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Abstract 
Pancreatic ductal adenocarcinoma (PDAC) is the 5th most common cause of cancer 

death in the western world, with a 5-year survival of <7% [1, 2]. Surgical resection remains 

the best treatment option, although the 5-year survival remains <25% [3] .Most patients 

are ineligible for resection as they present with metastatic disease. These patients 

undergo systemic chemotherapy, which offers only a modest improvement in survival [4]. 

Compared to similar solid tumours, PDAC is a relatively poorly characterised disease, with 

few treatment improvements. This is due, in part, to its complex, heterogenous landscape, 

defined by a dense fibrotic stroma, low immunogenicity and low mutational burden. These 

factors make it highly chemo resistant and offers few options for targeted treatments. Of 

the few treatment improvements, the switch from Gemcitabine based to FOLFIRINOX 

based chemotherapy, offers a paradigm shift by doubling survival to almost 12 months in 

high performance patients [3]. Similarly, the introduction of neoadjuvant therapy in locally 

advanced and borderline resectable disease has resulted in improved prognosis [4, 5].  

 

The tumour microenvironment is relatively well established in pancreatic cancer, with 

studies predominantly focused on naïve patients. Both an anti-tumorigenic and pro-

tumorigenic role has been reported in pancreatic cancer. This is highly dependent on the 

types of immune and stromal cells present [6]. Traditionally, T helper and cytotoxic T cells 

are associated with immunosurveillance, increased tumour cell death and improved 

prognosis [7, 8]. Whereas, macrophages, fibroblasts and Tregs tend to inhibit the immune 

response and are primarily associated with poor prognosis [9, 10]. Furthermore, B cells 

fall into both the pro and anti-tumour categories due to contradictory reports [11-13]. Until 

recently, the number of immune cells investigated at one time was limited due to 

technology. This has resulted in the majority of studies reporting density-based metrics. 

The introduction of spatial biology and deep phenotyping assays has resulted in studies 

focused on co-expression, and inter-phenotypic distance relationships being established. 

Carstens et al reported one of the first upfront resected PDAC studies focused on single 

cell deep spatial phenotyping [7]. They found cytotoxic T cells within 20μm of cancer cells 

exhibited increased anti-tumour effects and correlated positively with increased survival. 

Immunohistochemistry (IHC) based studies demonstrate an immunogenic switch in 

neoadjuvant therapy patients. A depletion of pro-tumorigenic immune cells, recruitment of 

anti-tumour immune cells and alteration in the functional states in subsets of immune cells 

has been reported [6, 14, 15]. Again, these studies predominantly rely on single-plex 

technologies, with no consideration to spatial relationships within the tumour 

microenvironment. Furthermore, little is known regarding the biological pathways 

responsible for this immunogenic switch.    
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Characterization of pancreatic ductal adenocarcinoma in treatment naïve and neoadjuvant 

patients represents a niche research field with limited associated literature. The main aim 

of this thesis was to address this issue. The primary aim was to establish the protein 

immune cell landscape in treatment naïve and neoadjuvant human pancreatic cancer in 

terms of content, cellular density and spatial orientation of different phenotypes. The first 

step was to confirm the IHC prognostic benefit of the most common prognostic associated 

immune cells. Elevated CD3 (p=0.015) and CD8 (p=0.043) cells positively correlated with 

improved disease specific survival (DSS) in naïve PDAC tissue microarrays (TMAs). 

Subsequently, deep spatial phenotyping was initially separately established in treatment 

naïve and neoadjuvant setting, then compared. The immune cells explored included T 

cells, macrophages, fibroblasts and epithelial cells. Improved DSS in naïve patients 

correlated with increased CD3 T cell (p=0.004) and reduced CD68 (p=0.008) macrophage 

density. Additionally, increased proximity from CD68 macrophages to tumour cells 

(p=0.005), and decreased proximity from CD68 macrophages to CD3 T cells (p<0.001) 

also presented in longer survivors. Contradictory to the hypothesis, improved DSS in 

neoadjuvant patients correlated with reduced CD3 T cells (p=0.004) and CD68 

macrophages (p=0.001). Furthermore, increased proximity from CD68 macrophages to 

PanCk (p=0.001), increased proximity from CD3CD8 cytotoxic T cells to CD3 T cells 

(p=0.018), and reduced proximity to FOXP3CD3 from CD3CD8 (p<0.001) correlated with 

survival. Additionally, this assay established distinct immune differences across 

chemotherapy versus chemoradiotherapy, and FOLFIRINOX treated versus Gemcitabine 

treated patients. The deep phenotyping assay lacked functional markers, prompting use of 

a larger regional protein assay, revealing a prognostically relevant, epithelial compartment 

specific immune checkpoint marker, B7-H3 (p=0.026).  

 

Subsequent Spatial Transcriptomic characterisation was established in order to gain 

insight into underlying immune related biological mechanisms, something severely lacking 

in PDAC. Naïve intra-segment heterogeneity demonstrated two unique epithelial 

signatures, with a non-significant prognostic trend. A variety of potentially targetable 

significant genes and pathways appeared when integrating mIF findings into Spatial 

Transcriptomics. These included angiotensin, type I INF, JAK/STAT and IL-2 pathways, 

which also suggest potential mechanisms responsible for the immune phenotypes 

observed. Furthermore, transcriptomic B7-H3 expression validated the regional protein 

result, and was replicated in the neoadjuvant cohort, demonstrating distinct signature 

profiles between the ranked expression. Interest is growing within the cancer field 

regarding B7-H3 expression as an immune checkpoint marker [16]. This molecule has, 

reportedly, limited expression in normal tissue, and high expression in pancreatic cancer, 

with elevated expression correlating with poor survival and metastasis [17-19]. The results 

demonstrate potential targetable treatment options for PDAC. Three main immune cell 
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estimates were repeatedly associated with the better outcome group. These were T cells, 

B cells and dendritic cells. Taking into consideration variable protein translation from RNA, 

these results were investigated using a single cell ultra-high plex CosMx assay, with only 

CD4 and CD8 cell clusters validated. In-depth B7-H3 clustering demonstrated a range of 

immune cell and epithelial markers co-expressing with B7-H3 across naïve and 

neoadjuvant patients, with naïve exhausted T cell cluster 12 (p=0.003) and neoadjuvant T 

cell cluster 27 (p=0.022) negatively correlating with survival.  

In conclusion, comprehensive protein and transcriptomic characterisation of pancreatic 

cancer spanning both naive and neoadjuvant setting reveals novel patterns. This 

established inter-phenotypic spatial relations, demonstrated significant differences 

between naïve and neoadjuvant patients, and has begun to explore complex biological 

mechanisms within PDAC. These results, if validated, represent potential novel predictive 

biomarkers, and novel targetable therapies, developments critically needed in pancreatic 

cancer.      
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1 Chapter 1: Introduction  
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1.1 Pancreatic Cancer Epidemiology 

With a 5-year survival of <7%, pancreatic ductal adenocarcinoma (PDAC) is currently the 

5th most common cause of cancer death [1, 2]. Mortality rates in the past 10 years have 

remained stable for females, and a slight increase was seen in males, with 51% of rates 

associated with patients above 75 years old [20]. Surgical resection remains the best 

treatment method, although the 5-year survival remains <25% [21]. The vast majority of 

patients present with metastatic disease thus systemic chemotherapy offers only a 

modest improvement in survival [22]. The average number of cases from 1990s to 2016-

2018 has increased 17%, resulting in approximately 10,500 new cases every year in the 

UK. It is currently the 10th most common UK diagnosed cancer, accounting for 3% of new 

cases [20]. 

 

1.2 Clinical presentation, symptoms and diagnosis 

The poor outcome associated with PDAC is linked to several factors. One major factor 

being late presentation due to ambiguous symptoms such as back pain, fatigue and 

nausea, which are often ignored by the patients or attributed to other causes [23]. More 

specific symptoms include jaundice and new-onset diabetes [24]. Treatment is heavily 

dictated by the stage of disease [25]. Patients are split into four categories; 

 

1. Resectable – surgery with pre or post operative chemotherapy/chemoradiotherapy 

2. Borderline resectable - surgery with pre or post operative 

chemotherapy/chemoradiotherapy 

3. Locally advance – preoperative treatment and surgery  

4. Metastatic – systemic chemotherapy  

 

Surgical resection is the only potentially curative method currently available, yet only 10-

20% of patients present early enough to undergo surgery, with the remainder of patients 

presenting with metastatic disease [21]. Anatomical location of the cancer dictates the 

likely symptoms and potential prognostic outcomes [26]. Tumours located at the 

head/neck of the pancreas (70%) are more likely to present earlier with obstructive 

jaundice among other symptoms [26, 27]. Tumours located at the body (15%), tail (10%) 

and multifocal (10%) are associated with late-onset diabetes and non-specific symptoms 

leading to lower resectability rate and poor survival (figure 1.1)  [26, 28]. 
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Figure 1.1 Location of pancreatic ductal adenocarcinoma tumours and most common 
associated symptoms. Illustrative figure showing location of tumours in the pancreas with 

common symptoms. Locations include head and neck, body and tail. Figure created with 

BioRender 
 

A wide range of diagnostic tools can be implemented including non-invasive/invasive 

imaging techniques and serum markers. Initial steps are carried out using non-invasive 

methods, multidetector computed tomography (MDCT) angiography has a sensitivity of at 

least 90%, used in early detection of tumours between 2-5mm. Invasive methods such as 

endoscopic ultrasonography with fine needle aspiration have higher accuracy [29, 30]. 

Additionally, carbohydrate antigen 19-9 (CA19-9) is a validated biomarker with sensitivity 

of at least 70% and a specificity of 90% in symptomatic patients [31]. This biomarker can 

also be used to monitor treatment response, resection and survival outcome. It is 

important to note that elevated levels of CA19-9 are not specific to PDAC and can be 

seen in biliary obstructed patients [32]. 
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1.3 Clinical pathology 

Multiple clinical factors have been significantly associated with prognosis in pancreatic 

cancer. These have been limited to the most reported common factors. 

1.3.1 TNM staging 

TNM based staging from the American Joint Committee on Cancer (AJCC) 8th edition is a 

benchmark method for PDAC cancer classification. This classifies patients according to 

tumour (T), lymph node (N) and metastasis (M) [33]. Briefly, T Stage 1-3 indicates that the 

tumour is located within the pancreas with increasing size across the groups (Stage 1: 0-

2cm, Stage 2: 2-4cm, Stage 3: >4cm), and T Stage 4 indicates the cancer has spread into 

neighbouring blood vessels. Nodal staging ranks from 0-2, with N0 indicating no 

contamination of nodes and N2 meaning at least 4 lymph nodes are involved [33]. 

Metastasis is ranked by presence (M1) or absence (M0) of metastasis. Patients with high 

stages across all categories tend to have worse outcome [33].  

 

1.3.2  Lymph Node status 

Lymph Node status defines whether there is confirmed nodal involvement. Patients are 

split into LN0 or LN1, where LN0 indicates no lymph node invasion and is typically 

associated with better survival. LN1 patients indicate presence of lymph node metastasis 

and is associated with worse prognosis [34, 35].  

 

1.3.3 Resection margin status  

Margin status indicates the level of cancer cells present at the edge of the tissue. Margin 

positivity (R1) indicates the presence of cancer cells either microscopically or 

macroscopically, and margin negative (R0) indicates no cancer cells are present [36]. R1 

patients tend to be significantly associated with poorer survival outcomes [37-40]. 

 

1.3.4 Grade 

Histological grade ranks the level of differentiation in pancreatic cancer, ranging from 

poor, moderate and good [41]. Patients with poor differentiation have worse outcomes [42, 

43]. 
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1.3.5 Vascular Invasion 

Vascular invasion is defined by the presence of tumour cells within blood vessels, 

resulting in circulating tumour cells. Vascular invasion positive groups (V1) are dictated by 

multiple criteria and can be used to stratify patients. These patients tend to be associated 

with more aggressive tumours, with increased cell dissemination and poor survival [44] 

 

1.3.6 Perineural Invasion 

Perineural invasion is characterised by the presence of invaded or encompassed nerves 

by tumour cells. This phenomenon is present in 70-95% of PDAC patients, and tends to 

correlate with poor prognosis, metastasis and recurrence  [45, 46].  

1.4 Risk factors 

There are few known risk factors for pancreatic cancer. However, medical conditions such 

as chronic pancreatitis may have an association with the development of PDAC [47]. It is 

estimated that around 5-10% of patients with pancreatic cancer have a familial 

association. However, the exact genetic basis for this association is unknown [48]. 

Reports of mutations in a variety of genes including, BRCA2, CDKN2A and FANCG, 

suggest that they may be associated with a predisposition to pancreatic cancer [49, 50]. 

Smoking is by far the most common modifiable risk factor reported, with studies 

demonstrating cancer development risk doubles amongst frequent smokers [51]. 

1.5 Pancreatic pathology and pathogenesis 

The normal pancreas is made up of two glandular tissues, exocrine and endocrine, which 

have different functions. The exocrine compartment, which makes up the majority of the 

pancreas, produces eosinophilic zymogen granules in functional acinar cells located in 

lobular units. These enzymes, which are necessary for digestion, are secreted into 

intercalated ducts and then into the major pancreatic ducts. [52]. The endocrine pancreas 

is made up of islets of Langerhans, which are responsible for insulin production and blood 

glucose regulation [53]. Although there are a range of pancreatic cancer types, 90% of 

reported cases are pancreatic ductal adenocarcinomas [54]. These cancers stem from the 

exocrine pancreas, and the most likely cells of origin are either pancreatic acinar or 

somewhat controversially, ductal cells [55-57]. 

 

Pathogenesis of sporadic PDAC has yet to be fully characterised, however four main 

precursors have been established; pancreatic intraepithelial neoplasms (PanINs), 
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intraductal papillary mucinous neoplasms (IPMNs), intraductal tubular papillary neoplasms 

(ITPN) and mucinous cystic neoplasm (MCNs) [58]. Following the PanIN hypothesis, 

normal epithelium progresses through the different grades of PanIN lesions (from low 

grade 1A/B to high grade 3). Within this progression, multiple genetic mutations and 

gain/loss of function events take place [59, 60]. Low grade PanINs are associated with 

KRAS mutations, intermediate lesions are associated with telomere shortening and 

p16/CDKN2A inactivation, and high grade lesions have inactivation of TP53, BRCA2 and 

SMAD4, and finally high grade PanINs progress into invasive carcinoma (figure 1.2) [61]. 

 

 

 

 
Figure 1.2 Pathogenesis from pancreatic intraepithelial neoplasms (PanINs) to pancreatic 
ductal adenocarcinoma. Diagram showing development of PDAC from normal epithelium using 

the PanIN hypothesis. KRAS mutation leads to PanIN-I development, then accumulation of 

telomere shortening, p16/CDK2A loss of function results in PanIN-3. Progression into ductal 

adenocarcinoma occurs after loss of function of TP53/SMAD4/BRCA2. Figure created with 

BioRender.   
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1.6 Molecular pathways associated with PDAC 

A wide range of signalling pathways have been associated with pancreatic cancer. The 

most relevant pathways have been selected and described below. Where appropriate, a 

diagram has been included. 

1.6.1 KRAS pathway 

KRAS mutations are found in ~90% and one of the first genetic aberrations seen, 

indicating that it plays a critical role in neoplastic initiation. Missense mutations are most 

common, with KRASG12D and KRASG12V being the most prevalent [62-64]. These 

mutations are located in the GTP binding domain of RAS, resulting in a constitutively 

active KRAS. In normal cells, inactive KRAS is bound to guanosine diphosphate (GDP) 

until epidermal growth factors (EGFs) bind to their receptors, and GDP undergoes 

phosphorylation, resulting in the higher affinity molecule guanosine triphosphate (GTP) 

(figure 1.3). Active KRAS mediates multiple signalling pathways including RAF-MEK, 

TGF-β and PI3K associated pathways [65, 66].  

  

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  
Figure 1.3 KRAS cell signalling pathway. Epidermal growth factor (EGF) binds to receptor 

tyrosine kinase leading to phosphorylation (P) of guanosine diphosphate (GDP) into guanosine 

triphosphate (GTP) via guanine exchange factor (GEF). Active KRAS mediates multiple pathways 

including RAF and PI3K, resulting in transcription of important factors including proliferation, 

differentiation and survival associated factors. In normal cells, GTPase activating protein 

dephosphorylating KRAS ensuring it doesn’t stay constitutively active. Figure adapted from 

BioRender template.  
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1.6.2 TGF-β canonical pathway 

TGF-β can be activated either via a SMAD-dependent or independent process. As one of 

the few prevalent PDAC genetic mutations, the focus will be on the canonical, SMAD-

dependent pathway (figure 1.4) [67]. Signalling is mediated via TGF-β specific receptors, 

e.g. TGFβ-I and TGFβ-II. Ligands bind directly to TGFβ-II, which in turn phosphorylates 

TGFβ-I, leading to propagation of the signal via phosphorylation of SMAD proteins in their 

SXS C-terminal serine motif (figure 1.4). TGFβ-I activates a range of receptor dependent 

SMADs, and subsequently forms a heterodimer with the co-mediator SMAD4, 

translocates to the nucleus where it acts as both a co-activator and co-repressor for gene 

transcription [68, 69]. As for many proteins in pancreatic cancer, TGF-β has been reported 

as both a tumour suppressor via differentiation and apoptosis [70, 71], and a tumour 

promoter via chronic inflammation, metastasis and immune evasion [70, 72-74]. 

 
Figure 1.4 TGF-β canonical signalling pathway. Schematic diagram showing SMAD-dependent 

TGF-β canonical pathway. TGF-β ligands bind to TGF-β receptor II, triggering receptor I 

phosphorylation (P). Cascade phosphorylation of SMAD proteins resulting in formation of 

SMAD4/SMAD3/SMAD2 heterodimer, translocation to the nucleus and subsequent activation or 

suppression of transcription factors. Canonical pathway suppresses apoptosis and differentiation, 

and promotes metastasis and immune evasion. Figure adapted from BioRender template.  



32 

1.6.3 NF-κB associated pathway 

NF-κB transcription factor is heavily involved in multiple immune/inflammatory responses 

and constitutively active in pancreatic cancer [75]. In the canonical pathway, upon 

activation via IKK phosphorylation, the NF-κB complex (p50/p65) translocates to the 

nucleus resulting in increased expression of inflammatory target genes such as 

interleukin-6 (IL-6) and interleukin-18 (IL-18) [76, 77]. This generates a positive feedback 

loop, leading to further NF-κB signalling. Excessive pathway activation is also linked to 

epithelial-to-mesenchymal transition (EMT) and neural invasion [78, 79]. 

 

 
 
Figure 1.5 NF-κB canonical pathway. Schematic diagram showing NF-κB canonical pathway. 

Appropriate ligand binds to toll like receptors triggering phosphorylation of the NF-κB complex via 

the IKK complex. Subsequent ubiquitination of NF-κB regulatory subunit results in translocation of 

NF-κB complex into the nucleus and activation of transcription factors. The canonical pathway 

associates with inflammatory immune response factors such as IL-6. Figure adapted from 

BioRender template.  
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1.6.4 JAK2/STAT3 pathway 

Sustained JAK/STAT activation in pancreatic cancer correlates with chronic inflammation 

and reduced cytotoxic T cells [80, 81]. Specifically, increased JAK2 expression 

significantly correlates with worse prognosis in resectable patients [82]. Activation of this 

pathway in the pancreas remains unclear, however insight can be drawn from various 

studies. STAT3 is reportedly vital for PDAC tumour progression, as demonstrated in 

KRAS cell and mouse models [83-86]. Upon ligand binding, transphosphorylation of JAK 

induces tyrosine phosphorylation of the receptor forming a STAT docking site (figure 1.6). 

STAT3 binds, is phosphorylated, dissociates and forms dimers which translocate to the 

nucleus (figure 1.6) [87]. A wide range of biological phenomena are influenced by this 

pathway including immune regulation [86, 88, 89]. Upon inhibition of STAT3 in PDAC 

mouse models, a subsequent downregulation of suppressive cytokines was seen, as well 

as increased activated T cells [81].  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.6 JAK2/STAT3 pathway. Schematic diagram showing JAK2/STAT3 pathway. 

Appropriate cytokines e.g. IL6, binds to cytokine receptor resulting in recruitment and 

transphosphorylation of JAK2, and formation of STAT 3 docking site. Subsequent phosphorylation 

and dimerization of STAT3 occurs, leading to translocation to the nucleus and activation of 

transcription factors. JAK/STAT pathway associates with immune regulation and cell cycle 

regulation factors. Figure adapted from BioRender template.  
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1.6.5 DNA damage repair 

Up to 20% of patients may have some form of Loss Of Function (LOF) aberration, 

including BRCA1/2 resulting in inhibition of homologous recombination pathway. Cells 

become reliant on the DNA damage repair (DDR) pathway and are termed homologous 

recombinant-deficient (HRD) phenotype [15]. Patients with these BRCA1/2 mutations are 

of particular interest for targeted therapy and are by far the most promising targeted 

therapy option for pancreatic cancer patients [90]. 

 

1.6.6 Epithelial to Mesenchymal Transition 

Although EMT is not strictly a signalling pathway, it is particularly important in pancreatic 

cancer and is thought to be essential for oncogenesis. It is regulated by a huge number of 

networks including TGF-β signalling, which is thought to be a primary inducer of this 

transition [91]. High levels of Zeb-1, a transcriptional suppressor of E-cadherin, is 

inversely correlated with E-cadherin. Studies have demonstrated Zeb-1 suppression 

resulted in increased E-cadherin expression and reversed drug resistance in pancreatic 

cell lines [92]. Vimentin, a well-known mesenchymal marker, was positively associated 

with tumour budding, reinforcing the hypothesis that EMT is a vital step in PDAC 

progression [93]. 

1.6.7 Angiogenesis 

Angiogenesis is one of the hallmarks of cancer and is required for novel vasculature 

development for metastasis [94]. The angiogenic landscape in pancreatic cancer is 

complex, with low levels of vasculature found compared to other solid cancers. The 

dense, fibrotic stroma generates elevated interstitial fluid pressure, resulting in the 

collapse of vasculature, resulting in chemoresistance due to lack of access to the tumour 

core [95, 96]. However, elevated levels of angiogenesis markers and pathways are 

frequently reported in PDAC, including BICC1, VEGFR-1 and STAT3 regulated pathways 

[97-99]   
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1.7 Pancreatic cancer subtypes: molecular and genomic 
characterisation 

1.7.1 Molecular subtyping 

Pancreatic cancer demonstrates significant heterogeneity at an inter and intra tumoural 

level. This is, in part, due to its complex mutational landscape. KRAS mutation is seen in 

>90% of tumours, and aberration of TP53, SMAD4 and CDKN2A (>50%) are also 

frequently present in PDAC [14, 15]. The frequency of other aberrations reduces 

significantly (<10%), resulting in the mutational landscape being dominated by rare 

mutations [15]. Recent developments in molecular profiling of PDAC have resulted in a 

more detailed understanding of the underlying heterogeneity of this disease. Attempts to 

subtype PDAC by gene expression have resulted in three major models; Collison, Moffit 

and Bailey classification, along with other important models, such as Raphael and Puleo 

(table 1.1) [100-104]. The first major molecular subtyping break through was published in 

2011 by Collison et al [100]. This utilised gene expression microarrays, generating a bulk 

RNA signature defining three subtypes;   

 

1. Classical 

2. Quasi-mesenchymal 

3. Exocrine-like 

Classical subtypes were associated with the best outcome. This subtype had increased 

GATA6 expression (an adhesion associated gene), and was KRAS dependent. Quasi-

mesenchymal had, as the name suggests, increased mesenchymal associated genes and 

the poorest outcome. Exocrine-like subtypes demonstrated elevated neoplastic cell 

derived digestive enzymes and represented the middle outcome group [100].  In 2015, 

Moffit et al used a similar method, however with the added step of separating out tumour, 

stromal and normal pancreatic gene expression, producing histopathological distinct 

subtypes [101]. Two tumour epithelial and two stromal specific subtypes were generated; 

 

1. Classical – tumour subtype 

2. Basal-like – tumour subtype 

3. Normal Stroma  

4. Activated Stroma 

Moffit Classical subtype and the Collison Classical subtype are highly interchangeable, 

with the majority of the genes classifying these subtypes overlapping including GATA6 

[100, 101, 105]. The Basal subtype was classified as the poor outcome subtype (median 

survival: 11 months), although interestingly these patients seem to respond better to 
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adjuvant therapy. Normal stroma exhibited a simpler geneset pattern with increased 

pancreatic stellate cells, smooth muscle actin, vimentin and desmin markers. In contrast, 

activated stroma had a complex geneset enrichment with increased macrophage, 

fibroblast activation and pro-tumorigenic inflammatory stromal response resulting in worse 

overall outcome [101]. Interestingly, the tumour subtypes were associated with both 

stromal subtypes. In 2016, Bailey et al investigated the transcriptional and mutational 

landscape of pancreatic cancer and discovered four subtypes; 

 

1. Squamous 

2. Pancreatic Progenitor (Progenitor or PP) 

3. Abnormally Differentiated Endocrine Exocrine (ADEX) 

4. Immunogenic  

Squamous overlaps with both Collison’s Quasi-mesenchymal and Moffit’s Basal, and 

Progenitor overlaps with Classical [102, 105]. As expected, Squamous is associated with 

poor prognosis, potentially as a result of increased TP53 and KDM6A mutations, and 

increased gene expression in inflammatory and hypoxic pathways [106]. Upregulation of 

TP63deltaN and downregulation of genes determining pancreatic endodermal cell fate are 

also a key feature, leading to increased EMT [102]. Pancreatic Progenitor, ADEX and 

immunogenic are typically associated with a relatively better prognosis. Progenitor 

subtypes express transcription factor PDX1, which plays a vital role in pancreatic cell 

development from embryonic progenitor cells. ADEX and Immunogenic subtypes were 

associated with increased KRAS activation and increased immune suppression and 

immune infiltration respectively [102].  

 

Various other molecular subtypes have been established, the majority of which have 

continued to focus on tumour specific subtypes and generated some sort of variation of 

the Basal/Classical subtypes [103, 104]. Of interest, Puelo et al produced 5 subtypes from 

a mixture of tumour and stromal subtypes based on Moffit et al subtypes (table 1.1) [104]. 

For the remainder of this thesis, the terms Squamous (Bailey) and Classical (Collison and 

Moffit) will be employed. The Classical subtype will be a mixture of all the ‘Classical-like’ 

subtypes, and would be more accurately named Rest, however for simplicity the umbrella 

term ‘Classical’ will be used. 
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Author Method Classification 

Survival association 
(months) Overlap 

Collision 

[78] 

Global Gene 

expression profiling 

Classical Best group (23) 

Classical (Moffit) 

Progenitor (Bailey) 

Exocrine-like Middle group (19.7) ADEX (Bailey) 

Quasi-

Mesenchymal Worst group (6.6)  Squamous (Bailey) 

Moffit [79] 

Global Gene 

expression profiling and 

RNAseq 

Classical (tumour) Best tumour group (19) 

Classical (Collision)  

Progenitor (Bailey) 

Basal-like (tumour) 

Worst tumour group 

(11) Squamous (Bailey) 

Normal Stroma Best stromal group (24) 
 

Activated Stroma 

Worst stromal group 

(15) 
 

Waddel 

[72] 

Whole genome 

sequencing 

Stable NA NA 

Locally rearranged NA NA 

Scattered NA NA 

Unstable NA NA 

Bailey [80] 

Whole Genome and 

Transcriptome 

(RNAseq) 

Immunogenic Best group (30) 
 

ADEX Middle group (25.6) Exocrine-like (Collision) 

Pancreatic 

Progenitor Middle group (23.7) 

Classical (Collision) 

Classical (Moffit) 

Squamous Worst group (13.3) 

Quasi-Mesenchymal 

(Collison) Basal-like 

(Moffit) 

Raphael 

[81] 

Genome, 

Transcriptome and 

protein analysis 

Classical/Pancreatic 

Progenitor Best group  
 

Basal-

like/Squamous Worst group 
 

Puelo [82] 

Genome, 

Transcriptome and 

protein analysis 

Pure Classical Best group (43.1) 

Classical tumour, Normal 

and Activated stroma 

(Moffit) 

Immune Classical Middle high group (37.4) 

Classical tumour, and 

Activated stroma (Moffit) 

Desmoplastic  Middle group (24.3) 

Basal-like or Classical 

tumour, and Normal 

stroma (Moffit) 

Stroma activated 

Middle poor group 

(20.2) 

Basal-like or Classical 

tumour, and Activated 

stroma (Moffit) 

Pure Basal-like Worst group (10.3) 

Basal-like tumour, and 

Activated stroma (Moffit) 

Table 1.1 Pancreatic cancer molecular subtypes. Summary table includes methods used to 

establish molecular subtypes, subtype associated survival and overlap between different subtypes. 

Comparison made between Collison, Moffit, Waddel, Bailey, Raphael and Puelo. Table generated 

from appropriate references as indicated in author column.   
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1.7.2 Genomic subtypes 

In addition to transcriptome characterisation, Wadell et al characterised the genomic 

alterations in PDAC using whole genome sequencing on 100 primary tumours [15]. Four 

genomic subtypes were described according to chromosomal rearrangements;  

 

1. Stable (30%) 

2. Locally rearranged (30%) 

3. Scattered (36%) 

4. Unstable (14%).  

This study revealed a potentially actionable target for treatment for patients with unstable 

tumour subtypes. Mutations in BRCA1/2, PALB2, and BRCA mutational signatures were 

significantly associated with these patients, indicating possible sensitivity to DNA-

damaging treatments such as Platinum based therapies [106]. Combining the unstable 

subtypes along with patients with DNA damage repair deficiencies results in 

approximately 20% of diagnosed patients that may have a viable targeted treatment 

option [15].  

 

Molecular and genomic subtyping has uncovered many biological insights that underlie 

biological pathways in pancreatic cancer, providing potentially actionable treatment 

targets, discovery of novel biomarkers and could be used as an independent prognostic 

tool. The differences seen within the different studies indicates that more research is 

needed on a larger representative cohort to test the robustness of using molecular 

subtyping in the clinic.  
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1.8 Spatial Biology  

Spatial Biology is the study of high-plex biological phenomena at a 2 dimensional level 

whilst maintaining the spatial context from where the data originates from. This can be 

split into 1). Spatial Transcriptomics, and 2). Spatial Proteomics [107]. Both groups can 

generate spatially resolved, high output data at a scale reminiscent of single cell 

transcriptomics. Multiple academic groups and companies have attempted to create a 

range of spatial technologies. With the exceptions of a few companies, these techniques 

have mostly stayed within the parent institute, due to the requirement of niche expertise, 

highly specialised equipment and extensive personnel labour [108]. This has resulted in a 

selection of companies and their associated assays dominating the field and consistently 

appearing in Spatial Biology publications. 

 

1.8.1 Spatial Transcriptomics  

Spatial Transcriptomics (ST), Nature’s method of the year 2020, primarily investigates 

regions within tissue samples and extracts data in either an imaging-based fashion or a 

sequencing-based fashion [109-114]. Fresh frozen and formalin fixed paraffin embedded 

(FFPE) tissue can be used depending on the technology. Until recently, imaging-based 

technologies have only worked with limited RNA panels. Use of fresh frozen tissue 

severely limits the types of cohorts explored and requires a specialised histology 

department. Due to these limitations, the main focus will be on FFPE and sequencing 

based technologies. There are arguably two major companies that excel in ST; 

 

1. Nanostrings® – GeoMx™ assay 

2. 10X Genomics® – Visium™ assay 

 

GeoMx™ works by using digital optical barcoding for a range of panels including the 

whole transcriptome  [113]. Multifluorescent imaging is carried out using a mixture of 

immune and morphology oligo-conjugated antibodies to visualise tumours and aid 

selection of regions of interest (ROI). Oligo tags are cleaved using ultraviolet light, 

hybridized to barcodes and sequenced [113]. Visium™ methodology works by using fixed 

oligonucleotide barcoded spots to spatially resolve the whole transcriptome of tissues 

found within the spots [114]. Both these technologies have benefits and limitations. 

GeoMx™ allows for generation of ‘pure’ regional transcriptomic signatures, and prior 

visualisation of tissue to select precise regions. However, it requires ideally 100 nuclei per 

region, resulting in the generation of a ‘mini-bulk’ signature. As this technology is ROI 

based, whole section work is costly, however it is ideal for Tissue Microarrays (TMAs). 

Visium™ is ideal for whole section work, as the slides have 55μm fixed spots across the 
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capture area, and requires no specialist equipment. Transcript resolution sensitivity is 

higher in Visium™, although both are classed as multicellular and can be outcompeted by 

other technologies with better resolution and capture [115, 116]. Selection bias in both 

technologies means establishing a robust experimental question is essential to ensure the 

correct samples are chosen.  

1.8.2 Spatial Protein 

Spatial Proteomics (SP) biology differs to its RNA counterpart primarily due to limitation of 

the plex. The suffix ‘omic’ strictly refers to the entire profile of the type of data, e.g. 

proteomics would technically refer to the full protein landscape, and would use techniques 

such as mass spectrometry detection [117]. A drive to focus data generation to specific 

panels has resulted in spatial biology taking the liberty of calling high-plex protein panels 

Spatial Proteomics or Spatial Protein. Spatial Protein techniques can be split into; 

 

1) Imaging-based techniques 

2) Oligo-tagged antibody with DNA barcoding 

By far, the most popular imaging-based technique utilises Akoya Biosciences® assays. 

Akoya Biosciences® has two major techniques, PhenoImager™ (formerly Phenoptics) 

and Phenocycler™ (formerly CODEX) [118, 119]. PhenoImager™, a multiplex 

immunofluorescence (mIF) assay, is a multi-antibody staining strategy to enable 

quantification of multiple markers simultaneously on one tissue section providing the 

benefit of colocalization. As multiple antibodies are being utilised, different fluorophores, 

each with a specific excitation and emission spectra, are used to distinguish between 

epitopes. Akoya® specialises in linear spectral unmixing, which extracts the true signal of 

each fluorophore, allowing for up to 9 markers to be imaged on the same section at the 

same time [118, 119]. PhenoCycler™ utilizes super-resolution microscopy to image up to 

100 protein markers on the same slide using cyclical imaging methods [119].  

 

The second spatial protein technique works primarily with oligonucleotide tagged 

antibodies via DNA barcoding. This can be done using pre-determined panels such as 

GeoMx™ protein panels (up to 100plex) or the Visium™ co-detection protein expression 

panels (up to 31 plex) [113, 120] . Perhaps the most important benefit of the Akoya® 

techniques is the single cell resolution and the customisability. However, this requires a 

significantly longer optimisation time, with access to ample optimisation tissue required, as 

well as access to specialised equipment. 

 

Spatial Protein technologies, though incredibly insightful, fundamentally remain 

characteristic in nature with limited direct investigation of underlying biological 
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mechanisms. Biological pathways can start being unpicked by combining Spatial 

Transcriptomics to specific cohorts. There has been a sharp rise in the number of Spatial 

Biology papers published between 2020 and 2024, with over 100 papers investigating 

human oncology Spatial Transcriptomics [121]. These will be explored throughout this 

thesis. 

 

1.9 Pancreatic Cancer Treatment strategies 

1.9.1 Adjuvant Chemotherapy: Single and Combination therapies 

PDAC therapy has had few clinically relevant improvements in the past 50 years. This can 

be explained by two major factors, 1) heterogeneity 2) low mutation percentages [106].  

 

1.9.1.1 Gemcitabine based treatments 

Gemcitabine is classed as an anti-neoplastic/anti-metabolite and works by inhibiting the 

tumour progression by substituting the endogenous pyrimidines cytosine or thymidine 

[122]. For over 20 years, single agent Gemcitabine was used as first line therapy in 

metastatic disease, with no other treatment options offering any improvement. However, 

the survival times remain moderate at best, with the median survival ranging from 5-8 

months [123]. In an effort to improve the poor survival rates seen in pancreatic cancer, 

multiple studies have been carried out testing different Gemcitabine combination 

therapies, including drugs such as nab-Paclitaxel (Abraxane) and Fluorouracil derivative 

Capecitabine [124-128]. Abraxane is classed as a cytotoxic drug, made up of albumin 

bound Paclitaxel. It works by targeting and stabilizing microtubules, thereby inhibiting 

dynamic reorganization and the mitotic process [129]. Capecitabine is a pro-drug that 

interferes with DNA, RNA and protein synthesis, thereby inhibiting tumour growth [130].  

Initial evidence for this combination approach was provided by the ESPAC-1 trial. The 

disease specific survival (DSS) benefit of adjuvant chemotherapy vs. chemoradiotherapy 

in resectable patients demonstrated that chemotherapy had a better 2 year survival (19.7 

months - 95% CI 16.4-22.7) when compared to chemoradiotherapy (15.5 months – 95% 

CI 13.5-17.4) and no adjuvant treatment (14.0 months and 16.1 months respectively) 

[131]. These results led to a shift from routine single agent to multi-agent Gemcitabine 

therapy. Two major combinations were established, GemCap and GemAbraxane.  

 

A phase 3 study was undertaken testing efficacy and possible toxicity of Gemcitabine plus 

Abraxane compared to single agent Gemcitabine in metastatic patients. 861 patients were 

treated with either mono or combination therapy and survival analysis was carried out. 

Significant differences were observed in DSS when comparing monotherapy vs 
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combination (6.7months and 8.5 months respectively (95% CI 0.62-0.83)). Combination 

therapy resulted in an increased occurrence of side effects such as peripheral neuropathy 

and myelosuppression [132]. The randomised, multi-centre ESPAC-4 trial looked at the 

survival differences and toxicity levels of 366 patients treated with either monotherapy 

Gemcitabine or GemCap. Increased overall survival was observed in GemCap patients 

(28months (95% CI 23.5-31.5)) compared to Gemcitabine (25.5months (95% CI 22.7-

27.9)). As above, patients treated with combination had significantly increased reports of 

adverse toxicity events [126]. Both these trials confirm that patients experience the best 

outcomes following resection plus combination adjuvant cytotoxic chemotherapy, at the 

risk of increased side effects. 

 

1.9.1.2 FOLFIRINOX based treatment 

In 2010, FOLFIRINOX (made up of folinic acid (leucovorin), fluorouracil (5FU), irinotecan 

and oxaliplatin) demonstrated a paradigm shift by doubling survival to almost 12 months in 

high performance patients and has shown significant benefit in localised and metastatic 

disease [3]. Subsequently, the PRODGE-24 trial demonstrated that resected patients 

treated with adjuvant treatment, modified FOLFIRINOX (mFOLFIRINOX), had better DSS 

compared to Gemcitabine alone. However, different criteria were used for patient 

stratification and salvage therapy thresholds. This could explain the contradictions seen. 

Patients treated with mFOLFIRINOX had increased toxicity, indicating that only a subset 

of ‘fit’ patients should be treated with these drugs [133].  

 

1.9.2 Targeted Treatments: Platinum based therapies 

Loss of function BRCA1/2 breast and ovarian cancer patients respond well to poly ADP 

ribose polymer (PARP) inhibitors [133]. This LOF results in inhibition of the homologous 

recombination pathway, making cells reliant on the DNA damage repair (DDR) pathway. 

PARP inhibitors are thought to function by inhibiting PARP dissociation from DNA, 

preventing DNA replication fork formation [103]. Platinum-based therapies (PBTs) cause 

double stranded breaks in DNA, cells lacking BRCA1/2 are unable to undergo 

homologous repair, resulting in apoptosis [134]. PBTs are routinely used in patients with 

ovarian cancer, and are associated with a higher DSS particularly in patients with BRCA 

mutations [135]. While germline and somatic mutations in BRCA1/2 and PALB2 are found 

rarely in PDAC, genomic analysis has extended this DDR cohort to almost 20% , 

indicating PARP inhibitors may offer viable options to this subset of patients [3, 15, 133].  

 

If BRCA1/2 mutations in PDAC confer the same vulnerabilities seen in other cancers, 

PARP inhibitors and PBTs could be an effective, targeted treatment. The POLO trial 
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examined metastatic BRCA-positive PDAC and treatment with PARP-inhibitors. This was 

beneficial as second line therapy after progression on platinum chemotherapy. The 

median RFS was significantly longer in the Olaparib group [90]. At present, only BRCA1/2 

can be used as biomarkers to identify patients that would benefit from PBTs. However, the 

unstable genomic subtype may unveil additional biomarkers [15]. It is anticipated that 

molecular analysis of either primary or metastatic tumour biopsies including genomic and 

transcriptomic assays currently being employed in clinical trials (e.g. PRIMUS-001) will 

result in future clinically relevant biomarkers. 

 

1.9.3 Neoadjuvant Chemotherapy 

It was hypothesized a subset of patients with more advanced non-metastatic pancreatic 

cancer (borderline resectable/locally advanced (LAPC)) would have the potential to 

undergo successful surgery if treated neoadjuvantly with the treatments explored above. A 

meta-analysis focusing on the effect of preoperative therapy in PDAC showed a third of 

initially classified “non-resectable” LAPC became eligible for resection when treated 

neoadjuvantly. Additionally, patients treated with combination neoadjuvant therapy 

demonstrated a significantly higher estimated response and resection probability [4]. 

This has translated in the routine treatment with neoadjuvant therapy for a subset of 

patients in an effort to increase the number of potentially curative surgeries. Although 

multiple papers reported an increase in both DSS and Recurrence Free Survival (RFS) in 

patients treated with neoadjuvant FOLFIRINOX, there are major issues with toxicity e.g. 

neutropenia and thrombocytopenia, resulting in strict filtering of patients eligible for this 

treatment option [5]. Large scale trials are needed to clarify the risk- benefit ratio of 

neoadjuvant treatment and the optimal treatment modalities employed. 

 

1.9.4 Radiotherapy in Pancreatic cancer 

The role of neoadjuvant radiotherapy in PDAC patients remains controversial. This is 

partly due to lack of studies fully classifying the effects of tumour regression, survival and 

toxicity. As with neoadjuvant chemotherapy, neoadjuvant radiotherapy is mainly used in 

borderline resectable and LAPC patients in an effort to pull these groups into the 

resectable category [136]. A SEER database analysis investigated the effect of upfront 

resection, neoadjuvant and adjuvant radiotherapy and resection with adjuvant 

chemotherapy. Patients were split into different pathological factors. Neoadjuvant 

radiotherapy seemed to result in the best survival for only one patient subset. T stage 4, 

margin 0 patients were significantly associated with better survival (median survival: 

17months 95% CI 0.215-0.532) compared to resection plus chemotherapy (median 

survival: 10months 95% CI 0.411-0.683) [137]. Another study examined the survival 
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differences between neoadjuvant chemotherapy and radiotherapy. Overall survival 

analysis did not show any significant improvement for radiotherapy patients, and the 90 

day mortality rate indicated that radio patients had a higher mortality probability rate (odds 

ratio 1.81, p <0.001) [138]. These studies provide insight into the complex decisions 

doctors must make to decide the treatment options for patients. Arguably, the bleak 

survival rates of PDAC make even the slightest increase in prognosis beneficial, providing 

adverse effects are acceptable.  

 

1.9.5 Immunotherapy potential for PDAC 

The interaction between molecular subtype, tumour microenvironment and treatment and 

disease prognosis is a pioneering research topic that, if exploited, could answer vital 

questions about cancer progression. Despite years of research in PDAC, targeted 

treatment and immunotherapy studies are lagging behind when compared to other major 

cancer types. However, certain aspects have been studied and important lessons can be 

learnt from similar cancers. Achieving significant progress in PDAC will likely require 

multimodal strategies targeting epithelial, stromal, and immune tumour components and 

using strategies to identify subgroups of patients at a genomic, immunological and 

transcriptomic level [139]. Biomarker development is needed to stratify patients for 

effective immunotherapy combinations at appropriate time points. PD-L1 expression is 

used in NSCLC to select patients who benefit from frontline PD-1 inhibitor immunotherapy 

ahead of chemotherapy [140]. However, the situation is more challenging in pancreatic 

cancer. PDAC transcriptomic molecular subtypes, may have the potential to identify which 

subtypes respond to specific treatments including immunotherapies [102].  The 

immunogenic subtype is of particular relevance, demonstrating upregulated immune 

avoidance mechanisms including CTLA-4 and PD-1. A further study has shown that >50% 

of pancreatic tumours with upregulated PD-L1 were the squamous subtype, indicating 

potential sensitivity to anti-PD-L1 inhibitors [141]. Classification of patients according to 

molecular subtype may identify those patients who would benefit from immunotherapy. 

Notably, recent studies have investigated the efficiency of targeting the immune checkpoint 

molecule B7-H3 in similar solid cancers, although it has yet to be tested on PDAC [142-

146].  

 

While most immune therapies are being developed for post chemotherapy, there is little 

understanding of the molecular pathology of “post-chemotherapy” tumours in PDAC. The 

complex anti-tumour immune response, coupled with the failure of Immune Checkpoint 

Blockade (ICB) has prompted the concept of combination chemotherapy strategies. 

Gemcitabine-based chemotherapy is often used in these combination immunotherapy 

trials, as there is evidence of an increased tumour antigen availability, coinciding with 
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transiently depleted immunosuppressive T regulatory cells (Tregs) in the TME [147]. The 

beneficial effect of neoadjuvant therapy, therefore, may not rely on direct cytotoxicity on 

epithelial cells, but rather on the restoration of the immune cell–mediated antitumour 

response. 

 

Radiotherapy has a role in the neoadjuvant setting and in the management of LAPC, 

therefore in combination with ICB it may be a promising strategy for PDAC. Radiotherapy 

induces an immune response that mediates regression of metastatic lesions lying outside 

the radiation fields. Radiotherapy could therefore activate the immune system, increase T 

cell tumour trafficking, and elicit an antitumour response following ICB. Initial evidence for 

synergism has been demonstrated in PDAC possibly related to increased immunogenicity 

[148]. By increasing tumour visibility, radiotherapy may synergise with immune therapy. 

Characterisation of the immune landscape in the context of different neoadjuvant 

therapies needs to be explored to provide extra insight this combination therapy. 
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1.10 The Pancreatic cancer tumour microenvironment 

1.10.1 Tumour core and the Tumour microenvironment 
compartments 

The tumour immune microenvironment (TME) of PDAC is a complex and often 

contradictory subject to study. The tumour microenvironment, as the name suggests, is 

the immediate environment in which the tumour cells find themselves. It is a diverse and 

dynamic landscape made up of three major components (figure 1.7) [149]; 

 

1. Tumour compartment  

2. Stromal compartment 

3. Immune compartment  

 

It is worth noting that although stroma and TME are often used interchangeably, they are 

distinct concepts and should be studied as such. TME encompasses both stromal and 

immune compartments. Additionally, the tumour compartment or tumour core is not strictly 

part of the TME, but as the TME tends to surround tumour cells, it has been included 

here.

 
 
Figure 1.7 Tumour and tumour microenvironment compartments in pancreatic cancer. Three 

compartments example cell types and molecules frequently seen. Tumour compartment is made 

up of epithelial cancer cells. Stromal compartment is made up of cancer associated fibroblasts,  

pancreatic stellate cells and a range of extracellular matrix molecules including collagens, 

proteoglycans. Immune compartment encompasses all immune cells including T and B cells, 

macrophages, natural killer (NK) cells among others. Figure adapted from BioRender template. 
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1.10.1.1 The Tumour compartment 

The tumour compartment is made up of epithelial tumour cells (figure 1.7). Unusually, in 

pancreatic cancer the tumour compartment makes up a small proportion of the tumour, 

with reports of tumour cells making up approximately 20-25% of the tumour mass. Tumour 

cells exhibit a vastly heterogenous histological expression pattern, with a scattered 

cellular pattern [150]. 

1.10.1.2 The Stromal compartment 

The stromal compartment makes up the vast majority of the tumour mass, consisting of 

fibroblast and pancreatic stellate cells rich regions and extracellular matrix (ECM)  (figure 

1.7) [151, 152]. The ECM is a vital component that provides structural and regulatory 

support within the tissue. Comprised of a range of collagens, laminins and  proteoglycans 

(among others), it has been reported to have a mutualistic relationship with the cells that 

reside within it (figure 1.7) [153]. In particular, fibroblasts are thought to vastly influence 

how the ECM is arranged, resulting in a highly dynamic, heterogenous compartment 

[154]. The majority of proteins found in the extracellular matrix are produced by cancer 

associated fibroblasts (CAFs). This combination results in a densely packed, stiff, 3D 

mesh which is thought to act as a barrier to chemotherapy. This desmoplastic stroma is 

linked to several cancer hallmarks including the creation of a hypoxic environment, limiting 

nutrient delivery and reducing immune cell infiltration, creating highly resilient PDAC cells 

[94]. Increased Epithelial-to-Mesenchymal transition is a major pathway associated with 

multiple pancreatic cancer processes such as tumorigenesis and drug resistance [155]. 

As described above, cancer cells that undergo EMT possess increased ‘stem-like’ 

properties manifesting an invasive and metastatic abilities [92, 156]. The stromal 

compartment is packed with cells and secretions that help drive the transition to a 

mesenchymal PDAC cell. Various cytokines, TGF-β, IL-6 and IL-1α/β, are all involved in 

cellular pathways that promote EMT and are upregulated in PDAC [151, 157-159]. It is 

worth noting that TGF-β is dependent of context, and whether it is SMAD-dependent or 

not. Altogether, the stroma exhibits multiple pathways that severely inhibit the benefits of 

treatment.   

1.10.1.3 The Immune compartment 

Although the immune compartment could technically be placed within stroma, it plays a 

distinct role, therefore the stromal and immune compartments will be considered 

separately. The immune compartment refers to a collection of traditional immune cells 

(figure 1.7) [160, 161]. This compartment displays perhaps the most contradictory 

processes in pancreatic cancer, due to recruitment of different type of immune cells. It 
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plays an important role in immunosurveillance and the anti-cancer immune response. 

