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Abstract

In this thesis, novel spatial statistical methods for unreplicated bivariate heavy metal soil
contamination and replicated PM2.5 air pollution are developed by combining existing sta-
tistical approaches with extreme value theory. An introduction to the motivation behind
this research is given in Chapter 1 while the necessary statistical and applied background
for this research is given in Chapters 2 and 3, respectively.

In Chapter 4, the extremal dependence between threshold exceedances of heavy metal
contaminants in the Glasgow Conurbation is investigated using two extreme value models
with different extremal dependence structures that ignore the spatial dimension of the
contaminants. The results show that for most contaminant pairs, moderately low quantile
thresholds (u < 0.95) exhibit constant dependence, which can be modelled using a rigid
dependence model, while exceedances of extreme quantile thresholds (u > 0.95) almost
always display decaying dependence, requiring the flexible dependence of subasymptotic
models. More specifically, the results show that chromium has a different migration be-
haviour than other elements, resulting in strongly decaying extremal dependence. Further
evidence of this difference in behaviour is provided in the literature, as chromium is less
likely to migrate regardless of conditions and persists in the soil longer than other heavy
metals. In Chapter 5, a spatial model for the application is developed, which uses a bivari-
ate mixture model approach to model the body and tail of the heavy metal distributions.
Our approach is tailored to the case of unreplicated observations, which is non-standard
in the extreme value theory literature. The body of the contaminant distributions was
modelled using a Gaussian distribution, while the tails were modelled using a Gaussian-
generalised Pareto composition. The body-tail components of both contaminants were
modelled jointly under a coregionalisation framework, allowing the tail components to
share a scaled spatial random effect, effectively accounting for the dependence in the tails.
The model showed that the probability of exceeding a safety threshold was high in the
south banks of the river Clyde in urban Glasgow and some villages to the east - all areas
of historical industrial activity and mining legacies.

In Chapter 6, we present an approach for data fusion of PM2.5 air pollution extremes
in the Greater London region. Data fusion models are generally motivated by the need
to integrate information from different data sources to obtain a better description of the
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underlying phenomenon. In this case, we fuse remote-sensing data (modelled data), which
enjoy complete spatial and temporal records, and in-situ measurements from observation
stations. The model proposed is a tailored approach for threshold exceedances, represent-
ing extreme concentrations of PM2.5, which enhances observations of the remote-sensing
data (EAC4 dataset) to better represent threshold exceedances observed using data from
the observation stations of the AURN - a high-quality air quality monitoring network in the
UK. Results from the model show that the extremes data fusion model improves threshold
exceedances reported by the EAC4 model, in the sense that it better approximates in-situ
measurements. The extremes data fusion model also outperforms a competitive data fu-
sion approach based on the Gaussian distribution. A map of fused observations shows
different spatial patterns than the modelled observations, assigning higher concentrations
to locations on the coast - a claim which is further corroborated by air pollution literature.

Finally, Chapter 7 presents my contribution to the challenges C2 and C4 of the EVA
2023 Data Challenge, a competition organised for the EVA 2023 conference in Milan, Italy.
In C2, organisers ask for an extrapolated value that minimises an arbitrary loss function.
To address the question, we propose a novel approach to extrapolate high quantiles under
an application-specific loss function using an extreme-weighted bootstrap. C4 asks to
estimate the probability of joint exceedance in a high-dimensional setting, for which we
propose using a probabilistic principal component analysis model (PPCA). The methods
were found to have mixed success, and we discuss the limitations and potential presented
by these models.
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Chapter 1

Introduction

Statistical models have proven to be an invaluable tool in a world that is increasingly
eager to promote data-driven decision-making. While applications in modern society have
benefited from the development of these statistical tools, we consider that few present a
more pressing issue than environmental pollution. Evidence of this crisis brought on by
environmental pollution is present in every aspect of life on earth, from climate change
and the extinction events of modern times (Kaiho, 2023) to the smallest microorganisms
affected via various exposure pathways. Even we, humans, who are responsible for this
crisis, are also victims of it. In 2015, an estimated 9 million people suffered premature
deaths due to environmental pollution, making it the most significant environmental risk
factor for disease and premature death (Fuller et al., 2022).

The efforts to counter the adverse effects of environmental pollution are called pollu-
tion control measures. These measures aim to prevent the occurrence of pollution and
remediate existing pollution by identifying sources, promoting government regulation to
reduce pollution and promote accountability, using technology to reduce emissions, reme-
diating damage, and reducing population exposure (Boccaccio, 2023). Statistical models
are the bridge that turns data into useful information, enabling data-driven decisions for
effective planning, data collection, analysis, modelling and interpretation. In this thesis,
we develop novel spatial statistical methods to address specific problems encountered in
two environmental pollution applications - soil contamination and air pollution - repre-
senting our contribution to the statistical literature and pollution control efforts. The
remainder of this introductory chapter is as follows. The motivation and background for
these projects are given in Section 1.1. Specific aims and objectives of the research are
given in Section 1.3. Finally, Section 1.4 provides the structure for the remainder of the
thesis.

1
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1.1 Statistical Research in Environmental Pollution

In recent decades, developed countries have begun promoting and enforcing policies to
mitigate the effects of environmental pollution through management and remediation. Ef-
fectively wielding policy as an agent of change, however, is conditioned on having access to
reliable information on the extent of the pollution at useful scales in space and time. While
this requirement is seemingly simple, environmental data are notoriously complex, with
each application presenting a unique set of challenges. The research in this thesis addresses
the challenges of two specific environmental pollution applications: spatial modelling of
unreplicated bivariate heavy metal soil contaminants and spatiotemporal data fusion for
extreme concentrations of particle matter (<2.5 µm, PM2.5) air pollution.

1.1.1 Heavy Metal Soil Contamination

Modelling heavy metal soil contamination typically refers to the interpolation of contam-
inant concentrations in space. The statistical models used for this purpose commonly
follow classical approaches. The Gaussian framework is arguably the most important,
underpinning a vast section of the spatial and geostatistical literature. A useful tool in
the Gaussian toolbox are Gaussian processes, which naturally arise in spatial settings
where any number of finite observations can be described using a multivariate Gaussian
distribution. These models are widely used in soil sciences (see Webster and Oliver 2007),
including geochemical mapping (Tóth et al., 2016). However, soil contamination refers
to the values above the baseline - the high and extremely high values that constitute the
tail of the distribution. These extreme values at the tail are often ill-posed for modelling
under Gaussian frameworks, which assume a lighter tail and result in underestimated ex-
treme values. Furthermore, sources of heavy metal contamination often produce more
than one contaminant, eliciting multivariate approaches. When modelling more than one
contaminant, the problem of unsuitable modelling of the tails under Gaussian frameworks
is further exacerbated. While most geostatistical models can account for the dependence
between contaminants, the dependence between extreme values, that is, high concentra-
tions of the contaminants, differs from the dependence in the rest of the distribution (Coles
et al., 1999). As a result, Gaussian models can underestimate both extreme values and
the dependence between contaminants in the tail.

We propose to model the tail of the distribution of heavy metal contaminants using
an extreme value approach while maintaining a Gaussian model for the body. The use of
extreme value theory in this application is novel, as extreme value models require repli-
cate observations at each location because of its asymptotic nature, which are generally
unavailable in soil surveys. We present a workaround to this limitation, resulting in a
body-tail approach to model the heavy-tailed metal contaminant distributions and cap-
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ture extreme values. Moreover, we extend this framework to the bivariate setting, where
two contaminants are modelled simultaneously in a manner that accounts for the extremal
dependence between them. The first practical output of the model is the interpolation of
marginal contaminant concentrations in space. The second one is a measure of risk by
providing the probability of both contaminants jointly exceeding regulatory safety thresh-
olds at any given location. These maps can be used in risk assessment for improved
identification of sources of this joint pollution and inform pollution control measures. The
research was undertaken in collaboration with Dr. Ben Marchant at the British Geological
Survey (BGS), who kindly provided the data for the application. Chapter 5 develops the
bivariate mixture model, while an in-depth investigation of extremal dependence between
contaminants is given in Chapter 4.

1.1.2 PM2.5 Air Pollution

The second research project in this thesis consists of the development of a data fusion
model to improve the prediction of extreme observations of PM2.5 using remote-sensing
data and in-situ measurements from observation stations. Extreme events of particle mat-
ter pollution pose a global and significant risk to public health. Zhang et al. (2021) show
that longer periods of heavy PM2.5 pollution events increase cardiovascular mortality and
morbidity. Policy to mitigate the effect of air pollution has largely focused on reducing
emissions and public exposure. Monitoring networks, consisting of observation stations
sparsely distributed in space due to costs, can be set up to obtain accurate measurements
of pollution at specific locations, help quantify potential risk, and assess the effectiveness
of pollution control measures. For locations where data from an observation station is
available, these in-situ measurements of PM2.5 are considered the best representation of
the process at that location. However, due to the sparse spatial coverage of these stations,
access to in-situ measurements is limited. Data from other sources, such as remote-sensing
and modelled data, are generally available at regular intervals in space and time, providing
information for locations where no observation station is found. However, these alterna-
tive data sources are known to be smoother than in-situ measurements and result in an
underestimation of extreme values, as shown in Pendergrass et al. (2021). Inaccurate
representation of the extreme values can negatively affect the accuracy of risk assessment
and exposure quantification (Becker et al., 2021). Data fusion models have been widely
used to bridge this gap (Carnevale et al., 2020) by correcting the bias in remote-sensing
observations to better approximate in-situ measurements at locations with no observation
station while preserving the remote-sensed data’s spatial and temporal coverage.

Statistical data fusion models exist for this purpose (Berrocal et al., 2010; Wilkie
et al., 2019), but are primarily based on Gaussian assumptions. Alternative models using
extreme value theory also exist (Friederichs and Thorarinsdottir, 2012; Amaral Turkman
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et al., 2021), but they are centred on matching the distributional properties between
remote-sensing data and in-situ measurements. While this is a valuable approach when
modelling marginal distributions, it does not result in a time series that mirrors in-situ
measurements (Engelke et al., 2019). The research in Chapter 6 consists of developing
a data fusion model that targets extreme values. The model fuses remote-sensing data
and in-situ observations to produce a complete spatial and temporal coverage dataset
that better approximates in-situ measurements. This enhanced dataset can provide more
accurate data for risk assessment and exposure modelling.

1.2 EVA Data Challenge

The EVA data challenge was organised as part of the Extreme Value Analysis (EVA) 2023
conference in Milan, Italy. The challenge consisted of 4 sub-challenges, which represented
common problems in the application of extreme value analysis to real-world problems.
No methodological novelty was required, rather, teams were encouraged to use existing
methodology in novel and creative ways. Students at the University of Glasgow banded
together as "The Wee Extremes Team" to submit an entry. The part of the challenge for
which the author of this thesis is responsible is covered in Chapter 7.

1.3 Aims and Objectives

The aim of this thesis is to provide novel statistical approaches that build on existing
spatial models and extreme value theory to better inform pollution risks at local scales.
Given that the applications in this thesis are distinct, we consider project-specific aims.
The first two objectives were set for the case of heavy metal soil contamination, while the
third is specific to the data fusion for extremes project.

• Unreplicated spatial data. Develop a model for the body and tail of contaminant
distributions by using a Gaussian distribution for the body and adapting an extreme
value distribution for the unreplicated setting (the case where a single temporal
replicate is available at each sampled location) for the tail.

• Bivariate extremal dependence. Model bivariate unreplicated spatial contam-
inants by accounting for the extremal dependence between components. A core-
gionalised framework using a mixture model is explored where the construction of
components is specified to account for dependence at extreme concentrations.

• Spatiotemporal data fusion. To perform the fusion of two data sources for the
improved assessment of extreme values of PM2.5 at a local scale. Extend existing
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data fusion models for this purpose through the inclusion of a modified generalised
Pareto likelihood that accounts for the occurrence of non-extreme observations.

1.4 Structure of the Thesis

The remainder of this thesis is made of six chapters. Chapter 2 presents the statistical
background necessary to understand the research in this thesis. It provides a summary
of the spatial and data fusion models commonly used in the applications presented here.
The foundations of extreme value theory are provided in this chapter, including spatial
extremes and bivariate dependence. Finally, the necessary methodology for Bayesian
inference is also covered. Chapter 3 gives the context of both applications. It includes
the sources of contamination and pollution, as well as its impacts on society and public
health. The chapter also provides descriptions of the data and an exploratory analysis of
each dataset used. Chapters 4 and 5 cover the heavy metal soil contamination application.
Chapter 4 investigates the extremal dependence of heavy metal contaminants in the soil
by comparing two models with different extremal dependence structures. Chapter 5 covers
the development of the bivariate mixture model that incorporates Gaussian and extreme
value distributions for accurate modelling of the body and tail of each contaminant in
space while accounting for the extremal dependence between them. The application for
data fusion for extremes is presented in Chapter 6. The chapter includes a comparison of
data sources and a detailed description of the inference methodology. Chapter 7 differs
from the rest of this thesis as it describes the work undertaken for the Extreme Value
Analysis Conference (EVA) in 2023. Final remarks on the methodologies and potential
future developments of the work in this thesis are given in Chapter 8.
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Chapter 2

Statistical Background

2.1 Geostatistical Models and Framework

Geostatistics is the statistical field that aims to quantify phenomena distributed in space
or space and time by exploiting information from observations at close distances. It is
commonly associated with environmental applications such as hydrology, geology, mineral
exploration, agriculture, forestry, and ecology, among others (Chilès and Delfiner, 2012),
where the phenomena are often too complex to be described by simplistic mathematical
functions. Furthermore, the cost and difficulties associated with data collection are often
restrictive and result in sparse spatial coverage, which introduces uncertainty into the
modelling process. Accurately quantifying this uncertainty is a central aim of geostatistics.

Data in the spatial and spatiotemporal dimensions can be collected in various for-
mats, but they usually come in the form of spatial point processes, areal data, and
point-referenced or geostatistical data (Davison and Gholamrezaee, 2012). The models
for analysing such data are chosen based on the use case. However, common modelling
aims include structural analysis, survey optimisation, interpolation, quantification of poly-
nomial drift, integration of multiparameter information, data fusion, spatiotemporal mod-
elling, indicator estimation and classification, selection and change-of-support problems,
and spatial point patterns, among others (Chilès and Delfiner, 2012). This section pro-
vides an overview of geostatistical methodology for spatial and spatiotemporal interpo-
lation. Section 2.1.1 gives an overview of spatial processes and their characteristics as
the underpinning of geostatistical methodology. Section 2.1.2 describes univariate geosta-
tistical methodology, mainly Kriging and its variants. Finally, Section 2.1.3 summarises
methodological extensions of geostatistical methodology for the multivariate setting.

7
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2.1.1 Spatial Processes

In order to describe a geostatistical phenomenon in space, it is first necessary to find an
appropriate mathematical definition that is spatially continuous, defining the behaviour of
the phenomenon at every location in space. Stochastic processes are a natural fit for this
requirement. Defined as a random function (RF), they can be continuous in space and
have flexible constructions, allowing for different spatial dependence structures. The most
common of these processes are Gaussian Processes (GPs), which underpin a vast portion
of geostatistical theory.

The mathematical definition of RFs is straightforward and flexible. Given a domain
S ⊂ Rd and a probability space (Ω,A, P ), a RF is a function of two variables Z(s, ω)

such that for each location s ∈ S, Z(s, ·) is a random variable on (Ω,A, P ). Each function
Z(·, ω) defined on S is a realisation of the process Z(s) with an observation defined as z(s)
(Chilès and Delfiner, 2012, Ch. 1). The extension of a random function to s to the spatial
dimension, d = 2, is called a random field. A GP arises as a special case where n samples
of the random field are multivariate Gaussian, a GP (or Gaussian random field) can be
defined using an n-dimensional mean vector, µ, and a n × n positive-definite covariance
matrix, Σ.

The behaviour of the process throughout S ⊂ R2 can be modelled based on under-
lying assumptions. In this section, we only consider two: stationary and intrinsically
random, where stationary processes can be further subdivided into strictly stationary and
second-order stationary. Strict stationarity is a strong assumption of simplicity. A strictly
stationary process is invariant under translation for any vector h so that

Pr(Z(s1) < z1, · · · , Z(sn) < zn) = Pr(Z(s1 + h) < z1, · · · , Z(sn + h) < zn),

where h is a measure of distance known as the lag and si are locations in S for i =

1, ..., n (Webster and Oliver, 2007, Ch. 4). Second-order stationarity, or weak stationarity,
describes a process characterised by its covariance matrix Σ. The entries of the matrix,
which represent the covariance between observations, are obtained using a covariance
function

C(h) = E[Z(s)− µ][Z(s+ h)− µ],

where µ = E[Z(s)] is the mean, and the covariance function C(·) is a function of the lag
between observations. The covariance between Z(s) and Z(s+h) can also be linked to the
correlation between the two observations through the correlogram defined as ρ(h) = C(h)

C(0)
,

where C(0) = σ2 is the covariance at lag 0. Unless stated otherwise, the work in this
dissertation will use stationarity to refer only to second-order stationary.

An intrinsically random function (IRF) is defined as that with second-order stationary
increments (Chilès and Delfiner, 2012, Ch. 1), making stationary random functions a
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subset of IRFs. Just as in the stationary case, it is characterised by the mean, defined as
a function of the distance, h, between observations

µ(h) = E[Z(s+ h)− Z(s)],

and the covariance matrix, with elements also defined as a function of the lag h as

2γ(h) = Var[Z(s+ h)− Z(s)]. (2.1)

The function in (2.1) has been known by various terms. Kolmogorov (1941); Gandin
(1966); Yaglom (1987) referred to it as the structure function, but the more enduring
name was given by Matheron (1963) who defined γ(·) as the semivariogram. Equation
(2.1) shows that the difference between Z(s) and Z(s + h) is a function of the distance
h between them. In practice, using 2γ over the covariance is preferable, as it does not
require the mean µ to be known. Additionally, given that second-order stationary random
functions are a subset of IRFs, the variogram is a generalised characterisation of the
variance structure. The two, however, are linked through γ(h) = C(0)− C(h).

Given that information about the process is restricted to that provided by the ob-
servations, the true variogram is unknown and must be estimated from the sampled ob-
servations. For this reason, data collection schemes must be appropriate for variogram
estimation. Chiles and Delfiner (1999) define the minimum number of samples necessary
as n = 50, with a small number of samples being linked to bias in variogram estima-
tion (Kravchenko, 2003). Furthermore, since the variogram estimation is defined by the
distance between observations, h, the sampling strategy can be used to effectively opti-
mise the variogram estimation by optimising three variables: location, distance between
observations, and directionality. The location of the observations is typically defined by
field experts, who are best placed to assess a representative sampling strategy for the phe-
nomenon under study. The distance between observations must also be optimised, as it
may affect the continuity of the estimated variogram. In theory, the variogram is contin-
uous everywhere in S, including at the origin, as the spatial process is also continuous at
the origin. In practice, this is often not the case, as the true variogram is unknown, and
samples are collected at limited distances, typically omitting distances at a microscale,
preventing the definition of the estimated variogram at the origin. When γ(h) → c0 > 0,
as h → 0, then c0 is known as the nugget effect (Matheron, 1963). Obtaining a good rep-
resentation of distances between observations is important in mitigating the nugget effect
and appropriately capturing the spatial dependence of the data. Finally, if the process
is invariant in the direction of the lag h, the variogram is known as isotropic; if it is not
and the direction affects 2γ(·), it is known as anisotropic. The sampling strategy must
reflect the underlying process and its dimensionality. Webster and Oliver (1992) proposed
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Figure 2.1: Diagram displaying the elements of a semivariogram: the nugget, range, and
sill.

optimisation of sampling locations using the method of moments, and Lark (2002) sug-
gests a maximum likelihood approach, but many other strategies have been proposed in
the literature. For more details, see Lawrence et al. (2020).

Earlier attempts at the estimation of 2γ(·) include Matheron (1963) who proposed the
method of moments, now known as the classical estimator, as a natural estimator of the
variogram such that

2γ̂(h) =
1

|N(h)|
∑
N(h)

(Z(si)− Z(sj))
2, for h ∈ RD,

where N(h) = {(si, sj) : si − sj = h}, is the number of distinct pairs at lag h. Cressie
(1993) remarked that the classical estimator is sensitive to outliers and proposed a robust
variogram estimator to mitigate outlier effects. It is defined as

2γ(h) =

 1

|N(h)|
∑
N(h)

|Z(si)− Z(sj)|1/2
4

/(0.457 + 0.494/|N(h)|).

Other variogram estimators have been proposed for different cases. For more details, see
Lark (2000).

Given the relationship between the covariance and the variogram, a covariance or
variogram function can be fitted to model the empirical variogram. Mathematically, a
valid covariance function needs to represent monotonic increases with lag increase, have
a constant maximum (sill), and have a positive intercept on the ordinate to represent
the discontinuity at the origin (nugget), as shown in the diagram in Figure 2.1. Addi-
tional features of the variogram, such as periodic fluctuation (hole) and anisotropy, can
be accommodated using specialised covariance functions.

One of the simplest variogram models (covariance functions) is the bounded linear
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model

γ(h) =

c
(
h
a

)
for h ≤ a

c for h > a,

where c is the sill, and a is the range - the lag at which the variogram reaches its sill.

Many other parametric models have been proposed for isotropic variograms (see Chilès
and Delfiner 2012, Ch. 1). However, the Matern covariance function is arguably the most
important, and it is defined as

γ(h)Matern = c

{
1− 1

2ν−1Γ(ν)

(
h

r

)ν

Kν

(
h

r

)}
, (2.2)

where c is the sill, r is the range parameter, Kν is the modified Bessel function of the
second kind, and ν is the smoothness parameter. The special cases of the Matern model
are the exponential model when ν = 0.5, the Wittle function when ν = 1, and converges
to the squared exponential function as ν → ∞.

Fitting a model to the variogram is done through model comparison using appropriate
selection criteria. Once the variogram has been estimated, models with approximately
similar shapes can be chosen as candidates. Then, each can be fitted by weighted least
squares - minimisation of the sum of squares - and optimised. The results can be plotted
alongside the sample variogram, and the best model can be chosen visually and by the
smallest residual sum of squares or mean square error (Cressie, 1993; Webster and Oliver,
2007).

2.1.2 Univariate Geostatistical Models: Kriging

Kriging, also known as the best linear unbiased predictor (BLUP), is likely the most
important of the probabilistic spatial interpolation methods. It was proposed by D.G.
Krige, who developed the method for mineral ore prediction in the 1950s (Krige, 1951).
Kriging is often defined as a weighted average, with weights chosen to minimise prediction
variance (Matheron, 1963). Simply put, it is a linear model to predict a spatial process Z
and quantify prediction uncertainty. An underpinning assumption of Kriging is that the
process Z(s) is a realization of a GP at locations s = s1, ..., sn ⊂ S and S ∈ R2. Generally,
the objective of Kriging is to estimate Z at an unsampled location s0, meaning

Z(s0) =

∫
Z(s)p0(ds), (2.3)

where p0 is an integrable measure that corresponds to a Dirac measure p0(ds) = δ(s− s0)

(Chilès and Delfiner, 2012, Ch. 2). The prediction is easily extendable to estimate the
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average over a block B as

Z(s0) =
1

|B|

∫
B

Z(s)ds,

where p0(ds) = (1/|B|)1B(s)ds, and 1B(·) is the indicator function over the block B

centred at s0 and is known as block Kriging. The prediction is accomplished as a weighted
mean of observations, defined as

Ẑ(s0) =
n∑

i=1

λi(s0)Z(si) + λ0(s0),

where s0 is centred at B, λi(s0) is a weight placed on Z(si) and λ0(s0) is a constant that
depends solely on s0.

Simple Kriging (SK)

Simple kriging (Journel and Huijbregts, 1978) is the simplest form of Kriging. It represents
the case where the mean, µ, is fixed and known. When the purpose is to produce a point
estimate at location s0, as in (2.3), only the variance needs to be estimated as a weighted
average where the weights λi are optimised to minimise the mean square error (MSE)
defined as

E(Ẑ(s0)− Z(s0))
2 = Var(Ẑ(s0)− Z(s0)) + [E(Ẑ(s0)− Z(s0))]

2.

This estimation is the same as assuming a zero mean for Z and adding the constant µ,
only leaving the estimation of λi.

The MSE can be expanded as

E(Ẑ(s0)− Z(s0))
2 =

∑
i

∑
jλiλjσij − 2

∑
i

λiσi0 + σ00.

The minimum of the function can then be obtained using the partial derivative with respect
to λi:

∂

∂λi

E(Ẑ(s0)− Z(s0))
2 = 2

∑
j

λjσij − 2σi0 = 0,

where λi are solutions to the linear system of n equations (also known as Yule-Walker
equations)

∑
j λjσij = σi0, also defined in matrix notation as Σλ = σ0, where Σ = [σij]

is an n× n matrix of covariances and σ0 is a vector of covariances with the target at s0.

The final estimate is

E(Ẑ(s0)− Z(s0))
2 = σ00 −

∑
i

λiσi0 = σ2
SK , (2.4)
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where σ2
SK is known as the kriging variance associated with Ẑ and represents the uncer-

tainty at s0.

Ordinary Kriging (OK)

Ordinary Kriging arises when the mean, µ, is unknown but constant µ(s) = a0. The MSE
for the point estimator in (2.3) can be written as

E(Ẑ0 − Z0)
2 = Var(Ẑ0 − Z0) +

[
λ0 +

(∑
i=1

−1

)
a0

]2
.

Under the restriction that
∑

i λi = 1, the variance of the error is

Var(Ẑ(s0)− Z(s0)) =
∑
i

∑
j

λiλjσij − 2σiλiσi0 + σ00,

which depend on covariances and weights λ. It is possible to solve for λi using Lagrange
multipliers with

Q = Var(Ẑ(s0)− Z(s0)) = +2λµ

(∑
i

λi − 1

)
,

where λµ is the Lagrange multiplier. The solution to the system is then

E(Ẑ − Z(s0))
2 = σ00 −

∑
i

λiσi0 − λµ = σ2
OK

Universal Kriging (UK) and Kriging with External Drift (KED)

In universal Kriging (UK), the target process, Z, is decomposed as

Z(s) + µ(s) + Z0(s)

where Z0 is a zero mean random function referred to as the residuals, and the mean, µ(s),
is unknown but is assumed to be a function of covariates as

µ(s) =
J∑

j=0

βjfj(s), (2.5)

where fj(s) are functions and βj are unknown coefficients. External drift is used in stochas-
tic processes to refer to a trend. Kriging with external drift (KED) is an extension of UK
where the trend is given by external variables, and the process is defined as

Z(s) + β0 + β1T (s) + Z0(s),
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where T (s) is a deterministic function or set of j functions, fj(s). Parameter estimation
works in a similar manner as simpler variants by minimising E(Ẑ(s0) − Z(s0))

2 using
Lagrange multipliers. The UK system is defined as

∑
β λβσiβ +

∑
j βjf

j
i = σi0, i = 1, . . . , n∑

i λif
j
i = f j

0 , j = 0, . . . , J
. (2.6)

In matrix notation, the system can be simplified as Aw = b with the structure[
Σ F

F′ 0

]
︸ ︷︷ ︸

A

[
λ

β

]
︸ ︷︷ ︸

W

=

[
σ0

f0,

]
︸ ︷︷ ︸

b

for Σ,λ,σ0 defined as in simple kriging and where

F =



1 f 1
1 . fL

1

1 f 1
2 . fL

2

. · . ·
· · · ·
· · · ·
1 f 1

N . fL
N


, β =



µ0

µ1

·
·
·
µL


, f0 =



1

f 1
0

·
·
·
fL
0


.

Under the conditions that A is not singular, Σ is strictly positive definite, and F is of full
rank, the system is solved to yield a UK variance:

σ2
UK = σ00 − λ′σ0 − β′f0. (2.7)

In the special (yet common) case that a constant function 1 is in the basis of drift functions
f j(s), σ can be replaced by the variogram −γ in the system in (2.6). The variogram
matrix, Γ, is used instead of Σ, as the true covariance is not known but rather is estimated
through the variogram. Given that Z has a Gaussian distribution and is centred at zero,
uncertainties are easily quantified as

Pr(|Ẑ − Z| > 1.96σK) = 0.05,

which produces the 95% confidence interval

[Ẑ − 1.96σK, Ẑ + 1.96σK].

The estimation of the mean µ(s) is done in the usual way to a generalised linear model
(GLM) or generalised mixed linear model (GLMM) in case that the drift includes random
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effects. The model in matrix notation is expressed as

Z = Fβ +Z0,

where estimates of β, β̂ arise by minimising

(Z − F β̂)′Σ−1(Z − F β̂).

Other Variants

Variants of the classical Kriging models have been proposed in the literature for a myriad of
applications. Some notable examples are Transgaussian Kriging, which is the Kriging pro-
cess performed on data after a transformation into a Gaussian distribution; Fixed-ranked
Kriging, which is kriging using a non-stationary covariance function, and spatiotempo-
ral Kriging which is kriging extension for the spatiotemporal case. For more details see
(Cressie, 1993).

2.1.3 Multivariate Geostatistical Models

While modelling the spatial variability of a single spatial variable motivated the develop-
ment of geostatistical models, real-world applications often involve two or more variables.
In these multivariate scenarios, whether variables are related or the purpose is joint mod-
elling, geostatistical models have been extended to capture marginal and joint spatial
patterns while accounting for the spatial interdependence between variables. This section
will cover the extension of Kriging to the multivariate setting, known as Cokriging (CK).

When considering p simultaneous response functions defined as {Zi(s) = s ∈ D ⊂ Rn}.
Each variable can be sampled over a different set of locations Si so that Si = {sα ∈ D :

Zi(sα)} for α = {1, ..., Nα}. Assumptions are similar to UK in that µi(s) is a linear
combination of covariates. The extension of the UK to the multivariate setting has to do
with the incorporation of the cross-covariance between Zi(sα) and Zj(sβ), which is denoted
as σij(sα, sβ), and is defined as

σij(sα, sβ) = Cov[Zi(sα), Zj(sβ)] = E[Zi(sα), Zj(sβ)]− µi(sα)µj(sβ).

As in UK, the cross-covariance is unknown and must be estimated empirically. The
variogram is extended to the multivariate case and referred to as the cross-variogram
(Cressie, 1993), defined as

2γjj′(h) = Var [Zj(s+ h)− Zj′(s)] = E [Zj(s+ h)− Zj′(s)]
2 − (µj − µj′)

2 . (2.8)

The modelling of the cross-variogram is done similarly to the univariate case with
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various standard models proposed (Cressie and Helterbrand, 1994).

CK is a multivariate extension of UK where information on a primary response variable
is provided by auxiliary data (secondary variables) not sampled at the same locations as
the primary variable (Webster and Oliver, 2007). UK arises as a special case of CK where
the secondary variables are independent from the primary. However, if the primary and
secondary variables are dependent, CK is preferred over UK. The CK estimator for the
process of interest Z∗ has the form

Ẑ∗ =
∑
i

λ′
iZi. (2.9)

Under the conditions that
∑Ni

i=1 λ1i = 1 and
∑Ni

i=1 λji = 0, the CK system arises:
∑

j Cijλj + Fiηi = ci0, i = 1, . . . , p,

F′
iλi = f10δi1, i = 1, . . . , p.

(2.10)

The resulting CK variance is then

σ2
CK = E

(
Ẑ∗ − Z(s0)

)2
= c00 −

∑
i

λ′
ici0 − η′

1f10,

where η are Lagrange parameters. Unlike UK, the kriging weights in CK depend on
the relative dispersion of the variations and are estimated using least squares estimation.
Parameter estimation is done by optimising the parameters in (2.10) to minimise the
prediction errors between the co-kriging estimate in (2.9) and the observed value. As in
the univariate case, this minimisation is performed using either the Lagrange multiplier
or multivariate numerical optimisation techniques.

2.2 Extreme Value Theory

Extreme value theory (EVT) is the branch of statistics that deals with the modelling and
analysis of extreme values or extreme events. It represents a rigorous mathematical foun-
dation for characterising the distribution of extreme values and estimatin the probability
of rare events and their magnitude. This section provides a review of the foundations of
EVT and its important developments in multivariate and spatiotemporal settings.
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2.2.1 Classical Extreme Distributions

Generalised Extreme Value Distribution (GEVD)

Extreme values are usually classified as the maximum value in a block (block maxima), the
r-largest values in a block, or the values exceeding a sufficiently high threshold (threshold
exceedances). The r-largest values approach falls outside the scope of this dissertation
and will not be considered in the remainder of the document.

To understand the theory behind the block-maxima approach, let Mn = max{X1, ..., Xn}
be block-maxima, where X1, ..., Xn is an i.i.d. sequence with a common (but unknown)
cumulative distribution function (cdf) F . The block from which each maximum is taken
is typically a temporal measure such as months, seasons, or years. The extremal types
theorem states that if there exist normalising sequences an > 0 and bn such that

Pr
{
(Mn − bn)

an
≤ x

}
→ G(x) as n → ∞,

where G is a non-degenerate function, G is in the family of Generalized Extreme Value
distributions (GEVDs). The general form of the GEVD is

G(x) = exp
{
−
[
1 + ξ

(x− µ

σ

)]}−1/ξ

, (2.11)

defined on the set {x : 1 + ξ(x − µ)/σ > 0}, where µ, ξ ∈ R and σ > 0. The three
parameters of the model are location µ, scale σ, and shape ξ. Notable special cases of the
GEVD family include the Fréchet distribution when ξ > 0 (Frechét, 1927); the Weibull
distribution when ξ < 0; and the Gumbel distribution as ξ → 0 (Gumbel, 1935), defined
as a special case of (2.11):

G(x) = exp
{
− exp

(x− µ

σ

)}
.

The GEVD family possess the property of max-stability, meaning the distribution
is invariant to the process of sampling maxima, only changing location and scale but
maintaining the same shape, meaning that for every n = 2, 3, ..., there are constants αn

and βn for which

Gn(αnz + βn) = G(z),

where the distribution Gn is the distribution function of Mn, where each Xi is inde-
pendent and G-distributed.

The distribution in (2.11) enables extrapolation into unobserved extreme quantiles
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through inversion:

rp =

µ− σ
ξ

[
1− {− log(1− p)}−ξ

]
, for ξ ̸= 0,

µ− σ log{− log(1− p)}, for ξ = 0.
(2.12)

Here, rp is considered the return level and is associated with the probability of occurrence,
referred to as the return period, 1/p.

Parameter estimation is generally straightforward but is subject to inherent limitations
set by the shape parameter ξ. First, the k-th moment of the distribution is lost when
ξ > 1/k, which can serve as a practical limitation. Second, the distribution has an upper
bound of µ− σ/ξ in the case that ξ < 0. In the case that ξ > 0, there is no upper bound
but the lower bound is also µ. Finally, when ξ > −0.5, maximum likelihood estimators
(MLEs) with full regular and asymptotic properties exist, which is not the case when
ξ < −0.5 (Coles, 2001, Ch. 3).

Generalised Pareto Distribution (GPD)

The generalised Pareto distribution (GPD) is the limiting distribution of threshold ex-
ceedances, just as the GEVD is to block-maxima. The two are also closely related and
are said to be associated, where the GPD can be derived by using the point-process repre-
sentation of the GEVD (Coles, 2001, Ch. 4). If Pr{Mn ≤ x} ≈ G(x) as defined in (2.11)
then, for a large enough threshold u, the distribution of (X − u), conditional on (X > u)

is asymptotically approximated by

H(x) = 1−
(
1 +

ξx

σ̃

)−1/ξ

, (2.13)

defined on {x : x > 0 and (1 + ξx/σ̃) > 0} due to the conditioning of X > u, and where

σ̃ = σ + ξ(u− µ),

where σ̃ is the scale parameter and ξ is the shape parameter. Associated distributions
share the same shape parameter but differ in scale and location parameters. Similarly to
the GEVD, the shape parameter of the GPD is dominant, defines the tail behaviour, and
is often a practical consideration during inference. When ξ < 0, it has an upper bound,
as does the GEVD. In the case that ξ > 0, the upper tail is unbounded. The case of ξ = 0

is obtained by taking ξ → 0, resulting in

H(x) = 1− exp
(
−x

σ̃

)
, x > 0,

which is equal to an exponential distribution with rate 1/σ̃.
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The only conditions set on the threshold u are that it be sufficiently high and positive
(u > 0). However, the choice of threshold is similar to the choice of block size and invokes
a bias-variance tradeoff. More data points, available at lower values of u and smaller
block sizes, reduce variance but increase bias. The alternative is to increase u, or block
sizes in the GEVD, which results in high variance but lower bias. However, inherent
properties of the GPD can guide threshold selection. For an appropriately high value of
u0, H will remain invariant to higher thresholds (u > u0). This property is referred to
as the threshold-stability property and is analogous to the max-stability property of the
GEVD. The threshold-stability property of the GPD means there is a minimum threshold
u0 for which all thresholds u > u0 produce a constant mean of excesses above a threshold
E(X − u|X > u). These estimates are expected to change linearly with u when u > u0,
enabling the estimation of{(

u,
1

nu

nu∑
i=1

(x(i) − u) : u < xmax

)}
, (2.14)

where x(1), ..., x(nu) consist of the nu observations that exceed u. When plotted, it is useful
for finding an appropriate threshold u0, the smallest threshold for which exceedances can
be appropriately modelled by the GPD.

Finally, return levels for the GPD can also be estimated by noticing that

Pr(X > x) = ζu

[
1 + ξ

(
x− u

σ

)]−1/ξ

,

where ζu = Pr(X > u). The closed-form solution for the return value is then obtained as

xm = u+
σ

ξ
[(mζu)

ξ − 1],

where m indicates the return level, meaning x will exceed xm once every m observations
on average.

2.2.2 Multivariate and Spatial Extreme Models

When the aim of the analysis is to model two or more variables of interest, the much
more challenging task of modelling extremal dependence arises. Extremal dependence can
be classified into two classes; asymptotic dependence and asymptotic independence, and
is a central consideration in the selection of multivariate extreme value models (Resnick,
1987; Beirlant, 2004; Haan and Ferreira, 2006). In this section, we provide a more de-
tailed description of extremal dependence, covering asymptotic block-maxima and thresh-
old exceedance approaches for the multivariate case, spatial extreme value models, and
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subasymptotic models for flexible dependence structures in spatial extremes.

Extremal Dependence

Extremal dependence, or tail dependence, refers to the dependence between the extreme
values of two variables. The definitions presented below are easily extendable beyond the
bivariate case, but dimensions above d = 2 are outside the scope of this thesis.

