploration using optimisation
techniques

Today, there are many CAD/CEM platforms available, such as ANSYS EDT/HFSS
(ANSYS Accessed 2024), CST Microwave Studio (CST-MWS) (CST Accessed 2024)
and MATLAB Antenna Toolbox (MathWorks Accessed 2024), etc. The optimisation
methods can be categorised as follows,

• Standard evolutionary algorithms (EAs), such as particle swarm optimisa-
tion (PSO), differential evolution (DE), genetic algorithm (GA) and simulated
annealing (SA). These methods are classical, statistically grounded and usually
decades old (Storn and Price 1997; Kennedy and Eberhart 1995; Kirkpatrick et
al. 1983; Holland 1984; Lazaridis et al. 2016; Zaharis et al. 2017). Covariance
matrix adaptation evolution strategy (CMA-ES) and SHERPA are two revised
EAs and are relatively recent (Gregory et al. 2011; Tech 2008).

• Standard local optimisation, such as classical Powell and grid search. These
methods usually have limited exploration capability (Powell 1964; Lewis et al.
2000; Powell 2007; Bergstra and Bengio 2012; Huang et al. 2012).

• Derivative-based local search, such as quasi-Newton method and sequen-
tial quadratic programming (SQP) (Dennis and Moré 1977; Boggs and Tolle
1995; Gill and Wong 2011; Koziel and Pietrenko-Dabrowska 2019b; Pietrenko-
Dabrowska and Koziel 2020b).

• Derivative-free local search, such as Nelder-Mead Simplex Algorithm and
Pattern Search (Lewis et al. 2000; Powell 2007; Singer and Nelder 2009; Audet
and Dennis Jr 2002).
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• Surrogate model-based local optimisation, such as trust region method and
interpolated quasi-Newton method (Dennis and Moré 1977; Yuan 2000; Koziel
and Unnsteinsson 2018).

• Surrogate model-based global optimisation, the SADEA series (Liu et al.
2013, 2017b; Akinsolu et al. 2019; Liu et al. 2021; Liu et al. 2022a) discussed
in Section 1.5, and other surrogate model-based global optimisation (Wu et al.
2020; Koziel et al. 2021, 2014; Zhou et al. 2020).

1.3.1 Antenna design optimisation using EAs

The history of antenna design automation can be traced back to mid-1990s when most
of practitioners utilises GAs to optimise their EM devices and the optimised antennas
are then called evolved antenna (Michielssen et al. 1993; Altshuler and Linden 1997;
Linden and Altshuler 1996; Haupt 1995). From then on, more and more antenna designs
are driven by GAs (Hornby et al. 2006; Ares-Pena et al. 1999; Marcano and Durán
2000), and by other similar automatic optimisation approaches including PSO (Khodier
and Christodoulou 2005; Liu 2005) and DE (Kurup et al. 2003; Goudos et al. 2011).
Figure 1.2 shows a general workflow of antenna design optimisation by evolutionary
algorithms. The optimisation starts with initial set-ups, usually samplings and pre-
processing, and loops over specific search mechanisms until a satisfied design is found
and the design specifications are met (Simon 2013).

Start
Initial 

set-ups

Meet Design 

specifications?
SearchNoYesEnd

Figure 1.2: A flowchart of antenna design by evolutionary algorithms.

Antenna design exploration usually involves from a few (e.g. conventional microwave
antennas) to multiple dozens (e.g. 5G base station antennas) of parameters (Liu et al.
2014e, 2017d,c; Wen et al. 2017). According to the nature of the antenna structure,
the parameters can be discrete and continuous. Sometimes, the design parameters
have geometric constraints or interdependencies in between them. Typically, antenna
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design optimisation problems search for design values that reach the global minimum
or maximum for one or more design specifications, as demonstrated in Figure 1.2.
This can be done by using local or global optimisation algorithms. Global optimisation
algorithms, particularly EAs, are frequently used in antenna optimisation problems
(Hoorfar 2007; Lake et al. 2013; Deb et al. 2017).

1.3.2 Antenna design local optimisation

Local optimisation of antenna design is essential for refining antenna designs and im-
proving performance characteristics. Given an initial antenna design obtained by the-
oretical calculations, previous designs or global optimisation, the local design algorithm
tunes the antenna structure to achieve better performance. Antenna design local op-
timisation algorithms are usually built based on numerical optimisation methods such
as trust region-based optimisation algorithms (Koziel et al. 2018; Koziel and Pietrenko-
Dabrowska 2019b; Pietrenko-Dabrowska and Koziel 2020b), SQP algorithm (Li et al.
1997), and Quasi-Newton method (Chakraborty et al. 2023).

Most antenna design optimisation algorithms do not take process variations or fab-
rication errors into account. However, discrepancies are likely between the nominal
optimised antenna structure and the actually fabricated antenna structure. Process
variation-aware or yield-driven optimisation is usually used as a final step for a robust
antenna design and to ensure a complete design closure. The variation-aware optimisa-
tion aims to maximise the yield or the probability that the fabricated antennas meet
the pre-set antenna design specifications, given an assumed probability distribution of
fabrication error around its nominal optimal design. For such purpose, antenna design
local optimisation algorithms are usually applied (Swidzinski and Chang 2000; Koziel
and Bekasiewicz 2018; Koziel and Pietrenko-Dabrowska 2019a; Pietrenko-Dabrowska
et al. 2020; Zhang et al. 2022).

1.3.3 Multi-fidelity antenna optimisation

The key idea behind multi-fidelity antenna optimisation is to evaluate “non-promising”
antenna designs using rough but computationally cheap low-fidelity models while per-
forming accurate and high-fidelity searches around “promising” antenna designs sugges-
ted by low-fidelity models. The computationally cheap low-fidelity models include vari-
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ous surrogate models and EM model (Koziel and Bekasiewicz 2016; Song et al. 2019).
Moreover, the multi-fidelity optimisation is applied to antenna design optimisation
problem (Chen et al. 2022b). The low-fidelity antenna evaluation is validated with high-
fidelity EM simulation during the antenna optimisation. Furthermore, multi-fidelity
can be employed dynamically as variable-fidelity models of a given antenna structure
during optimisation, which further improves the surrogate modelling and overall op-
timisation efficiency (Pietrenko-Dabrowska and Koziel 2020a; Pietrenko-Dabrowska et
al. 2022). At the end of the optimisation, co-Kriging is applied to combine low- and
high-fidelity simulation results to manage the model discrepancies, which helps to elim-
inate the low-fidelity model correction process (Pietrenko-Dabrowska et al. 2022). The
second generation of the SADEA series combines surrogate model-assisted low-fidelity
global search, and local search is another multi-fidelity optimisation method that can
efficiently handle fidelity discrepancies (Liu et al. 2017b), and this is discussed later in
Section 1.5.

1.3.4 Domain knowledge-assisted antenna optimisation

Case-by-case antenna design knowledge can be applied to antenna design optimisation
to reduce the computational cost during the optimisation. For instance, the knowledge
of active base elements (ABEs) of antenna arrays and their patterns can be applied
with the Gaussian process (GP) predictions of the ABE geometries and their corres-
ponding excitation of the sub-arrays and helps the antenna array design exploration
(Wu et al. 2022). For a low-cost antenna and array design with robustness, analyses
including worst-case analysis, maximum input tolerance hypervolume search mechan-
ism and robust optimisation are applied to guide the optimisation process, and the
proposed method is applied in a multi-objective microstrip patch antenna optimisation
study (Wu et al. 2021). These analyses rely on the specific domain knowledge about
the design sample in the design space and the output tolerance region. Such domain
knowledge enables the identification and application of the appropriate optimisation
techniques for given antenna design challenges, thereby ensuring the development of
robust, efficient, and cost-effective antenna systems.
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1.4 Surrogate model assisted antenna design optim-
isation

1.4.1 Challenges and difficulties of the traditional antenna
design optimisation methods

Recently, antennas’ physical designs have become increasingly complex, the design spe-
cifications are becoming increasingly stringent and challenging, and relations between
the physical designs and their radiation patterns are more and more unpredictable.
On the other hand, the engineering design flow of such developing antenna structures
are merely changed or upgraded accordingly. Typically, a top-down flow, which di-
vides the design task into several building blocks and allocates design specifications to
them, is still widely and frequently used (Crepaldi et al. 2014). Such traditional design
approaches require much effort from the antenna designers and can cause significant
delays from product conceptualisation to antenna fabrication. With the increase in
complexity of antenna design structures and design specifications and stringent time-
to-market requirement, such traditional trial-and-error design methods are gradually
replaced by advanced intelligent methods (Arora et al. 1995; Floudas and Gounaris
2009; Rios and Sahinidis 2013), like introduced in Subsection 1.3. Amongst these meth-
ods, PSO and DE are the most suitable approaches for their outstanding searching
capability in global optimisation and not requiring initial solutions (Lake et al. 2013;
Kennedy 2011; Storn and Price 1997; Zaharis et al. 2017; Arora et al. 1995; Fan et al.
2008; Rocca et al. 2011). However, even though taking the advantages of the capability
of the search engine (DE and PSO), to obtain optimal antenna design with reason-
able time consumption remains challenging. EM simulations are required to evaluate
the performance of antennas accurately. The EM simulations involve PDE solvers, so
they are characteristically computationally expensive (Keyes et al. 2013). Therefore,
canonical DE and PSO, which often require many function evaluations to search for the
optimal or near-optimal (John and Ammann 2009), are not ideal methods for antenna
design optimisation.
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1.4.2 Opportunities of surrogate model-assisted design optim-
isation framework

To solve the problems stated in Subsection 1.4.1, based on a surrogate model-assisted
evolutionary algorithm (SAEA), surrogate model-based optimisation (SBO) (Liu et al.
2017c; Hawe and Sykulski 2008; Couckuyt et al. 2010) was adopted. Surrogate models
are often statistical models or simple machine learning models that are relatively com-
putationally cheap to build and use, simultaneously offering satisfying results. SBO
methods build surrogate models to replace computationally expensive exact function
evaluations, EM simulation in this case. Various techniques, such as neural networks,
support vector machine, Gaussian process, radial basis function and polynomial re-
gression, are proposed to build the surrogate models (Myers and Myers 1990; Jin 2005;
Ong et al. 2008; Giunta and Watson 1998; Giannakoglou 2002; Emmerich et al. 2006).
Amongst these methods, Gaussian process (or Kriging) and RBF are outperforming
others as surrogate models (Jin et al. 2001; Giunta and Watson 1998).

With the help of the computationally cheap surrogate models, most computationally
expensive EM simulations are avoided. Therefore, the quality of the prediction results
is essential in this case. However, imaginably, the prediction results from the surrogate
models are not usually accurate as the surrogate models are approximated models
and, therefore, uncertain. Furthermore, the search should be guided to highlight the
potential for improvement. Thus, the capability to handle uncertainty is needed in SBO.
Several techniques are available to handle uncertainty in SBO, such as probability of
improvement, expected improvement, infill sampling and lower confidence bound (Parr
et al. 2012; Zhan and Xing 2020; Budak et al. 2021).

For most surrogate models, the predicted value of a given point is primarily determined
by the true values of its surrounding points. Moreover, if the given point has dense
surround points and their true values are close together, the model uncertainty, or the
potential in this context, of the prediction of the given point should be low. On the
other hand, the fact that a given point has a few points next to it logically implies
a significant potential. This is discussed in detail and analysed numerically in Section
3.4.
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Recently, some novel optimisation algorithms have been proposed. For instance, in-
spired by generative adversarial networks (GANs), a novel generative algorithm is
proposed with the use of support vector classifier (SVC) in a unified evolutionary op-
timisation framework for antenna design automation using broadband antenna and
dual resonance as examples (Zhong et al. 2022). The trained generator and discrim-
inator from the GAN, along with the SVC, work together to predict the performance
of antennas. Another study validates accelerated gradient-based optimisation with re-
sponse feature methodology and numerical derivatives, with dual-band and tri-band
microstrip patch antenna optimisations (Pietrenko-Dabrowska and Koziel 2020b, 2023).

1.5 The SADEA series

The initial surrogate model-assisted differential evolution for antenna design explora-
tion (SADEA) was proposed in 2013 and was then one of the state-of-the-art antenna
optimisation algorithms (Liu et al. 2014c). The algorithm utilises GP regression as the
surrogate model to estimate the antenna performances of the candidate designs, saving
many computationally expensive EM simulations. Moreover, the surrogate model is
constructed considering that it should be trained so it can predict values for candidate
designs in a global landscape, that it should be accurate enough to support the appro-
priate selection of candidate designs during the search, and that it should require as few
EM simulations as possible. The initial SADEA sets the basis for the later upgrades.

Following the initial SADEA, its second generation, SADEA-II, was proposed in 2017 to
amend the initial SADEA with a data mining phase handling multi-fidelity discrepancy
between simulation models of different fidelities and with a surrogate model-assisted
combined global and local search mechanism during the exploration (Liu et al. 2017b).

The third generation of SADEA, parallel SAEAs for electromagnetic design (PSAED,
sometimes called parallel-SADEA, or P-SADEA), was proposed in 2019 to allow the
GP model to be built for each candidate designs with its closest samples as training
data for the more accurate model predictions (Akinsolu et al. 2019; Akinsolu 2019).
PSAED also allows multiple DE mutation operators with different characteristics to
be used adaptively to use diversity produced from multiple mutation operations.
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And then proposed in 2020, the fourth generation of SADEA, training cost reduced
SADEA (TR-SADEA), which trains GP models for clustered candidate designs instead
of for every candidate design, saving much training time, particularly for optimisation
of antennas with many design parameters (Liu et al. 2021). TR-SADEA also utilises
the radial basis function (RBF)-based surrogate model to assist the search adaptively
during the early exploration stage, which speeds up the optimisation.

1.6 Challenges and opportunities in surrogate model
assisted antenna design optimisation

1.6.1 Challenges and difficulties of the existing methods

Like mentioned, the design specifications of modern antennas are becoming increas-
ingly stringent and compact antennas are always preferable in many context. The
recent development of 5G require many antenna systems to work with (Khan et al.
2018). There are also wearable devices and body-centric wireless communication re-
quires bespoke antenna designs (Paracha et al. 2019; Danjuma et al. 2020). What is
more, the topologically irregular structures are getting more attention as driven and
parasitic structural elements for certain antennas such as the crossed-dipole antenna
with spline-shaped patches for navigation satellite system (GNSS), triple band and
quadruple band applications (Hussine et al. 2017; Alieldin et al. 2018).

Optimisation of the antenna structure with increased complexness requires advanced
and intelligent optimisation algorithms accordingly. The latest SADEA, TR-SADEA,
firstly addresses the challenge of increased model training cost by adopting a GP model
sharing mechanism to reduce the necessary number of GP model training and a self-
adaptive surrogate model-assisted local optimisation technique to improve the con-
vergence speed, particularly during the early stage of the optimisation. Moreover, it
successfully optimises complex base station antennas (Liu et al. 2021). However, ima-
ginably, training a model to predict a cluster of points decreases the accuracy of the
prediction. Furthermore, for antennas that have multiple tens of design parameters, to
train such very high dimensional GP models is still computationally expensive due to
the “curse of dimensionality” (Rasmussen and Williams 2006), even with the model
sharing mechanism that decreases the number of GP model training.
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In the evolution of the SADEA series, as discussed in Section 1.5, the main innovations
lie in the model management methods and search operators. Regarding the surrogate
model, not only the SADEA series but also other surrogate model-based optimisation
methods of a similar kind utilise GP as their surrogate model (Wu et al. 2020; Koziel
et al. 2021, 2014; Zhou et al. 2020). An accurate machine learning model is essential to
be the surrogate for the EM optimisation landscape, which is often multi-modal. GP
stands out from the regular machine learning models for its learning ability, requiring
few empirical parameters and providing statistically ground uncertainty quantification.

However, GP has drawbacks. The training cost of GP grows cubically concerning the
number of training samples, which is highly dependent on the number of design vari-
ables (Rasmussen and Williams 2006). Moreover, because GP predicts individual design
specification values separated, the number of GP models required, and hence the train-
ing time, grows linearly concerning the number of design specifications. Considering
antenna optimisation problems with a few design variables and design specifications,
GP training time is short. However, for antenna optimisation problems with more than
20 design variables and multiple design specifications, TR-SADEA uses one to two days
for GP model training (approximately 90% of the training time reduction compared
with standard SADEA). Such training cost is practical but not desirable (Liu et al.
2021).

If GP is not always ideal as the surrogate model under the background of SAEAs, quant-
itative assessments for its alternatives are needed to find the better ones. The following
three key factors should be considered when evaluating surrogate model alternatives:
(1) surrogate model prediction accuracy, (2) the prediction uncertainty quantification,
and (3) the training cost, particularly when the number of decision variables becomes
large. The surrogate model prediction accuracy is directly affecting convergence speed.
A highly accurate surrogate model assists the EA search engine in the efficient evol-
utionary search. Utilisation of the prediction uncertainty quantification of individual
solutions (instead of the overall approximation error of the surrogate model) is vital for
SAEAs not to converge into local optima (Cai et al. 2019). Also, prescreening methods
(infill criteria or acquisition functions) are proposed (Jones et al. 1998; Emmerich et al.
2006), using the prediction uncertainty quantification to promote global exploration.
Regarding the training cost, for small-scale optimisation problems, the machine learn-
ing cost is often low and negligible for most machine learning models. Nevertheless, the
training costs become challenging for some machine learning models when the number
of decision variables grows to several tens or even more. Sometimes, it may be even
longer than the real function evaluation itself (Liu et al. 2021) and is critical for SAEAs.
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Popular and widely used machine learning that can be considered as surrogate model
alternatives under SAEAs background and Bayesian optimisation include the Gaussian
process (GP), radial basis function (RBF), artificial neural networks (ANNs), and
ensemble methods. They are reviewed and discussed below, considering the above three
factors.

• GP (Rasmussen and Williams 2006): GP, sometimes called Kriging, is a statistic-
ally sound machine learning method. It has very few empirical parameters and is
usually an accurate model. Moreover, a statistical prediction uncertainty quanti-
fication for each candidate solution (i.e., variances) is provided. Recently, student
t-process (Shah et al. 2013) is proposed, improving the covariance and perform-
ing better than Kriging in small-scale Bayesian optimisation. Non-stationary GP
is reviewed and investigated under the background of SAEAs (Hu et al. 2021),
showing competitive performance. The major drawback of GP is the training
time complexity under SAEAs (Guo et al. 2018). The computational time com-
plexity of GP modelling is O(NGn

3d) (Emmerich et al. 2006), where NG is the
number of iterations spent in model parameter optimisation, n is the number of
the training sample, and d is the number of decision variables. n is dependent on
d to construct reliable GP models. The computational cost of GP modelling can
be high, particularly when the number of decision variables grows to several tens
or more (Liu et al. 2021). Alternative methods, including sparse GP (Bauer et al.
2016), simplified GP (Fu et al. 2022), and training samples sharing method in
model management (Liu et al. 2021) are proposed to reduce the cost of surrogate
modelling. The drawback of these GP variants is that the prediction accuracy is
generally compromised.

