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Abstract

Numerous studies have been conducted to understand the comprehensive mechanisms of
child growth and development. Among these, the longitudinal study is a key approach
that can provide a complete characterisation of these aspects. However, the greater ben-
efits of this approach often come with increased complexities inherent in the data from
such studies. These complexities include non-linear trajectories, within-subject correla-
tion, heterogeneity of individual baseline and dynamic growth characteristics, and auto-
correlation within individuals. Moreover, given the diverse range of growth patterns in
children, it is particularly relevant to evaluate risk factors that exhibit significant associa-
tions with growth measurements across different locations in the distribution, rather than
focusing solely on the central location, such as the mean or median. This thesis aims to
address these complexities by examining longitudinal child growth data (LCGD) through
appropriate statistical models. In order to characterise LCGD and describe the entire
distribution of growth, the additive quantile mixed model (AQMM) has been reviewed.
This approach has been incorporated into both the mixed-effects model framework and
the additive model, enabling the analysis of longitudinal data. Simulation studies con-
ducted within this thesis assess the performance of AQMM under various experimental
designs in the context of LCGD. Overall, AQMM performed well in predicting simulated
data. Subsequently, the LCGD in Scotland was used to construct reference growth curves
and identify risk factors associated with physical growth measurements. However, AQMM
lacks a method for determining appropriate random effects to capture individual variabil-
ity.

To address this limitation, a Bayesian variable selection method within quantile mixed
models (QMMs) is proposed. This novel methodology combines several key components:
the Bayesian sparse group LASSO method with spike and slab priors, a likelihood function
based on the scale mixture representation of the asymmetric Laplace (AL) distribution,
and the utilisation of mixed models based on a decomposition for the covariance matrix
of random effects. By incorporating these elements, the methodology establishes a com-
prehensive framework to tackle challenges associated with the selection and estimation
of fixed and random effects in the context of QMMs. To evaluate the performance of
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the novel method, simulation experiments are conducted. Furthermore, the proposed ap-
proach is applied to the analysis of LCGD in Scotland, thus providing practical insights
into its real-world applicability. Overall, the novel model demonstrates strong perfor-
mance in variable selection with simulated data. When applied to LCGD in Scotland,
the selected risk factors were consistent across both lower and upper quantiles of physical
growth measurements in school-age children and young people in primary or secondary
education. The selection of both random intercepts and random slopes suggests variability
in individual linear trends.
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Chapter 1

Introduction

From ancient civilisations to modern times, the study of human growth and development
has remained a central focus for societies. Evidence of writings about human growth has
been found in ancient societies such as the Babylonians and Egyptians (Tanner, 1981). In
modern times, several movements related to the study of human growth explicitly began
in the 18th century, with the primary focus of research being on measuring physical dimen-
sions and describing patterns of growth. Assessments of child growth and development
started appearing in scientific documents. In 1777, Buffon, a French naturalist, mathe-
matician, cosmologist, and encyclopedic author, published a chart in Histoire Naturelle
demonstrating the height of De Montbeillard’s son from 1759 to 1777 across different ages.

Figure 1.1: Anthropometric laboratory card of Francis Galton, sourced from R. C. Johnson
et al. (1985)

1
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Figure 6. Bowditch’s third growth chart design, height plotted against age by centile, the
forerunner of most modern growth charts (Bowditch, 1891).
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Figure 1.2: Height versus age for each percentile, sourced from Bowditch (1891)
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Research in human growth became more scientific and rapidly increased in the 19th cen-
tury, particularly in the study of child growth. In Europe, the assessment of child growth
through physical dimensions remained prominent, encompassing more than just height
measurement. Other measurements, such as weight, arm span, and head circumference,
were used to describe patterns of human growth (refer to Figure 1.1) (Galton, 1883). The
Body Mass Index (BMI), known as the Quetelet index, was also introduced in this con-
text (Quetelet, 1832; Sarton, 1935). The concept of percentile curves was initially used to
describe growth patterns. One notable application was by Henry Bowditch (1840–1911),
who introduced height charts based on percentiles for each age group (see Figure 1.2)
(Bowditch, 1891). It has since become the standard format for growth charts used today.
It is important to note that these growth charts were constructed using single-time-point
measurements per child, a collection method known as “cross-sectional data”. Another
important finding this century is that a country’s socio-economic status can impact an
individual’s adult height (Villermé, 1835). Moreover, it was during this time that the
adolescent growth spurt was first described (Kotelmann, 1879).

In the 20th century, the individual growth chart known as the “height-for-age” curve or
“height distance” (see Figure 1.3) was first constructed and published in 1927 by Richard
E. Scammon (1883 - 1952). Scammon utilised serial height measurements collected over
time from De Monteilard’s son (Scammon, 1927). This growth chart basically describes
the progress of a child’s growth at any particular age. Furthermore, during this period,
many “longitudinal studies” were conducted, collecting anthropometric data from individ-
uals over long-term periods. The Fels Growth Study, which began in 1929, was one of the
earliest studies in this regard (Roche, 1992). This study collected anthropometric data
from American children and expanded to include other measurements, such as ultrasound,
skeletal maturation, and dual-energy X-ray absorptiometry (DXA), and continues to do
so to this day. In the UK, one of the first large-scale birth cohort studies was conducted
in 1946 by the National Study of Health and Development (Wadsworth et al., 2006). This
cohort was formed to investigate the social and biological factors affecting health and de-
velopment from birth into adulthood. The data from longitudinal studies were crucial for
offering a comprehensive and detailed view of how human growth over time. Due to this
benefit, the introduction and use of velocity growth charts (see Figure 1.4) represented
a revolutionary innovation in human growth assessment, becoming essential tools for the
clinical evaluation of individuals (Tanner, 1962). In the late 20th century, advanced sta-
tistical methods, such as the Lambda-Mu-Sigma (LMS) method, were used to construct
growth reference charts/tables to serve this purpose (Cole, 1997, 2012; Cole & Green,
1992). It revolutionised the construction of growth charts by allowing the adjustment of
skewness in the growth data, making the data more normally distributed and improving
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the fit of the growth charts.
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Figure 1.3: The height distance growth of De Montbeillard’s son as constructed and
published by Scammon, sourced from Scammon (1927)

In the 21st century, studies on human growth and development have expanded, offering
deeper insights into growth patterns and influencing factors (Fogel et al., 2008). Longi-
tudinal studies have extended their duration, increased sample sizes, expanded coverage
across different countries, and enhanced data collection methods. Notably, global growth
standards, such as those established by the World Health Organization (WHO) (WHO
Multicentre Growth Reference Study Group & de Onis, 2006), have been developed and
implemented during this period. Many countries have developed their own growth as-
sessment tools, including growth tables and charts, to monitor and screen the health of
children, such as in Belgium (Roelants et al., 2009), Germany (Rosario et al., 2014), Nor-
way (Júlíusson et al., 2009), etc. Various statistical methods, such as Generalised Additive
Models for Location, Scale and Shape (GAMLSS) (Rigby & Stasinopoulos, 2005), Box-
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Cox-Power-Exponential (BCPE) method with splines (Rigby & Stasinopoulos, 2004), have
been proposed for constructing these growth charts and analysing child growth data.

size and shape within phylogeny (i.e. within the evolutionary development of our

species; see Chapter 11). Considering allometry, the impact on the whole organism of

varying growth rates of different body parts, D’Arcy Thompson wrote the oft-quoted

passage, “An organism is so complex a thing, and growth so complex a phenomenon,

that for growth to be so uniform and constant in all the parts as to keep the whole shape

unchanged would indeed be an unlikely and an unusual circumstance. Rates vary,

proportions change, and the whole configuration alters accordingly”. Within the second

edition (p. 95) Thompson wrote that while the distance curve, “showed a continuous

succession of varying magnitudes”, the curve of the rate of change of height with time,

“shows a succession of varying velocities. The mathematicians call it a curve of first differ-

ences; we may call it a curve of the rate (or rates) of growth, or more simply a velocity

curve”. The velocity of growth experienced by De Montbeillard’s son is displayed in

Figure 1.3. The y-axis records height gain in cm/year, and the x-axis chronological age

in years. It can be seen that following birth two relatively distinct increases in growth rate

occur at 6e8 years and again at 11e18 years. The first of these “growth spurts” is called

the juvenile or mid-growth spurt (see Chapter 2) and the second is called the adolescent

growth spurt (see Chapter 3).

There is, in fact, another growth spurt that cannot be seen because it occurs before

birth. Between 20 and 30 weeks of gestation the rate at which the length of the fetus

increases reaches a peak at approximately 120 cm/year, but all that can be observed

Figure 1.3 The growth of De Montbeillard’s son 1759e1777: velocity. (Source: Tanner.6)

The Curve of Human Growth 7

Figure 1.4: The velocity growth of De Montbeillard’s son, sourced from Tanner (1962)

Therefore, from the past to the present day, studies on human growth and development
have consistently aimed to understand growth and improve health outcomes across the
human lifespan, including childhood, adolescence, and adulthood. Each of these stages
have its own unique processes, requiring specific knowledge and tools for understanding
and improvement. Childhood, in particular, is a crucial period of physical growth and
development in human beings, setting the trajectory for an individual’s future health,
cognitive abilities, and overall well-being (Berk & Meyers, 2016). Childhood typically
consists of various sub-period stages (Berk & Meyers, 2016), including the prenatal period,
infancy and toddlerhood, early childhood and middle childhood. Each stage has its own
distinct mechanism of physical growth; for instance, infancy is characterised by rapid
weight gain and considerable increases in length, while early childhood generally exhibits
a steadier, slower rate of growth in height and weight (Berk & Meyers, 2016; Bukatko
& Daehler, 1995). During each stage, children require age-appropriate nutrition and an
environment conducive to their growth. Abnormal growth during these stages can impact
subsequent developmental phases (Barker, 1990). For example, there is a strong connection
between being overweight or obese and adiposity in children (Guo & Chumlea, 1999;
Krebs et al., 2007; Y. Wang, 2017). Consequently, children with higher adiposity may
be at a greater risk of developing diabetes subtypes in adulthood compared to those
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of normal weight (see Figure 1.5). Additionally, stunted children may face long-term
consequences such as impaired development and learning capacity, insulin resistance, and
a heightened risk of developing diabetes (De Sanctis et al., 2021). In this regard, having
appropriate tools (e.g. growth charts) and information (e.g. risk factors) can help prevent
inappropriate growth and support children in experiencing normal growth.

Figure 1.5: Graphical abstract from Childhood adiposity and novel subtypes of adult-onset
diabetes: a Mendelian randomisation and genome-wide genetic correlation study by Wei
et al. (2023)

Beyond childhood, the adolescent period is also a major stage of child development, mark-
ing the transition between childhood and adulthood. During this stage, children undergo
several biological changes. Growth spurts are initially evident, with rapid increase in
height and weight (Berk & Meyers, 2016; Cameron & Bogin, 2012; Marshall, 1978). Sub-
sequently, secondary sexual characteristics typically develop during this period, known as
puberty (Berk & Meyers, 2016; Cameron & Bogin, 2012; Marshall, 1978). Girls experience
breast development, the onset of menstruation (menarche), and widening of hips, while
boys experience the growth of facial and body hair, deepening of the voice, and enlargement
of the testes and penis. In addition to these changes, adolescents also undergo hormonal
changes, bone growth, muscle development, skin changes, and brain development. As
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mentioned previously, rapid developmental changes and physical growth occur during this
period, indicating that monitoring growth at this stage is essential. For instance, early
onset of puberty can lead to shorter adult height due to the premature closure of growth
plates (Carel & Léger, 2008). Children with growth hormone deficiency (GHD) may ex-
perience shorter stature compared to their peers and delayed puberty (Cohen et al., 2008).

In the family unit, parents play a crucial role, bearing the responsibility of properly mon-
itoring their child’s growth, using appropriate tools and seeking guidance from health
professionals. To support these efforts, several countries have established their own or-
ganisations, such as the Royal College of Paediatrics and Child Health in the UK (www.
rcpch.ac.uk). On a global scale, the World Health Organization (WHO, www.who.int)
assumes the responsibility of promoting and safeguarding child growth and development
in various means. These include setting global standards, conducting research, developing
policies, implementing health programmes, enhancing education, supporting healthcare
systems, and responding to emergencies. This underscores the significance of child growth
and development, reinforcing the importance of family, local, and global perspectives.

For decades, child growth charts have been essential tools used to monitor children’s phys-
ical growth across different ages (Cole, 2012). These charts comprise several centile or
quantile curves that depict the comprehensive profile of physical growth measurements.
The monitoring process involves plotting a child’s physical measurements on this chart to
demonstrate their growth pattern at specific ages, usually separated by sex. Essentially, if
a child’s growth follows a relatively consistent curve or pattern within the growth chart,
it can indicate normal growth. However, it is important to note that child growth charts
are not diagnostic tools in themselves; rather, they can signal when further evaluation
might be necessary. Another consideration is that these charts were constructed from
cross-sectional data; therefore, they cannot measure growth velocity, as this would require
data collection from a representative subset of the target population at multiple ages.

Unlike cross-sectional data, longitudinal data provide another means to capture all impor-
tant aspects of outcomes, especially in characterising trends and changes in each individ-
ual’s outcome over time (Fitzmaurice & Ravichandran, 2008). This type of data involves
the repeated observation of the same individuals over a period, which is a key difference
compared to cross-sectional data. In the context of child growth studies, longitudinal data
have become increasingly popular for exploring temporal variation in child growth mea-
surements. However, these advantages come at a cost of increased complexity in analysis,
for instance, within-subject correlation, heterogeneity of individual baseline and dynamic
growth characteristics, and autocorrelation within individuals.

www.rcpch.ac.uk
www.rcpch.ac.uk
www.who.int
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Linear mixed-effects models (LMMs) are a statistical method that has been widely used
to analyse longitudinal data. The LMMs proposed by Laird and Ware (1982) are well-
known and popular in this field. A key contribution of these models is the incorporation of
random effects, capturing individual-specific variations, while simultaneously accounting
for population-level effects or fixed effects that are thought to have a consistent impact on
growth across all children. The inclusion of random effects for each subject accommodates
the assumption that measurements from the same subject are more likely to be similar or
correlated, making these models particularly suitable for longitudinal child growth data
(LCGD). However, these models are limited by the assumption that growth patterns are
linear. To allow for more flexibility, they have been extended to model non-linear tra-
jectories using a nonparametric approach, such as splines, leading to what are known as
semiparametric mixed-effects models (Aniley et al., 2019; Durbán et al., 2005; Ruppert
et al., 2003).

Models based on mixed-effects models, as mentioned previously, are conditional mean
models. This means they focus only on the central location of the growth measurements.
Consequently, they cannot provide a comprehensive analysis of the complete distribution
of child growth measurements. As a result, these models do not adequately address ques-
tions regarding children at the lower and upper ends of the growth spectrum, who may
have different growth mechanisms and risk factors associated with growth. Notably, over
340 million children and adolescents were living with overweight or obesity, which usually
places them at the upper end of the growth spectrum (WHO, 2021). Also, in Scotland, the
Royal College of Physicians and Surgeons of Glasgow (2023) reported that in 2021, 18% of
Scottish children were at risk of obesity, and there are concerns that this percentage may
rise in the future, as shown in Figure 1.6. These figures highlight the urgency of addressing
child growth and development through effective tools, identifying risk factors, establishing
policies, and implementing prevention programmes for this specific child group.

Similarly, another important group of children includes those affected by thinness, stunt-
ing and underweight, who are typically found at the lower end of the growth spectrum.
According to WHO (2024), an estimated 190 million children were living with thinness,
defined by BMI-for-age more than two standard deviations below the reference median,
and approximately 149 million children under the age of 5 years suffered from stunting
in 2022. Although only 1% of Scottish children were reported as underweight in 2019
(Vosnaki et al., 2019), this remains a concern similar to that of overweight children.

Quantile regression (QR) is a suitable approach (Koenker, 2005) to address the afore-
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Figure 1.6: Proportion of children at risk of obesity in Scotland 2010 - 2021 (based on
Scottish Health Survey data): the purple line represents the goal achievement of child
obesity prevalence, and the orange line represents the actual rate of children at risk of
obesity (Royal College of Physicians and Surgeons of Glasgow, 2023)

mentioned limitations. It offers a valuable way to describe the entire distribution of a
target response conditional on the independent variables. Growth curve estimation has
been successfully addressed with this approach in cross-sectional data, as demonstrated by
Carey et al. (2004) and Muggeo et al. (2013). However, applying QR to longitudinal data,
particularly LCGD, remains challenging due to the inherent complexity of such data. Tra-
ditional QR relies on a distribution-free framework, which complicates the incorporation
of other frameworks necessary for characterising longitudinal data. The literature includes
a few proposed QR approaches to handling LCGD. One such approach is the quantile spe-
cific autoregressive model (QSAM), a traditional non-parametric QR method proposed
by Wei et al. (2006). QSAM uses a non-parametric function, such as B-splines, to model
growth measurements, allowing for the assessment of unusual growth patterns. The main
feature of this method is its combination of the first-order autoregressive (AR(1)) model
to account for the dependence between growth measurements of the same child. While
this model performs well, it is limited to the AR(1) framework and provides only the
population-quantile effects. As a result, it cannot predict or estimate individual growth
trajectories.

Recently, Geraci (2019) proposed a new QR approach for longitudinal data, utilising a
likelihood based on an asymmetric Laplace (AL) distribution to estimate quantile func-
tions. This approach also incorporates additive models (smooth terms) and mixed-effects
models to capture non-linear dependencies and account for individual-specific variations,
respectively. Additionally, the inclusion of random effects in the model explicitly addresses
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within-subject correlation. Consequently, this approach is named the additive quantile
mixed model (AQMM) (Geraci, 2019). AQMM appears to be an attractive approach for
analysing or modelling LCGD, as it is a flexible method capable of capturing non-linear
growth patterns and accounting for child-specific variations and handeling correlation in
repeated growth observations for the same child. However, AQMM allows for specifying
smooth terms in various ways. This raises questions about the suitability of smooth terms
for modelling non-linear growth patterns. To address this, P-splines (Eilers & Marx, 1996)
are chosen in this thesis for their robustness, flexibility, and ease of use. P-splines combine
B-splines with a difference penalty to ensure smoothness and can handle complex patterns
without overfitting. In the context of AQMM, P-splines are advantageous as they allow
for the construction of basis functions with equidistant knots, simplifying parameter spec-
ification and eliminating the need for optimal knot placement. Furthermore, AQMM is
limited to specifying linear random effects (e.g. random intercepts and random slopes),
which raised questions about whether this limitation adequately captures the variability
present in LCGD. Therefore, its effectiveness should be confirmed through simulation ex-
periments in the context of LCGD, focusing on the two main aspects mentioned.

Moreover, AQMM still lacks the capability to ascertain which random effects are appro-
priate for capturing individual variations. Regarding the selection of fixed effects, an
inferential method based on the resampling technique, such as bootstrapping, is used for
hypothesis testing. Yet, this approach has been debated in various aspects. In parametric
bootstrap, particularly in models with penalties, the coefficients of bases may result in
a smoothing bias in parametric model. Meanwhile, under-smoothing can occur due to
the sampling-with-replacement process (e.g. some data points may be sampled twice) in
the nonparametric bootstrap (Wood, 2006). These factors can influence hypothesis testing.

To circumvent this issue, the Bayesian LASSO method (Park & Casella, 2008) is rec-
ommended. This Bayesian approach assumes that the regression parameters follow inde-
pendent Laplace priors and performs variable selection using Markov chain Monte Carlo
(MCMC)-based computational techniques, such Gibbs sampling. However, it does not sup-
port grouped variables, such as a group of bases forming a smoother, because it treats each
variable independently and applies shrinkage individually to each predictor. Moreover, the
estimates obtained from this method may not precisely converge to zero (Alhamzawi &
Ali, 2018; Park & Casella, 2008; Xu & Ghosh, 2015), which can potentially impact the
accuracy of variable selection. To accommodate grouped variables and ensure exact zero
convergence, Xu and Ghosh (2015) proposed two variants of the Bayesian LASSO method
with spike and slab priors. These two variants consist of Bayesian group LASSO and
Bayesian sparse group LASSO. The first handles the selection process for entire groups
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of variables, while the second goes a step further by also encouraging selection within the
groups. Meanwhile, the spike and slab priors are employed to construct the point mass at
zero for regression parameters. However, these methods were only applied to independent
data and the mean model. Therefore, the novel methodology developed in this thesis
extends these two Bayesian models in the context of quantile regression: Bayesian group
LASSO qunatile regression with spike and slab (BGLSSQR) and Bayesian spare group
LASSO quantile regression with spike and slab prior (BSGSSQR). Subsequently, the BS-
GSSQR is incorporated with a reparameterisation of the random effects component within
the linear mixed model proposed by Kinney and Dunson (2007), enabling the simultaneous
selection of both fixed effects and random effects. This novel method is named Bayesian
spare group LASSO-mixed quantile regression with spike and slab prior (BSGSSMQR).
This method also addresses relevant questions in the analysis of longitudinal child growth
data in Scotland, particularly in identifying risk factors affecting to child physical growth.

The primary aim of this thesis is to examine longitudinal child growth data and describe
child growth patterns using appropriate models, as outlined in the following steps. Firstly,
specific locations within the distribution of physical growth measurements are represented
by several quantiles, ranging from 0.004 to 0.996. In particular, three quantiles, the 0.10th,
0.50th and 0.90th, correspond to the lower, middle, and upper tails of the distribution,
representing children in the lowest 10% (indicative of underweight or short stature), middle
50% (indicative of average weight or stature), and highest 90% (indicative of overweight or
taller stature). These specific quantiles are utilised throughout the thesis. Each quantile
is estimated using conditional quantile models with two existing methods (QSAM and
AQMM) and the novel method (BSGSSMQR). Specially, the growth patterns are pre-
sumed to follow non-linear trajectories to fit these models. The QSAM model is based
on classical quantile regression with splines, while the AQMM and BSGSSMQR mod-
els comprise two components: fixed effects and random effects. The former represents
population-level effects with both non-linear fixed effect and linear fixed effects, while
the latter demonstrates individual-level effects through individual linear trends, including
intercepts and temporal slopes. Furthermore, another main focus of this thesis is the
development of a statistical model to identify risk factors associated with specific child
physical growth measurements, such as raw weight and Weight-for-Age Z-score (WAZ),
for children in the lowest 10% and highest 90% of these physical growth measurement
distributions, represented by the 0.10th and 0.90th quantiles. These quantiles correspond
to children with underweight and overweight, respectively. Additionally, these measure-
ments are chosen due to the growing concern over child obesity in Scotland connected
to overweight children, as shown in Figure 1.6. This also includes determining suitable
random variation in the intercept and slope coefficients that vary among subjects. More
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details of the methods are discussed in Chapters 4 to 5, with applications presented in
Chapter 6.

The remainder of this thesis is organised as follows: Chapter 2 provides an overview of
child growth and its relevance. This includes a brief discussion of child growth and devel-
opment, child growth studies, child physical growth measurements, child growth charts,
and risk factors affecting child growth and development. Furthermore, it introduces the
longitudinal study, “the Growing up in Scotland study” (GUS), which furnishes LCGD
used in this thesis. Data exploration is presented in thesis chapter, along with a summary.

Chapter 3 provides detailed outlines of the statistical methodologies involved in the anal-
ysis of LCGD, forming the fundamental basis for Chapter 4 and Chapter 5 of this the-
sis. It begins by covering methodologies, particularly those in conditional mean models,
used to account for within-subject variations within LCGD. This includes both linear
mixed-effects models and flexible mixed-effects models. In the area of conditional quan-
tile models, quantile regression for independent data is initially discussed, including two
estimation methods for quantile functions: the distribution-free method (Koenker, 2005)
and the likelihood-based method (Geraci & Bottai, 2007; Koenker & Machado, 1999b;
Yu & Moyeed, 2001). Furthermore, the Bayesian methods in the context of quantile re-
gression are provided, including two specific working likelihoods based on the asymmetric
Laplace (AL) distribution (Yu & Moyeed, 2001) and a location-scale mixture of normals
representation of AL (Alhamzawi & Yu, 2013; Kozumi & Kobayashi, 2011; Tsionas, 2003).
The earliest works on quantile regression models for longitudinal data are also reviewed in
this chapter. Additionally, splines, which are techniques that facilitate the representation
of non-linear dependence in the context of regression methods, are outlined. The regres-
sion methods involving these splines are presented, including regression splines, penalised
regression splines with P-splines by Eilers and Marx (1996), and the representation of
P-splines as mixed-effects models (Currie & Durban, 2002; Eilers, 1999).

Chapter 4 specifically focuses on flexible models in the context of quantile regression for
modelling longitudinal child growth data. Two flexible models are discussed, including the
quantile specific autoregressive model (QSAM) (Wei & He, 2006) and the additive quan-
tile mixed model (AQMM) (Geraci, 2019). These two models rely on different methods to
model non-linear trajectories: QSAM uses regression splines, while AQMM employs pe-
nalised regression splines. Moreover, for estimating quantile functions, QSAM is based on
distribution-free method, whereas AQMM relies on the likelihood-based method. QSAM
has been applied to LCGD to estimate reference growth curves. However, to the best of
our knowledge, AQMM has not yet been applied in this context. Therefore, this chapter
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gives several experiments through simulation studies to explore the behaviour and assess
the performance of AQMM when implemented with LCGD. It also provides a summary
of the advantages and limitations of this method.

After exploring the AQMM approach in Chapter 4, it becomes evident that AQMM lacks
the capability to identify random effects capturing individual variations in LCGD. Al-
though AQMM has an inferential method to identify the fixed effects (risk factors) via
the bootstrap method, questions have been raised about the accuracy of this method in
model selection. Since this thesis focuses on models for longitudinal child growth data,
such models must possess the ability to identify potential features/effects in a manner that
appropriately reflects the mechanism of LCGD. Chapter 5 will present the methodologies
used for the simultaneous selection of fixed and random effects in the context of quan-
tile mixed models, which are specifically designed to analyse longitudinal child growth
data. Initially, two methodologies based on Bayesian LASSO-type methods with spike
and slab priors (Bayesian group LASSO (BGLSSQR) and Bayesian sparse group LASSO
(BSGSSQR)) are applied for selecting fixed effects in the quantile models. Subsequently,
the BSGSSQR method is extended by introducing a decomposition for the covariance
matrix of random effects based on the reparameterisation of these effects within the lin-
ear mixed model, enabling the simultaneous selection of both fixed and random effects.
This novel method, abbreviated as BSGSSMQR, stands for Bayesian spare group LASSO-
mixed quantile regression with spike and slab prior. Unlike the AQMM method, this
approach relies on Bayesian computation, and both fixed and random effects are selected
via MCMC-based computation techniques. Several simulation studies are conducted to
investigate the performance of the models used in this chapter.

Chapter 6 demonstrates the implementation of the AQMM approach reviewed in Chapter
4, along with the method developed in Chapter 5 for modelling LCGD from the Growing
up in Scotland study. The main goals of this implementation are to identify potential
risk factors (fixed effects) associated with child weight measurements and to select the
appropriate individual variations (random effects) among Scottish children, particularly
for school-age children and young people aged 4 to 14 years in primary or secondary
care. Finally, Chapter 7 provides a summary of this thesis and discusses potential future
developments arising from the work undertaken in this research.



Chapter 2

Child growth and its relevance

This chapter offers an overview of child growth and introduces the Growing up in Scotland
study (GUS), a longitudinal investigation into child growth that furnishes the data anal-
ysed in this thesis. This chapter is structured into seven sections. The opening section
(Section 2.1) explores the fundamentals of growth and development in children. Section
2.2 provides an overview of two distinct child growth studies. Section 2.3 elucidates on
the physical child growth measurements, comparing two different scales. Section 2.4 in-
troduces the concept of child growth charts that have been used to monitor child physical
growth. Section 2.5 offers a summary of risk factors associated with child growth and
development. In Section 2.6, details pertaining to the GUS study are presented, and its
data are explored. Finally, Section 2.7 concludes with a comprehensive summary of the
chapter.

2.1 Growth and development in children

Human growth and development have been studied since antiquity (Tanner, 1981). At
that time, these studies relied on observation and philosophical speculation rather than
through systematic scientific inquiry, as is the case today. Although these early stud-
ies were based on observation, they highlight the importance of understanding human
growth and development. In the modern world, these studies are conducted with a more
scientific approach, such as understanding normal development, and identifying and di-
agnosing disorders. A well-known example is Buffon’s 1777 publication on annual height
measurements of the son of Montbeillard (Tanner, 1981). In the 19th century, numerous
human growth studies were conducted in Europe, particularly focusing on child growth.
During this period, the main emphasis was on measuring physical dimensions, referred
to as “anthropometry”, such as height, weight, and head circumference of children. One
of the earliest and most notable instances is the work of Adolphe Quetelet (1796–1874),
who studied cross-sectional height and weight of newborns and children (Quetelet, 1832;

14
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Sarton, 1935). His key contribution is best known for creating the Quetelet index, which
later became known as the Body Mass Index (BMI). Additionally, the study of adoles-
cent growth spurt was advanced during this period, such as the work of Kotelmann (1879).

In the 20th century, the main focus included conducting long-term studies to track the
growth and development of children over extended periods, known as “longitudinal stud-
ies”, and developing standardised growth charts. The first emphasis was on measuring
mean growth velocity (the rate of change in size over time) to enable healthcare providers
to detect deviations from normal growth patterns early. This capability can facilitate early
intervention and treatment of growth disorders such as nutritional deficiencies. In 1929,
the Fels Longitudinal Study became well-known in this regard (Roche, 1992), as it was
the world’s largest and longest-running study of human growth.

On the other hand, the second focus was on constructing charts to allow for the compari-
son of an individual child’s growth to a reference population, facilitating the identification
of growth disorders and malnutrition. An earlier set of growth charts in this regard were
Stuart and Meredith’s growth charts (Stuart & Meredith, 1946). These charts were con-
structed based on data from 750 northwest European children aged 5 to 18 years. Several
other standards were developed in the late 20th century, including the Tanner growth
charts (Tanner et al., 1966), the NCHS growth charts (for Health Statistics et al., 1977),
and the 2000 CDC charts. (Kuczmarski, 2000). The Tanner growth charts were specifically
developed using British children to assess and monitor the physical development of children
and adolescents, particularly during puberty. In contrast, the NCHS growth charts were
constructed using data from American children. Meanwhile, the 2000 CDC charts were an
updated version of the NCHS growth charts, incorporating data from more recent surveys.

In the 21st century, human growth studies have become broader than in previous eras.
Studies now encompass not only physical growth measurements in a specific population
but also have a more comprehensive and global focus. Various aspects are explored, in-
cluding language development, cognitive development, social and emotional development,
lifespan development, child development, adolescent development, gerontology, neurode-
velopment, educational psychology, among others (Berk, 2013; Berk & Meyers, 2016;
Bornstein & Lamb, 2015; Cavanaugh & Blanchard-Fields, 2015; Craik & Salthouse, 2015;
Jensen, 2016; Papalia et al., 2004; Smith et al., 2015; Steinberg, 2011; Steinberg & Lerner,
2009). Therefore, the study of human growth and development aims to understand not
only individuals but also how groups progress through various aspects of life stages, from
birth to adulthood.
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Childhood is one of these critical stages, as abnormal growth in children may influence
their subsequent developmental phases. An important hypothesis related to this is the
Barker hypothesis (Barker, 1990), which suggests that children with adverse nutrition,
including prenatal nutrition, are at a higher risk of developing metabolic syndrome, obesity,
diabetes, insulin resistance, hypertension, and other related conditions (Edwards, 2017).
For instance, children who are overweight or obese face a higher risk of developing type 2
diabetes (T2D) in adulthood (Fang et al., 2019). Within childhood, there are sub-periods,
often determined by factors like age. For example, the periods of development based on age
are typically defined as five sub-periods by Berk and Meyers (2016), as shown in Table 2.1.
These stages displays variations in growth and development. During infancy, for instance,
children usually experience rapid weight gain, especially in the first six months (Berk &
Meyers, 2016; Bukatko & Daehler, 1995). Their length also increases notably. In contrast,
early childhood shows a steady but slower rate of growth in height and weight compared
to infancy. Many facets of growth and development during the childhood stage have been
examined, including physical growth, cognitive and language development, personality,
and social development (Berk, 2013; Berk & Meyers, 2016; Smith et al., 2015).

Table 2.1: Child growth development sub-period stages

Age Sub-period stages
Conception to birth Prenatal period
Birth to 2 years Infancy and toddlerhood
2 to 6 years Early childhood
6 to 11 years Middle childhood
11 to 18 years Adolescence

Physical growth is one of the most critical aspects of child growth development because
it reflects a child’s overall health, well-being, and readiness to learn. The term “auxology”
is employed to encompass a study of human physical growth and development, whether
in children or adults (Hermanussen & Bogin, 2014). This growth influences their cog-
nitive, emotional, and social development, establishes the foundation for lifelong health,
and facilitates the achievement of developmental milestones. Monitoring and promoting
healthy physical growth are essential for a child’s success and future well-being. Typically,
the study of this growth begins in infancy and continues into toddlerhood and beyond.
Height has been a widely used measurement to represent child physical growth since an-
cient times (Hermanussen & Bogin, 2014), while weight became another importance metric
with the advent of measurement technology. Both measurements are typically assessed in
conjunction with age. However, in contemporary times, additional metrics such as body
mass index, head circumference, and arm circumference have also been utilised (WHO
Multicentre Growth Reference Study Group & de Onis, 2006). The details of physical
growth measurements are discussed further in Section 2.3.
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Another crucial period of growth in children is adolescence, which marks the transition
between childhood and adulthood (Cameron & Bogin, 2012). Reproductive capacity, re-
ferred to as puberty (Marshall, 1978), is generally the defining sign of this period. However,
the development of secondary sexual characteristics (e.g. growth of breasts and nipples in
girls, and growth of facial hair in boys) and a notable growth spurt (i.e. a rapid and con-
siderable increase in height and weight) are additional signs that coincide with puberty. In
general, the development of physical growth in adolescence is markedly different compared
to childhood. During adolescence, children experience rapid and considerable increases in
their physical dimensions, such as height and weight (Cameron & Bogin, 2012; Tanner,
1970), but the specific timing of these growth spurts can vary widely among individuals.
Specifically, the pattern of height growth typically follows three stages: early adolescence,
mid-adolescence, and late adolescence. In early adolescence, children experience their ini-
tial growth spurt, which tends to be more pronounced in females than in males. The most
rapid growth, known as peak height velocity (PHV), typically occurs in mid-adolescence.
Note that the “velocity” term refers to the rate of change or speed at which growth occurs
over a specific period of time. In late adolescence, the rate of growth begins to slow down.
On the other hand, weight typically reaches its peak velocity later than height growth, and
its changes tend to be slower compared to height growth. Several growth disorders may
arise during adolescence (Allen & Cuttler, 2013; Sybert & McCauley, 2004; Taylor-Miller
& Simm, 2017), including short stature, growth hormone deficiency, Turner syndrome,
and others. Therefore, screening, surveillance, monitoring, and promoting healthy growth
require appropriate tools.

As mentioned earlier, monitoring a child’s physical development during both childhood
or adolescence is of utmost importance. Therefore, health professionals and parents re-
quire reliable tools to monitor this phenomenon. Over the past decades, essential tools
have emerged to assist in monitoring a child’s physical growth, one of which is the child
growth chart. To construct this chart, two approaches have been used: the “Prescriptive”
and “Descriptive” approaches (Bertino et al., 2007). Indeed, there are differences between
them in many aspects, such as purpose, data collection, statistical methods, interpreta-
tion, and validation. This section focuses on detailing the main differences between these
approaches.

The prescriptive approach has been used to construct growth chart that represent an ideal
standard of growth for a defined population, serving as a reference for what is considered
typical or optimal growth in healthy children. Data used to construct charts based on
this approach must come from a large and representative sample of healthy children. On
the contrary, the descriptive approach has been used to describe the actual growth pat-
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terns observed in a population, regardless of health status, providing a snapshot of how
children are growing in a specific population without prescribing what growth should be.
When constructing growth charts using this approach, data should include a broad rage
of children, including those with various health conditions or environmental factors.

One of the well-known child growth charts is constructed and published by the World
Health Organization (WHO Multicentre Growth Reference Study Group & de Onis, 2006).
Its primary aim to provide a universal standard as a reference for child growth. However,
due to variations in growth patterns among different ethnic groups, many countries have
developed their own growth charts to better reflect their unique population characteris-
tics. For example, in the UK, the current growth chart is the UK-WHO growth charts
constructed and published in 2010 (Royal College of Paediatrics and Child Health, 2013).
More details about child growth charts are discussed in Section 2.4.

2.2 Child growth studies

Child growth studies play a crucial role in comprehending the essential process of phys-
ical development in children. These studies provide valuable insights into how children
grow, the factors influencing their growth, and the establishment of growth standards and
reference charts for healthcare and public health purposes. Two fundamental approaches
employed in child growth studies are cross-sectional and longitudinal studies, each offering
distinct advantages and insights into the multifaceted nature of child development.

2.2.1 Cross-sectional studies

Cross-sectional studies are a commonly used method in child growth research, involving
data collection from a representative subset of the target population at a specific age
to describe child growth and development. In essence, each growth measurement in the
sample is collected from a different child at a single point in time, resulting in what is
referred to as “cross-sectional data.” Due to the nature of data collection, data often
lack the ability to capture dynamic or periodic features (Cole, 1994), which is a significant
limitation of this approach. However, it offers convenience as it allows researchers to study
child growth and development within a relatively short time-frame (Bukatko & Daehler,
1995).

2.2.2 Longitudinal studies

In contrast, longitudinal studies represent another method in which growth observations
and relevant information are collected repeatedly over time from the same group of chil-
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dren. The data collected from this type of study is typically referred to as “longitudinal
child growth data” (LCGD). This kind of data has the unique advantage of reflecting trends
and changes in each individual child’s growth over time. Due to this advantage, longitu-
dinal studies are particularly valuable for addressing the fundamental scientific questions
in child growth research more effectively than other study designs (Bukatko & Daehler,
1995; Cole, 1994; Grammer et al., 2013; Weiss & Ware, 1996). However, these benefits can
be influenced by various characteristics inherent in the data, including different growth
patterns, heterogeneity, and autocorrelation within individuals. As a result, appropriate
statistical approaches are required to account for these characteristics.

2.3 Child growth measurements

In contemporary studies of child physical growth, various growth measurements are em-
ployed to monitor child growth and development. Each of these measurements serves a
specific purpose in addressing the scientific inquiries of child growth studies. Broadly,
these measurements can be categorised into two main types: raw and z-scale growth mea-
surements.

2.3.1 Raw growth measurements

Raw growth measurements are fundamental and traditionally used metrics in the field
of child development and healthcare. They serves as cornerstones for understanding the
physical growth and changes in children over time (Bukatko & Daehler, 1995). Such
measurements are directly observed physical attributes such as height, weight, and others,
at specific ages without any adjustments or transformations. Essentially, they provide a
straightforward and unaltered reflection of a child’s physical growth status at a particular
point in time. Consequently, in this section, a brief overview of common raw growth
measurements is provided.

Length or height-for-age

“Length or height-for-age” is commonly used as one of the primary raw growth measure-
ments. This metric directly reflects the increase in a child’s physical size concerning their
age and sex. In practice, “length” is the term used when measuring children up to about
two years old because young infants and toddlers are often unable to stand unassisted
or may not be able to maintain an upright position as needed. Beyond that age, the
term “height” is generally adopted for measurements of both children and adults (WHO
Multicentre Growth Reference Study Group & de Onis, 2006).
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Weight-for-age

“Weight-for-age” is another fundamental raw measurement used in assessing child growth
and pediatric healthcare. It involves measuring a child’s weight in relation to their age.
This measurement assists healthcare professionals in determining whether a child is un-
derweight, overweight, or within a healthy weight range for their age.

Weight-for-length or height

In cases where the chronological age of the child is unknown, “weight-for-length or height” is
an alternative raw measurement that can be used to identify issues such as undernutrition
(weight below the expected range for length or height and sex), overnutrition (weight
above the expected range), and normal weight (Mwangome & Berkley, 2014).

Body mass index-for-age (BMI-for-age)

“BMI-for-age” is a growth measurement that combines two raw measurements: length (or
height)-for-age and weight-for-age. It can still be classified as raw measurement because
it directly utilises these primary data points. This type of growth measurement provides
a comprehensive assessment of a child’s nutritional status and growth since it considers
both their weight or height. There are two common versions of BMI calculation based on
different units of measurement:

Using kilograms and metres (or centimetres):

BMI1 =
Weight in kilogram
(Height in meters)2

,

Using pounds and inches:

BMI2 =
Weight in pound

(Height in inches)2
× 703.

Other growth measurements

In addition to the raw measurements mentioned above, there are other raw measure-
ment used to assess child growth development, such as head circumference-for-age, arm
circumference-for-age, subscapular skinfold-for-age, triceps skinfold-for-age, and more (WHO
Multicentre Growth Reference Study Group & de Onis, 2006). Different measurements
serve distinct purposes in addressing specific scientific questions related to child growth
development.



CHAPTER 2. CHILD GROWTH AND ITS RELEVANCE 21

2.3.2 Standardised growth measurements

Standardised growth measurements, often referred to as Z-scores or standard deviation
scores (SDS), are derived from raw growth measurements, as described above, but are
adjusted for a child’s age and sex (Cole, 1998). For example, when derived from weight-
for-age or height-for-age, they are usually abbreviated as WAZ or HAZ, respectively. These
measurements express a child’s anthropometric data in relation to a reference population,
typically represented as the mean (average) and standard deviation (variability) of that
population’s measurements for a given age and sex. Standardised growth measurements
allow us to assess whether a child’s growth falls within expected ranges and to identify
deviations from typical growth patterns when compared with the population.

Plotting preterm infants
Use the low birthweight
chart for infants less than 32
weeks gestation and any
other infants requiring
detailed assessment.
Use this section for infants
of less than 37 weeks
gestation. As with term
infants there may be some
weight loss in the early days.
From 42 weeks, plot on the
0–1 year chart with
gestational correction.

Gestational correction
Plot actual age then draw a
line back the number of
weeks the infant was preterm
and mark the spot with an
arrow; this is the gestationally
corrected centile.
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Figure 2.1: BOYS UK-WHO growth charts 0-4 years. From UK-WHO growth charts -
0-4 year, by Royal College of Paediatrics and Child Health, 2023 (https://www.rcpch.ac.
uk/resources/uk-who-growth-charts-0-4-years)

2.4 Child growth charts

Child growth charts are an essential tool for monitoring the physical development of chil-
dren (Cole, 2012). These charts depict the distribution of specific physical growth mea-
surements, as outlined in Section 2.3, that vary with age. Statisticians construct this

https://www.rcpch.ac.uk/resources/uk-who-growth-charts-0-4-years
https://www.rcpch.ac.uk/resources/uk-who-growth-charts-0-4-years
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distribution as a series of smooth curves with different percentiles at each age, based on
child growth data from the sample of children. Generally, the chart format displays ap-
proximately nine curves, including the 3rd, 5th, 10th, 25th, 50th, 75th, 90th, 95th and 97th
percentiles. However, the composition may vary depending on the reference population
(refer to Figure 2.1 and Figure 2.2 for examples). This chart is valuable for healthcare
professionals to monitor and track a child’s growth. For instance, if a 2-year-old boy’s
weight falls between the 25th and 75th percentiles for 2-year-olds, it indicates that this
child is experiencing normal weight for his age, which is a sign of typical growth in terms
of weight.

WHO Child Growth Standards

Weight-for-age GIRLS
Birth to 5 years (z-scores)
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Figure 2.2: Weight-for-age GIRLS charts 0-5 years. From Child Growth Stan-
dards: Weight-for-age, by World Health Organization, 2023 (https://www.who.int/tools/
child-growth-standards/standards/weight-for-age)

In the literature, a variety of statistical approaches are available for constructing this type
of chart. These approaches often vary based on study designs or data structures. One
commonly employed child growth study is the cross-sectional study, as outlined in Section
2.2. Among the statistical methods used with this data, the Lambda-Mu-Sigma (LMS)
method stands out as the most widely recognised for fitting and summarising growth stan-
dards (Cole, 1988, 2012; Cole & Green, 1992). The acronym LMS (Lambda-Mu-Sigma)
represents three key components of this method: 1) “L” denotes the changing skewness of
the growth distribution, 2) “M” represents the median curve, and 3) “S” signifies the coef-

https://www.who.int/tools/child-growth-standards/standards/weight-for-age
https://www.who.int/tools/child-growth-standards/standards/weight-for-age
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ficient of variation of the growth distribution that changes across ages. These components
are used to define the individual centile curves. The fundamental assumption underlying
this method is the removal of skewness (the “L” curve) from the growth measurements
at each age through power transformation methods, such as the Box-Cox power trans-
formation, to achieve a normal distribution. However, cross-sectional growth charts have
limitations; they are unable to account for dynamic or temporal features as each sample’s
growth data is collected only at a specific single-age point (Cole, 1994).

There are two types of child growth charts: growth standard and growth reference (Cameron
& Bogin, 2012; Cole, 2012; Khadilkar & Khadilkar, 2011; WHO Multicentre Growth Ref-
erence Study Group & de Onis, 2006).

2.4.1 Attained size and growth terms

Before discussing child growth charts, it is important to clarify two key terms: “Attained
Size” and “Growth”. These terms relate to the growth measurements or growth metrics
in child development and growth charts. “Attained Size” or “Size Attained” refers to the
static measurements of a child’s body dimensions at a specific point in time (Cameron &
Bogin, 2012), typically collected in cross-sectional studies. It represents the child’s physi-
cal development at that particular age or stage and is often compared to standard growth
charts to assess whether the child’s growth is within the expected range for their age and
sex, commonly referred as distance curves. Nevertheless, attained size does not indicate
the child’s health status at the time of measurement.

On the other hand, “Growth” refers to the dynamic process of increasing in physical size
and mass over time (Cameron & Bogin, 2012). It involves changes in growth measurements
such as height, weight, and other body dimensions, representing continuous development
and reflecting the child’s health information. Therefore, it is a growth metric measured in
longitudinal studies. Growth can be measured and tracked using growth charts to ensure
that a child is developing appropriately according to standardized patterns, commonly
referred to as growth velocity.
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Figure 2.3: Standard growth charts: (A) Birthweight-for-age (weeks), (B) Birth length-
for-age (weeks), and (C) Head circumference-for-age (weeks) from Villar et al. (2014)
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2.4.2 Growth standard chart

A growth standard chart depicts the growth patterns of a specific population of children
who are deemed healthy and experience optimal growth conditions. Such a chart is typi-
cally developed using data from a well-nourished and healthy population. Thus, it portrays
a healthy growth pattern, and the standard indicates how children should ideally grow,
as opposed to how they do in reality (Bertino et al., 2007). The most widely recognised
growth standard charts are developed and published by the World-Health Organisation
(WHO) (WHO Multicentre Growth Reference Study Group & de Onis, 2006) (see Fig-
ure 2.2 for an example). Furthermore, there are international standard charts developed
specifically for certain populations, such as fetuses, newborn infants (see Figure 2.3), and
the postnatal growth period of preterm infants (Villar et al., 2015; Villar et al., 2014),
both implemented by the INTERGROWTH-21st Project.

2.4.3 Growth reference chart

A growth reference chart, while similar to a growth standard, represents the growth pat-
terns of a wider population. This includes children from diverse backgrounds and with
varying health statuses, rather than focusing solely on a healthy population (Cole, 2012).
Typically, it is constructed using a reference group of children, often chosen to represent
a particular geographic region and time period, such as a specific country in a given year.
For instance, a recent growth reference chart in the UK is the UK-WHO growth charts,
constructed and published in 2010 (Cole et al., 2011; Wright et al., 2010) (see Figure 2.1
for an example). A growth reference chart offers insights into typical child development
and can be used to assess whether the measurements of individual children align with
those of the reference group.

2.5 Risk factors against child/adolescent growth and

development

Child growth and development depend on several factors, including biological, nutritional
and environmental influences, social and emotional dynamics, behavioural traits, health-
care access and utilisation, and cultural or societal elements (Berk, 2013; Black et al., 2008;
Bronfenbrenner, 1996; Denham, 2006; Rogoff, 2003; Shonkoff et al., 2000; Starfield et al.,
2005). A deficiency in any one or more of these factors can impact a child’s growth and de-
velopment, preventing it from progressing as anticipated. Numerous experts have sought
to investigate and address these risk factors to enhance their applicability, especially in
preventive measures. For example, these risk factors can be divided into two primary cat-
egories: community or ecological risk factors and individual risk factors (Ali, 2013). The
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former encompasses risks directly related to the child, such as low birth weight, household
size, undernutrition, and family economics, among others. In contrast, the latter pertains
to external factors like poor sanitation, famine, endemic violence, and lack of accessible
services, among other (see Table 1 in Ali (2013)). Meanwhile, the WHO classifies risk
factors impacting child health into two groups based on child growth development stages:
younger and older children (World Health Organization, n.d.). For younger children, there
are two sub-stages: prior to birth and at the time of birth, with risks primarily involving
low birth weight, malnutrition, breastfeeding, overcrowded conditions, unsafe drinking wa-
ter, food, and poor hygiene practices. For the older children, the predominant risk factors
affecting child health are a combination of environmental pollution (e.g. air pollution),
malnutrition and limited physical activity.

The risk factors mentioned above can be directly and generally associated with child
growth and development. Nonetheless, certain factors might exert an indirect influence.
For example, diverse geographical areas can pose unique challenges in child development
(Allel et al., 2021; Lu et al., 2016). Specifically, low-income countries might face more risk
factors than middle- or high-income countries. Consequently, differences in geographical
locations may results in varying environmental exposures, such as pollution and other en-
vironmental hazards, which can be considered as risk factors associated with child growth
and development. Recognising this, several countries or regions have compiled risk factors
specific to their contexts. In the UK, certain studies have catalogued the risk factors tied
to child development to provide insights aimed at improving children’s growth, such as
the research by Sabates and Dex (2015). A significant contribution of this paper is its
mapping of multiple risk factors to variables collected, such as parent–child interactions,
family–child interactions, and the home environment in a longitudinal child growth study.
Therefore, in this thesis, I will adapt this study as a basis for selecting variables associated
with child growth. Details on this approach will be elaborated upon in Section 2.6.3.

2.6 Growing up in Scotland study

“Growing up in Scotland” (GUS) is a substantial longitudinal child growth study measuring
children in Scotland born in 2002/03, 2004/05 and 2010/11. Directed and overseen by the
Scottish Government, it is carried out by the Scottish Centre for Social Research. The
GUS’s primary aim is to gather new insights into children and their families to enrich
our understanding of children and their families in various domains and also guide policy
decisions aiming to improve the lives of children and their families. Moreover, this data is
available for academic purposes in various sectors. The official website of the GUS study
is: https://growingupinscotland.org.uk.

https://growingupinscotland.org.uk
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2.6.1 Study design

The GUS study consists of three sub-cohorts studies: Birth Cohort 1, Birth Cohort 2,
and the Child Cohort. The first one is the largest cohort, comprising 5,217 children who
were born between June 2004 and May 2005. The second cohort contains approximately
6,127 children born between March 2010 and February 2011. The last one includes 2,858
children born between June 2002 and May 2003. In the sample selection process, families
were randomly chosen from the Child Benefit records provided by the Department for
Work and Pensions (DWP) and HM Revenue and Customs. These families were invited
to join the study through a letter. Data for the three cohorts were collected following the
schedule outlined in Table 2.2.

Table 2.2: An overview of data collection for three cohorts of GUS

Child’s age Sweep (SW) Cohort/Year of data collection Weight Length/Height
Birth Cohort 1 Birth Cohort 2 Child Cohort collected collected

10 months 1 2005/06 2010/11 - Yes -
Age 2 2 2006/07 - - - -
Age 3 3 2007/08 2013/14 2005/06 - -
Age 4 4 2008/09 - 2006/07 Yes Yes
Age 5 5 2009/10 2015/16 2007/08 - -
Age 6 6 2010/11 - 2008/09 Yes Yes
Age 8 7 2012/13 - - Yes Yes
Age 10 8 2014/15 - - Yes Yes
Age 12 9 2017/18 - - Yes Yes
Age 14 10 2019/20 - - Yes -
Age 17 11 2021/23 - - Yes -

Note: Adapted from Study design and timeline, by Growing up in Scotland, 2023 (https://
growingupinscotland.org.uk/study-design-and-timeline)

2.6.2 Data

In this thesis, only the Birth Cohort 1 is under consideration. As shown in Table 2.2,
this cohort was designed to collect data in eleven sweeps, corresponding to the child’s age
at 10 months, 2 years, 3 years, 4 years, 5 years, 6 years, 8 years, 10 years, 12 years, 14
years and 17 years. It is crucial to emphasise that the initial analysis within this the-
sis covers data from Sweeps 1 to 10, in accordance with the request for access to data
until the year 2020. At the end of the tenth sweep, the study included a total of 5719
children. However, no physical growth measurements, specifically raw weight, were col-
lected during the second, third, or fifth sweep due to their focus on the child’s primary
caregiver and on two cognitive assessments, respectively. Consequently, the data used in
this thesis consist of measurements from only seven sweeps. Some children were excluded
due to entirely missing data over time in physical growth variables and other variables.
Additionally, in particular raw height measurement, children whose raw height measure-
ments decreased compared to previous sweeps were assumed to have human measurement

https://growingupinscotland.org.uk/study-design-and-timeline
https://growingupinscotland.org.uk/study-design-and-timeline
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errors and were also discarded. After removing data from these three sweeps and con-
ducting data cleaning, 4563 children (2,326 males and 2,237 females) were included in the
dataset for analysis. Table 2.3 shows the number of children across these seven sweeps.
It is evident that there were children who dropped out of the study throughout the sweeps.

Several variables were collected in Birth Cohort 1, with the majority gathered through
questionnaires. These variables can be categorised into various groups, including House-
hold Information, Pregnancy and birth (only Sweep 1), Parental Support, Parenting Style,
Childcare, Child Health and Development, Respondent’s Employment, Partner’s Employ-
ment, Household Income, Ethnicity and Religion, Household Accommodation and Circum-
stances, and Area-level Variables. In preparing the dataset for analysis, variables with a
high percentage of missing values (> 50%) were excluded.

Table 2.3: Number of children across seven sweeps, with percentages in parentheses

Sweep All Male Female
1 4018 2071 (51.5) 1947 (48.5)
4 2603 1315 (32.7) 1288 (32.1)
6 2409 1214 (30.2) 1195 (29.7)
7 2401 1216 (30.3) 1185 (29.5)
8 2352 1179 (29.3) 1173 (29.2)
9 1972 982 (24.4) 990 (24.6)
10 1634 788 (19.6) 846 (21.1)

Raw weight and raw length/height were categorised under Child Health and Development.
The former was not collected during the second, third, or fifth sweeps, while the latter was
only obtained during Sweeps 5 to 9. Additionally, to obtain the standardised measure-
ments (Z-scores), the raw measurements need to be converted using a growth reference
population. These raw and standardised measurements are the primary focus in the ana-
lytical context of this thesis.