A widely used measure of extremal dependence is the coefficient of tail dependence χij

(Coles, 2001, Ch. 8) which, for two components Xi and Xj with cdf Fi and Fj respectively,
is defined as

χij = lim
u→1

χij(u) = lim
u→1

Pr[Fi(Xi) > u, Fj(Xj) > u]/(1− u), for u ∈ [0, 1]. (2.15)

Intuitively, χij represents the conditional probability Xi is large, given that Xj is also large,
meaning the probability that extreme values occur in Xi and Xj simultaneously. Note that
χij is a limiting measure on the uniform scale, where 0 denotes asymptotic independence,
and where 1 represents perfect asymptotic dependence. In general, χij quantifies depen-
dence between components when they are asymptotically dependent. In the case that
the components are asymptotically independent, a measure of their dependence can be
measured using χ̄ij (Coles, 2001, Ch. 8), defined as

χ̄ij = lim
u→1

χ̄ij(u) =
2 log Pr {Fi(Xi) > u}

log Pr {Fi(Xi) > u, Fj(Xj) > u}
− 1

=
2 log(1− u)

log Pr {Fi(Xi) > u, Fj(Xj) > u}
− 1,

where −1 ≤ χ̄ij ≤ 1. Components are considered asymptotically dependent when χ̄ij = 1,
and asymptotically independent when χ̄ij = 0. χ̄ij is considered a measure of extremal de-
pendence for a pair of variables that are already known to be asymptotically independent.
Specifically, the dependence between asymptotically independent variables increases with
increasing χ̄ij.

An alternative dependence measure for the asymptotically independent case, i.e. when
χij = 0, is the residual tail dependence coefficient (Ledford and Tawn, 1997) defined as

ηij = Pr(Fi(Xi) > q, Fj(Xj) > q) = (1− q)1/ηijℓ(1− q), (2.16)

where the function ℓ : [0, 1] → R is slowly varying at zero (Engelke and Ivanovs, 2021).
ηij effectively describes the rate of convergence of the joint exceedance probability to zero.
Because it is also on the uniform scale, it is considered a measure of how dependent
the variables are given that they are asymptotically independent, with 1 denoting total
dependence and 0 independence.
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Multivariate Block-Maxima Models

Multivariate block-maxima approaches naturally extend the univariate definition in 2.2.1.
In the bivariate case, suppose (X1, Y1), (X2, Y2), ..., (Xn, Yn) is a bivariate sequence of
random vectors with common distribution function F . For Mx,n = max

i=1,...,n
{Xi} and

My,n = max
i=1,...,n

{Yi}, let Mn = (Mx,n,My,n) be the vector of componentwise maxima. Then

for z = (z1, z2)

Pr(Mn ≤ z) = F (z)n.

Let an > 0, and bn ∈ R be normalising vectors such that a−1(Mn − bn) converges to a
non-degenerate limit G, i.e.,

Pr(a−1(Mn − bn) ≤ z) = F n(anz + bn) → G(z), n → ∞. (2.17)

If (2.17) holds, F is said to be in the maximum domain (max-domain) of attraction of G,
and G is called the bivariate extreme value distribution function (Beirlant 2004, BGEVD).
The limiting distribution of the margins of G is GEVD.

If we assume that Xi and Yi have standard Fréchet marginal distributions, then G

takes the form
G(x, y) = exp{−V (x, y)}, x, y > 0, (2.18)

where V (x, y) is the exponent measure (Resnick, 1987), satisfying

V (x, y) = 2

∫ 1

0

max
(
ω

x
,
1− ω

y

)
dH(ω),

where H is a distribution in [0, 1] with constraint∫ 1

0

ωdH(ω) =
1

2
.

We can see that, unlike the univariate case, the BGEVD has no unique parametric
form because it depends on the distribution H. Different models can arise with different
characterisations of H. For example, when H is

H(ω) =

1
2

if ω = 0 or 1

0 else,
(2.19)

then the resulting BGEVD is asymptotically independent with form

G(x, y) = exp
{
−
(
x−1 + y−1

)}
.
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A perfectly dependent case of G arises if H places mass equal to 1 at 0.5, defined as

G(x, y) = exp
(
−max

{
x−1, y−1

})
.

Any parametric family of H that satisfies (2.19) results in a different BGEVD with specific
properties and dependence structures (Toulemonde et al., 2015). For additional parametric
forms for H and G, see (Coles, 2001, Ch. 8).

Multivariate Threshold Exceedance Models

The generalised Pareto distribution can be extended to the multivariate case, as with the
GEVD, where the bivariate case of the multivariate GPD is restricted to the asymptotically
dependent case. Additionally, it has no single representation in the case of more than one
dimension. It is most commonly presented using one of the four representations - R, S, T

and U - proposed by Rootzén et al. (2018b,a). Here, we will focus on the so-called U
representation, which is typically preferred over the others for simulation and can be used
to model the dependence of data in the unit scale.

Let U be a random vector in Rd with density fU under the condition that 0 < E(eUj) <

∞ ∀j ∈ {1, ..., d}. Then, a GPD density hU can be constructed as

hU(x;1,0) =
1{max(x) > 0}

E[emax(U)]

∫ ∞

0

fU(x + log(t))dt, (2.20)

where E[emax(U)] =
∫∞
0

Pr(max(U) > log(t))dt. Kiriliouk et al. (2019) proposed a defini-
tion for fU which allows for a more flexible construction. Let V ∈ Rd be a random vector
of independent components such that its joint density is the product of the independent
marginal densities, fv(ν) =

∏d
j=1 fj(νj). No restrictions are placed on fv, allowing almost

any density to be used. Some distributions, however, result in simpler integrals of closed-
form and thus are preferred to others. The reverse exponential distribution was chosen
for this reason. It is defined as

fj(νj) = αje
αj(νj+βj), −∞ < νj < −βj,

where αj > 0 is the scale parameter and βj ∈ R is the location parameter. Substituting
the product of these densities in (2.20) with fU = fV , yields the hU density in closed form

hU(x;1,0) =
(e−max(x+β))

∑d
j=1 αj+1

E[emax(U)]

1

1 +
∑d

j=1 αj

d∏
j=1

αj(e
xj+βj)αj . (2.21)

Because (2.21) is fitted to standardised components in the unit scale, the model cap-
tures the dependence between components, with α and β as dependence parameters.



2.2. Extreme Value Theory 23

Kiriliouk et al. (2019) explores the possibility of common parameters, α = α1 = α2 and/or
β = β1 = β2, on standardised data. To ensure the identifiability of the location parameter,
the parameter for the last component, β2, was always fixed to 0 (Kiriliouk et al., 2019).

Spatial Extreme Models

Spatial extreme models were first proposed by Coles and Casson (1998), who used a
hierarchical Bayes model with a stationary correlation function to fit a point process
likelihood to extreme wind speed data in the US Eastern seaboard. Rigorous inference for
the spatial counterpart of max-stable distributions was provided by Padoan et al. (2010),
opening the door to a rich assortment of methodologies for spatial extremes. As extreme
value analysis is inherently temporal, the spatial extremes methodology is spatiotemporal,
with replicates assumed available at every observation location.

The simplest spatial extreme model for block-maxima (or threshold exceedances) can
be constructed by assuming that every location available has a different GEVD defined
by a location-specific set of parameters so that for locations s ∈ S ⊂ R2, every location
has the distribution GEVD(µ(s), σ(s), ξ(s)), where parameters µ(s), σ(s), and ξ(s) vary
smoothly in space. Youngman (2019) proposed using a generalised additive model (GAM)
to model the parameters in space as functions of latitude and longitude. Other variants
of the linear additive framework have also been proposed and are typically fitted using
Bayesian inference (Davison et al., 2012).

A common approach in spatial extremes is the assumption of a max-stable process
Z(s) (Haan, 1984), which can be asymptotically dependent or perfectly asymptotically
independent (Richards and Wadsworth, 2021). The process is defined as having unit
Fréchet marginal distributions as Pr(Z(s) ≤ u) = exp(−1/u) for any u > 0. The joint
distribution is imposed as max-stable, meaning

Pr(Z(s1) ≤ tu1, ..., Z(sr) ≤ tur)
t = Pr(Z(s1) ≤ u1, ..., Z(sr) ≤ ur),

for any t > 0, r ≥ 1, si ∈ R2, ui > 0, for i = 1, ..., r, which can be rewritten as

Pr[Z(s) ≤ u(s), for all s ∈ R2] = exp
[
−
∫

max
s∈R2

{
g(c, s)

u(s)

}
δ(ds)

]
, (2.22)

where g(·) is a non-negative function that satisfies
∫
g(c, s)δ(ds) = 1.

For the spectral representation of a max-stable process, let {P−1
j }∞j=1 be realisations of

a homogeneous Poisson point process of unit rate with intensity dp/p2 and {Wj(x)}∞j=1 be
independent replicates of a stationary process W (s) on Rp satisfying E[max{0,Wj(s0)}] =
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1, where s0 is the origin. Then, the max-stable process Z(s) is defined as

Z(s) = max
j

Pj max{0,Wj(s)},

with unit Fréchet margins. Different choices of W (s) lead to different max-stable models.
The most common defines W (s) as a stationary standard GP known as the Schlather
model (Schlather, 2003). For more details, see Davison et al. (2012).

Copulas have also been proposed for spatial extremes. Sklar’s theorem (Sklar, 1959)
established that a D-dimensional joint distribution F of a random vector Y can be written
as

F (y1, ..., yD) = C({F1(y1), ..., FD(yD)}),

where F1, ..., FD are the univariate marginal distributions of X1, .., XD and C is a copula.
If the copula satisfies the relationship

C(u1, .., ud) = C(u
1/m
1 , ..., u

1/m
1 )m (2.23)

for every integer m ≥ 1 and all (u1, ..., ud) ∈ [0, 1]d, then the copula is max-stable. A
copula C is an extreme-value copula when defined as

C(u1, .., ud) = exp(ℓ(−logu1, .., logud)), (u1, ..., ud) ∈ [0, 1],

if and only if there exists a finite Borel measure H on ∆d−1 such that the tail dependence
function ℓ : [0,∞)d → [0,∞) is defined as

ℓ (x1, . . . , xd) =

∫
∆d−1

d∨
j=1

(wjxj) dH (w1, . . . , wd) , (x1, . . . , xd) ∈ [0,∞)d.

Various parametric models for extreme-value copulas have been proposed by specifying
H, similarly to the bivariate GEVD, to define a dependence structure. Some notable
mentions are the logistic model (or Gumbel-Hougaard copula), the negative logistic model,
and the Hüstler-Reiss model. For more details, see Gudendorf and Segers (2010).

Subasymptotic and Flexible Dependence Models

While the classical spatial extremes models for the asymptotic dependence class is myr-
iad, applications arise where data exhibit non-stationary dependence structures which
might converge into asymptotic independence or display a weakening dependence struc-
ture (Huser and Wadsworth, 2019). Additionally, classical models are prohibitive at large
dimensions, limiting their usefulness in large applications (Huser and Wadsworth, 2022;
Huser et al., 2024).
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Subasymptotic models have been proposed as an alternative to the limiting but rigid
max-stable models. Motivated by decaying dependence as the level of extremes of the
event increases, Huser and Wadsworth (2022) suggests estimating the rate at which the
sub-asymptotic χ-measure in (2.15) decays as u → 1, Common models that capture this
flexible, slow-convergence cases are inverted max-stable processes (Wadsworth and Tawn,
2012), mixture models such as those in Huser and Wadsworth (2019), factor copula models
(Krupskii et al., 2018; Castro-Camilo and Huser, 2020), or the max-infinitely divisible
processes proposed by Huser and Wadsworth (2022). For more details on these approaches,
see Huser and Wadsworth (2022).

2.3 Approaches for Statistical Data Fusion

Castanedo (2013) define data fusion as "the integration of data and knowledge from several
sources". The concept was originally developed in the late 1970s by the US Department of
Defence (DoD) for war-related purposes (Hall and Llinas, 1997). Since then, technological
advances, data collection, and data storage have motivated the development of data fusion
techniques. Today, they are a valuable tool in fields such as military and defense industry
(Benaskeur and Rhéaume, 2007; Farina et al., 2014; Chmielewski et al., 2020; Noh, 2020;
Vallikannu et al., 2023), healthcare (Shoaib et al., 2014; Dautov et al., 2019; Issa et al.,
2022; Hassani et al., 2024), environmental monitoring (Larios et al., 2012; Beauchamp
et al., 2017; Okafor et al., 2020; Dudek and Baranowski, 2023), finance and economics
(Zhang et al., 2013; Guo et al., 2014; Li et al., 2021; Yuan and Zhan, 2022), transportation
and traffic management (Anand et al., 2014; Neumann et al., 2016; Zhao et al., 2021; Zißner
et al., 2023), among many others.

Several schemes to define and classify the conceptual models of data fusion have been
proposed in the literature (Durrant-Whyte, 1988; Luo and Kay, 1989; Dasarathy, 1997).
However, specific definitions and classifications highly depend on the context of the appli-
cation. Morabito et al. (2008) provides an initial categorisation of data fusion methodology
as phenomenological or non-phenomenological. Phenomenological models are determin-
istic and rely on the physical properties of the underlying process to fuse data sources.
Non-phenomenological models, also called statistical data fusion models, represent a prob-
abilistic approach to the problem. Braverman (2014) defines statistical data fusion as "the
process of combining statistically heterogeneous samples from marginal distributions to
construct a new sample that can be regarded as having come from the unobserved joint
distribution of interest".

In the context of environmental research, Castrignanò et al. (2017) proposes a division
of data fusion into three further categories: information fusion (merging information from
different sources), sensor fusion (simultaneous information from different sensors), and im-
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age fusion (fusion of two or more images). However, the three categories are not mutually
exclusive. In this literature review, we will cover the main methods commonly used to
perform the aforementioned types of statistical data fusion. We will also provide a more
tailored literature review on data fusion models commonly used in air quality monitoring
and data fusion of extreme values.

The relative definitions of data fusion by application occur because of the diversity
of data types and sources available in different applications. Castanedo (2013) offers
to divide data fusion techniques into three non-exclusive or exhaustive categories: data
association, state estimation, and decision fusion. Data association is mainly concerned
with identifying the set of observations or measurements from one or various sources that
have the same target over time. On the other hand, state estimation seeks to infer the true
state of the target by using observations from one or various sources. Finally, decision
fusion, which fuses data at a higher level, means the fusion of data inferred from the
perceived situation. For each one of these data fusion types, the sources of data can be
sensors (Ran et al., 2018), images in the form of pixels or features (Agyeman et al., 2023),
or decisions, which include maps or other graphic derivatives (Castanedo, 2013).

Further considerations are the type of data, such as numeric or categorical. Multimodal
data fusion, the process of fusing data of multiple types, is a useful technique that falls
outside the scope of this work and will be excluded from the literature review below. This
section covers the most important techniques in data fusion. Section 2.3.1 covers data
fusion using geostatistical methods. Section 2.3.2 is about data fusion using Bayesian
methods. Section 2.3.3 covers data fusion specifically used in air quality monitoring.
Finally, Section 2.3.4 gives an overview of the methods available for extreme values.

2.3.1 Geostatistical Models

In the data fusion context, the process of interest, Z(s), observed at particular locations
s ∈ S ⊂ R2, can be considered a faithful measurement of the process of interest mea-
sured at ground level. As such, common properties of the data are often high-quality
measurements but sparse spatial coverage. The predictor variable, Y (s), can be a dataset
measuring the same process but obtained from a different source, resulting in different
properties such as high spatial coverage but larger measurement error. In this way, data
fusion models aim to adjust the dataset with high spatial coverage, Y (s0), to match the
ground observations of process Z(s0) at a location where Z has not been previously ob-
served (s0).

While universal kriging (UK; see 2.1.2) is a valuable and intuitive method for data
fusion, several variants exist to accommodate different challenges in data fusion. In the case
of fusing multiple data sources at different spatial resolutions, kriging with external drift
(KED; see 2.1.2) was used by Ribeiro Sales et al. (2013) to fuse multiple satellite spectral
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images for forest monitoring by treating the coarse and fine-resolution images as joint
realizations of two autocorrelated and cross-correlated random fields where pixels of each
resolution are assumed to be weighted averages of the underlying process. Variations have
also been proposed for the cases where data size prohibits the inversion of the covariance
matrix and, thus, the use of UK. Nguyen et al. (2012) proposed a method for the fusion of
large (complementary) satellite spectral images based on fixed rank kriging (Cressie and
Johannesson, 2008) that parametrises the covariance matrix through a spatial random
effects model, allowing for fast inversion of large matrices. Jinnagara Puttaswamy et al.
(2014) proposed an extension of universal Kriging to use sensor aerosol optical depth
(AOD) using large satellite data. They partition the region and apply a Kriging model
locally, linking the covariance functions of each partition using a low-rank linear model.
Manzione and Castrignanò (2019) used various data sources with different support to map
water table depth. They regularised covariate information from the sources using a linear
model of coregionalization at block support to obtain block cokriging (CK) predictions of
water table depth.

2.3.2 Fusion Models using the Bayesian Framework

Bayesian methods are a common technique for spatial data fusion, with a general formu-
lation provided by Bogaert and Fasbender (2007). It is originally based on the idea that
a spatial phenomenon of interest, Z(s) ∈ R, s ∈ S, is not observed directly. Observations
collected at location s, Y (s), are observed with some error, E(s), giving rise to the model

Y = Z+ E,

which can be generalised as
Y = g(Z) + E,

where g(·) is some function denoting the relationship between the latent process Z and
the observations Y .

A fusion model arises when the relationship between observations Yn,j and the latent
process Zn at location sn is defined as

Yn,j = gj(Zn) + En,j for j = 1, ...,m, (2.24)

where En,j is a random error term. Bayes’ theorem can be used to obtain the conditional
pdf f(z|ya,yn), where yn are realisations of Yn = (Yn,1, ..., Yn,m)

′ and ya = (y0, ..., yn − 1)

(where the subscript a always refers to the first n−1 elements of the corresponding vector),
resulting in

f(z|ya,yn) =
f(ya,yn|z)f(z)∫

Rn f(ya,yn|z)f(z)dz
=

1

A
f(ya,yn|z)f(z),
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where A is a normalising constant. The assumptions of independence between the process
Z and the corresponding error terms Ea⊥Z and En⊥Z, implies that

f(ya|z) = fEa(ya − g(za)); f(yn|z) = fEn(yn − g(zn)).

Further assuming that Ea⊥En, leads to

f(ya,yn|z) = fEa(ya − g(za))fEn(yn − g(zn)). (2.25)

This definition enables us to make a prediction of Z at a location s0, using

f(z0|ya,yn) =
1

A

∫
R
· · ·
∫
R
f(z)fEa(ya − g(za))fEn(yn − g(zn))dz1 · · · dzn. (2.26)

Simplifying (2.25) leads to

fEn,j
(yn,j − gj(zn)) ∝

f(zn|yn,j)
f(zn)

,

which allows for a simplification of (2.26) resulting in

f(z0|y) ∝
f(z0|y0)
f(z0)

∫
R
· · ·
∫
R
f(z)ϕ(zn|yn)

n−1∏
i=1

f(zi|yi)
f(zi)

dz1 · · · dzn,

where ϕ(zn|yn) is the posterior pdf of the fusion operator (Bogaert and Fasbender, 2007),
i.e.

ϕ(zn|yn) ∝ f(zn)
−m

m∏
j=1

f(zn|yn,j). (2.27)

In the case where spatial information is ignored, and all locations are independent,
f(z0|y0) ∝ ϕ(z0|y0) corresponds to the denominated naive Bayes’ (or Idiot’s Bayes) fu-
sion rule. Another useful case is the Gaussian case, where all f(zn|yn,j) are the pdfs of
N(µj, σ

2
j ) variables, as we only require the conditional expectations, E[Zn|yn,j] = µj, and

the conditional variance Var[Zn|yn,j] = σ2
j , for estimation.

This flexible construction gives way to an extensive family of models. Bogaert and
Fasbender (2007) use the Gaussian case above to induce spatial dependence in the model,
where the resulting Bayesian data fusion model is identical to the ordinary kriging (OK)
model presented in Section 2.1.2, where the mean is constant but unknown (Cressie, 1993)
and can be referred to as Bayesian kriging (Banerjee et al., 2015). In the context of
image-fusion, Fasbender et al. (2007) used the model to improve the spatial resolution
of target phenomenon by using spectral imaging with known relationships for g(·) and
placing uninformative priors on f(z). Xue et al. (2017a) proposed using the Maximum
A Posterior (MAP) estimator as the predictor of z0 but placed a further spatiotempo-
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ral Gaussian structure on E. Gengler and Bogaert (2014) propose an extension of the
model for categorical variables, and Gengler and Bogaert (2016) applied this extension to
update landcover data by fusing remove-sensed images of land cover and crowdsourced
observations.

A noteworthy special case of this approach is Bayesian downscaling, which refers to
relating coarse-scale data to fine-scale data without assuming a latent "true" process. It is
accomplished by using ground-level observations such as those from observation stations
to improve the scale of coarse-scale data and is also known as "data calibration". (Gelfand
et al., 2003), and later (Berrocal et al., 2010) proposed a spatial downscaling model with
spatially varying coefficient defined as

Y (s) = µ(s) +W (s) + ϵ(s),

where µ is a function of a covariate x at the same location (collocated), such that µ(s) =
α(s) + β(s)x(s), ϵ(s) are independent, normally distributed error terms centred at 0 and
with τ 2 variance, and W (s) is a second-order stationary mean 0 process that is independent
of ϵ. Then, it is intuitive to see that W (s) = α(s) results in a model that is well-poised for
a hierarchical structure in the Bayesian framework. Data fusion occurs in the case that
x are data for the same phenomenon from a different source, such as remote-sensing, and
Y (s) represent in-situ measurements.

Bayesian Melding

Bayesian melding is a Bayesian data fusion approach that considers the process of interest,
Z(s), to be a common latent spatial process of the different data sources (Fuentes and
Raftery, 2005). This common latent Gaussian process is assumed to follow the model

Z(s) = µ(s) + ϵ(s),

where µ(s) can be a function of explanatory variables and ϵ(s) are zero-mean correlated
errors. The point observations taken at ground level are not the "true" observations, but
they can be defined as

Ẑ(s) = Z(s) + e(s),

where e is a measurement error independent of Z and e(·) ∼ N(0, σ2
e). Data from a second

source with more spatial coverage is defined as a more flexible function of Z:

Z̃(s) = a(s) + b(s)Z(s) + δ(s),

where a(s) and b(s) are parameter functions. The process δ(s) is once again a random
deviation term as δ(s) ∼ N(0, σ2

δ ), and is independent of Z and e. In the case that the data
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are not point-estimates but areal estimations over subregions B1, ..., Bm of the domain D,
then the model becomes

Z̃(s) =

∫
Bi

a(s)ds+ b(s)

∫
Bi

Z(s)ds+
∫
Bi

δ(s)ds, for s ∈ Bi.

A spatial prediction then follows naturally as P (Z|Ẑ, Z̃).
Alkema et al. (2007) used Bayesian melding to fuse HIV antenatal clinic prevalence to

population prevalence by inserting random effects to account for different clinics. Villejo
et al. (2023) used Bayesian melding to link NO2 pollution exposure to various health out-
comes by assuming a latent Gaussian process and fitting the melding modelling using the
integrated nested Laplace approximation (INLA) and the stochastic partial differential
equations (Lindgren et al. 2011, SPDE) approaches. Liu et al. (2016) used an approx-
imated likelihood to perform Bayesian melding to model marine mammal movement by
fusing a sparse set of direct observations and high-resolution but high-bias modelled tracks.

2.3.3 Data Fusion in Air Quality Monitoring

Data fusion in application to air quality mostly comprises multiple sensor fusion and multi-
source downscaling, where fine-scale information is obtained from a coarse-scale source
with the aid of ground observations or other ancillary data, often including epidemiolog-
ical variables such as exposure. Characteristic challenges of air quality monitoring data
fusion are multi-source heterogeneity, dynamic mutability, spatio-temporal correlation,
and sometimes large data volumes (Huang et al., 2021).

Geostatistical Models

Geostatistical tools have been a popular approach to data fusion in air quality monitor-
ing. Li et al. (2014) modelled remote-sensed aerosol optical thickness (AOD) observations
in eastern China by using a kriging with external drift model fuse data from different
remote-sensed AOD sources using other meteorological variables as explanatory variables.
Schneider et al. (2017) used universal kriging to fuse air quality data from low-cost sensors
with an urban-scale air quality map of Oslo, Norway, to produce a map of nitrogen oxide
at urban scale.

In the case that the spatial and the temporal domains are fused separately, Friberg
et al. (2016) and Liang et al. (2017) used a weighted average of an ordinary kriging
interpolation of the data that captured the spatial correlation and a scale adjustment of
the annual mean to fuse chemical transport model data and ground observations in the
state of Georgia and northern China respectively. Chatterjee et al. (2010) used the spatio-
temporal extension of universal kriging to fuse remote sensing and ground-based AOD.
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Munir et al. (2021) used a simple universal kriging model with spatiotemporal covariance
function to fuse NO2 data from a dispersion model, land cover, and concentrations from
low-cost sensors in Sheffield, United Kingdom.

Other kriging variants have been widely used. Lin et al. (2020) fused ground-level
observations of PM2.5 from high-quality observation stations with low-quality sensors with
higher spatial coverage. They used multi-step Kriging, which fits a kriging model at every
time slice at t + 1 by utilising the fitted model at t. Beloconi et al. (2016) approached
spatio-temporal data fusion using 3-D Kriging, which incorporates a spatio-temporal co-
variance function. They performed the fusion of remote-sensed Sky-viewing Factor (SVF)
with Land Cover to predict the PM concentrations at ground level. They later upscaled
the resulting daily concentrations of the pollutant by using block kriging. Ghigo et al.
(2018) pursued a similar approach to map common pollutants (PM10 and NO2) to regional
municipalities in Spain. They performed kriging with external drift to fuse ground-level
observations with remote-sensing estimates. They later performed a weighted mean to
upscale the concentrations to the scale of desired municipalities.

A more complex process of data fusion using Kriging was proposed by Xue et al.
(2017b), by using a three-step procedure to fuse ground-level observations of PM2.5, data
from a multi-scale air quality model, and other explanatory variables in mainland China.
In the first steps, they used linear mixed models to derive PM2.5 data using explana-
tory data and ground-level observations and to calibrate modelled observations using the
ground-level PM2.5 data. In the second step, they fuse the derived-PM2.5 and the cali-
brated data using inverse deviation weighted averages. Finally, they interpolate the fused
observations using spatiotemporal Kriging.

Bayesian Approaches

As mentioned in Section 2.3.2, the Bayesian paradigm offers a convenient framework for
data fusion models in spatial and spatiotemporal dimensions.

For instance Beloconi et al. (2016) applied the Bayesian geostatistical regression model
in Bogaert and Fasbender (2007) to fuse NO2 concentration data from observation stations,
satellites, and large physical models to obtain reliable, high-resolution maps.

McMillan et al. (2010) fused log-PM2.5 concentrations in the eastern USA. The data
were from ground-level observations and modelled high temporal and spatial coverage
observations. Specifically, they used the model in (2.24) with g(·) chosen as a a non-linear
function and performed inference using MCMC. Chang et al. (2014) proposed a Bayesian
spatio-temporal downscaling model using satellite-collected aerosol optical depth (AOD)
measurements to model PM2.5 concentrations using the model:

PM(s, t) = α0(s, t) + α1(s, t)AOD(s, t) + ϵ(s, t),
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where α0(s, t) and α1(s, t) are the spatiotemporal additive and multiplicative bias respec-
tively. The hierarchical setup of the model allows for the introduction of spatiotemporal
trends via:

α0(s, t) = β0(s) + β0(t) + γ0X0

α1(s, t) = β1(s) + β1(t) + γ1X1,

where βi(s) and βi(t) are unobserved correlated spatial and temporal random effects, X0

and X1 represent predictor variables and γ0 and γ1 are fixed effect coefficients. Wang et al.
(2018) extended the model for the same application to include discrete regions of interest
(political regions sharing a common climate), meaning

PM(s, t) = α0(s, t) + α1(s, t)AOD(s, t) + γreg,temX(s, t) + ϵ(s, t), (2.28)

where {reg,tem} refers to regional (discrete) and temporal terms, X(s, t) is a spatiotem-
poral predictor at a discrete spatial scale and γreg,tem is its corresponding fixed effect.

Forlani et al. (2020) used a coregionalisation framework (Krainski et al., 2018) to
perform Bayesian melding to fuse NO2 concentrations from observation stations and data
from two different air quality models in the London region. They allowed for each of the
different data sources to provide different spatial or spatio-temporal information:

y1(s, t) ∼N(η1(s), σ
2
ϵ1
),

y2(s, t) ∼N(η2(s, t), σ
2
ϵ2
),

y3(s, t) ∼N(η3(s, t), σ
2
ϵ3
),

where y1 and y2 are data from remote sensing sources, i.e., the pollution climate mapping
(PCM) model and the Air Quality Unified Model (AQUM) sources, respectively, y3 rep-
resents the ground-level observations, ηi are the mean, and σ2

ϵi
are measurements of error

variance. The data sources are woven together through coregionalisation as

η1(s) =α1 + z1(s),

η2(s, t) =α2 + λ1,2z1(s) + z2(t),

η3(s, t) =α3 + βk + λ2,3z2(t) + z3(t, ks),

where αi are intercepts, λi,j are scaling parameters for the shared components, zi are
shared random spatial, temporal, or spatiotemporal components, and βk are fixed effects
to account for information on the location. Model inference was carried out using INLA
(Rue et al., 2009), under the assumption that the latent process is Gaussian.
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2.3.4 Data Fusion Approaches for Extreme Values

Data fusion for extremes is not a common approach and has largely centred around down-
scaling extreme precipitation. Downscaling refers to the process of obtaining information
at a finer scale from data at a coarse scale. Although it can be done doing non-data fusion
methods, here we will only refer to downscaling as a data fusion approach where in situ
measurements are used to downscale remote-sensing data at coarse resolutions. In this
section, we give an overview of data fusion and downscaling approaches in the literature
that have been proposed for extremes.

Foufoula-Georgiou et al. (2014) proposed a framework for downscaling spatial satellite
precipitation observations by defining the downscaling process as a discrete inverse problem
and solving it using a variational regularisation approach. In this way, the model imposes
constraints on the smoothness of the precipitation field while preserving large gradients.
To illustrate the approach, assume f(t) is the true signal observed at a given location. The
measurement device introduces an error and thus smooths the original state, returning the
observation g(s). The two are related as∫ 1

0

K(s, t)f(t)dt = g(s), t ≤ 1, (2.29)

where K(s, t) is a known kernel responsible for the downgrade in resolution, effectively
smoothing the true signal. The discretisation of (2.29) can be translated into the regression
problem

y = Hx + ϵ, (2.30)

where ϵ ∼ N(0,Σ), H matrix operator, and x is a vector of observations at high resolution.
The nature of downscaling means H is a rectangular matrix with more columns than rows
and solving for x is ill-posed.

Foufoula-Georgiou et al. (2014) proposed a regularisation of the problem. They define
the distance between the observations and the true state using a residual Euclidean norm
as

R(f) =

∣∣∣∣∣∣∣∣∫ 1

0

K(s, t)f(t)dt− g(s)

∣∣∣∣∣∣∣∣
2

.

A unique and stable solution of the inverse can then be posed as a variational minimisation
problem as

f(t) = argmin
f

{
R(f)2 + λ2S(f)

}
,

where λ is a regularisation parameter to balance precision and smoothing. Combining
all the above, the high-resolution vector x can be obtained by solving the minimisation
problem

x̂ = argmin
x

{
1

2
||y −Hx||2R−1+λS(x)

}
.
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Although the estimation of x is possible from y in a way that guarantees the preservation
of extremes, it is important to note that the downscaling operator H is not known in most
applications. Even after careful estimation, the method is limited to stationary fields and
does not easily scale to larger datasets.

Engelke et al. (2019) highlight that in some cases the marginal tail behaviour is different
from the spatially aggregated data from some process Y , aggregated using some functional
ℓ. They show that for sufficiently large n,

Pr
{
ℓ(Y )− ℓ[b(n)]

ℓ[a(n)]
> y

}
≈ θℓPr

{
Y s0 − bs0(n)

as0(n)
> y

}
, y ∈ R, s0 ∈ S,

meaning that θℓ, called the ℓ-extremal coefficient, quantifies this difference between the
marginal tail behaviour at s0, and the spatially aggregated ℓ(Y ). Effectively, this coeffi-
cient provides a link between the aggregated data and the underlying process, a central
aim of downscaling, which is a type of data fusion which they use for downscaling daily
temperature maxima in the south of France by maximising the censored log-likelihood.
The assumption of a constant θℓ means the approach is useful under stationary assump-
tions. Moreover, it assumes that the difference between the tail behaviour of the aggregated
data and the point data are the same throughout the region, which Maraun and Widmann
(2018) show is not true in most applications.

Another example of data fusion for extremes found in the literature is the calibration
model based on the extended generalised Pareto distribution (EGPD, Papastathopoulos
and Tawn 2013) initially proposed by Pereira et al. (2019) and extended by Amaral Turk-
man et al. (2021) to the spatiotemporal case. Both methods are based on quantile matching
calibration where the observed data Y can be obtained from a simulated data set of lower
rank X by "calibrating" X to match Y such as

x∗
i = F−1

Y (FX(xi)), i = 1, ..., n, (2.31)

where x∗
i is the new calibrated data point. Pereira et al. (2019) proposed an adjustment

where the distribution of both X and Y change with a covariate. The introduction of the
EGPD (Naveau et al., 2016) allows for modelling extreme values without the need to set
a threshold and thus can effectively model the bulk and the tail of the data. It is defined
as

FY (y|θ) = G (H(y|ξ, σ)) ,

where H is the cummulative distribution function of a GPD and G is a function obeying
some general assumptions to ensure a Pareto-type tail and a bulk driven by the carrier G.
While Naveau et al. (2016) proposes various options for G, Pereira et al. (2019) and Ama-
ral Turkman et al. (2021) choose G(u) = uκ, where κ is a parameter controlling the shape
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of the lower tail, making the EGPD a three-parameter distribution as EGPD(κ, ξ, σ).
Under the assumption that both X and Y follow an EGPD distribution, the calibration
method in (2.31) can be re-written for ξ ̸= 0 and δ = −σ

ξ
as

FX(s,t) (x(s, t) | δx(s, t), ξx, κx) =

(
1−

(
1− 1

δx(s, t)
x(s, t)

)−1/ξx

+

)κx

,

for x > 0 if ξx > 0 and x < δx if ξx < 0. And

FY (s,t) (y(s, t) | δy(s, t), ξy, κy) =

(
1−

(
1− 1

δy(s, t)
y(s, t)

)−1/ξy

+

)κy

under the same respective assumptions. Amaral Turkman et al. (2021) then introduces a
spatiotemporal dependence structure by modelling δx and δy as a function of a common
latent spatiotemporal process, meaning δy(i, j) ∼ Exp(λy(i, j)), δy(i, j) > max(y) follows
a shifted exponential distribution with

log(λy(i, j)) = βy +W (si) + Z(tj), (2.32)

where Z(tj) is a temporal random walk process or order 1, and W ∼ MVN(0, τWΣW )

follows a Multivariate Gaussian process with precision τW and the matrix ΣW with unit
diagonals and non-diagonal elements with spatiotemporal structure as Σiℓ = f(diℓ;α)

where diℓ represents the centroid of every two stations si and sℓ, and α is a parameter
representing the radius of the "disc" centred at each s, controlling the rate of correlation
decline with distance. The data X(s, t) then shares the same latent processes W and
Z in a similar manner. Inference on the model is carried out using MCMC, and the
authors present a case study for extreme wind speed data where they show the model has
a good prediction coverage of observations in both the bulk and the tail. However, bias is
present in the bulk when data is very extreme and uncertainty bands are wide, limiting
the reliability of the results. Furthermore, extension to large spatial extents is not trivial
and additional assumptions must be placed on the spatiotemporal structure.

In more applied settings, Kallache et al. (2011) proposed a quantile-matching approach
to downscaling extreme precipitation. For observation station data Y and modelled data
X, a calibration period C is defined, whereby observations within this period, YC and XC ,
are considered as the training set. FYC

and FXC
are the cumulative distribution functions

(cdfs) of Y and X, respectively, fitted for observations in the calibration period. The
downscaling model proposed is

FYP
(x) = T (FXP

(x)) = FYC
(F−1

XC
(FXP

(x))),



36 Chapter 2. Statistical Background

where T (·) is a transfer function, and YP and XP refer to the observed data and modelled
data at a prediction period P . The transfer function is a linear regression with a wide
variety of pertinent meteorological and geograhical covariates. The results show mixed
results, with prediction periods correctly matched at some locations and no improvement
at others.

Friederichs (2010) utilised ERA40 data to model conditional 95−th quantiles of pre-
cipitation in Germany and fitted a GPD to the exceedances of the conditional threshold
quantile using MLE. The results show that the approach has improved uncertainty esti-
mates over the non-parametric Quantile Regression, particularly far into the upper tail.
Finally, Ebtehaj and Foufoula-Georgiou (2010) proposed using a mixture of Gaussian dis-
tributions to preserve the extremes during the fusion of multi-sensor precipitation data.
The work was never formalised, and attempts to contact the authors have not yielded
more information; consequently, the remaining section will not include this approach.

2.4 Methods for Bayesian Inference

Bayesian inference is a framework for statistical inference that updates prior beliefs using
information the data provides. It represents an alternative to frequentist inference, and
it has proven a viable way to perform inference for complex models such as hierarchical
models or multi-stage models requiring uncertainty propagation.

Gelman et al. (2015) summarises the process of Bayesian data analysis as: 1) Setting up
a full probability model, 2) Conditioning the model on the observed data, i.e., calculating
the posterior distribution by conditioning the unobserved quantities of interest on the
observed data, and 3) Evaluating the model fit. The conclusions of Bayesian inference are
probabilistic statements about a parameter θ or about the unobserved data ỹ, conditioned
on the observations y, written as p(θ|y) or p(ỹ|y).

The first step for making probabilistic statements about θ given y is constructing a
joint model. It is obtained as the product of the distribution of θ, known as the prior
distribution, and a likelihood p(y|θ), resulting in

p(θ, y) = p(θ)p(y|θ).

Bayes’ rule can then be used to obtain a posterior density defined as

p(θ|y) = p(θ, y)

p(y)
=

p(θ)p(y|θ)
p(y)

, (2.33)

where p(y) =
∫
θ
p(θ)p(y|θ), meaning p(y) is the integral over all possible values of θ

(Gelman et al., 2015). The normalising denominator p(y) can be removed from (2.33),
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resulting in an unnormalised posterior density defined as:

p(θ|y) ∝ p(θ)p(y|θ). (2.34)

Obtaining p(θ|y) in (2.34) is step 2, following naturally from the definition of p(θ, y) in
(2.33).

