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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is the 5th most common cause of cancer
death in the western world, with a 5-year survival of <7% [1, 2]. Surgical resection remains
the best treatment option, although the 5-year survival remains <25% [3] .Most patients
are ineligible for resection as they present with metastatic disease. These patients
undergo systemic chemotherapy, which offers only a modest improvement in survival [4].
Compared to similar solid tumours, PDAC is a relatively poorly characterised disease, with
few treatment improvements. This is due, in part, to its complex, heterogenous landscape,
defined by a dense fibrotic stroma, low immunogenicity and low mutational burden. These
factors make it highly chemo resistant and offers few options for targeted treatments. Of
the few treatment improvements, the switch from Gemcitabine based to FOLFIRINOX
based chemotherapy, offers a paradigm shift by doubling survival to almost 12 months in
high performance patients [3]. Similarly, the introduction of neoadjuvant therapy in locally

advanced and borderline resectable disease has resulted in improved prognosis [4, 5].

The tumour microenvironment is relatively well established in pancreatic cancer, with
studies predominantly focused on naive patients. Both an anti-tumorigenic and pro-
tumorigenic role has been reported in pancreatic cancer. This is highly dependent on the
types of immune and stromal cells present [6]. Traditionally, T helper and cytotoxic T cells
are associated with immunosurveillance, increased tumour cell death and improved
prognosis [7, 8]. Whereas, macrophages, fibroblasts and Tregs tend to inhibit the immune
response and are primarily associated with poor prognosis [9, 10]. Furthermore, B cells
fall into both the pro and anti-tumour categories due to contradictory reports [11-13]. Until
recently, the number of immune cells investigated at one time was limited due to
technology. This has resulted in the majority of studies reporting density-based metrics.
The introduction of spatial biology and deep phenotyping assays has resulted in studies
focused on co-expression, and inter-phenotypic distance relationships being established.
Carstens et al reported one of the first upfront resected PDAC studies focused on single
cell deep spatial phenotyping [7]. They found cytotoxic T cells within 20pm of cancer cells
exhibited increased anti-tumour effects and correlated positively with increased survival.
Immunohistochemistry (IHC) based studies demonstrate an immunogenic switch in
neoadjuvant therapy patients. A depletion of pro-tumorigenic immune cells, recruitment of
anti-tumour immune cells and alteration in the functional states in subsets of immune cells
has been reported [6, 14, 15]. Again, these studies predominantly rely on single-plex
technologies, with no consideration to spatial relationships within the tumour
microenvironment. Furthermore, little is known regarding the biological pathways

responsible for this immunogenic switch.
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Characterization of pancreatic ductal adenocarcinoma in treatment naive and neoadjuvant
patients represents a niche research field with limited associated literature. The main aim
of this thesis was to address this issue. The primary aim was to establish the protein
immune cell landscape in treatment naive and neoadjuvant human pancreatic cancer in
terms of content, cellular density and spatial orientation of different phenotypes. The first
step was to confirm the IHC prognostic benefit of the most common prognostic associated
immune cells. Elevated CD3 (p=0.015) and CD8 (p=0.043) cells positively correlated with
improved disease specific survival (DSS) in naive PDAC tissue microarrays (TMAs).
Subsequently, deep spatial phenotyping was initially separately established in treatment
naive and neoadjuvant setting, then compared. The immune cells explored included T
cells, macrophages, fibroblasts and epithelial cells. Improved DSS in naive patients
correlated with increased CD3 T cell (p=0.004) and reduced CD68 (p=0.008) macrophage
density. Additionally, increased proximity from CD68 macrophages to tumour cells
(p=0.005), and decreased proximity from CD68 macrophages to CD3 T cells (p<0.001)
also presented in longer survivors. Contradictory to the hypothesis, improved DSS in
neoadjuvant patients correlated with reduced CD3 T cells (p=0.004) and CD68
macrophages (p=0.001). Furthermore, increased proximity from CD68 macrophages to
PanCk (p=0.001), increased proximity from CD3CD8 cytotoxic T cells to CD3 T cells
(p=0.018), and reduced proximity to FOXP3CD3 from CD3CD8 (p<0.001) correlated with
survival. Additionally, this assay established distinct immune differences across
chemotherapy versus chemoradiotherapy, and FOLFIRINOX treated versus Gemcitabine
treated patients. The deep phenotyping assay lacked functional markers, prompting use of
a larger regional protein assay, revealing a prognostically relevant, epithelial compartment

specific immune checkpoint marker, B7-H3 (p=0.026).

Subsequent Spatial Transcriptomic characterisation was established in order to gain
insight into underlying immune related biological mechanisms, something severely lacking
in PDAC. Naive intra-segment heterogeneity demonstrated two unique epithelial
signatures, with a non-significant prognostic trend. A variety of potentially targetable
significant genes and pathways appeared when integrating mlF findings into Spatial
Transcriptomics. These included angiotensin, type | INF, JAK/STAT and IL-2 pathways,
which also suggest potential mechanisms responsible for the immune phenotypes
observed. Furthermore, transcriptomic B7-H3 expression validated the regional protein
result, and was replicated in the neoadjuvant cohort, demonstrating distinct signature
profiles between the ranked expression. Interest is growing within the cancer field
regarding B7-H3 expression as an immune checkpoint marker [16]. This molecule has,
reportedly, limited expression in normal tissue, and high expression in pancreatic cancer,
with elevated expression correlating with poor survival and metastasis [17-19]. The results

demonstrate potential targetable treatment options for PDAC. Three main immune cell
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estimates were repeatedly associated with the better outcome group. These were T cells,
B cells and dendritic cells. Taking into consideration variable protein translation from RNA,
these results were investigated using a single cell ultra-high plex CosMx assay, with only
CD4 and CD8 cell clusters validated. In-depth B7-H3 clustering demonstrated a range of
immune cell and epithelial markers co-expressing with B7-H3 across naive and
neoadjuvant patients, with naive exhausted T cell cluster 12 (p=0.003) and neoadjuvant T

cell cluster 27 (p=0.022) negatively correlating with survival.

In conclusion, comprehensive protein and transcriptomic characterisation of pancreatic
cancer spanning both naive and neoadjuvant setting reveals novel patterns. This
established inter-phenotypic spatial relations, demonstrated significant differences
between naive and neoadjuvant patients, and has begun to explore complex biological
mechanisms within PDAC. These results, if validated, represent potential novel predictive
biomarkers, and novel targetable therapies, developments critically needed in pancreatic

cancer.
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1.1 Pancreatic Cancer Epidemiology

With a 5-year survival of <7%, pancreatic ductal adenocarcinoma (PDAC) is currently the
5th most common cause of cancer death [1, 2]. Mortality rates in the past 10 years have
remained stable for females, and a slight increase was seen in males, with 51% of rates
associated with patients above 75 years old [20]. Surgical resection remains the best
treatment method, although the 5-year survival remains <25% [21]. The vast majority of
patients present with metastatic disease thus systemic chemotherapy offers only a
modest improvement in survival [22]. The average number of cases from 1990s to 2016-
2018 has increased 17%, resulting in approximately 10,500 new cases every year in the
UK. It is currently the 10" most common UK diagnosed cancer, accounting for 3% of new

cases [20].

1.2 Clinical presentation, symptoms and diagnosis

The poor outcome associated with PDAC is linked to several factors. One major factor
being late presentation due to ambiguous symptoms such as back pain, fatigue and
nausea, which are often ignored by the patients or attributed to other causes [23]. More
specific symptoms include jaundice and new-onset diabetes [24]. Treatment is heavily

dictated by the stage of disease [25]. Patients are split into four categories;

1. Resectable — surgery with pre or post operative chemotherapy/chemoradiotherapy
2. Borderline resectable - surgery with pre or post operative
chemotherapy/chemoradiotherapy
Locally advance — preoperative treatment and surgery

Metastatic — systemic chemotherapy

Surgical resection is the only potentially curative method currently available, yet only 10-
20% of patients present early enough to undergo surgery, with the remainder of patients
presenting with metastatic disease [21]. Anatomical location of the cancer dictates the
likely symptoms and potential prognostic outcomes [26]. Tumours located at the
head/neck of the pancreas (70%) are more likely to present earlier with obstructive
jaundice among other symptoms [26, 27]. Tumours located at the body (15%), tail (10%)
and multifocal (10%) are associated with late-onset diabetes and non-specific symptoms

leading to lower resectability rate and poor survival (figure 1.1) [26, 28].
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Figure 1.1 Location of pancreatic ductal adenocarcinoma tumours and most common
associated symptoms. lllustrative figure showing location of tumours in the pancreas with
common symptoms. Locations include head and neck, body and tail. Figure created with
BioRender

A wide range of diagnostic tools can be implemented including non-invasive/invasive
imaging techniques and serum markers. Initial steps are carried out using non-invasive
methods, multidetector computed tomography (MDCT) angiography has a sensitivity of at
least 90%, used in early detection of tumours between 2-5mm. Invasive methods such as
endoscopic ultrasonography with fine needle aspiration have higher accuracy [29, 30].
Additionally, carbohydrate antigen 19-9 (CA19-9) is a validated biomarker with sensitivity
of at least 70% and a specificity of 90% in symptomatic patients [31]. This biomarker can
also be used to monitor treatment response, resection and survival outcome. It is
important to note that elevated levels of CA19-9 are not specific to PDAC and can be

seen in biliary obstructed patients [32].
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1.3 Clinical pathology

Multiple clinical factors have been significantly associated with prognosis in pancreatic

cancer. These have been limited to the most reported common factors.

1.3.1 TNM staging

TNM based staging from the American Joint Committee on Cancer (AJCC) 8™ edition is a
benchmark method for PDAC cancer classification. This classifies patients according to
tumour (T), lymph node (N) and metastasis (M) [33]. Briefly, T Stage 1-3 indicates that the
tumour is located within the pancreas with increasing size across the groups (Stage 1: 0-
2cm, Stage 2: 2-4cm, Stage 3: >4cm), and T Stage 4 indicates the cancer has spread into
neighbouring blood vessels. Nodal staging ranks from 0-2, with NO indicating no
contamination of nodes and N2 meaning at least 4 lymph nodes are involved [33].
Metastasis is ranked by presence (M1) or absence (MO0) of metastasis. Patients with high

stages across all categories tend to have worse outcome [33].

1.3.2 Lymph Node status

Lymph Node status defines whether there is confirmed nodal involvement. Patients are
split into LNO or LN1, where LNO indicates no lymph node invasion and is typically
associated with better survival. LN1 patients indicate presence of lymph node metastasis

and is associated with worse prognosis [34, 35].

1.3.3 Resection margin status

Margin status indicates the level of cancer cells present at the edge of the tissue. Margin
positivity (R1) indicates the presence of cancer cells either microscopically or
macroscopically, and margin negative (R0O) indicates no cancer cells are present [36]. R1

patients tend to be significantly associated with poorer survival outcomes [37-40].

1.3.4 Grade

Histological grade ranks the level of differentiation in pancreatic cancer, ranging from
poor, moderate and good [41]. Patients with poor differentiation have worse outcomes [42,
43].
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1.3.5 Vascular Invasion

Vascular invasion is defined by the presence of tumour cells within blood vessels,
resulting in circulating tumour cells. Vascular invasion positive groups (V1) are dictated by
multiple criteria and can be used to stratify patients. These patients tend to be associated

with more aggressive tumours, with increased cell dissemination and poor survival [44]

1.3.6 Perineural Invasion

Perineural invasion is characterised by the presence of invaded or encompassed nerves
by tumour cells. This phenomenon is present in 70-95% of PDAC patients, and tends to

correlate with poor prognosis, metastasis and recurrence [45, 46].

1.4 Risk factors

There are few known risk factors for pancreatic cancer. However, medical conditions such
as chronic pancreatitis may have an association with the development of PDAC [47]. It is
estimated that around 5-10% of patients with pancreatic cancer have a familial
association. However, the exact genetic basis for this association is unknown [48].
Reports of mutations in a variety of genes including, BRCA2, CDKN2A and FANCG,
suggest that they may be associated with a predisposition to pancreatic cancer [49, 50].
Smoking is by far the most common modifiable risk factor reported, with studies

demonstrating cancer development risk doubles amongst frequent smokers [51].

1.5 Pancreatic pathology and pathogenesis

The normal pancreas is made up of two glandular tissues, exocrine and endocrine, which
have different functions. The exocrine compartment, which makes up the majority of the
pancreas, produces eosinophilic zymogen granules in functional acinar cells located in
lobular units. These enzymes, which are necessary for digestion, are secreted into
intercalated ducts and then into the major pancreatic ducts. [52]. The endocrine pancreas
is made up of islets of Langerhans, which are responsible for insulin production and blood
glucose regulation [53]. Although there are a range of pancreatic cancer types, 90% of
reported cases are pancreatic ductal adenocarcinomas [54]. These cancers stem from the
exocrine pancreas, and the most likely cells of origin are either pancreatic acinar or

somewhat controversially, ductal cells [55-57].

Pathogenesis of sporadic PDAC has yet to be fully characterised, however four main

precursors have been established; pancreatic intraepithelial neoplasms (PanINs),
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intraductal papillary mucinous neoplasms (IPMNs), intraductal tubular papillary neoplasms
(ITPN) and mucinous cystic neoplasm (MCNs) [58]. Following the PanIN hypothesis,
normal epithelium progresses through the different grades of PanlIN lesions (from low
grade 1A/B to high grade 3). Within this progression, multiple genetic mutations and
gain/loss of function events take place [59, 60]. Low grade PanINs are associated with
KRAS mutations, intermediate lesions are associated with telomere shortening and
p16/CDKNZ2A inactivation, and high grade lesions have inactivation of TP53, BRCAZ2 and
SMAD4, and finally high grade PanINs progress into invasive carcinoma (figure 1.2) [61].

Normal epithelium PaniIN-I PaniIN-2 PanIN-3

>
L

KRAS mutation

»
>

Telomere shortening

»
»-

p16/CDKNZA loss of function

»
»

TP53/SMAD4/BRCAZ loss of function

Figure 1.2 Pathogenesis from pancreatic intraepithelial neoplasms (PanINs) to pancreatic
ductal adenocarcinoma. Diagram showing development of PDAC from normal epithelium using
the PanIN hypothesis. KRAS mutation leads to PanIN-I development, then accumulation of
telomere shortening, p16/CDK2A loss of function results in PanIN-3. Progression into ductal
adenocarcinoma occurs after loss of function of TP53/SMAD4/BRCA2. Figure created with

BioRender.
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1.6 Molecular pathways associated with PDAC

A wide range of signalling pathways have been associated with pancreatic cancer. The
most relevant pathways have been selected and described below. Where appropriate, a

diagram has been included.

1.6.1 KRAS pathway

KRAS mutations are found in ~90% and one of the first genetic aberrations seen,
indicating that it plays a critical role in neoplastic initiation. Missense mutations are most
common, with KRAS®'?P and KRAS®'?Y being the most prevalent [62-64]. These
mutations are located in the GTP binding domain of RAS, resulting in a constitutively
active KRAS. In normal cells, inactive KRAS is bound to guanosine diphosphate (GDP)
until epidermal growth factors (EGFs) bind to their receptors, and GDP undergoes
phosphorylation, resulting in the higher affinity molecule guanosine triphosphate (GTP)
(figure 1.3). Active KRAS mediates multiple signalling pathways including RAF-MEK,
TGF-B and PI3K associated pathways [65, 66].

Epidermal

growth
factor
(EGF) Cell membrane
Receptor Cytoplasm
tyrosine
kinase
KRAS
(inactive)
GTPAse- GE Guanine
activating exchange
protein factor
(GAP) (GEf)
actlve)
Downstream cell
PI3K signalling pathways RAF
triggered
AKT MERK
ERK
MDD
Nucleus

Proliferation, differentiation, survival
associated transcription factors

Figure 1.3 KRAS cell signalling pathway. Epidermal growth factor (EGF) binds to receptor
tyrosine kinase leading to phosphorylation (P) of guanosine diphosphate (GDP) into guanosine
triphosphate (GTP) via guanine exchange factor (GEF). Active KRAS mediates multiple pathways
including RAF and PI3K, resulting in transcription of important factors including proliferation,
differentiation and survival associated factors. In normal cells, GTPase activating protein
dephosphorylating KRAS ensuring it doesn’t stay constitutively active. Figure adapted from

BioRender template.
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1.6.2 TGF-B canonical pathway

TGF-B can be activated either via a SMAD-dependent or independent process. As one of
the few prevalent PDAC genetic mutations, the focus will be on the canonical, SMAD-
dependent pathway (figure 1.4) [67]. Signalling is mediated via TGF-f specific receptors,
e.g. TGFB-I and TGFB-II. Ligands bind directly to TGFB-II, which in turn phosphorylates
TGFB-I, leading to propagation of the signal via phosphorylation of SMAD proteins in their
SXS C-terminal serine motif (figure 1.4). TGFB-I activates a range of receptor dependent
SMADs, and subsequently forms a heterodimer with the co-mediator SMAD4,
translocates to the nucleus where it acts as both a co-activator and co-repressor for gene
transcription [68, 69]. As for many proteins in pancreatic cancer, TGF- has been reported
as both a tumour suppressor via differentiation and apoptosis [70, 71], and a tumour

promoter via chronic inflammation, metastasis and immune evasion [70, 72-74].

@ TGFB ligands
@
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TGFB receptor |
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Figure 1.4 TGF-B canonical signalling pathway. Schematic diagram showing SMAD-dependent
TGF-B canonical pathway. TGF-f ligands bind to TGF-8 receptor I, triggering receptor |
phosphorylation (P). Cascade phosphorylation of SMAD proteins resulting in formation of
SMAD4/SMAD3/SMAD?2 heterodimer, translocation to the nucleus and subsequent activation or
suppression of transcription factors. Canonical pathway suppresses apoptosis and differentiation,

and promotes metastasis and immune evasion. Figure adapted from BioRender template.
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1.6.3 NF-kB associated pathway

NF-kB transcription factor is heavily involved in multiple immune/inflammatory responses
and constitutively active in pancreatic cancer [75]. In the canonical pathway, upon
activation via IKK phosphorylation, the NF-kB complex (p50/p65) translocates to the
nucleus resulting in increased expression of inflammatory target genes such as
interleukin-6 (IL-6) and interleukin-18 (IL-18) [76, 77]. This generates a positive feedback
loop, leading to further NF-kB signalling. Excessive pathway activation is also linked to

epithelial-to-mesenchymal transition (EMT) and neural invasion [78, 79].
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Figure 1.5 NF-kB canonical pathway. Schematic diagram showing NF-kB canonical pathway.
Appropriate ligand binds to toll like receptors triggering phosphorylation of the NF-kB complex via
the IKK complex. Subsequent ubiquitination of NF-kB regulatory subunit results in translocation of
NF-kB complex into the nucleus and activation of transcription factors. The canonical pathway
associates with inflammatory immune response factors such as IL-6. Figure adapted from

BioRender template.
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1.6.4 JAK2/STAT3 pathway

Sustained JAK/STAT activation in pancreatic cancer correlates with chronic inflammation
and reduced cytotoxic T cells [80, 81]. Specifically, increased JAK2 expression
significantly correlates with worse prognosis in resectable patients [82]. Activation of this
pathway in the pancreas remains unclear, however insight can be drawn from various
studies. STAT3 is reportedly vital for PDAC tumour progression, as demonstrated in
KRAS cell and mouse models [83-86]. Upon ligand binding, transphosphorylation of JAK
induces tyrosine phosphorylation of the receptor forming a STAT docking site (figure 1.6).
STAT3 binds, is phosphorylated, dissociates and forms dimers which translocate to the
nucleus (figure 1.6) [87]. A wide range of biological phenomena are influenced by this
pathway including immune regulation [86, 88, 89]. Upon inhibition of STAT3 in PDAC
mouse models, a subsequent downregulation of suppressive cytokines was seen, as well

as increased activated T cells [81].
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Figure 1.6 JAK2/STAT3 pathway. Schematic diagram showing JAK2/STAT3 pathway.
Appropriate cytokines e.g. IL6, binds to cytokine receptor resulting in recruitment and
transphosphorylation of JAK2, and formation of STAT 3 docking site. Subsequent phosphorylation
and dimerization of STAT3 occurs, leading to translocation to the nucleus and activation of
transcription factors. JAK/STAT pathway associates with immune regulation and cell cycle
regulation factors. Figure adapted from BioRender template.
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1.6.5 DNA damage repair

Up to 20% of patients may have some form of Loss Of Function (LOF) aberration,
including BRCA1/2 resulting in inhibition of homologous recombination pathway. Cells
become reliant on the DNA damage repair (DDR) pathway and are termed homologous
recombinant-deficient (HRD) phenotype [15]. Patients with these BRCA1/2 mutations are
of particular interest for targeted therapy and are by far the most promising targeted

therapy option for pancreatic cancer patients [90].

1.6.6 Epithelial to Mesenchymal Transition

Although EMT is not strictly a signalling pathway, it is particularly important in pancreatic
cancer and is thought to be essential for oncogenesis. It is regulated by a huge number of
networks including TGF- signalling, which is thought to be a primary inducer of this
transition [91]. High levels of Zeb-1, a transcriptional suppressor of E-cadherin, is
inversely correlated with E-cadherin. Studies have demonstrated Zeb-1 suppression
resulted in increased E-cadherin expression and reversed drug resistance in pancreatic
cell lines [92]. Vimentin, a well-known mesenchymal marker, was positively associated
with tumour budding, reinforcing the hypothesis that EMT is a vital step in PDAC

progression [93].

1.6.7 Angiogenesis

Angiogenesis is one of the hallmarks of cancer and is required for novel vasculature
development for metastasis [94]. The angiogenic landscape in pancreatic cancer is
complex, with low levels of vasculature found compared to other solid cancers. The
dense, fibrotic stroma generates elevated interstitial fluid pressure, resulting in the
collapse of vasculature, resulting in chemoresistance due to lack of access to the tumour
core [95, 96]. However, elevated levels of angiogenesis markers and pathways are
frequently reported in PDAC, including BICC1, VEGFR-1 and STAT3 regulated pathways
[97-99]
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1.7 Pancreatic cancer subtypes: molecular and genomic
characterisation

1.7.1 Molecular subtyping

Pancreatic cancer demonstrates significant heterogeneity at an inter and intra tumoural
level. This is, in part, due to its complex mutational landscape. KRAS mutation is seen in
>90% of tumours, and aberration of TP53, SMAD4 and CDKN2A (>50%) are also
frequently present in PDAC [14, 15]. The frequency of other aberrations reduces
significantly (<10%), resulting in the mutational landscape being dominated by rare
mutations [15]. Recent developments in molecular profiling of PDAC have resulted in a
more detailed understanding of the underlying heterogeneity of this disease. Attempts to
subtype PDAC by gene expression have resulted in three major models; Collison, Moffit
and Bailey classification, along with other important models, such as Raphael and Puleo
(table 1.1) [100-104]. The first major molecular subtyping break through was published in
2011 by Collison et al [100]. This utilised gene expression microarrays, generating a bulk

RNA signature defining three subtypes;

1. Classical
2. Quasi-mesenchymal

3. Exocrine-like

Classical subtypes were associated with the best outcome. This subtype had increased
GATAG6 expression (an adhesion associated gene), and was KRAS dependent. Quasi-
mesenchymal had, as the name suggests, increased mesenchymal associated genes and
the poorest outcome. Exocrine-like subtypes demonstrated elevated neoplastic cell
derived digestive enzymes and represented the middle outcome group [100]. In 2015,
Moffit et al used a similar method, however with the added step of separating out tumour,
stromal and normal pancreatic gene expression, producing histopathological distinct

subtypes [101]. Two tumour epithelial and two stromal specific subtypes were generated,;

1. Classical — tumour subtype
2. Basal-like — tumour subtype
3. Normal Stroma
4

. Activated Stroma

Moffit Classical subtype and the Collison Classical subtype are highly interchangeable,
with the majority of the genes classifying these subtypes overlapping including GATA6
[100, 101, 105]. The Basal subtype was classified as the poor outcome subtype (median

survival: 11 months), although interestingly these patients seem to respond better to
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adjuvant therapy. Normal stroma exhibited a simpler geneset pattern with increased
pancreatic stellate cells, smooth muscle actin, vimentin and desmin markers. In contrast,
activated stroma had a complex geneset enrichment with increased macrophage,
fibroblast activation and pro-tumorigenic inflammatory stromal response resulting in worse
overall outcome [101]. Interestingly, the tumour subtypes were associated with both
stromal subtypes. In 2016, Bailey et al investigated the transcriptional and mutational

landscape of pancreatic cancer and discovered four subtypes;

Squamous
Pancreatic Progenitor (Progenitor or PP)

Abnormally Differentiated Endocrine Exocrine (ADEX)

o nh =

Immunogenic

Squamous overlaps with both Collison’s Quasi-mesenchymal and Moffit's Basal, and
Progenitor overlaps with Classical [102, 105]. As expected, Squamous is associated with
poor prognosis, potentially as a result of increased TP53 and KDM6A mutations, and
increased gene expression in inflammatory and hypoxic pathways [106]. Upregulation of
TP63deltaN and downregulation of genes determining pancreatic endodermal cell fate are
also a key feature, leading to increased EMT [102]. Pancreatic Progenitor, ADEX and
immunogenic are typically associated with a relatively better prognosis. Progenitor
subtypes express transcription factor PDX1, which plays a vital role in pancreatic cell
development from embryonic progenitor cells. ADEX and Immunogenic subtypes were
associated with increased KRAS activation and increased immune suppression and

immune infiltration respectively [102].

Various other molecular subtypes have been established, the majority of which have
continued to focus on tumour specific subtypes and generated some sort of variation of
the Basal/Classical subtypes [103, 104]. Of interest, Puelo et al produced 5 subtypes from
a mixture of tumour and stromal subtypes based on Moffit et al subtypes (table 1.1) [104].
For the remainder of this thesis, the terms Squamous (Bailey) and Classical (Collison and
Moffit) will be employed. The Classical subtype will be a mixture of all the ‘Classical-like’
subtypes, and would be more accurately named Rest, however for simplicity the umbrella

term ‘Classical’ will be used.
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Author Method Classification (months) Overlap
Classical (Moffit)

Classical Best group (23) Progenitor (Bailey)

Collision Global Gene
. . Exocrine-like Middle group (19.7) ADEX (Bailey)

[78] expression profiling

Quasi-

Mesenchymal Worst group (6.6) Squamous (Bailey)

Global Gene

Moffit [79] expression profiling and Basal-like (tumour)

RNAseq

Waddel
[72]

Whole genome

sequencing

Whole Genome and

Bailey [80] Transcriptome

(RNAseq)
Genome,
Raphael
Transcriptome and
(81]

protein analysis

Genome,
Puelo [82] Transcriptome and

protein analysis

Classical (tumour)

Normal Stroma

Activated Stroma
Stable

Locally rearranged
Scattered
Unstable
Immunogenic
ADEX

Pancreatic

Progenitor

Squamous

Classical/Pancreatic

Progenitor
Basal-

like/Squamous

Pure Classical

Immune Classical

Desmoplastic

Stroma activated

Pure Basal-like

Best tumour group (19)
Worst tumour group

(11)

Best stromal group (24)

Worst stromal group
(15)

NA

NA

NA

NA

Best group (30)
Middle group (25.6)

Middle group (23.7)

Worst group (13.3)

Best group

Worst group

Best group (43.1)

Classical (Collision)

Progenitor (Bailey)

Squamous (Bailey)

NA
NA
NA
NA

Exocrine-like (Collision)
Classical (Collision)
Classical (Moffit)
Quasi-Mesenchymal
(Collison) Basal-like
(Moffit)

Classical tumour, Normal
and Activated stroma
(Moffit)

Classical tumour, and

Middle high group (37.4)Activated stroma (Moffit)

Middle group (24.3)

Middle poor group
(20.2)

Worst group (10.3)

Basal-like or Classical
tumour, and Normal
stroma (Moffit)
Basal-like or Classical
tumour, and Activated
stroma (Moffit)
Basal-like tumour, and
Activated stroma (Moffit)

Table 1.1 Pancreatic cancer molecular subtypes. Summary table includes methods used to

establish molecular subtypes, subtype associated survival and overlap between different subtypes.

Comparison made between Collison, Moffit, Waddel, Bailey, Raphael and Puelo. Table generated

from appropriate references as indicated in author column.
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1.7.2 Genomic subtypes

In addition to transcriptome characterisation, Wadell et al characterised the genomic
alterations in PDAC using whole genome sequencing on 100 primary tumours [15]. Four

genomic subtypes were described according to chromosomal rearrangements;

Stable (30%)

Locally rearranged (30%)
Scattered (36%)
Unstable (14%).

N =

This study revealed a potentially actionable target for treatment for patients with unstable
tumour subtypes. Mutations in BRCA1/2, PALB2, and BRCA mutational signatures were
significantly associated with these patients, indicating possible sensitivity to DNA-
damaging treatments such as Platinum based therapies [106]. Combining the unstable
subtypes along with patients with DNA damage repair deficiencies results in
approximately 20% of diagnosed patients that may have a viable targeted treatment

option [15].

Molecular and genomic subtyping has uncovered many biological insights that underlie
biological pathways in pancreatic cancer, providing potentially actionable treatment
targets, discovery of novel biomarkers and could be used as an independent prognostic
tool. The differences seen within the different studies indicates that more research is
needed on a larger representative cohort to test the robustness of using molecular

subtyping in the clinic.
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1.8 Spatial Biology

Spatial Biology is the study of high-plex biological phenomena at a 2 dimensional level
whilst maintaining the spatial context from where the data originates from. This can be
split into 1). Spatial Transcriptomics, and 2). Spatial Proteomics [107]. Both groups can
generate spatially resolved, high output data at a scale reminiscent of single cell
transcriptomics. Multiple academic groups and companies have attempted to create a
range of spatial technologies. With the exceptions of a few companies, these techniques
have mostly stayed within the parent institute, due to the requirement of niche expertise,
highly specialised equipment and extensive personnel labour [108]. This has resulted in a
selection of companies and their associated assays dominating the field and consistently

appearing in Spatial Biology publications.

1.8.1 Spatial Transcriptomics

Spatial Transcriptomics (ST), Nature’s method of the year 2020, primarily investigates
regions within tissue samples and extracts data in either an imaging-based fashion or a
sequencing-based fashion [109-114]. Fresh frozen and formalin fixed paraffin embedded
(FFPE) tissue can be used depending on the technology. Until recently, imaging-based
technologies have only worked with limited RNA panels. Use of fresh frozen tissue
severely limits the types of cohorts explored and requires a specialised histology
department. Due to these limitations, the main focus will be on FFPE and sequencing

based technologies. There are arguably two major companies that excel in ST;

1. Nanostrings® — GeoMx™ assay

2. 10X Genomics® — Visium™ assay

GeoMx™ works by using digital optical barcoding for a range of panels including the
whole transcriptome [113]. Multifluorescent imaging is carried out using a mixture of
immune and morphology oligo-conjugated antibodies to visualise tumours and aid
selection of regions of interest (ROI). Oligo tags are cleaved using ultraviolet light,
hybridized to barcodes and sequenced [113]. Visium™ methodology works by using fixed
oligonucleotide barcoded spots to spatially resolve the whole transcriptome of tissues
found within the spots [114]. Both these technologies have benefits and limitations.
GeoMx™ allows for generation of ‘pure’ regional transcriptomic signatures, and prior
visualisation of tissue to select precise regions. However, it requires ideally 100 nuclei per
region, resulting in the generation of a ‘mini-bulk’ signature. As this technology is ROI
based, whole section work is costly, however it is ideal for Tissue Microarrays (TMAS).

Visium™ is ideal for whole section work, as the slides have 55um fixed spots across the
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capture area, and requires no specialist equipment. Transcript resolution sensitivity is
higher in Visium™, although both are classed as multicellular and can be outcompeted by
other technologies with better resolution and capture [115, 116]. Selection bias in both
technologies means establishing a robust experimental question is essential to ensure the

correct samples are chosen.

1.8.2 Spatial Protein

Spatial Proteomics (SP) biology differs to its RNA counterpart primarily due to limitation of
the plex. The suffix ‘omic’ strictly refers to the entire profile of the type of data, e.g.
proteomics would technically refer to the full protein landscape, and would use techniques
such as mass spectrometry detection [117]. A drive to focus data generation to specific
panels has resulted in spatial biology taking the liberty of calling high-plex protein panels

Spatial Proteomics or Spatial Protein. Spatial Protein techniques can be spilit into;

1) Imaging-based techniques

2) Oligo-tagged antibody with DNA barcoding

By far, the most popular imaging-based technique utilises Akoya Biosciences® assays.
Akoya Biosciences® has two major techniques, Phenolmager™ (formerly Phenoptics)
and Phenocycler™ (formerly CODEX) [118, 119]. Phenolmager™, a multiplex
immunofluorescence (mIF) assay, is a multi-antibody staining strategy to enable
quantification of multiple markers simultaneously on one tissue section providing the
benefit of colocalization. As multiple antibodies are being utilised, different fluorophores,
each with a specific excitation and emission spectra, are used to distinguish between
epitopes. Akoya® specialises in linear spectral unmixing, which extracts the true signal of
each fluorophore, allowing for up to 9 markers to be imaged on the same section at the
same time [118, 119]. PhenoCycler™ utilizes super-resolution microscopy to image up to

100 protein markers on the same slide using cyclical imaging methods [119].

The second spatial protein technique works primarily with oligonucleotide tagged
antibodies via DNA barcoding. This can be done using pre-determined panels such as
GeoMx™ protein panels (up to 100plex) or the Visium™ co-detection protein expression
panels (up to 31 plex) [113, 120] . Perhaps the most important benefit of the Akoya®
techniques is the single cell resolution and the customisability. However, this requires a
significantly longer optimisation time, with access to ample optimisation tissue required, as

well as access to specialised equipment.

Spatial Protein technologies, though incredibly insightful, fundamentally remain

characteristic in nature with limited direct investigation of underlying biological
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mechanisms. Biological pathways can start being unpicked by combining Spatial
Transcriptomics to specific cohorts. There has been a sharp rise in the number of Spatial
Biology papers published between 2020 and 2024, with over 100 papers investigating
human oncology Spatial Transcriptomics [121]. These will be explored throughout this

thesis.

1.9 Pancreatic Cancer Treatment strategies

1.9.1 Adjuvant Chemotherapy: Single and Combination therapies

PDAC therapy has had few clinically relevant improvements in the past 50 years. This can

be explained by two major factors, 1) heterogeneity 2) low mutation percentages [106].

1.9.1.1 Gemcitabine based treatments

Gemcitabine is classed as an anti-neoplastic/anti-metabolite and works by inhibiting the
tumour progression by substituting the endogenous pyrimidines cytosine or thymidine
[122]. For over 20 years, single agent Gemcitabine was used as first line therapy in
metastatic disease, with no other treatment options offering any improvement. However,
the survival times remain moderate at best, with the median survival ranging from 5-8
months [123]. In an effort to improve the poor survival rates seen in pancreatic cancer,
multiple studies have been carried out testing different Gemcitabine combination
therapies, including drugs such as nab-Paclitaxel (Abraxane) and Fluorouracil derivative
Capecitabine [124-128]. Abraxane is classed as a cytotoxic drug, made up of albumin
bound Paclitaxel. It works by targeting and stabilizing microtubules, thereby inhibiting
dynamic reorganization and the mitotic process [129]. Capecitabine is a pro-drug that
interferes with DNA, RNA and protein synthesis, thereby inhibiting tumour growth [130].
Initial evidence for this combination approach was provided by the ESPAC-1 trial. The
disease specific survival (DSS) benefit of adjuvant chemotherapy vs. chemoradiotherapy
in resectable patients demonstrated that chemotherapy had a better 2 year survival (19.7
months - 95% CI 16.4-22.7) when compared to chemoradiotherapy (15.5 months — 95%
Cl 13.5-17.4) and no adjuvant treatment (14.0 months and 16.1 months respectively)
[131]. These results led to a shift from routine single agent to multi-agent Gemcitabine

therapy. Two major combinations were established, GemCap and GemAbraxane.

A phase 3 study was undertaken testing efficacy and possible toxicity of Gemcitabine plus
Abraxane compared to single agent Gemcitabine in metastatic patients. 861 patients were
treated with either mono or combination therapy and survival analysis was carried out.

Significant differences were observed in DSS when comparing monotherapy vs
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combination (6.7months and 8.5 months respectively (95% CI 0.62-0.83)). Combination
therapy resulted in an increased occurrence of side effects such as peripheral neuropathy
and myelosuppression [132]. The randomised, multi-centre ESPAC-4 trial looked at the
survival differences and toxicity levels of 366 patients treated with either monotherapy
Gemcitabine or GemCap. Increased overall survival was observed in GemCap patients
(28months (95% CI 23.5-31.5)) compared to Gemcitabine (25.5months (95% CI 22.7-
27.9)). As above, patients treated with combination had significantly increased reports of
adverse toxicity events [126]. Both these trials confirm that patients experience the best
outcomes following resection plus combination adjuvant cytotoxic chemotherapy, at the

risk of increased side effects.

1.9.1.2 FOLFIRINOX based treatment

In 2010, FOLFIRINOX (made up of folinic acid (leucovorin), fluorouracil (5FU), irinotecan
and oxaliplatin) demonstrated a paradigm shift by doubling survival to almost 12 months in
high performance patients and has shown significant benefit in localised and metastatic
disease [3]. Subsequently, the PRODGE-24 trial demonstrated that resected patients
treated with adjuvant treatment, modified FOLFIRINOX (mFOLFIRINOX), had better DSS
compared to Gemcitabine alone. However, different criteria were used for patient
stratification and salvage therapy thresholds. This could explain the contradictions seen.
Patients treated with mFOLFIRINOX had increased toxicity, indicating that only a subset
of fit’ patients should be treated with these drugs [133].

1.9.2 Targeted Treatments: Platinum based therapies

Loss of function BRCA1/2 breast and ovarian cancer patients respond well to poly ADP
ribose polymer (PARP) inhibitors [133]. This LOF results in inhibition of the homologous
recombination pathway, making cells reliant on the DNA damage repair (DDR) pathway.
PARRP inhibitors are thought to function by inhibiting PARP dissociation from DNA,
preventing DNA replication fork formation [103]. Platinum-based therapies (PBTs) cause
double stranded breaks in DNA, cells lacking BRCA1/2 are unable to undergo
homologous repair, resulting in apoptosis [134]. PBTs are routinely used in patients with
ovarian cancer, and are associated with a higher DSS particularly in patients with BRCA
mutations [135]. While germline and somatic mutations in BRCA1/2 and PALB2 are found
rarely in PDAC, genomic analysis has extended this DDR cohort to almost 20% ,

indicating PARP inhibitors may offer viable options to this subset of patients [3, 15, 133].

If BRCA1/2 mutations in PDAC confer the same vulnerabilities seen in other cancers,
PARP inhibitors and PBTs could be an effective, targeted treatment. The POLO trial
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examined metastatic BRCA-positive PDAC and treatment with PARP-inhibitors. This was
beneficial as second line therapy after progression on platinum chemotherapy. The
median RFS was significantly longer in the Olaparib group [90]. At present, only BRCA1/2
can be used as biomarkers to identify patients that would benefit from PBTs. However, the
unstable genomic subtype may unveil additional biomarkers [15]. It is anticipated that
molecular analysis of either primary or metastatic tumour biopsies including genomic and
transcriptomic assays currently being employed in clinical trials (e.g. PRIMUS-001) will

result in future clinically relevant biomarkers.

1.9.3 Neoadjuvant Chemotherapy

It was hypothesized a subset of patients with more advanced non-metastatic pancreatic
cancer (borderline resectable/locally advanced (LAPC)) would have the potential to
undergo successful surgery if treated neoadjuvantly with the treatments explored above. A
meta-analysis focusing on the effect of preoperative therapy in PDAC showed a third of
initially classified “non-resectable” LAPC became eligible for resection when treated
neoadjuvantly. Additionally, patients treated with combination neoadjuvant therapy
demonstrated a significantly higher estimated response and resection probability [4].
This has translated in the routine treatment with neoadjuvant therapy for a subset of
patients in an effort to increase the number of potentially curative surgeries. Although
multiple papers reported an increase in both DSS and Recurrence Free Survival (RFS) in
patients treated with neoadjuvant FOLFIRINOX, there are major issues with toxicity e.g.
neutropenia and thrombocytopenia, resulting in strict filtering of patients eligible for this
treatment option [5]. Large scale trials are needed to clarify the risk- benefit ratio of

neoadjuvant treatment and the optimal treatment modalities employed.

1.9.4 Radiotherapy in Pancreatic cancer

The role of neoadjuvant radiotherapy in PDAC patients remains controversial. This is
partly due to lack of studies fully classifying the effects of tumour regression, survival and
toxicity. As with neoadjuvant chemotherapy, neoadjuvant radiotherapy is mainly used in
borderline resectable and LAPC patients in an effort to pull these groups into the
resectable category [136]. A SEER database analysis investigated the effect of upfront
resection, neoadjuvant and adjuvant radiotherapy and resection with adjuvant
chemotherapy. Patients were split into different pathological factors. Neoadjuvant
radiotherapy seemed to result in the best survival for only one patient subset. T stage 4,
margin 0 patients were significantly associated with better survival (median survival:
17months 95% CI 0.215-0.532) compared to resection plus chemotherapy (median
survival: 10months 95% CI 0.411-0.683) [137]. Another study examined the survival
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differences between neoadjuvant chemotherapy and radiotherapy. Overall survival
analysis did not show any significant improvement for radiotherapy patients, and the 90
day mortality rate indicated that radio patients had a higher mortality probability rate (odds
ratio 1.81, p <0.001) [138]. These studies provide insight into the complex decisions
doctors must make to decide the treatment options for patients. Arguably, the bleak
survival rates of PDAC make even the slightest increase in prognosis beneficial, providing

adverse effects are acceptable.

1.9.5 Immunotherapy potential for PDAC

The interaction between molecular subtype, tumour microenvironment and treatment and
disease prognosis is a pioneering research topic that, if exploited, could answer vital
questions about cancer progression. Despite years of research in PDAC, targeted
treatment and immunotherapy studies are lagging behind when compared to other major
cancer types. However, certain aspects have been studied and important lessons can be
learnt from similar cancers. Achieving significant progress in PDAC will likely require
multimodal strategies targeting epithelial, stromal, and immune tumour components and
using strategies to identify subgroups of patients at a genomic, immunological and
transcriptomic level [139]. Biomarker development is needed to stratify patients for
effective immunotherapy combinations at appropriate time points. PD-L1 expression is
used in NSCLC to select patients who benefit from frontline PD-1 inhibitor immunotherapy
ahead of chemotherapy [140]. However, the situation is more challenging in pancreatic
cancer. PDAC transcriptomic molecular subtypes, may have the potential to identify which
subtypes respond to specific treatments including immunotherapies [102]. The
immunogenic subtype is of particular relevance, demonstrating upregulated immune
avoidance mechanisms including CTLA-4 and PD-1. A further study has shown that >50%
of pancreatic tumours with upregulated PD-L1 were the squamous subtype, indicating
potential sensitivity to anti-PD-L1 inhibitors [141]. Classification of patients according to
molecular subtype may identify those patients who would benefit from immunotherapy.
Notably, recent studies have investigated the efficiency of targeting the immune checkpoint
molecule B7-H3 in similar solid cancers, although it has yet to be tested on PDAC [142-
146].

While most immune therapies are being developed for post chemotherapy, there is little
understanding of the molecular pathology of “post-chemotherapy” tumours in PDAC. The
complex anti-tumour immune response, coupled with the failure of Immune Checkpoint
Blockade (ICB) has prompted the concept of combination chemotherapy strategies.
Gemcitabine-based chemotherapy is often used in these combination immunotherapy

trials, as there is evidence of an increased tumour antigen availability, coinciding with
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transiently depleted immunosuppressive T regulatory cells (Tregs) in the TME [147]. The
beneficial effect of neoadjuvant therapy, therefore, may not rely on direct cytotoxicity on
epithelial cells, but rather on the restoration of the immune cell-mediated antitumour

response.

Radiotherapy has a role in the neoadjuvant setting and in the management of LAPC,
therefore in combination with ICB it may be a promising strategy for PDAC. Radiotherapy
induces an immune response that mediates regression of metastatic lesions lying outside
the radiation fields. Radiotherapy could therefore activate the immune system, increase T
cell tumour trafficking, and elicit an antitumour response following ICB. Initial evidence for
synergism has been demonstrated in PDAC possibly related to increased immunogenicity
[148]. By increasing tumour visibility, radiotherapy may synergise with immune therapy.
Characterisation of the immune landscape in the context of different neoadjuvant

therapies needs to be explored to provide extra insight this combination therapy.
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1.10 The Pancreatic cancer tumour microenvironment

1.101 Tumour core and the Tumour microenvironment
compartments

The tumour immune microenvironment (TME) of PDAC is a complex and often
contradictory subject to study. The tumour microenvironment, as the name suggests, is
the immediate environment in which the tumour cells find themselves. It is a diverse and

dynamic landscape made up of three major components (figure 1.7) [149];

1. Tumour compartment
2. Stromal compartment

3. Immune compartment

It is worth noting that although stroma and TME are often used interchangeably, they are
distinct concepts and should be studied as such. TME encompasses both stromal and
immune compartments. Additionally, the tumour compartment or tumour core is not strictly

part of the TME, but as the TME tends to surround tumour cells, it has been included

here.
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Figure 1.7 Tumour and tumour microenvironment compartments in pancreatic cancer. Three
compartments example cell types and molecules frequently seen. Tumour compartment is made
up of epithelial cancer cells. Stromal compartment is made up of cancer associated fibroblasts,
pancreatic stellate cells and a range of extracellular matrix molecules including collagens,
proteoglycans. Immune compartment encompasses all immune cells including T and B cells,
macrophages, natural Killer (NK) cells among others. Figure adapted from BioRender template.
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1.10.1.1 The Tumour compartment

The tumour compartment is made up of epithelial tumour cells (figure 1.7). Unusually, in
pancreatic cancer the tumour compartment makes up a small proportion of the tumour,
with reports of tumour cells making up approximately 20-25% of the tumour mass. Tumour
cells exhibit a vastly heterogenous histological expression pattern, with a scattered

cellular pattern [150].

1.10.1.2 The Stromal compartment

The stromal compartment makes up the vast majority of the tumour mass, consisting of
fibroblast and pancreatic stellate cells rich regions and extracellular matrix (ECM) (figure
1.7) [151, 152]. The ECM is a vital component that provides structural and regulatory
support within the tissue. Comprised of a range of collagens, laminins and proteoglycans
(among others), it has been reported to have a mutualistic relationship with the cells that
reside within it (figure 1.7) [153]. In particular, fibroblasts are thought to vastly influence
how the ECM is arranged, resulting in a highly dynamic, heterogenous compartment
[154]. The majority of proteins found in the extracellular matrix are produced by cancer
associated fibroblasts (CAFs). This combination results in a densely packed, stiff, 3D
mesh which is thought to act as a barrier to chemotherapy. This desmoplastic stroma is
linked to several cancer hallmarks including the creation of a hypoxic environment, limiting
nutrient delivery and reducing immune cell infiltration, creating highly resilient PDAC cells
[94]. Increased Epithelial-to-Mesenchymal transition is a major pathway associated with
multiple pancreatic cancer processes such as tumorigenesis and drug resistance [155].
As described above, cancer cells that undergo EMT possess increased ‘stem-like’
properties manifesting an invasive and metastatic abilities [92, 156]. The stromal
compartment is packed with cells and secretions that help drive the transition to a
mesenchymal PDAC cell. Various cytokines, TGF-(, IL-6 and IL-1a/B, are all involved in
cellular pathways that promote EMT and are upregulated in PDAC [151, 157-159]. It is
worth noting that TGF-f3 is dependent of context, and whether it is SMAD-dependent or
not. Altogether, the stroma exhibits multiple pathways that severely inhibit the benefits of

treatment.

1.10.1.3 The Immune compartment

Although the immune compartment could technically be placed within stroma, it plays a
distinct role, therefore the stromal and immune compartments will be considered
separately. The immune compartment refers to a collection of traditional immune cells
(figure 1.7) [160, 161]. This compartment displays perhaps the most contradictory

processes in pancreatic cancer, due to recruitment of different type of immune cells. It
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plays an important role in immunosurveillance and the anti-cancer immune response.
Counterintuitively, it also plays a role in immunosuppression and cancer progression. This
is highly dependent on the types of immune cells present, and these fall into pro-tumour
and anti-tumour cell types [6]. Traditionally, T helper and cytotoxic T cells are associated
with immunosurveillance and increased tumour cell death [7, 8], whereas, macrophages
and Tregs tend to inhibit the immune response [9]. Interestingly, B cells fall into both the
pro and anti-tumour categories due to contradictory reports [11-13]. A full exploration of

the immune cells associated with PDAC is contained in section 1.11

1.10.1.4 Interaction and influence between compartments

The tumour microenvironment and stromal composition of cancer is a widely researched
topic that can be explored in a multitude of ways. For the majority of cancer phenomena
explored, characterising interactions between tumour cells and the surrounding
environment will deepen biological underpinnings, as cancer cells are seldom self-
contained. In addition to these cellular interactions, there is the added complexity of the
extracellular matrix. This means that not only do we have to take into account the
heterogeneity of the individual compartments themselves, but the interaction between the
cells and these regions must also be considered [94]. A variety of studies in different
cancers have explored these complex interactions. For example, ECM proteins MMP-9
and Tenascin-C bind to their respective cell-surface receptors on tumour cells, resulting in
increased invasive properties and metastatic behaviour, as well as reduced survival times
[162]. CAFs secreting TGF-, recruit a range of pro-tumorigenic immune cells such as
macrophages and neutrophils, in parallel, blocking cytotoxic T cell recruitment [163-166].
Poor oxygenation and high levels of acidity, due to a build-up of lactic acid from glycolysis,
results in limited recruitment and proliferation of T cells [167-169]. This creates a hostile
environment, in which cancer cells thrive, filtering which immune cells can infiltrate the
microenvironment. Studies into PDAC specific interactions are required to determine if

these findings can be replicated.
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1.11 Pancreatic immune and stromal cell landscape

The protein immune and stromal landscape has been relatively well established in
pancreatic cancer, with studies predominantly focused on naive patients. It is
characterized by a dense desmoplastic stroma, large infiltration of cancer associated
fibroblasts and immunosuppressive leukocytes, and a low level of effector T cells [6]. The
tumour microenvironment plays an important role in the progression and aggressiveness
of tumours, with much research carried out to define it. The TME in PDAC is characterized

by many immune and stromal cells. There are two broad categories of cells (figure 1.8);

1. Effector cells

2. Suppressor cells.

CD4+ T Helper CD8+ Cytotoxic T Dendritic cell  Natural Killer cell B cell
cell cell
Effector 'Y
cells S
Good Good Good Good Good/
prognosis prognosis prognosis prognosis Poor
prognosis
(location
dependent)
T Regulatory Tumour Associated Tumour Associated Cancer Associated
cell Macrophage Neutrophils Fibroblast
Suppressor Q
cells
Poor Poor Poor Poor
prognosis prognosis prognosis prognosis
(subtype (subtype
dependent) dependent)

Figure 1.8 Main cell types in PDAC. lllustrative diagram showing the most common tumour
effector and suppressor cells in pancreatic cancer and their prognostic association. Tumour
effector cells encompass CD4+, CD8+ T cells, dendritic, natural killer and B cells. Tumour
suppressor cells encompass T regulatory cells, tumour associated macrophages, tumour
associated neutrophils and cancer associated fibroblasts. Figure adapted from BioRender

template.
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1111 Naive protein landscape

Tumour infiltrating lymphocytes (TILs) including CD8+ cytotoxic and CD4+ helper T cells,
B cells and dendritic cells are the main effector cells found in naive pancreatic cancer
(figure 1.8) [170-174]. Additionally, tumour associated macrophages (TAMs), Tregs and
CAFs, are the most common suppressor cells (figure 1.8) [6, 164, 175-177]. It is important
to note that these immune cells have been spilit into these categories based on the current
literature, however with cells such as macrophages and neutrophils, their effect is greatly
dependent on polarization and activation. Macrophages have reportedly been split into M1
and M2, whereby M1 macrophages are associated with proinflammatory cytokines, and
M2 are associated with increased immune suppressive cytokines [178]. This
nomenclature has been criticized for being overly simplistic. Whilst these terms may be
used for ease, the marker expression should be employed e.g. CD68+ or CD163+
macrophages. Neutrophils have also been split according to their activation into anti-

tumorigenic TAN1 or pro-tumorigenic TAN2 cells [179].

1.11.1.1 The role of T lymphocytes in naive PDAC

The presence of CD8+ and CD4+ cells is arguably the most reported immune signature in
PDAC. Classified as tumour effectors, an increased density of these cells is associated
with better prognosis in treatment naive cancer [8, 180-183]. A shift in the
microenvironment was reported when the disease progressed from IPMN to a primary
pancreatic lesion [184]. In low grade IPMNs, the immune phenotype observed was varied,
with an abundance of tumour infiltrating immune cells such as CD8+, CD4+ helper T cells
and high levels of Th1/Th2 cells. Once the transition to PDAC occurs, an immune switch
is observed. A suppressive phenotype dominated by T-regulatory cells and decreased
intratumoral infiltration of effector cells is observed. As the malignancy progresses,
immunosuppressive lymphoid structures appear in the surrounding stroma. These results
suggest that an oncogenic switch is achieved once immune surveillance is bypassed
[184].

A study investigating preoperative immune cell ratios in peripheral blood found prognostic
immune cell ratios [185]. Neutrophil: Lymphocyte and Lymphocyte:Monocyte ratios were
found to have a significant effect on patients' survival. A Neutrophil: Lymphocyte (N:L)
ratio of <5 and a Lymphocyte:Monocyte (L:M) of = to 3 were associated with a significant
increase in median survival. High N:L and a low L:M ratio were shown to be independent
poor prognostic markers. Results also indicated increased N:L and decreased L:M ratios
correlate with a 2-fold decreased count of T, B and natural killer cells [185].

In contrast, suppressor immune cells are often tumour beneficial and therefore are
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associated with poor prognosis [6]. Much research has gone into understanding the role of
TAMs and Treg cells in PDAC. CD68+ macrophages (M2) and a low Treg:CD4+ ratio is
significantly associated with poor prognosis, whereas a high percentage of M1 and CD68+
cells was associated with better prognosis [9]. Immune profiling can be used as a
prognostic tool, giving additional information on tumour characteristics that cannot be

ascertained using standard prognostic tools.