In this thesis, the process to obtain the Z-score is as follows. The UK-WHO growth
reference, which excludes preterm data, was employed as the reference growth population
(Cole & Green, 1992; Cole et al., 2011; Wright et al., 2010). This reference, introduced
in 2009, replaced the previous UK1990 growth reference charts and is used to assess the
growth development of children in the UK. It was fitted using the LMS (Lambda-Mu-
Sigma) method, as mentioned in Section 2.4, and is based on three datasets: 1) birth data
from the British 1990 growth reference, 2) the WHO growth standard from 2 postnatal
weeks to 4 years, and 3) the British 1990 reference from 4 to 20 years. The conversion
process was performed using the LMS2z function available in the sitar package for R
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(Cole, 2022). In this function, the Z-scores are calculated by the formula:

Z =
(X/M)L − 1

L · S
,

where X is the raw growth measurement (e.g. weight, height), M is the median of the
distribution for the specific age (years) and sex, L is the power in the Box-Cox transforma-
tion, and S is the generalised coefficient of variation. It is important to note that the data
used for the conversion must include children with at least one measurement of weight,
and there should be no missing data for age (in years) or sex variables. The interpreta-
tion of the Z-score is straightforward. For instance, if the Z-score equals zero, it indicates
that the child’s measurement is typical or average compared to the UK-WHO reference
population. In contrast, if this score is above zero, it means that the child is larger or
taller (depending on the measurement) or compared to the average child of the same age
and sex in the UK-WHO reference population. Conversely, if the Z-score is below zero, it
implies that the child is smaller or shorter (depending on the measurement) compared to
the average child.

2.6.3 Mapping variables in GUS as potential risk factors

As previously mentioned, Birth Cohort 1 contains numerous variables. In this thesis, I
adopt the framework outlines in “Multiple Risk Factors in Young Children’s Development”
(MRFYD) by Sabates and Dex (2015) to select potential variables likely associated with
child development. This framework utilises an ecological model of child development,
helping to pinpoint risk factors associated with child development. In this framework, it
categorised variables from the UK Millennium Cohort Study (MCS) (Connelly & Platt,
2014) into three main dimensions: “Proximal family processes”, “Distal family variables”
and “characteristics”. The first dimension includes variables detailing parent-child in-
teractions. The second encompasses variables connected to parental characteristics that
influence the child mainly through family-child interactions. The final dimension relates
to variables associated with the child’s environment during their growing up. Additionally,
each variable from the MSC study was classified into ten risk types: Depression, Physical
Disability, Substance Misused, Alcohol, Domestic Violence, Financial Stress, Workless-
ness, Teenage Parenthood, Basic Skills, and Overcrowding.

The MRFYD framework offers several key benefits related to understanding and addressing
risk factors that affect young children’s development. Firstly, it provides a comprehensive
analysis of risk factors, detailing various elements that can impact a child’s development,
including socioeconomic status, parental education, family structure, and health condi-
tions. Secondly, its grounding in robust data and methodological rigor ensures that the
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Table 2.4: Variables in the GUS study mapped to the multiple potential risk indicators
following Sabates and Dex (2015)

Type of risk Variable from the GUS study Dimension
Depression 1. In general, would you say your health is excellent, Proximal

very good, good, fair, or poor?

Physical 1. Do you have any health problems or disabilities Proximal
Disability that have lasted or are expected to last more than a year?

Substance 1. During your pregnancy with child did you smoke Proximal
Misuse cigarettes?

2. Thinking back to when you were pregnant with child, Proximal
which of these best describes how often you usually
drank then?

Alcohol 1. How often (current) do you have an alcoholic drink? Distal

Domestic - -
Violence

Financial 1. Scottish Index of Multiple Deprivation (SIMD) 2006 Distal
Stress Quintiles

2. Equivalised income Distal

Worklessness 1. Do you currently have a job, either as an employee or Distal
self-employed?

Teenage 1. Age of mother at 1st child’s birth Distal
Parenthood

Basic Skills -

Overcrowding 1. Number of people in household Distal

framework provides evidence-based findings, making it easier for policymakers, educators,
and healthcare professionals to implement effective interventions. Importantly, the frame-
work was studied using longitudinal data, which is the same approach used in this thesis,
providing insights into the long-term effects of early risk factors. Following this framework,
I applied their mapping method to select potential risk variables from the GUS study for
analysis in Chapter 6. Variables were selected based on similar or closely related meanings.
However, only eight of these risk types could be mapped using the GUS study variables.
Some variables were excluded due to a high number of missing values. Table 2.4 presents
the final set of variables from the GUS study, alighted with the “Multiple Risk Factors in
Young children’s Development” framework. Although, this framework offers several ben-
efits as mentioned previously, it has some limitations. For instance, an important factor
such as “birth spacing” (the interval between the births of siblings within a family) is not
included in this framework. This is because its primary focus is on broader socioeconomic
and family structure variables, including parental education, family income, and health
conditions.
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Hence, in this thesis, the variables listed in Table 2.4 are included as potential variables
or potential risk factors that will be used to study their association with child growth
measurements. Furthermore, I have considered other potential variables, including child
demographic variables and those related to the mother (e.g. Birth weight, Low weight,
Marital status of Mother etc.). Table 2.5 presents all these variables and their types.

2.6.4 Data exploration

In this section, the GUS dataset is explored. Given the distinct differences in growth
patterns and rates between boys and girls, the data will be summarised separately by sex.
Table 2.6 provides a summary of the four physical growth measurements for each follow-
up sweep, for males and females, respectively. In general, males appear to have slightly
higher averages and medians for the two raw measurements (weight and height) compared
to females. Meanwhile, the difference between males and females is obvious in the case of
the standardised scales (WAZ and HAZ). Therefore, these summaries suggest that the dif-
ferences in growth patterns and rates between boys and girls persist within this population.

When considered in the mean profile plots (refer to Figure 2.4), the male and female groups
exhibit similar trends of mean weight measurements (see Figure 2.4 (a)) throughout seven
sweeps but with a slightly different pattern. On average, during the first year of life, males
tend to be slightly heavier than females, but the difference seems not to be usually signifi-
cant. Between the ages of 2 to 6 years, growth rates slow down compared to the first year,
and females seem to start catching up with males in weight during this stage. Weight gain
continues at a more gradual pace between ages 7 to 10 years. During ages 11 to 14 years,
males appear to experience a more noticeable increase in weight, while females also experi-
ence growth, which it tends to be less dramatic in terms of weight gain compared to males.

The plot of Weight-for-Age Z-scores (WAZ) for both males and females, when considering
the mean profile (see Figure 2.4 (b)), shows a parallel trend with similar mean WAZ
scores at the first sweep (corresponding to the child’s age at 10 months) and the last
sweep (corresponding to the child’s age at 14 years). This means that, on average, both
males and females present similar WAZ scores at these two time points, but there may
be variations in between. However, this observation is somewhat unexpected; although
WAZ values are normalised by sex, which typically results in similar scores for males and
females, the data may suggest variations that warrant further investigation.
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Regarding the measurements related to height, both males and females exhibit a similar
growth trend. On average, males appear to have slightly higher height growth patterns
than females between the ages of 4 to 10 years but seem to be very similar in ages of 12
years (see Figure 2.4 (c)). Notably, both groups have different HAZ scores throughout five
sweeps (ages 4 to 12 years). Such divergence in HAZ scores is unexpected, analogous to
the findings with WAZ.

Figure 2.5 presents plots illustrating how each child’s growth measurement points change
over time. These plots also demonstrate that a child’s growth in the four growth mea-
surements follows a non-linear pattern as they age. They reveal variations in these mea-
surements both between and within the children. In particular, the between-individual
variability in both raw measurements was small in early childhood and increased with the
child’s age (see Figures 2.5 (a) and (b)), while the standardised scales show a contrasting
trend (see Figures 2.5 (b) and (d)). This suggests that the GUS data explicitly show
heterogeneous variability as a common feature of longitudinal data.

In Figure 2.6, the trajectories of six random children are plotted. It is evident that each
child has their own growth trajectory in the four growth measurements, and these tra-
jectories tend to follow a non-linear pattern. Furthermore, it shows that each child may
exhibit differences in two key features: the observation times and the number of observa-
tions per individual (or individual size).

To clarify the observation times feature, time observed values were plotted for each sched-
uled age (Figure 2.7). It is evident that time observed values (represented by black points)
closely align with the scheduled age (years - vertical red line) during the initial ages. How-
ever, as age increases, there is a tendency for observation times to become more variable.

Another common feature of longitudinal data that should be investigated is the serial
correlation in repeated measurements on an individual. An empirical variogram is a well-
known plot that is helpful for this purpose. This plot is used to assess spatial dependence
or variability between data points at different time points or locations. In this case, the
empirical variogram γ(k) is defined as one-half of the squared differences between pairs of
measurements, representing variability in the differences, associated with the correspond-
ing time distances (or lag distance, k) (Diggle, 2005):

γij(k) =
1

2

(
ri(j)− ri(j + k)

)2
,

where ri(j) represents the value of the process at time j for individual i, and ri(j + k) is
the value at a time a distance k away from j for individual i. The variogram is plotted
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Figure 2.7: Box-plots of time observed values varies by scheduled ages at 0.83, 4.00, 6.00,
8.00, 10.00, 12.00, and 14.00. Note that labels on the x-axis represent a scheduled age
along with the median and IQR.
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for averages of each k for γij(k) for all i. To interpret this plot, if the variogram values
(y-axis) approach the sill (the horizontal line) as the lag distance (x-axis) increases, it
suggests strong spatial or temporal dependence. Figure 2.8 presents an example of the
empirical variogram plot for WAZ in males, illustrating that the averages of half-squared
differences observed (γij(k)) increases with lag k. Therefore, it suggests that this dataset
provides evidence of serial correlation.

In addition, I have explored the variables mentioned in Section 2.6.3. In longitudinal data,
variables can be classified into two groups. The first group comprises “time-invariant vari-
ables”, which do not vary with time and maintain consistent values across different time
points. The second group consists of variables whose values change over time, often referred
to as “time-varying variables”. Therefore, at this point, each variable will be summarised
by these two groups.

Table 2.7 presents the time-varying and time-invariant continuous variables for the GUS
data, both in aggregate and stratified by sex. On average, as anticipated, household size
appeared to increase as the sweep number increased, while the number of child accidents
or injuries remained relatively steady. There were increases in average equivalised incomes
between Sweep 1 to Sweep 7, followed by a drop at Sweep 8 and another increase afterward.
Males appeared to have a higher birth weight than females on average.

Table 2.7: Summary of time-varying and time-invariant continuous variables for the GUS
data

Variable SW1 SW4 SW6 SW7 SW8 SW9 SW10
Household size All Mean (SD) 3.69 (0.99) 3.90 (0.88) 4.01 (0.90) 4.26 (0.97) 4.38 (1.03) 4.37 (1.02) 4.37 (1.01)

Male Mean (SD) 3.67 (0.97) 3.91 (0.89) 4.04 (0.88) 4.25 (0.93) 4.41 (1.00) 4.39 (0.97) 4.39 (0.96)
Female Mean (SD) 3.70 (1.02) 3.89 (0.88) 3.99 (0.91) 4.26 (0.99) 4.36 (1.06) 4.35 (1.06) 4.35 (1.05)

Number of accidents or All Mean (SD) 0.11 (0.36) 0.20 (0.52) 0.17 (0.47) 0.30 (0.69) 0.23 (0.58) 0.22 (0.53) 0.22 (0.54)
injuries of child Male Mean (SD) 0.13 (0.40) 0.22 (0.48) 0.19 (0.46) 0.33 (0.79) 0.24 (0.55) 0.22 (0.54) 0.22 (0.54)

Female Mean (SD) 0.09 (0.32) 0.18 (0.56) 0.14 (0.47) 0.27 (0.58) 0.23 (0.61) 0.22 (0.51) 0.22 (0.53)

Equivalised incomea All Mean (SD) 21.36 (12.60) 26.64 (11.71) 27.19 (11.69) 29.81 (16.61) 27.44 (12.01) 26.61 (12.09) 33.04 (16.37)
Male Mean (SD) 21.24 (12.49) 26.47 (11.60) 26.87 (11.64) 29.89 (16.75) 27.29 (11.89) 26.76 (12.06) 32.92 (15.99)
Female Mean (SD) 21.48 (12.73) 26.81 (11.82) 27.52 (11.73) 29.73 (16.47) 27.60 (12.13) 26.46 (12.13) 33.15 (16.72)

Birth weight (grams) All Mean (SD) 3425.48 (582.80)
Male Mean (SD) 3499.82 (575.03)
Female Mean (SD) 3349.91 (580.95)

Note: a All values are expressed in thousands.

In Table 2.8, a summary of time-invariant categorical variables is presented. Within this
dataset, the proportion of males was slightly higher than females. As expected, the pro-
portion of White children was higher than that of other ethnicities. There were a few
children with low birth weight, accouting for 6.1% of the total. Additionally, more than
half of the mothers had their first child at the age of over 30 years old. When considering
the time of pregnancy, it is noteworthy that 22.3% of mothers had smoked, and approxi-
mately 27% had consumed alcohol.
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Table 2.9 shows a summary of time-varying categorical variables for the entire GUS
dataset. The summary indicates that the majority of children were in very good health
consistently across sweeps, with only 3.1% to 6.5% of children found to have bad or very
bad health. The majority of mothers had a marital status categorised as “Married and
living with husband”. About 60% of children lived in urban areas, whether large or other
urban. Parents mostly consumed alcohol once a month or less, with some consuming it
once a week. The current health of parents appeared to be good to excellent, with only
9% to 13.5% reporting fair or poor health. When considering only the past year, over 80%
of parents did not report any health problems. The majority of parents still had their
jobs. Additionally, it is noteworthy that approximately 60% of the children lived in the
top three least deprived quintiles.

When stratified by sex, the summaries showed a similar trend compared to aggregated
data, and both summaries are presented in Tables 2.10 and 2.11. The percentages for
each group across different variables remained consistent over the sweeps in both male
and female datasets. However, the percentage of respondents with no current job was
higher in the first sweep (SW1) compared to the subsequent sweeps. This trend was
observed in both the male and female datasets, indicating that after 2005/06 (the data
collection year for SW1), respondents were more likely to have a job.

Table 2.8: Time-invariant categorical variables for GUS data

Variable Level Children (%) Male (%) Female (%)
Sex 4563 (100.0) 2326 (51.0) 2237 (49.0)

Ethnicity of child White (reference) 4418 (96.8) 2249 (50.9) 2169 (49.1)
Other 145 (3.2) 77 (53.1) 68 (46.9)

Low birth weight Yes 280 (6.1) 132 (47.1) 148 (52.9)
No (reference) 4283 (93.9) 2194 (51.2) 2089 (48.8)

Mother’s age at first child’s birth < 20 years old 243 (5.3) 133 (54.7) 110 (45.3)
20 - 29 years old (reference) 1789 (39.2) 911 (50.9) 878 (49.1)
≥ 30 years old 2531 (55.5) 1282 (50.7) 1249 (49.3)

Smoking cigarettes while pregnant Yes 1017 (22.3) 514 (50.5) 503 (49.5)
No (reference) 3546 (77.7) 1812 (51.1) 1734 (48.9)

Drinking alcohol while pregnant Everyday, 3 - 6 times a week 32 (0.7) 17 (53.1) 15 (46.9)
1 - 2 times a week 147 (3.2) 74 (50.3) 73 (49.7)
2 - 3 times a month 216 (4.7) 109 (50.5) 107 (49.5)
<once a month 850 (18.6) 453 (53.3) 397 (46.7)
Never - did not drink at all 3318 (72.7) 1673 (50.4) 1645 (49.6)
(reference)

Note: The term “reference” (indicated within the parentheses) represents the reference categories which
will be utilised in the model categories.
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2.7 Chapter summary

The chapter offers a concise overview of child growth and development, emphasising the
Growing up in Scotland study (GUS), which provides data for thesis analysis. The litera-
ture reviewed in the first section reveals that human growth has been studied for centuries,
aiming to understand the progression from birth to adulthood. Childhood, recognised as
a pivotal stage, comprises sub-periods determined by age, including prenatal, infancy,
early childhood, middle childhood, and adolescence. Growth, whether in childhood or
adolescence, during this period is crucial as it impacts further life stages. Therefore, it is
important for both family and community units to be concerned their children. Physical
growth, a vital facet of child development, reflects overall health and well-being, and is
utilised to track or monitor child and adolescent growth and development. The subse-
quent section delves into child growth studies, crucial for understanding the intricacies
of children’s physical development. Such studies illuminate growth patterns, risk factors,
and the formulation of growth standards and charts for health and public health purposes.
Child growth studies primarily utilise two methodologies: cross-sectional and longitudi-
nal. The latter can offer detailed insight into growth, encompassing dynamic or periodic
aspects, while the former cannot.

The third section outlines the diverse measurements employed in modern child physical
growth studies. These measurements can broadly be categorised into two types: raw and
z-scale (standardised) growth measurements. The former measurements are traditional
metrics that provide direct, unadjusted data on aspects like height, weight, and other
physical attributes of children at specific ages. In contrast, the latter measurements, such
as Z-scores or standard deviation scores (SDS), derive from raw measurements but are
adjusted for age and sex. These scores enable comparison of a child’s growth data against
a reference population’s average and standard deviation, assessing a child’s growth against
expected norms and helps identify deviations from typical growth patterns.

Next, child growth charts are discussed. These charts are vital tools for monitoring chil-
dren’s physical development, illustrating the distribution of growth measurements that
vary with age. Constructed from child growth data, they typically display nine centile
curves, although this can vary based on the reference population. Healthcare professionals
use them to monitor and gauge typical growth. Among various methods, the LMS method
is particularly notable for creating these charts. There are two primary types: the growth
standard chart, which represents the ideal growth patterns of healthy children (e.g. those
by WHO), and the growth reference chart, which presents growth patterns of a broader
population, such as the UK-WHO charts from 2010. The latter provides insights into
general child development.
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Additionally, the risk factors associated with child growth and development are sum-
marised in Section 2.5. There is evidence that children’s experiences of growth and de-
velopment can be positively or negatively influenced by several factors, whether direct or
indirect. Experts have sought to summarise these factors for intervention and prevention
purposes, especially by location or country. Such summaries are beneficial for policy for-
mulation.

In the final section, the Growing up in Scotland (GUS) study is introduced. This study
comprises three sub-cohorts: Birth Cohort 1, Birth Cohort 2, Child Cohort. This the-
sis primarily focuses on Birth Cohort 1. Data up to the year 2020 (sweeps 1 to 10)
were considered. Emphasis was placed on raw weight and height data, which were then
standardised using the UK-WHO growth reference. The framework by Sabates and Dex
(2015) was employed to select variables associated with child physical growth measure-
ments. During data exploration, growth patterns were observed to vary between males
and females. Typically, males exhibited slightly higher averages in weight and height than
females. Growth patterns tended to follow a non-linear trajectory. Notable variation in
growth measurements was observed both among and within children over time. Observa-
tion times for children varied, particularly as they aged. The dataset provides evidence of
serial correlation. Lastly, both time-varying and time-invariant variables were summarised.



Chapter 3

Statistical background

In the analysis of longitudinal child growth data (LCGD), it is essential to use statisti-
cal methodologies that can adeptly address inherent complexities, such as the correlation
structures within the data and the observed diverse growth patterns. While the literature
does not prescribe a single statistical method, multiple techniques are frequently amalga-
mated for a comprehensive analysis. This chapter elucidates the statistical methodologies,
as described in existing literature, used for LCGD analysis. These methods will be further
employed in the subsequent chapters. The initial section describes mixed-effects models,
detailing their definition, general framework, parameter estimation procedures, and ex-
panded models. Section 3.2 introduces the flexible mixed-effects models. In Section 3.3,
correlation models are reviewed as another common model utilised for monitoring child
growth via longitudinal child growth data. Section 3.4 outlines quantile regression (QR),
introducing its definition, properties and two parameter estimation methods. Specifically,
Bayesian quantile regression is dissected in Section 3.5. Section 3.6 reviews quantile regres-
sion models in longitudinal data. Sections 3.7 to 3.12 present methodologies for modelling
non-linear dependencies in regression analysis. The final section provides a brief summary
of the chapter.

3.1 Mixed-effects models

Various statistical approaches have been proposed in the literature to analyse LCGD.
Among these, conditional models (conditional on the random effect), also known as mixed-
effects models, are particularly prominent. These methods are known by various names
depending on the area of application or statistical method, such as random-effects models
(Laird & Ware, 1982), multilevel models (Goldstein, 1989), and hierarchical models (Bryk
& Raudenbush, 1987). The core framework of these models involves incorporating ran-
dom individual effects into the regression model to account for the dependency between
observations from the same subject taken on different occasions. In essence, these random

46
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effects delineate individual variation and capture the correlation structure in repeated ob-
servations. Therefore, this section elucidates the principles of mixed-effects models, laying
the groundwork for understanding all mixed-effects model variants.

3.1.1 Definition of Mixed-effects model

As previously mentioned, mixed-effects models are a type of model that incorporates
random individual effects into the regression model. To introduce this kind of model,
consider the simple model form: let yij denote the outcome measured on individual i at
time tij, for i = 1, . . . , N individuals and j = 1, . . . , ni time points,

yij = β0 + β1tij︸ ︷︷ ︸
Regression model

+ b0i + b1itij︸ ︷︷ ︸
Random individual effects

+ ϵij︸︷︷︸
Random errors

, (3.1)

where β0 is the overall intercept or initial level, β1 is the overall slope (representing linear
change across time), and b0i and b1i represent the random individual effects relating to
intercept and slope, respectively. Thus, the model (3.1) comprises two main components
plus the random error term (ϵij): (1) the regression model and (2) the random individual
effects model. Typically, the first component generates the mean model (or population-
averaged model) and does not involve any individual, characterising it as a “fixed model”.
Conversely, the second part, termed the “individual model”, illustrates how each individual
deviates from the mean model.

Fixed effects

The term “fixed effects” pertains to any observed effects (e.g. covariates, factors) included
in the fixed model. In essence, it delineates effects that influence only the mean values of
the response across the entire population. Consequently, the interpretation of these effects
is confined to the population level.

Random effects

The term “random effects” refers to any unobserved effect that account for variations in
the data that cannot be explained by the fixed effects. These effects capture the random
variability in the data attributable to individual differences or differences between levels
of a grouping factor. This variation is inherently unpredictable because each individual or
group may have unique and unobservable characteristics affecting the outcome.
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3.1.2 Linear mixed-effects models

The mixed-effects models for LCGD commence with the simple linear mixed-effects mod-
els (LMMs), proposed by Laird and Ware (1982). These models tackle both between-
individual and within-individual variability by formulating a two-level hierarchical model.
The first-level model estimates each individual’s trajectory over time, accounting for its
variability. The second-level model estimates change across individuals, addressing the
between-individual variability. Both levels are modelled simultaneously, allowing for the
analysis of all individual data in a single analysis.

Let yij be the growth measurement corresponding to the jth (j = 1, . . . , ni) measurement
of the ith (i = 1, . . . , N) child, and let tij represent a continuous time variable (e.g. age).
The model framework is

Level 1 Repeated observation models: yij = a0i + a1itij + ϵij, (3.2)

Level 2 Individual model: a0i = β00 + u0i, (3.3)

a1i = β10 + u1i, (3.4)

Mixed model: yij = β00 + β10tij + u0i + u1itij + ϵij,

(3.5)

Mean model: µij = β00 + β10tij. (3.6)

In model (3.2), a0i and a1i represent the random intercepts and slopes of individuals, re-
spectively. These random coefficients describe the change in an individual i’s trajectory
over time within a linear model, analogous to being linear in parameters.

In model (3.3), β00 represents the mean intercept of a0i, analogous to the Level-1 inter-
cepts. This coefficient is often used to describe the mean of the entire population and is
typically assumed to be a fixed effect in the model.

In model (3.4), β10 represents the mean slope of a1i, analogous to the Level-1 slopes. This
coefficient describes the average change in growth over time and is also assumed to be
fixed effect.

Here, u0i and u1i are random individual effects for the intercept and slope, respectively,
analogous to individual coefficients. These effects are employed to capture the differences
when an individual’s growth trajectory deviates from the mean model (3.6).
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The mixed model (3.5) can be represented in matrix notation in the following single form:

yi = Xiβ + Ziui + ϵi, i = 1, . . . , N. (3.7)

Here, yi is a known ni×1 vector of observations for the ith subject at the jth measurement
time (j = 1, . . . , ni), given by

yi =


yi1

yi2
...
yini

 .

Xi is a known ni × 2 design matrix for fixed effects, which contains a column of 1 and the
observed values of the time variable (t) at the individual level,

Xi =


1 ti1

1 ti2
...

...
1 tini

 .

β is a 2× 1 vector of unknown fixed effects coefficients,

βi =

(
β00

β10

)
.

Additionally, Zi is a known ni × 2 design matrix for random effects, equivalent to Xi. In
this case, ui is a 2× 1 vector of unknown random effect coefficients where

ui =

(
u0i

u1i

)
∼ N2

([
0

0

]
,G =

[
σ2
0 σ01

σ01 σ2
1

])
,

σ2
0, σ2

1, and σ01 are elements of the variance-covariance matrix G, representing variances
of random intercepts and random slopes, and their covariance, respectively. ϵi is an ni× 1

vector of random errors where

ϵi =


ϵi1

ϵi2
...
ϵini

 i.i.d.∼ Nni



0

0
...
0

 ,Ri = σ2


1 0 · · · 0

0 1 · · · 0
...

... . . . ...
0 0 · · · 1


 , (3.8)

and σ2 is the residual variance. In the above assumption, each random error is assumed
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to be independent, with a homogeneous residual variance for all repeated observations.

However, assumption (3.8) may be unrealistic for LCGD due to the correlation in repeated
observations. As a result, Ri can be specified with a different structure to capture that
characteristic (Littell et al., 2000). A popular option is a first-order autoregressive
structure, or AR(1) (Jacobs & Lewis, 1978), where covariances between observations on
the same child decay over time:

Ri = σ2


1 ρ · · · ρni−1

ρ 1 · · · ρni−2

...
... . . . ...

ρni−1 ρni−2 · · · 1

 ,

where ρ represents the correlation coefficient in repeated observations. Furthermore, other
structures can alternatively specify the R matrix; for example, a compound symmetry
(CS) structure. The earliest explicit discussions of this structure were by Votaw (1948).
The structure can be represented as follows:

Ri = σ2


1 ρ · · · ρ

ρ 1 · · · ρ
...

... . . . ...
ρ ρ · · · 1

 .

The CS specifies that the covariances of each pair of observations are identical. However,
CS may be unsuitable for LCGD because covariances are typically unequal as age increases.
In contrast, there are two other structures that allow each covariance to be different,
namely, Toeplitz (TOEP) (Toeplitz, 1911):

Ri = σ2


1 ρ1 · · · ρni

ρ1 1 · · · ρni−1

...
... . . . ...

ρni
ρni−1 · · · 1

 ,

and an unstructured (UN) structure:

Ri =


σ2
1 σ12 · · · σ1ni

σ21 σ2
2 · · · σ2ni

...
... . . . ...

σni1 σni2 · · · σ2
ni

 .
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In the TOEP structure, the covariance matrix exhibits patterns wherein the covariance
between two points depends is determined solely by the lag between them, rather than
their specific temporal or spatial positions. Conversely, the UN structure does not adhere
any specific pattern or rule.

Note that the above specification considers the case with only one covariate (t) and two
random individual random effects (u0i and u1i). Generally, the model can be expanded to
include p covariates and q random effects. Thus, the matrix X and the vector u would
take the general forms:

Xi =


1 ti1 x2i1 · · · xpi1

1 ti2 x2i2 · · · xpi1
...

...
...

...
...

1 tini
x2ini

· · · xpini

 ,

and

ui =


u0i

u1i
...
uqi

 ∼ Nq



0

0
...
0

 ,G =


σ2
0 σ01 · · · σ0q

σ01 σ2
1 · · · σ1q

...
... . . . ...

σ0q σ1q · · · σ2
q


 .

For all individuals, the mixed-effects model (3.7) can be rewritten as

y = Xβ + Zu+ ϵ, (3.9)

where

y =


y′
1

y′
2
...
y′
N

 , X =


X1

X2

...
XN

 , Z =


Z1 0 · · · 0

0 Z2 · · · 0
...

... . . . ...
0 0 · · · ZN

 , andu =


u′
1

u′
2
...

u′
N

 .

The variance-covariance of y, Var(y) = V, can be defined by

V = ZGZ′ +R.

Thus, the model (3.9) can be written with normally distributed random variables in
marginal form as

y ∼ N (Xβ,V). (3.10)
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3.1.3 Maximum likelihood (ML) estimation

The marginal log-likelihood of y under the model (3.10) (Demidenko, 2013; Pinheiro &
Bates, 2000) is given by

l(β,V) = −1

2

{
log|V|+ (y −Xβ)′V−1(y −Xβ)

}
− N

2
log(2π). (3.11)

For any fixed V, the log-likelihood (3.11) is maximised over β by

β̂ = (X′V−1X)−1X′V−1y.

For the variance-covariance (V), β̂ can be substituted back into (3.11), thereby obtaining
the profile log-likelihood:

lp(V) = −1

2

{
log|V|+ y′V−1(I−X(X′V−1X)−1X′V−1)y

}
. (3.12)

Subsequently, the function (3.12) can be maximised for the parameters in V.

3.1.4 Restricted maximum likelihood (REML) estimation

As is well known (Demidenko, 2013; Laird & Ware, 1982), the ML estimator has some
shortcomings. Notably, it does not adjust the estimation of variance components to ac-
count for the degrees of freedom used in estimating the fixed effects, which typically results
in biased estimators and the overestimation of the variance-covariance parameters. Conse-
quently, to adjust this respect, restricted maximum likelihood estimators (REML) (Corbeil
& Searle, 1976; Patterson & Thompson, 1971) are often preferred over ML estimators. The
expression for the REML is given as

lR(V) = −1

2

{
log|V|+ log|X′V−1X|+ y′V−1(I−X(X′V−1X)−1X′V−1)y

}
.

As the expression above shows, the part related to the estimation of fixed effects is removed
from the likelihood function compared to function (3.12). This approach ensures that the
degrees of freedom used for estimating the fixed effects are not consumed in the estimation
of variance components. Consequently, the modified likelihood function, which involves
only the random effect part, is maximised to estimate the variance components of the
random effects.

3.1.5 Prediction of the random effects

As previously outlined, the random effects are utilised to account for variation at the
individual or group level. In theory, these effects are assumed to originate from a normal
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distribution with a mean of zero. Unlike the fixed effects, they are treated as random
variables, which cannot be directly estimated but are predicted. The prediction of u is
straightforward, using the best linear unbiased prediction (BLUP) (Robinson, 1991),

û = GZ′V−1(y −Xβ̂).

The solution above is based on finding β̂ and û to minimise the prediction error, which
results in û being the best prediction. It is also a linear prediction because it is predicted
as a linear combination of observed data. Furthermore, given that its expectation, E(û) =
E(u) = 0, it is unbiased.

3.1.6 Extended models

In simple LMMs, the relationship between child growth measurements (e.g. weight, height,
WAZ, HAZ) and time (or age) is typically assumed to follow a linear trend. However, in
reality, growth does not usually follow such a relationship (Anderson, Hafen, et al., 2019;
Laird & Ware, 1982). The model outlined above cannot capture other growth patterns,
such as non-linear ones. Although LMMs allow for the modelling of non-linear relationship
by using higher-order polynomials (e.g. a quadratic trend over time), another issue arises.
Specifically, using parametric functions to fit non-linear data tends to yield models with
excessive numbers of parameters, complicating the interpretation of those parameters. To
overcome this limitation, nonlinear mixed-effects models (NMMs) offer an alternative by
describing growth mechanisms with few parameters (Cole et al., 2010; Lawton et al., 1972;
Stützle et al., 1980). Despite the challenges associated with interpreting the parameters of
higher-order polynomials, such modelling can yield a comprehensive depiction of growth
trajectory trends, thus providing insights into how growth changes over time. Moreover,
various mixed-effects model variants have been proposed as alternatives in this respect. For
instance, piecewise mixed-effects models (PMMs) have been proposed to address growth
patterns comprising at least two critical periods (Fitzmaurice et al., 2011; Muggeo et al.,
2014; Naumova et al., 2001). Each of these models possesses its own advantages; however,
they also exhibit limitations when it comes to accommodating a range of growth patterns.
In other words, these models lack the requisite flexibility to accurately capture the data
process. For instance, PMMs necessitate numerous parameters to manage the smoothness
of growth curves across multiple critical periods.

3.2 Flexible mixed-effects models

Another method of modelling non-linear trajectories is via a “nonparametric” approach,
allowing for the modelling of the nonlinear relationship between the response and the time
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variable using a nonparametric function. Typically, spline techniques (see Section 3.5)
are used to construct these functions. Theoretically, such splines can be reformulated as
a model comprising two components: parametric and nonparametric. Consequently, the
term semiparametric model is often used to describe this type of model (Ruppert et al.,
2003). Regarding model fitting, upon choosing a spline, the semiparametric model can be
fitted by transforming the spline model into a mixed-effects model framework (splines as
mixed-effects models) and then employing the penalised least squares method outlined in
Section 3.6 to estimate the model’s parameters.

Several semiparametric approaches, known as semiparametric mixed-effects models, have
been widely proposed for modelling longitudinal data across various applications (Aniley
et al., 2019; Durbán et al., 2005; Maringwa et al., 2008; Ruppert et al., 2003; Szczesniak
et al., 2016; Thilakarathne et al., 2011; Zeger & Diggle, 1994; D. Zhang et al., 1998).

3.2.1 Model specification

The simplest form of semiparametric mixed-effects model based on penalised splines can
be expressed by:

yij = f(tij) + u0i + u1itij + ϵij, i = 1, 2, . . . , N, j = 1, 2, . . . , ni (3.13)

where

f(tij) = β00 + β10tij +
κ∑

k=1

νk0(tij − δk)+,

Here, f(tij) is a smooth function representing the population mean curve over time. In
this case, this smooth function is defined as truncated linear splines. However, another
basis such as truncated polynomial splines or B-splines can be used (Durbán et al., 2005).

The model (3.13) can be written as a mixed-effects model framework by:

yij = β00 + β10tij︸ ︷︷ ︸
Xβ

+
κ∑

k=1

νk(tij − δk)+ + u0i + u1itij︸ ︷︷ ︸
Zu∗

+ ϵij︸︷︷︸
ϵ

, (3.14)

and the model (3.14) can be expressed in the matrix notation form as:

y = Xβ + Zu∗ + ϵ, (3.15)
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where y = (y1, . . . ,yN)
′, X = (X1, . . . ,XN)

′, β = (β00, β10)
′, ϵ = (ϵ1, . . . , ϵN)

′,

Xi =


1 ti1

1 ti2
...

...
1 tini

 , Z =


B1 X1 0 · · · 0

B2 0 X2 · · · 0
...

...
... . . . ...

BN 0 0 · · · XN

 ,

Bi =


(ti1 − δ1)+ · · · (ti1 − δκ)+

(ti2 − δ1)+ · · · (ti1 − δκ)+
... . . . ...

(tini
− δ1)+ · · · (tini

− δκ)+

 ,

u∗ = (ν1, ν2, . . . , νk, u01, u02, . . . , u0N , u1N)
′.

The model (3.15) has its essential assumptions as follows:

u =

(
u0i

u1i

)
∼ MVN

([
0

0

]
,G =

[
σ2
0 σ01

σ01 σ2
1

])
, νk ∼ N(0, σ2

ν), and ϵij ∼ N(0, σ2
ϵ ),

and

Σ = Cov(u∗) =

σ2
νI 0

0 block-diagonal
1≤i≤N

G

 . (3.16)

Here, νk are treated as random effects, analogous to u0i and u1i. These random effects
are presumed to follow a normal distribution with zero mean and finite variance (σ2

ν > 0).
Adhering to this assumption serves as a form of regularisation, averting the overfitting of
the population mean curve. It imposes a penalty on the coefficients, encouraging shrink-
age towards zero and resulting in a more stable and interpretable model. However, this
condition can apply different penalties, for example, νk ∼ Laplace(0, σ2

ν) (Wand, 2003).

3.2.2 Estimation

Assuming σ2
0, σ

2
1, σ01, σ

2
ν and σ2

ϵ are known, the estimates of (β,ν,ui) are obtained by
minimising the penalised least squares:

N∑
i=1

[
ni∑
j=1

{
yij − f(tij)− hi(tij)

}2

+ σ2
ϵu

′
iG

-1ui

]
+ λν ′ν, (3.17)

where λ = σ2
ϵ/σ

2
ν , which represents the smoothing parameter. In expression (3.17), a

term multiplied by the smoothing parameter is a penalty term that yields smoother fitted
curves. Given all the above assumptions, the penalised spline smoother corresponds to
the optimal predictor in a mixed-effects models framework (Durbán et al., 2005; Heckman
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et al., 2013; Wu & Zhang, 2006). Therefore, all parameters in the model can be estimated
via the restricted maximum likelihood method of the mixed-effect model framework,

lR(V) = −1

2

{
log|V|+ log|X′V−1X|+ y′V−1(I−X(X′V−1X)−1X′V−1)y

}
, (3.18)

where V = ZΣZ′ +R, R = σ2
ϵ I and Σ is defined in (3.16). The maximisation of (3.18)

yields,

β̂ = (X′V−1X)−1X′V−1y (3.19)

and
û∗ = ΣZ′V−1(y −Xβ̂). (3.20)

Existing mixed-effects model software, i.e. the function gamm in the mgcv package (Wood,
2017a) of the R environment, can be used to estimate (3.19) and (3.20). In child growth
modelling, Durbán et al. (2005) leveraged these advantages and used the equivalence
between a penalised spline smoother and the optimal predictor in a mixed-effects model
to form the semiparametric mixed-effects models.

3.3 Correlation models

Another common approach for modelling longitudinal child growth data is through Cor-
relation models, particularly in the area of child health monitoring. The concept behind
this approach is to identify metrics that capture the relationship between a child’s growth
measurements at multiple time points. These metrics are then utilised to make inferences
and predict the child’s growth measurements in the future. This can be exemplified by
considering the correlation between growth measurements (e.g. height or weight) of a child
at ages t1 and t2. With this information, we can infer the growth measurement at age t2
for another child, given his or her growth measurement at t1 years.

Cole (1995) applied this concept to propose an analysis of correlation models for assessing
weight gain in British infants. Weight gain was defined as a standard deviation (Z-score) of
a child’s weight compared with the average weight of the reference population of children
at the same two ages. Hence, it can be expressed mathematically as follows: Let z1 and
z2 be weight gain measured at t1 and t2, respectively, and ρ12 represents the correlation
between these two time points. The conditional weight gain can be expressed as

z2|1 =
z2 − ρ12z1√

1− ρ212
(3.21)

The idea behind the conditional weight gain mentioned above is derived from simple linear
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regression, expressed as E(z2|z1) = ρ12z1 with standard deviation
√

1− ρ212. Consequently,
this conditional weight gain dependents on the correlation between them, ρ12, rather than
on the time points t1 and t2. This leads to the approach being a regression to the mean.
By accurately estimating the correlation term for all pairs of possible time points, we can
predict other weight gains. Therefore, the main point of this approach lies in calculating
the correlations of all pairs. In practice, these calculations are computed based on a se-
ries of age groups, which are constructed by discretising continuous time. The estimation
method depends on the assumption of the correlation process. For example, Cole (1995)
utilised Fisher’s transformation, z = 1

2
log
(
(1 + ρ12)/(1− ρ12)

)
, to address this aspect for

(3.21), so that ρ12 = (exp (2z)− 1)/(exp (2z) + 1).

Since the proposal of Cole (1995), there have been other correlation models developed
in the area of modelling child growth data, particularly focusing on proposing correla-
tion functions and estimation methods. Argyle et al. (2008) proposed a particular two-
parameter Markov form to represent the correlation function in infancy, with its param-
eters estimated via likelihood methods. Feng et al. (2020) employed several correlation
functions, such as the exponential function, the exponential function with a nugget effect
term, Markovian (following the approach of Argyle et al. (2008)), Markovian with nugget
effect, and two nonparametric correlation functions (with functional data analysis), to
monitor fetal growth. Moreover, Anderson, Xiao, et al. (2019) developed a child growth
correlation matrix by pooling data from multiple studies with varying age ranges using a
two-stage approach. This approach involves constructing a raw correlation (incomplete)
matrix derived by univariate meta analyses in the first stage, which was then smoothed
in the second stage to yield a complete and valid correlation matrix.

Although correlation models offer advantages in monitoring child growth, they have several
limitations. Firstly, they require collecting data at consistent ages or at least at ages close
to each other for all children (W. Johnson, 2015). Hence, they may not be suitable for
longitudinal child data with timing differences between subjects, such as the GUS data.
Nonetheless, this issue can be addressed by discretising continuous age differences into a
series of age groups, but the loss of granularity and information may be a concern. This
loss of precision can impact the ability of correlation models to capture subtle changes
in growth trajectories and may result in less accurate predictions or interpretations of
child growth patterns. Secondly, correlation models usually consider conditioning only
on previous outcomes defined for just two ages (Van Buuren, 2023), whereas more than
two ages should be considered in order to assess growth curves comprehensively. While
multiple calculations can be utilised in this case, multiple testing issues must be noted. To
address these issues, Van Buuren (2023) proposed a method to calculate conditional gain
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for multiple time points. However, this approach still focuses solely on previous outcomes
and does not consider any predictors in the model, such as parental anthropometry, genetic
predisposition, environmental factors. This narrow focus may lead to incomplete or biased
assessments of child growth and development. Thirdly, correlation models do not take into
account other characteristics of longitudinal child growth data, such as the heterogeneity of
children. As a result, they may overlook important factors that contribute to the diversity
of growth patterns observed in children. In this thesis, therefore, this kind of model is not
considered as an approach.

3.4 Quantile regression

In this section, quantile regression (QR) is introduced. Similar to mean regression, QR
can elucidate the relationship between the response variable and its covariates. The dis-
tinguishing feature of QR, however, is its focus on the impact of covariates across the
entire conditional distribution of the response. This allows for an examination of changes
in the distribution’s location, scale, and shape, conditional on the covariates. For illus-
tration, consider a child growth study where being overweight—a health issue influenced
by numerous factors or covariates—is of interest. To analyse the determinants specifically
affecting the upper tail of the weight distribution, QR is especially pertinent. Traditional
methods, such as the ordinary least squares (OLS) regression, primarily focus on effects
that influence the mean of the response distribution. Relying exclusively on the mean
might not provide a comprehensive understanding of the distribution. Some factors may
impact the mean but not other measures, such as the upper or lower quantiles of the
response. QR provides a solution to this limitation. Within the literature, QR models
are principally categorised based on parameter estimation techniques: Distribution-free
methods and Likelihood-based methods.

3.4.1 A definition of quantiles

The term “quantiles” denotes specific location points within a dataset or distribution that
segment the data into intervals of equal probability. In other words, it determines the
number of observations in a distribution that are either above or below a specified limit.
Figure 3.1 provides an example of quantiles for the raw weight in males within the GUS
data.

Percentiles and quantiles

Percentiles are another version of quantiles, but they are represented in a different index.
Percentiles are indexed by sample percentage rather than by sample fractions (the ratio
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of sample size to population size, equivalent to probability). For example (refer to Figure
3.1)),

• The 25th percentile is known as the 0.25th quantile or the lower quartile.

• The 50th percentile is known as the 0.50th quantile or the median.

• The 75th percentile is known as the 0.75th quantile or the upper quartile.

3.4.2 Quantile of random variable

Let FY (y) be the cumulative distribution function of a continuous random variable Y ,
defined as:

FY (y) = Pr(Y ≤ y).

Then, for τ ∈ (0, 1), the τth quantile of the random variable Y is defined as:

Qτ (Y ) = F−1
Y (τ) = inf{y : FY (y) ≥ τ}.
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Figure 3.1: Quantile plots for the raw weight in males within the GUS data

3.4.3 Linear quantile regression

The basic concept of quantiles, as previously outlined, can be applied to construct a
regression form for the specific τth quantile of Y conditional on covariates X. Given
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that Y is a continuous response variable and x is a p× 1 vector of known covariates, the
distribution of Y conditional on x can be denoted as FY (y|x) = Pr(Y ≤ y|x). Figure 3.2
illustrates conditional quantiles in a continuous response (e.g. raw weight) over a covariate
(e.g. Age in years). Consequently, the τth quantile of Y conditional on x, for τ ∈ (0, 1),
is defined as:

Qτ (Y |x) = inf{y : FY (y|x) ≥ τ}. (3.22)

From this, equation (3.22) can be viewed as representing the linear form of the quantile
regression model for a sample of n independent observations {yi,xi} from i = 1 to n,
expressed as:

Qτ (Yi|xi) = x′
iβτ , (3.23)

or equivalently,
Qτ (Yi|xi) = β0,τ + β1,τx1 + · · ·+ βp,τxp.

Alternatively, the model in (3.23) can be conveyed through the linear model as

yi = x′
iβτ + ϵi, (3.24)

where ϵi is a random error term based on the assumption Qτ (ϵi|xi) = 0. Here, βτ ∈ Rp

is the vector of unknown regression coefficients, which can be interpreted as the marginal
change in the τth quantile resulting from a marginal change in x. Different settings of
τ may yield coefficients that vary both in magnitude and sign. Each quantile must be
increasing in τ and not cross each other.

3.4.4 Quantile function properties

Monotonicity

In quantile terms, if τ1 < τ2, then Qτ1(Y ) ≤ Qτ2(Y ). This implies that the quantile Qτ (Y )

is monotone in τ . In the context of linear quantile regression, Qτ (Y |x) should increase
with τ for any given value of x, consistent with the properties of quantiles.

Equivariance

The equivariance is a measure of how alterations in the response variable, such as scal-
ing or reparameterisation, influence the regression estimates in quantile regression. Such
understanding aids in the interpretation of statistical results. Let β̂τ (y,X) represent the
estimator for the τth regression quantile based on observations (y,X). Suppose A is any
p × p non-singular matrix, γ belongs in Rp, and a > 0. Then, for any τ in the interval
[0, 1]:

1. Scale equivariance: β̂τ (ay,X) = aβ̂τ (y,X) and β̂τ (−ay,X) = −aβ̂1−τ (y,X)
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Figure 3.2: Conditional quantiles in raw weight over age (years). The red dots represent
quantiles at τ values of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

2. Regression shift: β̂τ (y +Xγ,X) = β̂τ (y,X) + γ

3. Reparameterisation of design: β̂τ (y +XA) = A−1β̂τ (y,X).

Equivariance to monotone transformation

Let h(·) be an increasing function on R. For any variable Y ,

Qτ (h(Y |x)) = h(Qτ (Y |x)).

As an illustration, consider log(Y ) = x′β. This implies that Qτ (log(Y )|x) = x′β. If our
interest lies in Qτ (Y |x), utilising this property allows us to deduce that

Qτ (log(Y |x)) = log(Qτ (Y |x)) = x′β.

Consequently, Qτ (Y |x) = exp(x′β).

Interpolation

Quantile regression is characterised by its ability to fit a model such that, for a given
quantile τ , exactly τ percent of the data points will lie on or below the model’s prediction
for that quantile. To illustrate that with a simple example, consider the median regression,
τ = 0.50. The regression line should pass through the median of the data points, meaning
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that approximately 50% of the data points will be above and 50% below the regression
line. Consequently, the residuals for the data points that the regression line fits exactly
will be zero, while the remaining residuals will be evenly split between 50% positive and
50% negative. In the general case, this results in n(τ) positive residuals and n(1 − τ)

negative residuals, where n is the total number of observations (Koenker, 2005).

3.4.5 Distribution-free method

In classical quantile regression, to determine the coefficient estimates for the model, the
following optimisation problem must be solved:

β̂τ = argmin
β

n∑
i=1

ρτ (yi − x′
iβ), (3.25)

where ρτ (u) = u(τ − I(u < 0)) is the quantile loss function and I(·) is the indicator
function (see Figure 3.3). Typically, the solution of (3.25) is obtained by using linear
programming algorithms (Koenker, 2005).

τ=0.25

τ=
0.50

τ=
0.7

5

u

ρτ (u)

Figure 3.3: Quantile loss function, ρτ (u)

Consider the linear quantile regression model given by (3.24),

yi = x′
iβτ + ϵi = x′

iβτ + (ui − vi), (3.26)

where ui = ϵiI(ϵi > 0) and vi = |ϵi|I(ϵi < 0), i = 1, . . . , n. The variables, ui and vi, are
introduced to represent the positive and negative components of the residual vector. As
such, equation (3.26) can be reformulated using these variables within a linear program-
ming framework as:

min
(β,u,v)∈Rp×R2n

+

{
τ1′nu+ (1− τ)1′nv|x′β + u− v = y

}
. (3.27)

The minimisation problem in (3.27) can be addressed using the simplex algorithm in linear
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programming method (refer Koenker and D’Orey (1987) for additional details). This esti-
mation approach does not depend on any distribution assumptions regarding the response.
Consequently, this method is based on a distribution-free approach and is also referred to
as classical quantile regression.

At present, implementation this method is straightforward using the quantreg package in
R (Koenker, 2019). However, this method can be computationally challenging when the
sample size is large. To mitigate this problem, two alternative approaches have been pro-
posed: the Frish-Newton interior-point method (Portnoy & Koenker, 1997) and the sparse
regression quantile fitting (Koenker & Ng, 2003). The former addresses the challenges
in the simplex algorithm for larger sample sizes by traversing the interior of the feasible
region. In contrast, the latter utilises sparse matrices to enable efficient computation,
especially when the covariates include many factors.

Extended models

Classical QR models can be extended to accommodate various statistical frameworks.
Examples include nonlinear quantile regression (Koenker & Park, 1996), nonparametric
quantile regression such as local polynomial quantile regression (Chaudhuri, 1991), quan-
tile smoothing splines (Koenker et al., 1994), and quantile regression splines (He & Ng,
1999; He & Shi, 1994; Hendricks & Koenker, 1992). There are also studies on penalised
quantile regression splines, as highlighted by Muggeo et al. (2013), Ng and Maechler (2007),
and Pratesi et al. (2009).

3.4.6 Likelihood-based method

Koenker and Machado (1999a) discovered that maximising the likelihood function of the
residual error, ϵ, (assumed to follow an asymmetric Laplace (AL) distribution) yields
a result equivalent to (3.25). Consequently, the parameter estimation for the quantile
regression model can alternatively be determined using the method of maximum-likelihood
estimation.

Asymmetric Laplace distribution

The AL distribution is a continuous probability distribution in which the random variable,
Y , has a density characterised by three specific parameters: the location parameter µ ∈ R,
the scale parameter σ > 0, and the skew parameter τ ∈ (0, 1) (Yu & Zhang, 2005). The
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density function is represented as:

f(y; τ, µ, σ) =
τ(1− τ)

σ
exp

{
− ρτ

(
y − µ

σ

)}
, −∞ < y <∞, (3.28)

where ρτ (u) is the quantile loss function. Figure 3.4 displays the density function of this
distribution. The distribution is denoted briefly as AL(µ, σ, τ). Its distribution function
(see Figure 3.5) and quantile function (see Figure 3.6) are respectively given by:

F (y; τ, µ, σ) =

τexp
{1− τ

σ
(y − µ)

}
, y ≤ µ

1− (1− τ)exp
{
− τ

σ
(y − µ)

}
, y > µ

and

F−1(p; τ, µ, σ) =


µ+

σ

1− τ
log
(p
τ

)
, 0 ≤ p < τ

µ− σ

τ
log
(1− p

1− τ

)
, τ < p ≤ 1.

For the aforementioned quantile function, the pth-quantile of the random variable y is
equivalent to the location parameter µ when p = τ , that is,

F−1(p; τ, µ, σ)|p=τ = µ.

To estimate µ using the method of maximum-likelihood estimation, let us consider an
illustrative case where τ = 1/2. With this assumption, the density function can be refor-
mulated as:

f(y; 1/2, µ, σ) =
1

4σ
exp

{
− |y − µ|

2σ

}
.

Assuming σ is known while µ remains unknown, the log-likelihood function becomes:

L(µ, σ) ∝ − 1

2σ

n∑
i=1

|yi − µ|.

Subsequently, taking the partial derivative of L(µ, σ) with respect to µ yields:

∂L(µ, σ)
∂µ

=
1

2σ

n∑
i=1

sgn(yi − µ)

To maximise the likelihood function, µ needs to be considered such that:

1

2σ

n∑
i=1

sgn(yi − µ) = 0 (3.29)
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Figure 3.4: AL density function with µ = 0, σ = 1, and τ ∈ (0.25, 0.50, 0.75).

Considering equation (3.29), there are two cases based on the number n, either odd or
even. These cases determine the maximum likelihood estimator of µ as follows:

1. For an odd number: One yi from (y1, . . . , yn) can be selected to be µ in order to
satisfy equation (3.29). A way to address this is by defining this value as:

µ̂ = median(y1, . . . , yn).

This results in (n−1)/2 instances where (yi−µ) > 0 and for the remaining (n−1)/2

instances where (yi − µ) < 0. It is evident that µ̂ satisfies (3.29). Hence, it can be
concluded that µ̂ is the maximum likelihood estimator for µ.

2. For an even number: It is not possible to select a single yi to satisfy (3.29). However,
it can be minimised by arranging the observations as y1 ≤ y2 ≤ . . . ≤ yn and then
choosing either yn/2 or y(n+1)/2.

Therefore, the maximum likelihood estimator of µ is µ̂ = median(y1, . . . , yn). Alterna-
tively, it can be expressed as:

µ̂τ=0.5 = argmin
µ

n∑
i=1

1

2
|yi − µ| = argmin

µ

n∑
i=1

ρ0.5(yi − µ),
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Figure 3.5: AL distribution function with µ = 0, σ = 1, and τ ∈ (0.25, 0.50, 0.75).

where ρ0.5(u) = u(0.5− I(u < 0)) and I(·) represents an indicator function. For any given
τ , the MLE of µτ can be described as:

µ̂τ = argmin
µ

n∑
i=1

ρτ (yi − µ).

The AL distribution to quantile regression

Assuming that each independent response variable yi, given xi and β, follows the AL
distribution with µi = x′

iβτ , σ, and τ :

yi|xi,β ∼ AL(µi, σ, τ), i = 1, . . . , n. (3.30)

The likelihood function can be expressed as

L(β, σ, τ) =

[
τ(1− τ)

σ

]n
exp

{
−

n∑
i=1

ρτ

(
yi − x′

iβ

σ

)}
. (3.31)

In this case, when τ is known, maximising the logarithm of (3.31) with respect to β yields
β̂τ , which is equivalent to (3.25).
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Figure 3.6: AL inverse (quantile) function with µ = 0, σ = 1, and τ ∈ (0.25, 0.50, 0.75).