Counterintuitively, it also plays a role in immunosuppression and cancer progression. This 

is highly dependent on the types of immune cells present, and these fall into pro-tumour 

and anti-tumour cell types [6]. Traditionally, T helper and cytotoxic T cells are associated 

with immunosurveillance and increased tumour cell death [7, 8], whereas, macrophages 

and Tregs tend to inhibit the immune response [9]. Interestingly, B cells fall into both the 

pro and anti-tumour categories due to contradictory reports [11-13]. A full exploration of 

the immune cells associated with PDAC is contained in section 1.11 

1.10.1.4 Interaction and influence between compartments 

The tumour microenvironment and stromal composition of cancer is a widely researched 

topic that can be explored in a multitude of ways. For the majority of cancer phenomena 

explored, characterising interactions between tumour cells and the surrounding 

environment will deepen biological underpinnings, as cancer cells are seldom self-

contained. In addition to these cellular interactions, there is the added complexity of the 

extracellular matrix. This means that not only do we have to take into account the 

heterogeneity of the individual compartments themselves, but the interaction between the 

cells and these regions must also be considered [94]. A variety of studies in different 

cancers have explored these complex interactions. For example, ECM proteins MMP-9 

and Tenascin-C bind to their respective cell-surface receptors on tumour cells, resulting in 

increased invasive properties and metastatic behaviour, as well as reduced survival times 

[162]. CAFs secreting TGF-β, recruit a range of pro-tumorigenic immune cells such as 

macrophages and neutrophils, in parallel, blocking cytotoxic T cell recruitment [163-166]. 

Poor oxygenation and high levels of acidity, due to a build-up of lactic acid from glycolysis, 

results in limited recruitment and proliferation of T cells [167-169]. This creates a hostile 

environment, in which cancer cells thrive, filtering which immune cells can infiltrate the 

microenvironment. Studies into PDAC specific interactions are required to determine if 

these findings can be replicated.  
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1.11 Pancreatic immune and stromal cell landscape 

The protein immune and stromal landscape has been relatively well established in 

pancreatic cancer, with studies predominantly focused on naïve patients. It is 

characterized by a dense desmoplastic stroma, large infiltration of cancer associated 

fibroblasts and immunosuppressive leukocytes, and a low level of effector T cells [6].The 

tumour microenvironment plays an important role in the progression and aggressiveness 

of tumours, with much research carried out to define it. The TME in PDAC is characterized 

by many immune and stromal cells. There are two broad categories of cells (figure 1.8);  

 

1. Effector cells 

2. Suppressor cells.  

 
Figure 1.8 Main cell types in PDAC. Illustrative diagram showing the most common tumour 

effector and suppressor cells in pancreatic cancer and their prognostic association. Tumour 

effector cells encompass CD4+, CD8+ T cells, dendritic, natural killer and B cells. Tumour 

suppressor cells encompass T regulatory cells, tumour associated macrophages, tumour 

associated neutrophils and cancer associated fibroblasts. Figure adapted from BioRender 

template.  
 

 
 
 
 



50 

1.11.1 Naïve protein landscape  

Tumour infiltrating lymphocytes (TILs) including CD8+ cytotoxic and CD4+ helper T cells, 

B cells and dendritic cells are the main effector cells found in naïve pancreatic cancer 

(figure 1.8) [170-174]. Additionally, tumour associated macrophages (TAMs), Tregs and 

CAFs, are the most common suppressor cells (figure 1.8) [6, 164, 175-177]. It is important 

to note that these immune cells have been split into these categories based on the current 

literature, however with cells such as macrophages and neutrophils, their effect is greatly 

dependent on polarization and activation. Macrophages have reportedly been split into M1 

and M2, whereby M1 macrophages are associated with proinflammatory cytokines, and 

M2 are associated with increased immune suppressive cytokines [178]. This 

nomenclature has been criticized for being overly simplistic. Whilst these terms may be 

used for ease, the marker expression should be employed e.g. CD68+ or CD163+ 

macrophages. Neutrophils have also been split according to their activation into anti-

tumorigenic TAN1 or pro-tumorigenic TAN2 cells [179]. 

 

1.11.1.1 The role of T lymphocytes in naïve PDAC 

The presence of CD8+ and CD4+ cells is arguably the most reported immune signature in 

PDAC. Classified as tumour effectors, an increased density of these cells is associated 

with better prognosis in treatment naïve cancer [8, 180-183]. A shift in the  

microenvironment was reported when the disease progressed from IPMN to a primary 

pancreatic lesion [184]. In low grade IPMNs, the immune phenotype observed was varied, 

with an abundance of tumour infiltrating immune cells such as CD8+, CD4+ helper T cells 

and high levels of Th1/Th2 cells. Once the transition to PDAC occurs, an immune switch 

is observed. A suppressive phenotype dominated by T-regulatory cells and decreased 

intratumoral infiltration of effector cells is observed. As the malignancy progresses, 

immunosuppressive lymphoid structures appear in the surrounding stroma. These results 

suggest that an oncogenic switch is achieved once immune surveillance is bypassed 

[184].  

 

A study investigating preoperative immune cell ratios in peripheral blood found prognostic 

immune cell ratios [185]. Neutrophil: Lymphocyte and Lymphocyte:Monocyte ratios were 

found to have a significant effect on patients' survival. A Neutrophil: Lymphocyte (N:L) 

ratio of <5 and a Lymphocyte:Monocyte (L:M) of ≥ to 3 were associated with a significant 

increase in median survival. High N:L and a low L:M ratio were shown to be independent 

poor prognostic markers. Results also indicated increased N:L and decreased L:M ratios 

correlate with a 2-fold decreased count of T, B and natural killer cells [185]. 

In contrast, suppressor immune cells are often tumour beneficial and therefore are 
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associated with poor prognosis [6]. Much research has gone into understanding the role of 

TAMs and Treg cells in PDAC. CD68+ macrophages (M2) and a low Treg:CD4+ ratio is 

significantly associated with poor prognosis, whereas a high percentage of M1 and CD68+ 

cells was associated with better prognosis [9]. Immune profiling can be used as a 

prognostic tool, giving additional information on tumour characteristics that cannot be 

ascertained using standard prognostic tools.  

 

1.11.1.2 The role of CAFs in naïve PDAC 

Cancer associated fibroblasts have been continuously linked with EMT, immune evasion 

and production of an inhospitable stroma [186-188]. Studies have shown there are at least 

three subtypes of CAFs, myofibroblastic, inflammatory and antigen presenting, each with 

distinct markers associated with them [189]. However, each subtype has markers 

associated with alpha smooth muscle actin (αSMA) expression and is commonly used to 

identify myofibroblasts. [190]. High levels of CAFs in pancreatic cancer is consistently 

associated with worse overall prognosis [191, 192]. Stromal composition has been 

classified by using the ratio of stained αSMA and all collagen areas. This is referred to as 

the activated stromal index (ASI). Patients with low collagen deposition and low ASI, had 

a worse prognosis. This was classified as a fibrolytic stroma. High collagen and low ASI 

was associated with better prognosis, and this was classified as fibrogenic stroma [193]. 

The general consensus is that dense stroma promotes tumorigenesis, but research has 

shown that the opposite is true in PDAC. Reduction of stromal cells by Sonic hedgehog 

(Shh) deletion in mouse models, resulted in increased proliferation, as well as a poorly 

differentiated tumour. This increase in aggressiveness indicates that Shh activated stroma 

has a tumour suppressor role in PDAC [194]. Using tumour microarrays from 93 resected 

patients, prognostic signatures were categorized based on leukocyte subtypes and 

stromal compositions. Patients with a fibrolytic stroma and a CD3lowCD8lowCD68high 

immune signature were associated with worse RFS. Longer RFS was associated with 

fibrogenic stroma and a CD3highCD206high signature [195]. The use of combination 

signatures reduces the risk of false-positives associated with single signatures, mimicking 

the heterogeneity of PDAC. Immune profiling could potentially inform specific treatment 

stratification.  

 

A study using ESPAC-3/1 samples investigated the effect of stromal composition and 

immune cell infiltration in resected pancreatic cancer [196]. Adjuvant chemotherapy 

patients were split according to their treatment, gemcitabine or 5-flourouracil/folinic acid. 

No differences were seen between the two treatments in terms of survival and immune 

cell signatures investigated. However, in both cohorts, high expression levels of CD3+ T 

cells had the most significant independent predictive power for RFS. Two histological 
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predictive signatures were established in this study, 1). Increased CD3 and CD206 

expression - associated with increased median RFS (16.6 months), 2). Decreased 

CD3/CD8 and increased CD68 expression – associated with decreased median RFS (7.9 

months). Stromal composition was characterised using Erkan’s ASI ratio [193]. Although 

this study found a correlation between RFS and the different stromal types, no relationship 

was found between stromal composition, immune marker expression and RFS [196]. 

 

1.11.1.3 The role of B lymphocyte in naïve PDAC 

The role of B cells in PDAC remains highly controversial with reports associating them 

with anti-tumour and pro-tumour responses [197-203]. Multiple studies have demonstrated 

B cells with increased cytokine IL-35 expression, traditionally responsible for immune 

system maintenance, promote neoplastic development, and support cancer proliferation 

[198, 202, 203]. Tertiary Lymphoid Structures (TLS) are a common phenomenon seen in 

a multitude of cancers [204]. They can be defined as lymphoid structures that usually 

develop in chronically inflamed, non-lymphoid tissues such as cancer. Visually, they 

appear circular, and are characterised by the presence of dispersed High Endothelial 

Venules (HEVs), an inner B-cell follicle and an outer T-cell zone [205, 206]. The location 

of these structures is indicative of levels of immune cell infiltration in pancreatic cancer 

[11, 207].  Intratumoral TLSs were associated with increased levels of T and B cells, as 

well as decreased immunosuppressive cells, and was significantly associated with better 

survival compared to patients without (Presence Vs Absence - median survival: 42.67 vs 

15.53, p =0.002, 95% CI 1.8 (1.2-2.6) [171]. 

 

1.11.1.4 Spatial Biology in naïve PDAC 

Until recently, the number of immune cells investigated at one time was limited due to 

technology. Immunohistochemistry was one of the most popular and robust methods to 

characterise protein expression in human samples. The development of multiplex 

technologies has enabled co-localisation of multiple immune cells on one tissue section 

[118, 119]. Carstens et al investigated the role of desmoplastic stroma on immune cell 

infiltration and found that PDAC had a heterogenous mix of T cell populations. Cytotoxic T 

cells with a close proximity to cancer cells exhibited increased anti-tumour effects and 

correlated positively with increased survival. Surprisingly, there was no significant 

correlation with immune cell infiltration and the Collagen-I/αSMA presence [7]. Both the 

Mahajan et al and Carstens et al papers contradict the widely accepted hypothesis that 

the dense fibrotic PDAC stroma creates a physical barrier ‘protecting’ the tumour core 

from the immune system and even chemotherapy [7, 196, 208]. These contradictory 

results are suggestive of the interactions between stroma, immune cells and tumour cells 
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being much more complex than expected. 

 

1.11.1.5 Molecular biology immune pathways in naïve PDAC 

Certain well established cellular pathways have been associated with immune cell density, 

particularly linked with cytotoxic T cells.  Chronic inflammation is a well reported driver for 

pancreatic cancer progression, with the JAK/STAT and  NF-κB pathways  being 

associated with this. Continual activation of the JAK/STAT pathway has been associated 

with inhibition of cytotoxic T cell activation, and indirectly inducing inflammatory CAFs [81, 

209]. Moreover, NF-κB increases CXCL12 expression in pancreatic stellate cells, leading 

to reduced cytotoxic T cell infiltration [210]. This transcription factor is also linked with 

suppression of macrophage surveillance in early tumorigenesis via regulation of growth 

differentiation factor 15 (GDF-15) in macrophages [211]. 

 

Immune evasion mechanisms are a repeating hallmark seen across the PDAC literature, 

although there has been little successful exploration of the biological mechanisms. In 

2020, a paper investigating immune evasion in PDAC demonstrated downregulation of 

MHC-I may have an important role in immune evasion. Cell surface MHC-I expression 

seems to be targeted for lysosomal degradation via NBR1, an autophagy cargo receptor, 

resulting in lack of antigen presentation and subsequent immune evasion. Inhibition of 

autophagy was carried out in vivo, demonstrating a significant decrease in tumour mass 

and an immunogenic switch seen by the increased expression of CD8+ T cells. 

Importantly, they found that autophagy inhibition sensitized the tumour to dual immune 

checkpoint blockade therapy, offering a precise, actionable therapeutic target [212]. 
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1.11.2 Neoadjuvant treated protein cell landscape 

Highly immunogenic cancers are traditionally associated with better prognosis and 

indicate sensitivity to immunotherapy. PDAC is considered  a non-immunogenic disease, 

although classical and immunogenic subtypes have considerably higher epithelial and 

stromal immune infiltration. It is hypothesised that Neoadjuvant Therapy (NAT) works by 

remodelling the tumour immune microenvironment via depletion of pro-tumorigenic 

immune cells [132, 147, 213, 214]. If tumours were able to undergo an immunogenic 

switch, a subsequent increase in tumour suppression would result in apoptosis of cancer 

cells, subsequently increasing neoantigen targets enabling potential vulnerability to 

immunotherapies. 

 

1.11.2.1 The role of T lymphocytes in neoadjuvant PDAC 

Research on the this ‘immunogenic switch’ has predominantly focused on characterisation 

rather than exploring biological pathways and most reports are Gemcitabine focused. A 

study looking at borderline resectable PDAC patients investigated the difference between 

naïve and Gemcitabine/radiation treated patients [147]. An increased CD4CD8+ signature 

correlated with neoadjuvant chemotherapy treated patients and a corresponding increase 

in overall survival was seen compared to treatment naïve patients [147]. This increase in 

cytotoxic T cell expression correlating with increased overall survival is a frequent 

phenotype observed across multiple cancer types. The observed elevated level of 

expression in treated compared to naïve indicates that treatment with 

Gemcitabine/radiation may play a role in triggering an immune response. 

 

1.11.2.2 Effect of neoadjuvant Gemcitabine based therapies on the TME  

The effect of treatment on the tumour microenvironment has also been demonstrated in 

vivo. One study investigated two different KrasG12D/+; Trp53R172H/+; P48-Cre (KPC) 

treatment cohorts: 1). combination Gemcitabine and a Particle-mediated epidermal 

delivery (PMED) NY-ESO-1 targeting vaccine, 2). PMED vaccine alone [132]. Prior 

treatment with Gemcitabine appeared to increase vaccine induced cytotoxic T cell 

response compared to vaccine only treated mice. Gemcitabine treated mice also had 

significantly reduced FOXP3CD4+ T cells, potentially due to the increased rate of 

proliferation seen in Tregs cells compared to other T cells. These murine models further 

reinforce the hypothesis that pre-treatment, especially by Gemcitabine, triggers an 

immune response and produces a cumulative affect when used in combination with 

vaccinations [132]. This double hit effect may partially explain the increased survival seen 

with combination treatments, such as Nab-paclitaxel/Gem [215]. 
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Chemotherapeutic resistance is a prevalent issue seen in pancreatic cancer, contributing 

to the limited effect observed in the majority of treatments. There are many possible 

contributing factors that lead to chemoresistance, including the tumour microenvironment. 

The effect of prolonged Gemcitabine treatment was investigated in invasive tumour KPC 

models and replicated in vitro using a Panc1 cell line [213]. It was found that prolonged 

Gemcitabine exposure resulted in increased antigen presentation, immune checkpoint 

inhibitors PD-L1/2, CCL/CXCL chemokine expression and TGF-β associated signals 

[213]. TGF-β is a well-known immune regulator and has been reported to play an 

important role in immune evasion in advanced pancreatic cancer. Increased expression of 

this cytokine in the stroma may limit the full immunomodulatory effect of Gemcitabine, 

preventing tumour-infiltrating lymphocytes from efficiently targeting the tumour core. In 

vivo treatment of  combined Gemcitabine/anti-PDL1 produced a limited immune response 

and a moderate delay in mortality [213]. In contrast, models pre-treated with the TGF-β 

inhibitor Galunisertib, and subsequent Gem/anti-PD-L1 treatment showed a uniform 

increased expression of CD3+ and CD8+ T cells. Apoptotic markers Granzyme B and 

caspase 3 were also present in neoplastic regions indicating the continued cytotoxic effect 

stimulated by this treatment combination [213]. Other beneficial phenomena such as 

improved vasculature and significant delay in mortality was observed. These observations 

indicate an immunogenic switch that is mediated by prolonged Gemcitabine treatment, 

from a cold phenotype in the control models, to a hot immune phenotype in the treated 

models [213]. Further research into the effect of Gemcitabine on the TIME is required to 

fully investigate this phenomenon in humans. 

 

The effect of Gemcitabine on the tumour associated IgG antigen repertoire was 

investigated in pancreatic cancer models [214]. Treatment resulted in elevated recognition 

of antigens by IgG and a shift in expression from suppressor to effector tumour associated 

antigens e.g. α-Enolase (ENO1).  The immune landscape prior and post treatment was 

compared, demonstrating a significant increase in tumour infiltrating CD8+ and CD4+ T 

cells in post-treatment analysis. An increased T cell response correlated with increased 

overall survival. In an effort to increase the therapeutic response, Gemcitabine and ENO1 

combination treatment was used. Results showed a significant increase in CD4+ cells, 

corresponding with anti-tumour activity and subsequent impaired tumour progression was 

elevated in the combination therapy treated mice models. Singular treatment with either 

Gemcitabine or the vaccine failed to give the same levels of immune response [214]. The 

development of multiple synergistic combination targeted therapies is essential to treat 

this highly heterogenous, ever evolving disease. It is worth noting that although KPC 

models are the gold standard PDAC models, there are major differences in morphology 

and biology compared to human PDAC. It would be beneficial to produce a more robust 

model to improve translation from murine to human. 
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Importantly, the immune cell functional state of the reported cells has not been explored. 

This is a significant gap in knowledge when exploring the effects chemotherapy and 

radiotherapy have on the neoadjuvant landscape. Studies in other cancers such as breast 

and oesophagus have shown that immune cell density is not always increased. Rather 

there is a shift in functional state as indicated by marker expression, as well as the ratio of 

cell types [216, 217]. These studies also demonstrated initial depletion of T, B and NK 

cells lasting for up to 9 months [216]. This suggests that when samples are taken from the 

patient may be important. To fully understand the effects of neoadjuvant therapy on the 

TME, a combination of high-plex protein and transcriptome technologies should be used 

to characterize the differences observed.  
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1.12 Project Aims and objectives 

It is hypothesised that neoadjuvant therapy works by remodelling the tumour immune 

microenvironment either via depletion of pro-tumorigenic immune cells or altering the 

functional states in subsets of immune cells [6, 14, 15]. Tumours that undergo this 

immunogenic switch, show an increase in tumour suppressor cells and subsequent 

apoptosis of cancer cells. Until now, technology was unable to adequately explore these 

phenomena. With the rise of Spatial Biology, the spatial interactions that define cancer 

can be investigated. This thesis aims to robustly characterise the tumour immune 

microenvironment in both treatment naïve upfront resected and post neoadjuvant settings 

in human pancreatic ductal adenocarcinoma. To fully explore the differences between 

naïve and neoadjuvant patients, the main objectives were as follows; 

 

1). Establish the protein immune cell landscape in treatment naïve and neoadjuvant 

human pancreatic cancer separately in terms of content, cellular density and spatial 

orientation of different phenotypes. 

 

2). Comparison of content, density and spatial relationships in naïve and neoadjuvant 

patients using the established protein landscape.   

 

3). Explore the Spatial Transcriptomic signature in distinct tissue compartments (epithelial 

tumour, αSMA positive fibroblast, and immune compartments) in treatment naïve and 

neoadjuvant treated patients. 

 

4). Multi-omic, orthogonal data comparison of treatment naïve and neoadjuvant cases 

using Spatial Omic data and deep immune phenotyping technologies. 

 

 

Consideration will be given to important clinical subgroups within these aims. 
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2 Chapter 2: Materials and Methods 
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2.1 FFPE tissue studies 

To characterize the tumour microenvironment across the naïve and neoadjuvant 

pancreatic cancer, archival formalin fixed paraffin embedded (FFPE) tissue microarrays 

were used, each associated with clinical pathology data. Serial sections were used and a 

variety of techniques including immunohistochemistry (IHC), multiplex 

immunofluorescence (mIF), Spatial Transcriptomics (ST) and single cell Spatial Protein 

assays were undertaken. All sections were cut by the Glasgow Tissue Research Facility 

(GTRF) at 5μm, baked overnight at 60◦C, and stored at 4◦C for up to a week. 

2.1.1 Clinical cohorts 

2.1.1.1 Discovery cohort 

The discovery cohort was made up of 9 treatment naïve TMAs, 8 of which come from the 

Australian Pancreatic cancer Genome Initiative (APGI) cohort, part of the International 

Cancer Genome Consortium (ICGC), and 1 Glasgow naïve cohort (SD-PAN-TMA). The 

APGI group consisted of 216 patients that had undergone resection between 2010 to 

2017, and the Glasgow naïve cohort consisted of 28 patients that were resected between 

2006 to 2011. The APGI/ICGC cohort had approximately 3x1mm cores per patient, and 

the Glasgow naïve cohort had approximately 4x0.6mm cores per patient. Cores were 

selected from epithelial rich regions by a pathologist. To establish patient characteristics 

for the cohort, disease specific survival (DSS) and recurrence free survival (RFS) analysis 

using clinical data was carried out (table 2.1). Median DSS survival for this cohort was 23 

months. Approval for use of the Glasgow cohort was obtained through NHS QEUH 

Biorepository, application number 662, research ethic committee (REC) number 

16/WS/0207. Ethical approval for the APGI cohort was obtained from the appropriate 

Human Research Ethics committee. 
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Table 2.1 Discovery naive cohort patient characteristics. Table showing the Discovery cohort 

patients with clinical characteristics associated with disease specific survival (DSS) and recurrence 
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free survival (RFS). Clinical features include T Stage (AJCC8th), resection margin status, lymph 

node status and molecular subtype 

 

2.1.1.2 Validation naïve cohort 

The Validation cohort was made up of 12 multi-regional Glasgow cohort TMAs (NJ-PANC-

TMA and PDAC-PAN-TMA). This cohort comprised  192 patients who had undergone 

resection between 1992 to 2011. The NJ-PANC-TMA and PDAC-PAN-TMA had 

approximately 5x0.6mm and 4x0.6mm cores per patient respectively, and demonstrated a 

mixed histology with epithelial and stromal heavy cores. Patient survival characteristics 

were established for DSS and RFS analysis (table 2.2). Median DSS survival for this 

cohort was 18.5 months. Approval for use of the Glasgow cohort was obtained through 

NHS QEUH Biorepository, application number 662, REC number 16/WS/0207. 
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Table 2.2 Validation naive cohort patient characteristics. Table showing Validation cohort 

patients with clinical characteristics associated with disease specific survival (DSS) and recurrence 

free survival (RFS). Clinical features include T Stage (AJCC8th), resection margin status, lymph 

node status and molecular subtype. 

Characteristic n = 192 Median 
DSS

P (Log-
Rank) 

Median 
RFS

P (Log-
Rank)

(months) (months)

T Stage (AJCC 8th)

    T1 24 29.3 <0.001 17.8 <0.001
    T2 117 21.5 14.5
    T3 48 10.5 7
    T4 0
    Unknown 3
Lymph Node
LN0 33 26.6 <0.001 17.8 <0.001
LN1 156 18.4 12.3
Unknown 3

Resection Margin 

R0 50 26.5 <0.001 21.2 <0.001
R1 139 16.3 11.2
    Unknown 3

N Stage (AJCC 8th)

    N0 31 22.9 0.02 17.1 0.02
    N1 150 18.4 12.3
    N2 1 20.9 14.9
    Unknown 10

Grade / Tumour 
Differentiation

    I / Well 10 26.7 0.006 19.97 0.003
    II / Moderate 115 20.1 14.33
    III / Poor 59 13.4 9.13

  IV/Undifferentiated 0

    Unknown 8

Vascular Invasion

    Negative 86 23.6 <0.001 15.1 <0.001
    Positive 85 11.2
    Unknown 21

Molecular subtype

Classical 19 34.3 0.4 18.73 0.3
Squamous 9 9 7.83
    Unknown 164

15.6

Validation naïve cohort



63 

2.1.1.3 Glasgow naïve cohort 1 

The Glasgow naive cohort was made up of single multi-core TMA (SD-PAN-TMA). This 

cohort comprised of 28 patients who had undergone resection between 2010 to 2017. 

This cohort had approximately 4x0.6mm cores per patient and demonstrated an epithelial 

rich histology. Patient survival characteristics were established for DSS and RFS analysis 

(table 2.3). Median DSS survival for this cohort was 17.2 months. Approval for use of the 

Glasgow cohort was obtained through NHS QEUH Biorepository, application number 662, 

REC number 16/WS/0207. 
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Table 2.3 Glasgow naive cohort 1 patient characteristics. Table showing Glasgow naïve cohort 

1 patients with clinical characteristics associated with disease specific survival (DSS) and 

recurrence free survival (RFS). Clinical features include T Stage (AJCC8th), resection margin 

status, lymph node status and molecular subtype. 

   

Characteristic n = 28 Median 
DSS

P (Log-
Rank) RFS P (Log-

Rank)
(months)

T Stage (AJCC 8th)

    T1 2 9.09 0.04 7.95 0.3
    T2 9 22.25 15
    T3 3 16.7 10
    T4 NA
    Unknown 14
Lymph Node
LN0 2 62.9 0.5 60.5 0.4
LN1 11 18.55 14.65
Unknown 15

Resection Margin 

R0 24 16.45 0.3 13.45 0.2
R1 4 73.5 62.9
    Unknown 0

N Stage (AJCC 8th)

    N0 2 NA 0.07 NA 0.07
    N1 21 17 11.7
    N2 NA
    Unknown 5

Grade / Tumour 
Differentiation

    I / Well 3 36 0.2 18.9 0.3
    II / Moderate 20 17.1 11.7
    III / Poor 5 9.75 4.6

  IV/Undifferentiated NA

    Unknown 0

Vascular Invasion

    Negative 10 27.5 0.5 19.5 0.2
    Positive 18 16.9 10.7
    Unknown 0

Molecular subtype

Classical 6 30.9 0.01 23 0.04
Squamous 4 15 8
    Unknown 18

Glasgow naïve cohort 1
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2.1.1.4 Glasgow naïve cohort 2 

The Glasgow naive cohort 2 was comprised of a single multi-core TMA (PDAC-PAN-

TMA). The cohort was comprised of 79 patients who had undergone resection between 

1992 to 2011. This cohort had approximately 4x0.6mm cores per patient and 

demonstrated a mixed histology with tumour centre and stromal cores. Patient 

characteristics were determined from DSS and RFS analysis (table 2.4). Median survival 

for this cohort was 19.2  months. Approval for use of the Glasgow cohort was obtained 

through NHS QEUH Biorepository, application number 662, REC number 16/WS/0207. 
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Table 2.4 Glasgow naive cohort 2 patient characteristics. Table showing Glasgow naïve cohort 

2 patients with clinical characteristics associated with disease specific survival (DSS) and 

recurrence free survival (RFS). Clinical features include T Stage (AJCC8th), resection margin 

status, lymph node status and molecular subtype. 
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2.1.1.5 Naïve combined cohort 

The combined naive cohort consisted of a total of 436 pancreatic cancer specimens 

combined from the discovery (1.1.1.1) and validation (1.1.1.2). Patient survival 

characteristics were established for DSS and RFS analysis (table 2.5). Median DSS 

survival for this cohort was 20.3 months. Approval for use of the Glasgow cohort was 

obtained through NHS QEUH Biorepository, application number 662, REC number 

16/WS/0207. 
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Table 2.5 Naïve combined cohort patient characteristics. Table showing naïve combined cohort 

patients with clinical characteristics associated with disease specific survival (DSS) and recurrence 

free survival (RFS). Clinical features include T Stage (AJCC8th), resection margin status, lymph 

node status and molecular subtype. 

Characteristic n = 436 Median 
DSS

P (Log-
Rank) RFS P (Log-

Rank)
(months)

T Stage (AJCC 8th)

    T1 42 29.6 <0.001 17 <0.001
    T2 229 22 12.2
    T3 96 13 7.3
    T4
    Unknown 69
Lymph Node
LN0 78 25.2 <0.001 13.3 <0.001
LN1 290 18.9 11.3
Unknown 68

Resection Margin 

R0 207 26.6 <0.001 14.9 <0.001
R1 210 15.8 10.3
    Unknown 19

N Stage (AJCC 8th)

    N0 86 36.7 17
    N1 329 19.6 <0.001 11.3 <0.001
    N2 1 20.9 14.9
    Unknown 21

Grade / Tumour 
Differentiation

    I / Well 30 36.2 1.2
    II / Moderate 263 23.9 12
    III / Poor 116 14 <0.001 8 <0.001

  IV/Undifferentiated 6 11.7 5.45

    Unknown 21

Vascular Invasion

    Negative 175 26 <0.001 14.5 <0.001
    Positive 235 10.2
    Unknown 26

Molecular subtype

Classical 141 29 <0.001 12.9 <0.001
Squamous 62 14.1 7
    Unknown 233

Naïve combined

17
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2.1.1.6 Neoadjuvant Glasgow cohort 

The neoadjuvant Glasgow cohort is composed of 6 multi-core TMAs (Neoadj-MAL-TMA 

batch 1 and batch 2), with 72 patients who had undergone treatment and resection 

between 2009 to 2020. This cohort had approximately 3x0.6mm cores per patient. Cores 

were selected from tumour centre. Patient survival characteristics were established from 

DSS and RFS analysis (table 2.6). Median DSS survival for this cohort was 24.5 months. 

This cohort includes neoadjuvant chemotherapy treated (n=46) and neoadjuvant 

chemoradiotherapy (n=24) patients. Patients received either Gemcitabine based 

chemotherapy (n=20) or FOLFIRINOX based chemotherapy (n=53). Approval for use of 

this cohort was obtained through NHS QEUH Biorepository, application number 706, REC 

number 18/SS/0076. 



70 

 
Table 2.6 Neoadjuvant Glasgow cohort patient characteristics. Table showing neoadjuvant 

cohort patients with clinical characteristics associated with disease specific survival (DSS) and 

recurrence free survival (RFS). Clinical features include T Stage (AJCC8th), resection margin 

status, lymph node status, tumour regression, treatment type and chemotherapy type. 

Characteristic n = 72 Median 
DSS

P (Log-
Rank) 

Median 
RFS 
(months)

P (Log-
Rank)

(months)

T Stage (AJCC 8th)

    T1 20 56.9 0.011 0.01
    T2 9 26.5 16.9
    T3 1 9.9 6.5
    T4 14 21.3 12.8

    Unknown 28

Lymph Node

LN0 29 39 0.001 37.1 0.001
LN1 34 19.7 14
Unknown 9

Resection Margin 

R0 32 33.1 0.04 30.1 0.075
R1 30 20.5 16.3
    Unknown 10
Vascular Invasion
    Negative 43 28 0.05 27.2 0.2
    Positive 27 16.3
    Unknown 2
Tumour Regression
Good 30 33.1 0.005 34 <0.001
Poor 31 19 12.3
     Unknown 11
Treatment type
Chemotherapy 46 20.7 0.02 16.3 0.05
Chemoradiotherapy 24 30.1
     Unknown 2
Chemotherapy type
FFX based 53 22.6 0.7 30.1 0.04
Gemcitabine based 20 14.2
     Unknown 2

Neoadjuvant Glasgow

24.6

39

20.7
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2.1.1.7 Neoadjuvant combined cohort 

The neoadjuvant combined cohort is comprised of 7 multi-core TMAs (Neoadj-MAL-TMA 

batch 1 and batch 2, and PRIMUS-MAL), with 85 patients who had undergone treatment 

and resection between 2009 to 2021. The Neoadj-MAL-TMAs had approximately 

3x0.6mm cores per patient (n=72). PRIMUS-MAL TMAs had approximately 3x1mmcores 

per patient (n=13) and were part of the PRECISION-Panc clinical trial from the 

PRIMUS002 arm. Cores were selected from the tumour centre. Patient characteristics 

were determined from DSS and RFS analysis (table 2.7). This cohort includes 

neoadjuvant chemotherapy treated (n=46) and neoadjuvant chemoradiotherapy (n=27) 

patients. Patients received either Gemcitabine based chemotherapy (n=21) or 

FOLFIRINOX based chemotherapy (n=54). Median survival for this cohort was 20.4 

months. Approval for use of this cohort was obtained through NHS QEUH Biorepository, 

application number 706, REC number 18/SS/0076. 
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Table 2.7 Neoadjuvant combined cohort patient characteristics. Table showing neoadjuvant 

combined cohort patients with clinical characteristics associated with disease specific survival 

(DSS) and recurrence free survival (RFS). Clinical features include T Stage (AJCC8th), resection 

margin status, lymph node status, tumour regression, treatment type and chemotherapy type.  

 

Characteristic n = 85 Median 
DSS

P (Log-
Rank) 

Median 
RFS 
(months)

P (Log-
Rank)

(months)

T Stage (AJCC 8th)

    T1 22 50.4 NA
    T2 11 25 <0.001 16.9 <0.001
    T3 1 9.9 6.5
    T4 27 21.3 12.8

    Unknown 24

Lymph Node

LN0 35 44.4 <0.001 NA <0.001
LN1 40 23.6 14
Unknown 10

Resection Margin 

R0 39 33.1 0.03 NA 0.04
R1 35 20.9 16.3
    Unknown 11
Vascular Invasion
    Negative 46 31.1 0.03 30.1 0.1
    Positive 29 21.1 16.3
    Unknown 10
Tumour Regression
Good 37 34.3 0.005 32 <0.001
Poor 34 19 12.3
     Unknown 14
Treatment type
Chemotherapy 46 20.7 0.02 16.3 0.05
Chemoradiotherapy 27 30.1
     Unknown 12
Chemotherapy type
FFX based 54 22 0.8 36 0.05
Gemcitabine based 21 14.2
     Unknown 10

Neoadjuvant combined 

39

24.6
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2.1.1.8 PRIMUS 002 whole section cohort 

Two matched biopsy and post neoadjuvant chemotherapy resected whole sections from 

the PRIMUS-MAL TMA (chapter 2.1.1.7) were selected for spatial transcriptomics 

validation. PP00144 and PP00171 samples were used. Approval for use of this cohort 

was obtained through NHS QEUH Biorepository, application number 706, REC number 

18/SS/0076. 

 

2.2 Immunohistochemistry  

2.2.1 Staining and scanning  

All Immunohistochemistry (IHC) was performed prior to the start of this thesis on 

Discovery TMAs (chapter 2.1.1.1) which were supplied to the CRUK Scotland Institute 

histology department. All sections were stained using an Agilent pre-treatment module 

and autostainer link 48 for CD3, CD8, CD68 and CD163 (table 2.8). To complete the IHC 

staining sections were rinsed in tap water, dehydrated through graded ethanol’s and 

placed in xylene. The stained sections were coverslipped in xylene using DPX mountant 

(SEA-1300-00A, CellPath). TMAs were imaged using the Leica Aperio AT2 slide scanner 

at x20 magnification. 

 

Marker  Company 
(catalogue 
number) 

Retrieval 
conditions 

Antibody 
dilution 

Secondary  

CD3 

Agilent (A0452) High pH TRS 
buffer (K8004, 
Agilent) 1:50 

EnVision rabbit 
(K4003, Agilent) 

CD8 

Leica (NCL-L-
CD8-4B11) 

High pH TRS 
buffer (K8004, 
Agilent) 1:75 

EnVision mouse 
(K4001, Agilent) 

CD68 

Agilent (M0876) High pH TRS 
buffer (K8004, 
Agilent) 1:500 

EnVision mouse 
(K4001, Agilent) 

CD163 

Leica (NCL-L-
CD163) 

High pH TRS 
buffer (K8004, 
Agilent) 1:300 

EnVision mouse 
(K4001, Agilent) 

 
Table 2.8 IHC conditions for antibody of interests. Description of antibody marker (CD3, CD8, 

CD68, CD163), retrieval conditions, antibody dilution.  
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2.2.2 Scoring  

Images were analysed at x20 magnification using the digital imaging platform HALO® 

(Indica Labs, Albuquerque, USA). Specific thresholds were developed for whole cell 

staining per marker and a weighted histoscore (H score) generated for individual cores. H 

scores are calculated as follows; (1x% weak stain) + (2x % moderate stain) + (3x % 

moderate stain), generating scores ranging from 0-300. An average H score was 

calculated per patient. 

2.2.3 Survival and cumulative incidence analysis  

Log-rank survival and univariate cox regression analysis was performed to establish 

associations between marker expression and disease specific survival (DSS) with RStudio 

(RStudio, Boston, MA, USA) using survminer and survival packages. Cutoff was 

established per variable using surv_cutpoint function (table 2.9). This method finds the 

optimal statistically relevant cut point of selected variables using maximally selected rank 

statistics. Fine Grays mode was generated by R packages cmprsk and bshazard. This 

was used to investigate the cumulative incidence of recurrence. This is the instantaneous 

rate of occurrence of the given event in cases that have not experienced an event. 

Recurrence type was classed as the event of interest. A density heatmap was generated 

per marker per pattern of recurrence, Kruskal-Wallis test was performed via package 

ggpubr. Statistical significance for all tests mention was set to p≤0.05 and reported to 3 

decimal places.  

 
Table 2.9 Rcutoff scores for Kaplan-Meier DSS IHC analysis. Table illustrates the markers and 

their associated cut-off method and cut-off point per time variable, disease specific survival (DSS). 

Number of patients generated per rank is indicated by rank number column. Table is limited to 

markers that are frequently referred to throughout the thesis.  
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2.3 Multiplex 

To perform deep phenotyping of the pancreatic cancer landscape and explore cellular 

spatial relationships, a multiplex immunofluorescence assay using the PhenoImager™ 

from Akoya Biosciences® (Akoya Biosciences, Marlborough, MA, US) was developed. 

The entire process is split into three phases; optimisation and image generation, image 

analysis for data extraction, and data analysis (figure 2.1).  

 
Figure 2.1 Phases of PhenoImager™ workflow. Diagram showing the full workflow from 

optimisation to in-depth analysis. Phase 1 encompasses antibody optimisation to spectral unmixing 

of images, phase 2 encompasses image analysis with Visiopharm® using artificial intelligence 

generated algorithms, and phase 3 encompasses data analysis with multiple platforms including 

RStudio for single cell spatial metrics, CytoMAP for neighbourhood analysis. 
 

Multiplex immunofluorescence (mIF) is a cyclic multi-antibody staining technique based on 

a Tyramide Signal Amplification-Horse Radish Peroxidase (TSA-HRP) reaction. The 

assay works similarly to standard HRP based signal amplification assays. A secondary 

antibody conjugated to TSA-HRP is used to indirectly amplify the primary antibody. As 

multiple antibodies are being utilised, different fluorophores, each with a specific excitation 

and emission spectra are needed to distinguish between epitopes. HRP amplifies the 

fluorophore (Opal) signal by catalysing the reaction of labelled tyramide into free radicals, 

forming covalent bonds with tyrosine sites present on the endogenous protein. This assay 

was validated and performed in collaboration with John Le Quesne’s lab, including Silvia 

Martinelli and Leah Officer-Jones. An automated staining procedure using the Ventana 
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Discovery ULTRA™ (Roche Diagnostic, Oro Valley, AZ, US) was established and images 

were generated by Akoya Vectra Polaris™ (Version 1.0.13, Akoya Biosciences, 

Marlborough, MA, US).  

2.3.1 Phase 1: Optimisation and image generation 

2.3.1.1 Panel design 

A panel was generated in collaboration with Joanne Edwards lab, consisting of T cells ( 

CD3, CD8, FOXP3), macrophage (CD68), fibroblast (αSMA) and tumour cell (PanCk) 

markers (table 2.10). Markers were selected as they represent the most commonly 

expressed cells within the pancreatic landscape, and there is limited information regarding 

the spatial interactions between these cells. Antibodies selected were either diagnostic 

grade or sourced from in reputable papers (table 2.11). Antibody concentrations and panel 

locations were validated on test tonsil and PDAC tissue. 

 

Table 2.10 Multiplex immune panel markers. Summary table showing the markers selected for 

the PhenoImager™ assay, including PanCk, αSMA, CD3, CD8, FOXP3 and CD68. Co-expression 

status, cell lineage, phenotype and immune classification is shown for single expressing and co-

expressing markers. 

2.3.1.2 Automated staining  

An automated staining procedure was performed on the Ventana Discovery ULTRA™ 

(Roche Diagnostic, Oro Valley, AZ, US) using the protocol Imm Phentype 4950. To 

generate a Discovery and validation cohort, two batches were stained at separate time 

points, the same antibody lot numbers were used. Briefly, slides were baked at  60◦C, and 

antigen retrieval (950-124, Roche Diagnostic) performed (table 2.11). Slides were 
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incubated with the appropriate blocking buffer to prevent non-specific binding, and first 

primary antibody was dispensed (table 2.11). The appropriate secondary antibody (Roche 

Diagnostic) was dispensed and washed (Discovery wash, Roche Diagnostic) and opal 

fluorophore (NEL821001KT, Akoya Biosciences) applied (table 2.11). This staining 

process is repeated from the antigen retrieval step for all 6 antibodies. Notably, the first 

retrieval step is to expose the epitopes induced by paraffinization, the subsequent retrieval 

steps are focused on stripping the primary antibody to allow the next primary to bind. After 

the final fluorophore step, the counterstain DAPI was applied. Slides were washed and 

cover slips mounted using Diamond ProLong™ (P36970, ThermoFisher Scientific).  

 
Table 2.11 mIF conditions per marker. Summary table includes primary antibody details, retrieval 

and blocking buffers used. Primary antibody dilutions range from 1:20 to 1:250, or are ready-to-use 

(RTU). Opal refers to the fluorophore matched to the secondary, location indicates what cycle the 

antibody is used. Channel per opal is indicted.   

2.3.1.3 Slide visualization and spectral unmixing 

Multiplex stained TMAs were scanned at 20x using the Vectra Polaris™ (Akoya 

Biosciences, Marlborough, MA, US). An unmixing library was created using single stain 

images per marker plus DAPI counterstain. The spectra per marker was extracted via 

InForm® (Version 2.5.1, Akoya Biosciences, Marlborough, MA, US) and used to create a 

true emission spectra. An unstained PDAC TMA was used as an autofluorescence 

reference. This library was used to unmix raw images, generating component images for 

image analysis. When using multiple markers simultaneously on the same section, 

spectral bleed through becomes an issue. This is when fluorophores with a specific 

excitation-emission spectra corresponding to the wavelength of a set channel, are 

detected in another channel. This is due to overlap between the peripheral ends of the 

wavelengths in different channels (figure 2.1). The spectral library created is essential to 

correct this overlap. 
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2.3.2 Phase 2: image analysis and data extraction 

2.3.2.1 Cell segmentation  

A U-NET Deep Learning APP was trained for DAPI nuclear detection using the Author™ 

module on VISIOPHARM® (VISIOPHARM, Hørsholm, Denmark). A base template 

established by members of the John Le Quesne lab was used as a starting point. Using 

PDAC images with variable DAPI pixel intensity, regions of interest were selected, and 

nuclei annotated. An iterative training proceeded as follows; 

annotate > train app > run on example cores > correct U-NET annotations > re-train.   

The APP was trained until at least 90% of the images across discovery and validation 

were correctly segmented, 20% of the cohorts were reviewed. Reviewing process was 

aided by Rachel Pennie and Leah Officer-Jones. The final APP was trained for 

approximately 2.0 million iterations and had ~7% error rate. Post processing steps were 

included to remove artefacts, classed as objects <3μm, and a 35 pixel cell expansion was 

added, generating a whole cell label. Additional post-processing steps included producing 

pixel intensities per Opal, X Y coordinates per cell, and cell count per core.   

2.3.2.2 Tissue segmentation 

A Deep Learning APP was trained using a DeepLabv3+ module for tissue segmentation 

using the Author™ module on VISIOPHARM® (VISIOPHARM, Hørsholm, Denmark). The 

APP was trained from scratch to select epithelial and non-epithelial tissue. The PanCk 

opal 650 was trained as the tumour segment feature, and the remaining tissue was 

annotated as tumour microenvironment. The same training steps as in chapter 2.3.2.1 

were followed. The APP was trained until at least 90% of the images across discovery and 

validation cohorts were correctly labelled, 20% of the cohorts were reviewed. Reviewing 

process was aided by Rachel Pennie and Leah Officer-Jones. The final APP was trained 

for approximately 1 million iterations and had ~3% error rate. Post processing steps were 

included to fill small unlabelled gaps found within masks and remove miscellaneous tissue 

labels <3μm. 

2.3.2.3 Phenotyping 

Biased phenotyping was carried out using a thresholded pixel intensity per marker (figure 

2.3). Co-expressing phenotypes were cytotoxic T cells, defined by CD3+CD8+ cells, T 

cells defined by CD3+CD8- and T regulatory cells defined by FOXP3+CD3+. Single 

expressing phenotypes were CD68+ macrophages, αSMA+ fibroblasts, PanCk+ epithelial 

cells. Additionally, a single expressing CD8+CD3- population was observed, possibly a 

natural killer cell subpopulation or due to assay limitations and CD3 masking. Phenotypes 



79 

were reviewed on VISIOPHARM® (VISIOPHARM, Hørsholm, Denmark).  

 

2.3.3 Phase 3: Analysis 

2.3.3.1 Survival analysis  

Log-rank survival and univariate cox regression analysis was performed to establish 

associations for disease specific survival (DSS) and recurrence free survival (RFS) with 

RStudio (RStudio, Boston, MA, USA) using survminer and survival packages. At the time 

of analysis, no established cutoff methods had been reported in pancreatic cancer. Cutoff 

was determined per averaged variable per patient using a variety of cutoff methods for 

exploratory purposes. All variables were tested with surv_cutpoint function (Rcutoff), 

Lower Quantile (LQ), Upper Quantile (UQ) and Median (Med), the best method was 

selected (table 2.12). Notably cutoff methods established in the discovery naive cohort 

were replicated in the validation naïve cohort. In Kaplan-Meiers with over two curves, 

pairwise comparison over strata was used. Statistical significance was set to p≤0.05, and 

reported to 3 decimal places.  

2.3.3.2 Cellular density and ratios 

Cellular density per phenotype was generated to establish the base immune landscape in 

naïve and neoadjuvant cohorts. Comparisons were made using p value adjusted 

Bonferroni T test. This was done using ggplot and ggpubr package from RStudio 

(RStudio, Boston, MA, USA). Density ratios were generated between two previously 

ranked phenotypes. Survival analysis and cut-offs were generated as stated in 1.3.3.1 

(table 2.12).  

2.3.3.3 Spatial distance metrics and survival analysis  

Three main spatial metrics were explored to establish the spatial immune landscape in 

both naïve and neoadjuvant settings. Nearest neighbour (NN) analysis calculates the 

nearest neighbour of individual cells to a specific phenotype in a set distance e.g., 

distance of cell x to cell y. Mutual nearest neighbour (mNN) calculates the distance 

between mutual pairs. Radius analysis explores the density of cells from a set distance to 

the central cell. These metrics were generated between all phenotypes using the 

PhenoptR package. The average boxplots and comparisons were made using p value 

adjusted Bonferroni T test, using ggplot and ggpubr package from RStudio (RStudio, 

Boston, MA, USA). Survival analysis and cut-offs were generated as stated in 1.3.3.1 

(table 2.12) 
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Table 2.12  Density and nearest neighbour cutoff scores for Kaplan-Meier DSS analysis. 
Summary table illustrates the most important density and nearest neighbour markers across naïve 

and neoadjuvant cohorts, their associated cut-off method and cut-off point per time variable 

disease specific survival (DSS). Number of patients generated per rank is indicated by rank 

number column. Table is limited to markers that are frequently referred to throughout the thesis.  
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2.3.3.4 Multivariate cox regression and decision tree analysis 

Multivariate cox regression and decision tree analysis were performed on density and 

nearest neighbour significant patterns in naïve and neoadjuvant cohorts. This was done to 

filter for patterns with the best chance of biological significance. Multivariate cox 

regression and decision tree analysis were performed using four main packages, survival, 

survminer, rpart.plot and partykit.  

2.3.3.5 CytoMAP neighbourhood analysis 

Raw pixel intensity per opal data and cell X Y coordinates were entered into MATLAB® 

CytoMAP (MathWorks, Natick, MA, US) to validate biased phenotypes generated in 

chapter 2.3.2.3. Normalization was carried out using the standardize method across each 

sample (subtract mean, divide by standard deviation). Number of neighbourhood regions 

was calculated using the Davies Bouldin method and clustering was carried out using the 

nearest neighbour self-organizing map algorithm. 

2.3.3.6 Ripley’s K function 

The well-known spatiotemporal point pattern analysis method ‘Ripley’s K function’ was 

repurposed for single cell analysis. This method determines the pattern of distribution of 

points (in this case cells) within a set boundary. It classes points into three categories; 

 

1. Random distribution – complete random distribution of points with no predictable 

pattern, estimated by Poisson process 

2. Clustered – points clumped together, and the curve produced lies above the 

Poisson curve 

3. Dispersed – points are scattered but have a predictable pattern, curve lies below 

the Poisson 

The pattern of distribution was established per phenotype within naïve and neoadjuvant 

cohorts using the R package spatstat. 

2.4 PhenoCycler 

To establish the single cell protein landscape for T cells, B cells and dendritic cells, Akoya 

Biosciences® (Akoya Biosciences, Marlborough, MA, US) ultra-high plex assay 

PhenoCycler™ was trialled. This was part of a technology access program, using a ready-

to-use panel, STEP core plus enhancement (Akoya Biosciences, Marlborough, MA, US). 

A Glasgow naïve cohort 2 (chapter 2.1.1.4) TMA section was sent to Akoya Biosciences®, 
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the assay was performed, and images were sent back for analysis. Briefly, after antigen 

retrieval and panel incubation, samples are placed in the PhenoCycler-Fusion™ and 

undergo cycles of fluorescent bound oligonucleotide flushed into the flow cell, binding to 

antibodies, image capture, then probe cleavage and removal. This cycle occurs 16 times 

as individual imaging cycles are restricted to 4 channels at any one time. Phenotyping 

was performed using the open-source platform QuPath (QuPath, Edinburgh, UK) on a 

filtered dataset. Markers were split into cytotoxic T cells (CD3e+CD8+), active T cells 

(CD3e+CD8+ICOS+), inactive T cells (CD3e+CD8+TIM3+), helper T cells (CD3e+CD4+), 

B cells (CD20) and dendritic cells (CD11b). Survival analysis was performed as outlined in 

chapter 2.3.3.1, using R function surv_cutpoint as the cutoff method.  