1.11.1.2 The role of CAFs in naive PDAC

Cancer associated fibroblasts have been continuously linked with EMT, immune evasion
and production of an inhospitable stroma [186-188]. Studies have shown there are at least
three subtypes of CAFs, myofibroblastic, inflammatory and antigen presenting, each with
distinct markers associated with them [189]. However, each subtype has markers
associated with alpha smooth muscle actin (aSMA) expression and is commonly used to
identify myofibroblasts. [190]. High levels of CAFs in pancreatic cancer is consistently
associated with worse overall prognosis [191, 192]. Stromal composition has been
classified by using the ratio of stained aSMA and all collagen areas. This is referred to as
the activated stromal index (ASI). Patients with low collagen deposition and low ASI, had
a worse prognosis. This was classified as a fibrolytic stroma. High collagen and low ASI
was associated with better prognosis, and this was classified as fibrogenic stroma [193].
The general consensus is that dense stroma promotes tumorigenesis, but research has
shown that the opposite is true in PDAC. Reduction of stromal cells by Sonic hedgehog
(Shh) deletion in mouse models, resulted in increased proliferation, as well as a poorly
differentiated tumour. This increase in aggressiveness indicates that Shh activated stroma
has a tumour suppressor role in PDAC [194]. Using tumour microarrays from 93 resected
patients, prognostic signatures were categorized based on leukocyte subtypes and
stromal compositions. Patients with a fibrolytic stroma and a CD3lowCD8lowCD68high
immune signature were associated with worse RFS. Longer RFS was associated with
fibrogenic stroma and a CD3highCD206high signature [195]. The use of combination
signatures reduces the risk of false-positives associated with single signatures, mimicking
the heterogeneity of PDAC. Immune profiling could potentially inform specific treatment

stratification.

A study using ESPAC-3/1 samples investigated the effect of stromal composition and
immune cell infiltration in resected pancreatic cancer [196]. Adjuvant chemotherapy
patients were split according to their treatment, gemcitabine or 5-flourouracil/folinic acid.
No differences were seen between the two treatments in terms of survival and immune
cell signatures investigated. However, in both cohorts, high expression levels of CD3+ T

cells had the most significant independent predictive power for RFS. Two histological
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predictive signatures were established in this study, 1). Increased CD3 and CD206
expression - associated with increased median RFS (16.6 months), 2). Decreased
CD3/CD8 and increased CD68 expression — associated with decreased median RFS (7.9
months). Stromal composition was characterised using Erkan’s ASI ratio [193]. Although
this study found a correlation between RFS and the different stromal types, no relationship

was found between stromal composition, immune marker expression and RFS [196].

1.11.1.3 The role of B lymphocyte in naive PDAC

The role of B cells in PDAC remains highly controversial with reports associating them
with anti-tumour and pro-tumour responses [197-203]. Multiple studies have demonstrated
B cells with increased cytokine IL-35 expression, traditionally responsible for immune
system maintenance, promote neoplastic development, and support cancer proliferation
[198, 202, 203]. Tertiary Lymphoid Structures (TLS) are a common phenomenon seen in
a multitude of cancers [204]. They can be defined as lymphoid structures that usually
develop in chronically inflamed, non-lymphoid tissues such as cancer. Visually, they
appear circular, and are characterised by the presence of dispersed High Endothelial
Venules (HEVs), an inner B-cell follicle and an outer T-cell zone [205, 206]. The location
of these structures is indicative of levels of immune cell infiltration in pancreatic cancer
[11, 207]. Intratumoral TLSs were associated with increased levels of T and B cells, as
well as decreased immunosuppressive cells, and was significantly associated with better
survival compared to patients without (Presence Vs Absence - median survival: 42.67 vs
15.53, p =0.002, 95% CI 1.8 (1.2-2.6) [171].

1.11.1.4 Spatial Biology in naive PDAC

Until recently, the number of immune cells investigated at one time was limited due to
technology. Immunohistochemistry was one of the most popular and robust methods to
characterise protein expression in human samples. The development of multiplex
technologies has enabled co-localisation of multiple immune cells on one tissue section
[118, 119]. Carstens et al investigated the role of desmoplastic stroma on immune cell
infiltration and found that PDAC had a heterogenous mix of T cell populations. Cytotoxic T
cells with a close proximity to cancer cells exhibited increased anti-tumour effects and
correlated positively with increased survival. Surprisingly, there was no significant
correlation with immune cell infiltration and the Collagen-I/aSMA presence [7]. Both the
Mahajan et al and Carstens et al papers contradict the widely accepted hypothesis that
the dense fibrotic PDAC stroma creates a physical barrier ‘protecting’ the tumour core
from the immune system and even chemotherapy [7, 196, 208]. These contradictory

results are suggestive of the interactions between stroma, immune cells and tumour cells
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being much more complex than expected.

1.11.1.5 Molecular biology immune pathways in naive PDAC

Certain well established cellular pathways have been associated with immune cell density,
particularly linked with cytotoxic T cells. Chronic inflammation is a well reported driver for
pancreatic cancer progression, with the JAK/STAT and NF-kB pathways being
associated with this. Continual activation of the JAK/STAT pathway has been associated
with inhibition of cytotoxic T cell activation, and indirectly inducing inflammatory CAFs [81,
209]. Moreover, NF-kB increases CXCL12 expression in pancreatic stellate cells, leading
to reduced cytotoxic T cell infiltration [210]. This transcription factor is also linked with
suppression of macrophage surveillance in early tumorigenesis via regulation of growth

differentiation factor 15 (GDF-15) in macrophages [211].

Immune evasion mechanisms are a repeating hallmark seen across the PDAC literature,
although there has been little successful exploration of the biological mechanisms. In
2020, a paper investigating immune evasion in PDAC demonstrated downregulation of
MHC-I may have an important role in immune evasion. Cell surface MHC-I expression
seems to be targeted for lysosomal degradation via NBR1, an autophagy cargo receptor,
resulting in lack of antigen presentation and subsequent immune evasion. Inhibition of
autophagy was carried out in vivo, demonstrating a significant decrease in tumour mass
and an immunogenic switch seen by the increased expression of CD8+ T cells.
Importantly, they found that autophagy inhibition sensitized the tumour to dual immune

checkpoint blockade therapy, offering a precise, actionable therapeutic target [212].
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1.11.2 Neoadjuvant treated protein cell landscape

Highly immunogenic cancers are traditionally associated with better prognosis and
indicate sensitivity to immunotherapy. PDAC is considered a non-immunogenic disease,
although classical and immunogenic subtypes have considerably higher epithelial and
stromal immune infiltration. It is hypothesised that Neoadjuvant Therapy (NAT) works by
remodelling the tumour immune microenvironment via depletion of pro-tumorigenic
immune cells [132, 147, 213, 214]. If tumours were able to undergo an immunogenic
switch, a subsequent increase in tumour suppression would result in apoptosis of cancer
cells, subsequently increasing neoantigen targets enabling potential vulnerability to

immunotherapies.

1.11.2.1 The role of T lymphocytes in neoadjuvant PDAC

Research on the this ‘immunogenic switch’ has predominantly focused on characterisation
rather than exploring biological pathways and most reports are Gemcitabine focused. A
study looking at borderline resectable PDAC patients investigated the difference between
naive and Gemcitabine/radiation treated patients [147]. An increased CD4CD8+ signature
correlated with neoadjuvant chemotherapy treated patients and a corresponding increase
in overall survival was seen compared to treatment naive patients [147]. This increase in
cytotoxic T cell expression correlating with increased overall survival is a frequent
phenotype observed across multiple cancer types. The observed elevated level of
expression in treated compared to naive indicates that treatment with

Gemcitabine/radiation may play a role in triggering an immune response.

1.11.2.2 Effect of neoadjuvant Gemcitabine based therapies on the TME

The effect of treatment on the tumour microenvironment has also been demonstrated in
vivo. One study investigated two different KrasG12D/+; Trp53R172H/+; P48-Cre (KPC)
treatment cohorts: 1). combination Gemcitabine and a Particle-mediated epidermal
delivery (PMED) NY-ESO-1 targeting vaccine, 2). PMED vaccine alone [132]. Prior
treatment with Gemcitabine appeared to increase vaccine induced cytotoxic T cell
response compared to vaccine only treated mice. Gemcitabine treated mice also had
significantly reduced FOXP3CD4+ T cells, potentially due to the increased rate of
proliferation seen in Tregs cells compared to other T cells. These murine models further
reinforce the hypothesis that pre-treatment, especially by Gemcitabine, triggers an
immune response and produces a cumulative affect when used in combination with
vaccinations [132]. This double hit effect may partially explain the increased survival seen

with combination treatments, such as Nab-paclitaxel/Gem [215].
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Chemotherapeutic resistance is a prevalent issue seen in pancreatic cancer, contributing
to the limited effect observed in the majority of treatments. There are many possible
contributing factors that lead to chemoresistance, including the tumour microenvironment.
The effect of prolonged Gemcitabine treatment was investigated in invasive tumour KPC
models and replicated in vitro using a Panc1 cell line [213]. It was found that prolonged
Gemcitabine exposure resulted in increased antigen presentation, immune checkpoint
inhibitors PD-L1/2, CCL/CXCL chemokine expression and TGF-3 associated signals
[213]. TGF-B is a well-known immune regulator and has been reported to play an
important role in immune evasion in advanced pancreatic cancer. Increased expression of
this cytokine in the stroma may limit the full immunomodulatory effect of Gemcitabine,
preventing tumour-infiltrating lymphocytes from efficiently targeting the tumour core. In
vivo treatment of combined Gemcitabine/anti-PDL1 produced a limited immune response
and a moderate delay in mortality [213]. In contrast, models pre-treated with the TGF-3
inhibitor Galunisertib, and subsequent Gem/anti-PD-L1 treatment showed a uniform
increased expression of CD3+ and CD8+ T cells. Apoptotic markers Granzyme B and
caspase 3 were also present in neoplastic regions indicating the continued cytotoxic effect
stimulated by this treatment combination [213]. Other beneficial phenomena such as
improved vasculature and significant delay in mortality was observed. These observations
indicate an immunogenic switch that is mediated by prolonged Gemcitabine treatment,
from a cold phenotype in the control models, to a hot immune phenotype in the treated
models [213]. Further research into the effect of Gemcitabine on the TIME is required to

fully investigate this phenomenon in humans.

The effect of Gemcitabine on the tumour associated IgG antigen repertoire was
investigated in pancreatic cancer models [214]. Treatment resulted in elevated recognition
of antigens by IgG and a shift in expression from suppressor to effector tumour associated
antigens e.g. a-Enolase (ENO1). The immune landscape prior and post treatment was
compared, demonstrating a significant increase in tumour infiltrating CD8+ and CD4+ T
cells in post-treatment analysis. An increased T cell response correlated with increased
overall survival. In an effort to increase the therapeutic response, Gemcitabine and ENO1
combination treatment was used. Results showed a significant increase in CD4+ cells,
corresponding with anti-tumour activity and subsequent impaired tumour progression was
elevated in the combination therapy treated mice models. Singular treatment with either
Gemcitabine or the vaccine failed to give the same levels of immune response [214]. The
development of multiple synergistic combination targeted therapies is essential to treat
this highly heterogenous, ever evolving disease. It is worth noting that although KPC
models are the gold standard PDAC models, there are major differences in morphology
and biology compared to human PDAC. It would be beneficial to produce a more robust

model to improve translation from murine to human.
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Importantly, the immune cell functional state of the reported cells has not been explored.
This is a significant gap in knowledge when exploring the effects chemotherapy and
radiotherapy have on the neoadjuvant landscape. Studies in other cancers such as breast
and oesophagus have shown that immune cell density is not always increased. Rather
there is a shift in functional state as indicated by marker expression, as well as the ratio of
cell types [216, 217]. These studies also demonstrated initial depletion of T, B and NK
cells lasting for up to 9 months [216]. This suggests that when samples are taken from the
patient may be important. To fully understand the effects of neoadjuvant therapy on the
TME, a combination of high-plex protein and transcriptome technologies should be used

to characterize the differences observed.
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1.12 Project Aims and objectives

It is hypothesised that neoadjuvant therapy works by remodelling the tumour immune
microenvironment either via depletion of pro-tumorigenic immune cells or altering the
functional states in subsets of immune cells [6, 14, 15]. Tumours that undergo this
immunogenic switch, show an increase in tumour suppressor cells and subsequent
apoptosis of cancer cells. Until now, technology was unable to adequately explore these
phenomena. With the rise of Spatial Biology, the spatial interactions that define cancer
can be investigated. This thesis aims to robustly characterise the tumour immune
microenvironment in both treatment naive upfront resected and post neoadjuvant settings
in human pancreatic ductal adenocarcinoma. To fully explore the differences between

naive and neoadjuvant patients, the main objectives were as follows;

1). Establish the protein immune cell landscape in treatment naive and neoadjuvant
human pancreatic cancer separately in terms of content, cellular density and spatial

orientation of different phenotypes.

2). Comparison of content, density and spatial relationships in naive and neoadjuvant

patients using the established protein landscape.

3). Explore the Spatial Transcriptomic signature in distinct tissue compartments (epithelial
tumour, aSMA positive fibroblast, and immune compartments) in treatment naive and
neoadjuvant treated patients.

4). Multi-omic, orthogonal data comparison of treatment naive and neoadjuvant cases

using Spatial Omic data and deep immune phenotyping technologies.

Consideration will be given to important clinical subgroups within these aims.
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2 Chapter 2: Materials and Methods
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2.1 FFPE tissue studies

To characterize the tumour microenvironment across the naive and neoadjuvant
pancreatic cancer, archival formalin fixed paraffin embedded (FFPE) tissue microarrays
were used, each associated with clinical pathology data. Serial sections were used and a
variety of techniques including immunohistochemistry (IHC), multiplex
immunofluorescence (mIF), Spatial Transcriptomics (ST) and single cell Spatial Protein
assays were undertaken. All sections were cut by the Glasgow Tissue Research Facility
(GTRF) at 5um, baked overnight at 60-C, and stored at 4-C for up to a week.

2.1.1 Clinical cohorts

21.1.1 Discovery cohort

The discovery cohort was made up of 9 treatment naive TMAs, 8 of which come from the
Australian Pancreatic cancer Genome Initiative (APGI) cohort, part of the International
Cancer Genome Consortium (ICGC), and 1 Glasgow naive cohort (SD-PAN-TMA). The
APGI group consisted of 216 patients that had undergone resection between 2010 to
2017, and the Glasgow naive cohort consisted of 28 patients that were resected between
2006 to 2011. The APGI/ICGC cohort had approximately 3x1mm cores per patient, and
the Glasgow naive cohort had approximately 4x0.6mm cores per patient. Cores were
selected from epithelial rich regions by a pathologist. To establish patient characteristics
for the cohort, disease specific survival (DSS) and recurrence free survival (RFS) analysis
using clinical data was carried out (table 2.1). Median DSS survival for this cohort was 23
months. Approval for use of the Glasgow cohort was obtained through NHS QEUH
Biorepository, application number 662, research ethic committee (REC) number
16/WS/0207. Ethical approval for the APGI cohort was obtained from the appropriate

Human Research Ethics committee.



Characteristic

T Stage (AJCC 8'")

T
T
T3
T4

Unknown

Lymph Node

LNO
LN1
Unknown

Resection Margin

RO
R1

Unknown

N Stage (AJcCC 8')

NO
N1
N2

Unknown

Grade / Tumour
Differentiation

|/ Well
Il / Moderate
I/ Poor

[V/Undifferentiated

Unknown
Vascular Invasion

Negative
Positive

Unknown

Molecular subtype

Classical
Squamous
Unknown

Discovery naive cohort

n= 238

21
114

55

149
41

158
80

55
177

20
148
57

84
142

122
53

63

Median P (Log-
DSS Rank)
(months)
20 0.005
23
15.5
30 0.001
19.3
27 0.003
17.4
42 <0.001
20.3
40 <0.001
27
15.2
11.7
34 <0.001
19.3
29 <0.001
13.6

RFS

17
10.73
7.93

13.3
O85>

12.2
9.5

17
10

13.33
11.6

4.81

13.33
9.77

12.2

60

P (Log-
Rank)

0.01

0.01

<0.001

<0.001

<0.001

0.01

<0.001

Table 2.1 Discovery naive cohort patient characteristics. Table showing the Discovery cohort

patients with clinical characteristics associated with disease specific survival (DSS) and recurrence
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free survival (RFS). Clinical features include T Stage (AJCCS8th), resection margin status, lymph

node status and molecular subtype

2.1.1.2 Validation naive cohort

The Validation cohort was made up of 12 multi-regional Glasgow cohort TMAs (NJ-PANC-
TMA and PDAC-PAN-TMA). This cohort comprised 192 patients who had undergone
resection between 1992 to 2011. The NJ-PANC-TMA and PDAC-PAN-TMA had
approximately 5x0.6mm and 4x0.6mm cores per patient respectively, and demonstrated a
mixed histology with epithelial and stromal heavy cores. Patient survival characteristics
were established for DSS and RFS analysis (table 2.2). Median DSS survival for this
cohort was 18.5 months. Approval for use of the Glasgow cohort was obtained through
NHS QEUH Biorepository, application number 662, REC number 16/WS/0207.



Validation naive cohort

Characteristic n=192 Median P (Log-

DSS Rank)
(months)
T Stage (AJCC 8™)
T 24 29.3 <0.001
T2 117 215
T3 48 10.5
T4 0
Unknown 3
Lymph Node
LNO 33 26.6 <0.001
LN1 156 18.4
Unknown 3
Resection Margin
RO 50 26.5 <0.001
R1 139 16.3
Unknown 3
N Stage (AJCC 8'")
NO 31 22.9 0.02
N1 150 18.4
N2 1 20.9
Unknown 10
Grade / Tumour
Differentiation
1/ Well 10 26.7 0.006
Il / Moderate 115 20.1
Il / Poor 59 13.4
IV/Undifferentiated 0
Unknown 8
Vascular Invasion
Negative 86 23.6 <0.001
Positi
ositive 85 15.6
Unknown 21
Molecular subtype
Classical 19 34.3 0.4
Squamous 9 9

Unknown 164

Table 2.2 Validation naive cohort patient characteristics. Table showing Validation cohort

Median P (Log-
RFS Rank)
(months)

17.8 <0.001
14.5

17.8 <0.001
12.3

21.2 <0.001
11.2

17.1 0.02
12.3
14.9

19.97 0.003
14.33
9.13

15.1 <0.001
11.2

18.73 0.3
7.83

62

patients with clinical characteristics associated with disease specific survival (DSS) and recurrence

free survival (RFS). Clinical features include T Stage (AJCCS8th), resection margin status, lymph

node status and molecular subtype.
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2.1.1.3 Glasgow naive cohort 1

The Glasgow naive cohort was made up of single multi-core TMA (SD-PAN-TMA). This
cohort comprised of 28 patients who had undergone resection between 2010 to 2017.
This cohort had approximately 4x0.6mm cores per patient and demonstrated an epithelial
rich histology. Patient survival characteristics were established for DSS and RFS analysis
(table 2.3). Median DSS survival for this cohort was 17.2 months. Approval for use of the
Glasgow cohort was obtained through NHS QEUH Biorepository, application number 662,
REC number 16/WS/0207.



Characteristic

T Stage (AJCC 8')

™
T2
T3
T4
Unknown
Lymph Node
LNO
LN1
Unknown

Resection Margin

RO
R1
Unknown

N Stage (AJCC 8t

NO

N1

N2

Unknown
Grade / Tumour
Differentiation

1/ Well

Il / Moderate

Il / Poor

IV/Undifferentiated

Unknown
Vascular Invasion

Negative
Positive
Unknown

Molecular subtype

Classical
Squamous
Unknown

Glasgow naive cohort 1

n=28

NA
14

11
15

24

21
NA

20

NA

10
18

6
4
18

Median
DSS
(months)

9.09
22.25
16.7

62.9
18.55

16.45
73.5

NA
17

36
17.1
9.75

27.5
16.9

30.9
15

P (Log-
Rank)

0.04

0.5

0.3

0.07

0.2

0.5

0.01

RFS

7.95
15
10

60.5
14.65

13.45
62.9

NA
11.7

18.9
11.7
4.6

19.5
10.7

23

64

P (Log-
Rank)

0.3

0.4

0.2

0.07

0.3

0.2

0.04

Table 2.3 Glasgow naive cohort 1 patient characteristics. Table showing Glasgow naive cohort

1 patients with clinical characteristics associated with disease specific survival (DSS) and

recurrence free survival (RFS). Clinical features include T Stage (AJCCS8th), resection margin

status, lymph node status and molecular subtype.
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2.1.1.4 Glasgow naive cohort 2

The Glasgow naive cohort 2 was comprised of a single multi-core TMA (PDAC-PAN-
TMA). The cohort was comprised of 79 patients who had undergone resection between
1992 to 2011. This cohort had approximately 4x0.6mm cores per patient and
demonstrated a mixed histology with tumour centre and stromal cores. Patient
characteristics were determined from DSS and RFS analysis (table 2.4). Median survival
for this cohort was 19.2 months. Approval for use of the Glasgow cohort was obtained
through NHS QEUH Biorepository, application number 662, REC number 16/WS/0207.
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Glasgow naive cohort 2

i _ Median P (Log- P (Log-
Characteristic n=79 DSS Rank) RFS Rank)
(months)

T Stage (AJCC 8"

™ 8 25.4 18.2
T2 42 25 0.02 14.2 0.03
T3 18 10.9 8.9
T4
Unknown 11
Lymph Node
LNO 10 36.5 0.04 25.9 0.03
LN1 63 20 12.2
Unknown 6
Resection Margin
RO 21 25.8 0.1 16.1 0.05
R1 52 17.5 11
Unknown 6
N Stage (AJCC 8™)
NO 8 23.1 0.5 14.8 0.8
N1 60 21.2 12.2
N2 0
Unknown 11
Grade / Tumour
Differentiation
1/ Well 4 24 116
Il / Moderate 41 19.1 11
I/ Poor 28 19.1 0.9 27.4 0.1
IV /Undifferentiated 0
Unknown 6
Vascular Invasion
Negative 39 245 0.2 15.1 0.2
Positive 34 16.3 10.2
Unknown 6
Molecular subtype
Classical 13 46 0.3 20.87 0.3
Squamous 6 11.9 6.25
Unknown 60

Table 2.4 Glasgow naive cohort 2 patient characteristics. Table showing Glasgow naive cohort
2 patients with clinical characteristics associated with disease specific survival (DSS) and
recurrence free survival (RFS). Clinical features include T Stage (AJCCS8th), resection margin

status, lymph node status and molecular subtype.



2.1.1.5 Naive combined cohort

The combined naive cohort consisted of a total of 436 pancreatic cancer specimens
combined from the discovery (1.1.1.1) and validation (1.1.1.2). Patient survival
characteristics were established for DSS and RFS analysis (table 2.5). Median DSS
survival for this cohort was 20.3 months. Approval for use of the Glasgow cohort was
obtained through NHS QEUH Biorepository, application number 662, REC number
16/WS/0207.

67
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Naive combined

. _ Median P (Log- P (Log-
Characteristic n =436 DSS Rank) RFS Rank)
(months)
T Stage (AJCC 8™)
T1 42 29.6 <0.001 17 <0.001
T2 229 22 12.2
T3 96 13 7.3
T4
Unknown 69
Lymph Node
LNO 78 25.2 <0.001 13.3 <0.001
LN1 290 18.9 11.3
Unknown 68
Resection Margin
RO 207 26.6 <0.001 14.9 <0.001
R1 210 15.8 10.3
Unknown 19
N Stage (AJCC 8')
NO 86 36.7 17
N1 329 19.6 <0.001 11.3 <0.001
N2 1 20.9 14.9
Unknown 21
Grade / Tumour
Differentiation
I/ Well 30 36.2 1.2
Il / Moderate 263 23.9 12
Il / Poor 116 14 <0.001 8 <0.001
IV/Undifferentiated 6 11.7 5.45
Unknown 21
Vascular Invasion
Negative 175 26 <0.001 14.5 <0.001
Positive 235 17 10.2
Unknown 26
Molecular subtype
Classical 141 29 <0.001 12.9 <0.001
Squamous 62 14.1 7

Unknown 233

Table 2.5 Naive combined cohort patient characteristics. Table showing naive combined cohort
patients with clinical characteristics associated with disease specific survival (DSS) and recurrence
free survival (RFS). Clinical features include T Stage (AJCCS8th), resection margin status, lymph

node status and molecular subtype.
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2.1.1.6 Neoadjuvant Glasgow cohort

The neoadjuvant Glasgow cohort is composed of 6 multi-core TMAs (Neoadj-MAL-TMA
batch 1 and batch 2), with 72 patients who had undergone treatment and resection
between 2009 to 2020. This cohort had approximately 3x0.6mm cores per patient. Cores
were selected from tumour centre. Patient survival characteristics were established from
DSS and RFS analysis (table 2.6). Median DSS survival for this cohort was 24.5 months.
This cohort includes neoadjuvant chemotherapy treated (n=46) and neoadjuvant
chemoradiotherapy (n=24) patients. Patients received either Gemcitabine based
chemotherapy (n=20) or FOLFIRINOX based chemotherapy (n=53). Approval for use of
this cohort was obtained through NHS QEUH Biorepository, application number 706, REC
number 18/SS/0076.



Characteristic

T Stage (AJCC 8'")

T1
T2
T3
T4

Unknown

Lymph Node

LNO
LN1
Unknown

Resection Margin

RO
R1
Unknown
Vascular Invasion
Negative
Positive
Unknown
Tumour Regression
Good
Poor
Unknown
Treatment type
Chemotherapy
Chemoradiotherapy
Unknown
Chemotherapy type
FFXbased
Gemcitabine based
Unknown

Neoadjuvant Glasgow

n=72

20

14
28

29
34

32
30
10

43
27

30
31
11

46
24

53
20
2

Median

DSS

(months)

56.9
26.5
9.9
21.3

39
19.7

33.1
20.5

28
20.7

33.1
19

20.7
39

22.6
24.6

P (Log-
Rank)

0.011

0.001

0.04

0.05

0.005

0.02

0.7

Median
RFS
(months)

16.9
6.5
12.8

37.1
14

30.1
16.3

27.2
16.3

34
12.3

16.3
30.1

30.1
14.2

70

P (Log-
Rank)

0.01

0.001

0.075

0.2

<0.001

0.05

0.04

Table 2.6 Neoadjuvant Glasgow cohort patient characteristics. Table showing neoadjuvant

cohort patients with clinical characteristics associated with disease specific survival (DSS) and

recurrence free survival (RFS). Clinical features include T Stage (AJCCS8th), resection margin

status, lymph node status, tumour regression, treatment type and chemotherapy type.
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2.1.1.7 Neoadjuvant combined cohort

The neoadjuvant combined cohort is comprised of 7 multi-core TMAs (Neoadj-MAL-TMA
batch 1 and batch 2, and PRIMUS-MAL), with 85 patients who had undergone treatment
and resection between 2009 to 2021. The Neoadj-MAL-TMAs had approximately
3x0.6mm cores per patient (n=72). PRIMUS-MAL TMAs had approximately 3x1mmcores
per patient (n=13) and were part of the PRECISION-Panc clinical trial from the
PRIMUSO002 arm. Cores were selected from the tumour centre. Patient characteristics
were determined from DSS and RFS analysis (table 2.7). This cohort includes
neoadjuvant chemotherapy treated (n=46) and neoadjuvant chemoradiotherapy (n=27)
patients. Patients received either Gemcitabine based chemotherapy (n=21) or
FOLFIRINOX based chemotherapy (n=54). Median survival for this cohort was 20.4
months. Approval for use of this cohort was obtained through NHS QEUH Biorepository,
application number 706, REC number 18/SS/0076.



Characteristic

T Stage (AJCC 8'")

T
T2
T3
T4

Unknown

Lymph Node

LNO
LN1
Unknown

Resection Margin

RO

R1
Unknown

Vascular Invasion
Negative
Positive
Unknown

Tumour Regression

Good
Poor
Unknown
Treatment type
Chemotherapy
Chemoradiotherapy
Unknown

Chemotherapy type

FFX based
Gemcitabine based
Unknown

Neoadjuvant combined

n=85

22
11

27
24

35
40
10

39
35
11

46
29
10

37
34
14

46
27
12

54
21
10

Median
DSS

(months)

50.4
25
9.9

21.3

44.4
23.6

33.1
20.9

31.1
21.1

34.3
19

20.7
39

22

24.6

P (Log-
Rank)

<0.001

<0.001

0.03

0.03

0.005

0.02

0.8

Median
RFS
(months)

NA
16.9
6.5
12.8

NA
14

NA
16.3

30.1
16.3

32
12.3

16.3
30.1

36
14.2

72

P (Log-
Rank)

<0.001

<0.001

0.04

0.1

<0.001

0.05

0.05

Table 2.7 Neoadjuvant combined cohort patient characteristics. Table showing neoadjuvant

combined cohort patients with clinical characteristics associated with disease specific survival

(DSS) and recurrence free survival (RFS). Clinical features include T Stage (AJCC8th), resection

margin status, lymph node status, tumour regression, treatment type and chemotherapy type.
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2.1.1.8 PRIMUS 002 whole section cohort

Two matched biopsy and post neoadjuvant chemotherapy resected whole sections from
the PRIMUS-MAL TMA (chapter 2.1.1.7) were selected for spatial transcriptomics
validation. PP00144 and PP00171 samples were used. Approval for use of this cohort
was obtained through NHS QEUH Biorepository, application number 706, REC number
18/SS/0076.

2.2 Immunohistochemistry

2.2.1 Staining and scanning

All Immunohistochemistry (IHC) was performed prior to the start of this thesis on
Discovery TMAs (chapter 2.1.1.1) which were supplied to the CRUK Scotland Institute
histology department. All sections were stained using an Agilent pre-treatment module
and autostainer link 48 for CD3, CD8, CD68 and CD163 (table 2.8). To complete the IHC
staining sections were rinsed in tap water, dehydrated through graded ethanol’s and
placed in xylene. The stained sections were coverslipped in xylene using DPX mountant
(SEA-1300-00A, CellPath). TMAs were imaged using the Leica Aperio AT2 slide scanner

at x20 magnification.

Marker Company Retrieval Antibody Secondary
(catalogue conditions dilution
number)
Agilent (A0452)  High pH TRS
buffer (K8004, EnVision rabbit
CD3 Agilent) 1:50 (K4003, Agilent)
Leica (NCL-L- High pH TRS
CD8-4B11) buffer (K8004, EnVision mouse
CD8 Agilent) 1:75 (K4001, Agilent)
Agilent (M0876) High pH TRS
buffer (K8004, EnVision mouse
CD68 Agilent) 1:500 (K4001, Agilent)
Leica (NCL-L- High pH TRS
CD163) buffer (K8004, EnVision mouse
CD163 Agilent) 1:300 (K4001, Agilent)

Table 2.8 IHC conditions for antibody of interests. Description of antibody marker (CD3, CD8,
CD68, CD163), retrieval conditions, antibody dilution.
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2.2.2 Scoring

Images were analysed at x20 magnification using the digital imaging platform HALO®
(Indica Labs, Albuquerque, USA). Specific thresholds were developed for whole cell
staining per marker and a weighted histoscore (H score) generated for individual cores. H
scores are calculated as follows; (1x% weak stain) + (2x % moderate stain) + (3x %
moderate stain), generating scores ranging from 0-300. An average H score was

calculated per patient.

2.2.3 Survival and cumulative incidence analysis

Log-rank survival and univariate cox regression analysis was performed to establish
associations between marker expression and disease specific survival (DSS) with RStudio
(RStudio, Boston, MA, USA) using survminer and survival packages. Cutoff was
established per variable using surv_cutpoint function (table 2.9). This method finds the
optimal statistically relevant cut point of selected variables using maximally selected rank
statistics. Fine Grays mode was generated by R packages cmprsk and bshazard. This
was used to investigate the cumulative incidence of recurrence. This is the instantaneous
rate of occurrence of the given event in cases that have not experienced an event.
Recurrence type was classed as the event of interest. A density heatmap was generated
per marker per pattern of recurrence, Kruskal-Wallis test was performed via package
ggpubr. Statistical significance for all tests mention was set to p<0.05 and reported to 3

decimal places.

Survival cut-off point per phenotype density in discovery

Phenotype Region Cohort Time (months)  Number Cut-off method Cut-off point Rank number
High - 179
CD3 Whole core  Discovery  DSS 238 LQ 100 Low - 59
High - 179
CD8 Whoel core  Discovery  DSS 238 LQ 100 Low - 59

Table 2.9 Rcutoff scores for Kaplan-Meier DSS IHC analysis. Table illustrates the markers and
their associated cut-off method and cut-off point per time variable, disease specific survival (DSS).
Number of patients generated per rank is indicated by rank number column. Table is limited to

markers that are frequently referred to throughout the thesis.



75
2.3 Multiplex

To perform deep phenotyping of the pancreatic cancer landscape and explore cellular
spatial relationships, a multiplex immunofluorescence assay using the Phenolmager™
from Akoya Biosciences® (Akoya Biosciences, Marlborough, MA, US) was developed.
The entire process is split into three phases; optimisation and image generation, image

analysis for data extraction, and data analysis (figure 2.1).

Phase 1: Optimisation and Image generation

wA e W ¥ ot

—

-
a s

Optimisation Imaging Spectral Unmixing Images ready for analysis
and
Staining

Phase 2: Image analysis and data extraction

Wy

Image analysis Deep learning: Nuclei mask Deep learning: Tissue mask

Phase 3: Data analysis

Studio —

Density and TS
Spatiaranal sis - Neighbourhood  Neighbourhood
y Nearest Neighbour analysis Fetibone

Figure 2.1 Phases of Phenolmager™ workflow. Diagram showing the full workflow from
optimisation to in-depth analysis. Phase 1 encompasses antibody optimisation to spectral unmixing
of images, phase 2 encompasses image analysis with Visiopharm® using artificial intelligence
generated algorithms, and phase 3 encompasses data analysis with multiple platforms including

RStudio for single cell spatial metrics, CytoMAP for neighbourhood analysis.

Multiplex immunofluorescence (mlF) is a cyclic multi-antibody staining technique based on
a Tyramide Signal Amplification-Horse Radish Peroxidase (TSA-HRP) reaction. The
assay works similarly to standard HRP based signal amplification assays. A secondary
antibody conjugated to TSA-HRP is used to indirectly amplify the primary antibody. As
multiple antibodies are being utilised, different fluorophores, each with a specific excitation
and emission spectra are needed to distinguish between epitopes. HRP amplifies the
fluorophore (Opal) signal by catalysing the reaction of labelled tyramide into free radicals,
forming covalent bonds with tyrosine sites present on the endogenous protein. This assay
was validated and performed in collaboration with John Le Quesne’s lab, including Silvia

Martinelli and Leah Officer-Jones. An automated staining procedure using the Ventana
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Discovery ULTRA™ (Roche Diagnostic, Oro Valley, AZ, US) was established and images
were generated by Akoya Vectra Polaris™ (Version 1.0.13, Akoya Biosciences,
Marlborough, MA, US).

2.3.1 Phase 1: Optimisation and image generation
2.3.1.1 Panel design

A panel was generated in collaboration with Joanne Edwards lab, consisting of T cells (
CD3, CD8, FOXP3), macrophage (CD68), fibroblast (aSMA) and tumour cell (PanCk)
markers (table 2.10). Markers were selected as they represent the most commonly
expressed cells within the pancreatic landscape, and there is limited information regarding
the spatial interactions between these cells. Antibodies selected were either diagnostic
grade or sourced from in reputable papers (table 2.11). Antibody concentrations and panel

locations were validated on test tonsil and PDAC tissue.

Marker  Co-expression Cell lineage Phenotype Immune Co-expressed Immune cell
expected (single) classification (single) Phenotypes classification
PanCk No Epithelial PanCk+ Epithelial tumour NA NA

Tissue resident

myofibroblasts/ vascular Fibroblast/

aSMA No smooth muscle cells aSMA+ myofibroblast NA NA
Common lymphoid Effector T cell/ Helper

CD3 Yes progenitor CD3+CD8- Tcell CD3CD8+ Cytotoxic T cell
Common lymphoid Cytotoxic T cell/

CD8 Yes progenitor CD8+CD3- potential NK cell CD3CD8+ Cytotoxic T cell
Common myeloid

FOXP3 Yes progenitor FOXP3+ T regulatory cell FOXP3CD3+ T regulatory cell
Common lymphoid Macrophage

CD68 No progenitor CD68+ (proinflammtory) NA NA

Table 2.10 Multiplex immune panel markers. Summary table showing the markers selected for
the Phenolmager™ assay, including PanCk, aSMA, CD3, CD8, FOXP3 and CD68. Co-expression
status, cell lineage, phenotype and immune classification is shown for single expressing and co-

expressing markers.

2.3.1.2 Automated staining

An automated staining procedure was performed on the Ventana Discovery ULTRA™
(Roche Diagnostic, Oro Valley, AZ, US) using the protocol Imm Phentype 4950. To
generate a Discovery and validation cohort, two batches were stained at separate time
points, the same antibody lot numbers were used. Briefly, slides were baked at 60-C, and

antigen retrieval (950-124, Roche Diagnostic) performed (table 2.11). Slides were
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incubated with the appropriate blocking buffer to prevent non-specific binding, and first
primary antibody was dispensed (table 2.11). The appropriate secondary antibody (Roche
Diagnostic) was dispensed and washed (Discovery wash, Roche Diagnostic) and opal
fluorophore (NEL821001KT, Akoya Biosciences) applied (table 2.11). This staining
process is repeated from the antigen retrieval step for all 6 antibodies. Notably, the first
retrieval step is to expose the epitopes induced by paraffinization, the subsequent retrieval
steps are focused on stripping the primary antibody to allow the next primary to bind. After
the final fluorophore step, the counterstain DAPI was applied. Slides were washed and

cover slips mounted using Diamond ProLong™ (P36970, ThermoFisher Scientific).

Marker Assay Company Catalogue  Retrieval buffer Blockingbuffer  Antibody Secondary  Opal Location Channel
type number dilution (catalogue
number)
cD3 miF  RocheTissue 5278422001 Cellconditioning buffer Roche Tissue RTU OmniMap 570 ! TRITC
Diagnostics Tris-EDTA based buffer DiagnosticGoatlg anti-RtHRP
pH7.8 block (760-4311)
CD8a miF  CellSignaling 70306 Cell conditioning buffer Roche Tissue 1:100 OmniMap 520 5 FITC
Technology Tris-EDTA based buffer DiagnosticGoatlg anti-Ms HRP
pH7.8 block (760-4310)
FOXP3 mIF  Abcam 20034 Cell conditioning buffer Roche Tissue 1:20 OmniMap 690 2 Cy5
Tris-EDTA based buffer DiagnosticGoatlg anti-Ms HRP
pH7.8 block (760-4310)
CD68 miF  CellSignalling 76437 Cell conditioning buffer Roche Tissue 1:200 OmniMap 620 1 TexasRed
Technology Tris-EDTA based buffer DiagnosticGoatlg anti-RtHRP
pH7.8 block (760-4311)
asMA miF  RocheTissue 5268303001 Cellconditioning buffer Roche Tissue RTU OmniMap 540 3 FITC
Diagnostics Tris-EDTA based buffer DiagnosticGoatlg anti-Ms HRP
pH7.8 block (760-4310)
PanCk miIF Leica AE1/AE3-601- Cell conditioning buffer Roche Tissue 1:250 OmniMap 650 6 Cy5
AEL/AE3 Biosystems  L-CE Tris-EDTA based buffer DiagnosticGoatlg anti-Ms HRP
pH7.8 block (760-4310)
DAPI miF  RocheTissue 5268826001 Cellconditioning buffer NA RTU NA NA 7 DAPI/780
Diagnostics Tris-EDTA based buffer
pH7.8

Table 2.11 mIF conditions per marker. Summary table includes primary antibody details, retrieval
and blocking buffers used. Primary antibody dilutions range from 1:20 to 1:250, or are ready-to-use
(RTU). Opal refers to the fluorophore matched to the secondary, location indicates what cycle the

antibody is used. Channel per opal is indicted.

2.3.1.3 Slide visualization and spectral unmixing

Multiplex stained TMAs were scanned at 20x using the Vectra Polaris™ (Akoya
Biosciences, Marlborough, MA, US). An unmixing library was created using single stain
images per marker plus DAPI counterstain. The spectra per marker was extracted via
InForm® (Version 2.5.1, Akoya Biosciences, Marlborough, MA, US) and used to create a
true emission spectra. An unstained PDAC TMA was used as an autofluorescence
reference. This library was used to unmix raw images, generating component images for
image analysis. When using multiple markers simultaneously on the same section,
spectral bleed through becomes an issue. This is when fluorophores with a specific
excitation-emission spectra corresponding to the wavelength of a set channel, are
detected in another channel. This is due to overlap between the peripheral ends of the
wavelengths in different channels (figure 2.1). The spectral library created is essential to

correct this overlap.
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2.3.2 Phase 2: image analysis and data extraction
2.3.2.1 Cell segmentation

A U-NET Deep Learning APP was trained for DAPI nuclear detection using the Author™
module on VISIOPHARM® (VISIOPHARM, Harsholm, Denmark). A base template
established by members of the John Le Quesne lab was used as a starting point. Using
PDAC images with variable DAPI pixel intensity, regions of interest were selected, and
nuclei annotated. An iterative training proceeded as follows;

annotate > train app > run on example cores > correct U-NET annotations > re-train.

The APP was trained until at least 90% of the images across discovery and validation
were correctly segmented, 20% of the cohorts were reviewed. Reviewing process was
aided by Rachel Pennie and Leah Officer-Jones. The final APP was trained for
approximately 2.0 million iterations and had ~7% error rate. Post processing steps were
included to remove artefacts, classed as objects <3um, and a 35 pixel cell expansion was
added, generating a whole cell label. Additional post-processing steps included producing

pixel intensities per Opal, X Y coordinates per cell, and cell count per core.

2.3.2.2 Tissue segmentation

A Deep Learning APP was trained using a DeepLabv3+ module for tissue segmentation
using the Author™ module on VISIOPHARM® (VISIOPHARM, Hgrsholm, Denmark). The
APP was trained from scratch to select epithelial and non-epithelial tissue. The PanCk
opal 650 was trained as the tumour segment feature, and the remaining tissue was
annotated as tumour microenvironment. The same training steps as in chapter 2.3.2.1
were followed. The APP was trained until at least 90% of the images across discovery and
validation cohorts were correctly labelled, 20% of the cohorts were reviewed. Reviewing
process was aided by Rachel Pennie and Leah Officer-Jones. The final APP was trained
for approximately 1 million iterations and had ~3% error rate. Post processing steps were
included to fill small unlabelled gaps found within masks and remove miscellaneous tissue

labels <3um.

2.3.2.3 Phenotyping

Biased phenotyping was carried out using a thresholded pixel intensity per marker (figure
2.3). Co-expressing phenotypes were cytotoxic T cells, defined by CD3+CD8+ cells, T
cells defined by CD3+CD8- and T regulatory cells defined by FOXP3+CD3+. Single
expressing phenotypes were CD68+ macrophages, aSMA+ fibroblasts, PanCk+ epithelial
cells. Additionally, a single expressing CD8+CD3- population was observed, possibly a

natural killer cell subpopulation or due to assay limitations and CD3 masking. Phenotypes
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were reviewed on VISIOPHARM® (VISIOPHARM, Hgrsholm, Denmark).

2.3.3 Phase 3: Analysis

2.3.3.1 Survival analysis

Log-rank survival and univariate cox regression analysis was performed to establish
associations for disease specific survival (DSS) and recurrence free survival (RFS) with
RStudio (RStudio, Boston, MA, USA) using survminer and survival packages. At the time
of analysis, no established cutoff methods had been reported in pancreatic cancer. Cutoff
was determined per averaged variable per patient using a variety of cutoff methods for
exploratory purposes. All variables were tested with surv_cutpoint function (Rcutoff),
Lower Quantile (LQ), Upper Quantile (UQ) and Median (Med), the best method was
selected (table 2.12). Notably cutoff methods established in the discovery naive cohort
were replicated in the validation naive cohort. In Kaplan-Meiers with over two curves,
pairwise comparison over strata was used. Statistical significance was set to p<0.05, and

reported to 3 decimal places.

2.3.3.2 Cellular density and ratios

Cellular density per phenotype was generated to establish the base immune landscape in
naive and neoadjuvant cohorts. Comparisons were made using p value adjusted
Bonferroni T test. This was done using ggplot and ggpubr package from RStudio
(RStudio, Boston, MA, USA). Density ratios were generated between two previously
ranked phenotypes. Survival analysis and cut-offs were generated as stated in 1.3.3.1
(table 2.12).

2.3.3.3 Spatial distance metrics and survival analysis

Three main spatial metrics were explored to establish the spatial immune landscape in
both naive and neoadjuvant settings. Nearest neighbour (NN) analysis calculates the
nearest neighbour of individual cells to a specific phenotype in a set distance e.g.,
distance of cell x to cell y. Mutual nearest neighbour (mNN) calculates the distance
between mutual pairs. Radius analysis explores the density of cells from a set distance to
the central cell. These metrics were generated between all phenotypes using the
PhenoptR package. The average boxplots and comparisons were made using p value
adjusted Bonferroni T test, using ggplot and ggpubr package from RStudio (RStudio,
Boston, MA, USA). Survival analysis and cut-offs were generated as stated in 1.3.3.1
(table 2.12)



Survival cut-off for most significant phenotype density and nearest neighbour for

m

specificsurvival

Phenotype pattern Region Treatment Cohort Time Group Number Cut-off Cut-offRank
(months) method point number
CD3 Wholecore Naive Discovery DSS All 238 La 178  High- 179
patients Low - 60
CD68 Wholecore Naive Discovery Dss All 238 La 270 High-179
patients Low - 60
PanCk Wholecore Neoadjuvant Meoadjuvant DSS All 72 Reutoff 447  High-42
patients Low - 28
CD3CD8 Wholecore Neoadjuvant  Meoadjuvant  DSS All 72 Reutoff 334 High-37
patients Low - 33
CD63 Wholecore MNecadjuvant MNeoadjuvant  DSS All 72 Reutoff 1204 High- 31
patients Low - 39
Distance to PanCk from CD68 Wholecore Naive Discovery Dss All 238 Med 50 High- 116
patients Low - 116
Distance to CD3 from CD68 Wholecore Naive Discovery Dss All 238 Med 90 High- 116
patients Low - 116
Distance to PanCk from CD68 Wholecore Neoadjuvant  Meoadjuvant  DSS All 72 Reutoff 98 High- 39
patients Low - 31
Distance to CD3 from CD3CD8 Wholecore MNecadjuvant MNeoadjuvant  DSS All 72 Reutoff 84 High- 38
patients Low - 34
Distanceto CD3CD8 from FOXP3CD3  Wholecore Neoadjuvant  Meoadjuvant  DSS All 72 Reutoff 29 High- 44
patients Low - 26

Table 2.12 Density and nearest neighbour cutoff scores for Kaplan-Meier DSS analysis.
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Summary table illustrates the most important density and nearest neighbour markers across naive

and neoadjuvant cohorts, their associated cut-off method and cut-off point per time variable

disease specific survival (DSS). Number of patients generated per rank is indicated by rank

number column. Table is limited to markers that are frequently referred to throughout the thesis.



81

2.3.3.4 Multivariate cox regression and decision tree analysis

Multivariate cox regression and decision tree analysis were performed on density and
nearest neighbour significant patterns in naive and neoadjuvant cohorts. This was done to
filter for patterns with the best chance of biological significance. Multivariate cox
regression and decision tree analysis were performed using four main packages, survival,

survminer, rpart.plot and partykit.

2.3.3.5 CytoMAP neighbourhood analysis

Raw pixel intensity per opal data and cell X Y coordinates were entered into MATLAB®
CytoMAP (MathWorks, Natick, MA, US) to validate biased phenotypes generated in
chapter 2.3.2.3. Normalization was carried out using the standardize method across each
sample (subtract mean, divide by standard deviation). Number of neighbourhood regions
was calculated using the Davies Bouldin method and clustering was carried out using the

nearest neighbour self-organizing map algorithm.

2.3.3.6 Ripley’s K function

The well-known spatiotemporal point pattern analysis method ‘Ripley’s K function’ was
repurposed for single cell analysis. This method determines the pattern of distribution of

points (in this case cells) within a set boundary. It classes points into three categories;

1. Random distribution — complete random distribution of points with no predictable
pattern, estimated by Poisson process
2. Clustered — points clumped together, and the curve produced lies above the

Poisson curve

3. Dispersed — points are scattered but have a predictable pattern, curve lies below

the Poisson

The pattern of distribution was established per phenotype within naive and neoadjuvant

cohorts using the R package spatstat.

2.4 PhenoCycler

To establish the single cell protein landscape for T cells, B cells and dendritic cells, Akoya
Biosciences® (Akoya Biosciences, Marlborough, MA, US) ultra-high plex assay
PhenoCycler™ was trialled. This was part of a technology access program, using a ready-
to-use panel, STEP core plus enhancement (Akoya Biosciences, Marlborough, MA, US).

A Glasgow naive cohort 2 (chapter 2.1.1.4) TMA section was sent to Akoya Biosciences®,
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the assay was performed, and images were sent back for analysis. Briefly, after antigen
retrieval and panel incubation, samples are placed in the PhenoCycler-Fusion™ and
undergo cycles of fluorescent bound oligonucleotide flushed into the flow cell, binding to
antibodies, image capture, then probe cleavage and removal. This cycle occurs 16 times
as individual imaging cycles are restricted to 4 channels at any one time. Phenotyping
was performed using the open-source platform QuPath (QuPath, Edinburgh, UK) on a
filtered dataset. Markers were split into cytotoxic T cells (CD3e+CD8+), active T cells
(CD3e+CD8+ICOSH+), inactive T cells (CD3e+CD8+TIM3+), helper T cells (CD3e+CD4+),
B cells (CD20) and dendritic cells (CD11b). Survival analysis was performed as outlined in

chapter 2.3.3.1, using R function surv_cutpoint as the cutoff method.

2.5 GeoMx assays

2.5.1 Assay overview

GeoMx® DSP (NanoString, Seattle, WA, US) is spatial-resolved transcriptomic and
proteomic method which works using digital optical barcoding. The assay was performed
according to manufacturer’s protocol and differs slightly between transcriptome and
protein panels. The day before starting the assay, samples were re-baked overnight at
60-C. Antigen retrieval was performed using the Leica BOND™ (Leica BIOSYSTEMS,
Wetzlar, Germany) at HIER 20 minutes with ER2 and a 15 minute incubation at 37-C with
recombinant Proteinase K (AM2546, Invitrogen) at 1pg/ml. This step was performed in
collaboration with CRUK Scotland Institute histology department. Samples undergo
overnight in situ hybridization (ISH) at 37-C using an oligonucleotide probe panel. Probes
are composed up of a target oligo and an indexing oligo, bound together by an ultraviolet
(UV) linker. Unbound probes are removed using a series of stringent washes at 37-C. Two
different probe sets and mIF panels were used for protein and transcriptomic assays, see
chapter 2.5.1 and chapter 2.5.2 respectively. A mini multiplex immunofluorescence (mIF)
panel using a mixture of immune and morphology oligo-conjugated antibodies was used
to visualise pancreatic tissue and aid selection of regions of interest (ROI) and areas of
illumination (AOIls) (figure 2.2). After cocktail primary antibody staining using the
appropriate mIF panel, samples were loaded onto the GeoMx® machine for ROI
selection. Localised ultraviolet light cleaves the indexing oligo tags at the UV linker site.
Tags are aspirated and dispensed into a 96-well collection plate. Tags are hybridized to
region specific barcodes and sequenced using either the nCounter® (NanoString, Seattle,
WA, US) for protein, or the NextSeq 1000/2000 sequencer (lllumina, San Diego, CA, US)
for RNA (figure 2.2).
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Figure 2.2 Overview of GeoMx® DSP workflow. Overview of NanoString DSP workflow adapted
with permission from NanoString®. Workflow is split into panel in situ hybridization, mIF staining,

ROl selection and mask generation, oligo tags cleaved and collection for sequencing.

2.5.2 Immune oncology protein panel

A combined GeoMx® Immuno-oncology (NanoString) panel was used on the Glasgow
naive cohort 1 (see chapter 2.1.1.4) to further establish the immune landscape and
explore immune functional status. This was completed as part of a technology access
program, with the assistance of NanoString® scientists. This panel is composed of 60
proteins, split into 5 modules defined by broad function, including Pan-tumour (GMX-
PROMOD-NCT-HPT-12, NanoString), immune cell profiling (GMX-PROCO-NCT-HICP-
12, NanoString), immune activation status module (GMX-PROMOD-NCT-HIAS-12,
NanoString), 10 drug target module (GMX-PROMOD-NCT-HIODT-12, NanoString) and
PISK/AKT signalling (GMX-PROMOD-NCT-HPI3K-12, NanoString) modules. The mIF
panel was a ready-to-use technology access program immune morphology panel
(NanoString, Seattle, WA, US), consisting of nuclear stain Syto13, PanCk, CD3 and aSMA
(NanoString) (table 2.13). A total of 48 geometric ROls were selected, 48 epithelial AOls
and 48 TME AOQIs, encompassing all 28 patients from the Glasgow naive cohort 1

(chapter 2.1.1.4). Approximately two ROIls were taken per patient. ROl diameter was
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660um. AOIs were created using the native thresholding method on GeoMx® DSP control
centre, with epithelial AOls generated from PanCk+ staining, and TME AOIs generated

from PanCk- stain.

Marker Assay type Company  Dilution Channel
Sytol3 10 panel NanoString 1:10 FITC
PanCk 10 panel NanoString 1:40 Texas Red
CD3 |0 panel NanoString  1:40 Cy3
aSMA 1O panel NanoString 1:40 Cy5

Table 2.13 mIF panel for immuno-oncology panel in Glasgow cohort 1. Summary of marker,
company it is produced by, and the dilution. The assay panel (immuno-oncology) and fluorescent
channel used is also indicated

2.5.21 QC, filtering and normalization

Quality control (QC), housekeeping normalization and filtering was performed on this
dataset using the R package GeoMxTools. Housekeeping markers were defined by
GAPDH, Histone H3 and RPS6. QC and filtering methods were performed following the
manufacturer's guidelines. All 98 AOls passed technical QC. Targets with signal-to-noise

ratio below 1.3 were reviewed and filtered as appropriate.

2.5.2.2 DSP marker concordance analysis

Concordance between IHC markers (chapter 2.2) and matched DSP markers was
performed with Spearman Rank correlation using the ggplot2 R package. Statistical
significance was set to p<0.05, and reported to 3 decimal places. Coefficient value,

denoted by Rho, of 20.8 demonstrates strong concordance.

2.5.2.3 Differential expression analysis

Differential expression analysis (DEA) was carried out to establish the differences
between two comparison groups. DEA and volcano plots were generated by EdgeR and
EnhancedVolcano R package. Statistical significance was set to p adjusted <0.05 and
log2 fold change 1.5/-1.5, and reported to 3 decimal places. Naive epithelial AOls and
TME AOIs were compared.

2.5.2.4 Unbiased clustering heatmap

Unbiased clustering of averaged protein expression per patient was visualised using a
heatmap. Annotations were included for immune high and immune low patients.

Heatmaps were drawn using ComplexHeatmap R package.
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2.5.2.5 Survival analysis
Survival analysis was performed for CD3 and CD8 DSP protein markers to validate the
protein prognostic trend. Prognostic value of immune high and immune low was tested.