In its application, Yu and Moyeed (2001) leveraged this property to develop a Bayesian
framework for the linear quantile regression model. This approach has since motivated nu-
merous researchers to refine and apply this distribution to form quantile regression within
various statistical frameworks. For example, Tsionas (2003) and Kozumi and Kobayashi
(2011) demonstrated that the AL distribution could be formulated as a mixture of normals
representation. This formulation facilitates the use of the Gibbs sampling algorithm to
estimate model parameters. Furthermore, Geraci and Bottai (2007) employed this distri-
bution to formulate the likelihood function of clustered or longitudinal data, enabling the
estimation of the quantile functions.

3.5 Bayesian quantile regression

The Bayesian method offers an alternative statistical approach for estimating parameters
based on underlying posterior information. This approach combines prior knowledge of
unknown parameters with observable data to calculate the “posterior probability” using
Bayes’ theorem (Bayes & Price, 1763). This theorem is fundamentally defined for events
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A and B as follows:
P (A|B) =

P (B|A)P (A)
P (B)

,

where P (A|B) is the conditional probability of event A occurring given that event B has
occurred, and P (A), P (B) are the probabilities of events A and B occurring, respectively.

Let y be the observed data, and θ denote the parameters of interest. According to Bayes’s
theorem, the posterior probability distribution, p(θ|y), can be written as

p(θ|y) = p(y|θ)p(θ)
p(y)

,

where p(y|θ) is the likelihood function of the observed data, p(θ) is the known prior prob-
ability distribution of the parameters, and p(y) is the marginal probability distribution of
the observed data. As it does not depend on θ, the posterior probability distribution can
instead be written, up to proportionality, as

p(θ|y) ∝ p(y|θ)p(θ).

Therefore, this posterior is theoretically derived by multiplying the likelihood function of
the data with the prior probability density of the relevant parameters (Gelman, 2014).

3.5.1 Prior probability distribution

As is known, the prior probability distribution is one of the two cores of the Bayesian
method. In practice, there are two choices in this respect, depending on user specifications:

Noninformative prior: a type of prior commonly used due to the lack of knowledge
about the parameters of interest. Hence, users seeks priors that exert minimal influence on
the inference, essentially “letting the data speak for themselves” (Congdon, 2006, p.113).
Moreover, the utilisation of this prior often offers a broad and diffuse range of possible
values for the parameter. The Jeffrey’s prior (Jeffreys, 1946) and the uniform prior dis-
tribution (Gelman, 2014) are two common types of noninformative priors widely used in
Bayesian analysis.

Informative prior: a prior that is chosen based on substantive knowledge about the
parameter of interest, without considering the current data. Typically, this prior knowl-
edge or strong beliefs about the parameter come from previous research, expert opinion,
or other relevant information sources (Gelman, 2014, p.34). As a result, this prior is often
subjective, depending on the analyst’s perspective. For instance, if an analyst believes
that a continuous parameter varies around a certain value with some degree of variation, a
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normal distribution with its mean and standard deviation might be used as an informative
prior to represent this belief.

3.5.2 Markov Chain Monte Carlo

In practice, the posterior probability distribution is usually complex and defined over
high-dimensional spaces. Consequently, approximation methods, such as Markov Chain
Monte Carlo (MCMC) algorithms, are often employed in Bayesian statistics to estimate
the posterior distribution of a parameter (Gelman, 2014, page: 275-288). Both the Gibbs
sampler and the Metropolis-Hastings algorithm are types of MCMC often used in this
area.

Gibbs sampler

The Gibbs sampler, described by Geman and Geman (1984), was named after the physicist
Josiah Willard Gibbs. The idea behind this sampler is to sequentially generate posterior
samples from a set of conditional distributions rather than sampling directly from a joint
distribution. The sampling is performed on only one variable at a time, conditional on the
current values of all the other variables. This is particularly useful for sampling from high-
dimensional probability distributions. The basic outline of the Gibbs sampler algorithm
for drawing r samples from the posterior distribution is as follows.

1. Set initial values for a distribution of p parameters, θ1,θ2, . . . ,θp, defined as θ(0)
1 ,θ

(0)
2 ,

. . . ,θ
(0)
p .

2. For each iteration r, where r = 1, 2, . . . , R, follow the steps below for sampling each
parameter i = 1, . . . , p:

(a) Sample θ
(r)
1 from p(θ1|θ(t−1)

2 ,θ
(t−1)
3 , . . . ,θ

(t−1)
p ,y).

(b) Sample θ
(r)
2 from p(θ2|θ(t)

1 ,θ
(t−1)
3 , . . . ,θ

(t−1)
p ,y).

(c) Continue this process for the remaining parameters. This process implies for the
ith parameter: Sample θ

(r)
i from p(θi|θ(t)

1 ,θ
(t)
2 , . . . ,θ

(t)
i−1,θ

(t−1)
i+1 , . . . ,θ

(t−1)
p ,y).

(d) Sample θ
(r)
p from p(θp|θ(r)

1 ,θ
(r)
2 , . . . ,θ

(r)
p−1,y).

As is known, the Gibbs sampler algorithm performs sampling from conditional distribu-
tions. These conditional distributions are required to be valid probability distribution from
which samples can be drawn. In other word, they must be proper distributions, Hence,
the Gibbs sampler has limitations in this respect. Consequently, other methods should
be considered instead in cases where the conditional distribution is not straightforward to
sample from, such as the Metropolis-Hastings algorithm.
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Metropolis-Hastings

The Metropolis-Hastings algorithm is another MCMC technique, proposed by Hastings
(1970). This algorithm generates a sequence of sample values from a chosen proposal
distribution to match a target distribution (the distribution from which we want to sam-
ple) based on an acceptance criterion. Following this principle, the Metropolis-Hastings
algorithm is more flexible and can be used even when the conditional distribution are not
known or not straightforward to sample from. The Metropolis–Hastings algorithm can
thus be written as follows:

1. Choose arbitrary values θ
(0)
1 ,θ

(0)
2 , . . . ,θ

(0)
p as the initial observations.

2. For each iteration r = 1, 2, . . . , R, follow the steps below for sampling θ
(r)
i , where

i = 1, . . . , p:

(a) From the current position θ
(r−1)
i , generate a set of candidate parameter values

θ∗
i from the proposal distribution q(θ∗

i |θ
(r−1)
i ).

(b) Compute the acceptance ratio α, given by:

α = min

(
1,

p(θ∗
i |y)q(θ

(r−1)
i |θ∗

i )

p(θ
(r−1)
i |y)q(θ∗

i |θ
(r−1)
i )

)
,

where p(θi) is the target distribution, and q(θ∗
i |θi) is the proposal distribution.

(c) If acceptance occurs, set θ
(r)
i = θ∗

i . Otherwise, set θ
(r)
i = θ

(r−1)
i .

3.5.3 Convergence, mixing, acceptance rates, thinning and model

diagnostics and effective sample size of the MCMC algo-

rithm

In the MCMC algorithm, the objective is to construct a Markov chain whose sequence
of sampled states converges to the target posterior distribution after iterating a suffi-
cient number of times. The convergence is a crucial aspect, indicating that the Markov
chain has the property to reach a stationary distribution that accurately represents the
target distribution. In the event that the chain has converged, subsequent samples pro-
vide reliable estimates of the parameters or quantities of interest in the target distribution.

The question then arises: how is it determined whether the simulated Markov chain has
converged in distribution to the target distribution? The basic tool widely used to diagnose
convergence in this respect is the trace plot (see Figure 3.7). This plot visually presents
the sampled values of a parameter or variable of interest across iterations. Typically, the
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Figure 3.7: An example of a trace plot.

horizontal axis denotes the iteration number, while the vertical axis represents the sample
values of the parameter or variable. Each point on the plot corresponds to a single sampled
value obtained from the MCMC algorithm at particular iteration. The interpretation of
the trace plot is straightforward, with flat and stable traces usually indicating convergence.

Another diagnostic tool used to assess convergence in MCMC simulations is the Gelman-
Rubin statistic, also known as the potential scale reduction factor (Gelman & Rubin,
1992). This quantity measures convergence by comparing the variability between multi-
ple chains to the variability within each individual chain. The underlying idea is that if
multiple chains are sampling from the same distribution and have converged to the tar-
get distribution, then their variances should be similar. The Gelman-Rubin statistic is
computed by

R̂GR =

√
V̂

W
.

where W is the average of the variances within each chain and V̂ is the estimated variance
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of the target distribution. Both terms can be computed by

W =
1

M

M∑
m=1

(
1

Rm − 1

Rm∑
r=1

(θmr − θ̂m)
2

)
,

and
V̂ =

R− 1

R
W +

1

R
B,

where M is the number of chains, R is the number of iterations, θ̂m is the (posterior) mean
of the m-th chain, B is the between-chain variance defined as B = R

M−1

∑M
m=1(θ̂m − θ̂)2,

and θ̂ is the overall mean of all chains defined as θ̂ = 1
M

∑M
m θ̂m. Ideally, if the M chains

have converged to the target distribution, the value of R̂GR should approach 1 as the
number of iteration, R, increases. In practice, R̂GR ≤ 1.1 typically indicates that the
Markov chain has converged. Values greater than 1.1 may suggest non-convergence. This
is considered a more stringent criterion for R̂GR (Brooks & Gelman, 1998). In this thesis,
convergence will be assessed by examining parameter trace plots as well as by using the
Gelman-Rubin statistic.

Another point that needs to be considered in the MCMC algorithm is how effectively the
Markov chain explores the space of possible states. This refers to a term called mixing. In
MCMC, when the chain mixes well, it means that the exploration of the space of possible
parameter values can move quickly from one value to another. This ensures that the sam-
ples generated by the chain accurately represent the target distribution. In contrast, poor
mixing can lead to slow exploration of the space and sometimes result in getting trapped
in certain regions, providing inefficient sampling and potentially biased or inaccurate esti-
mates. In practice, trace plots for individual parameters are typically used to investigate
mixing.

As mentioned previously, mixing refers to the ability of the MCMC algorithm to transi-
tion effectively from one state to another within the state space. One factor that closely
influences the efficiency and effectiveness of the algorithm in exploring the target distribu-
tion is the acceptance rate. This rate is defined as the proportion of proposed moves that
are accepted during the simulation. A too high acceptance rate may force the algorithm
to accept too many moves within a limited region of the state space, potentially causing
inefficient exploration of other regions, while a too low acceptance rate can result in poor
mixing because proposed moves are frequently rejected.

In addition, samples generated from MCMC algorithms typically exhibit autocorrelation
because each sample depends on the previous one. This leads to increased uncertainty
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associated with the estimation of posterior quantities of interest (e.g. mean, variance, and
quantiles), resulting in wider confidence intervals, less precision, and inflated standard
errors (Link & Eaton, 2012). To address this issue, a set of samples is selected by taking
only every kth sample from the posterior distribution and discarding all others (Johansen,
2010; Link & Eaton, 2012), a process known as thinning. However, thinning may unneces-
sarily discard information when summarising the Markov chain (Link & Eaton, 2012). In
this thesis, thinning is not considered for this reason. To mitigate the impact of autocorre-
lation in MCMC algorithms, it is essential to ensure that the effective sample size (ESS) is
sufficiently large to obtain reliable information about the (target) posterior distributions.
The ESS is the approximate number of independent samples for any parameter of interest
from the MCMC chain (Gelman, 2014), and can be defined as

nESS =
n

1 + 2
∑K

k ρk
,

where n is the total number of MCMC samples, ρk is the autocorrelation at lag K, and
K is the lag at which the autocorrelation drops below the threshold.

The performance and efficiency of the algorithms depend on many aspects. The initial
values can significantly impact in this, in both the Gibbs sampler and the Metropolis-
Hastings algorithm, if they are not selected to be consistent with the true parameter values
(Turner et al., 2013; Van Ravenzwaaij et al., 2018). For instance, initial values that are
either too large or too small compared to the mode of the target distribution tend to result
in slower convergence. Therefore, the selection of initial values should be done carefully.
Another factor is the length of the “burn-in” period, an initial phase of sampling which is
discarded. This is because the burn-in period allows for consideration of only those chains
that yield sample values representative of the equilibrium distribution (Johansen, 2010).
Having too long a burn-in period may be costly in terms of computational resources, while
too short a period may retain non-equilibrium samples. Furthermore, (this factor relates
to the first in terms of) selecting poorly chosen initial values may require longer burn-
in periods. In practice, there is no specific rule to determine the length of the burn-in
period, but it is usually investigated using trace plots of the parameters. Nevertheless,
there are other factors impacting specific algorithms. For instance, in the Metropolis-
Hastings algorithm, an inappropriate proposal distribution can affect acceptance rates,
leading them to be too low, and result in inefficient exploration of the parameter space
(Johansen, 2010).
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3.5.4 Posterior summary statistics

In Bayesian statistics, the point estimate, θ̂, is commonly obtained from the mean or
median of the posterior distribution, known as the posterior mean and posterior median,
respectively. The credible interval represents the interval estimates of parameters of in-
terest in this context. In practice, this interval is commonly obtained by the α/2 and
1−α/2 quantiles of the posterior distribution of θ. Note that the credible interval can be
interpreted as indicating that there is a 100(1− α)% chance that this random parameter
θ belongs to an interval, which is determined based on the observed data.

3.5.5 Bayesian methods for quantile regression

It is crucial to emphasise that both the likelihood function and priors play a central role
in the Bayesian method. In the context of quantile regression, Yu and Moyeed (2001)
pioneered the use of the asymmetric Laplace distribution, as mentioned in Section 3.4.6,
to represent the likelihood function of data. Alternatively, due to computational aspects,
the scale mixture of normals of the AL distribution emerges as another viable option (Al-
hamzawi et al., 2012; Alhamzawi, 2013; Kozumi & Kobayashi, 2011; Tsionas, 2003). For
prior specifications, there is no specific standard prior for the quantile regression coef-
ficients. For example, an improper uniform distribution was utilised in the work of Yu
and Moyeed (2001), while symmetric prior distributions, such as a normal distribution,
usually appeared in Bayesian quantile regression model based on a location-scale mix-
ture representation of the asymmetric Laplace distribution (Alhamzawi, 2013; Kozumi &
Kobayashi, 2011). Therefore, this section reviews some principal methods that are relevant
to Bayesian quantile regression.

Extending the AL distribution to Bayesian linear quantile regression

Assume each Yi is independent and that errors ϵi follow the AL distribution with density
given in (3.28) when µ = 0, σ = 1, and

∫
fτ (ϵ)dϵ = τ, with fτ (·) denoting the error

density. This implies that each response variable, Yi, given xi and the parameters β =

(β0, β1, . . . , βp)
′, follows the AL distribution with µi = Qτ (Yi|xi) = x′

iβτ , and a fixed τ

(Yu & Moyeed, 2001):

Yi|xi,β ∼ AL(x′
iβτ , σ = 1, τ), i = 1, . . . , n. (3.32)

This leads to the formation of the linear quantile regression model as:

Yi = µi + ϵi = x′
iβτ + ϵi.
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Based on the model (3.32), we can form the likelihood of Y1, . . . , Yn as follows:

L(y|xi,β, τ) = τn(1− τ)nexp

{
−

n∑
i=1

ρτ (yi − x′
iβ)

}
.

Therefore, we can employ the above likelihood function to form the Bayesian framework:

p(β|y,X) ∝ p(y|X,β)p(β).

For easier understanding, we illustrate the simple linear median regression:

Yi = β0,τ + β1,τxi + ϵi,

where τ = 1/2. Hence, each response variable, Yi, given xi and the parameters β =

(β0, β1)
′, has the distribution as:

Yi|xi,β ∼ AL(x′
iβτ , σ = 1, τ = 0.5), i = 1, . . . , n.

In this case, the likelihood function used to represent the probability distribution of data
can be expressed as follows:

L(y|xi,β) =

(
1

4

)n{
−

n∑
i=1

ρ1/2 (yi − x′
iβ)

}

=

(
1

4

)n{
−

n∑
i=1

1

2

∣∣∣yi − x′
iβ
∣∣∣}.

In the next step, we need to determine the joint prior distribution of regression parameters,
p(β) = p(β0, β1). Yu and Moyeed (2001) pointed out that there is limited knowledge about
this prior information in the area of quantile regression. They suggested employing a
noninformative prior to handle this situation. Additionally, they proved that an improper
uniform prior distribution p(βτ ) ∝ 1, can yield the proper joint posterior distribution,
p(βτ |y,X) (for more details, see Yu and Moyeed (2001)). Owing to this, the joint posterior
distribution of the parameter of interest appears to be proportional to the likelihood
surface. Consequently, this leads to providing the posterior distribution with an unknown
form. Given this fact, the model parameters can be estimated via the Metropolis-Hastings
algorithm because the full conditional for each parameter does not correspond to any
known standard distribution (Benoit & Poel, 2017).
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Location-scale mixture of normals representation of the AL distribution

Tsionas (2003) demonstrated that the AL distribution can be formulated as a mixture of
normals representation. This discovery can lead to the use of the Gibbs sampling algorithm
for more effective estimation of the model parameters compared to the Bayesian quantile
regression proposed by Yu and Moyeed (2001). Furthermore, Kozumi and Kobayashi
(2011) applied this evidence to enhance the Gibbs sampling, which can yield more effi-
cient results than the previous method.

Following this representation, the quantile regression model (3.24) can be rewritten as:

Yi = x′
iβτ + θvi + ω

√
σviui︸ ︷︷ ︸

ϵi

,

where
θ =

1− 2τ

τ(1− τ)
, ω2 =

2

τ(1− τ)
,

and vi = σzi. Both zi ∼ Exp(1) and ui ∼ N(0, 1) are mutually independent random vari-
ables. This leads to each response variable, Yi, given zi, having the normal distribution
with mean x′

iβτ + θvi and variance ω2σvi.

Let y = (y1, . . . , yn)
′ and v = (v1, . . . , vn)

′. Hence, the Bayesian hierarchical quantile
model can be expressed as:

y|v,βτ ∼ N (x′
iβτ + θvi, ω

2σvi), i = 1, . . . , n

vi ∼ Exp(σ),

βτ ∼ N (βτ,0,Bτ,0),

σ ∼ InvGamma

(
n0

2
,
s0
2

)
,

where βτ,0 and Bτ,0 are the prior mean and covariance of βτ , respectively. Here, InvGamma(a, b)
denotes an inverse Gamma distribution with shape parameter a and scale parameter b.
Also, n0 and s0 are the prior shape and scale of σ.

To form the Gibbs sampler, βτ , v and σ, are sampled from their conditional distributions.
Then, the full conditional distribution of βτ is given by

βτ |y,v, σ ∼ N(β̃τ , B̃τ ),
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where

B̃−1
τ =

n∑
i=1

xix
′
i

ω2σvi
+B−1

τ,0 and β̃τ = B̃τ

{
n∑

i=1

xi(yi − θvi)

ω2σvi
+B−1

τ,0βτ,0

}
.

The full conditional distribution of each vi is then a generalised inverse Gaussian (GIG)
distribution,

vi|y,βτ , σ ∼ GIG

(
1

2
, δ1i, δ2i

)
,

where
δ21i =

(yi − x′
iβ)

2

ω2σ
and δ22i =

2

σ
+

θ2

ω2σ
.

The full conditional distribution of σ is an inverse Gamma distribution, given by

σ|y,βτ ,v ∼ InvGamma

(
ã

2
,
b̃

2

)
,

where

ã = n0 + 3n and b̃ = s0 + 2
n∑

i=1

vi +
n∑

i=1

(yi − x′
iβτ − θvi)

2

ω2vi
.

This approach can be implemented using the function bayesQR in the bayesQR package
(Benoit & Poel, 2017) in R. Note that this package follows the Gibbs sampling algorithm
as proposed by Kozumi and Kobayashi (2011).

However, a random variable based on the AL distribution can be conveniently expressed as
a scale mixture of normals in an alternative manner (Alhamzawi & Yu, 2013; Alhamzawi
et al., 2012). Assuming that the error term in the quantile regression model follows
ϵi ∼ AL(0, σ, τ) and letting ϵ = (ϵ1, . . . , ϵn)

′, the likelihood function can be denoted by

l(ϵ|σ) ∝ σ−n exp

{
−

n∑
i=1

|ϵi|+ (2τ − 1)ϵi
2σ

}
. (3.33)

Andrews and Mallows (1974) showed that for any a, b > 0,

exp{−|ab|} =

∫ ∞

0

a√
2πe

exp

{
− 1

2
(a2e+ b2e−1)

}
. (3.34)

Applying equation (3.34) to the right-hand side of the function (3.33) by assuming a =
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1/
√
2σ, b = ϵ/

√
2σ and multiplying by exp{−(2τ − 1)ϵ/2σ}, it results in

σ−n exp

{
−

n∑
i=1

|ϵi|+ (2τ − 1)ϵi
2σ

}

=
n∏

i=1

∫ ∞

0

1

σ
√
4πσvi

exp−

{
(ϵi − ξvi)

2

4σvi
− ζvi

}
dvi

(3.35)

where ξ = (1 − 2τ), ζ = τ(1 − τ)/σ and vi ∼ Exp(ζ). Further, let ϵi = yi − x′
iβτ , this

implies that

l(y|v,β, σ) ∝
n∏

i=1

∫ ∞

0

1

σ
√
4πσvi

exp−

{
(yi − x′

iβτ − ξvi)
2

4σvi
− ζvi

}
dvi.

Thus, this thesis applies the scale mixture of normals (3.35) in the context of quantile
regression model.

3.6 Review of QR models for longitudinal data

This section reviews some QR models applied to longitudinal data. These models serve
as an essential foundation for expansion to other QR variants, such as the flexible QR
models.

3.6.1 Quantile regression model with fixed-effects

The model proposed by Koenker (2004) is one of the best-known classical quantile re-
gression models for longitudinal data. Koenker added an individual-specific term to the
classical QR model, similar to the approach of mixed-effects models. The general form of
the τth conditional quantile model of the response Yij is

Qτ (yij|xij, ui) = x′
ijβτ + ui + ϵij, i = 1, . . . , N, j = 1, . . . , ni.

Here, ui are treated as the individual pure location shift effects on the conditional quantiles
of the response. Consequently, these effects differ from the random individual effects in
the standard mixed-effects model framework. The random error ϵij is assumed to follow
the τth conditional quantile equal to zero. The fixed-effect parameter β is permitted only
to describe the relationship between the explanatory variable xij and the τth quantiles.
Parameter estimates are obtained by solving

min
β,u

q∑
k=1

N∑
i=1

ni∑
j=1

ωkρτk(yij − ui − x′
ijβ), (3.36)
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where ρτk , k = 1, . . . , q, is the quantile loss function and ωk are the weights employed to
avoid the crossing quantile when estimating ui. Koenker (2004) noted that solving problem
(3.36) may be impossible when each data dimension (i.e. q, N and ni) is large.

3.6.2 Penalised quantile regression model with fixed effects

One possible way to address the limitation of (3.36) when dealing with a large sample size
is by incorporating a penalty term into the objective function to shrink ui, as expressed
in the equation:

min
β,u

q∑
k=1

n∑
i=1

ni∑
j=1

ωkρτk(yij − ui − x′
ijβ) + λ

n∑
i=1

|ui|.

In this case, λ is the penalisation parameter used to shrink the location shift parameters
ui to control the variability of the individual-specific effects. The optimal value of this
parameter can be chosen via an asymptotic approximation proposed by Lamarche (2010).

The selection of the penalisation parameter, which may impact the estimates, is the pri-
mary drawback of this method (Geraci & Bottai, 2007; Marino & Farcomeni, 2015). A
poor choice in this parameter introduces bias into the estimates. Another issue is that
the number of parameters in the model depends on the number of subjects N , meaning
that as the sample size increases, more parameters will need to be estimated (Geraci &
Bottai, 2007). Moreover, some studies found that when the number of repeated measure-
ments (ni) is small, the estimates may exhibit large biases (Kato et al., 2012; Marino &
Farcomeni, 2015). In terms of applications, this method is extensively used in economics,
but is relatively rare in models for longitudinal child growth data.

3.6.3 Linear quantile mixed-effects models

Geraci and Bottai (2007) formulated the quantile regression model with random inter-
cept effects using the likelihood-based method described in Section 3.4.6. These effects
are analogous to the random effects used in mixed-effects models, inducing dependence
between observations taken from the same subject on different occasions. Following the
likelihood-based method, the authors introduced the AL distribution as a corresponding
distribution for random errors, ϵ, in order to estimate the conditional quantile functions.
Geraci and Bottai (2014) also extended this model to include more general random effects,
such as random slopes.
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The linear mixed quantile models of the response Yij can be defined as

Qτ (yij|xij,ui) = x′
ijβτ + z′ijui + ϵij, (3.37)

where Qτ (·) is the quantile function of the response yij conditional on the random effects ui

and covariates xij. Note that if zij = (1, . . . , 1), the model (3.37) simplifies to the random
intercepts QR model. Assuming that each yij given ui and xij, follows the AL distribution
with location, scale and skewness parameters, which defined by µij = x′

ijβτ + z′ijui, σ and
τ , respectively:

f(yij;β,ui, σ, τ) =
τ(1− τ)

σ
exp

{
− ρτ

(
yij − µij

σ

)}
,

where τ ∈ (0, 1) is a fixed and known parameter.

To form the likelihood function, each random term must follow three specific assumptions:

• ui is a random vector independent of the random errors term and distributed to
follow fu(ui;Φ) where Φ is a q × q variance-covariance matrix and must be a real
symmetric positive-definite matrix. Note that u depends on τ through Φ. In the
original work, Geraci and Bottai (2014) made two choices of assumptions about
random effects, i.e. a normal distribution and a symmetric Laplace distribution.

• ϵij ∼ AL(0, σ, τ), and

• ui and ϵij are independent of one another.

The marginal likelihood function can be defined as

L(β, σ, τ,Φ) =
N∏
i=1

∫ ni∏
j=1

f(yij;β,ui, σ, τ)fu(ui;Φ)dui. (3.38)

It is clear that the concept of this approach is similar to the mixed-effects models for
the mean. The main difference is that the random error term is assumed to be the AL
distribution to allow for estimating the quantile coefficients. One main difficulty with
this approach is that the marginal likelihood function (3.38) has an integral term that
does not have a closed-form solution. Thus, it would need to apply some methods to
approximate that term, e.g. Gaussian quadrature methods (see more details in Geraci
and Bottai (2014)).
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3.7 Splines

This section introduces the spline methods used to represent non-linear dependence in
the context of regression. The first two subsections introduce the fundamental concept of
splines by describing the simplest splines. The last subsection outlines some of the most
popular spline methods, which are generally chosen due to their simplicity and attractive
numerical properties.

3.7.1 Polynomial splines

Consider a quadratic regression model (a polynomial of degree 2),

yi = g(xi) + ϵi = β0 + β1xi + β2x
2
i + ϵi.

A polynomial curve can be fitted by the regression function of the form:

g(xi) = β0B0(xi) + β1B1(xi) + β2B2(xi),

where B0(x) = 1, B1(x) = x and B2(x) = x2 are called basis functions, and β0, β1 and β2
are basis coefficients. More generally, for a polynomial of degree d, the regression function
can be written as a linear combination of p basis functions,

g(xi) =

p∑
j=0

Bj(xi)βj.

It can also be represented in matrix form as

g(x) = Bβ,

where

B =


B0(x1) B1(x1) · · · Bd(x1)

B0(x2) B2(x2) · · · Bd(x2)
...

... . . . ...
B0(xn) B3(xn) · · · Bd(xn)

 =


1 x1 · · · xd1

1 x2 · · · xd2
...

... . . . ...
1 xn · · · xdn


The example above is the fitted global function, meaning that the fitted function is esti-
mated to follow the form of a particular polynomial function throughout the range of x.
Typically, those forms may be too restrictive to capture non-trivial curvature at some local
points (see Figure 3.8). As a result, the fitted curve may not reflect the underlying shape
of the data. In pursuit of a better alternative, it is critical to consider partitioning the
range of x into smaller intervals. Following that, the regression function of each interval is
locally fitted. Then, each function is connected, resulting in a smooth curve. This is one



CHAPTER 3. STATISTICAL BACKGROUND 82

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Quadratic polynomial

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Cubic polynomial

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bi−quadratic polynomial

0.0 0.2 0.4 0.6 0.8 1.0
−

0
.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Quintic polynomial

Figure 3.8: Fitting a simulated non-linear data relationship by varying the degree of
polynomial

kind of “local” regression. There are several methods available for achieving this, with the
projection of the data onto a much smaller set of locally defined basis functions being one
of the most prominent.

3.7.2 Truncated power series

A popular set of locally defined basis functions is known as truncated power basis functions
(Ruppert et al., 2003),

g(x) = γ0 + γ1x+ . . .+ γdx
d +

K∑
k=1

βdk(x− κk)
d
+,

where d ≥ 1 is the degree of the polynomial, κ1, . . . , κK represent the position of points,
commonly referred to as the knots,

(u)+ =

u, ifu > 0

0, otherwise
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Figure 3.9: Truncated power basis functions of degree 1 (linear), 2 (quadratic) and 3
(cubic) with ten equidistant knots (K=10), respectively.

This basis system includes the basis functions 1, x, . . . , xd, (x− κ1)
d
+, . . . , (x− κK)

d
+.

These basis functions offer advantages in terms of their simplicity in construction and
interpretation, especially when the truncated line basis is d=1 (Wand, 2003). However,
they do not form an orthogonal basis, leading to numerical instability when a large number
of knots is defined (Hastie & Tibshirani, 1999). Figure 3.9 shows the truncated power basis
functions with different degrees of the polynomial.

3.7.3 Restricted cubic splines

Restricted cubic splines, also referred to as natural cubic splines, consist of cubic poly-
nomials constrained by continuity and slope conditions at each knot. Additionally, there
is an extra requirement for linearity at the curve’s endpoints (also known as boundary
knots), typically preceding the first knot and succeeding the final one (Harrell, 2015; Per-
peroglou et al., 2019). These boundary conditions typically require the second derivative
(curvature) to be zero at the endpoints of the spline, which effectively prevents the curve
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from exhibiting excessive oscillations beyond the range of the data (Hastie & Tibshirani,
1999; Hastie et al., 2009). The restricted cubic splines with K knots κ1 < κ2 < . . . < κK

and boundary knots (x < κ1) and (x > κK), can be expressed as:

g(x) = γ0 + γ1x+
K−2∑
k=1

βk(x− κk)
3
∗,

where

(x− κk)
3
∗ =(x− κk)

3
+ − (x− κK−1)

3
+

κK − κk
κK − κK−1

+ (x− κK)
3
+

κK−1 − κk
κK − κK−1

, k = 1, 2, . . . , K − 2.
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Figure 3.10: Restricted cubic spline basis functions with four knots specified, utilising
boundary knots (0,1).

Figure 3.10 illustrates the restricted cubic splines with different knots specified when
boundary knots (0,1) were applied.
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3.7.4 B-splines

Another popular choice is B-splines (de Boor, 1972). These have the appealing property
that any given basis function is only nonzero over a span of a small number of adjacent
knots, thus resulting in a sparse design matrix, which is convenient for estimating the
regression coefficients. As a result, such splines tend to avoid computational issues. The
general form of the unknown function that consists of a set of B-splines basis functions is
given as

g(x) =

p∑
j=0

γjBj,d(x),

where Bj,d(x) represents the jth basis function with a piecewise polynomial of degree d,
and γj are the corresponding coefficients. Let κ = (κ0, κ1, . . . , κp+d+1) be the knots vector
where κ0 ≤ κ1 ≤ · · · ≤ κp+d+1 and p is the number of basis functions. Note that the knot
vector in this context includes both internal and external knots. It consists of two knots,
typically referred to as boundary knots, usually (but not always) placed at the minimum
and maximum of x, which serve to anchor the B-spline basis. For each individual B-spline
basis function, Bj,d(x), it can be defined recursively, for d = 0 as:

Bj,0(x) =

1 κj ≤ x < κj+1

0 otherwise

and for d > 0,

Bj,d(x) =
x− κj

κj+d − κj
Bj,d−1(x) +

κj+d+1 − x

κj+d+1 − κj+1

Bj+1,d−1(x).

Figures 3.11 and 3.12 show two different B-spline basis functions with knots placed uni-
formly and non-uniformly, respectively, and with different degrees of the polynomial.
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Figure 3.11: Uniform B-spline basis functions of degree 1 (linear), 2 (quadratic) and 3
(cubic) with thirteen knots (eleven internal knots and two external knots) , respectively.
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Figure 3.12: Non-uniform B-spline basis functions of degree 1 (linear), 2 (quadratic) and
3 (cubic) with thirteen knots (eleven internal knots and two external knots), respectively.
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3.7.5 Choice of number and placement of knots

Knots play a major role in determining the flexibility of curves in splines, particularly
in the last three types mentioned above. This is because knots determine the points at
which the piecewise polynomial segments of the spline are connected (Perperoglou et al.,
2019). Two features of knots can impact this aspect: the number and placement of knots.
Both features are fixed and cannot be changed during the model fit. Generally, setting K
knots results in fitting K + 1 polynomial models with a specified degree d (dependent on
the spline type), which is associated with the number of parameters used in estimation,
referred to as degrees of freedom (df). If the number of knots increases, the degree of
freedom also increases accordingly, and vice versa. Therefore, differences in the number
of knots can lead to different models. Typically, setting too large a number of knots may
result in overfitting, while too few knots may not provide enough flexibility to capture the
underlying structure of the data. Choosing the number of knots K involves considering
two aspects: it should be large enough to provide sufficient degrees of freedom to represent
the underlying data and small enough to maintain reasonable computational efficiency. In
practice, this is usually done by increasing K until no considerable changes are observed
in the plot. There are some recommended strategies for choosing the number of knots K.
For instance, if the response variable is a continuous uncensored variable and the sample
size is large enough (e.g. n ≥ 100), K = 5 is a reasonable initial choice. Conversely, K = 3

is recommended for small sample sizes (e.g. n < 30) (Harrell, 2015, Chapter 2, p. 26).

Determining the placement or location of knots becomes straightforward when the re-
lationship between the response (y) and predictor (x) is explicitly known (Harrell, 2015;
Jamrozik et al., 2010). For instance, if there are critical points in the data where the curva-
ture or relationship pattern changes, knots should be positioned at those points. However,
in real-world problems, the underlying relationship between variables is often unknown or
challenging to specify. Therefore, two popular strategies are often used: equidistant knots
and quantile knots (Harrell, 2015, Chapter 2, p. 26). The former is the simplest strategy,
which uses a set of equally spaced knots. However, this strategy may not effectively cap-
ture the underlying structure or variations in the data if the knots do not align well with
regions of high data density or where the relationship between the predictor and response
variables changes rapidly. The second strategy, quantile knots, offers a solution to this
problem. This strategy places the knots according to the quantiles of the predictor x.
This ensures the spline more flexible in regions with more data and less flexible in areas
with less data.
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3.8 Regression splines

Regression splines are another non-linear regression technique, widely used to estimate a
smooth conditional function. The idea underlying this method is that a suitable set of
p basis functions from Section 3.6 can be utilised to fit the effect of a smooth function,
g(xi), of a covariate xi, where i = 1, . . . , n, on a response yi (Hastie & Tibshirani, 1999;
Wood, 2017a). Thus, the model can be expressed as

yi = g(xi) + ϵi,

where

g(xi) =

p∑
j=0

γjBj(x) = Bγ.

and ϵ ∼ N(0, σ2).

Given the p basis functions, γ = (γ0, . . . , γp) can be estimated using least squares estima-
tion by minimising the least-squares criterion:

n∑
i=1

(yi − g(xi))
2 = ||y −Bγ||2, (3.39)

with respect to γ. This calculation yields the basis coefficient estimators, γ̂ = (B′B)−1B′y.
Also, values of y can be fitted by

ŷ = Bβ̂ = B(B′B)−1B′y = Sy, (3.40)

where S is a smoothing matrix, widely known as the hat matrix.

The smoothness of the fitted function g depends on the number of bases, p. Increasing
this number results in the increased “wiggliness” of g. Additionally, the number of knots
(k) affects the number of bases, with the value of p increasing as k increases. In prac-
tice, the choice of both numbers is manually and subjectively determined, depending on
the specific application. These conditions may render this approach less elegant (Wood,
2017a). However, some systematic methods for selecting these numbers are available in
the literature, e.g. stepwise-based methods (Stone et al., 1997) and an artificial immune
system (Ülker & Arslan, 2009).
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3.9 Penalised regression splines

Penalised regression splines offer an alternative approach to avoid specifying the number
of bases or locations and the number of knots. These approaches continue to define the
function g by selecting the basis functions as outlined in Section 3.6. Rather that employ-
ing these conditions to modulate the smoothness of the fitted function, a penalty term is
incorporated into the least-squares objective function.

Recall the least-squares objective function (3.39). This penalty term can be integrated
into the function as follows:

n∑
i=1

(yi − g(xi))
2 + λ

xmax∫
xmin

(g(m)(x))2dx = ||y −Bγ||2 + λγ ′Dγ, (3.41)

where an integral term represents the integrated square of the mth derivative, D is a sym-
metric p× p penalty matrix with an entry Djk =

∫
B

(m)
j (x)B

(m)
k (x)dx, and λ is a penalty

or smoothing parameter. This new objective function (3.41) is referred to as the penalised
least-squares objective function (Green & Silverman, 1994). The term

∫
(g(m)(x))2dx in

(3.41) is known as a roughness penalty, which is utilised to measure the roughness of the
function g, where the mth derivative usually serves as a control parameter for the rough-
ness of function. When m is low (e.g. m = 1), the first derivative captures changes in the
slope of the function, which can indicate the overall trend or smoothness of the function.
As m increases, higher-order derivatives capture finer details of the function’s behaviour,
including sharp changes or fluctuations. In penalised regression splines, the second deriva-
tive (m = 2) is a common choice, resulting in the integral term being the integral of the
square of the second derivative of the spline function g. This choice is made to control the
curvature by measuring the rate of change of the first derivative, which corresponds to the
curvature of the function. Penalising such a derivative controls changes in curvature, en-
suring that the fitted spline function does not exhibit abrupt changes or oscillations. While
higher derivatives (e.g. m = 3) can be used, they may introduce additional complexity and
computational overhead without necessarily providing considerable improvement in model
performance. Therefore, m = 2 is applied throughout this thesis due to this consideration.
Minimising (3.41) with respect to γ, given λ, yields the penalised least-squares estimator
of γ:

γ̂ = (B′B+ λD)−1B′y.

The fitted values for y are then expressed by

ŷ = Bγ̂ = B(B′B+ λD)−1B′y = Sy,
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where S denotes a smoothing matrix or hat matrix.

In this model, the parameter λ assumes a significant role as it controls the smoothness
of the fitted function. An increase in λ (λ → +∞) results in a smoother curve, whereas
a decrease in λ (λ → 0) may yield the opposite result. Figure 3.13 illustrates this phe-
nomenon. If λ = 0, the least-squares criterion (3.41) equates to (3.39), returning the fitted
values identical to (3.40).

Choice of smoothing parameter (λ)

The smoothing parameter, λ, can be chosen by the user to control the smoothness of
the target function. Visual selection, such as that presented in Figure 3.13, is a simple
way to handle this, especially in the case of simple univariate regression settings. In this
example of visual selection, it seems that λ = 10−4, represented by green line, may provide
a suitable representation of the underlying signal in the data compared to the other two
values of λ.
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Figure 3.13: Three different smoothing parameter values applied to the data example.
Red curve corresponds to λ = 10−8, green curve to λ = 10−4 and the blue curve to λ = 10.

However, such visualisation may not be adequate for selecting an optimal value of smooth-
ing parameters in the context of complex models, such as those composed of smooth
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functions of multiple variables. The limitations arise in many aspects such as dimension-
ality and interactions. When the number of predictors increases, it can be challenging
to visualise high-dimensional data accurately and effectively. Moreover, interactions be-
tween predictors may impact the relationship between those predictors and the target
variable. Visual inspection may not capture these interactions comprehensively, leading
to suboptimal selection of the smoothing parameter. Instead, a combination of visual ex-
ploration, statistical diagnostics, and objective evaluation criteria should be employed to
ensure robust model selection and interpretation. There is intensive research in both sta-
tistical diagnostics and objective evaluation criteria in the context of selecting the optimal
smoothing parameter, known as cross-validation and information criterion, respectively.

Cross-validation (CV) involves resampling and sample splitting techniques that consider
separating data into two sets, usually by proportion, where one is used for testing and the
other for training a model in different iterations. The goal of CV is to assess the perfor-
mance and generalisation ability of a predictive model by ensuring that it performs well on
new, unseen data. This is achieved by evaluating its predictive accuracy across different
subsets of the dataset. Another method that utilises a different concept to emphasise the
trade-off between goodness-of-fit and complexity is the information criterion (IC). Here,
three methods are chosen to describe both CV and IC. The first is one of the classical
forms of CV, leave-one-out cross-validation (LOOCV). The second is a specific method
associated with IC, while the last goes into more detail on IC with three famous criteria
such as the Akaike Information Criterion (AIC), the generalised AIC, and the Bayesian
Information Criterion (BIC).

(1) Leave-One-Out Cross-Validation (LOOCV): The concept of this method lies
in evaluating the smoothing parameter, λ, by minimising the function

LOOCV(λ) =
1

N

n∑
i=1

(yi − ĝ(−i)(xi;λ))
2, i = 1, . . . , N (3.42)

where ĝ(−i)(xi;λ) is the predicted value of the omitted observation (−i) (Green & Silver-
man, 1994, p.30). The procedure can be expressed as follows:

1. Let yi be data observations with a sample size N .

2. Fit the model g(−i)(x;λ) using the remaining N − 1 observations to minimise the
objective function (3.42).

3. Use the fitted model from Step 2 to predict ĝ(−i)(xi;λ).

4. Calculate the differences between the observed yi and its predicted values ĝ(−i)(xi;λ).
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5. Repeat Step 2 - 4 for each observation or N times.

6. Calculate the average sum of squares of the differences for each feasible value of λ .

7. Choose the λ which provides a minimised value of LOOCV to fit the model.

(2) Generalised cross-validation: The LOOCV method often faces the computational
problem of having to fit the model N times. To overcome this problem, Craven and Wahba
(1978) proposed a new cross-validation method called generalised cross-validation (GCV).
The following is the procedure for this method:

1. Let yi be data points with a sample size N .

2. Fit the model to minimise the objective function (3.42) with N sample for a range
of values of the smoothing parameters, λ.

3. Calculate the GCV value for each λ as follows,

GCV(λ) =
n× RSS

(n− tr(S))2
,

where RSS =
∑N

i=1 (yi − ĝ(xi;λ))
2, is the residual sum of squares, ĝ is the fitted

values, and tr(S) is the trace of a smoothing matrix S.

4. Choose λ which provides a minimised value of GCV to fit the model.

(3) Information criterion (IC): The IC serves as another tool for selecting the
smoothing parameter, λ. This criterion balances the fit of the model to the data against
the complexity of the model, aiming to prevent overfitting. The most commonly used
information criterion is the Akaike Information Criterion (AIC) (Akaike, 1973): AIC =

2p− 2log(L), where p presents the number of parameters in the model, and L is the like-
lihood of the model. However, AIC is sensitive to the small sample sizes, leading to a
tendency to overfit due to bias (Hurvich & Tsai, 1989). Therefore, an extension of AIC
known as the generalised AIC (GAIC or AICc) was proposed to deal with this issue (Hur-
vich et al., 1998): GAIC = AIC+ 2p(p+ 1)/(N − p− 1), where N is the sample size. An
additional term of 2p(p+ 1)/(N − p− 1) is included to adjust for the sample size relative
to the number of parameters. Another widely used criterion is the Bayesian Information
Criterion (BIC) (Schwarz, 1978): BIC = log(N)p− 2log(L). The main difference between
AIC and BIC lies in the penalty imposed for complexity: a term of 2p for AIC, compared
to log(N)p for BIC, with BIC generally imposing a heavier penalty. Consequently, BIC is
often considered more parsimonious than AIC (Burnham & Anderson, 2004). The follow-
ing is a generalised step-by-step procedure to use information criterion for selecting the
smoothing parameter in models:
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1. Let the data have a sample size N .

2. Fit the model to the data for a range of candidate smoothing parameters, λ.

3. Calculate the IC value for each λ.

4. Choose λ which provides a minimised value of IC to fit the model.

3.10 Effective degrees of freedom

In a general linear model, ŷ = Hy, where H represents the idempotent projection matrix
or hat matrix. This hat matrix is calculated as H = X(X′X)−1X′, where X is the design
matrix containing the predictors. The trace of the hat matrix, tr(H), equals the number
of fitted parameters or coefficients (denoted as p) in the model. This number is commonly
known as the effective degrees of freedom (edf ) and is usually expressed as

dfmodel = tr(H) = p.

Essentially, it is used to measure the complexity of the model. A higher edf indicates a
more complex model with more flexibility to fit the data, while a lower edf indicates a
simpler model with fewer parameters.

In analogy to this idea in linear regression, the hat matrix in the context of regression
splines can be defined as S = B(B′B)−1B′. It appears to have the same form as the
hat matrix H in the general linear model as mentioned earlier. In this case, tr(S) would
represent the number of basis functions used in the spline model (Hastie et al., 2009).
Therefore, in practice, the edf can be used to guide the selection of smoother in addition
to or instead of specifying knots directly (Perperoglou et al., 2019). As the number of
knots increases, the edf also tends to increase because the spline has more flexibility to fit
the data. Conversely, reducing the number of knots decreases the flexibility of the spline
and thus decreases its edf.

However, in penalised regression splines, the smoother matrix is a common term used
instead of the hat matrix. It is defined as Sλ = B(B′B + λD)−1B′ and may not directly
correspond to the number of basis functions due to the presence of penalty terms. In this
case, the edf of the model, denoted as

dfmodel = tr(Sλ) = tr[B(B′B+ λD)−1B′] = tr[B′B(B′B+ λD)−1],

still represent a measure of the model complexity after penalisation. It considers the trade-
off between goodness of fit and model simplicity imposed by the penalty parameter λ and
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penalty structure D (Hastie et al., 2009).

3.11 P-splines

Eilers and Marx (1996) proposed another variant type of penalised regression splines,
known as P-splines. The distinction between this method and the prior one lies in the
specification of basis functions and a penalty term. P-splines form their basis functions
from uniform B-splines on equidistant knots and penalise the sum-of-squared order-m
difference of neighbourhoods of B-spline basis coefficients. The simplest form of the penalty
is the sum-of-squared first-order (m = 1) differences,

γ ′D(1)γ =

p−1∑
j=1

(γj+1 − γj)
2,

where D(1) is a first-ordered difference matrix, which is defined as

D(1) =



−1 1 0 0 · · · 0

0 −1 1 0 · · · 0

0 0 −1 1 · · · 0
...

...
... . . . . . . ...

0 0 0 0 −1 1


.

However, any order difference can be used. For example, the squared second-order (m = 2)
difference is given by

γ ′D(2)γ =

p−2∑
j=1

(γj+2 − 2γj+1 + γj)
2,

where

D(2) =



1 −2 1 0 0 0 · · · 0

0 1 −2 1 0 0 · · · 0

0 0 0 1 −2 1 · · · 0
...

...
...

... . . . . . . . . . ...
0 0 0 0 0 1 −2 1


,

where D(2) is a second-order difference matrix. Similarly to the penalised regression splines
in the previous section, the roughness of the fitted function can be controlled by multiplying
it by a scalar quantity λ. Therefore, the penalised least squares objective function for P-
splines is

||y −Bγ||2 + λγ ′D(m)′D(m)γ. (3.43)

Minimising the objective function (3.43) with respect to γ for a fixed value of λ yields the
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Figure 3.14: P-splines when varying the smoothing parameter, λ. Note that when λ is 0,
the fitted curves is unpenalised which is equivalent to the regression splines.

estimate of γ,
γ̂ = (B′B+ λD(m)′D(m))−1B′y.

The behaviour of the fitted function continues to rely on the smoothing parameter, λ (see
Figure 3.14). Selection methods such as CV, GCV or IC can be employed to determine
this parameter.

3.12 P-splines as mixed-effects models

In theory, any spline model can be rewritten as a mixed-effects model, and then the model
can be fitted using the methodology developed in that context. P-splines are also capable
of being transformed in this way (Currie & Durban, 2002; Eilers, 1999).

Let B be a set of B-spline basis functions, and γ be the corresponding coefficients. Thus,
the model of response y based on B-splines can be expressed as:

y = Bγ + ϵ, (3.44)
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where
ϵ ∼ N (0, σ2

ϵ I).

Generally, the corresponding coefficients of B-spline basis functions can be estimated by
minimising the penalised least squares objective function (3.43), as stated in Section 3.8.
Alternatively, the model (3.44) can be rewritten, aligning the spline model with a mixed-
effects model.

Let
I−D′(DD′)−1D = LL′,

where D = D(m) and the p × m matrix L has full column rank. According to this
specification, the model (3.44) can be reformulated as mixed-effects models,

y = BLL′γ +BD′(DD′)−1Dγ + ϵ,

= Xβ + Zu+ ϵ,

where X = BLA = [1,x, . . . ,xd−1],β = A−1L′γ,Z = BD′(DD′)−1,u = Dγ, and A is
an existing full rank m × m matrix. Assuming that u ∼ N (0,G) where G = σ2

γI, the
penalty term in the penalised least squares function for P-splines is equal to ϕ−1u′u. Thus,
λ = ϕ−1 = σ2

ϵ/σ
2
γ. As a result, systematic techniques (e.g. CV, GCV, IC, etc.) are not

required to select the smoothing parameter. In this case, all parameters in the model can
be estimated using maximum likelihood estimation, such as restricted maximum likelihood
estimation,

lR(V) = −1

2

{
log|V|+ log|X′V−1X|+ y′V−1(I−X(X′V−1X)−1X′V−1)y

}
,

where V = ZGZ′ + σ2
ϵ I. The maximisation of log-likelihood function yields,

β̂ = (X′V−1X)−1X′V−1y

and
û = ΣZ′V−1(y −Xβ̂).

3.13 Chapter summary

In this chapter, the statistical background and its associated methodologies are presented.
The initial section elucidates why mixed-effects models have become a pivotal and in-
creasingly popular approach for analysing longitudinal child growth data. The inclusion
of random effects in the regression model stands as a principal methodology, offering
the advantage of accounting for data dependency as well as between-individual variation.
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In response to this advantage, a variety of mixed-effects models have been proposed to
address additional complexities, such as modelling non-linear relationships, while main-
taining adherence to the core principles of mixed-effects modelling. The second section
outlines flexible mixed-effects models that extend beyond the previously mentioned ran-
dom effects; these models also incorporate bases constructed from spline techniques as
random effects to form smooth functions. These approaches enhance flexibility and fa-
cilitate implementation in standard mixed-models software, such as R. Consequently, one
such approach, outlined in Chapter 4, has been applied using this methodology.

In the third section, another common approach used to model longitudinal child growth
data for monitoring child growth, known as correlation models, is reviewed. This type of
model is particularly helpful in informing a health professional’s judgment about a child’s
growth based on predicting current growth using previous growth outcomes. To obtain
this prediction, the correlation between growth outcomes at different time points is key, as
it reflects the influences between those growth outcomes. However, these models may not
be suitable for characterising all aspects of longitudinal child growth data, as they only
condition on previous outcomes, lack consideration of other covariates, and fail to account
for variability among children. Therefore, this kind of model is not considered in this thesis.

In the fourth section, a concise summary of quantile regression (QR) is presented. This
method offers a significant advantage by providing a comprehensive description of the
response variable conditional upon the covariates. Included in the section is a definition
of QR, an explanation of quantiles for a random variable, a discussion on the concept of
linear QR model, a brief review of the properties of the quantile function, and an overview
of two types of QR: the distribution-free method and the likelihood-based method). The
latter will be the core method employed in Chapter 4 and 5 of this thesis. Following this,
the next section provides a brief summary of the Bayesian approach in QR. Two existing
Bayesian linear QR model are discussed: one based on the asymmetric Laplace (AL) dis-
tribution and the other on the location-scale mixture of normals representation of the AL
distribution. This thesis, especially in Chapter 5, will focus on the latter approach, which
offers a more convenient methodology for the MCMC method, such as Gibbs sampling.

Subsequently, the existence of linear QR models within the context of longitudinal data is
explored. This forms a foundational concept in the analysis of longitudinal child growth
data, and is instrumental in extending some ideas towards more flexible QR approaches.
The review initiates a discussion on two distinct linear QR models. The first is the
classical QR model, which accounts for individual pure location shift effects, severing
a role similar to individual random effects. The second model is an expanded version
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of the first, designed to facilitate the analysis of large datasets. Additionally, the last
model discussed is the linear quantile mixed-effects models, which are based on the AL
distribution. The last six sections present methodologies related to splines, which are
frequently utilised to construct smooth functions that capture the non-linear relationships
between responses and covariates. Some of these methodologies will be employed to model
non-linear growth trajectories in Chapters 4 to 6.



Chapter 4

Flexible quantile regression models for
longitudinal child growth data

4.1 Introduction

Longitudinal child growth data (LCGD) encompass data types that holistically reflect
child growth developments since growth measurements are collected repeatedly from the
same children over time (Cole, 1994). As a result, these data can account for dynamic
effects. Such data can exhibit various characteristics, including diverse non-linear growth
patterns and correlations in repeated (or clustered) data. Therefore, LCGD require appro-
priate statistical approaches to address these intricacies. Certainly, modelling LCGD via
correlation models, as mentioned in Section 3.3, has been previously utilised for this pur-
pose. Although correlation models are suitable for analysing the growth patterns and re-
lationships within LCGD over time and estimate a child’s growth to monitor or track their
health, these models lack the ability to evaluate potential risk factors that can impact child
growth, such as parental factors, nutritional deficiencies, health conditions, environmental
factors, and social and economic factors. While many other statistical methods have been
proposed for this purpose, most rely on conditional mean models, such as the generalised
estimating equation (Hardin & Hilbe, 2013; M. Wang, 2014), the random-effects model
or linear mixed model (Fitzmaurice et al., 2011; Laird & Ware, 1982), non-linear mixed
models (Beath, 2007), piecewise models (Grajeda et al., 2016), semi-parametric models
(Durbán et al., 2005), and additive mixed models (Wood, 2017a)). However, these models
may fall short in providing a comprehensive view of the distribution of growth measure-
ments. They may be unsuitable for analysing child growth data when the objective is to
interpret changes in growth measurements by associating risk factors at specific locations
(e.g. lower or upper) within the distribution of growth measurement. This type of inter-
pretation is termed the “quantile treatment effect” (Koenker, 2005).

100
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In this chapter, I review two flexible quantile regression (QR) approaches aimed at achiev-
ing the aforementioned goal. The first approach is the classical marginal quantile regression
model proposed by Wei et al. (2006). In this approach, the authors utilised B-splines, to
enhance the flexibility of QR, enabling it to describe non-linear growth patterns. They
also incorporated the AR(1) model to characterise growth history. Furthermore, the incor-
poration of an AR(1) structure within the model addresses the within-subject variability.
The primary aim of this model is to estimate a set of quantile curves, which can subse-
quently represent reference growth curves.