2.5 GeoMx assays 

2.5.1 Assay overview 

GeoMx® DSP (NanoString, Seattle, WA, US) is spatial-resolved transcriptomic and 

proteomic method which works using digital optical barcoding. The assay was performed 

according to manufacturer’s protocol and differs slightly between transcriptome and 

protein panels. The day before starting the assay, samples were re-baked overnight at 

60◦C. Antigen retrieval was performed using the Leica BOND™ (Leica BIOSYSTEMS, 

Wetzlar, Germany) at HIER 20 minutes with ER2 and a 15 minute incubation at 37◦C with 

recombinant Proteinase K (AM2546, Invitrogen) at 1μg/ml. This step was performed in 

collaboration with CRUK Scotland Institute histology department. Samples undergo 

overnight in situ hybridization (ISH) at 37◦C using an oligonucleotide probe panel. Probes 

are composed up of a target oligo and an indexing oligo, bound together by an ultraviolet 

(UV) linker. Unbound probes are removed using a series of stringent washes at 37◦C. Two 

different probe sets and mIF panels were used for protein and transcriptomic assays, see 

chapter 2.5.1 and chapter 2.5.2 respectively. A mini multiplex immunofluorescence (mIF) 

panel using a mixture of immune and morphology oligo-conjugated antibodies was used 

to visualise pancreatic tissue and aid selection of regions of interest (ROI) and areas of 

illumination (AOIs) (figure 2.2). After cocktail primary antibody staining using the 

appropriate mIF panel, samples were loaded onto the GeoMx® machine for ROI 

selection. Localised ultraviolet light cleaves the indexing oligo tags at the UV linker site. 

Tags are aspirated and dispensed into a 96-well collection plate. Tags are hybridized to 

region specific barcodes and sequenced using either the nCounter® (NanoString, Seattle, 

WA, US) for protein, or the NextSeq 1000/2000 sequencer (Illumina, San Diego, CA, US) 

for RNA (figure 2.2).  
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Figure 2.2 Overview of GeoMx® DSP workflow. Overview of NanoString DSP workflow adapted 

with permission from NanoString®. Workflow is split into panel in situ hybridization, mIF staining, 

ROI selection and mask generation, oligo tags cleaved and collection for sequencing. 
 

2.5.2 Immune oncology protein panel 

A combined GeoMx® Immuno-oncology (NanoString) panel was used on the Glasgow 

naïve cohort 1 (see chapter 2.1.1.4) to further establish the immune landscape and 

explore immune functional status. This was completed as part of a technology access 

program, with the assistance of NanoString® scientists. This panel is composed of 60 

proteins, split into 5 modules defined by broad function, including Pan-tumour (GMX-

PROMOD-NCT-HPT-12, NanoString), immune cell profiling (GMX-PROCO-NCT-HICP-

12, NanoString), immune activation status module (GMX-PROMOD-NCT-HIAS-12, 

NanoString), IO drug target module (GMX-PROMOD-NCT-HIODT-12, NanoString) and 

PI3K/AKT signalling (GMX-PROMOD-NCT-HPI3K-12, NanoString) modules. The mIF 

panel was a ready-to-use technology access program immune morphology panel 

(NanoString, Seattle, WA, US), consisting of nuclear stain Syto13, PanCk, CD3 and αSMA 

(NanoString) (table 2.13). A total of 48 geometric ROIs were selected, 48 epithelial AOIs 

and 48 TME AOIs, encompassing all 28 patients from the Glasgow naïve cohort 1 

(chapter 2.1.1.4). Approximately two ROIs were taken per patient. ROI diameter was 
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660μm. AOIs were created using the native thresholding method on GeoMx® DSP control 

centre, with epithelial AOIs generated from PanCk+ staining, and TME AOIs generated 

from PanCk- stain.  

Marker  Assay type Company Dilution Channel 
Syto13 IO panel NanoString 1:10 FITC 
PanCk IO panel NanoString 1:40 Texas Red 
CD3 IO panel NanoString 1:40 Cy3 
αSMA IO panel NanoString 1:40 Cy5 

 
Table 2.13 mIF panel for immuno-oncology panel in Glasgow cohort 1. Summary of marker, 

company it is produced by, and the dilution. The assay panel (immuno-oncology) and fluorescent 

channel used is also indicated 

2.5.2.1 QC, filtering and normalization 

Quality control (QC), housekeeping normalization and filtering was performed on this 

dataset using the R package GeoMxTools. Housekeeping markers were defined by 

GAPDH, Histone H3 and RPS6. QC and filtering methods were performed following the 

manufacturer's guidelines. All 98 AOIs passed technical QC. Targets with signal-to-noise 

ratio below 1.3 were reviewed and filtered as appropriate.  

2.5.2.2 DSP marker concordance analysis 

Concordance between IHC markers (chapter 2.2) and matched DSP markers was 

performed with Spearman Rank correlation using the ggplot2 R package. Statistical 

significance was set to p≤0.05, and reported to 3 decimal places. Coefficient value, 

denoted by Rho, of ≥0.8 demonstrates strong concordance.  

2.5.2.3 Differential expression analysis  

Differential expression analysis (DEA) was carried out to establish the differences 

between two comparison groups. DEA and volcano plots were generated by EdgeR and 

EnhancedVolcano R package. Statistical significance was set to p adjusted ≤0.05 and 

log2 fold change 1.5/-1.5, and reported to 3 decimal places. Naïve epithelial AOIs and 

TME AOIs were compared.   

2.5.2.4 Unbiased clustering heatmap 

Unbiased clustering of averaged protein expression per patient was visualised using a 

heatmap. Annotations were included for immune high and immune low patients. 

Heatmaps were  drawn using ComplexHeatmap R package.  
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2.5.2.5 Survival analysis 

Survival analysis was performed for CD3 and CD8 DSP protein markers to validate the 

protein prognostic trend. Prognostic value of immune high and immune low was tested. 

Further analysis was performed on all markers per AOI. Survival analysis and cutoff 

method was performed as outlined in chapter 2.3.3.1 (table 2.14).  

 

Table 2.14 Cutoff scores for Kaplan-Meier DSS analysis. Summary table illustrates the markers 

and their associated cut-off method and cut-off point per time variable, disease specific survival 

(DSS) and recurrence free survival (RFS). Number of patients generated per rank is indicated by 

rank number column. Table is limited to markers that are frequently referred to throughout the 

thesis. 

2.5.3 WTA panel 

The GeoMx® whole transcriptome atlas panel (GMX-RNA-NGSHuWTA-4, NanoString) 

was used on the Glasgow naïve cohort 2 (chapter 2.1.1.4) and neoadjuvant combined 

cohort (chapter 2.1.1.7) to determine the spatial transcriptomic landscape. This panel is 

composed of 18,000+ genes, excluding non-functional genes. The mIF panel was partially 

made up of ready-to-use NanoString® morphology kit antibodies (GMX-RNA-

MORPHHST-12, NanoString), Syto13 and PanCk, and in-house conjugated antibodies, 

CD45 (M087629-2, ThermoFisher Scientific) and αSMA (53-9760-82, ThermoFisher 

Scientific). Antibody-fluorophore conjugation was carried out using Alexa Fluor™ kits as 

per manufacture protocol (table 2.15). Antibodies were approved for use by NanoString®. 

Concentrations were optimised on control tonsil and PDAC tissue, trialling a range of 

dilutions (1:50-1:500) until the final conditions of 1 hour incubation at room temperature 

with 1:200 dilution for both CD45 and αSMA were validated. This was completed in-house 

with the assistance of Holly Leslie. TMAs were used throughout the course of this thesis, 

resulting in different methods used to generate AOIs due to technological advancements. 

These are discussed in chapter 2.5.2.1. The same AOI types were generated, producing 

an epithelial PanCk+ AOI, fibroblast rich αSMA+ AOI, and immune AOI made up of the 

remainder of the ROI. Three main studies were performed; 
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1. Base naïve Spatial Transcriptomic landscape - investigating inter and intra tumour 

heterogeneity, and relevant clinical subgroup comparisons.   

2. Base neoadjuvant Spatial Transcriptomic landscape - investigating inter tumour 

heterogeneity, distinct histology, and alterations between neoadjuvant treatment 

methods 

3.  Naïve versus neoadjuvant - comparison of matched segments/AOIs, exploring 

Spatial Transcriptomic shift between clinically relevant groups.  

 

Marker  Assay type Company Dilution Conjugation kit 
(catalogue 
number)  

Channel 

Syto13 WTA NanoString® 1:10 NA FITC 
PanCk WTA NanoString® 1:40 NA Cy3 
αSMA WTA ThermoFisher 

Scientific® 
1:200 Alexa Fluor 594 

(A20185) 
Texas Red 

CD45 WTA 
ThermoFisher 
Scientific® 1:200 

Alexa Fluor 647 
(A20186) 

Cy5 

 
Table 2.15 mIF panel for WTA panel in Glasgow cohort 1. Summary of marker, company it is 

produced by, and the dilution. The assay panel (whole transcriptome atlas) and fluorescent channel 

used is also indicated  

 

2.5.3.1  Area of interest selection process 

As the Glasgow naïve cohort 2 (chapter 2.1.1.4) was one of the first experiments 

performed, the selection process relied on the native GeoMx® DSP control centre pixel 

threshold method. A total of 167 geometric ROIs were selected, 51 epithelial AOIs, 41 

αSMA AOIs, 53 immune AOIs, and 3 whole core AOIs. A total of 58 patients were 

included. The neoadjuvant combined cohort (chapter 2.1.1.7) was performed at a later 

date, after considerable technological improvements. A deep learning U-NET tissue 

segmentation approach was developed using the Author™ module on VISIOPHARM® 

(VISIOPHARM, Hørsholm, Denmark). This method followed the same training steps as 

outlined in chapter 2.3.2.2. The tissue segmentation APP was initially trained on PDAC 

optimisation tissue, then further optimised on the actual stained sample on the day of ROI 

collection. A total of 310 geometric ROIs were selected, 95 epithelial AOIs, 95 αSMA 

AOIs, 81 immune AOIs, and 15 whole core AOIs . 71 out of 85 patients were included. 

Due to the cost per run, only 1 ROI per patient was taken for the naïve and neoadjuvant 
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TMA cohorts. As a small validatory experiment of TMA work, the GeoMx® whole 

transcriptome atlas (WTA) panel was performed on two matched biopsy and neoadjuvant 

treated resections from the clinical trial PRIMUS 002 cohort (chapter 2.1.1.8). A total of 20 

ROIs were taken for PP00144 across biopsy and resection, 9 epithelial AOIs, 7 αSMA 

AOIs,13 immune AOIs and 4 whole core AOIs. 11 total ROIs were selected for PP00171 

across biopsy and resection, 8 epithelial AOIs, 6, αSMA AOIs, 9 immune AOIs, and 1 

whole core AOI. A mixture of geometric circle ROIs and polygon ROIs were drawn across 

the above cohorts. Geometric ROI diameter was set to 660μm diameter, and the 

maximum polygon size was 660μm x 785μm.  

2.5.3.2  QC, filtering and normalization  

The first QC steps were performed out on the GeoMx® DSP control centre. The initial 

dataset was visually inspected to ensure correct overall deduplication of read counts. 

Most technical and biological QC parameters were carried out as per manufacturer 

suggestions. The two parameters altered were RNA specific technical background QC, 

negative probe count geomean, and nuclei count. Negative probe count checks the level 

of non-specific binding probes per AOI to ensure the floor of detection is reached. This 

parameter is highly dependent on tissue type and disease state. The count was set to 4 

for PDAC FFPE tissue. Nuclear count per AOI was set to 100. AOIs that fell below these 

set thresholds were flagged and investigated via methods including principle component 

analysis (PCA). After QC steps, the total number of AOIs for the Glasgow naïve cohort 2 

was 148/167 and the neoadjuvant combined cohort was 286/310. Using a lenient filtering 

approach, targets with values below median positive probe count in 5% of AOIs were 

filtered. Normalization was carried out using the Q3 method and batch correction was 

applied. Notably multiple different filtering and normalization methods were explored and 

can be implemented (supplementary 8.1) 

2.5.3.3  Differential expression analysis  

Differential expression analysis was performed on all comparison groups as outlined in 

chapter 2.5.1.3.  

2.5.3.4 Geneset enrichment analysis  

Geneset enrichment analysis (GSEA) determines the aberrated pathways between two 

comparison groups. All comparisons were made. GSEA and bar charts were generated by 

the fgsea R package. Statistical significance was set to p adjusted ≤0.05 and normalised 

enrichment score (NES) 1.5/-1.5, and reported to 3 decimal places. 
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2.5.3.5 Survival  

Survival analysis was performed for intra-AOI clustering (chapter 2.5.2.5) and B7-H3 

expression (chapter 2.5.2.9). Survival analysis was generated as outlined in chapter 

2.3.3.1. B7-H3 cut-off method was replicated from the immune oncology protein panel 

(chapter 2.5.2.5), resulting in a 20high-80low split used. 

2.5.3.6 Inter and intra tumour clustering analysis  

Clustering was explored between all AOIs to confirm inter-tumour differences. Intra-

tumour clustering was performed to determine heterogeneity within epithelium, αSMA and 

immune AOIs. Principle component analysis (PCA) determines the similarity of samples 

inputted by clustering. PCA and plots were generated by Cairo, ggplot2 and VennDiagram 

R packages.  

2.5.3.7 Immune cell deconvolution 

Immune cell deconvolution estimates the immune cells present within the bulk 

transcriptomic context using validated single cell signatures. SpatialDecon, a NanoString® 

(NanoString, Seattle, WA, US) tool specifically designed for Spatial Transcriptomic data, 

was implemented using R package SpatialDecon. Immune cell count per 100 cells was 

generated, and all groups were compared. Statistical analysis was performed using 

Wilcoxon test, and significance threshold set to p≤0.05, reported to 3 decimal places. 

2.5.3.8 Molecular subtyping  

Molecular subtyping was performed with epithelial AOIs, using a filtered 

Squamous/Classical gene list. A total squamous score was generated per epithelial AOI 

to determine squamous signature strength. Bulk molecular subtyped samples were 

classed as true subtypes. Suitability of molecular subtyping using spatial epithelial AOIs 

was determined by comparing it to bulk subtyping, epithelial cluster ranks (chapter 

2.5.2.5) and total squamous score. Bulk was previously carried out by Rosie Upstill-

Goddard as part of a larger cohort. This analysis was performed using 

ConsensusClusterPlus, singscore and ComplexHeatmap R packages.  

2.5.3.9 B7-H3 expression 

To investigate the transcriptomic expression of B7-H3 across the naïve and neoadjuvant 

pancreatic cancer setting, epithelial and averaged whole core expression was explored. 

Survival analysis (chapter 2.5.2.5), DEA (chapter 2.5.2.3) and GSEA (chapter 2.5.2.4) 

were performed. Average AOI boxplots were drawn with ggplot2 R package, and 
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statistical analysis was performed using Kruskal-Wallis test, with significance threshold set 

to p≤0.05.  

2.5.3.10 Sankey plot 

To visualize the immune cell switch in matched biopsy and neoadjuvant treated PRIMUS 

whole sections, a Sankey plot was generated. The percentage estimated cell population 

(chapter 2.5.2.6) from biopsy immune AOIs to neoadjuvant treated immune segments was 

determined. Sankey plots were generated using networkD3 R package. 

2.5.3.11 mIF integration with Spatial Transcriptomics 

To determine the underlying transcriptomic landscape of relevant prognostic mIF protein 

ranked trends (chapter 2.3), matched samples were integrated into GeoMx® data. DEA 

(chapter 2.5.1.3), GSEA (chapter 2.5.2.4) and immune cell deconvolution (chapter 2.5.2.6) 

was performed.  

 
 
 
Batch analysis for DEA, GSEA, immune cell deconvolution and PCA plots were performed 
using Colin Woods GeoMx automated pipeline R script.   
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2.6 CosMx 

2.6.1 Sample preparation and probe incubation 

The CosMx™ immune-oncology protein panel (CMX-H-IOP-64P-P, NanoString) was used 

on the Glasgow naïve cohort 2 (chapter 2.1.1.4) and neoadjuvant combined cohort 

(chapter 2.1.1.7) to determine the spatial single cell proteomic landscape. This panel was 

composed of 64 proteins, including B cell, T cell, dendritic cell and B7-H3 markers. The 

assay was performed as per manufacturers protocol with the help of Claire Kennedy and 

Yoanna Doncheva. Sections were placed in Leica BOND PLUS slides within the 

approximate gasket area (20mmx15mm). Slides were baked overnight at 60◦C the day 

before. A semi-automated tissue prep protocol was run on the Leica BOND™ in 

collaboration with the CRUK Scotland Institute histology department. Antigen retrieval was 

performed at HIER 20 minutes with ER2 at 100◦C and tissue permeabilization using 

recombinant Proteinase K (AM2546, Invitrogen) at 37◦C using 3μg/ml for 15 minutes. 

Subsequently, an incubation frame (NanoString, CMX-FCA) and fiducial mixture (CMX-

FFPE-SP-P, NanoString) was applied to allow for future image registration on the 

CosMx™. A series of post fixation and Sulfo-NHS-Acetate (26777, ThermoFisher 

Scientific) steps were carried out to prepare the samples for overnight ISH of the protein 

probe mix at 37◦C. A series of stringent washes at 37◦C were carried out to remove 

unbound probes.  

2.6.2 mIF staining and CosMx™ machine preparation  

Manual staining was performed as per the manufacturers protocol. Briefly, a ready-to-use 

immunofluorescence panel was applied to PDAC TMAs. Nuclear staining, 1:40 DAPI 

(CMX-H-UCS-12-P, NanoString) dilution, was incubated first at room temperature and 

subsequent staining at 1:25 dilution for cell segmentation mix CD298/B2M (CMX-H-UCS-

12-P, NanoString), PanCk (CMX-H-IO-PCKCD45- MM34-P, NanoString) and CD45 

(CMX-H-IO-PCKCD45- MM34-P, NanoString). After a final Sulfo-NHS-Acetate (26777, 

ThermoFisher Scientific) incubation, the flow cell was assembled, slides were placed into 

the CosMx™, and machine preparatory steps were complete. Pre-bleaching configuration 

C profile and cell segmentation configuration A human tissue profile were selected on the 

machine. The CosMx™ cell segmentation is based on the Cellpose algorithm, using a 

nuclear segmentation and cell expansion method. This was optimised by NanoString® for 

CosMx™ experiments.  



91 

2.6.3 FOV selection  

The field of view is currently limited to 500x500μm squares. Due to limited size of the 

imaging gasket, 20mmx15mm, not all Glasgow naïve cohort 2 and neoadjuvant combined 

cohort cores could be selected. A total of 38 patients were selected for Glasgow naïve 

cohort 2, and 58 patients for neoadjuvant combined cohort. Using the grid method, 

multiple FOVs were placed to cover the whole core (figure 2.3). A total of 150 FOVs were 

selected for Glasgow naïve cohort 2 and 337 FOVs were selected for neoadjuvant 

combined cohort.  

 

Figure 2.3 Example FOV selection on Glasgow naïve cohort 2. Demonstrating four FOVs 

selected to cover the entire core. DAPI (blue) and PanCk (green) are shown. 

2.6.4 Cyclical fluorescent oligonucleotide imaging 

The CosMx™ immune-oncology protein panel is an imaging-based assay. Once ISH 

probes are bound to the PDAC tissue and samples are placed in the machine, fluorescent 

readout reported probes are dispensed into flow cells. ISH probes have a readout domain 

that allows four reporters to bind sequentially, detecting unique proteins. Each reporter set 

produces a Z stack image with X, Y and Z coordinates generated by location 

oligonucleotide probes within each segmented cell. Images are subsequently flattened, 

and probes are assigned per cell with X and Y coordinates. 
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2.6.5 Data extraction 

Data download, compilation, reviewing and QC was performed as recommended by 

NanoString®. This was done by Tengyu Zhang and Ritika Nara. 

2.6.6 Seurat clustering 

Using Seurat R package, normalization was performed using the SCTransform function, 

accounting for both normalization and variance stability across FOVs and batches. Cell 

clustering was performed using Seurat’s PCA and UMAP embedding function. To define 

cell types found within UMAP clusters generated, B cells (CD20, CD19, IgD), T cells 

(CD3, CD4, CD8), dendritic cells (CD11b, CD11c, CD123) and B7-H3 probe expression 

were visualized. Additionally, top differentially expressed markers per cluster were 

extracted, and co-expression was visually confirmed across the appropriate samples. 

Several B cell, T cell and dendritic cell heavy clusters were observed, these were 

combined. This generated 3 overall clusters with heavy B cell, T cell and dendritic cell 

signatures. Multiple B7-H3 clusters were generated associated with other top expressing 

markers, these clusters were kept separate.  

2.6.7 Cluster density 

Seurat clusters were filtered to only include B cell, T cell, dendritic call and B7-H3 related 

clusters and overall density was explored. Boxplots were generated using R package 

ggplot2, and statistical analysis performed using a Kruskal-Wallis test with significance 

threshold set to p≤0.05. 

2.6.8 Nearest neighbour  

Nearest neighbour was performed as outlined in 2.3.3.3. This was carried out on the 

filtered cluster data set, focused on B7-H3 nearest neighbours and visualised using R 

package ComplexHeatmap.  

2.6.9 Survival analysis   

Survival analysis was performed for filtered clustering data for both the Glasgow naïve 

cohort 2 (chapter 2.1.1.4) and neoadjuvant combined cohort (chapter 2.1.1.7) (table 2.17). 

Survival analysis and cut-offs were generated as outlined in chapter 2.3.3.1.  
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Table 2.16 Cutoff scores for Kaplan-Meier DSS analysis. Summary table illustrates the markers 

and their associated cut-off method  and cut-off point per time variable, disease specific survival 

(DSS). Number of patients generated per rank is indicated by rank number column. Table is limited 

to markers that are frequently referred to throughout the thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All RStudio analysis was performed on version 4.3.2 (RStudio, Boston, MA, USA). A wide 

range of packages were implemented for analysis, the most relevant ones are mentioned 

above. HALO® version 3.0.311 was used for IHC analysis, VISIOPHARM® version 

2021.09.2.10918 and QuPath version 0.4.0 was used for mIF image analysis, and 

CytoMAP version 1.4.21 was used for unbiased phenotyping and neighbourhood analysis. 
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3 Chapter 3: Deep immune 
phenotyping in naïve human 

pancreatic ductal adenocarcinoma 
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3.1 Introduction 

Pancreatic cancer is the 5th most common cancer in the UK, accounting for 6% of all 

cancer deaths. The 5 year survival remains dismal at <7%, with limited improvements 

seen in the last 50 years [1, 2]. Increased research into this disease has resulted in 

biological insights robustly established such as molecular subtypes. Characterisation of 

the tumour immune cell microenvironment in pancreatic cancer has been limited by 

multiple factors including technology and tissue access. Of the work undertaken, the vast 

majority of papers focus heavily on the same cell types, namely T cells and macrophages, 

and limited to exploration of naïve patients [8, 141, 167, 182, 218]. This is most likely due 

to the difficulty in acquiring neoadjuvant tissue. Naïve patients have not been treated with 

neoadjuvant chemotherapy or chemoradiotherapy, and have undergone upfront resection. 

Of these naïve patients, most have had adjuvant therapy that was either FOLFIRINOX or 

Gemcitabine based.  

 

The PDAC landscape is traditionally thought of being immune barren making it difficult to 

study. However, new technologies that allow high-plex phenotyping have enabled the 

TME to be studied with a view to discovering new biomarkers [177, 219-223]. Fibroblast, 

macrophage and T cell populations are by far the most prevalent populations in pancreatic 

cancer, and therefore have been studied most  [8, 141, 167, 182, 186, 194, 209, 218, 

224]. Recently, B cell interactions with T cells in cancer have gained popularity, 

particularly when investigating tertiary lymphoid structures [201, 225-227]. 

Immunohistochemistry, using FFPE tissue, has been the gold standard technique used to 

study immune cell protein expression. [228]. Although other technologies such as Mass 

Spectrometry have also been routinely used, IHC is largely more popular and is easily 

translatable to the clinic [229].  

 

T lymphocytes are a major player in the adaptive immune pathway. Originating from bone 

marrow progenitor and maturing in the thymus into either CD4+ or CD8+ cells, they are 

released into the periphery as naïve T cells, and subsequently differentiate into either 

cytotoxic effector cells (CD8+), helper effector cells (CD4+) and regulatory cells (FOXP3+) 

[230]. Cytotoxic effector cells are associated with apoptosis of antigen presenting MHC-I 

cells, and increased expression of these cells is consistently positively correlate with 

increase survival in treatment naïve PDAC patients [8, 182, 231, 232]. Helper effector 

cells (CD4+) are associated with almost every adaptive immune response, activating B 

cell, CD8 cells and macrophages, and secretion of a range of cytokines resulting in pro-

inflammatory, anti-inflammatory and regulatory functions [233]. These cells tend to 

correlate positively with survival, however specific subtyping would be beneficial as the 

regulatory subtype is also part of the helper T cell umbrella [8, 182, 234]. Regulatory T 
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cells, as the name indicates, regulate the immune cells, in theory to help prevent chronic 

inflammation. This results in reducing anti-tumour immunity in pancreatic cancer, and 

correlate with worse survival [235]. Macrophages play a significant role in the innate 

immune pathway, and originate from haematopoietic cells [236]. Multiple pathways of 

differentiation into macrophages have been hypothesized. A school of thought is the 

polarization of macrophages according to their external environment into either M1 

(classically activated) or M2 (alternatively activated) subsets [178]. This hypothesize has 

been criticised by immunologists for being reductive, it may be beneficial to refer to 

subsets by their marker expression. CD68 macrophages are involved in phagocytosis, 

however the role is yet to be fully determined. Nonetheless, high expression of these cells 

is associated with worse prognosis in PDAC [237, 238]. Fibroblasts are located within the 

extracellular matrix, where they secrete a vast array of macromolecules that create and 

maintain this structural network [154]. There are 3 distinct cancer associated fibroblasts, 

with alpha smooth muscle actin (αSMA) expression commonly being used to phenotype 

myofibroblasts, which are normally responsible for wound contraction [190]. Continued 

expression of these cells results in fibrosis, correlating with a dense fibrotic stroma in 

PDAC which is linked to poor survival [163, 193]. The vast majority of studies have 

focused on the cellular density of these immune cells, with a new drive to maintain spatial 

interactions. 

 

 

3.2 Aims 

To first establish the prognostic value of T cell and macrophage subsets using singleplex 

immunohistochemistry in naïve pancreatic cancer. Explore the spatial immune cell 

landscape in terms of T cell, macrophage, and fibroblast content, density, and spatial 

orientation. Distinct histopathological regions for tumour and stroma explored when 

appropriate. The immune landscape will be characterised first with consideration given to 

appropriate clinical subgroups.  
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3.3 Clinical cohorts 

Naive cohort consisted of a total of 436 pancreatic cancer specimens (table 3.1). These 

were split into discovery (n = 244) and validation (n = 192) cohorts. Median survival for 

these patients was 23 months for discovery, 18.5 months for validation, and 20.3 months 

for naïve combined cohorts. The naïve Glasgow cohort (n=28) refers to the subgroup of 

naïve patients used, median survival was approximately 17.2 months. Associated  clinical 

data is found in chapter 2.1.  

 

Study Cohort name TMA 

TMA 
number 

Patient 
number 

Treatment 
type 

PhenoImager    

7 plex assay 

Discovery 
APGI/ICGC TMA 8 

244 Naïve 
SD-PAN-TMA 1 

Validation 
PDAC-PAN-TMA  5 

192 Naïve 
NJ-PANC-TMA 7 

Naïve combined 

APGI/ICGC TMA 8 

436 Naïve 
SD-PAN-TMA 1 

PDAC-PAN-TMA  5 

NJ-PANC-TMA 7 

GeoMx DSP 

Immune-

oncology 

protein assay 

Naïve Glasgow 1 SD-PAN-TMA 1 28 Naïve  

  
Table 3.1 Naïve clinical cohorts and associated study. Summary table showing the study and 

associated TMAs used, patients number and treatment type. The cohort name column refers to the 

cohort name in chapter 2.1. 

3.4 T cell signature offers prognostic value in naïve 
PDAC  

Immunohistochemistry (IHC) is a robust method, routinely used to investigate immune 

populations in cancer (figure 3.1.a). T lymphocytes and macrophages, perhaps amongst 

the most popular immune cell populations, are routinely explored in pancreatic cancer 

using this gold standard method, with elevated T cell levels and reduced macrophages 

correlating with prognostic benefit. This was used to establish these subsets within 

treatment naïve pancreatic cancer. A naïve PDAC cohort (discovery cohort) was 

characterised using CD8, CD3, CD68 and CD163 single plex chromogenic staining. The 

digital imaging platform HALO® was used to score the sections. Survival analysis was 
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performed showing favourable prognosis associated with increased CD8+ (p=0.043) and 

CD3+ (p=0.015) (figure 3.1.b-c). Next, any association between immune infiltration and 

pattern of recurrence was investigated. Patients with no recurrence within 24 months of 

diagnosis demonstrated elevated CD3+ (p=0.009). Conversely, patients with liver 

metastasis, traditionally associated with aggressive disease, had elevated CD68+ 

expression (p=0.034) (figure 3.1.d). Furthermore, patients who developed liver metastasis 

recurred significantly quicker than all other recurrence patterns (p<0.001) (figure 3.1.e).  

 
 
Figure 3.1  Immunohistochemistry on naïve cohort a). Overview from resection to data analysis 

for IHC. Kaplan-Meier curves (disease specific survival) stratified by IHC protein marker expression 

(Log-Rank test)  for b). CD3 and c). CD8 d). Immune cell density heatmap using Histoscores per 

recurrence pattern with Kruskal-Wallis test e). Fine Gray model looking at probability of recurrence 

over time for liver recurrence vs rest. Cut-off method established per variable (chapter 2.2.3)   
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3.5 Deep phenotyping and cellular density landscape in 
naïve pancreatic cancer 

Single plex IHC demonstrates high levels of T cell related markers had prognostic value. 

To further investigate cell-to-cell interactions, a 7 plex immunofluorescence panel was 

generated using Akoya Biosciences® PhenoImager™ to stain multi-regional treated naive 

Discovery (n=244) and Validation (n=192) TMA cohorts (table 3.1). The panel consisted of 

an epithelial tumour marker PanCk (AE1/AE3),  an omnipresent T cell receptor marker 

CD3, cytotoxic T cell marker CD8, T regulatory marker FOXP3, pro-inflammatory 

macrophage marker CD68, myofibroblast marker αSMA, and DAPI as a counter stain 

(figure 3.2.a). Cells were phenotyped according to either single or co-localisation of 

markers. Phenotypes observed were (figure 3.2.b); 

 

1. αSMA+ fibroblasts 

2. CD3+CD8- T cells 

3. CD3CD8+ cytotoxic 

4. CD8+ cells 

5. FOXP3CD3+ T regulatory cells 

6. CD68+ macrophages 

7. PanCk+ cancer cells 

 

Biologically, cytotoxic T cells should always co-express both CD3 and CD8, therefore 

single expressing CD8+ cells could be indicative of a natural killer cell subtype, or due to 

limitations of the assay.  
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Figure 3.2 Phenotyped cell population within mIF panel. a). Example of mIF panel on naïve 

core stained for DAPI, PanCk, αSMA, CD3, CD8, FOXP3 and CD68 b). schematic diagram 

showing the phenotyped immune cells explored in pancreatic cancer, main associated functions 

and the overarching prognostic relevance 

 

Total cell content for combined discovery and validation cohorts was measured to 

establish a base immune landscape in treatment naïve patients (table 3.1). Overall, the 

highest cell populations observed in naïve pancreatic, as expected, were PanCk+ and 

αSMA+ cells (figure 3.3.a). When considering only the immune subset, the highest cell 

population was CD3+ and CD68+ cells and the lowest cell population was FOXP3CD3+ 

population (figure 3.3.a). When patients were sub-categorised by molecular subtype, 

CD3+ levels were found to be significantly elevated (p=0.04) in classical naïve PDAC 

patients (figure 3.3.b).  
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Figure 3.3 Average cellular density boxplots of phenotypes in combined naïve pancreatic 
cohort across a). All patients, n=436 b). Molecular subtypes classical (Cl) (n=141) and squamous 

(Sq) (n=62) using Bonferroni p adjusted T-test 
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3.6 Immune Cell density associates with survival in naïve PDAC 

 

Validation of the predictive power of CD3+ as seen in previous IHC analysis (chapter 3.4) 

was observed in discovery (p=0.004) and validation (p=0.011) cohorts (table 3.2). In 

addition, elevated CD3CD8+ (p=0.001) was also prognostic in the discovery cohort (table 

3.2). Elevated CD3+ (p=0.008) and CD3CD8+ (p=0.001) correlated with recurrence free 

survival (RFS) in the discovery cohort (table 3.2). Furthermore, a reduction in CD68+ cells 

in the discovery cohort was significantly associated with DSS (p=0.008) and RFS 

(p=0.02), with the RFS trend replicated in the validation cohort (table 3.2). The TMA core 

into tumour and TME compartments were investigated for compartment specific markers 

associated with prognosis. In TME discovery compartments, elevated FOXP3CD3+ 

correlated with disease specific (p=0.049)  and recurrence free (p=0.03) survival (table 

3.2). Within the discovery cohort molecular subtype groups, an enriched CD3+ and 

CD3CD8+ density in classical subtype naïve patients correlated with better disease 

specific and recurrence free survival (table 3.2). Conversely, reduced density of CD68+ in 

squamous patients was observed in those with better survival (table 3.2). This trend was 

not replicated in the validation cohort. 

 

 
Table 3.2  Summary of density-based biomarkers in for disease specific and recurrence free 
survival in discovery and validation cohorts in whole core and TME segments. Cut-off 
method established per phenotype (chapter 2.3.3.3) in discovery cohort. Pattern reported per 
phenotype, region and patient group indicated, along with number of patients in each group. Log 
Rank (Mantel-Cox) p value and Univariate cox regression hazard ratio (HR) shown with 95% 
confidence interval (CI). 
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3.7 Density interaction between phenotypes in naïve 
pancreatic cancer 

Until recently, protein characterisation of immune cells in PDAC has predominantly been 

conducted via IHC methods. Studies have reported on the generation of numerous 

profiles for different immune cells resulting in the production of cell ratios that appear to 

perform better than cell density alone. Within the combined naive cohort (table 3.1), 

phenotypes were ranked into low or high and all possible pairs were tested. Log-rank 

survival analysis on overall survival of a ratio was performed, then pairwise comparison 

was performed to look at inter-curve differences between the different ranks within the 

same ratio. Multiple trends were seen. The proportion of PanCk+ and CD3+ cells 

significantly correlated with survival (p<0.001) in naive patients (figure 3.4.a), revealing 

patients with CD3high/PanCklow proportions did better than those with 

CD3low/PanCkhigh (p=0.013) and CD3low/PanCklow (p=0.008) (table 3.3). Surprisingly, 

CD3high/PanCkhigh patients did relatively well, outperforming CD3low/PanCkhigh 

(p=0.008) (table 3.3). Additionally, levels of CD3 and Tregs associated with survival (Log 

Rank p<0.001) (figure 3.4.c), CD3low/FOXP3CD3low naïve patients were associated with 

poor survival compared to CD3high/FOXP3CD3high (p=0.001) and 

CD3low/FOXP3CD3high (p=0.02) (table 3.3). Significant differences were also observed 

between CD3 helper T cell and macrophages proportions (p<0.001) (figure 3.4.b), with 

CD3high/CD68low patients outperforming all other ratios in terms of disease specific 

survival (table 3.3). 
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Figure 3.4 Survival analysis of naïve cellular density ratio Kaplan-Meier curves (disease 

specific survival) stratified by ratio expression in combined treatment naïve PDAC (Log-Rank test) 

for a). PanCk/CD3 ratio b). CD3/CD68 ratio c). CD3/FOXP3CD3. 

 

 

  

  

  

  

  

  

  

  

  

  

  

  
Table 3.3  Pairwise comparison between naïve cellular density ratios taken from Kaplan Meier 

Ratio pair Ratio comparison group 1 Ratio comparison group 2 P value  

CD3/CD68 

CD3High/CD88Low CD3High/CD68High 0.329 
CD3Low/CD68High CD3High/CD68High 0.329 
CD3Low/CD68Low CD3High/CD68High 0.004 
CD3Low/CD68High CD3High/CD68Low 0.010 
CD3Low/CD68Low CD3High/CD68Low 0.004 
CD3Low/CD68Low CD3Low/CD68High 0.586 

PanCk/CD3  

PanCkHigh/CD3Low PanCkHigh/CD3High 0.008 
PanCkLow/CD3High PanCkHigh/CD3High 0.586 
PanCkLow/CD3Low PanCkHigh/CD3High 0.007 
PanCkLow/CD3High PanCkHigh/CD3Low 0.014 
PanCkLow/CD3Low PanCkHigh/CD3Low 0.586 
PanCkLow/CD3Low PanCkLow/CD3High 0.008 

CD3/FOXP3CD3 

CD3High/FOXP3CD3Low CD3High/FOXP3CD3High 0.513 
CD3Low/FOXP3CD3High CD3High/FOXP3CD3High 0.021 
CD3Low/FOXP3CD3Low CD3High/FOXP3CD3High 0.001 
CD3Low/FOXP3CD3High CD3High/FOXP3CD3Low 0.186 
CD3Low/FOXP3CD3Low CD3High/FOXP3CD3Low 0.284 
CD3Low/FOXP3CD3Low CD3Low/FOXP3CD3High 0.513 
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plots above (figure 3.6) ratio pairs are CD3/CD3CD8, PanCk/CD3 and CD3/FOXP3CD3. Log Rank 

(Mantel-Cox) pairwise comparison over strata.    
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3.8 Single cell spatial analysis in the PDAC TME 

 

After cellular content and density was established above, the differences in the spatial 

relationship between phenotypes in relation to clinical parameters was investigated. Two 

broad types of spatial analysis were explored, single cell analysis and clustering analysis. 

These analysis methods provide ideal tools for the data generated in the multiplex assay, 

allowing for deep immune characterisation of the TME. Three major forms of analysis 

were used, nearest neighbour, mutual nearest neighbour and radius distances. 

Nearest neighbour (NN) analysis calculates the nearest neighbour of individual cells to a 

specific phenotype in a set distance e.g., distance of cell x to cell y. This can be used to 

estimate cell-cell interactions. It is important to note, this analysis does not compute 

mutual nearest neighbours. For example, if the nearest neighbour from cell X, was found 

to be cell Y, this doesn’t mean the inverse relationship is the same, e.g. nearest neighbour 

from cell y might be cell Z (figure 3.5.a). Mutual nearest neighbour analysis can be 

thought of as a branch of NN, this solely looks at pairs of cells which are mutually 

neighbours (figure 3.5.b). Radius analysis explores the density of cell Y from a named cell 

X at a set distance from X e.g. number of CD68+ cells at 30μm from CD3+ cells (figure 

3.5.c). As this metric works best with incremental distances, filtering for segments was 

avoided to prevent too many phenotypes from being discarded. 10μm increments were 

set from 0-50μm, then anything above 50μm was pooled together. This type of analysis 

produces vast amounts of significant data, later steps in the analysis pipeline provide 

robust filtering and marker selection.  
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Figure 3.5.a-c Schematic and real life examples of single cell spatial analysis in naïve PDAC 
a). Nearest neighbour analysis schematic calculates the distance of the nearest type from a cell 

e.g., cell X nearest neighbour is cell Y, but cell Z is cell Y nearest neighbour. Cohort example 

shows naïve core distance from PanCk+ (green dots) to CD3CD8+ (red dots) b). Mutual nearest 

neighbour analysis schematic calculates the distance between the mutual nearest neighbour pairs. 

Cohort example CD68+ (magenta dots) and CD3+ (yellow dots) mutual nearest neighbour c). 

Radius analysis schematic calculates density of cells from the chosen central cell type at a given 

radii e.g., density of cell X at 30μm from cell Y. Cohort example shows density of CD3CD8+ (red 

dots) from PanCk+ (green dots), images not to scale.  
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3.8.1 Prognostically favourable nearest neighbour tumour 
immune landscape in all treatment naïve patients 

 

To determine the level of interaction between phenotypes, the average distance between 

all phenotypes was explored. Average distance demonstrated tumour cells tended to be 

further away from CD3CD8+, CD3+ and FOXP3CD3+ T cells, with CD68+ and αSMA+ 

cells closest to tumour cells. This indicates the reduced likelihood of tumour cells 

interacting with CD3 helper and CD3CD8 cytotoxic T cells, and increased chances of 

interacting with immunosuppressive immune cells instead (figure 3.6).   

 

 
Figure 3.6 Average nearest neighbour distance of combined naïve pancreatic cohort. 
Boxplots are faceted by distance to phenotype, with each ‘from’ phenotype displayed along the x 

axis, and average distance in μm along the y axis.   
 

Cellular density, although prognostically relevant, fails to provide insight into cell-to-cell 

patterns. Nearest neighbour analysis was performed to establish the significant interacting 

phenotypic relationships within naïve pancreatic cancer, this was carried out separately on 

the discovery and validation cohorts (table 3.1). Naïve patients with highest survival were 

associated with low distances from PanCk+ to CD8+ (p=0.004), and high distances to 

αSMA+ cells (p=0.022). Increased distance from CD3+ to αSMA+ (p=0.023) and from 

CD3CD8+ to PanCk+ (p=0.019) also associated with improved prognosis (table 3.4). 

These patterns were replicated in the validation cohort (table 3.4). Furthermore, increased 

distance to αSMA+ (p=0.019) from CD3CD8+ cells in TME compartments of naïve 

patients positively correlated with survival in the discovery cohort. New prognostic 

relationships emerging from tissue segment analysis further reinforces the need to carry 
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out extensive spatial analysis in highly heterogenous solid cancers like PDAC. CD68 

associated nearest neighbour relationships had by far, the most number of trends. Naive 

patients with increased distances from CD68+ to PanCk+ (p=0.005), and short distances 

to CD3+ (p<0.001) and to CD3CD8+ (p=0.005) demonstrated improved survival (table 

3.4). The sheer number of nearest neighbour relationships demonstrated reveals the 

extent of which macrophages interact with neighbouring cells and the potential influences 

they have on each other. 

 

 
Table 3.4  Nearest neighbour patterns associated with disease specific survival in naïve 

cohorts looking at whole core and stromal tissue segments. Cut-off method established per 

pattern (chapter 2.3.3.3) in discovery cohort and replicated in validation cohort. Nearest neighbour 

pattern  reported per cohort and region, patient group indicated, along with number of patients in 

each group. Log Rank (Mantel-Cox) p value and Univariate cox regression hazard ratio (HR) 

shown with 95% confidence interval (CI). 
 

Classical subtypes are traditionally associated with a higher immune infiltration. These 

findings have mostly come from IHC and RNA studies, with few spatially resolved metrics 

being described. The patterns seen in subtyped patients with better outcomes is 

described below. When taking subtype into consideration, high survival Classical subtypes 

demonstrated shorter distance from αSMA+ to CD3+ cells (p=0.031) (supplementary table 

8.1). Furthermore, patients with improved survival and longer recurrence free survival 

demonstrated reduced distances from CD68+ to CD3+ (p<0.001 and p=0.004), and from 

CD68+ to CD3CD8+ (p<0.001 and p=0.002) (supplementary table 8.1). Different trends 
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were observed in Squamous subtypes. Increased distance from PanCk+ to CD68+ 

(p=0.018 and p=0.033) associated with improved survival and longer recurrence free 

survival, as well as large distance from CD68+ to CD3CD8+ cells correlating significantly 

with better DSS (p=0.046) (supplementary table 8.1). 

3.8.2 Prognostically favourable mutual nearest neighbour pairs in 
the tumour immune landscape in treatment naïve patients 

Mutual nearest neighbour analysis branches  from nearest neighbour, consequently many 

of the results seen should replicate those seen in NN, but with an added layer of 

classifying the distance in both directions. To establish the overarching phenotype 

interactions in naïve PDAC, the highest density pairs and their spatial relationship was 

investigated. Of note, the closest mutual neighbour to tumour cells was CD68+ and 

αSMA+ and macrophages were closest with αSMA. Additionally, the furthest CD3 T cell 

pair were tumour cells (figure 3.7). This reveals an immune suppressive and fibrotic 

environment surrounding tumour cells, with any potential beneficial T cell effect not 

reaching the tumour core.  

 

 

 
Figure 3.7 Average mutual nearest neighbour distance of combined naïve pancreatic cohort. 
Boxplots shows the mutual relationship displayed along the x axis, and average distance in μm 

along the y axis.   
 

 

 

 

 

 

 

Naïve: Average mutual Nearest Neighbour 
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Naïve pancreatic cancer patients with better prognosis presented with large distances 

between PanCk-αSMA (p=0.040) and PanCk-CD68 (p=0.025) (table 3.5). Likewise naïve 

patients with longer survival associated with larger distances between αSMA-FOXP3CD3 

(p=0.033) and CD3-αSMA (p=0.052) (table 3.5). These findings help confirm phenomena 

seen  within naïve nearest neighbour findings. The pancreatic TME has a meaningful role 

indicated by the prognostic patterns seen in the naïve setting, with distance metrics 

playing an important role.  

 

 
Table 3.5 Mutual nearest neighbour patterns associated with disease specific survival in 
naïve cohorts. Cut-off method per pair, region and patient group indicated, along with number of 

patients in each group. Log Rank (Mantel-Cox) p value and Univariate cox regression hazard ratio 

(HR) shown with 95% confidence interval (CI). 
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3.8.3 Prognostically favourable tumour immune landscape in all 
treatment naïve patients at different radii  

Radius analysis has the unique property of incorporating density of cells with distance 

metrics. To avoid this metric from turning into solely density based, the radii of focus was 

0μm-50μm. The average surrounding immune cell population for all phenotypes within the 

immediate environment was defined as 50μm radius from the central cell. The immediate 

microenvironment of tumour cells was densely populated with αSMA fibroblasts and CD68 

macrophages, in contrast limited cytotoxic T cells were present (figure 3.8). Additionally, in 

the surrounding macrophage environment, high numbers of tumour cells, αSMA 

fibroblasts and CD3 T helper were observed. This was confirmed when looking at the 

immediate cytotoxic T cell microenvironment, showing large density of CD68 

macrophages, as well as CD3 T helper cells and low levels of tumour cells (figure 3.8). 

 
Figure 3.8 Average immune cell population density at 50μm from central cell in combined 
naïve pancreatic cohort. Boxplots are faceted central cell (‘from’ phenotype), with each ‘to’ 

phenotype displayed along the x axis, and average cellular density along the y axis.   
 

 

Treatment naïve PDAC patients with good prognosis were associated with enriched 

density of CD3+ (p<0.001), CD3CD8+ (p<0.001) and low levels of CD68+ cells (p=0.021) 

within the surrounding tumour environment (30μm) (table 3.6). Yet again, spatial 

relationships associated with macrophages are heavily prognostic, relating to both 

disease specific survival and recurrence, replicating trends seen within nearest neighbour 

(chapter 3.8.1) and mutual nearest neighbour (chapter 3.8.2) analysis. Patients with high 

levels of CD3+ (DSS: p<0.001 and RFS: p=0.003), CD3CD8+ (DSS: p=0.002 and RFS: 

p=0.002) and FOXP3CD3+ (p=0.021) and low levels of PanCk+ (p=0.015) within 50μm of 

CD68+ macrophages associated with better outcome (table 3.6). The CD68-CD3 trend 
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was replicated in the validation cohort (table 3.6).  

 

 
Table 3.6 Radii patterns associated with disease specific survival and recurrence free 
survival in naïve cohorts looking at whole core. Cut-off method established per radius pair in 

discovery cohort and replicated in validation cohort. Radii reported using ‘from phenotype’ column, 

indicating the central phenotype, and ‘to phenotype’ indicating the surrounding phenotype. 

Reported by distance (μm), cohort, patient group, along with number of patients in each group. 

Most significant radii is reported. Log Rank (Mantel-Cox) p value and Univariate cox regression 

hazard ratio (HR) shown with 95% confidence interval (CI) for disease specific survival (DSS) and 

recurrence free survival (RFS).  
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3.9 Filtering prognostic markers 

As seen above, multiplex spatial analysis has the ability to produce enormous amounts of 

significant descriptive data. Although all these findings may provide biological insight, it is 

important to start with those that have the highest probability of doing so. Therefore, only 

the markers and relationships seen in both discovery and validation cohorts were taken 

into consideration and placed into two different models. The first being a multivariate cox 

regression model (supplementary 8.2.2), and the second being a decision tree model. 

This was done with the aim of identifying the most relevant, robust variables that not only 

have the best predictive prognostic potential, but also will be robust enough to translate 

into future Spatial Transcriptomic experiments (Chapter 5). Consequently, biological 

mechanisms can begin to be elucidated from these purely characteristic results. The 

model cohort was limited to all patients and variables from density and nearest neighbour 

analysis and adjusted for resection margin and lymph node status. These were the most 

statistically relevant and validated methods. 

 

 

3.9.1 Decision tree analysis  

Decision tree analysis is perhaps one of the most simple supervised machine learning 

algorithms that can easily be employed for multiplex data due to its ability to support 

continuous and categorical data. Only variables from the final multivariate models 

(supplementary 8.2.2) were used. Three major models  run were; 

 

1. Full data – all significant variables included from density and nearest neighbour 

2. Grouped data – variables split according to NN pairs (including density variables) 

3. Filtered – CD68 related nearest neighbour variables with all density variables  

 

Combination of density and nearest neighbour pairs generated interesting results in model 

1 (figure 3.9.a). Unexpectedly, the root node seen was a nearest neighbour metric. 

Distance to CD3+ from CD68+Low (CD3-from-CD68) (Node 2: probability = 0.46, 

p=0.003), and CD3-from-CD68:CD68Low (Node 4: probability = 0.48, p<0.001) 

associated with highest survival probability. Lowest survival probability was associated 

with distance to CD3 from CD68High:CD68High (Node 5: probability = 0.14, p<0.001) 

(figure 3.9.a).  

Looking only at cellular density in model 2, CD68Low patients had the best disease 

specific survival probability (Node 2: probability = 0.54, p=0.009), and CD68High:CD3Low 

had the lowest (Node 4: probability = 0.1, p=0.002) in naïve pancreatic cancer patients 
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(figure 3.9.b). Finally, CD68 specific nearest neighbour trends were input with all 

significant density markers. Highest survival probability was seen in naïve patients with 

CD68Low (Node 2: probability = 0.54, p=0.014), replicating trends seen above, and lowest 

survival probability was associated with CD68High:PanCk-from-CD68High:CD3Low 

(Node 6: probability = 0.08, p=0.042) (figure 3.9.c). 