Further analysis was performed on all markers per AOI. Survival analysis and cutoff

method was performed as outlined in chapter 2.3.3.1 (table 2.14).

Survival cut-off for most significant phenotype in disease specific survival

Variable Region Treatment Cohort Time Group Number Cut-off Cut-off Rank
{months) method point number
CD3 TME Naive Glasgow cohort1 DSS All patients 28 Med 7.4 High - 14
Low- 13
CD8 TME Naive Glasgow cohort1 DSS All patients 28 Med 7.5 High - 14
Low- 13
B7-H3 Tumour Naive Glasgow cohort1 DSS All patients 28 Rcutoff 10.2 High - 5
Low- 22

Table 2.14 Cutoff scores for Kaplan-Meier DSS analysis. Summary table illustrates the markers
and their associated cut-off method and cut-off point per time variable, disease specific survival
(DSS) and recurrence free survival (RFS). Number of patients generated per rank is indicated by
rank number column. Table is limited to markers that are frequently referred to throughout the

thesis.

2.5.3 WTA panel

The GeoMx® whole transcriptome atlas panel (GMX-RNA-NGSHUWTA-4, NanoString)
was used on the Glasgow naive cohort 2 (chapter 2.1.1.4) and neoadjuvant combined
cohort (chapter 2.1.1.7) to determine the spatial transcriptomic landscape. This panel is
composed of 18,000+ genes, excluding non-functional genes. The mIF panel was partially
made up of ready-to-use NanoString® morphology kit antibodies (GMX-RNA-
MORPHHST-12, NanoString), Syto13 and PanCk, and in-house conjugated antibodies,
CD45 (M087629-2, ThermoFisher Scientific) and aSMA (53-9760-82, ThermoFisher
Scientific). Antibody-fluorophore conjugation was carried out using Alexa Fluor™ kits as
per manufacture protocol (table 2.15). Antibodies were approved for use by NanoString®.
Concentrations were optimised on control tonsil and PDAC tissue, trialling a range of
dilutions (1:50-1:500) until the final conditions of 1 hour incubation at room temperature
with 1:200 dilution for both CD45 and aSMA were validated. This was completed in-house
with the assistance of Holly Leslie. TMAs were used throughout the course of this thesis,
resulting in different methods used to generate AOIls due to technological advancements.
These are discussed in chapter 2.5.2.1. The same AOI types were generated, producing
an epithelial PanCk+ AOQI, fibroblast rich aSMA+ AOI, and immune AOI made up of the

remainder of the ROI. Three main studies were performed;
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1. Base naive Spatial Transcriptomic landscape - investigating inter and intra tumour

heterogeneity, and relevant clinical subgroup comparisons.

2. Base neoadjuvant Spatial Transcriptomic landscape - investigating inter tumour

heterogeneity, distinct histology, and alterations between neoadjuvant treatment

methods

3. Naive versus neoadjuvant - comparison of matched segments/AQls, exploring

Spatial Transcriptomic shift between clinically relevant groups.

Marker Assay type Company Dilution Conjugation kit Channel
(catalogue
number)
Sytol3  WTA NanoString® 1:10 NA FITC
PanCk  WTA NanoString® 1:40 NA Cy3
aSMA WTA ThermoFisher 1:200 Alexa Fluor 594 Texas Red
Scientific® (A20185)
ThermoFisher Alexa Fluor 647 Cy5
CD45 WTA Scientific® 1:200 (A20186)

Table 2.15 mIF panel for WTA panel in Glasgow cohort 1. Summary of marker, company it is

produced by, and the dilution. The assay panel (whole transcriptome atlas) and fluorescent channel

used is also indicated

2.5.3.1 Area of interest selection process

As the Glasgow naive cohort 2 (chapter 2.1.1.4) was one of the first experiments

performed, the selection process relied on the native GeoMx® DSP control centre pixel
threshold method. A total of 167 geometric ROIs were selected, 51 epithelial AOls, 41
aSMA AOQiIs, 53 immune AOls, and 3 whole core AOls. A total of 58 patients were

included. The neoadjuvant combined cohort (chapter 2.1.1.7) was performed at a later

date, after considerable technological improvements. A deep learning U-NET tissue

segmentation approach was developed using the Author™ module on VISIOPHARM®

(VISIOPHARM, Hgrsholm, Denmark). This method followed the same training steps as

outlined in chapter 2.3.2.2. The tissue segmentation APP was initially trained on PDAC

optimisation tissue, then further optimised on the actual stained sample on the day of ROI
collection. A total of 310 geometric ROls were selected, 95 epithelial AOls, 95 aSMA
AOls, 81 immune AOQIs, and 15 whole core AQIs . 71 out of 85 patients were included.

Due to the cost per run, only 1 ROI per patient was taken for the naive and neoadjuvant
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TMA cohorts. As a small validatory experiment of TMA work, the GeoMx® whole
transcriptome atlas (WTA) panel was performed on two matched biopsy and neoadjuvant
treated resections from the clinical trial PRIMUS 002 cohort (chapter 2.1.1.8). A total of 20
ROIs were taken for PP00144 across biopsy and resection, 9 epithelial AOls, 7 aSMA
AOIls,13 immune AOIs and 4 whole core AOIs. 11 total ROIs were selected for PP00171
across biopsy and resection, 8 epithelial AOls, 6, aSMA AOls, 9 immune AOls, and 1
whole core AOI. A mixture of geometric circle ROIs and polygon ROIs were drawn across
the above cohorts. Geometric ROl diameter was set to 660um diameter, and the

maximum polygon size was 660um x 785um.

2.5.3.2 QC, filtering and normalization

The first QC steps were performed out on the GeoMx® DSP control centre. The initial
dataset was visually inspected to ensure correct overall deduplication of read counts.
Most technical and biological QC parameters were carried out as per manufacturer
suggestions. The two parameters altered were RNA specific technical background QC,
negative probe count geomean, and nuclei count. Negative probe count checks the level
of non-specific binding probes per AOI to ensure the floor of detection is reached. This
parameter is highly dependent on tissue type and disease state. The count was set to 4
for PDAC FFPE tissue. Nuclear count per AOI was set to 100. AOls that fell below these
set thresholds were flagged and investigated via methods including principle component
analysis (PCA). After QC steps, the total number of AOls for the Glasgow naive cohort 2
was 148/167 and the neoadjuvant combined cohort was 286/310. Using a lenient filtering
approach, targets with values below median positive probe count in 5% of AOls were
filtered. Normalization was carried out using the Q3 method and batch correction was
applied. Notably multiple different filtering and normalization methods were explored and

can be implemented (supplementary 8.1)

2.5.3.3 Differential expression analysis

Differential expression analysis was performed on all comparison groups as outlined in
chapter 2.5.1.3.

2.5.3.4 Geneset enrichment analysis

Geneset enrichment analysis (GSEA) determines the aberrated pathways between two
comparison groups. All comparisons were made. GSEA and bar charts were generated by
the fgsea R package. Statistical significance was set to p adjusted <0.05 and normalised

enrichment score (NES) 1.5/-1.5, and reported to 3 decimal places.
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2.5.3.5 Survival

Survival analysis was performed for intra-AQI clustering (chapter 2.5.2.5) and B7-H3
expression (chapter 2.5.2.9). Survival analysis was generated as outlined in chapter
2.3.3.1. B7-H3 cut-off method was replicated from the immune oncology protein panel

(chapter 2.5.2.5), resulting in a 20high-80low split used.

2.5.3.6 Inter and intra tumour clustering analysis

Clustering was explored between all AOls to confirm inter-tumour differences. Intra-
tumour clustering was performed to determine heterogeneity within epithelium, aSMA and
immune AOIs. Principle component analysis (PCA) determines the similarity of samples
inputted by clustering. PCA and plots were generated by Cairo, ggplot2 and VennDiagram
R packages.

2.5.3.7 Immune cell deconvolution

Immune cell deconvolution estimates the immune cells present within the bulk
transcriptomic context using validated single cell signatures. SpatialDecon, a NanoString®
(NanoString, Seattle, WA, US) tool specifically designed for Spatial Transcriptomic data,
was implemented using R package SpatialDecon. Immune cell count per 100 cells was
generated, and all groups were compared. Statistical analysis was performed using

Wilcoxon test, and significance threshold set to p<0.05, reported to 3 decimal places.

2.5.3.8 Molecular subtyping

Molecular subtyping was performed with epithelial AOls, using a filtered
Squamous/Classical gene list. A total squamous score was generated per epithelial AOI
to determine squamous signature strength. Bulk molecular subtyped samples were
classed as true subtypes. Suitability of molecular subtyping using spatial epithelial AOls
was determined by comparing it to bulk subtyping, epithelial cluster ranks (chapter
2.5.2.5) and total squamous score. Bulk was previously carried out by Rosie Upstill-
Goddard as part of a larger cohort. This analysis was performed using

ConsensusClusterPlus, singscore and ComplexHeatmap R packages.

2.5.3.9 B7-H3 expression

To investigate the transcriptomic expression of B7-H3 across the naive and neoadjuvant
pancreatic cancer setting, epithelial and averaged whole core expression was explored.
Survival analysis (chapter 2.5.2.5), DEA (chapter 2.5.2.3) and GSEA (chapter 2.5.2.4)

were performed. Average AOI boxplots were drawn with ggplot2 R package, and
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statistical analysis was performed using Kruskal-Wallis test, with significance threshold set
to p<0.05.

2.5.3.10 Sankey plot

To visualize the immune cell switch in matched biopsy and neoadjuvant treated PRIMUS
whole sections, a Sankey plot was generated. The percentage estimated cell population
(chapter 2.5.2.6) from biopsy immune AOIs to neoadjuvant treated immune segments was

determined. Sankey plots were generated using networkD3 R package.

2.5.3.11 mIF integration with Spatial Transcriptomics

To determine the underlying transcriptomic landscape of relevant prognostic mIF protein
ranked trends (chapter 2.3), matched samples were integrated into GeoMx® data. DEA
(chapter 2.5.1.3), GSEA (chapter 2.5.2.4) and immune cell deconvolution (chapter 2.5.2.6)

was performed.

Batch analysis for DEA, GSEA, immune cell deconvolution and PCA plots were performed
using Colin Woods GeoMx automated pipeline R script.
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2.6 CosMx

2.6.1 Sample preparation and probe incubation

The CosMx™ immune-oncology protein panel (CMX-H-IOP-64P-P, NanoString) was used
on the Glasgow naive cohort 2 (chapter 2.1.1.4) and neoadjuvant combined cohort
(chapter 2.1.1.7) to determine the spatial single cell proteomic landscape. This panel was
composed of 64 proteins, including B cell, T cell, dendritic cell and B7-H3 markers. The
assay was performed as per manufacturers protocol with the help of Claire Kennedy and
Yoanna Doncheva. Sections were placed in Leica BOND PLUS slides within the
approximate gasket area (20mmx15mm). Slides were baked overnight at 60-C the day
before. A semi-automated tissue prep protocol was run on the Leica BOND™ in
collaboration with the CRUK Scotland Institute histology department. Antigen retrieval was
performed at HIER 20 minutes with ER2 at 100-C and tissue permeabilization using
recombinant Proteinase K (AM2546, Invitrogen) at 37-C using 3ug/ml for 15 minutes.
Subsequently, an incubation frame (NanoString, CMX-FCA) and fiducial mixture (CMX-
FFPE-SP-P, NanoString) was applied to allow for future image registration on the
CosMx™. A series of post fixation and Sulfo-NHS-Acetate (26777, ThermoFisher
Scientific) steps were carried out to prepare the samples for overnight /SH of the protein
probe mix at 37-C. A series of stringent washes at 37-C were carried out to remove

unbound probes.

2.6.2 mlF staining and CosMx™ machine preparation

Manual staining was performed as per the manufacturers protocol. Briefly, a ready-to-use
immunofluorescence panel was applied to PDAC TMAs. Nuclear staining, 1:40 DAPI
(CMX-H-UCS-12-P, NanoString) dilution, was incubated first at room temperature and
subsequent staining at 1:25 dilution for cell segmentation mix CD298/B2M (CMX-H-UCS-
12-P, NanoString), PanCk (CMX-H-IO-PCKCD45- MM34-P, NanoString) and CD45
(CMX-H-10-PCKCD45- MM34-P, NanoString). After a final Sulfo-NHS-Acetate (26777,
ThermoFisher Scientific) incubation, the flow cell was assembled, slides were placed into
the CosMx™, and machine preparatory steps were complete. Pre-bleaching configuration
C profile and cell segmentation configuration A human tissue profile were selected on the
machine. The CosMx™ cell segmentation is based on the Cellpose algorithm, using a
nuclear segmentation and cell expansion method. This was optimised by NanoString® for

CosMx™ experiments.
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2.6.3 FOV selection

The field of view is currently limited to 500x500um squares. Due to limited size of the
imaging gasket, 20mmx15mm, not all Glasgow naive cohort 2 and neoadjuvant combined
cohort cores could be selected. A total of 38 patients were selected for Glasgow naive
cohort 2, and 58 patients for neoadjuvant combined cohort. Using the grid method,
multiple FOVs were placed to cover the whole core (figure 2.3). A total of 150 FOVs were
selected for Glasgow naive cohort 2 and 337 FOVs were selected for neoadjuvant

combined cohort.

FOVO001 = | ~  FOV002

FOV 003 FOV 004

Figure 2.3 Example FOV selection on Glasgow naive cohort 2. Demonstrating four FOVs

selected to cover the entire core. DAPI (blue) and PanCk (green) are shown.

2.6.4 Cyclical fluorescent oligonucleotide imaging

The CosMx™ immune-oncology protein panel is an imaging-based assay. Once ISH
probes are bound to the PDAC tissue and samples are placed in the machine, fluorescent
readout reported probes are dispensed into flow cells. ISH probes have a readout domain
that allows four reporters to bind sequentially, detecting unique proteins. Each reporter set
produces a Z stack image with X, Y and Z coordinates generated by location
oligonucleotide probes within each segmented cell. Images are subsequently flattened,

and probes are assigned per cell with X and Y coordinates.
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2.6.5 Data extraction

Data download, compilation, reviewing and QC was performed as recommended by

NanoString®. This was done by Tengyu Zhang and Ritika Nara.

2.6.6 Seurat clustering

Using Seurat R package, normalization was performed using the SCTransform function,
accounting for both normalization and variance stability across FOVs and batches. Cell
clustering was performed using Seurat's PCA and UMAP embedding function. To define
cell types found within UMAP clusters generated, B cells (CD20, CD19, IgD), T cells
(CD3, CD4, CD8), dendritic cells (CD11b, CD11c, CD123) and B7-H3 probe expression
were visualized. Additionally, top differentially expressed markers per cluster were
extracted, and co-expression was visually confirmed across the appropriate samples.
Several B cell, T cell and dendritic cell heavy clusters were observed, these were
combined. This generated 3 overall clusters with heavy B cell, T cell and dendritic cell
signatures. Multiple B7-H3 clusters were generated associated with other top expressing

markers, these clusters were kept separate.

2.6.7 Cluster density

Seurat clusters were filtered to only include B cell, T cell, dendritic call and B7-H3 related
clusters and overall density was explored. Boxplots were generated using R package
ggplot2, and statistical analysis performed using a Kruskal-Wallis test with significance
threshold set to p<0.05.

2.6.8 Nearest neighbour

Nearest neighbour was performed as outlined in 2.3.3.3. This was carried out on the
filtered cluster data set, focused on B7-H3 nearest neighbours and visualised using R

package ComplexHeatmap.

2.6.9 Survival analysis

Survival analysis was performed for filtered clustering data for both the Glasgow naive
cohort 2 (chapter 2.1.1.4) and neoadjuvant combined cohort (chapter 2.1.1.7) (table 2.17).

Survival analysis and cut-offs were generated as outlined in chapter 2.3.3.1.
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Survival cut-off for most significant phenotype density in di specific survival
Variable Region Treatment Cohort Time Group  Number Cut-off Cut-off Rank
(months) method point number
CDAT cell cluster 'Wholecore Naive Glasgow cohort 1 DSS All 38 Reutoff 161 High-13
patients Low - 25
CD8Tcell cluster Wholecore Naive Glasgow cohort 1 DSS All 38 Reutoff 18 High-27
patients Low-11
B7-H3 cluster 12 Whole core  Naive Glasgow cohort 1 DSS All 38 Rcutoff 38 High-12
patients Low -23
CDATcell Whole core Neoadjuvant  Neoadjuvant combined DSS All 58 Reutoff 130 High-31
patients Low -27
CD8T cell Whole core  Neoadjuvant  Neoadjuvant combined DSS All 58 Reutoff 31 High-39
patients Low -19
B7-H3 cluster 4 Whole core  Neoadjuvant  Neoadjuvant combined DsS All 58 Reutoff 133 High-30
patients Low -23
B7-H3 cluster 27  Wholecore Neoadjuvant Neoadjuvant combined DSS All 58 Reutoff 3 High-38
patients Low -15

Table 2.16 Cutoff scores for Kaplan-Meier DSS analysis. Summary table illustrates the markers

and their associated cut-off method and cut-off point per time variable, disease specific survival

(DSS). Number of patients generated per rank is indicated by rank number column. Table is limited

to markers that are frequently referred to throughout the thesis.

All RStudio analysis was performed on version 4.3.2 (RStudio, Boston, MA, USA). A wide
range of packages were implemented for analysis, the most relevant ones are mentioned
above. HALO® version 3.0.311 was used for IHC analysis, VISIOPHARM® version

2021.09.2.10918 and QuPath version 0.4.0 was used for mIF image analysis, and

CytoMAP version 1.4.21 was used for unbiased phenotyping and neighbourhood analysis.
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3.1 Introduction

Pancreatic cancer is the 5" most common cancer in the UK, accounting for 6% of all
cancer deaths. The 5 year survival remains dismal at <7%, with limited improvements
seen in the last 50 years [1, 2]. Increased research into this disease has resulted in
biological insights robustly established such as molecular subtypes. Characterisation of
the tumour immune cell microenvironment in pancreatic cancer has been limited by
multiple factors including technology and tissue access. Of the work undertaken, the vast
majority of papers focus heavily on the same cell types, namely T cells and macrophages,
and limited to exploration of naive patients [8, 141, 167, 182, 218]. This is most likely due
to the difficulty in acquiring neoadjuvant tissue. Naive patients have not been treated with
neoadjuvant chemotherapy or chemoradiotherapy, and have undergone upfront resection.
Of these naive patients, most have had adjuvant therapy that was either FOLFIRINOX or

Gemcitabine based.

The PDAC landscape is traditionally thought of being immune barren making it difficult to
study. However, new technologies that allow high-plex phenotyping have enabled the
TME to be studied with a view to discovering new biomarkers [177, 219-223]. Fibroblast,
macrophage and T cell populations are by far the most prevalent populations in pancreatic
cancer, and therefore have been studied most [8, 141, 167, 182, 186, 194, 209, 218,
224]. Recently, B cell interactions with T cells in cancer have gained popularity,
particularly when investigating tertiary lymphoid structures [201, 225-227].
Immunohistochemistry, using FFPE tissue, has been the gold standard technique used to
study immune cell protein expression. [228]. Although other technologies such as Mass
Spectrometry have also been routinely used, IHC is largely more popular and is easily

translatable to the clinic [229].

T lymphocytes are a major player in the adaptive immune pathway. Originating from bone
marrow progenitor and maturing in the thymus into either CD4+ or CD8+ cells, they are
released into the periphery as naive T cells, and subsequently differentiate into either
cytotoxic effector cells (CD8+), helper effector cells (CD4+) and regulatory cells (FOXP3+)
[230]. Cytotoxic effector cells are associated with apoptosis of antigen presenting MHC-I
cells, and increased expression of these cells is consistently positively correlate with
increase survival in treatment naive PDAC patients [8, 182, 231, 232]. Helper effector
cells (CD4+) are associated with almost every adaptive immune response, activating B
cell, CD8 cells and macrophages, and secretion of a range of cytokines resulting in pro-
inflammatory, anti-inflammatory and regulatory functions [233]. These cells tend to
correlate positively with survival, however specific subtyping would be beneficial as the

regulatory subtype is also part of the helper T cell umbrella [8, 182, 234]. Regulatory T
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cells, as the name indicates, regulate the immune cells, in theory to help prevent chronic
inflammation. This results in reducing anti-tumour immunity in pancreatic cancer, and
correlate with worse survival [235]. Macrophages play a significant role in the innate
immune pathway, and originate from haematopoietic cells [236]. Multiple pathways of
differentiation into macrophages have been hypothesized. A school of thought is the
polarization of macrophages according to their external environment into either M1
(classically activated) or M2 (alternatively activated) subsets [178]. This hypothesize has
been criticised by immunologists for being reductive, it may be beneficial to refer to
subsets by their marker expression. CD68 macrophages are involved in phagocytosis,
however the role is yet to be fully determined. Nonetheless, high expression of these cells
is associated with worse prognosis in PDAC [237, 238]. Fibroblasts are located within the
extracellular matrix, where they secrete a vast array of macromolecules that create and
maintain this structural network [154]. There are 3 distinct cancer associated fibroblasts,
with alpha smooth muscle actin (aSMA) expression commonly being used to phenotype
myofibroblasts, which are normally responsible for wound contraction [190]. Continued
expression of these cells results in fibrosis, correlating with a dense fibrotic stroma in
PDAC which is linked to poor survival [163, 193]. The vast majority of studies have
focused on the cellular density of these immune cells, with a new drive to maintain spatial

interactions.

3.2 Aims

To first establish the prognostic value of T cell and macrophage subsets using singleplex
immunohistochemistry in naive pancreatic cancer. Explore the spatial immune cell
landscape in terms of T cell, macrophage, and fibroblast content, density, and spatial
orientation. Distinct histopathological regions for tumour and stroma explored when
appropriate. The immune landscape will be characterised first with consideration given to

appropriate clinical subgroups.
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Naive cohort consisted of a total of 436 pancreatic cancer specimens (table 3.1). These

were split into discovery (n = 244) and validation (n = 192) cohorts. Median survival for

these patients was 23 months for discovery, 18.5 months for validation, and 20.3 months

for naive combined cohorts. The naive Glasgow cohort (n=28) refers to the subgroup of

naive patients used, median survival was approximately 17.2 months. Associated clinical

data is found in chapter 2.1.

TMA Patient Treatment
Study Cohort name TMA number number type
APGIIICGC TMA 8
Discovery 244 Naive
SD-PAN-TMA 1
PDAC-PAN-TMA 5
Validation 192 Naive
Phenolmager NJ-PANC-TMA 7
7 plex assay APGI/ICGC TMA 8
SD-PAN-TMA 1
Naive combined 436 Naive
PDAC-PAN-TMA 5
NJ-PANC-TMA 7
GeoMx DSP
Immune-
Naive Glasgow 1 SD-PAN-TMA 1 28 Naive

oncology

protein assay

Table 3.1 Naive clinical cohorts and associated study. Summary table showing the study and

associated TMAs used, patients number and treatment type. The cohort name column refers to the

cohort name in chapter 2.1.

3.4 T cell signature offers prognostic value in naive

PDAC

Immunohistochemistry (IHC) is a robust method, routinely used to investigate immune

populations in cancer (figure 3.1.a). T lymphocytes and macrophages, perhaps amongst

the most popular immune cell populations, are routinely explored in pancreatic cancer

using this gold standard method, with elevated T cell levels and reduced macrophages

correlating with prognostic benefit. This was used to establish these subsets within

treatment naive pancreatic cancer. A naive PDAC cohort (discovery cohort) was

characterised using CD8, CD3, CD68 and CD163 single plex chromogenic staining. The

digital imaging platform HALO® was used to score the sections. Survival analysis was
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performed showing favourable prognosis associated with increased CD8+ (p=0.043) and
CD3+ (p=0.015) (figure 3.1.b-c). Next, any association between immune infiltration and
pattern of recurrence was investigated. Patients with no recurrence within 24 months of
diagnosis demonstrated elevated CD3+ (p=0.009). Conversely, patients with liver
metastasis, traditionally associated with aggressive disease, had elevated CD68+
expression (p=0.034) (figure 3.1.d). Furthermore, patients who developed liver metastasis

recurred significantly quicker than all other recurrence patterns (p<0.001) (figure 3.1.e).
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Figure 3.1 Immunohistochemistry on naive cohort a). Overview from resection to data analysis
for IHC. Kaplan-Meier curves (disease specific survival) stratified by IHC protein marker expression
(Log-Rank test) for b). CD3 and c). CD8 d). Immune cell density heatmap using Histoscores per
recurrence pattern with Kruskal-Wallis test e). Fine Gray model looking at probability of recurrence

over time for liver recurrence vs rest. Cut-off method established per variable (chapter 2.2.3)
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3.5 Deep phenotyping and cellular density landscape in
naive pancreatic cancer

Single plex IHC demonstrates high levels of T cell related markers had prognostic value.
To further investigate cell-to-cell interactions, a 7 plex immunofluorescence panel was
generated using Akoya Biosciences® Phenolmager™ to stain multi-regional treated naive
Discovery (n=244) and Validation (n=192) TMA cohorts (table 3.1). The panel consisted of
an epithelial tumour marker PanCk (AE1/AE3), an omnipresent T cell receptor marker
CDa3, cytotoxic T cell marker CD8, T regulatory marker FOXP3, pro-inflammatory
macrophage marker CD68, myofibroblast marker aSMA, and DAPI as a counter stain
(figure 3.2.a). Cells were phenotyped according to either single or co-localisation of

markers. Phenotypes observed were (figure 3.2.b);

aSMA+ fibroblasts

CD3+CD8- T cells

CD3CD8+ cytotoxic

CD8+ cells

FOXP3CD3+ T regulatory cells
CD68+ macrophages

N o g bk w0 Db~

PanCk+ cancer cells

Biologically, cytotoxic T cells should always co-express both CD3 and CD8, therefore
single expressing CD8+ cells could be indicative of a natural killer cell subtype, or due to

limitations of the assay.
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Figure 3.2 Phenotyped cell population within mIF panel. a). Example of mIF panel on naive
core stained for DAPI, PanCk, aSMA, CD3, CD8, FOXP3 and CD68 b). schematic diagram
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showing the phenotyped immune cells explored in pancreatic cancer, main associated functions

and the overarching prognostic relevance

Total cell content for combined discovery and validation cohorts was measured to

establish a base immune landscape in treatment naive patients (table 3.1). Overall, the

highest cell populations observed in naive pancreatic, as expected, were PanCk+ and

aSMA+ cells (figure 3.3.a). When considering only the immune subset, the highest cell

population was CD3+ and CD68+ cells and the lowest cell population was FOXP3CD3+

population (figure 3.3.a). When patients were sub-categorised by molecular subtype,

CD3+ levels were found to be significantly elevated (p=0.04) in classical naive PDAC

patients (figure 3.3.b).
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Figure 3.3 Average cellular density boxplots of phenotypes in combined naive pancreatic

cohort across a). All patients, n=436 b). Molecular subtypes classical (Cl) (n=141) and squamous

(Sq) (n=62) using Bonferroni p adjusted T-test
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3.6 Immune Cell density associates with survival in naive PDAC

Validation of the predictive power of CD3+ as seen in previous IHC analysis (chapter 3.4)
was observed in discovery (p=0.004) and validation (p=0.011) cohorts (table 3.2). In
addition, elevated CD3CD8+ (p=0.001) was also prognostic in the discovery cohort (table
3.2). Elevated CD3+ (p=0.008) and CD3CD8+ (p=0.001) correlated with recurrence free
survival (RFS) in the discovery cohort (table 3.2). Furthermore, a reduction in CD68+ cells
in the discovery cohort was significantly associated with DSS (p=0.008) and RFS
(p=0.02), with the RFS trend replicated in the validation cohort (table 3.2). The TMA core
into tumour and TME compartments were investigated for compartment specific markers
associated with prognosis. In TME discovery compartments, elevated FOXP3CD3+
correlated with disease specific (p=0.049) and recurrence free (p=0.03) survival (table
3.2). Within the discovery cohort molecular subtype groups, an enriched CD3+ and
CD3CD8+ density in classical subtype naive patients correlated with better disease
specific and recurrence free survival (table 3.2). Conversely, reduced density of CD68+ in
squamous patients was observed in those with better survival (table 3.2). This trend was

not replicated in the validation cohort.

Phenotype density in discovery and validation for disease specific and recurrence free survival

Phenotype Region Cohort Time Group Cut-off  Number HR (95% CI) P value
(months) method

CcD3 Whole core  Discovery DSS All patients  1LQ 238 0.61(0.44-0.85) 0.004
CD3CD8 Whole core  Discovery DSS All patients  1LQ 238 0.58 (0.41-0.81) 0.001
CD68 Whole core  Discovery DSS All patients LQ 238 1.60(1.13-2.27) 0.009
FOXP3CD3  TME Discovery DSS All patients LQ 238 0.72 (0.51-1.00) 0.045
CD3 Whole core  Discovery DSS Classical LQ 122 0.53(0.33-0.85) 0.008
CD3CD8 Whole core  Discovery DSS Classical LQ 122 0.53(0.33-0.86) 0.009
PanCk Whole core  Discovery  DSS Squamous LQ 53 2.19(1.01-4.78) 0.048
CD68 Whole core  Discovery DSS Squamous LQ 53 2.39(1.14-5.03) 0.021
CcD3 Whole core  Discovery RFS All patients LQ 238 0.64 (0.46-0.89) 0.008
CD3CD8 Whole core  Discovery RFS All patients LQ 238 0.56 (0.40-077) 0.001
CD68 Whole core  Discovery RFS All patients  1LQ 238 1.53(1.08-2.17) 0.016
FOXP3CD3 TME Discovery  RFS All patients  LQ 238 0.69 (0.50-0.96) 0.03
CcD3 Whole core  Discovery RFS Classical LQ 122 0.500.37-0.94) 0.027
CD3CD8 Whole core  Discovery RFS Classical LQ 122 0.49 (0.30-0.78) 0.003
CD68 Whole core  Discovery RFS Squamous LQ 53 3.35(1.56-7.21) 0.002
CcD3 Whole core  Validation  DSS All patients LQ 192 0.66 (0.48-0.91) 0.011
CD68 Whole core  Validation RFS All patients  1Q 192 1.42(1.00-2.03) 0.05

Table 3.2 Summary of density-based biomarkers in for disease specific and recurrence free
survival in discovery and validation cohorts in whole core and TME segments. Cut-off
method established per phenotype (chapter 2.3.3.3) in discovery cohort. Pattern reported per
phenotype, region and patient group indicated, along with number of patients in each group. Log
Rank (Mantel-Cox) p value and Univariate cox regression hazard ratio (HR) shown with 95%
confidence interval (Cl).
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3.7 Density interaction between phenotypes in naive
pancreatic cancer

Until recently, protein characterisation of immune cells in PDAC has predominantly been
conducted via IHC methods. Studies have reported on the generation of numerous
profiles for different immune cells resulting in the production of cell ratios that appear to
perform better than cell density alone. Within the combined naive cohort (table 3.1),
phenotypes were ranked into low or high and all possible pairs were tested. Log-rank
survival analysis on overall survival of a ratio was performed, then pairwise comparison
was performed to look at inter-curve differences between the different ranks within the
same ratio. Multiple trends were seen. The proportion of PanCk+ and CD3+ cells
significantly correlated with survival (p<0.001) in naive patients (figure 3.4.a), revealing
patients with CD3high/PanCklow proportions did better than those with
CD3low/PanCkhigh (p=0.013) and CD3low/PanCklow (p=0.008) (table 3.3). Surprisingly,
CD3high/PanCkhigh patients did relatively well, outperforming CD3low/PanCkhigh
(p=0.008) (table 3.3). Additionally, levels of CD3 and Tregs associated with survival (Log
Rank p<0.001) (figure 3.4.c), CD3low/FOXP3CD3low naive patients were associated with
poor survival compared to CD3high/FOXP3CD3high (p=0.001) and
CD3low/FOXP3CD3high (p=0.02) (table 3.3). Significant differences were also observed
between CD3 helper T cell and macrophages proportions (p<0.001) (figure 3.4.b), with
CD3high/CD68low patients outperforming all other ratios in terms of disease specific

survival (table 3.3).
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specific survival) stratified by ratio expression in combined treatment naive PDAC (Log-Rank test)
for a). PanCk/CD3 ratio b). CD3/CD68 ratio c). CD3/FOXP3CD3.

Ratio pair Ratio comparison group 1 Ratio comparison group 2 P value

CD3High/CD88Low CD3High/CD68High 0.329

CD3Low/CD68High CD3High/CD68High 0.329

CD3/CD68 CD3Low/CD68Low CD3High/CD68High 0.004
CD3Low/CD68High CD3High/CD68Low 0.010

CD3Low/CD68Low CD3High/CD68Low 0.004

CD3Low/CD68Low CD3Low/CD68High 0.586
PanCkHigh/CD3Low PanCkHigh/CD3High 0.008

PanCkLow/CD3High PanCkHigh/CD3High 0.586

PanCk/CD3 PanCkLow/CD3Low PanCkHigh/CD3High 0.007
PanCkLow/CD3High PanCkHigh/CD3Low 0.014

PanCkLow/CD3Low PanCkHigh/CD3Low 0.586

PanCkLow/CD3Low PanCkLow/CD3High 0.008
CD3High/FOXP3CD3Llow  CD3High/FOXP3CD3High 0.513
CD3Low/FOXP3CD3High CD3High/FOXP3CD3High 0.021

CD3/FOXP3CD3 CD3Low/FOXP3CD3Low CD3High/FOXP3CD3High 0.001
CD3Low/FOXP3CD3High CD3High/FOXP3CD3Low 0.186
CD3Low/FOXP3CD3Low CD3High/FOXP3CD3Low 0.284
CD3Low/FOXP3CD3Low CD3Low/FOXP3CD3High 0.513

Table 3.3 Pairwise comparison between naive cellular density ratios taken from Kaplan Meier
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plots above (figure 3.6) ratio pairs are CD3/CD3CD8, PanCk/CD3 and CD3/FOXP3CD3. Log Rank

(Mantel-Cox) pairwise comparison over strata.
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3.8 Single cell spatial analysis in the PDAC TME

After cellular content and density was established above, the differences in the spatial
relationship between phenotypes in relation to clinical parameters was investigated. Two
broad types of spatial analysis were explored, single cell analysis and clustering analysis.
These analysis methods provide ideal tools for the data generated in the multiplex assay,
allowing for deep immune characterisation of the TME. Three major forms of analysis
were used, nearest neighbour, mutual nearest neighbour and radius distances.

Nearest neighbour (NN) analysis calculates the nearest neighbour of individual cells to a
specific phenotype in a set distance e.g., distance of cell x to cell y. This can be used to
estimate cell-cell interactions. It is important to note, this analysis does not compute
mutual nearest neighbours. For example, if the nearest neighbour from cell X, was found
to be cell Y, this doesn’t mean the inverse relationship is the same, e.g. nearest neighbour
from cell y might be cell Z (figure 3.5.a). Mutual nearest neighbour analysis can be
thought of as a branch of NN, this solely looks at pairs of cells which are mutually
neighbours (figure 3.5.b). Radius analysis explores the density of cell Y from a named cell
X at a set distance from X e.g. number of CD68+ cells at 30um from CD3+ cells (figure
3.5.c). As this metric works best with incremental distances, filtering for segments was
avoided to prevent too many phenotypes from being discarded. 10um increments were
set from 0-50um, then anything above 50um was pooled together. This type of analysis
produces vast amounts of significant data, later steps in the analysis pipeline provide

robust filtering and marker selection.
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Figure 3.5.a-c Schematic and real life examples of single cell spatial analysis in naive PDAC
a). Nearest neighbour analysis schematic calculates the distance of the nearest type from a cell
e.g., cell X nearest neighbour is cell Y, but cell Z is cell Y nearest neighbour. Cohort example
shows naive core distance from PanCk+ (green dots) to CD3CD8+ (red dots) b). Mutual nearest
neighbour analysis schematic calculates the distance between the mutual nearest neighbour pairs.
Cohort example CD68+ (magenta dots) and CD3+ (yellow dots) mutual nearest neighbour c).
Radius analysis schematic calculates density of cells from the chosen central cell type at a given
radii e.g., density of cell X at 30um from cell Y. Cohort example shows density of CD3CD8+ (red

dots) from PanCk+ (green dots), images not to scale.
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3.8.1 Prognostically favourable nearest neighbour tumour
immune landscape in all treatment naive patients

To determine the level of interaction between phenotypes, the average distance between
all phenotypes was explored. Average distance demonstrated tumour cells tended to be
further away from CD3CD8+, CD3+ and FOXP3CD3+ T cells, with CD68+ and aSMA+
cells closest to tumour cells. This indicates the reduced likelihood of tumour cells
interacting with CD3 helper and CD3CD8 cytotoxic T cells, and increased chances of

interacting with immunosuppressive immune cells instead (figure 3.6).
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Figure 3.6 Average nearest neighbour distance of combined naive pancreatic cohort.
Boxplots are faceted by distance to phenotype, with each ‘from’ phenotype displayed along the x

axis, and average distance in um along the y axis.

Cellular density, although prognostically relevant, fails to provide insight into cell-to-cell
patterns. Nearest neighbour analysis was performed to establish the significant interacting
phenotypic relationships within naive pancreatic cancer, this was carried out separately on
the discovery and validation cohorts (table 3.1). Naive patients with highest survival were
associated with low distances from PanCk+ to CD8+ (p=0.004), and high distances to
aSMA+ cells (p=0.022). Increased distance from CD3+ to aSMA+ (p=0.023) and from
CD3CD8+ to PanCk+ (p=0.019) also associated with improved prognosis (table 3.4).
These patterns were replicated in the validation cohort (table 3.4). Furthermore, increased
distance to aSMA+ (p=0.019) from CD3CD8+ cells in TME compartments of naive
patients positively correlated with survival in the discovery cohort. New prognostic

relationships emerging from tissue segment analysis further reinforces the need to carry
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out extensive spatial analysis in highly heterogenous solid cancers like PDAC. CD68
associated nearest neighbour relationships had by far, the most number of trends. Naive
patients with increased distances from CD68+ to PanCk+ (p=0.005), and short distances
to CD3+ (p<0.001) and to CD3CD8+ (p=0.005) demonstrated improved survival (table
3.4). The sheer number of nearest neighbour relationships demonstrated reveals the
extent of which macrophages interact with neighbouring cells and the potential influences

they have on each other.

Nearest neighbour trends in disease specific survival in naive cohorts

Nearest neighbour pattern  Region Cohort Group Cut-off Number HR (95% Cl) Pvalue
method

Distance to aSMA from PanCk Whole core Discovery  All patients LQ 233 0.67(0.48-0.95) 0.022

Distance to CD8 from PanCk  Whole core Discovery  All patients LQ 233 1.75(1.20-2.55) 0.004

Distance to CD3 CD8 from

aSMA Whole core Discovery  All patients uQ 233 1.42(1.01-1.99) 0.045

Distance to CD3 fromaSMA  Whole core Discovery  All patients uQ 233 1.7(1.22-2.38) 0.002

Distance to aSMA from CD3  Whole core Discovery  All patients Med 233 0.7(0.52-0.95) 0.023

Distance to PanCk from

CD3CD8 Whole core Discovery  All patients Med 233 0.69(0.51-0.94) 0.019

Distance to PanCk from CD68 Whole core Discovery  All patients Med 233 0.64(0.47-0.87) 0.005

Distance to CD3CD8 from

CD68 Whole core Discovery  All patients Med 233 1.56(1.15-2.11) 0.004

Distance to CD3fromCD68  Whole core Discovery  All patients Med 233 1.73(1.28-2.35) <0.001

Distance to aSMA from

CD3CD8 TME Discovery  All patients Med 233 1.43(1.06-1.94) 0.019

Distance to aSMA from PanCk Whole core Validation  All patients LQ 192 0.71(0.51-0.99) 0.040

Distance to CD8 from PanCk  Whole core Validation  All patients LQ 192 0.65(0.46-0.92) 0.017

Distance to CD3CD8 from

aSMA Whole core Validation  All patients uQ 192 1.45(1.06-1.98) 0.020

Distance to CD3 fromaSMA  Whole core Validation  All patients uQ 192 1.87(1.12-3.12) 0.016

Distance to PanCk from

CD3CD8 Whole core Validation  All patients Med 192 0.62(0.45-0.85) 0.003

Distance to PanCk from CD68 Whole core Validation  All patients Med 192 0.59(0.42-0.83) 0.002

Distance to CD3CD& from

CD68 Whole core Validation  All patients Med 192 1.60(1.12-2.30) 0.011

Distance to CD3 fromCD68  Whole core Validation  All patients Med 192 1.83(1.33-2.53) <0.001

Table 3.4 Nearest neighbour patterns associated with disease specific survival in naive
cohorts looking at whole core and stromal tissue segments. Cut-off method established per
pattern (chapter 2.3.3.3) in discovery cohort and replicated in validation cohort. Nearest neighbour
pattern reported per cohort and region, patient group indicated, along with number of patients in
each group. Log Rank (Mantel-Cox) p value and Univariate cox regression hazard ratio (HR)

shown with 95% confidence interval (Cl).

Classical subtypes are traditionally associated with a higher immune infiltration. These
findings have mostly come from IHC and RNA studies, with few spatially resolved metrics
being described. The patterns seen in subtyped patients with better outcomes is
described below. When taking subtype into consideration, high survival Classical subtypes
demonstrated shorter distance from aSMA+ to CD3+ cells (p=0.031) (supplementary table
8.1). Furthermore, patients with improved survival and longer recurrence free survival
demonstrated reduced distances from CD68+ to CD3+ (p<0.001 and p=0.004), and from
CD68+ to CD3CD8+ (p<0.001 and p=0.002) (supplementary table 8.1). Different trends
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were observed in Squamous subtypes. Increased distance from PanCk+ to CD68+
(p=0.018 and p=0.033) associated with improved survival and longer recurrence free
survival, as well as large distance from CD68+ to CD3CD8+ cells correlating significantly
with better DSS (p=0.046) (supplementary table 8.1).

3.8.2 Prognostically favourable mutual nearest neighbour pairs in
the tumour immune landscape in treatment naive patients

Mutual nearest neighbour analysis branches from nearest neighbour, consequently many
of the results seen should replicate those seen in NN, but with an added layer of
classifying the distance in both directions. To establish the overarching phenotype
interactions in naive PDAC, the highest density pairs and their spatial relationship was
investigated. Of note, the closest mutual neighbour to tumour cells was CD68+ and
aSMA+ and macrophages were closest with aSMA. Additionally, the furthest CD3 T cell
pair were tumour cells (figure 3.7). This reveals an immune suppressive and fibrotic
environment surrounding tumour cells, with any potential beneficial T cell effect not

reaching the tumour core.
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Naive pancreatic cancer patients with better prognosis presented with large distances

between PanCk-aSMA (p=0.040) and PanCk-CD68 (p=0.025) (table 3.5). Likewise naive
patients with longer survival associated with larger distances between aSMA-FOXP3CD3
(p=0.033) and CD3-aSMA (p=0.052) (table 3.5). These findings help confirm phenomena
seen within naive nearest neighbour findings. The pancreatic TME has a meaningful role

indicated by the prognostic patterns seen in the naive setting, with distance metrics

playing an important role.

Mutual nearest neighbour trends in disease specific survival in naive cohorts

Mutual nearest neighbour pair Region Cohort Group Cut-off Number HR(95% Cl) P value
method

Distance between PanCK and CD68 Whole core Discovery All Rcutoff 233 0.70(0.51-0.96) 0.025

Distance between FOXP3CD3 and

aSMA Whole core Discovery All Rcutoff 233 0.68 (0.48-0.97) 0.033

Distance between PanCK and aSMAWhole core Discovery  All Rcutoff 233 0.72 (0.52-0.99) 0.040

Distance between CD3 and aSMA  Whole core Discovery All Rcutoff 233 0.73 (0.53-1.00) 0.052

Table 3.5 Mutual nearest neighbour patterns associated with disease specific survival in

naive cohorts. Cut-off method per pair, region and patient group indicated, along with number of

patients in each group. Log Rank (Mantel-Cox) p value and Univariate cox regression hazard ratio
(HR) shown with 95% confidence interval (Cl).
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3.8.3 Prognostically favourable tumour immune landscape in all
treatment naive patients at different radii

Radius analysis has the unique property of incorporating density of cells with distance
metrics. To avoid this metric from turning into solely density based, the radii of focus was
Oum-50um. The average surrounding immune cell population for all phenotypes within the
immediate environment was defined as 50um radius from the central cell. The immediate
microenvironment of tumour cells was densely populated with aSMA fibroblasts and CD68
macrophages, in contrast limited cytotoxic T cells were present (figure 3.8). Additionally, in
the surrounding macrophage environment, high numbers of tumour cells, aSSMA
fibroblasts and CD3 T helper were observed. This was confirmed when looking at the
immediate cytotoxic T cell microenvironment, showing large density of CD68

macrophages, as well as CD3 T helper cells and low levels of tumour cells (figure 3.8).
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Figure 3.8 Average immune cell population density at 50um from central cell in combined
naive pancreatic cohort. Boxplots are faceted central cell (‘from’ phenotype), with each ‘to’

phenotype displayed along the x axis, and average cellular density along the y axis.

Treatment naive PDAC patients with good prognosis were associated with enriched
density of CD3+ (p<0.001), CD3CD8+ (p<0.001) and low levels of CD68+ cells (p=0.021)
within the surrounding tumour environment (30um) (table 3.6). Yet again, spatial
relationships associated with macrophages are heavily prognostic, relating to both
disease specific survival and recurrence, replicating trends seen within nearest neighbour
(chapter 3.8.1) and mutual nearest neighbour (chapter 3.8.2) analysis. Patients with high
levels of CD3+ (DSS: p<0.001 and RFS: p=0.003), CD3CD8+ (DSS: p=0.002 and RFS:
p=0.002) and FOXP3CD3+ (p=0.021) and low levels of PanCk+ (p=0.015) within 50um of
CD68+ macrophages associated with better outcome (table 3.6). The CD68-CD3 trend
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was replicated in the validation cohort (table 3.6).

Radius trends in disease specific survival and recurrence free survival in naive patients

From To Distance Cohort  Group Cut-off Time Number HR (95% Cl) P value
Phenotype Phenotype (um) method (months)

PanCk CD3 30 Discovery All patients LQ DsSS 233 2.00(1.43-2.80) <0.001
PanCk CD3CD8 30 Discovery All patients LQ DSS 233 1.84(1.31-2.57) <0.001
PanCk CD68 30 Discovery All patients LQ DSS 233 0.66 (0.46-0.94) 0.021
CD68 CD3 50 Discovery All patients LQ DSS 233 1.87(1.34-2.60) <0.001
CD68 CD3CD8 50 Discovery All patients LQ DSS 233 1.71(1.22-2.40) 0.002
CD68 CD3 50 Discovery All patients LQ RFS 233 1.65(1.19-2.31) 0.003
CD68 CD3CD8 50 Discovery All patients LQ RFS 233 1.72(1.23-2.40) 0.002
CD68 FOXP3CD3 50 Discovery All patients LQ DSS 233 1.50(1.06-2.10) 0.021
CD68 PanCk 50 Discovery All patients LQ DSS 233 0.64 (0.45-0.92) 0.015
CD68 CD3 50 Validation All patients LQ DSS 192 1.59(1.15-2.19) 0.005

Table 3.6 Radii patterns associated with disease specific survival and recurrence free
survival in naive cohorts looking at whole core. Cut-off method established per radius pair in
discovery cohort and replicated in validation cohort. Radii reported using ‘from phenotype’ column,
indicating the central phenotype, and ‘to phenotype’ indicating the surrounding phenotype.
Reported by distance (um), cohort, patient group, along with number of patients in each group.
Most significant radii is reported. Log Rank (Mantel-Cox) p value and Univariate cox regression
hazard ratio (HR) shown with 95% confidence interval (Cl) for disease specific survival (DSS) and

recurrence free survival (RFS).
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3.9 Filtering prognostic markers

As seen above, multiplex spatial analysis has the ability to produce enormous amounts of
significant descriptive data. Although all these findings may provide biological insight, it is
important to start with those that have the highest probability of doing so. Therefore, only
the markers and relationships seen in both discovery and validation cohorts were taken
into consideration and placed into two different models. The first being a multivariate cox
regression model (supplementary 8.2.2), and the second being a decision tree model.
This was done with the aim of identifying the most relevant, robust variables that not only
have the best predictive prognostic potential, but also will be robust enough to translate
into future Spatial Transcriptomic experiments (Chapter 5). Consequently, biological
mechanisms can begin to be elucidated from these purely characteristic results. The
model cohort was limited to all patients and variables from density and nearest neighbour
analysis and adjusted for resection margin and lymph node status. These were the most

statistically relevant and validated methods.

3.9.1 Decision tree analysis

Decision tree analysis is perhaps one of the most simple supervised machine learning
algorithms that can easily be employed for multiplex data due to its ability to support
continuous and categorical data. Only variables from the final multivariate models

(supplementary 8.2.2) were used. Three major models run were;

1. Full data — all significant variables included from density and nearest neighbour
2. Grouped data — variables split according to NN pairs (including density variables)

3. Filtered — CD68 related nearest neighbour variables with all density variables

Combination of density and nearest neighbour pairs generated interesting results in model
1 (figure 3.9.a). Unexpectedly, the root node seen was a nearest neighbour metric.
Distance to CD3+ from CD68+Low (CD3-from-CD68) (Node 2: probability = 0.46,
p=0.003), and CD3-from-CD68:CD68Low (Node 4: probability = 0.48, p<0.001)
associated with highest survival probability. Lowest survival probability was associated
with distance to CD3 from CD68High:CD68High (Node 5: probability = 0.14, p<0.001)
(figure 3.9.a).

Looking only at cellular density in model 2, CD68Low patients had the best disease
specific survival probability (Node 2: probability = 0.54, p=0.009), and CD68High:CD3Low

had the lowest (Node 4: probability = 0.1, p=0.002) in naive pancreatic cancer patients
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(figure 3.9.b). Finally, CD68 specific nearest neighbour trends were input with all
significant density markers. Highest survival probability was seen in naive patients with
CD68Low (Node 2: probability = 0.54, p=0.014), replicating trends seen above, and lowest
survival probability was associated with CD68High:PanCk-from-CD68High:CD3Low
(Node 6: probability = 0.08, p=0.042) (figure 3.9.c).

a Model 1: combined density and NN
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Figure 3.9.a Density and nearest neighbour decision tree model with matching survival
probability table in naive for a) Combined density and nearest neighbour variables. Nodes split
according to rank, number of patients per node indicated and associated p value in decision tree
model. Survival probability with confidence intervals (Cl) and associated nodes reported in survival
table.



116

b Model 2: Density alone
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4 37 5 32 0.11 0.05 0.04 0.28
5 141 40 85 0.34 0.04 0.27 0.44

Figure 3.9.b Density and nearest neighbour decision tree model with matching survival
probability table in naive for b) Density alone. Nodes split according to rank, number of patients
per node indicated and associated p value in decision tree model. Survival probability with
confidence intervals (Cl) and associated nodes reported in survival table.
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c Model 3: Distance from CD68 pairs and density
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Figure 3.9.c Density and nearest neighbour decision tree model with matching survival
probability table in naive for c). Distance from CDG68 pairs with density metrics. Nodes split
according to rank, number of patients per node indicated and associated p value in decision tree
model. Survival probability with confidence intervals (Cl) and associated nodes reported in survival
table.
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3.10 Spatial clustering analysis in naive pancreatic
cancer

To further categorise the tumour immune microenvironment, clustering spatial metrics
were investigated. These help to define the different cellular regions or neighbourhoods
within naive pancreatic cancer. Two methods were used, Ripley’s K function and
neighbourhood analysis. The well-known spatiotemporal point pattern analysis method
‘Ripley’s K function’ determines the pattern of distribution of points (in this case cells) at
increasing radii, was repurposed to establish intracellular phenotypic patterns (figure
3.10.a). The analysis was limited to a set boundary, looking at the overall pattern of
distribution (figure 3.10.b). The average K function per phenotype was generated and
compared to the average theoretical random distribution (Poisson’s curve). Patterns of
distribution are classed random, clustered and dispersed (figure 3.10.a) (chapter 2.3.3.6).
Neighbourhood analysis determines the phenotypes that cluster together and creates
neighbourhoods according to the frequency of the same clustering patterns occurring.

This was done using CytoMAP hierarchical clustering (figure 3.10.c).
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Figure 3.10.a-c Clustering spatial analysis methods a). Ripley's K function graph showing
theoretical Poisson curve and the observed K function. Observed K function above the theoretical
indicates clustered pattern, below the theoretical indicates dispersed, and along the theoretical
indicates random patterns of distribution b) Example density pattern heatmap for CD3 in naive core
indicating clustered pattern of distribution c). Example naive core with neighbourhood regions
generated from MATLAB® CytoMAP, colour denotes the neighbourhood region
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3.10.1 Distribution pattern of immune cells in pancreatic
cancer tumour microenvironment

To fully establish the spatial relationships within the TME, it is important to also take into
consideration the relationships between the same phenotypes and their pattern of
distribution. This was done using Ripley’s K function (chapter 2.3.3.6). As above,
discovery and validation cohorts were kept separate. On average, Ripley’s K function in
both discovery and validation upfront resected patients was consistently above the
average theoretical value for each phenotype, revealing a clustered pattern of spatial
distribution within TMA cores. Visual inspection of the TMA images when initial image
analysis was being undertaken confirm these results. The distance from the K function
score from theoretical is an indication to how clustered the phenotypes are. T-test using
Bonferroni adjusted methods was performed to check significance of clustering and
differences were found between the K function and Theoretical values for all phenotypes
in discovery and validation cohorts (figure 3.11.a-b). The largest differences in both
cohorts were seen between PanCk+, CD3CD8+ and FOXP3CD3+ phenotypes, signifying
these markers have increased clustering expression compared to aSMA+ and CD68+

which have K function values closer to the theoretical cohorts (figure 3.11.a-b).
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comparing observed K function to theoretical K function in a). Discovery cohort cores (n=776)
using Bonferroni p adjustment T-test b). Validation cohort cores (n=815) using Bonferroni p

adjustment T-test.
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3.10.2 Unbiased phenotyping and Neighbourhood
generation

To confirm phenotypes generated via biased phenotyping, explore how different
phenotypes cluster together and create regional neighbourhoods, MATLABs® CytoMAP
was used on the combined naive cohort. Unbiased phenotype cellular clustering produced
9 cell type clusters, 8 of which matched biased cell typing (chapter 3.5). In unbiased cell
typing, a new cell type cluster, FOXP3CD3PanCk was observed, which was not selected
for in biased phenotyping. The presence of this cluster was observed in ~5.5% of overall
cell types (figure 3.12.a). These cell clusters were then made into neighbourhoods and
clustered into regions. Overall, 8 regions were observed within naive pancreatic cancer.
Notably, neighbourhood 3 composed of FOXP3CD3PanCk cells clustered with CD3 (as
expected) and slightly with CD68 cells, and neighbourhood 6 demonstrating clustering of
CD3, CD3CD8 and CD68 (figure 3.12.b). All other regions were composed of expected
single phenotypes. It is worth noting due to the small panel number, there is limited

neighbourhood clustering, and it is constrained to the phenotypes present.



a
DAPI 0.7005 0.7461 0.8877 0.7556 1.085 1124 1.372 0.8089 1.166
>
=t
2 CD68 0.3971 0327 0.3973 0.8134 0.6943 0.4868 05714 0.9762
)
4=
-E FOXP3 0.2888 0.8257 0.6007 0.2291 0.2936 0.4538 0.306
o
c
% QSMA 0.3304 0.3108 0.5849 1.626 0.8961 0.6256 0.5312
.C
(@]
g CD3 0.2049 0.203 0.6479 0.3708 1.793 2664 0.4812 05356 204
Q
= CD8 0.3229 0.2025 04 0.5473 0.7553 0.5804 06572 0.5202
Paan 0.6482 3.365 0.7961 0.3574 0.4791 0.3636 0.5548 0.5946 1.849
Percentage 06332
9
Cell cluster
b
DAPI 0.3974 | 0.6065 | 0.964 |0.8818 | 2318 | 1.321 | 0.719 | 0.8043
PanCk 0.4711 [ 8102 | 0.8657 [0.9187 | 0.7712 | 0.6028 | 0.577 |0.7197
cD68 0.322 (0.6084 | 1.069 | 2672 | 0.7407 | 1.318 |0.5897 | 0.6988 1
) aSMACDS 0.381 [0.5243| 1.006 [0.7445 | 0.7662| 1.128 | 1.959 | 1.513 g
gy c
4‘;; ©
% CD3CDS8 0.2347 | 0.3121| 0.9111 | 0.6893 | 0.6378 0.5424 | 0.5826 S
= s
[} o
@] CcD3 0.232 (02586 | 1.383 |0.8296 | 0.8274 0.5304 | 0.6174 i
aSMA 0.2944 | 0.4112 | 0.8543 |0.5085 | 0.4442 | 0.9046 | 0.8486 58 -1
FOXP3CD3PanCk 2
Percentage =

5

6

Neighbourhood region

123

Fold change

Figure 3.12.a-b Neighbourhood generation in naive PDAC combined cohort using CytoMAP

a) Cell typing heatmap showing fold change differences across channels to generate cell clusters

b) neighbourhood regions generated by fold change of cell clusters associating with each other.