• RBF: Compared to GP, the training cost of RBF is much lower even for high-
dimensional problems (Powell 1992). However, the major drawback of RBF is that
it does not provide statistical prediction uncertainty quantification for each can-
didate solution. Prescreening methods, assisting SAEAs in converging to global
optima, are therefore difficult to use. Although there are successful RBF-based
SAEAs (Chen et al. 2022a), many SAEA research works from both the EA do-
main (Kudela and Matousek 2023; Cai et al. 2019; Liu et al. 2022b; Wang et
al. 2022) and engineering optimisation domain (Liu et al. 2021) show that com-
bining RBF-assisted search with GP-assisted search or other machine learning
alternatives-assisted ones is needed for global optimisation, particularly for com-
plex and real-world engineering design problems. New RBF-related methods that
provide prediction uncertainty quantification are investigated (Qin et al. 2021).
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• ANNs: Standard multi-layer perceptron (MLP) ANN is not widely used in
SAEAs as many empirical parameters need to be tuned. RBF neural networks
(RBFNN), on the other hand, are used in SAEAs (Guo et al. 2018) as it has
much fewer empirical parameters to be tuned and more stable predicted values.
However, the RBFNN can also not provide the prediction uncertainty quantific-
ation for each candidate solution. One way to generate prediction uncertainty for
each candidate solution when ANN is the surrogate model is the dropout method
(Srivastava et al. 2014). The original purpose of the dropout method is to prevent
overfitting and to improve generalisation error for deep networks by randomly
dropping out nodes from the neural network during training. Dropout can be
treated as an ensemble of multiple ANNs, and the variance among multiple out-
put prediction results can naturally be obtained. (Gal and Ghahramani 2016)
first introduces the method to Bayesian optimisation to allow these ANN-like
models to provide uncertainty quantification and attract much attention. (Guo
et al. 2021) applies the dropout method to SAEAs. On the other hand, criticism
also appears for the rigour of the dropout method as the statistical model un-
certainty is not necessarily the variance obtained by dropping out nodes from
the neural network, even though it does generate uncertainty estimation (Folgoc
et al. 2021).

• Ensemble methods: Two kinds of ensemble methods are usually used in SAEAs
as the surrogate models. The first kind uses multiple machine learning altern-
atives for different purposes (Cai et al. 2019). For example, (Wang et al. 2022)
uses the global RBF model to estimate the search trend for global optimisation,
while local GP models provide the exploration ability. The other kind uses en-
semble learning techniques, e.g., bootstrap, to improve the prediction accuracy
and to generate “prediction uncertainty” (the variance between predicted values
of multiple learners in this case) (Guo et al. 2018; Wang et al. 2018). Success-
ful ensemble methods show comparable performance to the GP model regarding
prediction accuracy but with much less training cost (Guo et al. 2018). In a
noteworthy manner, The design of an ensemble method is often ad hoc.

1.6.2 Novelties and contributions

Generally speaking, the long GP training time affects the overall convergence speed.
This research aims to seek a new machine learning core that can provide what GP
provides but with less computational expenses to replace GP in SADEA and decrease
the overall time. Due to this, this research is focused on seeking a different machine
learning surrogate core to replace the GP-based surrogate modelling and introduce
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a method using the new surrogate model. The goal is to largely improve both the
convergence speed (i.e., the number of EM simulations needed to obtain the optimal
design) and the training cost of surrogate modelling and providing a unified method
for antennas with various design variables and specifications.

A natural question is whether there exists a machine learning alternative that has
high prediction accuracy, statistically grounded prediction uncertainty estimation, and
reasonable training costs for SAEAs. To answer the question, this thesis investigates
Bayesian neural networks (BNNs) (Goan and Fookes 2020) under the background of
SAEAs. Till now, using BNN in SAEAs has yet to be paid much attention to. To
my knowledge, the first SAEAs built upon BNN are in (Briffoteaux et al. 2020), the
pioneering work of this area. The dropout method is used in BNN, and the expected
improvement (EI) prescreening method is used. (Liu et al. 2022a) employs BNN without
dropout. A new self-adaptive lower confidence bound (LCB) prescreening method shows
convergence in only half the number of iterations needed than that of GP under the
same SAEAs framework for complex real-world antenna optimisation problems with
up to 20 design variables. (Gao et al. 2019) employs BNN in multi-objective SAEAs
and shows an effective result for a real-world problem. Hence, a behavioural study is
presented for the BNN as a potential machine learning core, and a new method, called
the self-adaptive Bayesian neural network surrogate model-assisted DE for antenna
design exploration (SB-SADEA), is proposed.

The critical contribution of the research includes (1) a behavioural study of BNN as
a surrogate model under SAEAs, (2) the introduction to Bayesian neural networks
(BNNs)-based antenna surrogate modelling method into the area of surrogate model-
based antenna evolutionary optimisation as a substitution of GP and (3) the introduc-
tion to a bespoke self-adaptive lower confidence bound (LCB) prescreening method for
antenna design landscape making use of the BNNs prediction results.

Through the experiments in Chapter 5, it can be seen that using BNNs as the machine
learning core in SADEA and the self-adaptive LCB prescreening method as part of
the model management requires less computation cost and, at the same time decrease
the number of EM simulation required during the optimisation iterations. Through the
experiments in wider fields in Chapter 6, it can be seen that the proposed BNNs-based
SADEA has potential availability not only in antenna optimisation but also in wider
fields.
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Chapter 2

Background knowledge

In this chapter, the building blocks of this research are introduced. Section 2.1 technic-
ally introduces the concept of global and local optimisation in detail and its relation
with antenna design optimisation. Section 2.2 introduces evolutionary algorithms heur-
istically and mathematically. Following the reviews in Section 1.4, Section 2.3 intro-
duces several potential surrogate modelling methods in more technical detail. Section
2.5 introduces Bayesian optimisation in technical details. Section 2.6 introduces sur-
rogate model-assisted evolutionary algorithms based on the previous sections in the
chapter. Section 2.7 introduces the surrogate model management of the evolutionary
algorithms.

2.1 Global optimisation, local optimisation and an-
tenna design optimisation

Based on the different optimisation goals, optimisation can be classified into two cat-
egories: single-objective optimisation and multi-objective optimisation. Single-objective
optimisation runs towards a single objective; thus, the optimisation result is usually
a single optimal solution. The optimisation goal of multi-objective optimisation is a
Pareto front, which contains a set of optimal trade-offs between the objectives. Even
though antenna optimisation can have multiple design specifications, multi-objective
optimisation is not usually the case of antenna optimisation as the preference of design
specifications is known beforehand, and an optimal antenna design – rather than a set
of them having different trade-offs – is desired based on the design specifications (Liu
et al. 2014a; Villiers and Koziel 2018). The multiple design specifications are usually
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transformed into a single objective by weighted summation, also called aggregation
method (Chiandussi et al. 2012). Therefore, in this work of antenna design automa-
tion, the optimisation refers to single-objective optimisation. An optimisation problem
can be either a minimisation problem or a maximisation problem. As minimisation and
maximisation are mutually interchangeable, only minimisation setups are used in the
introduction to optimisation in this chapter.

2.1.1 Optimisation fundamentals

An unconstrained single-objective optimisation problem is described in its mathemat-
ical minimisation form as

minimise f(x)

s.t. x ∈ [lb, ub]d,
(2.1)

where x is the decision variable, lb and ub are the lower and upper bounds of the decision
variable, respectively, and s is the dimension of x. f(x) is the objective function and
can also be the aggregated form (or weighted summation) of n objective functions as

f(x) = w1f1(x) + w2f2(x) + · · ·+ wnfn(x) (2.2)

where from f1(x) to fn(x) are the n objective functions and from w1 to wn are their
corresponding weights. Once the minimisation completes, the optimal x = x∗ is found
and considered the optimal decision variable that minimises the objective function(s),
i.e., f(x∗) reaches the minimum possible value.

2.1.2 Constrained optimisation

A constrained optimisation problems is described as

minimise f(x)

s.t. gi(x) ≤ 0,

x ∈ [lb, ub]d,

(2.3)

where f(x) is, similarly in (2.1), the objective function, and gi(x) are the constraints.
Objectives and constraints are two main components of constrained optimisation prob-
lems. For the minimisation objective function f(x), the less it is, the better the decision
variable x is. The constraints g(x) can be satisfying or not satisfying. This is to say,
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for two different given decision variables x1 and x2, g(x1) = −100 is not better than
g(x2) = −1, as they both satisfy g(x) ≤ 0. On the other hand, for a given x3, g(x3) > 0

violates the constraint, making x3 an undesired solution, even when f(x3) has a min-
imal value. In a word, a constrained minimisation problem is to find a x∗ so that the
value of f(x∗) is minimal while having all constraints gi(x

∗) satisfied.

2.1.3 Antenna design optimisation

Modern antenna design often relies on optimisation algorithms, as an antenna design
structure can be represented by a parameterised model, and its design specifications can
be fitted in the optimisation problem formation. Popular design specifications include
the reflection coefficient and realised gain over a certain bandwidth of a microwave
antenna, axial ratio, total efficiency, and other factors. Depending on specific needs,
some are suitable for objectives while others are suitable for constraints (Tentzeris et al.
1998; Liu et al. 2017d). Antenna design optimisations have multiple design specifica-
tions; considering the preference or priority of the specifications and the magnitudes of
the objective and constraints, different weights can be assigned to the performances to
form a single objective function to fit in the single objective optimisation. As such, the
optimisation methodology can be applied to antenna design structure optimisation.

2.2 Evolutionary algorithms

Like mentioned in Section 1.3, evolutionary algorithms (EAs) are frequently used in
antenna design optimisation. For the general usage of an EA, an antenna designer
practically expect the algorithm to fulfil the following three requirements (Storn and
Price 1997) due to the nature of optimising antennas or EM devices.

• The EA has the capability of handling non-differentiable, non-linear and multi-
modal landscapes of antenna optimisation.

• The EA allows parallel fine evaluations of antenna designs.
• The EA has good convergence properties, i.e., the EA ends up converging to

global minimum in most of the independent runs.
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2.2.1 The heuristics of evolutionary algorithms

EAs are inspired by the principles of biological evolution and natural selection and is
commonly used in optimisation. These algorithms mimic the process of natural selec-
tion to search for optimal solutions to complex problems through an iterative process.
These algorithms undergo a continuous refinement process inspired by biological evolu-
tion, aiming to adapt and improve solutions over successive generations. In other words,
they navigate the vast and complex optimisation landscape of potential solutions, stra-
tegically probing and tuning candidate solutions to converge towards global optimum.
Amongst the different types of EAs, the heuristics play a crucial role in guiding the
search process by efficiently exploring the solution space with precision and efficacy
(Bäck and Schwefel 1993; Eiben et al. 2015).

At the heart of evolutionary algorithms rely on some key concepts, including popula-
tions, individuals, fitness evaluation, selection, crossover, and mutation. First, a popu-
lation of potential solutions, or individuals, is randomly generated within the solution
space. In the population, each individual represents a potential solution to the op-
timisation problem, encoded in a format suitable for computational processing. The
fitness of each individual is then evaluated based on a predefined objective function
that quantifies the quality of the solution (Bäck and Schwefel 1993; Eiben et al. 2015).

Heuristics in evolutionary algorithms guide the iterative improvement process by de-
termining which individuals are selected for reproduction and how their genetic in-
formation is combined to produce new offspring. Selection mechanisms, such as the
tournament selection method or roulette wheel selection, mimic the survival of the
fittest principle by favouring individuals with higher fitness values for reproduction
(Michalewicz 1996; Vikhar 2016). The effectiveness of heuristics in evolutionary al-
gorithms relies on their ability to balance exploration and exploitation of the solution
space. Exploration involves searching for new regions of the solution space to discover
potentially better solutions, while exploitation focuses on refining promising solutions
to improve their quality (Michalewicz 1996; Raidl and Gottlieb 2005; Bozorg-Haddad
et al. 2017).

The crossover and mutation operators are essential for introducing diversity into the
population by recombining genetic information from selected individuals and introdu-
cing random changes, respectively (Spears 1993). Crossover involves the exchange of
genes between parent individuals to produce offspring with characteristics inherited
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Figure 2.1: Flow diagram of differential evolution.

from both parents (Wu et al. 1997). The process helps to increase the diversity of
the population and generate new solutions. On the other hand, mutation introduces
random changes in the genetic information of individuals, preventing premature con-
vergence and encouraging exploration in the search. Both processes are critical for the
success of EAs, as they allow the algorithm to avoid premature convergence and to
search for better solutions (Spears 1993; Wu et al. 1997).

Overall, heuristics in evolutionary algorithms play a vital role in efficiently navigating
the solution space, facilitating the discovery of high-quality solutions to complex op-
timisation problems. Evolutionary algorithms equipped with effective heuristics offer
powerful tools for solving a wide range of real-world optimisation problems in various
domains by emulating the principles of natural selection and genetic variation.

2.2.2 Differential evolution

Differential evolution (DE) is one kind of EAs, and it outperforms many other EAs
for optimisation in continuous space. The DE utilises differential operators to generate
new candidate solutions and a one-on-one comparison scheme to greedily select better
candidate solutions during the operations (Storn and Price 1997; Storn et al. 2005).Fig-
ure 2.1 illustrates the flow diagram of the DE, and a brief technical introduction to DE
is as follows.
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The population composed of N individual solutions and each solution, or target vector
is denoted by x = (x1, . . . , xd) ∈ Rd. To create a child solution u = (u1, . . . , ud), firstly,
mutation happens to generate a mutation vector v = (v1, . . . , vd). There are several
mutation strategies under DE, such as the standard DE/rand/1 strategy, expressed
mathematically as

vi = xr1 + F · (xr2 − xr3) (2.4)

where indexes r1, r2, r3 ∈ {1, 2, 3, · · · ,N} are sampled from a random uniform distri-
bution without replacement, xr is the rth sample in the population, and mutation rate
F ∈ (0, 2] controls the amplification of the differential variation term (xr2 − xr3), the
DE/best/1 strategy, expressed as

vi = xbest + F · (xr1 − xr2) (2.5)

where xbest is the current best candidate solution in the population, the DE/current-
to-best/1 strategy, expressed as

vi = xi + F · (xbest − xi) + F · (xr1 − xr2) (2.6)

and the DE/best/2 strategy, expressed as

vi = xbest + F · (xr1 + xr2 − xr3 − xr4) (2.7)

etc. To have more samples involved in the mutation vector generation, like in (2.7), may
improve the population diversity, particularly for large N . The DE/current-to-best/1
strategy illustrated in (2.6) is applied in this work.

In order to maintain the diversity in the population, a child solution vector u is obtained
mathematically as

uj =

{
vj, if r ≤ CR or j = jrand

xj, otherwise

j = 1, 2, · · · , d

(2.8)

where uj, vj and xj are the jth element of the child solution vector, mutation vector and
target vector in the population, respective, the r is a random number sampled from
a standard uniform distribution, CR ∈ [0, 1] is the crossover rate, jrand is the random
integer sampled uniformly from {1, . . . , d}.
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To decide whether or not a child solution vector should be included as a member of
the population in the next generation, such a child solution vector is compared to its
corresponding target vector using the greedy criterion. If for a child solution vector uk

and a target vector xk, regarding the cost function value, it has f(uk) < f(xk) for a
minimisation problem, like in (2.1) and (2.3), the child solution vector uk should replace
the target vector xk in the next generation population. Otherwise, the old target vector
xk is retained in the population.

Theoretically, by looping over the above operations, the optimisation converges to the
global minimum. The iterative optimisation can also be terminated once a minimised
value is reached, as shown in Figure 2.1.

2.2.3 Genetic algorithm

GAs usually handle optimisation problems whose solutions are represented as fixed-
length strings of symbols for scheduling and routing optimisation problems or as real-
valued vectors for parameter optimisation. Regarding the selection mechanism, GAs
often utilise roulette wheel selection or tournament selection.

Similar to DE introduced in Subsection 2.2.2, random samples are drawn and evaluated
to form initialisation. Following the initialisation, roulette wheel selection is typically
used to select parent generation from the samples in the initialisation. The roulette
wheel selection mechanism can be expressed as

Pxi
=

ffitness(xi)∑N
j=1 ffitness(xj)

, (2.9)

where N is the population size, ffitness(x) is a function fitness value of parent individual
x, and Pxi

is the probability for the parent individual xi being selected from the pool.
This implies a higher probability of being selected for the better parent individuals as
they have higher fitness values in the maximisation setting.

Regarding crossover operation, unlike DE, GAs randomly select a crossover point,
divide the genetic sequence into two sections and allow exchanges of genetic sections
for every two parent individuals. This operation can be expressed in pseudo-code as

Childk ← Parentp,1∼s, Parentq,s+1∼D, (2.10)
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where s is the crossover point, D is the length of the genetic sequence, Parentp,1∼s

represent the first s genetic information of the parent individual p, and Parentq,s+1∼D

represent the last D − (s + 1) genetic information of the parent individual q. The
concatenation of the two sectioned sequences forms Childk.

Mutation is then applied to the generated children to maintain diversity for the optim-
isation. This operation here is similar to that of DE if the genetic information is real
number values. For information coded in binary digits, mutation means to reverse the
digits in practice.

The replacement and the termination criteria are similar to those of DE.

2.2.4 Particle swarm optimisation

PSO is another population-based stochastic evolutionary algorithm for optimisation.
PSO is inspired by animals’ social behaviours such as fish schooling and bird flocking
(Kennedy and Eberhart 1995). Unlike DE and GA introduced in Subsections 2.2.2 and
2.2.3, respectively, which search for optimum solutions based on the decision variables
and their fitness values, PSO introduces an additional concept, velocity, to assist the
search along with the decision variable, or position. Furthermore, PSO maintains a
fixed number of individuals or particles throughout the optimisation process and no
individuals are eliminated or removed from the population. As no individuals are re-
moved from the population and the traces of the individuals are known, individuals’
best decision variable, which refers to the decision variable with the best fitness value
that an individual achieves up the current iteration, can be obtained anytime. The
global best solution, similarly to that of DE, refers to the best fitness value among all
individuals up to the current iteration.

At the beginning, decision variables and velocity vectors are randomly initialised, and
the fitness values are obtained. In the optimisation loop, for each individual, update
the velocity vector and position vector by{

vi(t+ 1) = wvi(t) + c1r(pixi) + c2r2(g − xi)

xi(t+ 1) = xi(t) + vi(t+ 1)
(2.11)
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where xi is the position or solution variable of the i-th individual, t is the number of
current iteration, w is the inertia weight empirically to be set to 1 initially (Shi and
Eberhart 1998) and decreased or adaptively varied with the optimisation, c1 and c2

are acceleration coefficients representing the relative influence from the individual best
position and global best position, r1 and r2 are two random values sampled from the
standard uniform distribution, pi is the individual best position of the i-th individual
and g is the global current best position. After the position vector vi and velocity
vector xi update, the individual best position pi and the global current best position
g are updated before the next iteration. Similarly, the optimisation will theoretically
converge to the global optimum when the population has little diversity.

2.3 Surrogate modelling

Surrogate models, sometimes called surrogates, metamodels or response surface mod-
els, often refer to simplified mathematical approximations of computationally expens-
ive and particularly simulation-based processes. They often mimic the behaviours or
mapping of the original models with significantly reduced computational costs. Math-
ematically, given a computationally expensive function

f(x),

a computationally cheap surrogate model

f̂(x) (2.12)

that has approximate mapping can be built to replace the former one wherever ne-
cessary or appropriate. Therefore, surrogate models are instrumental in expensive op-
timisation and many other analyses with time-consuming processes involved. Some
common surrogate models include

• Kriging (Gaussian process regression).
• Radial basis function interpolation.
• Artificial neural networks.
• Polynomial regression.
• Support vector regression.
• Response surface method.
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Kriging, radial basis function interpolation, artificial neural networks, and polynomial
regression are frequently used in antenna optimisation to mimic the characterisation
of antennas and are introduced in detail in this section.