If the desired target is some unobserved quantity, ỹ, predictive inference is performed
similarly. First, we defined the distribution of y, also known are the marginal distribution
of y or the prior predictive distribution, as

p(y) =

∫
p(y, θ)dθ =

∫
p(θ)p(y|θ)dθ.

The distribution of the unobserved value that is predicted, ỹ, is called the posterior pre-
dictive distribution and is defined as

p(ỹ|y) =
∫

p(ỹ, θ|y)dθ

=

∫
p(ỹ|θ, y)p(θ|y)dθ (2.35)

=

∫
p(ỹ|θ)p(θ|y)dθ.

The simple probability principles above are the basis of Bayesian inference and rep-
resent a flexible statistical inference framework. In the remainder of this section, we will
cover the basics of the two central methodologies to perform Bayesian inference: Markov
Chain Monte Carlo (MCMC, Gelfand and Smith (1990)) and integrated nested Laplace
approximations (INLA, Rue et al. (2009)).

2.4.1 Markov Chain Monte Carlo (MCMC)

In order to make probabilistic statements of θ and or ỹ, samples are taken from the pos-
teriors in (2.33) and (2.35) respectively. Markov chain simulation, also known as Markov
chain Monte Carlo (MCMC), is a method to sample from the posteriors by drawing samples
from approximate distributions and progressively correcting the draws to better approxi-
mate the target distribution. The draws are taken sequentially following a Markov chain,
where new draws depend on the last value drawn (Gelman et al., 2015). In this section,
we will only cover the Gibbs sampler and Metropolis-Hastings algorithms; however, many
variants of MCMC have been proposed for specific settings; notable variants are Hamilto-
nian Monte Carlo, slice sampling, sequential Monte Carlo, delayed-rejection Monte Carlo,
importance sampling, and adaptive MCMC. For more details, see Brooks et al. (2011).
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Gibbs Sampler

The Gibbs sampler is a useful method for multidimensional problems where θ is a d-
dimensional vector defined as θ = (θ1, ..., θd). As the sampling works sequentially, each
draw of θj is conditional on all the others, meaning there are d steps in every iteration t.
For each iteration t, θtj is sampled from the conditional distribution defined as

p(θj|θt−1
−j , y),

where θt−1
−j represent all the components of θ minus θj at their current values, meaning

θt−1
−j = (θt1, ..., θ

t
j−1, θ

t−1
j+1, ..., θ

t−1
d ). In summary, each θj is updated conditional on the data

y and latest values of all the other components of θ, which contain updated components at
t and components not yet updated at t− 1. The Gibbs sampler is particularly well suited
for hierarchical models where sequential parameter updating is natural. Additionally, it
is appropriate for the case where the posterior has a closed-form solution.

Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm (MH) is a general term for a family of Markov chain
simulations. It has the Gibbs sampler as a special case, but it represents a more flexible
approach to posterior sampling. It is based on the Metropolis algorithm, which adapts a
random walk with an acceptance/rejection rule to guide convergence to the target distri-
bution. The steps of the algorithm are as follows:

1. Obtain a starting value of θ, θ0, for which p(θ0|y) > 0.

2. For t = 1, 2, ... :

• Sample θ∗ from a proposal distribution at time t, Jt(θ∗|θt−1). The proposal dis-
tribution should resemble the target as much as possible to speed convergence.

• Calculate the ratio of densities

r =
p(θ∗|y)
p(θt−1|y)

. (2.36)

• Set

θt =

θ∗ with probability min{r, 1}

θt−1 otherwise.

In the case that the proposal distribution is not symmetric or that there are imposed
bounds on the possible values of θ resulting in truncated sampling, then an adjustment is
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made to the ratio of densities as

r =
p(θ∗|y)J(θt−1|θ∗)
p(θt−1|y)J(θ∗|θt−1)

.

The acceptance/rejection, therefore, ensures that progressively better and better values
of θ are chosen under the proposed posterior. It does not require a closed-form posterior,
and the product of prior and likelihood can be used instead. The Gibbs sampler, therefore,
arises as a special case of the MH algorithm where the exact posterior is known and the
proposed value is accepted with a probability of 1.

2.4.2 Integrated Nested Laplace Approximation (INLA)

The major limitation to performing Bayesian statistics is the computational feasibility
of doing Bayesian inference. Although MCMC and the introduction of simulation-based
inference represent a significant step towards accessible Bayesian inference, performing in-
ference with MCMC is computationally expensive, time-consuming, and usually does not
scale well. Within the general class of latent Gaussian models (LGMs), an alternative to
MCMC is the integrated nested Laplace approximation (INLA). In INLA, posterior dis-
tributions are numerically approximated using the Laplace approximation and variational
Bayes, constituting a computationally appealing method for Bayesian inference.

As mentioned above, INLA applies to the general class of LGMs, which can be defined
using a three-stage hierarchical model formulation (Rue et al., 2017). Here, let y represent
observations that are conditionally independent given the latent Gaussian random field x

and hyperparameters θ, i.e.,

y|x,θ1 ∼
∏
i∈I

p(yi|xi,θ1),

where xi is the i-th component of the latent Gaussian field x, defined as

x|θ2 ∼ N(µ(θ2),Q
−1(θ2)).

Following Bayes’ rule, the posterior becomes

p(x,θ|y) ∝ p(θ)p(x|θ)
∏
i∈I

p(yi|xi,θ),

where θ = (θ1,θ2).

Rue et al. (2017) show three critical assumptions placed on latent Gaussian fields in
the context of INLA. First, the number of hyperparameters |θ| is relatively small (< 20).
Second, the distribution of the latent field x|θ is Gaussian and makes up a sparse Gaussian
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Markov random field (GMRF). And finally, the data y are conditionally independent of
both x and θ.

In this context, the response variable y with density function p(y|x,θ) is related to
the covariates Z = (M ,U) through a linear predictor defined as

η = β0 + βM +
K∑
k=1

fk(uk), (2.37)

where f are flexible functions of U = (u1, ...,uk), β are linear coefficients for the de-
terministic effect of the covariates M . INLA uses Laplace approximations to estimate
x = {β0,β,f}. This additive formulation enables generalised mixed models, generalised
additive models, splines, and many other linear formulations to be considered in the mod-
elling structure.

In the classical formulation of INLA (Rue et al., 2009), the posterior of the hyperpa-
rameters is approximated using the Laplace method as

p(θ|y) ∝ p(x,θ|y)
pG(x|θ,y)

∣∣∣∣
x=µ(θ)

,

where pG(x|θ,y) is a Gaussian approximation to p(x|θ,y). In the modern formulation
of Van Niekerk et al. (2023), the latent field x = {β0,β,f} has Gaussian prior x|θ ∼
N(0,Q−1(θ)), and the n linear predictors are defined as

η = Ax,

where A is a sparse design matrix that links the linear predictors to the latent field. The
joint density then becomes

p(x,θ|y) ∝ p(θ)p(x|θ)
n∏

i=1

(yi|(Ax)i,θ).

The results, however, could be skewed with a presumptive Gaussian approximation.
For this reason, Van Niekerk et al. (2023) apply a low-rank variational Bayes correction
(Niekerk and Rue, 2024) to improve the mean of the marginal posteriors of the linear
predictors and the latent field.



Chapter 3

Environmental Pollution

In this section, we provide the motivation and context for the bivariate heavy metal
soil contamination application in Chapters 4 and 5, and the PM2.5 air pollution case
study in Chapter 6. The chapter is as follows. Section 3.1 introduces heavy metal soil
contamination and provides an overview of the sources, impacts, and management of soil
contamination. Section 3.2 gives an exploratory analysis of the data used in Chapters 4
and 5. Section 3.3 provides background, including sources, impacts, and relevant policy,
of the PM2.5 air pollution application in Chapter 6. Finally, Section 3.4 provides an
exploratory analysis of the two datasets used in the application.

3.1 Heavy Metal Soil Contamination

3.1.1 Definition of HM Soil Contamination

Heavy metals (HM) are defined as metallic elements with atomic mass greater than 20 and
specific gravity greater than 5. The most common HM contaminants are mercury (Hg),
cadmium (Cd), lead (Pb), chromium (Cr), arsenic (As), zinc (Zn), copper (Cu), nickel
(Ni), stannum (Sn), and vanadium (V).

HM soil contamination refers to the excessive accumulation of toxic HM elements in
the soil (Su et al., 2014; Tang et al., 2019; Mishra et al., 2019). It is characterised by its
wide spatial distribution, strong latency, irreversibility, and complex multivariate nature
(Su et al., 2014). Unlike organic types of contamination, HM contamination persists in the
pedosphere and is difficult to remediate, as remediation techniques require large financial
investments over long periods (Su et al., 2014). HMs are also biologically toxic, meaning
they play a significant role in the degradation of the quality of the soil, water bodies,
the atmosphere, ecological and plant health, and, ultimately, public health. More details
about the impacts of HM contamination on both the environment and public health are
given in Section 3.1.3.

41
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3.1.2 Sources of Contamination

The total HM soil content is the sum of the content produced by all possible sources. At
any given moment, the HM content in the soil, Mtotal, can be obtained in the unit of parts
per million (ppm) by the sum

Mtotal = (Mpm+Matm+Msed+Mfert+Mac+Mtm+Mom+Mic)− (Mcr+Me+Ml+Mv),

where pm is the content from parent material, atm is atmospheric deposition, sed is
deposited sediment, fert is fertilisers, ac are agricultural chemicals, tm are technogenic
materials, om are organic materials, ic are inorganic contaminants, cr is crop removal, e
is soil erosion, l is leaching, and v is volatilisation.

Lithogenic Sources

The lithogenic sources, natural geological processes that produce soil parent materials,
are the dominant factor in determining the Mtotal. At a global scale, 99% of the total
element content of the earth’s crust is comprised of oxygen (O), silicon (Si), aluminium
(Al), iron (Fe), calcium (Ca), sodium (Na), potassium (K), magnesium (Mg), phosphorus
(P), and titanium (Ti). The elements that make up the remaining 1%, such as HMs, are
considered trace elements and are naturally found in the soil at small concentrations but
can be found at higher levels depending on parent material. For example, igneous and
sedimentary rocks, which make up 95% and 5% of the earth’s surface, tend to have high
concentrations of Zn, Cu, Pb, Ni, Cd, and Ag. For more details on specific HM content
of different rock species, see Alloway (2013).

The composition of the soil in a natural state is determined by its parent material
(PM), which represents a rock or unconsolidated drift material that undergoes disman-
tling, weathering, or pedogenesis to form the mineral skeleton of the soil (Alloway, 2013).
Weathering is the chemical decomposition of the parent material whereby the constituent
elements in soluble form are slowly released to interact (physically and chemically) with
the environment and the weathering byproducts of the materials around it. The weath-
ering process determines the texture of the resulting soil, represented as percentages of
sand, silt, and clay particles. It can have a major influence on the physical and chemical
properties of the soil, such as the soil’s ability to absorb cations and anions, which can
directly influence the retention and spread of the bioavailability of HMs.

Another lithogenic source of HM soil contamination is volcanic activity. During erup-
tions, pyroclastic material and ash are released into the environment. Both have high
concentrations of micro and macronutrients such as N, P, K, Ca Na, and Mg, which at
small concentrations are beneficial to the environment and can result in fertile soils but
can also contain high concentrations of toxic elements, including HMs such as Ni, Zn, Cd,
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Ag, Sn, Hb, and Pb among others (Ermolin et al., 2018). Although volcanic eruptions
are short-lived, the ash and pyroclastic material produced can endure long periods in the
environment, shaping the environment around it (Ruggieri et al., 2010). While non-toxic
elements tend to be soluble, the non-degradable and persistent nature of HMs means they
can pose a risk to the environment and living organisms in the region for long periods
after eruptions.

Mobilisation: Atmospheric Deposition and Runoff

Atmospheric deposition and runoff are non-localised sources of HM contamination that
refer to HMs being transported from the source to soil in another location (Alloway, 2013),
which can be natural or anthropogenic.

The main natural mobilisation path is atmospheric deposition, which is when the HMs
in soil particles, dust, aerosol particles, and gaseous metals, such as Hg, are moved by
natural air currents (wind). It is the most extensive form of contaminant transportation, as
it can transport contaminating particles thousands of kilometres from the source. However,
it is the least effective, as contaminants are diluted in the atmosphere and the deposition
ratio is large. Moreover, it is only responsible for the contamination of the surface layer
of the soil profile. It can result in a smooth spatial spread, with higher contaminant
concentrations closer to the sources and decreased concentrations at increasing distances.

HM particles can also be transported by moving bodies or water. HMs can be found
suspended in rivers, where the suspended sediment is deposited on alluvial soils in the event
of a flood. Large HM particles enter the water system at contaminating concentrations
through metalliferous mines, where particles are broken down into fine particles, known
as "tailings", and were historically dumped into rivers (Alloway, 2013). HM can also be
deposited on bodies of water via atmospheric deposition. Water in the form of glaciers
can also transport trapped soil and dust by depositing it where the glacier melts.

Anthropogenic activities can also significantly contribute to HM transportation as they
can be responsible for the movement of contaminated soil. Human-operated machinery,
such as tractors, sprayers, and manure spreaders, can also move heavy materials, includ-
ing HM-contaminated soil. Finally, the movement of soils can also occur during large
landslides, which can transport substantial quantities of contaminated soil downslope,
especially in the presence of heavy rain or other extreme hydrological events.

Industrial Activity

Industrial activity is the primary source of anthropogenic HM contamination in industrial
and urban areas but can also affect rural regions through deposition and mobilisation
pathways. The occurrence of HM contamination in soils at industrial sites varies and
is specific to the region’s industrial history. It can arise from dust, spillages, raw or



44 Chapter 3. Environmental Pollution

processed materials, wastes, final products, fuel ash, gaseous emissions from furnaces, or
other high-temperature processes. This relationship between industrial activity, HM-rich
waste, and byproducts results in a heterogeneous and non-stationary spatial distribution
of multivariate contamination.

Steel and iron processing have long been associated with environmental pollution. The
industry is a large producer of technogenic particles, which accumulate in shallow soils
through different mobility pathways. HMs such as Cd, Pb, and Hg are commonly found as
impurities in iron ore. Coke, a coal product, and other products are used in blast furnaces
to remove impurities from the iron ore, resulting in Zn, Pb, Cd, and As in gaseous emissions
and solid waste. Making steel requires oxygen furnaces and electric arc furnaces, which
generate steel slag and dust, which are high in Cr, Ni, and Zn. Yang et al. (2020) show
that steel and iron plant workers contain toxic levels of HM contaminants in their blood
and urine, mostly absorbed through inhalation.

Non-ferrous metalliferous mining and smelting, meaning mining and smelting of non-
magnetic metals such as Al, Cd, Cu, Zn, Pb, Ti, and Mg, are significant current and
historical sources of HM contamination. They extract and process metal ores and gangue
minerals. The process involves converting sulphide ore minerals to oxides by roasting them
in air and reducing them in a furnace, which allows for the separation of different molten
metals (Angon et al., 2024). The historical inefficiency of the process is still responsible for
HM contamination today. While smelting and mining industries are not often located in
urban areas, they have been major contaminants of arable soil and potable water, posing
a significant risk to rural populations in the surroundings (Sterckeman et al., 2002).

Other manufacturing processes have also been linked to HM soil contamination. Pb is a
common byproduct of the combustion of fossil fuels, manufacturing of paints and pigments,
incineration of industrial waste, ceramic and dishware manufacturing, lead battery man-
ufacturing and recycling, and plastics manufacturing. Ni is commonly found in industrial
dust as a byproduct of electroplating but is also common in food processing industries.
Cr can be found around textile manufacturing plants but has historically been helpful
in manufacturing paints, dyes, pigments, photographic film, and tanning, which can be
among the world’s oldest industrial activities. Hg can also be found in all those mentioned
above but is a particular concern in manufacturing fluorescent bulbs, chlor-alkali, scientific
instruments, waste incineration, electrical switches, thermometers, cellulose, and rubber
production. Cu can be found in some of the above but is particularly important in the
production of explosives and textile fabrics such as rayon.

Agriculture

Many agricultural enhancement practices have been linked to HM soil contamination.
Although these practices directly impact arable soils and soil quality, they can significantly
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affect public health as they present a pathway for contamination to enter the food chain via
produce and are a source of other environmental contamination via atmospheric deposition.

Fertilisers, both organic and inorganic, are one of the major sources of contamination in
the agricultural industry today. For example, using livestock manure as organic fertiliser is
a ubiquitous practice that can introduce contamination levels of HM to the soil depending
on the source animal, their feed, and manure processing. For example, pigs and poultry
in Europe have historically been fed more than their nutritional need of Cu and Zn to
encourage growth, resulting in high Cu and Zn manure (Eckel et al., 2005), and ultimately,
high concentrations of Cu and Zn in the soil. In the USA, a growth promoter containing
As was fed to chickens since the 1960s to speed maturation (Bellows, 2005).

Sewage sludge, known as biosolids, has also been widely used as agricultural fertiliser.
It is typically obtained from wastewater at sewage treatment plants (STP) and can be high
in N and P, which are essential for plant health at moderate concentrations. However,
biosolids can also be high in HM, as they represent all domestic and urban discharges, and
can vary significantly by STP (Alloway, 2013).

Inorganic fertilisers, on the other hand, are highly common in industrial agriculture
worldwide. They focus on providing the primary macronutrients, such as N, P, and K.
Secondary macronutrients are Ca, Mn, and S. Essential trace elements are also added to
ensure plant health, including B, Cu, Co, Fe, Mn, Mo, Ni, and Zn. Phosphatic fertilisers
contain the highest concentrations of potential HM contaminants, including As, Cd, U,
Th, and Zn. While trace concentrations of these elements are considered essential mi-
cronutrients, the excessive historical and current use of these elements is a source of soil
contamination.

Other enhancements of industrial agriculture can also be sources of contamination,
such as insecticides, fungicides, and herbicides, especially when used in excess. Fungi-
cides, for example, are often made from organo-metallic compounds such as Pb arsenate
(AsHO4Pb), Cu acetoarsenate, Cu oxychloride and phenyl mercury chloride. They are
mainly responsible for Cu and As accumulation in the soil and contamination of nearby
water sources through runoff (Angon et al., 2024). The World Health Organisation has
presented a classification of these substances based on toxicity levels, ranging from ex-
tremely hazardous to slightly hazardous. For more details, see Sharma et al. (2019).

Waste Disposal

While industrial and agricultural waste are significant sources of HM contamination, other
forms of waste, such as landfills, electronic waste, recycling plants, waste incinerators, and
sewage treatment facilities, can also be significant contributors.

Landfills are sites that contain municipal solid waste, which generally refers to waste
objects made from plastic, glass, food, metals, and paper, among others, and are typically
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used in commercial, office, domestic, and industrial settings. It is estimated that 2 billion
tonnes of municipal solid waste are produced each year (Maalouf and Mavropoulos, 2023).
At their simplest, landfills consist of holes in the ground where the waste is deposited and
later compacted and covered. In modern landfills, contamination is contained by lining
the hole with a clay lining and placing a plastic liner on top. In these cases, leachate, the
liquid from solid waste produced by physical and chemical reactions inside the landfill, is
contained. When these measures are not in place, leachate, which contains inorganic and
organic pollutants and heavy metals, can leach into soil and nearby groundwater sources
(Hosseini Beinabaj et al., 2023). Since the capability of proper contamination mitigation
measures is often a matter of economy, developing countries are more vulnerable to leachate
pollution.

Electronic waste (e-waste) is rapidly emerging as a major public health risk and is
generated by discarded electronic products. It is primarily composed of large household
appliances (49%), but other e-waste includes small household appliances, information and
communication electronics, entertainment equipment, electrical tools, toys and leisure
equipment, and medical devices (Chakraborty et al., 2022). The disposal of these objects
differs depending on governing policy, as they could end in general landfill sites or have
specific disposal sites. In the case where these objects are disposed of in specific sites,
contaminating concentrations of Cd, Hg, As, Pb, and Cr in both surrounding soils, water,
and sediment have been found (Hosseini Beinabaj et al., 2023). For more details on specific
contaminants and e-waste categories, see (Chakraborty et al., 2022).

3.1.3 Impacts on Public Health

Human exposure to heavy metals occurs via three main pathways: ingestion, inhalation,
and direct dermal contact (Adamo et al., 2014). Ingestion exposure is the consumption of
produce grown on contaminated soils and accounts for 90% of HM intake, while only 10%
of the exposure is due to direct skin contact or inhalation of polluted dust (Mitra et al.,
2022). Even though trace concentrations of most HMs are essential for the human body,
excessive concentrations are toxic to humans, pose significant risks to various systems
in the body, and can even lead to death. In this section, we describe the specific toxic
properties of HM on the human body, including neurotoxicity, nephrotoxicity, carcino-
genicity, hepatotoxicity, immunological toxicity, cardiovascular toxicity, dermal toxicity,
and reproductive and developmental toxicity.

Neurotoxicity

The main neurotoxic HM elements are Mn, As, and Cd. There is robust evidence of their
adverse effects on neurological health by affecting neurotransmitter receptors, the synaptic
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cytoskeleton, and scaffolding proteins, all of which result in lowered neurological function
(Carmona et al., 2021). Exposure to high concentrations of Mn has been shown to increase
neurological complications due to apoptotic cell death (programmed cell death), presenting
as Alzheimer’s and Parkinson’s disease (Goldhaber, 2003). On the other hand, exposure
to As through ingestion has been shown to result in cognitive impairments of the central
nervous system. It has been linked to neurological diseases, mainly of neurodevelopmental
and neurodegenerative natures. Additionally, As poisoning also causes changes in synaptic
transmission and the neurotransmitter balance and can even lead to death (Garza-Lombó
et al., 2019). Cd, which enters the body mainly through ingestion, affects cell proliferation,
differentiation, apoptosis, and other cellular activities. As a result, it is strongly linked
to neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson’s
disease, Alzheimer’s disease, and multiple sclerosis (MS) (Branca et al., 2018).

Other HMs and metalloids are also known to have neurotoxic consequences. Large
concentrations of Cu, Zn, and Fe can accumulate in the brain and impede neurodevelop-
ment, while excess retention of Cu causes Wilson’s disease, which has similar symptoms
to schizophrenia (Mitra et al., 2022).

Nephrotoxicity

The main nephrotoxic elements (those adversely affecting kidney health and function)
are Cd, Pb, and Hg. Excessive accumulation of Cd results in symptoms like glucosuria
(glucose in the urine), Fanconi-like syndrome (essential substances being excreted through
urine), phosphaturia (phosphorus in urine), and aminoaciduria (abnormally high amino
acids in urine) (Reyes et al., 2013), which can eventually lead to renal tubular acidosis,
renal failure, and hypercalciuria (Charkiewicz et al., 2023).

Pb exposure is directly responsible for proximal tubular dysfunction, resulting in Fan-
coni syndrome. Chronic lead exposure is characterised by hyperplasia (excess cells in organ
tissue), interstitial fibrosis (thickening of the kidney walls), atrophy of the tubules, renal
failure, and glomerulonephritis (acute inflammation of the kidney) (Mitra et al., 2022).

The toxicity of Hg affects multiple body systems. However, acute exposure causes
acute tubular necrosis, presenting as acute dyspnea (shortness of breath), altered mental
status, abdominal pain, profuse salivation, tremors, vomiting, chills, and hypotension.
Chronic exposure to Hg causes injury to the epithelium and necrosis in the pars recta
of the proximal tubule, presenting as a tubular failure, higher urine excretion of albumin
and retinol protein, and a nephritic state, all leading to renal failure and potentially fatal
(Lentini et al., 2017).



48 Chapter 3. Environmental Pollution

Carcinogenicity

Although chronic exposure to many HMs is carcinogenic, those exposed to As, Pb, Hg,
and Ni are at the highest risk. Chronic and acute exposure to As has been shown to cause
epigenetic alterations, DNA damage, changes in protein expression and DNA methylation,
among others (Martinez et al., 2011). It significantly increases the risk of cancer by
attaching to DNA-binding proteins and hindering the DNA-repair process (Mitra et al.,
2022).

Pb and Hg exposure causes cancer by damaging the DNA repair mechanism, cellular
tumour regulation genes, and the chromosomal structure and sequence by releasing Reac-
tive Oxygen Species (ROS). ROS, in turn, are highly carcinogenic and aid protumorigenic
signalling by damaging cellular proteins, lipids, and DNA, resulting in cell damage (Pizzi-
menti et al., 2010; Reczek and Chandel, 2017; Zefferino et al., 2017). Pb exposure has
been directly linked to a higher risk of lung, stomach, and bladder cancer (Rousseau et al.,
2007).

Ni has strong carcinogenic properties by affecting mechanisms such as gene regulation,
transcription factor management, and free radical generation, which contribute signifi-
cantly to carcinogenesis in human beings (Zambelli et al., 2016).

Hepatotoxicity

Pb is also highly toxic to liver cells (hepatotoxic). Exposure, both acute and chronic,
increases oxidative stress, causing liver damage by glycogen depletion and cellular infil-
tration, and can result in chronic cirrhosis of the liver (Hegazy and Fouad, 2014). Acute
Cd exposure also causes oxidative stress and hepatocellular damage and can result in liver
failure and increase the risk of liver cancer (Hyder et al., 2013). The accumulation of Cu
leads to Wilson’s disease but can also lead to cholestatic liver diseases through oxidative
stress mechanisms (Yu et al., 2019). Finally, Cr affects the liver by elevating ROS levels,
lipid peroxidation, suppression of DNA, RNA, and protein synthesis, DNA damage, de-
crease of antioxidant enzyme activity, mitochondrial dysfunction, cell growth arrest, and
apoptosis (Hasanein and Emamjomeh, 2019).

Immunological Toxicity

Both acute and chronic exposure to Pb have a toxic effect on the immune system and result
in the rise of allergies, infectious diseases, autoimmune diseases, and cancer (Rousseau
et al., 2007; Hsiao et al., 2011). Cr also elicits a harmful immune response by reducing
the phagocytic action of alveolar macrophages and hindering the immune response when
exposure is through inhalation. Additionally, a link between Cr and contact dermatitis
has also been well-established (Mitra et al., 2022).
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Cardiovascular Toxicity

Important cardiovascular toxic elements include Cd, Hg, and Pb. Population exposure
to Cd is known to increase cardiovascular mortality (Tellez-Plaza et al., 2013). Even low
to moderate exposure results in hypertension, diabetes, carotid atherosclerosis, peripheral
arterial disease, myocardial infarction, stroke and heart failure (Everett and Frithsen,
2008). Hg has been directly linked to atherosclerosis and increased risk of coronary heart
disease, cardiovascular disease, acute myocardial infarction, coronary heart disease, and
carotid artery stenosis (Kulka, 2016).

Chronic exposure to Pb can lead to arteriosclerosis and hypertension, thrombosis,
atherosclerosis, and cardiac diseases through an increase of OS, reducing NO availability,
altering vasoconstrictor and vasodilator prostaglandin balance, and raising blood pressure
(Vaziri, 2008; Mitra et al., 2022).

Dermal Toxicity

The main HMs with adverse effects on the skin are As, Cr, and Hg. Chronic exposure
to As can cause skin diseases such as hyperkeratosis, hyperpigmentation, Bowen’s disease
and skin cancer (Huang et al., 2019). Chronic exposure to Cr, on the other hand, can
result in contact dermatitis, systemic contact dermatitis, and skin cancer. Finally, direct
exposure to Hg and Hg-containing compounds can result in many skin infections, including
acrodynia (Mitra et al., 2022).

Reproductive and Developmental Toxicity

HM toxicity has been shown to affect reproductive and developmental health. In males,
As is known to reduce the weight of the testes, negatively affecting sperm production,
testosterone and gonadotropin levels, disturbing the steroidogenesis process and decreasing
fertility as a result (Kim and Kim, 2015). In females, arsenic exposure increases the risk of
endometrial problems and impairs endometrial angiogenesis, resulting in lowered fertility,
prematurity, sterility, and spontaneous abortions (Milton et al., 2017).

3.1.4 Environmental and Economic Impacts

Environmental

Soil is a complex structure consisting of five major components: mineral matter, water,
air, organic matter, and living organisms (Chopra et al., 2009), all susceptible to HM
contamination. Changes in soil properties such as pH, porosity, conductivity, and natu-
ral chemistry can lower soil quality. Microbial and enzymatic activity, which is essential
for the breakdown of organic matter and minerals for plant intake, are also significantly
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hindered in contaminated soils, threatening ecosystem health, negatively affecting agri-
cultural production, threatening food security, and increasing exposure through ingestion
of food when grown on contaminated soils (Xin et al., 2022) for both human beings and
dependent organisms. Emissions from urbanisation and industrialisation can mobilise in
runoff or direct waste disposal and enter surface and groundwater and form contaminated
sediment or remain suspended in solution (Briffa et al., 2020). As such, contaminated
water also plays an important role in the exposure pathways of the ecosystem. Many
sources and emitters of HMs into the environment can do so by releasing emissions as
suspended particles in the air. These particles can remain in the atmosphere for a long
time, be deposited in other soils and water, or be inhaled by living organisms. Section 3.3
gives more details on air pollution.

Economic

Globally, there are over 5 million polluted sites, covering 20 million ha of land, in which
the soils are contaminated by various heavy metals or metalloids (Liu et al., 2018). HM
pollution in the soil has a combined worldwide economic impact estimated to be in excess
of US$10 billion per year (He et al., 2015) with poorer, less educated households being
at higher risk of pollution injuries (Levasseur et al., 2022). Pollution injuries include the
economic and social burden of healthcare due to pollution and the cost of remediation.
In the US, phytoremediation, a common remediation technique, has a cost of US$37.7m3

(Wan et al., 2016). For more details on the costs incurred by the healthcare burden of HM
soil contamination, see Xu et al. (2023), and Khalid et al. (2017) for the cost of different
remediation techniques.

3.1.5 Management of Contaminated Soils

It is estimated that there is 20 million ha of HM-contaminated soil globally, with As,
Cd, Cr, Hg, Pb, Co, Cu, Ni, Zn, and Se as the most common contaminants (Liu et al.,
2018). Given the long-term persistence and the harmful effects of HM soil contamination,
managing contaminated soils consists of limiting or decreasing exposure through imposing
urban policy for landuse or, where exposure cannot be managed, establishing guidelines
for the remediation of contaminated soils.

Remediation

Remediation techniques are numerous and occur in-situ or ex-situ, referring to treatment
at the site or removal of contaminated material, respectively. General remediation tech-
niques can be categorised as physical, chemical, electrical, thermal, and biological remedi-
ation. A Specific techniques may surface capping, soil flushing, electrokinetic extraction,
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solidification, vitrification, and phytoremediation.
In containment-based techniques, such as surface capping, the contaminated soils are

contained by covering them with a layer of waterproof material to form a protective surface.
The cover forms an impermeable barrier to rain or surface water interaction and prevents
contamination from diffusing into groundwater sources. The disadvantage is that the
remediated soils lose their environmental functions, such as supporting plant growth, and
are consequently only used for civil purposes (Liu et al., 2018).

In electrokinetic extraction, HMs are removed from the contaminated soils via electrical
absorption. Low-density direct current is applied to the soil via electrodes inserted in the
ground. In the solution phase, cations migrate to the cathode while anions migrate to the
anode. While this is an effective and cost-friendly approach to remediation, its success is
highly dependent on specific soil conditions such as soil type, pH, water saturation, and
organic content (Figueroa et al., 2016). Soil flushing passes an extraction fluid through
the soil to remove contaminants. It is costly and challenging, as extensive infrastructure
is necessary to recover the flushing elutriate (Liu et al., 2018).

Phytoremediation is one of the most common and accessible forms of soil remediation
as it is operationally simple, aesthetically preferable, economically viable, and widely ac-
cepted by surrounding communities (Liu et al., 2018). It consists of growing plants in
contaminated soils and using their natural processes to remove heavy metals (phytoex-
traction and phytovolatilisation) or to stabilise them into harmless substances known as
phytostabilsation (Mahmood et al., 2015). Over 721 species of plants are considered hyper-
accumulators due to their ability to accumulate heavy metals without suffering phytotoxic
damage (Reeves et al., 2018). However, phytoremediation is ineffective, as it is slow to
reduce contamination, and the plants are subject to nutrient depletion or pests.

Ex-situ remediation techniques move contaminated soils from one location to another
for treatment or safe storage and include techniques like landfilling, soil washing, solidifica-
tion, and vitrification. These techniques have high costs, infrastructure, and management
expenses and are therefore reserved for particularly suitable cases.

The choice of remediation technique must be made on a case-by-case basis, as every
contaminated site is highly heterogeneous and depends on the local sources of contam-
ination and landuse. Overall, remediation techniques are chosen by the geography of
the contaminated site, contamination properties, time required, remediation goals, cost-
effectiveness, financial budget, implementation readiness, and public acceptability (Khalid
et al., 2017).

Policy

The United Kingdom has a history of regulating heavy metal waste and emission discharge
that could eventually enter the soil ecosystem, that dates back to the Industrial Revolu-
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tion, such as the Rivers Pollution Prevention Act of 1876 or the Clean Air Act of 1956.
However, specific policy targeting heavy metal soil contamination was only passed in the
Environmental Protection Act of 1990: Part 2A (DEFRA, 1995). It defines contaminated
land as "any land which, by condition or reason of substances, can cause significant harm,
or there is a possibility of significant harm can be caused, or one which poses the threat
of polluting waters". It grants specific provisions for local authorities to assess risk and
places the liability on the original polluter, following the "polluter pays" principle. If
the responsible party cannot be found, the landlord is responsible for risk assessment and
appropriate remediation.

While policy documents do not directly state guidance values, the Contaminated Land
Exposure Assessment (CLEA, Environment Agency 2009) documents by the Environ-
ment Agency have provided direct soil guideline values (SGV) according to the function
of the contaminated land. Table 3.1.5) shows SGV for allotment soils, residential soils
with home-grown produce, residential soil without home-grown produce, and industrial
grounds. The table shows As, Cd, Cr, Hg, Ni, and Pb. Cu and Zn are omitted because
their recommended values depend on the soil’s pH levels.

3.2 HM Contamination: Exploratory Analysis

3.2.1 Data Description

The British Geological Survey (BGS) performed the geochemical baseline survey of the
environment (G-BASE) starting in the 1960s and ending in 2014 (Johnson et al., 2005).
Although the survey spanned multiple decades, it only collected a single sample for every
location and therefore cannot inform as to changes in time. Initially commissioned for
mineral exploration, it is now a valuable tool for the systematic assessment of the geo-
chemical baseline of the UK environment. While the original plans of the survey were to
collect data in England, the Glasgow Conurbation was added later (collected in 2014) as
an important representation of historical urban soils. The data produced by this survey
provides a single multivariate observation - representing the geochemical profile of the soil
- for the locations sampled for the time when the sample was collected.

In this application, only the Glasgow Conurbation region in the Clyde River Basin,
west of Scotland, is considered. It consists of approximately 2745 topsoil (5-20cm deep)
samples taken at approximately 4 observations per km2 in the urban areas and 1 per
1 km2 in rural areas. Each sample was decomposed chemically using X-ray fluorescence
spectrometry (XRFS), and the concentration of each element in the sample was in parts
per million (ppm). Only the concentration of uranium (U) was measured using the delayed
neutron method (DNM). Soil properties such as conductivity and pH were measured using
portable field equipment. As is common practice in soil surveys, a single sample was
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Table 3.1: UK CLEA soil guidance values by land use function for the major HM con-
taminants As, Cd, Cr, Hg, Ni, and Pb. Cu and Zn content are excluded from this table
because their concentrations are highly dependent on soil pH.

Contaminant Function of Land Use SGV (mg/kg)
Allotment 49
Residential with home grown produce 37
Residential without home grown produce 70Arsenic (As)

Industrial 640
Allotment 3.9
Residential with home grown produce 22
Residential without home grown produce 150Cadmium (Cd)

Industrial 410
Allotment
Residential with home grown produce 130
Residential without home grown produce 200Chromium (Cr)

Industrial 5000
Allotment 26
Residential with home grown produce 10
Residential without home grown produce 10Mercury (Hg)

Industrial 26
Allotment 230
Residential with home grown produce 230
Residential without home grown produce 230Nickel (Ni)

Industrial 1800
Allotment 80
Residential with home grown produce 200
Residential without home grown produce 310Lead (Pb)

Industrial 2300
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collected at each location, rendering the data "unreplicated", meaning a single temporal
replication is available per location. Further details can be found in Johnson et al. (2005).
Some of the most common HM contaminants in the soil are As, Cr, Cu, Ni, Pb, and Zn;
therefore, these elements will remain the focus of the work presented in this dissertation.

Skewness and heavy-tails are common features of HM contaminant distributions (Marchant
et al., 2010). Figure 3.1 shows histograms of each individual contaminant in the original
scale, showing that the contaminants display strong right skewness and heavy tails. Figure
3.2 shows histograms for the individual contaminants after the log-transformation, already
exhibiting less-skewed behaviour, improved symmetry, and lighter tails.

Figure 3.1: Histograms of As, Cr, Cu, Ni, Pb, and Zn in their original scale (ppm) for
samples taken in the Glasgow Conurbation.

Figure 3.2: Histograms of As, Cr, Cu, Ni, Pb, and Zn after a log-transformation for
samples taken in the Glasgow Conurbation.
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Although the transformed data appear approximately normal after a log transforma-
tion, kurtosis estimates are 13.51 for As, 18.32 for Cr, 5.64 for Cu, 6.55 for Ni, 4.69 for
Pb, and 5.57 for Zn. The kurtosis provides a measurement for the heaviness of the tail
of a distribution, with Gaussian tails having a kurtosis of 3. In this application, all con-
taminants exceed a kurtosis of 3, with Cr and As having the heavier tails, and Pb and
Cu having the lighter ones. This is indicative of non-Gaussian behaviour in the tail and a
warning of the potential underestimation of the extremes by Gaussian models, suggesting
non-Gaussian modelling alternatives might be prudent.

3.2.2 Spatial Distribution of Individual Contaminants

Maps of individual contaminants are given in Figures 3.3 to 3.8. The spatial heterogeneity
and overall behaviour are visible from the different spatial patterns for each contaminant.
For example, the maps of arsenic (As) concentrations in Figure 3.3 show that there is no
clear region of high concentrations. However, observations surpassing the 95th percentile
are mostly located in the west half of the city. They tend to follow roads with high traffic,
like the road to the northwest of the city near the Trossachs National Park.