 

 
 
Figure 3.9.a Density and nearest neighbour decision tree model with matching survival 
probability table in naive for a) Combined density and nearest neighbour variables. Nodes split 

according to rank, number of patients per node indicated and associated p value in decision tree 

model. Survival probability with confidence intervals (CI) and associated nodes reported in survival 

table. 
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Figure 3.9.b Density and nearest neighbour decision tree model with matching survival 
probability table in naive for b) Density alone. Nodes split according to rank, number of patients 

per node indicated and associated p value in decision tree model. Survival probability with 

confidence intervals (CI) and associated nodes reported in survival table. 
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Figure 3.9.c Density and nearest neighbour decision tree model with matching survival 
probability table in naive for c). Distance from CD68 pairs with density metrics. Nodes split 

according to rank, number of patients per node indicated and associated p value in decision tree 

model. Survival probability with confidence intervals (CI) and associated nodes reported in survival 

table. 
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3.10 Spatial clustering analysis in naïve pancreatic 
cancer  

To further categorise the tumour immune microenvironment, clustering spatial metrics 

were investigated. These help to define the different cellular regions or neighbourhoods 

within naïve pancreatic cancer. Two methods were used, Ripley’s K function and 

neighbourhood analysis. The well-known spatiotemporal point pattern analysis method 

‘Ripley’s K function’ determines the pattern of distribution of points (in this case cells) at 

increasing radii, was repurposed to establish intracellular phenotypic patterns (figure 

3.10.a). The analysis was limited to a set boundary, looking at the overall pattern of 

distribution (figure 3.10.b). The average K function per phenotype was generated and 

compared to the average theoretical random distribution (Poisson’s curve). Patterns of 

distribution are classed random, clustered and dispersed (figure 3.10.a) (chapter 2.3.3.6). 

Neighbourhood analysis determines the phenotypes that cluster together and creates 

neighbourhoods according to the frequency of the same clustering patterns occurring. 

This was done using CytoMAP hierarchical clustering (figure 3.10.c).  
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Figure 3.10.a-c Clustering spatial analysis methods a). Ripley's K function graph showing 

theoretical Poisson curve and the observed K function. Observed K function above the theoretical 

indicates clustered pattern, below the theoretical indicates dispersed, and along the theoretical 

indicates random patterns of distribution b) Example density pattern heatmap for CD3 in naive core 

indicating clustered pattern of distribution c). Example naïve core with neighbourhood regions 

generated from MATLAB® CytoMAP, colour denotes the neighbourhood region 
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3.10.1 Distribution pattern of immune cells in pancreatic 
cancer tumour microenvironment 

To fully establish the spatial relationships within the TME, it is important to also take into 

consideration the relationships between the same phenotypes and their pattern of 

distribution. This was done using Ripley’s K function (chapter 2.3.3.6). As above, 

discovery and validation cohorts were kept separate. On average, Ripley’s K function in 

both discovery and validation upfront resected patients was consistently above the 

average theoretical value for each phenotype, revealing a clustered pattern of spatial 

distribution within TMA cores. Visual inspection of the TMA images when initial image 

analysis was being undertaken confirm these results. The distance from the K function 

score from theoretical is an indication to how clustered the phenotypes are. T-test using 

Bonferroni adjusted methods was performed to check significance of clustering and 

differences were found between the K function and Theoretical values for all phenotypes 

in discovery and validation cohorts (figure 3.11.a-b). The largest differences in both 

cohorts were seen between PanCk+, CD3CD8+ and FOXP3CD3+ phenotypes, signifying 

these markers have increased clustering expression compared to αSMA+ and CD68+ 

which have K function values closer to the theoretical cohorts (figure 3.11.a-b). 
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Figure 3.11.a-b Average Ripley’s K function and theoretical Poisson function values for all 
naïve phenotypes across discovery and validation cores. Boxplot faceted by phenotype, 

comparing observed K function to theoretical K function in  a). Discovery cohort cores (n=776) 

using Bonferroni p adjustment T-test b). Validation cohort cores (n=815) using Bonferroni p 

adjustment T-test.  
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3.10.2 Unbiased phenotyping and Neighbourhood 
generation 

To confirm phenotypes generated via biased phenotyping, explore how different 

phenotypes cluster together and create regional neighbourhoods, MATLABs® CytoMAP 

was used on the combined naïve cohort. Unbiased phenotype cellular clustering produced 

9 cell type clusters, 8 of which matched biased cell typing (chapter 3.5). In unbiased cell 

typing, a new cell type cluster, FOXP3CD3PanCk was observed, which was not selected 

for in biased phenotyping. The presence of this cluster was observed in ~5.5% of overall 

cell types (figure 3.12.a). These cell clusters were then made into neighbourhoods and 

clustered into regions. Overall, 8 regions were observed within naïve pancreatic cancer. 

Notably, neighbourhood 3 composed of FOXP3CD3PanCk cells clustered with CD3 (as 

expected) and slightly with CD68 cells, and neighbourhood 6 demonstrating clustering of 

CD3, CD3CD8 and CD68 (figure 3.12.b). All other regions were composed of expected 

single phenotypes. It is worth noting due to the small panel number, there is limited  

neighbourhood clustering, and it is constrained to the phenotypes present.  

 



123 

 
Figure 3.12.a-b Neighbourhood generation in naïve PDAC combined cohort using CytoMAP 
a) Cell typing heatmap showing fold change differences across channels to generate cell clusters 

b) neighbourhood regions generated by fold change of cell clusters associating with each other. 

Heatmap coloured by fold change. 
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3.11 Regional protein phenotyping across the naive 
landscape  

T lymphocyte and macrophage populations offer robust prognostic biomarkers within the 

naïve pancreatic cancer landscape as shown above. Although this is routinely reported in 

PDAC, the importance of lymphocyte subsets, their associated protein expression and 

activation status is less well characterised [239]. Deep immune regional phenotyping was 

carried out to help elucidate this. The Nanostring GeoMx DSP® platform enables high 

plex regional proteomic profiling of FFPE tissue sections with the regions of interest 

(ROIs) selected according to both morphological (histological) and phenotypic 

characteristics (figure 3.13.a). ROIs were selected according to PanCk+ staining, resulting 

in  epithelial rich (PanCk+) and  tumour microenvironment (TME) areas of interest (AOIs) 

(figure 3.13.b). Regional protein signatures were generated using a 60 plex immune-

oncology panel, with 5 modules. This was carried out using a subset of the naïve cohort, 

named the naïve Glasgow cohort (table 3.1). Comparison with chromogenic IHC 

generated above (chapter 3.4) validated the protein DSP TME expression for CD3 (R = 

0.83, p < 0.001) and CD8 (R = 0.84, p < 0.001) and showed strong concordance and 

relatively strong concordance for CD68 (R= 0.68, p < 0.001), between GeoMx™ protein 

panel and gold standard IHC methods (figure 3.13.e-g). Furthermore, the prognostic value 

of CD3 and CD8 within the TME compartment was tested. Elevated expression of both 

CD3 (p= 0.027) and CD8 (p=0.009) correlated with survival, recapitulating trends seen in 

IHC (figure 3.13.c-d).  
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Figure 3.13.a-g  Correlation between IHC and Regional proteomics in naïve PDAC a). 

Overview NanoString™ DSP assay, full details provided in chapter 2, schematic adapted from 

NanoString technologies b). Example region of interest (ROI), with PanCk+ mask and tumour 

microenvironment mask (PanCk-), stained for PanCk (green), αSMA(yellow), CD3 (magenta) and 

Syto13 (blue). b). Kaplan-Meier curves (disease specific survival) stratified by DSP CD3 protein 

P < 0.001 
Rho = 0.84 
n = 27 

P < 0.001 
Rho = 0.83 
n = 27 

P < 0.001 
Rho = 0.68 
n = 27 
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marker expression (Log-Rank test) c). Kaplan-Meier curves (disease specific survival) stratified by 

DSP CD8 protein marker expression (Log-Rank test). Regression plots comparing e) CD8 f) CD3 

g) CD68 positivity staining in each core (evaluated by IHC) assessed by automated scoring (HALO) 

with normalized DSP protein marker expression (averaged across all 48 cores). Spearman 

correlation coefficient and p-value presented. Grey shading denotes 95% confidence interval (CI) 

of correlation coefficient. 

 

Initial regional analysis confirmed that epithelial and TME ROIs within TMA cores had 

distinct patterns of DSP protein expression consistent with the predicted cell types in each 

region. In addition to PanCk expression being higher in epithelial ROIs, as expected, 

expression of CD3, CD4, CD8, αSMA along with immune checkpoint protein B7-H3 were 

significantly elevated in TME compartments (figure 3.14.a). Furthermore, unbiased 

clustering demonstrated differences within TME compartments vary from immune-rich to 

immune-void (figure 3.14.b), with immune-void patients negatively associating with 

survival (figure 3.14.c). The prognostic power of markers within tumour and TME regions 

was assessed for biomarker discovery. In total, 9 DSS and 3 RFS TME specific, and 3 

DSS and 2 RFS tumour specific markers demonstrated prognostic significance (table 3.7). 

In TME segments, enriched expression of fibronectin was observed, CD3, CD4, CD8, Bcl-

2, HLA-DR, GZMB, PD-1 and Tim-3 correlated with prognosis, and enriched fibronectin, 

CD8 and Bcl-2 correlated with recurrence (table 3.7). Tumour segments with reduced B7-

H3, and enriched 4-1BB, Bcl-2 expression associated with better survival, and increased 

4-1BB and reduced Her-2 correlated with longer recurrence free survival (table 3.7). A 

strong correlation between overlapping protein expression in IHC and DSP, validates the 

prognostic benefit of select immune T cell subsets, and the utility of this regional 

proteomic technology in novel biomarker discovery.  
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Figure 3.14.a-c  Segment specific protein expression across naïve PDAC a). Volcano plot 

demonstrating protein marker differential expression levels based on comparison of PanCk versus 

tumour microenvironment (TME) regions. Dashed line indicates significance thresholds, NS = non-

significant, FC = fold change. b) Unsupervised analysis of DSP data in the tumour 

microenvironment regions identified 2 classes: Class 1 High immune signalling (blue); Class 2 Low 

immune signalling (red). c) Kaplan–Meier analysis of patient survival stratified by immune class; 

immune-rich (Class 1) and immune-void (Class 2) 
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Table 3.7 Summary of naïve spatial protein biomarker signature density for disease specific 
survival and recurrence free survival in tumour and TME segments. Cut-off method 

established per phenotype and segment generated (chapter 2.5.1.5.). Log Rank (Mantel-Cox) p 

value and Univariate cox regression hazard ratio (HR) shown with 95% confidence interval (CI) for 

disease specific survival (DSS) and recurrence free survival (RFS).  
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3.12 Discussion   

Several studies have investigated the role of T lymphocytes, macrophages and fibroblast 

cells in naïve pancreatic cancer. Until recently these studies have been primarily focused 

on single stain immunohistochemistry. To begin to fully characterise the naïve pancreatic 

landscape, confirmation of prognostic relevance of major T cell and macrophage markers 

in the chromogenic setting had to be established. As expected, elevated levels of helper 

(CD3) and cytotoxic (CD8) T cells significantly correlated with survival, in addition to pro-

inflammatory CD68 macrophages correlating with recurrence at the most aggressive site. 

These results replicated the general consensus established for naïve PDAC patients 

regarding cellular density. Increased levels of cytotoxic and helper T cells are consistently 

reported to have a positive association with survival. Due to the cytotoxic role of CD8 

cells, increased levels are hypothesized to lead to increased apoptosis of tumour cells, 

resulting in longer survival [8, 182, 231, 232]. Helper T cells play a potentially more 

complex role. Patterson et al demonstrated these T cells help differentiate monocytes into 

tumour-suppressive macrophages, and also dampen the effect of T regulatory cells [234]. 

CD68+ macrophages fall into the pro-tumour category, with high expression routinely 

associated with poor survival [237, 238]. 

 

Within IHC studies, investigation into ratios between cell types using serial sections or 

using multi-colour IHC (mIHC) has provided pseudo interaction analysis with cellular ratios 

shown to outperform density alone in PDAC. Specifically, high expression of combined 

CD8+/CD4+ was found to be an independent prognostic marker which out competes 

individual density of each marker [8]. This ratio was also seen within the naïve cohort, 

although median survival was the same for both CD3high/CD3CD8high ratio and CD3high 

density (22.5months). Furthermore, low proportions of CD3/Tregs correlated with poor 

prognosis in PDAC patients [9], with the naïve cohort replicating the pattern.  

Until recently, the vast majority of immune cell protein PDAC profiling has been carried out 

using IHC, and occasionally mIHC, though this was limited to a maximum of 3 markers 

[240]. However, with the accessible development of specialist technology, this is no longer 

the case. Tailor-made immune panels have been developed to stain for a large number of 

markers on the same section allowing for phenotyping via co-localization, and the ability 

for complex spatial analysis, which was previously unmanageable. Deep immune 

phenotyping in pancreatic cancer reveals  novel spatial immune interactions previously 

unknown. Highly defined cell clusters associated with survival have been discovered using 

a 27-plex marker panel, including PD-1 expressing CD4 T cells clustering with IL10 

expressing myelomonocytes and CD8 T cells clustering with B cells [241]. With extensive 

panels such as these, characterization of the PDAC TME and biomarker discovery 
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becomes increasingly manageable.  

 

The major advantage of multiplex panels is the ability to perform distance metric analysis. 

Our naïve cohort produced a large number of significant spatial relationships, with 

dominant trends observed. Naïve patients with a better survival associated with highly 

anti-tumour microenvironment, defined by reduced distances from tumour cells to 

cytotoxic T cells and CD3+ helper, and large distances to macrophages and fibroblasts. 

This trend has previously been reported. Carstens et al, investigated the spatial 

distribution of T lymphocytes in relation to pancreatic cancer cells and found high 

expression of cytotoxic T cells within 20μm of cancer cells significantly correlated with 

survival [7]. These immune cell interactions with tumour cells were further accentuated in 

radius analysis. Large numbers of effector T cells and a reduced number of macrophages 

within 30μm of tumour cells significantly associated with favourable prognosis. Naïve 

patients revealed a powerful prognostic distance metric validated across both cohorts. 

Reduced distance to CD3+ helper T cells from macrophages associated with longer 

disease specific and recurrence free survival. This phenomenon maybe due to density of 

T cells dampening macrophage effects.  

 

To establish an integrated characterization of density and the role of inter-cellular 

interactions according to distance, varied multivariate cox regression and decision tree 

models were performed. Naïve patients with high survival probability were associated with 

either low inter-cellular distances from macrophages to CD3+ helper cells, or larger inter-

cellular distances coupled with low density of CD68+ cells. As macrophage related spatial 

relationships were abundant in the naïve setting, these NN pairs along with density were 

investigated. Patients with highest survival probability were characterized by low CD68+ 

expression, or if patients had elevated CD68+, large distances between macrophages to 

tumour cells, couple with enriched CD3+ population seemed to provide prognostic benefit.  

 

The established markers were validated using spatial bulk proteomics, with the two 

assays demonstrating high correlation. Furthermore, a substantial number of prognostic 

biomarkers within the naive landscape were predominantly associated with T cell related 

functions, providing insight into region specific cellular subtypes found within naïve 

pancreatic cancer. Within the epithelial compartment, the immune checkpoint and 

potential targetable marker B7-H3 had prognostic value. Interest is growing within the 

cancer field regarding B7-H3 expression as an immune checkpoint marker [16]. This 

molecule has, reportedly, limited expression in normal tissue, and high expression in 

pancreatic cancer, with elevated expression correlating with poor survival and metastasis 

[17-19]. Additionally, it has been correlated with advanced pathological stage, as well as 

lymph node metastasis [242]. Multiple pathways have been associated with B7-H3, 
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including both co-inhibitory and co-stimulatory T cell related pathways. It can both inhibit 

and stimulate the proliferation of helper and cytotoxic T cells and has been associated 

with one of the cancer hallmarks, immune evasion [243-246]. Blockade of this checkpoint 

alone using an anti-B7H3 monoclonal antibody in murine models resulted in increased 

cytotoxic T cell infiltration. Furthermore, combination therapy with Gemcitabine 

demonstrated vastly reduced tumour volume compared to either treatment alone [242] . 

 

A shift of focus can be seen in the pancreatic cancer research field to study the tumour 

immune microenvironment using sophisticated technologies that facilitate robust, complex 

characterization with high through-put biomarker discovery potential. However, there is 

much to learn, with published literature in pancreatic cancer remaining relatively limited 

compared to other solid cancers such as colorectal or breast cancer. Multiplex 

immunofluorescence, remains at its core, a descriptive assay, limited to characterization, 

and although biological interactions can be inferred, a complementary Spatial Biology 

technique that will delve deeper into the underlying immune mechanisms is required.  
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4 Chapter 4: Deep immune 
phenotyping in neoadjuvant human 
pancreatic ductal adenocarcinoma 
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4.1 Introduction 

Of the 10-20% of patients eligible to undergo surgical resection, a medically fit proportion 

undergo neoadjuvant therapy prior to surgery [21]. These patients are treated with 

FOLFIRINOX based therapy, Gemcitabine based therapy or chemoradiotherapy prior to 

surgical resection. This introduction of neoadjuvant treatment was based on evidence that 

neoadjuvant treatment in borderline resectable and locally advanced PDAC patients 

associated with improved survival outcomes [247-250]. Furthermore, it has been reported 

that preoperative treatment has the ability to convert unresectable patients into resectable 

[4, 250]. The great benefit of neoadjuvant therapy lies in its ability to make surgery a 

possibility. By increasing the number of patients eligible for resection, the likelihood of 

overall survival for PDAC is increased. 

 

To date, few studies have robustly established the effect of neoadjuvant therapy on the 

tumour microenvironment or have directly explored the phenotypic differences between 

treatment naïve and neoadjuvant treated pancreatic tumours. Of the studies that have 

attempted this characterisation, analysis primarily remains focused on cellular densities 

and ratios, with little exploration in the spatial field [8, 251-253]. This is due to a multitude 

of factors, including limited access to human patient samples and lack of suitable 

technology. Even in cases where access to tissue is available, a delicate balance is 

needed to prevent wasting precious tissue, whilst having adequate representation of the 

patient sample. The added complication of expensive and labour intensive technologies 

has limited this exploration until recently. Multi-regional tissue microarrays allow for high 

patient throughput at a fraction of the cost (both reagent and personnel), whilst the multi-

core aspect accounts for sufficient tissue input [254]. Combining this tissue resource with 

relatively novel multiplexing assays, results in a large amount of data generated with 

reduced tissue input. It would not be unreasonable to assume these types of studies will 

become increasingly accessible as time progresses.  

 

There is emerging evidence in the literature that chemotherapy alters the tumour immune 

microenvironment, triggering an immunogenic switch from immune barren and pro-

tumorigenic, into an immune rich landscape. The majority of immune cells explored in this 

context remain T cells and macrophages [132, 213, 214, 255]. Notably, elevated cytotoxic 

T cell proportions are seen within the stromal compartments of patients treated with 

neoadjuvant therapy, as well as reduced Treg populations [252, 253, 256]. The role of 

macrophages in the neoadjuvant treatment setting is less clear than in treatment naïve 

patients, with increased M1 polarized macrophages associated with improved survival 

[252]. In order to establish the validity of this hypothesis, the aim was to characterise a 
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neoadjuvant cohort using the same multiple immunofluorescent assay as describe in 

chapter 3.   
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4.2 Aims 

Explore the spatial immune cell landscape in terms of T cell, macrophage, and fibroblast 

composition in neoadjuvant treated human pancreatic cancer. Investigate content, 

density, and spatial orientation in distinct histopathological regions. Base immune 

landscape will be characterised first, and subsequent comparisons between naïve and 

neoadjuvant cohorts will be carried out. Consideration will also be given to appropriate 

clinical groups. 

4.3 Clinical cohorts  

Neoadjuvant cohort consisted of 72 pancreatic cancer specimens within a TMA with 

clinical data associated (table 4.1). Median survival for these patients was 24.5 months. 

The combined naïve cohort, as seen in chapter 3, was used as a comparison group (table 

4.1). Notably, these naïve and neoadjuvant patients are unmatched. Median survival for 

these patients was 20.3 months. Clinical data associated with these cohorts is found in 

chapter 2.1. 

Study Cohort TMA TMA 
number 

Patient 
number 

Treatment 
type 

PhenoImager 7 
plex assay 

Neoadjuvant 
Glasgow 

Neoadj-MAL-TMA batch1 3 
72 Neoadjuvant Neoadj-MAL-TMA batch2 3 

Naïve 
combined 

APGI/ICGC TMA 8 
436 Naïve SD-PAN-TMA 1 

PDAC-PAN-TMA  5 
NJ-PANC-TMA 7 

 
Table 4.1 Neoadjuvant and naïve clinical cohorts and associated study. Summary table 

showing the study and associated neoadjuvant and naïve TMAs used, patient number and 

treatment type. The cohort name column refers to the cohort name in chapter 2.1. 
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4.4 Deep phenotyping and cellular density landscape in 
neoadjuvant pancreatic cancer 

The neoadjuvant pancreatic cancer has a considerably less well defined tumour immune 

microenvironment compared to its naïve counterpart. Substantially increased survival was 

observed upon introduction of pre-operative treatment, thought to be partly due to an 

immune rich phenotype. This hypothesis was investigated using a Glasgow based 

neoadjuvant treated cohort (n=72), recapitulating the same 7 plex immune assay (chapter 

2.3), selecting for the same phenotypes and following the same analysis pipeline as in the 

naïve cohort (chapter 3). Phenotypes observed were; 

 

8. αSMA+ fibroblasts 

9. CD3+CD8-  T cells 

10. CD3CD8+ cytotoxic 

11. CD8+ cells 

12. FOXP3CD3+ T regulatory cells 

13. CD68+ macrophages 

14. PanCk+ cancer cells 

 

 

Total cell density of all neoadjuvant patients was measured to establish a base immune 

landscape. The highest cell population observed were CD68+, αSMA+ and CD3+ cells 

and the lowest cell population were single stained CD3CD8+ and CD8+ populations 

(figure 4.1.a). Next, density of relevant clinical pathology subgroups was compared. 

Patients treated with chemotherapy had significantly elevated CD68+ (p=0.019) and 

PanCk+ (p=0.005) levels compared to patients treated with chemoradiotherapy (figure 

4.1.b). No significant immune cell differences were observed across chemotherapy 

treatment type (figure 4.1.c) nor tumour regression status (figure 4.1.d).  
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Figure 4.1.a-d Average cellular density phenotype boxplots across neoadjuvant patients and 
in clinical pathological subgroups a). All neoadjuvant patients, n=72, b). Neoadjuvant treatment 

type (NeoadjXRT), chemotherapy (0) and chemoradiotherapy (1) using Bonferroni p adjusted T-

test, chemotherapy n=46, chemoradiotherapy n=24, c). Neoadjuvant chemotherapy drug type, 

FOLFIRINOX (FFX = 1) and Gemcitabine (GEM = 2) using Bonferroni p adjusted T-test, FFX n=52, 

GEM n=18, d). Tumour regression status, good regression (1) and poor regression (2) using 

Bonferroni p adjusted T-test, good n=35, poor n=33 
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4.5 Density survival analysis in neoadjuvant PDAC 

Survival analysis was carried out using ranked densities. In the patients treated with 

neoadjuvant therapy low density of CD3+ (p=0.004), CD3CD8+ (p=0.001), CD68+ 

(p=0.001) and FOXP3CD3+ (p=0.003) cells associated with better disease specific 

survival (table 4.2), contrary to what was hypothesised. To confirm these findings, well-

known clinically relevant prognostic groups were examined. When clinical subgroups were 

investigated, similar trends appeared. Low expression of CD3CD8+, CD3+, CD68+ and 

FOXP3CD3+ associated with better survival in chemoradiotherapy treated patients, 

FOLFIRINOX (FFX) treated patients, and patients with good regression (table 4.2). In 

addition, reduced infiltration of CD3CD8+ and CD68+ in Gemcitabine treated patients 

correlated with improved survival (table 4.2). As expected, reduced density of tumour cells 

(PanCk+) in chemotherapy treated, FFX treated and poor regression patients associated 

with better outcome (table 4.2). Each clinical group confirmed the counterintuitive density 

results, indicative that the neoadjuvant landscape is more complex than expected. Cellular 

density alone may be insufficient to explain the prognostic benefit of neoadjuvant patients.  

 

 
Table 4.2 Summary of significant density-based biomarkers in neoadjuvant cohort for 
disease specific survival in whole core. Cut-off method established per phenotype (chapter 

2.3.3.3), region and patient group indicated, along with number of patients in each group. Log Rank 

(Mantel-Cox) p value and Univariate cox regression hazard ratio (HR) shown with 95% confidence 

interval (CI) ) for disease specific survival. 
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4.6 Density interaction between phenotypes in 
neoadjuvant pancreatic cancer 

To start deciphering intercellular dynamics between immune cells in the neoadjuvant 

microenvironment, density ratios between all phenotypes were investigated. As in chapter 

3.7, Log-Rank survival analysis was performed on overall ratio, then pairwise comparison 

was used to look at inter-curve differences within the same ratio pair. Proportions between 

cytotoxic T cells demonstrated multiple significant ratios. Ratio between CD3CD8+ cells 

and tumour cells significantly correlated with survival (p<0.001) (figure 4.2.a). Pairwise 

comparison demonstrated CD3CD8high/PanCkhigh patients did considerably worse than 

all other groups, with CD3CD8low/ PanCklow groups associated with the best outcomes 

(p<0.001) (table 4.3). Significant relationships were also observed between cytotoxic T 

cells and T regulatory cells (p=0.002) (figure 4.2.b), with favourable outcome expressed 

CD3CD8low/FOXP3CD3low ratios, compared to patients with worse survival expressing 

CD3CD8high/ FOXP3CD3high (p=0.001) (table 4.3). Finally, cytotoxic T cell and 

macrophage ratio was observed to correlate with disease specific survival (p =0.004) 

(figure 4.2.c). Favourable prognosis was seen in patients with CD3low/CD68low, 

compared to CD3high/CD68high (p=0.006) (table 4.3). Neoadjuvant ratios confirm results 

seen with cellular density, indicative of immune cell interactions within the treated tumour 

immune microenvironment.  



140 

 
Figure 4.2.a-c Survival analysis of cellular density ratio in neoadjuvant cohort. Kaplan-Meier 

curves (disease specific survival) stratified by ratio expression in neoadjuvant treated PDAC (Log-

Rank test) for a). CD3CD8/PanCk ratio b). CD3CD8/FOXP3CD3 ratio c). CD3/CD68 ratio. Log 

Rank (Mantel-Cox) pairwise comparison over strata.   
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Ratio group Ratio comparison group1 Ratio comparison group2 
Pairwise P 
value 

CD3CD8/PanCk 

CD3CD8High/PanCkLow CD3CD8High/PanCkHigh 0.019 
CD3CD8Low/PanCkHigh CD3CD8High/PanCkHigh 0.013 
CD3CD8Low/PanCkLow CD3CD8High/PanCkHigh <0.001 
CD3CD8Low/PanCkHigh CD3CD8High/PanCkLow 0.527 
CD3CD8Low/PanCkLow CD3CD8High/PanCkLow 0.274 
CD3CD8Low/PanCkLow CD3CD8Low/PanCkHigh 0.169 

CD3CD8/FOXP3CD3 

CD3CD8High/FOXP3CD3Low CD3CD8High/FOXP3CD3High 0.503 
CD3CD8Low/FOXP3CD3High CD3CD8High/FOXP3CD3High 0.133 
CD3CD8Low/FOXP3CD3Low CD3CD8High/FOXP3CD3High 0.001 
CD3CD8Low/FOXP3CD3High CD3CD8High/FOXP3CD3Low 0.832 
CD3CD8Low/FOXP3CD3Low CD3CD8High/FOXP3CD3Low 0.503 
CD3CD8Low/FOXP3CD3Low CD3CD8Low/FOXP3CD3High 0.133 

CD3CD8/CD68 

CD3High/CD68Low CD3High/CD68High 0.403 
CD3Low/CD68High CD3High/CD68High 0.635 
CD3Low/CD68Low CD3High/CD68High 0.006 
CD3Low/CD68High CD3High/CD68Low 0.635 
CD3Low/CD68Low CD3High/CD68Low 0.093 
CD3Low/CD68Low CD3Low/CD68High 0.047 

 
Table 4.3  Pairwise comparison between neoadjuvant cellular density ratios from Kaplan 

Meier’s above (figure 4.2), ratio pairs are CD3CD8/PanCk, CD3CD8/FOXP3CD3 and CD3/CD68. 
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4.7 Single cell spatial analysis in the neoadjuvant PDAC 
TME 

The spatial immune cell landscape in neoadjuvant patients was explored to characterise 

the cellular interactions within the treated setting. The same spatial analysis methods 

used in chapter 3.8 were used to explore the neoadjuvant tumour immune 

microenvironment. Consideration was given to clinical variables treatment type 

(chemotherapy/chemoradiotherapy and FFX/GEM treated) and regression status, as 

reported in supplementary 8.3.1 for nearest neighbour and supplementary 8.3.2 for radii 

analysis. 

Prognostically favourable nearest neighbour tumour immune 
landscape in neoadjuvant patients 

Overall cellular interaction in the neoadjuvant landscape demonstrates tumour cells 

interact primarily with αSMA and CD68 as seen by reduced average distance, and limited 

cytotoxic T cell interaction. Additionally, fibroblasts had mostly CD3 helper T cells and 

cytotoxic T cells in the immediate environment (figure 4.3). 

 

 
Figure 4.3 Average nearest neighbour distance of neoadjuvant pancreatic cohort. Boxplots 

are faceted by distance to phenotype, with each ‘from’ phenotype displayed along the x axis, and 

average distance in μm along the y axis.   

Neoadjuvant patients with better outcomes demonstrated multiple significant intercellular 

spatial nearest neighbour patterns associated with prognosis. Short distances from 

PanCk+ cells to CD8+ (p<0.001), and short from αSMA+ cells to CD8+ (p=0.002), and 
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increased distance from αSMA+ to tumour cells (p<0.001) and CD68+ macrophages 

(p=0.009) were seen in high survival patients. Counterintuitively, improved disease 

specific survival correlated with large distances to PanCk+ cells from CD3DC8+ (p=0.023) 

and from CD3+ cells (p=0.013) (table 4.4). As expected, multiple trends associated with 

macrophages. Increased distance from CD68+ cells to PanCk+ (p=0.001), CD3CD8+ 

(p=0.046), CD3+ (p=0.006) and FOXP3CD3+ (p=0.002) all positively correlated with 

survival (table 4.4). T regulatory cells seem to play an important role in prognosis in 

neoadjuvant treated patients. Reduced distance from FOXP3CD3+ cells to αSMA+ 

(p=0.041) and CD8+ (p=0.048), and increased distance from FOXP3CD3+ to PanCk+ 

(p=0.002) correlated with increased survival (table 4.4). Additional trends are reported in 

table 4.4.  

 

 
Table 4.4 Nearest neighbour patterns associated with disease specific survival in 

neoadjuvant cohorts looking at whole core. Cut off generated (chapter 2.3.3.3) per nearest 

neighbour pattern, cohort, patient group and number indicated. Log Rank (Mantel-Cox) p value and 

Univariate cox regression hazard ratio (HR) shown with 95% confidence interval (CI). 
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4.7.2  Prognostically favourable tumour immune landscape in all 
neoadjuvant patients at different radii  

As described in chapter 3.8.3, radius analysis considers both distance and density 

metrics. Investigation was limited to increments of 10μm from 0-50μm to maintain the 

spatial component of this analysis type. Of note, an elevated density of macrophages was 

found within 50μm from CD3+ cells, from PanCk+ cells, and from FOXP3CD3+ cells 

(figure 4.4).  

 
Figure 4.4 Average immune cell population at 50μm from central cell in neoadjuvant 
pancreatic cohort. Boxplots are faceted central cell (‘from’ phenotype), with each ‘to’ phenotype 

displayed along the x axis, and average cellular density along the y axis.   
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Neoadjuvant patients associated with favourable prognosis at variable distances. At 

20μm, patients with low density of CD68+ (p=0.014) and PanCk+ (p=0.04) from CD3+ 

were seen in longer survival patients (table 4.5). They also presented with low density of 

CD3+ (p=0.035), CD3CD8+ (p=0.036), CD68+ (p=0.025) and PanCk+ (p=0.003) cells 

within 20μm from αSMA+ cells (table 4.5). Additionally, low density of CD3CD8+ 

(p=0.016), PanCk+ (p=0.009) and FOXP3CD3+ (p<0.001) at 30μm from CD68+ cells was 

also observed in better outcome patients (table 4.5). Reduced density of CD3+ (p=0.035), 

CD68+ (p=0.01) and FOXP3CD3+ (p=0.009) at 50μm from tumour cells correlated with 

survival (table 4.5).  

 

 
Table 4.5 Radii patterns associated with disease specific survival in neoadjuvant cohorts 
looking at whole core. Cut-off method was established as indicated. Radii reported using ‘from 

phenotype’ column, indicating the central phenotype, and ‘to phenotype’ indicating the surrounding 

phenotype. Reported by distance (μm), cohort, patient group, along with number of patients in each 

group. Most significant radii is reported. Log Rank (Mantel-Cox) p value and Univariate cox 

regression hazard ratio (HR) shown with 95% confidence interval (CI) for disease specific survival 

(DSS) and recurrence free survival (RFS).  
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4.8 Filtering Neoadjuvant prognostic markers 

 

A substantial number of significant patterns were detected in neoadjuvant patients. To 

begin to make sense of these, a filtering process, replicating the one described in chapter 

3.9, was performed to select robust variables with the highest likelihood of biological 

importance. As no validation cohort was available for the neoadjuvant patients, all 

significant variables from density and nearest neighbour analysis were used. Multivariate 

cox regression results are reported in supplementary 8.3.3 

4.8.1  Decision tree analysis  

Verification of significant density and nearest neighbour variables was carried out using 

decision tree models. Model input was limited to significant ranked variables found in the 

multivariate model above. Grouping density and NN pairs generated interesting results. 

As in the naïve  cohort (chapter 3.9.1), the root node was a nearest neighbour spatial 

metric, distance to CD3CD8 from FOXP3CD3 (CD3CD8-from-FOXP3CD3) (figure 4.5.a). 

Patients with lowest survival probability demonstrated CD3CD8-from-

FOXP3CD3High:CD3-from-CD3CD8Low:PanCkHigh (Node 6: probability = 0.67 , 

p=0.038), and the highest survival probability patients associated with either were 

CD3CD8-from-FOXP3CD3Low (Node 2: probability = 0.97, p<0.001) or CD3CD8-from-

FOXP3CD3High:CD3-from-CD3CD8High (Node 7: probability = 0. 93, p<0.001) (figure 

4.5.a). Limiting the data type to significant density variables, patients with the lowest 

survival probability were CD3CD8High:PanCkHigh (Node 7: probability = 0.7, p=0.026) 

and highest survival probability was CD3CD8Low:CD68Low (Node 3: probability = 0.96, 

p=0.024) (figure 4.5.b). Focusing on nearest neighbour variables alone, a new nearest 

neighbour specific model was generated with distance to CD3CD8 from FOXP3CD3 

(CD3CD8-from-FOXP3CD3) as the root node (figure 4.5.c). Patients with the highest 

survival probability were those with low distances to CD3CD8 from FOXP3CD3 (Node 2: 

probability = 0.97 , p<0.001) and CD3CD8-from-FOXP3CD3High:CD3-from-

CD3CD8High:CD3CD8-from-PanCkHigh (Node 7: probability = 0.94, p=0.023) (figure 

4.5.c). In contrast, patients with the lowest probability demonstrated CD3CD8-from-

FOXP3CD3High:CD3-from-CD3CD8Low (Node 4: probability = 0.72 , p<0.001) (figure 

4.5.c). 
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Figure 4.5.a Density and nearest neighbour decision tree model with matching survival 
probability table in neoadjuvant cohort for a) Combined density and nearest neighbour 

variables. Nodes split according to rank, number of patients per node indicated and associated p 

value in decision tree model. Survival probability with confidence intervals (CI) and associated 

nodes reported in survival table.  
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Figure 4.5.b Density and nearest neighbour decision tree model with matching survival 
probability table in neoadjuvant cohort for b) Density alone. Nodes split according to rank, 

number of patients per node indicated and associated p value in decision tree model. Survival 

probability with confidence intervals (CI) and associated nodes reported in survival table. 
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Figure 4.5.c Density and nearest neighbour decision tree model with matching survival 
probability table in neoadjuvant cohort for c). All nearest neighbour significant variables from 

multivariate model. Nodes split according to rank, number of patients per node indicated and 

associated p value in decision tree model. Survival probability with confidence intervals (CI) and 

associated nodes reported in survival table. 
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4.9 Distribution pattern of immune cells in pancreatic 
cancer tumour microenvironment 

  

As in chapter 3.10.1, spatiotemporal point pattern analysis method ‘Ripley’s K’ was used 

to determine the pattern of distribution of cells within the TMA cores. Much like the naïve 

cohort, the Ripley’s K function was always above the average theoretical value for each 

phenotype, and therefore phenotypes had a clustered pattern of distribution. Upon 

investigation on the level of clustering, clustering trends remained the same as in 

treatment naïve patients. Significant differences were observed in all phenotype pairs 

between K function and theoretical. On average, the most clustered markers were 

PanCk+, CD3+, CD3CD8+ and FOXP3CD3+, and least clustered were αSMA+ and 

CD68+ cells (figure 4.6). It is worth noting that this analysis was performed using TMA 

cores, and therefore spatiotemporal pattern of expression maybe biased due to the limited 

area investigated.  

 
Figure 4.6 Average Ripley’s K function and theoretical Poisson function values for all 
phenotypes across neoadjuvant cores. Boxplot faceted by phenotype, comparing observed K 

function to theoretical K function in all cores (n=253 ) using Bonferroni p adjustment T-test.   
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4.10 Unbiased phenotyping and neighbourhood 
generation 

 

Validation of phenotyping in neoadjuvant TMAs was carried out using CytoMAP unbiased 

clustering and subsequent neighbourhood region generation was established (chapter 

2.3.3.5 and chapter 3.10). Nine cell cluster regions were produced (figure 4.7.a), most of 

which overlapped with biased phenotyping. Nonetheless, this clustering method produced 

two unexpected clusters in regions 7 and 8, comprising of CD3+CD8+FOXP3+ and 

CD3+CD8+FOXP3+CD68+ markers (figure 4.7.a). These cell clusters were then used to 

create neighbourhood region clusters, with five regions produced. Cluster 4 is of particular 

interest, as it presents a T regulatory and cytotoxic T cell and macrophage heavy region 

(figure 4.7.b). The remaining neighbourhoods were as expected.  
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Figure 4.7 Neighbourhood generation in neoadjuvant PDAC combined cohort  using 
CytoMAP a) Cell typing heatmap showing fold change differences across channels to generate cell 

clusters b) neighbourhood regions generated by fold change of cell clusters associating with each 

other. Heatmap coloured by fold change. 
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4.11 Characterising the tumour microenvironment in 
naïve versus neoadjuvant pancreatic cancer 

Both naïve and neoadjuvant immune landscapes have been established in chapter 3 and 

chapter 4 (above). In order to explore the differences between naïve and neoadjuvant, the 

discovery and validation naive cohorts were combined, and compared to the neoadjuvant 

cohort (table 4.1). Previously established ranking was used. 

4.11.1 Deep phenotyping and cellular density 
landscape in naïve vs neoadjuvant pancreatic 
cancer 

The overall percentage phenotype population of naïve and neoadjuvant patients found 

elevated CD68+ and FOXP3CD3+ cell in the neoadjuvant cohort (figure 4.8). Additionally, 

elevated PanCk+ cells were observed in naïve cohorts as expected (figure 4.8).  

 
Figure 4.8 Average percentage cellular density boxplots of phenotypes in combined naïve 
and neoadjuvant pancreatic cohort across all phenotypes. Percentage per phenotype per 

treatment shown.  
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Subsequent investigation into whether the neoadjuvant cohort, along with its 

counterintuitive prognostic trends, would demonstrate improved survival when compared 

to the combined naïve cohort. Neoadjuvant patients with low expression of CD3+ 

(p<0.001), CD8+ (p=0.03), FOXP3CD3+ (p=0.003)  and CD3CD8+ (p=0.001) consistently 

associated with the highest median disease specific survival times (figure 4.9.a-d). The 

comparison was strictly done between tumour core/centre, therefore these observations 

are limited to this histopathological region. 

 

 
 

 
Figure 4.9.a-d Survival analysis of cellular density in combined naïve and neoadjuvant 
PDAC cohorts, Kaplan-Meier curves (disease specific survival) stratified by protein marker 

expression (Log-Rank test) for a). CD3+ b). CD8+ c). FOXP3CD3+ d). CD3CD8+ 
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4.11.2 Prognostically favourable nearest neighbour tumour 
immune landscape in naïve vs neoadjuvant patients 

Differences between nearest neighbour metrics in naïve and neoadjuvant patients were 

explored. First, the average distances were established to investigate whether the 

surrounding phenotypic environment was altered according to treatment status. Notably, 

neoadjuvant cohorts demonstrated significant reduced distances from CD68+ to CD3+ 

(p=0.037), from PanCk+ to FOXP3CD3+ (p=0.001), and from αSMA+ to FOXP3CD3+ 

(p=0.04) among others (figure 4.10). Furthermore, neoadjuvant patients also exhibited 

reduced average distance from all phenotypes (bar CD8+) to CD68+ macrophages 

compared to naïve patients (figure 4.10).  

 
Figure 4.10 Average nearest neighbour distance of combined naïve and neoadjuvant 
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pancreatic cohort. Boxplots are faceted by distance to phenotype, with each ‘from’ phenotype 

displayed along the top x axis, each ‘to’ phenotype displayed along the right y axis, and average 

distance in μm along the left y axis. 
 

Comparisons between the established base naïve and neoadjuvant samples were made 

to determine alterations in spatial interactions between treatment type. Overlapping 

distance metrics observed in both cohorts were investigated. Two survival clusters were 

observed, the better survival naïve and better survival neoadjuvant patients, and the poor 

survival naïve and poor survival neoadjuvant patients. Matching patterns were seen in a 

range of nearest neighbour pairs. Large distances to PanCk+ from αSMA+ (p=0.003), 

from CD3CD8+ (p=0.045), from FOXP3CD3+ (p=0.028), and from CD68+ (p=0.027) in 

both neoadjuvant and naïve cohorts correlated with increased disease specific survival. 

Neoadjuvant patients associated with best outcome (table 4.6). Interestingly, many 

nearest neighbour patterns differed between treatment status. Decreased distance to 

αSMA+ from CD3CD8+ (p=0.003) and to CD3CD8+ from CD68+ (p=0.008), in 

neoadjuvant patients associated with improved survival, with the opposite trend 

demonstrated in high survival naïve patients (table 4.6). Similarly, large distances to 

PanCk+ from CD3+ (p=0.024), to FOXP3CD3+ from CD68+ (p=0.003) and to CD3+ from 

CD68+ (p=0.010) in neoadjuvant correlated with improved survival, with the reverse trend 

seen in naïve patients (table 4.6). 

 
Table 4.6 Nearest neighbour patterns associated with disease specific survival in combined 

naïve and neoadjuvant cohorts looking at whole core. Nearest neighbour pattern reported per 

group and region, patient group indicated, along with number of patients in each group. Log Rank 

(Mantel-Cox) p value and Univariate cox regression hazard ratio (HR) shown with 95% confidence 

interval (CI). 
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4.11.3 Prognostically favourable mutual nearest neighbour 
tumour immune landscape in naïve vs neoadjuvant patients 

Significant differences were established in average distances between naïve and 

neoadjuvant patients for a range of mutual nearest neighbour pairs. These differences 

were mostly observed in CD68+ macrophages associated pairs. Decreased distance 

between CD68+ macrophages and αSMA+ (p<0.001), PanCk+ (p<0.001), CD3+ 

(p<0.001), CD3CD8+ (p<0.001), CD68+ (p<0.001) and FOXP3CD3+ (p<0.001) 

demonstrated in the neoadjuvant cohort (figure 4.11).  

 

 
Figure 4.11 Average mutual nearest neighbour distance of combined naïve and neoadjuvant 
pancreatic cancer cohort. Boxplots are faceted by mutual nearest neighbour relationship, with 

treatment cohort along the x axis, and average distance in μm along the y axis.   
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When looking at mutual pairs, large amount of overlap between the high survival naïve 

and high survival neoadjuvant patients was seen. Large distances between FOXP3CD3-

αSMA (p=0.012), CD68-αSMA (p=0.009), CD68-CD3CD8 (p=0.01), PanCk-CD68 

(p=0.002), and CD3-αSMA (p=0.004) in both neoadjuvant and naïve patients correlated 

with better survival (table 4.7). Furthermore, large distances in neoadjuvant patients 

between CD68-FOXP3CD3 (p=0.025), PanCk-αSMA (p=0.003) and PanCk-CD3CD8 

(p=0.01) positively correlated with improved DSS (table 4.7). 

 

 
Table 4.7 Mutual nearest neighbour patterns associated with disease specific survival in 
combined naïve and neoadjuvant cohorts in whole core. Mutual nearest neighbour pair  

reported per group and region, along with number of patients in each group. Log Rank (Mantel-

Cox) p value and univariate cox regression hazard ratio (HR) shown with 95% confidence interval 

(CI). 
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4.11.4 Prognostically favourable tumour immune landscape 
at different radii in naïve vs neoadjuvant pancreatic cancer 
patients 

Finally, phenotypic differences in the immediate microenvironment (50μm radius) for all 

cells in naïve and neoadjuvant patients were determined. Elevated levels of CD68+ 

(p=0.022), and reduced levels of αSMA+ cells (p<0.001) within the PanCk+ environment, 

and within the CD68+ environment, elevated CD3CD8+ (p=0.004), elevated FOXP3CD3+ 

(p=0.003), reduced PanCk+ (p<0.001), and reduced αSMA+ (p<0.001) were observed in 

neoadjuvant patients compared to naïve patients (figure 4.12). Furthermore, increased 

expression of CD3CD3+ (p<0.001), CD68+ (p<0.001), FOXP3CD3+ (p=0.008), and 

reduced PanCk+ (p<0.001) surrounding CD3+ cells was observed in neoadjuvant patients 

compared to naïve  patients (figure 4.12).   

Figure 4.12 Average immune cell population density at 50μm from central cell in combined 
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naïve and neoadjuvant cohorts Boxplots are faceted central cell (‘from’ phenotype), with each ‘to’ 

phenotype displayed along the right y axis, and average cellular density along the left y axis.  

 

To maintain the spatial aspect of this analysis, reporting is limited to significant survival 

relationships within 50µm. In the immediate surrounding environment of CD3+ cells (20μm 

radius), low density of FOXP3CD3+ (p=0.049) and CD3CD8+ (p=0.053) correlated with 

increased survival in neoadjuvant patients, and low density of CD68+ (p=0.009) in both 

neoadjuvant and naïve patients from CD3+ cells was associated with longer survival times 

(table 4.8). Matched tumour-macrophage trends were seen in naïve and neoadjuvant 

patients, with low density of CD68+ cells within 30µm from PanCk+ was associated with 

improved survival (table 4.8). Additionally, multiple macrophage associated trends 

demonstrated positive associations with prognosis. Neoadjuvant patients with low density 

of CD3+ (p=0.011), CD3CD8+ (p=0.018) and FOXP3CD3+ (p=0.044) within 40µm from 

CD68+ cells correlated with better prognosis (table 4.8). 

 

 
Table 4.8  Radii patterns associated with disease specific survival in combined naïve and 
neoadjuvant cohorts looking at whole core. Radii reported using ‘from phenotype’ column, 

indicating the central phenotype, and ‘to phenotype’ indicating the surrounding phenotype. 

Reported by distance (µm), cohort, group, along with number of patients in each group. Most 

significant radii is reported. Log Rank (Mantel-Cox) p value and Univariate cox regression hazard 

ratio (HR) shown with 95% confidence interval (CI). 
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4.12 Discussion 

To interrogate the spatial relationships within naïve and neoadjuvant PDAC at a single cell 

level, the base neoadjuvant landscape was established, using the same high-plex immune 

panel as was used in the naïve cohort. Subsequent comparisons were made between the 

different treatment types. Phenotypes were primarily established using biased cell typing, 

and subsequently validated with unbiased cell clustering using CytoMAP. Unbiased 

phenotyping confirmed all phenotypes categorized by biased phenotyping, except for one 

phenotype. 

 

Data from the neoadjuvant cohort produced counterintuitive observations with regard to 

cellular densities. Notably, reduced CD3+ T cell infiltration significantly correlated with 

improved prognosis. Although neoadjuvant tumour immune cell profiling has been 

historically lacking in PDAC, of the studies generated, an immunogenic switch towards 

effector cells has been reported. Increased cytotoxic T cell, helper T cell (CD3+ and 

CD4+) infiltration has been observed, along with reduced Treg expression [8, 219, 251, 

252, 257]. At first glance, the cellular density neoadjuvant results from this study 

contradict the literature. However, data from other solid cancers have been carried out 

documenting the alterations seen in immune cell count post neoadjuvant chemotherapy 

[216, 258-260]. In particular, a study investigating matched blood samples in oesophageal 

cancer demonstrated an initial reduction of CD8+ and CD4+, as well as B cell and natural 

killer cell populations post neoadjuvant therapy. Only the CD8+ count fully returned 8 

weeks post neoadjuvant treatment and resection, with all other immune cells investigated 

never recovering [216]. An in-depth study in primary breast cancer observed depletion of 

all main T lymphocytes for up to 6 months, with CD4+ T cells significantly reduced 9 

months post neoadjuvant treatment. Likewise, they found the functional state of cells 

present had altered, with increased memory CD4 T cells [259].  