The second approach is the additive quantile mixed model (AQMM) introduced by Geraci
(2019). AQMM emphasises the advantage of additive modelling in dealing with a variety
of relationship patterns between response and covariates. It also provides the capability to
distinguish between-subject and within-subject variations using the mixed model frame-
work. This model considers the correlation between growth observations from the same
child by integrating random effects (unobserved variables) into the additive quantile model,
which already encompasses fixed effects (observed variables). Random effects possess two
main abilities to address this aspect. Firstly, they can accommodate subject-specific vari-
ability, which is common in LCGD, for instance, the repeated growth measurements taken
from the same children over time. These repeated measurements are likely to be more
similar to each other than to measurements taken from different children. Random effects
account for this by capturing the subject-specific patterns over time, such as a random in-
tercepts and slopes, allowing each subject to have its own intercept and slope. Secondly, by
including random effects, the model can explicitly address the within-subject correlation.
Specifically, in LCGD, growth measurements taken closer in time might exhibit higher
correlated compared to those taken further apart, akin to a first-order autocorrelation or
AR(1). In this regard, random effects introduce dependencies among repeated measures
within the same child, allowing the residuals (errors) from the same child to be treated as
correlated rather than independent. This accounts for the fact that measurements taken
closer together in time are more similar (more correlated) than those taken further apart,
implicitly capturing the essence of the AR(1) structure. To clarify, consider a simple linear
mixed model with random intercepts (u0i) and slopes (u1i):

yij = β0 + β1xij + u0i + u1ixij + ϵij,

where u0i ∼ N(0, σ2
u0), u1i ∼ N(0, σ2

u1) and ϵij ∼ N(0, σ2
ϵ ). Note that in this case, u0i and

u1i are not correlated. This results in the covariance between two observations within the
same subject i at times t and t′ as:

Cov(yit, yit′) = σ2
u0 + σ2

u1xitxit′ .
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The above covariance allows for a more complex correlation structure that can vary with
time, resembling the AR(1) structure to some extent. The correlation structure is not
limited solely to AR(1) but can take different forms, e.g. compound symmetry (CS),
Toeplitz (TOEP), and unstructured forms (UN), making this type of model more flexible
than others such as correlation models. Furthermore, AQMM provides insights into both
population-level and subject-level effects, courtesy of the mixed model framework. As a
result, AQMM appears to be a promising tool for analysing or modelling LCGD. However,
to our updated knowledge, it is worth noting that AQMM has not yet been applied to this
type of data.

This chapter comprises five sections, including the introduction. Sections 4.2 and 4.3
introduce two existing flexible QR models for LCGD. In Section 4.4, several simulation
studies are presented: the first examines the performance of these models under typical
LCGD characteristics, and the second looks at data that includes additional independent
variables potentially influencing growth response. Another study explores the performance
of the AQMM model in scenarios with between-individual differences. The fourth focuses
on data highlighting between-individual differences in intra-individual variation. The final
simulation study delves into a distinct LCGD feature: between-individual differences in
autocorrelation. Section 4.5 concludes with a chapter summary.

4.2 Quantile autoregressive model

This section presents an expanded version of the classical quantile autoregression model for
longitudinal child growth data as proposed by Wei et al. (2006), who termed this approach
the “quantile specific autoregressive model”. Henceforth, this model will be abbreviated as
QSAM. QSAM relies on a combination of classical quantile regression, regression splines,
and the first-order autoregressive model, AR(1). This model facilitates the use of various
splines (e.g. B-splines, truncated polynomial splines) to capture the non-linear relation-
ship between growth measurement and age at specific quantiles. In their original work,
Wei et al. (2006) advocated for the use of B-splines due to their numerous benefits in the
context of child growth modelling. These include high flexibility for modelling nonlinear
growth trajectories, such as they can be easily adjusted to fit a diverse range of shapes
and patterns. Local adjustments to the model can be performed, influencing only the per-
tinent section of the curve without altering the entire growth profile. Moreover, B-splines
are numerically stable, ensuring that minor changes in the data do not result in large
alterations to the growth curve. The autoregressive component of QSAM addresses the
challenge of unequally spaced measurements in longitudinal child growth data. As previ-
ously noted, QSAM functions as a marginal model and thus primarily provides insights
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into population-level effects. Consequently, it is suited for the construction of reference
growth charts.

Consider yij where i = 1, . . . , N and j = 1, . . . , ni to be the growth response at the jth time
point for the ith child. The conditional quantile function of yij at τ , given tij, yi(ti,j−1),
and xi, is given by:

Qyi(tij)|tij ,yi(ti,j−1),xi
(τ) = gτ (tij) + [ψ1,τ + ψ2,τ (tij − ti,j−1)]yi(ti,j−1) + x′

iβτ . (4.1)

The model given by (4.1) comprises three distinct components: a non-parametric function,
gτ , associated with the time variable, tij; a first-order autoregressive model, AR(1); and
a linear predictor function associated with the covariates vector, xi. The function gτ can
be represented using any spline method. If we assume that the unknown function gτ is
non-parametric and solely associated with tij, this function can be expressed in a general
spline model as:

gτ (tij) ≈
κ∑

k=0

γτ,kBk(tij). (4.2)

Here, Bk(tij) denotes a set of basis functions, and γτ,k represents the corresponding spline
coefficients at a specific τ . As discussed in Section 3.7, the function (4.2) can be defined in
multiple ways. For this study, B-splines were selected, in accordance with the recommen-
dations of Wei et al. (2006). A pivotal question that arises is: “how many basis functions
should we use to construct the smooth function gτ?” The answer depends on the selection
of the number and positions of knots, resulting in several models that should be considered.

All parameters in the model, as presented in (4.1), can be estimated by minimising the
objective function

ρτ
(
yi(tij)− g(tij)− [ψ1 + ψ2(tij − ti,j−1)]yi(ti,j−1)− x′

iβ
)
, (4.3)

where ρτ (e) =
∑n

j=1 ej(τ − I(ej < 0)). The optimisation problem, given by (4.3), can be
solved using a linear programming method, as outlined in Section 3.4.5.

4.3 Additive quantile mixed model

This section presents a flexible quantile regression model designed for longitudinal data.
This model represents an extension of the additive quantile model, enabling the use of
various non-parametric functions to accommodate diverse relationship patterns between
growth measurements and covariates. Furthermore, it incorporates the mixed model
framework to address the dependency between observations taken from the same sub-
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ject at different times. Termed the “additive quantile mixed model” (Geraci, 2019) or
AQMM for short, this approach parallels the additive mixed model in the context of the
mean model. Notably, the AQMM yields insights into both population-level and subject-
level effects, consistent with the capabilities of the mixed model framework.

Let xij denote the explanatory variables, z′ij be the jth row of a random effects design
matrix Zi, and uτ,i represent an individual-specific random effects vector. This vector
comprises coefficients corresponding to each specific random effect and its respective indi-
viduals for a particular quantile level τ . The AQMM is expressed as

yij|ui,xij, zij = βτ,0 +

p∑
r=1

g(r)τ (xijr) + z′ijuτ,i + ϵij, (4.4)

where P(ϵij ≤ 0|ui,xij, zij) = τ and ϵij ∼ AL(0, στ , τ). Alternatively, the model (4.4) can
be rewritten as the τ -th quantile regression function of y as:

Qyij |ui,xij ,zij(τ) = βτ,0 +

p∑
r=1

g(r)τ (xijr) + z′ijuτ,i. (4.5)

Here Q(τ) is the τth conditional quantile function of the growth response based on the
random effects ui and the explanatory variables xij. The functions g(r)τ on the right-hand
side are unknown functions (typically smooth) of the explanatory variables xr, and can
be either linear or non-linear. For instance, partitioning the explanatory variables as
x = (x1,x2)

′ with x1 = (x1, . . . , xs) for non-linear functions and x2 = (xs+1, . . . , xp) for
linear ones, the summation term in either (4.4) or (4.5) can be elaborated as:

s∑
r=1

κr∑
k=1

γτ,krB
(r)
k (xijr) +

p∑
r=s+1

βτ,rxijr,

where Bk are a set of basis functions and γτ,k are the corresponding coefficients. Com-
monly, these basis functions can be defined in several ways as detailed in Section 3.7.
P-splines were selected for their utilisation of B-spline bases, often defined on uniformly
spaced knots. They enable the use of a substantial number of B-splines (or knot count)
and omit B-splines with no data support through a penalty term. Consequently, the spec-
ification of the number and positioning of knots is not a concern.

The model (4.5) can be expressed in matrix form as:

Qyi|ui,Xi,Zi
(τ) = Xiβτ +Biγτ + Ziuτ,i, (4.6)

where Xi is a ni × (p − s + 1) matrix, with the first column representing the popula-
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tion intercept and the subsequent columns representing the explanatory variables, often
referred to as fixed effects. The vector βτ contains the corresponding regression coeffi-
cients associated these fixed effects. Bi is a ni × κ matrix that encompasses the bases
for the s covariates, and γτ is a vector of the coefficients corresponding to those bases.
Zi is a ni×q matrix, and uτ,i is a vector of the random-effect coefficients associated with Zi.

To apply the AQMM to LCGD, the model given by (4.5) or (4.6) can be reformulated into
a simple growth model as follows:

Qyij |ui,tij ,zij(τ) = βτ,0 + gτ (tij) + uτ,0i + uτ,1itij. (4.7)

For the estimation of the τ -th quantile regression function, both uτ,i and γτ must adhere
to the following assumptions:

1. uτ,i ∼ Nq(0,Gτ ) and γτ ∼ Ns(0,Φτ = ⊕s
r=1ϕτ,rIκr), respectively. Note that in

the context of the simple growth model (4.7), these assumptions modify to uτ,i ∼
N2(0,Gτ ) and γτ ∼ N (0,Φτ = ϕτIκ),

2. uτ,i is assumed to be independent for each child i, and from γτ .

By incorporating the aforementioned assumptions and utilising L2 penalised splines, the
objective function can be derived as:

N∑
i=1

ρτ (yi −Xiβτ −Biγτ − Ziuτ,i) +
N∑
i=1

||uτ,i||2G−1
τ

+
s∑

r=1

ϕ−1
τ,r||γτ,r||2, (4.8)

where ρτ (e) =
∑n

j=1 ej(τ − I(ej < 0)) and ϕτ,r are smoothing parameters. Consequently,
all parameters in model (4.7) can be estimated using this objective function. Nonetheless,
minimising the objective function (4.8) equates to maximising the likelihood function
based on the asymmetric Laplace (AL) distribution, as posited by Geraci and Bottai
(2007), Geraci (2019), Geraci and Bottai (2014), and Yu and Moyeed (2001). For this, let
us assume that each yi, given ui, adheres to the AL distribution with location, scale, and
skewness parameters denoted by µτ,i = Xiβτ −Biγτ − Ziuτ,i, στ and τ , respectively. As
such, the likelihood function can be formed as

L(βτ , στ ,Gτ ,Φτ |yi,Xi,Zi) = AL(Xiβτ −Biγτ − Ziuτ,i, στ , τ).

To ascertain the standard errors associated with each parameter, the block bootstrap is
utilised in this regard (Geraci, 2019).
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4.4 Simulation studies

As discussed in Section 4.1, AQMM has not yet been applied to model LCGD. Therefore,
it is essential to ascertain whether this model can effectively accommodate all the unique
characteristics and features of such data. An inherent trait commonly found in LCGD is
the presence of autocorrelation among repeated observations. Theoretically, the random
effect component in the AQMM is posited to capture this trait, eliminating the need for
an autoregressive residual model (Geraci, 2019). Furthermore, it is not limited to just this
trait; for instance, children might show variations in their initial growth at birth and in
growth rates. This suggests that the data possesses between-individual differences. Con-
sequently, a pressing question emerges: Is the AQMM adequetely suited for addressing
LCGD?

In addition, the choice of spline model to capture non-linear growth patterns requires
meticulous consideration. Among the available options, P-splines appear to be a sensible
choice to achieve this objective. These splines are constructed from B-splines combined
with a discrete roughness penalty on their coefficients. This method offers several ad-
vantages, particularly in eliminating the need to specify the number and placement of
knots (Eilers & Marx, 2021). However, the literature also documents an alternative spline
method similar to P-splines. This alternative employs B-splines with a derivative-based
penalty on the basis coefficients (Wood, 2017b), providing another option for exploration.

Therefore, when dealing with LCGD data, it is necessary to consider both the effectiveness
of AQMM and the appropriateness of various spline modelling strategies.

4.4.1 Study 4.1

In AQMM, autocorrelation among repeated measurements for the same individual is ad-
dressed through the inclusion of random effects, denoted as uτ,i. These effects are assumed
to follow zero-centred multivariate normal distributions, with their variance-covariance
matrices represented by Gτ,i. Consequently, these matrices play a crucial role in ac-
counting for autocorrelation. However, an alternative approach to address this correlation
involves incorporating an autoregressive model into the regression framework. The AR(1)
model is often employed in this context, given that within-subject correlations typically
decrease over time, reflecting the growth mechanism of a child. This methodology is indeed
adopted by the QSAM approach.
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Aim

A simulation study was conducted to evaluate the accuracy of AQMM and QSAM in
estimating conditional quantile functions for child growth measurements using longitudinal
data. Additionally, the study investigated the behaviour of splines in modelling nonlinear
growth patterns.

Data generation

Longitudinal child growth data were generated by determining a growth outcome as the
standard score of weight (WAZ). Each child had repeated growth outcomes over a speci-
fied interval of time. To ensure that the simulated data reflected the natural progression
of child growth development, repeated growth outcomes were generated to correlate with
one another.

The data were generated using the model described below. For simplification, only one
covariate, the time variate, is included:

yij = µij + ϵij, i = 1, . . . , N, j = 1, . . . , ni, (4.9)

where

µij = 0.06− 13.65tij + 209.83t2ij − 1067.35t3ij+

2634.10t4ij − 3446.05t5ij + 2301.40t6ij − 617.65t7ij.
(4.10)

Here, µij represents the mean function, designed to follow the mean weight-for-age Z score
for 4563 children from the “Growing up in Scotland” study, as per the UK-WHO child
growth charts (refer to Figure 4.1 and Chapter 2 for further details about this dataset).
The time variable, tij, was generated within the range [0,1] and adhered to two data
designs: balanced and unbalanced data. Note that the mean function (4.10) encompasses
two periods of growth: childhood (0-9 years) and adolescence (10-14 years). Typically,
these two periods exhibit distinct growth patterns, which also vary between males and
females. However, in this simulation study and subsequent ones, this aspect has been
ignored. This is due to the limitation of the example dataset, the GUS data, which
includes only eight repeated physical growth measurements. Furthermore, the primary
goal of the simulation study is to investigate the performance of target models (AQMM
and QSAM) in modelling general longitudinal child growth data without specifying a
particular gender. Therefore, the function (4.10) is utilised as an example of growth
pattern to generate longitudinal child growth data.
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Figure 4.1: Mean weight-for-age Z-scores for 5210 Growing up in Scotland (GUS) children
according to the UK-WHO child growth charts.

Balanced data

In this scenario, each child had eleven repeated measurements denoted as ni. To ensure
the simulated data reflected the real LCGD data, time observations for each child were
assigned at the following scheduled time points: 0, 0.06, 0.14, 0.21, 0.29, 0.36, 0.43, 0.57,
0.71, 0.86, 1. These settings represent a transformation of a child’s age in the “Growing
up in Scotland” study to fit a range between 0 to 1. Notably, the intervals between the
first seven time points were approximately 0.07, while the remaining intervals were 0.14.
As a result, these represent unequally spaced time observations.

Unbalanced data

The number of repeated measurements (ni) was set to range between 2 and 11, deter-
mined by rounding uniformly random numbers from the uniform distribution U(2, 11),
generated using the function runif(N,2,11) in R, where N represents the number of chil-
dren. Every child had a growth outcome recorded at baseline, which corresponds to
birth or ti1 = 0. To generate distinct sets of observation times deviating from scheduled
time points for each child, starting from the second scheduled time point, the observation
times were drawn from uniform distributions U(a, b) with the following lower and upper
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limits: [0.057,0.063], [0.136,0.144], [0.205,0.215], [0.284,0.215], [0.284,0.296], [0.353,0.367],
[0.42,0.44], [0.55,0.59], [0.67,0.75], [0.81,0.91] and [0.88,1], respectively. Using this method
ensured that the simulated observation times slightly deviated from the scheduled time
points of the balanced data, with the exception of the last time point.

To ensure that the simulated data exhibited (auto)correlated growth outcomes, the resid-
ual errors (ϵij) for each child were generated according to two different scenarios of
variance-covariance structure.

Homogeneous exponential covariance

In this scenario, the residual (within-subject) errors were assumed to be both homoscedas-
tic (i.e. possessing equal variances) and autocorrelated. The residual errors for each child
were generated as:

ϵi ∼ Nni
(0,Ri), Ri = σ2Ci, (4.11)

where

Ci =



1 e−s12/ϕ e−s13/ϕ · · · e−s1ni
/ϕ

1 e−s12/ϕ · · · e−s1(ni−1)/ϕ

1 · · · e−s1(ni−2)/ϕ

. . . ...
1


. (4.12)

Here, Ci represents a correlation matrix derived from an exponential correlation structure.
σ2 denotes the residual variance, while sjj′ is a real number representing the distance
between two time points tj and tj′ , defined as sjj′ = |tj − tj′|. The range parameter ϕ > 0,
which is always positive, defines the extent to which the covariance decays to zero. Note
that the exponential correlation structure corresponds to the continuous AR(1) or CAR(1)
correlation structure, as defined by Pinheiro and Bates (2000, p. 232):

ρ(s) = e−s/ϕ = (e−1/ϕ)s = Ψs.

The final term represents the form of the CAR(1) correlation structure. For instance,
when ϕ = 1.45, this gives rise to the CAR(1) with Ψ ≈ 0.5017.

Heterogeneous exponential covariance

In this scenario, the residual (within-subject) errors were assumed to be heteroscedastic
(i.e. they exhibit unequal variances) and autocorrelated. The heterogeneous variance-
covariance was generated as an exponential function of the variance covariate, as described
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by Pinheiro and Bates (2000, p.211 - 212),

g(tij, α) = exp(αtij).

Following this function, the variance model for residual errors can be represented as:

Var(ϵij) = σ2g2(tij, α) = σ2{exp(αtij)}2 = σ2[Φi]
2
jj,

where

Φi =



Φi1 0 0 · · · 0

0 Φi2 0 · · · 0

0 0 Φi3 · · · 0
...

...
... . . . ...

0 0 0 · · · Φi,ni


. (4.13)

Here, the parameter α dictates the variance trend. Specifically, if α > 0, the variance
increases over time; conversely, if α < 0, the variance decreases over time. Consequently,
a diagonal matrix, Φi, describes the variance pattern. The decomposition of the within-
subject variance-covariance structure can be represented as:

Λi = ΦiCiΦi, (4.14)

where Ci is a correlation matrix that follows the structure defined in 4.12. Given these
parameters, the residual errors for each child were generated as:

ϵi ∼ Nni
(0,Ri), Ri = σ2Λi. (4.15)

In this context, the primary objective is to evaluate the performance of target models
featuring two different covariance structures (homogeneous and heterogeneous covariance),
while ensuring an adequate representation of the CAR(1) correlation structure to reflect
autocorrelated growth outcomes. This choice is not tailored specifically to mimic the
GUS data but aims to be applicable to a broader range of datasets and to assess the
ability of the random effects part of AQMM in accounting for autocorrelation in repeated
observations. However, the heterogeneous exponential covariance most closely reflects the
GUS data. This conclusion is supported by fitting the GUS data with simple linear mixed-
effects models under four different covariance structures and comparing their goodness-of-
fit metrics, including AIC, BIC, and log-likelihood (see Table 4.1). The model is specified
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as follows:

Weightij = β0 + β1(Age)ij + β2(Age)
2
ij + β3(Age)

3
ij + β4(Age)

4
ij

+ β5(Age)
5
ij + β6(Age)

6
ij + β7(Age)

7
ij + u0i(Age)ij + u1i(Age)ij.

Table 4.1 shows that the heteroscedastic model with an exponential covariance structure
yields the lowest AIC and BIC values, as well as the highest log-likelihood. These results
suggest that this covariance structure is likely the best fit for the GUS data.

Table 4.1: Summary of goodness-of-fit metrics for linear mixed-effects models with four
different covariance structures.

Model AIC BIC log-likelihood
Homoscedastic model 81592.12 81637.34 -40790.06
Heteroscedastic model with exponential variance structurea 72600.42 72653.17 -36293.21
Heteroscedastic model with power variance structureb 73452.69 73505.45 -36719.34
Heteroscedastic model with fixed variance structurec 76935.52 76970.74 -38456.76
a Variance model: V ar(ϵij) = σ2 exp (2δAgeij) and Variance function: g(Ageij , δ) = exp (δAgeij)
b Variance model: V ar(ϵij) = σ2|Age.yij |2δ and Variance function: g(Age.yij , δ) = |Age.yij |δ
c Variance model: V ar(ϵij) = σ2Age.yij and Variance function: g(Age.yij) =

√
Age.yij

To reflect Z-score growth outcomes varying -5 and 5, the residual variance (σ2) is set to
2. However, it is acknowledged that a few values may fall outside of this range, provided
that these values are not overly restrictive. Additionally, the range parameter ϕ is fixed
at 1.45, equivalent to CAR(1) with Ψ = 0.50, representing moderate correlation between
two observations one unit of time apart.

In the scenario of heterogeneous covariance, the variance trend parameter α is set at -0.50
to reflect a decrease in variance over time, a pattern that is explicitly observed in WAZ
measurement in GUS data and other longitudinal child growth data (e.g. a South African
Birth Cohort (Biljon et al., 2023)).

To evaluate the performance of the target models across different data sample sizes, two
distinct sample sizes were selected: 100 (defined as small), and 1000 (defined as large).
The later was chosen to reflect the GUS dataset adequately without impacting computa-
tional time during simulation.

Figure 4.2 shows plots derived from some simulated data, while Table 4.2 lists all the
scenarios considered in this study.
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Table 4.2: The scenarios used in Study 4.1

Scenario Data design Variance-covariance types of errors (Ri) Sample sizes (N)
1 100
2 Homogeneous (σ2 = 2, ϕ = 1.45) 1000
3 100
4

Balanced data
Heterogeneous (σ2 = 2, ϕ = 1.45, α = −0.50) 1000

5 100
6 Homogeneous (σ2 = 2, ϕ = 1.45) 1000
7 100
8

Unbalanced data
Heterogeneous (σ2 = 2, ϕ = 1.45, α = −0.50) 1000

Fitting the simulated data

The subsequent step involves fitting the simulated data using QSAM (4.1) and AQMM
(4.4), with a simplification that includes only time variable (tij). Two versions of the
model (4.4) were fitted: AQMM1 and AQMM2. Each version utilises distinct penalised
methods employing uniform B-splines with 10 equidistant knots spanning the entire range
of time variable values. (Eilers & Marx, 1996, 2010; Eilers et al., 2015; Eilers & Marx,
2021; Wood, 2017b). The rationale for setting 10 knots for both AQMM1 and AQMM2
is to adequately capture the time points used in the simulated data. Regarding the place-
ment of knots, equidistant knots were chosen for AQMM2 because they are mandatory
for P-splines. To ensure fairness, the same knot placement was also applied to AQMM1.
Furthermore, the variance-covariance matrix of random effects was specified as a general
positive-definite matrix (also known as “pdSymm” in aqmm package in R) for both AQMM1
and AQMM2, in order to account for autocorrelated repeated growth observations.

For the QSAM approach, the non-parametric function was modelled using cubic B-splines
with variations in the degrees of freedom (both small and large) to fit the QSAM model
with varying degrees of smoothness. In regression splines, the positioning of knots stands
as another crucial fixed parameter, shaping the smoothness of the curve. Quantile knots
(i.e. unevenly spaced knots), determined by the predictor variable’s distribution quantiles,
naturally conform to the data’s distribution characteristics. This choice proves advanta-
geous when dealing with predictor variable that exhibit non-uniform or skewed, especially
in cases of longitudinal child data with age differences between subjects. Furthermore,
by employing quantile knots, the spacing of interior knots of cubic B-splines maintains
flexibility, adept at accommodating densely clustered data points, as seen in simulated
data scenarios. Therefore, flexibility in knot placement was permitted in both QSAM1
and QSAM2, employing quantile knots. It should be noted that QSAM is dependent on
regression splines, so P-splines cannot be used to fit the non-parametric function of QSAM.

Furthermore, the number of knots is also typically fixed and cannot be altered during
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(regression splines) model fitting. While certain algorithms can determine optimal knots,
this process often requires computational resources, potentially resulting in extensive time
consumption when implementing this approach in simulation studies. In this thesis, the
suggestion of Harrell (2015) is adopted to determine the number of knots. Specifically, if
the response variable is a continuous (uncensored) variable and the sample size is suffi-
ciently large (e.g. greater than 100), it is recommended to use 5 knots. As mentioned in
Section 3.10, the number of effective degrees of freedom (edf) represents the number of
parameters used in the model and can guide the selection of smothers in addition to or in-
stead of specifying knots directly. Therefore, an edf of 5 is chosen for cubic B-splines with
quantile knots, which is equivalent to specifying 5 knots (3 interior knots and 2 boundary
knots). This number should be adequate to avoid overfitting. However, it is important
to note that these recommendations cannot fully guarantee the prevention of overfitting.
Note that, in cubic B-splines, the edf is defined as edf = (number of interior knots) + 3 - 1.
Furthermore, the number of edf is augmented as much as possible without exceeding the
number of time points (i.e. ni = 11), to explore the behaviour of predictive performance
in terms of potential overfitting relative to the edf of 5. In this instance, the edf was set to
10 (edf = 10) for balanced data and 8 for unbalanced data (edf = 8). This adjustment is
necessary as some B-splines might lack data support in situations with extensive degrees
or dimensions, particularly with unbalanced data. This can lead to a singularity issue
while fitting the quantile regression.

In this chapter, all models were fitted using fixed values of τ at 0.10, 0.50, and 0.90. These
three quantiles represent the lower, middle, and upper locations of the distribution of WAZ
growth measurements (response distribution). In essence, the 0.10 quantile signifies the
lower 10% of children who may be experiencing slower or less favorable growth compared
to the rest of the population. The 0.50 quantile indicates the median, with 50% of children
falling below or above this point, representing the typical or average growth level within
the population. Lastly, the 0.90 quantile indicates the top 10% of children with higher
growth compared to the rest of the population. In summary, the four models are:

• AQMM1: AQMM utilising penalised cubic B-splines for a non-linear term associ-
ated with tij, based on a conventional cubic spline penalty. Specifically, it utilises
a B-spline basis with a second derivative or quadratic penalty on the basis coeffi-
cients. This penalty is sensible for controlling changes in curvature without requiring
excessive computational time compared to other higher derivatives, as discussed in
Section 3.9.

• AQMM2: AQMM using P-splines for a non-linear term linked to tij, constructed on
a cubic B-spline basis with a discrete quadratic penalty on the basis coefficients.
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• QSAM1: QSAM employing cubic B-splines for a non-linear term related to tij, using
quantile knots with a small effective degree of freedom (edf = 5).

• QSAM2: QSAM using cubic B-splines for a non-linear term associated with tij, based
on quantile knots with a larger effective degree of freedom (edf = 10 for balanced
data and edf = 8 for unbalanced data).

Additionally, the true model (4.9) was fitted using linear mixed models via the lmer

function in the lme4 package in R to compare with the 0.50th quantile models serving as
an oracle baseline. In this modelling, polynomial degrees up to 7 were specified for the time
variable, tij, and random effects (intercepts and slopes) were assumed to be correlated,
each to both AQMM1 and AQMM2. This model is referred to as MTRUE.

Summarising the results

To assess the accuracy with which each model estimates the conditional quantiles, three
metrics were utilised: the coefficient of determination (R-squared) for quantile regression,
mean weighted absolute errors (MAE), and the proportion of negative residuals (PNR).

1) Coefficient of determination or R-squared for QR (RS)

RSτ is a goodness-of-fit statistic used to measure how well the QR model fits a set of ob-
servations. This indicator is analogous to the R2 statistic in classical ordinary least square
regression (OLS), as noted by Koenker and Machado (1999b). However, its interpretation
is specific to a particular quantile, hence it can be seen as a local measure of goodness of
fit (Koenker & Machado, 1999b; Uribe & Guillen, 2020). The formula for R2

τ is given by:

RSτ = 1− V̂τ

Ṽτ
,

where V̂τ = min
∑N

i=1

∑ni

j=1 ρτ (yij − ĝ) and Ṽτ = min
∑N

i=1

∑ni

j=1 ρτ (yij − g̃). Here, ĝ and g̃
are the unrestricted (fully parameterised models) and restricted (non-conditional) quantile
estimated models, respectively. Mathematically, since V̂τ is always less than or equal to
Ṽτ , it follows that 0 ≤ R2

τ ≤ 1. If R2
τ is close to 1, it indicates that the QR model fits the

data well at that specific quantile. Note that in the context of quantile regression, there
is no modified version of the R-squared, such as an adjusted R-squared, that adjusts the
standard R-squared metric to account for the addition of new predictors to a model.

2) Mean weighted absolute errors (MAE)

The MAE measures the variation in the predicted values around the observations. Smaller
MAE values indicate more accurate predictions. The MAE of the QR model, at specific
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quantiles, is given by:

MAEτ =

N∑
i=1

ni∑
j=1

ϵ∗ij,τ

(
τ − I(ϵ∗ij,τ < 0)

)
N∑
i

ni

, (4.16)

where ϵ∗ij,τ = yij − Q̂yij |tij(τ), (τ − I(ϵ∗ij,τ < 0)) is a weighted term, and I(·) is an indicator
function.

3) Proportion of negative residuals (PNR)

Another metric to consider is the proportion of negative residuals (PNR). It is given by

PNRτ =

N∑
i=1

ni∑
j=1

(
I(ϵ∗ij,τ < 0)

)
N∑
i

ni

,

where ϵ∗ij,τ and I(·) are defined as in (4.16). Ideally, this metric should be approximately
equal to τ .

Results

Five hundred datasets were simulated for each scenario, and all four models with the true
model were applied to each dataset.

For brevity, this section presents only the results from the heterogeneous variance scenario;
the outcomes for the homogeneous variance scenario are detailed in Appendix B. Overall,
the trend of these outcomes was similar to that of the former scenario. Nevertheless, it
is noteworthy that the results from the homogeneous variance scenario exhibited a higher
MAE and a lower R-squared compared to those observed in the heterogeneous variance
scenario, but these did not impact on the PNR. This can be attributed to the AQMM
method being based on mixed models, which are designed to accommodate heterogeneous
data. Therefore, applying this method to homogeneous data might introduce unnecessary
complexity, leading to increased prediction errors.
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Figure 4.3: The MAE of four models, including the MSE for the true model (MTRUE),
in the heterogeneous scenario of Study 4.1. The left column presents the results for the
balanced data scenario, while the right column shows the results for the unbalanced data
scenario. The three rows display the results for quantile levels at 0.10, 0.50 and 0.90,
respectively.

Figure 4.3 shows that the MAE values of two extreme quantile models (τ = 0.10 and
τ = 0.90) were relatively similar and smaller than those at the median quantile (τ = 0.50),
consistent across various data design scenarios and sample sizes. This occurs because the
weights applied to the residuals differ between quantile models, affecting the total error
differently based on the distribution and magnitude of the residuals. Additionally, this in-
dicates that the two extreme quantile models provided accurate predictions not only for the
lower 10% of the data but also for the upper 10%, implying a robust performance across
various segments of the data distribution. When comparing different models, AQMM1
and AQMM2 consistently showed lower MAE values than QSAM1 and QSAM2 across all
quantiles, regardless of sample sizes and data design scenarios. However, the MAE values
at the median quantile for both AQMM1 and AQMM2 were slightly higher than the MSE
values from the true model (MTRUE). Additionally, both QSAM models showed higher
MAEs with unbalanced data compared to balanced data. These findings suggest that
AQMM approaches are generally more accurate in predicting outcomes in across various
scenarios. Note that, in the homogeneous variance scenarios with balanced data, the MSE
value from MTRUE was higher than the AQMM models for both sample sizes (see Figure
B.1). This demonstrates an evident that when modelling the homogeneous data using
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the models based on mixed model framework may introduce unnecessary complexity with
resulting in high prediction errors.

Regarding the two data designs, the MAE values for AQMM1 and AQMM2 were slightly
smaller in the unbalanced data compared to the balanced data across three quantiles.
Conversely, the MAE values for QSAM1 and QSAM2 were smaller in the balanced data
than in the unbalanced data, particularly at the median quantile. This suggests that
AQMM models are suitable for both data designs, while QSAM models may require certain
conditions to optimize their performance, especially in unbalanced data. Considering
sample sizes, the MAE values for all models showed slight variation in the large sample
size (N = 1, 000) compared to the small sample size (N = 100). This indicates that an
increase in sample size leads to smaller variations in predictions for all models. Hence, the
differences in MAE values between AQMM models and QSAM models are considerable,
indicating that the former provides more reliable predictions. This superiority is evident
across all scenarios tested, highlighting the robustness of AQMM models.
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Figure 4.4: The RS of four models, including the true model (MTRUE), in the heteroge-
neous scenario of Study 4.1. The left column presents the results for the balanced data
scenario, while the right column shows the results for the unbalanced data scenario. The
three rows display the results for quantile levels at 0.10, 0.50 and 0.90, respectively.

Figure 4.4 presents the RS values for the three quantile models in the heterogeneous
variance scenario across two distinct data designs and sample sizes. The RS values of all
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models were relatively similar across three quantiles. Notably, the AQMM1 and AQMM2
models provided a superior fit to the set of observations compared to the models fitted by
QSAM1 and QSAM2 across quantiles. However, at the median quantile, the RS values
from these models were smaller than of the MTRUE model, suggesting that the MTRUE
model provides a better overall fit to the data as it represents the true model. Considering
different data designs, the AQMM approaches demonstrated slightly better performance
in the unbalanced data scenario than in the balanced data scenario, whereas the QSAM
approaches seemed to be similar. In terms of sample sizes, increasing sample sizes to be
large (N = 1, 000) tended to yield slight variation in RS values compared to the small
sample size (N = 100).
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Figure 4.5: The PNR of four models in the heterogeneous scenario of Study 4.1. The
left column presents the results for the balanced data scenario, while the right column
shows the results for the unbalanced data scenario. The three rows display the results
for quantile levels at 0.10, 0.50 and 0.90, respectively. The red dashed lines represent the
expected quantile levels, τ = 0.10, 0.50, and 0.90, respectively.

Figure 4.5 depicts the PNR values for the three quantile models in the heterogeneous
variance scenario across two distinct data designs and sample sizes. It is evident that each
quantile model derived from the four approaches yielded PNR values closely aligned with
the expected quantile levels (τ = 0.10, 0.50, 0.90) across both data designs and sample
sizes. When considering the two sample sizes, the 0.50th quantile model provided average
PNR values close to the expected quantile level at 0.50 for both sample sizes. Specifi-
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cally, when the sample size was small, the PNR values of the two extreme quantile models
slightly deviated from their expected quantile levels at 0.10 and 0.90, respectively. This
suggests that the AQMM model is particularly sensitive to sample sizes, especially for
extreme quantiles. Moreover, the AQMM1 and AQMM2 exhibited greater variability in
PNR values compared to those of QSAM1 and QSAM2, especially when the sample size
was small. Notably, the AQMM approaches demonstrated increased variation in PNR in
the unbalanced data scenario compared to the balanced data scenario.

Furthermore, to explore how well all models fit the simulated data, Figures 4.6 and 4.7
present plots of the true mean versus the predicted mean at specified time points for the
0.50th quantile model of AQMM1, AQMM2, QSAM1, QSAM2, and MTRUE across the
eight scenarios presented in Table 4.2. The results indicate that MTRUE, AQMM1 and
AQMM2 provided predicted means that closely matched the true means at specified time
points in all scenarios. These models also excelled in capturing growth patterns, while the
QSAM model with small edf underperformed in some scenarios, particularly in the case
of balanced data with a small sample size.

A repeated measures ANOVA was conducted to examine the influence of the “Model”
factor and the three LCGD design factors (“Data design”, “Variance-covariance types of
errors”, and “Sample size”) on each metric. This approach was taken because each metric
was measured by the four models on each of the 500 simulated datasets, resulting in
repeated outcomes. The model for this approach can be expressed as follows:

Yijklm =µ+ αi + βj + γk + δl + (αδ)il + (βδ)jl + (γδ)kl + sm + ϵijklm,

m = 1, . . . , 4000, i = 1, 2, j = 1, 2, k = 1, 2, l = 1, . . . , 4,

where yijklm is the metric measurement (i.e. MAE, RS, and PNR) for the m-th simulated
dataset at the i-th level of the variance-covariance of errors (R), the j-th level of the data
design, and the k-th level of the sample sizes, and the l-th level of the models, αi is the
effect of the i-th level of the variance-covariance of errors, βj is the effect of the j-th level
of the data design, γk is the effect of the k-th level of the sample size, δl is the effects
of the l-th level of the models, (αδ)il, (βδ)jk, (γδ)kl are the two-way interactions, sm is
the random effect of the m-th simulated dataset, and ϵijklm is the residual error. Note
that only two-way interactions between the models and other factors were observed in this
analysis. Additionally, the Eta-squared (η2), a measure of effect size used in ANOVA, was
employed to quantify the proportion of variance in the dependent variable explained by
each of the model’s terms. It ranges from 0 to 1, with larger values indicating a greater
proportion of variance explained by the model’s term(s).
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As shown in Tables 4.3 to 4.4, the “Model” factor emerged as the most significant influence
on predictive performance across three quantile models, particularly on MAE and R-
squared. The interaction between the “Model” factor and the “Data design” was identified
as the second most influential factor. This indicates that the effect of the “Model” factor
depends on the level of the “Data design” factor. For instance, both AQMM1 and AQMM2
outperformed in situations with unbalanced data compared to balanced data. Moreover, in
terms of the “Variance-covariance error” factor, they performed better under heterogeneous
variance than under homogeneous variance, suggesting that AQMM can effectively account
for this type of variance. The “Sample size” factor had a relatively minor influence in this
context. These trends are especially apparent in metrics such as MAE and R-squared
across the three quantile models. Importantly, while the influence of these factors was
evident in terms of MAE and R-squared, the “Variance-covariance error” factor did not
substantially affect predictive performance as measured by PNR, as indicated in Table
4.5.

Table 4.3: Repeated measures ANOVA for three quantile models on MAE of Study 4.1

τ Source of Variation DF SS F η2

0.10 Between subjects
Variance-covariane of errors (R) (Homogeneous and Heterogeneous) 1 0.56 19678.70*** 0.83
Data design (Balanced and Unbalanced data) 1 0.04 1346.30*** 0.25
Sample size (N = 100 and N = 1000) 1 0.01 208.60*** 0.05
Residuals 3996 0.11

Within subjects
Model (AQMM1, AQMM2, QSAM1, and QSAM2) 3 4.76 475750.00*** 0.99
Model * R 3 0.01 840.92*** 0.17
Model * Data design 3 0.43 42530.00*** 0.91
Model * N 3 0.00 38.94*** 0.01
Residuals 11988 0.04

0.50 Between subjects
Variance-covariane of errors (R) 1 2.85 22220.64*** 0.85
Data design 1 0.35 2740.21*** 0.41
Sample size (N) 1 0.01 45.81*** 0.01
Residuals 3996 0.51

Within subjects
Model 3 26.53 806226.82*** 1.00
Model * R 3 0.05 1355.72*** 0.25
Model * Data design 3 2.19 66460.62*** 0.94
Model * N 3 0.00 42.08*** 0.01
Residuals 11988 0.13

0.90 Between subjects
Variance-covariane of errors (R) 1 0.56 19740.30*** 0.83
Data design 1 0.08 2877.30*** 0.42
Sample size (N) 1 0.01 179.40*** 0.04
Residuals 3996 0.11

Within subjects
Model 3 5.44 564885.12*** 0.99
Model * R 3 0.01 809.92*** 0.17
Model * Data design 3 0.34 35488.55*** 0.90
Model * N 3 0.00 49.42*** 0.01
Residuals 11988 0.04

Note: *** p < 0.001, ** p < 0.005, * p < 0.05
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Table 4.4: Repeated measure for three quantile models on R-squared of Study 4.1

τ Source of Variation DF SS F η2

0.10 Between subjects
Variance-covariane of errors (R) (Homogeneous and Heterogeneous) 1 0.47 445.54*** 0.10
Data design (Balanced and Unbalanced data) 1 1.98 1866.65*** 0.32
Sample size (N = 100 and N = 1000) 1 0.00 3.49 0.00
Residuals 3996 4.23

Within subjects
Model (AQMM1, AQMM2, QSAM1, and QSAM2) 3 84.38 631166.43*** 0.99
Model * R 3 0.01 81.43*** 0.02
Model * Data design 3 6.91 51648.93*** 0.93
Model * N 3 0.00 21.28*** 0.01
Residuals 11988 0.53

0.50 Between subjects
Variance-covariane of errors (R) 1 0.03 32.39*** 0.01
Data design 1 3.72 4474.07*** 0.54
Sample size (N) 1 0.00 42.25 0.00
Residuals 3996 3.11

Within subjects
Model 3 94.12 1031000.00*** 1.00
Model * R 3 0.09 951.00*** 0.19
Model * Data design 3 6.83 74890.00*** 0.95
Model * N 3 0.00 21.19*** 0.01
Residuals 11988 0.36

0.90 Between subjects
Variance-covariane of errors (R) 1 0.14 111.75*** 0.03
Data design 1 4.16 3373.48*** 0.46
Sample size (N) 1 0.00 2.02*** 0.00
Residuals 3996 4.93

Within subjects
Model 3 101.21 714903.61*** 0.99
Model * R 3 0.15 1091.24*** 0.21
Model * Data design 3 5.53 39087.03*** 0.91
Model * N 3 0.00 30.56*** 001
Residuals 11988 0.57

Note: *** p < 0.001, ** p < 0.005, * p < 0.05
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Table 4.5: Repeated measure ANOVA for three quantile models on PNR of Study 4.1

τ Source of Variation DF SS F η2

0.10 Between subjects
Variance-covariane of errors (R) (Homogeneous and Heterogeneous) 1 0.00 1.80 0.00
Data design (Balanced and Unbalanced data) 1 0.00 2.50 0.00
Sample size (N = 100 and N = 1000) 1 0.00 93.12*** 0.02
Residuals 3996 0.06

Within subjects
Model (AQMM1, AQMM2, QSAM1, and QSAM2) 3 0.02 910.48*** 0.19
Model * R 3 0.00 2.04 0.00
Model * Data design 3 0.00 33.63*** 0.01
Model * N 3 0.01 418.66*** 0.09
Residuals 11988 0.08

0.50 Between subjects
Variance-covariane of errors (R) 1 0.00 0.27 0.00
Data design 1 0.00 3.66 0.00
Sample size (N) 1 0.00 14.61*** 0.00
Residuals 3996 0.07

Within subjects
Model 3 0.01 296.49*** 0.07
Model * R 3 0.00 0.03 0.00
Model * Data design 3 0.00 21.37*** 0.01
Model * N 3 0.01 193.31*** 0.05
Residuals 11988 0.10

0.90 Between subjects
Variance-covariane of errors (R) 1 0.00 6.49* 0.00
Data design 1 0.00 6.88** 0.00
Sample size (N) 1 0.01 747.70*** 0.16
Residuals 3996 0.05

Within subjects
Model 3 0.00 49.89*** 0.01
Model * R 3 0.00 1.74 0.00
Model * Data design 3 0.00 4.73** 0.00
Model * N 3 0.00 34.49** 0.00
Residuals 11988 0.08

Note: *** p < 0.001, ** p < 0.005, * p < 0.05

Additionally, to compare the different approaches in terms of computational efficiency, Ta-
ble 4.6 presents the average computational times (in seconds) over all 500 simulation runs.
The numbers indicate that the AQMM models noticeably consumed more computational
time than the QSAM models and MTRUE across the eight scenarios and three quantiles.
When the sample size increased from 100 to 1000, the average computational times of the
AQMM models increased by approximately 10 times. In this case, they consumed times
around 4 minutes to fit two extreme quantile models and around 3 minutes for fitting the
0.50th quantile model.
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Table 4.6: Average computational times (in seconds) for five models across eight scenarios.

τ Scenario AQMM1 AQMM2 QSAM1 QSAM2 MTRUE
0.10 1 (N = 100) 21.26 22.32 0.01 0.04 -

2 (N = 1000) 251.82 247.87 0.31 0.47 -
3 (N = 100) 21.68 22.25 0.01 0.04 -
4 (N = 1000) 253.57 252.78 0.32 0.46 -
5 (N = 100) 18.97 19.62 0.01 0.01 -
6 (N = 1000) 232.82 246.52 0.10 0.12 -
7 (N = 100) 18.99 19.81 0.01 0.01 -
8 (N = 1000) 230.31 244.40 0.10 0.11 -

0.50 1 (N = 100) 15.74 16.46 0.01 0.03 0.11
2 (N = 1000) 192.23 189.67 0.32 0.44 0.88
3 (N = 100) 16.47 16.70 0.01 0.03 0.12
4 (N = 1000) 188.09 193.48 0.33 0.43 0.85
5 (N = 100) 14.41 15.21 0.01 0.01 0.08
6 (N = 1000) 198.53 208.08 0.11 0.12 0.54
7 (N = 100) 14.62 15.68 0.01 0.01 0.08
8 (N = 1000) 199.99 208.76 0.11 0.11 0.51

0.90 1 (N = 100) 20.46 20.97 0.01 0.03 -
2 (N = 1000) 244.07 247.91 0.35 0.45 -
3 (N = 100) 21.26 21.92 0.01 0.03 -
4 (N = 1000) 251.89 249.11 0.35 0.45 -
5 (N = 100) 18.11 19.37 0.01 0.01 -
6 (N = 1000) 228.20 242.09 0.13 0.13 -
7 (N = 100) 18.30 19.00 0.01 0.01 -
8 (N = 1000) 230.43 244.26 0.12 0.12 -

Summary

In conclusion, it can be inferred that AQMM has the capability to address both ho-
moscedastic and heteroscedastic features, as well as autocorrelation among repeated mea-
surements in LCGD, regardless of whether the data is balanced. However, AQMM ap-
pears to perform exceptionally well with unbalanced data, as its mixed model framework
serves this aspect effectively. The observation that AQMM’s performance improves with
an increase in sample size aligns with expectations. Additionally, employing two distinct
penalised methods (a derivative penalty and a discrete penalty) based on the cubic B-
spline basis does not markedly influence the overall performance of the model, especially
in the case of AQMM. This suggests that P-splines with a discrete (quadratic) penalty
are flexible and well-suited for modelling child growth patterns in this context. Although
the AQMM models require extensive computational time compared to the QSAM models,
their computational efficiency is still acceptable.
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4.4.2 Study 4.2

In the context of real-world data, various additional risk factors come into play, including
biological sex, parental influences (such as genetics and lifestyle), socioeconomic status,
and various other variables that can significantly impact child growth development. For-
tuitously, both AQMM and QSAM methods offer a convenient way for addressing these
risk factors by integrating them as linear predictors. Consequently, a comprehensive as-
sessment of the performance of both approaches becomes imperative when applying them
to model the longitudinal child growth.

Moreover, it is important to highlight that random errors within empirical data might
deviate from a normal distribution. This deviation can manifest as a profusion of outliers
featuring remarkably high values situated at the extreme tails of the distribution. Such
distributions are termed heavier-tailed distributions.

Aim

This simulation study was conducted to evaluate the accuracy with which AQMM and
QSAM can estimate conditional quantile functions of child growth measurement when
incorporated alongside other independent variables. Additionally, it assesses the perfor-
mance of parameter estimation for the linear predictor term.

Data generation

The data were generated from the model below:

yij = µij + β1x1ij + β2x2ij + ϵij, (4.17)

where µij is defined to correspond to the (intercept) function (4.10), β1 = 1, β2 = 0.5,
x1ij ∼ Bin(1, 0.50) (representing the factor variable, for example sex), x2ij ∼ N(0, 1)

(representing the covariate, for example birth weight), and ϵij is a random error. Following
model (4.17), the conditional quantile functions of y can be given by

Qyij |tij ,x1ij ,x2ij
(τ) = µij + β1x1ij + β2x2ij + F−1

ϵ (τ) = α(τ) + β1x1ij + β2x2ij,

where α(τ) = µij + F−1
ϵ (τ), with F−1

ϵ (τ) being the quantile function of ϵ. In this case,
α(τ) are vertical translations of one another, relying on the concept of the location-scale
shift model. In contrast, β1 and β2 are identical across all quantile levels.

In this simulation study, the time variable was generated using the same technique as
in Study 4.1. Two designs were considered for the data: balanced and unbalanced. To
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generate the autocorrelated growth outcomes, the residual errors (ϵij) were still assumed
to follow a zero-centred multivariate normal distribution with two covariance structure
scenarios, namely homogeneous exponential covariance and heterogeneous exponential co-
variance, as in Study 4.1. In another case, a heavier-tailed distribution, a zero-centered
multivariate t-distribution with four degrees of freedom (ν = 5), was also assumed for
random errors:

ϵi ∼ Tni,5(0,Σi),

where Σi is a scale matrix (not the covariance matrix). Theoretically, for ν > 2, the
covariance matrix of ϵi can be defined as ν/(ν − 2)Σi; otherwise it is undefined (Kotz
& Nadarajah, 2004). In order for the simulated random errors to exhibit an exponential
covariance structure, Σi can be defined as Σi = ((ν − 2)/ν)σ2Ci, where Ci is defined in
4.12 for homogeneous covariance, and Σi = ((ν − 2)/ν)σ2Λi, where Λi is defined in 4.14
for heterogeneous covariance. In this study, ν = 5 and σ2 = 2 yield simulated growth
outcomes consistent with actual Z-score growth outcomes, which range between -5 and 5.
However, it is acknowledged that a few values may fall outside of this range, given that
these instances are not too restrictive.

To fit the simulated data, the same models used in Study 4.1 were applied. These models
include AQMM1 (AQMM with penalised cubic B-splines), AQMM2 (AQMM with cubic
P-splines), QSAM1 (with the small edf), QSAM2 (with the large edf), and MTRUE (the
true model). Each model was fitted following the processes outlined in Section 4.4.1.

Furthermore, to assess the performance of each model, the same metrics were employed
(i.e. R-squared for QR, MAE, and PNR) as outlined in Section 4.4.1. Similar to Study
4.1, a repeated measured ANOVA was conducted to investigate the factor influencing on
each metric, based on the model:

Ypijklm = µ+ λp + αi + βj + γk + δl + (λδ)pl + (αδ)il + (βδ)jl + (γδ)kl + sm + ϵpijklm,

where m = 1, . . . , 4000, p = 1, 2, i = 1, 2, j = 1, 2, k = 1, 2, l = 1, . . . , 4.

Here, Ypijklm is the metric measurement for the m-th simulated dataset at the p-th level
of the error distribution (f(ϵ)), the i-th level of the variance-covariance of errors (R), the
j-th level of the data design, the k-th level of the sample sizes, and the l-th level of the
models. λp is the effect of the p-th level of the error distribution. λp αi, βj γk, δl are effects
representing the error distribution, the variance-covariance of errors, the data design, the
sample sizes, and the models, respectively. (λδ)pl, (αδ)il, (βδ)jl, (γδ)kl are the two-way
interactions. sm is the random effect of the m-th simiulated dataset, and ϵpijklm is the
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residual error.

Additionally, the bias and the root-mean-squared error (RMSE) of the coefficients for the
linear predictors, β1 and β2, were calculated to evaluate the estimation methods in both
models.

Bias

The bias values provide insight into the performance of the parameter estimation methods
employed. This metric aims to gauge the average discrepancies between the estimated
parameters and their true values. The bias of the parameters associated with the linear
predictors within each model can be summarised as the Mean Bias Error (MBE):

MBE(βh) =
1

500

500∑
r=1

(
β̂hr − βh

)
, h = 1, 2.

A MBE approaching zero suggests that the chosen parameter estimation method effectively
approximates the parameter of interest. However, it is important to note that the bias
is suitable for assessing precision, as it solely represents the average discrepancy between
estimates and true values, without accounting for their direction or magnitude.

Root-mean-squared error (RMSE)

Variability is an important quantity for assessing the precision of estimation. In this re-
gard, the Root Mean Square Error (RMSE) assumes a crucial role. RMSE is pivotal in
quantifying the dispersion of estimates around the true value. A smaller RMSE value sig-
nifies a higher degree of precise estimation. Mathematically, the RMSE of the parameters
within each model is expressed as:

RMSE(βh) =

√√√√ 1

500

500∑
r=1

(
β̂hr − βh

)2
, h = 1, 2.

By utilising RMSE, the extent of dispersion in the estimates from the actual values can
be effectively measured, ultimately indicating the level of precision attained.

Results

The results of this study are only presented for a specific heterogeneous variance scenario,
while all findings related to homogeneous variance scenario are provided in Appendix
B. Overall, the outcomes obtained from the homogeneous variance scenario exhibited a
considerable degree of similarity of those observed in the heterogeneous scenario.
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In terms of predictive performance, Figures 4.8, 4.9, and 4.10 demonstrate that the val-
ues for three metrics (i.e., MAE, R-squared, PNR) in each quantile for the normal error
scenario and the Student’s t-distribution showed a similar trend across scenarios involving
two data designs and two distinct sample sizes. However, in the case of the Student’s
t-distribution error, there was greater variability or dispersion in the MAE and R-squared
values compared to the normal error scenario. When specifically considering the three
quantiles, it is noted that the MAE values for the 0.50th quantile were higher than those
for the two extreme quantiles, which appeared to have similar values. Additionally, at the
0.50th quantile model, the MSE values of the true model (MTRUE) were smaller than
those of other models, while the R-squared values were vice versa. However, two AQMM
models tended to provide values close to MTRUE compared to two QSAM models, espe-
cially the MAE values. This suggests that both AQMM and MTRUE models are making
predictions with similar levels of accuracy at the central location of the response distribu-
tion.

It is important to highlight that the R-squared values of the three quantile models obtained
from both AQMM1 and AQMM2 displayed a noticeable increase compared to those ob-
served in Study 4.1. This observation is consistent with the property of this metric, wherein
an increase in the number of independent variables in the model leads to an increase in
R-squared value. In the quantile regression context, there is no adjusted R-squared value
to account for this aspect. Furthermore, the PNR values were closely aligned with their
corresponding quantile levels. Similar to Study 1, both AQMM1 and AQMM2 provided
PNR values that slightly deviated from the corresponding quantile levels at the two ex-
treme quantiles.

The results concerning parameter estimation performance are presented in Tables 4.7 and
4.8. Across the two error distributions, both AQMM models exhibited smaller MBE and
RMSE values than those of the QSAM models for all three quantiles. Notably, both
QSAM models exhibited suboptimal performance for β1, resulting in high bias and RMSE
values. Evidently, as sample sizes increased, all models demonstrated a tendency to yield
reduced values of both bias and RMSE.
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Table 4.7: MBE and RMSE concerning the simulated data under Study 4.2, specifically
focusing on the unbalanced data design, heterogeneous variance-covariance of errors
with two distinct error distributions, and a sample size of 100.