Figure 3.3: Maps of the log concentration of As. The map on the top shows the entire
range of values, while the map on the bottom is censored at 2.93 log(ppm), the 95th
percentile. Concentrations above 2.93 log(ppm) are shown in orange, and the maximum
value, 6.75 log(ppm), is shown in red.

The map of Cr concentrations in Figure 3.4 shows a clear region of high concentrations
south of the Glasgow city centre, on the southern banks of the River Clyde - an area
of significant industrial history. The maximum concentration, however, is found to the
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Figure 3.4: Maps of the log concentration of Cr. The map on the top shows the entire range
of values, while the map on the bottom is censored at 5.2 log(ppm), the 95th percentile.
Concentrations above 5.2 log(ppm) are shown in orange, and the maximum value, 8.58
log(ppm), is shown in red.

west of the city in a suburb called Coatbridge, which is also the location of the maximum
concentration of As. Maps for the concentrations of Cu and Ni are given in Figures 3.5 and
3.6, respectively. While neither contaminant has a clear spatial pattern, concentrations
of Cu display more spatial smoothness, with areas of larger concentrations to the west
of the city, near Paisley and the Clyde Muirshiel Regional Park, and to the southeast,
including the villages of East Kilbride (south) and Wishaw (southeast). Both contaminants
share the same location for maximum value, which is west of the city between the Clyde
River (a historically industrial area) and the Glasgow International Airport. The maps of
concentrations of Pb and Zn are given in Figures 3.7 and 3.8, respectively. While there is
no single area of large concentrations of either contaminant, higher concentrations of Pb
are found in the western half of the city, along major roads, and alongside the river banks.
Zn displays a similar pattern, with higher concentrations south of the river and along the
banks. The maximum concentration of Zn is found in Coatbridge to the east of the city,
while Pb has a maximum concentration east of the city on the banks of the River Clyde.
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Figure 3.5: Maps of the log concentration of Cu. The map on the top shows the entire
range of values, while the map on the bottom is censored at 5.11 log(ppm), the 95th
percentile. Concentrations above 5.11 log(ppm) are shown in orange, and the maximum
value, 8.21 log(ppm), is shown in red.

Figure 3.6: Maps of the log concentration of Ni. The map on the top shows the entire
range of values, while the map on the bottom is censored at 4.59 log(ppm), the 95th
percentile. Concentrations above 4.59 log(ppm) are shown in orange, and the maximum
value, 6.95 log(ppm), is shown in red.
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Figure 3.7: Maps of the log concentration of Pb. The map on the top shows the entire
range of values, while the map on the bottom is censored at 6.1 log(ppm), the 95th
percentile. Concentrations above 6.1 log(ppm) are shown in orange, and the maximum
value, 9.2 log(ppm), is shown in red.

Figure 3.8: Maps of the log concentration of Zn. The map on the top shows the entire range
of values, while the map on the bottom is censored at 6.1 log(ppm), the 95th percentile.
Concentrations above 6.1 log(ppm) are shown in orange, and the maximum value, 8.53
log(ppm), is shown in red.
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3.3 Air Pollution: Particle Matter 2.5

3.3.1 Definition of PM2.5 Air Pollution

Particle matter (PM) of less than 2.5µm in diameter is called PM2.5. It is one of the six
major air pollutants linked to significant health risks (Cheng et al., 2024). Snider et al.
(2016) used the Surface PARTiculate mAtter Network (SPARTAN), a long-term global
network working on the characterisation of chemical and physical attributes of aerosols,
and found that the major constituents (relative contribution ± SD) of PM2.5 are am-
moniated sulfate (20%± 11%), crustal material (13.4%±9.9%), equivalent black carbon
(11.9%±8.4%), ammonium nitrate (4.7%±3.0%), sea salt (2.3%±1.6%), trace element ox-
ides (1.0%±1.1%), water (7.2%±3.3%), and residual matter (40%±24%) from a variety of
emission sources and atmospheric processes. However, these fractions are highly localised,
reflecting emission sources in the area. Identifying the precise composition of the PM2.5

pollution at a local scale is a current area of research, as it can determine the specific
public health risks posed by the exposed population (Cheng et al., 2024).

3.3.2 Sources of Air Pollution

The sources and composition of PM2.5 pollution display spatial and temporal heterogeneity
and are therefore considered at a local or regional scale. They are typically identified using
source inventories in an area to match unique chemical profiles to known sources of pol-
lution. Generally, sources of PM2.5 pollution can be classified into six different categories
(Ryou et al., 2018): motor vehicle, secondary aerosol, soil dust, industrial combustions,
and natural sources.

Motor Vehicles

Motor vehicle emissions of gasoline or diesel are major contributors to the denominated
"vehicle emissions" or "road dust". The literature makes no distinction between the emis-
sions from gasoline or diesel combustion (Ryou et al., 2018). Vehicle-related sources of
these emissions include a mixture of tailpipe emissions from gasoline and diesel engines
and road dust components of lubricating oil combustion, brake, and tyre abrasion prod-
ucts (Viana et al., 2008). This source is primarily responsible for the carbon content in
PM2.5, including total, organic, and elemental carbon (Yi and Hwang, 2014). They are
also responsible for inorganic ion content, including sulfate (SO2−

4 ), nitrate (NO−
3 ), and

ammonium (NH+
4 ) (Moon et al., 2008). Non-tailpipe emissions were characterised by the

existence of Cu, Zn, and Ba (Ryou et al., 2018). Motor vehicle emissions are mainly
diurnal and higher on weekdays than on weekends.
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Secondary Aerosol

Primary PM refers to the direct emission of particles, whereas secondary PM refers to the
particles formed once in atmospheric suspension between polluting emissions and atmo-
spheric content. Secondary aerosol includes "secondary nitrate" and "secondary sulfate"
sources. They are considered to be aerosol-related summer sources of SO2−

4 , NO−
3 , and

NH+
4 , which are produced by gas-to-particle conversion processes, sulfur dioxide oxida-

tion, and ammonium neutralisation. Secondary aerosol emissions show strong seasonal
variation with high levels of SO2−

4 in the summer and NO−
3 in the winter, enhanced by

increased photochemical reactions related to temperature (Ryou et al., 2018).

Soil Dust

Soil dust encompasses sources such as "soil", "soil-related", "geological", "urban dust",
and "soil dust" and is exclusive of "road dust" or any other traffic-related dust emission.
Soil dust can reflect sand, city dust, local or regional re-suspension, and wind-blown dust
in the air (Viana et al., 2008). Chemically, it is characterised by the presence of Al,
Ca, Fe, and K (Ryou et al., 2018). Soil dust emissions can be higher during planting
and harvest seasons in the spring and autumn, as seasons of higher agricultural activity
increase suspended dust content.

The category can also include biomass and field burning. Biomass burning refers to
the chimney emissions from burning wood for domestic purposes. Field burning is burning
crop fields to clear them of bugs or unwanted plants before sowing. Similar components
characterise emissions from these sources as soil dust but with a large proportion of black
carbon (BC; Yi and Hwang 2014).

Industrial Combustion

This source encompasses emissions known as "oil combustion", "fossil combustion", "mu-
nicipal and waste incineration", and "cement and construction". It is characterised by
high contents of Ca, Cl, Zn, Antimony (Sb), Fe, and K. Oil combustion can be separated
from the others for its Ni and V content, which is typically related to ships and industrial
plants (Ryou et al., 2018).

Natural Sources

Natural sources of PM2.5 contamination are aged sea salt, marine aerosol, and volcanic
emissions. They are characterised by Na and Cl content (Ryou et al., 2018). Although
forest fires release large amounts of PM2.5 into the atmosphere, it is high in BC content
and typically categorised with soil dust.
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3.3.3 Impacts of Air Pollution

PM2.5 is a pernicious presence in the urban atmosphere and poses a major threat to
public health (Martenies et al., 2015), with studies such as the Global Burden of Disease
Study (GBD;GBD 2016) in 2015, ranking PM2.5 as the fifth leading risk factor for death.
Exposure to PM2.5 can endanger multiple organ systems and lead to systemic adverse
effects. Robust associations have been made between long-term exposure to ambient
and indoor PM2.5 exposure and increased mortality due to heart disease, stroke, chronic
respiratory disease, and lung cancer, among others (Sharma and Mujumdar, 2022).

Respiratory Effects

The small size of PM2.5 pollution enables its toxic components to penetrate deep into
the lungs and deposit in the terminal pulmonary bronchioli and alveoli with each breath,
resulting in increased oxidative stress, inflammation of tissue and cells (Davel et al., 2012;
Habre et al., 2014), and altering the immune response (Feng et al., 2016). Together, these
adverse effects are responsible for the decline in lung function, incidence, exacerbation,
and maintenance of asthma, chronic obstructive pulmonary disease (COPD; Don D. Sin
et al. 2023), and for increasing the lung’s vulnerability to infection (Duan et al., 2013;
Jedrychowski et al., 2013).

The deposition of PM2.5 particles in the pulmonary bronchioli and alveoli results in
the internalisation of toxins into lung cells (Gualtieri et al., 2011), eliciting oxidative stress
and triggering impairments to normal cellular function and can even cause cellular death
by ways of apoptosis, autophagy or others (Gualtieri et al., 2011). The oxidative stress
by PM2.5 exposure elicits an inflammatory response, which has also been shown to worsen
previous pulmonary injuries and may lead to alveolar collapse (Duan et al., 2013). The
immune system is triggered simultaneously, causing bronchial remodelling that may result
in the thickening of the bronchial walls and tissue fibrosis, further decreasing lung function
(Zaiss et al., 2015). PM2.5 exposure can also alter the immune response in the lung and
render it susceptible to infections by decreasing bacterial clearance (Duan et al., 2013),
triggering the death of lung epithelial cells, and impeding antimicrobial activities in the
lower airways (Feng et al., 2016).

Cardiovascular Effects

PM2.5 particles enter the cardiovascular and circulatory system through the gas-blood
barrier in the alveoli (Schulze et al., 2017). The entrance of PM2.5 toxins into the circu-
latory system triggers cardiovascular events through similar mechanisms to those in the
respiratory system: oxidative stress and inflammation. These two are responsible for an
increase in cardiovascular diseases, including atherosclerosis, coagulation, hypertension,
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myocardial remodelling, and thrombotic and non-thrombotic acute cardiovascular events
such as heart failure, endothelial dysfunction, and arrhythmias Basith et al. (2022). The
impacts have been measured as significant, with PM2.5 exposure being considered a risk
factor for cardiovascular morbidity and mortality (Basith et al., 2022).

Cerebrovascular Effects

Strokes are the second leading cause of premature mortality in the world (GBD, 2016).
PM2.5 air pollution is the third significant contributor to the global stroke burden after
preventable risk factors, accounting for 29.2% of the burden of stroke (Feigin et al., 2016).
Strokes can be categorised as ischemic or hemorrhagic. Ischemic strokes are characterised
by a blockage of the circulation system, leading to decreased blood flow and tissue necrosis.
Hemorrhagic strokes are indicative of bleeding in the brain through a damaged blood
vessel. While the effects of chronic PM2.5 exposure are the same in the cerebrovascular
system, inflammation and oxidative stress, Lamorie-Foote et al. (2023) show that PM2.5

is strongly related to increased risk of ischemic stroke, but their effect on hemorrhagic
strokes is variable and may be influenced by other factors. They also show that PM2.5

exposure increases the probability of ischemic and hemorrhagic strokes in older patients
with pre-existing diabetes.

Other Public Health Impacts

Recent studies suggest a link between prenatal PM2.5 exposure and hindered neurodevel-
opment. Xu et al. (2022) showed that PM2.5 exposure increases the risk of non-optimal
gross motor development by 31% for every 10 µg increase in the average PM2.5 with SO2−

4

concentrations considered to be the most significant toxin. Lertxundi et al. (2019) showed
that the NO2 is linked to lower global cognition and language development in children
up to 1 year old. Hurtado-Díaz et al. (2021) also showed that PM2.5 exposure during
pregnancy hindered language development in children up to 24 months old. Additionally,
He et al. (2017) show the association of levels of atmospheric PM2.5 and type 2 diabetes
and gestational diabetes.

Environmental Impacts

The environmental impacts of PM2.5 are severe and can result in a significant deterioration
of environmental quality. Soil dust, the black carbon in soot and a type of PM2.5, is
the dominant absorber of visible solar radiation in the atmosphere (Ramanathan and
Carmichael, 2008). Its high absorption properties and strong regional spatial distribution
make black carbon PM2.5 the second strongest contributor to global warming after carbon
dioxide emissions (Ramanathan and Carmichael, 2008).
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A significant effect of PM2.5 and PM10 in the environment is a reduction in visibility.
PM10 and PM2.5 are hygroscopic, meaning they can absorb water. When atmospheric
humidity is high, PM2.5 and PM10 absorb water vapour and enlarge, participating in fog
formation and lowering visibility for long periods (Khanna et al., 2018). The suspended
PM2.5 in high humidity conditions also results in acidic rain. In turn, acidic rain lowers
soil quality and decreases the rate of leaf and compost breakdown, slowing the natural
reintegration of essential micronutrients to the soil (Wu and Zhang, 2018).

Finally, the deposition of PM2.5 on wet areas and arable soils increases the acidifica-
tion of water and soil and is a major contributor to contamination. Moreover, nitrogen
(N) deposition on water bodies encourages plant growth inside water bodies, playing a
significant role in eutrophication and increasing biodiversity loss (Erisman et al., 2013).

3.3.4 Monitoring and Policy

The UK has a long history of air pollution, starting with the Industrial Revolution when
the country became increasingly reliant on the burning of fossil fuels to meet energy needs.
Consequently, large urban smogs developed, with acute and chronic exposure causing thou-
sands of premature deaths, such as in the Great London Smog incident of 1952 (Laskin,
2006). As a result, the Clean Air Act was passed in 1956, giving power to local authorities
to control emissions of smoke, grit, dust, and fumes by banning the sources of these emis-
sions. To meet the stipulations of the Clean Air Act, the National Survey was established
in 1961 as a nationwide air pollution monitoring network. In 1992, the Department for
Environment, Food and Rural Affairs (DEFRA) established an Enhanced Urban Network
(EUN) for air pollution monitoring, and in 1995, consolidated all urban monitoring under
one comprehensive program, including the London Air Quality Monitoring Network sites.
In 1998, urban and rural automatic networks, which had previously been separate, were
combined and brought under the Automatic Urban and Rural Network (AURN). Today,
AURN comprises over 170 sites across the UK and is responsible for PM2.5 and PM10

monitoring.
The Air Quality Standards Regulations (AQSR, 2010) passed in 2010 states that PM

concentrations must not exceed

• PM10: An annual average of 40 µm3.

• PM10: Any 24-hour average of 50 µm3 more than 35 times in a single year.

• PM2.5: An annual average of 20µm3.

The targets for both PM2.5 and PM10 were updated in 2023 for England in the Envi-
ronmental Targets Regulations (ETR, 2023). The 2040 targets for England are:
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• PM2.5: An annual average of 10 µm3 is not exceeded at any monitoring station
(known as the Annual Mean Concentration Target).

• PM2.5: Population exposure is at least 35% less than that in 2018 (known as the
Population Exposure Reduction Target).

The Environmental Improvement Plan of 2023 for England sets the following interim
targets for the end of January 2028:

• PM2.5: An annual average of 12 µm3 is not exceeded at any monitoring station.

• PM2.5: Population exposure is at least 22% less than that in 2018.

3.4 Air Quality: EAC4 and AURN Datasets

In this Section, we explore the data used for the case study in Chapter 6, which focuses
on PM2.5 pollution in the Greater London area shown in Figure 3.9, for daily averages in
the year 2022. The data come from two sources, one representing remote-sensing data,
and the other in-situ measurements. The CAMS global renanalysis dataset, known as
EAC4 (http://www.atmos-chem-phys.net/19/3515/2019/), is obtained from
the Centre for Atmosphere Monitoring Service (CAMS), a subsidiary of the European
Centre for Medium-Range Weather Forecasts (ECMWF). The EAC4 data is obtained by
merging satellite observations of atmospheric composition from the Copernicus satellite
with computer simulations of the atmosphere in a process known as data assimilation
(Inness et al. 2019; https://ads.atmosphere.copernicus.eu).

The second data source is the AURN monitoring network, administered by the Envi-
ronment Agency (https://uk-air.defra.gov.uk/networks/network-info?
view=aurn). Both datasets are freely accessible online and can be downloaded at vari-
ous time scales and periods.

3.4.1 CAMS Global Reanalysis (EAC4)

The CAMS global reanalysis data, formally known as ECMWF Atmospheric Composition
Reanalysis 4 (EAC4), is a global reanalysis dataset of atmospheric composition (see In-
ness et al. 2019 for details). Analysis combines dynamic models based on the physical and
chemical processes in the atmosphere with satellite observations to formulate the initial
conditions of 12-hour forecasts. Reanalysis, on the other hand, performs retrospective
analysis of past periods and can use data from observation stations to enhance forecasts.
Observations from analysis and reanalysis models are different from in-situ stations. Sig-
nificant discrepancies between the two sources can be due to biases introduced through
the construction of the model (Sheridan et al., 2020), the smoothing nature of a coarse

http://www.atmos-chem-phys.net/19/3515/2019/
https://ads.atmosphere.copernicus.eu
https://uk-air.defra.gov.uk/networks/network-info?view=aurn
https://uk-air.defra.gov.uk/networks/network-info?view=aurn
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Figure 3.9: Greater London region in the case study of data fusion for PM2.5 extremes
model proposed in Chapter 6.

spatial resolution such as those commonly used in global reanalysis datasets, and the
spatial smoothness of the phenomenon. Discontinuous variables, such as precipitation or
windspeed, have been shown to display large discrepancies between reanalysis data and
measurements from observation stations (Essou et al., 2016). Additionally, Sheridan et al.
(2020) showed that the differences between data from both sources increase for extreme
temperature events, especially away from the central latitudes and close to the coast,
showing that significant bias is found in reanalysis datasets even after assimilation.

Because air pollution guidelines (see Section 3.3.4) are on a 24-hour average scale, we
aggregated data from the sub-daily scale to the daily average. To maximise the amount
of data available in the AURN network, we chose to focus on the Greater London area
for the year 2022, which represents the area inside the coordinates (−1◦, 51◦) and (1◦, 52◦)

(for degrees East and North), shown in Figure 3.9. This area has a diverse geographical
setting, containing urban, suburban, and rural regions. At a spatial scale of 0.1◦ × 0.1◦,
data at each cell centroid is defined as Xi, where i = {1, ..., 220} represent the 220 available
cells shown in Figure 3.10.

Figure 3.10 also shows sites 1 to 5, marked for demonstration, representing suburban,
urban, and rural areas. Site 1 is Crawley to the south of London, which is a suburban
location. Sites 2 and 3 are urban areas inside metropolitan London, Croydon and London
City Centre, respectively. Finally, sites 4 and 5 are rural areas by the coast and inland,
respectively.
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Figure 3.10: Map of the Greater London region and the 11×20 grid of the EAC4 dataset.
Sites 1 to 5 are marked for further demonstration purposes representing suburban, urban,
and rural settings.

Temporal Patterns

Cell centroids across the region behave similarly, following consistent temporal patterns as
seen in the box plots in Figures 3.11 and 3.12. The months of January and March (Figure
3.11) exhibit the highest PM2.5 concentrations across all cells, with the overall maximum
observed in March. These months also experience the highest daily variability, potentially
due to a combination of the holiday season (between December and January) and the
meteorological features of the winter season. Higher concentrations are also seen in April,
May (Figure 3.11), and November (Figure 3.12). The remaining months, February and
June to October, show limited variability, with mostly constant concentrations and small
peaks. During most of the year, site 3, the London city centre, experiences higher values of
PM2.5 while site 4 on the rural coast (Southend-on-Sea) generally experiences the smallest
concentrations with brief relative peaks such as the first peak in March and the middle
of May. As seen in the Figures, no clear pattern is discernible between yearly or weekly
patterns, such as summer-winter differences. Moreover, the possible existence of weekday-
weekend patterns or differences was investigated, but no patterns were found, suggesting
the presence of more influential factors in PM2.5contamination in the London region or
providing evidence to the "smoothed" surface provided by remote-sensing datasets.

Spatial Patterns

The spatial patterns of 5 descriptive statistics are shown in Figure 3.13, specifically, the
pointwise minimum, maximum, median, and the width of the range of observations at
each location. The figure shows a consistent, and perhaps expected, pattern: the London
city centre has higher concentrations of PM2.5 than the rest of the region. The top left
corner figure shows that the London city centre and the south-east region have the highest
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Figure 3.11: Box-plots for daily mean concentrations of PM2.5 for the months January to
June. The daily concentration of the Sites 1 to 5 are given in coloured lines.
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Figure 3.12: Box-plots for daily mean concentrations of PM2.5 for the months July to
December. The daily concentration of the Sites 1 to 5 are given in coloured lines.
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minimum concentrations, while the north, west, and southwest areas have lower concen-
trations. It is particularly noticeable that cells over the coast have lower concentrations
than those on land. While the same behaviour is present in the median (top right cor-
ner), the map of maxima in the bottom row of the figure shows that the city centre has
a maximum value that is 8 µg/m3 higher than the surrounding areas. Additionally, it is
evident that the region north of the city has higher maxima than the south, which could
be explained by commuting patterns in the city. As expected from modelled data, the
EAC4 observations have smooth patterns across space and are expected to have a strong
spatial dependence. Finally, the width of the range has an almost identical pattern to the
maxima, showing a higher range in the London city centre and the region to the east.
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Figure 3.13: Spatial distribution of the EAC4 data in the Greater London area for 2022.
The plots show the minimum, median, maximum, and width of the range of values at each
location.

3.4.2 Automatic Urban and Rural Network (AURN)

The AURN is the largest automatic monitoring network in the UK, and it is used to
measure compliance with the Ambient Quality Directives in the UK (https://uk-air.

https://uk-air.defra.gov.uk/networks/network-info?view=aurn
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defra.gov.uk/networks/network-info?view=aurn). There are 281 historical
sites, with 174 currently active sites. Each site is unique, but most measure the major air
pollutants, namely, oxides of nitrogen (NOx), sulphur dioxide (SO2), ozone (O3), carbon
monoxide (CO), and particle matter (PM2.5 and PM10) at hourly intervals. In the Greater
London region, there are 26 active monitoring sites; however, only 12 sites contain records
for more than 75% of the days in 2022, meaning the remaining 14 stations have more than
25% missing daily observations. For this reason, only the 12 most complete sites shown
in Figure 3.14 were considered in Chapter 6. Like the EAC4 data, the AURN data was
also aggregated to daily mean.
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Figure 3.14: Circles denoting the 12 stations with at least 75% complete coverage in the
year 2022.

Temporal Patterns

Figure 3.15 shows time series of the 12 selected sites in the region. As with the EAC4
modelled data in Section 3.4.1, higher concentrations of PM2.5 are found between December
and May, with the largest concentrations of PM2.5 at the end of March and beginning of
April. The period between April and December is relatively constant, with no large peaks
in pollution or any other noticeable trends.

Spatial Patterns

Five points in the distribution at each location were mapped and are shown in Figure 3.16
- the minima, median, maxima, and the width of the range (max−min). The minimum
value shown in the top left corner of the figure shows that site I, to the west of the city,

https://uk-air.defra.gov.uk/networks/network-info?view=aurn
https://uk-air.defra.gov.uk/networks/network-info?view=aurn
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Figure 3.15: Time series for the 12 observation stations of the AURN in the Greater
London area with at least 75% complete temporal records for the days in 2022.
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has a minimum of 0 µg/m3 while site E in urban London has a minimum of 4 µg/m3. The
pattern is visible in the median (top right), where locations to the west of the city have
lower concentrations than those to the east. In the maximum value map in the bottom
row, the large discrepancy between sites is clear. Site J on the east coast has a maximum
of 71 µg/m3 while site I has a maximum of 39 µg/m3. A possible explanation for this
behaviour is the pollution generated by marine transportation moving through the river
Thames as well as other pollution-favourable geographical and meteorological conditions.
Finally, as with the EAC4 data, the width of the range at each observation location is
strongly determined by the maxima, and thus shows similar spatial patterns.

Overall, spatial patterns are less smooth than those in the EAC4 data. Nonetheless,
the divide between east and west of the London city centre is still visible. Unlike the
EAC4 data, differences between locations are large, highlighting the difference between
measurements taken in-situ and those modelled from remote-sensing data.
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Figure 3.16: Spatial distribution of the AURN observation stations in the Greater London
area for 2022. The plots show the minimum, median, maximum, and width of the range
of values at each observation station.
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Chapter 4

Dependence in Unreplicated Extremes

4.1 The Importance of Extremal Dependence

Heavy metal (HM) soil contamination, i.e., the presence of high and extremely high con-
centrations of HM in the soil, poses a significant risk to living organisms. As such, an
accurate understanding of the spatial distribution and magnitude of the contamination is
central to public health and remediation efforts.

Undertaking extreme value analysis on such complex applications is not without its
challenges. Due to the high cost of collection and the slow-changing nature of soil con-
centrations, the data are unreplicated, meaning they consist of a single sample at each
location. Moreover, considering more than one contaminant at a time entails assessing ex-
tremal dependence between contaminants, which can be diverse (see Section 2.2.2). While
some pairs exhibit asymptotic dependence, many display decaying dependence at increas-
ingly extreme observations, a common occurrence in environmental applications (Huser
and Wadsworth, 2022). Capturing the appropriate dependence structure is a central con-
sideration of multivariate extreme value models due to several reasons. First, it results
in a more accurate understanding of the joint extremes, e.g., all contaminants displaying
extreme values simultaneously. Increased accuracy of the relationship of contaminants at
extreme levels helps identify contaminants. As a result, it is possible to enforce pollu-
tion control measures at a localised scale, increasing effectiveness. Finally, improving the
accuracy of models of extreme values in soil contamination helps assess risk and manage
exposure.

In this chapter, we discuss the challenge of diversity in extremal dependence structures
in heavy metal soil contaminants by exploring and modelling the extremal dependence
between all possible contaminant pairs. To overcome the problem of lack of replicates
at each location, the concentrations of each individual contaminant are pooled together,
discarding their spatial information and considering each observation as a replicate at a
univariate random variable. The spatial aspect of the data is considered in the modelling
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approach covered in Chapter 5, where we propose an approach for the spatial modelling
of unreplicated bivariate extreme observations.

In this Chapter we present a comparison of multivariate extreme value models to model
the dependence between extreme heavy metal concentrations in soil survey samples. In
Section 4.2, we review a specific methodology for the multivariate generalised Pareto
distribution, a model for asymptotically dependent data which results in a rigid, constant
dependence between components. Section 4.3 provides an overview of the Exponential
Factor Copula model, which is a subasymptotic model that displays flexible dependence
between components. This section also includes a simulation study to explore model
behaviour under different dependence specifications. A comparison of both models using
the G-BASE data set is provided in Section 4.4. Finally, Section 4.5 provides conclusions
and a discussion of our findings.

4.2 Multivariate Generalized Pareto Distribution (MGPD)

The multivariate extension of the Generalized Pareto distribution (MGPD) is mentioned
briefly in Section 2.2.2 but covered in more detail in this section.

In the univariate case, the GPD is well-defined and can be easily fitted to threshold
exceedances using frequentist or Bayesian inference so long as the shape parameter permits
it (see Section 2.2.1). This is not the case in the multivariate (d ≥ 2) setting for two
reasons. First, there is no single definition for what constitutes a threshold exceedance
in the multivariate case. Second, the family of limiting distributions that arise from any
definition of a multivariate threshold exceedance is not parametric (Rootzén and Nader,
2006).

Rootzén and Nader (2006) define a threshold exceedance in the multivariate case as
any point y ∈ Rd where d ≥ 2 that has at least one element exceeding its corresponding
threshold, i.e., yj > uj for j ∈ {1, ..., d}.

The MGPD is derived from a max-stable distribution, inheriting its marginal param-
eter and dependence structure after a transformation. Consider G from (2.17) to be the
multivariate generalised extreme value distribution (MGEVD), which is defined as

Pr(a−1(Mn − bn) ≤ z) = F n(anz + bn) → G(z), n → ∞,

where Mx,n = max
i=1,...,n

{Xi} and My,n = max
i=1,...,n

{Yi} are component-wise block maxima so

that Mn = (Mx,n,My,n), and an > 0 and bn ∈ R are normalising vectors.

Here, we let x = y − u, where u is a d-dimensional vector of threshold values. As
in (2.17), X has cdf F . The existence of an and bn ensure that 0 < Gj(0) < 1 for
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j ∈ {1, ..., d}. This implies that

lim
n→∞

n{1− F (anx+ bn)} = −ln G(x).

It then follows that for all x ∈ Rd such that Gj(xj) for all j ∈ {1, ..., d},

lim
n→∞

Pr(a−1
n (X − bn)|X > bn) =

ln G(min{x,0})−G(x)

ln G(0)
.

Let η ∈ [−∞, 0)d denote a vector of lower endpoints of the marginals of G, G1, ..., Gd,
then it follows that as n → ∞

L[max{a−1(X − bn),η}|X > bn] → H,

where L is the law of the random variable, H is a MGPD. H is said to be associated with
G through

H(x) =
ln G(min{x,0})− ln G(x)

ln G(0)
.

Some properties of H should be noted. For example, its marginal distributions are
not univariate GPD because not all components of the vector y exceed their respective
thresholds u. But if a component exceeds its threshold, its conditional marginal distri-
bution is GPD. The non-conditional marginal distributions of the MGPD are still able to
place density on negative threshold exceedances (non-exceedances) using the natural lower
endpoint of the univariate GEVD. Just like the max-stable property of the MGEVD, the
MGPD has the property of threshold stability. This means if X ∼ H and if at least one
element of w is positive wj > 0, with H(w) < 1 and σ + ξw > 0, then X −w|X > w

is MGPD with parameters σ + ξw as the scale parameter and ξ as the shape parameter
where σ and ξ are the scale and shape parameters of the associated MGEV G. As in
the univariate case, increasing the thresholds will result in a different scale but the same
shape parameter.

As mentioned in 2.2.2, the MGPD has no unique parametric form, but can be repre-
sented using one of the four representations proposed by Rootzén et al. (2018b,a). In order
to use these representations, the data must first be transformed from X to a standardised
version X0, through the transformation

X = σ
xξX0 − 1

ξ
,

where σ and ξ are the parameters of the marginal G distributions of X. The parameters
of X0 after the transformation become σ = 1 and ξ = 0. While it is possible to fit
the standardised X0 using various representations of the MGPD, the work presented in
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this chapter uses only the "U" representation proposed by (Rootzén and Nader, 2006),
as it is most appropriate for the purpose of modelling and simulation. To obtain this
parametrisation, let U be a random vector in Rd with density fU under the condition that
0 < E(eUj) < ∞ ∀j ∈ {1, ..., d}. The resulting density is

hU(x; 1,0) =
1{max(x) > 0}

E[emax(U)]

∫ ∞

0

fU(x+ log(t))dt, (4.1)

where E[emax(U)] =
∫∞
0

Pr(max(U) > log(t))dt. The probabilities of the marginals pro-
ducing an exceedance are given as

Pr(X0,j > 0) =
E[eUj ]

E[emax(x)]
.

Kiriliouk et al. (2019) proposed a definition for fU that allows for a simpler construction.
Let V ∈ Rd be a random vector of independent components such that its joint density is
the product of the independent marginal densities, fv(ν) =

∏d
j=1 fj(νj). No restrictions

are placed on fv, allowing almost any density to be used. Some distributions, however,
result in simpler integrals of closed-form and thus are preferred to others. The reverse
exponential distribution is one of such distributions, having the form

fj(νj) = αje
αj(νj+βj),

where the support for νj is (−∞,−βj), the scale parameter is αj > 0, and the location
parameter is βj ∈ R. This distribution is equivalent to the exponential distribution with
the small difference that the negative term in the exponential is introduced because νj +

βj < 0. Introducing only the bivariate case, one can substitute the product of these
densities in (4.1) such that fU ≡ fV , yields the hU density in closed form

hU(x;1,0) =
(e−max(x+β))

∑2
j=1 αj+1

E[emax(U)]

1

1 +
∑2

j=1 αj

2∏
j=1

αj(e
xj+βj)αj . (4.2)

Because (4.2) is fitted to standardised components at the unit scale, analogously to a
copula model, the model captures the dependence between components, with α = (α1, α2)

and β = (β1, β2) as dependence parameters. Kiriliouk et al. (2019) explores the possibility
of common parameters, α = α1 = α2 and/or β = β1 = β2 on standardised data, but uses
unique αj and unique βj to fit the model at real scale. To ensure the identifiability of the
location parameter, the parameter for the last component, β2, was permanently fixed to
0 (Kiriliouk et al., 2019).

The standard approach to fitting the MGPD is using a censored likelihood (Smith,
1997; Ledford and Tawn, 1997), where the density in (4.2) is the contribution of an trans-
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formed observation (Y −u) to the likelihood only when it is considered "sufficiently large",
exceeding a threshold m, for m ≤ 0, making the contribution of each observation to the
likelihood relative. Observations with only one component exceeding its threshold are
partially censored; and observations where no exceedances are fully censored. This is done
for two reasons. First, the marginals of the MGPD place density on a lower endpoint when
it is not an exceedance and can incorrectly influence the likelihood. The second reason is
because the parameters that control dependence have been shown to be larger than when
using censored estimation (Huser et al., 2016). Let C ⊂ D = {1, ...d} contain the indices
for the elements of Y −u that fall below m, i.e., Yj−uj ≤ mj for j ∈ C, and Yj−uj > mj

for j ∈ D/C, with at least one such Yj > uj. Each realization of Y then has the likelihood
distribution

hC
(
yD/C − uD/C ,mC ;θ

)
=

∫
×(−∞,uj+mj ]

j∈C

h(y − u;θ)dyC , (4.3)

Multiplying all contributions to the likelihood, the censored likelihood function for this
model has the form

L(θ) =
n∏

i=1

hCi(yi,D/Ci
− uD/Ci

,mCi
;θ), (4.4)

where θ = (α,β,1,0) is a vector of covariates, and hC is the likelihood contribution
defined in (4.3).

As an advantage, censored likelihood produces a more stable likelihood estimation and
avoids the known bias in parameter estimation that has been known to affect dependence
(Huser et al., 2016).

It is possible to assess the fit of the MGPD on the dependence using χ - the coefficient
of tail dependence introduced in Section 2.2.2 which we will denote as χMGPD. For the
U representation, dependence is solely defined by the dependence parameter α. In the
bivariate case where there are two distinct αj, χMGPD is defined as

χMGPD = 1−

(
1 + α−1

(1)

1 + α−1
(2)

)1+α(2)

α(1)

α(2)

1

1 + α1 + α2

,

where α(1) = max{α1, α2} and α(2) = min{α1, α2} (Kiriliouk et al., 2019). In the case
where α1 = α2 > 0, χMGPD is defined as

χMGPD = 1− 1

1 + 2α
.

4.3 Exponential Factor Copula Model (EFC)

Sub-asymptotic models were originally developed to improve poor convergence of extreme
data to limiting distributions (Lugrin et al., 2021). A side effect of the improved conver-



78 Chapter 4. Dependence in Unreplicated Extremes

gence is a flexible dependence structure, rendering them a suitable alternative for situations
in which the constant dependence models (max-stable and threshold-stable models) prove
too rigid. Although many sub-asymptotic models exist which are used for decaying de-
pendence cases - cases where dependence decays at increasing values but does not reach
asymptotic independence, (Wadsworth and Tawn, 2012; Huser et al., 2017; Huser and
Wadsworth, 2019; Castro-Camilo and Huser, 2020), we focus on the Exponential Factor
Copula model (EFCM), used by Castro-Camilo and Huser (2020), which is a special case
of the factor copula models proposed by Krupskii et al. (2018).

A copula is a multivariate function with uniform margins. In this framework, the
univariate marginal distributions and the dependence structure are handled separately,
with the copula modelling only the dependence structure.

For a D-dimensional multivariate random variable X = {X1, ..., XD}, with distribution
F (x1, ..., xD) = P (X1 ≤ x1, ..., XD ≤ xD) and marginals Fj(xj) = P (Xj ≤ xj), the copula
C has distribution

C(u1, ..., uD) = P (U1 ≤ u1, ..., UD ≤ uD),

where 0 ≤ uj ≤ 1, and Uj is a unit scale random function defined as Uj = Fj(Xj), j =

1, ..., D. Sklar’s Theorem (Sklar, 1959) proved that for any multivariate distribution F

with continuous marginal distributions F1, .., FD, a unique copula exists such that

F (x1, ..., xD) = C{F1(x1), ..., FD(xD)},

enabling any multivariate distribution to be expressed in terms of a copula and its marginal
distributions. Furthermore, the copula can be directly expressed in terms of F and its
marginal distributions as

C(u1, ..., uD) = F{F−1
1 (u1), ..., F

−1
D }.

The density of the copula can be obtained through differentiation as

c(u1, ..., uD) =
f{F−1

1 (u1), ..., F
−1
D (uD)}∏D

i=1 fi{F
−1
i (ui)}

.

Factor copula models are descendants of the spatial factor models. These models
are based on the assumption of a common latent random factor for all spatial locations
(Wang and Wall, 2003; Hogan and Tchernis, 2004; Irincheeva et al., 2012). They can be
interpreted as the case where an unobserved variable explains the dependence structure.
Krupskii and Joe (2015) extended the theoretical framework of a common factor to explain
the dependence structure to copulas and later spatial copulas (Krupskii et al., 2018). The
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spatial approach by Krupskii et al. (2018) is based on the process

W (s) = Z(s) + V, (4.5)

where s ∈ Rn, Z is a Gaussian Process (GP), and V is a common factor with an arbitrary
distribution that is independent of location. Castro-Camilo and Huser (2020) proposed
using an exponential factor copula (EFC) where V is an exponentially-distributed random
variable with parameter λ. W results in a Gaussian location mixture, i.e., a standard
Gaussian process with an exponentially distributed mean. They used this model to capture
the spatial dependence of extreme precipitation in the contiguous USA. The covariance
structure of Z(s) was obtained using a stationary Matern correlation function ρ(h).

In the bivariate setting, Z has a stationary 2× 2 correlation matrix ΣZ :

ΣZ =

(
1 ρ(h)

ρ(h) 1

)
,

where ρ(h) is the stationary correlation between components which is solely a function of
the distance between them.