When comparing the naïve and neoadjuvant cohorts, an overall higher density of tumour 

and fibroblasts within the naïve cohort was observed, with higher infiltrates of 

macrophages and Tregs populations found in the neoadjuvant cohort. Moreover, naïve 

cohorts matched trends described in the literature (significant prognostic associations with 

elevated CD3+, CD3CD8+ and reduced CD68+ cells). In contrast, neoadjuvant patients 

with good outcomes presented with low density of T helper cells, cytotoxic T cells, and 

Tregs. Upon comparison with the naïve cohort, these patients remain the group with the 

highest median disease specific survival. This raises the question of whether increased 

expression of cytotoxic T cell markers alone is always a sufficient pseudo marker for 

cytotoxic activity. A study looking at the activation status of CD8+ T cells in treatment 

naïve and neoadjuvant treated PDAC found approximately 40-70% of infiltrating T cell 
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population expressed markers of dysregulation (PD-1 and/or TIM3) [261]. These cell types 

were predominantly found located within the tumour core and the invasive edge resulting 

in the loss of cytotoxic benefit, with elevated cytotoxic marker expression (GZMB) seen in 

the tumour adjacent pancreatic parenchyma. Intriguingly, a reduction of dysregulated T 

cells was observed when comparing histological regions with lower tumour cell presence 

[261, 262]. The ‘exhausted’ phenotype reportedly starts to occur almost immediately after 

tumour antigen exposure, with dysfunctional characteristics established in early-stage T 

cell activation [263]. This phenomenon may help disentangle the results seen within the 

neoadjuvant cohort. If the CD3CD8+ T cells found in the tumour core predominantly lack 

cytotoxic activity, their presence would not lead to apoptosis of tumour cells, thereby 

making elevated expression redundant. Furthermore, the reduced levels of these cells in 

the high survivor neoadjuvant group may be indicative of a ‘less active’ disease, with 

lower tumour cells present. Although, immune checkpoint inhibition of T cells via PD-

L1/PD-1 interactions with tumour cells have been reported in pancreatic cancer, targeting 

this interaction has only proved beneficial in a small subset of microsatellite 

instability/mismatch repair deficient patients [264, 265]. Exploration of other 

histopathological regions, as well as activation status, would be required to fully explore 

the role of CD3CD8+ T cell density within the neoadjuvant cohort. Notably, the term 

exhausted has generated some controversy, with terms such as inactive or dysregulated 

perhaps being more appropriate. 

 

Few IHC studies have focused on density ratios in neoadjuvant pancreatic cancer. Nejati 

et al investigated the T lymphocyte infiltration in neoadjuvant patients' post-neoadjuvant 

resection [256]. They found an increased ratio of CD8/FOXP3 cells significantly correlated 

with survival. In contrast, the neoadjuvant cohort expressed the opposite, demonstrating 

reduced levels of CD3CD8/FOXP3CD3 ratio correlated with survival [256]. The role of 

FOXP3+ T regulatory cells is not fully understood, with the vast majority of literature 

associating its expression with poor survival [266]. Moreover, in vivo reports have shown 

Tregs to specifically inhibit the cytotoxic function of CD8 T cells via TGF-β related 

pathways [267]. It is important to note that the neoadjuvant TMA was generated as a 

complex multi-regional, multi-core TMA with specific TMAs for defined regions e.g. tumour 

centre TMA, immune rich TMA. Consequently, comparisons were limited to tumour centre 

cores as this was the closest match to the histopathology found in naïve cohort TMAs. 

Thus, the results generated are strictly applicable to the direct tumour microenvironment, 

disregarding stromal rich areas, which may generate different patterns.  

 

The major benefit of utilising multiplex immunofluorescence, is the ability to perform single 

cell spatial characteristic analysis to help deconvolute the complex tumour immune 

landscape of neoadjuvant treated pancreatic cancer. A large number of prognostically, 
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and potentially biologically, significant spatial metrics were observed. Patients with 

favourable prognosis presented with large distances to tumour cells from fibroblasts, from 

Tregs and from macrophages. These trends were emphasized in radius analysis of high 

survival patients, low densities of helper T cells, macrophages and Tregs were observed 

in the surrounding tumour cell environment. Reminiscent of cellular density analysis, 

studies focusing on neoadjuvant cohorts using multiplex analysis are relatively scarce. 

Within these studies, those that examine spatial metrics are even more uncommon. 

Heiduk et al explored the T cell infiltration in neoadjuvant chemotherapy treated patients. 

They found cytotoxic T cell infiltration was unchanged, and T regulatory cells significantly 

reduced. A switch form anti-inflammatory to pro-inflammatory cytokine secretion was 

linked with CD4 helper T cells, in addition to reduced inactive cytotoxic T cells [253]. 

Another study found similar results, increased abundance of cytotoxic T cells 

predominantly in stromal regions in neoadjuvant patients when compared to naïve 

patients, and a shift from M2 to M1 polarized macrophages, classed as CD68+ or CD163+ 

with co-expression of CD86+ and IRF5+ [252]. Curiously, limited survival analysis was 

shown in regard to immune cell densities. However, they found elevated numbers of M1 

polarized macrophages within 20μm of tumour cells correlated with better prognosis in 

neoadjuvant treated patients [252]. Although this contradicts what was illustrated in the 

neoadjuvant cohort, it is important to note the differences in macrophage classification.  

Tumour microenvironment differences were also observed in important neoadjuvant 

clinical subgroups. Specifically, amongst FOLFIRINOX treated, and good regression 

patients, multiple prognostic significant density and spatial metrics were observed 

compared to their counterparts. Zwart et al examined immune variations across 

neoadjuvant treatment types and found differences between FOLFIRINOX and 

Gemcitabine-radiotherapy treated patients [268]. Though they found differences in cellular 

density across T cell and macrophage populations, no associations were established with 

disease specific or recurrence free survival.  

 

Using several different models, the most important spatial relationships were extracted, 

demonstrating neoadjuvant patients with highest survival probability presented with varied 

patterns. These findings reinforce the need to establish multi-layered interactions to fully 

define the immune landscape in relation to survival. The naïve cohort yielded distinctly 

different trends associated with improved disease specific survival. These differences 

suggest an immunogenic switch following neoadjuvant treatment, implying the potential 

involvement of distinct biological pathways responsible for high survival rates within each 

treatment group. The neoadjuvant cohort yielded a blend of anticipated and unforeseen 

spatial trends. The spatial relationships seen linked to macrophages, fibroblasts, and T 

regulatory cells fall within the predominant hypotheses associated with these cell types, 
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whereas spatial relationships linked to CD3+ helper T cells and cytotoxic T cells were 

conflicting.  
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5 Chapter 5: Determining the Spatial 
Transcriptomic immune landscape 
in treatment naïve and neoadjuvant 

treated pancreatic cancer 
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5.1 Introduction 

Transcriptomic exploration of cancer is an ever-expanding field that has led to the 

development of clinically relevant molecular subtypes, discovery of early detection 

biomarkers and identifying biological pathways driving oncogenesis [15, 63, 90, 100-102, 

212, 269, 270]. This work has primarily been achieved via bulk RNA transcriptomic 

techniques, resulting in pooling of patient samples, reducing it to a homogenous averaged 

sample per patient. One of the biggest hurdles in cancer research is the vast inter and 

intra heterogeneity seen. Bulk RNA data often expresses the most dominant signature, 

loosing transcriptionally distinct subpopulations [271]. Single cell transcriptomics provides 

a solution to this limitation. This technique works by sequencing single cells, generating 

pure signatures, and allowing discovery of even rare transcriptionally distinct profiles [272, 

273]. However, cancer cells do not exist in isolation, exhibiting complex, variable 

relationships with the tumour microenvironment. Both single cell and bulk transcriptomics 

omit this highly influential spatial architecture. Spatial Transcriptomics was developed to 

overcome this issue, providing highly specific regional transcriptomic profiles [274, 275]. 

Different platforms have been developed, each with their own benefits and limitations. 

Pancreatic cancer is a highly heterogenous and relatively poorly defined disease, which 

would benefit from techniques that allow maximum regional purity whilst maintaining 

tissue architecture to decipher its biology. The main advantages of Nanostrings® Spatial 

Transcriptome assay is its ability to work with TMAs and select areas of interest base on 

mIF staining, resulting in the generation of distinct signatures making it ideal for tissue 

compartment selection [113]. This is ideal for tissue compartment selection. Due to 

resolution limitations, this technique can be referred to as ‘mini-bulk’, and therefore should 

be considered as such when analysing and reporting data [113]. It is worth noting the 

current Spatial Transcriptomic landscape is continuously evolving, producing improved 

cell resolution, sequencing depth and transcript specificity, as well as the shifting focus to 

the development of assays applicable to 3D samples [108, 115, 116, 276]. 

 

Although current published Spatial Transcriptomic work, across all platforms, in pancreatic 

cancer remains limited, promising findings have emerged. Grunwald et al established 

three major sub-tumour microenvironments, demonstrating the location pattern of these 

regions correlated with survival, each with different immune and stromal features [277]. 

Transcriptional signatures identified immune cell subtypes associated with PDAC, 

including macrophages, and found they had differential locations [277]. Furthermore, 

insight can be drawn from other, similar cancers. A study on primary colorectal cancer 

demonstrated significantly different immune profiles at distinct histopathological regions 

between patients with good and poor survival [278].  
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To preserve compartment purity, Nanostrings® Whole Transcriptome Atlas (WTA) on the 

GeoMx® DSP platform was utilized on naïve and neoadjuvant TMA cohorts with 

associated extensive clinical data. Investigating the spatial transcriptomic profile of the 

TME in pancreatic cancer will assist in defining the molecular mechanisms underpinning 

this disease. Successful characterization of treatment naïve and treated patients will 

clarify the effect that chemotherapy has on immune pathways and may provide insight into 

novel biomarkers.  

5.1.1 Aims 

Investigate the Spatial Transcriptomic alterations in upfront resected PDAC patients, with 

consideration given to important clinical subgroups per treatment status. This was carried 

out in epithelium (PanCk+), fibroblast rich stromal (αSMA+) and immune (CD45+) regions. 

The naïve and neoadjuvant landscape will be individually established, and subsequent 

comparisons will be made. Focused analysis will be done on immune-related pathways 

and immune cell deconvolution. Explore the B7-H3 transcriptomic expression within the 

naïve and neoadjuvant landscape.  

5.2 Clinical cohorts 

The naive cohort consisted of a total of 62 pancreatic cancer specimens on a TMA with 

associated clinical data (table 5.1). These were a subset of the naïve cohort described in 

chapter 3. Median survival for these patients was 19.2 months. The neoadjuvant cohort 

consisted of 71 pancreatic cancer specimens split across 3 multi-regional TMAs (table 

5.1). This cohort is the neoadjuvant cohort described in chapter 4 (n=58), with an 

additional clinical trial cohort (PRIMUS002, n=13). Median survival for this combined 

cohort was 20.4 months. Neoadjuvant whole sections consisted of clinical trial samples 

(PRIMUS002) including 2 matched biopsy and post chemotherapy resected cases. 

Clinical data associated with these cohorts are found in chapter 2.1. 

Study Cohort name Sample name Sample 
number 

Patient 
number 

Treatment 
type 

GeoMx WTA 
assay 

Glasgow Naïve 2 PDAC-PAN-TMA 1 62 Naïve 

Neoadjuvant 
combined 

Neoadj-MAL-TMA batch1 1 58 
Neoadjuvant Neoadj-MAL-TMA batch2 1 

PRIMUS-MAL 1 13 
 Primus whole section PRIMUS002 4 2 
 Table 5.1 Naïve and neoadjuvant clinical cohorts and associated study. Summary table 
showing the study and associated neoadjuvant and naïve samples used, patient number and 
treatment type. The cohort name column refers to the cohort name in chapter 2.1. Primus whole 
section IDs found in chapter 2.1 



168 

5.3 Spatial Transcriptomic landscape of Naïve PDAC 

5.3.1 Whole transcriptome profiling in naïve pancreatic cancer  

To elucidate the differences in primary resected and neoadjuvant pancreatic cancer, 

Spatial Transcriptomics using Nanostrings® WTA assay was performed. Three areas of 

illumination (AOIs) were selected; epithelium-rich, fibroblast-rich stroma and immune-rich 

tumour microenvironment, categorised by PanCk+, αSMA+ and CD45+ 

immunofluorescence antibodies respectively (figure 5.1.a). This selection method allowed 

for subsequent analysis of ‘pure’ tissue compartments within the naive PDAC cohorts, 

enabling molecular discovery between treatment types (figure 5.1.b). 
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Figure 5.1.a-b GeoMx® Digital Spatial Profiler AOI selection in naïve PDAC TMAs. 

a).Representative cores stained with immunofluorescent PanCk, αSMA and CD45. Schematic of 

epithelial, fibroblast rich and immune rich specific segments generated from immunofluorescence 

staining, b). Overview of upfront resected naïve PDAC cohort (n=62), from diagnosis to end of 

follow up. Samples are neoadjuvant treatment naïve, but will undergo adjuvant therapy, tissue is 

embedded in paraffin before treatment.  
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5.3.2 Tumour compartments demonstrate distinct transcriptome 
profiles in naïve pancreatic cancer 

5.3.2.1 Inter-tumoral heterogeneity  

Comparison between AOIs within the naïve cohort was carried out to confirm that 

adjacent tumour compartments expressed distinct transcriptome profiles. Vast differences 

in differential expression between PanCk vs αSMA segments, and PanCk vs Immune 

segments were observed, and limited differences between αSMA vs Immune segments 

(figure 5.2).  

 
Figure 5.2 Inter-compartment differential expression in naïve patients. Heatmap showing 

significant differentially expressed genes in all segment comparison. Segments comparisons 

carried out between PanCk vs immune, PanCk vs αSMA and immune vs αSMA 
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Geneset enrichment analysis (GSEA) analysis demonstrated upregulation in a wide range 

of pathways when comparing all segments (supplementary 8.4.1.1). These results 

emphasize the need to separate the different compartments when investigating 

transcriptomic signatures that underlie biology. To validate the differences between 

segments, as described above, Principle Component Analysis (PCA) was performed on 

all naive segments. This analysis revealed distinct clustering by segments, in particular, 

clear grouping of PanCk and αSMA segments (figure 5.2). However, immune segments 

appeared relatively dispersed between PanCk and αSMA clusters. This phenomenon is 

perhaps due to the microenvironment in which the immune segments reside in, indicative 

of how influential the tumour and fibroblast-rich compartments are. 

 
Figure 5.2 GeoMx AOI segment PCA in naïve cohort. Clustering based on gene expression per 

AOI, annotated by segment. Clusters indicated by ellipses drawn   
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5.3.2.2 Intra-compartment heterogeneity  

Upon confirmation of discrete inter-compartment profiles, intra-compartment profiles were 

investigated. Hierarchical clustering was performed using PCA. This resulted in 2 distinct 

PanCk clusters, that demonstrated non-significant survival trends, with cluster 2 

correlating with poor survival (p=0.075) (figure 5.3.a-b). The Kaplan-Meier curve, coupled 

with median survival between cluster 1 (21.2 months) and cluster 2 (14.7 months) were 

distinct enough to permit in-depth transcriptomic exploration.  

 
Figure 5.3.a-b Epithelial intra-compartment heterogeneity in naïve cohort, a). PCA showing 

clustering of naïve epithelial segments b). Kaplan-Meier curve stratified by epithelial clusters for 

disease specific survival (months) (Log-Rank Mantel-Cox test). 
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Of the differentially expressed genes, HSPA6 (logFC = 1.8, padj <0.001) and CST1 genes 

(logFC = 1.8, padj <0.001) were upregulated in the epithelial cluster 2 (figure 5.4.a). 

Although limited pathways were expressed, downregulated type I interferon (INF) pathway 

(NES = -2.0, padj = 0.007) and upregulated T cell pathways (NES = 1.7, padj = 0.003) 

were observed (figure 5.4.b).  

 

 
Figure 5.4.a Spatial transcriptomic alterations between naïve epithelial clusters, a). Volcano 

plot demonstrating gene marker differential expression levels in epithelial cluster 1 vs epithelial 

cluster 2. Genes with log2 fold change above and below 1.5, and p adjusted value ≤0.05 were 

considered significant, important genes in bold. Dashed line indicates significance thresholds, NS = 

non-significant, FC = fold change.  

 

.  
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Figure 5.4.b Spatial Transcriptomic alterations between naïve epithelial clusters, b). Geneset 

enrichment bar chart in epithelial cluster 1 vs epithelial cluster 2. Pathways with normalized 

enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 0.05 were considered 

significant. Important pathways are indicated by an arrow. 

b 
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Spatial immune cell deconvolution comparing these clusters estimated decreased tumour 

infiltrating B cells (p=0.012), memory dendritic cells (p=0.007) and increased expression 

of monocytes (p=0.027), and neutrophils (p=0.02) in cluster 2 epithelium (figure 5.5.a). To 

ensure these epithelial clusters were not simply previously established transcriptomic 

signatures, the epithelial cluster gene set was compared to Collison et al, Moffit et al and 

Bailey et al gene sets [100-102], with minimal overlap seen (figure 5.5.b). 

 
Figure 5.5.a Epithelial cluster immune cell deconvolution and molecular subtype 
comparison, a). Boxplots demonstrate estimated immune cell expression per 100 cells in; B cells, 

neutrophils, memory dendritic cells and monocytes. Wilcoxon test with adjusted p value was used. 

a 
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Figure 5.5.b Epithelial cluster immune cell deconvolution and molecular subtype 
comparison, b). Venn diagram showing number of overlapping genes between molecular 

subtypes and epithelial cluster 1 and epithelial cluster 2.   

b 
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Tumour cells have symbiotic relationships with immune and stromal cells. Although 

individually, αSMA and immune clusters did not prove significant, combination of immune 

or αSMA clusters with the established epithelial clusters, displayed prognostically relevant 

subtypes (figure 5.6.a-d). Patients with epithelial cluster 2 combined with αSMA cluster 1 

had significantly worse survival compared to all other combinations (p=0.02) (figure 5.6.c 

and table 5.2). When epithelial and immune clusters were combined, epithelial cluster 1 

coupled with immune cluster 1 (epi-immune cluster 1) demonstrated improved survival 

compared to the other clusters (ignoring the purple cluster due to limited number) 

(p=0.047) (figure 5.6.d and table 5.2). 

 

 
Figure 5.6.a-d Individual and combined segment clusters associated with survival. Kaplan-

Meier curves for disease specific survival (months) stratified by a). αSMA clusters b). TME clusters 

c). Epithelial and αSMA clusters, and d). epithelial and immune clusters. Log-rank (Mantel-Cox) 

test used. 
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Table 5.2 Pairwise comparison between naïve segment clusters taken from Kaplan Meier plots 

above (figure 5.6) Groups compared include epithelial-αSMA clusters (epi-αSMA) and epithelial-

Immune clusters (epi-Immune). All comparison pairs reported using Log Rank (Mantel-Cox) 

pairwise comparison over strata   
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The low survivor epithelial-αSMA cluster (named Epi-αSMA cluster 1 from now on) was 

extracted and spatial transcriptomic analysis was carried out in comparison with the 

remainder of the cluster groups (Epi-αSMA cluster 2). Epi-αSMA cluster 1 patients 

demonstrated upregulated KIF4A (logFC = 1.8, padj <0.001), CXCL14 (logFC = 1.4, padj 

<0.001) and MUC5AC (logFC = 1.8, padj <0.001) (figure 5.7.a). Spatial deconvolution 

indicates increased expression of B cells (p=0.008) and memory dendritic cells (p=0.016) 

in cluster 2 patients (figure 5.7.b). 

 

 
Figure 5.7.a-b Spatial transcriptomic alterations between epithelial-αSMA combined 
clusters, a). Volcano plot demonstrating gene marker differential expression levels in epithelial-

αSMA cluster 1 vs epithelial-αSMA cluster 2. Genes with log2 fold change above and below 1.5, 

and p adjusted value ≤0.05 were considered significant, important genes in bold, b). Boxplots 

demonstrate estimated differences between immune cell expression per 100 cells in; B cells and 

memory dendritic cells across epithelial-αSMA cluster 1 and cluster 2. Wilcoxon test with adjusted 
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p value was used. Dashed line indicates significance thresholds, NS = non-significant, FC = fold 

change. 

Finally, the high survivor epithelial-immune cluster (named epi-immune cluster 1) was 

extracted and compared to the other clusters (named epi-immune cluster 2). Cluster 2 

patients demonstrated a distinct gene signature associated with upregulation of REG3A 

(logFC = 6.3, padj <0.001), MT1G (logFC = 2.6, padj <0.001) and CPA2 (logFC = 5.3, 

padj <0.001) (figure 5.8.a). Moreover, a wide range of cell signalling, and immune related 

pathways were increased in cluster 2 including; MET (NES = 6.6, padj <0.001), EMT 

(NES = 2.1, padj <0.001), T cell exhaustion (NES = 1.6, padj = 0.03) and lymphocyte 

regulation (NES = 1.6, padj = 0.006) pathways (figure 5.8.b). Immune cell deconvolution 

estimates increased expression of B cells (p=0.011), cytotoxic T cells (p<0.001) and 

memory dendritic cells (p=0.024) in cluster 1 patients (figure 5.8.c). 

 
Figure 5.8.a Spatial Transcriptomic alterations between epithelial-immune combined 
clusters, a). Volcano plot demonstrating gene marker differential expression levels in epithelial-

immune cluster 1 vs epithelial-immune cluster 2. Genes with log2 fold change above and below 

1.5, and p adjusted value ≤0.05 were considered significant, important genes in bold. Dashed line 

indicates significance thresholds, NS = non-significant, FC = fold change. 
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Figure 5.8.b Spatial Transcriptomic alterations between epithelial-immune combined 
clusters, b). Geneset enrichment bar chart in in epithelial-immune cluster 1 vs epithelial-immune 

cluster 2. Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. 

P) value ≤ 0.05 were considered significant. Important pathways are indicated by an arrow 
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Figure 5.8.c Spatial Transcriptomic alterations between epithelial-immune combined 
clusters, c). Boxplots demonstrate estimated differences between immune cell expression per 100 

cells in; B cells, memory dendritic cells and CD8 T cells across epithelial-immune cluster 1 and 

cluster 2. Wilcoxon test with adjusted p value was used. 
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5.3.3 Spatial Transcriptomic signatures across naïve molecular 
subtypes 

As demonstrated in chapter 3, molecular subtypes can be powerful prognostic indicators, 

displaying high levels of heterogeneity between subtypes. Spatial Transcriptomic 

exploration of these subsets will establish the biological differences and may lead to 

biomarker discovery. Traditionally, molecular subtyping has been limited to whole section 

bulk transcriptomics. Using previously characterised molecular subtyping, an attempt was 

made to establish whether Spatial Transcriptomics can be utilised for molecular subtyping, 

by confirming the established subtypes in the naïve cohort, as well as categorising the 

remainder of the cases. Subtyping was restricted to Baileys Squamous and the Classical 

(rest) [102]. Epithelial regions were extracted and subtyped using a reduced geneset for 

Squamous and Rest (chapter 2.5.2.8). Clustering based on epithelial regions was not fully 

clear, therefore a subtype score was generated using geneset enrichment analysis of 

Squamous specific genes. This ranks AOIs according to the enrichment score of 

Squamous genes, splitting AOIs into very Squamous, mixed and very Classical. This 

roughly matched the clustering generated by the GeoMx® data, with Classical patients 

correctly subtyped according to the rank score (figure 5.9). To validate both the subtype 

score and ST subtyping, the established bulk transcriptomic subtypes were used for 

comparison. Unexpectedly, bulk subtypes also deviated from the subtype score 

generated, as well as from the subtype categorised by Spatial Transcriptomic regions 

(figure 5.9). Notably, molecular subtyping can be highly influenced to the sample set 

inputted.    

  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
Figure 5.9 Molecular subtyping across epithelial naïve segments. Heatmap showing Spatial 

Transcriptomic (ST) subtyped differentially expressed Squamous and Classical (rest) genes in 

epithelial naïve segments.  Heatmap annotated with bulk subtypes, and epithelial clusters 
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established in chapter 5.3.2.2, and a ranked subtype score bar chart demonstrates the total 

squamous score for each epithelial segment.  
 

 

As molecular subtyping using the Spatial Transcriptome deviated from the subtypes 

generated from bulk, transcriptomic analysis of subtypes was limited to segments with 

associated bulk RNA sequencing (n=13). Few significant differences were seen between 

Squamous and Classical regions, possibly due to the limited number of available samples. 

On investigation, epithelial regions demonstrated the most meaningful differences. 

Squamous epithelium was enriched in IGFBP3 (logFC = 3.3, padj = 0.004), ADAM19 

(logFC = 2.0, padj = 0.05) and PGC (logFC = 4.2, padj = 0.05) compared to Classical 

epithelium (figure 5.10.a). Pathway analysis revealed many significant gene sets. Of note, 

most pathways were cell signalling pathways, upregulation of MET (NES = 2.6, padj 

<0.001), IL-6 (NES = 1.9, padj = 0.02), PDGF (NES = 1.8, padj = 0.006) and TGF-β (NES 

= 1.8, padj <0.001) signalling among others were observed in Squamous epithelium 

(figure 5.10.b). Both stromal and immune segments revealed no significant DEA gene 

expression, and limited pathway insight. No estimated immune cell differences were seen 

across subtypes.  

 

 
Figure 5.10.a Spatial Transcriptomic alterations between molecular subtypes epithelium, a). 

Volcano plot demonstrating gene marker differential expression levels in Classical vs Squamous 

epithelial segments. Genes with log2 fold change above and below 1.5, and p adjusted value ≤0.05 

were considered significant, important genes in bold. Dashed line indicates significance thresholds, 

NS = non-significant, FC = fold change. 

a 
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Figure 5.10.b Spatial Transcriptomic alterations between molecular subtypes epithelium b). 
Geneset enrichment bar chart in Classical vs Squamous epithelial segments. Pathways with 
normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 0.05 were 
considered significant. Important pathways are indicated by an arrow. 

b 
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5.3.4 Spatial Transcriptomic signatures in naïve long-term 
survivors of pancreatic cancer  

Pancreatic cancer has an abysmal survival rate; however, a small subset of patients tends 

to survive longer than expected. Transcriptomic assessment of these patients may 

elucidate the mechanisms behind this improved prognosis, in addition to potentially 

identifying predictive biomarkers for this subset. Within this naïve cohort, median survival 

was approximately 19 months, patients surviving over 36 months were classed as long-

term survivors (LTS). Differential expression was carried out between the areas of 

illumination in LTS patients compared to the rest. Relatively few aberrations were 

observed between segments of the survivor groups. Of significance, high survivors 

expressed elevated LYZ (logFC = 3.2, padj <0.001) in epithelial compartments (figure 

5.11.a), elevated IGLL5 (logFC = 5.5, padj <0.001) and NFKBID (logFC = 1.9, padj = 

0.01) in αSMA compartments (figure 5.11.b), and elevated IGLL5 (logFC = 3.7, padj 

<0.001) and IGHG1 (logFC = 3.7, padj <0.001) in immune compartments (figure 5.11.c). 
 

 
 
Figure 5.11.a Differential expression alterations in long term survival naïve segments, 
volcano plot shows significantly expressed genes in patients surviving under 36 months vs over 36 

months across a). Epithelium segments. Dashed line indicates significance thresholds, NS = non-

significant, FC = fold change. 
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Figure 5.11.b-c Differential expression alterations in long term survival naïve segments, 
volcano plot shows significantly expressed genes in patients surviving under 36 months vs over 36 

months across b). αSMA segments c). Immune segments. Genes with log2 fold change above and 

below 1.5, and p adjusted value ≤0.05 were considered significant, important genes in bold. 

Dashed line indicates significance thresholds, NS = non-significant, FC = fold change.  
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Although differential gene expression was relatively limited, an abundance of significant 

genesets were seen. Epithelial segments of LTS associated with downregulation of PDGF 

signalling (NES = -1.8, padj = 0.003), TGF-β signalling (NES = -1.8, padj <0.001), MET 

(NES = -1.8, padj = 0.004), PI3K-Akt (NES = -1.8, padj <0.001), and upregulated in TNF 

(NES = 1.7, padj = 0.005) and PPAR (NES = 1.8, padj <0.001) signalling (figure 5.12). 

Unexpectedly, almost no immune cell pathways appeared in the long-term survivor groups 

in either fibroblast rich or immune segment GSEA ((supplementary figure 8.4.a-b). 

Notably, the complement signalling pathway was downregulated in LTS epithelial regions 

but upregulated in stromal/immune segments, accentuating the importance of pure 

regional analysis. Immune cell population deconvolution estimated increased expression 

of B cells (p=0.024) and cytotoxic CD8 T cells (p=0.009) within immune regions in long 

term survivors (figure 5.13). 
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Figure 5.12 Geneset enrichment of long-term survival naïve epithelial segments. Bar chart 

shows comparison between epithelial segments of patients surviving over 36 months and below. 

Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 

0.05 were considered significant. Important pathways are indicated by an arrow. 
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Figure 5.13 Immune cell deconvolution of naïve long-term survivors. Boxplots demonstrate 

estimated immune cell expression per 100 cells in; B cells and CD8 T cells, across patients 

surviving over and under 36 months. Wilcoxon test with adjusted p value was used.  
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5.3.5 B7-H3 signature in naïve pancreatic cancer   

B7-H3 protein expression was demonstrated to be prognostic in naïve pancreatic cancer, 

with low expression in epithelial compartments significantly associating with disease 

specific survival (chapter 3.11). This pattern was replicated in a different naïve pancreatic 

TMA (table 5.1), using Spatial Transcriptomic expression. A prognostic pattern was 

observed when investigating average B7-H3 expression per patient, with low expression 

significantly correlating with improved survival (figure 5.14.a), and low epithelial 

expression demonstrating a non-significant trend towards improved survival (figure 

5.14.b). Additionally, B7-H3 expression was upregulated in fibroblast-rich regions 

compared to epithelium, similar to the pattern observed in protein analysis (figure 5.14.c).  

 
 

  

 

 

 

 
 
 
 
 
 
Figure 5.14.a-c B7-H3 RNA expression in naïve pancreatic cancer. Kaplan-Meier curve 

stratified B7-H3 expression in disease specific survival (months) in a). whole core b). epithelial 

segments. Log-Rank (Mantel-Cox) test, replicating cutoff found in chapter 3.11, c). Boxplot showing 

B7-H3 expression across PanCk, αSMA and immune segments, Kruskal-Wallis test used. 

a 

c 

b 
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The Spatial Transcriptomic signature per ROI, associated with B7-H3 ranked expressions 

was investigated. A multitude of aberrated pathways were identified across all tissue 

compartments, with many cell signalling associated and immune related pathways, 

including downregulated B Cell Receptor (BCR) and T Cell Receptor (TCR) signalling, 

myeloid inflammation, and neutrophil degranulation among others (figure 5.15.a-c). 

Moreover, in B7-H3 low immune segments, decreased dendritic cell and T cell pathways 

were observed (figure 5.15.c), and fibroblast rich regions demonstrated reduced Treg 

differentiation pathways (figure 5.15.b). Of the pathways enriched, Nitric Oxide (NO) 

signalling and the complement system were seen in all three regions (figure 5.15.a-c), and 

epithelial regions demonstrated upregulation of the angiotensin system (figure 5.15.a).  
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Figure 5.15.a Geneset enrichment  across B7-H3 ranked naïve segments. Bar charts 

demonstrate pathways differential expressed in B7-H3 high vs B7-H3 low a). epithelial segments. 

Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 

0.05 were considered significant. Important pathways are indicated by an arrow. 

a 
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Figure 5.15.b Geneset enrichment  across B7-H3 ranked naïve segments. Bar charts 

demonstrate pathways differential expressed in B7-H3 high vs B7-H3 low b). αSMA segments. 
Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 

0.05 were considered significant. Important pathways are indicated by an arrow.  
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Figure 5.15.c Geneset enrichment  across B7-H3 ranked naïve segments. Bar charts 

demonstrate pathways differential expressed in B7-H3 high vs B7-H3 low c). immune segments. 
Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 

0.05 were considered significant. Important pathways are indicated by an arrow. 
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5.4 Spatial Transcriptomic landscape of Neoadjuvant 
PDAC 

5.4.1 Whole transcriptome profiling in neoadjuvant pancreatic 
cancer  

To investigate the Spatial Transcriptomic profile of neoadjuvant treated pancreatic 

patients, Nanostrings whole transcriptome assay was used and replicated the segments 

found in the naïve cohort above (chapter 5.3.1). Of note, although the same segments 

were replicated, a deep learning algorithm was trained to generate these masks (chapter 

2.5.2.1). The neoadjuvant cohort comprised of 58 archival Glasgow patients, and 13 

clinical trial PRIMUS002 patients (figure 5.16 and table 5.1). 

 
Figure 5.16 Overview of neoadjuvant PDAC cohort. Schematic from diagnosis to end of follow 

up across archival Glasgow cohort (n=58) and PRECISION PANC PRIMUS002 clinical trial 

reduced cohort (n=13). 
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5.4.2 Tumour compartments demonstrate distinct transcriptome 
profiles in neoadjuvant pancreatic cancer 

5.4.2.1 Inter-compartment heterogeneity  

Assessment between different areas of interest was repeated in the neoadjuvant cohort to 

establish specialised compartment signatures. Large DEA differences were seen between 

epithelial segments both immune and fibroblast-rich, whereas limited differences were 

seen between immune and αSMA segment comparisons (figure 5.17.a-c).  

 
Figure 5.17.a-c Inter-compartment differential expression in neoadjuvant patients. Heatmap 

showing significant differentially expressed genes in all segment comparison. Segments 

comparisons carried out between PanCk vs immune, PanCk vs αSMA and immune vs αSMA. 
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As expected, geneset enrichment analysis showed many differences between all segment 

comparisons (supplementary 8.4.1.2). Spatial immune deconvolution estimated increased 

expression in a wide range of immune cells. Elevated macrophages (p<0.001), plasma 

cells (p=0.002), CD4 helper T cells (p<0.001), CD8 cytotoxic T cells (p<0.001) and 

memory DC (p<0.001), among others, were seen in immune compartments. As expected, 

αSMA regions were enriched with fibroblasts (p<0.001) (figure 5.18). 

 
Figure 5.18 Immune cell deconvolution across neoadjuvant segments. Boxplots demonstrate 

estimated immune cell expression per 100 cells in across PanCk, αSMA, immune and full 

neoadjuvant segments. Kruskal-Wallis test used.  

Plasma cells 
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5.4.2.2 Histopathological region heterogeneity  

The neoadjuvant TMAs were purpose built to include distinct histopathological regions, 

resulting in muti-regional samples taken from the tumour core (TC), presumed tumour bed 

(PTB) and lymph node metastasis to account for heterogeneity. The overall ROIs were 

compared per histopathological region, demonstrating large transcriptomic differences 

according to location. Pathway analysis displayed virtually all signalling pathways 

measured were significantly downregulated when the presumed tumour bed was 

compared to tumour core and lymph node metastasis (supplementary 8.4.1.3).  

Particular interest was given to the tumour core/lymph node comparison, as this 

represents a primary tumour/matched metastasis comparison. DEA showed upregulation 

of CCL21 (logFC = 3.4, padj <0.001), CXCL13 (logFC = 1.7, padj <0.001), MMP9 (logFC 

= 1.5, padj <0.00), MS4A1 (logFC = 1.5, padj <0.001) and CD79A (logFC = 1.5, padj 

<0.001) in LN regions (figure 5.19.a). In comparison, tumour core presented with elevated 

SFRP2 (logFC = 1.6, padj <0.001) among others. LN core correlated with a considerable 

number of significant pathways. Multiple immune related pathways were seen in lymph 

node metastasis regions. Notably, increased pathways associated with aggressive 

disease phenotypes; immortality and stemness (NES = 1.8, padj <0.001), VEGF signalling 

(NES = 2.2, padj <0.001) and EMT (NES = 1.6, padj =0.001) (figure 5.19.b). 

 
 
 

 
 
 
 
 

 
 
 

  

Figure 5.19.a Spatial Transcriptomic alterations between distinct histopathology, a). Volcano 

plot demonstrating gene marker differential expression levels in tumour core vs LN metastasis. 

Genes with log2 fold change above and below 1.5, and p adjusted value ≤0.05 were considered 

significant, important genes in bold. Dashed line indicates significance thresholds, NS = non-

significant, FC = fold change.

a 
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Figure 5.19.b Spatial Transcriptomic alterations between distinct histopathology, b). Geneset 

enrichment bar chart in tumour core vs LN metastasis. Pathways with normalized enrichment score 

above and below 1.5, and p adjusted (Adj. P) value ≤ 0.05 were considered significant. Important 

pathways are indicated by an arrow. 
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5.4.3 Survival profile  

Introduction of neoadjuvant therapy for borderline and locally advanced pancreatic cancer 

has resulted in a significant increase in survival. A small subset of neoadjuvant patients 

have marked prognostic benefit. To investigate whether these differences could be 

explained using Spatial Transcriptomics, the neoadjuvant cohort was split using the same 

grouping as for the naïve analysis (chapter 5.3.4), long term survivors (over 36 months), 

compared to the rest. Pathway analysis in LTS epithelium showed downregulation of 

various signalling pathways including MYC (NES = -1.9, padj = 0.005), PPAR signalling 

(NES = -1.8, padj = 0.014), MET (NES = -1.8, padj = 0.014) and TNF (NES = -1.6, padj = 

0.025) (figure 5.20.a). Patients surviving over 36months demonstrated fewer immune 

related pathways in immune and fibroblast segments, but elevated levels of NK activity 

(NES = 1.8, padj <0.001), IL-17 signalling (NES = 1.7, padj = 0.005) and B cells (NES = 

1.6, padj = 0.043) in fibroblast segments (figure 5.20.b).  
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Figure 5.20.a Geneset alterations in neoadjuvant long term survivors. Bar chart showing 

pathways enriched in patients surviving under and over 36 months in a). Epithelial segments.. 

Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 

0.05 were considered significant. Important pathways are indicated by an arrow. 
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Figure 5.20.b Geneset alterations in neoadjuvant long term survivors. Bar chart showing 

pathways enriched in patients surviving under and over 36 months in b). αSMA segments. 

Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 

0.05 were considered significant. Important pathways are indicated by an arrow. 
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5.4.4 Neoadjuvant treatment types in neoadjuvant pancreatic 
cancer and their associated Spatial Transcriptomic profile  

5.4.4.1 Types of neoadjuvant therapy and their associated signature  

Patients eligible for neoadjuvant therapy can be administered chemotherapy or 

chemoradiotherapy. The biological differences produced between these two treatment 

methods is relatively unknown. To fully understand the effects neoadjuvant treatment has 

on pancreatic cancer, patients were split according to treatment type and matched tissue 

compartments compared. Further details on this subgroup can be found in chapter 2.1.1. 

Furthermore, regression pattern was fully explored (supplementary 8.4.2). Pathway 

analysis demonstrated varied aberrations in chemotherapy treated patients. Epithelial 

segments demonstrated a range of pathways including increased complement system 

(NES = 1.8, padj = 0.012) and neutrophil degranulation (NES = 1.8, padj <0.001), NO 

signalling (NES = 2.1, padj = 0.005), MET signalling (NES = 1.8, padj = 0.014) and 

autophagy (NES = 1.6, padj = 0.014) (figure 5.21.a). Immune segments showed relatively 

high numbers of aberrated immune pathways. Chemoradiotherapy segments showed 

increased levels of B cells (NES = 2.6, padj <0.001), coupled with elevated B cell 

exhaustion (NES = 2.4, padj <0.001) (figure 5.21.b). Elevated TCR signalling (NES = 1.9, 

padj <0.001) and myeloid inflammation (NES = 1.8, padj <0.001) were also observed 

(figure 5.21.b). Spatial immune cell deconvolution demonstrated increased memory 

dendritic cells in neoadjuvant chemotherapy treated patients (p=0.002) (figure 5.22). 



205 

 
Figure 5.21.a Geneset alterations in neoadjuvant treatment types. Bar chart showing pathways 

enriched in chemotherapy vs chemoradiotherapy in a). Epithelial segments. Pathways with 

normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 0.05 were 

considered significant. Important pathways are indicated by an arrow. 
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Figure 5.21.b Geneset alterations in neoadjuvant treatment types. Bar chart showing pathways 

enriched in chemotherapy vs chemoradiotherapy in b). Immune segments. Pathways with 

normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 0.05 were 

considered significant. Important pathways are indicated by an arrow. 
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Figure 5.22 Immune cell deconvolution in chemotherapy and chemoradiotherapy patients. 
Boxplots demonstrate estimated immune cell expression per 100 cells in memory dendritic cells 

across patients treated with chemotherapy or chemoradiotherapy. Wilcoxon test with adjusted p 

value was used. 
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5.4.4.2 Types of neoadjuvant chemotherapy and their associated signature  

Within chemotherapy, two main treatment types are utilised; FOLFIRINOX based and 

Gemcitabine based. Gemcitabine epithelium demonstrated elevated levels of CA9 (logFC 

= 1.9, padj = 0.002), IAPP (logFC = 1.7, padj <0.001), and CREB3 (logFC = 1.6, padj 

<0.001) genes, along with elevated B cell (NES = 2.0, padj = 0.020) and BCR signalling 

(NES = 1.8, padj <0.001) (figure 5.23.a-b). Comparatively, FFX had augmented levels of 

PPAR signalling (NES = 1.7, padj = 0.013) (figure 5.23.b).  

 

 

Figure 5.23.a Epithelial Spatial Transcriptomic alterations between chemotherapy treatment 
type, a). Volcano plot demonstrating gene marker differential expression levels in FOLFIRINOX 

(FFX) vs Gemcitabine (GEM) epithelium. Genes with log2 fold change above and below 1.5, and p 

adjusted value ≤0.05 were considered significant, important genes in bold. Dashed line indicates 

significance thresholds, NS = non-significant, FC = fold change. 
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Figure 5.23.b Epithelial Spatial Transcriptomic alterations between chemotherapy treatment 
type b). Geneset enrichment bar chart in FOLFIRINOX (FFX) vs Gemcitabine (GEM)  epithelium. 

Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 

0.05 were considered significant. Important pathways are indicated by an arrow. 
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Pathways enriched in αSMA segments were strongly immune related. Enriched B cell 

(NES = 3.2, padj <0.001) coupled with B cell exhaustion (NES = 2.1, padj = 0.006), T cell 

(NES = 2.0, padj <0.001) and T cell checkpoint (NES = 1.6, padj <0.001) were seen in 

Gemcitabine treated regions (figure 5.24). In contrast, FOLFIRINOX treated regions 

demonstrated cell signalling based pathways. These pathways include elevated NO 

signalling (NES = 1.9, padj <0.001), PDGF (NES = 1.7, padj = 0.003) and angiotensin 

system (NES = 1.6, padj = 0.039) among others (figure 5.24).  

 
Figure 5.24 Fibroblast Spatial Transcriptomic alterations between chemotherapy treatment 
type. Geneset enrichment bar chart in FOLFIRINOX (FFX) vs Gemcitabine (GEM)  αSMA 

segments. Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. 

P) value ≤ 0.05 were considered significant. Important pathways are indicated by an arrow. 
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GSEA of immune areas demonstrated similar patterns as stromal regions. Augmented B 

cell (NES = 2.8, padj <0.001) coupled with B cell exhaustion (NES = 2.1, padj = 0.001), T 

cell (NES = 1.9, padj = 0.020) coupled with T cell exhaustion (NES = 2.6, padj <0.001), 

NK activity (NES = 1.6, padj = 0.005) and T cell checkpoints (NES = 1.8, padj = 0.02) 

were seen in Gemcitabine (figure 5.25). FOLFIRINOX treated immune segments 

demonstrated elevated neutrophil degranulation (NES = 1.9, padj <0.001) (figure 5.25).   
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Figure 5.25 Immune Spatial Transcriptomic alterations between chemotherapy treatment 
type. Geneset enrichment bar chart in FOLFIRINOX (FFX) vs Gemcitabine (GEM)  immune 

segments. Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. 

P) value ≤ 0.05 were considered significant. Important pathways are indicated by an arrow. 
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Immune cell deconvolution confirmed the immune rich nature Gemcitabine treated 

samples have when compared to FFX treated samples. Elevated B cells (p=0.029), 

cytotoxic CD8 T cells (p=0.005), pDCs (p=0.043) and Tregs (p=0.003) were observed 

(figure 5.26).  

 

 
Figure 5.26 Immune cell deconvolution between chemotherapy treatment type. Boxplots 

demonstrate estimated immune cell expression per 100 cells in; B cells, CD8 T cells, Tregs and 

plasma dendritic cells, across patients treated with FOLFIRINOX (FFX) or Gemcitabine (GEM). 

Wilcoxon test with adjusted p value was used. 
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5.4.5 B7-H3 signature in neoadjuvant pancreatic cancer   

Previous investigation demonstrated significant results for the cell checkpoint marker B7-

H3 in the naïve Spatial Transcriptomic landscape. This analysis was repeated in the 

neoadjuvant cohort. Overall survival analysis demonstrated a significant correlation 

between low expression of B7-H3 and improved prognosis (p=0.050) (figure 5.27.a). A 

non-significant elevated expression was seen in PanCk segments, differing from what was 

observed in the naïve cohort (figure 5.27.b). 

  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
Figure 5.27.a-b B7-H3 RNA expression in neoadjuvant pancreatic cancer. Kaplan-Meier curve 

stratified B7-H3 expression in disease specific survival (months) in a). whole core. Log-Rank 

(Mantel-cox) test, replicating cutoff found in chapter 3.11, b). Boxplot showing B7-H3 expression 

across PanCk, αSMA and immune segments, Kruskal-Wallis test used. 
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The Spatial Transcriptomic signature across the segments was explored. Distinct 

pathways were displayed across αSMA and epithelial compartments (supplementary 

8.4.3).  Notably, the opposite immune trends were observed in the neoadjuvant cohort 

compared to the naïve cohort (chapter 5.3.5) within the immune segments. These include, 

low B7-H3 expressing patients presenting with elevated immune related pathways such 

as TCR signalling (NES = 1.7, padj = 0.001), BCR signalling (NES = 1.6, padj = 0.003), B 

cell exhaustion (NES = 2.0, padj = 0.008) and NK activity (NES = 1.7, padj = 0.004) in 

immune segments (figure 5.28).  
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Figure 5.28 Immune Spatial Transcriptomic alterations between B7-H3 ranked expression. 

Geneset enrichment bar chart in neoadjuvant B7-H3 low and high immune segments. Pathways 

with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 0.05 were 

considered significant. Important pathways are indicated by an arrow. 
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5.5 Spatial Transcriptomic alterations between naïve and 
neoadjuvant landscapes 

To fully classify the effect of neoadjuvant chemotherapy, a direct comparison was made 

between treatment naïve and neoadjuvant treated patients. 

5.5.1 Spatial Transcriptomic alterations across matched tissue 
compartments in naïve vs neoadjuvant PDAC 

Matched epithelial comparison between naïve and neoadjuvant AOIs demonstrated 

distinct aberrated genes. Elevated levels of multiple IGHGs were observed in neoadjuvant 

epithelium, as well as elevated COL3A1 (logFC = 1.7, padj <0.001), ZNF830 (logFC = 2.4, 

padj <0.001) and KRT6A (logFC = 1.5, padj <0.001) (figure 5.29.a). Epithelial 

compartments displayed large numbers of geneset enrichment pathways from various cell 

signalling and immune cell pathways. Of note, enriched IL-2 (NES = 1.7, padj = 0.03) and 

MCH class II (NES = 1.6, padj = 0.016) signalling in neoadjuvant epithelium was observed 

(figure 5.29.b). The most enriched cell signalling pathways included MET (NES = 2.1, padj 

<0.001), PDGF (NES = 1.8, padj =0.004 ), MYC (NES = 1.8, padj <0.001) and TGF-β 

(NES = 1.7, padj <0.001) signalling  (figure 5.29.b). In comparison, naïve epithelium was 

enriched for type I INF signalling (NES = 2.1, padj < 0.001) (figure 5.29.b).  

  
  
  

 

 
  
  
  
  
Figure 5.29.a Spatial Transcriptomic alterations between naïve and neoadjuvant epithelial 
segments, a). Volcano plot demonstrating gene marker differential expression levels in naïve vs 

neoadjuvant epithelial segments. Genes with log2 fold change above and below 1.5, and p 
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adjusted value ≤0.05 were considered significant, important genes in bold. Dashed line indicates 

significance thresholds,  NS = non-significant, FC = fold change. 

 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.29.b Spatial transcriptomic alterations between naïve and neoadjuvant epithelial 
segments, b). Geneset enrichment bar chart in naïve vs neoadjuvant epithelial segments. 

Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 

0.05 were considered significant. Important pathways are indicated by an arrow. 
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αSMA regions also demonstrated distinct differential expression between treatment type, 

with numerous genes shown including downregulated SPINK1 (logFC = -4.1, padj <0.001) 

and enriched CCL19 (logFC = 1.8, padj <0.001) (figure 5.30.a). Multiple immune related 

pathways were shown in GSEA including augmented TCR (NES = 2.0, padj <0.001), BCR 

(NES = 2.0, padj <0.001), myeloid inflammation (NES = 1.8, padj <0.001) and Treg 

differentiation (NES = 1.8, padj = 0.003) and B cell exhaustion (NES = 1.6, padj =0.019) 

(figure 5.30.b).  

 

 
 
Figure 5.30.a Spatial Transcriptomic alterations between naïve and neoadjuvant αSMA 
segments, a). Volcano plot demonstrating gene marker differential expression levels in naïve vs 

neoadjuvant αSMA segments. Genes with log2 fold change above and below 1.5, and p adjusted 

value ≤0.05 were considered significant, important genes in bold. Dashed line indicates 

significance thresholds, NS = non-significant, FC = fold change. 

a 
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Figure 5.30.b Spatial Transcriptomic alterations between naïve and neoadjuvant αSMA 
segments. b). Geneset enrichment bar chart in naïve vs neoadjuvant αSMA segments. Pathways 

with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 0.05 were 

considered significant. Important pathways are indicated by an arrow. 

b 
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Neoadjuvant immune regions demonstrated enriched IL7-R (logFC = 1.5, padj <0.001) 

and reduced SPINK1 (logFC = 4.6, padj <0.001) (figure 5.31.a). Elevated B cell (NES = 

2.2, padj <0.001), B cell exhaustion (NES = 1.7, padj = 0.011), T cell (NES = 1.9, padj 

<0.001) and myeloid inflammation (NES = 1.6, padj <0.001) (figure 5.31.b). Cell signalling 

pathways included elevated IL-2 signalling (NES = 1.9, padj <0.001), type II INF signalling 

(NES = 1.6, padj =0.002) and NF-kB (NES = 1.5, padj =0.003) in neoadjuvant immune 

compartments (figure 5.31.b).  