Error Model τ MBE RMSE MBE RMSE
β1 β1 β2 β2

ϵi ∼ Nni
(0,Ri) AQMM1 0.10 0.0111 0.2338 0.0015 0.0229

AQMM2 0.10 0.0113 0.2338 0.0015 0.0229
QSAM1 0.10 -0.7200 0.7293 0.0042 0.0450
QSAM2 0.10 -0.7212 0.7306 0.0035 0.0451

MTRUE Mean 0.0151 0.2313 0.0000 0.0153
AQMM1 0.50 0.0159 0.2320 0.0001 0.0179
AQMM2 0.50 0.0160 0.2318 0.0000 0.0180
QSAM1 0.50 -0.7114 0.7162 0.0014 0.0314
QSAM2 0.50 -0.7150 0.7198 0.0012 0.0308

AQMM1 0.90 0.0148 0.2327 0.0004 0.0223
AQMM2 0.90 0.0147 0.2328 0.0005 0.0223
QSAM1 0.90 -0.7050 0.7135 0.0005 0.0439
QSAM2 0.90 -0.7137 0.7217 0.0004 0.0442

ϵi ∼ Tni,4(0,Σi) AQMM1 0.10 -0.0102 0.2527 0.0013 0.0252
AQMM2 0.10 -0.0102 0.2529 0.0013 0.0251
QSAM1 0.10 -0.7218 0.7308 0.0028 0.0441
QSAM2 0.10 -0.7214 0.7303 0.0023 0.0447

MTRUE Mean -0.0121 0.2512 -0.0005 0.0163
AQMM1 0.50 -0.0117 0.2506 -0.0008 0.0152
AQMM2 0.50 -0.0116 0.2505 -0.0008 0.0152
QSAM1 0.50 -0.6910 0.6966 0.0008 0.0295
QSAM2 0.50 -0.6954 0.7012 0.0004 0.0295

AQMM1 0.90 -0.0133 0.2566 -0.0017 0.0232
AQMM2 0.90 -0.0132 0.2566 -0.0016 0.0232
QSAM1 0.90 -0.7229 0.7326 -0.0011 0.0460
QSAM2 0.90 -0.7273 0.7370 -0.0011 0.0457
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Table 4.8: MBE and RMSE concerning the simulated data under Study 4.2, specifically
focusing on the unbalanced data design, heterogeneous variance-covariance of errors
with two distinct error distributions, and a sample size of 1000.

Error Model τ MBE RMSE MBE RMSE
β1 β1 β2 β2

ϵi ∼ Nni
(0,Ri) AQMM1 0.10 0.0013 0.0732 0.0000 0.0070

AQMM2 0.10 0.0013 0.0733 0.0001 0.0070
QSAM1 0.10 -0.7268 0.7276 0.0009 0.0139
QSAM2 0.10 -0.7276 0.7284 0.0009 0.0140

MTRUE Mean 0.0019 0.0718 -0.0002 0.0049
AQMM1 0.50 0.0022 0.0726 -0.0002 0.0053
AQMM2 0.50 0.0022 0.0726 -0.0002 0.0053
QSAM1 0.50 -0.7221 0.7225 0.0003 0.0097
QSAM2 0.50 -0.7245 0.7250 0.0004 0.0096

AQMM1 0.90 0.0011 0.0723 0.0004 0.0068
AQMM2 0.90 0.0011 0.0722 0.0004 0.0068
QSAM1 0.90 -0.7219 0.7277 0.0006 0.0134
QSAM2 0.90 -0.7266 0.7273 0.0006 0.0130

ϵi ∼ Tni,4(0,Σi) AQMM1 0.10 0.0049 0.0747 0.0007 0.0074
AQMM2 0.10 0.0049 0.0747 0.0007 0.0074
QSAM1 0.10 -0.7326 0.7336 0.0013 0.0134
QSAM2 0.10 -0.7335 0.7345 0.0012 0.0134

MTRUE Mean 0.0039 0.0732 0.0004 0.0048
AQMM1 0.50 0.0037 0.0733 0.0002 0.0044
AQMM2 0.50 0.0037 0.0733 0.0001 0.0044
QSAM1 0.50 -0.6946 0.6952 0.0004 0.0093
QSAM2 0.50 -0.6971 0.6976 0.0004 0.0093

AQMM1 0.90 0.0031 0.0753 -0.0001 0.0077
AQMM2 0.90 0.0030 0.0753 -0.0001 0.0077
QSAM1 0.90 -0.7264 0.7274 0.0003 0.0135
QSAM2 0.90 -0.7314 0.7324 0.0003 0.0134
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From the findings presented in Tables 4.9 to 4.11, it is evident that the performance of the
“Model” factor emerged as the most significant influence on predictive performance. Par-
ticularly, both AQMM1 and AQMM2 performed better in situations involving unbalanced
data compared to balanced data. Each model performed well when errors were assumed to
follow a normal distribution, suggesting that all models were sensitive to the distribution
of error.

Table 4.9: ANOVA for three quantile models from AQMM with P-splines on MAE of
Study 4.2

τ Source of Variation DF SS F η2

0.10 Between subjects
Error distribution (f(ϵ)) (Standard normal and Student’s t) 1 0.00 102.95*** 0.01
Variance-covariance of errors (R) (Homogeneous and Heterogeneous) 1 0.12 17808.00*** 0.69
Data design (Balanced and Unbalanced data) 1 0.01 1473.50*** 0.16
Sample size (N = 100 and N = 1000) 1 0.00 515.30*** 0.06
Residuals 7995 0.48

Within subjects
Model (AQMM1, AQMM2, QSAM1, and QSAM2) 3 31.34 1512700.00*** 0.99
Model * f(ϵ) 3 0.00 0.70 0.00
Model * R 3 0.01 497.07*** 0.06
Model * Data design 3 0.86 41588.00*** 0.84
Model * N 3 0.01 268.82*** 0.03
Residuals 23985 0.17

0.50 Between subjects
Error distribution (f(ϵ) 1 0.10 4863.90*** 0.38
Variance-covariance of errors (R) 1 0.54 26510.00*** 0.77
Data design 1 0.07 3230.70*** 0.29
Sample size 1 0.00 186.72*** 0.02
Residuals 7995 1.54

Within subjects
Model 3 168.87 2764500.00*** 1.00
Model * f(ϵ) 3 4.19 0.01** 0.00
Model * R 3 0.06 1022.50*** 0.11
Model * Data design 3 4.05 66351.00*** 0.89
Model * N 3 0.02 259.44*** 0.03
Residuals 23985 0.49

0.90 Between subjects
Error distribution (f(ϵ)) 1 0.00 77.26*** 0.01
Variance-covariance of errors (R) 1 0.12 17016.00*** 0.68
Data design 1 0.02 2440.00*** 0.23
Sample size 1 0.00 509.40*** 0.06
Residuals 7995 0.50

Within subjects
Model 3 32.76 1535400.00*** 0.99
Model * f(ϵ) 3 0.00 11.73*** 0.00
Model * R 3 0.01 494.17*** 0.06
Model * Data design 3 0.72 33545.00*** 0.81
Model * N 3 0.01 291.61*** 0.04
Residuals 23985 0.17

Note: *** p < 0.001, ** p < 0.005, * p < 0.05
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Table 4.10: ANOVA for three quantile models from AQMM with P-splines on R-squared
of Study 4.2

τ Source of Variation DF SS F η2

0.10 Between subjects
Error distribution (f(ϵ)) (Standard normal and Student’s t) 1 0.00 12.54*** 0.00
Variance-covariance of errors (R) (Homogeneous and Heterogeneous) 1 0.04 523.00*** 0.06
Data design (Balanced and Unbalanced data) 1 0.21 2849.40*** 0.26
Sample size (N = 100 and N = 1000) 1 0.00 38.12*** 0.00
Residuals 7995 9.52

Within subjects
Model (AQMM1, AQMM2, QSAM1, and QSAM2) 3 437.99 2024200.00*** 1.00
Model * f(ϵ) 3 0.00 16.21*** 0.00
Model * R 3 0.37 1691.60*** 0.17
Model * Data design 3 10.28 47507.00*** 0.86
Model * N 3 0.03 121.25*** 0.01
Residuals 23985 1.73

0.50 Between subjects
Error distribution (f(ϵ) 1 0.00 45.14*** 0.01
Variance-covariance of errors (R) 1 0.00 82.42*** 0.01
Data design 1 0.32 6471.40*** 0.45
Sample size 1 0.00 3.16 0.00
Residuals 7995 5.70

Within subjects
Model 3 489.78 3307700.00*** 1.00
Model * f(ϵ) 3 0.24 1623.20*** 0.17
Model * R 3 0.62 4161.90*** 0.34
Model * Data design 3 9.75 65866.00*** 0.89
Model * N 3 0.02 113.67*** 0.01
Residuals 23985 1.18

0.90 Between subjects
Error distribution (f(ϵ)) 1 0.00 6.57* 0.00
Variance-covariance of errors (R) 1 0.00 10.95*** 0.00
Data design 1 0.31 3973.90*** 0.33
Sample size 1 0.00 31.81*** 0.00
Residuals 7995 9.99

Within subjects
Model 3 474.36 2028600.00*** 1.00
Model * f(ϵ) 3 0.01 59.22*** 0.01
Model * R 3 0.87 3733.90*** 0.32
Model * Data design 3 8.72 37278.00*** 0.82
Model * N 3 0.03 108.01*** 0.01
Residuals 23985 1.87

Note: *** p < 0.001, ** p < 0.005, * p < 0.05
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Table 4.11: ANOVA for three quantile models on PNR of Study 4.2

τ Source of Variation DF SS F η2

0.10 Between subjects
Error distribution (f(ϵ)) (Standard normal and Student’s t) 1 0.00 0.01 0.00
Variance-covariance of errors (R) (Homogeneous and Heterogeneous) 1 0.00 1.24 0.00
Data design (Balanced and Unbalanced data) 1 0.00 6.15* 0.00
Sample size (N = 100 and N = 1000) 1 0.00 269.14*** 0.03
Residuals 7995 0.15

Within subjects
Model (AQMM1, AQMM2, QSAM1, and QSAM2) 3 0.03 903.27*** 0.10
Model * f(ϵ) 3 0.00 0.03 0.00
Model * R 3 0.00 1.09 0.00
Model * Data design 3 0.00 29.52*** 0.00
Model * N 3 0.00 439.46*** 0.05
Residuals 23985 0.23

0.50 Between subjects
Error distribution (f(ϵ) 1 0.00 0.85 0.00
Variance-covariance of errors (R) 1 0.00 2.81 0.00
Data design 1 0.00 1.77 0.00
Sample size 1 0.00 7.68** 0.00
Residuals 7995 0.17

Within subjects
Model 3 0.01 334.14*** 0.04
Model * f(ϵ) 3 0.00 1.86 0.00
Model * R 3 0.00 1.71 0.00
Model * Data design 3 0.00 22.77*** 0.00
Model * N 3 0.01 217.27*** 0.03
Residuals 23985 0.26

0.90 Between subjects
Error distribution (f(ϵ)) 1 0.00 8.07** 0.00
Variance-covariance of errors (R) 1 0.00 6.83** 0.00
Data design 1 0.00 30.88*** 0.00
Sample size 1 0.01 906.52*** 0.10
Residuals 7995 0.14

Within subjects
Model 3 0.00 119.14*** 0.01
Model * f(ϵ) 3 0.00 0.92 0.00
Model * R 3 0.00 0.23 0.00
Model * Data design 3 0.00 1.05 0.00
Model * N 3 0.00 31.05*** 0.00
Residuals 23985 0.24

Note: *** p < 0.001, ** p < 0.005, * p < 0.05

Summary

It is evident that when AQMM was integrated with linear predictors, its predictive per-
formance remained efficient across all simulation scenarios, especially in the normal error
case. This indicates that AQMM maintained efficient performance when dealing with
linear predictors. It is important to note that AQMM is sensitive to the assumptions
of the error distribution. Furthermore, while AQMM excelled in parameter estimation,
QSAM struggled to estimate certain coefficients, particularly β1. This discrepancy might
be attributed to the influence of the first-order autoregressive (AR(1)) component.

4.4.3 Study 4.3

The simulation studies outlined in Study 4.1 and 4.2 were primarily centred on the broader
context of LCGD. This framework entails that the growth of child, such as weight, de-
pends only upon their preceding growth trajectory (autocorrelated process) and aligns
with the population average (the mean function). Nevertheless, it is worth noting that
real-world LCGD characteristics often encompass complexities beyond this simplified rep-
resentation. For example, individual children may diverge in their initial measurements,
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like birth weight or height (intercept), and their varying growth rate over time (slope). This
phenomenon, referred to as “between-individual differences”, is a common facet. Further-
more, many longitudinal child development studies encounter deviations from the initially
planned data collection schedule. Instances may arise where data collection is missed dur-
ing certain age intervals, leading to deviations from the scheduled points. Consequently,
these additional features/characteristics should be taken into account for a comprehensive
understanding.

Aim

This simulation study was conducted to evaluate the precision of AQMM in estimating
conditional quantile functions for child growth measurement. It focused on situations
where longitudinal data incorporated supplementary attributes such as between-individual
variations in baseline and growth trend, along with non-uniformly scheduled time points.

Data generation

The data were generated in accordance with the non-linear model provided by the equation
below:

yij = µij + β1x1ij + β2x2ij + u0i + u1itij + ϵij. (4.18)

Here, µij is defined to align with the non-linear function (4.10), while β1, β2, x1ij, and
x2ij retain the same specifications as presented in Study 4.2. In this context, the random
individual effects are represented by u = (u0, u1)

′, denoting random intercept and random
slope, respectively.

To generate the simulated data with autocorrelated and heteroscedastic observations, the
random errors (ϵij) were presumed to adhere to a heterogeneous exponential covariance
structure. This structure, defined by parameters σ2 = 2 and α = −0.50, mirrors that of
Study 4.1. Additionally, two distinct values of ϕ were taken into account: a medium value
(ϕ = 1.45) and a large value (ϕ = 4.48). This choice was made to examine the influence
of autocorrelation on the observations.

To exhibit the simulated data with between-individual differences, the random effects u

were assumed the follow the distribution:

u ∼ N2(0,G),

where

G =

(
1 −0.2

−0.2 0.5

)
.
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In this context, the matrix G was constructed based on the understanding that the vari-
ance of random intercepts (σ2

0) generally exceeds that of random slopes (σ2
1) in the realm of

child physical growth and development. Regarding the covariance value between random
intercepts and random slopes (σ01), it is common for children with substantial slopes to
have small intercepts. As a result, this covariance is typically negative.

This simulation study was centered on two cases involving unbalanced data featuring un-
equally spaced time observations, a common occurrence in longitudinal datasets concerning
child development:

1. Case 1: This case involved a specific arrangement of scheduled time points: 0, 0.06,
0.14, 0.21, 0.29, 0.36, 0.43, 0.57, 0.71, 0.86, 1. Consequently, the time intervals
between observations were set at 0.07 for the initial six points and 0.14 for the
subsequent ones. To simulate instances where observed time points deviate from
the scheduled ones, the same methodology employed in Study 4.1 was utilised (as
elaborated in the “unbalanced data” subsection). In this instance, the number of
observations (ni) per child varied between 2 and 11. Thus, this particular case
effectively represented scenarios in which the collection of growth measurements and
other associated variables encountered difficulties as age advanced.

2. Case 2: The scheduled time points were defined similarly to Case 1, with the ex-
ception of excluding 0.14, 0.21, and 0.36. Consequently, for this case, the set of
scheduled time points was 0, 0.06, 0.29, 0.43, 0.57, 0.71, 0.86, 1. This scenario re-
flects instances where growth measurements were not obtained at certain scheduled
time points. Within this context, the number of observations (ni) per child ranged
from 2 to 8. Thus, this particular case was illustrative of situations in which the
collection of growth measurements and associated variables encountered challenges
at specific time points.

Figure 4.11 shows plots derived from some simulated data, while and Table 4.12 lists all
the scenarios considered in this study.

Fitting the simulated data

For each of the eight simulated datasets, a comprehensive analysis was conducted involving
the fitting of three distinct quantile models (with quantile levels of τ = 0.10, 0.50, 0.90).
The model employed for this purpose was represented as follows:

Qyij |ui,tij ,xi
(τ) = βτ,0 + gτ (tij) + βτ,1x1ij + βτ,2x2ij + uτ,0i + uτ,1itij.
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(a) Case 1 with ϕ = 1.45
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(b) Case 2 with ϕ = 1.45
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(c) Case 1 with ϕ = 4.48
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(d) Case 2 with ϕ = 4.48

Figure 4.11: Example datasets of Study 4.3, generated from the model (4.18) using 1,000
children (N = 1000) with unequally spaced time observations.

Table 4.12: The scenarios used in Study 4.3

Scenario Data design Autocorrelation coefficient (ϕ) Sample size (N)
1 Medium, ϕ = 1.45 (or Ψ ≈ 0.50) 100
2 Medium, ϕ = 1.45 (or Ψ ≈ 0.50) 1000
3 Large, ϕ = 4.48 (or Ψ ≈ 0.80) 100
4

Case 1

Large, ϕ = 4.48 (or Ψ ≈ 0.80) 1000
5 Medium, ϕ = 1.45 (or Ψ ≈ 0.50) 100
6 Medium, ϕ = 1.45 (or Ψ ≈ 0.50) 1000
7 Large, ϕ = 4.48 (or Ψ ≈ 0.80) 100
8

Case 2

Large, ϕ = 4.48 (or Ψ ≈ 0.80) 1000

In order to model the non-linear function (gτ ), the second order P-spline basis (cubic
spline) with a discrete quadratic penalty on the basis coefficients was used. To save
computational time when fitting the model, the number of knots was determined using
the rule of thumb, K = max(5,min(Ñ/4, 35)), where Ñ is the number of unique observed
times and Ñ/4 is the largest integer not exceeding [Ñ/4] (Ngo & Wand, 2004). To specify
the variance-covariance matrix of u, I employed a general positive-definite matrix (also
known as “pdSymm” in aqmm package in R).
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To assess the performance of each model, the same metrics (i.e. R-squared for QR, MAE,
and PNR) were utilised as outlined in Section 4.4.1. Additionally, an analysis of variance
(ANOVA) was conducted to examine the influence of the degree of the autocorrelation
coefficient (ϕ) factor, data design, and sample size on each metric. Let Yijkl represent
observations of each metric. The ANOVA model can be expressed as follows:

Yijkl =µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)ik + ϵijkl,

l = 1, . . . , 4000, i = 1, 2, j = 1, 2, k = 1, 2,

where µ is the overall mean, αi is the main effect of the i-th level of the degree of the
autocorrelation coefficient factor (ϕ = 1.45 and ϕ = 4.48), βi is the main effect of the j-th
level of the data design factor (Case1 and Case2), γ is the main effect of the k-th level
of the sample size factor (N = 100 and N = 1, 000). Here, αβ)ij, (αγ)ik, (βγ)ik, are the
two-way interaction effects between these factors, and ϵijkl is the random error term.

Results
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Figure 4.12: The MAE of the AQMM approach with P-splines in Study 4.3. The left
column contains the results for the Case 1 scenario while the right column contains the
results for the Case 2 scenario. The three rows contain the results for quantile levels at
0.10, 0.50 and 0.90, respectively

Figure 4.12 presents the MAE values of the AQMM approach with P-splines across three
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quantiles, two degrees of autocorrelation, two data designs, and two sample sizes. The
results indicate that both extreme quantile models (the 0.10th and 0.90th quantile mod-
els) provided similar MAE values and trends, whereas the 0.50th quantile models yielded
higher MAE values than the two extreme quantile models. When comparing scenarios
with different degrees of autocorrelation, the AQMM model provided smaller MAE values
for the large degree of autocorrelation compared to the medium degree across all three
quantile models, data designs, and sample sizes. This suggests that when the data exhibit
highly correlated measurements, the random effects part of the AQMM model can effec-
tively address such correlations.

Regarding the two distinct data designs (Case 1 and 2), this model exhibited consistent
performance, displaying similar values and trends in terms of MAE across three quantile
models. This indicates that the AQMM model with P-splines can be effective in captur-
ing the characteristics of these two unbalanced datasets featuring unequally spaced time
observations.
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Figure 4.13: The RS of the AQMM approach with P-splines in Study 4.3. The left column
contains the results for the Case 1 scenario while the right column contains the results for
the Case 2 scenario. The three rows contain the results for quantile levels at 0.10, 0.50
and 0.90, respectively

Figure 4.13 displays the RS values of the AQMM approach with P-splines across three
quantiles, two degrees of autocorrelation, two data designs, and two sample sizes. It is
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evident that the AQMM approach exhibited similar RS values and trends across all three
quantile models. Specifically, within the context of two distinct degrees of autocorrelation,
the AQMM model yielded higher RS values in the large degree compared to the medium
degree. This suggests a similarity to the MAE values mentioned previously. When con-
sidering the two data designs, the RS values from the AQMM model with P-splines were
relatively similar in both data designs.
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Figure 4.14: The PNR of the AQMM approach with P-splines in Study 4.3. The left
column contains the results for the Case 1 scenario while the right column contains the
results for the Case 2 scenario. The three rows contain the results for quantile levels at
0.10, 0.50 and 0.90, respectively. The red dashed lines represent the expected quantile
levels, τ = 0.10, 0.50, and 0.90, respectively.

Figure 4.14 shows the PNR values of the AQMM approach with P-splines across three
quantiles, two degrees of autocorrelation, two data designs, and two sample sizes. It
appears that the three quantile models from the AQMM approach tended to provide PNR
values close to their respective quantile levels across both degrees of autocorrelation, data
designs, and sample sizes. Specifically, when considering the two sample sizes, the 0.50th
quantile model provided average PNR values close to the expected quantile level at 0.50
for both sample sizes. However, when the sample size was small, the PNR values of the
two extreme quantile models deviated from their expected quantile levels at 0.10 and 0.90,
respectively. This suggests that the AQMM model is particularly sensitive to sample sizes,
especially for extreme quantiles.
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Furthermore, an ANOVA on MAE, RS and PNR, as presented in Tables 4.13 to 4.15,
indicates that both the degrees of autocorrelation and the data design predominantly
influenced AQMM’s performance on MAE and RS, whereas the sample size factor was the
main influence on PNR.

Table 4.13: ANOVA for three quantile models from AQMM with P-splines on MAE of
Study 4.3

τ Source of Variation DF SS F η2

0.10 Degree of the autocorrelation coefficient 1 0.53 141800.00*** 0.97
(ϕ = 1.45 and ϕ = 4.48)

Data design (Case1 and Case2) 1 0.00 1219.00*** 0.23
Sample size (N = 100 and N = 1000) 1 0.00 416.40*** 0.09
ϕ * Data design 1 0.00 87.69*** 0.02
ϕ * N 1 0.00 11.12*** 0.00
Data design * N 1 0.00 0.34 0.00
Residual 3993 0.01

0.50 Degree of the autocorrelation coefficient (ϕ) 1 2.70 176100.00*** 0.98
Data design 1 0.02 1310.00*** 0.25
Sample size (N) 1 0.00 105.20*** 0.03
ϕ * Data design 1 0.00 123.00*** 0.03
ϕ * N 1 0.00 0.97 0.00
Data design * N 1 0.00 0.15 0.00
Residual 3993 0.06

0.90 Degree of the autocorrelation coefficient (ϕ) 1 0.53 148200.00*** 0.97
Data design 1 0.00 1363.00*** 0.25
Sample size (N) 1 0.00 390.20*** 0.09
ϕ * Data design 1 0.00 98.94*** 0.02
ϕ * N 1 0.00 9.59** 0.00
Data design * N 1 0.00 0.65 0.00
Residual 3993 0.01

Note: *** p < 0.001, ** p < 0.005, * p < 0.05

Table 4.14: ANOVA for three quantile models from AQMM with P-splines on R-squared
of Study 4.3

τ Source of Variation DF SS F η2

0.10 Degree of the autocorrelation coefficient (ϕ) 1 5.63 51023.78*** 0.93
(ϕ = 1.45 and ϕ = 4.48)

Data design (Case1 and Case2) 1 0.12 1041.11*** 0.21
Sample size (N = 100 and N = 1000) 1 0.01 55.90*** 0.01
ϕ * Data design 1 0.01 74.46*** 0.02
ϕ * N 1 0.00 0.87 0.00
Data design * N 1 0.00 1.40 0.00
Residual 3993 0.44

0.50 Degree of the autocorrelation coefficient (ϕ) 1 5.70 69516.49*** 0.95
Data design 1 0.13 1522.32*** 0.28
Sample size (N) 1 0.00 3.88* 0.00
ϕ * Data design 1 0.01 131.23*** 0.03
ϕ * N 1 0.00 0.16 0.00
Data design * N 1 0.00 1.47 0.00
Residual 3993 0.33

0.90 Degree of the autocorrelation coefficient (ϕ) 1 5.91 52331.34*** 0.93
Data design 1 0.16 1433.57*** 0.26
Sample size (N) 1 0.00 14.92*** 0.00
ϕ * Data design 1 0.00 103.78*** 0.03
ϕ * N 1 0.00 0.02 0.00
Data design * N 1 0.00 2.16 0.00
Residual 3993 0.45

Note: *** p < 0.001, ** p < 0.005, * p < 0.05
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Table 4.15: ANOVA for the three quantile models from AQMM with P-splines on PNR
of Study 4.3

τ Source of Variation DF SS F η2

0.10 Degree of the autocorrelation coefficient (ϕ) 1 0.00 0.01 0.00
(ϕ = 1.45 and ϕ = 4.48)

Data design (Case1 and Case2) 1 0.00 137.04*** 0.03
Sample size (N = 100 and N = 1000) 1 0.01 424.48*** 0.10
ϕ * Data design 1 0.00 2.60 0.00
ϕ * N 1 0.00 0.21 0.00
Data design * N 1 0.00 34.11*** 0.01
Residual 3993 0.10

0.50 Degree of the autocorrelation coefficient (ϕ) 1 0.00 0.99 0.00
Data design 1 0.00 2.11 0.00
Sample size (N) 1 0.00 10.41** 0.00
ϕ * Data design 1 0.00 0.52 0.00
ϕ * N 1 0.00 0.62 0.00
Data design * N 1 0.00 1.13 0.00
Residual 3993 0.11

0.90 Degree of the autocorrelation coefficient (ϕ) 1 0.00 2.41 0.00
Data design 1 0.00 65.46*** 0.02
Sample size (N) 1 0.00 246.39*** 0.06
ϕ * Data design 1 0.00 0.11 0.00
ϕ * N 1 0.00 2.06 0.00
Data design * N 1 0.00 14.17*** 0.00
Residual 3993 0.10

Note: *** p < 0.001, ** p < 0.005, * p < 0.05

Summary

Within the context of LCGD, characterised by heteroscedasticity, correlated within-child
errors, discrepancies in initial measurements, and temporal variations in individual growth
rates, AQMM consistently showcased resilient performance. The random effects compo-
nent in this model effectively addresses correlated within-child errors or the correlation
structure in repeated growth measurements, such as the CAR(1) structure. Furthermore,
modelling AQMM with P-splines exhibited notable proficiency in accommodating LCGD
characterised by non-uniformly scheduled temporal points.

4.4.4 Study 4.4

In theoretical terms, the mixed model framework employs the incorporation of random
errors to capture within-individual variability. These random errors conform to a prior
distribution, often characterised by a zero-centred normal distribution, complete with a
predetermined variance-covariance structure. Typically, it is assumed that each individ-
ual shares an identical residual variance (σ2). However, in practice, additional systematic
differences contribute to variations in within-individual attributes across individuals. This
phenomenon is commonly referred to as “between-individual differences in intra-individual
variation”. In the context of LCGD, such variations may emerge, resulting in data that
have this variation with common features such as between-individual differences in inter-
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cept and trend, and autocorrelation. Hence, it is reasonable to investigate this aspect
when applying the AQMM approach to the fitting of LCGD.

Aim

This simulation study was conducted with the purpose of assessing the precision with which
AQMM can estimate conditional quantile functions concerning child growth measurement
withing the context of longitudinal data that incorporates the manifestation of between-
individual differences in intra-individual variation.

Data generation

The data were generated from the model (4.18), but each child was allowed to have his/her
own residual variance by assuming the residual errors to follow

ϵi ∼ Nni
(0, σ2

iRi), (4.19)

where
σ2
i = exp(δ0 + ωi). (4.20)

Here, δ0 = 0.69 signifies the random intercept model for σ2
i . This setting implies an aver-

age residual variance (σ̄2) of 2. The term ωi ∼ N(0, σ2
ω) represents an individual-specific

random effect for the residual variance, where σ2
ω is its variance (Hedeker et al., 2008).

In order to investigate the model’s performance under different data settings, the variance
of ωi was set to two different values: 0.5 and 1.0. The former indicates an initial disper-
sion of individual-specific random effects around the mean, while the latter represents a
doubling of this dispersion to assess its impact on the model’s performance. Both Ci and
Φi were defined to correspond to (4.12) and (4.13), respectively, to hold the heterogeneous
exponential covariance structure. In this case, each child was assumed to have the iden-
tical structure of autocorrelation, where ϕ = 1.45. Figure 4.15 shows plots derived from
some simulated data, while and Table 4.16 lists all the scenarios considered in this study.

To fit the simulated data, the same model of Study 4.3 was applied, i.e. AQMM with
a cubic P-spline. Each simulated dataset was fitted to follow the same processes that
mentioned in Section 4.4.3.

To assess the performance of the model, the same metrics (i.e. R-squared for QR, MAE,
and PNR) were used. Furthermore, the analysis of variance (ANOVA) was conducted to
examine the influence of three factors (i.e. “Variance of ωi (σ2

ω)”, “Data design”, “Sample
size (N)” on each metric. Let each metric is denoted by Yijkl, where Yijkl is the l-th
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observation at the i-th level of the variance of ωi (σ2
ω) factor, the j-th level of the data

design factor, and the k-th level of the sample size factor. The ANOVA model can be
written as:

Yijkl = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)ik + ϵijkl,

where µ is the overall mean, αi is the main effect of the i-th level of the variance of ωi

factor (σ2
ω = 0.50 and σ2

ω = 1.00), βi is the main effect of the j-th level of the data design
factor (Case1 and Case2), γ is the main effect of the k-th level of the sample size fac-
tor (N = 100 and N = 1, 000), αβ)ij, (αγ)ik, (βγ)ik, are the interaction effects, and ϵijkl

is the random error term, assumed to be normally distributed with mean 0 and variance σ2.
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Figure 4.15: Example datasets of Study 4.4, generated from models (4.18) and (4.20) using
1,000 children (N = 1000) with unequally spaced time observations.
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Table 4.16: The scenarios used in Study 4.4

Scenario Data design Variance of ωi (σ2
ω) Sample size (N)

1 σ2
ω = 0.50 100

2 σ2
ω = 0.50 1000

3 σ2
ω = 1.00 100

4

Case 1

σ2
ω = 1.00 1000

5 σ2
ω = 0.50 100

6 σ2
ω = 0.50 1000

7 σ2
ω = 1.00 100

8

Case 2

σ2
ω = 1.00 1000
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Figure 4.16: The MAE of the AQMM approach with P-splines in Study 4.4. The left
column contains the results for the Case 1 scenario while the right column contains the
results for the Case 2 scenario. The three rows contain the results for quantile levels at
0.10, 0.50 and 0.90, respectively

Figure 4.16 illustrates that, even with between-individual differences in intra-individual
variation within LCGD, the two extreme quantile models (the 0.10 and 0.90th quantiles)
from the AQMM with P-splines consistently yielded similar MAE values. This similarity in
MAE values indicates that the AQMM approach provides relatively consistent predictions
across different segments of the data distribution. In contrast, the MAE values of the
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0.50the quantile model were explicitly higher than those of the two extreme quantile
models. When considering the scenario of two distinct values of the variance of individual-
specific random effect for the residual variance (σ2

ω), the MAE values in the scenario of
σ2
ω = 0.50 tended to be smaller than in the case of σ2

ω = 1.0 across two data designs and
two sample sizes. Furthermore, compared to the scenarios of LCGD with no between-
individual differences in intra-individual variation in Study 4.3, the MAE values were
higher across all scenarios. This indicates that the AQMM model is sensitive to other
between-individual differences within LCGD, as expected. Regarding the two distinct
data designs, the AQMM seemed to yield slightly smaller MAE values in Case 1 compared
to Case 2. When the sample size increased to be large (N = 1, 000), the AQMM model
provided higher precision in MAE values compared to a small sample size across all other
scenarios.

σ
ω

2
 : 0.50 1.00

Case1

0.65

0.70

0.75

0.80

0.85

0.90

0.95

R
S

Case2

ta
u

: 0
.1

0

0.65

0.70

0.75

0.80

0.85

0.90

0.95

R
S

ta
u

: 0
.5

0

0.65

0.70

0.75

0.80

0.85

0.90

0.95

100 1000

R
S

ta
u

: 0
.9

0

100 1000

Sample size (N)

Figure 4.17: The RS of the AQMM approach with P-splines in Study 4.4. The left column
contains the results for the Case 1 scenario while the right column contains the results for
the Case 2 scenario. The three rows contain the results for quantile levels at 0.10, 0.50
and 0.90, respectively

Figure 4.17 shows that the 0.10 and 0.90th quantile models from the AQMM with P-
splines relatively yielded similar RS values. However, the 0.50the quantile model provided
slightly higher RS values compared to those of the two extreme quantile models. The RS
values in the scenario of σ2

ω = 0.50 were slightly higher than in the case of σ2
ω = 1.0 across

two data designs and two sample sizes. When considering two distinct data design, the RS
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values from three quantile models in Case1 appeared to be slightly smaller than in Case2.
Increasing the sample sizes to a large provide more precision in RS values than the small
sample size for all other scenarios.
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Figure 4.18: The PNR of the AQMM approach with P-splines in Study 4.4. The left
column contains the results for the Case 1 scenario while the right column contains the
results for the Case 2 scenario. The three rows contain the results for quantile levels at
0.10, 0.50 and 0.90, respectively

Figure 4.18 shows that the three quantile models from the AQMM approach with P-splines
yielded the PNR values close to their expected quantile level at 0.10, 0.50, and 0.90 across
all scenarios. However, in the case of a small sample size, both extreme quantile models
(the 0.10 and 0.50 quantiles) provided average PNR values that deviated relatively from
their expected quantile levels. This trend held true for all scenarios.

Clearly, Tables 4.17 to 4.19 show that the variance of the individual-specific random effect
for the residual (σ2

ω) was the main factor impacting to the predictive performance of
AQMM with P-splines, especially in terms of MAE. Meanwhile, the data design was the
main factor affecting the R-squared value. However, this scenario did not affect the PNR
(Table 4.18).
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Table 4.17: ANOVA for three quantile models from AQMM with P-splines on MAE of
Study 4.4

τ Source of Variation DF SS F η2

0.10 Variance of ωi (σ2
ω = 0.50 and σ2

ω = 1.00) 1 0.07 3187.65*** 0.44
Data design (Case1 and Case2) 1 0.01 473.74*** 0.11
Sample size (N = 100 and N = 1000) 1 0.00 135.43*** 0.03
σ2
ω * Data design 1 0.00 2.250 0.00

σ2
ω * N 1 0.00 0.55 0.00

Data design * N 1 0.00 0.05 0.00
Residual 3993 0.09

0.50 Variance of ωi (σ2
ω) 1 0.08 1283.02*** 0.24

Data design 1 0.05 825.58*** 0.17
Sample size (N) 1 0.00 2.54 0.00
σ2
ω * Data design 1 0.00 4.03* 0.00

σ2
ω * N 1 0.00 2.23 0.00

Data design * N 1 0.00 4.11* 0.00
Residual 3993 0.26

0.90 Variance of ωi (σ2
ω) 1 0.07 3160.18*** 0.44

Data design 1 0.01 540.47*** 0.12
Sample size (N) 1 0.00 114.03*** 0.03
σ2
ω * Data design 1 0.00 2.74 0.00

σ2
ω * N 1 0.00 0.10 0.00

Data design * N 1 0.00 0.83 0.00
Residual 3993 0.09

Note: *** p < 0.001, ** p < 0.005, * p < 0.05

Table 4.18: ANOVA for three quantile models from AQMM with P-splines on R-squared
of Study 4.4

τ Source of Variation DF SS F η2

0.10 Variance of ωi (σ2
ω = 0.50 and σ2

ω = 1.00) 1 0.12 398.53*** 0.09
Data design (Case1 and Case2) 1 0.29 977.30*** 0.20
Sample size (N = 100 and N = 1000) 1 0.00 9.60** 0.00
σ2
ω * Data design 1 0.00 3.76 0.00

σ2
ω * N 1 0.00 0.08 0.00

Data design * N 1 0.00 0.44 0.00
Residual 3993 1.19

0.50 Variance of ωi (σ2
ω) 1 0.02 107.37*** 0.03

Data design 1 0.29 1755.14*** 0.31
Sample size (N) 1 0.00 9.17** 0.00
σ2
ω * Data design 1 0.00 4.02* 0.00

σ2
ω * N 1 0.00 1.73 0.00

Data design * N 1 0.00 4.74* 0.00
Residual 3993 0.66

0.90 Variance of ωi (σ2
ω) 1 0.12 375.39*** 0.09

Data design 1 0.39 1219.94*** 0.23
Sample size (N) 1 0.00 3.26 0.00
σ2
ω * Data design 1 0.00 4.84* 0.00

σ2
ω * N 1 0.00 0.46 0.00

Data design * N 1 0.00 0.30 0.00
Residual 3993 1.29

Note: *** p < 0.001, ** p < 0.005, * p < 0.05
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Table 4.19: ANOVA for three quantile models from AQMM with P-splines on PNR of
Study 4.4

τ Source of Variation DF SS F η2

0.10 Variance of ωi (σ2
ω = 0.50 and σ2

ω = 1.00) 1 0.00 0.02 0.00
Data design (Case1 and Case2) 1 0.00 141.37*** 0.03
Sample size (N = 100 and N = 1000) 1 0.02 624.22*** 0.14
σ2
ω * Data design 1 0.00 0.16 0.00

σ2
ω * N 1 0.00 0.30 0.00

Data design * N 1 0.00 49.55*** 0.01
Residual 3993 0.10

0.50 Variance of ωi (σ2
ω) 1 0.00 0.12 0.00

Data design 1 0.00 3.32 0.00
Sample size (N) 1 0.00 33.71*** 0.01
σ2
ω * Data design 1 0.00 1.68 0.00

σ2
ω * N 1 0.00 0.12 0.00

Data design * N 1 0.00 2.60 0.00
Residual 3993 0.14

0.90 Variance of ωi (σ2
ω) 1 0.00 0.10 0.00

Data design 1 0.00 22.59*** 0.01
Sample size (N) 1 0.01 292.12*** 0.07
σ2
ω * Data design 1 0.00 0.35 0.00

σ2
ω * N 1 0.00 0.09 0.00

Data design * N 1 0.00 0.17 0.00
Residual 3993 0.09

Note: *** p < 0.001, ** p < 0.005, * p < 0.05

Summary

In scenarios where LGCD exhibited between-individual differences in intra-individual vari-
ation, AQMM’s performance remained satisfactory, with MAE approaching to zero, R-
squared values close to one, and PNR closely aligned with the quantile levels, particularly
when the intra-individual variation was at a medium level. However, its performance
appeared to decline when LGCD demonstrated a high level of this variation.

4.4.5 Study 4.5

In real-world datasets, children exhibit variation not only in residual errors but also in
terms of autocorrelation patterns. This heterogeneity implies that some children might
demonstrate a higher or lower degree of the AR(1) process compared to others, influenced
by individual circumstances. Consequently, this characteristic presents another essential
consideration when analysing or modelling LCGD.

Aim

The objective of this simulation study was to evaluate the accuracy of AQMM in es-
timating conditional quantile functions for child growth measurements in the presence
of both between-individual differences in intra-individual variation and autocorrelation
within longitudinal data.
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Data generation

The dataset was generated according to the model (4.18), with the additional consideration
that each child had unique residual variance and autocorrelation patterns. This was
achieved by assuming the residual errors followed distribution (4.19) and (4.20), and by
specifying an individual exponential correlation structure as follows:

Ci,j = exp(−sij/ϕi), ϕi > 0, (4.21)

where
ϕi = exp(ζ0 + πi). (4.22)

Here, ζ0 = 0.37 denotes a random intercept of ϕi. This setting implies an average au-
tocorrelation coefficient (ϕ̄) of 1.45. In other words, this is equivalent to the continu-
ous first-order autocorrelation coefficient of 0.50. The term πi ∼ N(0, σ2

π) represents an
individual-specific random effect for the autocorrelation, where σ2

π is its variance.

In order to investigate how well the model performed with different data settings, the
variance of ωi and πi was adjusted to two different situations: 0.50 and 0.10 (as shown
in Table 4.20). The adjustment was made to examine how the model behaves when the
dispersion of both σ2

i and ϕi is altered by half.

Table 4.20: The scenarios used in Study 4.5

Scenario Data design Variance of ωi (σ2
ω) Variance of πi (σ2

π) Sample size (N)
1 σ2

π = 0.50 100
2 σ2

π = 1.00 100
3 σ2

π = 0.50 1000
4

σ2
ω = 0.50

σ2
π = 1.00 1000

5 σ2
π = 0.50 100

6 σ2
π = 1.00 100

7 σ2
π = 0.50 1000

8

Case 1

σ2
ω = 1.00

σ2
π = 1.00 1000

9 σ2
π = 0.50 100

10 σ2
π = 1.00 100

11 σ2
π = 0.50 1000

12

σ2
ω = 0.50

σ2
π = 1.00 1000

13 σ2
π = 0.50 100

14 σ2
π = 1.00 100

15 σ2
π = 0.50 1000

16

Case 2

σ2
ω = 1.00

σ2
π = 1.00 1000

To fit the simulated data, the same model of Study 4.3 were applied, i.e. AQMM with
a cubic P-spline. Each simulated dataset was fitted to follow the same processes that
mentioned in Section 4.4.3.

The performance of each model was evaluated using the same metrics (i.e. R-squared for
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QR, MAE, and PNR) as described in Section 4.4.1.

Results
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Figure 4.19: The MAE of the AQMM approach with P-splines in Study 4.5 when the
simulated data had a medium variance of ωi (σ2

ω = 0.50). The left column contains the
results for the Case 1 scenario while the right column contains the results for the Case
2 scenario. The three rows contain the results for quantile levels at 0.10, 0.50 and 0.90,
respectively

In the scenario where the variance of ωi (σ2
ω) was fixed at 0.50 and the variance of πi (σ2

π)
was varied to be 0.50 and 1.00, Figure 4.19 shows that the MAE values of the two extreme
quantile models (the 0.10th and 0.90th quantiles) were relatively similar, indicating that
the AQMM approach provides consistent prediction across different segments of the data
distribution. However, the 0.50th quantile model provided higher MAE values than those
of the two extreme quantile. The MAE values in the scenario of σ2

π = 0.50 tended to be
smaller than σ2

π = 1.00. This trend was consistent across all scenarios and three quantile
levels, suggesting that the AQMM approach is sensitive to this feature in LCGD.
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Figure 4.20: The RS of the AQMM approach with P-splines in Study 4.5 when the simu-
lated data had a medium variance of ωi (σ2

ω = 0.50). The left column contains the results
for the Case 1 scenario while the right column contains the results for the Case 2 scenario.
The three rows contain the results for quantile levels at 0.10, 0.50 and 0.90, respectively

In term of R-squared, Figure 4.20 demonstrates that the two extreme quantile models
yielded the RS values that were relatively similar, whereas the 0.50th quantile model pro-
vided slightly higher RS values compared to the two extreme quantile models. The RS
values declined when the variance of πi (σ2

π) increased to 1.00, indicating that this feature
in LCGD impacts to the performance of AQMM.

When considering the PNR metric, Figure 4.21 shows that the AQMM approach with P-
splines still provided the PNR values as expected. The PNR values of the three quantile
models were close to their expected quantile levels in all scenarios. However, in the case
of the two extreme quantile models with a small sample size, the average PNR values
appeared to deviate from the expected quantile levels.
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Figure 4.21: The PNR of the AQMM approach with P-splines in Study 4.5 when the
simulated data had a medium variance of ωi (σ2

ω = 0.50). The left column contains the
results for the Case 1 scenario while the right column contains the results for the Case
2 scenario. The three rows contain the results for quantile levels at 0.10, 0.50 and 0.90,
respectively
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In the scenario where the variance of ωi (σ2
ω) was fixed at 1.00 and the variance of πi (σ2

π)
was varied to be 0.50 and 1.00, Figures 4.22 to 4.24 show trends of MAE, RS, and PNR
similar to the scenario of σ2

ω = 0.50. However, the values of MAE and PNR were relatively
higher than those of that scenario, whereas the PNR value remained the same. This indi-
cates that AQMM is sensitive when data explicitly show high variance in autocorrelation
in subjects or individuals.
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Figure 4.22: The MAE of the AQMM approach with P-splines in Study 4.5 when the
simulated data had a large variance of ωi (σ2

ω = 1.0). The left column contains the results
for the Case 1 scenario while the right column contains the results for the Case 2 scenario.
The three rows contain the results for quantile levels at 0.10, 0.50 and 0.90, respectively
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Figure 4.23: The RS of the AQMM approach with P-splines in Study 4.5 when the simu-
lated data had a large variance of ωi (σ2

ω = 1.0). The left column contains the results for
the Case 1 scenario while the right column contains the results for the Case 2 scenario.
The three rows contain the results for quantile levels at 0.10, 0.50 and 0.90, respectively
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Figure 4.24: The PNR of the AQMM approach with P-splines in Study 4.5 when the
simulated data had a large variance of ωi (σ2

ω = 1.0). The left column contains the results
for the Case 1 scenario while the right column contains the results for the Case 2 scenario.
The three rows contain the results for quantile levels at 0.10, 0.50 and 0.90, respectively
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Tables 4.21 to 4.23 confirm that both variances of the individual-specific random effect
for the residual variance and the autocorrelation influenced the predictive performance of
AQMM with P-splines in terms of MAE and R-squared. However, neither design affected
the PNR (Table 4.23).

Table 4.21: ANOVA for three quantile models from AQMM with P-splines on MAE of
Study 4.5

τ Source of Variation DF SS F η2

0.10 Variance of ωi (σ2
ω = 0.50 and σ2

ω = 1.00) 1 0.17 3273.13*** 0.29
Variance of πI (σ2

π = 0.50 and σ2
π = 1.00) 1 0.09 1711.16*** 0.18

Data design (Case1 and Case2) 1 0.02 325.14*** 0.04
Sample size (N = 100 and N = 1000) 1 0.01 151.75*** 0.02
σ2
ω * σ2

π 1 0.00 1.52 0.00
σ2
ω * Data design 1 0.00 4.77* 0.00

σ2
ω * N 1 0.00 0.01 0.00

σ2
π * Data design 1 0.00 8.35** 0.00

σ2
π * N 1 0.00 0.00 0.00

Data design * N 1 0.00 8.74** 0.00
Residual 7989 0.41

0.50 Variance of ωi (σ2
ω) 1 0.22 1586.83*** 0.17

Variance of πI (σ2
π) 1 0.12 881.45*** 0.10

Data design 1 0.12 883.53*** 0.10
Sample size (N) 1 0.00 6.99** 0.00
σ2
ω * σ2

π 1 0.00 1.94 0.00
σ2
ω * Data design 1 0.00 8.66** 0.00

σ2
ω * N 1 0.00 6.73** 0.00

σ2
π * Data design 1 0.00 0.54 0.00

σ2
π * N 1 0.00 2.67 0.00

Data design * N 1 0.00 25.36*** 0.00
Residual 7989 1.09

0.90 Variance of ωi (σ2
ω) 1 0.17 3175.16*** 0.28

Variance of πI (σ2
π) 1 0.09 1655.60*** 0.17

Data design 1 0.02 355.48*** 0.04
Sample size (N) 1 0.01 96.78*** 0.01
σ2
ω * σ2

π 1 0.00 1.52 0.00
σ2
ω * Data design 1 0.00 5.28* 0.00

σ2
ω * N 1 0.00 0.20 0.00

σ2
π * Data design 1 0.00 6.74** 0.00

σ2
π * N 1 0.00 0.07 0.00

Data design * N 1 0.00 14.49*** 0.00
Residual 7989 0.43

Note: *** p < 0.001, ** p < 0.005, * p < 0.05
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Table 4.22: ANOVA for three quantile models from AQMM with P-splines on R-squared
of Study 4.5

τ Source of Variation DF SS F η2

0.10 Variance of ωi (σ2
ω = 0.50 and σ2

ω = 1.00) 1 0.21 402.92*** 0.05
Variance of πI (σ2

π = 0.50 and σ2
π = 1.00) 1 0.75 1413.65*** 0.15

Data design (Case1 and Case2) 1 0.50 942.34*** 0.11
Sample size (N = 100 and N = 1000) 1 0.01 24.88*** 0.00
σ2
ω * σ2

π 1 0.00 0.08 0.00
σ2
ω * Data design 1 0.01 9.51** 0.00

σ2
ω * N 1 0.00 0.80 0.00

σ2
π * Data design 1 0.00 4.10* 0.00

σ2
π * N 1 0.00 0.03 0.00

Data design * N 1 0.00 2.23 0.00
Residual 7989 4.22

0.50 Variance of ωi (σ2
ω) 1 0.05 188.88*** 0.02

Variance of πI (σ2
π) 1 0.22 798.23*** 0.09

Data design 1 0.65 2342.56*** 0.23
Sample size (N) 1 0.01 49.43*** 0.01
σ2
ω * σ2

π 1 0.00 0.45 0.00
σ2
ω * Data design 1 0.00 9.81** 0.00

σ2
ω * N 1 0.00 5.77* 0.00

σ2
π * Data design 1 0.00 0.02 0.00

σ2
π * N 1 0.00 2.63 0.00

Data design * N 1 0.01 21.15*** 0.00
Residual 7989 2.20

0.90 Variance of ωi (σ2
ω) 1 0.21 361.02*** 0.04

Variance of πI (σ2
π) 1 0.79 1346.60*** 0.14

Data design 1 0.80 1355.78*** 0.15
Sample size (N) 1 0.00 2.27 0.00
σ2
ω * σ2

π 1 0.00 0.08 0.00
σ2
ω * Data design 1 0.01 9.32** 0.00

σ2
ω * N 1 0.00 1.33 0.00

σ2
π * Data design 1 0.00 2.25 0.00

σ2
π * N 1 0.00 0.20 0.00

Data design * N 1 0.01 8.51** 0.00
Residual 7989 4.70

Note: *** p < 0.001, ** p < 0.005, * p < 0.05
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Table 4.23: ANOVA for three quantile models from AQMM with P-splines on PNR of
Study 4.5

τ Source of Variation DF SS F η2

0.10 Variance of ωi (σ2
ω = 0.50 and σ2

ω = 1.00)) 1 0.00 0.39 0.00
Variance of πI (σ2

π = 0.50 and σ2
π = 1.00) 1 0.00 1.92 0.00

Data design (Case1 and Case2) 1 0.00 175.83*** 0.02
Sample size (N = 100 and N = 1000) 1 0.03 1175.08*** 0.13
σ2
ω * σ2

π 1 0.00 1.65 0.00
σ2
ω * Data design 1 0.00 7.96** 0.00

σ2
ω * N 1 0.00 1.22 0.00

σ2
π * Data design 1 0.00 0.29 0.00

σ2
π * N 1 0.00 0.17 0.00

Data design * N 1 0.00 20.64*** 0.00
Residual 7989 0.18

0.50 Variance of ωi (σ2
ω) 1 0.00 1.28 0.00

Variance of πI (σ2
π) 1 0.00 0.14 0.00

Data design 1 0.00 17.95*** 0.00
Sample size (N) 1 0.00 67.55*** 0.00
σ2
ω * σ2

π 1 0.00 0.08 0.00
σ2
ω * Data design 1 0.00 1.43 0.00

σ2
ω * N 1 0.00 1.38 0.00

σ2
π * Data design 1 0.00 0.55 0.00

σ2
π * N 1 0.00 0.06 0.00

Data design * N 1 0.00 23.60*** 0.00
Residual 7989 0.32

0.90 Variance of ωi (σ2
ω) 1 0.00 4.86* 0.00

Variance of πI (σ2
π) 1 0.00 1.57 0.00

Data design 1 0.00 123.31*** 0.02
Sample size (N) 1 0.02 815.53*** 0.09
σ2
ω * σ2

π 1 0.00 0.07 0.00
σ2
ω * Data design 1 0.00 0.03 0.00

σ2
ω * N 1 0.00 5.54* 0.00

σ2
π * Data design 1 0.00 0.42 0.00

σ2
π * N 1 0.00 1.21 0.00

Data design * N 1 0.00 7.21** 0.00
Residual 7989 0.16

Note: *** p < 0.001, ** p < 0.005, * p < 0.05

Summary

In scenarios where LCGD demonstrated between-individual differences, such as intra-
individual variation and autocorrelation features, the predictive capability of the AQMM
method declined. This was evidenced by increased MAE and decreased R-squared values
across sixteen scenarios and three quantiles. The deterioration in predictive performance
was exacerbated when the variances of the two sources of variation doubled. However, the
model’s PNR remained consistent at the median quantile level, with only minor deviations
at the extreme quantiles, which diminished as sample sizes increased. Therefore, while
the AQMM method’s predictive accuracy was affected by intra-individual variation and
autocorrelation features, its PNR was relatively stable.
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4.5 Chapter summary

In this chapter, two flexible quantile regression approaches for analysing longitudinal data
are reviewed. Subsequently, I carried out simulation studies focused on longitudinal child
growth data (LCGD) to evaluate the predictive and parameter estimation performances
of these approaches across various scenarios. In the initial two simulation studies, when
the LCGD exhibited typical child growth characteristics including autocorrelation among
repeated measurements taken from the same child, the AQMM method with two different
penalised methods on cubic B-spline bases demonstrated identical performances and out-
performed QSAM. AQMM allows users to model nonlinear child growth patterns using
various types of splines without the need to determine smoothing parameters, and it helps
in identifying risk factors associated with child growth measurements. Although AQMM
requires more computational time than QSAM, especially with larger sample sizes, it is
still acceptable. Conversely, QSAM has limitations, such as the requirement to specify
parameters related to splines.

Furthermore, in the last three simulation studies, I explored scenarios where the LCGD
encompassed additional characteristics or features. These included differences between
individuals in their baseline (intercept) and growth rate (slope), intra-individual variation
and, autocorrelation. Simulation results demonstrate that the AQMM approach with cu-
bic P-splines is more effective in capturing the former characteristics. This indicates that
the random effects term in the model can effectively account for these between-individual
differences. However, the performance of the AQMM approach diminished when LCGD
exhibited the latter two features. In this thesis, the AQMM method will be applied to fit
the real LCGD from the “Growing up in Scotland” study in Chapter 6.