V and Z are independent, allowing the joint distribution of W to be expressed as

FW
2 (w1, w2) = λ

∫ ∞

0

Φ2(w1 − ν, w2 − ν; ΣZ)× exp(−λν)dν,

with density

fW
2 (w1, w2) = λ

∫ ∞

0

ϕD(w1 − ν, w2 − ν; ΣZ)× exp(−λν)dν,

where Φ2(·; Σ) and ϕ2(·,Σ) are the multivariate standard normal distribution and den-
sity (respectively) with correlation matrix Σ. The marginal distribution F can then be
expressed as

FW
1 (w;λ) = Φ(w)− exp(λ2/2− λw)Φ(w − λ).

As with peaks-over threshold models, inference for the EFC model can be carried out
using censored likelihood (Smith, 1997; Ledford and Tawn, 1997), similarly to (4.4) for the
MGPD. The full log-likelihood is obtained by summing the log-likelihood contributions
of locations where all components exceed their respective thresholds (non-censored; NC);
locations where only one component exceeds its respective threshold (partially-censored;
PC); and locations with no exceedances (fully-censored; FC). The full log-likelihood is
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given as

ℓ(θ) =
∑
i∈NC

logfW
2 (wi1, wi2; θ)−

∑
i∈NC

2∑
j=1

logfW
1 (wij;λ) +NFC × logFW

2 (w∗
1, w

∗
2; θ)

+
∑
i∈PC

log∂JiF
W
2 (max(wi1, w

∗
1),max(wi2, w

∗
2))−

∑
i∈PC

∑
j=Ji

logfW
1 (wij;λ), (4.6)

where θ = (λ, ρ), u∗
j for j = {1, 2} are the marginal thresholds in the uniform scale, uij are

the scores of each observation at uniform scale, w∗
j = (FW

1 )−1(u∗
j ;λ), wij = (FW

1 )−1(uij;λ),
Ji indicates the component which exceeds its respective threshold at that location, NC

is the index of the non-censored locations, FC indicates the fully-censored locations and
PC indicates the partially-censored locations.

Maximising the censored likelihood (4.6), allows for the estimation of model parameters
λ and ρ.

Estimation of the dependence in the EFC model can be summarised using the coeffi-
cient of tail dependence, χEFC(u) (Castro-Camilo and Huser, 2020), obtained using

χEFC(u) = 2− f(u)− g(u)h(u),

where

f(u) =
1− Φ{z(u), z(u) ΣZ}

1− u
, g(u) =

exp{λ2/2− λz(u)}
1− u

, h(u) = 2Φ{λ
√

(1− ρ)/2; Ω},

and where Φ is a bivariate Gaussian distribution with correlation ρ(h), and u represents
a data percentile above the smallest appropriate threshold u0. The covariance matrix Ω

can be expressed as

Ω =

(
1 −

√
(1− ρ(h))/2

−
√
(1− ρ(h))/2 1

)
.

A simulation study was performed to gain intuition and assess the EFC model’s ca-
pacity to capture different scenarios of decaying dependence. The model was fitted in
the frequentist framework by maximising the censored likelihood in R using the optim
function and the L-BFGS optimisation method in a similar manner to the code provided
in the supplementary material of Castro-Camilo and Huser (2020).
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4.3.1 Simulation Study: Investigating the EFC’s Performance with

Decaying Dependence

The work presented in this chapter focuses on comparing two extreme value models with
distinct dependence structures, the MGPD and the EFC model. Understanding the
MGPD dependence paradigm is straightforward, as it is constant throughout the range of
the data, even at extreme percentiles, and can be easily estimated from model parameters.
The EFC model, on the other hand, assumes a flexible dependence and thus can capture
decaying dependence. To gain an intuition for the flexible dependence structure of the
EFC model as well as assess its performance, we performed a simulation study where we
tested the ability of the EFC model to recover the true dependence structure (through the
coefficient of tail dependence χ) as well as the true model parameters.

Bivariate data are simulated directly from the model in (4.5), which requires the simu-
lation of a bivariate normal distribution (Z), with 0 mean and ΣZ correlation matrix, and
the addition of an exponentially-distributed random variable of rate λ. Nine simulation
scenarios denoted as simulations A through I (Table 4.1) were set up to investigate a wide
range of parameter sets that can mimic the real data, ranging from weak to strong corre-
lation between components (ρ = 0.4 to ρ = 0.9, respectively); and weak to strong decay
in the tail dependence structure (λ = 5 to λ = 20, respectively). For each simulation
scenario, a total of n = 3000 observations were simulated. The process was repeated 1000

times for each scenario.

Table 4.1: Parameters ρ and λ of the data-generating process, inducing different decaying
dependence scenarios A to I.

Simulation λ ρ
A 5 0.4
B 5 0.7
C 5 0.9
D 10 0.4
E 10 0.7
F 10 0.9
G 20 0.4
H 20 0.7
I 20 0.9

Once the data were simulated using the parameters in Table 4.1, they were trans-
formed to a uniform scale in order to satisfy requirements for the use of a copula. A
uniform scale was obtained for both simulated components using the non-parametric rank
transformation

ui =
rank(yi)
N + 1

, i = 1, ..., N,
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where yi represents the i-th observation of an individual component. The EFC model was
fitted to all 1000 simulations of each scenario. A numerical summary of the results in
terms of root mean square error (RMSE) for the model parameters and coefficient of tail
dependence χ is given in Table 4.2.

Table 4.2 shows that the estimation of the dependence parameters, λ̂ and ρ̂, improves
with increasing values of λ. Standard errors are high in simulations A to C, where tail
decay is weak (λ = 5). For λ̂, standard errors range from 8.83 to 11.91, while they range
from 0.02 to 0.07 for ρ̂. For simulations where tail decay is strong, meaning λ = 20 as in
scenarios G to I, uncertainty is reduced to the range 1.8 to 2.33 for λ̂ and 0.01 to 0.03 for
ρ̂. Differences between the χ and χ̂, as shown in the last column, are generally lower for
simulations G to I than A to F.

Table 4.2: Median of estimated model parameters using censored likelihood for the nine
simulated scenarios with standard deviation given in parenthesis.

Simulation λ λ̂ λ̂-RMSE ρ ρ̂ ρ̂-RMSE χ−RMSE
A 5 4.24(8.83) 10.29 0.4 0.39(0.07) 0.07 0.02(0.01)
B 5 3.6(11.91) 13.53 0.7 0.69(0.04) 0.05 0.02(0.01)
C 5 3.39(10.66) 11.95 0.9 0.89(0.02) 0.02 0.01(0.01)
D 10 9.6(5.86) 5.85 0.4 0.39(0.06) 0.06 0.01(0.01)
E 10 8.93(6.92) 7.04 0.7 0.69(0.04) 0.05 0.02(0.01)
F 10 7.4(6.75) 7.14 0.9 0.89(0.02) 0.02 0.01(0.01)
G 20 19.65(2.03) 2.33 0.4 0.4(0.03) 0.03 0.01(0.01)
H 20 19.58(1.8) 2.17 0.7 0.7(0.02) 0.02 0.01(0.01)
I 20 21.52(1.84) 2.65 0.9 0.9(0.01) 0.01 0.01(0.01)

The estimates for the coefficients of tail dependence for the 1000 simulations of each
scenario are shown in Figure 4.1. From the true χ(u) values shown as the black lines, it is
possible to see that the dependence decays at increasing values of u across all simulations,
as intended, but simulations with ρ = 0.4 and ρ = 0.7 (A, B, D, E, G, and H) show
stronger decay than those with ρ = 0.9 (C, F, and G). We can also see the behaviour
noted in Table 4.2; that is, the accuracy of estimation improves as λ increases. Indeed,
the most extreme percentiles of the data for simulations G to I (bottom row in Figure 4.1)
are estimated more closely than A to F (first and second row in Figure 4.1).

While the estimation of χ(u) improves with a stronger decay in tail dependence, the
results of the simulation show that the model accurately estimates model parameters for
all simulation scenarios. Moreover, dependence is captured appropriately, even at high
percentiles for all scenarios and does so with consistency by showing small RMSE values
in the estimation of χ̂ against the true value.
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Figure 4.1: The grey lines correspond to tail dependence coefficients (χ) for percentiles
between 0.8 and 0.95 for the 1000 simulations performed for the simulation scenarios A-F.
The line in black indicates the true tail dependence coefficient for the simulated data.
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4.4 Extremal Dependence of Heavy Metal Contaminants

The case study presented in this chapter uses data from the G-BASE dataset from the
BGS for the observations in the Glasgow Conurbation. A description and exploratory
analysis of the data is provided in 3.2. Here, we explore the dependence structure by the
MGPD, a constant dependence model, and the EFC, a subasymptotic dependence model,
to assess the dependence behaviour between the important pairs of HM contaminants: As,
Cr, Cu, Ni, Pb, and Zn.

The first step in the modelling process is to find an appropriate threshold for the
data. Mean residual life plots (2.14) were evaluated for each element individually to
ascertain a sensible common threshold for all contaminants. Given that threshold val-
ues (u) that exceed the smallest appropriate threshold u0, i.e., u > u0, are considered
suitable for extreme value analysis, the largest u0 from the individual contaminants was
chosen as a common threshold. In this case, the common smallest appropriate thresh-
old across all contaminants was found to be the 82nd quantile. In the second step,
we fit a flexible, parametric quantile regression (QR) to each contaminant individually
to obtain a surface of the estimated 82nd quantiles in order to identify exceedances of
this threshold. The QR model for each included covariates that have been shown to
affect HM concentrations, such as elevation, slope, aspect, multiresolution index of val-
ley bottom flatness (MMRVBF), the complementary multiresolution index of the ridge
top flatness (MRRTF) and topographic wetness index (TWI) obtained from the Ordi-
nance Survey (OS) digital terrain model (https://www.ordnancesurvey.co.uk/
products/os-terrain-50) and proximity to nearest road using the Open Roads data
set of the OS (https://www.ordnancesurvey.co.uk/products/os-open-roads),
as advised by the modelling selection processed carried out by Johnson et al. (2017) for
the purpose of mapping heavy metal contaminants in soil. The approach resembles that
in Youngman (2019) and was fitted using the evgam package in R (Youngman, 2022).
Observations of each contaminant exceeding their respective, modelled 82nd quantile were
considered exceedances. A GPD is then fitted to individual contaminant exceedances
using maximum likelihood, and the data are transformed into an approximated uniform
scale using the inverse probability transform of the fitted cdf.

The MGPD and the EFC were fitted to the bivariate threshold exceedances in a uniform
scale using a censored likelihood; the estimated parameters are given in Table 4.3. Figures
4.2, 4.3 and 4.4 show plots of the estimated and empirical χ values for both models along
with 95% confidence intervals obtained using 500 point-wise bootstrap samples.

The χ plots show the diversity of possible dependence structures in pairs of HM el-
ements with concentrations exceeding the 82nd quantile. From Figures 4.2, 4.3 and 4.4
and Table 4.3, we can see that certain elements have a higher dependence than others.
Pairs Pb-Cu, Pb-Zn, Zn-Cu, Cu-Ni, Zn-Ni, Pb-Ni and Pb-Ni have χ values above 0.5 at

https://www.ordnancesurvey.co.uk/products/os-terrain-50
https://www.ordnancesurvey.co.uk/products/os-terrain-50
https://www.ordnancesurvey.co.uk/products/os-open-roads
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u = 0.82 quantile, but Zn-Ni and Pb-Ni remain above 0.4 at higher quantiles (u = 0.99).
Low-dependence pairs are Cr-Cu, Pb-Cr, and Cr-As, as they have χ values below 0.4

through all quantiles. There is also a wide range of diversity in extremal dependence.
While some pairs display the expected non-constant dependence structures, i.e., substan-
tial decay at high quantiles, the most notable cases are pairings with Cr, such as Cr-Ni,
Cr-Zn and Cr-Cu.

The simulation study performed in 4.3.1 showed that the EFC model is capable of
capturing both constant and non-constant dependence structures; however, the case study
shows it is less capable of capturing a nearly constant dependence in real data. Pairs As-
Cu, As-Ni, Pb-As, Zn-Cu, Zn-Ni generally display stable dependence at lower percentiles,
better captured by the MGPD model of constant dependence, but the decaying depen-
dence at extreme percentiles is captured more appropriately by the EFC model. Strongly
non-stationary pairs such as Cr-Cu, Cr-Zn, Cu-Ni, Pb-Cr, Pb-Cu, Pb-Ni profit from the
flexibility awarded by the EFC model with an estimated χ within the data’s bootstrapped
confidence intervals. Pairs for which both models behave poorly, such as As-Zn, Cr-As,
Cr-Ni, Pb-As, and Pb-Zn tend to show a preference for the EFC model at high quantiles.
A further discussion of these results is given in Chpater 8.

Table 4.3: Summary of model outputs for the Exponential Factor Copula and the Mul-
tivariate Generalized Pareto. RMSE values for the discrepancy between modelled and
empirical dependence between pairs, as measured by χ.

EFC MGPD
Pair χ̂0.82 χ̂0.99 λ ρ RMSE {α1, α2} {β1, β2} RMSE

As-Cu 0.47 0.4 28.30 0.70 0.09 1.9, 0.4 0.34, 0 0.10
Cr-As 0.34 0.14 24.90 0.60 0.12 3.6, 0.8 0.36, 0 0.13
As-Ni 0.46 0.18 23.60 0.70 0.09 2.2, 0.5 0.33, 0 0.09
Pb-As 0.48 0.29 20.60 0.70 0.08 2, 0.6 0.51, 0 0.09
As-Zn 0.46 0.22 11.80 0.70 0.10 2.1, 0.5 0.35, 0 0.10
Cr-Cu 0.39 0.07 25.90 0.50 0.04 3.7, 0.8 0.26, 0 0.11
Cu-Ni 0.63 0.43 11.70 0.80 0.03 1.1, 0.5 0.61, 0 0.09
Pb-Cu 0.71 0.50 13.70 0.90 0.05 0.8, 0.3 0.5, 0 0.13
Zn-Cu 0.68 0.43 11.70 0.80 0.04 1.1, 0.4 0.46, 0 0.07
Cr-Ni 0.54 0.18 26.30 0.60 0.07 3.5, 0.7 0.4, 0 0.13
Pb-Cr 0.38 0.22 26.90 0.50 0.05 3.7, 0.7 0.39, 0 0.10
Cr-Zn 0.41 0.04 25.20 0.50 0.04 3.8, 0.8 0.4, 0 0.11
Pb-Ni 0.56 0.36 11.80 0.80 0.06 1.4, 0.5 0.51, 0 0.12
Pb-Zn 0.68 0.36 18.50 0.80 0.04 1.1, 0.4 0.5, 0 0.08
Zn-Ni 0.59 0.32 23.10 0.80 0.03 1.4, 0.5 0.53, 0 0.09
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4.5 Discussion and Conclusion

Fields without natural replications have been historically neglected as potential appli-
cations of EVT. Extremes in soil are usually modelled using conventional geostatistical
techniques, which typically model the mean under Gaussian assumptions. These Gaussian
assumptions have been proven unsuitable to model extreme observations (Coles, 2001) and
predict extreme behaviour. The detrimental effect of exposure to HM contamination puts
pressure on practitioners to produce accurate and useful predictions of extreme values.

The application of EVT to soil data is challenging. The lack of replication, as men-
tioned before, has proved to be the most significant obstacle. In the univariate setting, a
natural solution to the lack of replicates treats the data as a replicated set from a single
site. In this chapter, however, the focus is on the extremal dependence of contamination
by multiple HM elements. The extension of the univariate solution to our scenario is to ne-
glect spatial dependence and treat each component as coming from a non-spatial process.
This allows us to characterise the extremal dependence between components but not how
that extremal dependence changes with location. Two models for extremal dependence
were fitted to observed data under this framework - the EFC model of (Castro-Camilo and
Huser, 2020) and the MGPD (Kiriliouk et al., 2019). The EFC model is a flexible, sub-
asymptotic model. For HM pairs in the Clyde River Basin, this model produced better fits
for non-constant dependence structures and was particularly good at capturing decaying
dependence at very high percentiles. Pairs that displayed a more constant dependence
proved harder to estimate at lower percentiles but were often still appropriately captured
at the high percentiles, indicating the need to specify application-specific percentile ranges
of interest, as the dependence in this range could help guide dependence modelling.

The second model is the MGPD, an asymptotic threshold-stable model with a constant
dependence through the entire support of the data values. Despite its lack of flexibility,
the model proved useful for pairs that displayed constant dependence. However, the
model’s rigidity prevented it from accurately capturing the decaying dependence at higher
percentiles. The relative success of the MGPD was unexpected, mainly because nearly
constant dependence structures such as the ones found between some pairs are not common
in environmental applications (Huser and Wadsworth, 2022).

Extremal models are necessary to address applications concerning HM contamination
in the soil. For the bivariate case, both sub-asymptotic (Huser and Wadsworth, 2022)
and asymptotic models (Coles, 2001) may play a useful role depending on the dependence
structure. Moreover, they are potentially helpful in identifying sources of contamination.
Pairs that exhibit high and constant extremal dependence can be perceived as coming
from the same source, as they have high concentrations at the same time, while pairs
where asymptotic dependence is weak can be treated as not coming from the same con-
taminating source. However, the models have limitations. Neither one is particularly good
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at capturing the whole range of the data. While the MGPD model seems to be better at
capturing the lower quantiles, the EFC model usually experiences improvement at higher
quantiles. Careful consideration must be given to the choice of threshold and the range
for extremal inference when performing model selection.

Additionally, another notable limitation is that divorcing the data from their spatial
dimension produces overall results lacking spatial variability - a characteristic especially
useful in applications to HM contamination. The most organic extension of this work is
to incorporate a spatial structure in the data. Modest work has been done on the subject,
which showed the usefulness of the λ-madogram (Naveau et al., 2009) and other spatial
metrics of spatial dependence without Gaussian assumptions (Demangeot, 2020).

Further extensions of this work include increasing dimensionality. Once the spatial
correlation is accounted for, it may be useful for the application to extend the model to
include more than two elements; however, this must be done carefully. In soil, observed
values are typically known as compositional and are measured in parts per million (ppm)
- the relative number of "parts" of that element from a total of one million. Although
this is not a perfect measurement, it introduces spurious correlation as (theoretically) the
sum of parts should add up to a million. However, the use of compositional analysis
(CoDa; Aitchison 1985) in spatial analysis has been controversial, as some consider that
compositional values must be modelled together to account for the inherent correlation,
i.e., if one component increases, the rest must decrease to maintain the sum to a million
constraint (in ppm), known in spatial modelling as spurious spatial covariance (Pawlowsky-
Glahn and Egozcue, 2016), although a few models do exist (Martins et al., 2016). Others
consider that a transformation, such as log-ratio transformation, is enough to bypass the
sum constraint hurdle and use geostatistical models freely given the change of support
(Clarotto et al., 2022). Additionally, the definition of exceedances is more complex at
d > 2 dimensions, as exceedance occur in one or various components simultaneously.
Extensions of the model presented here to d > 2 or the spatial dimension would therefore
have to address the concerns above to present a workable model of multivariate or spatial
dependence for the application of HM soil contamination.
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Figure 4.2: MGPD and EFC models for all 5 possible pairs of As and the other elements:
Cr, Cu, Ni, Pb, and Zn. 95% confidence intervals are presented using point-wise bootstrap
for 500 samples.
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Figure 4.3: MGPD and EFC models for all 4 possible pairs of Cu and the elements, Cr,
Ni, Pb, and Zn. 95% confidence intervals are presented using point-wise bootstrap for 500
samples.
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Figure 4.4: MGPD and EFC models for all 6 possible pairs of between Cr, Ni, Pb, and
Zn. 95% confidence intervals are presented using point-wise bootstrap for 500 samples.



Chapter 5

Spatial Modelling of Heavy Metal
Contamination

5.1 Heavy Metal Soil Contamination

Heavy metal soil contamination is the excessive accumulation of heavy metals (HMs)
such as As, Cu, Cr, Ni, Pb, and Zn in the soil (Su et al., 2014; Mishra et al., 2019; Tang
et al., 2019). While trace amounts of HMs are indispensable in the environment, acute and
chronic exposure to high concentrations can pose a significant risk to public health (Morais
et al., 2012). Therefore, modelling the spatial distribution of contaminant concentrations
is of interest to policy makers and public health practitioners.

The main sources of HMs in urban and rural environments are often anthropogenic
(Gómez-Sagasti et al., 2012). In urban areas, primary sources include industrial waste
and residue, chemical manufacturing, sewage, atmospheric deposition, and combustion of
fossil fuels (Tang et al., 2019; Kupka et al., 2021). HM soil contamination is generally
characterised by its wide spatial distribution, strong latency, irreversibility, and complex
multivariate nature (Su et al., 2014). The remediation of contaminated soils is relatively
slow compared to the remediation of contaminated water or air (Kupka et al., 2021). For
this reason, understanding the extent and intensity of the contamination, particularly
in urban and densely-populated areas, is essential to establish preventive public health
measures and mitigate the impacts of soil HM contamination (Gómez-Sagasti et al., 2012).

Spatial samples of HM concentrations come from soil surveys (Tóth et al., 2016),
which use spatial sampling schemes that prioritise the spatial distribution as dictated by
each contaminant’s properties and other soil properties (Khlifi and Hamza-Chaffai, 2010).
The distribution of HM contaminants is known to be heavy-tailed (Marchant et al., 2011),
which is commonly addressed by performing a Box-Cox transformation, and modelling the
transformed values using a geostatistical approach, also known as transgaussian kriging
when using a kriging model (Diggle and Ribeiro, 2007; Lado et al., 2008; Lv et al., 2015).

91
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However, the heavy-tail of the distribution persists even after transformation and is not
captured using the Gaussian framework (Marchant et al., 2011, 2010). If the contaminating
concentrations (above-baseline concentrations of a contaminant) are in the tail of the
distribution, then Gaussian models are not appropriate to assess risk in this context, as
they are known to underestimate extreme values at the tails. Risk or exposure models
that use these approaches can, therefore, provide misleading information to the public.

Extreme Value Theory (EVT), as described in detail in Section 2.2, is the natural
statistical framework for the analysis of extreme values. Classical EVT distributions
define extreme values as the maximum value inside a block (block-maxima) or values
exceeding a given threshold (threshold exceedances). For the definition of the block-
maxima approach, let {X1, X2, · · · , Xn} be a set of n iid continuous random variables
and Mn = max{X1, · · · , Xn} represent the maxima. The extremal types theorem (Coles,
2001) states that if there exist sequences {an > 0} and {bn} such that the normalisation of
Mn as M∗

n = Mn−bn
an

converges to a non-degenerate function G as n → ∞, then G belongs
to the family of generalised extreme value distributions (GEVDs) (Fisher and Tippett,
1928; Gnedenko, 1943; Mises, 1954). Threshold exceedances, also known as the peak-over-
threshold approach (POT), represent an alternative to the block-maxima approach and
are defined as observations of X that exceed a given threshold u, i.e., X−u|X > u. If the
conditions for the limiting characterisation of M∗

n given above hold, threshold exceedances
converge to the generalised Pareto distribution (GPD) when u → ∞, with distribution
function characterised by a scale σ > 0 and a shape ξ ∈ R parameter, and given by

H(y;σ, ξ) = 1−
(
1 +

ξy

σ

)−1/ξ

, (5.1)

defined on {y : y > 0 and 1 + ξy
σ
> 0}.

However, an essential requirement for the application of EVT is that the data contain
replications in time at each location. In environmental applications, temporal replicates
are generally available for phenomena with a temporal dimension. However, soil surveys
are generally unreplicated, meaning replications in time are rarely available and preventing
the use of EVT for applications such as mapping HM contamination. Additionally, the
multivariate nature of HM contamination shows the presence of concomitant extremes,
which may be of special interest for public health planning due to the complexity posed
by the risks associated with multiple contaminants. It is clear then that a suitable spatial
statistical modelling of HM contamination requires the use of multivariate spatial models
that do not underestimate the marginal extreme behaviours, are able to capture extremal
dependence between contaminants across space, and can handle unreplicated data.

The model proposed in this chapter addresses the gap between classical EVT based on
replications and unreplicated multivariate spatial settings by using a continuous mixture of
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non-extreme and extreme distributions, representing a novel statistical undertaking. The
model is extended to the bivariate case using a coregionalisation framework, accounting
for the extremal dependence between contaminants. We assume the distribution of each
contaminant can be decomposed into two components, representing the body and the tail
of the distribution. The body of the distribution is composed of a combination of natural
pedogenic processes and diffuse background contamination and represents the majority of
the observations (Ander et al., 2013). The tail contains the extreme concentrations from
contaminating anthropogenic or natural processes (Marchant et al., 2010). Each compo-
nent is modelled using suitable distributions for extreme and non-extreme concentrations
and woven together using a continuous mixture model representation. In principle, the
body and tail processes of two contaminants can be differently affected by the same spatial
factors, so we allow the mixture components to share spatial effects across variables inside
a coregionalisation framework. Inference on the model is performed using the integrated
nested Laplace approximation (INLA; Rue et al. 2009), which allows Bayesian inference
for the class of latent Gaussian models (LGMs) and can be fitted in R using the pack-
age R-INLA. Coregionalisation models are straightforward to fit with R-INLA (Krainski
et al., 2018); however, mixture models lack the LGM representation needed for INLA, so
we adapt a conditional approach following Gomez-Rubio (2017). The model is assessed
in its bivariate representation using a simulation study and implemented in a case study
using data from the Geochemical Baseline Survey of the Environment (G-BASE) in the
Glasgow Conurbation. Important byproducts of our modelling approach are risk maps
showing probabilities of two contaminants jointly exceeding their respective safety values
as defined by the soil guideline values (SGV; Cole and Jeffries 2009).

The remainder of this chapter proceeds as follows. The marginal mixture model is first
introduced for the univariate case in Section 5.2.1. The bivariate extension, known as the
coregionalised mixture model, is presented in Section 5.2.2. In Section 5.2.5, we detail the
simulation study carried out to assess the performance of the bivariate model. Section
5.3 shows the results of the model applied to the case study of the G-BASE data in the
Glasgow Conurbation focusing on the chromium-lead (Cr-Pb) pair. Finally, Section 5.4
provides a discussion of the methods presented.

5.2 Development of the Coregionalised Mixture Model

5.2.1 Univariate Body-Tail Mixture Model

At its most basic setting, a mixture model is a convex combination of K distributions to
represent the different underlying groups in the data Y (McLachlan et al., 2019), repre-
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sented as

Y ∼
K∑
k=1

pkfk(y, θk),

where fk(·|θk)Kk=1 is a set of parametric distributions, one for each latent group in the data,
and p = (p1, ..., pK) are their associated weights defined with

∑K
k=1 pk = 1.

Modelling marginal HM concentration distributions under this framework is suitable,
as HM contaminant distributions can be assumed to come from two distinct processes -
one for the baseline observations, also known as the body of the distribution, and another
for the extreme concentrations (Lv et al., 2015) - resulting in the body and tail portions
of the distribution - if Y is a random variable defined in space and observed at locations
y(s) for s ∈ S ⊂ R2, a reasonable mixture model for HM contaminants can be defined as

y(s) ∼ pfB(y(s)|θB) + (1− p)fT (y(s)|θT ), s ∈ S, (5.2)

where fB is the distribution applicable to the body, fT is the distribution of the tail, θB

and θT are model parameters for fB and fT , respectively, and p is the mixing proportion,
representing the probability that an observation will be in the body.

Although different distributions can be assigned to fB and fT , common approaches
in the literature have used finite mixtures of Gaussian distributions where 2 < K <

∞ distributions are used (Lin et al., 2010; Zhu et al., 2021). While this might be an
appropriate approach for the observations in the body of the distribution, fB, correctly
characterising HM extremes motivates the use of a generalised Pareto distribution (GPD)
for the tail fT . However, the use of the GPD for fT has been implausible given the GPD’s
reliance on temporal replications at each location. To circumvent this need for replications,
we assume spatial stationarity of threshold exceedances and model transform the tail of
each HM contaminant to a Gaussian distribution using a stationary GPD as in (5.1).
To accomplish this, we first select an appropriate threshold u and define the threshold
exceedances yT as yT (s) = y(s) − u|y(s) > u. Then, we transform the tail values to a
common Gaussian scale using the probability integral transform, giving rise to new tail
values

y′T (s) = Φ−1
(
ĤT (yT (s; σ̂, ξ̂)

)
, yT (s) > 0, (5.3)

where ĤT is the fitted GPD with scale σ̂ and shape ξ̂, Φ is the standard normal distribution,
and yT (s) represents the threshold exceedances of y.

The final mixture model for marginal contaminants that incorporates (5.2) and (5.3)
is

y(s) ∼ pfB(y(s)|θB) + (1− p)fT (y
′(s)|θT ), s ∈ S. (5.4)

where fB(·) and f ′
T (·) are Gaussian densities with parameter vectors θB ≡ θB(s) =
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(ηB(s), τB) and θT ≡ θT (s) = (ηT (s), τT ), respectively, y′(s) the same as (5.3), and p

is the mixture coefficient but can also be considered as p = P (y(s) > u). If the GPD fit
is good, we should have ηT (s) = 0 and τ(s) = 1. Still, in (5.4) we estimate θT to accom-
modate for possible deviations of yT (s) from the GPD fit. Further flexibility is provided
by allowing the Gaussian means, ηB(s) and ηT (s), to change with locations and other
covariates, being referred to in the future as linear predictors.

5.2.2 Bivariate Extension: Coregionalised Mixture Model

The extension of the model in (5.4) to the bivariate setting was made to enable the assess-
ment of the risk posed by two contaminants at the same location. Extending extreme value
models to the bivariate setting, however, requires the consideration of extremal dependence
between variables (Coles 2001, Ch. 8). Extremal dependence, along with other properties
of the data such as unreplicated observations and the spatial dimension, motivated the use
of the coregionalisation framework of Krainski et al. (2018) and was discussed in Chapter
4. This approach allows for multivariate response models with latent Gaussian character-
isations to be modelled jointly using Bayesian inference by enabling different likelihood
functions for each variable and modelling the dependence structure between variables by
introducing shared components in the linear predictor. In the bivariate case, let y1(s) and
y2(s) be two spatial variables for locations s ∈ S. Simple linear predictors for a in general
coregionalisation model can be defined as

y1(s) ∼ N(η1(s), τ1),

y2(s) ∼ N(η2(s), τ2),

η1(s) = α1 + z1(s)

η2(s) = α2 + λz1(s) + z2(s), for s ∈ S,

(5.5)

where η1(s) and η2(s) are the linear predictors of y1 and y2 at s, respectively, α1 and
α2 are intercepts, z1(s) and z2(s) are spatial random effects (Lindgren et al., 2011), and
λ is a scaling coefficient for the shared spatial effect (Krainski et al., 2018). Inside this
framework, dependence is induced in the linear predictors of y1 and y2 through the shared
component, z1(s). The construction of the linear predictors is otherwise flexible. Here,
while y1 has a single spatial effects term, y2 can have a second spatial effects term z2, to
capture residual spatial dependence unique to y2. This framework can be extended beyond
the bivariate case, but the implementation is restricted due to the tradeoff between accu-
racy and computational costs. Additionally, the linear predictors can also contain linear
and non-linear effects, as well as more shared components of different forms. Inference
on the model can be readily performed using integrated nested Laplace approximations
(INLA; Rue et al. 2009; Van Niekerk et al. 2023). For full details on Bayesian inference
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and INLA, please see Section 2.3.2.

Combining (5.4) and (5.5) results in a bivariate spatial extreme mixture model for
unreplicated data that combines bivariate mixture models for an accurate representation
of the body and tail of the distribution of each contaminant using a Gaussian-GPD com-
position while a coregionalisation structure incorporates the spatial dependencies within a
latent Gaussian model framework. Specifically, we construct two spatial mixture models
with K = 2 mixing components for variables y1(s) and y2(s) at locations s ∈ S. The com-
ponents account for the body and tail observations of each variable. The spatial mixture
models are defined as

y1(s) ∼ p1fB1(y1(s)|θB1) + (1− p1)fT1(y1(s)|θT1),

y2(s) ∼ p2fB2(y2(s)|θB2) + (1− p2)fT2(y2(s)|θT2), (5.6)

where, for i ∈ {1, 2}, fBi
is the density of the non-extreme observations in the body, fTi

is the density of the extremes in the tail, θBi
= (ηBi

, τBi
) and θTi

= (ηTi
, τTi

) are the body
and tail parameters, respectively, and pi is the mixing proportion or the probability that
an observation belongs to the body of the distribution.

For the mixture models in (5.6), we explored the inclusion of shared components on the
body and tails, as in (5.5), to account for dependence at non-extreme and extreme values,
respectively. Even though the shared components are flexible and can be tailored for each
application, components should be linked only when necessary since increasing the num-
ber of shared components considerably increases computational costs. Our coregionalised
mixture model shares spatial components only in the tails to account for extremal depen-
dence, while the non-extreme components have shared dependence only through common
covariates. Therefore, the body and tail linear predictors can be expressed as

ηB1(s) = αB1 + zB1(s) +
∑
j∈J

βB1j
xj(s), ηT1(s) = αT1 + zT1(s) +

∑
j∈J

βT1j
xj(s),

ηB2(s) = αB2 + zB2(s) +
∑
j∈J

βB2j
xj(s), ηT2(s) = αT2 + λT zT1(s) + zT2(s) +

∑
j∈J

βT2j
xj(s),

(5.7)
where for i = (1, 2), zBi

and zTi
are random spatial effects, xj are covariates, αBi

and αTi

are intercepts, βBij
and βTij

are coefficients corresponding to the covariates xj for the body
and tail respectively, and λT is a scaling coefficient for the shared random spatial effect
zT1 .
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5.2.3 Inference for the Coregionalised Mixture Model

Inference for the model is based on the conditional latent Gaussian field framework pro-
posed by Gomez-Rubio (2017), where we replace the Markov chain Monte Carlo (MCMC)
inference with a simple conditional approach based on conditioning parameters a priori,
similar to the importance sampling approach to conditional mixture models by Berild
et al. (2022). In this model, only p1 and p2 are defined a priori, through a grid-search
of possible values. The definition of p1 and p2 inform the classification of y as yB or yT ,
belonging to the body or tail of y, which in turn enables the identifiability of GPD in (5.3)
in the unreplicated setting.

The default implementation of the GPD likelihood in INLA links the linear predictor
to a fixed α-quantile of the distribution, similar to the relationship between the linear
predictor and the mean parameter in the Gaussian case. This parametrisation implicitly
assumes replicates at each s ∈ S. However, the transformation in (5.3) enables the model
to be fitted following the usual geostatistical design of single replicates over space. The spa-
tial random effects, z, are fitted using a stochastic partial differential equation approach
(SPDE; Lindgren et al. 2011). Under these specifications, we used all non-informative
standard Gaussian priors (mean 0 and unit standard deviation) for the intercept parame-
ters α = (αBi

, αTi
) and regression coefficients β = (βBij

, βTij
). The precision parameters,

τBi
and τTi

where given penalised complexity (PC) priors (Simpson et al., 2017). PC priors
are defined as

P (τ−1/2 < ν
−1/2
0 ) = αν ,

where τ is the precision, and ν0 and αν are prior hyperparameters. To encourage identi-
fiability, we chose to encourage small values of the standard deviation. Given the trans-
formation in (5.3), we chose ν0 = 2 and αν = 0.05 for τTi

. For the precision parameters of
the body distributions, τBi

, we chose hyperparameter values using empirical knowledge,
so that ν0 = τ̂Bi,yi/2 and αν = 0.05, where τ̂Bi,yi is the empirical precision; the PC prior
therefore penalises precision smaller than half the empirical precision. In terms of the
standard deviation, the PC prior penalises standard deviation values that are larger than
twice the empirical estimated standard deviation of yi. The choice of these hyperparame-
ters is robust, and no discernible change is obtained with different hyperparameter values.
A simulation study is performed in Section 5.2.5 to assess the model’s performance.

The model was fitted in R using the R-INLA package where the priors and the core-
gionalisation framework has been previously implemented. The model is computationally
expensive, fitting a dataset of approximately 3000 bivariate observations in 3 hours in a
machine with 4 CPU cores at 2.21 GHz and 16GB RAM. The code is freely accessible in
github (https://github.com/danicuba-stats/BivariateExtremeMix).

https://github.com/danicuba-stats/BivariateExtremeMix
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5.2.4 Bivariate Risk Assessment

Probability maps visualising the probability of a joint exceedance in both contaminants
are calculated as a byproduct of the model and constitute a useful tool for risk assessment.
Specifically, the maps show Pr(y1(si) > u1|y2(si) > u2), where u1 and u2 are possible safety
guidance values for y1 and y2, respectively, provided by regional safety regulations. The
probability of joint exceedance at any location is obtained by sampling from the posterior
predictive distribution, which can be done using a multi-step Monte Carlo method sum-
marised in Figure 5.1. However, it is first necessary to sample from the posteriors of the
linear predictor and the hyperparameters (denoted as in Figure 5.1). These samples are
then used to obtain samples of the posterior predictive distribution of each component af-
ter a back-transformation of the tail distribution and mixing of the distributions according
to the mixture proportions p1 and p2 as in (5.6). The joint exceedance probabilities are
then computed empirically by counting the number of times the samples exceed u1 and u2

at the same time and dividing it by the total number of samples collected. This process
is repeated 1000 to obtain measures of uncertainty of the Monte Carlo procedure.

Figure 5.1: Flow chart of the Monte Carlo method used to sample from posterior predictive
distributions of y1 and y2 and obtain a map of the probability of joint exceedance of
threshold u1 and u2 respectively. π̃(·|·) denote posterior distributions of the corresponding
parameters and hyperparameters. The process is repeated 1000 times.
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5.2.5 Simulation Study: Investigating the Performance of the

Coregionalised Mixture Model

An extensive simulation study was performed to assess the performance of the bivariate
coregionalised mixture model. We show the construction and results of four different
simulation scenarios that mimic real-life HM soil concentrations.

Specifications of the Data-Generating Process

The data were simulated directly from the model in (5.6) and (5.7), taking into account the
adjustment proposed in (5.3). A total of N = 1000 simulations of n = 1000 observations
were generated over the region S = [0, 100]2 for two response variables, y1 and y2. The
random spatial effects are simulated as Gaussian Processes (GP) with Matern covariance
function (Matérn, 1960) defined as

Cν(d) = σ2 2
1−ν

Γ(ν)

(√
2ν

d

ρ

)ν

Kν

(√
2ν

d

ρ

)
,

where d is the Euclidean distance between two observations, Γ is the gamma function, Kν

is the modified Bessel function of the second kind, ρ is the range of spatial dependence,
and ν = 1 is the smoothness parameter. Parameter values for the proposed simulation
scenarios are given in Table 5.1.