2.3.1 Gaussian process regression

In Bayesian optimisation, Gaussian process regression is sometimes called Gaussian
process (GP) or Kriging. The basic principle of GP is as follows (Rasmussen and Willi-
ams 2006). In the following, superscript refers to the index of a sample in the dataset,
and subscript refers to the index of a variable in a sample. Giving n observations
(x = (x1, . . . , xn) and y = (y1, . . . , yn)), GP assumes that y(x) is a sample of a Gaus-
sian distributed stochastic process with mean µ and variance σ. GP then predicts the
value of y(x) for a new x using its relation with the n observations. For example, a
correlation function can be described as

Corr(xi, xj) = exp(−
∑d

l=1 θl|xi
l − xj

l |pl)
θl > 0, 1 ≤ pl ≤ 2

(2.13)

where d is the dimension of x. θl and pl are hyper-parameters, which are determined
by maximising the likelihood function in (2.14).

1

(2πσ2)n/2
√

det(R)
exp

[
−(y − µI)TR−1(y − µI)

2σ2

]
(2.14)

where R is a n× n covariance matrix and I is a n× 1 vector having all its elements as
unity. By maximising the likelihood function that y = yi at x = xi(i = 1, . . . , n) and
handling the prediction uncertainty based on the best linear unbiased prediction, for
a new point x∗, the predicted value and prediction uncertainty are ŷ(x∗) and ŝ2(x∗),
which are expressed mathematically as

ŷ(x∗) = µ+ rTR−1(y − Iµ) (2.15)

where 
Ri,j = Corr(xi, xj), i, j = 1, 2, . . . , n

r = [Corr(x∗, x1),Corr(x∗, x2), . . . ,Corr(x∗, xn)]

µ̂ = (ITR−1y)(ITR−1I)−1

(2.16)

and
ŝ2(x∗) = σ̂2[1− rTR−1r + (I − rTR−1r)2(ITR−1I)−1] (2.17)
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where
σ̂2 = (y − Iµ̂)TR−1(y − Iµ̂)n−1. (2.18)

Based on the above, two advantages of GP include:

1. There are almost no empirical parameters in GP modelling except deciding the
type of correlation function; A few appropriate correlation functions are already
found by antenna surrogate modelling researchers (Wu et al. 2020; Koziel et al.
2021, 2014; Liu et al. 2014c). Hence, overfitting or under-fitting like artificial
neural networks (ANNs) is less likely to happen, which improves the prediction
quality.

2. The prediction uncertainty (2.17) is statistically grounded, which can play an
important role when judging the full potential of a candidate antenna design in
prescreening or acquisition function.

With the prediction uncertainty, widely used prescreening methods include expected
improvement (Jones et al. 1998), probability of improvement (Ulmer et al. 2003), and
lower confidence bound (LCB) (Dennis and Torczon 1997). LCB is the fundamental
of the new prescreening method in this paper and is introduced as follows. Given
the objective function y(x) has a predictive distribution of N(ŷ(x), ŝ2(x)), an LCB
prescreening of y(x) is:

ylcb(x) = ŷ(x)− ωŝ(x)

ω ∈ [0, 3]
(2.19)

where ω is a constant, and is often set to 2 in many algorithms in the AI domain
(Emmerich et al. 2006), and is applicable to antenna problems (Liu et al. 2014c).

However, the main drawback of GP is its training cost. In online surrogate model-
assisted antenna global optimisation, the total training time of GP models in the op-
timisation process can be estimated as TGP×Nspecs×Npop×Nit (Liu et al. 2021), where
TGP is the training time of each GP model, Nspecs is the number of specifications, Npop

is the number of candidate designs in a population, and Nit is the number of iterations
in antenna design optimisation.

For a GP model, the computational complexity is O(Non
3d) (Emmerich et al. 2006),

where No is the number of iterations spent in hyper-parameter optimisation (i.e., (2.14))
and n is the number of training data points. n is highly affected by d to construct a
reliable surrogate model. (Liu et al. 2014c, 2021) shows that at least 4 × d training
data points are needed for antenna problems. Often, when d reaches 20, TGP could be
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in minutes for a normal computer and then grows cubically (Liu et al. 2021). Also,
to maintain the exploration ability, Npop is also highly affected by d (e.g., often at
least 4× d when using DE operators). This makes the GP modelling time in antenna
optimisation longer when d is large and could be even longer than the EM simulation
time.

2.3.2 Radial basis function

Radial basis function (RBF) (Powell 1992) is another popular machine learning method
for surrogate modelling. Its learning ability is not as high as GP, but its training is
computationally much cheaper (Regis 2013). For several complex antenna test cases,
the RBF modelling time for a candidate design is often less than 30 seconds using a
normal desktop workstation, even if 1000 training data points are used. Given a set of
observations x = (x1, . . . , xn) and y = (y1, . . . , yn), RBF predicts the function value
y(x∗) at a new point x∗ as:

ŷ(x∗) =
n∑

i=1

λiϕ(||x∗ − xi||) + p(x) (2.20)

where λ are the coefficients, p(x) is a linear polynomial with d variables and p(x) =∑d+1
j=1 bjxj. ϕ is a basis function, which is monotonic. In this implementation, the cubic

form, ϕ(x) = x3 is used. To fit this model, the hyperparameters λ = [λ1, λ2, . . . , λn]
T

and B = [b1, b2, . . . , bd+1]
T can be calculated by solving:[

Φ Pr

P T
r 0(d+1)×(d+1)

][
λ

B

]
=

[
y

0d+1

]
(2.21)

where Φ ∈ Rn×n and Φij = ϕ(||xi − xj||), i, j = 1, 2, . . . , n. Pr ∈ Rn×(d+1) and the ith

row of Pr is [1, xi].

2.3.3 Artificial neural networks

Artificial neural network (ANN), sometimes called neural network or neural net, is a
popular machine learning method. ANN can be used as a surrogate model in regression,
as its forward propagation is computationally cheap.
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Figure 2.2: Illustration of an artificial neural network.

Figure 2.2 shows an example of an ANN with three layers (one input layer, one hidden
layer and one output layer). The output of the i-th node in the hidden layer is

ai =
n∑

j=1

wijxj (2.22)

where xj denotes the j-th node in the input layer, and wij denotes the weight on the
directed connection from xj in the input layer to ai in the next layer. x and a are both
vectors. And for the layer as a function, it can be represented as

a = f (x→a)(x). (2.23)

Overall, the entire ANN model in Figure 2.2 is then represented mathematically as a
chain of functions as

y = f (x→a)(f (a→y)(x)) = f (x→y)(x) = f (ANN)(x) (2.24)

where f (ANN) is a computationally cheap candidate approximation of the real mapping,
or f ∗. In order to let f (ANN) to approximate f ∗, the training of the ANN basically update
wij iteratively with

∆wk,G = η
∂E

∂wk,G

wk,G+1 = wk,G −∆wk,G

(2.25)

where wk,G is an arbitrary weight in the ANN after G generations of training, E is the
differentiable loss function and η is the learning rate.

Advanced ANN often includes activation functions to introduce non-liberality. Various
optimisers are proposed to accelerate the ANN training.
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2.3.4 Multivariate polynomial regression

Polynomial regression is a type of regression analysis technique that models the rela-
tionship between a single input variable and an output variable in complex systems or
processes. The relationship is modelled as an n-degree polynomial function.

The general form of a polynomial regression with degree n is mathematically expressed
as

y = β0 + β1x+ β2x
2 + · · ·+ βnx

n + ϵ (2.26)

where x is the input variable, y is the output variable, β0, β1, · · · , βn are the coefficients
of the polynomial terms, and ϵ is the error term representing the variability or noise of
the data. Typically, the lease square method is used to estimate the coefficients β0, β1,
· · · , βn. Once the coefficients are estimated, the polynomial regression function (2.26)
can be used to approximate the relationship between the single input variable and the
output variable from complex mappings.

Furthermore, the standard polynomial regression expressed in (2.26) can be extended
in its multivariate form, which is expressed as

y = β0 + β1x1 + β2x2 + · · ·+ βkxk

+
k∑

i2,1=1

k∑
i2,2=1

βi2,1i2,2xi2,1xi2,2

+ · · ·

+
k∑

in,1=1

k∑
in,2=1

· · ·
k∑

in,n=1

βin,1,in,2,··· ,in,nxin,1xin,2 · · · xin,n + ϵ

(2.27)

where x1, x2, · · · , xk are the inputs variables, β2 is the interaction coefficient associated
with the 2nd input variable x2, βi2,1i2,2 is the 2-way interaction coefficient associated
with the i2,1-th variable xi2,1 and i2,2-th input variable xi2,2 , and βin,1,in,2,··· ,in,n is the n-
way interaction coefficient associated with the in,1-th input variable xin,1 , in,2-th input
variable xin,2 , · · · , in,n-th input variable input variable xin,n .

Similarly to the univariate polynomial terms, least square methods are used to estimate
the polynomial coefficients so that the loss between calculated ŷ and the real y is min-
imised. Multivariate polynomial regression allows for modelling complex relationships
between multiple input variables and a single output variable. It captures the interac-
tion effects among the input variables and non-linearity in the complex relationship.
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However, the computation complexity increases with the increased dimensionality of
input variables. This increased dimensionality of the multivariate polynomial regres-
sion requires a large amount of data samples and time to estimate the coefficients
accurately, which is a particular drawback of a surrogate model.

2.4 Prescreening methods

The prescreening method, sometimes called acquisition function or infill criterion, is
applied to filter out unnecessary candidate solutions and select promising candidate
solutions Pselected from the population of candidate solutions P for the later function
evaluation

f(xi)

xi ∈ Pselected

Pselected ⊂ P.

(2.28)

The prescreening methods utilise information the surrogate models provide to identify
promising candidate solutions out of a set of solutions, thereby reducing the number of
function evaluations needed overall. Prescreening can be realised differently for different
usages of the information. Some widely used prescreening methods include

• Expected improvement.
• Probability of improvement.
• Lower confidence bound.

They are introduced below in this section.

2.4.1 Expected improvement

The expected improvement is a prescreening method that selects candidate solutions
likely to improve over the current best solution. It selects candidate solutions by quan-
tifying their potential improvements over the current best solution, considering both
the predicted mean and prediction uncertainty.



32 Background knowledge

The expected improvement for a candidate solution x is defined as the expected value of
the improvement over the current best solution. This can be expressed mathematically
as

EI(x) = E[max(ybest − ŷ(x), 0)] (2.29)

where
ybest = f(xbest)

and xbest is the current best solution. This can be calculated as the integral of the
improvement function over the region where the surrogate model predicts a potential
improvement over the current best solution, which is expressed as

EI(x) =

∫ ∞

−∞
max(ybest − ŷ(x), 0) · p(f̂(x))df̂(x). (2.30)

Alternatively, for the Gaussian process regression surrogate model, the expected im-
provement can be calculated analytically as

EI(x) = (µ(x)− ybest) · Φ(
µ− ybest

σ(x)
) + σ(x) · ϕ(µ− ybest

σ(x)
). (2.31)

where µ(x) and σ(x) are the predicted mean and the prediction accuracy of the candid-
ate solution x, respectively and Φ and ϕ are the cumulative distribution function and
probability density function of the standard normal distribution, respectively. In the
end, one or more candidate solutions are selected based on the expected improvement
value EI(x). Candidates with higher expected improvement values are more likely to
improve over the current best solution.

2.4.2 Probability of improvement

Similarly, the probability of improvement quantifies the probability that a candidate
solution yields a better objective function value than the current best candidate solution
based on both predicted mean and prediction uncertainty.

The probability of improvement of a candidate solution x is defined as the probability
that the surrogate model predicts an improvement over the current best solution, which
is mathematically expressed as

PI(x) = P (f̂(x) ≥ ybest). (2.32)
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This can be calculated as the integral of the probability density function of the surrogate
model predictions over the region where the predictions are greater than or equal to
the current best solution, which is expressed as

PI(x) =

∫ ∞

ybest

p(f̂(x))df̂(x). (2.33)

Alternatively, for the Gaussian process regression surrogate model, the probability of
improvement can be analytically calculated as

PI(x) = Φ(
µ− ybest

σ(x)
). (2.34)

In the end, one or more candidate solutions are selected based on the expected improve-
ment value PI(x). Candidates with a higher probability of improvement are more likely
to improve over the current best solution.

2.4.3 Lower confidence bound

The lower confidence bound (LCB) method combines the quantified information, pre-
dicted mean and prediction uncertainty provided by the surrogate models to assess
the potential of candidate solutions. LCB selects candidate solutions that are likely
to have less fitness values. It is also based on the uncertainty information provided
to the surrogate model. It helps to balance exploration and exploitation by favouring
solutions with low predicted values and high prediction uncertainties. Mathematically,
the LCB of a candidate solution x is expressed as

LCB(x) = µ(x)− βσ(x) (2.35)

where β is a user-defined parameter controlling the exploration versus exploitation
trade-off. A higher β leads to more exploration, while a lower β leads to more exploit-
ation.

Similarly, in the end, one or more candidate solutions are selected based on the LCB
LCB(x). Candidates with less LCB values are more promising than those with greater
values and thus are prioritised for expensive function evaluation.
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2.5 Bayesian Optimisation

Bayesian optimisation is a sequential model-based optimisation technique used to work
on global optimisation of black-box functions that does not assume forms and para-
meterisation (Mockus 2005), like described in (2.1) as a general form. It combines
probabilistic models like GP with prescreening methods to efficiently explore and ex-
ploit the search space for the global optima.

Mathematically, like described in (2.1), given an objective function f(x), Bayesian
optimisation maintains a probabilistic model

p(f |D)

of the objective function given observation D. Typically, GP is used as the paramet-
ric probabilistic model in Bayesian optimisation for its flexibility and ability to model
uncertainty. The prior distribution of GO is specified by the mean µ and a covari-
ance matrix R, mathematically expressed in (2.13). These are discussed in detail in
Subsection 2.3.1.

The prescreening method is applied in Bayesian optimisation to balance the exploration
and exploitation in the search space. Bayesian optimisation proceeds iteratively by
obtaining new samples in the search space with the help of the prescreening method.
By prescreening, the new sample observation

(xnew, ynew)

is obtained and to be used to update the probabilistic model, incorporating the new
information into the posterior distribution. This is discussed technically in section 3.4.

Bayesian optimisation terminates when satisfying predefined stopping criteria, which
typically include limited iterations (or computation budgets) and satisfied optimisation
requirements. This is reflected in Figure 4.1 in Section 4.1.

Bayesian optimisation is particularly advantageous for expensive optimisation, whose
computational cost of function evaluation is not negligible. By leveraging probabilistic
models like GP, Bayesian optimisation can efficiently explore the search space, focusing
on the region where the objective function is likely to improve or is uncertain and thus
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has the potential to improve, which allows for a guided and effective exploration of
the search space comparing to the traditional random search. Bayesian optimisation is
a sequential optimisation technique, where new sample points are obtained iteratively
online, which allows the optimiser to adaptively search for optimum solutions and avoid
regions that are unlikely to contain better solutions. As a result, Bayesian optimisation
requires fewer function evaluations than other optimisation methods. Owing to these,
Bayesian optimisation is well suited for expensive optimisation tasks where function
evaluations are costly or time-consuming.

2.6 Surrogate model-assisted evolutionary algorithms

In SAEAs, EAs are considered search engines. Despite being efficient, as introduced
in 2.6, these search engines usually require a certain amount of function evaluations
in each iteration to evaluate the candidate solutions of the next generation. Therefore,
to improve the efficiency of the search engines, surrogate models are introduced to
assist them in forming surrogate model-assisted EAs. Instead of directly evaluating the
objective function f(x) for every candidate solution, SAEA utilises the surrogate model

f̂(x)

to estimate objective function values like discussed in (2.12), and candidate solutions
are prescreened with the estimated values for the function evaluations.

The surrogate model f̂(x) is usually built based on data samples yielded from com-
putationally expensive processes. Ideally, the surrogate model f̂(x) is sufficiently ap-
proximate to the computationally expensive processes f(x). If so, the efficiency or the
number of function evaluations needed for SAEA in optimisation tasks is close or com-
parable to that of only using EA search engines. In reality, the surrogate model f̂(x)
cannot perfectly fit the real computationally expensive process f(x). It is common to
observe from little to medium prediction error for f̂(x), which naturally slows down
the convergence by some generations, compared to using EAs directly. In this case,
the trade-off is between the number of generations before converge and the number
of function evaluations in each generation. Moreover, it has been validated by many
researches that, from EAs to SAEAs, the number of function evaluations saved in each
generation and the number of overused generations are disproportional. SAEAs require
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less overall number of function evaluations than the EAs (Jin 2011), with little addi-
tional computation for surrogate model training and negligible additional computation
for running the search engines. Thus, also taking advantage of Bayesian optimisation,
SAEAs are efficient, particularly for expensive optimisation tasks.

Practically, the trained surrogate model fidelity can be poor at the beginning due to
the lack of training samples available. As the EAs iteratively progress, more and more
actual function evaluations of solutions are performed, and the input-output pairs are
appended to the training dataset accordingly. Therefore, the fidelity of the surrogate
model is gradually improved with more training samples involved, with the iterative
optimisation proceeding.

Besides, some surrogate models assist in optimisation by balancing exploration and
exploitation by guiding the selection of candidate solutions in prescreening. Adaptive
strategies can also be employed to adjust the exploration versus exploitation trade-off
based on the surrogate model predictions, the expected improvements in solutions and
so on (Liu et al. 2012; Liu et al. 2022a).

2.7 Surrogate model management

A trade-off between the quality of the surrogate model and the number of expensive
function evaluations for training sample acquisition is presented in most SAEAs. In
SAEAs, as discussed in sections 2.3 and 2.6, ideally, if the surrogate model f̂(x) is
sufficiently approximate to the original expensive function evaluation f(x), i.e., the
quality of the surrogate model is high, the predictions of the surrogate model are
accurate, and hence the optimisation efficiency is high. On the other hand, the need
for sufficient samples for training the surrogates is a burden for optimisation efficiency,
as the training sample acquisition is computationally expensive due to the nature of the
complex processes. Therefore, the surrogate model management is considered to find
an appropriate trade-off for satisfying surrogate model quality requiring as few training
samples as possible (Jin 2011). There are several surrogate model management methods
available for SAEAs. They include

• Trust-region search (TRS) framework (Zhou et al. 2006; Lim et al. 2009).
• Generation control (GC) framework (Jin 2005).
• Prescreening-based framework (Emmerich et al. 2006).
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• Surrogate model-aware evolutionary search (SMAS) framework (Liu et al. 2014b).

TLS and GC are generally compatible with standard EA operators yet require more
computationally expensive function evaluation (Zhou et al. 2006; Lim et al. 2009). On
the other hand, the SMAS framework, one of the state-of-the-art SAEA frameworks,
borrows ideas from prescreening and manages the evolutionary search appropriately
with the high quality of the surrogate model and high efficiency of the optimisation
at the same time. In particular, it has been widely applied to EM design optimisa-
tions. Several state-of-the-art EM designs optimisation, including mm-wave integrated
circuits, antennas, filters, and MEMS designs optimisation, borrow ideas from SMAS,
and their optimisations outperform other SAEAs in regard to optimisation efficiency
(Liu et al. 2014c,e, 2017c). This is discussed in detail in Chapter 4.