While the AQMM approach offers numerous advantages, it may not address all complex-
ities present in longitudinal child growth data. As a result, certain characteristics might
not be supported by this approach. Although AQMM allows us to identify risk factors
associated with child growth measurement using its fixed effect component through re-
sampling methods such as the bootstrap, it has certain limitations (Kyung et al., 2010)
described in Section 5.1. Another key limitation is its inability to determine the appro-
priate random effects that best represent the data. Therefore, in Chapter 5, I will present
a novel method that facilitates the selection of both fixed and random effects within the
framework of a quantile mixed model, similar to AQMM.



Chapter 5

Variable selection for quantile mixed
models

5.1 Introduction

Fitting a regression model encompasses more than simply incorporating numerous pre-
dictors or covariates in the model. It requires the ability to identify the covariates that
exhibit associations with the response variable, facilitating a comprehensive understand-
ing of real-world problems, such as evaluating risk factors in the context of child growth
measurements. It is important to note that even in the case of a QR model this capac-
ity to identify relevant covariates remains essential and cannot be circumvented. In the
previous chapter, it was observed that AQMM is deficient in this regard as it lacks appro-
priate methods for identifying fixed effects and random effects. This limitation arises from
AQMM’s reliance on regularisation or penalised methods, specifically the L2-penalised ap-
proach. The distribution of estimates obtained through these methods remains unknown
(Revan Özkale & Altuner, 2022), making the estimation of standard errors a challenging
task. To address this challenge, the bootstrap method has emerged as a popular approach
(Chatterjee & Lahiri, 2011; Vinod, 1995). However, it is important to note that estimates
derived from the bootstrap may exhibit inconsistency under certain conditions (Kyung
et al., 2010). For example, with the LASSO method, when the true parameter values are
close to or exactly zero, bootstrap appears to introduce a bias in a sampling distribution,
potentially leading to an unstable standard error for the LASSO estimator (Fu & Knight,
2000; Leeb & Pötscher, 2005). Consequently, the bootstrap method may produce inap-
propriate results when it comes to selecting fixed effects or random effects.

In recent years, Bayesian LASSO (BLASSO) has been proposed as an alternative method
for data analysis, offering a means to address the constraints of conventional frequentist
approaches (Kyung et al., 2010; Park & Casella, 2008). This approach offers several no-

165
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table advantages, including the ability to produce valid standard errors and credible inter-
vals for estimates. Additionally, BLASSO incorporates automated predictor selection and
deselection mechanisms within the model, thereby enhancing both its efficiency and inter-
pretability. Furthermore, extended versions of BLASSO, such as Bayesian group LASSO
(BGLASSO) (Kyung et al., 2010) and Bayesian sparse group LASSO (BSGLASSO) (Xu
& Ghosh, 2015), enable us to effectively handle group structures present in the predic-
tor variables. In the context of the quantile regression model, several relevant types of
Bayesian LASSO approaches have been proposed (Alhamzawi & Ali, 2018; Alhamzawi &
Yu, 2014; Alhamzawi et al., 2012; Ji & Shi, 2022; Li et al., 2010). Notably, Li et al. (2010)
made a significant contribution by introducing the Bayesian LASSO and group LASSO
to the field of quantile regression. Additionally, Alhamzawi et al. (2012) leveraged the
advantages of the adaptive LASSO (Zou, 2006) and extended it to the Bayesian adaptive
LASSO for QR. Furthermore, it is worth noting that Bayesian LASSO types are not lim-
ited to the general quantile model. These approaches have been successfully applied to
various other regression models and frameworks, including mixed models (Alhamzawi &
Yu, 2014; Ji & Shi, 2022).

However, the aforementioned Bayesian LASSO approaches have a significant limitation.
Specifically, the estimates obtained from these methods may not converge precisely to
zero (Alhamzawi & Ali, 2018; Park & Casella, 2008; Xu & Ghosh, 2015), which can po-
tentially impact the accuracy of variable selection. This issue arises due to the absence
of a designed point mass at zero in these approaches. As a result, the estimates may
exhibit a certain degree of shrinkage but not exactly reach the zero value. To address this
limitation, a spike and slab prior for regression coefficients (fixed effects) has been pro-
posed (Ishwaran & Rao, 2005; Mitchell & Beauchamp, 1988). This prior guarantees that
the estimates can be exactly zero. Recently, Xu and Ghosh (2015) applied this prior to a
BGLASSO and BSGLASSO in order to select group variables and variables within a group.

Building upon the work of Xu and Ghosh (2015), I aim to extend the existing methodolo-
gies by developing BGLASSO and BSGLASSO with spike and slab priors for QR. How-
ever, their approaches solely focus on the selection of fixed effects within in the model,
ignoring the consideration of random effects. To address this limitation and enable the
simultaneous selection of both fixed effects and random effects, a notable approach has
been proposed in the Bayesian framework introduced by Kinney and Dunson (2007). This
approach employs a reparameterisation of the random effects component within the linear
mixed model, thereby allowing for the specification of appropriate priors for the associated
random effects parameters. To the best of our knowledge, our work represents the first
work to explore BGLASSO and BSGLASSO with spike and slab priors for QR, encom-
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passing both fixed and random effects simultaneously.

This chapter focuses on the development of BGLASSO and BSGLASSO methodologies
with spike and slab priors for incorporating both fixed and random effects within the QR
model. Section 5.2 provides a detailed description of the group structures present in the
predictors. Furthermore, Section 5.3 explores the group and sparse group LASSO, while
Section 5.4 delves into the Bayesian group and sparse group LASSO. The utilisation of the
spike and slab priors for regression coefficients is discussed in Section 5.5. The following
sections, Sections 5.6 and 5.7, introduce the BGLASSO and BSGLASSO approaches for
selecting fixed effects within the QR framework, respectively. Section 5.8 explains the
process of variable selection for both novel approaches. In addition, Section 5.9 explains
the simultaneous selection methods for both fixed and random effects in the quantile mixed
models (QMMs). Both Sections 5.10 and 5.11 demonstrate simulation studies through
fixed effect selection and simultaneous selection, respectively. Section 5.12 provides a
sensitivity analysis for prior specifications. Furthermore, Section 5.13 shows an illustrative
analysis from a simulated dataset. Finally, Section 5.14 provides a comprehensive summary
of the chapter’s key findings and contributions.

5.2 Group structures of predictors

In practical applications, such as child growth development studies, risk factors that in-
fluence child growth can take various forms, including continuous variables, categorical
variables, and functional variables. As a result, when modelling the associations between
these risk factors and growth development outcomes, a diverse array of predictor struc-
tures arises. To accommodate categorical variables, it is common practice to construct
d−1 dummy variables, where d represents the number of levels in the categorical variable.
On the other hand, functional variables are commonly represented using spline methods to
create basis functions. Consequently, both types of variables can be considered as groups
of variables within the QR framework.

Consider the QR model consisting of the covariates Xk, which are partitioned into G

non-overlapping groups,

y =
G∑
l=1

Xlβτ,l + ϵ. (5.1)

Here, the matrix Xl has dl columns and n rows, and it is a sub-matrix of the design matrix
X and βl = (βl1, . . . , βldl)

′ is the coefficient vector corresponding to the group l. Note that
for simplicity of notation, I will omit the subscript τ for βτ,l.
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For example, consider three variable groups (G = 3): the first group consists of a single
continuous covariate (d1 = 1); the second consists of three continuous covariates, such as
basis functions (d2 = 3); and the third group consiss of two levels of a categorical covariate
(d3 = 2). Then the matrix Xl for three groups can be written as

X1 =


X1,1,1

X1,1,1

...
X1,1,n

 , X2 =


X2,1,1 X2,2,1 X2,3,1

X2,1,2 X2,2,2 X2,3,2

...
...

...
X2,1,n X2,2,n X2,3,n

 , X3 =


X3,1,1 X3,2,1

X3,1,2 X3,2,2

...
...

X3,1,n X3,2,n

 .

Hence, the design matrix X of the model (5.1) is

X =
[
X1,X2,X3

]
,

Consequently, the coefficient vector associated with the design matrix X can be defined
as β = (β1,β2,β3) = (β1, β2, β3, β4, β5, β6), where β1 = (β1), β2 = (β2, β3, β4) and β3 =

(β5, β6).

5.3 Group and sparse group LASSO

One regularisation technique commonly used for variable selection in regression models is
known as the “Least Absolute Shrinkage and Selection Operator” (LASSO) (Tibshirani,
1996). This technique incorporates an L1 penalty on the regression coefficients within the
loss function, typically least squares, which is defined as

min
β

∣∣∣∣∣∣y −Xβ
∣∣∣∣∣∣2
2
+ λ||β||1, (5.2)

where ||u||22 =
∑n

i=1 u
2
i for a vector u ∈ Rn and || · ||1 denotes the L1 norm. The introduc-

tion of this penalty results in certain coefficients being effectively shrunk to zero, enabling
automatic variable selection. However, it should be noted that LASSO is not well-suited
for predictors exhibiting a group structure, as seen in the model (5.1). To address the
issue of group variable selection, an alternative variation of LASSO known as the “Group
LASSO” (GL) was proposed (Yuan & Lin, 2006). By employing the GL method, the
challenges associated with group variable selection can be effectively mitigated.

For the mean model, the estimation of the group LASSO estimator can be achieved
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following the approach proposed by Yuan and Lin (2006):

min
β

∣∣∣∣∣
∣∣∣∣∣y −

G∑
l=1

Xlβl

∣∣∣∣∣
∣∣∣∣∣
2

2

+ λ
G∑
l=1

||βl||2. (5.3)

Similarly, the group LASSO approach can be applied to the quantile model as proposed
by Li et al. (2010). Thus, at the τth quantile, the estimator can be obtained by

min
β
ρτ

(
y −

G∑
l=1

Xlβl

)
+ λ

G∑
l=1

||βl||2. (5.4)

Here, λ represents the regularisation parameter, controlling the amount of shrinkage ap-
plied to the coefficients of the regression model. It plays a crucial role in controlling the
trade-off between bias and variance in the model.

Note that both (5.3) and (5.4) utilise different penalty terms compared to the standard
LASSO (5.2). Their penalty terms are based on the L2 norm (Euclidean norm) of the
coefficients within the l-th group (referred to as the Group LASSO penalty), whereas the
standard LASSO employs the L1 norm (absolute value norm) of the coefficients (Yuan &
Lin, 2006). The term ||β||1 in (5.2) promotes sparsity in the coefficient vector β, leading
to the selection of a subset of relevant features. Meanwhile, the term

∑G
l=1 ||βl||2 in both

(5.3) and (5.4) encourage sparsity at the group level, effectively selecting entire groups
of features rather than individual ones. This penalty term combines characteristics of
both L1 and L2 penalties: the L1 penalty promotes sparsity, while the L2 penalty shrinks
coefficients towards zero but usually does not set any coefficient exactly to zero. Thus, it
is sometimes referred to as Intermediate penalty (Meier et al., 2008; Yuan & Lin, 2006) or
Generalised penalty (Hastie et al., 2015). The term “Group LASSO” is used because the
method retains the fundamental principles and objectives of the standard LASSO algo-
rithm, despite using the L2 norm instead of the L1 norm for penalty terms. For instance,
it promotes sparsity similar to the standard LASSO but at the group level by encouraging
entire groups of coefficients to be zero, effectively selecting or excluding whole groups of
features.

However, the penalised objective functions (5.3) and (5.4) are limited in their scope, as
they solely cater to group-structured variables without considering individual levels within
those group variables, thereby lacking the ability to address broader real-world issues. For
instance, child growth measurements can be influenced by categorical risk factors that
have one or more individual levels that are sparse within the group. To overcome this
limitation, the “sparse Group LASSO” (SGL) methodology was introduced (Simon et al.,
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2013). SGL allows for the selection of variables at both the group and within-group
levels. This is achieved by incorporating L1 and L2 penalties into the loss function of
the linear regression model, SGL facilitates the joint selection of variables at both levels.
Consequently, both (5.3) and (5.4) functions can be expanded to take the following form

min
β

∣∣∣∣∣
∣∣∣∣∣y −

G∑
l=1

Xlβl

∣∣∣∣∣
∣∣∣∣∣
2

2

+ λ1||β||1 + λ2

G∑
l=1

||βl||2 (5.5)

and

min
β
ρτ

(
y −

G∑
l=1

Xlβl

)
+ λ1||β||1 + λ2

G∑
l=1

||βl||2, (5.6)

respectively, where λ1 and λ2 are the regularisation parameters that control the amount
of the L1 and L2 penalties applied. These parameters control the balance between the
within-group levels selection and group selection. Note that both estimations (5.5) and
(5.5) incorporate the L1 and L2 penalties similar to the elastic net (Zou & Hastie, 2005).
However, the elastic net applies regularisation equally to all predictor variables and does
not explicitly handle the grouping structure among them. In contrast, the SGL penalises
coefficients at both the group level (using the L2 norm) and within each group (using the
L1 norm).

5.4 Bayesian group and sparse group LASSO

As noted by Tibshirani (1996), it has been established that posterior mode estimates, ob-
tained by specifying an independent and identical Laplace (i.e., double-exponential) prior
for each regression coefficient, exhibit equivalence to the estimates obtained through the
LASSO method. Consequently, this property can be leveraged to apply to the LASSO
types discussed in Section 5.3.

Taking inspiration from the aforementioned property, Kyung et al. (2010) introduced
the GL approach within the Bayesian framework. This was accomplished by specifying
a multivariate generalisation of the double exponential prior distribution for regression
coefficients,

p(βl) ∝ exp

{
− λ

σ
||βl||2

}
. (5.7)

Furthermore, this concept can be applied similarly to the SGL framework, specifically
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functions (5.5) and (5.6), as discussed by Xu and Ghosh (2015), where:

p(β) ∝ exp

{
− λ1

2σ2
||β||1 −

λ2
2σ2

||βl||2

}
. (5.8)

In practice, the priors (5.7) and (5.8) can be represented as a scale mixture of normals
with a conjugate Gamma hyperpriors, allowing for the construction of a fully Bayesian
hierarchical model and an efficient Gibbs sampler to address the group LASSO and sparse
group LASSO problem (Xu & Ghosh, 2015). A notable advantage of Bayesian analysis
lies in its ability to generate standard errors effortlessly through the employment of the
Markov Chain Monte Carlo (MCMC) algorithm. In contrast, the LASSO approach faces
limitations when it comes to estimating standard errors (Chatterjee & Lahiri, 2011; Fu &
Knight, 2000; Xu & Ghosh, 2015).

In the domain of quantile regression, Li et al. (2010) made a seminal contribution by in-
troducing the Bayesian group LASSO methodology. Their work was particularly focused
on the integration of the Bayesian group LASSO methodology into quantile regression
models, with a specific emphasis on the assumption of errors following the asymmetric
Laplace distribution. It is worth noting that, to the best of our knowledge, there has been
no previous exploration of the Bayesian sparse group LASSO method in the context of
quantile regression.

Nevertheless, Xu and Ghosh (2015) highlighted that estimates derived from this prior,
whether they are posterior means or medians, do not precisely reach a value of zero. In
other words, the prior does not assign any point-mass specifically on zero. To address this
issue, they proposed a hierarchical Bayesian sparse group LASSO model, incorporating
an independent spike and slab type prior for both group variable selection and individual
variable selection.

5.5 Spike and slab priors for regression coefficients

Spike and slab priors have been emerging as a prominent and widely favored approach
for Bayesian variable selection, ever since their introduction by Mitchell and Beauchamp
(1988). These priors are typically formulated as mixture priors, often utilising normal
mixture priors with two components (Ishwaran & Rao, 2005). One component assigns a
probability mass to the regression coefficient βk being precisely equal to zero (spike com-
ponent), while the other component allows for non-zero (slab component). This unique
feature enables spike and slab priors to effectively identify and select relevant variables,
making them suitable for variable selection tasks. As a result, these priors offer a flexible
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and powerful tool for variable selection within a Bayesian framework.

Considering the linear regression model, it can be expressed as yi ∼ N (x′
iβ, σ

2). In the
context of Bayesian variable selection, a widely used version of the spike and slab priors
for βk (Ishwaran & Rao, 2005; L. Zhang et al., 2014) is

βk|γk, ν2k
ind∼ (1− γk)δ0(βk) + γkN(0, ν2k), k = 1, . . . , p,

γk|π ∼ Bernoulli(π),

ν2k
i.i.d.∼ G(·),

(5.9)

where γk ∈ [0, 1] corresponds to a latent binary indicator variable functioning as a mixture
weight, δ0 denotes the Dirac delta function which assigns all its mass specifically at the
value zero, ν2k is the variance of the slab distribution (or normal scale parameter) and
G(·) is a scale-mixture of normals (e.g. an inverse Gamma (InvGamma) distribution with
shape and scale parameters). The π represents the probability that γk = 1, with a com-
mon practice of assigning π to 1/2. The rationale behind this prior specification is that
when γk = 1, βk is assumed to have a normal density with a large value ν2k . In this case,
βk is selected as a relevant variable and included in the model. Conversely, when γk = 0,
βk is assumed to follow a point mass density at zero, indicating that βk is excluded from
the model.

Given the computational challenges arising from the presence of numerous parameters in
the prior for βk, of (5.9), a class of continuous bimodal priors has been proposed to address
this issue (Ishwaran & Rao, 2005). These priors offer a more computationally efficient
option while maintaining the desired characteristics of the model. The specification of
this class of priors is

βk|γk, ν2k ,
ind∼ N(0, γkν

2
k), k = 1, . . . , p,

γk|π
i.i.d.∼ (1− π)δ0(γk) + πδ1(γk),

ν−2
k

i.i.d.∼ Gamma(a, b),

π ∼ Beta(b1, b2).

(5.10)

Indeed, the prior of βk in (5.10) can be written more compactly as

βk|ν2k , π
ind∼ (1− π)δ0(βk) + πN(0, ν2k).

In contrast to a manually set bimodal prior, as described in (5.9), this specification results
in a continuous bimodal distribution for the variance of βk (γkν2k), featuring a spike at zero
and a right continuous tail. These distinctive features play a crucial role in identifying
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zero and nonzero values for the βk coefficients, respectively. Additionally, the parameter
π serves another purpose as it controls the likelihood of νk taking a value of one or zero.
Ishwaran and Rao (2005) stated that it acts as a parameter used to control the size of
models, known as a complexity parameter.

5.6 Bayesian group LASSO QR with spike and slab

prior for fixed effect selection

Motivated by a work of Xu and Ghosh (2015), the representation of the AL distribution
as a scale mixture of normals with an exponential mixing density in Section 3.4, as well
as the priors specifications detailed in Section 5.5, I develop the Bayesian group LASSO
QR with spike and slab priors. This proposed approach combines the Bayesian framework
with group LASSO method and incorporates spike and slab priors to enhance the robust-
ness and accuracy of quantile regression (hereafter referred to as BGLSSQR).

Let y = (y1, . . . , yn)
′ represent the response variable, βl is a coefficient vector of length

dl, Xl is an n × dl covariate matrix corresponding to the factor βl(l = 1, 2, . . . , G), and
V = diag(v−1

1 , . . . , v−1
n ). Hence, β = (β1, . . . ,βG)

′ is a coefficients vector of length p

(p =
∑G

l=1 dl) and X is an n× p design (predictors) matrix corresponding to β. Here, Ψl

is a known dl × dl positive definite matrix, and π0 is the probability of βl = 0. Therefore,
the Bayesian hierarchical QR model can be expressed as

y|β,v, σ ∼ N (Xβ + (1− 2τ)V−11n, 2σV),

v|σ ∼ Exp(σ−1τ(1− τ)),

βl|η2l
ind∼ (1− π0)Ndl(0, η

2
l Ψ

−1
l ) + π0δ0(βl),

η2l |λ2
ind∼ Gamma

(dl + 1

2
,
λ2

2

)
,

σ ∼ InvGamma(g1, g2),

π0 ∼ Beta(a1, a2).

(5.11)

Based on the Bayesian hierarchical model (5.11), the (joint) posterior distribution given
observed data is

p(β,η2,v, σ, π0|y,X) ∝ l(y|β, σ,v)p(β|σ,v, π0)p(η2|λ2)p(v|σ)p(σ)p(π0).

The detailed formulation of this posterior distribution is provided in Appendix A.1.

The hyperparameter λ holds considerable importance within any Bayesian LASSO model
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type, as it plays a pivotal role in the coefficient shrinkage process, thus exerting a substan-
tial influence on its overall effectiveness and predictive capabilities (Park & Casella, 2008;
Xu & Ghosh, 2015). One commonly employed approach is to assign a conjugate prior,
such as the Gamma(c1, c2) prior, to this hyperparameter, which allows for straightforward
computation and incorporation of prior beliefs or knowledge regarding coefficient sparsity.
However, an alternative method for estimating λ exists. Park and Casella (2008) as well as
Xu and Ghosh (2015) employed an empirical Bayes approach utilising marginal maximum
likelihood estimation. This data-driven method leverages a Monte Carlo EM algorithm to
derive estimates of the marginal likelihood, thereby yielding an estimate for λ based on
the observed data. The kth update of the EM algorithm for λ is represented by

λ(k) =

√
p+G∑G

l=1Eλk−1 [η2l |y]
,

where p denotes the number of covariates and G represents the number of group variables.
During this EM update, the value of η2l is substituted by the sample average of η2l , which
is obtained through the Gibbs sampler using the λ from the previous iteration (k − 1).

Additionally, hyperparameters such as the shape and scale parameters of an inverse
Gamma prior for the scale parameter, σ, can be chosen to be relatively small: g1 = 0.1

and g2 = 0.1. This decision is based on allowing the data to speak for themselves in de-
termining the posterior distribution and ensuring computational stability (Gelman, 2006,
2014). Also, both hyperparameters of a Beta prior for π0 are set to a1 = a2 = 1 as default
values. This is equivalent to assuming a standard uniform distribution, resulting in a prior
mean of 1/2 and allowing a prior spread of π0 (Xu & Ghosh, 2015).

Gibbs sampler

Let dl denote the length of the coefficient vector βl, and ξ = (1−2τ). The full conditional
distribution of βl follows a multivariate spike and slab distribution, given by

βl|rest ∼ (1− ql)Ndl(µl, 2σΣl) + qlδ0(βl), l = 1, . . . , G,

where
µl = ΣlX

′
lV(y −X(l)β(l) − ξv),

and

Σl =

(
X′

lVXl +
1

η2l
Idl

)−1

.
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Here, ql is the probability which controls the spike and slab of the distribution, computed
as:

ql = P (βl = 0|rest)

=
π0

π0 + (1− π0)(η2l )
− dl

2 |Σl|
1
2 exp

{
1
4σ
||Σ

1
2
l X

′
lV(y −X(l)β(l) − ξv)||22

} .
It is worth noting that the term y−X(l)β(l) − ξv represents the residual vector obtained
by excluding the lth factor βl in our quantile regression model. As a result, the elements
in X′

l(y−X(l)β(l) − ξv) are proportional to the correlation between each predictor in the
lth group and this residual vector.

Rather than directly defining the full conditional of η2l , an alternative approach is adopted
by introducing the parameter α2

l = 1/η2l . The full conditional of α2
l is subsequently defined

under two distinct conditions. In the case when βl = 0, the full conditional distribution
of α2

l is

α2
l |rest ∼ InvGamma

(
s1 =

dl + 1

2
, s2 =

λ2

2

)
,

where s1 and s2 are the shape and scale parameters of an inverse Gamma distribution,
respectively. On the other hand, when βl ̸= 0,

α2
l |rest ∼ InvGaussian

(
µ′ =

√
λ2σ

||βl||2
, λ′ = λ2

)
.

The full conditional distribution of each vi is then an inverse Gaussian distribution,

vi|rest ∼ InvGaussian

(
µ′ =

1

|yi − x′
iβ|

, λ′ =
1

2σ

)
.

The full conditional distribution of σ is an inverse Gamma distribution,

σ|rest ∼ InvGamma

(
3n

2
+
k

2
+ g1,

(ỹ −Xβ)′V(ỹ −Xβ)

2
+ τ(1− τ)

n∑
i=1

vi +β′Sβ+ g2

)
,

where ỹ = y − ξv, k =
∑G

l=1 dl1{βl ̸=0} and S = diag(η−2
1 , . . . , η−2

G ).

The full conditional distribution of π0 is a Beta distribution,

π0|rest ∼ Beta

(
a1 +

G∑
l=1

1{βl ̸=0}, a2 +
G∑
l=1

dl −
G∑
l=1

1{βl ̸=0}

)
.
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5.7 Bayesian sparse group LASSO QR with spike and

slab prior for fixed effect selection

Following the reparameterisation of regression coefficients given by Xu and Ghosh (2015),
I adopt their approach to QR to handle sparsity at the group level and within the group
level:

βτ,l = K
1/2
τ,l bτ,l,

where K
1/2
τ,l = diag{θl1, . . . , θldl}, θlj ≥ 0, l = 1, . . . , G; j = 1, . . . , dl. Here, bτ,l ∼ N (0, Idl)

in case where these are not zeros. This reparameterisation, employed in this context, plays
a crucial role in utilising the diagonal elements of K1/2

τ,l to regulate the magnitude of the
elements of βτ,l. To maintain the simplicity of notation, the subscript τ for all pertinent
parameters will be omitted.

A methodology for the selection of group variables is based on the assumption that each
bl follows the multivariate spike and slab prior:

bl
ind∼ (1− π0)Ndl(0, Idl) + π0δ0(bl).

Consequently, if θlj is zero, regardless of whether blj is zero or not, βlj can be dropped
from the model.

In a similar way to the selection of group variables, the spike and slab prior is utilised
for the within-group level. To ensure θlj ≥ 0, each θlj is assumed to adhere to this prior
distribution:

θlj
ind∼ (1− π1)N

+(0, s2) + π1δ0(θlj).

Here, N+(0, s2) denotes a truncated normal distribution with mean 0 and variance s2,
bounding the random variable from below at 0.

I combine the Bayesian sparse group LASSO method with the mixture representation of
the asymmetric Laplace (AL) distribution and the aforementioned spike and slab priors to
develop the Bayesian sparse group LASSO for quantile regression (BSGSSQR). This inno-
vative approach is structured as a Bayesian hierarchical model, integrating the mentioned
components to achieve efficient variable selection within the context of quantile regression.
Let b = (b1, . . . , bG)

′, and K1/2 = diag(K1/2
1 , . . . ,K

1/2
G ), then the Bayesian hierarchical QR
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model is expressed as follows:

y|b,v, σ ∼ N (XK1/2b+ (1− 2τ)V−11n, 2σV),

v|σ ∼ Exp(σ−1τ(1− τ)),

bl
ind∼ (1− π0)Ndl(0, Idl) + π0δ0(bl),

θlj
ind∼ (1− π1)N

+(0, s2) + π1δ0(θlj),

s2|t ind∼ InvGamma(1, t),

σ ∼ InvGamma(g1, g2), g1 = 0.1, g2 = 0.1

π0 ∼ Beta(a1, a2), a1 = 1, a2 = 1

π1 ∼ Beta(c1, c2), c1 = 1, c2 = 1.

(5.12)

Based on the Bayesian hierarchical QR model (5.12) described above, the (joint) posterior
distribution given observed data is

p(b,θ2,v, σ, π0, π1, s
2|y,X) ∝ l(y|b, σ,v)p(bl|π0)p(θ2|π1)p(v|σ)p(σ)p(π0)p(π1)p(s2).

The detailed formulation of this posterior distribution is provided in Appendix A.2.

Analogous to the estimation of λ as discussed in Section 5.6, the hyperparameter t assumes
a crucial role in the process of coefficient shrinkage. To estimate this parameter, the Monte
Carlo EM algorithm is adopted, as described by Casella (2001) and Park and Casella
(2008). For the kth EM update,

t(k) =
1

Et(k−1) [ 1s2 |y]
,

where the posterior expectation of s2 is substituted by the sample average of s2. This
average is obtained through the Gibbs sampler using the t from the previous iteration
(k − 1).

Gibbs sampler

The full conditional distribution of bl is then a multivariate spike and slab distribution

bl|rest ∼ (1− ql)Ndl(µl,Σl) + qlδ0(bl),

where

µl =

(
1

2σ
Σ

1
2
l K

1
2
l X

′
lV(y −X(l)K

1
2

(l)b
1
2

(l) − ξv)

)
,
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Σl =

(
1

2σ
K

1
2
l X

′
lVXlK

1
2
l + Idl

)−1

,

and ql be the posterior probability of bl being zero given the remaining parameters and
can be computed by

ql = P (bl = 0|rest)

=
π0

π0 + (1− π0)|Σl|
1
2 exp

{
1

4σ2 ||Σ
1
2
l K

1
2
l X

′
lV(y −X(l)K

1
2

(l)b
1
2

(l) − ξv)||22
} .

The full conditional distribution of θlj is then a spike and slab distribution, with the slab
a positive part normal distribution

θlj|rest ∼ (1− rlj)N
+(ulj, v

2
lj) + rljδ0(θlj),

where
ulj =

1

2σ
v2lj(y −X(lj)β(lj) − ξv)′VXljblj,

v2lj =

(
1

s2
+

1

2σ
X′

ljVXljb
2
lj

)−1

,

and
rlj = p(θlj = 0|rest) = π1

π1 + 2(1− π1)(s2)
− 1

2 (v2lj)
1
2 exp

{
u2
lj

2v2lj

}[
Φ(

ulj

vlj
)

] .
The full conditional distribution of each vi is then an inverse Gaussian distribution,

vi|rest ∼ InvGaussian

(
µ′ =

1

|yi − x′
iβ|

, λ′ =
1

2σ

)
.

The full conditional distribution of σ is given by

σ|rest ∼ InvGamma

(
3n

2
+ g1,

1

4
(ϵ− ξv)′V(ϵ− ξv) + τ(1− τ)

n∑
i=1

vi + g2

)
,

where ϵ = y −Xβ.

The full conditional distribution of π0 and π1 are given by

π0|rest ∼ Beta(#(bl = 0) + a1,#(bl ̸= 0) + a2)

π1|rest ∼ Beta(#(θlj = 0) + c1,#(θlj ̸= 0) + c2).

Note that #(·) denotes the cardinality or count of the set of elements for which the con-
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dition in (·) holds true.

The full conditional distribution of s2 is given by

s2|rest ∼ InvGamma

(
1 +

1

2
#(θlj = 0), t+

1

2

∑
l,j

θ2lj

)
.

5.8 Bayesian sparse group LASSO QR with spike and

slab prior for fixed and random effect selection

In this section, the primary focus is on extending the BSGSSQR method to enable the
simultaneous selection of both fixed and random effects. This emphasis is due to the
existing capability of BSGSSQR to select fixed effects at both the group and within-
group levels when covariates have a grouped structure. To achieve this objective, the
utilisation of linear mixed models (LMMs) is first elucidated, based on a decomposition
for the covariance matrix of random effects in quantile mixed models. Subsequently, a
comprehensive explanation of the proposed methodology within this context is provided.

5.8.1 Reparameterisation of random effects in LMMs

Recall the linear mixed model,

yij = x′
ijβ + z′ijui + ϵij, i = 1, . . . , N, j = 1, . . . , ni, (5.13)

where ϵij ∼ N(0, σ2) and ui ∼ N(0,Σu). Kinney and Dunson (2007) reparameterised the
random effects part of the model (5.13) as

yij = x′
ijβ + z′ijDAci + ϵij,

where ci = (ci1, . . . , ciq)
′,D = diag(d1, . . . , dq)′ and A is a q × q lower triangular matrix,

A =



1 0 0

a21 1

a31 a32
. . .

...
... . . . . . .

aq,1 aq,2 · · · aq,l′−1 1


,

whose free elements represent the correlations of each random effect. In this model, the
vector ci is assumed to follow N(0,Ω), where Ω = diag(ω1, . . . , ωq)

′. Based on this
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reparameterisation, the covariance decomposition of the random effects can be implied as

Σu = DAΩA′D.

In this case, dl serves as an analogy to the standard deviations of random effects. When
dl = 0, it leads to the exclusion of random effect l from the model.

Motivated by this reparameterisation, the quantile mixed model is proposed as:

yij = x′
ijβτ + z′ijDAci + ϵij,

where βτ is a vector of coefficients that depend on τ and ϵij are independent, with their τth
quantile level assumed to be zero. These are also presumed to follow the AL distribution.

Let ϵij = yij − x′
ijβ − z′ijDAci. Following the scale mixture of normals as outlined in

Section 3.4, the likelihood of ϵij can be expressed as a scale mixture of normals with
exponential mixing density by

N∏
i=1

ni∏
j=1

∫ ∞

0

1

σ
√

4πσvij
exp

{
−

(yi − x′
iβ − z′ijDAci − ξvij)

2

4σvij
− ζvij

}
dvij,

where ξ = (1− 2τ), ζ = τ(1− τ)/σ and vij ∼ Exp(ζ).

5.8.2 Bayesian sparse group LASSO mixed QR

Based on the BSGSSQR method detailed in Section 5.7 and the reparameterisation of
random effects mentioned above, I propose the following l1-penalised check function:

min
βτ ,cτ

N∑
i=1

ni∑
j=1

ρτ
(
ϵij
)
+ λ1||βτ ||1 + λ2

G∑
l=1

||βl,τ ||2 + λ3

N∑
i=1

q∑
l′=1

|cil′τ |, (5.14)

where cτ = (c′1,τ , . . . , c
′
N,τ ) and λ3 ≥ 0. In this case, I follow Alhamzawi (2013) to re-

strict λ3 to being 1. Here, it can be observed that the function (5.14) yields the sparse
group LASSO estimates on βl,τ and the LASSO estimates on cτ . These estimates can be
interpreted as posterior mode estimates when βl,τ and cτ have independent and identical
Laplace priors. Therefore, the Laplace prior (1/2) exp{−|cil′τ |} on cil′τ , l

′ = 1, . . . , q (ran-
dom effects) (Alhamzawi, 2013), can be employed, while the prior on βl,τ (fixed effects)
can be specified in Section 5.7. In reality, a scale mixture of normals of the Laplace prior is
exploited in the Gibbs sampler for the Bayesian analysis (Alhamzawi, 2013). This mixture
can be represented as:
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1

2
exp{−|cil′τ |} =

∫ ∞

0

N (cil′τ ; 0, ωl′)Exp
(
ωl′ ;

1

2

)
dωl′ . (5.15)

Henceforth, this approach is referred as Bayesian sparse group LASSO-mixed quantile
regression with Spike and Slab (BSGSSMQR).

Priors specification for random effect part

Here, the prior for ωl′ can be assumed to follow Gamma(1,2), which is equivalent to
Exp(1/2), as expressed in (5.15). Indeed, this prior is informative and convenient for
eliciting a prior of ωl′ (Alhamzawi, 2013). For dl′ , it is specified to follow a zero-inflated
standard half-normal prior, ZI−N+(pl′0, µdl′

= 0, σ2
dl′

= 1), where pl′0 = Pr(dl′ = 0). This
prior can be expressed as:

f(dl) =


pl′0 + (1− pl′0)

√
2e−

(dl)
2

2 if dl = 0

(1− pl′0)
√
2e−

(dl)
2

2 if dl > 0

0 otherwise

For a = (al′r : l′ = 2, . . . , q; r = 1, . . . , l′ − 1), it is assumed to follow the prior p(a|d) =
N(0,Σa) ·1(a ∈ Rd), where Σa is the variance-covariance matrix of a, 1(·) is an indicator
function and Rd enforced each element of a to be zero corresponding to random effects
that are zero (Kinney & Dunson, 2007).

Gibbs Sampler

Let i = 1, . . . , N represent a sequence of N individuals, j = 1, . . . , ni represent a sequence
of repeated observations for individual i, yi = (yi1, . . . , yini

)′,y = (y11, . . . , yNnN
)′,v =

(v11, . . . , vNnN
)′,V = diag(v−1),vi = (vi1, . . . , vini

)′, Rij = z′ijDAci,R = (R11, . . . , RNnN
)′,

r1ij = (cil′dm′zijm : l′ = 1, . . . , q,m′ = l′ + 1, . . . , q)′, r2ij = (zijl′(cil′ +
∑l′−1

m′=1 cim′am′l′) :

l′ = 1, . . . , q)′, n =
∑N

i=1 ni.

The full conditional distribution of bl is then a multivariate spike and slab distribution

bl|rest ∼ (1− ql)Nml
(µl,Σl) + qlδ0(bl),

where

µl =

(
1

2σ
Σ

1
2
l K

1
2
l X

′
lV(y −X(l)K

1
2

(l)b
1
2

(l) −R− ξv)

)
,

Σl =

(
1

2σ
K

1
2
l X

′
lVXlK

1
2
l + Iml

)−1

,
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and ql be the posterior probability of bl being zero given the remaining parameters and
can be computed by

ql = P (bl = 0|rest)

=
π0

π0 + (1− π0)|Σl|
1
2 exp

{
1

4σ2 ||Σ
1
2
l K

1
2
l X

′
lV(y −X(l)K

1
2

(l)b
1
2

(l) −R− ξv)||22
} .

The full conditional distribution of θlj is then a spike and slab distribution, with the slab
a positive part normal distribution

θlj|rest ∼ (1− rlj)N
+(ulj, v

2
lj) + rljδ0(θlj),

where
ulj =

1

2σ
v2lj(y −X(lj)β(lj) −R− ξv)′VXljblj,

v2lj =

(
1

s2
+

1

2σ
X′

ljVXljb
2
lj

)−1

,

and
rlj = p(θlj = 0|rest) = π1

π1 + 2(1− π1)(s2)
− 1

2 (v2lj)
1
2 exp

{
u2
lj

2v2lj

}[
Φ(

ulj

vlj
)

] .
The full conditional distribution of ci is a multivariate normal distribution

ci ∼ N (µci ,Σci),

where
µci =

ΣciA
′DZ′

iVi

2σ

(
yi − x′

iβ − ξvi

)
and

Σci =

(
A′DZ′

iViZiDA

2σ
+Ω−1

)−1

.

The full conditional distribution of a is a multivariate normal distribution

a ∼ N (µa,Σa) · 1(a ∈ Rd),

where

µa = Σa

(
N∑
i=1

ni∑
j=1

r1ij(yij − x′
ijβ − ξvij)

2σvij

)
and

Σa =

(
N∑
i=1

ni∑
j=1

r1ijr
′
1ij

2σvij
+A−1

0

)−1

.
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The full conditional distribution of each dl′(l
′ = 1, . . . , q) is a zero-inflated half-normal

distribution
dl′ ∼ ZI −N+(p̂l′ , µdl′

, σ2
dl′
),

where

µdl′
= σ2

dl′

(
N∑
i=1

ni∑
j=1

r2ij(yij − x′
ijβ −

∑
s ̸=l′ r2ijsds − ξvij)

2σvij

)
,

σ2
dl′

=

(
N∑
i=1

ni∑
j=1

r22ij
2σvij

+ 1

)−1

,

and

p̂l′ =

(
1 +

(1− pl′0)N(0; 0, 1)(1− Φ(0;µdl′
, σ2

dl′
))

pl′0N(0;µdl′
, σ2

dl′
)(1− Φ(0; 0, 1)

)−1

.

Here, Φ(·) is the cumulative normal distribution function.
The full conditional distribution of each vi is then an inverse Gaussian distribution,

vi|rest ∼ InvGaussian

(
µ′ =

√
1

(yi − x′
ijβ − z′

ijDAci)2
, λ′ =

1

2σ

)
.

The full conditional distribution of σ is

σ|rest ∼ InvGamma

(
3n

2
+ g1,

1

4
(ϵ− ξv)′V(ϵ− ξv) + τ(1− τ)

n∑
i=1

vi + g2

)
,

where ϵ = y −Xβ −R.

The full conditional distribution of each ωl′(l
′ = 1, . . . , q) is then a generalised inverse

Gaussian distribution (GIG),
ωl′ ∼ GIG(ν̃, χ̃, ψ̃),

where ν̃ = −(N + 2)/2, χ̃2 =
∑N

i=1 c
2
il′ and ψ̃2 = N .

The full conditional distribution of π0 and π1 is given by

π0|rest ∼ Beta(#(bl = 0) + a1,#(bl ̸= 0) + a2),

π1|rest ∼ Beta(#(θlj = 0) + c1,#(θlj ̸= 0) + c2).

The full conditional distribution of s2 is given by

s2|rest ∼ InvGamma

(
1 +

1

2
#(θlj = 0), t+

1

2

∑
l,j

θ2lj

)
.
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5.9 Variable selection process

The Bayesian hierarchical QR models discussed earlier typically yield posterior mean es-
timators. Nevertheless, as highlighted by Xu and Ghosh (2015), these estimators are not
inherently effective in sufficiently shrinking the regression coefficients toward zero. Conse-
quently, these posterior mean estimators are less suited for the specific purpose of variable
selection. While methods such as the utilisation of posterior credible intervals (L. Zhang
et al., 2014) can potentially address this limitation, they do introduce additional com-
plexity to the analysis. To avoid this complexity, an alternative way is to employ the
posterior median (Xu & Ghosh, 2015) as an adaptive thresholding estimator. This ap-
proach presents distinct merits in terms of both selection and estimation. Xu and Ghosh
(2015) showed that the use of posterior median thresholding possesses an oracle property
under orthogonal designs, meaning that this thresholding correctly identifies which pre-
dictors should be included in a model and which should be excluded. Therefore, within
this thesis, I advocate for the adoption of the posterior median estimator as the preferred
method for the variable selection process within the domain of quantile regression.

5.10 Simulation study for fixed effects selection

To assess the efficacy of the proposed methodologies in Sections 5.6 and 5.7, a series of sim-
ulation studies were conducted. These studies utilised only independent generated data,
not correlated data or longitudinal data presented in Chapter 4, and considered only ho-
mogeneous variance of errors. However, some studies, specifically the second and fourth,
shared a commonality with Chapter 4, such as the presence of a non-linear component in
the model. Furthermore, the predictors were grouped in two scenarios: independent and
correlated. In this context, the number of group variables (G) was adjusted based on the
specific contextual requirements of each simulation study. For each study, a sample size of
100 was employed. Subsequently, the model was fitted at three different quantiles, specifi-
cally τ ∈ (0.10, 0.50, 0.90). Concerning the prior specifications of our proposed approaches
(BGLSSQR and BSGSSQR), I chose to set a1 = a2 = c1,= c2 = 1 for the beta priors on
both π0 and π1. Additionally, the inverse Gamma priors applied to σ were configured with
g1 = g2 = 0.1. For all Bayesian approaches, a Gibbs sampler was employed, running for
a total of 50,000 iterations. To account for convergence issues, an initial burn-in period
of 10,000 iterations was implemented. In this simulation study, thinning is not taken into
consideration, as described in Chapter 3, since it can result in a loss of information and
reduce the precision of the MCMC algorithm.

As is commonly known, LASSO introduces bias into parameter estimates by shrinking
the coefficients of some variables toward zero. Thus, I would like to investigate this prop-
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erty in our proposed method as well. Consequently, the first two simulation studies aim
to examine the estimation performance of two proposed approaches (BGLSSQR and BS-
GSSQR) in comparison with both existing frequentist and Bayesian methods. In terms of
the existing frequentist approaches, I considered the classical quantile regression (CQR) as
introduced by Koenker (2005), and both LASSO types for quantile regression, i.e. LASSO
(LASSOQR) and group LASSO (GLASSOQR) approaches, as presented by Sherwood
et al. (2023). The CQR was implemented using the rq function from the R package
quantreg (Koenker, 2021), while the LASSOQR and GLASSOQR approaches were im-
plemented using the rq.pen(penalty = "LASSO") function and rq.group.pen(penalty

= "gLASSO") function, respectively, from the R package rqPen (Sherwood et al., 2023).
It is important to note that the tuning parameter (λ) for both the LASSO and GLAS-
SOQR methods was chosen based on the Bayesian information criterion (BIC) using the
qic.select(method="BIC") function (Sherwood et al., 2023). Regarding the existing
Bayesian approaches, I considered the Bayesian LASSO quantile regression (BLASSOQR)
as reported in Alhamzawi and Ali (2020). The BLqr function from the R package Brq

(Alhamzawi, 2020) was employed to perform the BLASSOQR approach. For both stud-
ies, three distinct error ϵ distributions were considered: a standard normal distribution, a
student-t distribution with ν = 3 (tν=3) and a Chi-squared distribution with ν = 3 (χ2

ν=3).
I summarised the performance of each approach using two metrics in 500 simulations,
Mean Bias Error (MBE) and Root-Mean-Square Error (RMSE):

MBE(βτ,h) =
1

500

500∑
r=1

(
β̂τ,h − βτ,h

)
, h = 1, . . . , p, τ = 0.10, 0.50, 0.90,

and

RMSE(βτ,h) =

√√√√ 1

500

500∑
r=1

(
β̂τ,h − βτ,h

)2
, h = 1, . . . , p, τ = 0.10, 0.50, 0.90,

where β̂h and βh are estimates and true coefficients in three quantile models.

Our focus now shifts to the evaluation of subset selection and predictive performance
in the remaining studies, where I compared our proposed approaches with existing vari-
able selection methods. In particular, I began with two existing frequentist approaches,
i.e. LASSOQR and GLASSOQR. Subsequently, I delved into the comparison of relevant
existing Bayesian variable selection methods. One such existing method is the model se-
lection based on credible intervals (MSCI) employed for the BLASSOQR approach. The
MSCI method was implemented using the model() function provided by the R package
Brq (Alhamzawi, 2020). In these simulation studies, I restricted our study to the standard
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normal distribution for the errors.

Table 5.1: Confusion Matrix

True
# (βp ̸= 0) # (βp = 0)

Predicted # (β̂p ̸= 0) True Positive (TP) False Positive (FP)
# (β̂p = 0) False Negative (FN) True Negative (TN)

TPR =
TP

TP + FN
FPR =

FP
FP + TN

F1 =
2TP

2TP + FP + FN

In the context of subset selection, the assessment of each approach was based on two
rates and one score: the true positive rate (TPR), the false positive rate (FPR) and the
F1 score. The TPR, also known as recall, measures the proportion of actual positives
correctly identified by the model, while the FPR measures the proportion of actual nega-
tives incorrectly identified as positives. Meanwhile, the F1 score is the harmonic mean of
precision (the proportion of true positive predictions among all positive predictions) and
recall. As is known, both precision and recall represent different aspects of a classification
model’s performance, and sometimes one may be more important than the other depend-
ing on the specific application or problem. Hence, the F1 score provides a single metric
that balances both precision and recall. The TPR, FPR, F1 score were calculated by
utilising the information encapsulated within the confusion matrix, as presented in Table
5.1. Additionally, to assess the predictive performance, I employed the mean weighted
absolute errors or MAE as described in Chapter 4.

5.10.1 Study 5.1

Aim

This simulation study was conducted to investigate the behaviour of parameter estimates
obtained by using the proposed methods, compared with existing approaches, under the
simplest quantile models (linear) where each predictor was designed to be independent
of the others. Furthermore, I considered to assess additional performance of BGLSSQR
and BSGSSQR when choosing the number of updates and iterations for estimating the
hyperparameters λ and t through a Monte Carlo EM algorithm in two distinct scenarios:
100 and 1000. In this study, I only considered groups of continuous predictors as an initial
investigation.
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Data generation

In this simulation study, I considered the true model to be represented by the model
(5.1), which comprised a structure of group variables. Specifically, I set the number of
variable groups (G) to be 3. Among these groups, the first one was designed as the
“active group”, where each coefficient within the group took a value of one, indicating its
significance. In contrast, the last group was designed as the “inactive group”, wherein
each coefficient within the group took a value of zero, indicating its lack of contribution
to the response variable. Meanwhile, the second group was designed to contain at least
one inactive coefficient. More specifically, the active coefficients were established with
magnitudes categorised as weak (β = 0.30), medium (β = 0.5) and strong (β = 1). Thus,
the true regression coefficients were set to

β = (1, (0.5, 0.3, 0),0),

where 1 and 0 were the 1 and 0 vectors of length 3, respectively. A group structure
with a length of 3 was chosen as the minimal structure capable of accommodating three
magnitudes of coefficients. Each predictor was generated to follow the i.i.d. standard
normal distribution.

Results

In scenarios involving independent predictors (Study 1), Figures 5.1 to 5.3 show the violin
plot of estimates for eight methods. The figures indicate that classical quantile regression
(CQR) performed exceptionally well, consistently providing estimates closer to the true
parameters than all other methods. This evidence further confirmed by Figure 5.4, which
indicates that the Mean Bias Error (MBE) of CQR approaches close to zero. This result
remained consistent across three distinct quantile models, various error distributions, and
coefficients of varying magnitudes (weak, medium, and strong). Both the frequentist and
Bayesian LASSO methods, including the proposed methods (BGLSSQR and BSGSSQR),
tended to produce values that were consistently underestimated.

All methods were sensitive to the assumptions of the residual distribution, especially in
the case of non-negative errors like those of the Chi-squared distribution. However, they
exhibited relatively robust performance with heavy-tailed errors, such as the t distribu-
tions.
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Furthermore, each method performed well with a group of variables that only contained
a strong magnitude (β = 1) of active coefficients, with the exception of the LASSOQR
and GLASSOQR methods. These two methods tended to introduce greater variability
in the estimates compared to other approaches. When a group of variables included a
mix of medium (β = 0.50) and small (β = 0.30) magnitudes of active coefficients, as
well as inactive coefficient (β = 0), the proposed methods (BGLASSQR and BSGSSQR)
still performed commendably with medium magnitudes. Nevertheless, they underesti-
mated small active coefficients, often estimating them closer to zero rather than their true
values. Notably, the BSGSSQR method, particularly with posterior median estimates,
outperformed all other methods in estimating inactive coefficients. Regarding a group of
variables containing only inactive coefficients, both the BGLASSQR and BSGSSQR meth-
ods predominantly estimated inactive coefficients as zero, while others tended to estimate
coefficients close to zero. Both frequentist LASSO methods (LASSOQR and GLASSOQR)
did not succeed in this respect. The numerical results involving this simulation study are
presented in Tables C.1 to C.6 in Appendix C.

Moreover, there was no discernible difference in performance between 100 and 1000 itera-
tions when estimating λ and t via the Monte Carlo EM method, particularly in instances
of a standard normal error distribution and a χ2

3 error distribution. Nonetheless, slight
differences in estimated bias values were noted between 100 and 1000 iterations in case
of a t3 error distribution, with the latter seemingly providing estimates closer to the true
parameter values than the former. The corresponding results are presented in Tables C.7
- C.12 in Appendix C.

Summary

When focusing on linear quantile models with independent predictors, all methods exhib-
ited sensitivity to non-negative errors resulting in biased estimates with high variability.
Nevertheless, they demonstrated robustness against heavy-tailed errors. The classical
quantile regression (CQR) consistently provided estimates that were closest to the true
parameters across various scenarios. Despite this, most methods, including the proposed
ones (BGLSSQR and BSGSSQR), tended to underestimate values. This trend of underes-
timation persisted across a range of situations, including different error distributions and
coefficient magnitudes, and it prevailed even with a mix of active and inactive coefficients.
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5.10.2 Study 5.2

Aim

The aim of this study was to investigate the behaviour of parameter estimates in a manner
similar to Study 5.1, but under a more complex model, such as a non-linear model with
polynomial and dummy predictors for categorical predictors, where some predictors were
assumed to exhibit multicollinearity.

Data generation

Within this simulation framework, I adopted one of the simulation designs outlined by
Yuan and Lin (2006) to define the true model. The true model encompassed a group of
polynomial basis predictors representing the continuous covariate, as well as a group of
dummy variables representing the multi-level categorical covariate. Analogous to Study 1,
I classified the magnitude of the active coefficients into categories of weak (β ∈ (0.30, 0.33)),
medium (β ∈ (0.50, 0.67)) and strong (β ∈ (1, 2)). Thus, the true model was

y =
2

3
X1 −X2

1 +
1

3
X3

1 +
1

2
X2,1 +

3

10
X2,2 + 2I(X4 = 1) + I(X4 = 2).

Here, X1 and X3 were generated by Xp = Zp+W√
2
, Zp ∼ N(0, 1), and W ∼ N(0, 1). This

implies that both X1 and X3 were correlated with each other. Each predictor of X2 (i.e.
X2,1, X2,2, and X2,3) was generated in the same way as in Study 5.1. X4 was generated
by trichotomising X1 as 0, 1, 2 under the conditions that X1 < Φ−1(1/3) = 0, X1 >

Φ−1(2/3) = 1 and otherwise, it is to 2. Therefore, the true regression coefficients of this
model were

β =

((2
3
,−1,

1

3

)
,
(1
2
,
3

10
, 0
)
,0, (2, 1)

)
.

Results

In case of a multicollinearity setting, Figures 5.5 to 5.7 illustrate that the classical quan-
tile regression (CQR) consistently performed well, yielding less biased estimators (further
confirmed by Figure 5.8) compared to other methods across three distinct quantile mod-
els, three error distributions, and three levels of coefficient magnitudes. Similar to Study
5.1, the estimates from both the frequentist (LASSOQR and GLASSOQR) and Bayesian
LASSO (BLASSOQR, BGLSSQR and BSGSSQR) methods exhibited bias.
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All methods remained sensitive to the case of non-negative errors (χ2
ν=3). Estimates from

this scenario for each method showed a large bias and greater variability compared to
other error types, such as standard normal and heavy-tailed errors (tν=3).

When examining a scenario involving a group of variables with a polynomial degree of
3, all methods yielded varying results, depending on magnitudes rather than the sign of
active coefficients. For a strong magnitude (β = −1), each method provided relatively
similar estimates. In contrast, for a medium magnitude (β = 0.67), most estimates, par-
ticularly those from the frequentist and Bayesian LASSO methods, including the proposed
methods (BGLSSQR and BSGSSQR), were predominantly overestimated. Moreover, in
the case of a small magnitude (β = 0.33), the estimates from both the frequentist and
Bayesian LASSO methods were underestimated.

Furthermore, in a scenario where a group of variables was linear and included both active
and inactive coefficients with medium and small magnitudes, the frequentist and Bayesian
LASSO methods underestimated both magnitudes of active coefficients. Notably, the
BSGSSQR method, particularly with posterior median estimates, outperformed all other
methods in estimating inactive coefficients.

In the case of dummy predictors representing categorical predictors, all methods consis-
tently yielded estimates close to true values, except for the LASSOQR method. Notably,
most estimates from all Bayesian methods, including the proposed methods, were mostly
underestimated.

Additionally, when a group of variables encompassed only inactive coefficients, both the
BGLSSQR and BSGSSQR methods, particularly with their posterior median estimates,
outperformed other methods.

All corresponding numerical outcomes of this study are reported in Tables C.13 to C.18
in Appendix C.

Summary

In scenarios involving non-linear quantile models with mixed predictor types and exhibit-
ing multicollinearity, all methods remained sensitive to non-negative errors whilst demon-
strating robustness against heavy-tailed errors. Similar to Study 5.1, classical quantile
regression (CQR) consistently produced estimates closest to the true parameters across
various scenarios. Both BGLSSQR and BSGSSQR continued to yield underestimates
across a range of situations, including different error distributions and coefficient magni-
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tudes, and this trend prevailed even with a mix of active and inactive coefficients. This
suggests that the proposed methods, akin to other regularisation methods, provided biased
estimates as anticipated.