Simulation scenarios A and B consider heavy-tail distributions with different levels of
extremal spatial dependence through the weight of the shared spatial effect, λ, as shown
in (5.7). Scenario A has λ = 0.25 and Scenario B as λ = 0.9, corresponding to weak and
strong extremal dependence between components, respectively. Each scenario is further
subdivided into two variations representing different mixture proportions: Variation 1 at
p = 0.75 and variation 2 at p = 0.9. This gives rise to four scenarios, A1, A2, B1 and
B2. The data are simulated using two covariates, xj for j = {1, 2}, with standard uniform
distributions. The values for the remaining parameters are given in Table 5.1.



100 Chapter 5. Spatial Modelling of Heavy Metal Contamination

Table 5.1: Parameter values for the bivariate scenarios A and B, representing small and
large spatial extremal dependence through the weight of the shared spatial effect λ. Each
scenario is further subdivided into variations 1 and 2, resulting in four scenarios: A1, A2,
B1, and B2. Variations 1 and 2 represent two mixture proportions, p = 0.75 and p = 0.9,
respectively.

Parameter A B
Variation 1 : (p1, p2) (0.75, 0.75) (0.75, 0.75)
Variation 2 : (p1, p2) (0.9, 0.9) (0.9, 0.9)
(αB1 , αT1) (1,0) (1,0)
(αB2 , αT2) (1,0) (1,0)
(βB1j

, βT1j
) (0.1,0.25) (0.1,0.25)

(βB2j
, βT2j

) (0.1,0.25) (0.1,0.25)
λ 0.25 0.9
(ρ1, ρ2) (10, 15) (10, 15)
(σT1 , σT2) (1,1) (1,1)
(ξ1, ξ2) (0.05, 0.25) (0.5, 0.25)

Classification of Body and Tail

The model requires a priori classification of observations as belonging to the body or tail
of the distribution, as mentioned in Section 5.2.3, which is considered a preprocessing step
to enable model fitting. While the choice of mixture proportion pi also defines threshold ui,
given that the proportion of observations exceeding threshold ui is the same as pi, setting
all exceedances from ui as belonging to the tail results in an upper truncation for the body,
where i = {1, 2}. As a result, we propose a classification based on the Metropolis-Hastings
algorithm, which results in a soft boundary between body and tail. The classification is
as follows.

1. First, fit stationary proposal distributions for the body and the tail. For the body, fB
as a Gaussian distribution fitted using fB(y(s)) ≡ N(η, τ−1/2), where η is the mean
parameter and τ is the precision. For the tail, fit a stationary GPD distribution
using fT (y(s)) ≡ GPD(ui, σ, ξ), where ui is the threshold value chosen a priori, σ
is the scale parameter, and ξ is the shape parameter. These distributions are fitted
using maximum likelihood estimation to speed up the process.

2. For each observation sm = s1, ..., sn, compute the density of y(sm) under fB and
under fT , denoted as pB(y(sj)) and pT (y(sj)), respectively.

3. Obtain the classification ratio for the m-th observation to evaluate its membership
to the body or tail using pα = min

{
1,

pT (y(sj))

pB(y(sj))

}
.

4. Draw a random sample from a uniform distribution uα ∼ U(0, 1).
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5. Assign the observation y(sj) as belonging to the tail if pα ≥ uα.

6. Repeat the process nc = 100 times for each observation and assign the membership
that appears the most number of times in the nc samples.

Results of Simulation Scenario A1

Results of the simulations are assessed using Q-Q plots, root mean square error (RMSE),
and true-parameter 95% coverage probability. Although only results for simulation A1 are
shown in this section, results for the remaining scenarios, A2, B1, and B2 are shown in
Appendix A. A discussion for all scenarios is provided in this section.

Figure 5.2 shows the Q-Q plots of the results for simulation A1. The figure shows
that the model performs better for y1 (variable 1), displaying smaller variability at higher
values than y2 (variable 2). However, the mean and median of the data are well captured.
Table 5.2 shows the coverage probability for the parameters of the linear predictor, α =

(αBi
, αTi

) and β = (βBij
, βTij

). We can see that they are well captured and have coverage
probabilities close to 0.95, which is optimal, with the exception of αT1 , which might account
for the abrupt behaviour around the transition between body and tail. Of the remaining
parameters, only λ has lower coverage probabilities, indicating the fit is not as good in y2

as in y1, as is expected given the asymmetric construction of the model.

Figure 5.2: Q-Q plots of all simulations (grey) of bivariate scenario A1, for variables 1 and
2. The mean and median of the simulations are shown in red and orange, respectively,
while the reference line is given in blue.
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Table 5.2: Summary of results of A1. The table shows the parameter’s true value; esti-
mated parameter mean, median and standard deviation, 95% coverage probability, and
the mean RMSE.

Parameter True Val Mean Median Sd Coverage Pr RMSE MAE
αB1 1.00 1.07 1.06 0.07 0.95 0.10 0.08
αT1 0.00 0.05 0.05 0.09 0.74 0.10 0.08
αB2 1.00 1.16 1.16 0.07 0.99 0.18 0.16
αT2 0.00 -0.00 0.01 0.09 0.99 0.09 0.07
βB11 0.10 0.05 0.05 0.04 0.95 0.07 0.05
βB12 0.25 0.15 0.14 0.02 0.99 0.10 0.10
βT11 0.10 0.02 0.04 0.05 0.95 0.10 0.08
βT12 0.25 0.16 0.15 0.04 0.86 0.09 0.09
βA21 0.10 0.05 0.05 0.03 0.99 0.06 0.05
βA22 0.25 0.15 0.15 0.03 0.99 0.10 0.10
βT21 0.10 0.03 0.04 0.04 0.99 0.08 0.07
βT22 0.25 0.18 0.18 0.03 0.87 0.17 0.17
ρB1 5.00 4.85 3.43 2.39 0.99 2.33 2.08
ρT1 10.00 10.23 10.20 0.16 0.99 0.28 0.23
ρB2 5.00 5.89 4.97 4.10 0.95 4.09 2.67
ρT2 15.00 21.77 19.36 6.97 0.79 9.58 6.77
λ 0.75 1.05 1.01 0.37 0.95 0.46 0.36
ξ1 0.05 0.10 0.10 0.09 0.95 0.10 0.08
ξ2 0.25 0.24 0.25 0.14 0.89 0.16 0.13

The results for A2 show a pattern similar to that of A1. The Q-Q plots in Figure A.1 in
Appendix A show a larger variability displayed in the tail of y2 than in y1. Additionally,
y2 is slightly underestimated at extreme values. Table A.1 summarises the parameter
estimates. Once again, the linear coefficients are well captured by the model while λ is
consistently overestimated, similar to A1.

The performance assessments of the classification of observations as body or tail for A1
and A2 are given in Table A.2 in the Appendix. Carried out a priori with the method in
Section 5.2.5, the classification of both is approximately ∼ 90% of the observations begin
classified correctly.

Scenario B had a larger value for the weight of the shared spatial component, λ = 0.9,
indicating stronger extremal dependence between variables. Figure A.2 in the Appendix
shows that for variable 1, the model performs as expected, similarly to results in A1 and
A2. Variable 2 follows the pattern seen in A1 and A2, where variability is increased in the
tail. However, in this scenario, the mean and median show a slight overestimation at the
extremes. Table A.3 in the Appendix shows the model has good coverage probabilities
for most parameters, except αT1 . The large standard deviation of the range parameters,
ρ1 and ρ2, show the model struggles to calculate the range of the spatial components, a
possible explanation for the increased variability in the tails of the distribution.
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The results for B2 are shown in Figure A.3 in the Appendix. The model performs
similarly to B1, with the mean showing sensitivity to large values and a well captured
median for both variables. The summary of the estimated model parameters in Table
A.4 show that the model correctly estimates most parameters, with the exception of ρ1
and ρ2, which experience an even bigger variability in estimation than previous scenarios.
The coverage probability of the ranges, ρ1 and ρ2 seems to be lower for Variation 2,
meaning the model struggles to accurately estimate the range when there are fewer extreme
observations.

The classification of the observations for B1 and B2 (Table A.5) is similar to scenario
A. The relatively lower specificity values indicate a poorer categorisation of the tail ob-
servations than the body. However, the results indicate the model did not suffer a loss of
power with a larger imbalance in classes. Overall, the simulations show that the model
proposed in this chapter performs well under various scenarios that mimic real soil data.

5.3 Application to Cr-Pb Soil Contamination in the

Glasgow Conurbation

5.3.1 Summary of Data

In this case study, we apply the bivariate coregionalised mixture model to jointly model
concentrations of chromium and lead. Data for this application are from the G-BASE
survey (Johnson et al., 2005) performed by the British Geological Survey, and consist of
2750 topsoil observations in the Glasgow Conurbation. The original scale of the data is
parts per million, but the data is preprocessed using a log transformation for improved
properties. Even though these data are discussed at length in Section 3.2, a brief sum-
mary is provided in this section. Figure 5.3 shows histograms of Cr and Pb after the log
transformation, showing the heavy-tailed nature of contaminant distributions, with Pb
enjoying better symmetry and Cr displaying a heavier tail.

The maps in Figure 5.4 provide an assessment of the spatial patterns of these two
contaminants. In the top row of the figure, the full range of concentrations of Cr and Pb
after a log transformation, respectively, is given. The maps display a continuous scale of
observations up to the 95th quantile. Observations beyond this quantile are censored and
shown in orange. In this scale, the 95th quantile corresponds to 5.198 log(ppm) for Cr
and 6.095 log(ppm) for Pb. The maxima, shown in red, are 8.582 log(ppm) and 9.204

log(ppm) for Cr and Pb respectively. The map shows an agglomeration of high values
just south of the Clyde in central Glasgow, while other high values can also be found in
Coatbridge, East Kilbride, and Wishaw to the south and southeast. To the southwest,
high values are seen around Paisley and further south towards Clyde Muirshiel Regional
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Figure 5.3: Histogram of Cr (left) and Pb (right) in log(ppm) scale.

Park. High values for Pb are found near Greenock Port and Dumbarton, especially along
the major motorways (M74 and A82) towards The Trossachs National Park and the port
of Greenock.

Figure 5.4: Censored map of log concentrations of Cr (top) and Pb (bottom) where ob-
servations above the 95th percentile are orange (5.198 for Cr and 6.095 for Pb), and the
maximum observation is marked in red (8.582 for Cr and 9.204 for Pb).

The specification of the model in (5.7) allows for the inclusion of covariate informa-
tion xj(s) as linear fixed effects to inform the linear predictors. Following Johnson et al.
(2017), we obtained terrain and topography variables for model covariates, including ele-
vation, slope, aspect, multiresolution index of valley bottom flatness (MRVBF), the com-
plementary multiresolution index of the ridge top flatness (MRRTF), and topographic
wetness index (TWI) from a digital elevation model (DEM) by the Ordinance Survey
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(OS; https://www.ordnancesurvey.co.uk/products/os-terrain-50) at a
resolution of 1:50000, roughly equivalent to a 1km × 1km grid. Processing of the data
was done in R using RSAGA (Brenning, 2008). Variables providing proximal traffic infor-
mation, such as the type of nearest road, primary (A) or secondary (B), and distance to
the nearest primary and secondary roads, were obtained Open Roads data set of the OS
(https://www.ordnancesurvey.co.uk/products/os-open-roads).

5.3.2 Assessing the Body-Tail Classification

The a priori classification of observations as body or tail depends on the parameters p1

and p2, corresponding to the mixture proportions of y1 and y2 respectively, which indicate
the probability of an observation belonging to the body of the distribution. Unlike the
simulation study, p1 and p2 are not known in real-world applications and are computation-
ally prohibitive to estimate using the methods available when this analysis were carried
out (such as INLA within MCMC); therefore, an exhaustive search for appropriate values
is performed using a grid of values from 0.75 to 0.99 in increments of 0.01, and the values
for p1 and p2 that yield the best DIC and predictive RMSE values are selected. In the case
of the Cr-Pb pair, the best model performance was given by p1 = 0.98 and p2 = 0.95. A
prediction using a spatial binomial model is made over a rectangular region representing
the spatial extent of the observations to obtain the classification of prediction locations
(Figure 5.5). The binomial model captures the pattern of extreme observations in Figure
5.4, where extreme concentrations of Cr are clustered south of the Clyde in Glasgow and
Wishaw to the south east. The predictions for Pb also capture the true pattern, with
extreme or tail observations found along the M74, the A82, and Coatbridge.

5.3.3 Results of Model Validation

Our bivariate spatial extreme mixture model in (5.6) and (5.7) is fitted to the rectangular
area in Figure 5.5 representing the spatial extent of the observations to obtain a continuous
prediction of the concentrations of Cr and Pb in the river basin. Model validation is
performed using k-fold cross-validation, with k = 20 where every fold removes 5% of the
observations and performs predictions on the removed locations. Figure 5.6 compares
the cross-validation predictions of the coregionalised mixture model to a non-mixture
Gaussian model fitted in INLA where both components are fitted independently of each
other and provides smoothed 95% credible intervals. The larger width of the credible
intervals of the coregionalised mixture model is expected due to the heavier tail of the GPD
distribution compared to the Gaussian model and the limited number of observations at
higher threhsolds. For Cr, we see the deviation is greater, which is understandable given
the heavier tail of the Cr distribution as corroborated by its estimated kurtosis. On the

https://www.ordnancesurvey.co.uk/products/os-terrain-50
https://www.ordnancesurvey.co.uk/products/os-open-roads
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Figure 5.5: Classification map of observations for Cr (top) and Pb (bottom) as body (blue)
or tail (orange) using the mixture proportions p1 = 0.98 and p2 = 0.95 respectively.

other hand, the difference between models is less distinct for Pb and can be explained due
to lower kurtosis. Overall, the coregionalised mixture model shows an improvement over
the Gaussian model in capturing extreme values and modelling heavy-tailed distributions.

Figure 5.7 provides maps of the estimated marginal concentrations. The figures show
that Cr has new predicted areas of contamination in the Wishaw area to the southeast.
The area between the city centre and East Kilbride to the south experiences higher con-
centrations too, which matches the observed data. Other areas of raised predicted Cr
concentrations are west of Paisley (to the west of the City of Glasgow), and Coatbrige
to the east. Pb shows similar trends to those anticipated. The M74 road around the
city centre and to the south through Wishaw are singled out as having especially high
concentrations, as does the Port of Greenock and the A82 towards the Trossachs National
Park. Additional predicted areas of contamination include the M80 near Falkirk to the
southeast. Overall, higher concentrations can be found along more densely populated ar-
eas from Paisley to the west to Coatbridge in the east and around major A and M roads
with heavy traffic.
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Figure 5.6: Q-Q plots for the coregionalised mixture model (blue) with smoothed 95%
credible intervals and the non-mixture independent Gaussian models (orange) predictions
of the log concentrations of Cr (top) and Pb (bottom). Mixture proportions are p1 = 0.98
and p2 = 0.95.
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Figure 5.7: Top: maps of the results of the coregionalised mixture model with observations
exceeding the 95th quantile in colour orange (same values as in Figure 5.4) for Cr (left)
and Pb (right). Bottom: width of the 95% credible intervals for the coregionalised mixture
model for both contaminants.

5.3.4 Risk Assessment of Cr-Pb Joint Exceedance

Assessing the risk posed by both contaminants simultaneously is possible using joint ex-
ceedance probability maps. The Environment Agency in the UK published soil guidance
values (SGVs) for most HM elements (Cole and Jeffries, 2009), indicating what concen-
tration thresholds are considered safe. For a full list of SGVs and more information on
the policy behind HM contamination, please see Section 3.1.5. In residential areas with
plants or food production (SGV1), Cr is recommended to stay under 130ppm or 4.87 in
log(ppm), and Pb under 200ppm or 5.30 log(ppm). In residential areas without plant or
food production (SGV2), the SGV is 200ppm for Cr and 310ppm for Pb, or 5.29 log(ppm)
and 5.74 log(ppm) for Cr and Pb, respectively. Using the process described in Figure
5.1, we computed the probabilities of joint exceedance of SGV1 and SGV2 using samples
from the posterior predictive distribution. The pointwise estimates in Figure 5.8 show
that Cr and Pb have high probabilities of exceeding SGV1 in the south, southeast, and
east of the city of Glasgow. These areas are well-known for legacy contamination due to
historical chromium ore processing and other chromium-producing industries (CL:AIRE,
2007). The map of the width of the 95% credible interval shows that uncertainties given
by the confidence intervals are small and do not affect interpretation. The coefficient of
variation of these estimated probabilities, defined as the ratio of the standard deviation
to the mean, of the first column displayed at the bottom of Figure 5.8 shows that areas
of high probability exhibit small relative variation, whereas the areas of low probability,
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mainly to the north of the city, show larger variation in relation to the mean.

Figure 5.8: Top: Probability maps for joint exceedances SGV1 (left) and SGV2 (right).
Middle: Width of 95% confidence intervals of the exceedance probabilities as described
in Section 5.2.2 for SGV1 and SGV2, respectively. Bottom: Maps of the coefficient of
variation for the estimated exceedance probabilities.

The maps for SGV2 (second column in Figure 5.8) show a similar result where there is
only a high probability of both contaminants exceeding the threshold in two contamination
hotspots in well-known areas to the south and southeast of the city centre. Additionally,
there are higher probabilities to the southwest, near Paisley. Uncertainty maps show the
two hotspots of contamination with high certainty, while contamination detected to the
southwest is more uncertain. Areas of low probability, such as the north, show greater
variability in relation to the mean, similar to SGV1.

5.4 Discussion and Future Work

Maps of geochemical concentrations are generally produced using geostatistical models
under a Gaussian framework. Such models do not account for the various processes re-
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sponsible for the spatial distribution of geochemical concentrations but rather model all
observations as realisations of a single Gaussian process, resulting in an underestimation
of extreme values and measures of risk . When more than one contaminant is present,
classical geostatistical models not only under-estimate extreme concentrations, but also
do not account for the extremal dependence between contaminants. We propose to par-
tition the distribution of each contaminant into body and tail, representing non-extreme
and extreme concentrations, and weaving them together inside a coregionalised mixture
model framework. The body component, representing non-extreme observations linked to
a combination of natural pedogenic processes and diffuse background contamination, is
modelled using a Gaussian model common to geochemical applications. The tail, contain-
ing extreme observations related to contaminating anthropogenic or natural processes, is
modelled using an adapted extreme value distribution. While EVT is an attractive frame-
work to capture extremal behaviour, it requires replications at each location, which are
not commonly available in geochemical datasets. For this reason, a transformation is ap-
plied to the tail under a stationary GPD, and later modelled under a Gaussian likelihood
following the usual geostatistical setting of a single replication. Our proposed framework
combines ideas from coregionalisation models, mixture models, spatial latent Gaussian
models, and EVT to capture non-extremal concentrations as well as the extremal be-
haviour and dependence between two contaminants at high concentrations. It produces
continuous maps of estimated marginal concentrations as well as risk maps in the form of
joint exceedance probabilities.

We fit our model to Cr and Pb concentrations in the Glasgow Conurbation in the
west of Scotland. The data was first transformed using a log transformation, and kurtosis
provided evidence of the deviation of the tails from a Gaussian distribution. The results
of the model show that there are areas of Cr contamination to the south and southwest
of Glasgow, southwest of Paisley, to the south around East Kilbride, and to the east
near Wishaw. Areas of high Pb concentrations are found around the Glasgow city centre
and seem to be contained to areas around the Clyde River and the Port of Greenock.
Marginal credible intervals are the widest for observations belonging to the tail, which is
expected for extreme observations due to the limited sample size. The model shows that
joint contamination has a high probability of exceeding SGV1 and SGV2 in the south
and southeast of the city of Glasgow, areas known to be affected by legacy industrial
HM contamination. A comparison with a classical Gaussian model shows that the joint
modelling of two contaminants using the coregionalised mixture model is an improvement,
particularly at the tail. Furthermore, the shared spatial random component zT1 models the
factors affecting the extreme values of both contaminants while the weight of the shared
spatial component, λ, models the dependence between both tail distributions. High values
of λ can account for strong extremal dependence between components while λ = 0 indicates
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extremal independence. For this application, we constrained the dependence structure to
only account for extremal dependence through a shared spatial random effect. However,
the framework is flexible and can be easily extended to capture dependence through other
terms in both the body and tail or extended beyond the bivariate case. Future work can
be developed to jointly model p1 and p2 in space and integrate this modelling with the
coregionalised mixture model. A natural way to do this is through a hierarchical Bayesian
model where inference is carried out using simulation-based approaches, such as MCMC.
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Chapter 6

Data Fusion for Extremes

6.1 Data Fusion for Extremes in Air Quality Monitor-

ing

While invisible to the naked eye, airborne solid and liquid particles are ubiquitous and
responsible for human and environmental health. In good air quality conditions, airborne
particles play an essential role in the hydrological cycle, atmospheric circulation, and the
necessary existence of greenhouse and trace gases (Pöschl, 2005). Air quality degradation
due to air pollution can have significant adverse effects on the environment and cause
chronic and acute damage to human health, effectively decreasing quality of life and in-
creasing mortality rates (H R Anderson, 2009).

Air pollution refers to hazardous gaseous chemicals or airborne particles in the envi-
ronment and can have both natural and anthropogenic sources. In nature, some physical
occurrences, such as volcanic activity or forest fires, can release large amounts of hazardous
pollutants into the air. Many more anthropogenic sources of air pollution exist, however,
including industrial facilities, fossil fuel combustion for energy and transportation, and
excessive use of fertilisers (Kampa and Castanas, 2008) among others covered in detail in
Section 3.3.

The risk posed by air pollution can be determined using physical primary parameters of
the polluting particles: concentration, size, structure, and chemical composition (Pöschl,
2005). The most common categories are gaseous pollutants, persistent organic pollutants,
heavy metals, and particulate matter. While all air pollutants lower air quality, the scope
of this work is concerned with particulate matter (PM). PM is a general term for a mixture
of particles suspended in breathing air varying in size and composition, often categorised
by size as smaller than 2.5 µm (PM2.5) or 10µm (PM10).

PM2.5 and PM10 have harmful effects on the human body due to their abundance in
urban settings and the wide variety of sizes and compositions. This type of pollution

113
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poses a significant risk to public health and has been linked to increased levels of mor-
tality and premature death (Kyung and Jeong, 2020). It increases the occurrence of and
exacerbates cardiovascular and cerebrovascular diseases through mechanisms of systemic
inflammation, direct and indirect coagulation activation, and translocation of systemic
circulation (Anderson et al., 2012). It can also have harmful effects on the respiratory
system. While coarser particles, such as PM10, are deposited in the upper respiratory
tracts, the finer particles, such as PM2.5, can reach the lung alveoli and result in chronic
obstructive pulmonary disease (COPD) (Don D. Sin et al., 2023), bronchial asthma and
lung cancer, among other chronic respiratory conditions (Kampa and Castanas, 2008; Don
D. Sin et al., 2023; Kyung and Jeong, 2020).

Another significant negative effect of PM pollution on human health is that it can
include all other common air pollutants, including heavy metals, organic compounds, bio-
logical matter, particle carbon core, and reactive gases known to be harmful (see Section
3.3). Chronic and acute exposure to PM pollution occurs through inhalation and inges-
tion through deposition on food and water. However, the most significant impacts on
public health are caused by episodes of heavy and extremely heavy levels of pollution
in the air. Zhang et al. (2021) showed that heavy and extremely heavy PM2.5 pollution
events substantially increased hospital admissions for cardiovascular disease. Similarly,
extreme events of PM pollution are also linked to the exacerbation of asthmatic symp-
toms in children and adults (Anderson et al., 2012). These events of extreme PM pollution
are therefore targeted in policy at global and regional scales. In 2021, the World Health
Organization (WHO) published new air quality guidelines (AQG) for air pollution recom-
mending short-term exposure to not exceed a 24-hour average of 15 µm3 and 45 µm3 for
more than three days a year for PM2.5 and PM10, respectively (WHO, 2021). The UK also
has guidelines stipulating that PM2.5 concentrations should not exceed 20 µm3 as a yearly
average (more in Section 3.3.4).

Meeting the suggested AQGs, however, is not a trivial task from the policy or technical
points of view. Air quality management requires efficient coordination in the government
apparatus, affecting economic, legal, public health, and political spheres. Compliance with
suggested standards, such as WHO (2006), was commonly achieved through wide catch-
all policies that focused on a single pollutant at the time and targeted well-known local
and national sources of pollution (Martenies et al., 2015). As air quality has improved,
simple policies for comprehensively reducing pollutant emissions became more difficult to
design and implement. Given the adverse health effects on populations living and working
in areas of low air quality, an inevitable requirement for effective policy is its ability to
target more localised sources of pollution in both space and time. Therefore, identifying
"hotspots" of air pollution, or areas that more commonly experience extreme episodes of
PM pollution, is a priority for decision-makers.
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The accurate spatial and temporal identification of these extreme episodes is limited
by data availability (Martenies et al., 2015). For example, PM concentration data in the
UK are available through the Automatic Urban and Rural Network (AURN), run by the
Department for Environment, Food and Rural Affairs (DEFRA). While the network is
extensive, comprising 171 working stations collecting data for various periods since 1972,
the spatial coverage is insufficient to inform targeted local policies required for the effec-
tive improvement of air quality. The temporal coverage of the stations is not uniform
and can contain missing observations. The interpolation of measurements taken by in-situ
equipment (such as AURN observation stations), in both space and time, is necessary
on a fine scale to accurately capture extreme local pollution events, but frequently ex-
hibit gaps in coverage. Alternative sources can provide data with improved properties,
such as comprehensive spatial coverage and complete historical long-term records, but are
typically unable to capture local nuances that are seen in data from in-situ observation
stations. The Copernicus Atmosphere Monitoring Service (CAMS) is one such source of
alternative data and is run by the European Centre for Medium-Range Weather Fore-
casts (ECMWF), representing a global reanalysis of atmospheric composition with global
coverage at daily and sub-daily temporal scales (for details see Section 3.4). However,
remote-sensing sources are known to underestimate extreme values (Palharini et al., 2020;
Ståhl et al., 2024), requiring a pre-processing step for improved representation of extreme
events.

Integrating different data streams with often different spatial and temporal characteris-
tics is described as data fusion. It results in an improved representation of the phenomenon
that combines the desired properties from each source. Kriging methods are commonly
used for data fusion in the context of air quality monitoring (Ferreira et al., 2000; Künzli
et al., 2005; Beauchamp et al., 2017, 2018; Xie et al., 2017). They usually present a reliable
interpolation of the mean values but tend to smooth extreme values due to their intrinsic
Gaussian assumption (Gressent et al., 2020), which in many cases leads to an underesti-
mation of extreme events. Many alternatives to kriging have been proposed recently for
data fusion; see, e.g. Fuentes and Raftery (2005); Bogaert and Fasbender (2007); Banerjee
et al. (2015); Gengler and Bogaert (2016); Wilkie et al. (2019); Villejo et al. (2023). How-
ever, all of these techniques are developed under a Gaussian framework and, therefore,
share the same limitations with kriging in capturing extreme events.

Alternatives for the specific purpose of fusing extreme values exist under a myriad of
frameworks, such as quantile regression neural networks or automated regression-based
statistical downscaling (Bürger et al., 2012), mixture of Gaussian distributions (Ebtehaj
and Foufoula-Georgiou, 2010), or conditioning model parameters on remote-sensing obser-
vations (Hundecha and Bárdossy, 2008). However, as flexible as these approaches may be,
they lack the theoretical justification behind extreme values provided by extreme value
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theory (EVT). Furthermore, they are not capable of retaining temporal information on the
occurrence of an extreme value, thus providing less specific information about threshold
exceedances.

The research presented in this chapter proposes a model that extends the hierarchical
spatiotemporal data fusion model of Wilkie et al. (2019) in the context of extremes by using
a generalised Pareto likelihood in a Bayesian framework to target threshold exceedances
and maintain their temporal structure by the introduction of a zero-inflated modelling
adjustment to the generalised Pareto distribution known as the Dirac-delta generalised
Pareto distribution. The model performs data fusion by linking data from observation
networks and remote-sensing sources through the scale parameter of nonstationary GPDs.
Similar ideas have been explored in Healy et al. (2023), but contrary to their approach, our
method uses flexible spatiotemporal Bayesian hierarchical structures to capture extremal
dependence. In this way, we use both datasets to provide an improved representation
of the threshold exceedances over space and time. The result is a dataset, complete in
space and time, that appropriately calibrates modelled observations to accurately capture
local threshold exceedances as informed by in-situ measurements over a limited number
of locations. The work in this chapter is structured as follows. Section 6.2 provides
a detailed description of the method proposed for this application. Section 6.3 applies
the proposed method to the case study of air quality monitoring in the Greater London
region and provides a description of the results and a comparison to alternative modelling
approaches. Finally, Section 6.4 provides a conclusion and discussion on the results.

6.2 Development of Data Fusion for Extremes Model

6.2.1 The Non-Parametric Data Fusion Model of Wilkie et al.

(2019)

Wilkie et al. (2015) proposed a non-parametric downscaling model to fuse data with dif-
ferent spatial supports inside a Bayesian hierarchical framework. Specifically, they fused
remote-sensed data of log(chlorophyll-a) concentrations from the European Space Agency’s
ENVISAT satellite at Lake Balaton, Hungary, to data taken in-situ at limited locations
inside the lake. The approach was motivated by the model originally proposed by Gelfand
et al. (2003) and later developed by Berrocal et al. (2010), where an underlying (true)
process is not assumed, but rather, assumed to be sampled using in-situ measuring equip-
ment; these in-situ measurements are then linked to the remote-sensing data via a linear
regression model with spatially-varying coefficients. To describe Berrocal et al. (2010), let
Y (s) for locations s = {s1, ..., sn} where si ∈ R

2 represent the data taken in-situ, and
x(B) be observations from remote sensing sources for the grid cells Bi = {B1, ..., Bn} that
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correspond to each of the observations as the nearest grid centroid by geodesic distance.
Defining a location si as existing inside the grid cell Bi allows the model to be defined as

Y (si) = α(si) + βx(Bi) + ϵ(si), ϵ(si) ∼ N(0, σ2), (6.1)

with

α(si) = α + α̃(si),

β(si) = β + β̃(si),

where ϵ represents a Gaussian error term with variance σ2. In this model, α and β are
the additive and multiplicative bias of the remote-sensing data, while α̃(si) and β̃(si)

represent local adjustments. They are spatially varying, and defined as a bivariate zero-
mean Gaussian distribution, as in Schmidt and Gelfand (2003). Working in the Bayesian
framework, α̃ = (α̃(s1), ..., α̃(sn)) and β̃ = (β̃(s1), ..., β̃(sn)) are given the priors

α̃ ∼ N(0, σ2
αexp(−ϕαΣdata)), and β̃ ∼ N(1, σ2

βexp(−ϕβΣdata)), (6.2)

where Σdata is an n×n matrix of Euclidean distances between in-situ data locations defined
as Σdata = |yj − yk| for j = 1, ..., n and k = 1, ..., n, σ2

α and σ2
β are spatial variances, and

ϕα and ϕβ are spatial decay parameters, equivalent to those in an exponential covariance
function.

Wilkie et al. (2019) used only the spatially-varying coefficients idea of (6.1), and ex-
tended it to the spatiotemporal case using smooth curves fitted using basis functions of
some dimension d (Ramsay and Silverman, 2006), further enabling the temporal interpo-
lation at each location. The model is defined as

yi | ci, σ2
y ∼ Nqi

(
Φici, σ

2
yIqi
)
,(

σ2
y

)−1 ∼ Ga (ay, by) ,

cij | αij, βij, dij, σ
2
c ∼ N

(
αij + βijdij, σ

2
c

)
,

αj | σ2
α ∼ Nn

(
0, σ2

α exp (−ϕαΣdata)
)
,

βj | σ2
β ∼ Nn

(
1, σ2

β exp (−ϕβΣdata)
)
,(

σ2
α

)−1 ∼ Ga (aα, bα) ,(
σ2
β

)−1 ∼ Ga (aβ, bβ) ,(
σ2
c

)−1 ∼ Ga (ac, bc) ,

xi | di, σ
2
x ∼ Nli

(
Ψidi, σ

2
xIpi
)
,(

σ2
x

)−1 ∼ Ga (ax, bx) ,

di ∼ Nm (µd,Σd) ,

(6.3)
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where

• i = 1, ..., n, represents point locations of in-situ data.

• yi = (yi1, ..., yiqi)
T represents in-situ measurements at point locations i for times 1

to qi.

• xi = (xi1, ..., xili)
T represents the data taken from the centroid for grid-cell that

covers the point location i for times 1 to li.

• Φ is a qi ×m matrix of basis functions that fits a smooth through the time series to
yi at location i.

• Ψ is a li ×m matrix of basis functions that fits a smooth through the time series to
xi at location i.

• Σdata is an n× n matrix of distances between the n in-situ locations.

• ϕα and ϕβ are the spatial decay parameters.

• αj and βj are the additive and multiplicative bias between the mean parameter of
x and y across time, as defined by the j-th basis function of Φ and Ψ, respectively.
The two parameters have a similar interpretation to those in (6.2).

• ci = (ci1, ..., ciqi)
T and di = (di1, ..., dili)

T are the coefficients of matrix of basis
functions Φ and Ψ for the i-th location.

• ay, by, aα, bα, aβ, bβ, ac, bc, ax, bx, µd and Σd are hyperparameters chosen a priori. Wilkie
et al. (2019) sets ay, aα, aβ, ac, ax to 2 and by, bα, bβ, bc, bx equal to 1, meaning preci-
sion priors for all parameters were set to Ga(2, 1). The hyperparameters of di are
set as µd = 0 and Σd = {1, 2, ...,m}× Im, which reflects the lack of prior knowledge
of the behaviour of di.

This model defines a linear relationship between the mean of remote sensing and in
situ observations, Ψjdi and Φici, respectively. Consequently, the model fuses the mean
of the in-situ and the remote-sensing data at each location, smoothing extreme high and
low observations. While this suits Wilkie et al. (2019)’s application on water quality
monitoring in Lake Balaton, it may not be suitable for applications where extremes are
the target.

6.2.2 Data Fusion for Extremes (ExDF)

The model we propose is inspired by (6.3) and targets extreme values defined as ex-
ceedances of a threshold. We here define extremes as exceedances over a large threshold,
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for which the generalised Pareto distribution (GPD) is a suitable approximation; see Sec-
tion 2.2 for more details. Let

y∗
i = {yi − yiu | yi > yiu}

x∗
i = {xi − xiu | xi > xiu},

(6.4)

where yiu and xiu represent the threshold at the u-th percentile of yi and xi, respectively,
and u is close enough to 1 so that the GPD is a suitable approximation of the behaviour
of y∗i and x∗

i . When non-threshold exceedances are removed, a naive adaptation of (6.3)
for threshold exceedances would be to replace the Gaussian likelihood of yi and xi by the
GPD likelihood, as

y∗
i | ci ∼ GPD (exp(Φici), ξ) ,

cij | αij, βij, dij, σ
2
c ∼ N

(
αij + βijdij, σ

2
c

)
,

αj | σ2
α ∼ Nn

(
0, σ2

α exp (−ϕαΣdata)
)
,

βj | σ2
β ∼ Nn

(
1, σ2

β exp (−ϕβΣdata)
)
,(

σ2
α

)−1 ∼ Ga (aα, bα) ,(
σ2
β

)−1 ∼ Ga (aβ, bβ) ,(
σ2
c

)−1 ∼ Ga (ac, bc) ,

x∗
i | di ∼ GPD (exp(Ψidi), ξ) ,

di ∼ Nm (µd,Σd) ,

(6.5)

where exp(Φici) represent the scale parameters for the qi time points available for y∗
i ,

exp(Ψidi) are the scale parameters for the pi available time points at x∗
i , and ξ is a

fixed shape parameter shared between y∗
i and x∗

i . Keeping ξ constant is not a direct
conversion from the previous model, but it is often done in practice to ensure identifiability
(Youngman, 2019), reduce the computation burden of inference, and reduce uncertainty.
This approached was considered restrictive and one of the drawbacks of this version of the
model.

This model has multiple shortcomings. First, it only permits the fusion of threshold
exceedances under the unstated assumption that non-threshold exceedances are not ob-
served. In this way, non-threshold exceedances do not contribute to the likelihood but are
missing altogether. Furthermore, the missing observations (non-threshold exceedances)
are therefore interpolated using the GPD likelihood, meaning the model assumes all ob-
servations in the time period are, or should be, threshold exceedances. This is inaccurate
since non-threshold exceedances were removed artificially during the data processing step
in (6.4). Second, the apriori fixing of the shape parameter, ξ, introduces uncertainty and
bias into the model, as it would have to be estimated in a previous step using a sepa-
rate mechanism and the model would have to be appropriately defined to propagate the
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uncertainty of this estimation.

To address the first concern, we proposed a censored approach where we censor all
non-exceeding observations at 0; so we define y∗

i and x∗
i as

y∗
i =

0, for yi ≤ yiu

yi − yiu for yi > yiu

x∗
i =

0, for xi ≤ xiu

xi − xiu for xi > xiu.

(6.6)

If u > 0.5, the resulting y∗
i and x∗

i will have a majority of zeroes. We propose accommo-
dating these values similarly to Weglarczyk et al. (2005) and Couturier and Victoria-Feser
(2010), who used a zero-inflated GPD mixture model called the Dirac-delta generalised
Pareto distribution (δ-GPD). Weglarczyk et al. (2005) used this model and a few similar
variants to perform frequency analysis of hydrologic data in arid and semi-arid regions,
where rain is infrequent, resulting in a truncation at zero. Couturier and Victoria-Feser
(2010) used the same δ-GPD to model radio audience data, which is full of true zeros but
also values under the limit of detection that are censored at zero. The δ-GPD is defined
as

f(y|p, σ, ξ) = (1− p)δ(y) +
p

σ

(
1 +

ξy

σ

)−1/ξ−1

∆0(y), (6.7)

where σ and ξ are the scale and shape parameters of the GPD, respectively, p ∈ [0, 1]

is the probability of a threshold exceedance, δ(y) is the Dirac delta function with density
only at y = 0, and ∆0(y) is the unit step function, equalling 1 when y > 0. The δ-GPD is
a good fit for the problem for two reasons. First, under the δ-GPD values of 0 contribute
1− p to the likelihood and, therefore, are accounted for in the model. Second, simulating
from this model is straightforward and can generate zeroes, which simulation from the
GPD cannot do, allowing us to model the spatiotemporal locations of non-exceedances
and sizes of exceedances.