Chapter 3

Bayesian neural networks’
behaviour in SAEAs

From a problems solving and pragmatic perspective, Section 3.1 recalls the tricky
points in modern antenna design optimisation from Chapter 1, Section 3.2 introduces
the BNNs and demonstrates that adapting BNNs is an appropriate solution to the
issues raised in Section 3.1 through a set of behavioural studies in the following sec-
tions. Section 3.3 discussed the test problems selection for experiments in this Chapter.
Section 3.4 demonstrates the prediction performance of BNNs and the co-work with
multiple prescreening methods. Section 3.5 demonstrates the performance comparison
of BNN versus GP, and BNN versus NN with dropout (NNDO) separately.

The experiments are conducted on a workstation with an AMD Ryzen™ Threadripper™

PRO (2.7GHz) and an NVIDIA® RTX™ A4000 GPU. 80 MATLAB parallel workers
are activated for GP/BNN-based surrogate model training.

3.1 Motivation

As introduced in Subsection 1.4.1 and in Subsection 1.6.1, there are multiple issues that
hurdle the design optimisation of modern antennas. Like mentioned, modern antenna
designs can have topologically irregular geometries and more complex structures and
components, and they often require more design parameters to define the parametric
antenna model. Antenna models with higher number of deign parameters means higher
dimensionality under optimisation framework. Due to the “curse of dimensionality”,

38
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GPs are not always efficient as surrogate models under SAEAs. Beside the issue with the
increasing number of design parameters, modern antenna design specifications are also
increasingly stringent. Multiple design specifications can be required simultaneously
in the antenna design optimisation. But for surrogate models like GPs which predict
a single output at a time, the computational cost for training increases linearly with
respect to the the number of design specifications as the number of surrogate models
is increased correspondingly.

An alternative surrogate model that can predict multiple outputs at once and that is
not sensitive to the dimensionality of the antenna deign optimisation is desired. By
also investigating the previous working surrogate models, the essential characteristics
of a potential surrogate model alternative should include

• High prediction accuracy.
• Statistically uncertainty quantification.
• Low training cost, particularly for high dimensional modelling.

These are discussed in details in Section 3.2. Since mathematical proof is complex, an
empirical study of employing BNN in an SAEA framework and analysing the perform-
ance is conducted and presented in the following sections in this chapter.

Considering that many SAEA frameworks have been available in recent years, with
various EA operators and model management methods, it is impossible to use all of
them. This thesis does not aim to prove the superiority of BNN as the surrogate model
over other counterparts. Instead, as said in Chapter 1, the paper aims to show the
potential of BNN as the surrogate model by some observations, inspiring attention to
carry out consecutive research in BNN-based SAEAs. Hence, results from a typical
SAEA framework can achieve our goal. The SMAS framework (Liu et al. 2013, 2014d)
is selected as a typical one and employed in this thesis and the reason for choosing the
SMAS framework is discussed in details in Section 4.1. And thus, different prescreening
methods and machine learning alternatives will be used under the SMAS framework
in the following, which are presented in Sections 3.4 and 3.5.
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3.2 Bayesian neural networks

Consider input variables x and output variables y in a regression problem setting.
If an ANN model is built and the model parameters are θ = [w1, . . . , wj, b1, . . . , bk],
where w are the weights and b are the biases. In an MLP ANN, each layer carries
a linear transformation, followed by a nonlinear activation function that introduces
nonlinearity into the layer. The MLP ANN training optimises the loss function, which
is often the log-likelihood of the training samples, i.e., maximise

∑n
i=1 log(p(xi; θ)) with

a regularisation term. The θ converges to fixed values during the MLP ANN training,
and the converged θ is then used for prediction given inputs.

o

i1

i2

h1

h2

h3

hm

Figure 3.1: An illustrative figure of a basic BNN.

The basic network structure of BNN is similar to the standard ANN, where θ for BNN
are random variables with the probability distribution p(θ). Figure 3.1 illustrates the
structure of a BNN. i, h and o represent the neurons on input, hidden and output layers,
respectively. In the following, D denotes the training set, and Dx and Dy denote the
training inputs and training outputs, respectively. By applying Bayes’ theorem, the
Bayesian posterior can be expressed mathematically as:

p(θ|D) =
p(Dy|Dx, θ)p(θ)∫

θ
p(Dy|Dx, θ′)p(θ′)dθ′

∝ p(Dy|Dx, θ)p(θ), (3.1)
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where p(Dy|Dx, θ) denotes the likelihood, p(θ) denotes the prior, the denominator rep-
resents the evidence, and p(θ|D) denotes the posterior. The posterior is what we acquire
in order to obtain the predicted value and prediction uncertainty quantification. Ob-
taining p(θ|D) by standard sampling is intractable. Hence, the variational inference
method by Markov chain Monte Carlo (MCMC) is employed to make the training
time practical. The variational inference method (Blei et al. 2017) is introduced in the
following.

Regarding variational inference, a new distribution of the model parameters q(ϕ), called
a variational distribution, is introduced to approximate p(θ|D). By minimising the
Kullback-Leibler (KL) divergence (Joyce 2011), DKL, between q(ϕ) and p(θ|D), the
closest distribution can be obtained to substitute the posterior. Compared to the pos-
terior, q(ϕ) has fewer parameters, often including means and variances of a multivariate
Gaussian distribution. Moreover, q(ϕ) is optimised in the BNN training.

Now, the evidence lower bound (ELBO) (Blei et al. 2017) is introduced as an alternative
and easily derived formula as

ELBO = Eϕ∼q(logp(Dy|Dx;ϕ))−DKL(q(ϕ)||p(θ)). (3.2)

Maximising the ELBO is equivalent to maximising a lower bound on the log-likelihood
of the training samples. In (3.2), the first term E represents Shannon entropy, which
means the sum of the expected log-likelihood of the training samples, and it can be
obtained by sampling, and the second term is the regularisation loss term provided by
the KL divergence, which is a closed form of Gaussian distribution. After the optim-
isation, the posterior, p(θ|D), is approximated, and the BNN is trained and ready to
be used.

When performing BNN prediction, given the posterior, p(θ|D), the model’s prediction
uncertainty quantification can be obtained via p(y|x,D). Practically, this is done by
sampling (Gal and Ghahramani 2015), which is expressed mathematically as

θ ∼ p(θ|D). (3.3)

The predicted values are averaged BNN model output samples, which is expressed
mathematically as

ŷ =
1

|Θ|
∑
θi∈Θ

Φθi(x), (3.4)
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where Θ denotes a set containing all sampled θ |Θ| denotes the size of the set, Φθ(x)

denotes the BNN model and ŷ denotes the estimated output. Moreover, the uncertainty
quantification is calculated by using the covariance matrix Σy|x,D, which is expressed
mathematically as

Σy|x,D =
1

|Θ| − 1

∑
θi∈Θ

(Φθi(x)− ŷ)(Φθi(x)− ŷ)T . (3.5)

The properties of the BNN model in terms of the three key factors in Chapter 1 for a
machine learning alternative used in SAEAs are analysed as follows,

• Prediction accuracy. BNN can be interpreted as a special case of ensemble meth-
ods with multiple ANN ensembles (Zhou 2012). Ensemble methods are well
known for taking advantage of aggregating multiple averaged and independent
predictors that may outperform a single expert predictor, given the same train-
ing information (Breiman 1996). A few ensemble learning methods using ad-hoc
learners offer high performance under SAEAs settings (Guo et al. 2018; Wang
et al. 2018). Hence, it is natural to infer that BNNs’ stochastic components or
ensembles improve a standard ANN in a similar way. Moreover, it is observed
that BNN, to a large extent, avoids overfitting when learning from a small data-
set. A small dataset aligns with the SAEA nature, where only a limited number
of real and expensive processes or function evaluations are available for surrogate
modelling.

• Prediction uncertainty quantification is available for individual candidate solu-
tions. Compared to the ad-hoc ensemble models and dropout-based methods, the
prediction uncertainty quantification of BNN is statistically validated (Wester-
mann and Evins 2021; Jospin et al. 2022). Although estimated by sampling, the
BNN model’s prediction uncertainty quantification can be derived by p(y|x,D) =∑

θ p(y|x, θ′)p(θ′|D)dθ′.
• Training cost. Even when the number of decision variables is large (e.g. over

50), BNN training costs are still affordable. For a BNN with two hidden layers
in between the input layer and output layer, the computational complexity is
O(Nbd(d + m)2s), where d denotes the number of input variables, m denotes
the number of output variables, s denotes the sampling cost and Nb denotes
the number of iterations in training. This Asymptotic computation complexity is
much lower than that of ordinary GP. Moreover, for multiple outputs, GP needs
to build separate models for each output, whereas BNN can provide multiple
outputs on a single BNN prediction, further improving the training efficiency.
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The above analysis is empirically verified in Sections 3.4 and 3.5. Furthermore, BNN
is not sensitive to hyperparameters thanks to the characteristics of ensemble learning,
which is an advantage compared to many other standard ANNs. In this thesis, the
BNN is defined with the hyperparameters below and is used for all test problems. The
BNN structure has two hidden layers between the input and output layers. There are
d and m neurons in the input layer and in the output layers, respectively, to match
the numbers of inputs and outputs. The numbers of neurons in the hidden layers are
2d (the first hidden layer) and max([d, 2m]) (the second hidden layer), respectively.
Moreover, the prior standard deviation defaults to 0.1. The Adam optimiser is used for
training with an initial learning rate of 0.05 and a decay rate of 0.999 in every step of
the model parameter updates.

3.3 Selection of the test problem set

To evaluate the performance of an SAEA, both the exploration capability and con-
vergence speed need to be considered. As mentioned in Subsection 2.2.1, there is a
trade-off between the two – the greater exploration capability often comes with re-
duced convergence speed. Also, to approximate a landscape, the more multi-modal,
nonlinear, and complex it is, the more training sample points are required to obtain
good prediction accuracy and the lower its efficiency. Although the above limitation
is somewhat released in SAEAs for the smoothing effect of surrogate models in them
(Sun et al. 2015) as only a reasonable ranking of the candidate designs is required
sometimes, the limitation generally holds true. In other words, every well-designed
SAEA shows an inevitable trade-off between exploration capability and convergence
efficiency. For example, optimisation problems with more complex landscapes prefer
SAEAs with higher exploration capability but lower efficiency and vice versa.

For algorithm study and comparison, mathematical benchmark problems are widely
used. They include the Sphere function and Ellipsoid functions as uni-modal functions,
Ackley function, Griewank function, Rastrigin function and Rosenbrock function, and
some very complex hybrid functions as multi-modal functions (Jamil et al. 2013; Hus-
sain et al. 2017). However, empirically, as said in Chapter 4, real-world engineering
problems needing simulations and complex calculations are the primary resources of
computationally expensive optimisation problems, which is the benchmark that should
be used to test SAEAs. Unfortunately, the characteristics of the above mathemat-



44 Bayesian neural networks’ behaviour in SAEAs

ical benchmark functions and many real-world problems are sometimes mismatched.
Considering the exploration capability and convergence efficiency mentioned above,
whether the trade-offs reflected on the landscape characteristics are appropriate re-
mains an issue.

Although many real-world simulation-based engineering design problems are multi-
modal (Zaharis and Yioultsis 2011; Liu et al. 2017a), very rugged optimisation land-
scapes, for example, the Rastrigin function (Dieterich and Hartke 2012) and complex
hybrid functions, which tend to be relatively discontinuous, seldom appear. The reason
is that numerical techniques in the simulation usually solve PDEs, such as Maxwell’s
equations and Navier-Stokes equations, and such very rugged landscapes can hardly be
the result of these processes. Even testing SAEAs against the Ackley function, whose
complexity is close to real-world multi-modal problems, is one-sided.
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Figure 3.2: Limitations and usefulness of the Ackley function (20 runs, only successful
runs are drawn).

Table 3.1: The selected test problems

Category Test problems

A F1: 10-D Ackley optimisation
F2: 10-D Griewank optimisation

B
F3: Circular antenna array (Das and Suganthan 2010) optimisation (12-D)
F4: 12-resonator diplexer coupling matrix (Wu et al. 2018; Yu et al. 2020)
optimisation (27-D)

C
F5: quadruple band mm-wave antenna (Ur-Rehman et al. 2018)
optimisation (20-D)
F6: Microstrip patch antenna optimisation (62-D) (Jayasinghe et al. 2015)
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Figure 3.2a shows optimisation convergence trends of using the SMAS framework with
two surrogate modelling alternatives against the 10-dimensional Ackley benchmark
function. The two surrogate models are GP and K-nearest neighbour (KNN). When
KNN is used as the surrogate model, the average of the Ackley function values of the
20 nearest candidates for a candidate solution is assigned as the predicted value for
that candidate solution. We consider reaching a threshold objective function value of
0.5 in 1000 function evaluations as a successful optimisation. The reason and necessity
to define a successful run are explained in the next section.

It can be seen that using the KNN as the surrogate model, the SMAS framework-
based optimisation converges even faster than that of using the GP as the surrogate
model, and both have a 95% success rate. However, the KNN model hardly succeeds
in any real-world problems in (Akinsolu et al. 2019; Liu et al. 2021; Liu et al. 2022a).
Note that this does not mean that the Ackley function is not useful as a benchmark
function. As can be seen in Figure 3.2b, under the SMAS framework, when using
the RBF as the surrogate model, the success rate is 65% compared to 95% when
using the GP as the surrogate model. This observation broadly aligns with the fact
that prescreening introduces additional exploration capability into the search that is
discussed in Section 2.5, so it is natural to believe that GP with prescreening methods
has a higher exploration capability than using RBF directly alone, whose exploration
capability usually needs to be explicitly improved for multi-modal problems.

Note that this section aims to discuss and select appropriate test problems that can bet-
ter reflect the background problems of expensive engineering optimisation for SAEAs
for studying the behaviour of the BNN model instead of specifically focusing on an in-
depth investigation of the limitations of existing popular mathematical benchmark test
problems. The nearest test problems to engineering design problems are themselves.
Hence, the mathematical benchmark problems are only used when considering the com-
puting overhead for statistical analysis and are supplemented by real-world problems.
Moreover, when the two results contradict each other, results from testing against real-
world problems should be prioritised for the discussion. Four EM design problems are
used in this paper as EM simulation is a typical computationally expensive evaluation.

Table 3.1 lists the six test problems used in the following sections, and the six test
problems can be classified into three categories, namely, A, B and C. Category A has
two typical mathematical benchmark functions, the Ackley function and the Griewank
function, and their dimensionalities are set to 10. The functionality of category A is
to test low-dimensional problems using mathematical benchmark functions that could



46 Bayesian neural networks’ behaviour in SAEAs

be near to real-world problems. Most real-world engineering applications have design
variables between 5 and 20 regarding dimensionality. Therefore, higher-dimensional
mathematical benchmark problems are not considered in the test. Their details are
shown in the Appendix.

Category B has two simplified real-world problems, namely, a 12-dimensional circular
antenna array optimisation problem and a 27-dimensional 12-resonator diplexer coup-
ling matrix optimisation problem. For the first optimisation problem, computationally
cheap and simple mathematical calculations for array design are applied to the sim-
ulation to simplify the computationally expensive EM simulation, and it can be used
as the coarse model in practice. In the simplified problem, although the optimisation
landscape is made smoother and less complex, it still reflects most characteristics of
the optimisation landscape of EM simulation-based engineering design problems. The
first problem has one optimisation objective. The second problem, the 27-dimensional
diplexer coupling matrix optimisation problem, is a uni-modal problem included in
the test problems to improve diversity. Theoretically, diplexer coupling matrix global
optimisation problem is multi-modal, but practically, there are engineering methods,
such as the filter design knowledge value used in this test problem (Hong and Lancaster
2004; Skaik et al. 2011; Cameron 2003), to find a good starting point, which makes
the search starts around a convex region near the global optimum in the optimisation
landscape and thus making it a uni-modal optimisation problem. Technically, based
on the starting point, relatively narrow intervals are considered for the search ranges,
and the problem is then simplified to a uni-modal problem. The second problem has
one optimisation objective. Their details are shown in the Appendix.

Category C has two real-world EM device design problems, namely, a 20-dimensional
quadruple band 5G mm-wave antenna and a 62-dimensional microstrip patch antenna,
and they are both simulated by CST-MWS. These problems are computationally ex-
pensive, but it is essential to include them as they directly reflect the characteristics of
such problems. Both of the problems are multi-modal. For the first problem, there are
12 design requirements, and once these design specifications are reached, the optimisa-
tion terminates. Considering the dimensionality, engineering problems with larger than
100 design variables in real-world practice are rare as they are routinely decomposed
into small sub-problems. The 62 design variable case study also investigates a new EM
design methodology, a variant of digitally coded antennas. By randomly changing the
vertical positions of microstrip patch units, novel shapes can be formed with a signi-
ficant level of freedom to satisfy specific design specifications. Therefore, the number
of design variables is high in this specific case study. The second test problem has one
optimisation objective. Their details are shown in Subsection 5.2 and 5.4.
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In the following sections, test problems F1-F6 are used to carry out experiments. All ex-
periments are conducted on a workstation with an AMD Ryzen™ Threadripper™ PRO
(2.7GHz) CPU and an NVIDIA® RTX™ A4000 GPU. 80 MATLAB parallel workers
are available for GP/BNN-based surrogate model training.

3.4 Characteristics of BNN prediction and its co-
work with prescreening methods

3.4.1 Characteristics of BNN prediction

In this subsection, the prediction accuracy and uncertainty quantification of the BNN
model are investigated. GP is considered as the reference surrogate. First, under the
SMAS framework, the LCB prescreening method is used with ω = 2 after the GP
surrogate model prediction. Twenty optimisation experiments are carried out for F1-
F4. As F1-F4 shows the same conclusion, a typical optimisation convergence trend
from F1 is selected, and the population in each iteration throughout the convergence
is obtained as the data to be analysed. Due to the unaffordable computation cost for
F5 and F6 here, where more than 1000 EM simulations for each run are needed, these
two test cases are not included in this experiment.

Figure 3.3a shows the trends of averaged Euclidean distance between the predicted
value of each candidate solution and its true function value in the parent population
of each iteration throughout the optimisation convergence. The plotting rule applies to
both GP prediction and BNN prediction using the same training data set. Figure 3.3b
shows the smoothed curve of Figure 3.3a using a moving average filter with a span 20.
Figure 3.3c shows the prediction uncertainty quantification, as described by standard
deviation.

From the plots, the following can be observed. (1) As for the predicted values, the
prediction accuracy of the GP model and BNN model are comparable throughout the
optimisation. However, GP shows a slight advantage. This can be explained as when the
number of training samples is less than sufficient for BNN training, particularly at the
beginning phase, the GP model slightly outperforms the BNN model in prediction for
having a more solid mathematical background. When the number of training samples
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Figure 3.3: GP and BNN predicted values and prediction uncertainty comparison using
the F1 test problem.

increases in the later iterations, the prediction accuracy of BNN predictions improves
relatively compared to that of GP; (2) In regards to the prediction uncertainty quan-
tification, the GP and BNN models show a similar trend throughout the optimisation
process. This tendency can be explained as the exploration capability dominating at
the early stage of the optimisation, so the prediction uncertainty is high, while at the
late stage of the optimisation, it is converging, and the samples are close to each other.
Note that the standard deviations of BNN predictions are much less than that of GP
predictions. Given that the capability of GP prediction uncertainty is widely recog-
nised and is proved by many successful SAEA applications and given that the similar
tendency in Figure 3.3c being observed, the BNN prediction uncertainty is likely to
be helpful in prescreening under SAEAs. The standard deviations with a similar trend
but different magnitude open the investigation of the co-work of BNN and prescreening
methods.
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3.4.2 The characteristics of the BNN model working with pre-
screening methods

Prescreening methods make use of prediction uncertainty quantification to promote
exploration. The three most widely used prescreening methods are EI, PI, and LCB,
which are investigated in this subsection. EI and PI do not have hyperparameters
involved, and their extents of exploration are fixed. LCB, however, has a variable
coefficient, ω, which determines the extent of the exploration. In this subsection, (1)
for the global optimisation, the characteristics of avoiding premature convergence by
the BNN as the surrogate model under SAEAs when it comes to working with the
prescreening methods, and (2) the exploration performance of the BNN surrogate model
under SAEAs when it comes to working with EI, PI and LCB, are investigated.