5.10.3 Study 5.3

Aim

This study was specifically conducted to assess the performance of both subset selection
and prediction when the true quantile models were assumed to be linear, with multi-
collinearity present among a high number of predictors within group variables.

Data generation

In this particular scenario, I considered an expansion of the variable groups to 4, with
each group comprising 5 predictors. The true regression coefficients were denoted as

β = ((0.3,−1, 0, 0.5, 0.01),0, (0.8, 0.8, 0.8, 0.8, 0.8),0),

where 0 was the zero-vector of length 5. Predictors were generated to follow a multivariate
normal distribution with mean 0 and variance-covariance Σx, where off-diagonal elements
of Σx was defined to 0.5|i−j| for i ̸= j. This implies that predictors closer in sequence have
a higher correlation.

Results

From Table 5.2, in terms of predictive performance, the BLASSOQR method outperformed
other methods across each linear quantile models. In particular, the predictive capabil-
ities of both BGLSSQR and BSGSSQR methods, whether based on posterior mean or
median, appeared to be on par with those of the BLASSOQR method. In contrast, the
frequentist approaches (LASSOQR and GLASSOQR) yielded higher MAE values at the
extreme quantile models compared to the performance of the 0.50th quantile model (me-
dian model).

In summarising the model selection accuracy, Bayesian approaches with spike and slab
priors (BGLSSQR and BSGSSQR) exhibited superior performance compared to other
methods across three quantile models, yielding higher TPR and F1 scores, along with
acceptable FPR. Notably, BGLSSQR outperformed all Bayesian methods in terms of TPR
but exhibited a higher FPR compared to BSGSSQR. Conversely, BSGSSQR showcased
a lower FPR and higher F1 score while maintaining an acceptable TPR. Interestingly,
both LASSOQR and GLASSOQR demonstrated high TPR values, but they exhibited
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higher FPRs and lower F1 scores compared to the Bayesian methods. This variation in
performance could be attributed to the choice of the tuning parameter.

Table 5.2: Mean MAE, true positive (TPR) rate, false positive (FPR) rate and F1 score
for five different methods under Study 5.3

τ LASSOQR GLASSOQR BLASSOQR BGLSSQR BSGSSQR
mean median mean median

0.10 MAE (SD) 0.42 (0.04) 0.41 (0.04) 0.35 (0.03) 0.36 (0.03) 0.37 (0.03) 0.36 (0.03) 0.37 (0.03)
TPR 0.94 1.00 0.83 1.00 0.94
FPR 0.55 0.78 0.04 0.11 0.06
F1 0.73 0.70 0.88 0.94 0.94

0.50 MAE (SD) 0.36 (0.03) 0.37 (0.04) 0.35 (0.03) 0.36 (0.03) 0.37 (0.03) 0.36 (0.03) 0.37 (0.03)
TPR 0.93 1.00 0.83 1.00 0.94
FPR 0.37 0.39 0.04 0.11 0.06
F1 0.79 0.83 0.88 0.94 0.94

0.90 MAE (SD) 0.42 (0.04) 0.41 (0.04) 0.35 (0.03) 0.36 (0.03) 0.37 (0.03) 0.36 (0.03) 0.37 (0.03)
TPR 0.94 1.00 0.83 1.00 0.94
FPR 0.57 0.76 0.04 0.11 0.06
F1 0.72 0.70 0.88 0.94 0.94

Summary

In scenarios focusing on linear quantile models with multicollinearity among a high number
of predictors within group variables, the BLASSOQR method excelled in predictive per-
formance across all quantile models in diverse simulation settings. It was closely followed
by BGLSSQR and BSGSSQR methods. In contrast, frequentist methods LASSOQR and
GLASSOQR, displayed higher prediction errors, especially in extreme quantile models.
Regarding model selection accuracy, the proposed methods outperformed other approaches
across various quantile models and simulation studies. Specifically, BSGSSQR balanced
a lower FPR with a superior F1 score, while BGLSSQR exhibited an elevated FPR. The
frequentist methods, LASSOQR and GLASSOQR, failed to control FPR effectively, con-
sequently yielding an unacceptable F1 score.

5.10.4 Study 5.4

Aim

This simulation study aimed to assess the performance of subset selection and prediction,
similar to that in Study 5.3. However, unlike in previous studies, the true model here was
more complex and exhibited high sparsity.
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Data generation

For the high sparsity design, I expanded the number of variable groups to 10. The true
model was the same as Study 5.2. Thus, the true regression coefficients of this model were

β =

((2
3
,−1,

1

3

)
︸ ︷︷ ︸

X1

,
(1
2
,
3

10
, 0
)

︸ ︷︷ ︸
X2

, 0︸︷︷︸
X3

, (2, 1)︸ ︷︷ ︸
X4

, 0︸︷︷︸
X5

, 0︸︷︷︸
X6

, 0︸︷︷︸
X7

, 0︸︷︷︸
X8

, 0︸︷︷︸
X9

, 0︸︷︷︸
X10

)
.

where 0 denotes a zero vector of length 3 for continuous variables and length 2 for cate-
gorical variables. I generated each predictor as follow: For a third-degree polynomial of
X1, X5, X7, I generated them by

Xp =
Zp +W√

2
,

where Zp ∼ N(0, 1) and W ∼ N(0, 1). Specially, each predictor of X2, X3, X9 and X10

was generated from N3(0,ΣX·), where ΣX· = diag(1, 1, 1). For each dummy predictor of
X4, X6 and X8, I trichotomised X1, X5, X7 to meet the conditions that Xp < Φ−1(1/3) =

0, Xp > Φ−1(2/3) = 1, and otherwise, equal to 2.

Results

Table 5.3: Mean MAE, true positive (TPR) rate, false positive (FPR) rate and F1 score
for five different methods under Study 5.4

τ LASSOQR GLASSOQR BLASSOQR BGLSSQR BSGSSQR
mean median mean median

0.10 MAE (SD) 0.42 (0.04) 0.42 (0.05) 0.33 (0.03) 0.36 (0.03) 0.37 (0.03) 0.36 (0.03) 0.37 (0.03)
TPR 0.87 0.98 0.77 0.99 0.92
FPR 0.48 0.50 0.03 0.08 0.03
F1 0.55 0.62 0.83 0.90 0.91

0.50 MAE (SD) 0.36 (0.04) 0.39 (0.04) 0.33 (0.03) 0.36 (0.03) 0.37 (0.03) 0.36 (0.03) 0.37 (0.03)
TPR 0.84 0.98 0.77 0.99 0.92
FPR 0.23 0.20 0.03 0.07 0.03
F1 0.65 0.79 0.83 0.90 0.91

0.90 MAE (SD) 0.42 (0.04) 0.42 (0.04) 0.33 (0.03) 0.36 (0.03) 0.37 (0.03) 0.36 (0.03) 0.37 (0.03)
TPR 0.87 0.99 0.77 0.99 0.92
FPR 0.50 0.55 0.03 0.08 0.03
F1 0.53 0.60 0.83 0.90 0.91

In Table 5.3, consistent with the findings of Study 5.3, the BLASSOQR method consis-
tently demonstrated superior predictive performance compared to other methods across
the three quantile models. On average, both BGLSSQR and BSGSSQR methods pro-
duced closely alighted prediction error values, or MAE. In the model selection accuracy,
BGLSSQR remained the best among all Bayesian methods in terms of TPR, while BS-
GSSQR showcased a lower FPR and higher F1 score. In contrast, both LASSOQR and
GLASSOQR struggled to manage their FPR and F1 effectively.
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Summary

As the focus shifted towards more complex scenarios characterised by higher sparsity,
the BLASSOQR method maintained its superior predictive performance. The proposed
methods, BGLSSQR and BSGSSQR, closely followed this respect. With regard to model
selection accuracy, there was a slight but not considerable decline compared to Study
5.3. BSGSSQR exhibited commendable performance across all three quantile models with
acceptable three metrics.

5.11 Simulation study for simultaneous selection

Subsequently, our attention shifted towards evaluating the effectiveness of simultaneous
selection using our proposed method (BSGSSMQR) in Section 5.8 through a comprehen-
sive simulation study. This study simulated longitudinal data similar to that presented in
Chapter 4, with independent variables containing grouped structures. I thoroughly inves-
tigate the method’s performance in prediction and subset selection, with specific emphasis
on both fixed and random effects. Additionally, I compared this proposed method with
AQMM, as outlined in Chapter 4.

5.11.1 Data generation

The simulated data were generated by

y = Xβ + ui1zij1 + ui2zij2 + ui3zij3 + ui4zij4 + ϵij, i = 1, . . . , 50, j = 1, . . . , 10,

where the fixed effect component follows the specifications outlined in Study 5.4. The
residuals ϵij were generated from N(0, σ2

ϵ ) with σ2
ϵ set to two scenarios: σ2

ϵ = 1 and
σ2
ϵ = 9. Specifically, zij1 took the form of a column vector of ones with dimension 1′

n.
Additionally, zijl′ , with l′ ranging from 2 to 4, were generated from a uniform distribution
U(−2, 2). I set u = (ui1, ui2, ui3, ui4)

′ ∼ N(0,Σu), where

Σu =


0.90 0.40 0.06 0.00

0.40 0.50 0.10 0.00

0.06 0.10 0.20 0.00

0.00 0.00 0.00 0.00

 .

5.11.2 Fitting the simulated data

In this study, the quantile models with τ ∈ (0.10, 0.50, 0.90) were taken into account dur-
ing the simulation process. For the Beta priors for π0 and π1, and inverse Gamma priors
for σ, I followed the same prior specifications as mentioned in Section 5.10. The number of
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updates and iterations for estimating the hyperparameter t of s2 through a Monte Carlo
EM algorithm was designated as 100. Furthermore, I fixed pl′0 of dl′ to 0.5, while the
prior mean and variance of a were set as 0 and 0.5I. I employed a Gibbs sampler for a
total of 25,000 iterations, with an initial burn-in period of 5,000 iterations. Following the
simulations, I summarised each performance using numerical metrics, considering a total
of 200 simulations. Similar to Simulation studies in Section 5.10, thinning is not taken
into consideration in this study.

Regarding AQMM, it should be noted that the aqmm function from the R package aqmm

allows only for the fitting of non-linear terms through the smooth.terms specification in
the mgcv package. Consequently, variables associated with a third-degree polynomial, such
as X1, X5, and X7, were modelled as cubic P-splines on 40 equidistant knots distributed
across the rage of each variable. Other variables were assumed to be linear predictors. To
select the variables or predictors, the p-values for a two-tailed t-test from the bootstrap
method with 50 replications were employed, on the understanding that if this p-value is
less than the significance level of 0.05, the variable will be included in the model.

5.11.3 Summarising the results

To evaluate the predictive performance of the proposed approach, I employed the MAE
metric as prediction error, as outlined in Section 4.4. Additionally, posterior median was
used as the thresholding estimator in subset selection. Subsequently, for assessing the
performance of subset selection, I utilised several metrics. These include the true positive
rate (TPR), the false positive rate (FPR) and the F1 score, as detailed in Table 5.1.
To ensure fairness in comparing BSGSSMQR and AQMM, I excluded predictors from
the group variables X1, X5 and X7 when measuring subset selection performance. This
decision was made because the bootstrap testing in AQMM is limited to linear predictors
and does not support any smooth terms.

5.11.4 Results

Table 5.4 summarises the mean MAE for two error variance (σ2
ϵ ) scenarios, using two

proposed methods (BSGSSMQR with posterior mean and BSGSSMQR with posterior
median) and compared to AQMM. Generally, the results indicate that the prediction er-
rors from both the posterior mean and posterior median estimators were relatively similar
across three quantile models and two error variances. When the noise level was high,
the prediction errors exhibited higher values. In comparison with AQMM, both methods
yielded slightly higher MAE across the three quantiles and in both error variance scenarios.
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In Table 5.5, I summarised the model selection accuracy of two approaches in two error
variance scenarios. Compared to AQMM, BSGSSMQR demonstrated superior accuracy
across all three quantiles and in both error variance scenarios. When evaluating the
simultaneous selection performance of BSGSSMQR, it exhibited a very low false positive
rate and a high true positive rate, along with a high F1 score, particularly in scenarios with
minimal noise. However, in cases of too much noise, all three metrics showed a decline.

Table 5.4: Mean MAE for AQMM and BSGSSMQR with two posterior estimators in two
error variances

τ AQMM BSGSSMQRmean BSGSSMQRmedian

0.10 σ2
ϵ = 1 0.1530 (0.0085) 0.2302 (0.0175) 0.2393 (0.0167)
σ2
ϵ = 9 0.4915 (0.0272) 0.9549 (0.0468) 0.9724 (0.0472)

0.50 σ2
ϵ = 1 0.3303 (0.0163) 0.3524 (0.0160) 0.3582 (0.0151)
σ2
ϵ = 9 1.0840 (0.0559) 1.0061 (0.0416) 1.0221 (0.0418)

0.90 σ2
ϵ = 1 0.1469 (0.0087) 0.2304 (0.0171) 0.2393 (0.0167)
σ2
ϵ = 9 0.4771 (0.0262) 0.9544 (0.0449) 0.9724 (0.0472)

Table 5.5: Mean true positive rate (TPR), false positive rate (FPR) and F1 score for
AQMM and BSGSSMQR in two error variances

τ σ2
ϵ = 1 σ2

ϵ = 9
AQMM BSGSSMQRfixed BSGSSMQRall AQMM BSGSSMQRfixed BSGSSMQRall

0.10 TPR 0.53 1.00 1.00 0.27 0.80 0.88
FPR 0.14 0.02 0.03 0.15 0.09 0.15
F1 0.54 0.97 0.97 0.43 0.75 0.80

0.50 TPR 0.66 1.00 1.00 0.34 0.80 0.88
FPR 0.06 0.02 0.03 0.05 0.09 0.16
F1 0.71 0.97 0.97 0.49 0.75 0.80

0.90 TPR 0.77 1.00 1.00 0.45 0.80 0.88
FPR 0.07 0.02 0.03 0.11 0.09 0.15
F1 0.77 0.97 0.97 0.54 0.75 0.80

Note:

• The term fixed represents only fixed effects were considered.

• The term all represents both fixed and random effects were considered.

5.11.5 Summary

The posterior mean estimator and the posterior median estimator yielded similar predic-
tion errors in both cases involving two error variances. Both estimators exhibited slightly
higher prediction error compared to AQMM in the median model, and were relatively
higher in both extreme quantiles. Regarding the simultaneous selection performance, the
posterior median estimator remained a robust choice, effectively serving as a threshold for
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selecting or deselecting predictors. As anticipated, BSGSSMQR exhibited a drop in its
performance when the data contained excessive noise. In contrast, AQMM appeared to
underperform across all accuracy matrices in this respect.

5.12 Sensitivity analysis

In this section, I aimed to investigate the behaviour of the prior parameter specifications
concerning the selection of fixed and random effects. To achieve this, I employed the
simulation setting described in Section 5.11, where the errors follow standard normal
distribution. I varied hyperpameters of π0, π1, and dl′ into nine distinct scenarios.

Table 5.6: Sensitivity analysis for BSGSSMQR

τ pl′0 Hyperprior
a1, a2, c1, c2 = 0.50 a1, a2, c1, c2 = 1.00 a1, a2, c1, c2 = 1.50
TPR FPR F1 TPR FPR F1 TPR FPR F1

0.10 0.30 0.96 0.04 0.94 0.96 0.04 0.94 0.96 0.04 0.94
0.50 0.96 0.03 0.95 0.96 0.03 0.95 0.96 0.02 0.95
0.80 0.96 0.02 0.96 0.96 0.02 0.96 0.96 0.02 0.96

0.50 0.30 0.97 0.03 0.95 0.97 0.03 0.95 0.97 0.03 0.95
0.50 0.97 0.03 0.96 0.98 0.03 0.96 0.97 0.02 0.96
0.80 0.97 0.02 0.97 0.97 0.02 0.97 0.97 0.02 0.97

0.90 0.30 0.97 0.04 0.95 0.97 0.04 0.95 0.97 0.04 0.95
0.50 0.97 0.03 0.96 0.97 0.03 0.96 0.97 0.02 0.96
0.80 0.97 0.02 0.96 0.97 0.02 0.97 0.97 0.02 0.97

Table 5.6 summarises the mean of TPR, FPR and F1 for nine distinct scenarios of hyper-
pameters. The results indicate that the BSGSSMQR method was very stable in all three
metrics for most of the nine variables across three quantile models.

5.13 Illustrative analysis

I employed two simulated datasets, corresponding to two data variations with σ2
ϵ = 1 and

σ2
ϵ = 9, respectively, obtained from Section 5.11, to conduct an illustrative analysis using

our proposed methodology. Three quantile models at τ = 0.10, 0.50 and 0.90 were fitted,
adhering to the specifications outlined in Section 5.11.

In Table 5.7, the results indicate that BSGSSMQR yielded zero posterior median estimates
for the fixed effects and accurately identified the three active groups of fixed effects in both
cases. However, in the instance of high noise (σ2

ϵ = 9), BSGSSMQR tended to shrink some
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Table 5.7: Posterior mean, standard deviation (SD), 95% credible intervals (CrI), posterior
median for both the fixed (FEs) and random (REs) effects, and computational times (in
minutes) of the 0.10th quantile model under BSGSSMQR with two different error
variances

σ2
ϵ = 1 σ2

ϵ = 9
True Mean SD CrI Median Mean SD CrI Median

FEs
β1 0.67 0.827 0.297 0.194, 1.372 0.837 0.449 0.498 -0.280, 1.526 0.390
β2 -1.00 -0.997 0.099 -1.193, -0.805 -0.996 -1.082 0.248 -1.571, -0.591 -1.081
β3 0.33 0.283 0.195 0.000, 0.656 0.296 0.159 0.290 -0.339, 0.822 0
β4 0.50 0.488 0.087 0.319, 0.663 0.487 0.612 0.244 0.000, 1.074 0.620
β5 0.30 0.361 0.083 0.195, 0.521 0.362 0.288 0.224 0.000, 0.730 0.292
β6 0 -0.004 0.039 -0.112, 0.081 0 -0.103 0.167 -0.516, 0.069 0
β7 0 -0.007 0.040 -0.125, 0.069 0 -0.117 0.173 -0.539, 0.032 0
β8 0 -0.046 0.071 -0.218, 0.000 0 -0.074 0.147 -0.459, 0.090 0
β9 0 0.003 0.039 -0.089, 0.114 0 0.035 0.134 -0.216, 0.403 0
β10 2.00 1.873 0.198 1.512, 2.292 1.864 2.359 0.411 1.466, 3.083 2.387
β11 1.00 0.939 0.117 0.719, 1.179 0.935 1.026 0.303 0.390, 1.579 1.038
β12 0 0.050 0.105 -0.052, 0.350 0 -0.089 0.209 -0.616, 0.244 0
β13 0 0.017 0.052 -0.051, 0.173 0 0.149 0.206 -0.053, 0.639 0
β14 0 -0.053 0.100 -0.334, 0.021 0 -0.067 0.190 -0.541, 0.283 0
β15 0 0.000 0.050 -0.124, 0.127 0 -0.010 0.120 -0.316, 0.259 0
β16 0 0.040 0.068 0.000, 0.217 0 0.032 0.126 -0.202, 0.384 0
β17 0 -0.040 0.088 -0.290, 0.045 0 -0.129 0.228 -0.718, 0.130 0
β18 0 -0.002 0.043 -0.120, 0.103 0 0.066 0.156 -0.150, 0.489 0
β19 0 -0.016 0.063 -0.183, 0.104 0 0.056 0.181 -0.249, 0.553 0
β20 0 0.022 0.062 -0.051, 0.206 0 -0.039 0.149 -0.440, 0.245 0
β21 0 -0.022 0.057 -0.183, 0.039 0 -0.160 0.203 -0.624, 0.009 0
β22 0 0.008 0.041 -0.058, 0.137 0 -0.051 0.133 -0.414, 0.136 0
β23 0 -0.010 0.039 -0.133, 0.041 0 0.002 0.106 -0.263, 0.276 0
β24 0 -0.004 0.037 -0.114, 0.073 0 0.031 0.123 -0.203, 0.378 0
β25 0 -0.014 0.044 -0.146, 0.040 0 -0.042 0.127 -0.391, 0.168 0
β26 0 0.039 0.064 0.000, 0.199 0 0.052 0.131 -0.138, 0.414 0
β27 0 0.020 0.048 -0.021, 0.160 0 -0.108 0.159 -0.491, 0.022 0

REs
σ11 0.90 0.866 0.213 0.529, 1.358 0.839 1.129 0.346 0.574, 1.924 1.087
σ22 0.50 0.470 0.110 0.293, 0.721 0.457 0.533 0.237 0.052, 1.045 0.520
σ33 0.20 0.116 0.048 0.035, 0.224 0.112 0.441 0.231 0.074, 0.992 0.410
σ44 0 0.002 0.006 0.000, 0.019 0 0.187 0.195 0.000, 0.709 0.130
Time 124 114

coefficients of small magnitude towards zero, particularly within the first group of predic-
tors (β3). Regarding the random effects, BSGSSMQR produced a zero posterior median
estimate for the last random effect and correctly pinpointed the three most pivotal random
effects only in the scenario with σ2

ϵ = 1. Conversely, this method failed to produce a zero
posterior median estimate for the last random effect when the simulated data contained
excessive noise (σ2

ϵ = 9).

Analogous to the 0.10th quantile model, the results presented in Table 5.8 for the 0.50th
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Table 5.8: Posterior mean, standard deviation (SD), 95% credible intervals (CrI), posterior
median for both the fixed (FEs) and random (REs) effects, and computational times (in
minutes) of the 0.50th quantile model under BSGSSMQR with two different error
variances

σ2
ϵ = 1 σ2

ϵ = 9
True Mean SD CrI Median Mean SD CrI Median

FEs
β1 0.67 0.754 0.275 0.194, 1.285 0.751 0.443 0.502 -0.283, 1.519 0.367
β2 -1.00 -1.000 0.092 -1.182, -0.818 -1.000 -1.079 0.252 -1.574, -0.589 -1.079
β3 0.33 0.323 0.183 0.000, 0.658 0.338 0.160 0.292 -0.333, 0.823 0
β4 0.50 0.484 0.081 0.327, 0.644 0.484 0.613 0.240 0.012, 1.070 0.618
β5 0.30 0.359 0.079 0.202, 0.511 0.360 0.285 0.227 0.000, 0.731 0.289
β6 0 -0.005 0.037 -0.110, 0.073 0 -0.103 0.166 -0.523, 0.064 0
β7 0 -0.005 0.037 -0.115, 0.068 0 -0.111 0.171 -0.537, 0.048 0
β8 0 -0.036 0.063 -0.202, 0.000 0 -0.075 0.149 -0.468, 0.094 0
β9 0 0.002 0.038 -0.087, 0.108 0 0.034 0.135 -0.222, 0.405 0
β10 2.00 1.930 0.183 1.578, 2.306 1.933 2.370 0.419 1.467, 3.111 2.400
β11 1.00 0.971 0.111 0.757, 1.194 0.971 1.038 0.303 0.403, 1.589 1.052
β12 0 0.058 0.114 -0.028, 0.376 0 -0.091 0.206 -0.612, 0.243 0
β13 0 0.017 0.050 -0.041, 0.170 0 0.150 0.208 -0.054, 0.642 0
β14 0 -0.059 0.106 -0.344, 0.007 0 -0.070 0.192 -0.549, 0.283 0
β15 0 -0.002 0.052 -0.142, 0.123 0 -0.009 0.115 -0.317, 0.257 0
β16 0 0.033 0.063 -0.003, 0.205 0 0.034 0.128 -0.206, 0.387 0
β17 0 -0.043 0.093 -0.310, 0.034 0 -0.124 0.224 -0.708, 0.141 0
β18 0 -0.002 0.039 -0.109, 0.094 0 0.068 0.156 -0.146, 0.486 0
β19 0 -0.014 0.061 -0.178, 0.100 0 0.054 0.179 -0.255, 0.553 0
β20 0 0.025 0.068 -0.048, 0.233 0 -0.043 0.150 -0.456, 0.221 0
β21 0 -0.021 0.055 -0.179, 0.036 0 -0.160 0.204 -0.631, 0.012 0
β22 0 0.008 0.039 -0.051, 0.131 0 -0.049 0.130 -0.410, 0.133 0
β23 0 -0.009 0.037 -0.128, 0.026 0 0.001 0.106 -0.271, 0.274 0
β24 0 -0.008 0.037 -0.125, 0.038 0 0.028 0.123 -0.220, 0.367 0
β25 0 -0.014 0.041 -0.141, 0.031 0 -0.041 0.127 -0.389, 0.186 0
β26 0 0.037 0.063 0.000, 0.196 0 0.050 0.130 -0.131, 0.409 0
β27 0 0.022 0.049 -0.012, 0.163 0 -0.106 0.159 -0.491, 0.025 0

REs
σ11 0.90 0.797 0.198 0.486, 1.253 0.772 1.095 0.349 0.525, 1.888 1.057
σ22 0.50 0.473 0.109 0.297, 0.721 0.460 0.537 0.249 0.048, 1.066 0.521
σ33 0.20 0.107 0.047 0.027, 0.213 0.102 0.474 0.259 0.094, 1.130 0.431
σ44 0 0.002 0.006 0.000, 0.021 0 0.206 0.210 0.000, 0.759 0.143
Time 132 128

quantile model indicate a consistent trend. BSGSSMQR was able to identify the correct
active groups of fixed effects in both error variance cases. In instances of high noise, this
method could not produce a zero posterior median estimate for the inactive random effect.
For the 0.90th quantile model, Table 5.9 demonstrates a trend analogous to the two pre-
vious quantile models. Each active group and predictor of fixed effects was correctly
identified. However, in instances of high noise, the last predictor in the first active group
tended to have a posterior median estimate close to zero. Notably, BSGSSMQR, regarding
the posterior median estimate, still incorrectly identified the last (inactive) random effect
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Table 5.9: Posterior mean, standard deviation (SD), 95% credible intervals (CrI), posterior
median for both the fixed (FEs) and random (REs) effects, and computational times (in
minutes) of the 0.90th quantile model under BSGSSMQR with two different error
variances

σ2
ϵ = 1 σ2

ϵ = 9
True Mean SD CrI Median Mean SD CrI Median

FEs
β1 0.67 0.745 0.293 0.118, 1.312 0.744 0.432 0.508 -0.326, 1.536 0.345
β2 -1.00 -0.991 0.098 -1.184, -0.797 -0.992 -1.079 0.251 -1.574, -0.593 -1.079
β3 0.33 0.327 0.196 0.000, 0.690 0.342 0.170 0.297 -0.329, 0.838 0.014
β4 0.50 0.478 0.083 0.316, 0.644 0.477 0.614 0.238 0.036, 1.067 0.621
β5 0.30 0.365 0.082 0.203, 0.524 0.365 0.276 0.225 0.000, 0.728 0.279
β6 0 -0.005 0.039 -0.117, 0.082 0 -0.104 0.166 -0.517, 0.067 0
β7 0 -0.006 0.039 -0.125, 0.070 0 -0.111 0.168 -0.518, 0.038 0
β8 0 -0.031 0.060 -0.196, 0.000 0 -0.076 0.148 -0.464, 0.092 0
β9 0 0.002 0.039 -0.098, 0.110 0 0.034 0.136 -0.234, 0.407 0
β10 2.00 1.931 0.192 1.573, 2.336 1.930 2.380 0.418 1.491, 3.098 2.415
β11 1.00 0.977 0.115 0.755, 1.212 0.976 1.040 0.302 0.414, 1.586 1.055
β12 0 0.055 0.111 -0.032, 0.368 0 -0.095 0.214 -0.632, 0.250 0
β13 0 0.017 0.052 -0.040, 0.177 0 0.151 0.208 -0.053, 0.643 0
β14 0 -0.053 0.102 -0.343, 0.017 0 -0.068 0.196 -0.543, 0.307 0
β15 0 -0.001 0.050 -0.134, 0.120 0 -0.007 0.121 -0.316, 0.271 0
β16 0 0.031 0.061 -0.002, 0.200 0 0.036 0.128 -0.191, 0.392 0
β17 0 -0.039 0.093 -0.308, 0.046 0 -0.129 0.225 -0.713, 0.126 0
β18 0 -0.002 0.042 -0.116, 0.104 0 0.070 0.158 -0.149, 0.491 0
β19 0 -0.016 0.066 -0.187, 0.114 0 0.051 0.178 -0.263, 0.538 0
β20 0 0.024 0.067 -0.043, 0.225 0 -0.038 0.145 -0.431, 0.232 0
β21 0 -0.019 0.054 -0.177, 0.042 0 -0.156 0.202 -0.619, 0.009 0
β22 0 0.006 0.040 -0.071, 0.127 0 -0.052 0.133 -0.422, 0.131 0
β23 0 -0.011 0.039 -0.138, 0.028 0 0.000 0.106 -0.275, 0.269 0
β24 0 -0.009 0.040 -0.137, 0.046 0 0.030 0.120 -0.190, 0.366 0
β25 0 -0.018 0.047 -0.156, 0.027 0 -0.041 0.128 -0.393, 0.175 0
β26 0 0.038 0.063 0.000, 0.199 0 0.054 0.133 -0.139, 0.415 0
β27 0 0.028 0.056 -0.006, 0.184 0 -0.106 0.158 -0.490, 0.032 0

REs
σ11 0.90 0.883 0.212 0.551, 1.386 0.855 1.103 0.347 0.543, 1.894 1.061
σ22 0.50 0.480 0.110 0.302, 0.728 0.468 0.553 0.245 0.072, 1.089 0.538
σ33 0.20 0.121 0.050 0.036, 0.232 0.117 0.465 0.254 0.074, 1.102 0.426
σ44 0 0.003 0.007 0.000, 0.021 0 0.196 0.199 0.000, 0.721 0.137
Time 133 120

in the presence of high noise in the simulated data.

Additionally, I fitted the same simulated datasets as outlined above using the AQMM
approach for comparison with the proposed method. The variance-covariance matrix of
the random effects was specified as a general positive-definite matrix with no additional
structure, using pdSymm in the covariance argument in the aqmm function. This implies
allowing for correlation among the random effects. However, in our results, I only present
the standard deviations of random effects. The standard errors (SE) for each fixed effect
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were calculated using the bootstrap method with 50 replications.

Table 5.10: Estimates, standard error (SE) for both the fixed (FEs) and random (REs)
effects of the 0.10th quantile model under AQMM with two different error variances

σ2
ϵ = 1 σ2

ϵ = 9
True Estimate SE t-value Pr(> |t|) Estimate SE t-value Pr(> |t|)

FEs
β4 0.50 0.571 0.095 6.024 0.000 0.524 0.344 1.523 0.134
β5 0.30 0.343 0.080 4.274 0.000 0.321 0.231 1.391 0.171
β6 0 -0.081 0.081 -0.998 0.323 -0.165 0.208 -0.793 0.432
β7 0 -0.120 0.089 -1.351 0.183 -0.257 0.282 -0.914 0.365
β8 0 -0.059 0.070 -0.847 0.401 -0.292 0.241 -1.210 0.232
β9 0 0.088 0.087 1.017 0.314 0.323 0.262 1.232 0.224
β10 2.00 1.647 0.463 3.554 0.001 -1.148 1.293 -0.888 0.379
β11 1.00 0.775 0.412 1.880 0.066 -0.132 0.884 -0.149 0.882
β15 0 -1.271 0.513 -2.478 0.017 -1.537 1.348 -1.140 0.260
β16 0 -0.671 0.325 -2.068 0.044 -0.785 0.891 -0.881 0.383
β20 0 -1.589 0.494 -3.218 0.002 -3.362 1.187 -2.834 0.007
β21 0 -0.934 0.369 -2.528 0.015 -1.793 0.982 -1.827 0.074
β22 0 0.005 0.098 0.051 0.959 -0.401 0.306 -1.310 0.196
β23 0 0.026 0.098 0.271 0.787 0.199 0.265 0.751 0.456
β24 0 -0.048 0.086 -0.553 0.583 -0.266 0.276 -0.965 0.339
β25 0 0.027 0.081 0.330 0.743 0.198 0.246 0.806 0.424
β26 0 0.088 0.076 1.152 0.255 0.197 0.212 0.928 0.358
β27 0 -0.120 0.083 -1.451 0.153 -0.411 0.259 -1.588 0.119
S(X1) - 36.634 7.131 5.138 0.000 43.170 13.507 3.196 0.002
S(X5) - 3.041 2.002 1.519 0.135 2.304 5.316 0.434 0.667
S(X7) - 6.533 1.973 3.311 0.002 10.738 6.704 1.602 0.116

REs
σ11 0.90 0.537 - - - 0.759 - - -
σ22 0.50 0.535 - - - 0.304 - - -
σ33 0.20 0.204 - - - 0.172 - - -
σ44 0 0 - - - 0.003 - - -

In Table 5.10, the results show that AQMM yielded some estimates not close to zero
(highlighted in red italics) for the inactive coefficients. This pattern was observed across
two different error variances, particularly in the case where σ2

ϵ = 9. Notably, several in-
active coefficients were selected (highlighted in red) for the 0.10th quantile model, based
on the p-values from the bootstrap tests. Additionally, some active coefficients were not
selected (highlighted in blue), following the same criterion. Regarding the random effects,
the estimated standard deviations were relatively close to the true values in two scenarios
of error variance.

In the 0.50th quantile model, Table 5.11 shows that AQMM yielded estimates comparable
to those of the 0.10th quantile model, though the discrepancies were less severe. In terms
of the variable selection, one active coefficient and one inactive coefficient were incorrectly
selected, as indicated by the p-values from the bootstrap tests, in the scenario where
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σ2
ϵ = 1. Meanwhile, in the case where σ2

ϵ = 9, three active coefficients were not selected.
For the random effects, AQMM estimated standard deviations closely aligned with the
true values, particularly for the last three random effects.

Table 5.11: Estimates, standard error (SE) for both the fixed (FEs) and random (REs)
effects of the 0.50th quantile model under AQMM with two different error variances

σ2
ϵ = 1 σ2

ϵ = 9
True Estimate SE t-value Pr(> |t|) Estimate SE t-value Pr(> |t|)

FEs
β4 0.50 0.536 0.075 7.126 0.000 0.752 0.228 3.292 0.002
β5 0.30 0.286 0.064 4.458 0.000 0.237 0.231 1.029 0.308
β6 0 -0.075 0.063 -1.205 0.234 -0.295 0.207 -1.426 0.160
β7 0 -0.022 0.060 -0.374 0.710 -0.017 0.174 -0.100 0.921
β8 0 -0.017 0.077 -0.220 0.827 -0.019 0.199 -0.095 0.925
β9 0 -0.003 0.067 -0.046 0.963 0.028 0.217 0.131 0.896
β10 2.00 1.809 0.569 3.180 0.003 2.053 1.275 1.611 0.114
β11 1.00 0.676 0.461 1.464 0.149 0.962 1.002 0.961 0.342
β15 0 0.310 0.540 0.574 0.569 -0.165 1.222 -0.135 0.893
β16 0 0.221 0.292 0.756 0.453 -0.021 0.634 -0.034 0.973
β20 0 -0.808 0.427 -1.891 0.065 -0.422 1.068 -0.396 0.694
β21 0 -0.807 0.347 -2.326 0.024 -1.025 0.725 -1.413 0.164
β22 0 -0.032 0.080 -0.403 0.689 0.003 0.224 0.014 0.989
β23 0 0.018 0.063 0.291 0.772 0.086 0.204 0.423 0.674
β24 0 -0.029 0.075 -0.388 0.700 0.172 0.215 0.801 0.427
β25 0 -0.057 0.079 -0.721 0.475 -0.258 0.194 -1.332 0.189
β26 0 0.058 0.072 0.817 0.418 0.092 0.218 0.420 0.677
β27 0 -0.126 0.066 -1.926 0.060 -0.313 0.218 -1.434 0.158
S(X1) - 34.537 13.693 2.522 0.015 27.858 12.617 2.208 0.032
S(X5) - -1.690 1.607 -1.052 0.298 -0.325 4.393 -0.074 0.941
S(X7) - 2.833 1.890 1.499 0.140 -1.067 5.236 -0.204 0.839

REs
σ11 0.90 0.659 - - - 1.163 - - -
σ22 0.50 0.465 - - - 0.486 - - -
σ33 0.20 0.208 - - - 0.266 - - -
σ44 0 0.000 - - - 0.003 - - -

Analogous to the two previous quantiles models, in the 0.90th quantile model, some es-
timates for inactive coefficients were not close to zero, as presented in Table 5.12. The
AQMM approach appeared to perform well in this quantile model. Only one inactive
coefficient was selected as an (active) significant predictor in the case where σ2

ϵ = 1, while
one active coefficient was selected as an (inactive) non-significant predictor in the case
where σ2

ϵ = 9, based on the p-values from the bootstrap tests. Concerning the random
effects, it was observed that the standard deviations estimated by AQMM were relatively
smaller than the true values.
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Table 5.12: Estimates, standard error (SE) for both the fixed (FEs) and random (REs)
effects of the 0.90th quantile model under AQMM with two different error variances

σ2
ϵ = 1 σ2

ϵ = 9
True Estimate SE t-value Pr(> |t|) Estimate SE t-value Pr(> |t|)

FEs
β4 0.50 0.494 0.074 6.715 0.000 0.509 0.249 2.046 0.046
β5 0.30 0.288 0.074 3.893 0.000 0.386 0.196 1.967 0.055
β6 0 0.012 0.075 0.158 0.875 -0.174 0.249 -0.699 0.488
β7 0 -0.016 0.068 -0.242 0.810 -0.036 0.222 -0.162 0.872
β8 0 -0.032 0.069 -0.465 0.644 -0.169 0.203 -0.835 0.408
β9 0 -0.030 0.074 -0.402 0.689 -0.007 0.241 -0.030 0.976
β10 2.00 2.416 0.547 4.415 0.000 3.153 1.214 2.598 0.012
β11 1.00 1.075 0.366 2.937 0.005 2.287 0.881 2.597 0.012
β15 0 0.351 0.636 0.552 0.584 2.029 1.295 1.567 0.124
β16 0 0.218 0.343 0.634 0.529 1.340 0.754 1.777 0.082
β20 0 0.194 0.501 0.387 0.700 1.335 0.914 1.461 0.150
β21 0 0.076 0.278 0.275 0.784 0.589 0.652 0.903 0.371
β22 0 0.148 0.068 2.158 0.036 0.364 0.252 1.442 0.156
β23 0 0.013 0.066 0.196 0.846 0.001 0.223 0.005 0.996
β24 0 0.083 0.078 1.063 0.293 0.301 0.265 1.134 0.262
β25 0 -0.095 0.076 -1.258 0.214 -0.182 0.259 -0.702 0.486
β26 0 0.064 0.078 0.828 0.412 0.153 0.239 0.637 0.527
β27 0 0.015 0.064 0.241 0.811 -0.009 0.242 -0.035 0.972
S(X1) - 32.685 10.227 3.196 0.002 21.879 7.595 2.881 0.006
S(X5) - -2.165 2.529 -0.856 0.396 -7.094 6.879 -1.031 0.308
S(X7) - -0.638 2.450 -0.260 0.796 -10.402 5.464 -1.904 0.063

REs
σ11 0.90 0.448 - - - 0.788 - - -
σ22 0.50 0.336 - - - 0.308 - - -
σ33 0.20 0.135 - - - 0.174 - - -
σ44 0 0 - - - 0.003 - - -

5.13.1 Summary

The BSGSSMQR approach excelled in fixed effect selection compared to the AQMM
approach when applied to simulated datasets, particularly in scenarios where the error
variance was assumed to be small. However, it showed relative sensitivity to large error
variances, resulting in a slight decrease in performance in this respect and a significant
impact on the selection of random effects. Notably, while the AQMM approach struggled
to estimate inactive coefficients close to their true values (zero) and sometimes incorrectly
selected variables, it performed relatively well in estimation of random effects. Nonetheless,
AQMM lacks a specific test to quantify uncertainty in random effects.

5.14 Chapter summary

In this chapter, Bayesian variable selection methods within quantile models and quantile
mixed models were developed. Initially, the proposed methodologies for the quantile mod-



CHAPTER 5. VARIABLE SELECTION FOR QUANTILE MIXED MODELS 212

els combined three key techniques: the Bayesian LASSO-type methods (Bayesian group
LASSO and Bayesian sparse group LASSO), a likelihood function based on the scale mix-
ture representation of the asymmetric Laplace (AL) distribution, and spike and slab priors
for regression coefficients. The first technique was employed to select the group structures
of predictors, such as a multi-level categorical predictor and a group of basis functions,
to incorporate nonlinear relationships. The second was utilised as the working likelihood
of data in the Bayesian framework, and the third was adopted to yield sparse estimators.
Subsequently, the proposed methodology in the quantile models was extended by incor-
porating the use of mixed models, based on a decomposition for the covariance matrix of
random effects, to enable the simultaneous selection of both fixed and random effects in
the quantile mixed model framework.

In the context of quantile models, the simulation studies demonstrate that the proposed
methods (BGLSSQR and BSGSSQR) generally yield biased estimators, as expected, due
to the regularisation method. In addition, they generally perform well in terms of predic-
tive performance compared to existing frequentist and Bayesian QR methods. Notably,
in terms of variable selection performance, the proposed methods outperform other meth-
ods. This finding reveals that incorporating Bayesian group and sparse group LASSO with
spike and slab priors on quantile regression coefficients significantly improves this aspect.
Owing to the advantages of BSGSSQR over BGLSSQR, BSGSSQR is more suitable for
extension to the context of quantile mixed models.

In the quantile mixed models, the proposed method (BSGSSMQR) demonstrates supe-
rior performance in simultaneous selection. Although it provides slightly lower predictive
performance compared to AQMM, the results remain within acceptable values. Sensi-
tivity analysis reveals that the proposed method stabilises in model selection accuracy
when varying relevant hyperparameters. When implemented with simulated datasets, the
results indicate that the proposed method performed well across three quantile models.
Furthermore, it exhibits sensitivity to higher error variance, particularly in both estima-
tion and selection of random effects. Given the advantages of the proposed method as
described earlier, I will apply it to real longitudinal child growth data in Chapter 6.



Chapter 6

Application to longitudinal child
growth data in Scotland

In Chapters 4 and 5, several experimental studies were conducted to evaluate the per-
formance of AQMM and BSGSSMQR within the context of longitudinal child growth
data (LCGD). The findings in Chapter 4 suggest that AQMM is sufficiently suitable for
modelling this type of data, although it lacks a method for selecting appropriate ran-
dom effects to capture individual-specific variations. AQMM is capable of constructing
reference child growth charts and identifying risk factors (fixed effects) that affect child
physical growth measurements, utilising bootstrapping. The novel approach in Chapter 5,
BSGSSMQR, offers capabilities beyond AQMM, as it enables the simultaneous selection
of fixed and random effects. Therefore, in this chapter, these two models are applied to
LCGD in Scotland, providing comprehensive insights into the child physical growth and
development of Scottish children.

6.1 Modelling LCGD in Scotland using additive quan-

tile mixed model

In this section, the AQMM approach was applied to the real LCGD obtained from the
Growing up in Scotland (GUS) study. Detailed information about the study and data,
including collection procedures, variables, and exploratory analysis, is provided in Section
2.6. The analysis aims to achieve two primary objectives: constructing reference growth
charts and identifying risk factors associated with child physical growth measurements.
The latter specifically focuses on two critical points in the distribution of child physical
growth measurements, namely the 0.10th and 0.90th quantiles. These quantiles represent
children in the lowest 10% and highest 90% of the distribution, respectively, highlight-
ing those physical growth measurements that fall below or above the typical range. In
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particular, the upper quantile in this context will represent children at risk of obesity or
overweight, a considerable concern in Scotland.

6.1.1 Growth measurements

In this application, the primary focus was on analysing the growth measurements of inter-
est, which included both raw and standardised growth metrics. Specifically, I considered
raw measurements of weight and height, alongside weight-for-age z-scores (WAZ) and
height-for-age z-scores (HAZ). These standardised measurements provide valuable infor-
mation about the relative growth status of children in comparison to reference populations,
as described in Section 2.3.

6.1.2 Covariates

The analysis focuses on covariates that are likely to have a potential impact and serve as
risk factors associated with child growth development, adopting the framework presented
in “Multiple risk factors in young children’s development” by Sabates and Dex (2012), as
described in Section 2.6.3. The list of potential covariates investigated in this analysis is
presented in Table 2.5. Note that when identifying risk factors associated with growth
measurements, birth weight is not included. With an average birth weight of 3,425.48
grams in the GUS data (3,499.82 grams for males and 3,349.91 grams for females), the
observed differences are minimal and unlikely to have a clinically meaningful impact on
growth outcomes. Therefore, including birth weight as a risk factor would introduce
unnecessary complexity without considerably enhancing the model’s explanatory power.

6.1.3 Fitting the models

According to the GUS data, the dataset includes children aged from 10 months to 14 years,
encompassing both child and adolescent growth. However, physical growth measurements,
such as weight, were only taken twice during the child growth phase, at 10 months and 4
years of age. Therefore, I decided to approach this in two ways: 1) modelling the entire
dataset to explore the complete growth trajectory captured in the GUS dataset and 2)
modelling only the dataset of children approximately aged 4 to 14 years (Sweeps 4 to 10) to
focus specifically on the period including adolescent growth. The latter covers the growth
of school-age children and young people in primary or secondary education in Scotland.

Quantile models for constructing the reference growth charts

To construct the reference growth charts, the quantile models with τ values of 0.004,
0.02, 0.09, 0.25, 0.50, 0.75, 0.91, 0.98 and 0.996 were fitted separately by sex with age,
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as there are distinct differences in growth patterns and rates between boys and girls.
These quantiles correspond to the UK-WHO growth charts as presented by Royal College
of Paediatrics and Child Health (2013). In this analytical context, I fitted two distinct
datasets (i.e. the entire dataset and children approximately aged 4 to 14 years) using the
AQMM with cubic P-splines and the squared second-order (m = 2) difference to model
the smooth effect (non-parametric term) of age in years. Following this spline approach,
the number of knots (K) was calculated as K = min{40, the number of unique x/4}, in
accordance with the guidance of Ruppert et al. (2003). The equidistant positions of these
knots were utilised, as required by P-splines. Note that in the AQMM, the penalisation
method will eliminate bases that are not supported by the data (i.e. those with missing
age values). Initially, I established a design matrix of random effects, Z = [1, X1], where
X1 represents the variable of age in years. The positive-definite matrix for these random
effects was specified as the general positive–definite matrix, with no additional structure
(pdSymm). This setting serves as an instrument to account for the inherent potential
heterogeneity among children by incorporating random intercepts and slopes. However,
the fitted models did not capture the GUS data well, as the percentages of observations
above each percentiles did not correspond to the expected quantile levels. For example,
for the 25th percentile, the percentage of observations above this percentile should be
close to 75% (see Tables 6.1 to 6.2 and Figures D.1 to D.6 in Appendix D). Therefore,
I refitted these models by revising the design matrix of random effects to include only
random intercepts, Z = [1]. As a result, the refitted models provided quantile curves that
fit two GUS datasets well, particularly raw weight and height measurements.

Quantile models for identifying risk factors

In terms of identifying risk factors associated with growth measurements, only the dataset
of children aged 4 - 14 years, which includes the adolescent growth period, was consid-
ered, as it constitutes the majority in the GUS data. Additionally, fitting the model using
this dataset will benefit its implementation for school-age children and young people in
primary or secondary education in Scotland. Therefore, the quantile models were fitted
at two distinct locations—the lower (the 0.10th quantile) and upper (the 0.90th quantile)
locations—without stratification by sex. The former represents the weight threshold for
a small proportion of the population, while the latter represents the weight threshold for
a large proportion of the population. In this analysis, the sex variable was considered as
an interaction term. Within this analytical context, the standard errors for each fixed
effect were calculated using the bootstrap method with 50 replications. For convenience
and to facilitate comparison with BSGSSMQR in Section 6.2, the response variables (i.e.
raw weight, raw height, WAZ, and HAZ) were centred around their means. Addition-
ally, to mitigate the scaling effects of covariates, each covariate was scaled by its mean
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and standard deviation. Age was exclusively incorporated as a fixed smooth effect within
each quantile model. This was achieved using the cubic P-spline method with squared
second-order (m = 2) difference to establish the bases for this smooth term. The deter-
mination of the number of knots (K) adhered to the guidance of Ruppert et al. (2003)
with K = min{40, the number of unique x/4}. These knots were positioned equidistantly
along the variable x, adhering to the mandatory requirement of P-splines. Initially, all
other covariates were assumed to be linear (fixed effect) terms and were included in each
quantile model. Subsequently, I considered removing non-significant covariates (p-values
< 0.05) from all quantile models, with exception of the smooth term for age. Following
this, I refitted these three quantile models to identify significant covariates capable of
explaining the variability in child physical growth measurements.

6.1.4 Results - Reference growth patterns

Figure 6.1 shows the nine estimated quantile curves for raw weight measurements in the
reference group, representing child weight growth patterns, as fitted using the entire GUS
dataset. Each quantile curve appears to fit this dataset well (Table 6.1). The (raw)
Weight-for-Age patterns between males (Figure 6.1 (a)) and females (Figure 6.1 (b)) ex-
hibited slight differences, but the smooth quantile curves of both sexes tended to parallel
each other across ages. In general, these curves demonstrate a rapid progression from ages
10 months to 4 years (early childhood), stabilised between ages 4 to 10 (middle child-
hood), and then exhibited a marked increase from age 10 onwards (adolescence) across
the nine curves. Furthermore, Figure 6.2 shows the same nine quantile curves for raw
weight measurement, but fitted using the GUS dataset for children aged 4 to 14 years,
highlighting growth patterns during adolescence. Both charts (Figure 6.2 (a) and Figure
6.2 (b)) demonstrate that children generally experience a steady increase in raw weight
from ages 4 to 14.

Figure 6.3 presents additional child growth patterns based on WAZ, fitted using the entire
GUS dataset. Each quantile curve appears to fit the dataset much better than the initial
fitted models (random intercepts and slopes) (see Table 6.1). However, the percentages of
observations above each percentile were not close to the expected values. This suggests
that the model specifications may still need adjustment. For example, the model structure,
including the random effects, may not align with the characteristics of the WAZ data, such
as changes in the within-individual error over time. While the random effects in AQMM
account for differences between individuals in their baseline levels and rates of change,
they do not accommodate changes in within-individual error over time. Regarding to
WAZ growth patterns for males and females, both charts show that WAZ patterns reveal
rapid growth from ages 1 to 4 years, a stabilisation from ages 4 to 10 compared to the
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Table 6.1: Percentages of observations above each quantile curve in raw weight and WAZ
for two AQMM models (random intercepts and slopes v.s. only random intercepts.)

Raw weight
Percentile curves Male Female

Intercepts and Slopes Intercepts Intercepts and Slopes Intercepts
Entire GUS dataset

0.4th 92.82 99.75 93.25 99.71
2nd 84.63 98.68 83.45 97.92
9th 72.90 91.87 71.05 89.56
25th 59.30 73.57 57.15 72.78
50th 44.11 48.54 44.17 49.58
75th 30.84 25.23 30.71 26.14
91st 19.81 9.34 20.40 10.38
98th 11.93 1.93 12.33 1.85

99.6th 7.26 0.41 6.98 0.36
Children aged 4 - 14 years dataset

0.4th 88.25 99.38 86.31 99.14
2nd 77.64 97.22 73.90 96.00
9th 63.69 89.22 61.33 86.60
25th 52.62 72.90 51.35 70.49
50th 43.89 48.76 42.60 48.79
75th 35.10 25.70 34.78 26.83
91st 26.81 9.21 26.64 11.03
98th 17.79 2.27 17.85 2.91

99.6th 12.59 0.49 10.49 0.52

WAZ
Percentile curves Male Female

Intercepts and Slopes Intercepts Intercepts and Slopes Intercepts
Entire GUS dataset

0.4th 88.11 96.88 85.53 94.73
2nd 78.87 89.98 75.91 86.29
9th 68.16 76.08 65.55 72.32
25th 59.29 63.75 56.82 60.58
50th 50.75 50.88 49.07 48.94
75th 42.45 38.25 40.91 37.27
91st 33.06 24.47 32.30 26.10
98th 22.00 11.57 22.25 14.51

99.6th 13.59 4.35 13.75 5.44
Children aged 4 - 14 years dataset

0.4th 80.98 89.40 79.23 88.83
2nd 70.52 79.81 69.26 78.19
9th 61.79 69.51 61.52 67.26
25th 55.31 59.08 54.03 56.86
50th 49.62 49.71 48.39 48.09
75th 43.87 40.92 41.85 39.07
91st 37.63 30.78 35.23 29.67
98th 29.21 20.70 26.73 19.34

99.6th 20.35 12.17 19.96 13.40

earlier years, and a gradual uptick from ages 10 to 14 years. Notably, at the extreme
quantiles, such as the 0.04th and 99.6th, the curves show some fluctuations, particularly
at older ages.
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Regarding WAZ growth patterns for children aged 4 to 14 years, Figure 6.4 provides
analogous evidence that each quantile curve did not fit the dataset well. When considering
WAZ growth patterns, both male and female growth patterns generally show a steady
progression from ages 4 to 14. While both genders exhibit similar trends, males tend to
have higher WAZ scores at the upper quantiles compared to females, indicating slightly
different growth trajectories.

Table 6.2: Percentages of observations above each quantile curve in raw height and HAZ
for two AQMM models (random intercepts and slopes v.s. only random intercepts.)

Raw height
Quantiles curves Male Female

Intercepts and Slopes Intercepts Intercepts and Slopes Intercepts
0.4th 86.04 99.28 85.09 98.60
2nd 72.14 95.87 67.20 92.77
9th 63.80 84.97 60.27 81.58
25th 56.49 69.61 54.68 67.02
50th 51.33 50.74 50.30 50.22
75th 45.95 31.33 45.04 32.25
91st 39.94 16.00 40.13 17.75
98th 31.29 4.60 32.07 7.37

99.6th 16.34 1.33 20.87 3.02

HAZ
Quantiles curves Male Female

Intercepts and Slopes Intercepts Intercepts and Slopes Intercepts
0.4th 85.75 89.12 83.16 88.84
2nd 71.07 76.53 66.73 73.82
9th 63.02 66.26 60.05 63.94
25th 56.51 58.03 54.82 56.81
50th 51.33 51.31 50.57 50.28
75th 46.51 45.22 45.22 43.44
91st 40.39 36.94 40.11 35.66
98th 30.57 25.32 31.91 25.67

99.6th 15.38 10.12 20.95 16.05

For the raw height-for-age growth patterns, each quantile curve fitted the GUS dataset well,
as the percentages of observations above each percentile were not close to the expected
value (see Table 6.2). Figure 6.5 shows that both males and females experienced an
increase in height from ages 4 to 14. The growth patterns were similar between sexes,
with slightly difference in the upper quantile. In males, height increased steadily across all
quantiles, indicating consistent growth during childhood and early adolescence. The upper
quantiles (91st, 98th, and 99.6th) show a more pronounced growth spurt compared to the
lower quantiles. Female growth patterns mirrored those of males, with a steady increase
in height across all quantiles. The differences between the lower and upper quantiles were
less pronounced compared to males, suggesting a more uniform growth trajectory among
females.
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Additionally, for the height-for-age Z-score (HAZ), none of the quantile curves fit the
GUS dataset as anticipated (with the exception of the median curve), similar to the
observations for WAZ cases. Regarding to HAZ growth patterns for males and females,
Figure 6.6 shows that children generally grow at a consistent rate when their height was
compared to a reference population of children of the same age and sex.