Heatmap coloured by fold change.
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3.11 Regional protein phenotyping across the naive
landscape

T lymphocyte and macrophage populations offer robust prognostic biomarkers within the
naive pancreatic cancer landscape as shown above. Although this is routinely reported in
PDAC, the importance of lymphocyte subsets, their associated protein expression and
activation status is less well characterised [239]. Deep immune regional phenotyping was
carried out to help elucidate this. The Nanostring GeoMx DSP® platform enables high
plex regional proteomic profiling of FFPE tissue sections with the regions of interest
(ROls) selected according to both morphological (histological) and phenotypic
characteristics (figure 3.13.a). ROIls were selected according to PanCk+ staining, resulting
in epithelial rich (PanCk+) and tumour microenvironment (TME) areas of interest (AOIs)
(figure 3.13.b). Regional protein signatures were generated using a 60 plex immune-
oncology panel, with 5 modules. This was carried out using a subset of the naive cohort,
named the naive Glasgow cohort (table 3.1). Comparison with chromogenic IHC
generated above (chapter 3.4) validated the protein DSP TME expression for CD3 (R =
0.83, p <0.001) and CD8 (R = 0.84, p < 0.001) and showed strong concordance and
relatively strong concordance for CD68 (R= 0.68, p < 0.001), between GeoMx™ protein
panel and gold standard IHC methods (figure 3.13.e-g). Furthermore, the prognostic value
of CD3 and CD8 within the TME compartment was tested. Elevated expression of both
CD3 (p= 0.027) and CD8 (p=0.009) correlated with survival, recapitulating trends seen in
IHC (figure 3.13.c-d).
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Figure 3.13.a-g Correlation between IHC and Regional proteomics in naive PDAC a).

Overview NanoString™ DSP assay, full details provided in chapter 2, schematic adapted from

NanoString technologies b). Example region of interest (ROl), with PanCk+ mask and tumour
microenvironment mask (PanCk-), stained for PanCk (green), aSMA(yellow), CD3 (magenta) and
Syto13 (blue). b). Kaplan-Meier curves (disease specific survival) stratified by DSP CD3 protein
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marker expression (Log-Rank test) c). Kaplan-Meier curves (disease specific survival) stratified by
DSP CD8 protein marker expression (Log-Rank test). Regression plots comparing e) CD8 f) CD3
g) CDG68 positivity staining in each core (evaluated by IHC) assessed by automated scoring (HALO)
with normalized DSP protein marker expression (averaged across all 48 cores). Spearman
correlation coefficient and p-value presented. Grey shading denotes 95% confidence interval (Cl)

of correlation coefficient.

Initial regional analysis confirmed that epithelial and TME ROlIs within TMA cores had
distinct patterns of DSP protein expression consistent with the predicted cell types in each
region. In addition to PanCk expression being higher in epithelial ROls, as expected,
expression of CD3, CD4, CD8, aSMA along with immune checkpoint protein B7-H3 were
significantly elevated in TME compartments (figure 3.14.a). Furthermore, unbiased
clustering demonstrated differences within TME compartments vary from immune-rich to
immune-void (figure 3.14.b), with immune-void patients negatively associating with
survival (figure 3.14.c). The prognostic power of markers within tumour and TME regions
was assessed for biomarker discovery. In total, 9 DSS and 3 RFS TME specific, and 3
DSS and 2 RFS tumour specific markers demonstrated prognostic significance (table 3.7).
In TME segments, enriched expression of fibronectin was observed, CD3, CD4, CD8, Bcl-
2, HLA-DR, GZMB, PD-1 and Tim-3 correlated with prognosis, and enriched fibronectin,
CD8 and Bcl-2 correlated with recurrence (table 3.7). Tumour segments with reduced B7-
H3, and enriched 4-1BB, Bcl-2 expression associated with better survival, and increased
4-1BB and reduced Her-2 correlated with longer recurrence free survival (table 3.7). A
strong correlation between overlapping protein expression in IHC and DSP, validates the
prognostic benefit of select immune T cell subsets, and the utility of this regional

proteomic technology in novel biomarker discovery.



127

a Epithelium vs TME C
EnhancedVolcano 5 0
‘ , 1.00 = Immune-rich =+ Immune-void
I
| P
4 I b4 09 >
15 { : p—va!ueanm%gv:‘lg(e? % 0 75_
i Q7
C!d‘[ { ©
A S
% 101 o] e 8050
o S I A7
3 ’A CD#1c ! E
[ P %
54—t Jeeadhe ; . 5 0.25
o ‘i_ ! * w
I :. * 1
L] .Li 5 I
TME | ®e
0 . s ® ! 0.00 1
L 1 T T T T T
5.0 25 0.0 25 5.0 0 25 50 75 100 125
Log; fold change Disease specific survival (months)
— —
AR EE T [ =
LN
] [ ] .Margm
Module LN
2 b
B
Hc
5]
ME o
Zscore Margin
4
!2 -3
0 2
B~
4 0
Class 79“;99
1
2
2

1

Figure 3.14.a-c Segment specific protein expression across naive PDAC a). Volcano plot
demonstrating protein marker differential expression levels based on comparison of PanCk versus
tumour microenvironment (TME) regions. Dashed line indicates significance thresholds, NS = non-
significant, FC = fold change. b) Unsupervised analysis of DSP data in the tumour
microenvironment regions identified 2 classes: Class 1 High immune signalling (blue); Class 2 Low
immune signalling (red). ¢) Kaplan—Meier analysis of patient survival stratified by immune class;
immune-rich (Class 1) and immune-void (Class 2)
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Biomarker signature density in diseases specific and recurrence free survival

Biomarker Segment Cut-off Time HR (95% ClI) P value
signature method (months)

4-1BB Tumour Median DSS 0.35(0.14-0.88) 0.026
Bcl-2 Tumour Rcutoff DsS 0.33(0.10-1.04) 0.047
B7-H3 Tumour Rcutoff DSS 3.67(1.17-11.6) 0.026
4-1BB Tumour Median RFS 0.40 (0.16-0.97)  0.043
Her-2 Tumour Rcutoff RFS 2.57(0.02-1.87) 0.039
Fibronectin TME Rcutoff DSS 0.04 (0.00-0.71) 0.028
CD3 TME Median DSS 0.35(0.13-0.91) 0.031
CD4 TME Rcutoff DSS 2.29(0.11-0.76) 0.012
CD8 TME Median DSS 0.30(0.12-0.77) 0.012
Bcl-2 TME Median DSS 0.32(0.12-0.81) 0.016
HLA-DR TME Median DSS 0.28 (0.10-0.76)  0.012
GZMB TME Rcutoff DSS 0.25(0.07-0.85)  0.027
PD-1 TME Rcutoff DSS 0.31(0.11-0.89) 0.03
Tim-3 TME Rcutoff DSS 0.26 (0.09-0.73) 0.011
Fibronectin TME Median RFS 0.34 (0.13-0.92) 0.033
CD8 TME Median RFS 0.36(0.15-0.87) 0.024
Bcl-2 TME Median RFS 0.36 (0.15-0.85) 0.021

Table 3.7 Summary of naive spatial protein biomarker signature density for disease specific
survival and recurrence free survival in tumour and TME segments. Cut-off method
established per phenotype and segment generated (chapter 2.5.1.5.). Log Rank (Mantel-Cox) p
value and Univariate cox regression hazard ratio (HR) shown with 95% confidence interval (Cl) for

disease specific survival (DSS) and recurrence free survival (RFS).
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3.12 Discussion

Several studies have investigated the role of T lymphocytes, macrophages and fibroblast
cells in naive pancreatic cancer. Until recently these studies have been primarily focused
on single stain immunohistochemistry. To begin to fully characterise the naive pancreatic
landscape, confirmation of prognostic relevance of major T cell and macrophage markers
in the chromogenic setting had to be established. As expected, elevated levels of helper
(CD3) and cytotoxic (CD8) T cells significantly correlated with survival, in addition to pro-
inflammatory CD68 macrophages correlating with recurrence at the most aggressive site.
These results replicated the general consensus established for naive PDAC patients
regarding cellular density. Increased levels of cytotoxic and helper T cells are consistently
reported to have a positive association with survival. Due to the cytotoxic role of CD8
cells, increased levels are hypothesized to lead to increased apoptosis of tumour cells,
resulting in longer survival [8, 182, 231, 232]. Helper T cells play a potentially more
complex role. Patterson et al demonstrated these T cells help differentiate monocytes into
tumour-suppressive macrophages, and also dampen the effect of T regulatory cells [234].
CD68+ macrophages fall into the pro-tumour category, with high expression routinely

associated with poor survival [237, 238].

Within IHC studies, investigation into ratios between cell types using serial sections or
using multi-colour IHC (mIHC) has provided pseudo interaction analysis with cellular ratios
shown to outperform density alone in PDAC. Specifically, high expression of combined
CD8+/CD4+ was found to be an independent prognostic marker which out competes
individual density of each marker [8]. This ratio was also seen within the naive cohort,
although median survival was the same for both CD3high/CD3CD8high ratio and CD3high
density (22.5months). Furthermore, low proportions of CD3/Tregs correlated with poor

prognosis in PDAC patients [9], with the naive cohort replicating the pattern.

Until recently, the vast majority of immune cell protein PDAC profiling has been carried out
using IHC, and occasionally mIHC, though this was limited to a maximum of 3 markers
[240]. However, with the accessible development of specialist technology, this is no longer
the case. Tailor-made immune panels have been developed to stain for a large number of
markers on the same section allowing for phenotyping via co-localization, and the ability
for complex spatial analysis, which was previously unmanageable. Deep immune
phenotyping in pancreatic cancer reveals novel spatial immune interactions previously
unknown. Highly defined cell clusters associated with survival have been discovered using
a 27-plex marker panel, including PD-1 expressing CD4 T cells clustering with IL10
expressing myelomonocytes and CD8 T cells clustering with B cells [241]. With extensive

panels such as these, characterization of the PDAC TME and biomarker discovery
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becomes increasingly manageable.

The major advantage of multiplex panels is the ability to perform distance metric analysis.
Our naive cohort produced a large number of significant spatial relationships, with
dominant trends observed. Naive patients with a better survival associated with highly
anti-tumour microenvironment, defined by reduced distances from tumour cells to
cytotoxic T cells and CD3+ helper, and large distances to macrophages and fibroblasts.
This trend has previously been reported. Carstens et al, investigated the spatial
distribution of T lymphocytes in relation to pancreatic cancer cells and found high
expression of cytotoxic T cells within 20um of cancer cells significantly correlated with
survival [7]. These immune cell interactions with tumour cells were further accentuated in
radius analysis. Large numbers of effector T cells and a reduced number of macrophages
within 30um of tumour cells significantly associated with favourable prognosis. Naive
patients revealed a powerful prognostic distance metric validated across both cohorts.
Reduced distance to CD3+ helper T cells from macrophages associated with longer
disease specific and recurrence free survival. This phenomenon maybe due to density of

T cells dampening macrophage effects.

To establish an integrated characterization of density and the role of inter-cellular
interactions according to distance, varied multivariate cox regression and decision tree
models were performed. Naive patients with high survival probability were associated with
either low inter-cellular distances from macrophages to CD3+ helper cells, or larger inter-
cellular distances coupled with low density of CD68+ cells. As macrophage related spatial
relationships were abundant in the naive setting, these NN pairs along with density were
investigated. Patients with highest survival probability were characterized by low CD68+
expression, or if patients had elevated CD68+, large distances between macrophages to

tumour cells, couple with enriched CD3+ population seemed to provide prognostic benefit.

The established markers were validated using spatial bulk proteomics, with the two
assays demonstrating high correlation. Furthermore, a substantial number of prognostic
biomarkers within the naive landscape were predominantly associated with T cell related
functions, providing insight into region specific cellular subtypes found within naive
pancreatic cancer. Within the epithelial compartment, the immune checkpoint and
potential targetable marker B7-H3 had prognostic value. Interest is growing within the
cancer field regarding B7-H3 expression as an immune checkpoint marker [16]. This
molecule has, reportedly, limited expression in normal tissue, and high expression in
pancreatic cancer, with elevated expression correlating with poor survival and metastasis
[17-19]. Additionally, it has been correlated with advanced pathological stage, as well as

lymph node metastasis [242]. Multiple pathways have been associated with B7-H3,
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including both co-inhibitory and co-stimulatory T cell related pathways. It can both inhibit
and stimulate the proliferation of helper and cytotoxic T cells and has been associated
with one of the cancer hallmarks, immune evasion [243-246]. Blockade of this checkpoint
alone using an anti-B7H3 monoclonal antibody in murine models resulted in increased
cytotoxic T cell infiltration. Furthermore, combination therapy with Gemcitabine

demonstrated vastly reduced tumour volume compared to either treatment alone [242] .

A shift of focus can be seen in the pancreatic cancer research field to study the tumour
immune microenvironment using sophisticated technologies that facilitate robust, complex
characterization with high through-put biomarker discovery potential. However, there is
much to learn, with published literature in pancreatic cancer remaining relatively limited
compared to other solid cancers such as colorectal or breast cancer. Multiplex
immunofluorescence, remains at its core, a descriptive assay, limited to characterization,
and although biological interactions can be inferred, a complementary Spatial Biology

technique that will delve deeper into the underlying immune mechanisms is required.
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4 Chapter 4: Deep immune
phenotyping in neoadjuvant human
pancreatic ductal adenocarcinoma
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4.1 Introduction

Of the 10-20% of patients eligible to undergo surgical resection, a medically fit proportion
undergo neoadjuvant therapy prior to surgery [21]. These patients are treated with
FOLFIRINOX based therapy, Gemcitabine based therapy or chemoradiotherapy prior to
surgical resection. This introduction of neoadjuvant treatment was based on evidence that
neoadjuvant treatment in borderline resectable and locally advanced PDAC patients
associated with improved survival outcomes [247-250]. Furthermore, it has been reported
that preoperative treatment has the ability to convert unresectable patients into resectable
[4, 250]. The great benefit of neoadjuvant therapy lies in its ability to make surgery a
possibility. By increasing the number of patients eligible for resection, the likelihood of

overall survival for PDAC is increased.

To date, few studies have robustly established the effect of neoadjuvant therapy on the
tumour microenvironment or have directly explored the phenotypic differences between
treatment naive and neoadjuvant treated pancreatic tumours. Of the studies that have
attempted this characterisation, analysis primarily remains focused on cellular densities
and ratios, with little exploration in the spatial field [8, 251-253]. This is due to a multitude
of factors, including limited access to human patient samples and lack of suitable
technology. Even in cases where access to tissue is available, a delicate balance is
needed to prevent wasting precious tissue, whilst having adequate representation of the
patient sample. The added complication of expensive and labour intensive technologies
has limited this exploration until recently. Multi-regional tissue microarrays allow for high
patient throughput at a fraction of the cost (both reagent and personnel), whilst the multi-
core aspect accounts for sufficient tissue input [254]. Combining this tissue resource with
relatively novel multiplexing assays, results in a large amount of data generated with
reduced tissue input. It would not be unreasonable to assume these types of studies will

become increasingly accessible as time progresses.

There is emerging evidence in the literature that chemotherapy alters the tumour immune
microenvironment, triggering an immunogenic switch from immune barren and pro-
tumorigenic, into an immune rich landscape. The majority of immune cells explored in this
context remain T cells and macrophages [132, 213, 214, 255]. Notably, elevated cytotoxic
T cell proportions are seen within the stromal compartments of patients treated with
neoadjuvant therapy, as well as reduced Treg populations [252, 253, 256]. The role of
macrophages in the neoadjuvant treatment setting is less clear than in treatment naive
patients, with increased M1 polarized macrophages associated with improved survival

[252]. In order to establish the validity of this hypothesis, the aim was to characterise a
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neoadjuvant cohort using the same multiple immunofluorescent assay as describe in

chapter 3.
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4.2 Aims

Explore the spatial immune cell landscape in terms of T cell, macrophage, and fibroblast
composition in neoadjuvant treated human pancreatic cancer. Investigate content,
density, and spatial orientation in distinct histopathological regions. Base immune
landscape will be characterised first, and subsequent comparisons between naive and
neoadjuvant cohorts will be carried out. Consideration will also be given to appropriate

clinical groups.

4.3 Clinical cohorts

Neoadjuvant cohort consisted of 72 pancreatic cancer specimens within a TMA with
clinical data associated (table 4.1). Median survival for these patients was 24.5 months.
The combined naive cohort, as seen in chapter 3, was used as a comparison group (table
4.1). Notably, these naive and neoadjuvant patients are unmatched. Median survival for

these patients was 20.3 months. Clinical data associated with these cohorts is found in

chapter 2.1.
Study Cohort TMA TMA Patient Treatment
number number type
Neoadjuvant  Neoadj-MAL-TMA batchl 3 .
3 72 Neoadjuvant
Glasgow Neoadj-MAL-TMA batch2 3
Phenolmager 7 APGI/ICGC TMA 8
lex assa i - .
p y Nalve_ SD-PAN-TMA 1 436 Naive
combined PDAC-PAN-TMA 5
NJ-PANC-TMA 7

Table 4.1 Neoadjuvant and naive clinical cohorts and associated study. Summary table
showing the study and associated neoadjuvant and naive TMAs used, patient number and

treatment type. The cohort name column refers to the cohort name in chapter 2.1.
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4.4 Deep phenotyping and cellular density landscape in
neoadjuvant pancreatic cancer

The neoadjuvant pancreatic cancer has a considerably less well defined tumour immune
microenvironment compared to its naive counterpart. Substantially increased survival was
observed upon introduction of pre-operative treatment, thought to be partly due to an
immune rich phenotype. This hypothesis was investigated using a Glasgow based
neoadjuvant treated cohort (n=72), recapitulating the same 7 plex immune assay (chapter
2.3), selecting for the same phenotypes and following the same analysis pipeline as in the
naive cohort (chapter 3). Phenotypes observed were;

8. aSMA+ fibroblasts

9. CD3+CD8- T cells

10. CD3CD8+ cytotoxic

11. CD8+ cells

12. FOXP3CD3+ T regulatory cells
13. CD68+ macrophages

14. PanCk+ cancer cells

Total cell density of all neoadjuvant patients was measured to establish a base immune
landscape. The highest cell population observed were CD68+, aSMA+ and CD3+ cells
and the lowest cell population were single stained CD3CD8+ and CD8+ populations
(figure 4.1.a). Next, density of relevant clinical pathology subgroups was compared.
Patients treated with chemotherapy had significantly elevated CD68+ (p=0.019) and
PanCk+ (p=0.005) levels compared to patients treated with chemoradiotherapy (figure
4.1.b). No significant immune cell differences were observed across chemotherapy

treatment type (figure 4.1.c) nor tumour regression status (figure 4.1.d).
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Figure 4.1.a-d Average cellular density phenotype boxplots across neoadjuvant patients and
in clinical pathological subgroups a). All neoadjuvant patients, n=72, b). Neoadjuvant treatment
type (NeoadjXRT), chemotherapy (0) and chemoradiotherapy (1) using Bonferroni p adjusted T-
test, chemotherapy n=46, chemoradiotherapy n=24, c). Neoadjuvant chemotherapy drug type,
FOLFIRINOX (FFX = 1) and Gemcitabine (GEM = 2) using Bonferroni p adjusted T-test, FFX n=52,
GEM n=18, d). Tumour regression status, good regression (1) and poor regression (2) using

Bonferroni p adjusted T-test, good n=35, poor n=33
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4.5 Density survival analysis in neoadjuvant PDAC

Survival analysis was carried out using ranked densities. In the patients treated with
neoadjuvant therapy low density of CD3+ (p=0.004), CD3CD8+ (p=0.001), CD68+
(p=0.001) and FOXP3CD3+ (p=0.003) cells associated with better disease specific
survival (table 4.2), contrary to what was hypothesised. To confirm these findings, well-
known clinically relevant prognostic groups were examined. When clinical subgroups were
investigated, similar trends appeared. Low expression of CD3CD8+, CD3+, CD68+ and
FOXP3CD3+ associated with better survival in chemoradiotherapy treated patients,
FOLFIRINOX (FFX) treated patients, and patients with good regression (table 4.2). In
addition, reduced infiltration of CD3CD8+ and CD68+ in Gemcitabine treated patients
correlated with improved survival (table 4.2). As expected, reduced density of tumour cells
(PanCk+) in chemotherapy treated, FFX treated and poor regression patients associated
with better outcome (table 4.2). Each clinical group confirmed the counterintuitive density
results, indicative that the neoadjuvant landscape is more complex than expected. Cellular

density alone may be insufficient to explain the prognostic benefit of neoadjuvant patients.

Phenotype density in neoadjuvant cohort for disease specific survival

Phenotype Region Group Cut-off Number HR(95% Cl) P value
method

CD3 Whole core  All patients Rcutoff 72 2.14(1.28-3.59) 0.004
CD3CD8 Whole core  All patients Rcutoff 72 2.28(1.41-4.00) 0.001
CD68 Whole core  All patients Rcutoff 72 2.35(1.39-3.97) 0.001
FOXP3CD3 Wholecore  All patients Rcutoff 72 2.53(1.37-4.66) 0.003
PanCk Whole core  Chemotherapy Rcutoff 46 2.91(1.36-6.23) 0.006
CD3CD8 Whole core  Chemoradiotherapy Rcutoff 24 4.78(1.37-1.67) 0.014
CD3 Whole core  Chemoradiotherapy Rcutoff 24 5.95(1.56-22.6) 0.009
CD68 Whole core  Chemoradiotherapy Rcutoff 24 6.17 (1.71-22.3) 0.006
FOXP3CD3 Wholecore  Chemoradiotherapy Rcutoff 24 2.91(1.13-7.51) 0.028
CD3CD8 Whole core FOLFIRINOX Rcutoff 52 2.14(1.18-3.87) 0.012
CD3 Whole core FOLFIRINOX Rcutoff 52 1.93(1.07-3.49) 0.029
CD68 Whole core FOLFIRINOX Rcutoff 52 2.06(1.12-3.78) 0.020
FOXP3CD3  Whole core FOLFIRINOX Rcutoff 52 2.23(1.12-4.44) 0.023
PanCk Whole core FOLFIRINOX Rcutoff 52 2.44(1.31-4.52) 0.005
CD3CD8 Whole core  Gemcitabine Rcutoff 18 3.50(1.06-11.6) 0.040
CD68 Whole core  Gemcitabine Rcutoff 18 4.49 (1.20-16.7) 0.025
CD3CD8 Whole core  Good regression Rcutoff 35 6.66(2.42-18.3) <0.001
CD3 Whole core  Good regression Rcutoff 35 3.64(1.47-9.02) 0.005
CD68 Whole core  Good regression Rcutoff 35 2.86(1.01-8.06) 0.047
FOXP3CD3 Wholecore  Good regression Rcutoff 35 2.27(1.01-5.11) 0.047
PanCk Whole core Poor regression Rcutoff 33 12.8(2.88-57.2) <0.001

Table 4.2 Summary of significant density-based biomarkers in neoadjuvant cohort for
disease specific survival in whole core. Cut-off method established per phenotype (chapter
2.3.3.3), region and patient group indicated, along with number of patients in each group. Log Rank
(Mantel-Cox) p value and Univariate cox regression hazard ratio (HR) shown with 95% confidence

interval (Cl) ) for disease specific survival.



139

4.6 Density interaction between phenotypes in
neoadjuvant pancreatic cancer

To start deciphering intercellular dynamics between immune cells in the neoadjuvant
microenvironment, density ratios between all phenotypes were investigated. As in chapter
3.7, Log-Rank survival analysis was performed on overall ratio, then pairwise comparison
was used to look at inter-curve differences within the same ratio pair. Proportions between
cytotoxic T cells demonstrated multiple significant ratios. Ratio between CD3CD8+ cells
and tumour cells significantly correlated with survival (p<0.001) (figure 4.2.a). Pairwise
comparison demonstrated CD3CD8high/PanCkhigh patients did considerably worse than
all other groups, with CD3CD8low/ PanCklow groups associated with the best outcomes
(p<0.001) (table 4.3). Significant relationships were also observed between cytotoxic T
cells and T regulatory cells (p=0.002) (figure 4.2.b), with favourable outcome expressed
CD3CD8low/FOXP3CD3low ratios, compared to patients with worse survival expressing
CD3CD8high/ FOXP3CD3high (p=0.001) (table 4.3). Finally, cytotoxic T cell and
macrophage ratio was observed to correlate with disease specific survival (p =0.004)
(figure 4.2.c). Favourable prognosis was seen in patients with CD3low/CD68low,
compared to CD3high/CD68high (p=0.006) (table 4.3). Neoadjuvant ratios confirm results
seen with cellular density, indicative of immune cell interactions within the treated tumour

immune microenvironment.
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Pairwise P
Ratio group Ratio comparison group1 Ratio comparison group2  value
CD3CD8High/PanCkLow CD3CD8High/PanCkHigh 0.019
CD3CD8Low/PanCkHigh CD3CD8High/PanCkHigh 0.013
CD3CD8Low/PanCkLow CD3CD8High/PanCkHigh <0.001
CD3CD8/PanCk . .

CD3CD8Low/PanCkHigh CD3CD8High/PanCkLow 0.527
CD3CD8Low/PanCkLow CD3CD8High/PanCkLow 0.274
CD3CD8Low/PanCkLow CD3CD8Low/PanCkHigh 0.169
CD3CD8High/FOXP3CD3Low  CD3CD8High/FOXP3CD3High 0.503
CD3CD8Low/FOXP3CD3High  CD3CD8High/FOXP3CD3High 0.133
CD3CD8Low/FOXP3CD3Low CD3CD8High/FOXP3CD3High 0.001
CD3CD8/FOXP3CD3 CD3CD8Low/FOXP3CD3High  CD3CD8High/FOXP3CD3Low 0.832
CD3CD8Low/FOXP3CD3Low CD3CD8High/FOXP3CD3Low 0.503
CD3CD8Low/FOXP3CD3Low CD3CD8Low/FOXP3CD3High 0.133
CD3High/CD68Low CD3High/CD68High 0.403

CD3Low/CD68High CD3High/CD68High 0.635

CD3Low/CD68Low CD3High/CD68High 0.006

CD3CD8/CD68 . .

CD3Low/CD68High CD3High/CD68Low 0.635

CD3Low/CD68Low CD3High/CD68Low 0.093

CD3Low/CD68Low CD3Low/CD68High 0.047

Table 4.3 Pairwise comparison between neoadjuvant cellular density ratios from Kaplan
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Meier’s above (figure 4.2), ratio pairs are CD3CD8/PanCk, CD3CD8/FOXP3CD3 and CD3/CD68.
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4.7 Single cell spatial analysis in the neoadjuvant PDAC
TME

The spatial immune cell landscape in neoadjuvant patients was explored to characterise
the cellular interactions within the treated setting. The same spatial analysis methods
used in chapter 3.8 were used to explore the neoadjuvant tumour immune
microenvironment. Consideration was given to clinical variables treatment type
(chemotherapy/chemoradiotherapy and FFX/GEM treated) and regression status, as
reported in supplementary 8.3.1 for nearest neighbour and supplementary 8.3.2 for radii
analysis.

Prognostically favourable nearest neighbour tumour immune
landscape in neoadjuvant patients

Overall cellular interaction in the neoadjuvant landscape demonstrates tumour cells
interact primarily with aSMA and CDG68 as seen by reduced average distance, and limited
cytotoxic T cell interaction. Additionally, fibroblasts had mostly CD3 helper T cells and

cytotoxic T cells in the immediate environment (figure 4.3).

Neoadjuvant patients: Average Nearest Neighbour per phenotype
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Figure 4.3 Average nearest neighbour distance of neoadjuvant pancreatic cohort. Boxplots
are faceted by distance to phenotype, with each from’ phenotype displayed along the x axis, and

average distance in um along the y axis.

Neoadjuvant patients with better outcomes demonstrated multiple significant intercellular
spatial nearest neighbour patterns associated with prognosis. Short distances from
PanCk+ cells to CD8+ (p<0.001), and short from aSMA+ cells to CD8+ (p=0.002), and
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increased distance from aSMA+ to tumour cells (p<0.001) and CD68+ macrophages
(p=0.009) were seen in high survival patients. Counterintuitively, improved disease
specific survival correlated with large distances to PanCk+ cells from CD3DC8+ (p=0.023)
and from CD3+ cells (p=0.013) (table 4.4). As expected, multiple trends associated with
macrophages. Increased distance from CD68+ cells to PanCk+ (p=0.001), CD3CD8+
(p=0.046), CD3+ (p=0.006) and FOXP3CD3+ (p=0.002) all positively correlated with
survival (table 4.4). T regulatory cells seem to play an important role in prognosis in
neoadjuvant treated patients. Reduced distance from FOXP3CD3+ cells to aSMA+
(p=0.041) and CD8+ (p=0.048), and increased distance from FOXP3CD3+ to PanCk+
(p=0.002) correlated with increased survival (table 4.4). Additional trends are reported in
table 4.4.

Nearest neighbour trends in disease specific survival in neoadjuvant cohort

Phenotype Region Cohort Group Cut-off NumberHR (95%ClI) P value
method
Distance to CD8 from PanCK Whole core Neoadjuvant  All pateints Rcutoff 72 3.73(1.91-7.29) <0.001
Distance to PanCK from aSMA Whole core Neoadjuvant  All pateints Reutoff 72 0.36(0.20-0.63) <0.001
Distance to CD8 from aSMA Whole core Neoadjuvant  All pateints Reutoff 72 3.40(1.58-7.33) 0.002
Distance to FOXP3CD3 from aSMA Whole core Neoadjuvant  All pateints Reutoff 72 0.23(0.08-0.68) 0.007
Distance to CD68 from aSMA Whole core Neoadjuvant  All pateints Reutoff 72 0.48(0.28-0.83) 0.009
Distance to FOXP3CD3fromCD3 Whole core Neoadjuvant  All pateints Rcutoff 72 0.35(0.20-0.62) <0.001
Distance to CD68 from CD3 Whole core Neoadjuvant  All pateints Reutoff 72 0.36(0.18-0.73) 0.004
Distance to PanCK from CD3 Whole core Neoadjuvant  All pateints Reutoff 72 0.50(0.29-0.87) 0.015
Distance to FOXP3CD3from CD3CD8 Whole core Neoadjuvant  All pateints Rcutoff 72 0.31(0.17-0.55) <0.001
Distance to CD68 from CD3CD8 Whole core Neoadjuvant  All pateints Recutoff 72 0.41(0.24-0.70) 0.001
Distance to PanCK from FOXP3CD3 Whole core Neoadjuvant  All pateints Reutoff 72 0.38(0.21-0.70)  0.002
Distance to CD3 from CD3CD8 Whole core Neoadjuvant  All pateints Reutoff 72 0.54(0.32-090) 0.018
Distance to PanCK from CD3CD8 Whole core Neoadjuvant  All pateints Reutoff 72 0.54(0.31-0.92) 0.023
Distance to PanCK from CD68 Whole core Neoadjuvant  All pateints Reutoff 72 0.39(0.22-0.69) 0.001
Distance to FOXP3CD3from CD68 Whole core Neoadjuvant  All pateints Reutoff 72 0.42(0.24-0.73)  0.002
Distance to CD3 from CD68 Whole core Neoadjuvant  All pateints Reutoff 72 0.45(0.26-0.80)  0.006
Distance to CD3CD8 from CD68 Whole core Neoadjuvant  All pateints Reutoff 72 0.55(0.30-0.99) 0.046
Distance to PanCK from FOXP3CD3 Whole core Neoadjuvant  All pateints Reutoff 72 0.38(0.21-0.70)  0.002
Distance to CD68 from FOXP3CD3 Whole core Neoadjuvant  All pateints Recutoff 72 0.53(0.31-090) 0.019
Distance to aSMA from FOXP3CD3 Whole core Neoadjuvant  All pateints Recutoff 72 1.79(1.01-3.17)  0.045

Table 4.4 Nearest neighbour patterns associated with disease specific survival in

neoadjuvant cohorts looking at whole core. Cut off generated (chapter 2.3.3.3) per nearest

neighbour pattern, cohort, patient group and number indicated. Log Rank (Mantel-Cox) p value and

Univariate cox regression hazard ratio (HR) shown with 95% confidence interval (Cl).



144

4.7.2 Prognostically favourable tumour immune landscape in all
neoadjuvant patients at different radii

As described in chapter 3.8.3, radius analysis considers both distance and density
metrics. Investigation was limited to increments of 10um from 0-50um to maintain the
spatial component of this analysis type. Of note, an elevated density of macrophages was
found within 50pm from CD3+ cells, from PanCk+ cells, and from FOXP3CD3+ cells
(figure 4.4).

Neoadjuvant patients: Average Radius at 50um from central cell
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Figure 4.4 Average immune cell population at 50um from central cell in neoadjuvant
pancreatic cohort. Boxplots are faceted central cell (‘from’ phenotype), with each ‘to’ phenotype

displayed along the x axis, and average cellular density along the y axis.
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Neoadjuvant patients associated with favourable prognosis at variable distances. At
20um, patients with low density of CD68+ (p=0.014) and PanCk+ (p=0.04) from CD3+
were seen in longer survival patients (table 4.5). They also presented with low density of
CD3+ (p=0.035), CD3CD8+ (p=0.036), CD68+ (p=0.025) and PanCk+ (p=0.003) cells
within 20um from aSMA+ cells (table 4.5). Additionally, low density of CD3CD8+
(p=0.016), PanCk+ (p=0.009) and FOXP3CD3+ (p<0.001) at 30um from CD68+ cells was
also observed in better outcome patients (table 4.5). Reduced density of CD3+ (p=0.035),
CD68+ (p=0.01) and FOXP3CD3+ (p=0.009) at 50um from tumour cells correlated with

survival (table 4.5).

Radius trends in disease specific survival in neoadjuvant patients

From To Distance Cohort Group Cut-off Number HR (95% Cl) P value
Phenotype Phenotype (um) method

PanCk CD3 50 Neoadjuvant All patients Rcutoff 72 1.82(1.04-3.18) 0.035
PanCk CD68 50 Neoadjuvant All patients Rcutoff 72 2.36(1.23-4.54) 0.010
PanCk FOXP3CD3 50 Neoadjuvant All patients Rcutoff 72 2.09(1.20-3.64) 0.009
aSMA CD3 20 Neoadjuvant All patients UQ 72 1.74(1.04-2.91) 0.035
aSMA CD3CD8 20 Neoadjuvant All patients UQ 72 1.75(1.04-2.94) 0.036
aSMA CD68 20 Neoadjuvant All patients UQ 72 1.86(1.08-3.20) 0.025
aSMA PanCk 20 Neoadjuvant All patients UQ 72 2.26(1.32-3.89) 0.003
CD3 CD68 20 Neoadjuvant All patients Rcutoff 72 2.58(1.21-5.47) 0.014
CD3 PanCk 20 Neoadjuvant All patients Rcutoff 72 1.79(1.03-3.13) 0.004
CD68 CD3CD8 30 Neoadjuvant All patients Median 72 1.87(1.12-3.11) 0.016
CD68 PanCk 30 Neoadjuvant All patients Median 72 2.54(1.26-5.13) 0.009
CD68 FOXP3CD3 30 Neoadjuvant All patients Median 72 2.90(1.63-5.15)  <0.001

Table 4.5 Radii patterns associated with disease specific survival in neoadjuvant cohorts
looking at whole core. Cut-off method was established as indicated. Radii reported using ‘from
phenotype’ column, indicating the central phenotype, and ‘to phenotype’ indicating the surrounding
phenotype. Reported by distance (um), cohort, patient group, along with number of patients in each
group. Most significant radii is reported. Log Rank (Mantel-Cox) p value and Univariate cox
regression hazard ratio (HR) shown with 95% confidence interval (Cl) for disease specific survival

(DSS) and recurrence free survival (RFS).
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4.8 Filtering Neoadjuvant prognostic markers

A substantial number of significant patterns were detected in neoadjuvant patients. To
begin to make sense of these, a filtering process, replicating the one described in chapter
3.9, was performed to select robust variables with the highest likelihood of biological
importance. As no validation cohort was available for the neoadjuvant patients, all
significant variables from density and nearest neighbour analysis were used. Multivariate

cox regression results are reported in supplementary 8.3.3

4.8.1 Decision tree analysis

Verification of significant density and nearest neighbour variables was carried out using
decision tree models. Model input was limited to significant ranked variables found in the
multivariate model above. Grouping density and NN pairs generated interesting results.
As in the naive cohort (chapter 3.9.1), the root node was a nearest neighbour spatial
metric, distance to CD3CD8 from FOXP3CD3 (CD3CD8-from-FOXP3CD3) (figure 4.5.a).
Patients with lowest survival probability demonstrated CD3CD8-from-
FOXP3CD3High:CD3-from-CD3CD8Low:PanCkHigh (Node 6: probability = 0.67 ,
p=0.038), and the highest survival probability patients associated with either were
CD3CD8-from-FOXP3CD3Low (Node 2: probability = 0.97, p<0.001) or CD3CD8-from-
FOXP3CD3High:CD3-from-CD3CD8High (Node 7: probability = 0. 93, p<0.001) (figure
4.5.a). Limiting the data type to significant density variables, patients with the lowest
survival probability were CD3CD8High:PanCkHigh (Node 7: probability = 0.7, p=0.026)
and highest survival probability was CD3CD8Low:CD68Low (Node 3: probability = 0.96,
p=0.024) (figure 4.5.b). Focusing on nearest neighbour variables alone, a new nearest
neighbour specific model was generated with distance to CD3CD8 from FOXP3CD3
(CD3CD8-from-FOXP3CD3) as the root node (figure 4.5.c). Patients with the highest
survival probability were those with low distances to CD3CD8 from FOXP3CD3 (Node 2:
probability = 0.97 , p<0.001) and CD3CD8-from-FOXP3CD3High:CD3-from-
CD3CD8High:CD3CD8-from-PanCkHigh (Node 7: probability = 0.94, p=0.023) (figure
4.5.c). In contrast, patients with the lowest probability demonstrated CD3CD8-from-
FOXP3CD3High:CD3-from-CD3CD8Low (Node 4: probability = 0.72 , p<0.001) (figure
4.5.c).
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Figure 4.5.a Density and nearest neighbour decision tree model with matching survival
probability table in neoadjuvant cohort for a) Combined density and nearest neighbour
variables. Nodes split according to rank, number of patients per node indicated and associated p
value in decision tree model. Survival probability with confidence intervals (Cl) and associated
nodes reported in survival table.
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Figure 4.5.b Density and nearest neighbour decision tree model with matching survival
probability table in neoadjuvant cohort for b) Density alone. Nodes split according to rank,
number of patients per node indicated and associated p value in decision tree model. Survival

probability with confidence intervals (Cl) and associated nodes reported in survival table.
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Figure 4.5.c Density and nearest neighbour decision tree model with matching survival
probability table in neoadjuvant cohort for c). All nearest neighbour significant variables from
multivariate model. Nodes split according to rank, number of patients per node indicated and
associated p value in decision tree model. Survival probability with confidence intervals (Cl) and
associated nodes reported in survival table.
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4.9 Distribution pattern of immune cells in pancreatic
cancer tumour microenvironment

As in chapter 3.10.1, spatiotemporal point pattern analysis method ‘Ripley’s K’ was used
to determine the pattern of distribution of cells within the TMA cores. Much like the naive
cohort, the Ripley’s K function was always above the average theoretical value for each
phenotype, and therefore phenotypes had a clustered pattern of distribution. Upon
investigation on the level of clustering, clustering trends remained the same as in
treatment naive patients. Significant differences were observed in all phenotype pairs
between K function and theoretical. On average, the most clustered markers were
PanCk+, CD3+, CD3CD8+ and FOXP3CD3+, and least clustered were aSMA+ and
CD68+ cells (figure 4.6). It is worth noting that this analysis was performed using TMA
cores, and therefore spatiotemporal pattern of expression maybe biased due to the limited

area investigated.
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Figure 4.6 Average Ripley’s K function and theoretical Poisson function values for all
phenotypes across neoadjuvant cores. Boxplot faceted by phenotype, comparing observed K

function to theoretical K function in all cores (n=253 ) using Bonferroni p adjustment T-test.
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4.10 Unbiased phenotyping and neighbourhood
generation

Validation of phenotyping in neoadjuvant TMAs was carried out using CytoMAP unbiased
clustering and subsequent neighbourhood region generation was established (chapter
2.3.3.5 and chapter 3.10). Nine cell cluster regions were produced (figure 4.7.a), most of
which overlapped with biased phenotyping. Nonetheless, this clustering method produced
two unexpected clusters in regions 7 and 8, comprising of CD3+CD8+FOXP3+ and
CD3+CD8+FOXP3+CD68+ markers (figure 4.7.a). These cell clusters were then used to
create neighbourhood region clusters, with five regions produced. Cluster 4 is of particular
interest, as it presents a T regulatory and cytotoxic T cell and macrophage heavy region

(figure 4.7.b). The remaining neighbourhoods were as expected.
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4.11 Characterising the tumour microenvironment in
naive versus neoadjuvant pancreatic cancer

Both naive and neoadjuvant immune landscapes have been established in chapter 3 and

chapter 4 (above). In order to explore the differences between naive and neoadjuvant, the
discovery and validation naive cohorts were combined, and compared to the neoadjuvant

cohort (table 4.1). Previously established ranking was used.

4.11.1 Deep phenotyping and cellular density
landscape in naive vs neoadjuvant pancreatic
cancer

The overall percentage phenotype population of naive and neoadjuvant patients found
elevated CD68+ and FOXP3CD3+ cell in the neoadjuvant cohort (figure 4.8). Additionally,

elevated PanCk+ cells were observed in naive cohorts as expected (figure 4.8).

Naive and necadjuvant: average percentage cellular density
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Figure 4.8 Average percentage cellular density boxplots of phenotypes in combined naive
and neoadjuvant pancreatic cohort across all phenotypes. Percentage per phenotype per

treatment shown.
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Subsequent investigation into whether the neoadjuvant cohort, along with its

counterintuitive prognostic trends, would demonstrate improved survival when compared

to the combined naive cohort. Neoadjuvant patients with low expression of CD3+
(p<0.001), CD8+ (p=0.03), FOXP3CD3+ (p=0.003) and CD3CD8+ (p=0.001) consistently
associated with the highest median disease specific survival times (figure 4.9.a-d). The

comparison was strictly done between tumour core/centre, therefore these observations

are limited to this histopathological region.
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Prognostically favourable nearest neighbour tumour

immune landscape in naive vs neoadjuvant patients

Differences between nearest neighbour metrics in naive and neoadjuvant patients were

explored. First, the average distances were established to investigate whether the

surrounding phenotypic environment was altered according to treatment status. Notably,

neoadjuvant cohorts demonstrated significant reduced distances from CD68+ to CD3+
(p=0.037), from PanCk+ to FOXP3CD3+ (p=0.001), and from aSMA+ to FOXP3CD3+

(p=0.04) among others (figure 4.10). Furthermore, neoadjuvant patients also exhibited

reduced average distance from all phenotypes (bar CD8+) to CD68+ macrophages

compared to naive patients (figure 4.10).
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Figure 4.10 Average nearest neighbour distance of combined naive and neoadjuvant
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pancreatic cohort. Boxplots are faceted by distance to phenotype, with each ‘from’ phenotype

displayed along the top x axis, each ‘to’ phenotype displayed along the right y axis, and average

distance in um along the left y axis.

Comparisons between the established base naive and neoadjuvant samples were made

to determine alterations in spatial interactions between treatment type. Overlapping

distance metrics observed in both cohorts were investigated. Two survival clusters were

observed, the better survival naive and better survival neoadjuvant patients, and the poor

survival naive and poor survival neoadjuvant patients. Matching patterns were seen in a

range of nearest neighbour pairs. Large distances to PanCk+ from aSMA+ (p=0.003),
from CD3CD8+ (p=0.045), from FOXP3CD3+ (p=0.028), and from CD68+ (p=0.027) in

both neoadjuvant and naive cohorts correlated with increased disease specific survival.

Neoadjuvant patients associated with best outcome (table 4.6). Interestingly, many

nearest neighbour patterns differed between treatment status. Decreased distance to
aSMA+ from CD3CD8+ (p=0.003) and to CD3CD8+ from CD68+ (p=0.008), in

neoadjuvant patients associated with improved survival, with the opposite trend

demonstrated in high survival naive patients (table 4.6). Similarly, large distances to

PanCk+ from CD3+ (p=0.024), to FOXP3CD3+ from CD68+ (p=0.003) and to CD3+ from

CD68+ (p=0.010) in neoadjuvant correlated with improved survival, with the reverse trend

seen in naive patients (table 4.6).

Nearest neighbour trends in disease specific survival in naive and neoadjuvant cohorts

Nearest neighbour pattern Region Cohort Group Number HR (95% Cl) P value
Distance to PanCK from aSMA Whole core Naive a.md Ne?adjuvant 72 0.36(0.20-0.63) 0.003
Neoadjuvant Naive 436 0.76 (0.59-0.97)
Distance to PanCK from CD3 Whole core Naive a.md Nef)adjuvant 72 0.50(0.29-0.87) 0.024
Neoadjuvant Naive 436 0.81(0.65-1.00)
Distance to CD68 from CD3CD8 ~ Whole core Na1ve and Neoadjuvant 72 0.41(0.240.70) 5 1
Neoadjuvant Naive 436 0.83(0.67-1.03)
Distance to aSMA from CD3CD8 Whole core Naive a.md Nef)adjuvant 72 1.63(0.97-2.75) 0.003
Neoadjuvant Naive 436 0.71(0.57-0.89)
Distance to PanCK from CD3CD8 Whole core Naive a.md Ne?adjuvant 72 0.54(0.31-092) 0.045
Neoadjuvant Naive 436 0.83(0.66-1.03)
. Naive and Neoadjuvant 72 0.39(0.22-0.69)
Dist to PanCKf CD68 Whol . N 0.027
istance to Fant.tirom Ol€ COTE Neoadjuvant  Naive 436 0.79 (0.64-0.99)
Distance to CD3 from CD68 Whole core Naive a.md Nef)adjuvant 72 0.45(0.26-0.80) 0.010
Neoadjuvant Naive 436 1.38(1.11-1.72)
Distance to FOXP3CD3 from CD68 Whole core N21ve and Neoadjuvant 72 0.42(0.240.73) 5 153
Neoadjuvant Naive 436 1.42(1.14-1.78)
Distance to CD3CDS from CD68 ~ Whole core 21ve and Neoadjuvant 72 2.19(0.935.17)  ; 508
Neoadjuvant Naive 436 1.33(1.07-1.66)
Distance to PanCK from Naive and Neoadjuvant 72 0.38(0.21-0.70)
FOXP3CD3 Whole core \ o adjuvant  Naive 436 0.79(0.62-1.02) 028

Table 4.6 Nearest neighbour patterns associated with disease specific survival in combined

naive and neoadjuvant cohorts looking at whole core. Nearest neighbour pattern reported per

group and region, patient group indicated, along with number of patients in each group. Log Rank

(Mantel-Cox) p value and Univariate cox regression hazard ratio (HR) shown with 95% confidence

interval (ClI).
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Prognostically favourable mutual nearest neighbour

tumour immune landscape in naive vs neoadjuvant patients

Significant differences were established in average distances between naive and

neoadjuvant patients for a range of mutual nearest neighbour pairs. These differences

were mostly observed in CD68+ macrophages associated pairs. Decreased distance
between CD68+ macrophages and aSMA+ (p<0.001), PanCk+ (p<0.001), CD3+
(p<0.001), CD3CD8+ (p<0.001), CD68+ (p<0.001) and FOXP3CD3+ (p<0.001)

demonstrated in the neoadjuvant cohort (figure 4.11).
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Figure 4.11 Average mutual nearest neighbour distance of combined naive and neoadjuvant

pancreatic cancer cohort. Boxplots are faceted by mutual nearest neighbour relationship, with

treatment cohort along the x axis, and average distance in um along the y axis.
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When looking at mutual pairs, large amount of overlap between the high survival naive
and high survival neoadjuvant patients was seen. Large distances between FOXP3CD3-
aSMA (p=0.012), CD68-aSMA (p=0.009), CD68-CD3CD8 (p=0.01), PanCk-CD68
(p=0.002), and CD3-aSMA (p=0.004) in both neoadjuvant and naive patients correlated
with better survival (table 4.7). Furthermore, large distances in neoadjuvant patients
between CD68-FOXP3CD3 (p=0.025), PanCk-aSMA (p=0.003) and PanCk-CD3CD8
(p=0.01) positively correlated with improved DSS (table 4.7).

Mutual nearest neighbour trends in disease specific survival in combined naive and neoadjuvant cohorts

Mutual nearest neighbour pair Region Cohort Group Number HR (95% Cl) P value
Distance to PanCK and CD68 Whole core :ZIg:d?S\?ant zjﬁzdjuvant c71§6 géi Egi;g;ii 0.002
Distance to PanCK and aSMA  Whole core :ZIg:d?S\?ant zjﬁzdjuvant c71§6 ggcll Egigg:g 0.003
Distance to CD3 and aSMA Whole core :ZIg:d?S\?ant zjﬁzdjuvant c71§6 ggi Egﬁgg:g 0.004
Distance to CD68 and aSMA Whole core :ZIg:d?S\?ant zjﬁzdjuvant c71§6 ggg Egﬁﬁg;gi 0.009
ORAOROIONS gy N Moo 72 0202078 g0
Distance to CD68 and FOXP3CD3Whole core SZ':: d?:fant :zﬁfj”"a"t de 2:32 Egéi:ggg 0.025
Distance to CD68 and CD3CD8  Whole core SZ':: d?:fant :zﬁfj”"a"t de g:gi Eg:égjgg 0.017
Distance to PanCKand CD3CD8 Whole core :ZIg:d?S\?ant sgﬁzdjuvant 3156 ggg %géi?g% 0.01

Table 4.7 Mutual nearest neighbour patterns associated with disease specific survival in
combined naive and neoadjuvant cohorts in whole core. Mutual nearest neighbour pair
reported per group and region, along with number of patients in each group. Log Rank (Mantel-
Cox) p value and univariate cox regression hazard ratio (HR) shown with 95% confidence interval
(Cl).
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411.4 Prognostically favourable tumour immune landscape
at different radii in naive vs neoadjuvant pancreatic cancer
patients

Finally, phenotypic differences in the immediate microenvironment (50um radius) for all
cells in naive and neoadjuvant patients were determined. Elevated levels of CD68+
(p=0.022), and reduced levels of aSMA+ cells (p<0.001) within the PanCk+ environment,
and within the CD68+ environment, elevated CD3CD8+ (p=0.004), elevated FOXP3CD3+
(p=0.003), reduced PanCk+ (p<0.001), and reduced aSMA+ (p<0.001) were observed in
neoadjuvant patients compared to naive patients (figure 4.12). Furthermore, increased
expression of CD3CD3+ (p<0.001), CD68+ (p<0.001), FOXP3CD3+ (p=0.008), and
reduced PanCk+ (p<0.001) surrounding CD3+ cells was observed in neoadjuvant patients
compared to naive patients (figure 4.12).
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Figure 4.12 Average immune cell population density at 50pym from central cell in combined
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naive and neoadjuvant cohorts Boxplots are faceted central cell (‘from’ phenotype), with each ‘to’

phenotype displayed along the right y axis, and average cellular density along the left y axis.

To maintain the spatial aspect of this analysis, reporting is limited to significant survival
relationships within 50um. In the immediate surrounding environment of CD3+ cells (20um
radius), low density of FOXP3CD3+ (p=0.049) and CD3CD8+ (p=0.053) correlated with
increased survival in neoadjuvant patients, and low density of CD68+ (p=0.009) in both
neoadjuvant and naive patients from CD3+ cells was associated with longer survival times
(table 4.8). Matched tumour-macrophage trends were seen in naive and neoadjuvant
patients, with low density of CD68+ cells within 30um from PanCk+ was associated with
improved survival (table 4.8). Additionally, multiple macrophage associated trends
demonstrated positive associations with prognosis. Neoadjuvant patients with low density
of CD3+ (p=0.011), CD3CD8+ (p=0.018) and FOXP3CD3+ (p=0.044) within 40um from
CD68+ cells correlated with better prognosis (table 4.8).