First, the metric for success rate is defined before the empirical studies. Often, the av-
eraged convergence curves over several runs are used to compare different algorithms
in the SAEA domain. It is assumed that premature convergence in some optimisation
can be reflected by the averaged convergence curve to have a worse averaged fitness
value and slow convergence. Despite being correct and used in some cases (e.g., F4
and F6, in this chapter), the background of simulation-based engineering design op-
timisation, which is a primary resource for computationally expensive optimisation, is
supplemented for discussion below.

In engineering design, the primary goal is to meet the preset design specifications. Oth-
erwise, the convergence trend is not valuable for the quantitative convergence investig-
ation if the design requirements are not satisfied for a long time. Here, we define success
rate as the percentage of repeated runs that end up satisfying the preset design require-
ments. Therefore, for example, in practical engineering optimisation, an algorithm that
converges slowly but has a high success rate (e.g., 90%) is superior to others with much
faster convergence but a low success rate (e.g., 60%). Considering the design require-
ments and success rate, we set threshold values for F1, F2, F3, and F5. When a run
reaches the threshold value, it is considered a successful optimisation. The success rates
are considered in comparisons.

For F1 and F2, the threshold value is set to be 0.5, assuming that reaching a value
below 0.5 satisfies the Ackley and Griewank functions. F3, which is originally from the
CEC 2011 competition (Das and Suganthan 2010), is the aggregation of several array
performances. Although each performance has a separate specification in real practice,
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the overall fitness value −20 is used as the threshold as designs with function values less
than −20 usually have acceptable values for all specifications. F4 is a uni-modal prob-
lem, and a sufficient number of iterations is allowed, so no threshold is necessary for
this case. F5 is a practical antenna design problem, and it has multiple design require-
ments simultaneously. F6 is an open research question that explores novel designs that
can possibly lead to maximum bandwidth, so it has a single design objective function,
and no threshold is used in this case either.

For LCB, the value of ω trades off the exploration capability and convergence efficiency.
Regarding the value of ω to represent the performance of LCB with the BNN model,
a parametric sweeping for the value of ω is carried out from 0, using 0.5 as the step
size, and finding the smallest possible value of ω, which theoretically has the best
convergence efficiency, that has over 90% success rate for F1, F2, F3 and F5. As such,
the obtained ω leads to sufficient but not excessive exploration capability. ω is set to 0
for F4 as it is uni-modal, and for F6 as it is an open research problem, and the antenna
design problem formation already allows certain levels of exploration, and practically,
using ω = 0 already obtains promising findings from the microwave engineering point
of view.

Table 3.2: Performance of EI, PI and LCB when co-working with BNN

Problem Method Best Worst Mean Std
EI 2.2624 4.0267 3.0715 0.4405

F1 PI 1.6517 3.7445 2.9653 0.4988
LCB 0.1113 0.5953 0.2668 0.1267
EI 0.7544 1.0109 0.9318 0.0695

F2 PI 0.5110 0.9954 0.9036 0.1170
LCB 0.0311 0.7661 0.3321 0.2812
EI -21.5800 -13.4888 -19.2204 3.1050

F3 PI -21.5099 -10.5363 -18.9222 4.1176
LCB -21.6270 -12.9220 -20.9069 1.9572
EI 0.0814 0.2390 0.1495 0.0409

F4 PI 0.0893 0.2045 0.1446 0.0322
LCB 0.0557 0.2130 0.1339 0.0462

F1-F4 are used to compare EI, PI, and LCB with the ω obtained by the above criteria,
and 20 optimisation runs are carried out. Figure 3.4 shows the averaged convergence
curves. Because the properties of various prescreening methods are studied when co-
working with the BNN model, instead of observing the same number of function evalu-
ations, the results after convergence are needed. Therefore, Hopkins test (Hopkins and
Skellam 1954) is introduced as the stopping criterion for F1-F4, and the optimisation
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Figure 3.4: Performance comparisons among LCB, EI and PI working with BNN (av-
erage of 20 runs, and only successful runs are drawn. All success rates are higher than
90%.)

terminates when the H-measure values reach 0.995. This leads to different iterations
and function evaluations for each alternative. On the other hand, for comparison pur-
poses, the statistical results shown in Table 3.2 utilise the standard stopping criterion
determined by the number of iterations of the fastest converging method.

The following can be observed from the experiment results. (1) The BNN-assisted
SAEA obtains high-performance results when co-working with all three prescreening
methods. According to Figure 3.4 and Table II, the obtained solutions are close to the
global optimum or the desired fitness value when H-measure values reach 0.995. (2)
Co-working with LCB performs better than EI and PI when using an appropriate ω.
(3) Using the BNN as the surrogate model, when ω is set as 0.5, success rates for F1, F2
and F3 are 100%, 100% and 95%, respectively. F4 is a uni-modal problem, so optim-
isation should always be successful. This indicates that the magnitudes of prediction
uncertainty of BNN are not too little for SAEAs to carry out global optimisation.
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3.5 Comparison of BNN, GP and the NNDO method
in SAEA

This subsection empirically compares the BNN model with other popular machine
learning alternatives under SAEAs. In Chapter 1, GP models, RBF models, ANN
models with the NNDO method and ensemble methods are reviewed as frequently
used machine learning alternatives. Among them, the RBF model is not included in
the comparison as the RBF model, as discussed in Section 3.3, cannot provide pre-
diction uncertainty quantification for each candidate solution, which highly influences
the exploration ability of an SAEA. Hence, many successful RBF-based SAEAs need
ad-hoc supplements to “generate” prediction uncertainty (Qin et al. 2021). There are
various ensemble methods, and the design is ad-hoc. Although ensemble methods with
various algorithms are possible for SAEAs, this thesis discusses and compares the char-
acteristics of a single machine learning alternative. The NNDO method is popular in
the machine learning domain (Hara et al. 2016). Therefore, GP models and the NNDO
methods are selected as the machine learning alternative for the comparison.

With the test problems selected in Section 3.3 and the SMAS framework introduced in
Chapter 4, LCB is used for BNN, GP and the NNDO method, and the idea mentioned
in Section 3.4 is borrowed. For each problem, carry out a parametric sweep for the value
of ω, starting from 0, with increments of 0.5 until the success rate reaches 90%. In this
case, the obtained value of ω provides sufficient but not excessive exploration capability.
In other words, the obtained ω does not significantly slow the convergence for these
particular problems. The values of ω for F1-F6 and the machine learning alternatives
are obtained through case-by-case experiments and thus are case-dependent. The ω

values are fixed for the test problems and for various machine learning alternatives,
and the convergence efficiency and the quality of the optimal solutions are obtained
for statistical comparison.

With respect to settings and hyperparameters, for GP models, standard GP (Rasmussen
and Williams 2006) is used in the section. Sparse GP (Bauer et al. 2016) or similar
methods are not used as they sacrifice the prediction accuracy, while TP (Shah et al.
2013) is not used as it does not address the issue of the high training cost of GP
modelling. For the NNDO method, the ANN structure is similar to that of BNN, and
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the dropout rate is 0.2, as suggested by (Gal and Ghahramani 2016). Considering the
computing cost, 20 optimisation runs are carried out for F1-F4, and 10 optimisation
runs for F4 and F5. More optimisation runs are unaffordable as real EM simulations
are used for F5 and F6, and they cost more than two months on multiple workstations.

Hopkins test (Hopkins and Skellam 1954) is applied as the stopping criterion for F1, F2,
F3 and F4, and the optimisation terminates when the H-measure values reach 0.995.
For the real-world problem F5, the satisfaction of the design requirements is considered
the stopping criterion. For the real-world problem F6, a computation budget of 1250
EM simulations is given to the optimisation as the stopping criterion. Considering
that there are 62 design variables, it is unaffordable to use a high H-measure value.
Given that the problem does not have design specifications, satisfactory results can be
obtained using 1250 EM simulations from a microwave engineering point of view.

Table 3.3: Comparison between GP and BNN as surrogate models

Problem Method Best Worst Mean Std
F1 BNN 0.1113 0.5953 0.2668 0.1267

GP 0.3237 3.3887 1.7409 0.9379
F2 BNN 0.0311 0.7661 0.3321 0.2812

GP 0.0240 0.9311 0.2341 0.2843
F3 BNN -21.6270 -12.9220 -20.9069 1.9572

GP -21.3830 -8.6491 -16.6069 5.0281
F4 BNN 0.0557 0.2130 0.1339 0.0462

GP 0.0567 0.1698 0.1124 0.0345
F5 BNN 641 1567 1126.1 274.1

GP 1196 3016 2230.9 610.9
F6 BNN -60.7676 -55.0107 -58.4222 1.6082

GP N.A. N.A. N.A. N.A.

1 For F5, the shown values are the number of EM simulations needed to meet the
design specifications. For other test problems, the shown values are the fitness values
when the computation budget is exhausted. The computation budget is decided by
the faster-converging alternative.
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(a) BNN versus GP (F1).

0 100 200 300 400 500 600 700

Number of function evaluations

0

2

4

6

8

10

12

14

16

C
u

rr
en

t 
b

es
t 

fi
tn

es
s

BNN (  = 0.5 for LCB)
GP (  = 0.5 for LCB)

(b) BNN versus GP (F2).

0 1000 2000 3000 4000 5000 6000 7000 8000

Number of function evaluations

-20

-15

-10

-5

0

C
u

rr
en

t 
b

es
t 

fi
tn

es
s

BNN (  = 0.5 for LCB)
GP (  = 0.5 for LCB)

(c) BNN versus GP (F3).
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(d) BNN versus GP (F4).
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(e) BNN versus GP (F5).
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Figure 3.5: Performance comparison between BNN and GP (Only the average of suc-
cessful runs are drawn. All success rates are higher than 90%.)
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3.5.1 Comparison between BNN and GP models

For the comparison between BNN model and the GP model, Figure 3.5 shows the
convergence trends with the stopping criterion mentioned above. Table 3.3 shows the
statistics, in which, except for F5, which compares the number of function evaluations
to satisfy the constraints, for all other problems, the number of function evaluations
of the faster-converging alternative is specified for both alternatives to compare the
fitness values. The simulation and training time are shown in Table 3.4, considering
the convergence of both alternatives.

The following can be observed from the test results. (1) Under the SMAS framework,
SAEAs with the BNN model and GP model as the surrogate can obtain promising res-
ults for all the test problems but F6, for which GP training is unaffordable. (2) Among
the multi-modal mathematical benchmark problems, BNN shows a clear advantage for
F1 – approximately 20% less function evaluations needed for convergence – over GP
and comparable performance for F2 to GP. (3) Among multi-modal real-world prob-
lems, BNN shows a clear advantage over GP – more than 50% less function evaluations
for F3 and F5. (4) For the uni-modal problem F4, BNN shows a slightly slower conver-
gence speed than that of GP. (5) Regarding the cost of training, GP has advantages for
low-dimensional problems (i.e., F1, F2, F3). On the other hand, for high-dimensional
problems like F4, which has 30 decision variables, the GP training cost is much worse
than that of BNN due to the “curse of dimensionality”. Furthermore, when there are
multiple sub-functions to learn in the problem (i.e., F5), separate models need to be
built if GP is the surrogate. For BNN, however, only a single network is needed, which
is much computationally cheaper (see Section 3.2). For F6, as it has 62 decision vari-
ables, which is many, modelling with GP is unaffordable, while modelling with BNN
still works in a practical time frame.

BNN’s potential is identified from the above observations. In regards to solution qual-
ity, BNN is comparable to GP. Furthermore, it has the advantage of better convergence
efficiency. This may come from the comparable accuracy and smooth prediction uncer-
tainty of the BNN model compared to the GP model. By primary observation, at the
early stage of the convergence, BNN and GP often show close performance, while BNN
sometimes outperforms GP in the later stage. This can be explained as the comparably
smaller prediction uncertainty decreasing the exploration and increasing the conver-
gence efficiency. Fortunately, it is still sufficient in the later stage of the optimisation
to avoid premature convergence.
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On the other hand, when decreasing the values of ω for GP and BNN leads to a
decreased success rate. This is evidenced by F1 and F5, where the success rate can
drop to 70% with a smaller ω value for GP. This is also demonstrated in Figure 3.3c in
Subsection 3.4. When dividing the prediction uncertainty values of GP to match the
late-stage convergence characteristics of the BNN model, the uncertainty at the middle
stage is still unnecessarily large if assuming that of BNN is sufficient. Therefore, an
assumption can be made as follows: the prediction uncertainty quantification of BNN
is advantageous compared to that of GP when being used as the surrogate in some
SAEAs.

Table 3.5: Comparison between ANN with drop-out and BNN as surrogate models

Problem Method Best Worst Mean Std
F1 BNN 0.1113 0.5953 0.2668 0.1267

NNDO 2.6145 5.1328 3.9813 0.7870
F2 BNN 0.0311 0.7661 0.3321 0.2812

NNDO 0.7710 1.0850 0.9867 0.0884
F3 BNN -21.6270 -12.9220 -20.9069 1.9572

NNDO -21.1786 -12.7178 -14.8973 2.6706
F4 BNN 0.0557 0.2130 0.1339 0.0462

NNDO 0.1839 0.3572 0.2534 0.0433
F5 BNN 641 1567 1126.1 274.1

NNDO 1057 4600 2238.3 1272.3
F6 BNN -60.7676 -55.0107 -58.4222 1.6082

NNDO -60.5544 -52.3454 -57.3454 2.9107

1 For F5, the shown values are the number of EM simulations needed to meet the
design specifications. For other test problems, the shown values are the fitness values
when the computation budget is exhausted. The computation budget is decided by
the faster-converging alternative.

3.5.2 Comparison between BNN and the NNDO method

The NNDO method is popular in the deep learning domain, and it is widely used for
Bayesian optimisation and discussed by the machine learning community (Gal and
Ghahramani 2016). However, BNN is considered computationally expensive regarding
the cost of training (Jia et al. 2020). Fortunately, BNN is computationally expensive,
mainly under the background of deep networks involving large training datasets. In
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Figure 3.6: Performance comparison between BNN and NNDO (Only the average of
successful runs are drawn. All success rates are higher than 90%.)
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contrast, the surrogate model training under SAEAs ought to be done with “small”
data rather than big data. In fact, the main reason such optimisation problems need
SAEAs is that their function evaluations are computationally expensive; thus, hav-
ing large datasets is impossible in the first place. Hence, the comparison between the
performance of BNN and NNDO under SAEAs is presented. The comparison and the
computation budget are the same as in Subsection 3.5.1. Figure 3.6 shows the conver-
gence trends, and Table 3.5 shows the corresponding statistics. Table 3.6 shows the
simulation and training time.
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Figure 3.7: NNDO and BNN predicted values and prediction uncertainty comparison
using the F1 test problem.

The test results show that the convergence efficiency of the NNDO method is worse
than that of BNN and GP for all test problems. This can be explained with the predic-
tion accuracy and prediction uncertainty quantification experiments. Similar to Section
3.4, for the NNDO method, similar to the experiment in Subsection 3.4.1, Figure 3.7a
shows the averaged Euclidean distance between the predicted value of each candidate
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solution and its true function value in the parent population of each iteration through-
out the optimisation convergence and Figure 3.7b shows the prediction uncertainty
quantification as described by the standard deviation. A typical run of F1 is used
similar to Subsection 3.4.1.

From the experiment, it can be observed that the predicted values and prediction
uncertainty quantification of the NNDO method are much worse than those of the
BNN model. This might be because it is not fully validated mathematically and of
less rigour for the NNDO method (Folgoc et al. 2021) compared to BNN, although the
NNDO method can also be considered as an ensemble. Regarding the cost of training,
both methods show similar performance. The total training time of NNDO in Table 3.6
is long because more iterations are needed. Therefore, under the SAEA background,
the BNN model works better than the NNDO method as a surrogate.

3.5.3 Comparison discussion

In conclusion, the BNN model has good performance for all three critical factors,
(1) surrogate model prediction accuracy, (2) the availability of prediction uncertainty
quantification, and (3) the cost of training, while one of them is often a challenge for
existing popular machine learning alternatives as surrogate under SAEAs. Regarding
prediction accuracy, BNN is comparable to GP based on the experiments. However,
empirically, its prediction uncertainty yields better convergence performance than the
GP model under the SMAS framework. Regarding the cost of training, using BNN
handles the training time issue of GP when the dimensionality is large. Compared
to RBF, the primary advantage of BNN is the availability of prediction uncertainty
estimation. Although the cost of training for BNN is larger than that of RBF, it is
acceptable in practice even when the dimensionality is large. The major challenge of
the NNDO method is the quality of prediction accuracy and prediction uncertainty
estimation, and BNN outperforms the NNDO in this aspect.

Therefore, although BNN is not the best in prediction accuracy and training cost, BNN
is competitive when used in SAEAs thanks to its good performance in all three critical
factors and its high quality in prediction uncertainty quantification.
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The above observations are based on a typical SAEA framework and six test problems,
and they are carefully selected. Hence, it is too early to provide a complete conclusion
about the superiority of the BNN model as a surrogate model for all, which is not the
purpose of this research. Instead, the aim is to demonstrate the potential of BNN, which
is largely overlooked in the SAEA community, and to inspire investigations considering
various SAEA frameworks and test problems.



Chapter 4

Bayesian neural network based
self-adaptive surrogate

model-assisted evolutionary
algorithm for antenna design

exploration

Based on the behavioural study of Bayesian neural networks discussed in Chapter 3,
this chapter introduces a surrogate model-assisted evolutionary algorithm for antenna
design exploration based on Bayesian neural networks. Section 4.1 introduces the overall
flow of the algorithm framework. The details of its two major innovations are introduced
in the following sections. Section 4.2 introduces the way Bayesian neural networks are
applied to the proposed algorithm and illustrates the performance of the Bayesian
neural networks with a pilot experiment. The proposed algorithm also utilises a self-
adaptive lower confidence bound method for the prescreening, which is discussed in
details in Section 4.3. By the end of the Chapter, Section 4.4 lists all the parameters
involved in the algorithm.
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4.1 The algorithm framework

In Chapter 3, the properties of BNN are illustrated through comparisons with other
popular machine learning surrogate alternatives for SAEAs. As in Chapter 3, the SMAS
framework (Liu et al. 2013, 2014d) is selected as a typical one and employed in this
thesis as one of the most important building block of the proposed framework – SB-
SADEA. The proposed framework should work universally for different antenna cases
with various number of design variables and design specifications. Figure 4.1 shows the
SB-SADEA framework, and a brief description is as follows.

Population 

initialisation

Stopping criterion?

Output

Obtain the λ best 

designs

DE operations

BNN-based 

modelling

Obtain the most 

promising design

EM simulation

Yes
Self-adaptive LCB 

prescreening
No

Obtain training data

Start

Figure 4.1: Flow diagram of the SMAS framework
Step 1: Obtain α candidate designs from the design space [LB,UB]d (LB and UB

are the lower and upper bounds of the design variables, respectively) using Latin
Hypercube sampling (Stein 1987; Queipo et al. 2005) and carry out EM simu-
lation to obtain their performance values. Eventually, these samples form the
initial population database.