Couturier and Victoria-Feser (2010) suggest extending the model in (6.7) to include
covariates in the parameter p through a GLM framework. Specifically, for time t at location
yi, they propose

pyit = ν−1(Zi[t, ·]λi) =
exp(Zi[t, ·]λi)

1 + exp(Zi[t, ·]λi)
, (6.8)

where Zi is a matrix of covariates and [t, ·] denotes only the t-th row, λi is a vector of
coefficients, and ν−1 is the inverse of the logit link function. We investigated the use of
(6.8) using different configurations for Zi and found that, for every time point t = 1, ..., qi,
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in y∗
i , the best performance is obtained incorporating the previous, present, and future

information in x∗
i . Specifically, at every location i, we define the corresponding covariate

matrix Zi as

Zi =



1 0 1(x∗
i1 > 0) 1(x∗

i2 > 0)

1 1(x∗
i1 > 0) 1(x∗

i2 > 0) 1(x∗
i3 > 0)

. · . ·
· · · ·
· · · ·
1 1(x∗

i(li−1) > 0) 1(x∗
i(li)

> 0) 0


,

which uses the indicator for the occurrence of a threshold exceedance in x∗
i at times

t−1, t, and t+1 as covariate information to predict a threshold exceedance in y∗
i at time t.

This choice of Zi has a physical interpretation, as it is not uncommon for remote-sensing
or modelled data to have a lagged reaction to physical occurrences.

We incorporate additional flexibility into the model in (6.5) by estimating ξ inside the
model. To ensure identifiability and reduce the computational burden, we assume that
shape parameters do not vary with time and space and estimate ξy for all y∗

i and ξx for all
x∗
i . In the spirit of Castro-Camilo et al. (2022), we impose restrictions to ξy and ξx through

prior distributions. These restrictions aim to preserve the usual MLE properties and
the existence of first and second moments for both spatiotemporal exceedance processes.
As mentioned in Section 2.2.1, these properties are achieved by restricting the shape
parameter to the interval [−0.5, 0.5]. Additionally, the priors have a shrinking effect,
whereby simpler or more parsimonious models (i.e., with shape parameter equal to 0) are
chosen. After some exploration, we found that the above can be achieved using a scaled
Laplace prior with density function

Laplaceξ(x;µ, b) =


1
b

(
exp(−|x−µ|

b )
2−exp(−0.5−µ

b )−exp(µ−0.5
b )

)
for − 0.5 ≤ x ≤ 0.5,

0 otherwise,
(6.9)

where µ ∈ R is the location parameter and b > 0 is the scale, or diversity, parameter
chosen to encourage parsimony; see Section 6.3.2. Note that the scaling factor in (6.9) is
obtained by integrating the usual Laplace density in [−0.5, 0.5].

By incorporating (6.8) and (6.9) to our modelling strategy, the new data fusion for
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extremes model (ExDF) is defined as

y∗
i | ci ∼ δ-GPD (exp(Φici), ξy,pyi) ,

pyit = logit(λi0 + λi11x∗
i(t−1)

+ λi21x∗
it
+ λi31x∗

i(t+1)
)−1,
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2
c

)
,
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)
,

βj | σ2
β ∼ Nn
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1, σ2

β exp (−ϕβΣdata)
)
,(

σ2
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)−1 ∼ Ga (aα, bα) ,(
σ2
β

)−1 ∼ Ga (aβ, bβ) ,(
σ2
c

)−1 ∼ Ga (ac, bc) ,

x∗
i | di ∼ δ-GPD (exp(Ψidi), ξx,pxi) ,

pxit = 1(x∗
it > 0),

di ∼ Nm (µd,Σd) ,

ξx ∼ Laplaceξ(µx, bx), where − 0.5 ≤ ξx ≤ 0.5,

λi0 ∼ N(µλ0 , σ
2
λ0
),

λi1 ∼ N(µλ1 , σ
2
λ1
),

λi2 ∼ N(µλ2 , σ
2
λ2
),

λi3 ∼ N(µλ3 , σ
2
λ3
),

(6.10)

where

• i,yi,xi,Φ,Ψ,Σdata, ϕα, ϕβ, αj, βj, ci, and di are defined as in (6.3).

• λi0, λi1, λi2 and λi3 are the linear coefficients for the prediction of the probability of
a threshold exceedance.

• 1xi(t−1)
is the indicator function with value 1 when xi(t−1) > 0 and 0 otherwise. A

similar definition is given for 1xit
and 1xi(t+1)

.

• pyi = (pyi1, ..., pyiqi) and pxi
= (pxi1, ..., pxili) represent the probability of a threshold

occurrence at t for y∗
i and x∗

i , respectively. Because x∗
it is always known, pxi

is
not estimated, but rather, it is a binary indicator with 1 indicating a threshold
exceedance and 0 indicating a value under the threshold.

• aα, bα, aβ, bβ, ac, bc, µd and Σd are the same hyperparameters as in (6.3).

• µy, by, µx, bx, µλ0 , µλ1 , µλ2 , µλ3 , σ
2
λ0
, σ2

λ1
, σ2

λ2
and σ2

λ3
are hyperparameters for the esti-

mation of the shape and probability parameters.
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6.2.3 Performing Inference: Metropolis-Hastings MCMC

The model in (6.3) was fitted by (Wilkie et al., 2019) using MCMC (see Section 2.4.1).
Since all the priors and likelihoods were conjugate, the resulting posteriors had a closed-
form solution and could be easily sampled using Gibb’s sampler. However, this is not the
case in our model, given that the δ-GPD has no conjugate priors. For this reason, all pa-
rameters are fitted using Metropolis-Hastings sampling, whereby the posterior is sampled
from an acceptance/rejection process where the probability of acceptance/rejection of a
parameter is the product of its density and the density (or likelihood) of the parameters
that depend on it. The process order is more easily understood from the chart in Figure
6.1.

Data

Priors

Hyperparameters

Figure 6.1: Hierarchy of the data fusion model for threshold exceedances defined in (6.10)
and referred to as the ExDF model.

The model was originally fitted in R using MCMC; however, this approach was too
slow to achieve converge of model parameters. Consequently, the code was into C++ for
computational efficiency with the help of Rcpp. The code is now freely available on Github
(https://github.com/danicuba-stats/DataFusion_for_Extremes).

6.3 Application to PM2.5 Air Pollution in the Greater

London Area

The case study chosen to showcase the model in (6.10) is PM2.5 air pollution in the Greater
London area using the AURN and the EAC4 as in-situ measurements and modelled data,
respectively. Our aim is to combine the highly localised, high-quality information of the

https://github.com/danicuba-stats/DataFusion_for_Extremes
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threshold exceedances at each location given by in-situ observation stations (AURN) with
the complete spatial coverage and temporal coverage of the remote-sensing data (EAC4)
to obtain a fused dataset that provides reliable estimates of threshold exceedances of
PM2.5 at locations where no in-situ observation station is present. An added byproduct
of our approach is the retention of the temporal information of extremes and non-extreme
occurrences, meaning our fusion approach could be used in combination with classical data
fusion approaches for the bulk of the distribution to provide a full-range fused dataset.
See Section 6.4 for a discussion of such approaches. Given that guidelines of PM2.5 are
given in 24-hour averages, the temporal scale in this application is daily means for the
year 2022, the most complete year in the AURN dataset for the Greater London region.

Measurements of the AURN observation stations were in sub-daily frequencies with
some missing observations but were aggregated to the 24-hour mean. Spatial coverage is
poor and biased, with only 12 sites in the region with sufficient observations for the year
2022 mostly centred around more densely populated areas. For the full description of the
data and an exploratory analysis, please see Section 3.4.2. The pre-processing of the data
discussed in (6.6) is done for the AURN and the EAC4 data using u = 0.8, a threshold
suitable for extreme value analysis for both datasets according to stability in the mean
residual life plots and because it is low enough to obtain n ≈ 75 observations for the year
2022.

The EAC4 dataset is a reanalysis model and provides modelled observations of PM2.5

concentrations in a 0.1◦ × 0.1◦ scale grid with global coverage. The data are smooth in
time and space, with complete spatial and temporal coverages. For more details and an
exploratory analysis, please see Section 3.4.1.

6.3.1 Differences between AURN and EAC4 Data

The EAC4 is a modelled representation of PM2.5 measurements and the AURN data are
in-situ measurements of PM2.5. The EAC4 data are associated to their grid centroids,
and each AURN station is also then matched to the nearest EAC4 centroid, as shown in
Figure 6.2.

Each pair of AURN-EAC4 observations were plotted in a Q-Q plot shown in Figure 6.3.
Data from the two sources are highly correlated as expected, but two major discrepancies
between them are discernible. First, the bottom left corner of the plot shows most sites
are above the 1-1 reference line, meaning the EAC4 overestimates very small values. The
second is the expected behaviour around large values - the EAC4 data underestimates
large values. This is consistently the case for sites further away from the city centre, such
as A, B, G, and I to L. As we can see from Figure 6.3, site C shows more alignment along
the 1-1 line between the EAC4 data set and AURN measurements.
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Figure 6.2: Map of the Greater London region with coloured circles denoting locations
where an AURN observation station is located and coloured triangles indicating the nearest
centroid in the EAC4 grid. The red crosses indicate the remaining EAC4 grid centroids.
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Figure 6.3: Q-Q plot for data from each AURN site (in different colours) and the nearest
cell-centroid from the EAC4 grid.

6.3.2 Choice of Hyperparameter Values

In this section, we summarise the choices of hyperparameter values for our model in (6.10),
which is the first step in fitting a Bayesian hierarchical framework. Recall that all hyperpa-
rameters are listed in the bottom line of the diagram in Figure 6.1. A sensitivity analysis
using a leave-one-site-out approach was performed to ascertain the optimal number of
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dimensions d for the basis functions Φi and Ψi, which model the temporal trend of yi and
xi, respectively. The plots in Figure 6.4 show the changes in RMSE, MAE, mean coverage
of the 95% predictive intervals and mean width of the 95% predictive intervals (mean PI
width) with increasing d from d = 5 to d = 150 averaged across all locations. Only PI
coverage is consistently capturing most observations which is due to the wide confidence
bands produced by the GPD distribution. We can see in the figure that increasing d will
always improve model fit. However, we can also see elbow plots for RMSE, MAE, and
mean PI showing that improvements are marginal beyond a certain dimension. Addition-
ally, the computational costs of increasing d are high, given the number of parameters is
to 8nd where n is the number of locations, therefore, it is of interest to use the minimum
suitable value of d. For these reasons, we fix the basis dimensions to d = 60 in the fol-
lowing, as it is the smallest dimension beyond which improvements in RMSE, MAE, and
mean PI width are marginal.
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Figure 6.4: Top: RMSE and MAE estimates with increases in dimension d of the basis
functions Φi and Ψi in (6.9). Bottom: Changes in the mean coverage of the 95% predictive
intervals and the mean width of 95% predictive intervals.

The hyperparameters, µy, by, µx and bx associated with the priors over the shape pa-
rameters ξy and ξx, were chosen to provide parsimony in the GPD likelihood by penalising
deviations from ξy = ξx = 0. For this reason, µx, µy = 0 and bx, by = 0.05. The poste-
rior distribution of ξx and ξy is robust to these decisions, as shown in the trace plots in
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Appendix B.
For the vector of hyperparameters λi = (λi0, λi1, λi2, λi3), those related to the logistic

regression component of the model (see (6.8)), a study was conducted to assess the sensitiv-
ity of the model to the prior specifications of these parameters. Figure 6.5 shows changes
in the posterior of λj given different prior specifications, ranging from highly informative
(µλj

= logit−1(0)) to very uninformative (µλj
= logit−1(0.5)) for j = 0, 1, 2, 3. As seen in

the figure, all components of λi are robust to these choices and always converge to very
similar values. Therefore, for simplicity, all λi are set to µλj

= 0 and σλj
= 1, j = 0, 1, 2, 3.
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Figure 6.5: Mean estimates and 95% credible intervals for the posterior samples of λi

against various values for µλj
, for j = {0, 1, 2, 3}

Finally, the exponential decay parameters ϕα and ϕβ were chosen by estimating proxy
parameters. Regression models, y∗i = ai+bix

∗
i , were fitted at each location i. Variograms of

the parameters a and b were estimated, and exponential models were fitted. The resulting
exponential decay parameters were ϕa, ϕb = 1.6, and can be considered a proxy for the
exponential decay of ϕα and ϕβ.

Computation and Convergence

The complexity of the model in (6.7) is mostly due to the number of parameters as defined
by d. CPU memory limitations turn prohibitive when fitting the model at d = 60 -
equivalent to 2932 parameters when using 12 sites - in base R. For this reason, the model
was coded in C++, which cut computation time for half a million samples of the posterior
predictive distribution from close to 100 hours to 4 hours.

To assess the convergence of the model, two MCMC chains were run at randomised
initial parameter values. Each chain consisted of 3 million sampling iterations, with 1
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million samples discarded as burn-in. The convergence of the parameters is strong, and
trace and density plots for some parameters are given in Appendix B. The Gelman-Rubin
convergence metric was also estimated, resulting in point estimates of 1, demonstrating
strong convergence across all parameters. The process also demonstrated that convergence
is achieved with as little as half a million samples with 100,000 sample burn-in.

Goodness-of-fit

Overall goodness of fit of our model at specific locations can be visualised in Figure 6.6
and 6.7. At the fitted sites in Figure 6.6, the mean of the predictive posterior distribution
follows the data appropriately, identifying threshold exceedances y > 0 as well as non-
threshold exceedances (censored as y = 0). The 95% credible intervals have high coverage
of the AURN observations, with the model failing to cover only 2 observations on average,
equivalent to a 0.978 coverage probability. The width of the credible intervals, however, is
large. At t = 83, the yearly maximum, the upper bound of the credible intervals is 120 for
site D and 85 for site I. Density plots for the shape parameters, ξx and ξy, are given in the
Appendix B. The estimated values posterior means are ξx = −0.22 with (−0.34, 0.02) as
the 95% credible interval, and ξy = −0.10 with (−0.216, 0.05) as the 95% credible interval.

Figure 6.7 provides Q-Q plots for the fitted sites D and I, shown in Figure 6.6, as well
as 95% point-wise confidence intervals for the ExDF fitted values obtained via bootstrap,
where 1000 samples of the posterior predictive distribution where sampled with replace-
ment, and the quantiles of interest were estimated. This process was repeated 1000 times
to obtain robust results. The plots show a similar story as that of Figure 6.6 where the
ExDF fitted values are a better representation of the AURN threshold exceedances than
the EAC4 data, especially at high values. Similar figures for the remaining sites can be
seen in Appendix B.

6.3.3 Investigating Exceedance Probability

A summary of the posterior means and 95% credible intervals for λi averaged across all
fitted sites A to K when predicting over site L is given in Table 6.1. The table shows
that, on average, logit−1(λ̂0) = 0.05, meaning that the model assigns a 0.05 probability
of exceeding the threshold to all times points, irrespective of the presence of a threshold
exceedance in the EAC4 dataset. λ̂2, the regression coefficient linked to time t, has an
average value of 0.9 in the probability scale, meaning there is a 0.9 probability of observing
an exceedance in y (in-situ measurements) given an exceedance in x (modelled data) at
the same time. Both λ̂1 and λ̂3 have confidence intervals inclusive of 0 in the logit scale
and 0.5 in the probability scale, showing that the lagged presence of exceedance in x,
whether t−1 or t+1, is not a strong linear predictor of observing an exceedance at t in y.
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Figure 6.6: PM2.5 measurements from the site D (top) and I (bottom) from the AURN
are shown in black, EAC4 values are shown in grey, and posterior mean is shown in blue
along with the 95% credible band.
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Figure 6.7: Q-Q plot of PM2.5 measurements at site D(left) and I (right) for the ExDF
and EAC4 models in blue and grey, respectively, against the true observations from the
AURN observation stations at those locations. Point-wise 95% confidence intervals are
given for the ExDF data.

However, we kept them since they still contribute to the predictive ability of our model.

Table 6.1: Posterior means and 95% credible interval for λ̂j and logit(λ̂j) for j = {0, 1, 2, 3},
averaged over the 11 fitted sites when predicting over site L.

Parameter λ̂j logit−1(λ̂j)
λ0 -2.95(-3.82,-2.07) 0.05(0.02,0.11)
λ1 0.85(-0.53,2.23) 0.7(0.37,0.90)
λ2 2.19(0.81,3.58) 0.9(0.69,0.97)
λ3 0.85(-0.55,2.23) 0.7(0.37,0.90)

The classification performed by the logistic regression was investigated using classic
classification metrics, such as accuracy, precision, recall, specificity, and F1 Score. Table
6.2 shows the summary for the sites used in model fitting, A to K, along with the mean
classification metrics of the EAC4 data for those sites. As seen in the table, the correct
classification of observations into threshold exceedances and non-exceedances is high across
all metrics for all fitted sites. Only sites E and I have lower metrics, with F1 Scores
< 0.8. While this is still a good classification, it is notable that different sites differ in
classification performance and are likely to reflect the classification of the EAC4 data due
to the importance of λ2, the regression coefficient linked to t.
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Table 6.2: Classification metrics for the logistic regression component of our model for
fitted sites A to K. Table includes a comparison with the EAC4 data.

Site Accuracy Precision Recall Specificity F1 Score
A 0.94 0.84 0.89 0.96 0.86
B 0.96 0.87 0.95 0.97 0.91
C 0.96 0.87 0.92 0.97 0.89
D 0.97 0.90 0.95 0.97 0.92
E 0.91 0.79 0.76 0.95 0.77
F 0.94 0.83 0.89 0.95 0.86
G 0.95 0.85 0.92 0.96 0.88
H 0.92 0.77 0.85 0.93 0.81
I 0.90 0.75 0.79 0.93 0.77
J 0.95 0.84 0.92 0.96 0.88
K 0.95 0.86 0.92 0.96 0.89

EAC4 0.95 0.87 0.87 0.97 0.87

6.3.4 Model Validation through Leave-one-site-out

A leave-one-site-out cross-validation (LOSO-CV) procedure was performed on the twelve
sites available in the Greater London region to assess the model’s predictive performance
where "true" observations are available, meaning measurements from an AURN station are
available. For each iteration of this cross-validation, a site is removed from the training set
and used as a test location, the model is fitted to the available locations in the training set,
and a prediction is made for the test location. Given that the focus of the proposed model
is on threshold exceedances and the prediction of an exceeding occurrence has already been
evaluated, only the prediction of the size of the threshold exceedance is evaluated here. A
summary of the results is given in Table 6.3 alongside a comparison between the data fusion
for extremes proposed in this chapter (ExDF), the Gaussian model of Wilkie et al. (2019)
(GausDF) and the prediction available using the EAC4 modelled data. The comparison is
made using RMSE and MAE. Additionally, an evaluation of the probabilistic prediction of
the GausDF and the ExDF models is done through the continuous rank probability score
(CRPS) defined as

CRPS(F, y) =
∫
R
[F (x)− 1(x ≥ y)]2 dx,

where F is the cumulative distribution function of the predictive distribution, and y ∈ R
is the true value. The table shows two important results. The first is that both data fusion
approaches improved the representation of threshold exceedances in the EAC4 data. Of
the twelve sites, the RMSE and MAE show that the GausDF and the ExDF models
outperform the EAC4 data for 7 and 10 sites, respectively. However, this result is not
homogeneous across locations. Indeed, the EAC4 shows better performance at sites C and
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G. Although site C is best described by the EAC4 data, which was already suspected from
Figure 6.3, it is followed closely by the ExDF model. A bigger difference is seen in site G.

The second main result from table 6.3 is that the ExDF model outperforms the GausDF
model at every site. Evidence for this result is the lower RMSE, MAE and CRPS values
at every site, with lower CRPS values indicating a better probabilistic prediction. This
result was expected, as the ExDF approach is tailored for threshold exceedances, unlike
the GausDF and the EAC4 models.

Table 6.3: Results of the LOSO-CV comparisons between GausDF, ExDF and the EAC4
data. Table provides RMSE, MAE, and CPRS values for sites A to L for each of the three
data sources. Values in bold indicate the minimum value using that metric at that site.

RMSE MAE CRPS
Site GausDF ExDF EAC4 GausDF ExDF EAC4 GausDF ExDF
A 3.12 1.68 7.57 2.79 0.94 6.44 0.52 0.35
B 2.25 1.20 5.01 2.12 0.83 4.03 0.52 0.36
C 2.21 1.10 0.62 1.66 0.68 0.50 0.52 0.36
D 1.71 1.21 1.94 1.22 0.77 0.99 0.52 0.38
E 5.30 2.20 5.89 5.12 1.64 5.23 0.47 0.29
F 3.89 1.66 3.12 3.75 1.01 2.00 0.48 0.34
G 3.53 3.09 2.29 3.35 2.38 1.57 0.49 0.19
H 2.92 2.38 2.60 2.56 1.66 1.75 0.50 0.18
I 3.80 2.66 2.83 3.66 2.45 2.57 0.50 0.15
J 6.67 5.50 10.29 5.90 3.42 8.09 0.48 0.18
K 3.33 3.11 6.78 2.30 2.12 4.59 0.51 0.18
L 5.30 2.10 8.49 5.03 0.98 7.31 0.49 0.34

The Q-Q plots in Figures 6.8 to 6.10 help visualise the validation results shown in Table
6.3. Sites A, B, and D in Figure 6.8 show that the ExDF produce a better representation
of the true values at that location. The EAC4 data seems to be better only at site C.
For this site, the similarity between the ExDF model and the EAC4 data is evident, while
the GausDF model shows larger discrepancies with the true values for smaller threshold
exceedances. The figure also shows that, for these sites, the GausDF model diverges from
the true values most at smaller threshold exceedances.

In Figure 6.9 (sites E to H), a similar pattern is visible. Threshold exceedances at
sites E, F, and H are better captured by the ExDF model, while the GausDF and EAC4
experience a varied performance. Only at site G is the EAC4 data a better fit (as noted
in Table 6.3). The figure shows that none of the three models are good at capturing the
largest exceedances at these four locations, especially for values PM2.5> 30. However,
the EAC4 is a closer fit for smaller threshold exceedances, followed by the ExDF and
the GausDF models, meaning the EAC4’s representation of the extremes deteriorates the
further away from the mean, as expected in non-extreme models.



6.3. Application to PM2.5 Air Pollution in the Greater London Area 133

Figure 6.8: Q-Q plots of LOSO-CV results for sites A to D. The figures compare the
GausDF model (Wilkie et al., 2019) in black, the EAC4 data in grey, and the data fusion
for extremes model (ExDF) in blue. Point-wise 95% confidence intervals are given for the
ExDF and GausDF models.



134 Chapter 6. Data Fusion for Extremes

Figure 6.9: Q-Q plots of LOSO-CV results for sites E to H. The figures compare the
GausDF model (Wilkie et al., 2019) in black, the EAC4 data in grey, and the data fusion
for extremes model (ExDF) in blue. Point-wise 95% confidence intervals are given for the
ExDF and GausDF models.
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Finally, Figure 6.10 shows model fits for sites I to L. Threshold exceedances at sites
I and L are well captured by the ExDF model. For sites J and K, a pattern is visible
across all data sources: underestimation of the largest threshold exceedances. While the
ExDF confidence intervals still capture this behaviour, it is clear to see that these sites
behave differently from the others. Further investigation into the results showed that,
although these observation stations are available at locations near the coast, the nearest
EAC4 cell centroids, from where the data for the EAC4 source was extracted, are directly
over the North Sea. No other sites experience this disparity between conditions at the
AURN site and the nearest EAC4 centroid, which could explain the poor performance
of all models at this location. A possible solution to this problem is choosing a different
grid-cell in the EAC4 grid, requiring a possible reevaluation of the nearest-centroid rule
for data extraction.

Overall, the figures show that the ExDF model produces a better representation of
the threshold exceedances of the in-situ measurements than the readily available EAC4
data and the Gaussian approach. Larger confidence intervals are seen for the point-wise
estimates of the threshold exceedances for the ExDF compared to those of the GausDF.
The figures also shine a light on the limitations of data fusion models. At locations where
the remote-sensing or modelled data do not reflect the true conditions, improvements using
data fusion models over the EAC4 data are small and objectively negligible.

6.3.5 Maps of PM2.5 Expected Shortfall from EAC4 and ExDF

data

Predictions over the Greater London area were made to highlight the improvements in
the EAC4 PM2.5 measurements when AURN measurements are fused using the ExDF
model proposed in this chapter. Figure 6.11 shows the expected shortfall, defined as
E(Y − u|Y > u), and the range of the threshold exceedances, defined as max−min, for
the EAC4 and the ExDF data. The shortfall estimates in the top row show that the
EAC4 are smooth in space and experience little variability. The largest shortfall estimate
is 6.2 µg/m3 observed in the London city centre, followed by the region in the southwest.
In the ExDF data, a different spatial pattern emerges. The largest values in the ExDF
data show high values on the east coast, with the largest shortfall value as 9.07 µg/m3 near
Southend-on-Sea. Differences are also noticeable around the London city centre, where
the EAC4 experiences higher shortfall values and the ExDF experiences lower. Other
patterns, however, seem to be in agreement. For example, the northwest corner for both
data sources has lower values, while a pattern of high-low-high values from the city centre
to the southeast corner is visible.
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Figure 6.10: Q-Q plots of LOSO-CV results for sites I to L. The figures compare the
GausDF model (Wilkie et al., 2019) in black, the EAC4 data in grey, and the data fusion
for extremes model (ExDF) in blue. Point-wise 95% confidence intervals are given for the
ExDF and GausDF models.
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Figure 6.11: Top: Map of PM2.5 expected shortfall from the EAC4 data and the ExDF
model for the year 2022. Bottom: Map of the range of exceedances for the EAC4 data
and the ExDF model for the year 2022.
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Figure 6.12: Cropped map of the Greater London area showing PM2.5 expected shortfall
from the EAC4 (top) and ExDF (bottom) data along with the empirical shortfall computed
at AURN observation stations for the year 2022.

The range figures on the bottom row of Figure 6.11 show a similar pattern as the
shortfall, with the EAC4 threshold exceedances exhibiting overall narrower ranges with
raised values around the London city centre, and the ExDF data showing wide ranges
on the east coast and narrower ranges further west. Overall, the figures provide similar
information. In the EAC4 data, higher PM2.5 values are consistently found near the
London city centre. The ExDF data, on the other hand, shows higher exceedances on the
east coast, especially at locations directly on the coast and around the mouth of the river
Thames. A pattern of higher values of PM2.5 on the coast is also seen in the literature. For
perspective, Figure 6.12 provides a cropped map with overlayed expected shorfall values
from the AURN observation stations. The figures show that the variability of the ExDF
map is much closer to the in-situ measurements than the EAC4, even capturing the high
values observed near the coast. Yang et al. (2023) showed that values are generally higher
around the coast due to emissions from maritime transport and various related sources,
as well as salt content from the sea.

Overall, the maps highlight the difference between threshold exceedances in modelled
and fused data - a proxy for the difference between modelled and in-situ measurements -
which is significant, both in terms of spatial patterns and measurement values.
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6.4 Discussion and Future Work

The ExDF model proposed in (6.7) is an extension of the data fusion model proposed
by Wilkie et al. (2019) for fusing extreme values from in-situ and remote-sensing sources
to exploit the spatial coverage of remote-sensing observations and retain the accuracy of
in-situ data. It links the two datasets through the scale parameter of the GPD using
a flexible regression whose parameters are subject to change in space and time. Unlike
previous models that use EVT for data fusion, the model presented here retains infor-
mation about the time of a threshold exceedance by exploiting the information provided
by the remote-sensing source. As such, the approach is the symbiotic combination of two
mechanisms. The first models the probability of a threshold exceedance in the in-situ data
using threshold exceedances in the remote-sensing observations and classifies observations
as threshold and non-threshold exceedances, while the second models the magnitude of
the exceedance.

A generalised linear model (GLM) approach predicts the probability of observing a
threshold exceedance in the in-situ data, given that one has been observed in the remote-
sensing data. The covariates in the GLM are the lagged indicators of remote-sensing data
exceedances at times t − 1, t and t + 1. The model shows that only xit highly affects
the probability of exceedance while xi(t−1) and xi(t+1) have little influence on the proba-
bility of exceedance. Results from the predictions show that they are dependent on the
remote-sensing observations - meaning the ExDF model only predicts an exceedance if
one is observed in the EAC4 data. Nevertheless, this mechanism is helpful for accurately
estimating extremes under a GPD likelihood by mitigating the smoothing effect of the
spline functions and increasing the temporal accuracy of threshold exceedance predictions.
Changes to improve this classification can be made by re-assessing the GLM structure or
by integrating covariates that are known to affect PM2.5concentrations. For example,
Jin et al. (2022) show that appropriate covariates are meteorological variables such as
dew point temperature, temperature, humidity, relative humidity, precipitation, potential
evapotranspiration rate, and windspeed. Other auxiliary data include normalised differ-
ence vegetation index (NDVI), enhanced vegetation index (EVI), population density, and
Keetch-Byram drought index (KBDI). Including these auxiliary variables in the model can
improve the estimated probability of exceedance and is a natural extension of the model.
The predicted probabilities are incorporated into the ExDF model through a Dirac-delta
generalised Pareto distribution, which allows the preservation of the temporal location of
threshold and non-threshold exceedances in the time series by censoring non-threshold ex-
ceedances. As mentioned in Section 6.2, this model feature is highly desirable as it allows
our model to be used with classical data fusion approaches for the bulk of the distribution
to provide a full-range fused dataset. Although this is beyond the scope of this chapter,
we envision that such a strategy should incorporate careful assessment of the impact of
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using different models for the fusion of bulk and exceedances values, especially around
the threshold. Alternatively, a more seamless full-range data fusion approach could be
conceived using continuous models that are known to adequately capture extreme and
non-extreme observations, such as the extended generalised Pareto distribution (Naveau
et al., 2016).

The magnitude of threshold exceedances is predicted using a GPD likelihood inside the
Dirac-delta framework proposed by Weglarczyk et al. (2005) and Couturier and Victoria-
Feser (2010). While modelling threshold exceedances with a GPD is intuitive, the model
is still subject to assumptions and impositions in the name of parsimony or practicality.
For example, the assumption of independence between ξx and ξy was made to simplify the
number of estimated parameters. An increase in complexity (and the number of model
parameters) could allow the inclusion of a linear or non-linear relationship between the
two. However, this was discarded as increasing the number of the parameters can result in
challenges in terms of estimation and inference, potentially jeopardising the identifiability
of the linear relationship between scale parameters (namely parameters ci and di), which
already accounts for the relationship between the two datasets. Another assumption is the
spatial exponential decay imposed in the model through parameters ϕα and ϕβ. In this
model, we propose to estimate the exponential decay parameters a priori by modelling the
variogram of proxy parameters and utilising the estimated exponential decay coefficient.
Although this method has worked well, the spatial structure might not be appropriate for
all applications and is restricted to second-order stationarity.

The results in Section 6.3 show the model performs well, and the posterior predictive
mean of the prediction seems an appropriate candidate for point predictions, yielding non-
zero observations for threshold exceedances and zero values for censored non-exceedances.
However, it is limited by the quality of the prediction made in the remote-sensing data
and is also subject to its bias as highlighted by Maraun and Widmann (2018).

Finally, the maps of expected shortfall using the EAC4 and ExDF models in Section
6.3.5 highlight the difference between the two models. The EAC4 data are spatially smooth
and exhibit low variability, while the ExDF model displays a wider variability. The spatial
pattern in the EAC4 data shows a slight increase in PM2.5 concentrations in the London
city centre and the southwest, while the ExDF show higher, much higher concentrations
at coastal locations. The maps show that a data fusion model for extreme values can
help reveal different spatial patterns and provide better information as to the location
and the intensity of PM2.5 pollution, which is not otherwise seen in the EAC4 dataset.
Further conclusions and discussion about the practical implications of this work are given
in Section 8.2.
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EVA 2023 Data Challenge: The Wee
Extremes Team

7.1 Motivation and Context of Data Challenge

The latest Extreme Value Analysis (EVA) Conference was held in the summer of 2023 in
Milan, Italy. As is customary, the organising committee set up a Data Challenge event to
engage conference attendees or groups interested in EVA. PhD students at the University
of Glasgow participated in the challenge under the team name "The Wee Extremes".
Although the team submitted entries for all four challenges posed by the organisers, this
thesis covers only challenges 2 and 4, denoted C2 and C4, respectively, as those represent
the author’s contribution to the team entry. Challenges 1 and 3, denoted C1 and C3,
respectively, were developed by other members of the team and will consequently not
feature in this chapter.

The event consisted of four challenges. C1 focused on modelling univariate nonstation-
ary extremes with missing observations using covariate information. C2 also addressed
univariate extreme modelling but focused on estimating return values for extrapolatory
probabilities. As an added complication, the challenge required the optimisation of an
application-specific loss function, a more realistic scenario when extreme models are re-
quired for decision-making. C3 and C4, focused on multivariate challenges in extreme
value analysis. In the first part of C3, participants were asked to find the probability that
an extreme value will be exceeded at three locations simultaneously; in the second part,
the participants were asked for the probability that only two of the three locations would
observe an exceedance. In C4, the problem of high dimensionality was approached, and
participants were asked to consider two different regions with 25 observation stations in
each region. The first part of the challenge required participants to estimate the probabil-
ity that all observations in a region will exceed a region-specific high value simultaneously,
while the second part required the estimation of the probability that all observation sta-
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tions exceed the same high value (Rohrbeck et al., 2023).

In the remainder of this chapter, we will provide the work for which the author was
responsible - C2 and C4. Section 7.3 provides further details for the problem posed in C2,
describes the data, details the methodology developed for the problem, and provides the
results. Section 7.4 provides similar information for C4. A summary of the conclusions
and a discussion in light of the truth being revealed in Rohrbeck et al. (2023) is provided
in Section 7.5.

7.2 Some Utopian Context

The challenges the organisers pose are common problems encountered by extreme value
analysis in environmental applications. However, the problems were set on an alternate
planet called Utopia, where the environment resembles that of planet Earth but retains
significant differences.

Various features of Utopia are given to facilitate the modelling process. For example,
the Utopian year consists of 300 days. It is both seasonal and cyclical, enjoying only 2
seasons in a year and with a cyclical period of 70 years. The data are generally presented
as Yi,t, where i ∈ I denotes different locations. Despite the spatial aspect of these data, no
location information is provided, and Yi,t are considered to be independent and identically
distributed given the set of covariates. In the multivariate challenges, C3 and C4, the
marginal distributions of Y are identical over space and time, and follow a standard
Gumbel distribution.

Finally, in C4, we consider the fact that the planet’s government is subdivided into
two independent regional governments, U1 and U2, each responsible for 25 towns.

7.2.1 C2 - Extremes of a Univariate Random Variable

The data provided for the challenge consists of samples of a single vector Y ∈ [0,∞) of
70,000 observations. The minimum value in the data is 0.01, while the maximum is 210.
The data display a heavy tail, as shown in the histogram in Figure 7.1, with 50% of the
observations existing in the interval [25.3, 42.4].

When the focus is on threshold exceedances, the mean residual life plot (Coles, 2001) in
the right-hand side of Figure 7.1 shows a linear behaviour starting at u0 = 77 (correspond-
ing to the 95% quantile of the data), as the plot is roughly linear before and after roughly
corresponding to the threshold-stability property of the GPD (see 2.2.1). Therefore, we
consider u0 = 77 to be an appropriate threshold for the GPD distribution.
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Figure 7.1: Left: Histogram of response variable Y in C2 displaying support in [0,∞) and a
heavy-tail. Right: Mean residual life plot of the data displaying linearity at approximately
u = 77

7.2.2 C4 - Multivariate Dataset for U1 and U2

The data were given for two governmental regions, Uj for j = 1, 2. Each region had
i = 1, ..., 25 locations, where each location consisted of a time series spanning 10, 000 days.
We denote the time series as Yj = (Y1j, ...., Y25j) for j = (1, 2). No spatial information
was given to enable a spatial modelling approach.
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Figure 7.2: Boxplot of observations exceeding the 90th-quantile for all locations i =
1, ..., 25 in U1.
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Figure 7.3: Boxplot of observations exceeding the 90th-quantile for all locations i =
1, ..., 25 in U2.

Figures 7.2 and 7.3 show boxplots for observations exceeding the 90th-quantile at
each location in regions U1 and U2. No clearly discernible pattern or outliers arise in
U1 or U2. However, the extremal dependence between sites, measured using χ(u) =

Pr(Yi > u|Yk ̸=i > u), shown in Figure 7.4 shows a diverse set of dependence structures
across locations in each region. In U1, the figure shows three asymptotically indepen-
dent clusters starting at χ(0.9) = {0.1, 0.3, 0.4} and one asymptotically dependent cluster
at χ(0.9) = 0.5. In U2, there are two asymptotically independent clusters at χ(0.9) =

{0.1, 0.3}, one asymptotically dependent cluster with decaying dependence at χ(0.9) =

{0.4} and an asymptotically dependent cluster with almost constant dependence at χ(0.9) =
0.5.

Figure 7.4: Left: Plots of the coefficient of tail dependence χ for all possible pairs in
region U1 for thresholds u > 0.9. Right: Plots of the coefficient of tail dependence χ for
all possible pairs in region U2 for thresholds u > 0.9.
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7.3 C2 - Univariate Extrapolation with Arbitrary Loss

Function

In C2, the challenge is extrapolating a quantile value for an event of interest Y given a
loss function subjective to the practical limitations of the application. The probability of
the quantile of interest, qC2 is defined as

Pr(Y > qC2) =
1

300T
, (7.1)

where T = 200. Given that the annual cycle in Utopia is 300 days, the problem is
concerned with finding the return value exceeded once in a return period of 200 years.

Practical concerns regarding the preparedness for the extreme occurrence Y dictate
that underestimating the magnitude of the extreme event would be more costly than the
expense incurred in the infrastructure necessary to prepare for an event that represents
an overestimation. The loss function reflecting this asymmetric decision is described in
Rohrbeck et al. (2023) as

L(q, q̂) =


0.9(0.99q − q̂) if 0.99q > q̂,

0 if |q − q̂| ≤ 0.01q,

0.1(q̂ − 1.01q) if 1.01q < q̂,

(7.2)

where q is the true quantile and q̂ is an estimate of q. An illustration of the loss function
is given in Figure 7.5.
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Figure 7.5: Visualisation of loss function in (7.2) for a true value of q = 1



146 Chapter 7. EVA 2023 Data Challenge: The Wee Extremes Team

7.3.1 Extreme Weighted Bootstrap for Extrapolation

The problem is well-posed for extreme value analysis, as extrapolating into the tail of
the distribution and estimating a return value has been an attractive output of the field,
particularly for heavy-tailed data as seen in the histogram in Figure 7.1. Return values can
be estimated for the classical extreme distributions (GEVD and GPD) in the univariate
case. For the GPD, the return value yr is estimated for a return period r using

yr = u+
σ

ξ
[(rpu)

ξ − 1],

where pu = Pr(Y > u) is the probability of exceeding the threshold u, and σ and ξ are the
scale and shape parameters of the GPD, respectively. The accuracy of the estimation of
any return value is dependent on various factors: (1) the quality of historical data, (2) the
length of the record, (3) the characteristics of the true data-generating distributions, e.g.,
stationary vs nonstationary, (4) the appropriateness (or misspecification) of the statistical
model, and (5) the model-fitting mechanism (Mackay and Jonathan, 2020). To address
these issues, an approach inspired by Jonathan et al. (2021), who provided a systematic
review of return value estimation and concluded that the best estimator is the mean of
different quantile estimates for the annual maximum event, was proposed using a weighted
data bootstrap model (Hall and Maesono, 2000) with a focus on extreme values. Boot-
strapping data for the purpose of extreme value theory has been used before by de Haan
and Zhou (2024) for improved extreme value estimators and Varga et al. (2016) who used
it for improved uncertainty estimates of return values.