Radius trends in disease specific survival in combined naive and neoadjuvant patients

From To Phenotype Distance Cohort Group Number HR (95% Cl) P value

Phenotype (pm)

D3 FOXP3CD3 20 Naive a.md Nef)adjuvant 72 2.76(1.59-4.78) 0.049
Neoadjuvant Naive 436 1.01(0.66-1.55)

D3 CD3CD8 20 Naive a.md Nef)adjuvant 72 1.80(1.09-2.99) 0.053
Neoadjuvant Naive 436 0.82(0.61-1.08)
Naive and Neoadjuvant 72 2.53(1.22-5.23)

CD3 CD68 20 . N 0.009
Neoadjuvant Naive 436 1.49(1.13-1.96)
Naive and Neoadjuvant 72 2.36(1.23-4.54)

PanCk CD68 30 . N 0.011

an Neoadjuvant Naive 436 1.52(1.14-2.01)

D68 D3 0 Naive a.md Nef)adjuvant 72 1.64(0.95-2.82) 0.011
Neoadjuvant Naive 436 0.68 (0.53-0.89)

D68 CD3CD8 0 Naive a.md Nef)adjuvant 72 1.99(1.20-3.32) 0.018
Neoadjuvant Naive 436 0.72(0.55-0.93)

D68 FOXP3CD3 0 Naive a.md Nef)adjuvant 72 2.61(1.52-4.48) 0.044
Neoadjuvant Naive 436 0.82 (0.64-1.05)

Table 4.8 Radii patterns associated with disease specific survival in combined naive and
neoadjuvant cohorts looking at whole core. Radii reported using ‘from phenotype’ column,
indicating the central phenotype, and ‘to phenotype’ indicating the surrounding phenotype.
Reported by distance (um), cohort, group, along with number of patients in each group. Most
significant radii is reported. Log Rank (Mantel-Cox) p value and Univariate cox regression hazard
ratio (HR) shown with 95% confidence interval (Cl).
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4.12 Discussion

To interrogate the spatial relationships within naive and neoadjuvant PDAC at a single cell
level, the base neoadjuvant landscape was established, using the same high-plex immune
panel as was used in the naive cohort. Subsequent comparisons were made between the
different treatment types. Phenotypes were primarily established using biased cell typing,
and subsequently validated with unbiased cell clustering using CytoMAP. Unbiased
phenotyping confirmed all phenotypes categorized by biased phenotyping, except for one

phenotype.

Data from the neoadjuvant cohort produced counterintuitive observations with regard to
cellular densities. Notably, reduced CD3+ T cell infiltration significantly correlated with
improved prognosis. Although neoadjuvant tumour immune cell profiling has been
historically lacking in PDAC, of the studies generated, an immunogenic switch towards
effector cells has been reported. Increased cytotoxic T cell, helper T cell (CD3+ and
CD4+) infiltration has been observed, along with reduced Treg expression [8, 219, 251,
252, 257]. At first glance, the cellular density neoadjuvant results from this study
contradict the literature. However, data from other solid cancers have been carried out
documenting the alterations seen in immune cell count post neoadjuvant chemotherapy
[216, 258-260]. In particular, a study investigating matched blood samples in oesophageal
cancer demonstrated an initial reduction of CD8+ and CD4+, as well as B cell and natural
killer cell populations post neoadjuvant therapy. Only the CD8+ count fully returned 8
weeks post neoadjuvant treatment and resection, with all other immune cells investigated
never recovering [216]. An in-depth study in primary breast cancer observed depletion of
all main T lymphocytes for up to 6 months, with CD4+ T cells significantly reduced 9
months post neoadjuvant treatment. Likewise, they found the functional state of cells

present had altered, with increased memory CD4 T cells [259].

When comparing the naive and neoadjuvant cohorts, an overall higher density of tumour
and fibroblasts within the naive cohort was observed, with higher infiltrates of
macrophages and Tregs populations found in the neoadjuvant cohort. Moreover, naive
cohorts matched trends described in the literature (significant prognostic associations with
elevated CD3+, CD3CD8+ and reduced CD68+ cells). In contrast, neoadjuvant patients
with good outcomes presented with low density of T helper cells, cytotoxic T cells, and
Tregs. Upon comparison with the naive cohort, these patients remain the group with the
highest median disease specific survival. This raises the question of whether increased
expression of cytotoxic T cell markers alone is always a sufficient pseudo marker for
cytotoxic activity. A study looking at the activation status of CD8+ T cells in treatment

naive and neoadjuvant treated PDAC found approximately 40-70% of infiltrating T cell
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population expressed markers of dysregulation (PD-1 and/or TIM3) [261]. These cell types
were predominantly found located within the tumour core and the invasive edge resulting
in the loss of cytotoxic benefit, with elevated cytotoxic marker expression (GZMB) seen in
the tumour adjacent pancreatic parenchyma. Intriguingly, a reduction of dysregulated T
cells was observed when comparing histological regions with lower tumour cell presence
[261, 262]. The ‘exhausted’ phenotype reportedly starts to occur almost immediately after
tumour antigen exposure, with dysfunctional characteristics established in early-stage T
cell activation [263]. This phenomenon may help disentangle the results seen within the
neoadjuvant cohort. If the CD3CD8+ T cells found in the tumour core predominantly lack
cytotoxic activity, their presence would not lead to apoptosis of tumour cells, thereby
making elevated expression redundant. Furthermore, the reduced levels of these cells in
the high survivor neoadjuvant group may be indicative of a ‘less active’ disease, with
lower tumour cells present. Although, immune checkpoint inhibition of T cells via PD-
L1/PD-1 interactions with tumour cells have been reported in pancreatic cancer, targeting
this interaction has only proved beneficial in a small subset of microsatellite
instability/mismatch repair deficient patients [264, 265]. Exploration of other
histopathological regions, as well as activation status, would be required to fully explore
the role of CD3CD8+ T cell density within the neoadjuvant cohort. Notably, the term
exhausted has generated some controversy, with terms such as inactive or dysregulated

perhaps being more appropriate.

Few IHC studies have focused on density ratios in neoadjuvant pancreatic cancer. Nejati
et al investigated the T lymphocyte infiltration in neoadjuvant patients' post-neoadjuvant
resection [256]. They found an increased ratio of CD8/FOXP3 cells significantly correlated
with survival. In contrast, the neoadjuvant cohort expressed the opposite, demonstrating
reduced levels of CD3CD8/FOXP3CD3 ratio correlated with survival [256]. The role of
FOXP3+ T regulatory cells is not fully understood, with the vast majority of literature
associating its expression with poor survival [266]. Moreover, in vivo reports have shown
Tregs to specifically inhibit the cytotoxic function of CD8 T cells via TGF-f related
pathways [267]. It is important to note that the neoadjuvant TMA was generated as a
complex multi-regional, multi-core TMA with specific TMAs for defined regions e.g. tumour
centre TMA, immune rich TMA. Consequently, comparisons were limited to tumour centre
cores as this was the closest match to the histopathology found in naive cohort TMAs.
Thus, the results generated are strictly applicable to the direct tumour microenvironment,

disregarding stromal rich areas, which may generate different patterns.

The major benefit of utilising multiplex immunofluorescence, is the ability to perform single
cell spatial characteristic analysis to help deconvolute the complex tumour immune

landscape of neoadjuvant treated pancreatic cancer. A large number of prognostically,
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and potentially biologically, significant spatial metrics were observed. Patients with
favourable prognosis presented with large distances to tumour cells from fibroblasts, from
Tregs and from macrophages. These trends were emphasized in radius analysis of high
survival patients, low densities of helper T cells, macrophages and Tregs were observed
in the surrounding tumour cell environment. Reminiscent of cellular density analysis,
studies focusing on neoadjuvant cohorts using multiplex analysis are relatively scarce.
Within these studies, those that examine spatial metrics are even more uncommon.
Heiduk et al explored the T cell infiltration in neoadjuvant chemotherapy treated patients.
They found cytotoxic T cell infiltration was unchanged, and T regulatory cells significantly
reduced. A switch form anti-inflammatory to pro-inflammatory cytokine secretion was
linked with CD4 helper T cells, in addition to reduced inactive cytotoxic T cells [253].
Another study found similar results, increased abundance of cytotoxic T cells
predominantly in stromal regions in neoadjuvant patients when compared to naive
patients, and a shift from M2 to M1 polarized macrophages, classed as CD68+ or CD163+
with co-expression of CD86+ and IRF5+ [252]. Curiously, limited survival analysis was
shown in regard to immune cell densities. However, they found elevated numbers of M1
polarized macrophages within 20pm of tumour cells correlated with better prognosis in
neoadjuvant treated patients [252]. Although this contradicts what was illustrated in the
neoadjuvant cohort, it is important to note the differences in macrophage classification.
Tumour microenvironment differences were also observed in important neoadjuvant
clinical subgroups. Specifically, amongst FOLFIRINOX treated, and good regression
patients, multiple prognostic significant density and spatial metrics were observed
compared to their counterparts. Zwart et al examined immune variations across
neoadjuvant treatment types and found differences between FOLFIRINOX and
Gemcitabine-radiotherapy treated patients [268]. Though they found differences in cellular
density across T cell and macrophage populations, no associations were established with

disease specific or recurrence free survival.

Using several different models, the most important spatial relationships were extracted,
demonstrating neoadjuvant patients with highest survival probability presented with varied
patterns. These findings reinforce the need to establish multi-layered interactions to fully
define the immune landscape in relation to survival. The naive cohort yielded distinctly
different trends associated with improved disease specific survival. These differences
suggest an immunogenic switch following neoadjuvant treatment, implying the potential
involvement of distinct biological pathways responsible for high survival rates within each
treatment group. The neoadjuvant cohort yielded a blend of anticipated and unforeseen
spatial trends. The spatial relationships seen linked to macrophages, fibroblasts, and T

regulatory cells fall within the predominant hypotheses associated with these cell types,
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whereas spatial relationships linked to CD3+ helper T cells and cytotoxic T cells were

conflicting.
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5 Chapter 5: Determining the Spatial
Transcriptomic immune landscape
in treatment naive and neoadjuvant

treated pancreatic cancer
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5.1 Introduction

Transcriptomic exploration of cancer is an ever-expanding field that has led to the
development of clinically relevant molecular subtypes, discovery of early detection
biomarkers and identifying biological pathways driving oncogenesis [15, 63, 90, 100-102,
212, 269, 270]. This work has primarily been achieved via bulk RNA transcriptomic
techniques, resulting in pooling of patient samples, reducing it to a homogenous averaged
sample per patient. One of the biggest hurdles in cancer research is the vast inter and
intra heterogeneity seen. Bulk RNA data often expresses the most dominant signature,
loosing transcriptionally distinct subpopulations [271]. Single cell transcriptomics provides
a solution to this limitation. This technique works by sequencing single cells, generating
pure signatures, and allowing discovery of even rare transcriptionally distinct profiles [272,
273]. However, cancer cells do not exist in isolation, exhibiting complex, variable
relationships with the tumour microenvironment. Both single cell and bulk transcriptomics
omit this highly influential spatial architecture. Spatial Transcriptomics was developed to
overcome this issue, providing highly specific regional transcriptomic profiles [274, 275].
Different platforms have been developed, each with their own benefits and limitations.
Pancreatic cancer is a highly heterogenous and relatively poorly defined disease, which
would benefit from techniques that allow maximum regional purity whilst maintaining
tissue architecture to decipher its biology. The main advantages of Nanostrings® Spatial
Transcriptome assay is its ability to work with TMAs and select areas of interest base on
mIF staining, resulting in the generation of distinct signatures making it ideal for tissue
compartment selection [113]. This is ideal for tissue compartment selection. Due to
resolution limitations, this technique can be referred to as ‘mini-bulk’, and therefore should
be considered as such when analysing and reporting data [113]. It is worth noting the
current Spatial Transcriptomic landscape is continuously evolving, producing improved
cell resolution, sequencing depth and transcript specificity, as well as the shifting focus to

the development of assays applicable to 3D samples [108, 115, 116, 276].

Although current published Spatial Transcriptomic work, across all platforms, in pancreatic
cancer remains limited, promising findings have emerged. Grunwald et al established
three major sub-tumour microenvironments, demonstrating the location pattern of these
regions correlated with survival, each with different immune and stromal features [277].
Transcriptional signatures identified immune cell subtypes associated with PDAC,
including macrophages, and found they had differential locations [277]. Furthermore,
insight can be drawn from other, similar cancers. A study on primary colorectal cancer
demonstrated significantly different immune profiles at distinct histopathological regions

between patients with good and poor survival [278].
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To preserve compartment purity, Nanostrings® Whole Transcriptome Atlas (WTA) on the
GeoMx® DSP platform was utilized on naive and neoadjuvant TMA cohorts with
associated extensive clinical data. Investigating the spatial transcriptomic profile of the
TME in pancreatic cancer will assist in defining the molecular mechanisms underpinning
this disease. Successful characterization of treatment naive and treated patients will
clarify the effect that chemotherapy has on immune pathways and may provide insight into

novel biomarkers.

5.1.1 Aims

Investigate the Spatial Transcriptomic alterations in upfront resected PDAC patients, with
consideration given to important clinical subgroups per treatment status. This was carried
out in epithelium (PanCk+), fibroblast rich stromal (aSMA+) and immune (CD45+) regions.
The naive and neoadjuvant landscape will be individually established, and subsequent
comparisons will be made. Focused analysis will be done on immune-related pathways
and immune cell deconvolution. Explore the B7-H3 transcriptomic expression within the

naive and neoadjuvant landscape.

5.2 Clinical cohorts

The naive cohort consisted of a total of 62 pancreatic cancer specimens on a TMA with
associated clinical data (table 5.1). These were a subset of the naive cohort described in
chapter 3. Median survival for these patients was 19.2 months. The neoadjuvant cohort
consisted of 71 pancreatic cancer specimens split across 3 multi-regional TMAs (table
5.1). This cohort is the neoadjuvant cohort described in chapter 4 (n=58), with an
additional clinical trial cohort (PRIMUS002, n=13). Median survival for this combined
cohort was 20.4 months. Neoadjuvant whole sections consisted of clinical trial samples
(PRIMUSO002) including 2 matched biopsy and post chemotherapy resected cases.

Clinical data associated with these cohorts are found in chapter 2.1.

Study Cohort name Sample name Sample Patient Treatment
number number type

Glasgow Naive 2 PDAC-PAN-TMA 1 62 Naive
GeoMx WTA Neoadj-MAL-TMA batchl 1
assay Neoadjuvant g batch 58
combined Neoadj-MAL-TMA batch2 1 Neoadjuvant
PRIMUS-MAL 1 13
Primus whole section PRIMUS002 4 2

Table 5.1 Naive and neoadjuvant clinical cohorts and associated study. Summary table
showing the study and associated neoadjuvant and naive samples used, patient number and
treatment type. The cohort name column refers to the cohort name in chapter 2.1. Primus whole
section IDs found in chapter 2.1
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5.3 Spatial Transcriptomic landscape of Naive PDAC

5.3.1 Whole transcriptome profiling in naive pancreatic cancer

To elucidate the differences in primary resected and neoadjuvant pancreatic cancer,
Spatial Transcriptomics using Nanostrings® WTA assay was performed. Three areas of
ilumination (AOIs) were selected; epithelium-rich, fibroblast-rich stroma and immune-rich
tumour microenvironment, categorised by PanCk+, aSMA+ and CD45+
immunofluorescence antibodies respectively (figure 5.1.a). This selection method allowed
for subsequent analysis of ‘pure’ tissue compartments within the naive PDAC cohorts,

enabling molecular discovery between treatment types (figure 5.1.b).
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Figure 5.1.a-b GeoMx® Digital Spatial Profiler AOI selection in naive PDAC TMAs.
a).Representative cores stained with immunofluorescent PanCk, aSMA and CD45. Schematic of
epithelial, fibroblast rich and immune rich specific segments generated from immunofluorescence
staining, b). Overview of upfront resected naive PDAC cohort (n=62), from diagnosis to end of
follow up. Samples are neoadjuvant treatment naive, but will undergo adjuvant therapy, tissue is

embedded in paraffin before treatment.
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5.3.2 Tumour compartments demonstrate distinct transcriptome
profiles in naive pancreatic cancer

5.3.2.1 Inter-tumoral heterogeneity

Comparison between AQIs within the naive cohort was carried out to confirm that
adjacent tumour compartments expressed distinct transcriptome profiles. Vast differences
in differential expression between PanCk vs aSMA segments, and PanCk vs Immune
segments were observed, and limited differences between aSMA vs Immune segments
(figure 5.2).
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Figure 5.2 Inter-compartment differential expression in naive patients. Heatmap showing

significant differentially expressed genes in all segment comparison. Segments comparisons
carried out between PanCk vs immune, PanCk vs aSMA and immune vs aSMA
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Geneset enrichment analysis (GSEA) analysis demonstrated upregulation in a wide range
of pathways when comparing all segments (supplementary 8.4.1.1). These results
emphasize the need to separate the different compartments when investigating
transcriptomic signatures that underlie biology. To validate the differences between
segments, as described above, Principle Component Analysis (PCA) was performed on
all naive segments. This analysis revealed distinct clustering by segments, in particular,
clear grouping of PanCk and aSMA segments (figure 5.2). However, immune segments
appeared relatively dispersed between PanCk and aSMA clusters. This phenomenon is
perhaps due to the microenvironment in which the immune segments reside in, indicative

of how influential the tumour and fibroblast-rich compartments are.
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Upon confirmation of discrete inter-compartment profiles, intra-compartment profiles were

investigated. Hierarchical clustering was performed using PCA. This resulted in 2 distinct

PanCk clusters, that demonstrated non-significant survival trends, with cluster 2

correlating with poor survival (p=0.075) (figure 5.3.a-b). The Kaplan-Meier curve, coupled

with median survival between cluster 1 (21.2 months) and cluster 2 (14.7 months) were

distinct enough to permit in-depth transcriptomic exploration.
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Figure 5.3.a-b Epithelial intra-compartment heterogeneity in naive cohort, a). PCA showing

clustering of naive epithelial segments b). Kaplan-Meier curve stratified by epithelial clusters for

disease specific survival (months) (Log-Rank Mantel-Cox test).
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Of the differentially expressed genes, HSPA6 (logFC = 1.8, padj <0.001) and CST71 genes
(logFC = 1.8, padj <0.001) were upregulated in the epithelial cluster 2 (figure 5.4.a).
Although limited pathways were expressed, downregulated type | interferon (INF) pathway
(NES =-2.0, padj = 0.007) and upregulated T cell pathways (NES = 1.7, padj = 0.003)
were observed (figure 5.4.b).
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Figure 5.4.a Spatial transcriptomic alterations between naive epithelial clusters, a). Volcano
plot demonstrating gene marker differential expression levels in epithelial cluster 1 vs epithelial
cluster 2. Genes with log2 fold change above and below 1.5, and p adjusted value <0.05 were
considered significant, important genes in bold. Dashed line indicates significance thresholds, NS =

non-significant, FC = fold change.
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Spatial immune cell deconvolution comparing these clusters estimated decreased tumour
infiltrating B cells (p=0.012), memory dendritic cells (p=0.007) and increased expression
of monocytes (p=0.027), and neutrophils (p=0.02) in cluster 2 epithelium (figure 5.5.a). To
ensure these epithelial clusters were not simply previously established transcriptomic
signatures, the epithelial cluster gene set was compared to Collison et al, Moffit et al and

Bailey et al gene sets [100-102], with minimal overlap seen (figure 5.5.b).
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Figure 5.5.a Epithelial cluster immune cell deconvolution and molecular subtype
comparison, a). Boxplots demonstrate estimated immune cell expression per 100 cells in; B cells,

neutrophils, memory dendritic cells and monocytes. Wilcoxon test with adjusted p value was used.
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Figure 5.5.b Epithelial cluster immune cell deconvolution and molecular subtype

comparison, b). Venn diagram showing number of overlapping genes between molecular

subtypes and epithelial cluster 1 and epithelial cluster 2.
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Tumour cells have symbiotic relationships with immune and stromal cells. Although
individually, aSMA and immune clusters did not prove significant, combination of immune
or aSMA clusters with the established epithelial clusters, displayed prognostically relevant
subtypes (figure 5.6.a-d). Patients with epithelial cluster 2 combined with aSMA cluster 1
had significantly worse survival compared to all other combinations (p=0.02) (figure 5.6.c
and table 5.2). When epithelial and immune clusters were combined, epithelial cluster 1
coupled with immune cluster 1 (epi-immune cluster 1) demonstrated improved survival
compared to the other clusters (ignoring the purple cluster due to limited number)
(p=0.047) (figure 5.6.d and table 5.2).
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Cluster comparison group Cluster comparison pair 1 Cluster comparison pair 2 P value
Epi-cluster-1_aSMA-cluster-1 Epi-cluster-1_aSMA-cluster-2 0.249
Epi-cluster-1_aSMA-cluster-1 Epi-cluster-2_aSMA-cluster-1 0.029
Epi-cluster-1_aSMA-cluster-1 Epi-cluster-2_aSMA-cluster-2 0.659
Epi-cluster-1_aSMA-cluster-2 Epi-cluster-1_aSMA-cluster-1 0.249
Epi-cluster-1_aSMA-cluster-2 Epi-cluster-2_aSMA-cluster-1 0.054

1 Epi-cluster-1_aSMA-cluster-2 Epi-cluster-2_aSMA-cluster-2 0.801
Epithelial-aSMA cluster Epi-cluster-2_aSMA-cluster-1 Epi-cluster-1_aSMA-cluster-1 0.029
Epi-cluster-2_aSMA-cluster-1 Epi-cluster-1_aSMA-cluster-2 0.054
Epi-cluster-2_aSMA-cluster-1 Epi-cluster-2_aSMA-cluster-2 0.013
Epi-cluster-2_aSMA-cluster-2 Epi-cluster-1_aSMA-cluster-1 0.659
Epi-cluster-2_aSMA-cluster-2 Epi-cluster-1_aSMA-cluster-2 0.801
Epi-cluster-2_aSMA-cluster-2 Epi-cluster-2_aSMA-cluster-1 0.013
Epi-cluster-1_Immune-cluster-1  Epi-cluster-1_Immune-cluster-2 0.012
Epi-cluster-1_Immune-cluster-1  Epi-cluster-2_Immune-cluster-1 0.44
Epi-cluster-1_Immune-cluster-1  Epi-cluster-2_Immune-cluster-2 0.922
Epi-cluster-1_Immune-cluster-2  Epi-cluster-1_Immune-cluster-1 0.012
Epi-cluster-1_Immune-cluster-2  Epi-cluster-2_Immune-cluster-1 0.477

. Epi-cluster-1_Immune-cluster-2  Epi-cluster-2_Immune-cluster-2 0.1
Epithelial-immune cluster Epi-cluster-2_Immune-cluster-1  Epi-cluster-1_Immune-cluster-1 0.044
Epi-cluster-2_Immune-cluster-1  Epi-cluster-1_Immune-cluster-2 0.447
Epi-cluster-2_Immune-cluster-1  Epi-cluster-2_Immune-cluster-2 0.607
Epi-cluster-2_Immune-cluster-2  Epi-cluster-1_Immune-cluster-1 0.922
Epi-cluster-2_Immune-cluster-2  Epi-cluster-1_Immune-cluster-2 0.1
Epi-cluster-2_Immune-cluster-2  Epi-cluster-2_Immune-cluster-1 0.607

Table 5.2 Pairwise comparison between naive segment clusters taken from Kaplan Meier plots
above (figure 5.6) Groups compared include epithelial-aSMA clusters (epi-aSMA) and epithelial-
Immune clusters (epi-lmmune). All comparison pairs reported using Log Rank (Mantel-Cox)

pairwise comparison over strata
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The low survivor epithelial-aSMA cluster (hamed Epi-aSMA cluster 1 from now on) was
extracted and spatial transcriptomic analysis was carried out in comparison with the
remainder of the cluster groups (Epi-aSMA cluster 2). Epi-aSMA cluster 1 patients
demonstrated upregulated KIF4A (logFC = 1.8, padj <0.001), CXCL14 (logFC = 1.4, padj
<0.001) and MUCbAC (logFC = 1.8, padj <0.001) (figure 5.7.a). Spatial deconvolution
indicates increased expression of B cells (p=0.008) and memory dendritic cells (p=0.016)

in cluster 2 patients (figure 5.7.b).
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Figure 5.7.a-b Spatial transcriptomic alterations between epithelial-aSMA combined
clusters, a). Volcano plot demonstrating gene marker differential expression levels in epithelial-
aSMA cluster 1 vs epithelial-aSMA cluster 2. Genes with log2 fold change above and below 1.5,
and p adjusted value <0.05 were considered significant, important genes in bold, b). Boxplots
demonstrate estimated differences between immune cell expression per 100 cells in; B cells and

memory dendritic cells across epithelial-aSMA cluster 1 and cluster 2. Wilcoxon test with adjusted
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p value was used. Dashed line indicates significance thresholds, NS = non-significant, FC = fold

change.

Finally, the high survivor epithelial-immune cluster (named epi-immune cluster 1) was
extracted and compared to the other clusters (named epi-immune cluster 2). Cluster 2
patients demonstrated a distinct gene signature associated with upregulation of REG3A
(logFC = 6.3, padj <0.001), MT1G (logFC = 2.6, padj <0.001) and CPA2 (logFC = 5.3,
padj <0.001) (figure 5.8.a). Moreover, a wide range of cell signalling, and immune related
pathways were increased in cluster 2 including; MET (NES = 6.6, padj <0.001), EMT
(NES = 2.1, padj <0.001), T cell exhaustion (NES = 1.6, padj = 0.03) and lymphocyte
regulation (NES = 1.6, padj = 0.006) pathways (figure 5.8.b). Immune cell deconvolution
estimates increased expression of B cells (p=0.011), cytotoxic T cells (p<0.001) and

memory dendritic cells (p=0.024) in cluster 1 patients (figure 5.8.c).
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Figure 5.8.a Spatial Transcriptomic alterations between epithelial-immune combined
clusters, a). Volcano plot demonstrating gene marker differential expression levels in epithelial-
immune cluster 1 vs epithelial-immune cluster 2. Genes with log2 fold change above and below
1.5, and p adjusted value <0.05 were considered significant, important genes in bold. Dashed line

indicates significance thresholds, NS = non-significant, FC = fold change.
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Figure 5.8.c Spatial Transcriptomic alterations between epithelial-immune combined
clusters, c). Boxplots demonstrate estimated differences between immune cell expression per 100
cells in; B cells, memory dendritic cells and CD8 T cells across epithelial-immune cluster 1 and
cluster 2. Wilcoxon test with adjusted p value was used.
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5.3.3 Spatial Transcriptomic signatures across naive molecular
subtypes

As demonstrated in chapter 3, molecular subtypes can be powerful prognostic indicators,
displaying high levels of heterogeneity between subtypes. Spatial Transcriptomic
exploration of these subsets will establish the biological differences and may lead to
biomarker discovery. Traditionally, molecular subtyping has been limited to whole section
bulk transcriptomics. Using previously characterised molecular subtyping, an attempt was
made to establish whether Spatial Transcriptomics can be utilised for molecular subtyping,
by confirming the established subtypes in the naive cohort, as well as categorising the
remainder of the cases. Subtyping was restricted to Baileys Squamous and the Classical
(rest) [102]. Epithelial regions were extracted and subtyped using a reduced geneset for
Squamous and Rest (chapter 2.5.2.8). Clustering based on epithelial regions was not fully
clear, therefore a subtype score was generated using geneset enrichment analysis of
Squamous specific genes. This ranks AOls according to the enrichment score of
Squamous genes, splitting AOls into very Squamous, mixed and very Classical. This
roughly matched the clustering generated by the GeoMx® data, with Classical patients
correctly subtyped according to the rank score (figure 5.9). To validate both the subtype
score and ST subtyping, the established bulk transcriptomic subtypes were used for
comparison. Unexpectedly, bulk subtypes also deviated from the subtype score
generated, as well as from the subtype categorised by Spatial Transcriptomic regions

(figure 5.9). Notably, molecular subtyping can be highly influenced to the sample set

inputted.
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Figure 5.9 Molecular subtyping across epithelial naive segments. Heatmap showing Spatial
Transcriptomic (ST) subtyped differentially expressed Squamous and Classical (rest) genes in

epithelial naive segments. Heatmap annotated with bulk subtypes, and epithelial clusters
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established in chapter 5.3.2.2, and a ranked subtype score bar chart demonstrates the total

squamous score for each epithelial segment.

As molecular subtyping using the Spatial Transcriptome deviated from the subtypes
generated from bulk, transcriptomic analysis of subtypes was limited to segments with
associated bulk RNA sequencing (n=13). Few significant differences were seen between
Squamous and Classical regions, possibly due to the limited number of available samples.
On investigation, epithelial regions demonstrated the most meaningful differences.
Squamous epithelium was enriched in IGFBP3 (logFC = 3.3, padj = 0.004), ADAM19
(logFC = 2.0, padj = 0.05) and PGC (logFC = 4.2, padj = 0.05) compared to Classical
epithelium (figure 5.10.a). Pathway analysis revealed many significant gene sets. Of note,
most pathways were cell signalling pathways, upregulation of MET (NES = 2.6, padj
<0.001), IL-6 (NES = 1.9, padj = 0.02), PDGF (NES = 1.8, padj = 0.006) and TGF-3 (NES
= 1.8, padj <0.001) signalling among others were observed in Squamous epithelium
(figure 5.10.b). Both stromal and immune segments revealed no significant DEA gene
expression, and limited pathway insight. No estimated immune cell differences were seen

across subtypes.
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Figure 5.10.a Spatial Transcriptomic alterations between molecular subtypes epithelium, a).
Volcano plot demonstrating gene marker differential expression levels in Classical vs Squamous
epithelial segments. Genes with log2 fold change above and below 1.5, and p adjusted value <0.05
were considered significant, important genes in bold. Dashed line indicates significance thresholds,

NS = non-significant, FC = fold change.
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Figure 5.10.b Spatial Transcriptomic alterations between molecular subtypes epithelium b).
Geneset enrichment bar chart in Classical vs Squamous epithelial segments. Pathways with
normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value < 0.05 were
considered significant. Important pathways are indicated by an arrow.
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5.3.4 Spatial Transcriptomic signatures in naive long-term
survivors of pancreatic cancer

Pancreatic cancer has an abysmal survival rate; however, a small subset of patients tends
to survive longer than expected. Transcriptomic assessment of these patients may
elucidate the mechanisms behind this improved prognosis, in addition to potentially
identifying predictive biomarkers for this subset. Within this naive cohort, median survival
was approximately 19 months, patients surviving over 36 months were classed as long-
term survivors (LTS). Differential expression was carried out between the areas of
ilumination in LTS patients compared to the rest. Relatively few aberrations were
observed between segments of the survivor groups. Of significance, high survivors
expressed elevated LYZ (logFC = 3.2, padj <0.001) in epithelial compartments (figure
5.11.a), elevated IGLL5 (logFC = 5.5, padj <0.001) and NFKBID (logFC = 1.9, padj =
0.01) in aSMA compartments (figure 5.11.b), and elevated /GLL5 (logFC = 3.7, padj
<0.001) and IGHG1 (logFC = 3.7, padj <0.001) in immune compartments (figure 5.11.c).
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Figure 5.11.a Differential expression alterations in long term survival naive segments,
volcano plot shows significantly expressed genes in patients surviving under 36 months vs over 36
months across a). Epithelium segments. Dashed line indicates significance thresholds, NS = non-

significant, FC = fold change.
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Although differential gene expression was relatively limited, an abundance of significant
genesets were seen. Epithelial segments of LTS associated with downregulation of PDGF
signalling (NES = -1.8, padj = 0.003), TGF-( signalling (NES = -1.8, padj <0.001), MET
(NES = -1.8, padj = 0.004), PI3K-Akt (NES = -1.8, padj <0.001), and upregulated in TNF
(NES = 1.7, padj = 0.005) and PPAR (NES = 1.8, padj <0.001) signalling (figure 5.12).
Unexpectedly, almost no immune cell pathways appeared in the long-term survivor groups
in either fibroblast rich or immune segment GSEA ((supplementary figure 8.4.a-b).
Notably, the complement signalling pathway was downregulated in LTS epithelial regions
but upregulated in stromal/immune segments, accentuating the importance of pure
regional analysis. Immune cell population deconvolution estimated increased expression
of B cells (p=0.024) and cytotoxic CD8 T cells (p=0.009) within immune regions in long
term survivors (figure 5.13).



189

Prolease Inhibitors

Cell R:m)em uan uﬁlﬁ{n

MairlxRemudeTlng :nﬂSIt%nglsr}
Punner ic Signaling

— ISR signaln
Horm
Lymphocyﬁolig ula‘|0§

ustion
Other Ingreﬁleulﬂn ,g]gna |

?reﬂtnfﬂ*oﬁ

F°"°Rse§'e’3%'?§

Cytokines and GE:OH\MI Tg&t‘ s
T—ceII Chec oints

Lympho ég r |cqln
I nalin

tosi

Treghmerﬁn |al|on
B Cells

mAaBR 5!2;?%‘.’1'5
Estmgen Slgnal

Sscrghgn g leesn;

JAK-S
Oittereilation
Glycolysis & Glucogg ransport

Ilng

Hlppo Sl
MHC Cla_1§s Ié.f\ﬂ]ltl Igfnrghegen'% I:Dn
e Banaritt: cells
Transcription Factors
TH1 erentl?llqn

Type ll Interfer:un s|gna||ng
Interferoﬁ eespo |g 2ne

Pros'%ggqan 3 H\cl m‘Jadnl'lfr% g Igﬂ
THYT llﬁege'?mtlaﬁgﬁ
nsu Il\ ing
UlLo|
Retinoic Acel Slmamg

Chrorél atll'lll- ssolagle

Adj. P
— 1.00

0.75
0.50
0.25

Trapslation Factors

ifferen a{mn
MHC Class | Anligg e ?nrtlg]lgt:

n
Type lll InterfskohrllASggHt h

Vln'

“Siress
Tryptophan & K;ﬂmremne tlﬁ’éll%bo |esrr

uitin-Associated

L-1 Signalin

i

Immurtarty ggt o rLess
DNA Dama e Repair

Whole Transcriptome Atlas geneset

Oft| nﬁyme
Notch Signaling
Chemukl‘]rea%gnalm

'Halk §|§na||nﬂ L Under 36 months
Neuqlr%rﬁhlldc,e%j{:gnu a(i 3n

asom gg

| Over 36 months

/‘

Hosl'ige?sn'soaswlt)le i
Elongatlnn ac nrs

And m nalln
v
Mitochondrial M';skﬁ"éf"na;[lng

|||||I |

-2 -1 1 2
Normalised Enrichment Score

(=]
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5.3.5 B7-H3 signature in naive pancreatic cancer

B7-H3 protein expression was demonstrated to be prognostic in naive pancreatic cancer,
with low expression in epithelial compartments significantly associating with disease
specific survival (chapter 3.11). This pattern was replicated in a different naive pancreatic
TMA (table 5.1), using Spatial Transcriptomic expression. A prognostic pattern was
observed when investigating average B7-H3 expression per patient, with low expression
significantly correlating with improved survival (figure 5.14.a), and low epithelial
expression demonstrating a non-significant trend towards improved survival (figure
5.14.b). Additionally, B7-H3 expression was upregulated in fibroblast-rich regions

compared to epithelium, similar to the pattern observed in protein analysis (figure 5.14.c).
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Figure 5.14.a-c B7-H3 RNA expression in naive pancreatic cancer. Kaplan-Meier curve

stratified B7-H3 expression in disease specific survival (months) in a). whole core b). epithelial
segments. Log-Rank (Mantel-Cox) test, replicating cutoff found in chapter 3.11, ¢). Boxplot showing

B7-H3 expression across PanCk, aSMA and immune segments, Kruskal-Wallis test used.
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The Spatial Transcriptomic signature per ROI, associated with B7-H3 ranked expressions
was investigated. A multitude of aberrated pathways were identified across all tissue
compartments, with many cell signalling associated and immune related pathways,
including downregulated B Cell Receptor (BCR) and T Cell Receptor (TCR) signalling,
myeloid inflammation, and neutrophil degranulation among others (figure 5.15.a-c).
Moreover, in B7-H3 low immune segments, decreased dendritic cell and T cell pathways
were observed (figure 5.15.c), and fibroblast rich regions demonstrated reduced Treg
differentiation pathways (figure 5.15.b). Of the pathways enriched, Nitric Oxide (NO)
signalling and the complement system were seen in all three regions (figure 5.15.a-c), and

epithelial regions demonstrated upregulation of the angiotensin system (figure 5.15.a).
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Figure 5.15.a Geneset enrichment across B7-H3 ranked naive segments. Bar charts

demonstrate pathways differential expressed in B7-H3 high vs B7-H3 low a). epithelial segments.

Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value <

0.05 were considered significant. Important pathways are indicated by an arrow.
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Figure 5.15.b Geneset enrichment across B7-H3 ranked naive segments. Bar charts

demonstrate pathways differential expressed in B7-H3 high vs B7-H3 low b). aSMA segments.

Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value <

0.05 were considered significant. Important pathways are indicated by an arrow.
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5.4 Spatial Transcriptomic landscape of Neoadjuvant

PDAC

5.4.1 Whole transcriptome profiling in neoadjuvant pancreatic

cancer

To investigate the Spatial Transcriptomic profile of neoadjuvant treated pancreatic

patients, Nanostrings whole transcriptome assay was used and replicated the segments

found in the naive cohort above (chapter 5.3.1). Of note, although the same segments

were replicated, a deep learning algorithm was trained to generate these masks (chapter

2.5.2.1). The neoadjuvant cohort comprised of 58 archival Glasgow patients, and 13
clinical trial PRIMUSO002 patients (figure 5.16 and table 5.1).

Neoadjuvant PDAC

Neoadjuvant archival Glasgow Cohort (n=58)

Tissue embedded
in paraffin

>
>

Diagnosis Neoadjuvant Resection! End of
therapy follow up

PRIMUS002 Clinical Cohort (n=13)

Tissue embedded
in paraffin

»
>

Diagnosis Neoadjuvant Resectioni End of
therapy follow up

Figure 5.16 Overview of neoadjuvant PDAC cohort. Schematic from diagnosis to end of follow
up across archival Glasgow cohort (n=58) and PRECISION PANC PRIMUSO002 clinical trial

reduced cohort (n=13).



197

5.4.2 Tumour compartments demonstrate distinct transcriptome
profiles in neoadjuvant pancreatic cancer

5.4.2.1 Inter-compartment heterogeneity

Assessment between different areas of interest was repeated in the neoadjuvant cohort to
establish specialised compartment signatures. Large DEA differences were seen between
epithelial segments both immune and fibroblast-rich, whereas limited differences were

seen between immune and aSMA segment comparisons (figure 5.17.a-c).
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Cohort

‘ | | I Zscore Segment
’ ' | 4 aSMA
R | 2 Full
“ I || |I ” | ” I“ ‘ ?2 Immune
l i 4 M Panck

. Neoadjuvant Archival Glasgow Cohort
PRIMUSQ02 Clinical Cohort

1
l

Immune vs aSMA

Figure 5.17.a-c Inter-compartment differential expression in neoadjuvant patients. Heatmap
showing significant differentially expressed genes in all segment comparison. Segments
comparisons carried out between PanCk vs immune, PanCk vs aSMA and immune vs aSMA.
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As expected, geneset enrichment analysis showed many differences between all segment

comparisons (supplementary 8.4.1.2). Spatial immune deconvolution estimated increased

expression in a wide range of immune cells. Elevated macrophages (p<0.001), plasma
cells (p=0.002), CD4 helper T cells (p<0.001), CD8 cytotoxic T cells (p<0.001) and

memory DC (p<0.001), among others, were seen in immune compartments. As expected,

aSMA regions were enriched with fibroblasts (p<0.001) (figure 5.18).
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neoadjuvant segments. Kruskal-Wallis test used.
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5.4.2.2 Histopathological region heterogeneity

The neoadjuvant TMAs were purpose built to include distinct histopathological regions,
resulting in muti-regional samples taken from the tumour core (TC), presumed tumour bed
(PTB) and lymph node metastasis to account for heterogeneity. The overall ROIs were
compared per histopathological region, demonstrating large transcriptomic differences
according to location. Pathway analysis displayed virtually all signalling pathways
measured were significantly downregulated when the presumed tumour bed was
compared to tumour core and lymph node metastasis (supplementary 8.4.1.3).

Particular interest was given to the tumour core/lymph node comparison, as this
represents a primary tumour/matched metastasis comparison. DEA showed upregulation
of CCL21 (logFC = 3.4, padj <0.001), CXCL13 (logFC = 1.7, padj <0.001), MMP9 (logFC
= 1.5, padj <0.00), MS4A1 (logFC = 1.5, padj <0.001) and CD79A (logFC = 1.5, padj
<0.001) in LN regions (figure 5.19.a). In comparison, tumour core presented with elevated
SFRP2 (logFC = 1.6, padj <0.001) among others. LN core correlated with a considerable
number of significant pathways. Multiple immune related pathways were seen in lymph
node metastasis regions. Notably, increased pathways associated with aggressive
disease phenotypes; immortality and stemness (NES = 1.8, padj <0.001), VEGF signalling
(NES = 2.2, padj <0.001) and EMT (NES = 1.6, padj =0.001) (figure 5.19.b).
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Figure 5.19.a Spatial Transcriptomic alterations between distinct histopathology, a). Volcano
plot demonstrating gene marker differential expression levels in tumour core vs LN metastasis.
Genes with log2 fold change above and below 1.5, and p adjusted value <0.05 were considered
significant, important genes in bold. Dashed line indicates significance thresholds, NS = non-

significant, FC = fold change.



200

b mTOR Slgrtallng E

Ublqumn-As Sgrélaf“';g ]
LA

Ne roprﬁrde ar}trﬁﬁz o 4

MHC Class | n'in%n res:enéal:gg

Epigenetic Mod! cgtlon-
att)sis-

D| erenl ion -

Damage Repair o
Chromatln-A s d}[t d-

Cell Adhes] é?ﬂ? o ItS b
Matrix Remodeling an ?astgsels -

Host Defonssf ?‘ §F§Q§S

Complement Sys o -
Prote?se Inhibito s

i t snallng b
ngi eI 4
ot SABRPIEST
plop ﬁy nmc !w%igna ing 4
ulin Signaling 4

T nsEo ters o

eleton o

Transcripfion Factors 4

Glycolysis & Glucose rg"l‘a;!u o

PI3K—R guggg Iﬂg

IL-6 nalin

Llplg E'DSE thesi

Purinergic Si nalln b .
‘?’%Ztﬂ?|%{'er#,-ron'a§!‘g{§§il°"' Adj. P
Drtﬁqﬁgeistance- _ 100

Glutamine Met sm " 075

TH1
PR
Hed ehog |gnal ng

PR0 R outet

Mitochondrial ¥Iet %Y m/TC .
TGF- eta grﬂ RS - 025

NK é‘x‘ﬁausﬂgn b

Androgen g@ﬁa'iﬂg:

Elo %%g FaEﬁag

[l

ors
FGFR Signal R
n

JA@&%@I&énJ

ammasomes 4

PR §I Rg
MHC Class Il AntlgEgEg g ? 3
: THS Differeniti "ﬁ

Whole Transcriptome Atlas geneset

2 'gl'ﬁ%reng?t on o

eotoxic

TyPaklntg?f?r(Hl SS gnr}'al 2 .

17 ifferentiation o

Lym%_holgoﬁgheqi.l g!_ Eﬁ :
Eseaézgg HILE

Tlg |e?15a rrqe:
Treg Pifferefitiatjon 4
— GF Sians

Lymp'i1 ¥ H.?t q‘"ﬂ?ﬁckl

alil
Interferon Response 8

E: Tag
EEEER
R tatnlateet

20 =3 3 30

Other In!erleuklnAé]gRa?
Chemokine Signal
Typell Interferon Sigln |

*cn il
Myelold Ikﬁ%i%lga“nﬁ
368 Gandind

osom

35

Normaliséd Enrichmen.t Score

Figure 5.19.b Spatial Transcriptomic alterations between distinct histopathology, b). Geneset
enrichment bar chart in tumour core vs LN metastasis. Pathways with normalized enrichment score
above and below 1.5, and p adjusted (Adj. P) value < 0.05 were considered significant. Important

pathways are indicated by an arrow.



201

5.4.3 Survival profile

Introduction of neoadjuvant therapy for borderline and locally advanced pancreatic cancer
has resulted in a significant increase in survival. A small subset of neoadjuvant patients
have marked prognostic benefit. To investigate whether these differences could be
explained using Spatial Transcriptomics, the neoadjuvant cohort was split using the same
grouping as for the naive analysis (chapter 5.3.4), long term survivors (over 36 months),
compared to the rest. Pathway analysis in LTS epithelium showed downregulation of
various signalling pathways including MYC (NES = -1.9, padj = 0.005), PPAR signalling
(NES = -1.8, padj = 0.014), MET (NES = -1.8, padj = 0.014) and TNF (NES = -1.6, padj =
0.025) (figure 5.20.a). Patients surviving over 36months demonstrated fewer immune
related pathways in immune and fibroblast segments, but elevated levels of NK activity
(NES = 1.8, padj <0.001), IL-17 signalling (NES = 1.7, padj = 0.005) and B cells (NES =
1.6, padj = 0.043) in fibroblast segments (figure 5.20.b).
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5.4.4 Neoadjuvant treatment types in neoadjuvant pancreatic
cancer and their associated Spatial Transcriptomic profile

5.4.4.1 Types of neoadjuvant therapy and their associated signature

Patients eligible for neoadjuvant therapy can be administered chemotherapy or
chemoradiotherapy. The biological differences produced between these two treatment
methods is relatively unknown. To fully understand the effects neoadjuvant treatment has
on pancreatic cancer, patients were split according to treatment type and matched tissue
compartments compared. Further details on this subgroup can be found in chapter 2.1.1.
Furthermore, regression pattern was fully explored (supplementary 8.4.2). Pathway
analysis demonstrated varied aberrations in chemotherapy treated patients. Epithelial
segments demonstrated a range of pathways including increased complement system
(NES = 1.8, padj = 0.012) and neutrophil degranulation (NES = 1.8, padj <0.001), NO
signalling (NES = 2.1, padj = 0.005), MET signalling (NES = 1.8, padj = 0.014) and
autophagy (NES = 1.6, padj = 0.014) (figure 5.21.a). Immune segments showed relatively
high numbers of aberrated immune pathways. Chemoradiotherapy segments showed
increased levels of B cells (NES = 2.6, padj <0.001), coupled with elevated B cell
exhaustion (NES = 2.4, padj <0.001) (figure 5.21.b). Elevated TCR signalling (NES = 1.9,
padj <0.001) and myeloid inflammation (NES = 1.8, padj <0.001) were also observed
(figure 5.21.b). Spatial immune cell deconvolution demonstrated increased memory

dendritic cells in neoadjuvant chemotherapy treated patients (p=0.002) (figure 5.22).
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5.4.4.2 Types of neoadjuvant chemotherapy and their associated signature

Within chemotherapy, two main treatment types are utilised; FOLFIRINOX based and
Gemcitabine based. Gemcitabine epithelium demonstrated elevated levels of CA9 (logFC
= 1.9, padj = 0.002), IAPP (logFC = 1.7, padj <0.001), and CREBS3 (logFC = 1.6, padj
<0.001) genes, along with elevated B cell (NES = 2.0, padj = 0.020) and BCR signalling
(NES = 1.8, padj <0.001) (figure 5.23.a-b). Comparatively, FFX had augmented levels of
PPAR signalling (NES = 1.7, padj = 0.013) (figure 5.23.b).
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Figure 5.23.a Epithelial Spatial Transcriptomic alterations between chemotherapy treatment
type, a). Volcano plot demonstrating gene marker differential expression levels in FOLFIRINOX
(FFX) vs Gemcitabine (GEM) epithelium. Genes with log2 fold change above and below 1.5, and p
adjusted value <0.05 were considered significant, important genes in bold. Dashed line indicates

significance thresholds, NS = non-significant, FC = fold change.
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Figure 5.23.b Epithelial Spatial Transcriptomic alterations between chemotherapy treatment
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Pathways enriched in aSMA segments were strongly immune related. Enriched B cell
(NES = 3.2, padj <0.001) coupled with B cell exhaustion (NES = 2.1, padj = 0.006), T cell
(NES = 2.0, padj <0.001) and T cell checkpoint (NES = 1.6, padj <0.001) were seen in
Gemcitabine treated regions (figure 5.24). In contrast, FOLFIRINOX treated regions
demonstrated cell signalling based pathways. These pathways include elevated NO
signalling (NES = 1.9, padj <0.001), PDGF (NES = 1.7, padj = 0.003) and angiotensin
system (NES = 1.6, padj = 0.039) among others (figure 5.24).
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GSEA of immune areas demonstrated similar patterns as stromal regions. Augmented B
cell (NES = 2.8, padj <0.001) coupled with B cell exhaustion (NES = 2.1, padj = 0.001), T
cell (NES = 1.9, padj = 0.020) coupled with T cell exhaustion (NES = 2.6, padj <0.001),
NK activity (NES = 1.6, padj = 0.005) and T cell checkpoints (NES = 1.8, padj = 0.02)
were seen in Gemcitabine (figure 5.25). FOLFIRINOX treated immune segments
demonstrated elevated neutrophil degranulation (NES = 1.9, padj <0.001) (figure 5.25).
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Figure 5.25 Immune Spatial Transcriptomic alterations between chemotherapy treatment
type. Geneset enrichment bar chart in FOLFIRINOX (FFX) vs Gemcitabine (GEM) immune

segments. Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj.

P) value < 0.05 were considered significant. Important pathways are indicated by an arrow.
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Immune cell deconvolution confirmed the immune rich nature Gemcitabine treated
samples have when compared to FFX treated samples. Elevated B cells (p=0.029),
cytotoxic CD8 T cells (p=0.005), pDCs (p=0.043) and Tregs (p=0.003) were observed
(figure 5.26).
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Figure 5.26 Immune cell deconvolution between chemotherapy treatment type. Boxplots
demonstrate estimated immune cell expression per 100 cells in; B cells, CD8 T cells, Tregs and
plasma dendritic cells, across patients treated with FOLFIRINOX (FFX) or Gemcitabine (GEM).
Wilcoxon test with adjusted p value was used.



214

5.4.5 B7-H3 signature in neoadjuvant pancreatic cancer

Previous investigation demonstrated significant results for the cell checkpoint marker B7-
H3 in the naive Spatial Transcriptomic landscape. This analysis was repeated in the
neoadjuvant cohort. Overall survival analysis demonstrated a significant correlation
between low expression of B7-H3 and improved prognosis (p=0.050) (figure 5.27.a). A
non-significant elevated expression was seen in PanCk segments, differing from what was

observed in the naive cohort (figure 5.27.b).
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Figure 5.27.a-b B7-H3 RNA expression in neoadjuvant pancreatic cancer. Kaplan-Meier curve
stratified B7-H3 expression in disease specific survival (months) in a). whole core. Log-Rank
(Mantel-cox) test, replicating cutoff found in chapter 3.11, b). Boxplot showing B7-H3 expression

across PanCk, aSMA and immune segments, Kruskal-Wallis test used.
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The Spatial Transcriptomic signature across the segments was explored. Distinct
pathways were displayed across aSMA and epithelial compartments (supplementary
8.4.3). Notably, the opposite immune trends were observed in the neoadjuvant cohort
compared to the naive cohort (chapter 5.3.5) within the immune segments. These include,
low B7-H3 expressing patients presenting with elevated immune related pathways such
as TCR signalling (NES = 1.7, padj = 0.001), BCR signalling (NES = 1.6, padj = 0.003), B
cell exhaustion (NES = 2.0, padj = 0.008) and NK activity (NES = 1.7, padj = 0.004) in

immune segments (figure 5.28).
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Figure 5.28 Immune Spatial Transcriptomic alterations between B7-H3 ranked expression.

Geneset enrichment bar chart in neoadjuvant B7-H3 low and high immune segments. Pathways

with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value < 0.05 were

considered significant. Important pathways are indicated by an arrow.
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5.5 Spatial Transcriptomic alterations between naive and
neoadjuvant landscapes

To fully classify the effect of neoadjuvant chemotherapy, a direct comparison was made

between treatment naive and neoadjuvant treated patients.

5.5.1 Spatial Transcriptomic alterations across matched tissue
compartments in naive vs neoadjuvant PDAC

Matched epithelial comparison between naive and neoadjuvant AOls demonstrated
distinct aberrated genes. Elevated levels of multiple IGHGs were observed in neoadjuvant
epithelium, as well as elevated COL3A1 (logFC = 1.7, padj <0.001), ZNF830 (logFC = 2.4,
padj <0.001) and KRT6A (logFC = 1.5, padj <0.001) (figure 5.29.a). Epithelial
compartments displayed large numbers of geneset enrichment pathways from various cell
signalling and immune cell pathways. Of note, enriched IL-2 (NES = 1.7, padj = 0.03) and
MCH class Il (NES = 1.6, padj = 0.016) signalling in neoadjuvant epithelium was observed
(figure 5.29.b). The most enriched cell signalling pathways included MET (NES = 2.1, pad;j
<0.001), PDGF (NES = 1.8, padj =0.004 ), MYC (NES = 1.8, padj <0.001) and TGF-
(NES = 1.7, padj <0.001) signalling (figure 5.29.b). In comparison, naive epithelium was
enriched for type | INF signalling (NES = 2.1, padj < 0.001) (figure 5.29.b).
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Figure 5.29.a Spatial Transcriptomic alterations between naive and neoadjuvant epithelial
segments, a). Volcano plot demonstrating gene marker differential expression levels in naive vs

neoadjuvant epithelial segments. Genes with log2 fold change above and below 1.5, and p
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adjusted value <0.05 were considered significant, important genes in bold. Dashed line indicates
significance thresholds, NS = non-significant, FC = fold change.

b Receptors 4
Pro S

4
Typﬁ ?Brgﬁgﬁ?ggglé?ﬁ%: |
Angiotensln System

ns
L-6 Sig na’n b

InlerferoB R? Do enln?l%?tom p

ytotoxicity 4

ojnts 5
Type lll Inter?enrﬁp %Igtiatiog

NScri n Factors o
GIu%arrﬁng lism <

NLR Slgnnallé}gS ]
Tryptophan & Kynurenlne ﬂetag nsm b
NA iensm b

FGFR Slgnallng b

P ofegione Ef"r'é%

Glycolysis & Gluqose 1s'rI port
rans orl

c"ﬁ Exl}ausEISR :

Cytokine: d Growth Factor:
v ﬁb iquitin—. ss c‘l: ?3

Retinoic Ac%wna !na

nases -

Mltochundnal Metafmll srﬂr}a',"gﬂ

EII?\T Signaling
In mmasomes
EFDHES -

Typell Interlfrw ‘?nallﬂa

Elon?iat‘fl actors o
on 4
Prostaglandin In amma Ion b
asome =

Matrix Remodeling andlin Il%n?elllglg Adj. P
MHC Class??\nmﬁennPﬁasszcr'\?aﬂon b ] 1 00

{:aerile Trag[] icking
0.75

0.50
0.25

VEGF Sig ali ng
s Bl SFSHI 1on 3
CD‘N‘IO?Ecqu!

ensing 4
Immoriallty&gt nes%-

DN nBuIIn gégRglinﬁ

o lefere tlatio 3
lﬁ[‘ﬁ |r|a|n -

epioeny Hodl pﬁa:

Androgen Sl n ing 4

clé A
Oxu:latlve Stress 4
os eleton o

Lymphgcy{e r%?itlc IREE

MA aling 4

Neutrophil degrar&llatioﬁ b

Dendrific Cells o

PIGNO Cl |gna||ng b

. MHC Class Il Antigen P Signaling
g .fFSr“"‘ fon -

Estro_?ﬁn |gna in

Trans‘qlo Igag!laz'g ]

Lympho%éig'gu;:tmgi [ Naive |

BCg'\‘a Slgn aIlng
HIF1HS|gnaI|ng L

Whole Transcriptome Atlas geneset
T
EE'_—‘*E'

—

=1=)=)
m

f

Neoadjuvant

EGFR Slgnallng

MRS %é?"aé“@ahng ]

I

DGF Signaling

cell AdhesiunR&b olllt§
Ibosome 5

Other Interleukm Sngnahg% b

Cumple?%-'ilgn ang -

|||||II|I||

l

-2 -1
Normalised Enrichment Score

o
-
N

Figure 5.29.b Spatial transcriptomic alterations between naive and neoadjuvant epithelial
segments, b). Geneset enrichment bar chart in naive vs neoadjuvant epithelial segments.
Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value <

0.05 were considered significant. Important pathways are indicated by an arrow.