Step 2: If a preset stopping criterion is met (e.g., satisfied antenna design specifica-
tions, exhausted computation budgets), output the current best candidate design
from the population database; otherwise, go to Step 3.

Step 3: Obtain the λ best candidate designs from the population database to form
a parent population P .
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Step 4: Apply the DE/current-to-best/1 operator (Storn and Price 1997) on P to
generate λ child solutions.

Step 5: For each child solution, obtain τ nearest samples (based on Euclidean dis-
tance) from the database as the training samples and train a BNN-based surrog-
ate model with them (see Section 4.2).

Step 6: Prescreen the child solutions generated in Step 4 using the BNN-based sur-
rogate model and the self-adaptive LCB method (see Section 4.3).

Step 7: Carry out an EM simulation to the estimated best child solution from Step 6.
Append this evaluated candidate design and performance values into the database
as a new sample. Go back to Step 2.

The SMAS framework was introduced to the SAEA domain in 2013 (Liu et al. 2013).
SMAS aims to improve the appropriateness of the locations of training samples and
to utilise the population database better to improve prediction accuracy. Because the
λ current best candidate solutions determine the current population in each iteration,
the search is guided to the promising region of the optimisation space. As only one
candidate solution is modified in the parent population in each iteration, the suggested
best candidate in the child solutions in several consecutive iterations is assumed to be
closer to each other than using a standard EA parent population updating scheme. The
suggested best candidate solution by prediction is input to the real function evaluation
and thus serves as a training sample in the later iterations. Therefore, the training
samples around the current promising area are likely denser than those in SAEAs
using the standard EA parent population updating scheme, which may spread in wider
regions of the optimisation landscape. Being trained with the same amount of training
samples, the surrogate models are expected to have higher accuracy considering the
samples of these training data points (Liu et al. 2013, 2014d; Akinsolu et al. 2019). On
the other hand, to compensate for the exploration capability, a larger DE scaling factor
is used. The idea of SMAS has been adopted by several recent successful SAEAs, e.g.,
(Yang et al. 2019; Chen et al. 2021; Luo et al. 2018; Zhan and Xing 2021).

The SMAS framework is also known for its engineering applications. Due to “no free
lunch”, all SAEA frameworks have trade-offs between the exploration ability and the
convergence efficiency, which is usually reflected by the number of real function eval-
uations used. Therefore, their performance is different for different characteristics of
the optimisation landscape. SAEAs are mainly used for computationally expensive op-
timisation problems, and a main resource for computationally expensive evaluations
is complex numerical techniques and processes such as finite element analysis (FEA)
to solve PDEs, frequently appearing in engineering design and analysis. Therefore, the
engineering background provides the standards to trade off the exploration ability and
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the convergence efficiency. Although engineering domain knowledge plays an essential
role to support SAEAs, SAEAs borrowing ideas from the SMAS framework show ef-
fectiveness for real-world engineering design, e.g., (Liu et al. 2021; Xue et al. 2022; Liu
et al. 2017a).

The following parameters are used for the SMAS framework according to (Liu et al.
2013, 2014d) is also applied to AB-SADEA. They are: α = 5× d, λ = 5× d, τ = 5× d,
F = 0.8, CR = 0.8, where d is the number of decision variables, F and CR are DE
crossover and mutation rate.

4.2 Bayesian neural network as the surrogate model

BNN is a novel surrogate model under SAEAs, and its data characteristics could be
different from those of GP concerning the predicted values and prediction uncertainty
quantification. A characteristics study of BNN is needed to propose a prescreening
method that can avoid premature convergence and improve the BNN-based model’s
convergence efficiency. Using the compact UWB slotted monopole antenna optimisa-
tion case study in Section 5.1 as an example, to demonstrate the performance of GP
and BNN, Figure 4.2 shows the predicted values and prediction uncertainty for three
sample populations of candidate designs during the early, middle, and late phases of
the optimisation process. The predictions are made on max(|S11|). It can be observed
that:

• Regarding the predicted values, the BNN-based and GP-based models are com-
parable, and both show reasonably high prediction accuracy compared to the
ground truth simulated values considering all three sample populations at differ-
ent phases.

• Regarding the prediction uncertainty quantification, the BNN-based model shows
much lower values than that of GP, and the difference between them is much more
significant during the later phase. For example, when the optimisation is at its
early phase, the BNN prediction uncertainty is roughly at the magnitude of 0.2-
0.3, while the GP prediction uncertainty is roughly at the magnitude of 1.5-2.
During late phase populations, 0.05 for BNN and 0.05 for GP.

Therefore, a different LCB ratio should be used instead of directly borrowing from GP
when BNNs are the surrogate model under SAEAs.
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Figure 4.2: GP and BNN predicted values and prediction uncertainty during early,
middle and late stage of the optimisation (ground truth is from EM simulations).
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Furthermore, following Section 3.2, due to the significantly reduced cost of training for
the BNN, inspired by deeply supervised nets (Lee et al. 2015; Zhou et al. 2018) for image
recognition, an idea we call “fine supervision”is proposed. Often, the antenna response
over the operating band is considered as a whole, and only a maximum or a minimum
is obtained as the antenna performance (e.g., max(|S11|)). By extracting only a point
to represent an array of values on the operating band, much information is omitted. In
the proposed fine supervision, the frequency response curve is separated into several
sections (e.g., by the number of resonances). For each section of the frequency response
curve, its maximum or minimum value is obtained for later use. This is helpful for cases
like UWB antennas whose frequency responses are broad in frequency and are dividable.
In this way, much more information is extracted and included in future model training,
with the cost of the increased number of design specifications. This is a significant
burden for GP modelling as the number of surrogate models linearly increases with the
number of design specifications because GPs output multiple performance predictions
separately. However, for BNN, this is affordable as only the number of neurons in the
output layer is increased. This is discussed in Section 3.2 with asymptotic analysis
and is verified by the quadruple-band 5G mm-wave antenna optimisation case study
in Section 5.2.

4.3 The self-adaptive lower confidence bound mech-
anism

An ad hoc prescreening method (Step 6 in SB-SADEA in Section 4.1) is often needed
for a machine learning core, considering the data characteristics. In this thesis, the
prescreening for the BNN-based surrogate model is analysed. Thanks to the invest-
igation in the above Section 4.2, it is primarily concluded that a different LCB ratio
should be used when the BNN-based surrogate model is used under SAEAs. Usually,
the reason for a surrogate model-assisted antenna global optimisation method to con-
verge into local optima is the lack of exploration ability. In the optimisation theory, the
exploration capability refers to exploring the search region currently unknown to the
search engine, while the exploitation capability refers to searching for the optimum in
the search region with sufficient information. Antenna design optimisation landscapes
are usually multi-modal and highly complex, and thus, strong exploration capability
is required (Akinsolu et al. 2019). Utilising the prediction uncertainty quantification
is essential for exploration, which is why prescreening methods exist. With the predic-
tion uncertainty obtained, widely used prescreening methods including EI (Jones et al.
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1998), PI (Ulmer et al. 2003), and LCB (Dennis and Torczon 1997). However, there
are no hyperparameters controlling the extent of exploration for the popular EI (Jones
et al. 1998) and PI (Ulmer et al. 2003) prescreening methods, but the prediction uncer-
tainty obtained by the BNN-based models is often small. Therefore, it is unsurprising
that using a BNN-based model often leads to premature convergence for antenna cases
compared to the GP model. On the other hand, LCB is the fundamental of the new
prescreening method in this thesis and is introduced as follows. Given the objective
function y(x) has a predictive distribution of N(ŷ(x), ŝ2(x)), an LCB prescreening of
y(x) is:

ylcb(x) = ŷ(x)− ωŝ(x) (4.1)

where ω is a constant and is often set to 2 in many algorithms in the AI domain
(Emmerich et al. 2006), and applies to antenna problems (Liu et al. 2014c). A solution
to the above-mentioned premature convergence issue is to use the LCB prescreening
method (4.1) (Dennis and Torczon 1997), which has a hyperparameter ω involved to
control the extent of exploration. The value of ω can be set to empirical values resulting
from experiments with various antenna design cases, and the recommended value is 14.
Assigning a large value to ω can promote the exploration ability while focusing on
exploration inevitably slows down the convergence, which means more EM simulations
are needed due to no free launch. Therefore, a novel prescreening mechanism to obtain
the appropriate trade-off, called self-adaptive LCB, is proposed. Given the λ current
best candidate designs Pb, and an array S, where Si(i = 1, 2, . . . , k) is assigned with
the smallest distance between the current best candidate design by prediction and
its closed candidate designs in Pb for the i-th iteration, self-adaptive LCB (Step 6 in
SB-SADEA in Section 4.1) works as follows.

Step 1: Obtain the best candidate design xb from the child population generated in
Step 4 of SB-SADEA using the BNN-based model predicted values in Step 5 of
SB-SADEA.

Step 2: Calculate the distance between xb and each individual in Pb and find the
smallest distance, Sk+1.

Step 3: Take the last 10 elements in S to form Sz, z = k − 9, . . . , k, check if Sk+1

from Step 2 is less than S̄z − 0.5 × σSz , where σSz is the standard deviation of
Sz. If yes, go to Step 4; Otherwise, output xb.

Step 4: Prescreen the child population using the LCB method (4.1) with the recom-
mended ω value.

Step 5: Output the best candidate design according to LCB values.

Some explanations are as follows.
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• In order to obtain the most promising candidate design from the child popula-
tion, the self-adaptive LCB method adaptively uses the predicted value by the
BNN models and the LCB prescreened BNN models output values. The former
enables exploitation to improve the convergence speed, while the latter enables
exploration to avoid premature convergence.

• Whether the algorithm has sufficient exploration ability or not highly depends
on the diversity in Pb (Step 3 of SB-SADEA in Section 4.1). Hence, the predicted
values are used when the diversity is reasonably high, while LCB prescreening is
imposed when the diversity is low.

• The metric of determining the extent of introduced diversity is to compare the
smallest distance to any individual in Pb with those in the ten recent iterations.
Assuming Si(i = 1, 2, . . . , k) is Gaussian distributed, the 0.5× σ value is used as
the threshold to find those introducing low diversity to Pb when using them. The
diversity is considered low when the closest distance is lower than most of those
in the recent iterations and vice versa.

4.4 Parameter Settings

Compared to standard SADEA (Liu et al. 2014c), SB-SADEA only introduces one new
parameter, ω, in the self-adaptive LCB method. In order to determine a good empirical
value for ω, various antennas (from having fewer than ten design variables to having 45
design variables, from having a few specifications to having more than 20 specifications)
are used for the experiments. Resulting from the experiments, ω is suggested to be 14
for convergence efficiency and avoiding premature convergence. Although when using
a smaller value of ω, the two case studies shown in Figure 3.2 can obtain the optimal
design much faster with a 100% success rate, optimisation for some other antennas
can converge to local minima. Our experimental results show that ω = 14 is safe to
use, although, for antennas that are easy to optimise, a less ω can help to improve the
speed. In BNN modelling, the network hyperparameters are pre-decided by the rules
of thumb and do not need the users to alter. For all other parameters, the setting rule
in other SADEA versions is applicable to SB-SADEA as well, which are: α = 4 × d,
λ = 4× d, τ = 4, F = 0.8, CR = 0.8. They are used in all the test cases in Chapters 5
and 6.



Chapter 5

Experimental results and
verification

SB-SADEA is tested against more than ten complex real world antenna optimisation
cases and the conclusion is consistent for different antennas with various characterist-
ics. In this chapter, four of them are investigated and demonstrated in details. Section
5.1 demonstrates the optimisation of an ultra-wide band (UWB) slotted monopole an-
tenna that can be used in microwave imaging (Danjuma et al. 2020). The antenna
has ten design variables and three design specifications. The design optimisation of
this antenna is challenging as it requires proper physical placement and integration
of its antenna structure on a compact dimension, as well as compact components on
the printed circuit board. The computational cost of machine learning using most
methods is often little for antennas with such numbers of design variables and design
specifications. Hence, this case study only aims to test SB-SADEA’s convergence speed
or the number of EM simulations needed to obtain the optimal design when the an-
tenna design specifications are stringent. Section 5.2 demonstrates a quadruple-band
mm-wave antenna for wearable 5G and beyond applications (Ur-Rehman et al. 2018).
It has 20 design variables and 12 design specifications. The design optimisation of a
high-performance 5G mm-wave antenna is often difficult (Khan et al. 2020), and this
case study has particular difficulty due to its low profile, low maintenance, lightweight
and compact size, with a simple off-centred microstrip feeding structure. Furthermore,
maintaining multi-band and high gain operations for body-centric wireless communic-
ations at mm-wave frequencies in wearable conditions increases the design sensitivity
and difficulty. Considering the number of design variables and design specifications,
the computational cost of machine learning can be expensive for the GP-based meth-
ods. This antenna is selected as a typical example of antennas with similar numbers
of design variables and design specifications for SB-SADEA testing. This case study
aims to test SB-SADEA’s performance for its convergence speed and computational
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cost of machine learning. Section 5.3 demonstrates the optimisation of a 5G outdoor
base station antenna (5G-OBSA). The antenna optimisation has 23 design variables
and 18 design specifications. The 5G-OBSA operates in 3.3-5 GHz for 5G commu-
nications and is also applied for dual-linear polarisation base station antenna arrays.
The design optimisation of the 5G-OBSA is challenging as the antenna needs to main-
tain a stable efficiency, realised gain, broadside radiation pattern and beamwidth over
the frequency band of interest. Considering the two-port isolation for the dual linear
polarisation design makes the design even harder. A compact design of such anten-
nas is often preferable in real-world applications, which often require multiple inputs,
multiple outputs (MIMO) and smart-beam performance (Hong et al. 2017). Similarly,
this case study also aims to test SB-SADEA’s performance in terms of convergence
speed and computational cost of machine learning. Section 5.4 demonstrates the op-
timisation of a quasi-digitally coded microstrip patch antenna (Jayasinghe et al. 2015).
This is a 62-dimensional antenna optimisation problem. The training cost of using the
previous methods is unaffordable and thus the major challenge of the optimisation.
Engineering optimisation problems with more than 100 design variables are rare, as
such designs are usually decomposed into sub-problems before solving them. There-
fore, the optimisation of a 62-D antenna design practically shows the performance of
the proposed method when optimising a very high-dimensional but possible antenna
design. This case study mainly aims to demonstrate the cost of machine learning when
the optimisation dimensionality is very high.

As no initial designs are provided for all four antenna cases, the search ranges for the
design exploration are relatively wide and restricted by compact size specifications in
certain case studies. The SADEA series is a series of stochastic algorithms, and more
than five independent runs are carried out for all four case studies. P-SADEA (Akinsolu
et al. 2019) is selected as the reference algorithm for case study 1, and TR-SADEA
(Liu et al. 2021) is selected as the reference algorithm for case studies 2 and 3. PSO,
one of the most popular EAs for antenna design exploration, is also used as a reference
algorithm for case studies 2 and 3.

The experiments are conducted on a workstation with an AMD Ryzen™ Threadripper™

PRO (2.7GHz) and an NVIDIA® RTX™ A4000 GPU. 80 MATLAB parallel workers
are activated for GP/BNN-based surrogate model training.
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5.1 Case study 1: Compact UWB slotted monopole
antenna optimisation

5.1.1 Engineering background

Figure 5.1 shows an illustrative layout of the slotted monopole antenna. The antenna
is implemented on an FR-4 substrate with a relative permittivity of 4.4, a loss tangent
of 0.02, and a thickness of 0.8 mm. It comprises two uniform rectangular metal planes
separated by the microstrip line and a driven circular patch radiator. Two slots are
fused at the centre of the driven circular patch radiator to form a quasi-cross slot, and
the patch slot helps control the current flow on the surface. At the same time, the
rectangular planes play the role of co-planar partial ground.

Figure 5.1: Layout of the compact UWB slotted monopole antenna.

The slotted monopole antenna is modelled and discretised in CST-MWS with over
162,000 mesh cells. Each EM simulation of the antenna takes around 45 seconds on
average. The design variables shown in Figure 5.1 and their search ranges in Table 5.1
are considered for optimising the slotted monopole antenna. The optimisation goal is
to minimise the fitness function, Fmonopole, to satisfy the design specifications shown in
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Table 5.1: Search ranges of the design variables and the optimal design by SB-SADEA
(All sizes in mm)

Parameters Lower bound Upper bound SB-SADEA
Optimum

Circular patch radius (DPR) 2 25 7.14
Substrate width (SW) 2×DPR 3×DPR 14.40
Width of slot throat (SLT) 0 2×DPR 5.77
Vertical slots’ depth (SLV) 0 2×DPR 5.36
Horizontal slots’ depth (SLH) 0 2×DPR 0.79
Microstrip length (ML) RPL 50 26.21
Partial ground plane length (RPL) DPR ML 8.21
Microstrip width (MW) 0.50 7.50 1.20
Microstrip gap (MG) 0 DPR-0.5× MW 0.34
Feed guide width (PW) 6×MW 10×MW 10.68
Substrate width (SL) = ML + 2×DPR + 0.2 (mm)
Partial ground plane width (RPW) = (SW − 2×MG − MW) ÷ 2 (mm)

Table 5.2, mathematically,

Fmonopole =w1 ×max(|S11|+ 10, 0)

+ w2 ×max(Gmax − 3, 0)

+ w3 ×max(1−Gmin, 0)

(5.1)

where w1, w2 and w3 are the penalty coefficients set to 1, 50 and 50, respectively. When
the EM simulation performances of the optimal design meet all the design specifications
listed in Table 5.2, Fmonopole is equal to 0. For SB-SADEA and all other reference
methods except PSO, ten independent runs are carried out. Three optimisation runs
are carried out for PSO to verify the efficiency comparison sufficiently.

Table 5.2: Design specifications and the performance of a typical optimal design ob-
tained by SB-SADEA

Item Specification SB-SADEA Optimum
Maximum Reflection Coefficient
(|S11|) (3.1 to 10.6 GHz) ≤ -10 dB -10.13 dB

Maximum Realized Gain (Gmax) ≤ 3 dB 2.90 dB
Minimum Realized Gain (Gmin) ≥ 1 dB 1.19 dB
Table 5.3: Number of EM simulations (average number) used to satisfy the specifica-
tions for different methods

SB-SADEA GP-ALCB FBN-LCB BN-ALCB GP-LCB
ML models BNN GP BNN BNN GP
Fine-supervision Yes No Yes No No
Prescreening AdapLCB AdapLCB LCB AdapLCB LCB
number of EM simulations 924 1262 1329 1104 1991
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Figure 5.2: Convergence trends of slotted monopole antenna optimisation using SB-
SADEA.

5.1.2 Optimisation results and discussion

In all ten optimisation runs, SB-SADEA can satisfy the design specifications shown
in Table 5.2 using an average of 925 EM simulations (11.5 hours). Figure 5.2 shows
the convergence trends. Figure 5.3 shows the simulation performance, including the
reflection coefficient and the realised gain, of a typical optimal design shown in Table
5.2. The antenna size shrinks to approximately 60% compared with a state-of-the-art
reference design (Yeboah-Akowuah et al. 2017).