Hall and Maesono (2000) propose an extension of the classical bootstrap formulation
where sampling weights, wi = {w1, ..., wn}, are assigned to each observation in the original
data Yi, defining the sampling priority for that observation, resulting in a bootstrapped
sample

Y∗
n = (Y1, . . . Y1︸ ︷︷ ︸

w1∗n times

, . . . , Yn, . . . Yn︸ ︷︷ ︸
wn∗n times

).

While various weighted strategies exist, only Varga et al. (2016) applied it in the
extreme value context to improve uncertainty estimates of the estimation of return values
of precipitation in Hungary. They proposed the multinomial or exponential distributions as
the generating distributions for the weights, which were used to weight the contribution of
each observation to the likelihood. The strategy was considered insufficient, as it failed to
improve extrapolation and did not incorporate a loss function. Our focus on extremes and
extrapolation requires a weighting strategy that assigns higher weights to extreme values
for better representation, and that could be used in conjunction with the loss function in
(7.2). For this reason, we chose to define the bootstrap sampling probabilities, w, as a
scaled version of arctan

(
y(i)
)
, where yi is the i-th ordered observation, that results in an
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"S" shape as seen in Figure 7.6. Specifically, the sampling weight wi for sorted observation
y(i), i = 1, . . . , n, is

wi =
w∗

i∑n
i=1 w

∗
i

, where w∗
i =

y∗i −min{y∗i }
max{y∗i −min y∗i }

and y∗i = arctan
{
Φ(F̂−1

Y (yi))
}
,

(7.3)
where F̂Y (·) is the empirical cdf of Y and Φ(·) is the cdf of a standard normal distribution.
Both the arctan and Φ, are required to obtain the desired "S" shape to assign small values
a low probability of sampling and large values a high probability of sampling, as the
representation of extreme values in each sample is important to capture the underlying
extremal behaviour and improve extrapolation into the tail.

The bootstrapping procedure using the weights in (7.3) is used to produce B extreme-
rich samples at every iteration. A GPD is fitted to each sample and used to predict the
desired quantile value. The algorithm can be summarised as follows

1. For each iteration b = {1, ..., B} sample a set of n observations with replacement
using wi in (7.3) as the probability of drawing the i-th quantile from the original
data, i = 1, . . . , n.

2. Fit a stationary GPD model, F̂b, to exceedances over the 99.5% empirical quantile
(pu = 0.995).

3. Predict the high quantiles q(j) < qC2, where q(j) > F̂−1
Y (pu), j = 1, ..., nu, correspond-

ing to the j-th ordered observation over the threshold u0. Using the fact that

F̂−1
b

(
F̂Y (q(j))− (1− pu)

pu

)
= q̂(j),

calculate L(q(j), q̂(j)) using (7.2) and compute the total loss for that sample Lb =∑nu

j=1 L(q(j), q̂(j)).

4. Predict the desired quantile qC2 using F̂b to obtain q̂C2.

7.3.2 Application to C2

The procedure detailed above was repeated for B = 1000 iterations, resulting in a range of
bootstrap predictions assessed by their respective total loss using the arbitrary loss func-
tion defined in (7.2). The right-hand side of Figure 7.6 shows these bootstrap predictions
for quantiles exceeding the threshold u = 119.33, corresponding to the 99.5th empirical
quantile. As seen from the figure, the predicted values have a large range, which increases
at larger quantiles, meaning uncertainty around any estimate increases with higher predic-
tions. The point estimate for the iteration yielding the smallest total loss Lb was proposed
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as the final answer. In this application, it was q̂C2 = 239 with 95% confidence interval
(169.2, 363.2), reflecting wide uncertainty around the estimation of q̂C2 under the arbitrary
loss function.
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Figure 7.6: Left: Bootstrap sampling weights before rescaling for transformed observations
y∗i where extreme observations are more likely to be sampled at every bootstrap iteration.
Right: Bootstrapped quantile predictions based on a GPD fitted on exceedances of the
99.5% empirical quantile. The red points represent the best prediction, i.e., the sample
that minimises the loss function, and the blue line is our final prediction for qC2.

7.4 C4 - Probability of High-Dimensional Simultaneous

Extreme Event

In C4, the Utopian government required the probability that the variables Yi,j would
exceed a threshold simultaneously, i.e.,

Pr(Yi,j > si : ij = 1, ..., 50; j = 1, 2),

where i represents one of the 25 locations under the responsibility of the regional govern-
ment Uj.

The challenge was further subdivided into two problems. In the first, a different design
is allowed for each regional government, U1 and U2, where each region is assigned a different
threshold, namely s1 and s2, respectively. Here, we consider s1 to be the marginal level
exceeded once in a year on average, equivalent to a probability of ϕ1 = 1/300 given that
there are 300 days in the Utopian year, while s2 is the level exceeded once a month,
equivalent to a probability of ϕ2 = 12ϕ1. In this challenge, the value exceeded once a year
is given as s1 = 5.702, and the one exceeded once a month is s2 = 3.199. The probability
associated with the simultaneous exceedance of s1 and s2 at U1 and U2 is denoted as p1,
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and its estimate is p̂1. In the second problem, only the probability of a yearly exceedance
is considered, p2, so that ϕ1 = ϕ2 and s1 = s2 = 5.702.

7.4.1 PPCA and Application to C4

While there are methods capable of dealing with high-dimensional data for multivariate
and spatial extremes (see Huser and Wadsworth, 2022), the choice of dependence structure
can be restrictive. Figure 7.4 shows the estimated χ values for thresholds u > 0.9. As
seen in the figure, the data display diverse dependence structures, with pairs of locations
displaying strong dependence, weak dependence, asymptotic dependence, and asymptotic
independence. The diverse dependence classes, coupled with practical limitations, were
central to choosing a dimension-reduction approach, specifically, probabilistic principal
component analysis (PPCA, Tipping and Bishop, 1999), which maps the existing ex-
tremal dependence structure onto an asymptotically independent setting through a latent
Gaussian structure.

PPCA is an extension of principal component analysis (PCA) that assumes a proba-
bilistic model. It is considered a dimensionality reduction method that assumes a lower-
dimensional latent Gaussian model framework. Let Y = {y1, ...,yn} where every yi ∈ Rd

are d-dimensional vectors. The underlying structure is assumed to be linear, depending
on some latent variable zi ∈ Rk where k ≤ d, i.e.,

yi = Wzi + ϵ,

where W is d×k dimensional matrix of the principal component axes, and ϵ is a Gaussian
error term with zero mean and σ2 variance. By integrating the latent variable zi, we have
that yi ∼ N(0,WWT + σ2I), which in turn enables the estimation of W and σ2 via
maximum likelihood. PCA arises as a special case when σ2 = 0. Predictions can then be
made using a multivariate Gaussian distribution of dimension d. In PCA methods, there
are as many principal components as there are variables. The first principal components
are said to account for the most variance in the data and often carry information about the
majority of the observations, while the smallest principal components contain information
about outliers and extremes. For this reason, we chose to use d = 25 to estimate p̂1 and
d = 50 to estimate p̂2. The model provided the point estimates p̂1 = 2.9 × 10−9 for the
first problem, and p̂2 = 5.4× 10−10 for the second.

7.5 Discussion and Future Work

A discussion of the results was facilitated by the reveal of the truth provided by the organ-
isers in Rohrbeck et al. (2023). C2 posed a challenge focused on extrapolating extremes
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in a univariate setting using an arbitrary loss function that reflected the limitations of the
application. To tackle the problem, we proposed a weighted bootstrap approach with a
tailored weighting strategy to prioritise the sampling of extreme values and mitigate the
bias presented by non-extreme values. Applying the model resulted in a point estimate of
ˆqC2 = 239 with 95% confidence interval (169.2, 363.2). Rohrbeck et al. (2023) provided a

true value of q = 196.6, which was overestimated by our modelling approach. We believe
there are two major reasons for this behaviour: one conceptual reason and one technical.

The data provided for C2 spanned 70 years, while the question required estimating a
value likely to be exceeded only once in 200 years (qC2). Working with this information,
we formed the assumption that an estimate of this quantile, q̂C2, would, therefore, be
larger than the values observed in the data. Using this assumption as a guiding principle,
we preferred models and techniques that met this assumption. This assumption proved
erroneous, as the true value was revealed to be smaller than the maximum observed in the
data.

The second reason is the weighting strategy. The assumption above encouraged a
weighting strategy that resulted in the over-sampling of extremes. This over-sampling
introduced bias and resulted in overestimating qC2. Although the confidence intervals
captured the true value, these were wide and thus included unreasonable predictions under
the loss function. Future work on this approach involves a thorough search and comparison
for weighting strategies that result in accurate point estimates and narrower confidence
intervals.

C4 centred around estimating the probability of joint exceedance in a high-dimensional
setting. As such, there was a strong focus on the extremal dependence between pairs
in both regions. Our PPCA approach, which assumes a latent Gaussian structure, did
not account for the dependence between locations. The results of the model yielded
p̂1 = 2.9× 10−9 for the first problem, and p̂2 = 5.4× 10−10 for the second, both of which
overestimated the true values p1 = 8.4× 10−23 and p2 = 5.4× 10−25, respectively. Figure
7.4 showed that the data had clusters of locations with different dependence structures.
Unfortunately, time constraints did not allow us to pursue a modelling approach based
on clusters of dependence structures, which was later revealed as the correct approach in
(Rohrbeck et al., 2023).



Chapter 8

Conclusions and Future Work

The research presented in this thesis develops novel methodologies to tackle the statistical
modelling of spatial extremes with applications in heavy metal (HM) soil contamination
and PM2.5 air pollution. The new methodologies combine existing spatial approaches and
extreme value theory to tackle non-replicated extremes for HM contamination and data
fusion for extremes of PM2.5 air pollution. Chapters 2 and 3 are provided as necessary
background. Chapter 2 provides the statistical background used as the foundation of
the proposed models, covering geostatistical models, extreme value theory, methods for
Bayesian inference, and common data fusion approaches. In contrast, Chapter 3 provides
the environmental context for the two pollution case studies.

The motivation behind modelling bivariate heavy metal contamination in the Glasgow
Conurbation (Chapters 4 and 5) was to improve the spatial estimates of the extreme values
of contaminant concentrations while accounting for the extremal dependence between
them. The project was undertaken in collaboration with the British Geological Survey,
which kindly provided the G-BASE data set for the application. First, Chapter 4 provides
an in-depth comparison of the extremal dependence between contaminant pairs under two
models with different extremal dependence structures, ignoring spatial variability. Chapter
5 develops a methodology to model these contaminants in space by proposing a bivariate
coregionalised mixture model fitted using INLA under the Bayesian inference framework.

In Chapter 6, a data fusion model tailored for extreme values was developed in Chapter
6, building on the Gaussian approach of Wilkie et al. (2019). The project was motivated
by the need to improve the representation of extreme values in remote-sensing or mod-
elled data by fusing them with spatially sparse in-situ measurements using a Bayesian
hierarchical model.

Finally, Chapter 7 provides the work presented at the EVA 2023 Data Challenge.
The chapter covers two challenges, C2 and C4, where C2 focuses on extrapolating a high
quantile for a univariate random variable to minimise an arbitrary loss function. C4, on
the other hand, is about estimating the probability of simultaneous exceedance in a high-
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dimensional setting. Both problems represent common challenges in modelling extreme
values.

8.1 On Modelling Bivariate Heavy Metal Soil Contam-

ination

8.1.1 Extremal Dependence between Contaminants

In Chapter 4, we present an investigation of the extremal dependence structures in heavy
metal contaminants in the Glasgow Conurbation by using two existing models with dif-
ferent extremal dependence structures - the multivariate generalised Pareto distribution
(MGPD) using the approach proposed by Kiriliouk et al. (2019) and the exponential fac-
tor copula model (EFC) proposed by Castro-Camilo and Huser (2020). These models
represent two distinct classes of extremal dependence. The MGPD produces a constant
dependence, meaning the probability of simultaneously experiencing high values in both
contaminants is always unchanged, even for very extreme values. Conversely, the EFC is
a subasymptotic model capable of capturing decaying dependence - meaning the depen-
dence between components decreases at increasing values but does not reach asymptotic
independence.

Both models were fitted to the fifteen possible pairs between As, Cr, Cu, Ni, Pb,
and Zn. The results shine a light on the diversity in extremal dependence structures
between these contaminants in the Glasgow Conurbation and provide insight into their
possible sources. The empirical dependence between pairs with As shown in Figure 4.2,
i.e., As-Cu, As-Ni, As-Pb, and As-Zn, show strong, near constant dependence (χ ≈ 0.5),
only displaying a decline at high quantiles (u > 0.95). As such, these pairs are better
represented by the rigid dependence of the MGPD. The EFC is a better fit only at very
high quantiles, u > 0.95, when the decay in χ is evident. The results imply that As is a
common joint byproduct of processes that release Cu, Ni, Zn, and Pb into the soil. Only
the As-Cr pair exhibits a different extremal dependence structure altogether - it is weaker
(χ < 0.4) at lower quantiles and decays consistently at increasing quantiles. For this pair,
the MGPD captures dependence only at lower quantiles and the EFC only at very high
quantiles. However, both models overestimate the dependence at most quantiles and fail
to capture it appropriately, showing that alternative dependence models could be needed.

The dependence between pairs with Cu shown in Figure 4.3, i.e., Cu-Ni, Cu-Pb, and
Cu-Zn, is strong (χ > 0.6) and displays minor decay until larger quantiles. Although the
dependence between Cu-Ni and Zn-Cu is nearly constant, Zn-Cu is better captured by
the MGPD, and Cu-Ni is better captured by the EFC. The pair Pb-Cu displays weak
decay and is better captured by the EFC. The strong dependence between most of these
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pairs indicates a common source of contamination and possibly similar mobility pathways,
as their dependence remains high for the full range of observations. Only the pair Cr-
Cu exhibits strong decay and approaches asymptotic independence. The EFC model
accomplishes a close fit to the dependence throughout the range of observations. As such,
it provides evidence that Cr and Cu may not come from a common source or might have
different mobility pathways in the region.

For the pairs in Figure 4.4, that is, the remaining pairs of Cr, Ni, and Zn not covered
previously, various dependence structures are visible. Pairs with Cr, i.e., Cr-Ni, Pb-Cr,
and Cr-Zn, experience decaying dependence structures. Cr-Ni displays the strongest decay
from χ = 0.58 to χ = 0.05, which is only captured by the EFC at u > 0.925, while the
MGPD model performs poorly. The other two pairs, Pb-Cr and Cr-Zn, have decaying
structures better captured by the EFC model. The remaining three pairs in the figure, i.e.,
Pb-Ni, Pb-Zn, and Zn-Ni, all display very weak decay or near-constant dependence. The
Pb-Ni pair, however, is mainly overestimated by both models, with only EFC capturing
dependence at u > 0.92. The Pb-Zn pair shows strong dependence χ = 0.7, with decay
only at high quantiles and is similarly captured by both models. Finally, the EFC better
captures the Zn-Ni pair, although near-constant dependence can be seen up to u = 0.95.
From the results, it can be seen that Cr-Ni have a strong relationship that decays rapidly,
providing evidence of different sources of extreme values or mobility capacity at elevated
values in the region.

The results from these comparisons provide three main conclusions. First, dependence
structures in heavy metal contaminants in the soil are diverse. While it is commonly known
that decaying dependence is a common feature in environmental applications (Castro-
Camilo and Huser, 2020), each pair should be examined individually, as models with
rigid dependence structures, such as the MGPD, can prove useful. Contrastingly, despite
the EFC’s more flexible dependence structure, it is still insufficient to capture some of
the decaying dependence found between these contaminants, but it is generally better at
capturing the decay at high quantiles (u > 0.95). Finally, the results show that Cr has
a different extremal behaviour from most other contaminants. Chen et al. (2024) further
supports this conclusion by showing that Cr has a different leaching behaviour than other
heavy metal contaminants, being retained in the soil for longer periods and unaffected by
normal or extreme precipitation events. These results show the importance of investigating
extremal dependence in an exploratory phase, as a spatial model for these applications
must consider the different joint tail behaviour of specific contaminant pairs.

8.1.2 Bivariate Coregionalised Mixture Model

In Chapter 5, a spatial model for bivariate heavy metal contaminants was developed. It
combines two different modelling frameworks - mixture models and coregionalised models.
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The mixture model is a natural approach to the heavy-tailed distributions of heavy metal
concentration in the soil because it exploits the difference between baseline and trace
concentrations, which comprise most of the data, and the extreme values, i.e., the tail of the
distribution. The coregionalisation framework, on the other hand, enables joint modelling
of the contaminants. The chapter proposes constructing the coregionalised structure that
models the contaminant bodies independently using covariates in a linear predictor. The
marginal tails are first modelled using a generalised Pareto distribution (GPD) and then
transformed into a Gaussian distribution. After they are transformed, they are modelled
using linear predictors that share a scaled random spatial effect. The scaling coefficient
regulates the dependence between tails, thus accommodating the extremal dependence
between components.

A comparison between the model results and the conventional kriging approach shows
that the proposed coregionalised mixture model is better at capturing the extreme values
and accounts for extremal dependence. While both models provide smooth concentration
maps for the marginal contaminants, the coregionalised mixture model can also provide
maps for the probabilities of joint exceedance that account for the extremal dependence
between components. A limitation of the model is that the membership of each observation
as belonging to the body or the tail must be assigned a priori, potentially introducing bias
in the modelling process.

Maps of the probability of exceeding soil guideline values for residential use with grow-
ing produce (SGV1) and residential use without produce (SGV2) are shown. The probabil-
ity of observing joint exceedances of the SGV1 is highest directly south of the river Clyde
in the city centre, followed by areas immediately to the east of the city centre, including
two villages, and a small region to the west. The contaminated areas near the city centre
are historical industrial zones well known for industrial metal-smelting and ship-building.
The villages to the east of Glasgow have long histories of mining work and ore processing,
which are known to have produced high concentrations of heavy-metal byproducts. The
probabilities of exceedance north of the river Clyde are generally low, which, unlike the
south of the Clyde, did not have such a vigorous industrial activity, providing further evi-
dence of historical industrial activity as the source of the contamination. The probabilities
of exceeding SGV2 are generally lower and only present south of the Clyde near the city
centre of Glasgow, areas known for high historical industrial activity. As expected, the
maps of uncertainties show that the model performs better in areas with higher sample
densities.

The maps of the probability of the joint exceedance of soil guideline values are useful
outputs of this model. Unlike their Gaussian counterparts, these maps account for the
heavy-tailed distributions of contaminants and are suitable for extrapolation using ex-
treme value theory. As a result, they are better for risk assessment than the non-extreme
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alternatives. This is particularly useful for policymakers and urban planners, who require
this information to plan appropriate land use and mitigate the effects of heavy metal soil
contamination in the Glasgow Conurbation.

8.1.3 Future Work

The research undertaken for this application consists of investigating the dependence
structure of heavy metal soil contaminants and a novel bivariate spatial approach for
unreplicated observations that combines extreme value theory, mixture models, and the
coregionalisation framework. While the coregionalised mixture model was motivated by
this application, it can be used in other applications where extreme values are of outmost
importance and no temporal replicates are available. Methodologically, we suggest some
avenues for possible future work.

• A flexible and joint estimation of p1 and p2, the mixture parameters for the two
contaminants. The parameters p1 and p2 refer to the proportion of observations
that belong to the body of the distributions. By contrast, 1 − p1 and 1 − p2 define
the proportion of observations in the tail, defining the number of extreme obser-
vations. In the current approach, p1 and p2 are fixed a priori by performing a grid
search over possible values and selecting the best-performing parameter values under
model selection metrics. While this is sufficient for the initial development of the
model presented here, it can be unrealistic in some applications, as the probability
of observing an extreme value depends on the location. Developing spatially-variant
p1 and p2 could provide more accurate results, but the lack of temporal replication
could produce identifiability problems. Additionally, incorporating the estimation of
p1 and p2 into the modelling framework would help with uncertainty quantification
and provide more information about the classification of the observations as body
or tail.

• Exploring the integration of different extremal dependence structures into the model.
While the extremal dependence between contaminants was explored separately from
the spatial modelling, and the spatial modelling incorporates extremal dependence
between components through latent structures, it would be useful to explore alter-
native extremal dependence structures within the class of asymptotic dependence
and independence models.

• Exploring different coregionalisation structures. The model presented here only ac-
counted for dependence through one shared component between contaminant tails.
While this is an elegant solution to account for extremal dependence, coregionali-
sation in INLA is flexible, and additional constructions can be explored accounting
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for dependence in other ways. The flexibility of these constructions, however, will
be constrained by the lack of temporal replications.

8.2 On Data Fusion for PM2.5 Pollution Extremes

Chapter 6 extended the Gaussian model of Wilkie et al. (2019) to propose a data fusion
approach tailored to extreme values defined as exceedances of the 80th-quantile marginal
threshold. The aim was to enhance threshold exceedances of PM2.5 in the EAC4 in the
Greater London area to better represent in-situ observations, as those provided by the
spatially-sparse AURN network. The process consisted of two main steps. First, at each
location, the data from EAC4 and AURN, x and y, respectively, were preprocessed to
censor non-threshold exceedances at 0. In the second step, the model is fitted to the
data. The likelihood for both data sources is the Dirac-delta generalised Pareto distri-
bution (δ-GPD), a variant of the GPD that includes one additional parameter, p, which
denotes the probability of observing an exceedance. Under this likelihood, a non-threshold
exceedance has a density of 1 − p, while a threshold exceedance has a density under the
GPD density scaled by p. In this way, the δ-GPD incorporates information about the non-
threshold exceedances in a way that the GPD cannot. This mimics the so-called point
process representation of extremes, where the time of occurrence and sites of exceedances
are approximated by a bivariate point process (Coles, 2001, Ch. 7). Other than the in-
corporation of the additional parameter p, the δ-GPD is similar to the GPD, having a
shape (ξ), scale (σ), and location µ = 0 parameter. In this model, p is estimated using
a logistic regression approach inside a hierarchical model structure. It estimates pyit, the
probability of observing an exceedance at location i and time t, using the occurrence of
an extreme at x∗

i(t−1), x
∗
it, and x∗

i(t+1) so that lagged EAC4 information can be considered.
The results from this part of the model showed that only x∗

it has a significant influence on
pyit, with the regression coefficients for x∗

i(t−1) and x∗
i(t+1) being statistically insignificant.

These results indicate that the lagged presence of an exceedance carries little information,
and an exceedance in the AURN data is mostly informed by an exceedance in the EAC4
data, limiting our model to the accuracy of the EAC4 data at predicting an exceedance.

The shape parameters, ξx and ξy, are constant across time and space but modelled
separately for each data source. The mode of the posterior distributions gives negative
values, where ξx ≈ −0.25 and ξy ≈ −0.15. The data fusion occurs in the estimation of
the scale parameters. A basis function of d dimensions provides the temporal structure
to estimate a different scale parameter at each time point for the EAC4 data, σxt. This
estimated scale parameter at time t is then used in a regression-type model to estimate the
GPD scale of the AURN data, σyt, using the same basis function. Therefore, the model
assigns a GPD distribution at each time point of y where ξy is kept constant, and the σyt



8.2. On Data Fusion for PM2.5 Pollution Extremes 157

is modelled using a flexible basis function and σxt as a covariate.

The model is fitted using MCMC via Metropolis-Hastings, which enables the explo-
ration of the whole parameter space. Predictions can then be used to interpolate missing
observations in the AURN data or enhance EAC4 data to approximate AURN obser-
vations for locations where no AURN observation station exists. A leave-one-site-out
cross-validation procedure (LOSO-CV) compares the predictive ability of the data fusion
for extremes model (ExDF), the Gaussian approach (GausDF) of Wilkie et al. (2019), and
the EAC4 data to mimic the threshold exceedances measured by the 12 AURN observa-
tion stations available in the area. They show that the ExDF is better at capturing the
threshold exceedances of the in-situ measurements at 10 of the 12 locations, outperforming
the GausDF and EAC4 models.

Finally, maps of the expected shortfall for the ExDF and the EAC4 models are given.
The maps show that the ExDF data have greater variability, values closer to those observed
in the nearby AURN stations, and that a different spatial pattern is visible with higher
PM2.5 concentrations near the coast.

8.2.1 Future Work

While the model presents an improvement over its Gaussian counterpart, there are various
directions for possible future work.

• Improved estimation of p. Currently, the model relies on exceedances in the EAC4
data to indicate a threshold exceedance in the predicted in-situ measurements. Work
in Section 6.3.3 shows that the occurrence of an exceedance in the EAC4 is not a
perfect estimator of exceedances in the AURN data. The problem can be addressed in
various ways. First, it is possible to consider non-threshold exceedance information
of the EAC4 data. As the two data sources are highly correlated, high but not
extreme values in the EAC4 data generally indicate high values in the AURN data.
This information is lost during the censoring process, so exploring alternative ways
to utilise it could improve the estimation of p. The second is the incorporation
of covariates, known to have an influence on PM2.5, to improve the estimates of
p. Meteorological, geographical, or ecological variables, such as relative humidity,
elevation, and NDVI are known to affect PM2.5 and easily-accessible from remote
sensing sources.

• A body-tail approach to fuse the complete distribution. While including non-threshold
exceedance information could prove beneficial in estimating p, a valuable extension
of this work is the fusion of the entire distribution, not just the tail. If a GPD like-
lihood is retained for threshold exceedances, the definition of a suitable threshold
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and the transition between body and tail must be considered. Body and tail ap-
proach incorporating extreme value distributions are not new in the literature and
are sometimes called extreme mixture models (see, e.g., the review by Scarrott and
MacDonald, 2012). An alternative approach is the extended GPD model proposed
by Naveau et al. (2016).

• Increasing the temporal dimension. In the case study demonstrated for this chapter,
only the year 2022 was considered. Extending the period of interest might prove ben-
eficial for the model fit, as more threshold exceedances are observed. Additionally,
long-term trends of exceedances could be captured providing insights into the ex-
tremal behaviour of PM2.5 across years. This, however, is dependent on the efficiency
of the model fitting process, which is limited in the current set up.

• Improving computational efficiency. The code for the model was written in C++
to improve running time. While this was a significant step in the feasibility of the
model fitting, work can be done to make this model more efficient. This can be done
through several mechanisms. First, exploring localised inference approaches could
allow parallelisation of the model, effectively reducing computation time. Second,
moving from CPU usage to GPU could prove invaluable and reduce the need for
CPU resources.

8.3 On the EVA 2023 Data Challenge

The EVA 2023 data challenge was part of the EVA 2023 conference in Milan, Italy. The
organisers posed 4 challenges, C1 to C4 (Rohrbeck et al., 2023). This thesis covered only
C2 and C4, as they are the author’s contribution to a team entry.

In C2, the challenge comprised estimating an extrapolatory high quantile while min-
imising an arbitrary loss function that incorporated application-specific information. To
tackle this challenge, we proposed using an extreme-weighted bootstrap approach. The
weights in the weighted-bootstrap defined the sampling probability in the bootstrap sam-
pling, and were assigned so that extreme values had a higher probability of being sampled,
and low values had a small probability of being sampled. A GPD was fitted for each boot-
strap sample, and the arbitrary loss function was used to calculate the observed quantiles.
The total loss was obtained by summing the estimated loss for the observed quantiles, and
the sample that minimised the loss was then used to estimate the desired extrapolatory
quantile. The method had mixed success. The confidence intervals captured the true
value, but the point estimate overestimated it.

For C4, the organisers asked participants to estimate the probability of observing
joint exceedances at 50 locations. The first part of the challenge was calculating the
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probability that twenty-five of these locations exceeded some safety threshold s1 while the
rest exceeded a different threshold s2 at the same time. The second part was estimating
the probability of all fifty sites exceeding s simultaneously. Due to time constraints,
we used probabilistic principal component analysis (PPCA), a fast dimension reduction
method that does not rely on EVT. Due to the dependent structures in the data and the
independence assumption of PPCA, the estimated probabilities overestimated the true
probabilities.

8.3.1 Reflections

• Exploring different weighting strategies. The extreme-weighted bootstrap approach
for C2 had mixed success by providing a point-estimate that was much larger than
the true value but capturing the true value in the 95% confidence intervals. An
exploration of different weighting strategies could prove beneficial with the aim of
improved estimation of extrapolatory quantiles and uncertainty around the estima-
tion, which would also produce narrower confidence intervals.

• Exploring PCA approaches for extreme value analysis for C4. Drees and Sabourin
(2021) proposes an asymptotically independent framework for PCA of extreme val-
ues. Under a multi-stage framework, the stage following marginal modelling could
identify clusters as the sets of locations that are asymptotically dependent. The
Drees and Sabourin (2021) model could then be applied to model inter-cluster de-
pendence under the assumption of asymptotic independence.
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Appendix A

Appendix for Chapter 5: Results of
Simulation Study

Figure A.1: Q-Q plots of all simulations (grey) for simulation study A2, for variables 1
and 2. The mean and median of the simulations are shown in red and orange, respectively,
while the reference line is in blue.
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Table A.1: Summary of results for simulation study A2. The table shows the parameter’s
true value; estimated parameter mean, median and standard deviation; the 95% coverage
probability; and the mean RMSE and MAE.

Parameter True Val Median Mean Sd Coverage.pr RMSE MAE
αA1 1.00 1.01 1.01 0.07 0.95 0.07 0.06
αT1 0.00 -0.06 -0.05 0.06 0.99 0.09 0.07
αA2 1.00 1.01 1.01 0.07 0.94 0.07 0.06
αT2 0.00 -0.06 -0.06 0.07 0.99 0.09 0.07
βA11 0.10 0.08 0.08 0.03 0.99 0.03 0.03
βA12 0.25 0.20 0.20 0.02 0.99 0.05 0.05
βT11 0.10 0.03 0.03 0.10 0.98 0.12 0.10
βT12 0.25 0.08 0.08 0.06 0.82 0.18 0.17
βA21 0.10 0.08 0.08 0.03 0.99 0.03 0.02
βA22 0.25 0.20 0.20 0.02 0.99 0.05 0.05
βT21 0.10 0.03 0.03 0.09 0.99 0.12 0.10
βT22 0.25 0.08 0.08 0.07 0.81 0.18 0.17
τ1 1.00 2.52 0.96 4.80 0.79 5.03 3.36
τ2 1.00 2.77 1.66 4.50 0.79 4.83 3.33
ρz1 5.00 5.08 5.20 1.22 0.98 1.22 0.80
ρz3 10.00 14.99 15.18 1.26 0.97 5.14 4.99
ρz3 5.00 3.49 3.03 2.10 0.99 2.59 2.16
ρz4 15.00 14.42 13.91 2.34 0.99 2.41 2.07
λ 0.90 0.91 0.88 0.22 0.92 0.27 0.20
ξ1 0.05 0.12 0.13 0.13 0.94 0.15 0.12
ξ2 0.25 0.32 0.32 0.13 0.96 0.15 0.12

Table A.2: Classification metrics including accuracy, precision, sensitivity, and specificity
for simulation scenarios A1 and A2.

Scenario Variable Accuracy Precision Sensitivity Specificity

A1 1 0.89 0.95 0.58 0.99
2 0.89 0.96 0.57 0.99

A2 1 0.91 0.77 0.62 0.97
2 0.91 0.78 0.62 0.98
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Figure A.2: Q-Q plots of simulations (grey) for simulation scenario B1, for variables 1 and
2. The mean and median of the simulations are shown in red and orange, respectively,
while the reference line is given in blue.
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Table A.3: Summary of results for simulation scenario B1. The table shows the parameter’s
true value; estimated parameter mean, median and standard deviation; the 95% coverage
probability; and the mean RMSE.

Parameter True Val Median Mean Sd Coverage.pr RMSE MAE
αB1 1.00 0.93 0.93 0.07 0.91 0.10 0.08
αT1 0.00 -0.11 -0.11 0.05 0.93 0.12 0.11
αB2 1.00 0.93 0.93 0.07 0.88 0.10 0.08
αT2 0.00 -0.10 -0.10 0.05 0.99 0.11 0.10
βB11 0.10 0.05 0.05 0.03 0.99 0.06 0.05
βB12 0.25 0.14 0.14 0.02 0.99 0.12 0.11
βT11 0.10 0.05 0.05 0.06 0.99 0.08 0.06
βT12 0.25 0.13 0.13 0.04 0.92 0.13 0.12
βB21 0.10 0.06 0.06 0.03 0.99 0.05 0.05
βB22 0.25 0.14 0.14 0.02 0.94 0.11 0.11
βT21 0.10 0.04 0.04 0.06 0.99 0.09 0.07
βT22 0.25 0.09 0.10 0.04 0.71 0.16 0.16
τ1 1.00 2.71 1.31 3.91 0.72 4.27 1.71
τ2 1.00 1.69 1.32 0.92 0.85 1.14 0.69
ρz1 5.00 4.43 2.77 3.75 0.99 4.67 2.73
ρz3 10.00 11.32 10.32 2.08 0.99 2.82 1.37
ρz3 5.00 5.63 5.28 3.96 0.99 4.01 3.03
ρz4 15.00 19.16 17.82 6.19 0.99 10.41 6.08
λ 0.90 0.85 0.86 0.26 0.83 0.26 0.22
ξ1 0.05 0.09 0.09 0.07 0.92 0.08 0.07
ξ2 0.25 0.29 0.29 0.09 0.92 0.10 0.08
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Figure A.3: Q-Q plots of all simulations of scenario B2, for variables 1 and 2. The
mean and median of the simulations are shown in red and orange, respectively, while the
reference line is given in blue.
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Table A.4: Summary of results for simulation scenario B2. The table shows the parameter’s
true value; estimated parameter mean, median and standard deviation; the 95% coverage
probability; and the mean RMSE.

Parameter True Val Median Mean Sd Coverage.pr RMSE MAE
αB1 1.00 1.00 1.00 0.07 0.99 0.07 0.05
αT1 0.00 0.36 0.36 0.14 0.93 0.38 0.36
αB2 1.00 1.01 1.01 0.07 0.99 0.07 0.06
αT2 0.00 0.31 0.30 0.15 0.84 0.34 0.31
βB11 0.10 0.08 0.09 0.02 0.99 0.03 0.02
βB12 0.25 0.20 0.20 0.02 0.99 0.05 0.05
βT11 0.10 0.03 0.03 0.10 0.99 0.12 0.10
βT12 0.25 0.08 0.08 0.07 0.82 0.18 0.17
βB21 0.10 0.08 0.09 0.03 0.99 0.03 0.02
βB22 0.25 0.21 0.21 0.02 0.99 0.05 0.04
βT21 0.10 0.02 0.01 0.09 0.98 0.13 0.10
βT22 0.25 0.03 0.03 0.06 0.55 0.23 0.22
τ1 1.00 1.19 0.33 2.57 0.99 2.57 1.26
τ2 1.00 1.44 0.40 3.14 0.97 3.17 1.40
ρz1 5.00 4.83 5.02 1.26 0.96 1.27 0.82
ρz3 10.00 14.80 14.92 1.26 0.96 4.96 4.80
ρz3 5.00 3.75 3.34 2.24 0.98 2.56 2.08
ρz4 15.00 17.99 18.04 1.15 0.99 3.20 2.99
λ 0.90 1.09 1.05 0.22 0.88 0.29 0.22
ξ1 0.05 0.10 0.11 0.20 0.96 0.20 0.16
ξ2 0.25 0.31 0.33 0.22 0.95 0.23 0.18

Table A.5: Classification metrics including accuracy, precision, sensitivity, and specificity
for simulation scenarios B1 and B2.

Scenario Variable Accuracy Precision Sensitivity Specificity

B1 1 0.88 0.92 0.55 0.98
2 0.88 0.93 0.56 0.99

B2 1 0.93 0.61 0.91 0.93
2 0.93 0.61 0.91 0.93
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Appendix for Chapter 6: Diagnostic
trace and density plots
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Figure B.1: Trace and density plots for the shape parameters ξx and ξy showing two
different chains in black and red.
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Figure B.2: Trace and density plots for parameters α1,1, β1,1, c1,1 and d1,1 showing two
different chains in black and red.
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Figure B.3: Trace and density plots for parameters λ0, λ1, λ2, λ3 for Site A showing two
different chains in black and red.
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Figure B.4: Times series of fitted values and confidence bands of the ExDF model, along
with the true AURN measurements and EAC4 observations for sites A, B,and C.
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Figure B.5: Times series of fitted values and confidence bands of the ExDF model, along
with the true AURN measurements and EAC4 observations for sites E, F, and G.
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Figure B.6: Times series of fitted values and confidence bands of the ExDF model, along
with the true AURN measurements and EAC4 observations for sites H, J, and K.
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Figure B.7: Q-Q plot of PM2.5 measurements at site A (left), B (middle), and C (right)
for the ExDF and EAC4 models in blue and grey, respectively, against the true observa-
tions from the AURN observation stations at those locations. Point-wise 95% confidence
intervals are given for the ExDF data.

Figure B.8: Q-Q plot of PM2.5 measurements at site E (left), F (middle), and G (right)
for the ExDF and EAC4 models in blue and grey, respectively, against the true observa-
tions from the AURN observation stations at those locations. Point-wise 95% confidence
intervals are given for the ExDF data.
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Figure B.9: Q-Q plot of PM2.5 measurements at site H (left), J (middle), and K (right)
for the ExDF and EAC4 models in blue and grey, respectively, against the true observa-
tions from the AURN observation stations at those locations. Point-wise 95% confidence
intervals are given for the ExDF data.
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Figure B.10: Times series of fitted values and confidence bands of the ExDF model, along
with the true AURN measurements and EAC4 observations for sites H, I,and J.
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