219

aSMA regions also demonstrated distinct differential expression between treatment type,
with numerous genes shown including downregulated SPINK1 (logFC = -4.1, padj <0.001)
and enriched CCL19 (logFC = 1.8, padj <0.001) (figure 5.30.a). Multiple immune related
pathways were shown in GSEA including augmented TCR (NES = 2.0, padj <0.001), BCR
(NES = 2.0, padj <0.001), myeloid inflammation (NES = 1.8, padj <0.001) and Treg
differentiation (NES = 1.8, padj = 0.003) and B cell exhaustion (NES = 1.6, padj =0.019)
(figure 5.30.b).
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Figure 5.30.a Spatial Transcriptomic alterations between naive and neoadjuvant aSMA
segments, a). Volcano plot demonstrating gene marker differential expression levels in naive vs
neoadjuvant aSMA segments. Genes with log2 fold change above and below 1.5, and p adjusted
value <0.05 were considered significant, important genes in bold. Dashed line indicates

significance thresholds, NS = non-significant, FC = fold change.
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segments. b). Geneset enrichment bar chart in naive vs neoadjuvant aSMA segments. Pathways
with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value < 0.05 were

considered significant. Important pathways are indicated by an arrow.
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Neoadjuvant immune regions demonstrated enriched IL7-R (logFC = 1.5, padj <0.001)
and reduced SPINK1 (logFC = 4.6, padj <0.001) (figure 5.31.a). Elevated B cell (NES =
2.2, padj <0.001), B cell exhaustion (NES = 1.7, padj = 0.011), T cell (NES = 1.9, padj
<0.001) and myeloid inflammation (NES = 1.6, padj <0.001) (figure 5.31.b). Cell signalling
pathways included elevated IL-2 signalling (NES = 1.9, padj <0.001), type Il INF signalling
(NES = 1.6, padj =0.002) and NF-kB (NES = 1.5, padj =0.003) in neoadjuvant immune
compartments (figure 5.31.b).
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Figure 5.31.a Spatial Transcriptomic alterations between naive and neoadjuvant immune
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significance thresholds, NS = non-significant, FC = fold change.
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Immune cell deconvolution found overall increased populations of multiple cells in
neoadjuvant samples, including effector and suppressor cells. Suppressor cells elevated
include macrophages (p=0.01) and Tregs (p=0.001) (figure 5.32). Additionally, enriched
signatures for B cell (p<0.001), plasma cells (p<0.001), a range of dendritic cells including
memory dendritic cells (p<0.001) were observed (figure 5.32). Elevated T cell signatures,
CD4 T cells (p=0.017) and CD8 T cells (p<0.001) were also observed (figure 5.32).
Notably, the only cell type elevated in naive samples was neutrophils (p<0.001) (figure
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5.5.2 Spatial Transcriptomic differences across treatment types
5.5.2.1 Neoadjuvant treatment type

Immune segments in both chemotherapy and chemoradiotherapy treated cohorts
demonstrated upregulated immune related pathways, with chemoradiotherapy segments
demonstrating increased variety. Elevated T cell (NES = 1.8, padj <0.001), B cell (NES =
2.1, padj <0.001), B cell exhaustion (NES = 1.7, padj = 0.019), and myeloid inflammation
(NES = 1.5, padj = 0.003) were found in chemotherapy treated immune segments (figure
5.33.a). In comparison, chemoradiotherapy treated immune segments demonstrated
upregulated B cell (NES = 2.3, padj <0.001), B cell exhaustion (NES = 1.9, padj <0.001),
T cell (NES = 1.9, padj <0.001), myeloid inflammation (NES = 2.1, padj <0.001) and Treg
differentiation (NES = 2.0, padj <0.001) (figure 5.33.b).
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chemotherapy. Pathways with normalized enrichment score above and below 1.5, and p adjusted

(Adj. P) value < 0.05 were considered significant. Important pathways are indicated by an arrow.
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adjusted value < 0.05 were considered significant. Important pathways are indicated by an arrow.
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5.5.2.2 Types of neoadjuvant chemotherapy

Neoadjuvant treatment types were compared to naive cohorts, demonstrating immune
differences. In immune rich segments, elevated levels of T cells (NES = 1.8, padj <0.001),
B cells (NES = 2.0, padj <0.001), and myeloid inflammation (NES = 1.6, padj = 0.001)
were observed in FFX treated patients (figure 5.34.a). In comparison, Gemcitabine treated
patients displayed a wide variety of immune related pathways. Elevated levels of B cells
(NES = 2.3, padj <0.001), coupled with B cell exhaustion (NES = 1.9, padj <0.001), T cells
(NES = 2.1, padj <0.001), coupled with T cell exhaustion (NES = 1.7, padj = 0.014),
myeloid inflammation (NES = 1.9, padj <0.001), Treg (NES = 1.7, padj = 0.009) and NK
activity (NES = 1.7, padj <0.001) were found in Gemcitabine compared to naive immune

segments (figure 5.34.b).
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Figure 5.34.b Immune Spatial Transcriptomic alterations between naive and chemotherapy

treatment type. Geneset enrichment bar chart in inmune segments across b). Gemcitabine

(GEM) vs naive. Pathways with normalized enrichment score above and below 1.5, and p adjusted

(Adj. P) value < 0.05 were considered significant. Important pathways are indicated by an arrow.
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5.5.3 Long term survival naive vs neoadjuvant PDAC

As previously reported, long term survival for these cohorts was classed as above 36
months. When investigating differential expression between treatment status in long term
survivors, large numbers of aberrated gene expression was seen in all three
compartments. Of note, neoadjuvant patients demonstrated enriched SPARCL1 (logFC =
1.5, padj <0.001) in epithelium, reduced SPINK1 (logFC = 3.6, padj <0.001) in aSMA, and
elevated TSC22D3 (logFC = 1.9, padj = 0.004) in immune compartments (supplementary
figure 8.4.4.a-c). Immune segments displayed augmented B cell exhaustion (NES = 2.0,
padj <0.001), B cell (NES = 2.0, padj <0.001), T cell exhaustion (NES = 1.6, padj = 0.014),
T cell (NES = 2.0, padj <0.001) and myeloid inflammation (NES = 1.6, padj <0.001) (figure
5.35.a). Finally, spatial immune cell deconvolution was performed on naive and
neoadjuvant patients grouped into long term survivors (over 36 months), and short-term
survivors (under 36 months). Estimates showed elevated B cells(p=0.004), plasma cells
(p=0.034), CD4 T cells (p=0.032) and cytotoxic T cells (p<0.001) in neoadjuvant long-term

survivors (figure 5.35.b).
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5.6 Whole section validation

In order to validate the effect of neoadjuvant therapy on the spatial transcriptome, analysis
using whole sections was repeated on selected PRIMUS002 cases (table 5.1). This was
done using biopsy and neoadjuvant whole sections with two matched cases. Non-
epithelial regions were analysed to elucidate the treatment effect on the tumour
microenvironment. Treatment naive biopsies were compared to directly measure the
effect of neoadjuvant chemotherapy. Multiple overlapping genes were observed when
compared to single core TMA work, and completely new genes appeared. aSMA matched
comparisons had overlap of 12/32 genes including CXCL14, SYCN and CPA1/2
(supplementary table 8.3). Matched biopsy vs treated comparison of immune regions
demonstrated 8/41 overlapping DEA genes with naive vs neoadjuvant comparison
including downregulated PLAG2G 1B, CELA related genes and SYCN among others
(supplementary table 8.3). Spatial immune cell deconvolution demonstrated a shift from
high CD4 T cell, CD8 T cell and macrophage landscape in the biopsy samples, to a high B
cell, CD4 T cell, CD8 T cell and Treg population dominating (figure 5.35).
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Figure 5.36 Altering estimated immune cell landscape from biopsy to neoadjuvant
treatment. Sankey plot shows the percentage estimated cell population from biopsy immune
segments, flowing into the cell population of neoadjuvant treated (NAT) immune segments. Cell

populations generated from Nanostring immune cell deconvolution algorithm.
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5.7 Discussion

The primary aim of this chapter was to establish the transcriptome within different
compartments in base naive and base neoadjuvant PDAC, and subsequently compare
these two treatment groups. Highly specific representative regions (PanCk+ epithelium,
aSMA+ fibroblasts and CD45+ immune regions) were obtained via the Spatial
Transcriptomics GeoMx® WTA assay. To confirm if the use of bulk transcriptomics would
be unsuitable, inter-tumoral heterogeneity in epithelial, stromal and immune rich
compartments was determined. Results from both naive and neoadjuvant base analysis
demonstrated vast gene signature differences when comparing the three tissue
compartments, with distinct pathways aberrated. Although pancreatic cancer ST studies
remain relatively limited, this compartment heterogeneity was also demonstrated by Ren
et al using alternative techniques [279]. Notably, the aSMA+ and CD45+ regions were
considerably distinct in the transcriptome within naive and neoadjuvant cohorts. This is
most likely due to the prevalent CAF population which has been shown to influence PDAC

progression depending on the signature expressed [280].

Molecular subtyping of neoadjuvant naive pancreatic cancer has led to multiple prognostic
signatures being developed, providing considerable insight into PDAC mechanisms [100-
102]. Using the naive epithelium signature, intra-compartment heterogeneity was
examined, successfully identifying two distinct refined epithelial clusters. Cluster 2
demonstrated non-significant association with poor prognosis. Augmented HSPA6 and
CST1 gene expression, and decreased B cell estimates were seen in epithelial Cluster 2.
Both genes have demonstrated potential roles as predictive biomarkers within the
literature [281, 282]. HSPAG6 upregulation has previously been associated with intra-
tumoral epithelial heterogeneity in pancreatic cancer. Using single cell transcriptomics, Xu
et al found 5 distinct ductal cells, with HSPA6 associated with type 4 [281]. Furthermore,
CST1 is a tumour specific biomarker used for early diagnosis in colorectal cancer, and
correlates with proliferative and malignancy associated proteins [282]. AImost no overlap
was observed between the main molecular subtypes and the ST epithelial cluster genes.
Therefore, these clusters represent novel epithelial specific signatures, which should be
fully explored in a larger cohort. When epithelial clusters were combined with either the
aSMA cluster or immune clusters, a powerful prognostic trend was observed, indicative of
the influence between these compartments. Epi-aSMA cluster 1 significantly associated
with poor survival, and demonstrated elevated known invasive marker KIF4A and
decreased B cell estimates [283]. Further work is required to fully classify these clusters

and explore the relationship between the combined clusters.

Spatial Transcriptomic analysis of neoadjuvant chemotherapy type highlighted a disparate



235

landscape between FOLFIRINOX treated and Gemcitabine treated samples. Epithelial
Gemcitabine segments demonstrated enriched CA9 expression, and stromal segments
demonstrated a wide range of immune cell related pathways. CA9 have been linked to
reports of targeted treatments. CA9 combined inhibition results in reduced hypoxia,
improved survival, and elevated levels correlated with tumour cell inhibition of cytotoxic T
cells [284, 285]. The highly immunogenic landscape presented by the Gemcitabine
samples mirrors reports seen in the literature [132, 213, 255, 257]. Comparatively, FFX
samples retain the immune-desert phenotype traditionally associated with pancreatic
cancer. The only immune cell pathway associated with FFX when compared to
Gemcitabine was elevated neutrophil degranulation, found in aSMA regions. The role of
these cells remains relatively controversial, although it is thought they play an
immunosuppressive role on T cells [286]. This pattern was mirrored when both FFX and
Gemcitabine treated segments were compared to naive segments. A varied immune
pathway signature was revealed in Gemcitabine treated segments, although this was also

coupled with immune exhausted pathways.

Within the neoadjuvant cohort, chemoradiotherapy patients correlate with much longer
survival. Multiple immune specific trends were associated in chemoradiotherapy patients
when compared to chemotherapy treated patients. Specifically, elevated B cell pathways,
B cell exhaustion and dendritic cells were observed. Dendritic populations within PDAC
have a reportedly beneficial role in chemoradiotherapy response [287]. Protein validation
is required to confirm the presence of these cells within the neoadjuvant PDAC

microenvironment.

Considerable alterations were seen within matched compartment naive vs neoadjuvant
comparisons. Neoadjuvant cohort demonstrated multiple interesting and potentially
targetable genes; upregulation of COL3A1 in epithelium and a range of immune related
pathways in immune segments including B cell, T cell and IL-2 signalling. Expression of
COL3A1 confirms these enriched immune pathway levels, with reports correlating
elevated COL3A1 with tumour infiltrating T cells, B cells and dendritic cells [288].
Furthermore, immune cell deconvolution of all neoadjuvant segments estimated elevated
B cell and T cell populations. aSMA compartments showed enriched CCL719, which has
been linked to improved memory CAR-T cell infiltration into the PDAC tumour core [289].
Notably, these immune associated pathways although considerably elevated in immune
segments of neoadjuvant samples, were often coupled with exhaustion pathways.
Counterintuitively, elevated myeloid inflammation pathways and estimated macrophage
population in aSMA neoadjuvant samples were observed when compared to naive
samples. CAF specific small nuclear RNA combined with Spatial Transcriptomic studies

on neoadjuvant pancreatic cancer have shown 3 CAF expression profiles are significantly
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upregulated in neoadjuvant cancers, and specific profiles associated with regression
patterns [290]. These observations reinforce the need to consider immune cell subtypes,

and activation status rather than solely relying on density analysis.

Prognosis in pancreatic cancer remains abysmal for the majority of patients. However, a
small subset of patients survive for longer than expected. Naive and neoadjuvant LTS
patients associated with different pathways, indicative of different underlying biology
resulting in better prognosis. Naive patients associated with increased LYZ, a gene
associated with the Classical subtype [291]. Neoadjuvant patients linked with enriched
epithelial SPARCL1 expression, reported for its anti-invasive properties in pancreatic
cancer and reduced expression in metastasis [292]. Both treatment types had increased B
cell and T cell expression. These immune cell deconvoluted populations are consistently

associated with better performing groups and were by far the most statistically relevant.

Previous work has identified B7-H3 as a potential biomarker using a regional Spatial
Protein assay in naive pancreatic cancer (chapter 3.11). The same prognostic pattern was
observed using Spatial Transcriptomics in naive and neoadjuvant cohorts. Naive PDAC
demonstrated elevated expression in non-epithelial compartments, as shown in chapter
3.11. Reduced expression of B7-H3 associated with reduced T cell related pathways,
dendritic cells, and an elevated angiotensin system within immune segments. This is of
particular interest as studies have shown treatment with angiotensin system inhibitors and
angiotensin blockade therapies in naive patients considerably improves prognosis [293-
295]. Treatment appeared to trigger an immunogenic switch, resulting in elevated T cell
activity pathways [295]. Furthermore B7-H3 itself has generated lots of interest as a
potential immune checkpoint target, with clinical trials in a multitude of cancers ongoing
[142-146]. Curiously, the opposite trends were observed in neoadjuvant associated with
low expressing B7-H3 (high survivor) patients. Elevated levels of TCR and BCR signalling
were seen, although this was offset by elevated B cell exhaustion pathways. Neoadjuvant
patient comparison groups have repeatedly presented with exhausted pathways, a

phenomenon that has been reported in the protein landscape [261].

Overall, Spatial Transcriptomics has uncovered intra-compartment heterogeneity within
the naive environment, revealing transcriptomic alterations in naive and neoadjuvant
settings. Distinct immune populations have consistently correlated with clinical groups with
better outcomes. Combined with protein data this will determine whether transcriptomics

signals translate into the protein landscape.
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6 Chapter 6: Multi-omic, orthogonal
characterisation of Pancreatic
cancer
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6.1 Introduction

High-plex single cell protein and Spatial Transcriptomic assays provide great insight into
the tumour microenvironment. High plex phenotyping using immunofluorescence assays,
although limited by its purely descriptive data, allows for robust immune cell
characterisation at a single cell level whilst maintaining tissue integrity. Regional Spatial
Transcriptomics provides indirect biological insight into differentially expressed genes, cell
signalling pathways and estimation of immune cell populations. However, studies have
shown a fluctuating range of protein translation rates from RNA, coupled with translational
heterogeneity greatly effects the amount of protein actually expressed [296-299].
Orthogonal integration of multiplex protein and Spatial Transcriptomics data will provide
complementary and data validation. While prognostic association with T cell and
macrophage density within adjuvant treated pancreatic cancer is well documented, and
similar trends were observed within the naive cohort, comprehensive understanding of the
fundamental underlying biological mechanisms remains elusive [8, 182, 237, 238]. At the
time of writing, limited literature has been published combining high-plex protein data with
Spatial Transcriptomic data in cancer [300, 301]. A more common approach utilises
varying types of protein data with bulk or single cell transcriptomic analysis [302-305].
These integrative papers tend to focus on cell typing, neighbourhood discovery, cell-to-cell
interactions, as well as establishing disease specific pathways. Exploration of
transcriptomic alterations induced by neoadjuvant therapies in pancreatic cancer up until
recently, was notably scarce, emphasizing a critical area of unmet research need [306,
307]. Although rare, orthogonal analysis methods focused on protein and transcriptomic
analyses have enhanced knowledge of underlying immune mechanisms within the

neoadjuvant setting, as well as identifying potential targeted therapy options [308].

The discovery nature of Spatial Transcriptomics experiments produces an enormous
range of potentially interesting biomarkers and genesets. Validation using a single cell,
deep phenotyping assay is required to confirm results observed. Notably, Spatial
Transcriptomic T cell, B cell and dendritic cell signatures associated with important
pancreatic groups in the naive and neoadjuvant cohorts. These immune populations have
been reported within the pancreatic literature, with links made to prognosis and
neoadjuvant therapy response [11, 197, 253, 268, 287, 309]. Furthermore, B7-H3
expression retained its prognostic significance within the transcriptomic setting in naive,
as well as replicating the trend in the neoadjuvant cohort. Growing interest in using this
immune checkpoint molecule as targeted therapy makes it important to characterise within
pancreatic cancer. Phenotypic expression and cellular interactions of B7-H3 expressing
cells are not fully understood, though reports indicate elevated expression is linked to

immune evasion, metastasis and poor prognosis in pancreatic cancer amongst others [19,
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310, 311] .To validate biomarkers generated from mlF led Spatial Transcriptomic results,
two imaging based, oligonucleotide antibody assays were trialled (Akoyas PhenoCycler™

and Nanostrings CosMx™) with ultra-high plex immune panels [119, 312].
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6.1.1 Aims

Integrate multiplex significant patterns with Spatial Transcriptomic data to explore the
biological mechanisms underlying characterised phenotypes in treatment naive and
neoadjuvant pancreatic cancer. Confirmation of immune cell deconvolution patterns
observed in Spatial Transcriptomic assays using super high-plex protein technologies.
Validate single cell protein B7-H3 expression in the naive and neoadjuvant pancreatic

setting.

6.1.2 Clinical cohorts

Naive cohort (Glasgow naive cohort 2) consisted of a total of 62 pancreatic cancer
specimens within a TMA (table 6.1). These were a subset of the naive cohort described in
chapter 3 and the full naive cohort utilised in chapter 5. Median survival for these patients
was 19.2 months. Due to assay imaging gasket limitations, this naive cohort was further
reduced to 38 patients for chapter 6.4 onwards (table 6.1). Neoadjuvant cohort
(neoadjuvant combined cohort) consisted of 71 pancreatic cancers split across 3 multi-
regional TMAs (table 6.1). This cohort is the same neoadjuvant cohort as described in
chapter 4 (n=58), with an additional clinical trial cohort (PRIMUS-MAL, n=13). Due to
assay imaging gasket limitations, this neoadjuvant cohort was further reduced to 58
patients in total for chapter 6.4 onwards (table 6.1). Median survival for these patients was

20.4 months. Clinical data associated with these cohorts is found in chapter 2.1.

TMA Patient
Study Cohort name TMA number number Treatment type
Glasgow naive cohort 2 PDAC-PAN-TMA 1 62 Naive
Neoadj-MAL-TMA batch1 1
GeoMx . . .
Neoadjuvant combined Neoadj-MAL-TMA batch2 1 58 Neoadjuvant
PRIMUS-MAL 1 13
Glasgow naive cohort 2 PDAC-PAN-TMA 1 38 Naive
CosMx Neoadj-MAL-TMA batch1 1
Neoadjuvant combined Neoadj-MAL-TMA batch2 1 45 Neoadjuvant
PRIMUS-MAL 1 13

Table 6.1 Naive and neoadjuvant clinical cohorts and associated study. Summary table
showing the study and associated TMAs used, patient number and treatment type. The cohort

name column refers to the cohort name in chapter 2.1.
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6.2 Deep phenotypic comparisons in the Spatial
Transcriptomic landscape of pancreatic cancer

6.2.1 Spatial Transcriptomic landscape of density phenotypes in
naive and neoadjuvant pancreatic cancer

Using a previously established deep phenotyping, naive and neoadjuvant patients were
categorized using the most important protein density variables (chapter 3.6 and chapter
4.5). Within the naive cohort, this encompassed CD3 and CD68 density, and CD3CD8
density in the neoadjuvant cohort. Comparisons in matched regional Spatial
Transcriptomics between phenotypic ranks was carried out to determine biological
differences between them. CD3high density previously associated with increased survival
in the naive cohort (chapter 3.6). Relatively limited aberrated differences were observed in
all three matched segments. Notably, CD3high patients presented with upregulated
epithelial SLC12A2 (logFC = 1.5, padj = 0.006) and CXCL5 (logFC = 2.4, padj = 0.050),
and downregulated PRSS2 (logFC = -5.4, padj = 0.040) and SPINK1 (logFC = -4.1, padj =
0.040) in aSMA regions (figure 6.1.a-b). Additionally, immune CD3high segments
demonstrated elevated CCN2 (logFC = 1.6, padj <0.001) and PKN3 (logFC = 1.6, padj
<0.001) (figure 6.1.c).
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Figure 6.1.a Volcano plot demonstrating gene marker differential expression levels in naive
PDAC based on comparison of CD3low versus CD3high in a). Epithelial segments. Genes with
log2 fold change above and below 1.5, and p adjusted value <0.05 were considered significant.

Important genes in bold. Dashed line indicates significance thresholds, NS = non-significant, FC =

fold change.
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were considered significant. Important genes in bold. Dashed line indicates significance thresholds,
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Pathway analysis demonstrated epithelium of CD3high cases had elevated MYC (NES =
2.0, padj <0.001), PPAR (NES = 1.9, padj <0.001) and mTOR (NES = 1.6, padj <0.001)
signalling, as well as reduced type | INF (NES = -1.8, padj = 0.008), PDGF (NES = -1.8,
padj = 0.01), PI3K-Akt (NES = -1.5, padj <0.001) and JAK/STAT (NES = -1.5, padj = 0.04)
signalling (figure 6.2.a). Unexpectedly, limited immune related pathways were observed in
aSMA segments of CD3 ranked patients. GSEA demonstrated enriched complement
(NES = 2.0, padj <0.001) and BCR signalling (NES = 1.5, padj = 0.035), as well as
reduced matrix remodelling and metastasis (NES = -2.1, padj <0.001) (supplementary
figure 8.10). CD3high immune segments displayed elevated cytotoxicity (NES = 1.6, pad;
= 0.047), lymphocyte regulation (NES = 1.6, padj = 0.01) and B cell (NES = 1.6, padj =
0.047), with reduced neutrophil degranulation (figure 6.2.b). Spatial immune cell
deconvolution showed higher estimates of plasma cells (p=0.009) and CD8 T cells
(p=0.029) in CD3high samples (figure 6.2.c).
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Next CD68 ranked density was investigated, which negatively correlated with prognosis
(chapter 3.6). Once again, relatively restricted gene signatures were produced for
segment analysis (figure 6.3.a-b). Aberrated genes include elevated /IGLL5 (logFC = 4.6,
padj <0.001) and IGHG1 (logFC = 3.5, padj = 0.001) in aSMA segments (figure 6.3.a),
and upregulated POF1B (logFC = 2.0, padj <0.0005) and IGHG1 (logFC = 3.0, padj =
0.02) in CD68high immune segments (figure 6.3.b).
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Figure 6.3.a-b Volcano plot demonstrating gene marker differential expression levels in

naive PDAC based on comparison of CD68low versus CD68high in a). aSMA segments b).
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immune segments. Genes with log2 fold change above and below 1.5, and p adjusted value <0.05
were considered significant. Important genes are in bold. Dashed line indicates significance

thresholds, NS = non-significant, FC = fold change.

Epithelial segments of CD68high cases demonstrated upregulation of matrix remodelling
and metastasis pathways (NES = 2.3, padj <0.001), MET (NES = 2.0, padj <0.001) and
NO (NES = 2.0, padj = 0.009) among others (figure 6.4.a). Upregulation of neutrophil
degranulation (NES = 1.7, padj <0.001) was also seen (figure 6.4.a). Interestingly,
CD68high immune segments, typically associated with poor survival, presented with a
vast, diverse immune rich landscape. Increased T cells (NES = 2.2, padj <0.001),
neutrophil degranulation (NES = 2.7, padj <0.001), dendritic cells (NES = 2.3, pad;j
<0.001), NK activity (NES = 2.3, padj <0.001) and B cells (NES = 1.7, padj = 0.030) were
observed in CD68high immune AQIs (figure 6.4.b). aSMA rich regions presented with
similar patterns as demonstrate in the above immune segments (supplementary figure
8.11). Spatial deconvolution estimates demonstrated low macrophage estimates within
the CD68low segments (p<0.001) as expected (figure 6.4.c). Furthermore, reduced
estimated immune populations were seen for CD4 T cells (p=0.035), CD8 T cells
(p=0.004), mDCs (p=0.003), monocytes (p=0.003) and fibroblasts (p=0.005) in CD68low
patients (figure 6.4.c).



a Ribosome

Transla{lun Fﬁ]c ?XS

Lipid mSSyntpnesr}g
Retlnom Acid nalin

i 1elr£}gngllrégs]

Mltochondrlal Metgbollsm I’TC.S!J
|f£er ntlapun

Glyct'ﬁvsus g%ﬁlcé: rans or
E&can Egenaslm

totoxicity
Transcri Hgn Eac ors

UBWR'BQ&%@%“ éf’pt%r

ERB! Ze |gna ng
MHC Class | AntlgenLPrese%rtla

i
Chromg%wn-i'(\ssoclﬁ 1efg
rog bigrelaned
Apgiesst Sisiin

M emsbrane_ ra

Proteutoxu: glan S

n
i:eE“;Er‘?F reraltlat gn
é‘EI' glgna R

Type lll llﬁﬁrﬁgctfere 3 g
erentlat on

gnallng

| na n

S|

G.Jt?.m.Fm 9 éﬁaﬂg"a“;}ﬁ

My eéo &d

sl
ell Exhaustion

Hedgﬁmg

sulin Signalin
Immoriarflt &Slgmnesg

|nan

Typel lnter?eron Igignalﬁ
L-6 Si gnalln

HIF1 Signal |n
T Cell hi:l g
eD

BCR |gna ing
?{' Ig Hng
Cytnklnespand Gre:n.rvtgI ﬁ% "{s
-ceﬁ‘%ﬁec pcnnt.;sJ
Prostaglandin Inﬁan’ﬂ{l‘a“nﬁ
I_c tivity

Other Interleukin Si naflng

Type ll IBfgwer n glgnahng

|xmphoc te Traf |c |ng
ost De n e

Whole Transcriptome Atlas geneset

-,
U=

O
tn:!

1

Lymphocyte ﬁﬁ%llﬂatlﬂn

pncep'%?g',%z ks
Ad hesn n% ﬁl‘{:tlﬂy

I
MHCCIassIﬂ\ntl en rese ation

Neutrophil qfargrnulaﬂon

) Vatrix Remodellnrg gﬁa%
Compl ement System

Adj. P
1.00

0.75
0.50
0.25

( CD68 low

\

J

A
0
lw)
&
=
[oje]
>

J

N

-2

-1

o
-
[ 4]

Normalised Enrichment Score

249

Figure 6.4.a Geneset enrichment and immune cell deconvolution of naive PDAC based on

comparison of CD68low versus CD68high. Bar charts demonstrate pathways differential

expressed in a). epithelial segments. Pathways with normalized enrichment score above and below

1.5, and p adjusted (Adj. P) value <0.05 were considered significant. Important pathways are

indicated by an arrow.
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Figure 6.4.b Geneset enrichment and immune cell deconvolution of naive PDAC based on
comparison of CD68low versus CD68high. Bar charts demonstrate pathways differential
expressed in b). immune segments. Pathways with normalized enrichment score above and below
1.5, and p adjusted (Adj. P) value <0.05 were considered significant. Important pathways are

indicated by an arrow.
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Previous mIF analysis in neoadjuvant patients indicated CD3CD8 density correlated with
survival. Contradictory to the central dogma, reduced levels of cytotoxic T cells correlated
with better disease specific survival (chapter 4.5). In an attempt to explain this
phenomenon, the transcriptomic differences between CD3CD8high and CD3CD8low
ranked patients was investigated. Differential expression analysis demonstrated
CD3CD8low epithelium was enriched with DMBT1 (logFC = 1.9, padj = 0.007),
CD3CD8low aSMA was enriched with GREM?2 (logFC = 1.9, padj = 0.007) and
CD3CD8low immune had reduced NOTCH1 expression (logFC = -1.8, padj = 0.04)
(supplementary figure 8.12.a-c). Pathway analysis presented with many significant
differences between ranked CD3CD8 density across all segments. Multiple cell signalling
pathways were significantly reduced in CD3CD8low epithelium including NRF2 signalling
(NES = -2.5, padj <0.001), p53 signalling (NES = -2.1, padj <0.001) and EMT (NES = -1.9,
padj <0.001) signalling (figure 6.5.a). Additionally, CD3CD8 immune segments
demonstrated downregulation of cell signalling and pro-tumorigenic pathways was seen
involving type | INF (NES = -2.3, padj <0.001), NF-kB (NES = -1.9, padj = 0.002),
immortality and stemness (NES = -1.5, padj = 0.014) and cell adhesion and motility (NES
=-1.9, padj <0.001) (figure 6.5.b). Furthermore, reduced expression of B cells (NES = -
2.4, padj <0.001), B cell exhaustion (NES = -2.0, padj = 0.005), T cells (NES = -2.3, padj
<0.001) and T cell exhaustion (NES = -1.7, padj = 0.028) (figure 6.5.b).
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Figure 6.5.a Geneset enrichment and immune cell deconvolution of neoadjuvant PDAC
based on comparison of CD3CD8high versus CD3CD8low. Bar charts demonstrate pathways
differential expressed in a). epithelial segments. Pathways with normalized enrichment score above
and below 1.5, and p adjusted (Adj. P) value <0.05 were considered significant. Important
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6.2.2 Spatial Transcriptomic landscape of nearest neighbour
phenotypes in naive and neoadjuvant pancreatic cancer

Next, the most biologically interesting nearest neighbour relationships as characterised in
chapter 3.8.1 and 4.7.1 were investigated. Within the naive cohort, this encompassed
distances from CD68 to CD3 and from CD68 to PanCk. The neoadjuvant cohort focuses
on distances from CD3CD8 to PanCk. As above, comparisons in matched regional Spatial
Transcriptomics were carried out to determine biological differences between nearest

neighbour ranks.

Low distances from CD68+ to CD3+ (CD3near) correlate with better outcome in nearest
neighbour analysis within the naive cohort (chapter 3.8.1). Epithelial AOls in CD3near
cores had differential upregulation of FCGBP (logFC = 3.1, padj <0.001) and
downregulation of IGFBP3 (logFC = 2.2, padj = 0.02) (supplementary figure 8.13). Limited
pathways were upregulated in CD3near epithelium with only PPAR signalling (NES = 1.6,
padj = 0.02) and mitochondrial metabolism/tricarboxylic acid (NES = 1.6, padj = 0.001)
being of note (figure 6.6.a). In contrast, numerous signalling pathways were decreased in
CD3near epithelium with MET (NES = -2.2, padj <0.001), type | INF (NES = -2.2, padj
<0.001), TGF-B (NES = -1.9, padj <0.001) seen (figure 6.6.a). Additionally, reduction of
pro-tumorigenic pathways matrix remodelling and metastasis (NES = -2.0, padj <0.001)
and EMT (NES = -2.0, padj <0.001) (figure 6.6.a) was observed. Additionally, CD3near
immune segments were enriched in B cells (NES = 1.6, padj = 0.03) and reduced in
angiotensin system (NES = -1.7, padj = 0.04), neutrophil degranulation (NES = -1.9, pad;
<0.001) and TCR signalling (NES = -1.4, padj = 0.036). Spatial immune cell deconvolution
estimated increased B cell (p=0.011) and plasma (p=0.019) in CD3near samples (figure
6.6.b).
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Figure 6.6.a Geneset enrichment and immune cell deconvolution of neoadjuvant PDAC

based on comparison of distance from CD68 to CD3low versus distance from CD68 to

CD3high. Bar charts demonstrate pathways differential expressed in a). epithelial segments.

Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value

<0.05 were considered significant. Important pathways are indicated by an arrow.
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Figure 6.6.c Geneset enrichment and immune cell deconvolution of naive PDAC based on
comparison of distance from CD68 to CD3low versus distance from CD68 to CD3high.
Boxplots demonstrate estimated immune cell expression per 100 cells in ¢). low and high ranked
distances from CD68 to CD3. Wilcoxon test with adjusted p value was used.
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Large distances from CD68 to PanCk (PanCkfar) correlated with better outcome in
nearest neighbour analysis within the naive cohort (chapter 3.8.1). PanCkfar epithelium
differentially expressed MMP12 (logFC = 2.4, padj <0.001), SLC12A2 (logFC = 2.2, padj
<0.001) and CCL2 (logFC = 2.0, padj = 0.03) (supplementary figure 8.14.a). Limited
aberrated pathways were seen, including elevated PDGF (NES = 2.4, padj <0.001), TNF
(NES = 1.9, padj <0.001) and MET (NES = 1.6, padj = 0.03) signalling (figure 6.7.a).
Furthermore, enriched type | INF (NES = 2.3, padj = 0.001), type Il INF (NES = 2.1, padj =
0.003) and BCR (NES = 1.7, padj = 0.03) were observed in aSMA rich AOls in PanCkfar
(figure 6.7.b), although few differentially expressed genes were seen (supplementary
figure 8.14.b). In contrast, immune PanCkfar segments had multiple significant genes,
including fibroblast associated markers ACTA2 (logFC = 1.7, padj <0.001) and MYH11
(logFC = 1.8, padj <0.001) (supplementary figure 8.14.c).These segments saw reduced
immune related pathways including dendritic cells (NES = -2.0, padj = 0.003), T cell (NES
= -2.0, padj = 0.03), B cell exhaustion (NES = -2.1, padj = 0.005), BCR signalling (NES = -
1.6, padj = 0.010) among others (figure 6.7.c). Elevated estimated neutrophil population
was seen in PanCkfar samples (p=0.038) (figure 6.7.d).
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Figure 6.7.a Geneset enrichment and immune cell deconvolution of neoadjuvant PDAC

based on comparison of distance from CD68 to PanCklow versus distance from CD68 to

PanCkhigh. Bar charts demonstrate pathways differential expressed in a). epithelial segments.

Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value

<0.05 were considered significant. Important pathways are indicated by an arrow.
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Figure 6.7.c Geneset enrichment and immune cell deconvolution of neoadjuvant PDAC

based on comparison of distance from CD68 to PanCklow versus distance from CD68 to

PanCkhigh. Bar charts demonstrate pathways differential expressed in c). immune segments.

Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value

<0.05 were considered significant. Important pathways are indicated by an arrow.
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Figure 6.7.d Geneset enrichment and immune cell deconvolution of neoadjuvant PDAC
based on comparison of distance from CD68 to PanCklow versus distance from CD68 to
PanCkhigh. Boxplots demonstrate estimated immune cell expression per 100 cells in d). low and
high ranked distances from CD68 to PanCk. Wilcoxon test with adjusted p value was used.
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Finally, nearest neighbour protein expression of neoadjuvant patients with low distances
from CD3CD8+ to PanCk+ (PanCknear) were explored. These patients had longer
survival outcomes (chapter 4.7.1). Abundant aberrated pathways were observed in
epithelial PanCknear segments, including elevated MET (NES = 2.6, padj <0.001), MYC
(NES = 2.5, padj <0.001) and TGF-B (NES = 2.1, padj <0.001) signalling (figure 6.8.a).
Additionally, multiple immune related pathways were significantly reduced (figure 6.8.a).
aSMA segments mirrored this immune barren trend, with PanCknear regions presenting
with reduced B cells (NES = -2.5, padj <0.001) and T cells (NES = -2.0, padj <0.001)
(figure 6.8.b). In contrast, PanCknear immune segments demonstrated limited significant
pathway differences between the ranked nearest neighbour groups (figure 6.8.c).
Elevated type Il INF signalling (NES = 2.0, padj <0.001), type | INF signalling (NES = 1.6,
padj = 0.014) and Treg differentiation (NES = 2.0, padj = 0.033) was observed in
PanCknear immune segments (figure 6.8.c). Enriched expression of mast cells (p=0.03)
and NK cells (p=0.004) was estimated in patients with low distances from CD3CD8 to
PanCk cells (figure 6.8.d).
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Figure 6.8.a Geneset enrichment and immune cell deconvolution of neoadjuvant PDAC

based on comparison of distance from CD3CD8 to PanCkhigh versus distance from

CD3CD8 to PanCklow. Bar charts demonstrate pathways differential expressed in a). epithelial

segments. Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj.

P) value <0.05 were considered significant. Important pathways are indicated by an arrow.
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based on comparison of distance from CD3CD8 to PanCkhigh versus distance from
CD3CD8 to PanCklow. Bar charts demonstrate pathways differential expressed in b). aSMA.
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<0.05 were considered significant. Important pathways are indicated by an arrow.
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Figure 6.8.d Geneset enrichment and immune cell deconvolution of neoadjuvant PDAC
based on comparison of distance from CD3CD8 to PanCkhigh versus distance from
CD3CD8 to PanCklow. Boxplots demonstrate estimated immune cell expression per 100 cells in

d). low and high ranked distances from CD3CD8 to PanCk. Wilcoxon test with adjusted p value
was used.
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6.3 Single cell B cell, T cell and dendritic cell signature
across the naive PDAC landscape

Previous Spatial Proteomic and Spatial Transcriptomic demonstrated recurrent immune
cell trends within naive pancreatic cancer (chapter 3, 6 and 6.2). Both geneset enrichment
analysis and immune cell deconvolution estimates in the naive pancreatic cancer cohort
demonstrated a mixture of elevated B cells, T cells and dendritic cells repeatedly
associated with subgroups associated with better outcome. Furthermore, regional Spatial
Protein work in a separate naive cohort demonstrated elevated T cell and B cell protein
signature correlated with improved prognosis (chapter 3.12). Counterintuitively, two
groups, B7-H3 ranked (chapter 6.3.5) and nearest neighbour distance from CD68 to
PanCk ranked groups (chapter 6.2.2), presented with the opposite pattern within their
respective high survivor associated subgroup. Concordance of regional protein signature
landscape with single cell protein expression landscape was investigated. The three most
biologically interesting immune cells, T cells, B cells and dendritic cells, were explored
using the PhenoCycler™ assay on a direct serial section from the same naive TMA used
in chapter 6 (figure 6.9.a and table 6.1). Although this assay included a variety of markers,
analysis was limited to cytotoxic T cells, helper T cells, B cells and dendritic cells (figure
6.9.b-c). Where possible, cell types were further subtyped into cell state using

active/inactive markers (figure 6.9.c).



270

a STEP core plus

enhancement Antigen Cyclical imaging Oligonucleotide
antibody panel  retrieval (4 channels) cleavage and
KAKK —**% KAKK KRAL "m0
KXKKXK —> RKXRK XK K KoK °
KKKXK KXKKK XKXXKR
A}L}L}LJK }LJLRJKJlJ.{AJLJL X J(AJL}'LJLKJt
\_/F \/ 3

Cyclel Cycle2 Cycle3 Cycle4d
Naive FFPE PDAC sample

e, SIS N : v 4 ¥ ,p",‘
Cytotoxic Inactive B cells Dendritic
Key: CD3e CD8 CD4 ICOS Key: CD11b

Figure 6.9.a-c Deep single cell phenotyping in naive pancreatic cancer using PhenoCycler.
Technology access program using STEP core plus enhancement antibody panel a). PhenoCycler
method overview schematic adapted with permission from Akoya®, showing cyclical
oligonucleotide staining, including antibody panel, antigen retrieval, four channel imaging, cleavage
and removal, cyclical process occurs up to 16 times, b). example naive core with full panel shown
(left) and false image overlay (right), c). phenotypes included in analysis, split into cytotoxic T cells
(CD3e+CD8+), active T cells (CD3e+CD8+ICOS+), inactive T cells (CD3e+CD8+TIM3+), helper T
cells (CD3e+CD4+), B cells (CD20) and dendritic cells (CD11b).
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Survival analysis confirmed high levels of B cells (CD20) (p=0.041) and helper T cells
(CD3CD4) (p=0.004) correlated with increased disease specific survival (figure 6.10.a-b).
Additionally, a non-significant correlation between high levels of dendritic cells (CD11b)
and survival was observed (figure 6.10.c). This assay produced an unexpected
oversaturated signal intensity, with high levels of background, making it difficult to
confidently phenotype. Furthermore, it lacked a suitable B7-H3 protein marker, prompting

exploration of an alternative high plex protein method.

a CD20 high = (D20 low b CD3CD4 high === CD3CD4 low
1.00 1.00 -
= >
£ o075 £ o7
% a
o 3 P=0.004
g e
= s n=64
g 050 r_>u 050
c 2
5 5
wy wv)
0.25 025
0.00 0.00
0 25 50 75 100 0 25 50 75 100
Disease specific survival (months) Disease specific survival (months)
c CD11b high == CD11b low
004
b
£ 751
E P=0.22
o n=64
o
© 504
2
b
=}
v
0.254
0.001
0 25 50 75 100

Disease specific survival (months)

Figure 6.10.a-c Naive immune cell density association with DSS. Kaplan-Meier curves
(disease specific survival in months) stratified by mIF protein marker expression (Log-Rank Mantel-
cox test) for a). CD20 (B cells) b). CD3CD4 ( Helper T cells), and c). CD11b (neutrophils).
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6.4 Single cell protein analysis of T cell and B cell
signatures across the naive and neoadjuvant
landscape

In late 2023, Nanostring® released a single cell, subcellar protein assay tailored for
immune oncology. The panel consists of up to 60 markers, with well-defined T cell, B cell
and dendritic subsets, as well as immune checkpoint marker B7-H3. This assay was
performed to further explore the concordance between regional Spatial Transcriptomic
and protein with single cell protein expression. The assay works relatively similarly to the
cyclical fluorescent in situ hybridization imaging method as seen in the Phenocycler™
assay above (chapter 6.3), with the added benefit of robust probe design, automatic Al
cell segmentation and instant expression readout (figure 6.11.a-b). This panel was applied
on serial sections of the naive cohort and neoadjuvant cohorts (table 6.1). Analysis was
carried out in TMA cores.

» I se (1) se(2) sterl

FFPE tissue Permeabilize, fix Hybridization- RNA Assemble into
on standard slides — Retrieve targets specific probes and flow cell
antibodies bind to target

Yy yya-

Simple and streamlined sample prep workflow.

UV cleave and

UV cleave and
hfl o wash fluorescent
s

Reporter set 1
hybridization ~ wash fluorescent
and imaging

dye: dye:

UV cleave and
s

Figure 6.11.a-b Deep single cell phenotyping in naive pancreatic cancer using CosMx™
protein panel, a). CosMx™ Method overview schematic showing diagram with permission from

Nanostring. FFPE slide undergo sample preparation workflow, exposing proteins for hybridization
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and performing up to 5 plex immunofluorescence for visualisation. Flow cell is assembled and
sample placed into the machine to undergo cyclical reporter set hybridisation, z stack imaging and
ultraviolet cleavage/washing steps. This cycle repeats up to 16 times with count data per cell
available as soon the run finishes b). example naive core treated with 60 plex protein panel (left),
markers shown include EpCAM+ (green), CD3+CD4+ (yellow), CD11b+CD11c+ (cyan),
CD19+CD20+ (purple), CD8 (red) and B7-H3 (magenta), zoomed in cell segmentation (right) using

native CosMx™ option, cellpose.

6.4.1 Cell typing

Celesta is the recommended cell typing method for CosMx™ protein assays, however this
algorithm lacks a B7-H3 based cell population. Instead, an exploratory phenotyping
method using Seurat was trialled (chapter 2.6.6). Unsupervised dimensional reduction in
naive samples demonstrated 34 distinct clusters (figure 6.12.a). B7-H3 expression
appeared relatively dispersed, appearing in 3 ‘hotspots’ (figure 6.12.b). Distinct clusters
associated with B cell, T cell, dendritic cell specific markers (figure 6.12.b). The top unique
makers associated with each cluster were then used to classify the dominant cell type
(figure 6.13). Initial cluster classification was limited to phenotypes of interest. This
resulted in cluster 14 associated with B cells markers, cluster 4 associated with CD8 T
cells and cluster 3 associated with CD4 T cells (figure 6.13). B7-H3 associated with 3
major clusters, cluster 5, cluster 12 and cluster 20 (figure 6.13). Unexpectedly, dendritic
markers appeared in a range of clusters including cluster 0, making it more difficult to
accurately cluster (figure 6.13).
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Figure 6.12.a. Naive single cell protein UMAP clustering with Seurat. Unbiased cell clustering
UMAP in 2 dimensions showing a). cluster labels. Most common markers used to distinguish B
cells (CD20, CD19, IgD), T cells (CD3, CD4, CD8), Dendritic cells (CD11b, CD11c, CD123) and

B7-H3 are represented.
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Figure 6.12.b. Naive single cell protein UMAP clustering with Seurat. Unbiased cell clustering
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used to distinguish B cells (CD20, CD19, IgD), T cells (CD3, CD4, CD8), Dendritic cells (CD11b,

CD11c, CD123) and B7-H3 are represented.
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Figure 6.13 Naive single cell protein clustered heatmap with Seurat. Showing top differentially
expressed markers that distinguish between each cluster. Cluster 14 was distinguished by B cell
markers (CD20, CD19, CD27), cluster 4 was distinguished by T cell markers (CD3, CD8), cluster 3
was distinguished by T cell markers (CD3, CD4). B7-H3 associated with cluster 5, 12 and 20.



276

The same methods were used to phenotype the combined neoadjuvant cohorts, showing
46 clustering patterns (figure 6.14.a). Compared to naive samples (figure 6.12.a), distinct
differences were observed between cluster number generated, space occupied, as well as
discrete markers differentiating between the naive and neoadjuvant clusters. In total,
almost all top markers distinguishing naive clusters, were also expressed in neoadjuvant
samples. Comparatively, almost 1/3 of distinguishing markers within the neoadjuvant
cohort were unique. As expected, neoadjuvant clusters were more complex, making it
difficult to distinguish between the dominant signature within clusters. B cell markers were
elevated in a wide range of clusters including clusters 2,10, 18, 24 and 34 (figure 6.14.b).
CD8 T cell markers were enriched in cluster 8 and cluster 35, and CD4 T cell markers
were enriched in cluster 9 and cluster 16. Dendritic markers were enriched in a wide
range of clusters including 13, 15, 23, 36 among others (figure 6.14.b). Furthermore B7-
H3 expression was upregulated in 4 different clusters, 4, 17, 27 and 41 (figure 6.14.b).
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Figure 6.14.a Neoadjuvant single cell protein clustering with Seurat. Unbiased cell clustering
UMAP in 2 dimensions showing a). UMAP with cluster labels. B cell markers were enriched in
clusters 2, 10, 18, 24 and 34, CD8 T cell markers were enriched in cluster 8 and 35, CD4 T cell
markers were enriched in cluster 9 and 16, dendritic markers were enriched in cluster 13, 15, 23
and 36, and B7-H3 marker was enriched in cluster 4, 17, 27 and 41.
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Figure 6.14.b Neoadjuvant single cell protein clustering with Seurat. Unbiased cell clustering

in 2 dimensions showing b). Clustered heatmap showing top unique protein markers that

distinguish between each cluster. B cell markers were enriched in clusters 2, 10, 18, 24 and 34,

CD8 T cell markers were enriched in cluster 8 and 35, CD4 T cell markers were enriched in cluster

9 and 16, dendritic markers were enriched in cluster 13, 15, 23 and 36, and B7-H3 marker was

enriched in cluster 4, 17, 27 and 41.
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6.4.2 B7-H3 expression and associated cell types in naive and
neoadjuvant PDAC

Despite the vast intertest in B7-H3 as a potential target for checkpoint inhibition, little is
known about the cell types it associates with. As shown above, B7-H3 appeared in 3
major clusters within the naive cohort (figure 6.13). These clusters also presented with log
fold increased expression of CD15 and aSMA (cluster 5), aSMA and CD39 (cluster 12),
and HLA-DR with CD14 (cluster 20) (table 6.2). Additionally, neoadjuvant patients
presented with 4 clusters where B7-H3 was amongst the highest expressing proteins
(figure 6.14). These clusters associated with a varied range of markers. B7-H3 related
clusters presented with B7-H3 alone (cluster 4), CD39 (cluster 17), STING, CD127,
LAMP1 (cluster 27), and EpCAM, B-catenin, CD38, NF-kB p65 (cluster 41) (table 6.2).

Cohort Cluster  Protein marker Log2 Fold change

Naive 5 B7-H3 1.666
Naive 5 aSMA 1.493
Naive 5 CD15 1.024
Naive 12 aSMA 1.743
Naive 12 B7-H3 1.617
Naive 12 CD39 1.121
Naive 20 HLA-DR 2.675
Naive 20 CD14 1.911
Naive 20 B7-H3 1.375
Neoadjuvant 4 B7-H3 2.027
Neoadjuvant 17 B7-H3 2.540
Neoadjuvant 17 CD39 1.845
Neoadjuvant 27 STING 2.032
Neoadjuvant 27 B7-H3 1.610
Neoadjuvant 27 CD127 2.246
Neoadjuvant 27 LAMP1 1.901
Neoadjuvant 41 EpCAM 2.487
Neoadjuvant 41 B7-H3 1.501
Neoadjuvant 41 Beta-catenin 2.929
Neoadjuvant 41 CD127 2.592
Neoadjuvant 41 CD38 1.726
Neoadjuvant 41 NF-kB p65 1.660

Table 6.2 B7-H3 clusters and associated top differentially expressed proteins in naive and
neoadjuvant pancreatic cancer. Log2 fold change expression for each marker in naive and

neoadjuvant cohort demonstrated, with Seurat cluster is indicated.
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Next, visual co-expression with B7-H3 was explored. Naive cluster 5 associated with B7-
H3, CD15 and aSMA. Co-expression was seen often between B7-H3 and myofibroblast
marker aSMA alone (figure 6.15.a bottom right), and with B7-H3, CD15 and aSMA
together (figure 6.15.a). Cluster 12 associated with B7-H3, aSMA and CD39 markers, with
co-expression seen between all three markers (figure 6.15.b). Finally, naive cluster 20
marker co-expression was seen for B7-H3, HLA-DR and CD14 (figure 6.15.c), likewise
frequent B7-H3 and HLA-DR co-expression without CD14 was also seen in naive samples
(figure 6.15.c bottom right). All three clusters are defined by immune rich markers. CD15
expression has been reported in neutrophil cells, CD39 expression with dysregulated T

cell function, and both HLA-DR and CD14 expressed on macrophages [313, 314].
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d Naive Cluster 5: B7-H3, CD15,

b Naive Cluster 12: B7-H3, aSMA
: ( ' CD39

c Naive Cluster 20: B7-H3, HLA-DR,
: I CD14

B7-H3 and HLA-DR
;» alone

Figure 6.15.a-c B7-H3 naive cluster visual co-expression with top expressing markers in
example images demonstrating a). Cluster 5, showing a fibroblast /neutrophil signature with B7-H3,
aSMA and CD15, bottom right image ‘B7-H3 and aSMA alone’ shows different cells within the
same core, only expressing B7-H3 and aSMA b). Cluster 12, showing fibroblast/exhausted T cell
signature with B7-H3, aSMA and CD39 c¢). Cluster 20, showing macrophage signature B7-H3,
HLA-DR and CD14, bottom right image ‘B7-H3 and HLA-DR alone’ shows different cells within the
same core, only expressing B7-H3 and HLA-DR
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Within the neoadjuvant cohort, 4 major clusters were found, one of which (cluster 4) was
only defined by B7-H3. In contrast, cluster 17 was defined by elevated B7-H3 and T cell
dysregulation marker CD39, similarly to naive cluster 12, with co-expression seen (figure
6.16.a). Varied protein markers were upregulated in Clusters 27 and 41 (table 6.1). Co-
expression was confirmed with B7-H3, CD127 and STING as indicated by cluster 27
(figure 6.16.b). Furthermore, frequent co-expression was seen of B7-H3 cells with STING.
Notably, CD127 and STING can all express in T lymphocytes [315-317]. Cluster 41 was
defined by immune related and epithelial related markers, therefore these markers were
investigated by cell lineage to check for B7-H3 co-localisation. Two distinct B7-H3 cell
types were observed within this cluster. The first cell type presented as B7-H3/EpCAM/j3-
catenin positive cells, and were predominantly located in the epithelium, though not all
EpCAM+B-catenin+ cells expressed B7-H3 (figure 6.16.c). The second cell type
expressed as B7-H3/CD38/NF-kB p65 positive cells and were observed in the tumour
microenvironment (figure 6.16.d). Both CD38 and NF-kB p65 expression have been
related to B cells [318, 319]. Notably, naive and neoadjuvant B7-H3 related clusters were
characterised by distinctly different markers. The only overlap seen was between naive
cluster 12 and neoadjuvant cluster 17, with B7-H3 co-expressing associating with
‘exhausted’ T cell marker CD39.
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b Neoadjuvant Cluster 27: B7H3,
CD127, STING

&

-

STING STING and CD127

;.