As discussed earlier, as one of the state-of-the-art algorithms for medium-scale antennas
with stringent specifications, P-SADEA is considered the reference method. P-SADEA
also shows a 100% success rate, but it uses an average of 1575 EM simulations to
satisfy all the specifications. Therefore, SB-SADEA saves approximately 40% of the
EM simulations compared to P-SADEA. Note that compared to standard SADEA
(Liu et al. 2014c), P-SADEA improves the convergence speed at the cost of time con-
sumption at surrogate modelling phase (Akinsolu et al. 2019; Liu et al. 2018) by its
new model management framework. SB-SADEA, however, only utilises the standard
model management framework (Liu et al. 2014c), and the comparison result shows the
effectiveness of BNN-based modelling and self-adaptive LCB techniques. Furthermore,
the surrogate modelling is fully compatible with the model management framework
proposed with P-SADEA, which can form an even faster algorithm.
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Figure 5.3: Response of the optimal design obtained by SB-SADEA

To verify the effectiveness of the BNN-based antenna modelling, including the fine
supervision and the self-adaptive LCB-based prescreening, more comparisons are shown
in Table 5.3. When the GP model is applied, the ω value for LCB is set to 2, as in
other SADEA versions, instead of 14 for the BNN-based model.

The following conclusions can be drawn from Table 5.3: (1) By comparing SB-SADEA
with GP-ALCB when both utilise the self-adaptive LCB-based prescreening, about
25% EM simulations are saved by the BNN-based surrogate modelling compared to
its GP-based counterpart. (2) By comparing SB-SADEA with FBN-LCB when both
utilise the BNN-based surrogate modelling, about 30% EM simulations are saved for the
effectiveness of the self-adaptive LCB prescreening and its co-working with the BNN-
based model. As discussed in Section 4.2, for the BNN-based model, the prediction
uncertainty is less than that of GP, and a larger ω is needed in LCB prescreening to
guarantee a consistent exploration ability, which inevitably slows down the convergence
speed. Hence, the self-adaptive LCB technique is essential for the BNN-based model.
(3) By comparing SB-SADEA with BN-ALCB, when the only difference is the use of
fine supervision, roughly 15% EM simulations are saved, showing the effectiveness of
fine supervision. (4) GP-LCB (i.e., standard SADEA) is the slowest reference algorithm
among all, and SB-SADEA decreases 53% of the necessary EM simulations to obtain
the optimal design, showing the combined effectiveness of the BNN-based antenna
surrogate model and the self-adaptive LCB method.
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In the three PSO runs, the specifications on realised gain are satisfied, but the spe-
cification on max(|S11|) is not, and the average value is -5.2 dB. The failure of the
design optimisation can be attributed to the structure’s compactness and the design
specifications’ stringency. Considering all these comparisons, this case study verifies
the advantages of SB-SADEA in terms of convergence speed.

5.2 Case study 2: Quadruple-band 5G mm-wave an-
tenna optimisation

5.2.1 Engineering background

This antenna is designed to present a quadruple-band operation with significant band
discrimination and high gain at mm-wave frequencies of 28 GHz, 38 GHz, 50 GHz, and
60 GHz. The design goals for all four operating bands mentioned include achieving a
minimum realised gain of 4.5 dB and a minimum total efficiency of 80%. This low-
profile antenna uses a patch geometry combining a squared patch with an L- and an
F-shaped slot on a Rogers RT/Duroid 5880 substrate of 0.254 mm thickness, a loss
tangent of 0.0009, and a relative permittivity of 2.2. Moreover, the single layer 5.1 mm
× 5 mm × 0.254 mm antenna is excited by a 50Ω off-centred single-feed microstrip line.
As shown in Figure 5.4, the slots positioned close to the patch edges make the current
mostly concentric there and yield inductive and capacitive sensing effects, resulting in
the multi-frequency operation (Ur-Rehman et al. 2018).

The quadruple-band mm-wave antenna is modelled and discretised in CST-MWS with
nearly 300,000 mesh cells in total. Each EM simulation costs about 2.2 minutes on
average. For the optimisation of the targeted antenna, there are 20 design variables
and the they are shown in Figure 5.4 and listed in Table 5.4 along with their search
ranges. There are 12 design specifications and the optimisation goal is to minimise
the fitness function, Fmm-wave, to satisfy the design specifications shown in Table 5.5,
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Figure 5.4: The layout of the quadruple-band 5G mm-wave antenna.

mathematically,

Fmm-wave =
4∑

i=1

w1 ×max(|Si
11|+ 10, 0)

+
4∑

i=1

w2 ×max(4.5−Gi
min, 0)

+
4∑

i=1

w3 ×max(0.8− Ei
total, 0)

(5.2)

where i is the index for the current frequency band out of the 4 frequency bands.
and Si

11(x), Gi
min(x) and Ei

total(x) are the S-parameters, minimum gain and the total
efficiency given an antenna structure x, within the i-th operating band, respectively.
w1, w2 and w3 are the penalty coefficients set to 1, 50 and 50, respectively. When all
the design specifications in Table 5.5 are satisfied, Fmm-wave is equal to 0.
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Table 5.4: Search ranges of the design variables and a typical optimal design obtained
by SB-SADEA (All sizes in mm)

Variable Lower bound Upper bound SB-SADEA Optimum
slot1_w 0 3 0.059
slot2_w 0 3 0.72
slot3_w 0 3 0.033
slot4_w 0 3 2.23
slot5_w -3 0.2 -0.71
slot6_w -3 0.2 -0.081
slot7_w -2.2 0.9 -1.34

slot7_offset 0 2.5 2.24
feedw 0.1 0.45 0.18

feed_offset 0 3-feedw 0.017
slot1_l 0 3 0.18
slot2_l 0 3 1.98
slot3_l 0 3 1.95
slot4_l 0 3 0.60
slot5_l 0 3 1.40
slot6_l 0 3 2.15
slot7_l 0 3 0.87

feed_tol 0 3 2.02
patchl 0.5 4.3 4.26

patchw 0.5 5 4.55

5.2.2 Optimisation results and discussion

Five independent runs of optimisation experiments are carried out to test the proposed
SB-SADEA. They all satisfy the design specifications listed in Table 5.5, with an aver-
age of approximately 1,200 EM simulations. Figure 5.5 shows the convergence trends
of the five optimisation runs. Figure 5.6 shows the reflection coefficient, the realised
gain, and the total efficiency of a typical optimal design in Table 5.4, obtained using
SB-SADEA.

As discussed earlier, TR-SADEA (Liu et al. 2021) is selected as the reference optim-
isation algorithm. In all five runs, although TR-SADEA achieves a 100% success rate
as well, it utilises an average of 2426 EM simulations, which doubles that of using
SB-SADEA. Hence, SB-SADEA decreases the number of EM simulations of the op-
timisation by more than 50% compared to TR-SADEA in this case study, verifying
the advantages in convergence speed again.
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Table 5.5: Design specifications and the performance of a typical optimal design ob-
tained by SB-SADEA

Items Specification SB-SADEA Optimum
Maximum in-band reflection coefficients
(|S11|) (27.75 to 28.25 GHz) ≤ -10 dB -12.28 dB

Maximum in-band reflection coefficients
(|S11|) (37.75 to 38.25 GHz) ≤ -10 dB -13.04 dB

Maximum in-band reflection coefficients
(|S11|) (49.75 to 50.25 GHz) ≤ -10 dB -10.54 dB

Maximum in-band reflection coefficients
(|S11|) (59.75 to 60.25 GHz) ≤ -10 dB -16.18 dB

Minimum in-band realised gain
(Gmin) (27.75 to 28.25 GHz) ≥ 4.5 dB 5.67 dB

Minimum in-band realised gain
(Gmin) (37.75 to 38.25 GHz) ≥ 4.5 dB 4.88 dB

Minimum in-band realised gain
(Gmin) (49.75 to 50.25 GHz) ≥ 4.5 dB 6.75 dB

Minimum in-band realised gain
(Gmin) (59.75 to 60.25 GHz) ≥ 4.5 dB 7.01 dB

Minimum in-band total efficiency
(Etot) (27.75 to 28.25 GHz) ≥ 80% 82.4%

Minimum in-band total efficiency
(Etot) (37.75 to 38.25 GHz) ≥ 80% 86.2%

Minimum in-band total efficiency
(Etot) (49.75 to 50.25 GHz) ≥ 80% 84.4%

Minimum in-band total efficiency
(Etot) (59.75 to 60.25 GHz) ≥ 80% 89.3%

Also, this case study compares the training cost of machine learning of SB-SADEA
with TR-SADEA. As introduced in Section 1.5, TR-SADEA is proposed specifically for
antennas with many design variables, at which GP modelling time becomes a challenge
due to “curse of dimensionality”. With its GP model sharing mechanism applied, TR-
SADEA often reduces the time consumption in the surrogate modelling phase by 90%
(Liu et al. 2021), particularly when the number of design variables is very high. Still, for
the targeted antenna in this case study, an average of over 426,000 GP surrogate models
are built and trained during the optimisation using TR-SADEA, taking 12.0 hours on
average. By using TR-SADEA, this time consumption is practical but not desirable.
With BNN-based surrogate modelling applied in SB-SADEA, the surrogate modelling
training phase in the optimisation only takes an average of 1.6 hours. Table 5.6 shows
the number of EM simulations used, the number of surrogate models trained, and the
total time consumption for both methods. The data in the table are all averaged values
of the five independent runs. The significant reduction in the training cost of machine
learning of SB-SADEA is also highlighted in the table. The total optimisation time
decreased by more than half compared to the referenced method, TR-SADEA.
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Figure 5.5: Convergence trends of SB-SADEA (5 runs).

Table 5.6: Comparison between SB-SADEA and TR-SADEA (average values)

SB-SADEA TR-SADEA
ML models BNN GP (model sharing)
Fine-supervision Yes Yes
Prescreening AdapLCB LCB
Number of surrogate models 102,000 426,000
Modelling time (hours) 1.6 12.0
Number of EM simulations 1202 2426
Total optimisation time (hours) 48.5 104.3

Using DE, the optimisation experiments are carried out for the quadruple-band 5G
mm-wave antenna. After two weeks of optimisation, all the reflection coefficient spe-
cifications are still being optimised, and only half of the gain and total efficiency
specifications are satisfied. A longer run may improve the performance, but the op-
timisation time should be shorter for practical use. Considering all the evidence from
the comparisons, this case study verifies the advantages of SB-SADEA regarding the
number of EM simulations needed and the training cost of machine learning.

As the quadruple-band 5G mm-wave antenna optimisation also serves as the F5 of the
test problems, more experiments and discussion are also in Chapter 3.
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(b) Realised gain of the optimal design
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(c) Total efficiency of the optimal design

Figure 5.6: Responses of the optimal design obtained by SB-SADEA

5.3 Case study 3: 5-G outdoor base station antenna
optimisation

5.3.1 Engineering background

Figure 5.7 shows the layout of the 5-G outdoor base station antenna (5G-OBSA). The
antenna consists of one double oval-shaped radiator, two Γ-shaped feeding structures
and one reflector. The radiator and the feeding structures are printed on a 0.8-mm-thick
FR-4 substrate with relative permittivity of 4.4 and a loss tangent of 0.02. The crossed-
dipole arms are arranged diagonally on the substrate to ensure a ±45 polarisation, with
each arm having inner and outer oval geometries. The Γ-shaped feeding structures are
printed on the substrate, and the two patches serve as the ground plane at the back of
the substrate. The inner coaxial cable is connected to the Γ-shaped feeding structure,
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(a) 3D view of the overall 5-G outdoor base station antenna structure.
This figure is a screenshot from CST-MWS.

(b) Crossed-dipole radiator.

(c) Front view of the feeding structures. (d) Back view of the feeding structures.

Figure 5.7: 5-G outdoor base station antenna illustration. This figure is modified from
(Liu et al. 2021).
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while the outer coaxial cable is connected to the patches. The two Γ-shaped feeding
structure middle parts are designed differently to prevent intersection. By soldering the
two patches to the central radiator and reflector using bumps and rabbets, the reflector
base achieves a more effective unidirectional radiation pattern.

The 5G-OBSA is modelled and discretised in CST-MWS with a mesh density of 15
cells per wavelength so it has approximately 2,630,000 mesh cells in total. An EM
simulation of the 5G-OBSA using the CST-MWS take around 10 minutes on average.

Table 5.7: Search ranges of the design variables and the optimal design by SB-SADEA
(all sizes in mm)

Variables Lower bound Upper bound SB-SADEA optimum
lf1 1.00 10.00 1.95
lf2 1.00 10.00 1.71
lf3 1.00 10.00 3.00
lf4 0.10 1.50 0.14
lf5 0.10 1.50 0.22
lf6 0.10 15.00 4.61
wf2 0.10 1.50 0.97
wf3 0.10 1.50 0.35
wf4 0.10 5.00 2.27
wf5 0.10 5.00 2.53
wf6 0.10 1.50 0.52
gw 0.10 1.50 0.63
ls 16.00 30.00 16.32
x1 7.50 15.00 12.04
b1 3.00 5.00 4.69
t1 0.50 3.00 2.58
x2 3.00 8.00 5.54
b2 0.50 3.00 2.02
t2 0.20 0.80 0.61
g1 1.00 3.00 1.94
g2 1.00 3.00 2.58
wg 5.00 15.00 6.74
rw 60.00 85.00 84.45

Table 5.7 lists the 23 design variables and the search ranges for the 5G-OBSA in this
case study. For the optimisation of the targeted antenna, the design variables shown
in Figure 5.7 are tuned within their search ranges listed in Table 5.7. Eventually, an
optimal antenna design is expected as the output of the case study.
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Table 5.8: Design specifications and the performance of an optimal design

Item Specification SB-SADEA Optimum
Maximum reflection coefficient
(S11) (3.3 to 3.8 GHz) ≤ -10 dB -12.04 dB
Maximum reflection coefficient
(S11) (4.8 to 5.0 GHz) ≤ -10 dB -12.41 dB
Maximum reflection coefficient
(S22) (3.3 to 3.8 GHz) ≤ -10 dB -11.68 dB
Maximum reflection coefficient
(S22) (4.8 to 5.0 GHz) ≤ -10 dB -12.19 dB
Maximum transmission coefficient
(S12) (3.3 to 3.8 GHz) ≤ -20 dB -24.55 dB
Maximum transmission coefficient
(S12) (4.8 to 5.0 GHz) ≤ -20 dB -36.35 dB
Minimum realised gain (G)
(3.3 to 3.8 GHz) ≥ 5 dBi 8.00 dBi
Minimum realised gain (G)
(4.8 to 5.0 GHz) ≥ 5 dBi 7.87 dBi
Minimum front-to-back ratio
(FBR) (3.3 to 3.8 GHz) ≥ 15 dB 15.89 dB
Minimum front-to-back ratio
(FBR) (4.8 to 5.0 GHz) ≥ 15 dB 15.51 dB
Minimum half-power beam-width
(HPBWl) (3.3 to 3.8 GHz) ≥ 60◦ 68.68◦

Maximum half-power beam-width
(HPBWu) (3.3 to 3.8 GHz) ≤ 70◦ 69.81◦

Minimum half-power beam-width
(HPBWl) (4.8 to 5.0 GHz) ≥ 60◦ 66.13◦

Maximum half-power beam-width
(HPBWu) (4.8 to 5.0 GHz) ≤ 70◦ 69.27◦

Number of resonance (NR1)
(3.3 to 3.8 GHz) (if S11 > -10 dB) ≥ 1 Defaulted to 1
Number of resonance (NR1)
(4.8 to 5.0 GHz) (if S11 > -10 dB) ≥ 1 Defaulted to 1
Number of resonance (NR2)
(3.3 to 3.8 GHz) (if S22 > -10 dB) ≥ 1 Defaulted to 1
Number of resonance (NR2)
(4.8 to 5.0 GHz) (if S22 > -10 dB) ≥ 1 Defaulted to 1
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There are 18 design specifications for this antenna and they are listed in Table 5.8.
They include the maximum reflection coefficients (S11, S22 and S12), minimum realised
gains, minimum front-to-back ratio, minimum and maximum half-power beam-width
(HPBW ) and number of resonance (NR1 for S11 and NR2 for S22), along the two
operational bands. In this case study, the optimisation goal is to find an antenna that
satisfies all the design specifications. To form a single-objective optimisation problem,
the 18 design specifications are merged into a single fitness function by obtaining a
weighted summation like mentioned in 2.1. When all design requirements are met, the
fitness function is equal to zero. The fitness function can be expressed mathematically
as

FOBSA =w1

2∑
i=1

[max(|Si
11|+ 10, 0) + max(|Si

22|+ 10, 0) + max(|Si
12|+ 20, 0)]

+ w2

2∑
i=1

[max(5−Gi, 0) + max(15− FBRi, 0) + max(60−HPBW i
l , 0)

+ max(HPBW i
u − 70, 0) + max(1−NRi

1, 0) + max(1−NRi
2, 0)]

(5.3)

where i indicates the i-th band for the dual-band operations of the 5G-OBSA, and w1

and w2 are the penalty coefficients. NRi
1 and NRi

2 are defaulted to be 1 subject to the
conditions that Si

11 ≤ −10dB and Si
22 ≤ −10dB in (5.3) for NRi

1 and NRi
2, respect-

ively. w1 and w2 are set to be 1 and 50, respectively, so that the scale of the weighted
antenna performances are in the same magnitude, and that all design specifications are
considered at the same time with the same priority.

5.3.2 Optimisation results and discussion

Figure 5.8 shows the convergence trends of six runs of independent optimisation the
5G-OBSA using SB-SADEA. All optimisations complete with the specifications listed
in Table 5.8 satisfied. The optimisations complete in 3.5 days on average.

Figure 5.9 illustrates the reflection coefficients, transmission coefficients, realised gains,
front-to-back ratio and half-power beamwidth of the typical optimal design mentioned
in Table 5.8, as well as the design specifications in orange lines. It can be seen that
the specific typical optimal design meets all the design specifications by referencing the
response curves and the design specification lines.
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Figure 5.8: Convergence trends of SB-SADEA (six runs).

5.4 Case study 4: Quasi-digitally coded microstrip
patch antenna optimisation

5.4.1 Engineering background

Figure 5.10 shows an illustrative layout of the quasi-digitally coded microstrip patch
antenna (qDMPA). The qDMPA is constructed on a 46 mm × 57 mm rectangular
substrate with patch shape similar to a rectangular patch resonating in around 2.2
GHz. A 50 Ω coaxial cable is used in the design as the feed. The qDMPA has 62 design
variables, including the vertical shifting values of the microstrip patches and the co-
ordinate position of the feed. As shown in the figure, the small patches can be shifted
on the substrate with a high level of freedom and flexibility, thus the antenna can res-
onates at multiple frequencies (Jayasinghe et al. 2015). Therefore, the microstrip patch
structure are frequently used by researchers to develop multi-band antennas. Also, like
mentioned in Subsection 3.3, such high dimensional design optimisation problem in-
vestigates a new design methodology, which is a variant of digitally coded antennas.
By randomly shifting the coordinate positions of the microstrip patches, novel and
unexpected geometries can be explored in order to satisfy given design specifications.
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(c) Transmission coefficient S12 of the optimal
design
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(d) Realised gain of the optimal design
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(e) Front-to-back ratio of the optimal design
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(f) Half-power beamwidth of the optimal
design

Figure 5.9: Responses of the optimal design obtained by SB-SADEA.
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Table 5.9: Search ranges of the design variables and a known optimal design obtained
by SB-SADEA (All sizes in mm)

No. Lower bound Upper bound Optimum No. Lower bound Upper bound Optimum
1 4 10 7.9894 32 0 50 11.6075
2 -16 -10 -14.8630 33 0 50 29.5680
3 6 10 7.5761 34 0 50 3.6776
4 6 10 9.2878 35 0 50 13.5471
5 0 50 2.4054 36 0 50 14.6753
6 0 50 44.9459 37 0 50 28.1567
7 0 50 0.7049 38 0 50 43.0647
8 0 50 3.1079 39 -0.1 50 35.1182
9 0 50 30.6992 40 -0.1 50 41.9617
10 0 50 27.1247 41 -0.1 50 46.8938
11 0 50 39.9116 42 -0.1 50 38.6010
12 0 50 10.7311 43 -0.1 50 49.9588
13 0 50 26.9734 44 -0.1 50 33.6515
14 0 50 36.3145 45 0 50 8.9116
15 0 50 13.9313 46 -0.1 50 40.5991
16 0 50 39.2651 47 -0.1 50 27.2651
17 0 50 12.5489 48 -0.1 50 2.0558
18 0 50 41.2913 49 -0.1 50 27.5948
19 0 50 43.1333 50 -0.1 50 32.0417
20 0 50 20.0425 51 -0.1 50 1.0926
21 0 50 12.3995 52 -0.1 50 20.7121
22 0 50 24.0298 53 0 50 11.3664
23 0 50 9.3262 54 -0.1 50 30.8450
24 0 50 37.4254 55 -0.1 50 5.9976
25 0 50 1.5851 56 -0.1 50 11.1102
26 0 50 19.6865 57 -0.1 50 13.5843
27 0 50 24.2686 58 -0.1 50 42.04315
28 0 50 39.8887 59 -0.1 50 35.2211
29 0 50 48.5984 60 -0.1 50 4.2611
30 0 50 22.8520 61 0 10 0.6991
31 0 50 22.8337 62 0 9 0.8511
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Figure 5.10: An illustrative layout of the quasi-digitally coded microstrip patch antenna.
This figure is a modified screenshot from CST-MWS.