 

 

 

  

  

 

 

 

 

 

 

 

  

  

  

  
Figure 5.31.a Spatial Transcriptomic alterations between naïve and neoadjuvant immune 
segments, a). Volcano plot demonstrating gene marker differential expression levels in naïve vs 

neoadjuvant immune segments. Genes with log2 fold change above and below 1.5, and p adjusted 

value ≤0.05 were considered significant, important genes in bold. Dashed line indicates 

significance thresholds, NS = non-significant, FC = fold change.

a 
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Figure 5.31.b Spatial Transcriptomic alterations between naïve and neoadjuvant immune 
segments b). Geneset enrichment bar chart in naïve vs neoadjuvant immune segments. Pathways 

with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 0.05 were 

considered significant. Important pathways are indicated by an arrow. 
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Immune cell deconvolution found overall increased populations of multiple cells in 

neoadjuvant samples, including effector and suppressor cells. Suppressor cells elevated 

include macrophages (p=0.01) and Tregs (p=0.001) (figure 5.32). Additionally, enriched 

signatures for B cell (p<0.001), plasma cells (p<0.001), a range of dendritic cells including 

memory dendritic cells (p<0.001) were observed (figure 5.32). Elevated T cell signatures, 

CD4 T cells (p=0.017) and CD8 T cells (p<0.001) were also observed (figure 5.32). 

Notably, the only cell type elevated in naïve samples was neutrophils (p<0.001) (figure 

5.32).  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
Figure 5.32 Immune cell deconvolution across naïve and neoadjuvant AOIs. Boxplots 

demonstrate estimated immune cell expression per 100 cells in naïve (untreated) and neoadjuvant 

segments. Wilcoxon test used.  
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5.5.2 Spatial Transcriptomic differences across treatment types 

5.5.2.1 Neoadjuvant treatment type  

Immune segments in both chemotherapy and chemoradiotherapy treated cohorts 

demonstrated upregulated immune related pathways, with chemoradiotherapy segments 

demonstrating increased variety. Elevated T cell (NES = 1.8, padj <0.001), B cell (NES = 

2.1, padj <0.001), B cell exhaustion (NES = 1.7, padj = 0.019), and myeloid inflammation 

(NES = 1.5, padj = 0.003) were found in chemotherapy treated immune segments (figure 

5.33.a). In comparison, chemoradiotherapy treated immune segments demonstrated 

upregulated B cell (NES = 2.3, padj <0.001), B cell exhaustion (NES = 1.9, padj <0.001), 

T cell (NES = 1.9, padj <0.001), myeloid inflammation (NES = 2.1, padj <0.001) and Treg 

differentiation (NES = 2.0, padj <0.001) (figure 5.33.b).  
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Figure 5.33.a Immune Spatial Transcriptomic alterations between naïve and neoadjuvant 
treatment type. Geneset enrichment bar chart in immune segments across a). Naïve vs 

chemotherapy. Pathways with normalized enrichment score above and below 1.5, and p adjusted 

(Adj. P) value ≤ 0.05 were considered significant. Important pathways are indicated by an arrow. 

a 
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Figure 5.33.b Immune Spatial Transcriptomic alterations between naïve and neoadjuvant 
treatment type. Geneset enrichment bar chart in immune segments across b). Naive vs 

chemoradiotherapy. Pathways with normalized enrichment score above and below 1.5, and p 

adjusted value ≤ 0.05 were considered significant. Important pathways are indicated by an arrow. 
  

b 
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5.5.2.2 Types of neoadjuvant chemotherapy  

Neoadjuvant treatment types were compared to naïve cohorts, demonstrating immune 

differences. In immune rich segments, elevated levels of T cells (NES = 1.8, padj <0.001), 

B cells (NES = 2.0, padj <0.001), and myeloid inflammation (NES = 1.6, padj = 0.001) 

were observed in FFX treated patients (figure 5.34.a). In comparison, Gemcitabine treated 

patients displayed a wide variety of immune related pathways. Elevated levels of B cells 

(NES = 2.3, padj <0.001), coupled with B cell exhaustion (NES = 1.9, padj <0.001), T cells 

(NES = 2.1, padj <0.001), coupled with T cell exhaustion (NES = 1.7, padj = 0.014), 

myeloid inflammation (NES = 1.9, padj <0.001), Treg (NES = 1.7, padj = 0.009) and NK 

activity (NES = 1.7, padj <0.001) were found in Gemcitabine compared to naïve immune 

segments (figure 5.34.b). 
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Figure 5.34.a Immune Spatial Transcriptomic alterations between naïve and chemotherapy 
treatment type. Geneset enrichment bar chart in immune segments across a). FOLFIRINOX 

(FFX) vs naive. Pathways with normalized enrichment score above and below 1.5, and p adjusted 

(Adj. P) value ≤ 0.05 were considered significant. Important pathways are indicated by an arrow. 

a 
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Figure 5.34.b Immune Spatial Transcriptomic alterations between naïve and chemotherapy 
treatment type. Geneset enrichment bar chart in immune segments across b). Gemcitabine 

(GEM) vs naive. Pathways with normalized enrichment score above and below 1.5, and p adjusted 

(Adj. P) value ≤ 0.05 were considered significant. Important pathways are indicated by an arrow.  

b 
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5.5.3 Long term survival naïve vs neoadjuvant PDAC 

As previously reported, long term survival for these cohorts was classed as above 36 

months. When investigating differential expression between treatment status in long term 

survivors, large numbers of aberrated gene expression was seen in all three 

compartments. Of note, neoadjuvant patients demonstrated enriched SPARCL1 (logFC = 

1.5, padj <0.001) in epithelium, reduced SPINK1 (logFC = 3.6, padj <0.001) in αSMA, and 

elevated TSC22D3 (logFC = 1.9, padj = 0.004) in immune compartments (supplementary 

figure 8.4.4.a-c). Immune segments displayed augmented B cell exhaustion (NES = 2.0, 

padj <0.001), B cell (NES = 2.0, padj <0.001), T cell exhaustion (NES = 1.6, padj = 0.014), 

T cell (NES = 2.0, padj <0.001) and myeloid inflammation (NES = 1.6, padj <0.001) (figure 

5.35.a). Finally, spatial immune cell deconvolution was performed on naïve and 

neoadjuvant patients grouped into long term survivors (over 36 months), and short-term 

survivors (under 36 months). Estimates showed elevated B cells(p=0.004), plasma cells 

(p=0.034), CD4 T cells (p=0.032) and cytotoxic T cells (p<0.001) in neoadjuvant long-term 

survivors (figure 5.35.b).  
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Figure 5.35.a Immune Spatial Transcriptomic alterations between long term survival naïve 
and neoadjuvant a). Geneset enrichment bar chart in immune segments across naïve vs 

neoadjuvant long term survival (LTS), pathways with normalized enrichment score above and 

below 1.5, and p adjusted (Adj. P) value ≤ 0.05 were considered significant. Important pathways 

are indicated by an arrow. 

a 
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Figure 5.35.b Immune Spatial Transcriptomic alterations between long term survival naïve 
and neoadjuvant b). Boxplots demonstrate estimated immune cell expression per 100 cells in; B 

cells, plasma cells, CD4 T cells and CD8 T cells across naïve vs neoadjuvant long term survival 

(LTS) and short term survival (STS). Wilcoxon test with adjusted p value was used. 

  

b 
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5.6 Whole section validation  

In order to validate the effect of neoadjuvant therapy on the spatial transcriptome, analysis 

using whole sections was repeated on selected PRIMUS002 cases (table 5.1). This was 

done using biopsy and neoadjuvant whole sections with two matched cases. Non-

epithelial regions were analysed to elucidate the treatment effect on the tumour 

microenvironment. Treatment naïve biopsies were compared to directly measure the 

effect of neoadjuvant chemotherapy. Multiple overlapping genes were observed when 

compared to single core TMA work, and completely new genes appeared. αSMA matched 

comparisons had overlap of 12/32 genes including CXCL14, SYCN and CPA1/2 

(supplementary table 8.3). Matched biopsy vs treated comparison of immune regions 

demonstrated 8/41 overlapping DEA genes with naïve vs neoadjuvant comparison 

including downregulated PLAG2G1B, CELA related genes and SYCN among others 

(supplementary table 8.3). Spatial immune cell deconvolution demonstrated a shift from 

high CD4 T cell, CD8 T cell and macrophage landscape in the biopsy samples, to a high B 

cell, CD4 T cell, CD8 T cell and Treg population dominating (figure 5.35).  

  

 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
Figure 5.36 Altering estimated immune cell landscape from biopsy to neoadjuvant 
treatment. Sankey plot shows the percentage estimated cell population from biopsy immune 

segments, flowing into the cell population of neoadjuvant treated (NAT) immune segments. Cell 

populations generated from Nanostring immune cell deconvolution algorithm.     
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5.7 Discussion 

The primary aim of this chapter was to establish the transcriptome within different 

compartments in base naïve and base neoadjuvant PDAC, and subsequently compare 

these two treatment groups. Highly specific representative regions (PanCk+ epithelium, 

αSMA+ fibroblasts and CD45+ immune regions) were obtained via the Spatial 

Transcriptomics GeoMx® WTA assay. To confirm if the use of bulk transcriptomics would 

be unsuitable, inter-tumoral heterogeneity in epithelial, stromal and immune rich 

compartments was determined. Results from both naive and neoadjuvant base analysis 

demonstrated vast gene signature differences when comparing the three tissue 

compartments, with distinct pathways aberrated. Although pancreatic cancer ST studies 

remain relatively limited, this compartment heterogeneity was also demonstrated by Ren 

et al using alternative techniques [279]. Notably, the αSMA+ and CD45+ regions were 

considerably distinct in the transcriptome within naïve and neoadjuvant cohorts. This is 

most likely due to the prevalent CAF population which has been shown to influence PDAC 

progression depending on the signature expressed [280].   

 

Molecular subtyping of neoadjuvant naïve pancreatic cancer has led to multiple prognostic 

signatures being developed, providing considerable insight into PDAC mechanisms [100-

102]. Using the naïve epithelium signature, intra-compartment heterogeneity was 

examined, successfully identifying two distinct refined epithelial clusters. Cluster 2 

demonstrated non-significant association with poor prognosis. Augmented HSPA6 and 

CST1 gene expression, and decreased B cell estimates were seen in epithelial Cluster 2. 

Both genes have demonstrated potential roles as predictive biomarkers within the 

literature [281, 282]. HSPA6 upregulation has previously been associated with intra-

tumoral epithelial heterogeneity in pancreatic cancer. Using single cell transcriptomics, Xu 

et al found 5 distinct ductal cells, with HSPA6 associated with type 4 [281]. Furthermore, 

CST1 is a tumour specific biomarker used for early diagnosis in colorectal cancer, and 

correlates with proliferative and malignancy associated proteins [282]. Almost no overlap 

was observed between the main molecular subtypes and the ST epithelial cluster genes. 

Therefore, these clusters represent novel epithelial specific signatures, which should be 

fully explored in a larger cohort. When epithelial clusters were combined with either the 

αSMA cluster or immune clusters, a powerful prognostic trend was observed, indicative of 

the influence between these compartments. Epi-αSMA cluster 1 significantly associated 

with poor survival, and demonstrated elevated known invasive marker KIF4A  and 

decreased B cell estimates [283]. Further work is required to fully classify these clusters 

and explore the relationship between the combined clusters.  

 

Spatial Transcriptomic analysis of neoadjuvant chemotherapy type highlighted a disparate 
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landscape between FOLFIRINOX treated and Gemcitabine treated samples. Epithelial 

Gemcitabine segments demonstrated enriched CA9 expression, and stromal segments 

demonstrated a wide range of immune cell related pathways. CA9 have been linked to 

reports of targeted treatments. CA9 combined inhibition results in reduced hypoxia, 

improved survival, and elevated levels correlated with tumour cell inhibition of cytotoxic T 

cells [284, 285]. The highly immunogenic landscape presented by the Gemcitabine 

samples mirrors reports seen in the literature [132, 213, 255, 257]. Comparatively, FFX 

samples retain the immune-desert phenotype traditionally associated with pancreatic 

cancer. The only immune cell pathway associated with FFX when compared to 

Gemcitabine was elevated neutrophil degranulation, found in αSMA regions. The role of 

these cells remains relatively controversial, although it is thought they play an 

immunosuppressive role on T cells [286]. This pattern was mirrored when both FFX and 

Gemcitabine treated segments were compared to naïve segments. A varied immune 

pathway signature was revealed in Gemcitabine treated segments, although this was also 

coupled with immune exhausted pathways.  

 

Within the neoadjuvant cohort, chemoradiotherapy patients correlate with much longer 

survival. Multiple immune specific trends were associated in chemoradiotherapy patients 

when compared to chemotherapy treated patients. Specifically, elevated B cell pathways, 

B cell exhaustion and dendritic cells were observed. Dendritic populations within PDAC 

have a reportedly beneficial role in chemoradiotherapy response [287]. Protein validation 

is required to confirm the presence of these cells within the neoadjuvant PDAC 

microenvironment.   

 

Considerable alterations were seen within matched compartment naïve vs neoadjuvant 

comparisons. Neoadjuvant cohort demonstrated multiple interesting and potentially 

targetable genes; upregulation of COL3A1 in epithelium and a range of immune related 

pathways in immune segments including B cell, T cell and IL-2 signalling. Expression of 

COL3A1 confirms these enriched immune pathway levels, with reports correlating 

elevated COL3A1 with tumour infiltrating T cells, B cells and dendritic cells [288]. 

Furthermore, immune cell deconvolution of all neoadjuvant segments estimated elevated 

B cell and T cell populations. αSMA compartments showed enriched CCL19, which has 

been linked to improved memory CAR-T cell infiltration into the PDAC tumour core [289]. 

Notably, these immune associated pathways although considerably elevated in immune 

segments of neoadjuvant samples,  were often coupled with exhaustion pathways. 

Counterintuitively, elevated myeloid inflammation pathways and estimated macrophage 

population in αSMA neoadjuvant samples were observed when compared to naïve 

samples. CAF specific small nuclear RNA combined with Spatial Transcriptomic studies 

on neoadjuvant pancreatic cancer have shown 3 CAF expression profiles are significantly 
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upregulated in neoadjuvant cancers, and specific profiles associated with regression 

patterns [290]. These observations reinforce the need to consider immune cell subtypes, 

and activation status rather than solely relying on density analysis.   

 

Prognosis in pancreatic cancer remains abysmal for the majority of patients. However, a 

small subset of patients survive for longer than expected. Naïve and neoadjuvant LTS 

patients associated with different pathways, indicative of different underlying biology 

resulting in better prognosis. Naïve patients associated with increased LYZ, a gene 

associated with the Classical subtype [291]. Neoadjuvant patients linked with enriched 

epithelial SPARCL1 expression, reported for its anti-invasive properties in pancreatic 

cancer and reduced expression in metastasis [292]. Both treatment types had increased B 

cell and T cell expression. These immune cell deconvoluted populations are consistently 

associated with better performing groups and were by far the most statistically relevant.  

 

Previous work has identified B7-H3 as a potential biomarker using a regional Spatial 

Protein assay in naïve pancreatic cancer (chapter 3.11). The same prognostic pattern was 

observed using Spatial Transcriptomics in naïve and neoadjuvant cohorts. Naïve PDAC 

demonstrated elevated expression in non-epithelial compartments, as shown in chapter 

3.11. Reduced expression of B7-H3 associated with reduced T cell related pathways, 

dendritic cells, and an elevated angiotensin system within immune segments. This is of 

particular interest as studies have shown treatment with angiotensin system inhibitors and 

angiotensin blockade therapies in naive patients considerably improves prognosis [293-

295]. Treatment appeared to trigger an immunogenic switch, resulting in elevated T cell 

activity pathways [295]. Furthermore B7-H3 itself has generated lots of interest as a 

potential immune checkpoint target, with clinical trials in a multitude of cancers ongoing 

[142-146]. Curiously, the opposite trends were observed in neoadjuvant associated with 

low expressing B7-H3 (high survivor) patients. Elevated levels of TCR and BCR signalling 

were seen, although this was offset by elevated B cell exhaustion pathways. Neoadjuvant 

patient comparison groups have repeatedly presented with exhausted pathways, a 

phenomenon that has been reported in the protein landscape [261]. 

Overall, Spatial Transcriptomics has uncovered intra-compartment heterogeneity within 

the naïve environment, revealing transcriptomic alterations in naïve and neoadjuvant 

settings. Distinct immune populations have consistently correlated with clinical groups with 

better outcomes. Combined with protein data this will determine whether transcriptomics 

signals translate into the protein landscape.  
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6 Chapter 6: Multi-omic, orthogonal 
characterisation of Pancreatic 

cancer 
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6.1 Introduction  

High-plex single cell protein and Spatial Transcriptomic assays provide great insight into 

the tumour microenvironment. High plex phenotyping using immunofluorescence assays, 

although limited by its purely descriptive data, allows for robust immune cell 

characterisation at a single cell level whilst maintaining tissue integrity. Regional Spatial 

Transcriptomics provides indirect biological insight into differentially expressed genes, cell 

signalling pathways and estimation of immune cell populations. However, studies have 

shown a fluctuating range of protein translation rates from RNA, coupled with translational 

heterogeneity greatly effects the amount of protein actually expressed [296-299]. 

Orthogonal integration of multiplex protein and Spatial Transcriptomics data will provide 

complementary and data validation. While prognostic association with T cell and 

macrophage density within adjuvant treated pancreatic cancer is well documented, and 

similar trends were observed within the naïve cohort, comprehensive understanding of the 

fundamental underlying biological mechanisms remains elusive [8, 182, 237, 238]. At the 

time of writing, limited literature has been published combining high-plex protein data with 

Spatial Transcriptomic data in cancer [300, 301]. A more common approach utilises 

varying types of protein data with bulk or single cell transcriptomic analysis [302-305]. 

These integrative papers tend to focus on cell typing, neighbourhood discovery, cell-to-cell 

interactions, as well as establishing disease specific pathways. Exploration of 

transcriptomic alterations induced by neoadjuvant therapies in pancreatic cancer up until 

recently, was notably scarce, emphasizing a critical area of unmet research need [306, 

307]. Although rare, orthogonal analysis methods focused on protein and transcriptomic 

analyses have enhanced knowledge of underlying immune mechanisms within the 

neoadjuvant setting, as well as identifying potential targeted therapy options [308].  

 

The discovery nature of Spatial Transcriptomics experiments produces an enormous 

range of potentially interesting biomarkers and genesets. Validation using a single cell, 

deep phenotyping assay is required to confirm results observed. Notably, Spatial 

Transcriptomic T cell, B cell and dendritic cell signatures associated with important 

pancreatic groups in the naïve and neoadjuvant cohorts. These immune populations have 

been reported within the pancreatic literature, with links made to prognosis and 

neoadjuvant therapy response [11, 197, 253, 268, 287, 309].  Furthermore, B7-H3 

expression retained its prognostic significance within the transcriptomic setting in naïve, 

as well as replicating the trend in the neoadjuvant cohort. Growing interest in using this 

immune checkpoint molecule as targeted therapy makes it important to characterise within 

pancreatic cancer. Phenotypic expression and cellular interactions of B7-H3 expressing 

cells are not fully understood, though reports indicate elevated expression is linked to 

immune evasion, metastasis and poor prognosis in pancreatic cancer amongst others [19, 
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310, 311] .To validate biomarkers generated from mIF led Spatial Transcriptomic results, 

two imaging based, oligonucleotide antibody assays were trialled (Akoyas PhenoCycler™ 

and Nanostrings CosMx™) with ultra-high plex immune panels [119, 312].   
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6.1.1 Aims  

Integrate multiplex significant patterns with Spatial Transcriptomic data to explore the 

biological mechanisms underlying characterised phenotypes in treatment naïve and 

neoadjuvant pancreatic cancer. Confirmation of immune cell deconvolution patterns 

observed in Spatial Transcriptomic assays using super high-plex protein technologies. 

Validate single cell protein B7-H3 expression in the naïve and neoadjuvant pancreatic 

setting.  

6.1.2 Clinical cohorts  

Naive cohort (Glasgow naïve cohort 2) consisted of a total of 62 pancreatic cancer 

specimens within a TMA (table 6.1). These were a subset of the naïve cohort described in 

chapter 3 and the full naïve cohort utilised in chapter 5. Median survival for these patients 

was 19.2 months. Due to assay imaging gasket limitations, this naïve cohort was further 

reduced to 38 patients for chapter 6.4 onwards (table 6.1). Neoadjuvant cohort 

(neoadjuvant combined cohort) consisted of 71 pancreatic cancers split across 3 multi-

regional TMAs (table 6.1). This cohort is the same neoadjuvant cohort as described in 

chapter 4 (n=58), with an additional clinical trial cohort (PRIMUS-MAL, n=13). Due to 

assay imaging gasket limitations, this neoadjuvant cohort was further reduced to 58 

patients in total for chapter 6.4 onwards (table 6.1). Median survival for these patients was 

20.4 months. Clinical data associated with these cohorts is found in chapter 2.1. 

 

 
 
Table 6.1 Naïve and neoadjuvant clinical cohorts and associated study. Summary table 

showing the study and associated TMAs used, patient number and treatment type. The cohort 

name column refers to the cohort name in chapter 2.1. 

 

 

Study Cohort name TMA TMA 
number Patient 

number Treatment type 

GeoMx 
Glasgow naïve cohort 2  PDAC-PAN-TMA 1 62 Naïve 
Neoadjuvant combined 

Neoadj-MAL-TMA batch1 1 
58 Neoadjuvant Neoadj-MAL-TMA batch2 1 

PRIMUS-MAL 1 13 

CosMx 
Glasgow naïve cohort 2  PDAC-PAN-TMA 1 38 Naïve 
Neoadjuvant combined 

Neoadj-MAL-TMA batch1 1 
45 Neoadjuvant Neoadj-MAL-TMA batch2 1 

PRIMUS-MAL 1 13 
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6.2 Deep phenotypic comparisons in the Spatial 
Transcriptomic landscape of pancreatic cancer 

6.2.1 Spatial Transcriptomic landscape of density phenotypes in 
naïve and neoadjuvant pancreatic cancer   

Using a previously established deep phenotyping, naïve and neoadjuvant patients were 

categorized using the most important protein density variables (chapter 3.6 and chapter 

4.5). Within the naïve cohort, this encompassed CD3 and CD68 density, and CD3CD8 

density in the neoadjuvant cohort. Comparisons in matched regional Spatial 

Transcriptomics between phenotypic ranks was carried out to determine biological 

differences between them. CD3high density previously associated with increased survival 

in the naïve cohort (chapter 3.6). Relatively limited aberrated differences were observed in 

all three matched segments. Notably, CD3high patients presented with upregulated 

epithelial SLC12A2 (logFC = 1.5, padj = 0.006) and CXCL5 (logFC = 2.4, padj = 0.050), 

and downregulated PRSS2 (logFC = -5.4, padj = 0.040) and SPINK1 (logFC = -4.1, padj = 

0.040) in αSMA regions (figure 6.1.a-b). Additionally, immune CD3high segments 

demonstrated elevated CCN2 (logFC = 1.6, padj <0.001) and PKN3 (logFC = 1.6, padj 

<0.001) (figure 6.1.c).  

 
 
Figure 6.1.a Volcano plot demonstrating gene marker differential expression levels in naive 
PDAC based on comparison of CD3low versus CD3high in a). Epithelial segments. Genes with 

log2 fold change above and below 1.5, and p adjusted value ≤0.05 were considered significant. 

Important genes in bold. Dashed line indicates significance thresholds, NS = non-significant, FC = 

fold change. 
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Figure 6.1.b-c Volcano plot demonstrating gene marker differential expression levels in 
naïve PDAC based on comparison of CD3low versus CD3high in b). αSMA segments c). 

immune segments. Genes with log2 fold change above and below 1.5, and p adjusted value ≤0.05 

were considered significant. Important genes in bold. Dashed line indicates significance thresholds, 

NS = non-significant, FC = fold change.  
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Pathway analysis demonstrated epithelium of CD3high cases had elevated MYC (NES = 

2.0, padj <0.001), PPAR (NES = 1.9, padj <0.001) and mTOR (NES = 1.6, padj <0.001) 

signalling, as well as reduced type I INF (NES = -1.8, padj = 0.008), PDGF (NES = -1.8, 

padj = 0.01), PI3K-Akt (NES = -1.5, padj <0.001) and JAK/STAT (NES = -1.5, padj = 0.04) 

signalling (figure 6.2.a). Unexpectedly, limited immune related pathways were observed in 

αSMA segments of CD3 ranked patients. GSEA demonstrated enriched complement 

(NES = 2.0, padj <0.001) and BCR signalling (NES = 1.5, padj = 0.035), as well as 

reduced matrix remodelling and metastasis (NES = -2.1, padj <0.001) (supplementary 

figure 8.10). CD3high immune segments displayed elevated cytotoxicity (NES = 1.6, padj 

= 0.047), lymphocyte regulation (NES = 1.6, padj = 0.01) and B cell (NES = 1.6, padj = 

0.047), with reduced neutrophil degranulation (figure 6.2.b). Spatial immune cell 

deconvolution showed higher estimates of plasma cells (p=0.009) and CD8 T cells 

(p=0.029) in CD3high samples (figure 6.2.c).  
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Figure 6.2.a Geneset enrichment and immune cell deconvolution of naïve PDAC based on 
comparison of CD3low versus CD3high. Bar charts demonstrate pathways differential 

expressed in a). epithelial segments. Pathways with normalized enrichment score above and below 

1.5, and p adjusted (Adj. P) value ≤0.05 were considered significant. Important pathways are 

indicated by an arrow.  
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Figure 6.2.b Geneset enrichment and immune cell deconvolution of naïve PDAC based on 
comparison of CD3low versus CD3high. Bar charts demonstrate pathways differential 

expressed in b). immune segments. Pathways with normalized enrichment score above and below 

1.5, and p adjusted (Adj. P) value ≤0.05 were considered significant. Important pathways are 

indicated by an arrow.  
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Figure 6.2.c Geneset enrichment and immune cell deconvolution of naïve PDAC based on 
comparison of CD3low versus CD3high. Boxplots demonstrate estimated immune cell 

expression per 100 cells in c). CD3low and CD3high. Wilcoxon test with adjusted p value was 

used.  
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Next CD68 ranked density was investigated, which negatively correlated with prognosis 

(chapter 3.6). Once again, relatively restricted gene signatures were produced for 

segment analysis (figure 6.3.a-b). Aberrated genes include elevated IGLL5 (logFC = 4.6, 

padj <0.001) and IGHG1 (logFC = 3.5, padj = 0.001) in αSMA segments (figure 6.3.a), 

and upregulated POF1B (logFC = 2.0, padj <0.0005) and IGHG1 (logFC = 3.0, padj = 

0.02) in CD68high immune segments (figure 6.3.b). 

 
Figure 6.3.a-b Volcano plot demonstrating gene marker differential expression levels in 
naïve PDAC based on comparison of CD68low versus CD68high in a). αSMA segments b). 
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immune segments. Genes with log2 fold change above and below 1.5, and p adjusted value ≤0.05 

were considered significant. Important genes are in bold. Dashed line indicates significance 

thresholds, NS = non-significant, FC = fold change.  

 

Epithelial segments of CD68high cases demonstrated upregulation of matrix remodelling 

and metastasis pathways (NES = 2.3, padj <0.001), MET (NES = 2.0, padj <0.001) and 

NO (NES = 2.0, padj = 0.009) among others (figure 6.4.a). Upregulation of neutrophil 

degranulation (NES = 1.7, padj <0.001) was also seen (figure 6.4.a). Interestingly, 

CD68high immune segments, typically associated with poor survival, presented with a 

vast, diverse immune rich landscape. Increased T cells (NES = 2.2, padj <0.001), 

neutrophil degranulation (NES = 2.7, padj <0.001), dendritic cells (NES = 2.3, padj 

<0.001), NK activity (NES = 2.3, padj <0.001) and B cells (NES = 1.7, padj = 0.030) were 

observed in CD68high immune AOIs (figure 6.4.b). αSMA rich regions presented with 

similar patterns as demonstrate in the above immune segments (supplementary figure 

8.11). Spatial deconvolution estimates demonstrated low macrophage estimates within 

the CD68low segments (p<0.001) as expected (figure 6.4.c). Furthermore, reduced 

estimated immune populations were seen for CD4 T cells (p=0.035), CD8 T cells 

(p=0.004), mDCs (p=0.003), monocytes (p=0.003) and fibroblasts (p=0.005) in CD68low 

patients (figure 6.4.c).  
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Figure 6.4.a Geneset enrichment and immune cell deconvolution of naïve PDAC based on 
comparison of CD68low versus CD68high. Bar charts demonstrate pathways differential 

expressed in a). epithelial segments. Pathways with normalized enrichment score above and below 

1.5, and p adjusted (Adj. P) value ≤0.05 were considered significant. Important pathways are 

indicated by an arrow. 

a 
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Figure 6.4.b Geneset enrichment and immune cell deconvolution of naïve PDAC based on 
comparison of CD68low versus CD68high. Bar charts demonstrate pathways differential 

expressed in b). immune segments. Pathways with normalized enrichment score above and below 

1.5, and p adjusted (Adj. P) value ≤0.05 were considered significant. Important pathways are 

indicated by an arrow. 

b 
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Figure 6.4.c Geneset enrichment and immune cell deconvolution of naïve PDAC based on 
comparison of CD68low versus CD68high. Boxplots demonstrate estimated immune cell 

expression per 100 cells in c). CD68low and CD68high. Wilcoxon test with adjusted p value was 

used. 

  

c 
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Previous mIF analysis in neoadjuvant patients indicated CD3CD8 density correlated with 

survival. Contradictory to the central dogma, reduced levels of cytotoxic T cells correlated 

with better disease specific survival (chapter 4.5). In an attempt to explain this 

phenomenon, the transcriptomic differences between CD3CD8high and CD3CD8low 

ranked patients was investigated. Differential expression analysis demonstrated 

CD3CD8low epithelium was enriched with DMBT1 (logFC = 1.9, padj = 0.007), 

CD3CD8low αSMA was enriched with GREM2 (logFC = 1.9, padj = 0.007) and 

CD3CD8low immune had reduced NOTCH1 expression (logFC = -1.8, padj = 0.04) 

(supplementary figure 8.12.a-c). Pathway analysis presented with many significant 

differences between ranked CD3CD8 density across all segments. Multiple cell signalling 

pathways were significantly reduced in CD3CD8low epithelium including NRF2 signalling 

(NES = -2.5, padj <0.001), p53 signalling (NES = -2.1, padj <0.001) and EMT (NES = -1.9, 

padj <0.001) signalling (figure 6.5.a). Additionally, CD3CD8 immune segments 

demonstrated downregulation of cell signalling and pro-tumorigenic pathways was seen 

involving type I INF (NES = -2.3, padj <0.001), NF-kB (NES = -1.9, padj = 0.002), 

immortality and stemness (NES = -1.5, padj = 0.014) and cell adhesion and motility (NES 

= -1.9, padj <0.001) (figure 6.5.b). Furthermore, reduced expression of B cells (NES = -

2.4, padj <0.001), B cell exhaustion (NES = -2.0, padj = 0.005), T cells (NES = -2.3, padj 

<0.001) and T cell exhaustion (NES = -1.7, padj = 0.028) (figure 6.5.b).  

 



253 

 
Figure 6.5.a Geneset enrichment and immune cell deconvolution of neoadjuvant PDAC 
based on comparison of CD3CD8high versus CD3CD8low. Bar charts demonstrate pathways 

differential expressed in a). epithelial segments. Pathways with normalized enrichment score above 

and below 1.5, and p adjusted (Adj. P) value ≤0.05 were considered significant. Important 

pathways are indicated by an arrow. 

a 
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Figure 6.5.b Geneset enrichment and immune cell deconvolution of neoadjuvant PDAC 
based on comparison of CD3CD8high versus CD3CD8low. Bar charts demonstrate pathways 

differential expressed in b). immune segments. Pathways with normalized enrichment score above 

and below 1.5, and p adjusted value ≤0.05 were considered significant. Important pathways are 

indicated by an arrow.  

b 
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6.2.2 Spatial Transcriptomic landscape of nearest neighbour 
phenotypes in naïve and neoadjuvant pancreatic cancer   

Next, the most biologically interesting nearest neighbour relationships as characterised in 

chapter 3.8.1 and 4.7.1 were investigated. Within the naïve cohort, this encompassed 

distances from CD68 to CD3 and from CD68 to PanCk. The neoadjuvant cohort focuses 

on distances from CD3CD8 to PanCk. As above, comparisons in matched regional Spatial 

Transcriptomics were carried out to determine biological differences between nearest 

neighbour ranks. 

 

Low distances from CD68+ to CD3+ (CD3near) correlate with better outcome in nearest 

neighbour analysis within the naïve cohort (chapter 3.8.1). Epithelial AOIs in CD3near 

cores had differential upregulation of FCGBP (logFC = 3.1, padj <0.001) and 

downregulation of IGFBP3 (logFC = 2.2, padj = 0.02) (supplementary figure 8.13). Limited 

pathways were upregulated in CD3near epithelium with only PPAR signalling (NES = 1.6, 

padj = 0.02) and mitochondrial metabolism/tricarboxylic acid (NES = 1.6, padj = 0.001) 

being of note (figure 6.6.a). In contrast, numerous signalling pathways were decreased in 

CD3near epithelium with MET (NES = -2.2, padj <0.001), type I INF (NES = -2.2, padj 

<0.001), TGF-β (NES = -1.9, padj <0.001) seen (figure 6.6.a). Additionally, reduction of 

pro-tumorigenic pathways matrix remodelling and metastasis (NES = -2.0, padj <0.001) 

and EMT (NES = -2.0, padj <0.001) (figure 6.6.a) was observed. Additionally, CD3near 

immune segments were enriched in B cells (NES = 1.6, padj = 0.03) and reduced in 

angiotensin system (NES = -1.7, padj = 0.04), neutrophil degranulation (NES = -1.9, padj 

<0.001) and TCR signalling (NES = -1.4, padj = 0.036). Spatial immune cell deconvolution 

estimated increased B cell (p=0.011) and plasma (p=0.019) in CD3near samples (figure 

6.6.b). 
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Figure 6.6.a Geneset enrichment and immune cell deconvolution of neoadjuvant PDAC 
based on comparison of distance from CD68 to CD3low versus distance from CD68 to 
CD3high. Bar charts demonstrate pathways differential expressed in a). epithelial segments. 
Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value 

≤0.05 were considered significant. Important pathways are indicated by an arrow. 
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Figure 6.6.b Geneset enrichment and immune cell deconvolution of neoadjuvant PDAC 
based on comparison of distance from CD68 to CD3low versus distance from CD68 to 
CD3high. Bar charts demonstrate pathways differential expressed in b). immune segments. 
Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value 

≤0.05 were considered significant. Important pathways are indicated by an arrow.
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Figure 6.6.c Geneset enrichment and immune cell deconvolution of naïve PDAC based on 
comparison of distance from CD68 to CD3low versus distance from CD68 to CD3high. 
Boxplots demonstrate estimated immune cell expression per 100 cells in c). low and high ranked 

distances from CD68 to CD3. Wilcoxon test with adjusted p value was used. 
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Large distances from CD68 to PanCk (PanCkfar) correlated with better outcome in 

nearest neighbour analysis within the naïve cohort (chapter 3.8.1). PanCkfar epithelium 

differentially expressed MMP12 (logFC = 2.4, padj <0.001), SLC12A2 (logFC = 2.2, padj 

<0.001) and CCL2 (logFC = 2.0, padj = 0.03) (supplementary figure 8.14.a). Limited 

aberrated pathways were seen, including elevated PDGF (NES = 2.4, padj <0.001), TNF 

(NES = 1.9, padj <0.001) and MET (NES = 1.6, padj = 0.03) signalling (figure 6.7.a). 

Furthermore, enriched type I INF (NES = 2.3, padj = 0.001), type II INF (NES = 2.1, padj = 

0.003) and BCR (NES = 1.7, padj = 0.03) were observed in αSMA rich AOIs in PanCkfar 

(figure 6.7.b), although few differentially expressed genes were seen (supplementary 

figure 8.14.b). In contrast, immune PanCkfar segments had multiple significant genes, 

including fibroblast associated markers ACTA2 (logFC = 1.7, padj <0.001) and MYH11 

(logFC = 1.8, padj <0.001) (supplementary figure 8.14.c).These segments saw reduced 

immune related pathways including dendritic cells (NES = -2.0, padj = 0.003), T cell (NES 

= -2.0, padj = 0.03), B cell exhaustion (NES = -2.1, padj = 0.005), BCR signalling (NES = -

1.6, padj = 0.010) among others (figure 6.7.c). Elevated estimated neutrophil population 

was seen in PanCkfar samples (p=0.038) (figure 6.7.d). 



260 

 
Figure 6.7.a Geneset enrichment and immune cell deconvolution of neoadjuvant PDAC 
based on comparison of distance from CD68 to PanCklow versus distance from CD68 to 
PanCkhigh. Bar charts demonstrate pathways differential expressed in a). epithelial segments. 

Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value 

≤0.05 were considered significant. Important pathways are indicated by an arrow. 
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Figure 6.7.b Geneset enrichment and immune cell deconvolution of neoadjuvant PDAC 
based on comparison of distance from CD68 to PanCklow versus distance from CD68 to 
PanCkhigh. Bar charts demonstrate pathways differential expressed in b). αSMA. Pathways with 

normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤0.05 were 

considered significant. Important pathways are indicated by an arrow. 
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Figure 6.7.c Geneset enrichment and immune cell deconvolution of neoadjuvant PDAC 
based on comparison of distance from CD68 to PanCklow versus distance from CD68 to 
PanCkhigh. Bar charts demonstrate pathways differential expressed in c). immune segments. 
Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value 

≤0.05 were considered significant. Important pathways are indicated by an arrow. 
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Figure 6.7.d Geneset enrichment and immune cell deconvolution of neoadjuvant PDAC 
based on comparison of distance from CD68 to PanCklow versus distance from CD68 to 
PanCkhigh. Boxplots demonstrate estimated immune cell expression per 100 cells in d). low and 

high ranked distances from CD68 to PanCk. Wilcoxon test with adjusted p value was used.  
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Finally, nearest neighbour protein expression of neoadjuvant patients with low distances 

from CD3CD8+ to PanCk+ (PanCknear) were explored. These patients had longer 

survival outcomes (chapter 4.7.1). Abundant aberrated pathways were observed in 

epithelial PanCknear segments, including elevated MET (NES = 2.6, padj <0.001), MYC 

(NES = 2.5, padj <0.001) and TGF-β (NES = 2.1, padj <0.001) signalling (figure 6.8.a). 

Additionally, multiple immune related pathways were significantly reduced (figure 6.8.a). 

αSMA segments mirrored this immune barren trend, with PanCknear regions presenting 

with reduced B cells (NES = -2.5, padj <0.001) and T cells (NES = -2.0, padj <0.001) 

(figure 6.8.b). In contrast, PanCknear immune segments demonstrated limited significant 

pathway differences between the ranked nearest neighbour groups (figure 6.8.c). 

Elevated type II INF signalling (NES = 2.0, padj <0.001), type I INF signalling (NES = 1.6, 

padj = 0.014) and Treg differentiation (NES = 2.0, padj = 0.033) was observed in 

PanCknear immune segments (figure 6.8.c). Enriched expression of mast cells (p=0.03) 

and NK cells (p=0.004) was estimated in patients with low distances from CD3CD8 to 

PanCk cells (figure 6.8.d). 
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Figure 6.8.a Geneset enrichment and immune cell deconvolution of neoadjuvant PDAC 
based on comparison of distance from CD3CD8 to PanCkhigh versus distance from 
CD3CD8 to PanCklow. Bar charts demonstrate pathways differential expressed in a). epithelial 

segments. Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. 

P) value ≤0.05 were considered significant. Important pathways are indicated by an arrow. 
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Figure 6.8.b Geneset enrichment and immune cell deconvolution of neoadjuvant PDAC 
based on comparison of distance from CD3CD8 to PanCkhigh versus distance from 
CD3CD8 to PanCklow. Bar charts demonstrate pathways differential expressed in b). αSMA. 
Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value 

≤0.05 were considered significant. Important pathways are indicated by an arrow. 
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Figure 6.8.c Geneset enrichment and immune cell deconvolution of neoadjuvant PDAC 
based on comparison of distance from CD3CD8 to PanCkhigh versus distance from 
CD3CD8 to PanCklow. Bar charts demonstrate pathways differential expressed in c). immune 

segments. Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. 

P) value ≤0.05 were considered significant. Important pathways are indicated by an arrow. 
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Figure 6.8.d Geneset enrichment and immune cell deconvolution of neoadjuvant PDAC 
based on comparison of distance from CD3CD8 to PanCkhigh versus distance from 
CD3CD8 to PanCklow. Boxplots demonstrate estimated immune cell expression per 100 cells in 

d). low and high ranked distances from CD3CD8 to PanCk. Wilcoxon test with adjusted p value 

was used. 
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6.3 Single cell B cell, T cell and dendritic cell signature 
across the naïve PDAC landscape 

Previous Spatial Proteomic and Spatial Transcriptomic demonstrated recurrent immune 

cell trends within naïve pancreatic cancer (chapter 3, 6 and 6.2). Both geneset enrichment 

analysis and immune cell deconvolution estimates in the naïve pancreatic cancer cohort 

demonstrated a mixture of elevated B cells, T cells and dendritic cells repeatedly 

associated with subgroups associated with better outcome. Furthermore, regional Spatial 

Protein work in a separate naïve cohort demonstrated elevated T cell and B cell protein 

signature correlated with improved prognosis (chapter 3.12). Counterintuitively, two 

groups, B7-H3 ranked (chapter 6.3.5) and nearest neighbour distance from CD68 to 

PanCk ranked groups (chapter 6.2.2), presented with the opposite pattern within their 

respective high survivor associated subgroup. Concordance of regional protein signature 

landscape with single cell protein expression landscape was investigated. The three most 

biologically interesting immune cells, T cells, B cells and dendritic cells, were explored 

using the PhenoCycler™ assay on a direct serial section from the same naïve TMA used 

in chapter 6 (figure 6.9.a and table 6.1). Although this assay included a variety of markers, 

analysis was limited to cytotoxic T cells, helper T cells, B cells and dendritic cells (figure 

6.9.b-c). Where possible, cell types were further subtyped into cell state using 

active/inactive markers (figure 6.9.c). 
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Figure 6.9.a-c Deep single cell phenotyping in naïve pancreatic cancer using PhenoCycler. 
Technology access program using STEP core plus enhancement antibody panel a). PhenoCycler 

method overview schematic adapted with permission from Akoya®, showing cyclical 

oligonucleotide staining, including antibody panel, antigen retrieval, four channel imaging, cleavage 

and removal, cyclical process occurs up to 16 times, b). example naïve core with full panel shown 

(left) and false image overlay (right), c). phenotypes included in analysis, split into cytotoxic T cells 

(CD3e+CD8+), active T cells (CD3e+CD8+ICOS+), inactive T cells (CD3e+CD8+TIM3+), helper T 

cells (CD3e+CD4+), B cells (CD20) and dendritic cells (CD11b). 
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Survival analysis confirmed high levels of B cells (CD20) (p=0.041) and helper T cells 

(CD3CD4) (p=0.004) correlated with increased disease specific survival (figure 6.10.a-b). 

Additionally, a non-significant correlation between high levels of dendritic cells (CD11b) 

and survival was observed (figure 6.10.c). This assay produced an unexpected 

oversaturated signal intensity, with high levels of background, making it difficult to 

confidently phenotype. Furthermore, it lacked a suitable B7-H3 protein marker, prompting 

exploration of an alternative high plex protein method. 

 

 

Figure 6.10.a-c Naïve immune cell density association with DSS. Kaplan-Meier curves 

(disease specific survival in months) stratified by mIF protein marker expression (Log-Rank Mantel-

cox test) for a). CD20 (B cells) b). CD3CD4 ( Helper T cells), and c). CD11b (neutrophils).  
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6.4 Single cell protein analysis of T cell and B cell 
signatures across the naïve and neoadjuvant 
landscape  

In late 2023, Nanostring® released a single cell, subcellar protein assay tailored for 

immune oncology. The panel consists of up to 60 markers, with well-defined T cell, B cell 

and dendritic subsets, as well as immune checkpoint marker B7-H3. This assay was 

performed to further explore the concordance between regional Spatial Transcriptomic 

and protein with single cell protein expression. The assay works relatively similarly to the 

cyclical fluorescent in situ hybridization imaging method as seen in the Phenocycler™ 

assay above (chapter 6.3), with the added benefit of robust probe design, automatic AI 

cell segmentation and instant expression readout (figure 6.11.a-b). This panel was applied 

on serial sections of the naïve cohort and neoadjuvant cohorts (table 6.1). Analysis was 

carried out in TMA cores.

 
Figure 6.11.a-b Deep single cell phenotyping in naïve pancreatic cancer using CosMx™ 

protein panel, a). CosMx™ Method overview schematic showing diagram with permission from 

Nanostring. FFPE slide undergo sample preparation workflow, exposing proteins for hybridization 
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and performing up to 5 plex immunofluorescence for visualisation. Flow cell is assembled and 

sample placed into the machine to undergo cyclical reporter set hybridisation, z stack imaging and 

ultraviolet cleavage/washing steps. This cycle repeats up to 16 times with count data per cell 

available as soon the run finishes b). example naïve core treated with 60 plex protein panel (left), 

markers shown include EpCAM+ (green), CD3+CD4+ (yellow), CD11b+CD11c+ (cyan), 

CD19+CD20+ (purple), CD8 (red) and B7-H3 (magenta), zoomed in cell segmentation (right) using 

native CosMx™ option, cellpose. 

6.4.1 Cell typing  

Celesta is the recommended cell typing method for CosMx™ protein assays, however this 

algorithm lacks a B7-H3 based cell population. Instead, an exploratory phenotyping 

method using Seurat was trialled (chapter 2.6.6). Unsupervised dimensional reduction in 

naive samples demonstrated 34 distinct clusters (figure 6.12.a). B7-H3 expression 

appeared relatively dispersed, appearing in 3 ‘hotspots’ (figure 6.12.b). Distinct clusters 

associated with B cell, T cell, dendritic cell specific markers (figure 6.12.b). The top unique 

makers associated with each cluster were then used to classify the dominant cell type 

(figure 6.13). Initial cluster classification was limited to phenotypes of interest. This 

resulted in cluster 14 associated with B cells markers, cluster 4 associated with CD8 T 

cells and cluster 3 associated with CD4 T cells (figure 6.13). B7-H3 associated with 3 

major clusters, cluster 5, cluster 12 and cluster 20 (figure 6.13). Unexpectedly, dendritic 

markers appeared in a range of clusters including cluster 0, making it more difficult to 

accurately cluster (figure 6.13).  

  
Figure 6.12.a. Naïve single cell protein UMAP clustering with Seurat. Unbiased cell clustering 

UMAP in 2 dimensions showing a). cluster labels. Most common markers used to distinguish B 

cells (CD20, CD19, IgD), T cells (CD3, CD4, CD8), Dendritic cells (CD11b, CD11c, CD123) and 

B7-H3 are represented. 
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Figure 6.12.b. Naïve single cell protein UMAP clustering with Seurat. Unbiased cell clustering 

UMAP in 2 dimensions showing b). phenotype specific marker density. Most common markers 

used to distinguish B cells (CD20, CD19, IgD), T cells (CD3, CD4, CD8), Dendritic cells (CD11b, 

CD11c, CD123) and B7-H3 are represented. 
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Figure 6.13 Naïve single cell protein clustered heatmap with Seurat. Showing top differentially 

expressed markers that distinguish between each cluster. Cluster 14 was distinguished by B cell 

markers (CD20, CD19, CD27), cluster 4 was distinguished by T cell markers (CD3, CD8), cluster 3 

was distinguished by T cell markers (CD3, CD4). B7-H3 associated with cluster 5, 12 and 20. 
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The same methods were used to phenotype the combined neoadjuvant cohorts, showing 

46 clustering patterns (figure 6.14.a). Compared to naïve samples (figure 6.12.a), distinct 

differences were observed between cluster number generated, space occupied, as well as 

discrete markers differentiating between the naïve and neoadjuvant clusters. In total, 

almost all top markers distinguishing naïve clusters, were also expressed in neoadjuvant 

samples. Comparatively, almost 1/3 of distinguishing markers within the neoadjuvant 

cohort were unique. As expected, neoadjuvant clusters were more complex, making it 

difficult to distinguish between the dominant signature within clusters. B cell markers were 

elevated in a wide range of clusters including clusters 2,10, 18, 24 and 34 (figure 6.14.b). 

CD8 T cell markers were enriched in cluster 8 and cluster 35, and CD4 T cell markers 

were enriched in cluster 9 and cluster 16. Dendritic markers were enriched in a wide 

range of clusters including 13, 15, 23, 36 among others (figure 6.14.b). Furthermore B7-

H3 expression was upregulated in 4 different clusters, 4, 17, 27 and 41 (figure 6.14.b).  

 

Figure 6.14.a Neoadjuvant single cell protein clustering with Seurat. Unbiased cell clustering 

UMAP in 2 dimensions showing a). UMAP with cluster labels. B cell markers were enriched in 

clusters 2, 10, 18, 24 and 34, CD8 T cell markers were enriched in cluster 8 and 35, CD4 T cell 

markers were enriched in cluster 9 and 16, dendritic markers were enriched in cluster 13, 15, 23 

and 36, and B7-H3 marker was enriched in cluster 4, 17, 27 and 41. 
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Figure 6.14.b Neoadjuvant single cell protein clustering with Seurat. Unbiased cell clustering 

in 2 dimensions showing b). Clustered heatmap showing top unique protein markers that 

distinguish between each cluster. B cell markers were enriched in clusters 2, 10, 18, 24 and 34, 

CD8 T cell markers were enriched in cluster 8 and 35, CD4 T cell markers were enriched in cluster 

9 and 16, dendritic markers were enriched in cluster 13, 15, 23 and 36, and B7-H3 marker was 

enriched in cluster 4, 17, 27 and 41.  
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6.4.2 B7-H3 expression and associated cell types in naïve and 
neoadjuvant PDAC 

Despite the vast intertest in B7-H3 as a potential target for checkpoint inhibition, little is 

known about the cell types it associates with. As shown above, B7-H3 appeared in 3 

major clusters within the naïve cohort (figure 6.13). These clusters also presented with log 

fold increased expression of CD15 and αSMA (cluster 5), αSMA and CD39 (cluster 12), 

and HLA-DR with CD14 (cluster 20) (table 6.2). Additionally, neoadjuvant patients 

presented with 4 clusters where B7-H3 was amongst the highest expressing proteins 

(figure 6.14). These clusters associated with a varied range of markers. B7-H3 related 

clusters presented with B7-H3 alone (cluster 4), CD39 (cluster 17), STING, CD127, 

LAMP1 (cluster 27), and EpCAM, β-catenin, CD38, NF-κB p65 (cluster 41) (table 6.2).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.2 B7-H3 clusters and associated top differentially expressed proteins in naïve and 
neoadjuvant pancreatic cancer. Log2 fold change expression for each marker in naïve and 

neoadjuvant cohort demonstrated, with Seurat cluster is indicated.  
 