Figure 6.16.a-b B7-H3 neoadjuvant cluster visual co-expression with top expressing
markers in a). Cluster 17, showing an exhausted T cell signature with B7-H3 and CD39 b). Cluster
27, showing T lymphocyte signature B7-H3, CD127, and STING.
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C Neoadjuvant Cluster 41: B7H3,
EpCAM and B-catenin

B-catenin

d Neoadjuvant Cluster 41: B7H3,
CD38 and NF-«B

Figure 6.16.c-d B7-H3 neoadjuvant cluster visual co-expression with top expressing
markers in c). Cluster 41, showing an epithelial signature with B7-H3, EpCAM and B-catenin d).
Cluster 41, showing B cell signature B7-H3, CD38 and NF-kB.
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6.4.3 NeoadjXRT subtyping

Assuming the differences in B7-H3 clusters observed above is in some-part related to a
cell type or cell function switch triggered by treatment, the effect of neoadjuvant treatment
type on clustering was investigated. Dimension reduction using Seurat native UMAP
function demonstrated distinct clustering differences between chemotherapy treated and
chemoradiotherapy treated pancreatic cancer, indicating possible cell type variances
between the two groups (figure 6.17). Large differences are seen between neoadjuvant
chemotherapy and chemoradiotherapy samples, indicated by cluster pattern, space
occupation, as well as cluster generation. Overlap of 34 protein markers was observed
between chemotherapy and chemoradiotherapy clusters, with 6 unique markers in both
treatment subsets. Chemotherapy treated samples generated 31 clusters, 3 of which
demonstrated significant differential elevated B7-H3 expression (clusters 26, 28 and 30)
(figure 6.18.a). In contrast, chemoradiotherapy treated samples presented with 28
clusters, with 4 clusters (clusters 8, 13, 14 and 17) demonstrating increased B7-H3
expression (figure 6.18.b). Both treatment types associated with epithelial, T lymphocyte
and macrophage heavy B7-H3 clusters, although the markers within each cluster differed

considerably and were mixed.
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Figure 6.17 Chemotherapy and chemoradiotherapy single cell protein UMAP clustering with
Seurat. Unbiased cell clustering UMAP in 2 dimensions showing differences in clustering produced

in chemotherapy treated (left) and chemoradiotherapy treated (right) samples.
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6.4.4 Cluster density in naive and neoadjuvant pancreatic cancer

Upon satisfactory cluster assignment, density of well-established cell types and the B7-H3
related clusters were investigated within naive and neoadjuvant cohorts. The naive cohort
demonstrated a non-significant increased density of B cell related clusters (figure 6.19.a),
along with significant elevated median density of T cell exhausted cluster 12 when
compared to macrophage cluster 20 (figure 6.19.b). Within the neoadjuvant cohort, the
highest density clusters seen were B cell and CD4 T cell clusters, as well as significantly
elevated B cell related clusters compared to CD8 T cell clusters (figure 6.19.c).
Furthermore, significant differences were observed between the two T cell related B7-H3
clusters, with elevated levels of exhausted T cell related cluster 17 seen. Additionally,
cluster 41, associated with both epithelial and immune expression, has the smallest
density within the neoadjuvant cohort, as well as being significantly reduced when
compared to cluster 27 (figure 6.19.d). Moreover, non-significant elevated density of
cluster 13 in chemoradiotherapy treated patients was observed (supplementary figure
8.15).
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Figure 6.19.a-d Density of Seurat clusters associated immune cell clusters in naive and
neoadjuvant pancreatic cancer cohorts. Boxplots shows density per grouped immune cluster in a).
naive B cell, CD4, CD8 and dendritic clusters, b). naive B7-H3 related clusters, c). neoadjuvant B

cell, CD4, CD8 and dendritic clusters, d). neoadjuvant B7-H3 related clusters. Statistics generated
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by Kruskal-Wallis test, only significant p values shown.

6.4.5 Nearest neighbours surrounding B7-H3

Previous protein based results have demonstrated density alone can be insufficient to
characterise the tumour immune microenvironment (chapter 3 and 4). Using nearest
neighbour metrics, immune cell environment surrounding B7-H3 related clusters was
investigated. Location of B7-H3 in comparison to clusters enriched in tumour cells, T cells,
B cells and dendritic cells was explored. Dendritic cells consistently remain amongst the
top 2 closest neighbours for all naive B7-H3 clusters, along with CD4 helper T cells for
clusters 12 and 5, and CD8 cytotoxic T cells for cluster 20 (figure 6.20.a). B cells were the
furthest from cluster 5 and 20, and epithelial cells were furthest from cluster 12 (figure
6.20.a). Furthermore, cluster 20 also presented as one of the furthest phenotypes from
cluster 12 and cluster 5 (figure 6.20.a). A shift in the populations surrounding B7-H3
related clusters within the neoadjuvant cohort was observed. Epithelial and CD4 helper T
cells presented as some of the nearest neighbours for cluster 17 and 41, and cluster 4
and 27 respectively (figure 6.20.b). Additionally, B cells were the furthest away from
clusters 4, 17 and 27, and dendritic cells were furthest from cluster 41 (figure 6.20.b).
Finally, nearest neighbours across treatment types were explored. As expected, distinct
patterns emerged, the most predominant nearest neighbour in chemotherapy treated for
all B7-H3 related clusters were epithelial cells. Moreover, the furthest neighbour presented
as B cells for cluster 26, CD8T cells for cluster 28, and CD4 T cells, CD8 T cells and B
cells for cluster 30 (figure 6.21.a). In contrast, chemoradiotherapy treated B7-H3 clusters
seemed to reside together, as indicated by B7-H3 clusters being the closest nearest
neighbours. Moreover, epithelial and CD8 T cells were the furthest neighbours for cluster
13/14, and cluster 8/17 respectively (figure 6.21.b). Notably, the chemoradiotherapy

treated subgroup is limited in patient number (n=27).
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6.4.6 Prognostic associations with cluster density

Upon satisfactory initial cluster characterisation, prognostic utility was investigated. Within
the naive cohort patients enriched in CD4 helper T cell (p=0.014) and CD8 cytotoxic T
cells (p=0.007) had increased survival, replicating patterns seen in in chapter 3 and 6
(table 6.3). Likewise, reduction of B7-H3 enriched, T cell exhausted cluster 12 positively
correlated with survival (p=0.003) (table 6.3). Mirroring chapter 4 trends, neoadjuvant
patients with reduced levels of CD8 cytotoxic T cells (p<0.001) and CD4 helper T cells
(p=0.006) associated with better prognosis (table 6.3). Furthermore, decreased density of
B7-H3 cluster 4 (p=0.036) and B7-H3, T cell heavy cluster 27 (p=0.022) (table 6.3).
Interestingly, only T cell related B7-H3 clusters demonstrated prognostic correlation in

both naive and neoadjuvant patients.

Seurat clusters Group Cut-off Number HR (95% Cl) P value
method
B cell cluster Naive Rcutoff 38 0.36(0.10-1.29) 0.120
CD4 T cell cluster Naive Rcutoff 38 0.07 (0.01-0.59) 0.014
CD8 T cell cluster Naive Rcutoff 38 0.14 (0.03-0.58) 0.007
Dendritic cell cluster Naive Rcutoff 38 2.06 (0.83-5.14)0.11
Neutrophil/aSMA cluster 5 Naive Rcutoff 38 0.97 (0.43-2.21) 0.46
Exhausted T cell cluster 12 Naive Rcutoff 38 4.46 (1.67-11.9) 0.003
Macrophage cluster 20 Naive Rcutoff 38 0.49 (0.22-1.12) 0.092
B cell cluster Neoadjuvant Rcutoff 61 2.04 (1.05-3.99)0.31
CD4 T cell cluster Neoadjuvant Rcutoff 61 2.43 (1.28-4.64) 0.006
CD8 T cell cluster Neoadjuvant Rcutoff 61 2.81 (1.36-5.80) <0.001
Dendritic cell cluster Neoadjuvant Rcutoff 61 1.68(0.91-3.10) 0.097
B7-H3 cluster 4 Neoadjuvant Rcutoff 61 1.89 (1.04-3.41) 0.036
Exhausted T cell cluster 17 Neoadjuvant Rcutoff 61 1.49 (0.83-2.66) 0.2
T cell cluster 27 Neoadjuvant Rcutoff 61 2.30(1.13-4.68) 0.022
Epithelial/B cell cluster 41 Neoadjuvant Rcutoff 61 1.69 (0.83-3.46) 0.2

Table 6.3 Summary of Seurat generated immune and B7-H3 related clusters for disease
specific survival in whole core across naive and neoadjuvant PDAC cohort. Cut-off method
established (chapter 2.6.9). Log Rank (Mantel-Cox) p value and Univariate cox regression hazard
ratio (HR) shown with 95% confidence interval (Cl).
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6.5 Discussion

Immune cell density in pancreatic cancer remains one of the most consistently predictive
prognostic tools within the research field. This trend repeated across the PDAC cohorts
utilised within this study, notably CD3 and CD68 density in naive patients, and CD3CDS8 in
neoadjuvant patients. To start unravelling biological differences between levels of immune
cell expression, characterised phenotype groups were integrated with Spatial
Transcriptomic data, allowing discovery of aberrated genes and pathways in epithelial,
fibroblast, and immune rich segments. Relatively limited pathway differences were
observed in aSMA-rich and immune-rich segments in CD3high and CD3low naive
patients. In particular, elevated cytotoxicity and B cell related pathways were observed.
Interactions between T and B lymphocytes have been reportedly associated with
prognostic benefit in cancer. This has been seen in terms of cellular location, triggering
local inflammation in mouse models, as well as the presence of tertiary lymphoid
structures within the tumour microenvironment [11, 171, 227]. Interestingly, epithelial CD3
ranked segments presented with a wide range of aberrated cell signalling pathways. In
particular, JAK/STAT and type | INF signalling was reduced in CD3high epithelium. The
JAK/STAT pathway is well reported to play an important role in the immune response, and
chronic activation of this pathway promotes oncogenesis [80, 81, 320]. Comparatively,
CD68 density in treatment-naive patients presented with multiple significantly
dysregulated pathways. Of note, epithelium from CD68low cases demonstrated reduced
matrix remodelling and metastatic pathways, as well as MET and NO signalling. CD68low
expression significantly correlates with improved survival amongst the naive cohort as
well as within the literature [238]. Upon investigating immune and aSMA segments,
counterintuitive results were seen. CD68low segments presented with an immune barren
landscape, whereas CD68high was enriched in various immune cell pathways. This
pattern repeated when performing immune cell deconvolution, with macrophage
expression being significantly reduced in CD68low samples, indicative of the concordance
between deconvolution methods and actual protein expression. These results indicate that
enrichment of immune pathway presence alone may be insufficient to predict outcome.

In the neoadjuvant cohort, CD3CD8+ T cells emerged as a significant predictive marker.
Intriguingly, elevated levels correlated with poor survival, contradicting the central dogma
[132, 255, 321]. This finding is not isolated; similar observations have been reported in
similar cancer types, prompting investigation of pathways to help explain this
phenomenon [322]. Interestingly, patients with elevated levels of CD3CD8 presented with
increased EMT and p53 pathways in epithelial segments, as well as increased immortality
and stemness in immune segments. Additionally, these patients demonstrated elevated T

cell and B cell pathways, coupled with elevated T cell and B cell ‘exhaustion’.
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Nearest neighbours were the most powerful spatial protein single cell metric within naive
and neoadjuvant cohorts as reported in chapter 3 and 4. The most prognostically
significant categorised nearest neighbour patterns were extracted, comprising of distance
from CD68+ to CD3+, and distance from CD68+ to PanCk+ within the naive cohort, and
distance from CD3CD8 to PanCk+ in the neoadjuvant cohort. Patients with short
distances from CD68 to CD3 (CD3near) significantly correlated with improved survival
(chapter 3.7). Epithelial segments of these patients demonstrated downregulation of pro-
tumorigenic pathways such as matrix remodelling and metastasis, and EMT signalling
pathways. Additionally, CD3near immune segments demonstrated elevated B cell and
reduced angiotensin signalling pathways. B cell elevation was further confirmed using
immune cell deconvolution. Multiple signalling pathways trigger angiogenesis in PDAC,
promoting tumour development, metastasis and poor prognosis [323]. Aberrant
expression of this phenomenon offers a potential targeted treatment option, something
severely lacking in pancreatic cancer. Furthermore, immune segments in patients with
large distance from CD68+ to PanCk+, present with upregulated dendritic cells, reportedly
associated with improved survival and T cell immunity restoration [287]. Within the
neoadjuvant cohort, short distances from CD3CD8+ to PanCk+ cells correlated with
improved survival (chapter 4.7). Interestingly, aSMA and immune segments of these
patients presented with reduced B cells and T cells. Although the T cell trend mirrors the
rest of the neoadjuvant results, the reduced B cell pathway observed in the poor survival
group contradicts the overall neoadjuvant trend. B cells remain a contradictory cell type in
pancreatic cancer, with reports showing both anti-tumorigenic and pro-tumorigenic
properties [11, 97, 203]. In particular, CD49CD73 co-expressing B cells promote
angiogenesis, underlining the importance of robust subtyping in the context of biomarker

discovery [97].

The variable rates of translation from RNA into protein imply that while Spatial
Transcriptomics can offer estimates of immune cell deconvolution, it may not always serve
as an accurate surrogate for direct protein expression [296-299]. These estimates should
be validated against true protein data to ensure reliability. Initially, the Akoya Biosciences
Phenocycler™ assay using the STEP core plus enhancement immune panel was trialled.
This panel allows for a wide range of immune cells to be visualized including T, B and
dendritic cells. Significant survival trends were found for helper T cells, B cells and
dendritic cells. Notably, this assay was performed by the company as part of a beta
technology access program. Images produced had high levels of background, with
oversaturated and unspecific staining seen. Accurate phenotyping was difficult to robustly

establish. Furthermore, a B7-H3 marker was not covered by the PhenoCycler™ panel.

To characterise the tumour immune microenvironment, Nanostrings CosMx™ was used, a
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single cell protein assay suited to the investigative needs. The panel comprises of 60
markers, including epithelial, T cell, B cell, dendritic cell and B7-H3 markers. Although
Celesta cell typing is the recommended method to phenotype CosMx™ protein
experiments, this lacked a B7-H3 related cell type. Instead, a Seurat based approach was
trialled, popular with bulk and single cell transcriptomic data, as well as being
recommended for CosMx™ RNA assays [324]. This method generates clusters which
dominant cell types can be assigned to via differential expression analysis. Further
phenotyping methods would have to take place to validate cell clusters. Naive and
neoadjuvant samples generated distinct clusters, indicating the differences in cell types
seen across these cohorts. Clear cluster cell assignment was carried out in naive samples
T and B lymphocytes, and overlap was seen in dendritic related clusters. Conversely,
neoadjuvant clusters appeared heterogenous, demonstrating varied top differentially
expressed markers, making clusters more difficult to assign a dominant cell type. This
resulted in multiple clusters being combined to generate our three focused immune cells.
Differential B7-H3 expression was observed in 3 naive clusters and 4 neoadjuvant
clusters along with other markers. Naive B7-H3 related clusters were all immune related,
with a neutrophil/myofibroblast heavy association (cluster 5), a T cell exhausted marker
association (cluster 12) and a macrophage marker association (cluster 20). A more
diverse B7-H3 clustering was seen within the neoadjuvant cohort, including a mixture of
epithelial related (cluster 41), B cells (cluster 41), T cells (cluster 27) and exhausted T
cells (cluster 17). Varied B7-H3 cluster density was seen in naive and neoadjuvant, with
the highest density presenting as the exhausted T cell cluster in both cohorts. Although
B7-H3 is well known as an immune checkpoint molecule, it has yet to be fully
characterised in terms of the cell type it expresses in, or the cells it interacts with.
Contradictory reports have associated B7-H3 expression with a wide range of cell types

including T cells, B cells, macrophages, as well as fibroblasts and tumour cells [325-327].

Regardless of the cell type associated with this checkpoint molecule, elevated expression
correlates with poor prognosis [18]. Similar prognostic trends were observed in the two
PDAC cohorts. Elevated exhausted T cell related clusters (cluster 5 and cluster 7)
negatively correlated with the survival in naive and neoadjuvant patients respectively.
Reports linking B7-H3 to immune evasion via T cell inhibition may help explain this
phenomenon [311]. These results reinforce the rationale in clinical trials testing B7-H3
inhibition in a multitude of cancers [142-144, 146]. These results validate those reported
for Spatial Protein (chapter 3.11) and Spatial Transcriptomics (chapter 5.3.5 and chapter
5.4.5). Furthermore, increased B7-H3 expression in mouse models associates with
invasion and metastasis via the NF-kB pathway, with increased angiogenesis marker
VEGEF being secreted [19], or via the JAK/STAT pathway with increased autophagy

marker Mcl-1 being secreted [328, 329]. These reports also demonstrate inhibition of B7-
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H3 results in increased treatment sensitivity [328, 329].

Assuming that the differences in B7-H3 clusters expressed in neoadjuvant compared to
naive is solely due to treatment type, it was hypothesised neoadjuvant treatment type
would also present with distinct cell based clustering. Clear distinctions were
demonstrated between chemotherapy treated and chemoradiotherapy treated patients, as
seen by the UMAPs. Furthermore, an attempt was made to characterise the cell-to-cell
interactions between B7-H3 clusters and phenotypes of interest. Future mechanistic

studies should be performed to validate these results.

Multiplex led Spatial Transcriptomic analysis has revealed signalling pathways that are
potentially pivotal in defining sub-grouped patients. This advanced, integrative approach
not only aids in deciphering the fundamental mechanisms of disease, but it also potentially
discovers new patient populations that could benefit from targeted therapies. Without this
orthogonal approach, these insights may have remained undiscovered. Furthermore, the
use on an ultra-high plex single cell protein assay has allowed us to begin characterising
B7-H3 with the pancreatic cancer landscape, essential research if this checkpoint marker

is to become a targeted treatment option.
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7 Chapter 7: Final Discussion
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7.1 General Discussion

Pancreatic cancer is the 5" most common cause of cancer related deaths, with a 5-year
survival of <7% [1, 2]. Treatment options remain stagnant, with surgical resection being
the best treatment option [21]. At diagnosis, most patients present with metastatic disease
and are unsuitable for resection, thus the vast majority undergo adjuvant treatment. One
of the few advancements within the last decade is the introduction of neoadjuvant therapy
in borderline resectable and locally advanced disease, resulting in increased disease
specific survival [5]. Despite the development of molecular subtype characterization,
research underpinning the biology of PDAC is well behind that of similar solid tumours.
This is partly attributed to its complex, heterogenous landscape, dominated by a rare
mutational, and immune barren landscape [15]. This thesis aimed to characterise the
tumour immune landscape of naive and neoadjuvant treated human pancreatic cancer in
terms of cellular content, density and spatial orientation. Initial protein characterisation
focused on the most common cells seen, T lymphocytes, macrophages and fibroblasts,
using Akoya Phenolmager™. Subsequent regional ‘omic’ characterisation using the
NanoString® immune-oncology panel was carried out for confirmation and discovery of
rare protein signatures. Furthermore, the aim was to establish the Spatial Transcriptomic
signature in distinct tissue compartments across treatment cohorts and appropriate clinical
subgroups, using the NanoString® WTA panel. Finally, multi-‘omic’ characterization was
performed using a combination of orthogonal data, to explore the underlying biology in
prognostically relevant biomarkers, and validate transcriptomic signatures. Analysis was
first carried out separately on naive and neoadjuvant cohorts to establish the base
landscape, then compared to characterize the immunogenic switch between these
cohorts. The secondary aim was to characterize B7-H3 expression and determine its
interaction within the naive and neoadjuvant pancreatic landscape. This thesis primarily
uses Spatial Biology, which can be categorized by two different methods; histological
location, and single cell characterization. Histological location mainly refers to regional
spatial biology, were an overall or ‘mini-bulk’ signature is generated per area of interest.
Single cell characterization methods require a minimum of variable expression per cell
and X-Y coordinates and is used for distance-based metrics. Both methods can be

employed simultaneously

7.2 Deep protein characterization of the tumour immune
microenvironment in PDAC

Immune cell protein characterization is relatively well established in naive, and less well

established in neoadjuvant PDAC. However, the focus remains on the most common cell
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types including T cells, macrophages and fibroblasts. In general, immunohistochemistry
(IHC) studies demonstrate elevated CD8 cytotoxic T cells, CD3 T cells, and reduced
CD68 macrophages and fibroblasts significantly correlates with improved prognosis in
naive [170-174] and neoadjuvant PDAC [132, 147, 213, 214]. To confirm these trends
within the naive cohort, IHC was carried out using antibodies to CD3, CD8, CD68 and
CD163, demonstrating significant associations with prognosis and pattern of recurrence
for CD3, CD8 and CD68. Upon confirmation that these markers were suitable, a 7 plex
immunofluorescence panel was developed to investigate a range of T cell subsets,
macrophages and myofibroblasts. This assay allows for in-depth characterization, co-
expression analysis and establishing cell-to-cell interactions. This mIF assay generated
many significant trends within naive and neoadjuvant cohorts. Robust characterization
demonstrated the naive PDAC landscape was dominated by elevated PanCk, aSMA and
CD68 expression, and survival outcome of naive pancreatic cancer patients associated
with specific density and spatial parameters. Elevated levels of CD3+ T cells and reduced
CD68+ macrophages, along with increased distances from CD68+ macrophages to
tumour cells, and shorter distances from CD68+ macrophages to CD3+ T cells correlates
with improved DSS. Furthermore, elevated CD3CD8+ surrounding tumour cells were
observed in patients with improved prognosis. Until recently, few papers have explored
the spatial landscape. Carstens et al reported elevated T lymphocytes close to tumour
cells significantly correlated with overall survival [219]. Active T cells scan their
environment, detect and either kill neoplastic cells (CD8 T cells) or render them senescent
(CD3 T cells) [330]. These results suggest distance plays an important role in the effect of
T cells on surrounding cells, indicating that density alone is not enough to produce an anti-
tumour response. Although region specific analysis was carried out, reporting was limited
to novel trends not observed in the overall TMA core. Unusually, elevated FOXP3CD3+
cells in TME regions correlated with survival, although this was only seen in the discovery

naive cohort.

The naive molecular subtype microenvironment was also explored. Classical patients
demonstrated T cell specific density trends, with elevated CD3+ and CD3CD8+ T cells
correlating with improved DSS. In contrast, Squamous patients demonstrated reduced
tumour cell and macrophage populations correlated with DSS. Furthermore, significant
nearest neighbour trends also differed between subtypes. Considering the heterogeneity
of pancreatic cancer, it is highly unlikely that a single clinically relevant biomarker or
targeted therapy will be employed in the clinic. However, characterisation of clinically
relevant subgroups may reveal aberrations that can be exploited. The phenotypic
differences observed between subtypes emphasizes this potential and should be further

investigated.
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The neoadjuvant mIF assay produced a mixture of expected and unexpected results.
Similarly to naive patients, the most predominant cell types remained tumour cells,
aSMA+ fibroblasts, and CD68+ macrophages. Contrary to the hypothesis, reduced
density of CD3CD8+ cells and CD3+ cells significantly correlated with longer DSS.
Additionally, a reduction in CD68+ and FOXP3CD3+ cells also positively correlated with
prognosis. Neoadjuvant patients have the added complexity of having an altered disease
state with multiple factors that may influence the TME landscape and associated
prognosis. These include treatment method, chemotherapy or chemoradiotherapy, the
type of chemotherapy, FOLFIRINOX based or Gemcitabine based , and finally, the
regression pattern, which scores how well the tumour has responded to neoadjuvant
treatment and could be indicative of chemoresistance. These three main factors were
investigated within the neoadjuvant cohort. Distinct density differences were seen
between neoadjuvant subgroups. Notably, varied immune cell density in
chemoradiotherapy and good regression status patients significantly correlated with
prognosis, in contrast, only tumour cell densities were prognostic in chemotherapy and
poor regression status. Although CD3CD8+ and CD68+ prognostic marker overlap was
seen between FOLFIRINOX and Gemcitabine treatment, additional markers, CD3+,
FOXP3CD3+ and PanCk+, were observed in the FOLFIRINOX cohort. Regardless of
subgroup investigated, the general trend remained the same, reduced expression of any
phenotype correlated with longer disease specific survival. Of the few papers investigating
the neoadjuvant immune landscape, the general trends demonstrate an immunogenic
switch towards increased effector cell populations including cytotoxic, helper, and a
reduced Treg population [132, 147, 213, 214]. Although the neoadjuvant results seem to
contradict the PDAC literature, similar trends have been reported for similar cancers.
Reports in oesophageal and breast demonstrate an initial reduction in CD8 and CD4
populations, amongst others, for up to 9 months post neoadjuvant treatment [216, 258-
260]. Furthermore, the functional state was altered in breast cancer, resulting in an
increased proportion of activated memory CD4 T cells [259]. This poorly understood

phenomenon highlights two fundamental questions;

1. What is the optimal time period for samples to be taken? Does this need to be

taken into consideration when establishing the post treatment landscape?

2. Is cellular density alone a sufficient tool for prognosis, without taking into

consideration activation status or in-depth cell subtyping?

Furthermore, multiple nearest neighbour trends appear in neoadjuvant patients. This
includes large distances from CD68+ macrophages to tumour cells, large distances from

cytotoxic T cells to CD3+ helper T cells and short distances to CD3CD8+ cells from Tregs.
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CD68+ macrophages are thought to suppress the anti-tumour immune response, which
may indicate that increased distance to tumour cells dampens this effect [331]. Tregs play
a pivotal role in suppressing the immune response, and are associated with poor survival,
both in the literature and within the neoadjuvant cohort [256]. Reduced distances to
cytotoxic T cells may reduce the effect of Tregs. This may be done by either directly
targeting and killing Tregs, or by consuming the amount of essential Treg cytokines such

as IL-2 which is reportedly required for survival and suppressive capabilities [332].

The spatial prognostic patterns demonstrated by treatment naive and neoadjuvant
pancreatic cancer patients illustrate the potential effect of neoadjuvant therapy on the
tumour microenvironment, and how these alterations may contribute to improved
prognosis. Considering only the notable patterns observed between naive and
neoadjuvant multiplex analysis, stark differences between longer survivors were
observed. Longer survivor treatment naive patients presented with elevated CD3+ helper
T cells, and longer distances from CD68+macrophages to both FOXP3CD3+ Tregs, and
aSMA+ fibroblasts. Additionally, they presented with short distances from macrophages to
CD3+ helper T cells. In contrast, longer survivor neoadjuvant patients presented with
reduced tumour cells, as well as reduced FOXP3CD3+ Treg expression. Moreover, a
diverse range of nearest neighbour metrics were identified in neoadjuvant patients with
improved prognosis. This included short distances from CD68+ macrophages to cytotoxic
T cells, short distances from cytotoxic T cells to aSMA+ fibroblasts and large distances to
CD68+ macrophages from cytotoxic T cells. Furthermore, the neoadjuvant longer survival
group, consistently outperformed the naive longer survival group. These results
emphasize investigation of phenotype alone, without functional status, produces limited
characterisation of the tumour microenvironment, without accounting for biological

interactions.

In addition to inter-phenotype spatial relationships, intra phenotype spatial patterns were
investigated. All characterized cell types in naive and neoadjuvant PDAC within a TMA
setting presented with a clustered pattern of expression as defined by Ripley’s K function.
Increased clustering patterns were seen within tumour cells and cytotoxic T cells in the
naive and neoadjuvant landscape. Further analysis is required within whole sections to
fully explore these patterns and to determine whether histological regions alter the

patterns of expression.

To validate naive prognostic biomarkers generated by high-plex mIF and explore more of
the immune landscape, a regional immune-oncology GeoMx® assay was performed.
Upon confirmation of adequate concordance between matched DSP and IHC markers,

the overall immune landscape was investigated. This demonstrated an immune-rich and
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immune-void naive landscape, associated with DSS. Furthermore, a range of region
specific biomarkers were observed. Notably, highly expressed B7-H3 in epithelial
segments negatively correlated with DSS. This immune checkpoint marker has limited
expression in normal tissue, making it an ideal targetable marker for the diseased state
[17-19]. Subsequent Spatial Transcriptomic and single cell Spatial Proteomic confirmed

and further explored these results, as discussed below.

7.3 Spatial Transcriptomic characterization of the tumour
immune microenvironment in PDAC

Pancreatic cancer is complex disease, made up of highly dynamic compartments,
resulting in a heterogenous landscape. Whilst previous gold standard techniques such as
bulk or single cell transcriptomics may have characterised the dominant gene signature,
they have failed to maintain the spatial architecture. This has resulted in a lack of
understanding of PDAC biology compared to similar solid cancers, and almost no
improvement in treatment and biomarker discovery. Similarly, findings from bulk
transcriptomics are often from tissue samples with diverse histopathological regions,
resulting in a mixed signature output, dominated by the strongest gene expressing
compartment. Recent studies, including work from the Jamieson laboratory, have
highlighted this phenomenon. A high percentage of tumour microenvironment input in bulk
transcriptomic assays disproportionately impacted the overall expression signature,
resulting in a confounded signal [271]. Controversially, this would imply that most of the
tumour subtypes, are in fact, tumour microenvironment (TME) subtypes. Furthermore, the
TME is highly dynamic and changeable compared to the tumour compartment, as tissue
samples offer a snapshot view, these subtypes may only be reflective of a moment in
time. The diverse nature of pancreatic cancer necessitates structural integrity to be
maintained to understand the biology of this disease. Spatial Transcriptomics offers an
elegant solution to begin solving these problems in pancreatic cancer. Naive and

neoadjuvant samples were first established separately, then compared.

To confirm the necessity of Spatial Transcriptomics, inter-segment heterogeneity was
confirmed, demonstrating distinct aberrated differential genes and pathways between
tumour vs fibroblast or immune rich segments. These results reinforce the hypothesis that
mixed compartment signatures would be dominated by the strongest gene expression,
limiting discovery of subtle signals. Furthermore, in an attempt to subtype naive patients,
discrepancies were found between previously established bulk subtyping, a ranked
squamous score, and the subtype classes generated from epithelial segments. These
discrepancies could be due to multiple factors. Importantly, Spatial Transcriptomics works

with reduced tissue input, a robust signature can be generated from as little as 100 cells
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per segment. This may not be an adequate amount for robust subtyping. As discussed
above, molecular subtypes have mostly been generated from a confounded signal, with
considerable tumour microenvironment input, resulting in a mixed signature rather than an
epithelial based signature [271]. Furthermore, subtyping using differential expression is
highly reliant on the sample set, and may force subtype clustering, resulting in inaccurate

subtype clusters generated. A larger sample set would mitigate this.

Intra-segment heterogeneity was observed in epithelial segments, with limited gene
overlap observed between well-established molecular subtypes, indicative of a novel
epithelial specific signature. These clusters demonstrated a non-significant prognostic
value, with epithelial cluster 2 correlating with reduced survival. Additionally, distinct
transcriptomic differences were observed between them. Two targetable genes were
upregulated in cluster 2, HSPA6 and CST1, associated with PDAC epithelial
heterogeneity in single cell transcriptomics, and correlated with proliferative and
malignancy associated proteins in colorectal cancer [281, 282]. If validated in a larger
cohort, these biomarkers could prove useful in predicting aggressive PDAC. Furthermore,
immune cell deconvolution displayed a significant reduction of B cells and memory
dendritic cell. These trends are repeated in multiple comparisons. Within the naive study,
long term survivors (over 36months) demonstrated elevated B cells, as well as CD8+ T
cells estimates. Additionally, naive long-term survivors (over 36months) presented with
elevated B cell and CD8 T cell estimates, and differentially expressed Classical marker
LYZ in epithelial segments [291]. This marker has also been reportedly upregulated in

slow progressor intraductal grafted organoid PDAC mouse models [291].

Intra-tumour heterogeneity of neoadjuvant patients was examined using tumour core with
matched lymph node metastasis. As expected, elevated B cell related genes including
MS4A1 and CD79A presented in LN samples, as well as elevated TCR and BCR
signalling pathways. Additionally, these samples presented with an increased aggressive
disease landscape demonstrated by elevated VEGF, immortality and stemness, and EMT

signalling.

As outlined above, neoadjuvant PDAC biology can be affected by multiple factors. These
were considered when characterizing the neoadjuvant transcriptomic immune landscape.
Numerous transcriptomic differences were observed between FFX treated and
Gemcitabine treated PDAC. Notably, Gemcitabine epithelium demonstrated enriched
CA9. The presence of CA9 indicates the potential for targeted immunotherapy, as
observed in similar cancer types [333]. Gemcitabine has been reported to work
synergistically with immunotherapy, partly due to its increased immunogenic nature [213,

334, 335]. This was demonstrated by elevated B cell, T cell and natural killer cell
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pathways. In addition, exhaustion pathways, specifically B cell and T cell exhaustion were
observed which are known to dampen the anti-tumour effect of immune cells [261, 262].
Similarly, chemoradiotherapy patients, positively associated with DSS, presented with
increased B cell and B cell exhausted pathways, as well as T cell receptor (TCR)
signalling pathways in immune segments. Furthermore, these patients demonstrated
reduced autophagy signalling in epithelial segments. Autophagy has been reported to
promote immune evasion, and tumour growth in PDAC, which may explain the elevated
immune pathways seen [212, 336]. Additionally, increased memory dendritic cell
expression was observed in chemoradiotherapy treated patients, reported to play a role in
T cell immunity restoration, and improving radiotherapy response [287, 309].
Unexpectedly, differential expression analysis in regression group comparisons did not
differ drastically. However, pathway analysis identified interesting immune related
pathways. Poor regression demonstrated enriched T cell, B cell and B cell exhaustion
pathways, as well as an estimated elevation of memory dendritic cells. This interchange
between anti-tumour and pro-tumour effect in PDAC is a common phenomenon and is
even more apparent in the neoadjuvant cohort. Notably, the term exhausted has
generated some controversy, with terms such as inactive or dysregulated perhaps being
more appropriate. However, as GSEA pathways are defined as exhaustion pathways, this

term has been used.

Matched immune segment comparison between naive and neoadjuvant cohorts displayed
many alterations. Notably, immune associated pathways although considerably elevated
in immune segments of neoadjuvant samples, were often coupled with exhaustion
pathways. Specifically, both T cell coupled with T cell exhaustion, and B cell coupled with
B cell exhaustion pathways were upregulated. This exhausted phenotype has been
reported in treatment naive PDAC cohorts, for CD4 and CD8 T cells, with consideration
given to cell surface activation markers within the spatial landscape [337]. Additionally,
pro-inflammatory cytokine IL-2 was elevated. This phenomenon has previously been
reported to be triggered by neoadjuvant treatment [253]. This emphasizes that it is
insufficient to simply look at the overall density of these immune cell populations,
activation status needs to be considered to fully classify the neoadjuvant immune

landscape.

Direct comparisons between the naive and neoadjuvant transcriptome remains a niche,
unmet research field in pancreatic ductal adenocarcinoma. Of the work undertaken, the
majority remains focused on bulk transcriptomic techniques. Bailey et al found three

specific cell phenotypes (GATAG, KRT17 and CYP3A) with neoadjuvant chemotherapy
treated patients (MFOLFIRINOX or Gemcitabine treated), located within the epithelium

[338]. Interestingly, they found an increased diverse, heterogenous neoplastic tumour
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state associated with subtype specific WGCNA programs within neoadjuvant treated
compared to naive patients, which correlated with survival within the neoadjuvant cohort.
Additionally, these neoplastic cell populations also potentially link with chemoresistance
[338]. An attempt was made to replicate these cell types using Spatial Transcriptomics
within the cohorts, however Spatial Transcriptomic expression did not appear sufficient to
characterise these novel neoadjuvant specific cell types. Further work should be

performed using Spatial Transcriptomics on whole sections to explore these phenotypes.

When comparing the naive cohort to different neoadjuvant treatment types or
chemotherapy regimens, similar immune focused patterns were observed. Elevated T cell
and B cell signalling pathways were constantly upregulated in chemotherapy treated,
chemoradiotherapy treated, FFX and Gemcitabine treated immune segments when
compared to naive segments. Moreover, B cell exhaustion was also upregulated in
chemoradiotherapy and Gemcitabine treated segments, along with a variety of other
immune cell pathways. Interestingly, a similar trend is observed in neoadjuvant long-term
survivors compared to their naive counterparts, with the addition of the upregulation of B
cell and T cell exhausted pathways. This exhausted landscape appears to be recurrent
within the neoadjuvant cohort, indicating that the effect of matched immune cells may be
redundant, as seen in the literature [261, 262]. Furthermore, these results seem to
contradict the patterns found within high-plex protein investigation. However,
approximately 20-50% of mRNA is translated into protein, therefore, to robustly
characterise cells, protein expression should be examined [296-299]. This emphasizes the
need for multi-omic studies. Whole section validation was carried out using two matched
biopsies and neoadjuvant resected cases. This demonstrated a shift from a high CD4 T
cell, CD8 T cell and macrophage population, into a high B cell, CD4 T cell, CD8 T cell and

Treg population.

Regional protein naive results demonstrated that reduced expression of epithelial B7-H3
positively correlated with survival. As this marker is specific to the disease state and has
growing interest as a potentially targetable treatment option, in-depth Spatial
Transcriptomic exploration was performed in naive and neoadjuvant pancreatic cancer
[19, 310, 311]. Although epithelial specific survival analysis failed to identify a significant
correlation, reduced expression in whole core naive and neoadjuvant cohorts significantly
correlated with DSS. Expression was predominantly seen in non-epithelial tissue in naive
patients, and a slight non-significant increased expression in neoadjuvant epithelium.
Reduced T cell pathways, and elevated angiotensin pathways were observed in B7-H3low
immune segments. This indicates the possibility of using angiotensin targeted therapies,
reported to considerably improve prognosis in naive PDAC patients [99], as well as

targeting B7-H3 itself. Pancreatic cancer is renowned for its aggressive innate and
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adaptive treatment resistance, rendering most treatment options ineffective, or at the very
least severely limiting their effectiveness [155, 159, 339]. If B7-H3 is validated as a
biomarker, these patients could be stratified for combined targeted angiotensin system
inhibitor treatment and B7-H3 inhibition. Extensive mechanistic action research would be
required to test the viability of this hypothesis. Rationale for this treatment combination
has been reported for colorectal cancer studies [340]. Interestingly, B7-H3low immune
segments presented with elevated B cell and T cell signalling pathways, although this was

coupled with B cell exhaustion pathways.

7.4 Multi-omic tumour immune microenvironment
characterization in PDAC

Independently, high-plex immunofluorescence and regional Spatial Transcriptomics have
provided insight into the tumour immune microenvironment across PDAC treatment
cohorts. Single cell protein assay allows for robust characterization, although it is limited
by its purely descriptive capability. Similarly, Spatial Transcriptomics offers indirect
biological understanding, and immune cell estimates, however, it is limited by protein
translation rates. Orthogonal integration of significant multiplex density and nearest
neighbour trends with Spatial Transcriptomics helps deconvolute the underlying biology
specific to the immune landscapes of patients that correlate with prognosis. Furthermore,
concordance between true protein expression and estimated protein expression can be

established.

CD3 density has proved prognostic in naive PDAC across IHC, regional protein and
multiplex assays. CD3high ranked immune and aSMA segments demonstrated elevated
cytotoxicity and B cell signalling pathways. Furthermore, reduced JAK/STAT and type |
INF signalling was observed in CD3high epithelium. Reports show type | INF activation of
PD-L1 via the JAK/STAT pathway results in elevated expression on tumour cells in PDAC
mouse models [81]. Furthermore, JAK/STAT inhibition resulted in increased T cell
infiltration, and sensitized mouse models to anti-PD-L1 therapy [81]. Assuming this
reported phenomenon is solely based on the role of JAK/STAT, it indicates the elevated
CD3 levels seen within the naive cohort are in part, due to this aberrated JAK/STAT
signalling pathway. If validated, this indicates CD3high patients would benefit from
combination JAK/STAT and PD-L1 inhibition treatment.

In the neoadjuvant cohort, high CD3CD8 density negatively correlated with survival in
multiplex results. Immune segments of CD3CD8high demonstrated elevated T cell and B

cells, as expected, coupled with elevated T cell and B cell exhausted signalling pathways.
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In theory, this dysfunctional state results in a loss of tumour suppressor function, therefore
elevated density of these cells is redundant, reportedly correlating with poor survival [261,
262]. This may explain why patients with fewer, but active immune cell populations

correlate with improved survival within the neoadjuvant cohort.

Naive patients with short distances from CD68 macrophages to CD3 T cells correlate with
survival. Immune segments of these patients had upregulated B cell and reduced
angiotensin signalling. Targeted inhibition of angiotensin has been explored in a range of
cancers. VEGF-A inhibitor, bevacizumab, has shown promising results in treatment of
similar cancers including non-small cell lung cancer subtype lung adenocarcinoma [341,
342]. However, single anti-VEGF inhibitor treatment has failed to produce the same effect
in PDAC, most likely due to VEGF independent pathways being used [99]. Huang et al
demonstrated blocking BICC1/LCN2 signalling, responsible for VEGF-independent
angiogenesis via the JAK/STAT pathway, resulted in reduced microvessel density, and
sensitized mouse models to Gemcitabine treatment [99]. Furthermore, use of angiotensin
system inhibitors has correlated with PDAC survival in retrospective studies [293, 295].
Correlation between B cells and angiogenesis in cancer is poorly understood. However,
subsets of B cell populations have been reported to promote angiogenesis, specifically
those with elevated STAT3 signalling or CD49CD73 co-expressing cells [12, 97]. The
opposite trend was observed in the naive cohort, highlighting the need to robustly
characterises immune cell subsets within spatial regions to improve the likelihood of

successful targeted therapy implementation within the pancreatic cancer setting.

Although B cell estimated density and signalling pathway enrichment has mostly
associated with the better outcome group within Spatial Transcriptomic comparisons, a
nearest neighbour neoadjuvant metric contradicts this trend. A short distance from
CD3CD8+ T cells to tumour cells correlates with improved survival in neoadjuvant
patients. aSMA and immune segments of these patients displayed reduced B cell
signalling pathways. B cells remain a contradictory cell type within PDAC, with reports
associating them with both pro-tumorigenic pathways such as angiogenesis, and anti-
tumour pathways [11, 12, 97]. Thus, relying solely on transcriptomics for immune cell
characterisation can be insufficient, highlighting the need for robust single cell subtyping

within the immune protein landscape.

Three main immune cell patterns appeared throughout Spatial Transcriptomic

characterization, T cell, B cell and dendritic cells. To confirm this transcriptomic signature
accurately represented true protein expression, a single cell ultra-plex protein assay was
performed on a serial section of the naive cohort. Initially, the PhenoCycler™ STEP core

plus enhancement panel was trialled, however this lacked a B7-H3 marker, and produced
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oversaturated images with high levels of background, making robust phenotyping difficult
to establish. NanoStrings® protein CosMx™ panel encompassed a variety of immune cell
and epithelial markers, along with a specific B7-H3 marker. Using Seurat clustering, a
method frequently used in single cell transcriptomics, cell clusters were generated.
Distinct clustering was seen for naive (n= 34 clusters), and neoadjuvant (n= 46 clusters)
cohorts, with further cluster generation in neoadjuvant subgroups, chemotherapy treated
(n=31) and chemoradiotherapy (n=28 clusters). T cell, B cell, dendritic cell and B7-H3
clusters were assigned by establishing the top differentially expressed proteins. This
produced three B7-H3 heavy naive, and four B7-H3 heavy neoadjuvant clusters. B7-H3 is
reportedly expressed in a wide range of cells in the diseased state including T cells, B

cells, macrophages and epithelial cells.

Visual co-expression confirmation was observed between B7-H3 and the other top
expressing proteins within individual clusters. Naive clusters generated a
neutrophil/myofibroblast heavy cluster (cluster 5), with co-expression frequently seen
between B7-H3, aSMA and CD15. Additionally, B7-H3 expressed with a T cell
dysregulation marker, CD39, in cluster 12, and macrophage markers CD14 and HLA-DR,
in cluster 20. Cluster 20 co-expression has been reported in NSCLC [343]. Furthermore,
diverse clustering was observed in neoadjuvant samples. Co-expression was observed
with epithelial markers EpCAM and B-catenin, in cluster 41 and potential B cell markers
CDa38, in cluster 41. Additionally, B7-H3 co-expressing T cell related clusters were
observed, including a T cell dysregulation marker CD39 in cluster 17, and mixed T cell
markers CD127, and STING, in cluster 27. Correlation between T cell exhaustion and B7-
H3 has been reported in ovarian cancer and was seen in both naive and neoadjuvant
cohorts [344]. Notably, cluster 41 generated two signatures, although they were not
expressed in the same cells. Furthermore, some markers including CD14, CD38 and
HLA-DR, have been reported to express on multiple cell types, therefore further
phenotyping and co-expression analyse should be performed. Notably, these co-
expressing cells are called clusters rather than cell types, until robust phenotype validation
is performed. Naive median density of exhausted T cell cluster 12 was significantly
increased compared to macrophage cluster 20. Neoadjuvant median density of exhausted
T cell cluster 17 was increased compared to T cell cluster 27, and cluster 27 was elevated

compared to cluster 41.

In an attempt to characterise the cells surrounding reported B7-H3 clusters, nearest
neighbour analysis was performed. Dendritic cells appeared in the top 2 closest neighbour
cells from all naive B7-H3 clusters. Intriguingly, B7-H3 was first cloned from dendritic
cells, and this may play a role in its immunosuppressive T cell function [243, 345]. Within

the neoadjuvant cohort, a shift in the populations surrounding B7-H3 related clusters was
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observed. Epithelial clusters were amongst the top nearest neighbours for exhausted T
cell cluster 17 and epithelial/B cell cluster 41, and CD4 helper T cell clusters were the
closest neighbours for B7-H3 cluster 4 and T cell cluster 27. T cell exhaustion or
dysregulation can be triggered by overexposure to immunosuppressive factors secreted
by tumour cells, this phenomenon may explain the proximity of B7-H3/exhausted T cell
cluster to epithelium [346]. Additionally, previous mIF work demonstrated CD3+ cells
significantly clustered together according to Ripley’s K function. If CD3+CD8- cells are
assumed to be a pseudo marker for CD4 T helper cells, a similar trend is apparent with

neoadjuvant B7-H3 T cell cluster 27 being in close proximity to CD4 helper T cells.

Markers found within chemotherapy and chemoradiotherapy B7-H3 clusters were highly
mixed, with potentially multiple cell types including epithelial cells, T cells and
macrophages seen within these clusters. Additional deconvolution needs to be performed
before confidently assigning these clusters. Close proximity was observed between all
chemotherapy B7-H3 clusters and tumour cells, perhaps indicating a B7-H3 epithelial
expressing phenotype. Furthermore, chemoradiotherapy B7-H3 clusters appeared to
reside within similar locations, as indicated by the B7-H3 clusters consistently appearing

as the closest neighbour cells.

Irrespective of the cell type, B7-H3 expression is prognostic in a wide range of cancers, a
trend replicated in naive and neoadjuvant cohorts as seen in chapter 5. Using Seurat
clusters, naive CD4 T cell and CD8 T cell clusters positively correlated with survival,
replicating results found in previous IHC and mIF work. Similarly, neoadjuvant CD4 T cell
and CD8 T cell clusters negatively correlated with survival, validating mIF work reported in
chapter 4. B cell and dendritic cell Spatial Transcriptomic signatures consistently
associated with better outcome subgroups, however failed to demonstrate prognostic
value when using Seurat clusters. This may be due to the phenotyping methods used and
should be confirmed using a stringent method. Intriguingly, T cell related B7-H3 cluster in
naive (cluster 12), and neoadjuvant (cluster 27) demonstrated a negative association with
disease specific survival. The prognostic value of these B7-H3 clusters emphasize the
possible clinical utility of this immune checkpoint marker, reinforcing the need for
additional exploration into these clusters. Due to the highly novel nature of the single cell
protein assay, analysis methods remain experimental in nature and therefore initial data

presented is exploratory. Further work is needed to validate the results presented.

The Spatial Omic era is arguably at the stage where it produces more questions than
solutions. However, much like for single cell transcriptomics, these will gradually be
resolved. A combination of novel analysis method development, re-purposing “omic data”

techniques, and employing non-life science methods will be required to fully exploit these
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datasets. Undoubtedly, analysis methods will go through multiple iterations until a gold

standard is established.

7.5 Limitations

There are several general limitations associated with this thesis. The most apparent one
being the use of tissue microarrays for the majority of work. This may prevent robust
characterisation of the entire protein and transcriptomic TME landscape. However, the
TMAs used were multi-regional with at least 3 cores per patient and selected by expert
pathologists to accurately depict the heterogeneity of pancreatic cancer. Furthermore,
studies have reported that 3 cores per patient is sufficient to replicate whole section
results in leiomyosarcoma [254]. Taking this into account, the mIF studies were performed
with at least 3 cores per patient. However, only one core per patient was selected for most
of the spatial transcriptomic and proteomic studies. These assay techniques are labour
extensive, time consuming and expensive, making it unrealistic to produce a large sample
number with multiple cores per patient or whole sections. Validation was carried out on a
subset of neoadjuvant whole sections for spatial transcriptomics, however this was still
limited by ROI selection. True whole section validation should be repeated for a small
subgroup of naive and neoadjuvant patients for mIF and Spatial Transcriptomic/Protein

work.

The naive combined cohort is considerably older with a tumour centre histology. TMAs
were created using a macroscopic selection technique, resulting in a mixed histology.
Conversely, the neoadjuvant combined cohort was custom built to represent distinct
histology per TMA, comprising of a malignant rich, immune rich and benign TMA, with
cores computationally selected by an expert pathologist using a TMA Grand Master™
(3DHISTECH, Budapest, Hungry). To directly compare the two treatment cohorts, the
neoadjuvant malignant TMA was selected, as it represented the most similar histology.
However, this implies that the entire neoadjuvant immune landscape was not captured,
limiting observations to the direct tumour microenvironment. Finally, survival variable
ranks were established using a range of exploratory cut-off methods, producing highly
specific numbers. Although this is ideal in a digital world, it would not be suitable for
manual scoring by pathologists. Cut-off validation should be carried out using the closest

rounded number to test whether the results presented could be translated into the clinic.

The major limitation when using the Phenolmager™ assay is the possibility of spectral
bleed through. This primarily occurs when two antibodies are bound to fluorophores that

have overlapping absorption and emission spectra. This results in the stronger expressing
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fluorophore bound antibody being picked up when a weaker expressing antibody is being
imaged, usually because faint antibodies take longer to image. Although this can be
mostly mitigated by spectral unmixing, occasionally bleed through is still present.
Additionally, biased phenotyping was performed for mIF assays. To mitigate user bias, an
unbiased phenotyping method using CytoMAP was used to validate phenotypes selected.
All phenotypes were confirmed, with the addition of an unexpected FOXP3+CD3+PanCk+
cell type. This phenotype is most likely due to spectral bleed through rather than true co-
expression. Finally, the Phenolmager™ assay does not account for functional states nor

offer a biological mechanistic insight, resulting in a purely descriptive assay.

Spatial Transcriptomic work using the GeoMx® is limited by region selection and through-
put. However, this assay was specifically selected for its region selection feature to make
use of a large archival FFPE TMA resource available via the GTRF. Furthermore, TMA
based studies offer a work around for the low through-put imposed by the machine. The
resolution of this assay requires around 100 nuclei per segment for robust analysis,
indicating rare signatures may not be detected. Likewise, although immune cell
deconvolution offers immune cell estimates, these should be validated for a true protein
signature due to variable protein translation rates. Although this assay provides insight
into the underlying biological mechanisms in pancreatic cancer, it remains heavily
descriptive, requiring further experiments to explore significant genes and signalling
pathways observed. Spatial Biology has rapidly evolved in the last year, with the
commercial introduction of NanoString® CosMx™ assays. Naturally, this novel
technology has issues that are yet to be resolved. Cell segmentation is primarily
generated using an adapted Cellpose algorithm that cannot be altered. This results in
variable segmentation efficiency depending on the quality of the fluorescent image
generated. However, this is currently being improved by NanoString®. Furthermore,

analysis methods are still being explored, making initial results subject to change.

7.6 Further work

Further work following up the results generated from this thesis would aim to validate the
mlF, Spatial Transcriptomics and Spatial Protein trends generated in naive and

neoadjuvant pancreatic cancer. Further investigation of mechanistic studies for important
biological pathways demonstrated in subgroup specific Spatial Transcriptomics results is

also required.
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7.6.1 Whole section validation

Most of the work generated within this thesis has been carried out on TMAs. Although this
was purposefully done for throughput and cost reasons, this may introduce core location
bias. The multiplex panel and Spatial Transcriptomics WTA panel should be repeated
using whole sections from representative naive and neoadjuvant patients with a mixture of
the appropriate clinical subgroups. This would confirm whether TMA utilisation is an

appropriate surrogate for whole sections when employing these spatial biology assays.

7.6.2 Neodjuvant mlIF validation

Certain prognostic trends demonstrated in mIF analysis of the neoadjuvant Glasgow
cohort using tumour centre specific TMAs contradicted the hypothesis. An immunogenic
switch towards effector cells was expected, however, a reduction of all mIF panel cell
types, including cytotoxic T cells, was associated with patients with improved DSS. The
mIF panel should be repeated on the matched immune rich TMAs, as well as a separate

neoadjuvant cohort to ensure these results are not location or cohort specific.

7.6.3 B7-H3, biomarkers and targetable pathways

B7-H3 demonstrated prognostic relevance and distinct Spatial Transcriptomic landscapes
in naive and neoadjuvant patients. This indicates a potential targetable checkpoint
marker, as seen in clinical trials with other solid tumours [142-144]. Furthermore, B7-
H3low ranked epithelium demonstrated upregulation of the angiotensin system pathway in
naive pancreatic cancer. B7-H3 dependent angiogenesis has been reported in colorectal
cancer, with studies reporting the rationale of combination targeted therapy [340].
Interestingly, angiotensin system inhibitors are one of the few targeted treatment options
that show promise in PDAC [293, 295]. Confirmation of a positive association between
protein expression of B7-H3 and angiogenesis markers e.g. FGFR or VEGFR, should be
established via a small mIF panel [98]. To determine whether B7-H3 has a biological
effect on angiogenesis in pancreatic cancer, in vitro cell culture assays could be used for
B7-H3 siRNA knockdown, and western blots probed for FGFR or VEGFR to determine the
effect. Finally, mouse models could be used to further validate B7-H3/angiogenesis effect,

in addition to testing the validity of combination B7-H3/angiogenesis inhibition.