Table 5.1, lists the design variables for this case study. Amongst the design variables,
No. 1-2 define the coordinate position of the feed, No. 3-4 define the coordinate position
of a freely movable microstrips, No. 5-60 define the coordinate positions of vertically
shifting microstrips patches, and No. 61-62 define the substrate parameters.

In this case study, the optimisation goal is to maximise the percentage of the avail-
able bandwidth within the operational bands. The optimisation problem is expressed
mathematically as

min
AP

− BW (5.4)

where AP denotes the coordinate positions of centres of the microstrip patches and
feed, and BW is the percentage of the available bandwidth, which is the percentage
of bandwidth that has its reflection coefficient values being less or equal to −10 dB.
Search ranges and a known optimum are provided in Table 5.9.
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5.4.2 Optimisation results and discussion

Figure 5.11 shows 10 independent runs of the qDMPA optimisation using SB-SADEA.
All runs converge to less than -55 of fitness value, in approximately 1000 EM simu-
lations. The known best is presented in Table 5.1. According to (5.4), the optimised
fitness value means that the optimised MPAs have at least 55% of available band-
width across the band, which is a satisfying results empirically. As training surrogate
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Figure 5.11: Convergence trends of qDMPA optimisation using SB-SADEA.

model for the case study is unaffordable using GPs, the comparison was only conducted
between BNNs and NNDO. From Table 3.6, optimisation using SB-SADEA saves more
than 8% of the time comparing to using SMAS with NNDO as the surrogate model.

The qDMPA optimisation also serves as benchmark problem F6 of the test problems
in Chapter 3. Detailed comparison and discussion is in Subsection 3.5.2.

Figure 5.12 shows the S-parameter response of the typical optimal design mentioned
in Table 5.9. In the plot, the available bandwidth is marked in orange line, covering
approximately 61% of the band, which is consistent with the optimised fitness value.
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Figure 5.12: S-parameter response of the optimal design obtained by SB-SADEA.



Chapter 6

Applications of SB-SADEA in a
wider scope

The success of the proposed SB-SADEA in antenna global optimisation tasks is due
to its optimisation capability. Theoretically, the landscapes of optimisation problems
in other fields, in essence, are similar to that of the antennas’, if not simpler, despite
having different engineering backgrounds. Moreover, the proposed SB-SADEA is tested
against multiple benchmark functions, making it more likely to be available on gen-
eral optimisation problems. This is to say, the proposed SB-SADEA should work on
antenna optimisation problems and optimisation tasks in a wider scope. This chapter
demonstrates two optimisation case studies not from antenna or R/F fields to show
the proposed SB-SADEA’s optimisation performance on other fields. In Section 6.1, a
supercontinuum generation waveguide optimisation is demonstrated using SB-SADEA.
In Section 6.2, a holistic radar signal processing and recognition system is optimised
using SB-SADEA. Both experiments validate the hypothesis that the proposed SB-
SADEA works on general optimisation problems.
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6.1 Supercontinuum generation waveguide optim-
isation

6.1.1 Engineering background

The optimisation of a supercontinuum generation waveguide here means optimising the
cross-section of an optical waveguide to produce the broadest supercontinuum possible.
In this case study, the waveguide is a structure which guides electromagnetic radiation
in or around the visible spectrum. A supercontinuum is produced when a laser is fired
into the waveguide, and broad-spectrum light is obtained. The ultimate objective of
such waveguides is to make photonic integrated circuits (ICs) similar to silicon ICs but
much smaller and more flexible.

Light interferes with itself constructively and destructively as it bounces around (Pflee-
gor and Mandel 1967), and different intensity patterns are obtained. The intensity pat-
tern is called mode. The higher order the mode is on, the more nodes it has (Caroselli
et al. 2017). The transverse-electric (TE) and transverse-magnetic (TM) modes arise
because the light has perpendicular electric and magnetic components. For the TE
mode, the magnetic component is in the propagation direction; for the TM mode,
the electric component is in the propagation direction. TE and TM modes can have
different properties.

Group velocity dispersion (GVD) describes how light propagation changes with wavelength.
To ensure that the laser pulse disintegrates in the right way, the GVD below 0 is needed
(McKay et al. 2023). As the GVD is related to the effective refractive index, the con-
tributing factors are considered design variables relating to GVD. Theoretically, the
design variables should include the following:

• Wavelength.
• Material refractive index.
• Waveguide cross-section.
• Mode.
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Amongst these factors, the material and its refractive index are fixed. A wavelength of
780 nm is also fixed for the laser and will provide the input wavelength. Therefore, to
optimise the supercontinuum generation waveguide, the waveguide cross-section (i.e.,
waveguide width and waveguide thickness) and mode are considered as the design
variables for the optimisation.

ANSYS® Lumerical MODE is used as the supercontinuum generation simulation soft-
ware.

6.1.2 Optimisation results and discussion

Figure 6.1: The structure of the waveguide. Screenshot of Ansys Lumerical MODE.

Figure 6.1 show a screenshot of Ansys Lumerical MODE, demonstrating the waveguide
in XY view, perspective view, XZ view and YZ view, respectively.

Figure 6.2 illustrates the parametric sweep result of the GVD, showing the distribu-
tion of positive and negative GVD with respect to waveguide thickness and width.
This also implicitly shows that using a parametric sweep to search for the optimal
supercontinuum generation waveguide is possible but computationally expensive.
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Figure 6.2: Supercontinuum generation waveguides optimisation using parametric
sweep. This figure is modified from (McKay 2024)
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Figure 6.3: The convergence trend of the supercontinuum generation waveguides op-
timisation.
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Figure 6.3 shows the convergence trend of the waveguide optimisation using the pro-
posed method. The current best solution reaches 0 for only approximately 30 Lemerical
simulations and converges at approximately -0.04 in less than 80 Lumerical simulations.
This is much computationally cheaper than using a parametric sweep.

6.2 Radar signal processing and human activity re-
cognition system optimisation

6.2.1 Engineering background

Recently, human activity recognition (HAR) has drawn much attention in fields like
smart homes, assisted living and security (Le Kernec et al. 2019). And radio frequency
sensors like radar can effectively collect data for the recognition. Radar-based HAR
mainly utilises micro-Doppler signature (MDS) as it provides useful features for dis-
tinguishing different activities (Chen et al. 2006). This has been proven available by
multiple works (Le Kernec et al. 2019; Gurbuz and Amin 2019; Yang et al. 2023; Li
et al. 2019).

Figure 6.4: Holistic HAR optimisation from signal processing to classification using
SADEA. This figure is modified from (Li et al. 2024).
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The holistic approach is validated using the University of Glasgow human radar signa-
tures dataset (Fioranelli et al. 2019a; Fioranelli et al. 2019b), and the dataset has over
1754 data samples captured from 72 individuals with aged from 21 to 98 years old. Fur-
thermore, an patented adaptive thresholding method (Romain et al. 2023; Le Kernec
et al. 2023; Li et al. 2021) is applied in the HAR and it can binarise the grayscale
MDS image data with a threshold T . The method adaptively focuses on the region of
interest by setting the threshold and adjust it depending on the data being windowed.

Figure 6.4 shows the holistic HAR system structure optimisation framework from signal
pre-processing, to adaptive thresholding, and to domain selection. Using SADEA, all
three parts are optimised simultaneously.

On the other hand, With the introduction of feature extractions, the number of tunable
parameters increased, making the performance of the HAR system more dependent on
the parameter settings. Therefore, a set of optimal system parameters is essential for
the system. There are 12 design variables in total in this optimisation. There are seven
binary design variables indicating to include or not to include such features, and five
ordinary continuous design variables. The design variables include the following:

- Binary
1. Window shape (rectangular or hamming).
2. Binary mask.
3. Masked phase.
4. Masked unwrapped phase.
5. Spectrogram.
6. Masked spectrogram (radar).
7. Masked spectrogram (patented).

- Continuous
8. Overlapping factor F (from 0.5 to 0.95).
9. Time window length (from 100 to 1000).

10. Difference value V (from 0.01 to 1).
11. Adaptive thresholding type Te (from -20 to 20, integer).
12. Clipping time K (from 1.5 to 5 seconds).

Amongst the system design parameters, window shape (rectangular or hamming win-
dow), overlapping factor F , time windowing length and clipping time K are from the
data pre-processing. Difference value V and adaptive thresholding type Te are with the
adaptive thresholding. Mask, masked phase, masked unwrapped phase, spectrogram,
masked spectrogram (radar data) and masked spectrogram (radar data through pat-
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ented adaptive thresholding) are from domain selection. One or multiple domains are
selected as training samples for the classification.In the University of Glasgow human
radar signatures dataset (Fioranelli et al. 2019a; Fioranelli et al. 2019b) mentioned
above, there are six different human activities labelled, and they are:

1. Walking.
2. Sitting.
3. Standing.
4. Drinking.
5. Picking up.
6. Falling.

In this case study, support vector machine (SVM) and AlexNet is applied as the clas-
sifier to the HAR system, respectively.

In the following, Subsection 6.2.2 and Subsection 6.2.4 briefly introduce SVM and
AlexNet, respectively. The optimisation results and analysis for SVM embedded HAR
and AlexNet embedded HAR are presented in Subsection 6.2.3 and Subsection 6.2.5,
respectively.

6.2.2 SVM as the classifier

SVM is a frequently used supervised classification algorithm model. It finds the optimal
hyperplane that maximise the separation between the data samples of different classes
and it is known for its effectiveness in high-dimensional classifications and robustness
against overfitting (Cortes and Vapnik 1995). SVM is used in a previous study and it
is outperforming deep learning in that specific similar task (Li et al. 2023). In this case
study, SVM is chosen to be the classifier in the system illustrated in Figure 6.4 in the
first experiment.
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6.2.3 Optimisation results and discussion: SVM as the classi-
fier

Figure 6.5 shows the convergence trend for the HAR system optimisation with SVM as
the classifier, with a referenced manual design result in which the accuracy is 88.02%.
From the trend, the HAR system optimisation converges after 2000 function evalu-
ations using SADEA, in which the averaged accuracy is 89.41% from three independent
optimisation runs. The absolute accuracy is improved by 11.39% from using manual
design.
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Figure 6.5: Convergence trend of the holistic HAR (with SVM as the classifier) optim-
isation using SADEA with a referenced result using manual design.

With SVM as the classifier, the optimised HAR system parameters are listed in Table
6.1

6.2.4 AlexNet as the classifier

AlexNet is a widely used convolutional neural network (CNN) architecture proposed
specifically for classification tasks. It consists of five convolutional layers followed by
three fully connected layers, utilising techniques such as ReLU activation, max pooling,
and dropout to improve performance. It is one of the state-of-the-art CNN classification
architectures.
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Table 6.1: Optimised parameters: SVM as the classifier

Variable names Optimised values
Window shape Hamming
Binary mask Yes
Masked phase Yes
Masked unwrapped phase Yes
Spectrogram No
Masked spectrogram (radar) Yes
Masked spectrogram (patented) Yes
Overlapping factor F 0.95
Time window length 154 ms
Difference value V 0.9166
Adaptive thresholding type Te 3
Clipping time K 4.58 s

In Figure 6.4, AlexNet (Krizhevsky et al. 2012) is used as the classifier for the final
activity classification tasks.

6.2.5 Optimisation results and discussion: AlexNet as the clas-
sifier
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Figure 6.6: Convergence trend of the holistic HAR (with AlexNet as the classifier)
optimisation using SADEA with a referenced result using manual design.
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Figure 6.6 shows the convergence trend of the holistic optimisation of radar signal
processing and human activity recognition systems. From the plot, the optimisation
converges at a classification accuracy of approximately 93.5% in about 500 function
evaluations. Before the full convergence, the optimisation reaches good results using
around 150 function evaluations. The optimised system has a significantly high clas-
sification accuracy than using manual tuning and adjustment (Zhang and Cao 2018),
which has a classification accuracy of 90.86%.

With AlexNet as the classifier, the optimised HAR system parameters are listed in
Table 6.2

Table 6.2: Optimised parameters: AlexNet as the classifier

Variable names Optimised values
Window shape Hamming
Binary mask Yes
Masked phase Yes
Masked unwrapped phase Yes
Spectrogram Yes
Masked spectrogram (radar) Yes
Masked spectrogram (patented) No
Overlapping factor F 0.87
Time window length 390 ms
Difference value V 0.8249
Adaptive thresholding type Te -13
Clipping time K 5 s

A potential reason that the optimised HAR excludes the patented masked spectrogram
is not selected is that the AlexNet-extracted features from this domain duplicates the
masked spectrogram (radar) domain. Hence, Including the patented masked spectro-
gram does not improve the overall accuracy in this specific setting.



Chapter 7

Conclusions and future work

In this thesis, the behaviour of the BNN model under the SAEA background is invest-
igated via empirical study. To the best of my knowledge, this is the first attempt in
the SAEA domain. The following potential of BNN is shown:

• Regarding prediction accuracy, BNN is comparable to GP.
• BNN provides prediction uncertainty quantification with a statistical basis, and

the magnitude is often smaller than GP but sufficient for SAEA uses.
• BNN has a reasonably low cost of training when under SAEAs. The training cost

does not become a challenge when handling problems with about 60 decision
variables, while most engineering optimisation problems often have a smaller
dimensionality.

• The LCB method is a suitable prescreening method for BNN, although EI and
PI can also co-work with BNN.

• BNN has good performance for all three critical factors (i.e., prediction accuracy,
prediction uncertainty, and cost of training), while one of them is often a challenge
for GP, RBF, and the drop-out method.

Hence, BNN is a possible machine learning alternative for SAEA design, which may
inspire many new SAEAs as well as prescreening methods.

With the investigated behaviour of the BNN as surrogate models, the SB-SADEA
has been proposed. Its effectiveness and efficiency are presented by multiple real-world
challenging antenna design cases. The main contributions regarding the proposed SB-
SADEA include:

• Introducing the BNN-based surrogate modelling into online antenna global op-
timisation area to replace GP modelling.
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• Introducing an ad hoc self-adaptive LCB method to work with BNN-based sur-
rogate model.

Hence, significant advantages are obtained regarding convergence efficiency (reflected
by the number of EM simulations needed to obtain the optimal design) and the cost
of machine learning. Thanks to the above innovations, SB-SADEA transforms the
SADEA series from GP model-based to BNN model-based, and it becomes universal for
antennas with various numbers of design variables and specifications, with significant
performance improvement at the same time. Future works will include behavioural
analysis of SB-SADEA and its applications in wider domains.



Appendices

A Test problems

A.1 F1: 10-D Ackley problem

min
x

f1(x) = −20e
−1

5

√√√√ 1

10

10∑
i=1

x2
i

− e

1

10

10∑
i=1

cos(2πxi)

x ∈ [−30, 30]10

optimum:x∗ = [0, 0, · · · , 0]

minimum:f(x∗) = 0

(1)

A.2 F2: 10-D Griewank problem

min
x

f2(x) = 1 +
10∑
i=1

x2
i

4000
−

10∏
i=1

cos( xi√
i
)

x ∈ [−600, 600]10

optimum:x∗ = [0, 0, · · · , 0]

minimum:f(x∗) = 0

(2)
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A.3 F3: Circular antenna array optimization

min
ϕ0

f3(ϕ0) =
|AR(ϕsll, I⃗ , β⃗, ϕ0)|
|AR(ϕmax, I⃗ , β⃗, ϕ0)|

+
1

DIR(ϕ0, I⃗ , β⃗)

+ |ϕ0 − ϕdes|+
num∑
k=1

|AR(ϕk, I⃗ , β⃗, ϕ0)|
(3)

where ϕ0 defines the circular array parameters, AR is the axial ratio, DIR is the
directivity, I⃗ is the current excitation and β⃗ is the phase excitation. The circular array
has 12 elements. ϕ0 has 12 dimensions, the first 6 dimensions are bounded in [0.2, 1] and
the last 6 dimensions are bounded in [−180, 180]. There are multiple known optimum
designs and the known minimum is about −21.8. See details in (Das and Suganthan
2010).

A.4 F4: 12-resonator diplexer coupling matrix optimization

min
x

f4(x) =
max(max(|S11,b1(x)|)− (−20), 0)

20

+
max(max(|S11,b2(x)|)− (−20), 0)

20

+
max(max(|S32,b1(x)|)− (−60), 0)

60

+
max(max(|S32,b2(x)|)− (−60), 0)

60

(4)

where S11 and S32 are the S-parameters, b1 and b2 are the two passbands. The search
ranges and known optimum are provided in Table A.1. The known minimum is about
0.054. See details in (Yu et al. 2020).
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Table A.1: Search ranges and known optimum of the coupling coefficients

Variable No. Lower bound Upper bound Known optimum
1 -0.5 -0.3 -0.3324
2 0.205 0.305 0.2761
3 0.1844 0.2844 0.2440
4 0.2024 0.3024 0.2595
5 0.3325 0.4325 0.3885
6 0.1614 0.3614 0.1868
7 -0.152 -0.052 -0.1105
8 0.6219 1.1219 0.6723
9 0.3 0.5 0.3088
10 0.1751 0.2751 0.2410
11 0.1601 0.2601 0.2110
12 0.1751 0.2751 0.2233
13 0.2816 0.3816 0.3370
14 0.1343 0.3343 0.1604
15 0.0314 0.1314 0.1002
16 -0.1 0.1 -0.0215
17 -0.6269 -0.5269 -0.5998
18 0.5667 0.6667 0.6334
19 -0.1 0.1 0.0306
20 -0.6209 -0.5209 -0.5840
21 -0.4215 -0.3215 -0.3675
22 -0.6104 -0.5104 -0.5697
23 -0.6167 -0.5167 -0.5571
24 0.5636 0.6636 0.6165
25 0.4048 0.5048 0.4280
26 0.5552 0.6552 0.6111
27 0.5546 0.6546 0.6172
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