 

 

Cohort Cluster Protein marker Log2 Fold change 
Naïve 5 B7-H3 1.666 
Naïve 5 αSMA 1.493 
Naïve 5 CD15 1.024 
Naïve 12 αSMA 1.743 
Naïve 12 B7-H3 1.617 
Naïve 12 CD39 1.121 
Naïve 20 HLA-DR 2.675 
Naïve 20 CD14 1.911 
Naïve 20 B7-H3 1.375 
Neoadjuvant 4 B7-H3 2.027 
Neoadjuvant 17 B7-H3 2.540 
Neoadjuvant 17 CD39 1.845 
Neoadjuvant 27 STING 2.032 
Neoadjuvant 27 B7-H3 1.610 
Neoadjuvant 27 CD127 2.246 
Neoadjuvant 27 LAMP1 1.901 
Neoadjuvant 41 EpCAM 2.487 
Neoadjuvant 41 B7-H3 1.501 
Neoadjuvant 41 Beta-catenin 2.929 
Neoadjuvant 41 CD127 2.592 
Neoadjuvant 41 CD38 1.726 
Neoadjuvant 41 NF-κB p65 1.660 
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Next, visual co-expression with B7-H3 was explored. Naïve cluster 5 associated with B7-

H3, CD15 and αSMA. Co-expression was seen often between B7-H3 and myofibroblast 

marker αSMA alone (figure 6.15.a bottom right), and with B7-H3, CD15 and αSMA 

together (figure 6.15.a). Cluster 12 associated with B7-H3, αSMA and CD39 markers, with 

co-expression seen between all three markers (figure 6.15.b). Finally, naïve cluster 20 

marker co-expression was seen for B7-H3, HLA-DR and CD14 (figure 6.15.c), likewise 

frequent B7-H3 and HLA-DR co-expression without CD14 was also seen in naïve samples 

(figure 6.15.c bottom right). All three clusters are defined by immune rich markers. CD15 

expression has been reported in neutrophil cells, CD39 expression with dysregulated T 

cell function, and both HLA-DR and CD14 expressed on macrophages [313, 314]. 
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Figure 6.15.a-c B7-H3 naïve cluster visual co-expression with top expressing markers in 

example images demonstrating a). Cluster 5, showing a fibroblast /neutrophil signature with B7-H3, 

αSMA and CD15, bottom right image ‘B7-H3 and aSMA alone’ shows  different cells within the 

same core, only expressing B7-H3 and aSMA b). Cluster 12, showing fibroblast/exhausted T cell 

signature with B7-H3, αSMA and CD39 c). Cluster 20, showing macrophage signature B7-H3, 

HLA-DR and CD14, bottom right image ‘B7-H3 and HLA-DR alone’ shows  different cells within the 

same core, only expressing B7-H3 and HLA-DR 
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Within the neoadjuvant cohort, 4 major clusters were found, one of which (cluster 4) was 

only defined by B7-H3. In contrast, cluster 17 was defined by elevated B7-H3 and T cell 

dysregulation marker CD39, similarly to naïve cluster 12, with co-expression seen (figure 

6.16.a). Varied protein markers were upregulated in Clusters 27 and 41 (table 6.1). Co-

expression was confirmed with B7-H3, CD127 and STING as indicated by cluster 27 

(figure 6.16.b). Furthermore, frequent co-expression was seen of B7-H3 cells with STING. 

Notably, CD127 and STING can all express in T lymphocytes [315-317]. Cluster 41 was 

defined by immune related and epithelial related markers, therefore these markers were 

investigated by cell lineage to check for B7-H3 co-localisation. Two distinct B7-H3 cell 

types were observed within this cluster. The first cell type presented as B7-H3/EpCAM/β-

catenin positive cells, and were predominantly located in the epithelium, though not all 

EpCAM+β-catenin+ cells expressed B7-H3 (figure 6.16.c). The second cell type 

expressed as B7-H3/CD38/NF-κB p65 positive cells and were observed in the tumour 

microenvironment (figure 6.16.d). Both CD38 and NF-κB p65 expression have been 

related to B cells [318, 319]. Notably, naïve and neoadjuvant B7-H3 related clusters were 

characterised by distinctly different markers. The only overlap seen was between naïve 

cluster 12 and neoadjuvant cluster 17, with B7-H3 co-expressing associating with 

‘exhausted’ T cell marker CD39. 
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Figure 6.16.a-b B7-H3 neoadjuvant cluster visual co-expression with top expressing 
markers in a). Cluster 17, showing an exhausted T cell signature with B7-H3 and CD39 b). Cluster 

27, showing T lymphocyte signature B7-H3, CD127, and STING. 
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Figure 6.16.c-d B7-H3 neoadjuvant cluster visual co-expression with top expressing 
markers in c). Cluster 41, showing an epithelial signature with B7-H3, EpCAM and β-catenin d). 

Cluster 41, showing B cell signature B7-H3, CD38 and NF-κB. 
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6.4.3 NeoadjXRT subtyping  

Assuming the differences in B7-H3 clusters observed above is in some-part related to a 

cell type or cell function switch triggered by treatment, the effect of neoadjuvant treatment 

type on clustering was investigated. Dimension reduction using Seurat native UMAP 

function demonstrated distinct clustering differences between chemotherapy treated and 

chemoradiotherapy treated pancreatic cancer, indicating possible cell type variances 

between the two groups (figure 6.17). Large differences are seen between neoadjuvant 

chemotherapy and chemoradiotherapy samples, indicated by cluster pattern, space 

occupation, as well as cluster generation. Overlap of 34 protein markers was observed 

between chemotherapy and chemoradiotherapy clusters, with 6 unique markers in both 

treatment subsets. Chemotherapy treated samples generated 31 clusters, 3 of which 

demonstrated significant differential elevated B7-H3 expression (clusters 26, 28 and 30) 

(figure 6.18.a). In contrast, chemoradiotherapy treated samples presented with 28 

clusters, with 4 clusters (clusters 8, 13, 14 and 17) demonstrating increased B7-H3 

expression (figure 6.18.b). Both treatment types associated with epithelial, T lymphocyte 

and macrophage heavy B7-H3 clusters, although the markers within each cluster differed 

considerably and were mixed. 

Figure 6.17 Chemotherapy and chemoradiotherapy single cell protein UMAP clustering with 
Seurat. Unbiased cell clustering UMAP in 2 dimensions showing differences in clustering produced 

in chemotherapy treated (left) and chemoradiotherapy treated (right) samples. 
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Figure 6.18.a-b Neoadjuvant treatment single cell protein clustered heatmap with Seurat. 
Showing top differentially expressed markers that distinguish between each cluster in a). 

chemotherapy treated patients, b). chemoradiotherapy treated patients.  
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6.4.4 Cluster density in naïve and neoadjuvant pancreatic cancer 

Upon satisfactory cluster assignment, density of well-established cell types and the B7-H3 

related clusters were investigated within naïve and neoadjuvant cohorts. The naïve cohort 

demonstrated a non-significant increased density of B cell related clusters (figure 6.19.a), 

along with significant elevated median density of T cell exhausted cluster 12 when 

compared to macrophage cluster 20 (figure 6.19.b). Within the neoadjuvant cohort, the 

highest density clusters seen were B cell and CD4 T cell clusters, as well as significantly 

elevated B cell related clusters compared to CD8 T cell clusters (figure 6.19.c). 

Furthermore, significant differences were observed between the two T cell related B7-H3 

clusters, with elevated levels of exhausted T cell related cluster 17 seen. Additionally, 

cluster 41, associated with both epithelial and immune expression, has the smallest 

density within the neoadjuvant cohort, as well as being significantly reduced when 

compared to cluster 27 (figure 6.19.d). Moreover, non-significant elevated density of 

cluster 13 in chemoradiotherapy treated patients was observed (supplementary figure 

8.15). 

 
Figure 6.19.a-d Density of Seurat clusters associated immune cell clusters in naïve and 

neoadjuvant pancreatic cancer cohorts. Boxplots shows density per grouped immune cluster in a). 

naïve B cell, CD4, CD8 and dendritic clusters, b). naïve B7-H3 related clusters, c). neoadjuvant B 

cell, CD4, CD8 and dendritic clusters, d). neoadjuvant B7-H3 related clusters. Statistics generated 
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by Kruskal-Wallis test, only significant p values shown. 

 

 

6.4.5  Nearest neighbours surrounding B7-H3 

Previous protein based results have demonstrated density alone can be insufficient to 

characterise the tumour immune microenvironment (chapter 3 and 4). Using nearest 

neighbour metrics, immune cell environment surrounding B7-H3 related clusters was 

investigated. Location of B7-H3 in comparison to clusters enriched in tumour cells, T cells, 

B cells and dendritic cells was explored. Dendritic cells consistently remain amongst the 

top 2 closest neighbours for all naïve B7-H3 clusters, along with CD4 helper T cells for 

clusters 12 and 5, and CD8 cytotoxic T cells for cluster 20 (figure 6.20.a). B cells were the 

furthest from cluster 5 and 20, and epithelial cells were furthest from cluster 12 (figure 

6.20.a). Furthermore, cluster 20 also presented as one of the furthest phenotypes from 

cluster 12 and cluster 5 (figure 6.20.a). A shift in the populations surrounding B7-H3 

related clusters within the neoadjuvant cohort was observed. Epithelial and CD4 helper T 

cells presented as some of the nearest neighbours for cluster 17 and 41, and cluster 4 

and 27 respectively (figure 6.20.b). Additionally, B cells were the furthest away from 

clusters 4, 17 and 27, and dendritic cells were furthest from cluster 41 (figure 6.20.b). 

Finally, nearest neighbours across treatment types were explored. As expected, distinct 

patterns emerged, the most predominant nearest neighbour in chemotherapy treated for 

all B7-H3 related clusters were epithelial cells. Moreover, the furthest neighbour presented 

as B cells for cluster 26, CD8T cells for cluster 28, and CD4 T cells, CD8 T cells and B 

cells for cluster 30 (figure 6.21.a). In contrast, chemoradiotherapy treated B7-H3 clusters 

seemed to reside together, as indicated by B7-H3 clusters being the closest nearest 

neighbours. Moreover, epithelial and CD8 T cells were the furthest neighbours for cluster 

13/14, and cluster 8/17 respectively (figure 6.21.b). Notably, the chemoradiotherapy 

treated subgroup is limited in patient number (n=27). 
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Figure 6.20.a-b Average nearest neighbour distance for Seurat generated phenotypes in 
pancreatic cancer. Columns show the distance to phenotype, and rows show distance from 

phenotype. Filtered for B7-H3 related cluster nearest neighbour distances in a). Naïve cohort b). 

Neoadjuvant cohort. Average distance represented as a z score. 
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Figure 6.21.a-b Average nearest neighbour distance for Seurat generated phenotypes in 
neoadjuvant pancreatic cancer. Columns show the distance to phenotype, and rows show 

distance from phenotype. Filtered for B7-H3 related cluster nearest neighbour distances in a). 

chemotherapy treated cohort b). chemoradiotherapy treated cohort. Average distance represented 

as a z score. 
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6.4.6 Prognostic associations with cluster density 

Upon satisfactory initial cluster characterisation, prognostic utility was investigated. Within 

the naïve cohort patients enriched in CD4 helper T cell (p=0.014) and CD8 cytotoxic T 

cells (p=0.007) had increased survival, replicating patterns seen in in chapter 3 and 6 

(table 6.3). Likewise, reduction of B7-H3 enriched, T cell exhausted cluster 12 positively 

correlated with survival (p=0.003) (table 6.3). Mirroring chapter 4 trends, neoadjuvant 

patients with reduced levels of CD8 cytotoxic T cells (p<0.001) and CD4 helper T cells 

(p=0.006) associated with better prognosis (table 6.3). Furthermore, decreased density of 

B7-H3 cluster 4 (p=0.036) and B7-H3, T cell heavy cluster 27 (p=0.022) (table 6.3). 

Interestingly, only T cell related B7-H3 clusters demonstrated prognostic correlation in 

both naïve and neoadjuvant patients.  

Seurat clusters Group Cut-off 
method 

Number HR (95% CI) P value 
B cell cluster Naïve Rcutoff 38 0.36(0.10-1.29) 0.120 
CD4 T cell cluster Naïve Rcutoff 38 0.07 (0.01-0.59) 0.014 
CD8 T cell cluster Naïve Rcutoff 38 0.14 (0.03-0.58) 0.007 
Dendritic cell cluster Naïve Rcutoff 38 2.06 (0.83-5.14) 0.11 
Neutrophil/αSMA cluster 5 Naïve Rcutoff 38 0.97 (0.43-2.21) 0.46 
Exhausted T cell cluster 12 Naïve Rcutoff 38 4.46 (1.67-11.9) 0.003 
Macrophage cluster 20 Naïve Rcutoff 38 0.49 (0.22-1.12) 0.092 
B cell cluster Neoadjuvant Rcutoff 61 2.04 (1.05-3.99) 0.31 
CD4 T cell cluster Neoadjuvant Rcutoff 61 2.43 (1.28-4.64) 0.006 
CD8 T cell cluster Neoadjuvant Rcutoff 61 2.81 (1.36-5.80) <0.001 
Dendritic cell cluster Neoadjuvant Rcutoff 61 1.68 (0.91-3.10) 0.097 
B7-H3 cluster 4 Neoadjuvant Rcutoff 61 1.89 (1.04-3.41) 0.036 
Exhausted T cell cluster 17 Neoadjuvant Rcutoff 61 1.49 (0.83-2.66) 0.2 
T cell cluster 27 Neoadjuvant Rcutoff 61 2.30 (1.13-4.68) 0.022 
Epithelial/B cell cluster 41 Neoadjuvant Rcutoff 61 1.69 (0.83-3.46) 0.2 
 
Table 6.3 Summary of Seurat generated immune and B7-H3 related clusters for disease 
specific survival in whole core across naïve and neoadjuvant PDAC cohort. Cut-off method 

established (chapter 2.6.9). Log Rank (Mantel-Cox) p value and Univariate cox regression hazard 

ratio (HR) shown with 95% confidence interval (CI). 
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6.5 Discussion 

Immune cell density in pancreatic cancer remains one of the most consistently predictive 

prognostic tools within the research field. This trend repeated across the PDAC cohorts 

utilised within this study, notably CD3 and CD68 density in naïve patients, and CD3CD8 in 

neoadjuvant patients. To start unravelling biological differences between levels of immune 

cell expression, characterised phenotype groups were integrated with Spatial 

Transcriptomic data, allowing discovery of aberrated genes and pathways in epithelial, 

fibroblast, and immune rich segments. Relatively limited pathway differences were 

observed in αSMA-rich and immune-rich segments in CD3high and CD3low naïve 

patients. In particular, elevated cytotoxicity and B cell related pathways were observed. 

Interactions between T and B lymphocytes have been reportedly associated with 

prognostic benefit in cancer. This has been seen in terms of cellular location, triggering 

local inflammation in mouse models, as well as the presence of tertiary lymphoid 

structures within the tumour microenvironment [11, 171, 227]. Interestingly, epithelial CD3 

ranked segments presented with a wide range of aberrated cell signalling pathways. In 

particular, JAK/STAT and type I INF signalling was reduced in CD3high epithelium. The 

JAK/STAT pathway is well reported to play an important role in the immune response, and 

chronic activation of this pathway promotes oncogenesis [80, 81, 320]. Comparatively, 

CD68 density in treatment-naïve patients presented with multiple significantly 

dysregulated pathways. Of note, epithelium from CD68low cases demonstrated reduced 

matrix remodelling and metastatic pathways, as well as MET and NO signalling. CD68low 

expression significantly correlates with improved survival amongst the naïve cohort as 

well as within the literature [238]. Upon investigating immune and αSMA segments, 

counterintuitive results were seen. CD68low segments presented with an immune barren 

landscape, whereas CD68high was enriched in various immune cell pathways. This 

pattern repeated when performing immune cell deconvolution, with macrophage 

expression being significantly reduced in CD68low samples, indicative of the concordance 

between deconvolution methods and actual protein expression. These results indicate that 

enrichment of immune pathway presence alone may be insufficient to predict outcome.  

In the neoadjuvant cohort, CD3CD8+ T cells emerged as a significant predictive marker. 

Intriguingly, elevated levels correlated with poor survival, contradicting the central dogma 

[132, 255, 321]. This finding is not isolated; similar observations have been reported in 

similar cancer types, prompting investigation of pathways to help explain this 

phenomenon [322]. Interestingly, patients with elevated levels of CD3CD8 presented with 

increased EMT and p53 pathways in epithelial segments, as well as increased immortality 

and stemness in immune segments. Additionally, these patients demonstrated elevated T 

cell and B cell pathways, coupled with elevated T cell and B cell ‘exhaustion’.  
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Nearest neighbours were the most powerful spatial protein single cell metric within naïve 

and neoadjuvant cohorts as reported in chapter 3 and 4. The most prognostically 

significant categorised nearest neighbour patterns were extracted, comprising of distance 

from CD68+ to CD3+, and distance from CD68+ to PanCk+ within the naïve cohort, and 

distance from CD3CD8 to PanCk+ in the neoadjuvant cohort. Patients with short 

distances from CD68 to CD3 (CD3near) significantly correlated with improved survival 

(chapter 3.7). Epithelial segments of these patients demonstrated downregulation of pro-

tumorigenic pathways such as matrix remodelling and metastasis, and EMT signalling 

pathways. Additionally, CD3near immune segments demonstrated elevated B cell and 

reduced angiotensin signalling pathways. B cell elevation was further confirmed using 

immune cell deconvolution. Multiple signalling pathways trigger angiogenesis in PDAC, 

promoting tumour development, metastasis and poor prognosis [323]. Aberrant 

expression of this phenomenon offers a potential targeted treatment option, something 

severely lacking in pancreatic cancer. Furthermore, immune segments in patients with 

large distance from CD68+ to PanCk+, present with upregulated dendritic cells, reportedly 

associated with improved survival and T cell immunity restoration [287]. Within the 

neoadjuvant cohort, short distances from CD3CD8+ to PanCk+ cells correlated with 

improved survival (chapter 4.7). Interestingly, αSMA and immune segments of these 

patients presented with reduced B cells and T cells. Although the T cell trend mirrors the 

rest of the neoadjuvant results, the reduced B cell pathway observed in the poor survival 

group contradicts the overall neoadjuvant trend. B cells remain a contradictory cell type in 

pancreatic cancer, with reports showing both anti-tumorigenic and pro-tumorigenic 

properties [11, 97, 203]. In particular, CD49CD73 co-expressing B cells promote 

angiogenesis, underlining the importance of robust subtyping in the context of biomarker 

discovery [97].  

 

The variable rates of translation from RNA into protein imply that while Spatial 

Transcriptomics can offer estimates of immune cell deconvolution, it may not always serve 

as an accurate surrogate for direct protein expression [296-299]. These estimates should 

be validated against true protein data to ensure reliability. Initially, the Akoya Biosciences 

Phenocycler™ assay using the STEP core plus enhancement immune panel was trialled. 

This panel allows for a wide range of immune cells to be visualized including T, B and 

dendritic cells. Significant survival trends were found for helper T cells, B cells and 

dendritic cells. Notably, this assay was performed by the company as part of a beta 

technology access program. Images produced had high levels of background, with 

oversaturated and unspecific staining seen. Accurate phenotyping was difficult to robustly 

establish. Furthermore, a B7-H3 marker was not covered by the PhenoCycler™ panel.  

 

To characterise the tumour immune microenvironment, Nanostrings CosMx™ was used, a 
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single cell protein assay suited to the investigative needs. The panel comprises of 60 

markers, including epithelial, T cell, B cell, dendritic cell and B7-H3 markers. Although 

Celesta cell typing is the recommended method to phenotype CosMx™ protein 

experiments, this lacked a B7-H3 related cell type. Instead, a Seurat based approach was 

trialled, popular with bulk and single cell transcriptomic data, as well as being 

recommended for CosMx™ RNA assays [324]. This method generates clusters which 

dominant cell types can be assigned to via differential expression analysis. Further 

phenotyping methods would have to take place to validate cell clusters. Naïve and 

neoadjuvant samples generated distinct clusters, indicating the differences in cell types 

seen across these cohorts. Clear cluster cell assignment was carried out in naïve samples 

T and B lymphocytes, and overlap was seen in dendritic related clusters. Conversely, 

neoadjuvant clusters appeared heterogenous, demonstrating varied top differentially 

expressed markers, making clusters more difficult to assign a dominant cell type. This 

resulted in multiple clusters being combined to generate our three focused immune cells. 

Differential B7-H3 expression was observed in 3 naïve clusters and 4 neoadjuvant 

clusters along with other markers. Naïve B7-H3 related clusters were all immune related, 

with a neutrophil/myofibroblast heavy association (cluster 5), a T cell exhausted marker 

association (cluster 12) and a macrophage marker association (cluster 20). A more 

diverse B7-H3 clustering was seen within the neoadjuvant cohort, including a mixture of 

epithelial related (cluster 41), B cells (cluster 41), T cells (cluster 27) and exhausted T 

cells (cluster 17). Varied B7-H3 cluster density was seen in naïve and neoadjuvant, with 

the highest density presenting as the exhausted T cell cluster in both cohorts. Although 

B7-H3 is well known as an immune checkpoint molecule, it has yet to be fully 

characterised in terms of the cell type it expresses in, or the cells it interacts with. 

Contradictory reports have associated B7-H3 expression with a wide range of cell types 

including T cells, B cells, macrophages, as well as fibroblasts and tumour cells [325-327].  

 

Regardless of the cell type associated with this checkpoint molecule, elevated expression 

correlates with poor prognosis [18]. Similar prognostic trends were observed in the two 

PDAC cohorts. Elevated exhausted T cell related clusters (cluster 5 and cluster 7) 

negatively correlated with the survival in naïve and neoadjuvant patients respectively. 

Reports linking B7-H3 to immune evasion via T cell inhibition may help explain this 

phenomenon [311]. These results reinforce the rationale in clinical trials testing B7-H3 

inhibition in a multitude of cancers [142-144, 146]. These results validate those reported 

for Spatial Protein (chapter 3.11) and Spatial Transcriptomics (chapter 5.3.5 and chapter 

5.4.5). Furthermore, increased B7-H3 expression in mouse models associates with 

invasion and metastasis via the NF-kB pathway, with increased angiogenesis marker 

VEGF being secreted [19], or via the JAK/STAT pathway with increased autophagy 

marker Mcl-1 being secreted [328, 329]. These reports also demonstrate inhibition of B7-
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H3 results in increased treatment sensitivity [328, 329].  

 

Assuming that the differences in B7-H3 clusters expressed in neoadjuvant compared to 

naïve is solely due to treatment type, it was hypothesised neoadjuvant treatment type 

would also present with distinct cell based clustering. Clear distinctions were 

demonstrated between chemotherapy treated and chemoradiotherapy treated patients, as 

seen by the UMAPs. Furthermore, an attempt was made to characterise the cell-to-cell 

interactions between B7-H3 clusters and phenotypes of interest. Future mechanistic 

studies should be performed to validate these results. 

 

Multiplex led Spatial Transcriptomic analysis has revealed signalling pathways that are 

potentially pivotal in defining sub-grouped patients. This advanced, integrative approach 

not only aids in deciphering the fundamental mechanisms of disease, but it also potentially 

discovers new patient populations that could benefit from targeted therapies. Without this 

orthogonal approach, these insights may have remained undiscovered. Furthermore, the 

use on an ultra-high plex single cell protein assay has allowed us to begin characterising 

B7-H3 with the pancreatic cancer landscape, essential research if this checkpoint marker 

is to become a targeted treatment option.  



295 

7 Chapter 7: Final Discussion 
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7.1 General Discussion 

Pancreatic cancer is the 5th most common cause of cancer related deaths, with a 5-year 

survival of <7% [1, 2]. Treatment options remain stagnant, with surgical resection being 

the best treatment option [21]. At diagnosis, most patients present with metastatic disease 

and are unsuitable for resection, thus the vast majority undergo adjuvant treatment. One 

of the few advancements within the last decade is the introduction of neoadjuvant therapy 

in borderline resectable and locally advanced disease, resulting in increased disease 

specific survival [5]. Despite the development of molecular subtype characterization, 

research underpinning the biology of PDAC is well behind that of similar solid tumours. 

This is partly attributed to its complex, heterogenous landscape, dominated by a rare 

mutational, and immune barren landscape [15]. This thesis aimed to characterise the 

tumour immune landscape of naive and neoadjuvant treated human pancreatic cancer in 

terms of cellular content, density and spatial orientation. Initial protein characterisation 

focused on the most common cells seen, T lymphocytes, macrophages and fibroblasts, 

using Akoya PhenoImager™. Subsequent regional ‘omic’ characterisation using the 

NanoString® immune-oncology panel was carried out for confirmation and discovery of 

rare protein signatures. Furthermore, the aim was to establish the Spatial Transcriptomic 

signature in distinct tissue compartments across treatment cohorts and appropriate clinical 

subgroups, using the NanoString® WTA panel. Finally, multi-‘omic’ characterization was 

performed using a combination of orthogonal data, to explore the underlying biology in 

prognostically relevant biomarkers, and validate transcriptomic signatures. Analysis was 

first carried out separately on naïve and neoadjuvant cohorts to establish the base 

landscape, then compared to characterize the immunogenic switch between these 

cohorts. The secondary aim was to characterize B7-H3 expression and determine its 

interaction within the naïve and neoadjuvant pancreatic landscape. This thesis primarily 

uses Spatial Biology, which can be categorized by two different methods; histological 

location, and single cell characterization. Histological location mainly refers to regional 

spatial biology, were an overall or ‘mini-bulk’ signature is generated per area of interest. 

Single cell characterization methods require a minimum of variable expression per cell 

and X-Y coordinates and is used for distance-based metrics. Both methods can be 

employed simultaneously 

 

7.2 Deep protein characterization of the tumour immune 
microenvironment in PDAC 

 Immune cell protein characterization is relatively well established in naive, and less well 

established in neoadjuvant PDAC. However, the focus remains on the most common cell 
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types including T cells, macrophages and fibroblasts. In general, immunohistochemistry 

(IHC) studies demonstrate elevated CD8 cytotoxic T cells, CD3 T cells, and reduced 

CD68 macrophages and fibroblasts significantly correlates with improved prognosis in 

naïve [170-174] and neoadjuvant PDAC [132, 147, 213, 214]. To confirm these trends 

within the naïve cohort, IHC was carried out using antibodies to CD3, CD8, CD68 and 

CD163, demonstrating significant associations with prognosis and pattern of recurrence 

for CD3, CD8 and CD68. Upon confirmation that these markers were suitable, a 7 plex 

immunofluorescence panel was developed to investigate a range of T cell subsets, 

macrophages and myofibroblasts. This assay allows for in-depth characterization, co-

expression analysis and establishing cell-to-cell interactions. This mIF assay generated 

many significant trends within naïve and neoadjuvant cohorts. Robust characterization 

demonstrated the naïve PDAC landscape was dominated by elevated PanCk, αSMA and 

CD68 expression, and survival outcome of naïve pancreatic cancer patients associated 

with specific density and spatial parameters. Elevated levels of CD3+ T cells and reduced 

CD68+ macrophages, along with increased distances from CD68+ macrophages to 

tumour cells, and shorter distances from CD68+ macrophages to CD3+ T cells correlates 

with improved DSS. Furthermore, elevated CD3CD8+ surrounding tumour cells were 

observed in patients with improved prognosis. Until recently, few papers have explored 

the spatial landscape. Carstens et al reported elevated T lymphocytes close to tumour 

cells significantly correlated with overall survival [219]. Active T cells scan their 

environment, detect and either kill neoplastic cells (CD8 T cells) or render them senescent 

(CD3 T cells) [330]. These results suggest distance plays an important role in the effect of 

T cells on surrounding cells, indicating that density alone is not enough to produce an anti-

tumour response. Although region specific analysis was carried out, reporting was limited 

to novel trends not observed in the overall TMA core. Unusually, elevated FOXP3CD3+ 

cells in TME regions correlated with survival, although this was only seen in the discovery 

naïve cohort.  

 

The naïve molecular subtype microenvironment was also explored. Classical patients 

demonstrated T cell specific density trends, with elevated CD3+ and CD3CD8+ T cells 

correlating with improved DSS. In contrast, Squamous patients demonstrated reduced 

tumour cell and macrophage populations correlated with DSS. Furthermore, significant 

nearest neighbour trends also differed between subtypes. Considering the heterogeneity 

of pancreatic cancer, it is highly unlikely that a single clinically relevant biomarker or 

targeted therapy will be employed in the clinic. However, characterisation of clinically 

relevant subgroups may reveal aberrations that can be exploited. The phenotypic 

differences observed between subtypes emphasizes this potential and should be further 

investigated. 
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The neoadjuvant mIF assay produced a mixture of expected and unexpected results. 

Similarly to naïve patients, the most predominant cell types remained tumour cells, 

αSMA+ fibroblasts, and CD68+ macrophages. Contrary to the hypothesis, reduced 

density of CD3CD8+ cells and CD3+ cells significantly correlated with longer DSS. 

Additionally, a reduction in CD68+ and FOXP3CD3+  cells also positively correlated with 

prognosis. Neoadjuvant patients have the added complexity of having an altered disease 

state with multiple factors that may influence the TME landscape and associated 

prognosis. These include treatment method, chemotherapy or chemoradiotherapy, the 

type of chemotherapy, FOLFIRINOX based or Gemcitabine based , and finally, the 

regression pattern, which scores how well the tumour has responded to neoadjuvant 

treatment and could be indicative of chemoresistance. These three main factors were 

investigated within the neoadjuvant cohort. Distinct density differences were seen 

between neoadjuvant subgroups. Notably, varied immune cell density in 

chemoradiotherapy and good regression status patients significantly correlated with 

prognosis, in contrast, only tumour cell densities were prognostic in chemotherapy and 

poor regression status. Although CD3CD8+ and CD68+ prognostic marker overlap was 

seen between FOLFIRINOX and Gemcitabine treatment, additional markers, CD3+, 

FOXP3CD3+ and PanCk+, were observed in the FOLFIRINOX cohort. Regardless of 

subgroup investigated, the general trend remained the same, reduced expression of any 

phenotype correlated with longer disease specific survival. Of the few papers investigating 

the neoadjuvant immune landscape, the general trends demonstrate an immunogenic 

switch towards increased effector cell populations including cytotoxic, helper, and a 

reduced Treg population [132, 147, 213, 214]. Although the neoadjuvant results seem to 

contradict the PDAC literature, similar trends have been reported for similar cancers. 

Reports in oesophageal and breast demonstrate an initial reduction in CD8 and CD4 

populations, amongst others, for up to 9 months post neoadjuvant treatment [216, 258-

260]. Furthermore, the functional state was altered in breast cancer, resulting in an 

increased proportion of activated memory CD4 T cells [259]. This poorly understood 

phenomenon highlights two fundamental questions;  

1. What is the optimal time period for samples to be taken? Does this need to be 

taken into consideration when establishing the post treatment landscape? 

2. Is cellular density alone a sufficient tool for prognosis, without taking into 

consideration activation status or in-depth cell subtyping? 

Furthermore, multiple nearest neighbour trends appear in neoadjuvant patients. This 

includes large distances from CD68+ macrophages to tumour cells, large distances from 

cytotoxic T cells to CD3+ helper T cells and short distances to CD3CD8+ cells from Tregs. 
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CD68+ macrophages are thought to suppress the anti-tumour immune response, which 

may indicate that increased distance to tumour cells dampens this effect [331]. Tregs play 

a pivotal role in suppressing the immune response, and are associated with poor survival, 

both in the literature and within the neoadjuvant cohort [256]. Reduced distances to 

cytotoxic T cells may reduce the effect of Tregs. This may be done by either directly 

targeting and killing Tregs, or by consuming the amount of essential Treg cytokines such 

as IL-2 which is reportedly required for survival and suppressive capabilities [332]. 

 

The spatial prognostic patterns demonstrated by treatment naïve and neoadjuvant 

pancreatic cancer patients illustrate the potential effect of neoadjuvant therapy on the 

tumour microenvironment, and how these alterations may contribute to improved 

prognosis. Considering only the notable patterns observed between naïve and 

neoadjuvant multiplex analysis, stark differences between longer survivors were 

observed. Longer survivor treatment naïve patients presented with elevated CD3+ helper 

T cells, and longer distances from CD68+macrophages to both FOXP3CD3+ Tregs, and 

αSMA+ fibroblasts. Additionally, they presented with short distances from macrophages to 

CD3+ helper T cells. In contrast, longer survivor neoadjuvant patients presented with 

reduced tumour cells, as well as reduced FOXP3CD3+ Treg expression. Moreover, a 

diverse range of nearest neighbour metrics were identified in neoadjuvant patients with 

improved prognosis. This included short distances from CD68+ macrophages to cytotoxic 

T cells, short distances from cytotoxic T cells to αSMA+ fibroblasts and large distances to 

CD68+ macrophages from cytotoxic T cells. Furthermore, the neoadjuvant longer survival 

group, consistently outperformed the naïve longer survival group. These results 

emphasize investigation of phenotype alone, without functional status, produces limited 

characterisation of the tumour microenvironment, without accounting for biological 

interactions.  

 

In addition to inter-phenotype spatial relationships, intra phenotype spatial patterns were 

investigated. All characterized cell types in naïve and neoadjuvant PDAC within a TMA 

setting presented with a clustered pattern of expression as defined by Ripley’s K function. 

Increased clustering patterns were seen within tumour cells and cytotoxic T cells in the 

naïve and neoadjuvant landscape. Further analysis is required within whole sections to 

fully explore these patterns and to determine whether histological regions alter the 

patterns of expression.  

To validate naïve prognostic biomarkers generated by high-plex mIF and explore more of 

the immune landscape, a regional immune-oncology GeoMx® assay was performed. 

Upon confirmation of adequate concordance between matched DSP and IHC markers, 

the overall immune landscape was investigated. This demonstrated an immune-rich and 
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immune-void naïve landscape, associated with DSS. Furthermore, a range of region 

specific biomarkers were observed. Notably, highly expressed B7-H3 in epithelial 

segments negatively correlated with DSS. This immune checkpoint marker has limited 

expression in normal tissue, making it an ideal targetable marker for the diseased state 

[17-19]. Subsequent Spatial Transcriptomic and single cell Spatial Proteomic confirmed 

and further explored these results, as discussed below.  

7.3 Spatial Transcriptomic characterization of the tumour 
immune microenvironment in PDAC 

Pancreatic cancer is complex disease, made up of highly dynamic compartments, 

resulting in a heterogenous landscape. Whilst previous gold standard techniques such as 

bulk or single cell transcriptomics may have characterised the dominant gene signature, 

they have failed to maintain the spatial architecture. This has resulted in a lack of 

understanding of PDAC biology compared to similar solid cancers, and almost no 

improvement in treatment and biomarker discovery. Similarly, findings from bulk 

transcriptomics are often from tissue samples with diverse histopathological regions, 

resulting in a mixed signature output, dominated by the strongest gene expressing 

compartment. Recent studies, including work from the Jamieson laboratory, have 

highlighted this phenomenon. A high percentage of tumour microenvironment input in bulk 

transcriptomic assays disproportionately impacted the overall expression signature, 

resulting in a confounded signal [271]. Controversially, this would imply that most of the 

tumour subtypes, are in fact, tumour microenvironment (TME) subtypes. Furthermore, the 

TME is highly dynamic and changeable compared to the tumour compartment, as tissue 

samples offer a snapshot view, these subtypes may only be reflective of a moment in 

time. The diverse nature of pancreatic cancer necessitates structural integrity to be 

maintained to understand the biology of this disease. Spatial Transcriptomics offers an 

elegant solution to begin solving these problems in pancreatic cancer. Naïve and 

neoadjuvant samples were first established separately, then compared.  

  

To confirm the necessity of Spatial Transcriptomics, inter-segment heterogeneity was 

confirmed, demonstrating distinct aberrated differential genes and pathways between 

tumour vs fibroblast or immune rich segments. These results reinforce the hypothesis that 

mixed compartment signatures would be dominated by the strongest gene expression, 

limiting discovery of subtle signals. Furthermore, in an attempt to subtype naïve patients, 

discrepancies were found between previously established bulk subtyping, a ranked 

squamous score, and the subtype classes generated from epithelial segments. These 

discrepancies could be due to multiple factors. Importantly, Spatial Transcriptomics works 

with reduced tissue input, a robust signature can be generated from as little as 100 cells 
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per segment. This may not be an adequate amount for robust subtyping. As discussed 

above, molecular subtypes have mostly been generated from a confounded signal, with 

considerable tumour microenvironment input, resulting in a mixed signature rather than an 

epithelial based signature [271]. Furthermore, subtyping using differential expression is 

highly reliant on the sample set, and may force subtype clustering, resulting in inaccurate 

subtype clusters generated. A larger sample set would mitigate this.       

 

Intra-segment heterogeneity was observed in epithelial segments, with limited gene 

overlap observed between well-established molecular subtypes, indicative of a novel 

epithelial specific signature. These clusters demonstrated a non-significant prognostic 

value, with epithelial cluster 2 correlating with reduced survival. Additionally, distinct 

transcriptomic differences were observed between them. Two targetable genes were 

upregulated in cluster 2, HSPA6 and CST1, associated with PDAC epithelial 

heterogeneity in single cell transcriptomics, and correlated with proliferative and 

malignancy associated proteins in colorectal cancer [281, 282]. If validated in a larger 

cohort, these biomarkers could prove useful in predicting aggressive PDAC. Furthermore, 

immune cell deconvolution displayed a significant reduction of B cells and memory 

dendritic cell. These trends are repeated in multiple comparisons. Within the naïve study, 

long term survivors (over 36months) demonstrated elevated B cells, as well as CD8+ T 

cells estimates. Additionally, naïve long-term survivors (over 36months) presented with 

elevated B cell and CD8 T cell estimates, and differentially expressed Classical marker 

LYZ in epithelial segments [291]. This marker has also been reportedly upregulated in 

slow progressor intraductal grafted organoid PDAC mouse models [291].  

 

Intra-tumour heterogeneity of neoadjuvant patients was examined using tumour core with 

matched lymph node metastasis. As expected, elevated B cell related genes including 

MS4A1 and CD79A presented in LN samples, as well as elevated TCR and BCR 

signalling pathways. Additionally, these samples presented with an increased aggressive 

disease landscape demonstrated by elevated VEGF, immortality and stemness, and EMT 

signalling.  

 

As outlined above, neoadjuvant PDAC biology can be affected by multiple factors. These 

were considered when characterizing the neoadjuvant transcriptomic immune landscape. 

Numerous transcriptomic differences were observed between FFX treated and 

Gemcitabine treated PDAC. Notably, Gemcitabine epithelium demonstrated enriched 

CA9. The presence of CA9 indicates the potential for targeted immunotherapy, as 

observed in similar cancer types [333]. Gemcitabine has been reported to work 

synergistically with immunotherapy, partly due to its increased immunogenic nature [213, 

334, 335]. This was demonstrated by elevated B cell, T cell and natural killer cell 
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pathways. In addition, exhaustion pathways, specifically B cell and T cell exhaustion were 

observed which are known to dampen the anti-tumour effect of immune cells [261, 262]. 

Similarly, chemoradiotherapy patients, positively associated with DSS, presented with 

increased B cell and B cell exhausted pathways, as well as T cell receptor (TCR) 

signalling pathways in immune segments. Furthermore, these patients demonstrated 

reduced autophagy signalling in epithelial segments. Autophagy has been reported to 

promote immune evasion, and tumour growth in PDAC, which may explain the elevated 

immune pathways seen [212, 336]. Additionally, increased memory dendritic cell 

expression was observed in chemoradiotherapy treated patients, reported to play a role in 

T cell immunity restoration, and improving radiotherapy response [287, 309].  

Unexpectedly, differential expression analysis in regression group comparisons did not 

differ drastically. However, pathway analysis identified interesting immune related 

pathways. Poor regression demonstrated enriched T cell, B cell and B cell exhaustion 

pathways, as well as an estimated elevation of memory dendritic cells. This interchange 

between anti-tumour and pro-tumour effect in PDAC is a common phenomenon and is 

even more apparent in the neoadjuvant cohort. Notably, the term exhausted has 

generated some controversy, with terms such as inactive or dysregulated perhaps being 

more appropriate. However, as GSEA pathways are defined as exhaustion pathways, this 

term has been used. 

Matched immune segment comparison between naïve and neoadjuvant cohorts displayed 

many alterations. Notably, immune associated pathways although considerably elevated 

in immune segments of neoadjuvant samples, were often coupled with exhaustion 

pathways. Specifically, both T cell coupled with T cell exhaustion, and B cell coupled with 

B cell exhaustion pathways were upregulated. This exhausted phenotype has been 

reported in treatment naïve PDAC cohorts, for CD4 and CD8 T cells, with consideration 

given to cell surface activation markers within the spatial landscape [337]. Additionally, 

pro-inflammatory cytokine IL-2 was elevated. This phenomenon has previously been 

reported to be triggered by neoadjuvant treatment [253]. This emphasizes that it is 

insufficient to simply look at the overall density of these immune cell populations, 

activation status needs to be considered to fully classify the neoadjuvant immune 

landscape.  

 

Direct comparisons between the naïve and neoadjuvant transcriptome remains a niche, 

unmet research field in pancreatic ductal adenocarcinoma. Of the work undertaken, the 

majority remains focused on bulk transcriptomic techniques. Bailey et al found three 

specific cell phenotypes (GATA6, KRT17 and CYP3A) with neoadjuvant chemotherapy 

treated patients (mFOLFIRINOX or Gemcitabine treated), located within the epithelium 

[338]. Interestingly, they found an increased diverse, heterogenous neoplastic tumour 
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state associated with subtype specific WGCNA programs within neoadjuvant treated 

compared to naïve patients, which correlated with survival within the neoadjuvant cohort. 

Additionally, these neoplastic cell populations also potentially link with chemoresistance 

[338]. An attempt was made to replicate these cell types using Spatial Transcriptomics 

within the cohorts, however Spatial Transcriptomic expression did not appear sufficient to 

characterise these novel neoadjuvant specific cell types. Further work should be 

performed using Spatial Transcriptomics on whole sections to explore these phenotypes. 

 

When comparing the naive cohort to different neoadjuvant treatment types or 

chemotherapy regimens, similar immune focused patterns were observed. Elevated T cell 

and B cell signalling pathways were constantly upregulated in chemotherapy treated, 

chemoradiotherapy treated, FFX and Gemcitabine treated immune segments when 

compared to naïve segments. Moreover, B cell exhaustion was also upregulated in 

chemoradiotherapy and Gemcitabine treated segments, along with a variety of other 

immune cell pathways. Interestingly, a similar trend is observed in neoadjuvant long-term 

survivors compared to their naïve counterparts, with the addition of the upregulation of B 

cell and T cell exhausted pathways. This exhausted landscape appears to be recurrent 

within the neoadjuvant cohort, indicating that the effect of matched immune cells may be 

redundant, as seen in the literature [261, 262]. Furthermore, these results seem to 

contradict the patterns found within high-plex protein investigation. However, 

approximately 20-50% of mRNA is translated into protein, therefore, to robustly 

characterise cells, protein expression should be examined [296-299]. This emphasizes the 

need for multi-omic studies. Whole section validation was carried out using two matched 

biopsies and neoadjuvant resected cases. This demonstrated a shift from a high CD4 T 

cell, CD8 T cell and macrophage population, into a high B cell, CD4 T cell, CD8 T cell and 

Treg population.  

 

Regional protein naïve results demonstrated that reduced expression of epithelial B7-H3 

positively correlated with survival. As this marker is specific to the disease state and has 

growing interest as a potentially targetable treatment option, in-depth Spatial 

Transcriptomic exploration was performed in naïve and neoadjuvant pancreatic cancer 

[19, 310, 311]. Although epithelial specific survival analysis failed to identify a significant 

correlation, reduced expression in whole core naïve and neoadjuvant cohorts significantly 

correlated with DSS. Expression was predominantly seen in non-epithelial tissue in naïve 

patients, and a slight non-significant increased expression in neoadjuvant epithelium. 

Reduced T cell pathways, and elevated angiotensin pathways were observed in B7-H3low 

immune segments. This indicates the possibility of using angiotensin targeted therapies, 

reported to considerably improve prognosis in naïve PDAC patients [99], as well as 

targeting B7-H3 itself. Pancreatic cancer is renowned for its aggressive innate and 
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adaptive treatment resistance, rendering most treatment options ineffective, or at the very 

least severely limiting their effectiveness [155, 159, 339]. If B7-H3 is validated as a 

biomarker, these patients could be stratified for combined targeted angiotensin system 

inhibitor treatment and B7-H3 inhibition. Extensive mechanistic action research would be 

required to test the viability of this hypothesis. Rationale for this treatment combination 

has been reported for colorectal cancer studies [340]. Interestingly, B7-H3low immune 

segments presented with elevated B cell and T cell signalling pathways, although this was 

coupled with B cell exhaustion pathways. 

  

7.4 Multi-omic tumour immune microenvironment 
characterization in PDAC 

Independently, high-plex immunofluorescence and regional Spatial Transcriptomics have 

provided insight into the tumour immune microenvironment across PDAC treatment 

cohorts. Single cell protein assay allows for robust characterization, although it is limited 

by its purely descriptive capability. Similarly, Spatial Transcriptomics offers indirect 

biological understanding, and immune cell estimates, however, it is limited by protein 

translation rates. Orthogonal integration of significant multiplex density and nearest 

neighbour trends with Spatial Transcriptomics helps deconvolute the underlying biology 

specific to the immune landscapes of patients that correlate with prognosis. Furthermore, 

concordance between true protein expression and estimated protein expression can be 

established.  

 

CD3 density has proved prognostic in naïve PDAC across IHC, regional protein and 

multiplex assays. CD3high ranked immune and αSMA segments demonstrated elevated 

cytotoxicity and B cell signalling pathways. Furthermore, reduced JAK/STAT and type I 

INF signalling was observed in CD3high epithelium. Reports show type I INF activation of 

PD-L1 via the JAK/STAT pathway results in elevated expression on tumour cells in PDAC 

mouse models [81]. Furthermore, JAK/STAT inhibition resulted in increased T cell 

infiltration, and sensitized mouse models to anti-PD-L1 therapy [81]. Assuming this 

reported phenomenon is solely based on the role of JAK/STAT, it indicates the elevated 

CD3 levels seen within the naïve cohort are in part, due to this aberrated JAK/STAT 

signalling pathway. If validated, this indicates CD3high patients would benefit from 

combination JAK/STAT and PD-L1 inhibition treatment.  

 

In the neoadjuvant cohort, high CD3CD8 density negatively correlated with survival in 

multiplex results. Immune segments of CD3CD8high demonstrated elevated T cell and B 

cells, as expected, coupled with elevated T cell and B cell exhausted signalling pathways. 
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In theory, this dysfunctional state results in a loss of tumour suppressor function, therefore 

elevated density of these cells is redundant, reportedly correlating with poor survival [261, 

262]. This may explain why patients with fewer, but active immune cell populations 

correlate with improved survival within the neoadjuvant cohort.  

 

Naïve patients with short distances from CD68 macrophages to CD3 T cells correlate with 

survival. Immune segments of these patients had upregulated B cell and reduced 

angiotensin signalling. Targeted inhibition of angiotensin has been explored in a range of 

cancers. VEGF-A inhibitor, bevacizumab, has shown promising results in treatment of 

similar cancers including non-small cell lung cancer subtype lung adenocarcinoma [341, 

342]. However, single anti-VEGF inhibitor treatment has failed to produce the same effect 

in PDAC, most likely due to VEGF independent pathways being used [99]. Huang et al 

demonstrated blocking BICC1/LCN2 signalling, responsible for VEGF-independent 

angiogenesis via the JAK/STAT pathway, resulted in reduced microvessel density, and 

sensitized mouse models to Gemcitabine treatment [99]. Furthermore, use of angiotensin 

system inhibitors has correlated with PDAC survival in retrospective studies [293, 295]. 

Correlation between B cells and angiogenesis in cancer is poorly understood. However, 

subsets of B cell populations have been reported to promote angiogenesis, specifically 

those with elevated STAT3 signalling or CD49CD73 co-expressing cells [12, 97]. The 

opposite trend was observed in the naïve cohort, highlighting the need to robustly 

characterises immune cell subsets within spatial regions to improve the likelihood of 

successful targeted therapy implementation within the pancreatic cancer setting.  

 

Although B cell estimated density and signalling pathway enrichment has mostly 

associated with the better outcome group within Spatial Transcriptomic comparisons, a 

nearest neighbour neoadjuvant metric contradicts this trend. A short distance from 

CD3CD8+ T cells to tumour cells correlates with improved survival in neoadjuvant 

patients. αSMA and immune segments of these patients displayed reduced B cell 

signalling pathways. B cells remain a contradictory cell type within PDAC, with reports 

associating them with both pro-tumorigenic pathways such as angiogenesis, and anti-

tumour pathways [11, 12, 97]. Thus, relying solely on transcriptomics for immune cell 

characterisation can be insufficient, highlighting the need for robust single cell subtyping 

within the immune protein landscape.  

 

Three main immune cell patterns appeared throughout Spatial Transcriptomic 

characterization, T cell, B cell and dendritic cells. To confirm this transcriptomic signature 

accurately represented true protein expression, a single cell ultra-plex protein assay was 

performed on a serial section of the naïve cohort. Initially, the PhenoCycler™ STEP core 

plus enhancement panel was trialled, however this lacked a B7-H3 marker, and produced 
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oversaturated images with high levels of background, making robust phenotyping difficult 

to establish. NanoStrings® protein CosMx™ panel encompassed a variety of immune cell 

and epithelial markers, along with a specific B7-H3 marker. Using Seurat clustering, a 

method frequently used in single cell transcriptomics, cell clusters were generated. 

Distinct clustering was seen for naïve (n= 34 clusters), and neoadjuvant (n= 46 clusters) 

cohorts, with further cluster generation in neoadjuvant subgroups, chemotherapy treated 

(n= 31) and chemoradiotherapy (n=28 clusters). T cell, B cell, dendritic cell and B7-H3 

clusters were assigned by establishing the top differentially expressed proteins. This 

produced three B7-H3 heavy naïve, and four B7-H3 heavy neoadjuvant clusters. B7-H3 is 

reportedly expressed in a wide range of cells in the diseased state including T cells, B 

cells, macrophages and epithelial cells.  