7.6.4 CosMx™ cell typing

CosMx™ cell types were established using a Seurat clustering method. Notably, this
technique does not strictly phenotype cellular populations, rather it produces cell type

heavy clusters, and is popular in single cell transcriptomic studies [324]. As clusters can
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be composed up of mixed cell populations, robust phenotyping of clusters should be
established. This could be done by in-depth cluster investigation using tools such as
ROGUE, which determines single cell signature purity [347]. Once robust phenotyping is
performed, B7-H3 co-expression should be confirmed, possibly using a multiplex
immunofluorescence panel focused only of B7-H3 and the markers it associates with e.g.
CD39. Additionally, the NanoString® recommended cell typing method, Celesta, could be
trained to include pancreatic cancer cell types of interest such as B7-H3. Furthermore, B7-
H3 cell types could be compared across naive and neoadjuvant patients to validate the
variety observed in the CosMx™ Seurat cluster results. Upon robust cell typing and
survival analysis, significant trends can be integrated with Spatial Transcriptomics work to

investigate the differential gene expression and biological pathway aberrations.

7.6.5 Cell-ligand interactions and subcellular work

To investigate biological spatial interaction, cell-ligand interaction analysis could be
established using NanoStrings® single cell Spatial Transcriptomics CosMx™ panel. This
panel includes markers for the cell types focused on throughout this thesis, B7-H3
expressing cells, T cells, macrophages, fibroblasts, B cells and dendritic cells. This would
be especially interesting to explore potential targetable interactions in T cells, as most
checkpoint inhibitors, including PD-1/PD-L1 immunotherapy, fail in the majority of
pancreatic cancer [348]. Multiple clinical trials are investigating B7-H3 inhibition due to its
lack of expression in normal tissue and association with an aggressive disease state [19,
310, 311]. Establishing the cell-ligand interactions within B7-H3 cell types would help
clarify whether B7-H3 inhibitors would be an appropriate treatment option in PDAC. The
CosMx™ assay can provide subcellular probe coordinates. At the time of writing, B7-H3
remains an orphan ligand, though some reports show interaction between TLT-2 on
activated immune cells [349]. IHC studies have shown B7-H3 cellular localization on
cellular membrane, cytoplasm and nucleus depending on the tissue type investigated
[350-352]. It is possible that this variety is due to different B7-H3 expressing cell types.
Exact protein and RNA location of B7-H3 could be established within distinct B7-H3
phenotyped cells.

7.6.6 3D spatial biology

Although 5um FFPE tissue sections are required for GeoMx® and CosMx™ spatial
biology assays, the images are ultimately flattened to produce a 2-dimensional (2D)
image. As pancreatic cancer does not exist in a 2D plane, the results produced from these
types of assays are limited to a single snapshot. To explore the pancreatic cancer tumour

microenvironment whilst maintaining spatial, cellular and anatomical structural integrity,
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the cutting-edge Stellaromics® multi-omic assays could be used. This allows for a highly
representative omic discovery, down to subcellular resolution, in tissues up to 200um thick
[116]. Potential biomarker and drug target discovery using 3D assays would be more

robust, as they take into account the complex, heterogenous pancreatic landscape.

7.7 Final conclusion

This thesis leverages innovative Spatial Biology to robustly characterize the tumour
immune microenvironment protein and transcriptomic landscape within the treatment
naive and neoadjuvant pancreatic cancer. Individually, Spatial Protein and Spatial
Transcriptomics are incredibly powerful tools for in-depth microenvironment analysis.
Spatial Protein assays enable deep phenotyping, revealing unknown spatial interactions.
Spatial Transcriptomics provides biological insight into specific regions of interest,
identifying potential biomarkers and targetable pathways. Combined, these technologies
represent a cutting-edge approach for deep characterisation of the diseased state. The
identification of B7-H3, and other actionable pathways, if validated, holds a promise for

novel pancreatic cancer treatments, an urgent need within this cancer.
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8 Chapter 8: Supplementary
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8.1 Chapter 2 supplementary: Spatial Transcriptomic
filtering and normalization alternative

Spatial Transcriptomics has rapidly evolved in the last 3 years. At the start of this thesis
project, Nanostring whole transcriptome assays were not commercially available, and only
became so in 2020. Naturally, the technology, and therefore analysis methods, have
advanced. At the time of analysis, an established filtering and normalization method was
used. However, there is a shift to more stringent filtering methods, to maximise the purty
of signature produced, as well as alternate normalization methods [353, 354]. A
representative analysis work through has been carried out using this stringent filtering
method. Complete overlap was observed between the filtering methods, indicative of
significant signatures maintaining their power in lenient filtering, with the addition of more
subtle, lower expressing signatures also being picked up. As robust biological
characterisation of pancreatic cancer has yet to be fully established, lenient methods

should initially be used, with subsequent stringent filtering applied when appropriate.

8.2 Chapter 3 supplementary

8.2.1 Prognostically favourable nearest neighbour tumour
immune landscape in naive patients across molecular

subtypes
Nearest neighbour trends within Molecular subtypesin Naive discovery cohorts
Nearest neighbour pattern Region  Cohort Group Cut-off Number Time HR (95% CI) Pvalue
method (months)

Distance to CD3 from aSMA Whole Discovery Classical (U]e} 122 DSS 0.62 (0.40-0.96) 0.031
Distance to CD3 from CD68 Whole Discovery Classical (U]e} 122 DSS 0.43(0.26-0.68) <0.001
Distance to CD3 from CD68 Whole Discovery Classical (U]e} 122 RFS 0.50(0.31-0.80) 0.004
Distance to CD3CD8 from CD68 Whole Discovery Classical (U]e} 122 DSS 0.45(0.28-0.72) <0.001
Distance to CD3CD8 from CD68 Whole Discovery Classical (U]e} 122 RFS 0.46(0.29-0.75) 0.002
Distance to CD68 from PanCk Whole Discovery Squamous LQ 53 DSS 2.24(1.14-4.42) 0.018
Distance to CD68 from PanCk Whole Discovery Squamous LQ 53 RFS 2.09 (1.05-4.13) 0.033
Distance to CD68 from CD3CD8 Whole Discovery Squamous  Med 53 DSS 1.84({1.00-3.38) 0.046

Supplementary table 8.1 Nearest neighbour patterns associated with disease specific
survival in naive cohorts across molecular subtypes in whole cores. Cut-off method
established per pattern in discovery cohort. Nearest neighbour pattern reported per cohort and
region, patient group indicated, along with number of patients in each group. Log Rank (Mantel-
Cox) p value and Univariate cox regression hazard ratio (HR) shown with 95% confidence interval
(Cl).
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8.2.2 Multivariate Cox regression analysis naive multiplex
immunofluorescence

Density and nearest neighbour groups were split to avoid overloading the model. In
density only models, CD3CD8+ and margin status were most significant in the discovery
cohort. Low cellular density of CD3CD8+ (p=0.007, HR= 1.59 (1.13-2.23) was significantly
associated with poor survival in treatment naive pancreatic cancer (supplementary figure
8.1.a). When investigating the distances from tumour cells, CD8+ and margin status were
most significant in the Discovery cohort. A short distance to CD8+ cells from PanCk+
(p=0.008, HR= 0.60 (0.41-0.87) was associated with better survival (supplementary figure
8.1.c¢). Short distance to aSMA cells from CD3+ (p=0.007, HR= 1.53 (1.13-2.08) and
margin status 1, was observed in poor prognostic patients (supplementary figure 8.1.9).
Although spatial metrics retain their prognostic significance, margin continuously
outcompetes them. Unexpectedly, one validated spatial parameter seemed to equal
margin status. Decreased distance to CD3+ cells from CD68+ (p<0.001, HR= 0.59 (0.43-
0.80) was significantly associated with better survival (supplementary figure 8.1.e). These
patterns were replicated in the Validation cohort (supplementary figure 8.1.b,

supplementary figure 8.1.d, supplementary figure 8.1.f and supplementary figure 8.1.h).

a b

Multivariate analysis Discovery: Cellular Density and Clinical Multivariate analysis Validation: Cellular Density and Clinical

Endpoint Subgroupn HR CI p Endpoint Subgroup n HR CI p

DSS CD3CD8 low 233 F————————| 1.59(1.13-2.23)0.007 DSS CD3CD8:low 184 ————— 1.43(0.99-2.07)0.055

Margin:M1 F———— 1.99(1.45-272)<0.001 Margin f———— 2.14(1.46-3.13)<0.001

1.5 20 1.0 1.5 20
Supplementary figure 8.1.a-b Final multivariate cox regression forest plot with clinical
variables in discovery and validation naive PDAC cohorts a) Density for discovery cohort b)

Density for validation cohort. HR= Hazard ratio, Cl = Confidence interval, n = number.
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c d

Multivariate analysis Discovery: Distance from PanCk and Clinical ~ Multivariate analysis Validation: Distance to PanCk and Clinical

Endpoint Subgroup n HR ClI p Endpoint Subgroup n HR CI p

DSS To CD8low 231 ———] 0.60(0.41-0.87) 0.008 DSS To CD8low 184 ——————| 1.566(1.08-2.20)0.016

——e— - :
——— 1.58(1.14-2.15)0.006 Margin 2.02(1.38-2,94)<0.001

Margin: M1

0.50 0.751.00 1.50 2.00

e f
Multivariate analysis Discovery: Distance from CD68 and Clinical Multivariate analysis Validation : Distance from CD68 and Clinical

Endpoint Subgroup n HR CI p Endpoint Subgroup n HR CI p

DSSFrom CD3:low233 ——]

0.59(0.43-0.80)<0.001 pgs To CD3:low 184 ——] 0.59(0.43-0.81)0.001

Margin:M1 F—— 1.65(1.20-2.28)0.002 Margin:M1 F—— 1.86(1.27-2.71)0.001

050 075100 150200

0.50 0.751.00 1.502.00

Supplementary figure 8.1.c-f Final multivariate cox regression forest plot with clinical
variables in discovery and validation naive PDAC cohorts c). Distance from tumour cells in
discovery cohort d). Distance from tumour in validation cohort e). Distance from macrophages cells
in discovery cohort f). Distance from macrophages cells in validation cohort. HR= Hazard ratio, Cl =

Confidence interval, n = number.
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g h
Multivariate analysis Discovery: Distance from CD3 and Clinical Multivariate analysis Validation: Distance from CD3 and Clinical
Endpoint Subgroup n HR CI p Endpoint Subgroup n HR CI p
DSS To aSMA low 233 —————4——| 1.53(1.13-2.08) 0.007 DSS To aSMA:low 184 ————————| 1.71(1.15-2.55) 0.008
Margin:M1 f———+—— 1.80(1.30~2.49) <0.001 Margin:M1 f————— 210(1.43-3.07) <0.001

Supplementary figure 8.1.g-h Final multivariate cox regression forest plot with clinical
variables in discovery and validation naive PDAC cohorts g). Distance from CD3 helper T cells
in discovery cohort h). Distance from CD3 helper T cells in validation cohort. HR= Hazard ratio, Cl

= Confidence interval, n = number.

8.3 Chapter 4 supplementary

8.3.1 Prognostically favourable nearest neighbour tumour
immune landscape across clinical groups in neoadjuvant
pancreatic cancer

Relevant clinical subgroups were investigated in the neoadjuvant cohort. Initially, different
neoadjuvant treatment types were investigated. Chemotherapy treated patients with better
outcome associated with short distance to CD3CD8+ (p=0.019), and large distances to
PanCk+ (p<0.001) cells from aSMA+ (supplementary table 8.2). Furthermore, large
distances from CD3CD8+ to PanCk+ (p=0.020), from CD3CD8+ to FOXP3CD3+
(p=0.037), from CD68+ to aSMA+ (p=0.045), and from FOPX3CD3+ to CD68+ (p=0.026)
correlated with better prognosis (supplementary table 8.2). In comparison, longer survival
chemoradiotherapy patients presented with different trends. Reduced distance from
PanCk+ to aSMA+ (p=0.017), from CD3CD8+ to aSMA+ (p=0.011), and longer distances
from CD3CD8+ to CD3+ (p=0.003), to CD68+ (p=0.002) and to FOXP3CD3+ (p=0.017)
correlated with improved prognosis in chemoradiotherapy patients. Shorter distances to
aSMA+ (p=0.008) and longer distances to CD3+ (p=0.005) from FOXP3CD3+ were also

observed in better outcome patients (supplementary table 8.2).
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Next, different types of chemotherapeutic drugs were investigated. Notably, FOLFIRINOX
treated patients with better outcome correlated with more nearest neighbour phenotypic
relationships compared to Gemcitabine treated longer survivors. Better outcome patients
receiving Gemcitabine based treatment only demonstrated one significant pattern,
specifically, short distances from CD3+ to aSMA+ cells (p=0.015) (supplementary table
8.2). In contrast, short distances from PanCk+ to CD3+ (p=0.001), and longer distances
from aSMA+ to CD68+ (p=0.041), to PanCk+ (p=0.001), and from CD3+ to PanCk+
(p=0.041), to FOXP3CD3+ (p=0.002) and to CD68+ (p=0.010) all correlate with improved
prognosis (supplementary table 8.2). In addition, multiple T regulatory related trends
appear. Longer survivors displayed shorter distances from FOXP3CD3+ to aSMA+
(p=0.037), and larger distances from FOXP3CD3+ to PanCk+ (p=0.004), and to
CD3CD8+ (p=0.002) (supplementary table 8.2).

Treatment response as defined by regression status was investigated. Good response
patients associated with larger distances from PanCk+ cells to FOXP3CD3+ (p=0.005),
from aSMA+ to PanCk+ (p=0.034) and to CD68+ (p=0.006) (supplementary table 8.2).
Moreover, increased distances from CD3CD8+ cells to CD68+ (p=0.003) and to
FOXP3CD3+ (p=0.010), and reduced distances to aSMA from CD3+ (p=0.020 presented
in better survival, good response patients (supplementary table 8.2). Poor response
patients presented with much fewer trends associated with survival, and those seen were
replicated in the good response group. Reduced distance to CD3CD8+ from PanCk+
(p=0.045), and larger distances from FOXP3CD3+ to CD3CD8+ cells (p=0.012) and from
CD68+ to PanCk+ cells (p=0.042) linked with significantly better survival (supplementary
table 8.2). These findings, although counterintuitive, are not surprising considering results

observed in chapter 4.5 and chapter 4.7.1.
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Nearest neighbour trends in disease specific survival in clinical subgroups of neoadjuvant cohort

Phenotype Region Cohort Group Number HR (95% Cl) P value
Distance to CD8 from PanCK Whole core MNeoadjuvant  Chemotherapytreated 46 7.54 (2.17-26.2)  0.001
Distance to CD3CD8 from aSMA Whole core MNeoadjuvant  Chemotherpaytreated 46 2,19 (1.13-4.24)  0.019
Distance to CD8 from aSMA Whole core MNeoadjuvant  Chemotherpaytreated 46 5.80 (2.13-15.8)  <0.001
Distance to PanCK from aSMA Whole core MNeoadjuvant  Chemotherpaytreated 46 0.27 (0.13-0.56)  <0.001
Distance to PanCk from CD3CD8 Whole core MNeoadjuvant  Chemotherpaytreated 46 0.43 (0.21-0.87)  0.020
Distance to FOXP3CD3 from CD3CD8 Whole core MNeoadjuvant  Chemotherpaytreated 46 0.38 (0.16-0.94)  0.037
Distance to aSMA from CD68 Whole core MNeoadjuvant  Chemotherpaytreated 46 0.29 (0.09-0.97)  0.045
Distance to CD68 from FOXP3CD3 Whole core MNeoadjuvant  Chemotherpaytreated 46 0.48 (0.25-0.92)  0.026
Distance to aSMA from PanCK Whole core Neoadjuvant  Chemoradiotherpaytreated 24 4.02 (1.25-12.5)  0.017
Distance to aSMA from CD3CD8 Whole core Neoadjuvant  Chemoradiotherpaytreated 24 4,11 (1.38-12.2)  0.011
Distance to CD3 from CD3CD8 Whole core Neoadjuvant  Chemoradiotherpaytreated 24 0.12 (0.03-0.49)  0.003
Distance to CD68 from CD3CD8 Whole core Meoadjuvant  Chemoradiotherpaytreated 24 0.16 (0.05-0.52)  0.002
Distance to FOXP3CD3 from CD3CD8 Whole core Meoadjuvant  Chemoradiotherpaytreated 24 0.08 (0.01-0.64)  0.017
Distance to aSMA from FOXP3CD3 Whole core Neoadjuvant  Chemoradiotherpaytreated 24 4.41(1.48-13.1)  0.008
Distance to CD3 from FOXP3CD3 Whole core Neoadjuvant  Chemoradiotherpaytreated 24 0.10 (0.02-0.50)  0.005
Distance to CD3 from PanCK Whole core MNeoadjuvant  FOLFIRINOX 52 4.52(1.81-11.3) 0.001
Distance to PanCK from aSMA Whole core MNeoadjuvant  FOLFIRINOX 52 0.33 (0.16-0.65)  0.001
Distance to CD68 from aSMA Whole core MNeoadjuvant  FOLFIRINOX 52 0.53 (0.29-0.97)  0.041
Distance to PanCK from CD3 Whole core MNeoadjuvant  FOLFIRINOX 52 0.5 (0.26-0.97) 0.041
Distance to FOXP3CD3 from CD3 Whole core MNeoadjuvant  FOLFIRINOX 52 0.36 (0.19-0.69)  0.002
Distance to CD68 from CD3 Whole core MNeoadjuvant  FOLFIRINOX 52 0.31(0.13-0.75)  0.01
Distance to aSMA from CD3CD8 Whole core MNeoadjuvant  FOLFIRINOX 52 2,01 (1.05-3.84) 0.024
Distance to FOXP3CD3 from CD3CD8 Whole core MNeoadjuvant  FOLFIRINOX 52 0.26 (0.13-0.52)  <0.001
Distance to CD68 from CD3CD8 Whole core MNeoadjuvant  FOLFIRINOX 52 0.42 (0.23-0.78)  0.006
Distance to PanCK from CD68 Whole core MNeoadjuvant  FOLFIRINOX 52 0.38 (0.19-0.75)  0.005
Distance to CD3CD8 from CD68 Whole core MNeoadjuvant  FOLFIRINOX 52 0.43 (0.21-0.87)  0.019
Distance to FOXP3CD3 from CD68 Whole core MNeoadjuvant  FOLFIRINOX 52 0.40 (0.20-0.79)  0.009
Distance to CD3 from CD68 Whole core MNeoadjuvant  FOLFIRINOX 52 0.37 (0.19-0.72 0.003
Distance to aSMA from FOXP3CD3 Whole core MNeoadjuvant  FOLFIRINOX 52 2,11 (1.05) 0.037
Distance to PanCK from FOXP3CD3 Whole core MNeoadjuvant  FOLFIRINOX 52 0.35 (0.17-0.72)  0.004
Distance to CD3CD8 from FOXP3CD3 Whole core MNeoadjuvant  FOLFIRINOX 52 0.34 (0.17-0.67)  0.002
Distance to aSMA from CD3 Whole core Neoadjuvant  Gemcitabine 13 5.24 (1.37-20.0)  0.015
Distance to FOXP3CD3 from PanCK Whole core MNeoadjuvant  Good response 35 0.26 (0.10-0.67)  0.005
Distance to PanCK from aSMA Whole core MNeoadjuvant  Good response 35 0.40(0.17-0.93) 0.034
Distance to CD68 from aSMA Whole core MNeoadjuvant  Good response 35 0.31(0.13-0.71)  0.006
Distance to CD68 from CD3CD8 Whole core MNeoadjuvant  Good response 35 0.24 (0.09-0.62)  0.003
Distance to FOXP3CD3 from CD3CD8 Whole core MNeoadjuvant  Good response 35 0.33 (0.14-0.77)  0.01
Distance to aSMA from CD3 Whole core MNeoadjuvant  Good response 35 2,51 (1.16-5.45) 0.02
Distance to CD3CD8 from PanCK Whole core Meoadjuvant  Poorresponse 33 2,28 (1.02-5.12)  0.045
Distance to CD3CD8 from FOXP3CD3 Whole core Meoadjuvant  Poorresponse 33 0.29 (0.11-0.76)  0.012
Distance to PanCK from CD68 Whole core MNeoadjuvant  Poor response 33 0.42 (0.18-0.97)  0.042

Supplementary table 8.2 Nearest neighbour patterns associated with disease specific

survival in clinical subgroups in neoadjuvant cohorts looking at whole core. Cut off

generated per nearest neighbour pattern, cohort, patient group and number indicated. Log Rank

(Mantel-Cox) p value and Univariate Cox regression hazard ratio (HR) shown with 95% confidence

interval (ClI).

8.3.2 Prognostically favourable tumour immune landscape in
different neoadjuvant treatment types at different radii

In the neoadjuvant cohort, chemoradiotherapy treated patients tend to do better than

chemotherapy alone. Focusing on chemotherapy treated patients, low density of aSMA+
(p=0.008) within 30um from PanCk+ cells, and low density of CD68+ (p=0.045) from
10um of FOXP3CD3+ was affiliated with longer survival (supplementary table 8.3).

Interestingly, more trends were seen in chemoradiotherapy patients. Patients with low
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levels of CD3+ (p=0.04) and FOXP3CD3+ (p=0.046) correlated with better DSS at 20um
from PanCk+ cells (supplementary table 8.3). Additionally, longer surviving patients
presented with a low density of CD3+ cells (p=0.03), CD3CD8+ (p=0.027) and CD68+
(p=0.005) within 40um of aSMA+ cells (supplementary table 8.3).

Different types of neoadjuvant chemotherapy were investigated. Similarly, to the nearest
neighbour results (chapter 4.7.2), Gemcitabine based treated patients only showed one
significant radius pattern. At 30um from FOXP3CD3, low density of CD68+ cells (p=0.044)
correlated with improved survival (supplementary table 8.3). Multiple trends were
observed in longer survivor FOLFIRINOX treated patients, particularly, a reduced density
of CD3CD8+ (p=0.022) and FOXP3CD3+ (p=0.044) within 30pum from PanCk+ cells, and
low density of CD3CD8+ (p=0.009), CD68+ (p=0.032) and FOXP3CD3+ (p<0.001) within
30um from CD3+ cells was observed in longer survivors. Interestingly, elevated levels of
aSMA+ within 30pm from CD3+ (p=0.042), 30um from CD3CD8+ (p=0.033), and 40um
from FOXP3CD3+ (p=0.019) is also seen in patients with better outcome (supplementary
table 8.3).

Within the better response patients, there is a subgroup that does much better, most likely
due to complete or partially complete pathological response. These patients presented
with a low density of CD3+ (p=0.005), CD3CD8+ (p=0.022), CD68+ (p=0.037) and
FOXP3CD3+ (p=0.017) within 30um of PanCk+, and low density of CD3+ (p=0.004) and
CD3CD8+ (p=0.048) within 30um of aSMA+ cells (supplementary table 8.3). A low density
of CD3CD8+ (p=0.047), CD68+ (p=0.007), PanCk+ (p=0.018) and FOXP3CD3+
(p=0.033) at 40um from CD3+ was also observed (supplementary table 8.3).

Although patients may have a poor outcome, it is beneficial to characterise what
differences are seen between those that do poorly and those that do slightly better. At
10um, low density of PanCk+ (p=0.02) from CD3 helper T cells, and low density of
FOXP3CD3+ (p=0.011) at 20pum from CD3CD8+ T cells were observed in better outcome
patients (supplementary table 8.3).
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Radius trends in disease specific survival in clinical subgroups of neoadjuvant patients

From Phenotype To Phenotype Distance Cohort Group Number HR([95% Cl) Pvalue
(um)

PanCKk asMA 30Neoadjuvant Chemotherapy treated 46 2.91(1.33-6.36) 0.008
FOXP3CD3 CD68 10 Neoadjuvant Chemotherpay treated 46 2.03(1.01-4.06) 0.045
PanCk D3 20Neoadjuvant Chemoradiotherapy treated 24 2.79(1.05-7.42) 0.04
PanCk FOXP3CD3 20Neoadjuvant Chemoradiotherapy treated 24 4.64(1.03-21.0) 0.046
asMA CcD3 40 Neoadjuvant Chemoradiotherapy treated 24 3.85(1.14-13.0) 0.03
aSMA CD3CD8 40 Neoadjuvant Chemoradiotherapy treated 24 3.24(1.14-9.21) 0.027
asMA CD63 40 Neoadjuvant Chemoradiotherapy treated 24 4.64(1.59-13.6) 0.005
CD3 CD3CD8 30 Neoadjuvant FOLFIRINOX 52 2.21(1.22-4.00) 0.009
CD3 CD68 30 Neoadjuvant FOLFIRINOX 52 2.78(1.09-7.07) 0.032
CcD3 PanCk 30Neoadjuvant FOLFIRINOX 52 2.40(1.07-5.40) 0.035
CD3 FOXP3CD3 30Neoadjuvant FOLFIRINOX 52 3.61(1.80-7.25) <0.001
CD3 aSMA 30 Neoadjuvant FOLFIRINOX 52 0.42(0.19-0.97) 0.042
CD3CD8 CDhe8 30Neoadjuvant FOLFIRINOX 52 2.78(1.09-7.07) 0.032
CD3CD8 FOXP3CD3 30 Neoadjuvant FOLFIRINOX 52 2.25(1.21-4.19) 0.01
CD3CD8 aSMA 30 Neoadjuvant FOLFIRINOX 52 0.50(0.27-0.95) 0.033
CDhe8 CD3CD8 30Neoadjuvant FOLFIRINOX 52 2.97(1.56-5.64) <0.001
CD68 PanCK 30 Neoadjuvant FOLFIRINOX 52 2.15(1.05-4.40) 0.037
CD68 FOXP3CD3 30 Neoadjuvant FOLFIRINOX 52 2.56(1.36-4.82) 0.004
PanCK CD3CD8 30Neoadjuvant FOLFIRINOX 52 2.03(1.11-3.73) 0.022
PanCK FOXP3CD3 30 Neoadjuvant FOLFIRINOX 52 1.97 (1.02-3.81) 0.044
FOXP3CD3 CD3 40 Neoadjuvant FOLFIRINOX 52 2.27(1.03-4.98) 0.041
FOXP3CD3 CD3CD8 40 Neoadjuvant FOLFIRINOX 52 4.06(2.01-8.20) <0.001
FOXP3CD3 CD68 40 Neoadjuvant FOLFIRINOX 52 2.54(1.24-5.19) 0.01
FOXP3CD3 PanCK 40 Neoadjuvant FOLFIRINOX 52 3.91(1.19-12.8) 0.024
FOXP3CD3 aSMA 40 Neoadjuvant FOLFIRINOX 52 0.45(0.24-0.88) 0.019
asMA CD3 30Neoadjuvant FOLFIRINOX 52 1.89(1.03-3.46) 0.038
aSMA PanCK 30 Neoadjuvant FOLFIRINOX 52 2.39(1.29-4.43) 0.006
aSMA FOXP3CD3 30Neoadjuvant FOLFIRINOX 52 2.19(1.01-4.77) 0.047
FOXP3CD3 CD68 30 Neoadjuvant Gemcitabine 18 3.37(1.03-11.0) 0.044
PanCK D3 30 Neoadjuvant Good response 35 355 (1.46-8.62) 0.005
PanCK CD3CD8 30Neoadjuvant Good response 35 2.53(1.14-558) 0.022
PanCK CD68 30Neoadjuvant Good response 35 2.50(1.05-5.92) 0.037
PanCK FOXP3CD3 30 Neoadjuvant Good response 35 2.75(1.20-6.27) 0.017
asMA CD3 30Neoadjuvant Good response 35 3.81(1.53-9.52) 0.004
asMA CD3CD8 30Neoadjuvant Good response 35 2.16(1.01-4.64) 0.048
D3 CD3CD8 40 Neoadjuvant Good response 35 2.14(1.01-4.54) 0.047
CcD3 CD68 40 Neoadjuvant Good response 35 10.7 {1.93-59.3) 0.007
CcD3 PanCk 40 Neoadjuvant Good response 35 3.30(1.22-8.91) 0.018
D3 FOXP3CD3 40 Neoadjuvant Good response 35 4.49(1.79-11.3) 0.001
CcD3 PanCk 10 Neoadjuvant Poor response 33 2.76(1.09-7.02) 0.033
CD3CD8 FOXP3CD3 20 Neoadjuvant Poor response 33 2.58(1.13-5.88) 0.024

Supplementary table 8.3 Radii patterns associated with disease specific survival in clinical

subgroups of neoadjuvant cohorts looking at whole core. Radii reported using ‘from

phenotype’ column, indicating the central phenotype, and ‘to phenotype’ indicating the surrounding

phenotype. Reported by distance (um), cohort, patient group, along with number of patients in each

group. Most significant radii is reported. Log Rank (Mantel-Cox) p value and Univariate Cox

regression hazard ratio (HR) shown with 95% confidence interval (Cl) for disease specific survival

(DSS) and recurrence free survival (RFS).
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8.3.3 Multivariate Cox regression analysis in neoadjuvant
multiplex immunofluorescence

Multivariate cox regression analysis was performed on significant density and nearest
neighbour patterns and adjusted for lymph node status and resection margin status.
Density and nearest neighbour patterns were compared separately. In the density model,
only CD3CD8+ and PanCk+ remained significant. A low density of CD3CD8+ cells
(p<0.001, HR = 0.26 (0.14-0.50)) and PanCk+ cells (p=0.002, HR = 0.41 (0.23-0.72))
correlated with better survival (supplementary figure 8.2.b). Interestingly, lymph node
status and margin status did not appear in the final multivariate model (supplementary
figure 8.2.a). Nearest neighbour pairs were split according to phenotype. Poor survivor
neoadjuvant patients associated with shorter distance from CD3CD8+ to PanCk+ cells
(p=0.003, HR=2.58 (1.38-4.83)) (supplementary figure 8.2.c) and shorter distance to
CD3+ from CD3CD8+ cells (p<0.001, HR = 3.11 (1.71-5.64)) (supplementary figure 8.2.d).
Additionally, a shorter distance to CD3CD8+ from FOXP3CD3+ correlated with improved
survival in neoadjuvant patients (p=0.003, HR=0.2 (0.07-0.58)) (supplementary figure
8.2.e).
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Neoadjuvant cohort: Cellular density and clinical

|
1
EndpointSubgroup n : HR CI p

1
|

DSS CD3CD8:low 69 ——¢—1 : 0.34(0.15-0.79)0.012
|

CK:low '—0—| 0.49(0.25-0.99)0.046
1
i

CD68:low '—0—:" 0.52(0.25-1.09)0.085
1
i

FOXP3CD3:low '—'—"’:—"—"'-' 0.92(0.34-2.45)0.867
i

CD3:low '—QI—' 0.96(0.39-2.32)0.921
1
1

Margin '—4;—' 0.96(0.49-1.91)0.914
|
1

LN '—5—0—' 1.72(0.78-3.82)0.181

|
025 050 0.751.00 1.502.00

b

Neoadjuvant cohort: Cellular density

EndpointSubgroup n HR CI p

DSS CD3CD8:low 70— 0.26 (0.14-0.50)<0.001

PanCk:low F————0.41(0.23-0.72)0.002

0.25 0.50

Supplementary figure 8.2.a-b Final multivariate model cox regression models in
neoadjuvant cohort a) All phenotype densities and clinical b). Final density model. HR= Hazard

ratio, Cl = Confidence interval n= number.
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c
Neoadjuvant cohort: Distance to PanCk from CD68 and clinical
Endpoint Subgroup n HR CI p
DSS LN 68 |f | 247 (1.41-4.31) 0.002
PanCk from CD3CD8 -+ {258 (1.38-4.83) 0.003

20

d
Neoadjuvant cohort: Distance to CD3 from CD3CD8 and clinical
Endpoint Subgroup n HR CI p
DSS LN 70 * ! 224 (1.29-389) 0.004
D3 from CD3CD8 } + {311 (1.71-5.64) <0.001

2.0

Supplementary figure 8.2.c-d Final multivariate model cox regression models in

neoadjuvant cohort. Nearest neighbour distance metric multivariate models split by central
phenotype for ¢). From CD3CD8+ cells to PanCk+ cells d).From CD3CD8+ to CD3+ cells
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Neoadjuvant cohort: Distance to CD3CD8 from FOXP3CD3 and clinical

Endpoint Subgroup n HR CI p

L 4

DSS CD3CD8 from FOXP3CD3 68 0.20 (0.07-0.58) 0.003

LN F—— 315 (1.72-5.75)  <0.001

025 050 075100 1.50 2.00

Supplementary figure 8.2.e Final multivariate model cox regression models in neoadjuvant
cohort. Nearest neighbour distance metric multivariate models split by central phenotype for e).
From FOXP3CD3+ to CD3CD8+
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8.4 Chapter 5 supplementary

8.4.1 Tumour compartments demonstrate distinct transcriptome
profiles in pancreatic cancer

8.4.1.1 Naive PDAC inter-tumoral heterogeneity

Numerous significant pathway aberrations were observed when comparing segments.
Notable pathways observed included, B cell exhaustion (PanCk vs Immune: NES = 2.2,
padj <0.0005), T cell exhaustion (PanCk vs Immune: NES = 1.9, padj = 0.01), and EMT
(PanCk vs aSMA: NES = 1.6, padj = 0.015), as well as overlapping signalling pathways
including PDGF signalling in both aSMA and immune segments (PanCk vs aSMA: NES =
2.3, padj < 0.001, and PanCk vs Immune: NES = 2.2, padj < 0.001) (supplementary figure
8.3.a-b). Furthermore, epithelial segments demonstrated enrichment of a wide range of
signalling pathways such as Type 1 INF signalling (PanCk vs aSMA: NES = 2.0, pad;
<0.001) and NOTCH signalling (PanCk vs aSMA: NES = 1.9, padj <0.0005, and PanCk vs
aSMA: NES = 1.9, padj <0.001) (supplementary figure 8.3.a-b).

GSEA differences were also observed between the fibroblast and immune segments,
although this was considerably reduced. aSMA segments demonstrated enrichment of
structural related pathways such as matrix remodelling and metastasis (NES = 1.7 , padj
<0.0005) and cell adhesion and motility (NES = 1.6, padj <0.0005) (supplementary figure
8.3.c). Additionally, upregulation of a range of cell signalling pathways such as PDGF
(NES = 2.1, padj <0.001) and MET (NES = 2.0, padj <0.001) signalling was observed.
Conversely, immune segments maintained a marked enrichment of innate and adaptive
immune pathways similar to the epithelial comparison (supplementary figure 8.3.c)
Interestingly, dendritic cells (NES = 2.2, padj <0.001) and natural killer cell activity (NES =
2.1, padj <0.001) were the highest upregulated immune cell related geneset in immune

segments (supplementary figure 8.3.c).
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Supplementary figure 8.3.a Spatial Transcriptomic alterations between naive segments, a).

Geneset enrichment bar chart comparing PanCk and immune segments. Pathways with

normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value < 0.05 were

considered significant. Important pathways are indicated by an arrow.
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Supplementary figure 8.3.b Spatial Transcriptomic alterations between naive segments. b).

Geneset enrichment bar chart comparing PanCk and aSMA segments. Pathways with normalized

enrichment score above and below 1.5, and p adjusted (Adj. P) value < 0.05 were considered

significant. Important pathways are indicated by an arrow.
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Supplementary figure 8.3.c Spatial Transcriptomic alterations between naive segments. c).
Geneset enrichment bar chart comparing aSMA and immune segments. Pathways with normalized
enrichment score above and below 1.5, and p adjusted (Adj. P) value < 0.05 were considered

significant. Important pathways are indicated by an arrow.
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Unexpectedly, almost no immune cell pathways appeared in the long-term survival naive

groups in either fibroblast rich or immune segment GSEA (supplementary figure 8.4.a-b).
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above and below 1.5, and p adjusted (Adj. P) value < 0.05 were considered significant.
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8.4.1.2 Neoadjuvant PDAC inter-tumoral heterogeneity

Upregulation of T cells (NES = 2.5, padj <0.001), B cells (NES = 2.5, padj <0.001),
dendritic cells (NES = 2.3, padj <0.001), and NK activity (NES = 2.3, padj <0.001) among
others were observed in immune segments (supplementary figure 8.5.a). In contrast,
dysregulated immune pathways such as B cell exhaustion (NES = 2.2, padj <0.001)and T
cell exhaustion (NES = 2.0, padj <0.001) were also observed (supplementary figure
8.5.a). Epithelial regions were primarily upregulated with cell signalling pathways and a
few immune pathways. Interestingly, neutrophil degranulation (NES = 2.3, padj <0.001)
and lymphocyte trafficking (NES = 1.7, padj =0.008) pathways were upregulated
(supplementary figure 8.5.a). Additionally, when comparing stromal and epithelial regions,
aSMA regions presented with enriched immune related pathways including T cells (NES =
2.2, padj <0.001), dendritic cells (NES = 2.3, padj <0.001), B cells (NES = 2.0, pad;
<0.001), Treg differentiation (NES = 1.5, padj =0.05) among others (supplementary figure
8.5.b).

Although limited aberrations were observed at an individual gene level between aSMA
and immune regions, distinct variations were observed when looking at pathway analysis.
Fibroblast signatures demonstrated elevated MET (NES = 2.4, padj <0.001), PDGF (NES
= 2.2, padj <0.001), TGF-b (NES = 2.1, padj <0.001) signalling, as well as lymphocyte
trafficking (NES = 1.5, padj =0.04) (supplementary figure 8.5.c).
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Supplementary figure 8.5.a Spatial Transcriptomic alterations between neoadjuvant

segments. a). Geneset enrichment bar chart comparing PanCk and immune segments. Pathways

with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value < 0.05 were

considered significant. Important pathways are indicated by an arrow.



334

b Rlbosome
Neutrophil degram?fa?lan
Gl can Sansmﬂ
Mitochondrial MT&
naling
Estrogen Sign?linli

nalini
Androgen Slgna in
Prot St

if gren Iatio
gocytosm
Cell Cycle

retion S s em
Glycolysis & Glucose

e}wnse
rane Tral tp lng
AMPK Sign |¥g

Wit Sl alln

Cell Adhlg

t
nalini
Translal |on ac or

Protease,
Lymphocyte 'Hraﬁ'b'kln
Transporters

VEGJ Signali ng
Immortﬂpy% {l:;}al

°“‘°frh"*%"9ﬁ‘nﬂamqagi i

Interferon RE%) § Adj P
i 8 1.00
MHC C|ass|Ant|g|\e£%P§ese%tat n H 0.75
0.50
Retinoic Acid Signaling
Epigenetic Modi | 025

MHC Class Il An"?r?n re§ent jon
el Interferon Signalin
pe  ntefien Sinel 3

alin

Prustaglandlrvfff%mmap jon

naling

Tryptophan & K(-ynurenlns %taggﬁmrﬁ
romatln-Assocmtgd

Glutal Ine et

rype N g&vaAz-soc i

Whole Transcriptome Atlas geneset

ranscri I—_—uu
RN ok Sgpal —
—_————

ell Exhaustion
aSMA

Cytokines an%Growtll ﬁdgrﬁs
—_—
i
[
e — —
——
e m——
f———————1]
==X
— S
__

e
Ly
Typeq_lnterfer nogpztn

S
TH2 Di ti Ipn

Tél r ntl e
eg ere | [s]

ignal
Purlnefglc Sl n

Chemokl | n I

Matrix Remodellnagcgje}igu

T-c 11 Chec
omp ement

Phagoc Oesllg
E— €0 R&!,F%jtlleg
|
PDGF slgng
itic

PanCk

Lymphucytee egulatlgn

’ Norrznalisegi Enrlchmen1t Score
Supplementary figure 8.5.b Spatial Transcriptomic alterations between neoadjuvant
segments. b). Geneset enrichment bar chart comparing PanCk and aSMA segments. Pathways
with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value < 0.05 were
considered significant. Important pathways are indicated by an arrow.



335

Matrix Remodeling ﬁgflgtast Sis
c P |

eeon

TGF-bsta®l Slgniﬂq

Cell Adhesmn &M

aperones

Mitochondrial M etagglslr?lr}al'lgﬂ
ey

Glycolysis Gflﬁluc§?¢
e

Cytokines and Gr
n oc 05|s

gignaling
Retinoic Amg Slgnalln
MA
BT
n n
Glutan[l?ne etal
MHC Class | Antigen rese!?'lrtl

UblqultW}A%slg:tilaiﬁng Adj. P

TH9 lef rentl tlon

1.00
ugz i -

Transcrlptlon Igag! 0-75
nzym 0.50

IL=1 S
Interferon RLLSENI?ngig (-zn:lssl 025

Type Il Interferon 5|§nal in

Other Interleuklncgegnc |n
RNA

Sacraﬂu yﬁlnl%
Chromatin-Associated
n?e
weiing
T Cell Exhaustion
NE-kB Signalin
JAK-STAT Si
NK Exhaustion

Myeloﬁ\inﬁam %ioﬂ

Es rogenélgnal |ng

Whole Transcriptome Atlas geneset

Immune

endr|
Lymphocyte egulax
Neutrophll deg[anul
S0S nme

ells

MHC Clags Il Anti P t
Hk fdans Eogredes
(1) ecug

B Cell Em t| n

Type Il Interferon Slgnaling

Jri

-2 -1
Normalised Enrichment Score

(=4
==
N

Supplementary figure 8.5.c Spatial Transcriptomic alterations between neoadjuvant
segments. ¢). Geneset enrichment bar chart comparing aSMA and immune segments. Pathways
with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value < 0.05 were
considered significant.
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8.4.1.3 Histopathological region heterogeneity in neoadjuvant pancreatic cancer
Pathway analysis illustrated that virtually all signalling pathways measured were

significantly downregulated when comparing presumed tumour bed (PTB) to tumour core
(supplementary figure 8.6).
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Supplementary figure 8.6 Spatial Transcriptomic alterations between tumour core and

presumed tumour bed. Geneset enrichment bar chart comparing overall tumour core and
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presumed tumour bed (PTB). Pathways with normalized enrichment score above and below 1.5,

and p adjusted (Adj. P) value < 0.05 were considered significant.
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8.4.2 Regression pattern in neoadjuvant pancreatic cancer
demonstrates limited spatial transcriptomic differences

Neoadjuvant patients are categorised according to the regression pattern of the
epithelium. The signatures associated with these groups were explored to determine if
these response patterns were reflected in the transcriptome. Comparisons were made
between samples grouped into good and poor regression. Upregulation of immune related
pathways was mirrored in both aSMA and immune segments. Increased TCR signalling
(NES = 2.5, padj < 0.001), BCR signalling (NES = 2.3, padj < 0.001), NK activity (NES =
2.0, padj < 0.001), T cell (NES = 1.5, padj = 0.014) and B cell (NES = 1.6, padj = 0.029)
couple with B cell exhaustion (NES = 1.7, padj = 0.044) were seen in fibroblast segments
of poor regression patients (supplementary figure 8.7.a). Furthermore, a large number of
signalling pathways were elevated in the poor regression segments, in comparison, good
response segments were void of any pathways apart from NO signalling (NES = 2.0, pad;j
< 0.001) and complement system (NES = 2.0, padj < 0.001) (supplementary figure 8.7.a).
Immune regions of poor regression patients also presented with elevated T cells (NES =
1.8, padj =0.003), TCR signalling (NES = 1.8, padj < 0.001), interferon response genes
(NES = 1.6, padj = 0.031) and NK activity (NES = 1.5, padj =0.028) (supplementary figure
8.7.b). Regardless of the number of aberrated immune pathways, only one immune
population was significant when spatial deconvolution was performed. Elevated levels of
memory dendritic cells were demonstrated in poor regression patients (p=0.002)
(supplementary figure 8.7.c). Although these findings have provided some insight into the

differing treatment responses, protein analysis maybe more suited to characterize them.
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0.05 were considered significant. Important pathways are indicated by an arrow.
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status b). Geneset enrichment bar chart comparing good and bad regression in immune
segments. Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj.

P) value < 0.05 were considered significant. Important pathways are indicated by an arrow.
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Supplementary figure 8.7.c Spatial Transcriptomic alterations in neoadjuvant regression

status, c). Boxplots demonstrate estimated memory dendritic cell expression per 100 cells in

across neoadjuvant regression groups. Wilcoxon test used.

8.4.3 B7-H3 signature in neoadjuvant pancreatic cancer

Numerous pathways were displayed across epithelial (supplementary figure 8.8.a) and

aSMA (supplementary figure 8.8.b) compartments of ranked B7-H3 neoadjuvant patients.
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P) value < 0.05 were considered significant.
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8.4.4 Long term survival in naive and neoadjuvant PDAC
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Supplementary figure 8.9.a-b Spatial Transcriptomic gene alterations between naive and
neoadjuvant LTS segments. Volcano plot demonstrating gene marker differential expression
levels in naive vs neoadjuvant long term survival (LTS) in a). epithelial segments, b). aSMA+
segments. Genes with log2 fold change above and below 1.5, and p adjusted value <0.05 were
considered significant. Dashed line indicates significance thresholds, NS = non-significant, FC =

fold change.
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8.4.5 Neoadjuvant whole section vs TMA overlapping differential

genes

ROI Comparison Analysis method  Whole section TMA Matched
aSMA Naive vs Neoadjuvant DEA AMY1A AMY1A TRUE
aSMA Naive vs Neoadjuvant DEA CEL CEL TRUE
aSMA Naive vs Neoadjuvant DEA CELA2A CELA2A TRUE
aSMA Naive vs Neoadjuvant DEA CELA2B CELA2B TRUE
aSMA Naive vs Neoadjuvant DEA CELA3A CELA3A TRUE
aSMA Naive vs Neoadjuvant DEA CELA3B CELA3B TRUE
aSMA Naive vs Neoadjuvant DEA CPA1 CPA1 TRUE
aSMA Naive vs Neoadjuvant DEA CTRC CTRC TRUE
aSMA Naive vs Neoadjuvant DEA CXCL14 CXCL14 TRUE
aSMA Naive vs Neoadjuvant DEA GP2 GP2 TRUE
aSMA Naive vs Neoadjuvant DEA PLA2G1B PLA2G1B TRUE
aSMA Naive vs Neoadjuvant DEA REG1B REG1B TRUE
aSMA Naive vs Neoadjuvant DEA APCS ARHGDIB FALSE
aSMA Naive vs Neoadjuvant DEA BLCAP ARHGEF1 FALSE
aSMA Naive vs Neoadjuvant DEA CCN1 c7 FALSE
aSMA Naive vs Neoadjuvant DEA CCN2 CCL19 FALSE
aSMA Naive vs Neoadjuvant DEA COL11A1 CcCL21 FALSE
aSMA Naive vs Neoadjuvant DEA CPLS CPA2 FALSE
aSMA Naive vs Neoadjuvant DEA CRLF1 CTRB1 FALSE
aSMA Naive vs Neoadjuvant DEA CTRL CYTIP FALSE
aSMA Naive vs Neoadjuvant DEA EEF1AKMT2 FDCSP FALSE
aSMA Naive vs Neoadjuvant DEA FGA FKBPS FALSE
aSMA Naive vs Neoadjuvant DEA FNDC1 HCFC2 FALSE
aSMA Naive vs Neoadjuvant DEA IGFBP5 HLA-DPA1 FALSE
aSMA Naive vs Neoadjuvant DEA PGC HLA-DPB1 FALSE
aSMA Naive vs Neoadjuvant DEA PLA2G2A IGHAL FALSE
aSMA Naive vs Neoadjuvant DEA PNLIP IL7R FALSE
aSMA Naive vs Neoadjuvant DEA PNLIPRP2 JCHAIN FALSE
aSMA Naive vs Neoadjuvant DEA PPY PPP2R2B FALSE
aSMA Naive vs Neoadjuvant DEA PRSS3 REG1A FALSE
aSMA Naive vs Neoadjuvant DEA PSCA REG3A FALSE
aSMA Naive vs Neoadjuvant DEA SYNC REG3G FALSE
aSMA Naive vs Neoadjuvant DEA SMAP2 FALSE
aSMA Naive vs Neoadjuvant DEA SPINK1 FALSE
aSMA Naive vs Neoadjuvant DEA SST FALSE
aSMA Naive vs Neoadjuvant DEA STK17B FALSE
aSMA Naive vs Neoadjuvant DEA SYCN FALSE
aSMA Naive vs Neoadjuvant DEA TAAR9 FALSE
aSMA Naive vs Neoadjuvant DEA TRBC1 FALSE
aSMA Naive vs Neoadjuvant DEA TSC22D3 FALSE
Immune Naive vs Neoadjuvant DEA AMY1A AMY1A TRUE
Immune Naive vs Neoadjuvant DEA CEL CEL TRUE
Immune Naive vs Neoadjuvant DEA CELA2A CELA2A TRUE
Immune Naive vs Neoadjuvant DEA CELA2B CELA2B TRUE
Immune Naive vs Neoadjuvant DEA CELA3B CELA3B TRUE
Immune Naive vs Neoadjuvant DEA CPA1 CPA1 TRUE
Immune Naive vs Neoadjuvant DEA GP2 GP2 TRUE
Immune Naive vs Neoadjuvant DEA PLA2G1B PLA2G1B TRUE
Immune Naive vs Neoadjuvant DEA ANTXR1 ARHGDIB FALSE
Immune Naive vs Neoadjuvant DEA BGN CD79A FALSE
Immune Naive vs Neoadjuvant DEA CALD1 CELA3A FALSE
Immune Naive vs Neoadjuvant DEA CAV1 CORO1A FALSE
Immune Naive vs Neoadjuvant DEA CD9 CPA2 FALSE
Immune Naive vs Neoadjuvant DEA CEACAN7 CTRB1 FALSE
Immune Naive vs Neoadjuvant DEA CLPS CTRC FALSE
Immune Naive vs Neoadjuvant DEA CRIPS3 CXCL13 FALSE
Immune Naive vs Neoadjuvant DEA CST1 CXCR4 FALSE
Immune Naive vs Neoadjuvant DEA CTRL CYTIP FALSE
Immune Naive vs Neoadjuvant DEA FBX032 FCMR FALSE
Immune Naive vs Neoadjuvant DEA FGA FDCSP FALSE
Immune Naive vs Neoadjuvant DEA GCG FKBPS FALSE
Immune Naive vs Neoadjuvant DEA GREM1 H1-3 FALSE
Immune Naive vs Neoadjuvant DEA HTRA3 IL7R FALSE
Immune Naive vs Neoadjuvant DEA IGFBP3 IRF8 FALSE
Immune Naive vs Neoadjuvant DEA KLK1 MS4A1 FALSE
Immune Naive vs Neoadjuvant DEA KRT5 P2RX5 FALSE
Immune Naive vs Neoadjuvant DEA LAMA4 PNLIPRP1 FALSE
Immune Naive vs Neoadjuvant DEA MMP11 PRSS3 FALSE
Immune Naive vs Neoadjuvant DEA MMP14 PTPRC FALSE
Immune Naive vs Neoadjuvant DEA MYLO REG1A FALSE
Immune Naive vs Neoadjuvant DEA PLA2G2A REG1B FALSE
Immune Naive vs Neoadjuvant DEA PLAT REG3A FALSE
Immune Naive vs Neoadjuvant DEA PNLIP REG3G FALSE
Immune Naive vs Neoadjuvant DEA PNLIPRP2 RPS27 FALSE
Immune Naive vs Neoadjuvant DEA PPY RPS27A FALSE
Immune Naive vs Neoadjuvant DEA PSCA SMAP2 FALSE
Immune Naive vs Neoadjuvant DEA SIGLEC12 SPINK1 FALSE
Immune Naive vs Neoadjuvant DEA SYNC STK178B FALSE
Immune Naive vs Neoadjuvant DEA TGFB1 SYCN FALSE
Immune Naive vs Neoadjuvant DEA TTR TSC22D3 FALSE

Supplementary table 8.4 Differential genes expressed in neoadjuvant TMA and whole

sections. Summary table showing all significant differentially expressed genes in aSMA and

immune segments of neoadjuvant TMAs and whole sections. Column matched indicates whether

the gene is seen in both tissue types.
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8.5.1 Spatial Transcriptomic landscape of density phenotypes in

naive and neoadjuvant pancreatic cancer
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Supplementary figure 8.10 Geneset enrichment of naive PDAC based on CD3 ranked aSMA

segments. Geneset enrichment bar chart comparing CD3low and CD3high in aSMA+ segments.
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Pathways with normalized enrichment score above and below 1.5, and p adjusted (Adj. P) value <

0.05 were considered significant.
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segments. Geneset enrichment bar chart comparing CD68low and CD68high in aSMA+
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segments. Pathways with normalized enrichment score above and below 1.5, and p adjusted (Ad.

P) value < 0.05 were considered significant.
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Supplementary figure 8.12.a-b Spatial Transcriptomic alterations CD3CD8 ranked
neoadjuvant PDAC. Volcano plot comparing CD3CD8low and CD3CD8high ranks in a). PanCk+
segments, b). aSMA+ segments. Genes with log2 fold change above and below 1.5, and p
adjusted value <0.05 were considered significant. Dashed line indicates significance thresholds,

NS = non-significant, FC = fold change.
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Supplementary figure 8.12.c Spatial Transcriptomic alterations CD3CD8 ranked neoadjuvant
PDAC. Volcano plot comparing CD3CD8low and CD3CD8high ranks in c). immune segments.
Genes with log2 fold change above and below 1.5, and p adjusted value <0.05 were considered

significant. Dashed line indicates significance thresholds, NS = non-significant, FC = fold change.
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8.5.2 Spatial Transcriptomic landscape of nearest neighbour
phenotypes in naive and neoadjuvant pancreatic cancer

20 | I
| |
| |
15 GRIN2A | |
= FCGBP : l Key
() i i @ NS
Q‘g 10 ! ! @ Logz FC
oo | ! @ P value
3 FSTL5 E i @ P value and Logz FC
1 1 |
5 ! | IGFBP3
CXCL5 i | PLAT
e
ol | CD68to CD3 low CD68 to CD3 high
-4 -2 0 2 4

Log2fold change

Supplementary figure 8.13 Spatial Transcriptomic alterations in ranked distances from CD68
to CD3 in naive PDAC. Volcano plot comparing from CD68 to CD3 low and from CD68 to CD3
high ranks in PanCk+ segments.. Genes with log2 fold change above and below 1.5, and p
adjusted value <0.05 were considered significant. Dashed line indicates significance thresholds,

NS = non-significant, FC = fold change.
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Supplementary figure 8.14.a-b Spatial Transcriptomic alterations in ranked distances from
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above and below 1.5, and p adjusted value <0.05 were considered significant. Dashed line

indicates significance thresholds, NS = non-significant, FC = fold change.
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8.5.3 Cluster density in chemoradiotherapy treated pancreatic
cancer

Neoadjuvant chemoradiotherapy: B7-H3 clusters

1004

Cluster Density

Cluster 8 Cluster 13 Cluster 14 Cluster 17

Supplementary figure 8.15 Density of Seurat clusters associated B7-H3 clusters in
chemoradiotherapy treated PDAC. Boxplots shows density per grouped Seurat B7-H3 cluster in

chemoradiotherapy treated neoadjuvant patients.
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