 

Visual co-expression confirmation was observed between B7-H3 and the other top 

expressing proteins within individual clusters. Naïve clusters generated a 

neutrophil/myofibroblast heavy cluster (cluster 5), with co-expression frequently seen 

between B7-H3, αSMA and CD15. Additionally, B7-H3 expressed with a T cell 

dysregulation marker, CD39, in cluster 12, and macrophage markers CD14 and HLA-DR, 

in cluster 20. Cluster 20 co-expression has been reported in NSCLC [343]. Furthermore, 

diverse clustering was observed in neoadjuvant samples. Co-expression was observed 

with epithelial markers EpCAM and β-catenin, in cluster 41 and potential B cell markers 

CD38, in cluster 41. Additionally, B7-H3 co-expressing T cell related clusters were 

observed, including a T cell dysregulation marker CD39 in cluster 17, and mixed T cell 

markers CD127, and STING, in cluster 27. Correlation between T cell exhaustion and B7-

H3 has been reported in ovarian cancer and was seen in both naïve and neoadjuvant 

cohorts [344]. Notably, cluster 41 generated two signatures, although they were not 

expressed in the same cells. Furthermore, some markers including CD14, CD38 and 

HLA-DR, have been reported to express on multiple cell types, therefore further 

phenotyping and co-expression analyse should be performed. Notably, these co-

expressing cells are called clusters rather than cell types, until robust phenotype validation 

is performed. Naïve median density of exhausted T cell cluster 12 was significantly 

increased compared to macrophage cluster 20. Neoadjuvant median density of exhausted 

T cell cluster 17 was increased compared to T cell cluster 27, and cluster 27 was elevated 

compared to cluster 41.  

 

In an attempt to characterise the cells surrounding reported B7-H3 clusters, nearest 

neighbour analysis was performed. Dendritic cells appeared in the top 2 closest neighbour 

cells from all naïve B7-H3 clusters. Intriguingly, B7-H3 was first cloned from dendritic 

cells, and this may play a role in its immunosuppressive T cell function [243, 345]. Within 

the neoadjuvant cohort, a shift in the populations surrounding B7-H3 related clusters was 
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observed. Epithelial clusters were amongst the top nearest neighbours for exhausted T 

cell cluster 17 and epithelial/B cell cluster 41, and CD4 helper T cell clusters were the 

closest neighbours for B7-H3 cluster 4 and T cell cluster 27. T cell exhaustion or 

dysregulation can be triggered by overexposure to immunosuppressive factors secreted 

by tumour cells, this phenomenon may explain the proximity of B7-H3/exhausted T cell 

cluster to epithelium [346]. Additionally, previous mIF work demonstrated CD3+ cells 

significantly clustered together according to Ripley’s K function. If CD3+CD8- cells are 

assumed to be a pseudo marker for CD4 T helper cells, a similar trend is apparent with 

neoadjuvant B7-H3 T cell cluster 27 being in close proximity to CD4 helper T cells. 

 

Markers found within chemotherapy and chemoradiotherapy B7-H3 clusters were highly 

mixed, with potentially multiple cell types including epithelial cells, T cells and 

macrophages seen within these clusters. Additional deconvolution needs to be performed 

before confidently assigning these clusters. Close proximity was observed between all 

chemotherapy B7-H3 clusters and tumour cells, perhaps indicating a B7-H3 epithelial 

expressing phenotype. Furthermore, chemoradiotherapy B7-H3 clusters appeared to 

reside within similar locations, as indicated by the B7-H3 clusters consistently appearing 

as the closest neighbour cells.  

 

Irrespective of the cell type, B7-H3 expression is prognostic in a wide range of cancers, a 

trend replicated in naïve and neoadjuvant cohorts as seen in chapter 5. Using Seurat 

clusters, naïve CD4 T cell and CD8 T cell clusters positively correlated with survival, 

replicating results found in previous IHC and mIF work. Similarly, neoadjuvant CD4 T cell 

and CD8 T cell clusters negatively correlated with survival, validating mIF work reported in 

chapter 4. B cell and dendritic cell Spatial Transcriptomic signatures consistently 

associated with better outcome subgroups, however failed to demonstrate prognostic 

value when using Seurat clusters. This may be due to the phenotyping methods used and 

should be confirmed using a stringent method. Intriguingly, T cell related B7-H3 cluster in 

naïve (cluster 12), and neoadjuvant (cluster 27) demonstrated a negative association with 

disease specific survival. The prognostic value of these B7-H3 clusters emphasize the 

possible clinical utility of this immune checkpoint marker, reinforcing the need for 

additional exploration into these clusters. Due to the highly novel nature of the single cell 

protein assay, analysis methods remain experimental in nature and therefore initial data 

presented is exploratory. Further work is needed to validate the results presented.  

 

The Spatial Omic era is arguably at the stage where it produces more questions than 

solutions. However, much like for single cell transcriptomics, these will gradually be 

resolved. A combination of novel analysis method development, re-purposing “omic data” 

techniques, and employing non-life science methods will be required to fully exploit these 
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datasets. Undoubtedly, analysis methods will go through multiple iterations until a gold 

standard is established. 

 

7.5 Limitations  

There are several general limitations associated with this thesis. The most apparent one 

being the use of tissue microarrays for the majority of work. This may prevent robust 

characterisation of the entire protein and transcriptomic TME landscape. However, the 

TMAs used were multi-regional with at least 3 cores per patient and selected by expert 

pathologists to accurately depict the heterogeneity of pancreatic cancer. Furthermore, 

studies have reported that 3 cores per patient is sufficient to replicate whole section 

results in leiomyosarcoma [254]. Taking this into account, the mIF studies were performed 

with at least 3 cores per patient. However, only one core per patient was selected for most 

of the spatial transcriptomic and proteomic studies. These assay techniques are labour 

extensive, time consuming and expensive, making it unrealistic to produce a large sample 

number with multiple cores per patient or whole sections. Validation was carried out on a 

subset of neoadjuvant whole sections for spatial transcriptomics, however this was still 

limited by ROI selection. True whole section validation should be repeated for a small 

subgroup of naïve and neoadjuvant patients for mIF and Spatial Transcriptomic/Protein 

work.   

 

The naïve combined cohort is considerably older with a tumour centre histology. TMAs 

were created using a macroscopic selection technique, resulting in a mixed histology. 

Conversely, the neoadjuvant combined cohort was custom built to represent distinct 

histology per TMA, comprising of a malignant rich, immune rich and benign TMA, with 

cores computationally selected by an expert pathologist using a TMA Grand Master™ 

(3DHISTECH, Budapest, Hungry). To directly compare the two treatment cohorts, the 

neoadjuvant malignant TMA was selected, as it represented the most similar histology. 

However, this implies that the entire neoadjuvant immune landscape was not captured, 

limiting observations to the direct tumour microenvironment. Finally, survival variable 

ranks were established using a range of exploratory cut-off methods, producing highly 

specific numbers. Although this is ideal in a digital world, it would not be suitable for 

manual scoring by pathologists. Cut-off validation should be carried out using the closest 

rounded number to test whether the results presented could be translated into the clinic. 

 

The major limitation when using the PhenoImager™ assay is the possibility of spectral 

bleed through. This primarily occurs when two antibodies are bound to fluorophores that 

have overlapping absorption and emission spectra. This results in the stronger expressing 
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fluorophore bound antibody being picked up when a weaker expressing antibody is being 

imaged, usually because faint antibodies take longer to image. Although this can be 

mostly mitigated by spectral unmixing, occasionally bleed through is still present. 

Additionally, biased phenotyping was performed for mIF assays. To mitigate user bias, an 

unbiased phenotyping method using CytoMAP was used to validate phenotypes selected. 

All phenotypes were confirmed, with the addition of an unexpected FOXP3+CD3+PanCk+ 

cell type. This phenotype is most likely due to spectral bleed through rather than true co-

expression. Finally, the PhenoImager™ assay does not account for functional states nor 

offer a biological mechanistic insight, resulting in a purely descriptive assay.   

 

Spatial Transcriptomic work using the GeoMx® is limited by region selection and through-

put. However, this assay was specifically selected for its region selection feature to make 

use of a large archival FFPE TMA resource available via the GTRF. Furthermore, TMA 

based studies offer a work around for the low through-put imposed by the machine. The 

resolution of this assay requires around 100 nuclei per segment for robust analysis, 

indicating rare signatures may not be detected. Likewise, although immune cell 

deconvolution offers immune cell estimates, these should be validated for a true protein 

signature due to variable protein translation rates. Although this assay provides insight 

into the underlying biological mechanisms in pancreatic cancer, it remains heavily 

descriptive, requiring further experiments to explore significant genes and signalling 

pathways observed. Spatial Biology has rapidly evolved in the last year, with the 

commercial introduction of  NanoString® CosMx™ assays. Naturally, this novel 

technology has issues that are yet to be resolved. Cell segmentation is primarily 

generated using an adapted Cellpose algorithm that cannot be altered. This results in 

variable segmentation efficiency depending on the quality of the fluorescent image 

generated. However, this is currently being improved by NanoString®. Furthermore, 

analysis methods are still being explored, making initial results subject to change. 

7.6 Further work  

Further work following up the results generated from this thesis would aim to validate the 

mIF, Spatial Transcriptomics and Spatial Protein trends generated in naïve and 

neoadjuvant pancreatic cancer. Further investigation of mechanistic studies for important 

biological pathways demonstrated in subgroup specific Spatial Transcriptomics results is 

also required.  
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7.6.1 Whole section validation 

Most of the work generated within this thesis has been carried out on TMAs. Although this 

was purposefully done for throughput and cost reasons, this may introduce core location 

bias. The multiplex panel and Spatial Transcriptomics WTA panel should be repeated 

using whole sections from representative naïve and neoadjuvant patients with a mixture of 

the appropriate clinical subgroups. This would confirm whether TMA utilisation is an 

appropriate surrogate for whole sections when employing these spatial biology assays.  

7.6.2 Neodjuvant mIF validation 

Certain prognostic trends demonstrated in mIF analysis of the neoadjuvant Glasgow 

cohort using tumour centre specific TMAs contradicted the hypothesis. An immunogenic 

switch towards effector cells was expected, however, a reduction of all mIF panel cell 

types, including cytotoxic T cells, was associated with patients with improved DSS. The 

mIF panel should be repeated on the matched immune rich TMAs, as well as a separate 

neoadjuvant cohort to ensure these results are not location or cohort specific.  

7.6.3 B7-H3, biomarkers and targetable pathways  

B7-H3 demonstrated prognostic relevance and distinct Spatial Transcriptomic landscapes 

in naïve and neoadjuvant patients. This indicates a potential targetable checkpoint 

marker, as seen in clinical trials with other solid tumours [142-144]. Furthermore, B7-

H3low ranked epithelium demonstrated upregulation of the angiotensin system pathway in 

naïve pancreatic cancer. B7-H3 dependent angiogenesis has been reported in colorectal 

cancer, with studies reporting the rationale of combination targeted therapy [340]. 

Interestingly, angiotensin system inhibitors are one of the few targeted treatment options 

that show promise in PDAC [293, 295].  Confirmation of a positive association between 

protein expression of B7-H3 and angiogenesis markers e.g. FGFR or VEGFR, should be 

established via a small mIF panel [98]. To determine whether B7-H3 has a biological 

effect on angiogenesis in pancreatic cancer, in vitro cell culture assays could be used for 

B7-H3 siRNA knockdown, and western blots probed for FGFR or VEGFR to determine the 

effect. Finally, mouse models could be used to further validate B7-H3/angiogenesis effect, 

in addition to testing the validity of combination B7-H3/angiogenesis inhibition.  

7.6.4 CosMx™ cell typing 

CosMx™ cell types were established using a Seurat clustering method. Notably, this 

technique does not strictly phenotype cellular populations, rather it produces cell type 

heavy clusters, and is popular in single cell transcriptomic studies [324]. As clusters can 
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be composed up of mixed cell populations, robust phenotyping of clusters should be 

established. This could be done by in-depth cluster investigation using tools such as 

ROGUE, which determines single cell signature purity [347]. Once robust phenotyping is 

performed, B7-H3 co-expression should be confirmed, possibly using a multiplex 

immunofluorescence panel focused only of B7-H3 and the markers it associates with e.g. 

CD39. Additionally, the NanoString® recommended cell typing method, Celesta, could be 

trained to include pancreatic cancer cell types of interest such as B7-H3. Furthermore, B7-

H3 cell types could be compared across naïve and neoadjuvant patients to validate the 

variety observed in the CosMx™ Seurat cluster results. Upon robust cell typing and 

survival analysis, significant trends can be integrated with Spatial Transcriptomics work to 

investigate the differential gene expression and biological pathway aberrations.  

7.6.5 Cell-ligand interactions and subcellular work 

To investigate biological spatial interaction, cell-ligand interaction analysis could be 

established using NanoStrings® single cell Spatial Transcriptomics CosMx™ panel. This 

panel includes markers for the cell types focused on throughout this thesis, B7-H3 

expressing cells, T cells, macrophages, fibroblasts, B cells and dendritic cells. This would 

be especially interesting to explore potential targetable interactions in T cells, as most 

checkpoint inhibitors, including PD-1/PD-L1 immunotherapy, fail in the majority of 

pancreatic cancer [348]. Multiple clinical trials are investigating B7-H3 inhibition due to its 

lack of expression in normal tissue and association with an aggressive disease state [19, 

310, 311]. Establishing the cell-ligand interactions within B7-H3 cell types would help 

clarify whether B7-H3 inhibitors would be an appropriate treatment option in PDAC. The 

CosMx™ assay can provide subcellular probe coordinates. At the time of writing, B7-H3 

remains an orphan ligand, though some reports show interaction between TLT-2 on 

activated immune cells [349]. IHC studies have shown B7-H3 cellular localization on 

cellular membrane, cytoplasm and nucleus depending on the tissue type investigated 

[350-352]. It is possible that this variety is due to different B7-H3 expressing cell types. 

Exact protein and RNA location of B7-H3 could be established within distinct B7-H3 

phenotyped cells.  

7.6.6 3D spatial biology 

Although 5μm FFPE tissue sections are required for GeoMx® and CosMx™ spatial 

biology assays, the images are ultimately flattened to produce a 2-dimensional (2D) 

image. As pancreatic cancer does not exist in a 2D plane, the results produced from these 

types of assays are limited to a single snapshot. To explore the pancreatic cancer tumour 

microenvironment whilst maintaining spatial, cellular and anatomical structural integrity, 
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the cutting-edge Stellaromics® multi-omic assays could be used. This allows for a highly 

representative omic discovery, down to subcellular resolution, in tissues up to 200μm thick 

[116]. Potential biomarker and drug target discovery using 3D assays would be more 

robust, as they take into account the complex, heterogenous pancreatic landscape.  

 

7.7 Final conclusion    

This thesis leverages innovative Spatial Biology to robustly characterize the tumour 

immune microenvironment protein and transcriptomic landscape within the treatment 

naïve and neoadjuvant pancreatic cancer. Individually, Spatial Protein and Spatial 

Transcriptomics are incredibly powerful tools for in-depth microenvironment analysis. 

Spatial Protein assays enable deep phenotyping, revealing unknown spatial interactions. 

Spatial Transcriptomics provides biological insight into specific regions of interest, 

identifying potential biomarkers and targetable pathways. Combined, these technologies 

represent a cutting-edge approach for deep characterisation of the diseased state. The 

identification of B7-H3, and other actionable pathways, if validated, holds a promise for 

novel pancreatic cancer treatments, an urgent need within this cancer. 
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8 Chapter 8: Supplementary 
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8.1 Chapter 2 supplementary: Spatial Transcriptomic 
filtering and normalization alternative  

Spatial Transcriptomics has rapidly evolved in the last 3 years. At the start of this thesis 

project, Nanostring whole transcriptome assays were not commercially available, and only 

became so in 2020. Naturally, the technology, and therefore analysis methods, have 

advanced. At the time of analysis, an established filtering and normalization method was 

used. However, there is a shift to more stringent filtering methods, to maximise the purty 

of signature produced, as well as alternate normalization methods [353, 354]. A 

representative analysis work through has been carried out using this stringent filtering 

method. Complete overlap was observed between the filtering methods, indicative of 

significant signatures maintaining their power in lenient filtering, with the addition of more 

subtle, lower expressing signatures also being picked up. As robust biological 

characterisation of pancreatic cancer has yet to be fully established, lenient methods 

should initially be used, with subsequent stringent filtering applied when appropriate.  

8.2 Chapter 3 supplementary 

8.2.1 Prognostically favourable nearest neighbour tumour 
immune landscape in naïve patients across molecular 
subtypes 

 
Supplementary table 8.1 Nearest neighbour patterns associated with disease specific 
survival in naïve cohorts across molecular subtypes in whole cores. Cut-off method 

established per pattern in discovery cohort. Nearest neighbour pattern  reported per cohort and 

region, patient group indicated, along with number of patients in each group. Log Rank (Mantel-

Cox) p value and Univariate cox regression hazard ratio (HR) shown with 95% confidence interval 

(CI). 
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8.2.2 Multivariate Cox regression analysis naïve multiplex 
immunofluorescence  

Density and nearest neighbour groups were split to avoid overloading the model. In 

density only models, CD3CD8+ and margin status were most significant in the discovery 

cohort. Low cellular density of CD3CD8+ (p=0.007, HR= 1.59 (1.13-2.23) was significantly 

associated with poor survival in treatment naïve pancreatic cancer (supplementary figure 

8.1.a). When investigating the distances from tumour cells, CD8+ and margin status were 

most significant in the Discovery cohort. A short distance to CD8+ cells from PanCk+ 

(p=0.008, HR= 0.60 (0.41-0.87) was associated with better survival (supplementary figure 

8.1.c). Short distance to αSMA cells from CD3+ (p=0.007, HR= 1.53 (1.13-2.08) and 

margin status 1, was observed in poor prognostic patients (supplementary figure 8.1.g). 

Although spatial metrics retain their prognostic significance, margin continuously 

outcompetes them. Unexpectedly, one validated spatial parameter seemed to equal 

margin status. Decreased distance to CD3+ cells from CD68+ (p<0.001, HR= 0.59 (0.43-

0.80) was significantly associated with better survival (supplementary figure 8.1.e). These 

patterns were replicated in the Validation cohort (supplementary figure 8.1.b, 

supplementary figure 8.1.d, supplementary figure 8.1.f and supplementary figure 8.1.h). 

 
Supplementary figure 8.1.a-b Final multivariate cox regression forest plot with clinical 
variables in discovery and validation naïve PDAC cohorts a) Density for discovery cohort b) 

Density for validation cohort. HR= Hazard ratio, CI = Confidence interval, n = number.    
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Supplementary figure 8.1.c-f Final multivariate cox regression forest plot with clinical 
variables in discovery and validation naïve PDAC cohorts c). Distance from tumour cells in 

discovery cohort d). Distance from tumour in validation cohort e). Distance from macrophages cells 

in discovery cohort f). Distance from macrophages cells in validation cohort. HR= Hazard ratio, CI = 

Confidence interval, n = number.  
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Supplementary figure 8.1.g-h Final multivariate cox regression forest plot with clinical 
variables in discovery and validation naïve PDAC cohorts g). Distance from CD3 helper T cells 

in discovery cohort h). Distance from CD3 helper T cells in validation cohort. HR= Hazard ratio, CI 

= Confidence interval, n = number. 

8.3 Chapter 4 supplementary 

8.3.1 Prognostically favourable nearest neighbour tumour 
immune landscape across clinical groups in neoadjuvant 
pancreatic cancer 

Relevant clinical subgroups were investigated in the neoadjuvant cohort. Initially, different 

neoadjuvant treatment types were investigated. Chemotherapy treated patients with better 

outcome associated with short distance to CD3CD8+ (p=0.019), and large distances to 

PanCk+ (p<0.001) cells from αSMA+ (supplementary table 8.2). Furthermore, large 

distances from CD3CD8+ to PanCk+ (p=0.020), from CD3CD8+ to FOXP3CD3+ 

(p=0.037), from CD68+ to αSMA+ (p=0.045), and from FOPX3CD3+ to CD68+ (p=0.026) 

correlated with better prognosis (supplementary table 8.2). In comparison, longer survival 

chemoradiotherapy patients presented with different trends. Reduced distance from 

PanCk+ to αSMA+ (p=0.017), from CD3CD8+ to αSMA+ (p=0.011), and longer distances 

from CD3CD8+ to CD3+ (p=0.003), to CD68+ (p=0.002) and to FOXP3CD3+ (p=0.017) 

correlated with improved prognosis in chemoradiotherapy patients. Shorter distances to 

αSMA+ (p=0.008) and longer distances to CD3+ (p=0.005) from FOXP3CD3+ were also 

observed in better outcome patients (supplementary table 8.2). 
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Next, different types of chemotherapeutic drugs were investigated. Notably, FOLFIRINOX  

treated patients with better outcome correlated with more nearest neighbour phenotypic 

relationships compared to Gemcitabine treated longer survivors. Better outcome patients 

receiving Gemcitabine based treatment only demonstrated one significant pattern, 

specifically, short distances from CD3+ to αSMA+ cells (p=0.015) (supplementary table 

8.2). In contrast, short distances from PanCk+ to CD3+ (p=0.001), and longer distances 

from αSMA+ to CD68+ (p=0.041), to PanCk+ (p=0.001), and from CD3+ to PanCk+ 

(p=0.041),  to FOXP3CD3+ (p=0.002) and to CD68+ (p=0.010) all correlate with improved 

prognosis (supplementary table 8.2). In addition, multiple T regulatory related trends 

appear. Longer survivors displayed shorter distances from FOXP3CD3+ to αSMA+ 

(p=0.037), and larger distances from FOXP3CD3+ to PanCk+ (p=0.004), and to 

CD3CD8+ (p=0.002) (supplementary table 8.2). 

 

Treatment response as defined by regression status was investigated. Good response 

patients associated with larger distances from PanCk+ cells to FOXP3CD3+ (p=0.005), 

from αSMA+ to PanCk+ (p=0.034) and to CD68+ (p=0.006) (supplementary table 8.2). 

Moreover, increased distances from CD3CD8+ cells to CD68+ (p=0.003) and to 

FOXP3CD3+ (p=0.010), and reduced distances to αSMA from CD3+ (p=0.020 presented 

in better survival, good response patients (supplementary table 8.2). Poor response 

patients presented with much fewer trends associated with survival, and those seen were 

replicated in the good response group. Reduced distance to CD3CD8+ from PanCk+ 

(p=0.045), and larger distances from FOXP3CD3+ to CD3CD8+ cells (p=0.012) and from 

CD68+ to PanCk+ cells (p=0.042) linked with significantly better survival (supplementary 

table 8.2). These findings, although counterintuitive, are not surprising considering results 

observed in chapter 4.5 and chapter 4.7.1. 
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Supplementary table 8.2 Nearest neighbour patterns associated with disease specific 
survival in clinical subgroups in neoadjuvant cohorts looking at whole core. Cut off 

generated per nearest neighbour pattern, cohort, patient group and number indicated. Log Rank 

(Mantel-Cox) p value and Univariate Cox regression hazard ratio (HR) shown with 95% confidence 

interval (CI). 

 

 

8.3.2 Prognostically favourable tumour immune landscape in 
different neoadjuvant treatment types at different radii  

 

In the neoadjuvant cohort, chemoradiotherapy treated patients tend to do better than 

chemotherapy alone. Focusing on chemotherapy treated patients, low density of αSMA+ 

(p=0.008) within 30μm from PanCk+ cells, and low density of CD68+ (p=0.045) from 

10μm of FOXP3CD3+ was affiliated with longer survival (supplementary table 8.3).  

Interestingly, more trends were seen in chemoradiotherapy patients. Patients with low 
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levels of CD3+ (p=0.04) and FOXP3CD3+ (p=0.046) correlated with better DSS at 20μm 

from PanCk+ cells (supplementary table 8.3). Additionally, longer surviving patients 

presented with a low density of CD3+ cells (p=0.03), CD3CD8+ (p=0.027) and CD68+ 

(p=0.005) within 40μm of αSMA+ cells (supplementary table 8.3). 

 

Different types of neoadjuvant chemotherapy were investigated. Similarly, to the nearest 

neighbour results (chapter 4.7.2), Gemcitabine based treated patients only showed one 

significant radius pattern. At 30μm from FOXP3CD3, low density of CD68+ cells (p=0.044) 

correlated with improved survival (supplementary table 8.3). Multiple trends were 

observed in longer survivor FOLFIRINOX treated patients, particularly, a reduced density 

of CD3CD8+ (p=0.022) and FOXP3CD3+ (p=0.044) within 30μm from PanCk+ cells, and 

low density of CD3CD8+ (p=0.009), CD68+ (p=0.032) and FOXP3CD3+ (p<0.001) within 

30μm from CD3+ cells was observed in longer survivors. Interestingly, elevated levels of 

αSMA+ within 30μm from CD3+ (p=0.042), 30μm from CD3CD8+ (p=0.033), and 40μm 

from FOXP3CD3+ (p=0.019) is also seen in patients with better outcome (supplementary 

table 8.3). 

 

Within the better response patients, there is a subgroup that does much better, most likely 

due to complete or partially complete pathological response. These patients presented 

with a low density of CD3+ (p=0.005), CD3CD8+ (p=0.022), CD68+ (p=0.037) and 

FOXP3CD3+ (p=0.017) within 30μm of PanCk+, and low density of CD3+ (p=0.004) and 

CD3CD8+ (p=0.048) within 30μm of αSMA+ cells (supplementary table 8.3). A low density 

of CD3CD8+ (p=0.047), CD68+ (p=0.007), PanCk+ (p=0.018) and FOXP3CD3+ 

(p=0.033) at 40μm from CD3+  was also observed (supplementary table 8.3).  

Although patients may have a poor outcome, it is beneficial to characterise what 

differences are seen between those that do poorly and those that do slightly better.  At 

10μm, low density of PanCk+ (p=0.02) from CD3 helper T cells, and low density of 

FOXP3CD3+ (p=0.011) at 20μm from CD3CD8+ T cells were observed in better outcome 

patients (supplementary table 8.3). 
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Supplementary table 8.3 Radii patterns associated with disease specific survival in clinical 
subgroups of neoadjuvant cohorts looking at whole core. Radii reported using ‘from 

phenotype’ column, indicating the central phenotype, and ‘to phenotype’ indicating the surrounding 

phenotype. Reported by distance (μm), cohort, patient group, along with number of patients in each 

group. Most significant radii is reported. Log Rank (Mantel-Cox) p value and Univariate Cox 

regression hazard ratio (HR) shown with 95% confidence interval (CI) for disease specific survival 

(DSS) and recurrence free survival (RFS). 
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8.3.3 Multivariate Cox regression analysis in neoadjuvant 
multiplex immunofluorescence 

Multivariate cox regression analysis was performed on significant density and nearest 

neighbour patterns and adjusted for lymph node status and resection margin status. 

Density and nearest neighbour patterns were compared separately. In the density model, 

only CD3CD8+ and PanCk+ remained significant. A low density of CD3CD8+ cells 

(p<0.001, HR = 0.26 (0.14-0.50)) and PanCk+ cells (p=0.002, HR = 0.41 (0.23-0.72)) 

correlated with better survival (supplementary figure 8.2.b). Interestingly, lymph node 

status and margin status did not appear in the final multivariate model (supplementary 

figure 8.2.a). Nearest neighbour pairs were split according to phenotype. Poor survivor 

neoadjuvant patients associated with shorter distance from CD3CD8+ to PanCk+ cells 

(p=0.003, HR=2.58 (1.38-4.83)) (supplementary figure 8.2.c) and shorter distance to 

CD3+ from CD3CD8+ cells (p<0.001, HR = 3.11 (1.71-5.64)) (supplementary figure 8.2.d). 

Additionally, a shorter distance to CD3CD8+ from FOXP3CD3+ correlated with improved 

survival in neoadjuvant patients (p=0.003, HR=0.2 (0.07-0.58)) (supplementary figure 

8.2.e). 
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Supplementary figure 8.2.a-b Final multivariate model cox regression models in 
neoadjuvant cohort a) All phenotype densities and clinical b). Final density model. HR= Hazard 

ratio, CI = Confidence interval n= number. 
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Supplementary figure 8.2.c-d Final multivariate model cox regression models in 
neoadjuvant cohort. Nearest neighbour distance metric multivariate models split by central 

phenotype for c). From CD3CD8+ cells to PanCk+ cells d).From CD3CD8+ to CD3+ cells  
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Supplementary figure 8.2.e Final multivariate model cox regression models in neoadjuvant 
cohort. Nearest neighbour distance metric multivariate models split by central phenotype for e). 

From FOXP3CD3+ to CD3CD8+ 
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8.4 Chapter 5 supplementary  

8.4.1 Tumour compartments demonstrate distinct transcriptome 
profiles in pancreatic cancer 

8.4.1.1 Naïve PDAC inter-tumoral heterogeneity  

Numerous significant pathway aberrations were observed when comparing segments. 

Notable pathways observed included, B cell exhaustion (PanCk vs Immune: NES = 2.2, 

padj <0.0005), T cell exhaustion (PanCk vs Immune: NES = 1.9, padj = 0.01), and EMT 

(PanCk vs αSMA: NES = 1.6, padj = 0.015), as well as overlapping signalling pathways 

including PDGF signalling in both αSMA and immune segments (PanCk vs αSMA: NES = 

2.3, padj < 0.001, and PanCk vs Immune: NES = 2.2, padj < 0.001) (supplementary figure 

8.3.a-b). Furthermore, epithelial segments demonstrated enrichment of a wide range of 

signalling pathways such as Type 1 INF signalling (PanCk vs αSMA: NES = 2.0, padj 

<0.001) and NOTCH signalling (PanCk vs αSMA: NES = 1.9, padj <0.0005, and PanCk vs 

αSMA: NES = 1.9, padj <0.001) (supplementary figure 8.3.a-b). 

 

GSEA differences were also observed between the fibroblast and immune segments, 

although this was considerably reduced. αSMA segments demonstrated enrichment of 

structural related pathways such as matrix remodelling and metastasis (NES = 1.7 , padj 

<0.0005) and cell adhesion and motility (NES = 1.6, padj <0.0005) (supplementary figure 

8.3.c). Additionally, upregulation of a range of cell signalling pathways such as PDGF 

(NES = 2.1, padj <0.001) and MET (NES = 2.0, padj <0.001) signalling was observed. 

Conversely, immune segments maintained a marked enrichment of innate and adaptive 

immune pathways similar to the epithelial comparison (supplementary figure 8.3.c) 

Interestingly, dendritic cells (NES = 2.2, padj <0.001) and natural killer cell activity (NES = 

2.1, padj <0.001) were the highest upregulated immune cell related geneset in immune 

segments (supplementary figure 8.3.c). 
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Supplementary figure 8.3.a Spatial Transcriptomic alterations between naïve segments, a). 

Geneset enrichment bar chart comparing PanCk and immune segments. Pathways with 

normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 0.05 were 

considered significant. Important pathways are indicated by an arrow. 
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Supplementary figure 8.3.b Spatial Transcriptomic alterations between naïve segments. b). 

Geneset enrichment bar chart comparing PanCk and αSMA segments. Pathways with normalized 

enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 0.05 were considered 

significant. Important pathways are indicated by an arrow. 
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Supplementary figure 8.3.c Spatial Transcriptomic alterations between naïve segments. c). 

Geneset enrichment bar chart comparing αSMA and immune segments. Pathways with normalized 

enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 0.05 were considered 

significant. Important pathways are indicated by an arrow. 

c 
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Unexpectedly, almost no immune cell pathways appeared in the long-term survival naive 

groups in either fibroblast rich or immune segment GSEA (supplementary figure 8.4.a-b). 

 
Supplementary figure 8.4.a Spatial Transcriptomic alterations between LTS and STS 
segments a). Geneset enrichment bar chart comparing patients that survived under 36 months 

(STS) and over 36 months (LTS) in αSMA segments. Pathways with normalized enrichment score 

above and below 1.5, and p adjusted (Adj. P) value ≤ 0.05 were considered significant.  

a 
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Supplementary figure 8.4.b Spatial Transcriptomic alterations between LTS and STS 
segments b). Geneset enrichment bar chart comparing patients that survived under 36 months 

(STS ) and over 36 months (LTS) in immune segments. Pathways with normalized enrichment 

score above and below 1.5, and p adjusted (Adj. P) value ≤ 0.05 were considered significant. 
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8.4.1.2 Neoadjuvant PDAC inter-tumoral heterogeneity  

Upregulation of T cells (NES = 2.5, padj <0.001), B cells (NES = 2.5, padj <0.001), 

dendritic cells (NES = 2.3, padj <0.001), and NK activity (NES = 2.3, padj <0.001) among 

others were observed in immune segments (supplementary figure 8.5.a). In contrast, 

dysregulated immune pathways such as B cell exhaustion (NES = 2.2, padj <0.001) and T 

cell exhaustion (NES = 2.0, padj <0.001) were also observed (supplementary figure 

8.5.a). Epithelial regions were primarily upregulated with cell signalling pathways and a 

few immune pathways. Interestingly, neutrophil degranulation (NES = 2.3, padj <0.001) 

and lymphocyte trafficking (NES = 1.7, padj =0.008) pathways were upregulated 

(supplementary figure 8.5.a). Additionally, when comparing stromal and epithelial regions, 

αSMA regions presented with enriched immune related pathways including T cells (NES = 

2.2, padj <0.001), dendritic cells (NES = 2.3, padj <0.001), B cells (NES = 2.0, padj 

<0.001), Treg differentiation (NES = 1.5, padj =0.05) among others (supplementary figure 

8.5.b).  

 

Although limited aberrations were observed at an individual gene level between αSMA 

and immune regions, distinct variations were observed when looking at pathway analysis. 

Fibroblast signatures demonstrated elevated MET (NES = 2.4, padj <0.001), PDGF (NES 

= 2.2, padj <0.001), TGF-b (NES = 2.1, padj <0.001) signalling, as well as lymphocyte 

trafficking (NES = 1.5, padj =0.04) (supplementary figure 8.5.c).  
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Supplementary figure 8.5.a Spatial Transcriptomic alterations between neoadjuvant 
segments. a). Geneset enrichment bar chart comparing PanCk and immune segments. Pathways 

with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 0.05 were 

considered significant. Important pathways are indicated by an arrow. 
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Supplementary figure 8.5.b Spatial Transcriptomic alterations between neoadjuvant 
segments. b). Geneset enrichment bar chart comparing PanCk and αSMA segments. Pathways 

with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 0.05 were 

considered significant. Important pathways are indicated by an arrow. 
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Supplementary figure 8.5.c Spatial Transcriptomic alterations between neoadjuvant 
segments. c). Geneset enrichment bar chart comparing αSMA and immune segments. Pathways 

with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 0.05 were 

considered significant.  
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8.4.1.3 Histopathological region heterogeneity in neoadjuvant pancreatic cancer 

Pathway analysis illustrated that virtually all signalling pathways measured were 

significantly downregulated when comparing presumed tumour bed (PTB) to tumour core 

(supplementary figure 8.6). 
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Supplementary figure 8.6 Spatial Transcriptomic alterations between tumour core and 
presumed tumour bed. Geneset enrichment bar chart comparing overall tumour core and 

presumed tumour bed (PTB). Pathways with normalized enrichment score above and below 1.5, 

and p adjusted (Adj. P) value ≤ 0.05 were considered significant.  
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8.4.2 Regression pattern in neoadjuvant pancreatic cancer 
demonstrates limited spatial transcriptomic differences 

Neoadjuvant patients are categorised according to the regression pattern of the 

epithelium. The signatures associated with these groups were explored to determine if 

these response patterns were reflected in the transcriptome. Comparisons were made 

between samples grouped into good and poor regression. Upregulation of immune related 

pathways was mirrored in both αSMA and immune segments. Increased TCR signalling 

(NES = 2.5, padj < 0.001), BCR signalling (NES = 2.3, padj < 0.001), NK activity (NES = 

2.0, padj < 0.001), T cell (NES = 1.5, padj = 0.014) and B cell (NES = 1.6, padj = 0.029) 

couple with B cell exhaustion (NES = 1.7, padj = 0.044) were seen in fibroblast segments 

of poor regression patients  (supplementary figure 8.7.a). Furthermore, a large number of 

signalling pathways were elevated in the poor regression segments, in comparison, good 

response segments were void of any pathways apart from NO signalling (NES = 2.0, padj 

< 0.001) and complement system (NES = 2.0, padj < 0.001) (supplementary figure 8.7.a). 

Immune regions of poor regression patients also presented with elevated T cells (NES = 

1.8, padj =0.003), TCR signalling (NES = 1.8, padj < 0.001), interferon response genes 

(NES = 1.6, padj = 0.031) and NK activity (NES = 1.5, padj =0.028) (supplementary figure 

8.7.b). Regardless of the number of aberrated immune pathways, only one immune 

population was significant when spatial deconvolution was performed. Elevated levels of 

memory dendritic cells were demonstrated in poor regression patients (p=0.002) 

(supplementary figure 8.7.c). Although these findings have provided some insight into the 

differing treatment responses, protein analysis maybe more suited to characterize them.  
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Supplementary figure 8.7.a Spatial Transcriptomic alterations in neoadjuvant regression 
status a). Geneset enrichment bar chart comparing good and bad regression in αSMA+ segments. 

Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 

0.05 were considered significant. Important pathways are indicated by an arrow. 
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Supplementary figure 8.7.b Spatial Transcriptomic alterations in neoadjuvant regression 
status b). Geneset enrichment bar chart comparing good and bad regression in immune 

segments. Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. 

P) value ≤ 0.05 were considered significant. Important pathways are indicated by an arrow. 
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Supplementary figure 8.7.c Spatial Transcriptomic alterations in neoadjuvant regression 
status, c). Boxplots demonstrate estimated memory dendritic cell expression per 100 cells in 

across neoadjuvant regression groups. Wilcoxon test used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.4.3 B7-H3 signature in neoadjuvant pancreatic cancer  

Numerous pathways were displayed across epithelial (supplementary figure 8.8.a) and 

αSMA (supplementary figure 8.8.b) compartments of ranked B7-H3 neoadjuvant patients.  
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Supplementary figure 8.8.a Spatial Transcriptomic alterations in B7-H3 ranked neoadjuvant 
patients a). Geneset enrichment bar chart comparing B7-H3 low and B7-H3 high in epithelial 

segments. Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. 

P) value ≤ 0.05 were considered significant.  

a 
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Supplementary figure 8.8.b Spatial Transcriptomic alterations in B7-H3 ranked neoadjuvant 
patients b). Geneset enrichment bar chart comparing B7-H3 low and B7-H3 high in αSMA+ 

segments. Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. 

P) value ≤ 0.05 were considered significant.  

b 
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8.4.4 Long term survival in naïve and neoadjuvant PDAC 

 

 
Supplementary figure 8.9.a-b Spatial Transcriptomic gene alterations between naïve and 
neoadjuvant LTS segments. Volcano plot demonstrating gene marker differential expression 

levels in naive vs neoadjuvant long term survival (LTS) in a). epithelial segments, b). αSMA+ 

segments. Genes with log2 fold change above and below 1.5, and p adjusted value ≤0.05 were 

considered significant. Dashed line indicates significance thresholds, NS = non-significant, FC = 

fold change. 

 

 

b 

a 
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Supplementary figure 8.9.c Spatial Transcriptomic gene alterations between naïve and 
neoadjuvant LTS segments. Volcano plot demonstrating gene marker differential expression 

levels in naive vs neoadjuvant long term survival (LTS) in c). immune segments. Genes with log2 

fold change above and below 1.5, and p adjusted value ≤0.05 were considered significant. Dashed 

line indicates significance thresholds, NS = non-significant, FC = fold change. 

 

 

 

 

  

c 
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8.4.5 Neoadjuvant whole section vs TMA overlapping differential 
genes  

ROI Comparison Analysis method Whole section TMA Matched 
αSMA Naïve vs Neoadjuvant DEA AMY1A AMY1A TRUE 
αSMA Naïve vs Neoadjuvant DEA CEL CEL TRUE 
αSMA Naïve vs Neoadjuvant DEA CELA2A CELA2A TRUE 
αSMA Naïve vs Neoadjuvant DEA CELA2B CELA2B TRUE 
αSMA Naïve vs Neoadjuvant DEA CELA3A CELA3A TRUE 
αSMA Naïve vs Neoadjuvant DEA CELA3B CELA3B TRUE 
αSMA Naïve vs Neoadjuvant DEA CPA1 CPA1 TRUE 
αSMA Naïve vs Neoadjuvant DEA CTRC CTRC TRUE 
αSMA Naïve vs Neoadjuvant DEA CXCL14 CXCL14 TRUE 
αSMA Naïve vs Neoadjuvant DEA GP2 GP2 TRUE 
αSMA Naïve vs Neoadjuvant DEA PLA2G1B PLA2G1B TRUE 
αSMA Naïve vs Neoadjuvant DEA REG1B REG1B TRUE 
αSMA Naïve vs Neoadjuvant DEA APCS ARHGDIB FALSE 
αSMA Naïve vs Neoadjuvant DEA BLCAP ARHGEF1 FALSE 
αSMA Naïve vs Neoadjuvant DEA CCN1 C7 FALSE 
αSMA Naïve vs Neoadjuvant DEA CCN2 CCL19 FALSE 
αSMA Naïve vs Neoadjuvant DEA COL11A1 CCL21 FALSE 
αSMA Naïve vs Neoadjuvant DEA CPLS CPA2 FALSE 
αSMA Naïve vs Neoadjuvant DEA CRLF1 CTRB1 FALSE 
αSMA Naïve vs Neoadjuvant DEA CTRL CYTIP FALSE 
αSMA Naïve vs Neoadjuvant DEA EEF1AKMT2 FDCSP FALSE 
αSMA Naïve vs Neoadjuvant DEA FGA FKBP5 FALSE 
αSMA Naïve vs Neoadjuvant DEA FNDC1 HCFC2 FALSE 
αSMA Naïve vs Neoadjuvant DEA IGFBP5 HLA-DPA1 FALSE 
αSMA Naïve vs Neoadjuvant DEA PGC HLA-DPB1 FALSE 
αSMA Naïve vs Neoadjuvant DEA PLA2G2A IGHA1 FALSE 
αSMA Naïve vs Neoadjuvant DEA PNLIP IL7R FALSE 
αSMA Naïve vs Neoadjuvant DEA PNLIPRP2 JCHAIN FALSE 
αSMA Naïve vs Neoadjuvant DEA PPY PPP2R2B FALSE 
αSMA Naïve vs Neoadjuvant DEA PRSS3 REG1A FALSE 
αSMA Naïve vs Neoadjuvant DEA PSCA REG3A FALSE 
αSMA Naïve vs Neoadjuvant DEA SYNC REG3G FALSE 
αSMA Naïve vs Neoadjuvant DEA  SMAP2 FALSE 
αSMA Naïve vs Neoadjuvant DEA  SPINK1 FALSE 
αSMA Naïve vs Neoadjuvant DEA  SST FALSE 
αSMA Naïve vs Neoadjuvant DEA  STK17B FALSE 
αSMA Naïve vs Neoadjuvant DEA  SYCN FALSE 
αSMA Naïve vs Neoadjuvant DEA  TAAR9 FALSE 
αSMA Naïve vs Neoadjuvant DEA  TRBC1 FALSE 
αSMA Naïve vs Neoadjuvant DEA  TSC22D3 FALSE 
Immune Naïve vs Neoadjuvant DEA AMY1A AMY1A TRUE 
Immune Naïve vs Neoadjuvant DEA CEL CEL TRUE 
Immune Naïve vs Neoadjuvant DEA CELA2A CELA2A TRUE 
Immune Naïve vs Neoadjuvant DEA CELA2B CELA2B TRUE 
Immune Naïve vs Neoadjuvant DEA CELA3B CELA3B TRUE 
Immune Naïve vs Neoadjuvant DEA CPA1 CPA1 TRUE 
Immune Naïve vs Neoadjuvant DEA GP2 GP2 TRUE 
Immune Naïve vs Neoadjuvant DEA PLA2G1B PLA2G1B TRUE 
Immune Naïve vs Neoadjuvant DEA ANTXR1 ARHGDIB FALSE 
Immune Naïve vs Neoadjuvant DEA BGN CD79A FALSE 
Immune Naïve vs Neoadjuvant DEA CALD1 CELA3A FALSE 
Immune Naïve vs Neoadjuvant DEA CAV1 CORO1A FALSE 
Immune Naïve vs Neoadjuvant DEA CD9 CPA2 FALSE 
Immune Naïve vs Neoadjuvant DEA CEACAN7 CTRB1 FALSE 
Immune Naïve vs Neoadjuvant DEA CLPS CTRC FALSE 
Immune Naïve vs Neoadjuvant DEA CRIPS3 CXCL13 FALSE 
Immune Naïve vs Neoadjuvant DEA CST1 CXCR4 FALSE 
Immune Naïve vs Neoadjuvant DEA CTRL CYTIP FALSE 
Immune Naïve vs Neoadjuvant DEA FBXO32 FCMR FALSE 
Immune Naïve vs Neoadjuvant DEA FGA FDCSP FALSE 
Immune Naïve vs Neoadjuvant DEA GCG FKBP5 FALSE 
Immune Naïve vs Neoadjuvant DEA GREM1 H1-3 FALSE 
Immune Naïve vs Neoadjuvant DEA HTRA3 IL7R FALSE 
Immune Naïve vs Neoadjuvant DEA IGFBP3 IRF8 FALSE 
Immune Naïve vs Neoadjuvant DEA KLK1 MS4A1 FALSE 
Immune Naïve vs Neoadjuvant DEA KRT5 P2RX5 FALSE 
Immune Naïve vs Neoadjuvant DEA LAMA4 PNLIPRP1 FALSE 
Immune Naïve vs Neoadjuvant DEA MMP11 PRSS3 FALSE 
Immune Naïve vs Neoadjuvant DEA MMP14 PTPRC FALSE 
Immune Naïve vs Neoadjuvant DEA MYL0 REG1A FALSE 
Immune Naïve vs Neoadjuvant DEA PLA2G2A REG1B FALSE 
Immune Naïve vs Neoadjuvant DEA PLAT REG3A FALSE 
Immune Naïve vs Neoadjuvant DEA PNLIP REG3G FALSE 
Immune Naïve vs Neoadjuvant DEA PNLIPRP2 RPS27 FALSE 
Immune Naïve vs Neoadjuvant DEA PPY RPS27A FALSE 
Immune Naïve vs Neoadjuvant DEA PSCA SMAP2 FALSE 
Immune Naïve vs Neoadjuvant DEA SIGLEC12 SPINK1 FALSE 
Immune Naïve vs Neoadjuvant DEA SYNC STK17B FALSE 
Immune Naïve vs Neoadjuvant DEA TGFB1 SYCN FALSE 
Immune Naïve vs Neoadjuvant DEA TTR TSC22D3 FALSE 

Supplementary table 8.4 Differential genes expressed in neoadjuvant TMA and whole 
sections. Summary table showing all significant differentially expressed genes in αSMA and 

immune segments of neoadjuvant TMAs and whole sections. Column matched indicates whether 

the gene is seen in both tissue types.  
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8.5 Chapter 6 supplementary  

8.5.1 Spatial Transcriptomic landscape of density phenotypes in 
naïve and neoadjuvant pancreatic cancer   

 
Supplementary figure 8.10 Geneset enrichment of naïve PDAC based on CD3 ranked αSMA 
segments. Geneset enrichment bar chart comparing CD3low and CD3high in αSMA+ segments. 
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Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value ≤ 

0.05 were considered significant.  

Supplementary figure 8.11 Geneset enrichment of naïve PDAC based on CD68 ranked αSMA 
segments. Geneset enrichment bar chart comparing CD68low and CD68high in αSMA+ 
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segments. Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. 

P) value ≤ 0.05 were considered significant.  

 
Supplementary figure 8.12.a-b Spatial Transcriptomic alterations CD3CD8 ranked 
neoadjuvant PDAC. Volcano plot comparing CD3CD8low and CD3CD8high ranks in a). PanCk+ 

segments, b). αSMA+ segments. Genes with log2 fold change above and below 1.5, and p 

adjusted value ≤0.05 were considered significant. Dashed line indicates significance thresholds, 

NS = non-significant, FC = fold change. 
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Supplementary figure 8.12.c Spatial Transcriptomic alterations CD3CD8 ranked neoadjuvant 
PDAC. Volcano plot comparing CD3CD8low and CD3CD8high ranks in c). immune segments. 

Genes with log2 fold change above and below 1.5, and p adjusted value ≤0.05 were considered 

significant. Dashed line indicates significance thresholds, NS = non-significant, FC = fold change. 
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8.5.2 Spatial Transcriptomic landscape of nearest neighbour 
phenotypes in naïve and neoadjuvant pancreatic cancer   

 
Supplementary figure 8.13 Spatial Transcriptomic alterations in ranked distances from CD68 
to CD3 in naïve PDAC. Volcano plot comparing from CD68 to CD3 low and from CD68 to CD3 

high ranks in PanCk+ segments.. Genes with log2 fold change above and below 1.5, and p 

adjusted value ≤0.05 were considered significant. Dashed line indicates significance thresholds, 

NS = non-significant, FC = fold change. 
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Supplementary figure 8.14.a-b Spatial Transcriptomic alterations in ranked distances from 
CD68 to PanCk in naïve PDAC. Volcano plot comparing from CD68 to PanCk low and from CD68 

to PanCk high ranks in a). PanCk+ segments, b). αSMA segments. Genes with log2 fold change 

above and below 1.5, and p adjusted value ≤0.05 were considered significant. Dashed line 

indicates significance thresholds, NS = non-significant, FC = fold change. 
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Supplementary figure 8.14.c Spatial Transcriptomic alterations in ranked distances from 
CD68 to PanCk in naïve PDAC. Volcano plot comparing from CD68 to PanCk low and from CD68 

to PanCk high ranks in c). immune segments. Genes with log2 fold change above and below 1.5, 

and p adjusted value ≤0.05 were considered significant. Dashed line indicates significance 

thresholds, NS = non-significant, FC = fold change. 
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8.5.3 Cluster density in chemoradiotherapy treated pancreatic 
cancer 

 
 
Supplementary figure 8.15 Density of Seurat clusters associated B7-H3 clusters in 
chemoradiotherapy treated PDAC. Boxplots shows density per grouped Seurat B7-H3 cluster in 

chemoradiotherapy treated neoadjuvant patients.    
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