6.1.5 Results - Risk factors associated with child physical growth

measurements

Table 6.3 present a summary of significant risk factors from the initial fitted quantile mod-
els for each physical growth measurement. Generally, the results indicate that significant
risk factors at the two quantiles vary across physical growth measurement. The estimates
from each initial model, using the AQMM with cubic P-splines and corresponding to this
summary tables, are presented in Tables D.1 to D.4 in Appendix D. These significant risk
factors will be included in fitting the two refined quantile models (τ = 0.10 and τ = 0.90).

Table 6.3: A summary of factors associated with four child growth measurements: initial
fitted quantile models using the AQMM with cubic P-splines

Raw weight WAZ Raw height HAZ
τ = 0.10 τ = 0.90 τ = 0.10 τ = 0.90 τ = 0.10 τ = 0.90 τ = 0.10 τ = 0.90

Sex ✓ ✓
Low birth weight ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ethnicity of a child ✓ ✓ ✓
Child’s health in general ✓ ✓ ✓
Number of accidents or injuries of child
Child’s birth order ✓ ✓
Mother’s marital status ✓ ✓ ✓ ✓ ✓ ✓
Urban-rural classification ✓ ✓ ✓ ✓
Household size ✓ ✓
Mother’s age at first child’s birth ✓ ✓ ✓ ✓
Respondent’s alcoholic drinks ✓ ✓ ✓ ✓
Respondent’s current health ✓ ✓ ✓ ✓
Smoking cigarettes while pregnant ✓ ✓ ✓
drinking alcohol while pregnant ✓ ✓ ✓
Respondent’s health problem(s) in a year ✓
Respondent’s current job ✓ ✓
Deprivation quintile ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Equivalised income ✓ ✓ ✓ ✓ ✓ ✓ ✓
Linear basis term of age

Raw weight

Table 6.4 presents the estimates for both fixed and random effects derived from the AQMM
with cubic P-splines for the centred raw weight in children aged 4 - 14 years from the
GUS dataset, refitting only significant effects from the initially fitted quantile models (see
Table 6.3). The findings indicate that only low birth weight had a significant impact on
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(centred) raw weight across both quantiles, with a negative effect whose magnitude varied
between them. The coefficient can be interpreted as follows:

Table 6.4: Estimates from the AQMM with cubic P-splines for the centred raw weight
growth measurement in children aged 4 - 14 years from the GUS dataset (standard
errors in brackets)†

τ = 0.10 τ = 0.90
Fixed effects
(Intercept) -1.7103 (0.9521) 2.4926a (0.8171)
Low birth weight (Yes) -1.2382a (0.2724) -1.7226a (0.2660)
Ethnicity of a child (White) -0.3465 (0.3974) -
Child’s health in general (Good) - 0.0868 (0.1354)
Child’s health in general (Fair, Bad, Very Bad) - -0.0679 (0.3316)
Mother’s marital status (Single) 0.0387 (0.0830) -
Mother’s marital status (Other) 0.1251 (0.1516) -
Urban-rural classification (Other urban) -0.0067 (0.1354) -0.2060 (0.1583)
Urban-rural classification (Small, accessible towns) -0.0129 (0.1687) -0.1363 (0.1803)
Urban-rural classification (Small, remote towns) 0.0405 (0.2641) -0.4602 (0.2655)
Urban-rural classification (Accessible rural) 0.0536 (0.1590) -0.0946 (0.2103)
Urban-rural classification (Remote rural) 0.1565 (0.1469) -0.4119 (0.2288)
Respondent’s alcoholic drinks (Every day) - -0.1944 (0.4666)
Respondent’s alcoholic drinks (4 - 6 times a week) - -0.0420 (0.4212)
Respondent’s alcoholic drinks (2 - 3 times a week) - 0.1181 (0.3813)
Respondent’s alcoholic drinks (Once a week) - -0.0870 (0.4244)
Respondent’s alcoholic drinks (2 - 3 times a month) - 0.2376 (0.3930)
Respondent’s alcoholic drinks (Once a month or less) - -0.0450 (0.7048)
Respondent’s alcoholic drinks (Not in the last year) - 0.3265 (0.5041)
Drinking alcohol while pregnant (≥ 3 - 4 times a week) -0.1776 (0.9699) -0.5860 (0.6408)
Drinking alcohol while pregnant (1 - 2 times a week) -0.2852 (0.8578) -0.1779 (0.7277)
Drinking alcohol while pregnant (2 - 3 times a month) 0.0787 (0.8661) -0.1383 (0.6006)
Drinking alcohol while pregnant (\textless once a month) 0.0418 (0.8472) -0.1084 (0.6152)
Deprivation quintile (2) 0.1144 (0.1408) 0.1776 (0.1588)
Deprivation quintile (3) 0.0387 (0.1855) 0.0748 (0.1660)
Deprivation quintile (4) 0.2580 (0.2183) 0.3414 (0.1977)
Deprivation quintile (5) -0.1682 (0.2249) 0.2368 (0.2051)
Equivalised income 0.2098a (0.0478) -
Linear basis term of Age (in year) -73.3176 (72.0365) -80.1245 (78.2812)

Random effects
σ̂0 (SD of intercepts Age in year) 1.9779 1.9317
σ̂1 (SD of slopes of the Age in year) 0.6281 0.6134
ρ̂01 (Correlation of intercepts and slopes) -0.9709 -0.9669

a p < 0.001, b p < 0.005, c p < 0.05
† The reference categories are given in Tables 2.8 to 2.11.

For children in the lowest 10% of the centred raw weight distribution, having a low birth
weight is associated with a centred raw weight that is lower by 1.24 kg compared to those
without low birth weight. In contrast, for children in the highest 90% of the centred raw
weight distribution, having a low birth weight is associated with centred raw weight lower
by 1.72 kg compared to those without low birth weight.
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Notably, equivalised income was a significant factor only at the 0.10th quantile, show-
ing a positive effect. The coefficient indicates that, for children at the lower 10% of the
centred raw weight distribution, a one standard deviation increase in equivalised income
(£13097.16) is associated with an expected increase in centred raw weight of 0.21 kg.

Regarding random effects, the estimated standard deviations for the intercepts and tempo-
ral (age) slope effects were similar across the two quantiles. Additionally, the correlations
between these random effects remained consistently strong and negative across both quan-
tiles. This suggests that children with a higher baseline centred raw weight (approximately
4 years of age) tend to grow at a slower rate over time.

WAZ

Table 6.5: Estimates from the AQMM with cubic P-splines for the centred WAZ growth
measurement in children aged 4 - 14 years the GUS dataset (standard errors in
brackets)†

τ = 0.10 τ = 0.90
Fixed effects
(Intercept) -0.3880 (0.2385) 0.2885 (0.1805)
Low birth weight (Yes) -0.6220a (0.1201) -0.5519a (0.1037)
Mother’s marital status (Single) -0.0015 (0.0130) -0.0068 (0.0164)
Mother’s marital status (Other) 0.0479 (0.0290) 0.0329 (0.0255)
Respondent’s alcoholic drinks (Every day) -0.1014 (0.2233) -0.2491 (0.1690)
Respondent’s alcoholic drinks (4 - 6 times a week) -0.0301 (0.1926) -0.0669 (0.1393)
Respondent’s alcoholic drinks (2 - 3 times a week) 0.0223 (0.2043) -0.0824 (0.1474)
Respondent’s alcoholic drinks (Once a week) 0.0088 (0.2115) -0.0738 (0.1591)
Respondent’s alcoholic drinks (2 - 3 times a month) 0.0594 (0.2033) -0.0191 (0.1557)
Respondent’s alcoholic drinks (Once a month or less) -0.0015 (0.2295) -0.0394 (0.1980)
Respondent’s alcoholic drinks (Not in the last year) 0.1764 (0.2039) 0.1685 (0.1461)
Respondent’s current health (Very good) 0.0347 (0.0242) 0.0348c (0.0160)
Respondent’s current health (Good) 0.0484 (0.0254) 0.0536b (0.0179)
Respondent’s current health (Fair, Poor) 0.0765 (0.0401) 0.0358 (0.0292)
Smoking cigarettes while pregnant (Yes) 0.1365c (0.0540) 0.1298c (0.0532)
Deprivation quintile (2) 0.0457 (0.0265) 0.0481c (0.0222)
Deprivation quintile (3) 0.0609 (0.0360) 0.0478 (0.0273)
Deprivation quintile (4) 0.1265b (0.0459) 0.1177b (0.0364)
Deprivation quintile (5) 0.0493 (0.0531) 0.0387 (0.0456)
Equivalised income 0.0266b (0.0080) 0.0169c (0.0071)
Linear basis term of Age (in year) -0.1317 (0.1999) -0.3207 (0.3350)

Random effects
σ̂0 (SD of intercepts Age in year) 0.2250 0.2190
σ̂1 (SD of slopes of the Age in year) 0.0150 0.0147
ρ̂01 (Correlation of intercepts and slopes) -0.3500 -0.3504

a p < 0.001, b p < 0.005, c p < 0.05
† The reference categories are given in Tables 2.8 to 2.11.

Table 6.5 presents the estimates for both fixed and random effects derived from the AQMM
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with cubic P-splines, as applied to the centred WAZ in children aged 4 - 14 years from the
GUS dataset. In this child growth measurement, low birth weight, respondent’s cur-
rent health, smoking cigarettes while pregnant, deprivation quintile, and equiv-
alised income were found to be significantly associated with the centred WAZ across
two quantiles. Among these factors, only low birth weight exhibited a negative effect,
with a slight difference in magnitude across the two quantiles. The coefficients can be
interpreted as follows:

For children in the lowest 10% of the centred WAZ distribution, having a low birth weight
is associated with a decrease of 0.62 in centred WAZ compared to those without low birth
weight. Living with a respondent in very good health is associated with an increase of
0.03 in centred WAZ compared to living with an respondent in excellent health. Smoking
cigarettes during pregnancy is associated with an increase of 0.14 in centred WAZ com-
pared to not smoking cigarettes during pregnant. Children in deprivation quintile 4 have
a centred WAZ that is 0.13 units higher than children in deprivation quintile 1. Addition-
ally, a one standard deviation increase in equivalised income (£13097.16) is expected to
result in an increase of 0.03 in centred WAZ.

For children in the highest 90% of the centred WAZ distribution, having a low birth weight
is associated with a decrease of 0.55 in centred WAZ compared to those without low birth
weight. Living with a respondent in very good and good health is associated with increases
of 0.03 and 0.05 in centred WAZ, respectively, compared to living with an respondent in
excellent health. Smoking cigarettes during pregnancy is associated with an increase of
0.13 in centred WAZ compared to not smoking cigarettes during pregnant. Living in de-
privation quintiles 2 and 4 is associated with increases of 0.05 and 0.13 in centred WAZ,
respectively, compared to living in deprivation quintile 1. Additionally, a one standard
deviation increase in equivalised income (£13097.16) is expected to result in an increase
of 0.02 in centred WAZ.

For the random effects, the estimated standard deviations for the intercepts and temporal
(age) slope effects were similar across two extreme quantiles, with the temporal slope
effects showing relatively low variability. The correlations were negative and exhibited
medium strength across the different quantiles, indicating that children with a higher
baseline centered WAZ tend to grow at a slower rate over time.

Raw height

Estimates of the fixed effects and standard deviations of random effects from the cubic
AQMM with P-splines for the centred raw height are presented in Table 6.6. The results
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Table 6.6: Estimates from the AQMM with cubic P-splines for the (centred) raw height
growth measurement in children aged 4 - 14 years the GUS dataset (standard errors
in brackets)†

τ = 0.10 τ = 0.90
Fixed effects
(Intercept) -1.3512c (0.5566) -0.0612 (1.3345)
Sex (Male) 1.1000a (0.1720) 1.1638a (0.1933)
Low birth weight (Yes) -2.6014a (0.4306) -2.1979a (0.4047)
Ethnicity of a child (White) -0.6731 (0.6254) -
Child’s health in general (Good) - 0.3541a (0.0877)
Child’s health in general (Fair, Bad, Very Bad) - -0.1301 (0.2533)
Child’s birth order -0.2101c (0.0969) -0.2330b (0.0815)
Mother’s marital status (Single) - 0.0384 (0.0761)
Mother’s marital status (Other) - 0.3840c (0.1700)
Urban-rural classification (Other urban) - -0.0959 (0.1968)
Urban-rural classification (Small, accessible towns) - -0.2405 (0.3070)
Urban-rural classification (Small, remote towns) - 0.1963 (0.4028)
Urban-rural classification (Accessible rural) - -0.2488 (0.2199)
Urban-rural classification (Remote rural) - -0.3100 (0.2970)
Household size 0.0679 (0.0677) -
Mother’s age at first child’s birth (<20 years old) 0.7368 (0.3959) 0.5159 (0.4121)
Mother’s age at first child’s birth (≥ 30 years old) 0.1135 (0.4222) 0.0540 (0.4181)
Respondent’s alcoholic drinks (Every day) - 0.9584 (0.8032)
Respondent’s alcoholic drinks (4 - 6 times a week) - 0.7671 (0.8798)
Respondent’s alcoholic drinks (2 - 3 times a week) - 0.7227 (0.8362)
Respondent’s alcoholic drinks (Once a week) - 0.8145 (0.8340)
Respondent’s alcoholic drinks (2 - 3 times a month) - 0.8045 (0.7806)
Respondent’s alcoholic drinks (Once a month or less) - 0.5335 (0.7598)
Respondent’s alcoholic drinks (Not in the last year) - 0.3313 (0.8877)
Smoking cigarettes while pregnant (Yes) -0.5073c (0.2132) -
Drinking alcohol while pregnant (≥ 3 - 4 times a week) - 6.8726a (1.0222)
Drinking alcohol while pregnant (1 - 2 times a week) - 0.6403 (0.9733)
Drinking alcohol while pregnant (2 - 3 times a month) - 0.0990 (0.9753)
Drinking alcohol while pregnant (<once a month) - 0.1164 (0.9519)
Respondent’s health problem(s) in a year (Yes) - 0.2965b (0.1084)
Respondent’s current job (No) - 0.0607 (0.2155)
Deprivation quintile (2) 0.0837 (0.1208) 0.2051 (0.1360)
Deprivation quintile (3) 0.1057 (0.1411) 0.1975 (0.1424)
Deprivation quintile (4) 0.2482 (0.1784) 0.3291c (0.1501)
Deprivation quintile (5) -0.2253 (0.2205) 0.0014 (0.2082)
Equivalised income 0.0714 (0.0432) 0.0691 (0.0431)
Linear basis term of Age (in year) -90.3125 (79.7049) -92.7692 (81.5810)

Random effects
σ̂0 (SD of intercepts Age in year) 1.5561 1.7356
σ̂1 (SD of slopes of the Age in year) 0.2556 0.2653
ρ̂01 (Correlation of intercepts and slopes) 0.3343 0.3070

a p < 0.001, b p < 0.005, c p < 0.05
† The reference categories are given in Tables 2.8 to 2.11.

show that three factors were consistently associated with (centred) raw height across the
two quantiles, exhibiting consistent effect magnitudes: sex, low birth weight, and child’s
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birth order. At the 0.10th quantile, smoking cigarettes while pregnant emerged as
additional significant factor associated with centred raw height. Meanwhile, at the 0.90th
quantile, factors such as the child’s health in general, the mother’s marital status,
the drinking alcohol while pregnant, and deprivation quintile were also associated
with centred raw height.

For children in the lowest 10% of the centred raw height distribution, males have a cen-
tred raw height that is 1.10 cm higher than females. Low birth weight is associated with
centred height lower by 2.60 cm compared to those with normal birth weight. Smok-
ing cigarettes during pregnancy is associated with a reduction of 0.51 cm in centred raw
height compared to not smoking. Additionally, a one standard deviation increase in the
child’s birth order (0.80) is expected to result in a decrease of 0.21 cm in centred raw height.

For children in the highest 90% of the centred raw height, males have a centred raw height
that is 1.16 cm higher than females. Low birth weight is associated with a decrease of 2.20
cm compared to those with normal birth weight. Children in good health have a centred
raw height that is 0.35 cm higher than those in very good health. Children living with
mother of an other marital status have a centred raw height that is 0.38 cm higher than
those living with a married mother. Drinking alcohol more than 3 to 4 times a week during
pregnancy is associated with an increase of 6.87 cm in centred raw height compared to
not drinking. Children living with a respondent who has a health problem have a centred
raw height that is 0.30 cm higher compared to those living with a respondent with no
health problems. Children in deprivation quintile 4 have a centred raw height that is 0.32
cm higher than children in deprivation quintile 1. Additionally, a one standard deviation
increase in the child’s birth order (1.00) is expected to result in a decrease of 0.23 cm in
centred raw height.

When focusing on the random effects, the estimated standard deviations reveal greater
variability in individual intercepts and less variability in individual slopes across the two
quantiles. Notably, the deviations at the 0.10th quantile were slightly smaller than those
at the 0.90th quantile. The correlations between these random effects were medium and
positive across the two quantiles, indicating that children with higher initial heights tend
to have a steeper or more pronounced growth trajectory.

HAZ

Table 6.7 presents estimates of the fixed effects and standard deviations of random effects
from the AQMM with cubic P-splines for the centred HAZ. The analysis shows that factors
such as low birth weight and equivalised income were associated with the centred HAZ
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across two quantiles. The effect of low birth weight was generally consistent, while the
effect of equivalised income varied between quantiles. Additionally, the ethnicity of
a child, mother’s marital status, and respondent’s current health were significant
factors associated with the centred HAZ at the 0.10th quantile only. Each coefficient can
be interpreted as follows:

Table 6.7: Estimates from the AQMM with cubic P-splines for the centred HAZ growth
measurement in children aged 4 - 14 years the GUS dataset (standard errors in
brackets)†

τ = 0.10 τ = 0.90
Fixed effects
(Intercept) -0.1925 (0.2253) 0.2547c (0.1141)
Low birth weight (Yes) -0.4211c (0.1883) -0.4329a (0.0904)
Ethnicity of a child (White) -0.4811c (0.1817) -
Child’s health in general (Good) 0.0254 (0.0283) -
Child’s health in general (Fair, Bad, Very Bad) 0.1219 (0.1067) -
Mother’s marital status (Single) 0.0260 (0.0365) -0.0188 (0.0113)
Mother’s marital status (Other) 0.1242c (0.0541) 0.0267 (0.0249)
Urban-rural classification (Other urban) 0.0318 (0.0719) -
Urban-rural classification (Small, accessible towns) 0.1216 (0.1389) -
Urban-rural classification (Small, remote towns) 0.2030 (0.1678) -
Urban-rural classification (Accessible rural) 0.0517 (0.1004) -
Urban-rural classification (Remote rural) 0.1841 (0.1215) -
Household size 0.0279 (0.0202) -
Mother’s age at first child’s birth (<20 years old) 0.2246 (0.1463) 0.0791 (0.0728)
Mother’s age at first child’s birth (≥ 30 years old) 0.0630 (0.1444) 0.0232 (0.0736)
Respondent’s current health (Very good) 0.1106 (0.0596) 0.0020 (0.0207)
Respondent’s current health (Good) 0.1216c (0.0575) 0.0227 (0.0237)
Respondent’s current health (Fair, Poor) 0.1543 (0.0912) 0.0249 (0.0303)
Respondent’s current job (No) 0.1641 (0.1068) -
Deprivation quintile (2) 0.1393 (0.0853) 0.0039 (0.0256)
Deprivation quintile (3) 0.1438 (0.0902) -0.0101 (0.0287)
Deprivation quintile (4) 0.2344 (0.1203) 0.0193 (0.0291)
Deprivation quintile (5) 0.1815 (0.1363) -0.0155 (0.0368)
Equivalised income 0.0945c (0.0388) 0.0167c (0.0065)
Linear basis term of Age (in year) -0.6118 (0.7109) -0.9088 (0.8120)

Random effects
σ̂0 (SD of intercepts Age in year) 0.2670 0.2298
σ̂1 (SD of slopes of the Age in year) 0.0117 0.0100
ρ̂01 (Correlation of intercepts and slopes) -0.1126 -0.2645

a p < 0.001, b p < 0.005, c p < 0.05
† The reference categories are given in Tables 2.8 to 2.11.

For children in the lowest 10% of the centred HAZ distribution, low birth weight is asso-
ciated with a decrease of 0.42 units compared to those with normal birth weight. White
children have a centred HAZ that is 0.48 units lower than that of children from other
ethnicities. Living with a mother of an other marital status have a centred HAZ that
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is 0.12 units higher than those living with a married mother. Living with a respondent
in good health have a centred HAZ that is 0.12 units higher compared to those living
with a respondent in excellent health. Additionally, a one standard deviation increase in
equivalised income (£13097.16) is expected to result in an increase of 0.09 in centred WAZ.
For children in the hightest 90% of the centred HAZ distribution, low birth weight is
associated with a decrease of 0.43 units compared to those with normal birth weight. Ad-
ditionally, a one standard deviation increase in equivalised income (£13097.16) is expected
to result in an increase of 0.02 in centred WAZ.

For the random effects, it was observed that the variability in individual intercepts and
temporal slopes at each quantile was relatively small and very small, respectively, as indi-
cated by the low values of the estimated standard deviations. Additionally, the correlation
between these random effects were relatively small and negative across the two quantiles,
indicating that children with a higher baseline centered HAZ tend to grow at a slower rate
over time.

6.1.6 Summary

It can generally be concluded that reference growth patterns vary between the sexes and
different child growth measurements when analysing the GUS data in both datasets – the
entire GUS dataset (children aged 10 months to 14 years) and the dataset for children
aged 4 to 14 using the AQMM method. This underscores the importance of considering
sex-specific approaches in child growth pattern analysis, recognising that males and fe-
males may exhibit distinct growth patterns. In terms of raw weight, each smooth quantile
curve appears to parallel the others across different ages for both males and females. For
the entire GUS dataset, the quantile curves indicate that children experience rapid growth
in the first 4 years, then stabilise up to the age of 10 years, followed by another increase.
While this trend remains consistent when considering the WAZ, the quantile curves show
differences due to the varying scales used. For the dataset of children aged 4 to 14 years,
each quantile curve shows a steady increase in raw weight ovrer this age range. For both
raw height and HAZ, each quantile curve is nearly linear for both males and females,
indicating consistent height growth in children.

Regarding the identification of risk factors, the significant factors varied across the lower
(0.10th) and upper (0.90th) quantiles of the physical growth measurements. Additionally,
variations in child growth measurements, whether assessed through raw or z-score scales,
emphasise the importance of considering the unique characteristics of each measurement
approach. Each approach captures different aspects of child growth and is influenced by
its own set of risk factors. Notably, different quantiles of child growth measurements are
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associated with distinct risk factors, reflecting the diverse groups of children they represent.

6.2 Modelling LCGD in Scotland using Bayesian sparse

group LASSO-mixed quantile regression model

In this section, the Bayesian sparse group LASSO-mixed quantile regression model (BS-
GSSMQR), as outlined in Section 5.8, was applied to the GUS data described in Section
2.6. This analysis focused exclusively on identifying risk factors associated with growth
measurements at two distinct locations (the 0.10th and 0.90th quantiles) during the child
growth period, including the adolescent period (children aged 4 to 14 years), similar to the
approach in Section 6.1. Moreover, it also aimed to determine the appropriate variability
of individual linear trends (intercepts and age slopes) through the selection of random ef-
fects. My focus was narrowed to raw weight and WAZ as child growth measurements, due
to the particular concern of childhood obesity in Scotland. This choice was motivated by
the Scottish Heath Survey Report highlighted an increase in the prevalence of childhood
obesity in 2021 compared to the 2017 figures (Birtwistle et al., 2022). Covariates were
considered in a manner similar to that described in Section 6.1.2.

6.2.1 Fitting the model

The quantile models with τ = 0.10 and 0.90 were fitted. Within this analytical frame-
work, age was exclusively incorporated as a fixed smooth component in each quantile
model. This was achieved by using the cubic B-spline method to establish the bases for
this smooth term. The determination of the number of knots (K) adhered to the guidelines
of Ruppert et al. (2003), setting K as min{40, the number of unique x/4}. These knots
were strategically placed at quantiles of the variable age, offering insights into how the
effects of age vary across different segments of the growth measurement distribution. Note
that this strategy differs from the knot positioning used in Section 6.1 due to differences
in spline methods used, as P-splines require equidistant knots, whereas B-splines offer
flexibility in this regard. Moreover, evidence suggests that quantile-based knots are more
suitable than equidistant knots for fitting data with B-splines, as they adapt better to
the distribution of the data and can improve the accuracy of the fit, particularly in cases
of data with explicit peaks (Harrell, 2015; Maturana-Russel & Meyer, 2021). All other
independent variables in each model were assumed to be linear. Additionally, both raw
weight and WAZ were centred by their mean, and each covariate, including bases of age,
and dummy variables, was standardised. Furthermore, a design matrix of random effects,
Z = [1, X1], wherein X1 represents the variable of age, was established. This configuration
serve as an instrument to account for the inherent potential heterogeneity among children
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by incorporating random intercepts and slopes.

Regarding the selected prior specifications, I chose a1 = a2 = c1,= c2 = 1 for the Beta
priors corresponding to both π0 and π1, respectively. Similarly, the inverse Gamma priors
employed for σ were configured with g1 = g2 = 0.1. Additionally, a fixed value of pl′0 = 0.5

was assigned to dl′ . The prior mean and variance for a were set to 0 and 0.5I, respectively,
denoted as A0 = 0.5I. The hyperparameter t of s2 was estimated through a Monte Carlo
EM algorithm with 100 updates and iterations. To ensure adequate convergence and
accuracy, I ran the Gibbs sampler for 15,000 iterations, with a burn-in period of 5000
iterations. Subsequently, I used 10,000 samplings of the posteriors to summarise the
model parameters effectively.

6.2.2 Results

The style of the tables in this section, particularly in presenting the results of selecting
linear fixed effects, varies from the previous section to enable a comparison between the
posterior mean and posterior median for each quantile model. Subsequently, two quantile
models for each growth measurement are presented in individual tables.

Raw weight

Table 6.8 presents the posterior mean and median estimates of the basis functions of age
related to (centred) raw weight in males across two quantile models (τ = 0.10 and τ =

0.90). The results indicate that the posterior median estimator produced zero estimates
for the basis function 22 (S(Age22)) of age only across all two quantile models. This
suggests that this basis function is not requisite for capturing the non-linear relationship
between age and (centred) raw weight. Another interesting result is that the two quantile
models appeared to have similar estimates. Figure 6.7 shows the impact of age on centred
raw weight values for two quantiles: the 0.10th quantile (solid red line) and the 0.90th
quantile (dashed blue line). Both lines indicate that as children age from 4 to 14 years,
the centred raw weight exhibits a non-linear growth pattern. This non-linear aged effect
appears to fluctuate throughout this period, with a slight upward trend as age increases,
suggesting a positive relationship between age and centred raw weight. Such fluctuation
may be attributed to factors such as gender differences, data heterogeneity, or interaction
effects. For instance, the differences in growth trajectories between males and females, are
more clearly captured when analysed separately.
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Figure 6.7: Smoothed effect of age for the (centred) raw weight (solid red line: τ = 0.10,
and two dashed blue line: τ = 0.90)

Table 6.8: Posterior mean, standard deviation (SD), and posterior median for fixed (basis
terms) effects across two quantile models for the centred raw weight

Fixed effects τ = 0.10 τ = 0.90
(basis terms) Mean SD Median Mean SD Median
S(Age1) -3.28 0.62 -3.23 -3.25 0.63 -3.20
S(Age2) 3.42 0.45 3.38 3.43 0.48 3.38
S(Age3) 0.83 0.34 0.84 0.69 0.38 0.72
S(Age4) 1.71 0.25 1.71 1.78 0.27 1.77
S(Age5) 0.48 0.35 0.47 0.46 0.35 0.45
S(Age6) 3.14 0.23 3.13 3.10 0.24 3.08
S(Age7) 2.63 0.25 2.66 2.55 0.26 2.58
S(Age8) 1.82 0.37 1.82 1.81 0.37 1.81
S(Age9) 0.58 0.38 0.66 0.55 0.38 0.62
S(Age10) 0.49 0.23 0.51 0.48 0.24 0.50
S(Age11) 1.26 0.47 1.39 1.25 0.47 1.36
S(Age12) 4.58 0.24 4.57 4.50 0.24 4.51
S(Age13) 4.15 0.25 4.16 4.06 0.25 4.07
S(Age14) 3.43 0.36 3.45 3.39 0.36 3.43
S(Age15) 0.99 0.51 1.17 0.97 0.51 1.15
S(Age16) 1.13 0.23 1.14 1.10 0.24 1.10
S(Age17) 2.07 0.50 2.17 2.05 0.49 2.14
S(Age18) 4.74 0.36 4.74 4.68 0.36 4.68
S(Age19) 5.54 0.23 5.55 5.42 0.24 5.43
S(Age20) 4.24 0.34 4.26 4.20 0.34 4.22
S(Age21) 1.23 0.48 1.33 1.20 0.48 1.31
S(Age22) 0.16 0.20 - 0.16 0.20 -
S(Age23) 0.50 0.17 0.50 0.50 0.17 0.49
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Table 6.9: Posterior mean, standard deviation (SD), and posterior median for both fixed
(linear predictors) and random effects of the 0.10th quantile model for the raw weight†

Fixed effects (linear predictors) Mean SD Median
Sex (Male) 0.01 0.04 -
Low birth weight (Yes) -0.35 0.12 -0.36
Ethnicity of a child (White) -0.01 0.04 -
Child’s health in general (Good) 0.00 0.03 -
Child’s health in general (Fair, Bad, Very Bad) -0.03 0.04 -
Number of accidents or injuries of child 0.02 0.04 -
Child’s birth order 0.00 0.05 -
Mother’s marital status (Single) -0.03 0.04 -
Mother’s marital status (Other) 0.04 0.05 -
Urban-rural classification (Other urban) -0.02 0.05 -
Urban-rural classification (Small, accessible towns) -0.01 0.04 -
Urban-rural classification (Small, remote towns) -0.02 0.05 -
Urban-rural classification (Accessible rural) 0.02 0.05 -
Urban-rural classification (Remote rural) 0.01 0.04 -
Household size -0.01 0.05 -
Mother’s age at first child’s birth (< 20 years old) 0.02 0.05 -
Mother’s age at first child’s birth (≥ 30 years old) -0.01 0.05 -
Respondent’s alcoholic drinks (Every day) -0.01 0.04 -
Respondent’s alcoholic drinks (4 - 6 times a week) -0.02 0.05 -
Respondent’s alcoholic drinks (2 - 3 times a week) 0.00 0.04 -
Respondent’s alcoholic drinks (Once a week) -0.02 0.05 -
Respondent’s alcoholic drinks (2 -3 times a month) 0.01 0.04 -
Respondent’s alcoholic drinks (Once a month or less) -0.01 0.05 -
Respondent’s alcoholic drinks (Not in the last year) 0.04 0.06 -
Respondent’s current health (Very good) -0.02 0.04 -
Respondent’s current health (Good) 0.03 0.05 -
Respondent’s current health (Fair, Poor) 0.01 0.04 -
Smoking cigarettes while pregnant (Yes) 0.05 0.08 -
Drinking alcohol while pregnant (≥ 3 - 4 times a week) -0.01 0.04 -
Drinking alcohol while pregnant (1 - 2 times a week) 0.00 0.04 -
Drinking alcohol while pregnant (2 - 3 times a month) -0.01 0.04 -
Drinking alcohol while pregnant (< once a month) -0.02 0.05 -
Respondent’s health problem(s) in a year (Yes) 0.01 0.04 -
Respondent’s current job (No) -0.01 0.03 -
Deprivation quintile (2) 0.01 0.04 -
Deprivation quintile (3) 0.00 0.04 -
Deprivation quintile (4) 0.13 0.10 0.15
Deprivation quintile (5) 0.00 0.04 -
Equivalised income 0.10 0.09 0.10

Standard deviation (Random effects)
σ̂0 (Intercept Age) 2.79 0.25 2.79
σ̂1 (Slope of Age) 1.91 0.14 1.91

† The reference categories are given in Tables 2.9 to 2.11.
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Table 6.10: Posterior mean, standard deviation (SD), and posterior median for both fixed
(linear predictors) and random effects of the 0.90th quantile model for the raw weight†

Fixed effects (linear predictors) Mean SD Median
Sex (Male) 0.01 0.04 -
Low birth weight (Yes) -0.34 0.12 -0.35
Ethnicity of a child (White) -0.01 0.04 -
Child’s health in general (Good) 0.00 0.03 -
Child’s health in general (Fair, Bad, Very Bad) -0.02 0.04 -
Number of accidents or injuries of child 0.02 0.04 -
Child’s birth order 0.00 0.05 -
Mother’s marital status (Single) -0.03 0.04 -
Mother’s marital status (Other) 0.03 0.05 -
Urban-rural classification (Other urban) -0.02 0.05 -
Urban-rural classification (Small, accessible towns) -0.01 0.04 -
Urban-rural classification (Small, remote towns) -0.02 0.05 -
Urban-rural classification (Accessible rural) 0.02 0.05 -
Urban-rural classification (Remote rural) 0.01 0.04 -
Household size -0.01 0.05 -
Mother’s age at first child’s birth (< 20 years old) 0.02 0.05 -
Mother’s age at first child’s birth (≥ 30 years old) -0.01 0.04 -
Respondent’s alcoholic drinks (Every day) -0.01 0.04 -
Respondent’s alcoholic drinks (4 - 6 times a week) -0.02 0.05 -
Respondent’s alcoholic drinks (2 - 3 times a week) 0.00 0.04 -
Respondent’s alcoholic drinks (Once a week) -0.02 0.05 -
Respondent’s alcoholic drinks (2 -3 times a month) 0.01 0.04 -
Respondent’s alcoholic drinks (Once a month or less) -0.01 0.05 -
Respondent’s alcoholic drinks (Not in the last year) 0.03 0.06 -
Respondent’s current health (Very good) -0.02 0.04 -
Respondent’s current health (Good) 0.03 0.05 -
Respondent’s current health (Fair, Poor) 0.01 0.04 -
Smoking cigarettes while pregnant (Yes) 0.05 0.08 -
Drinking alcohol while pregnant (≥ 3 - 4 times a week) -0.01 0.04 -
Drinking alcohol while pregnant (1 - 2 times a week) 0.00 0.04 -
Drinking alcohol while pregnant (2 - 3 times a month) -0.01 0.04 -
Drinking alcohol while pregnant (< once a month) -0.02 0.05 -
Respondent’s health problem(s) in a year (Yes) 0.01 0.04 -
Respondent’s current job (No) -0.01 0.03 -
Deprivation quintile (2) 0.01 0.04 -
Deprivation quintile (3) 0.00 0.04 -
Deprivation quintile (4) 0.13 0.09 0.14
Deprivation quintile (5) 0.00 0.04 -
Equivalised income 0.09 0.09 0.10

Standard deviation (Random effects)
σ̂0 (Intercept Age) 2.79 0.25 2.79
σ̂1 (Slope of Age) 1.92 0.14 1.92

† The reference categories are given in Tables 2.9 to 2.11.
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Tables 6.9 to 6.10 present the posterior mean and median estimates of the fixed effects, as
well as the standard deviations of the random effects, for (centred) raw weight in males
across two quantile models. The fixed effects, including low birth weight , deprivation
quintile , and equivalised income , were selected for both the 0.10th and 0.90th quantile
models. Regarding the random effects, both the random intercept age and the random
slope of age were selected in all two quantile models, with the former exhibiting higher
variability than the later. This indicates that there was variability in individual linear
trends (intercepts and temporal slopes) across the two quantiles.

Considering only the continuous variable, equivalised income exhibited a positive effect
with similar magnitudes across the two quantile models. This implies that a one standard
deviation increase in equivalised income (£13097.16) is expected to result in an increase of
0.10 in centred raw weight for children in the lowest 10% and highest 90% of the centred
raw weight distribution.

In relation to the categorical variables “low birth weight”, this factor was included in both
quantile models and demonstrated a negative effect. This suggests that children with a low
birth weight were likely to show a decrease of 0.36 and 0.35 in centred raw weight values
at the 0.10th and 0.90th quantiles, respectively, of the centred raw weight distribution,
compared to those without low birth weight (the reference group). In the context of
the deprivation quintile factor, only the “quintile (4)” category was selected across
both quantile models, showing a positive effect. This implies that children in this specific
deprivation category were expected to exhibit higher centred raw weight values at these
two specific quantiles compared to those in the “quintile (1) - least deprived ” category
(the reference group). Specifically, children in deprivation quintile 4 have a centred raw
weight that is around 0.14 - 0.15 kg higher than children in deprivation quintile 1. In
contrast, other deprivation categories were not selected.

Convergence diagnostic

To assess the convergence of the samples generated by the MCMC simulation to target
posterior distribution, I ran three independent MCMC chains and employed trace plot
assessments alongside the Gelman-Rubin diagnostic (R̂GR) (Gelman & Rubin, 1992). Ad-
ditionally, the effective sample size (ESS, nESS) was used to estimate the information loss
due to autocorrelation in the chains and to determine the number of independent samples
the MCMC chain is equivalent to (Gelman, 2014). The analysis here focused on selected
parameters, particularly those related to linear fixed effects and random effects.

Figures 6.8 and 6.9 present the trace plots and density plots for selected parameters from
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(a) Low birth weight (Yes)
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(b) Deprivation quintile (4)
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(c) Equivalised income
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(d) SD of random intercepts
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(e) SD of random slopes

(a) R̂GR = 1.00, nESS = 7970.29

(b) R̂GR = 1.00, nESS = 5163.04

(c) R̂GR = 1.00, nESS = 7408.98

(d) R̂GR = 1.00, nESS = 19135.60

(e) R̂GR = 1.00, nESS = 6144.25

Figure 6.8: Trace plots of MCMC samples for each selected linear predictor and random
effect from the 0.10th quantile model for the centred raw weight

the 0.10th and 0.90th quantile models for centred raw weight. The trace plots demonstrate
convergence, with all chains fluctuating around a stable mean and showing no discernible
trends over time. Specially, the plots of three linear fixed predictors (risk factors) reveal
slight pseudo floor or ceiling effects approaching zero, indicating that the slab component
of the spike-and-slab prior has predominantly influenced each selected fixed variable. Sim-
ilarly, the trace plots for the standard deviations of the two random effects show samples
fluctuating around a stable mean, with no discernible trend or drift. This suggests that
these linear predictors and random effects are included in the final model. Additionally,
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(b) Deprivation quintile (4)
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(c) Equivalised income

0 2000 4000 6000 8000 10000

2
.7

2
.8

2
.9

3
.0

Iteration

2.6 2.7 2.8 2.9 3.0

0
2

4
6

8

N = 10000   Bandwidth = 0.005964

(d) SD of random intercepts
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(e) SD of random slopes

(a) R̂GR = 1.00, nESS = 6474.53

(b) R̂GR = 1.00, nESS = 5342.68

(c) R̂GR = 1.00, nESS = 7814.62

(d) R̂GR = 1.00, nESS = 23326.68

(e) R̂GR = 1.00, nESS = 5404.25

Figure 6.9: Trace plots of MCMC samples for each selected linear predictor and random
effect from the 0.90th quantile model for the centred raw weight

each R̂GR value is equal to 1, indicating that the chains have likely converged to the same
distribution and that the chains are well-mixed. Moreover, each nESS value exceeds 1,000,
which is generally a positive sign. This suggests that the MCMC chains have generated a
substantial number of effectively independent samples, implying that the sampling process
is robust and the resulting estimates are likely to be reliable.

For the basis functions of age in both quantile models, trace plots are presented in Figures
D.7 (the 0.10th quantile model) to D.8 (the 0.90th quantile model) in Appendix D, along
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with the Gelman-Rubin diagnostic and the effective sample size in Tables D.5 and D.6.
Generally, the behaviour of the selected basis functions is similar to that the selected
linear predictors, as mentioned previously. Meanwhile, the only basis function, S(Age22),
exhibits a substantial pseudo floor effect approaching zero in trace plots, indicating that
this term is a non-selected predictor.

WAZ

Results for the posterior mean and median estimates of the basis functions related to
age are presented in Table 6.11, where the centred WAZ was fitted. The results indicate
that three basis functions were selected for two quantile models (the 0.10th and 0.90th
quantiles), suggesting that these bases were important for predicting the centred WAZ.
However, the selected basis functions varied between two quantiles. For the 0.10the quan-
tile, S(Age1), S(Age3) and S(Age4), were selected, whereas S(Age2), S(Age3) and
S(Age6), were chosen for the 0.90th quantile. This variation suggests that the smoothed
age effects differ between these two quantiles, as illustrated in Figure 6.10. The figure
shows a U-shaped in the early age range (ages 4 to 6 years), indicating that the centred
WAZ initially decreases with age, reaches a minimum point, and then begins to increase
with further ageing.
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Figure 6.10: Smoothed age effect for the (centred) WAZ (solid red line: τ = 0.10, and two
dashed blue line: τ = 0.90)

Regarding fixed effects (linear predictors), the low birth weight factor emerged as the
only linear fixed effect selected for the 0.10th quantile model, with a small negative mag-
nitude. This suggests that children with a low birth weight were likely to have a decrease
of 0.01 in centred WAZ values at the 0.10th quantile of the centred WAZ distribution,
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compared to those without low birth weight (the reference group). In contrast, no linear
fixed effects were selected for the 0.90th quantile model.

Both random intercepts and slopes were selected in these two specified quantile models,
with the former exhibiting greater variability than the later. The standard deviations
of these effects were relatively similar across the two quantile models. This implies that
there was variability in individual intercepts and slopes in the centred WAZ across the
two quantiles. The corresponding results are presented in Tables 6.12 to 6.13.

Table 6.11: Posterior mean, standard deviation (SD), and posterior median for fixed (basis
terms) effects across two quantile models for the WAZ

Fixed effects τ = 0.10 τ = 0.90
(basis terms) Mean SD Median Mean SD Median
S(Age1) -0.06 0.09 -0.05 0.01 0.05 -
S(Age2) -0.01 0.06 - -0.05 0.05 -0.04
S(Age3) -0.03 0.06 -0.02 -0.04 0.05 -0.04
S(Age4) -0.03 0.06 -0.02 -0.02 0.05 -
S(Age5) 0.00 0.01 - 0.00 0.01 -
S(Age6) -0.02 0.02 - -0.02 0.02 -0.01
S(Age7) -0.01 0.02 - -0.01 0.02 -
S(Age8) -0.01 0.02 - -0.01 0.02 -
S(Age9) -0.01 0.01 - -0.01 0.01 -
S(Age10) 0.00 0.01 - 0.00 0.01 -
S(Age11) 0.01 0.01 - 0.00 0.01 -
S(Age12) 0.02 0.02 - 0.00 0.01 -
S(Age13) 0.02 0.02 - 0.00 0.01 -
S(Age14) 0.01 0.02 - 0.00 0.01 -
S(Age15) 0.00 0.01 - 0.00 0.01 -
S(Age16) 0.00 0.01 - 0.00 0.01 -
S(Age17) 0.01 0.02 - 0.00 0.01 -
S(Age18) 0.01 0.03 - 0.00 0.02 -
S(Age19) 0.01 0.03 - 0.00 0.02 -
S(Age20) 0.01 0.03 - 0.00 0.02 -
S(Age21) 0.00 0.01 - 0.00 0.01 -
S(Age22) 0.00 0.01 - 0.00 0.01 -
S(Age23) 0.00 0.02 - 0.00 0.01 -
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Table 6.12: Posterior mean, standard deviation (SD), and posterior median for both fixed
(linear predictors) and random effects of the 0.10th quantile model for the WAZ†

Fixed effects (linear predictors) Mean SD Median
Sex (Male) 0.00 0.02 -
Low birth weight (Yes) -0.04 0.07 -0.01
Ethnicity of a child (White) 0.00 0.02 -
Child’s health in general (Good) 0.00 0.02 -
Child’s health in general (Fair, Bad, Very Bad) -0.01 0.02 -
Number of accidents or injuries of child 0.00 0.01 -
Child’s birth order 0.00 0.09 -
Mother’s marital status (Single) 0.00 0.01 -
Mother’s marital status (Other) 0.00 0.01 -
Urban-rural classification (Other urban) 0.00 0.07 -
Urban-rural classification (Small, accessible towns) 0.00 0.02 -
Urban-rural classification (Small, remote towns) 0.00 0.02 -
Urban-rural classification (Accessible rural) 0.00 0.04 -
Urban-rural classification (Remote rural) 0.00 0.02 -
Household size -0.01 0.09 -
Mother’s age at first child’s birth (< 20 years old) 0.00 0.05 -
Mother’s age at first child’s birth (≥ 30 years old) 0.00 0.09 -
Respondent’s alcoholic drinks (Every day) 0.00 0.02 -
Respondent’s alcoholic drinks (4 - 6 times a week) 0.00 0.04 -
Respondent’s alcoholic drinks (2 - 3 times a week) 0.00 0.04 -
Respondent’s alcoholic drinks (Once a week) 0.00 0.03 -
Respondent’s alcoholic drinks (2 -3 times a month) 0.00 0.02 -
Respondent’s alcoholic drinks (Once a month or less) 0.00 0.05 -
Respondent’s alcoholic drinks (Not in the last year) 0.00 0.03 -
Respondent’s current health (Very good) 0.00 0.01 -
Respondent’s current health (Good) 0.00 0.02 -
Respondent’s current health (Fair, Poor) 0.00 0.01 -
Smoking cigarettes while pregnant (Yes) 0.01 0.09 -
Drinking alcohol while pregnant (≥ 3 - 4 times a week) 0.00 0.01 -
Drinking alcohol while pregnant (1 - 2 times a week) 0.00 0.02 -
Drinking alcohol while pregnant (2 - 3 times a month) 0.00 0.02 -
Drinking alcohol while pregnant (< once a month) 0.00 0.02 -
Respondent’s health problem(s) in a year (Yes) 0.00 0.02 -
Respondent’s current job (No) 0.00 0.01 -
Deprivation quintile (2) 0.00 0.02 -
Deprivation quintile (3) 0.00 0.01 -
Deprivation quintile (4) 0.01 0.02 -
Deprivation quintile (5) 0.00 0.03 -
Equivalised income 0.00 0.09 -

Standard deviation (Random effects)
σ̂0 (Intercept Age) 0.85 0.05 0.85
σ̂1 (Slope of Age) 0.20 0.01 0.20

† The reference categories are given in Tables 2.9 to 2.11.



CHAPTER 6. APPLICATION TO LCGD IN SCOTLAND 244

Table 6.13: Posterior mean, standard deviation (SD), and posterior median for both fixed
(linear predictors) and random effects of the 0.90th quantile model for the WAZ†

Fixed effects (linear predictors) Mean SD Median
Sex (Male) 0.00 0.02 -
Low birth weight (Yes) -0.03 0.05 -
Ethnicity of a child (White) 0.00 0.02 -
Child’s health in general (Good) 0.00 0.02 -
Child’s health in general (Fair, Bad, Very Bad) -0.01 0.02 -
Number of accidents or injuries of child 0.00 0.01 -
Child’s birth order 0.00 0.11 -
Mother’s marital status (Single) 0.00 0.00 -
Mother’s marital status (Other) 0.00 0.01 -
Urban-rural classification (Other urban) 0.00 0.06 -
Urban-rural classification (Small, accessible towns) 0.00 0.01 -
Urban-rural classification (Small, remote towns) 0.00 0.02 -
Urban-rural classification (Accessible rural) 0.00 0.04 -
Urban-rural classification (Remote rural) 0.00 0.02 -
Household size 0.00 0.09 -
Mother’s age at first child’s birth (< 20 years old) 0.01 0.05 -
Mother’s age at first child’s birth (≥ 30 years old) -0.01 0.10 -
Respondent’s alcoholic drinks (Every day) 0.00 0.02 -
Respondent’s alcoholic drinks (4 - 6 times a week) 0.00 0.03 -
Respondent’s alcoholic drinks (2 - 3 times a week) 0.00 0.05 -
Respondent’s alcoholic drinks (Once a week) 0.00 0.03 -
Respondent’s alcoholic drinks (2 -3 times a month) 0.00 0.02 -
Respondent’s alcoholic drinks (Once a month or less) 0.00 0.04 -
Respondent’s alcoholic drinks (Not in the last year) 0.01 0.03 -
Respondent’s current health (Very good) 0.00 0.01 -
Respondent’s current health (Good) 0.00 0.01 -
Respondent’s current health (Fair, Poor) 0.00 0.02 -
Smoking cigarettes while pregnant (Yes) 0.01 0.08 -
Drinking alcohol while pregnant (≥ 3 - 4 times a week) 0.00 0.01 -
Drinking alcohol while pregnant (1 - 2 times a week) 0.00 0.02 -
Drinking alcohol while pregnant (2 - 3 times a month) 0.00 0.02 -
Drinking alcohol while pregnant (< once a month) 0.00 0.02 -
Respondent’s health problem(s) in a year (Yes) 0.00 0.02 -
Respondent’s current job (No) 0.00 0.01 -
Deprivation quintile (2) 0.00 0.01 -
Deprivation quintile (3) 0.00 0.01 -
Deprivation quintile (4) 0.01 0.03 -
Deprivation quintile (5) 0.00 0.02 -
Equivalised income 0.00 0.09 -

Standard deviation (Random effects)
σ̂0 (Intercept Age) 0.86 0.06 0.85
σ̂1 (Slope of Age) 0.20 0.01 0.20

† The reference categories are given in Tables 2.9 to 2.11.
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Convergence diagnostic

Similar to the convergence diagnostics for the raw weight case, three independent MCMC
chains were run for the WAZ case. Subsequently, trace plot assessments and the Gelman-
Rubin diagnostic (R̂GR) were employed to assess convergence in the MCMC simulation
towards the target posterior distribution. Morevover, to determine how many independent
samples the MCMC chain is equivalent to, the effective sample size or ESS (nESS), was
calculated. Here, I present convergence diagnostics only for selected parameters, including
both linear fixed effects (predictors) and random effects. For the basis functions of age,
the relevant diagnostics were presented in Appendix D.
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Figure 6.11: Trace plots of MCMC samples for each selected linear predictor and random
effect from the 0.10th quantile model for the centred WAZ

Figures 6.11 and 6.12 present trace plots of selected parameters for linear fixed effect and
random effects, along with density plots, the Gelman-Rubin diagnostic (R̂GR), and the
effective sample size (nESS), for the 0.10th and 0.90th quantile models, respectively. Each
trace plot shows that no discernible trends over time are observed, and the samples for all
chains fluctuated around a stable mean, generally indicating convergence. Additionally,
each R̂GR is less than 1.1, confirming that the MCMC chains have reached a stationary
distribution and are well-mixed. However, the plot of a selected linear fixed predictor, low
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Figure 6.12: Trace plots of MCMC samples for each selected linear predictor and random
effect from the 0.90th quantile model for the centred WAZ

birth weight, for the 0.10th quantile model shows a pseudo ceiling effect approaching zero.
This is characterised by a high peak in the spike component and a wide spread in the slab
component in of the density plot. Notably, the slab component of the spike-and-slab
prior has predominantly influenced this predictor, suggesting that more coefficients were
retained (not shrunk to zero) compared to those that were. Furthermore, the chains have
a relatively large number of independent samples, as each nESS exceeds 1,000, indicating
that the generated samples are sufficient for accurate and reliable estimates.

6.2.3 Summary

When analysing the dataset of children ages 4 to 14 years for both raw weight and WAZ
using the BSGSSMQR method, the age effect exhibited a clear, non-linear pattern. For
raw weight, the patterns at the 0.10th and 0.90th quantiles were relatively similar as age
increased with fluctuations. In contrast, for WAZ, the patterns differed at younger ages
but became more similar as age progressed for both quantiles. Despite the variations in
results between raw weight and WAZ, low birth weight was a significant factor influencing
both child growth measurements at the 0.10th and 0.90th quantiles, although it was not as
influential at the 0.90th quantile for the WAZ. When focusing exclusively on raw weight,
other risk factors such as deprivation quintile and equivalised income were significantly
impacting child growth, regardless of whether children fell into the upper (the 0.90th
quantiles) or lower (the 0.10th quantile) distributions of raw weight. Additionally, the
fitted method revealed strong variations in both the initial baseline (intercepts) and the
rate of growth (slopes) among children. For WAZ, low birth weight was only associated
with the 0.10th quantile of this measurement. Furthermore, the fitted method indicated
substantial variations in the initial baseline (intercepts), but relatively small variations in
the rate of growth (slopes) for both quantiles.
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6.3 Comparison findings between AQMM and BSGSS-

MQR

In this section, the results from both AQMM and BSGSSMQR are presented in two
parts. The first part focuses on demonstrating the three fitted growth curves at the
0.10, 0.05th, and 0.90th quantiles for both males and females, as estimated by these two
approaches. To ensure a fair comparison, the fitting processes for both approaches were
made similar in terms of random effects specifications. This approach was implemented
because BSGSSMQR requires the inclusion of all possible random effects and automatically
identifies these effects through a Bayesian variable selection method. It was observed
that BSGSSMQR identified both random intercepts and random slopes in the models.
Consequently, both random intercepts and random slopes were also included in AQMM.
Therefore, in this part, the growth quantile curves are presented for comparison rather
than to identify the best-fitted growth curves. The second part summarises the significant
or selected risk factors associated with two weight measurements (i.e. raw weight and
WAZ), as identified by both the bootstrap method used in AQMM (Section 6.1) and
BSGSSMQR (Section 6.2), in Tables 6.14 to 6.15. To ensure a fair comparison, some
standardised coefficients from BSGSSMQR, such as low birth weight , will be converted
to their original scale for comparison purposes using the follow formula:

βp =
β′
p

σp
,

where βp is the original scale coefficient, β′
p is the standardised scale coefficient, and σp is

the standard deviation of the p-th predictor.

6.3.1 Quantile growth curves

Figures 6.13 and 6.14 present three quantile growth curves across ages ranging from 1 to
14 years for centred raw weight and centred WAZ, estimated by AQMM and BSGSSMQR
using the entire GUS dataset, with both approaches incorporating random intercepts and
random slopes. Generally, the growth curves produced by both methods exhibit similar
trends. However, the curves produced by AQMM appeared to be smoother compared to
those from BSGSSMQR.

Regarding the centred raw weight, growth curves from both models are relatively close from
ages 1 to 4 year. After this period, modest departures are observed, particularly during
the period of puberty (ages 8 and 14 for females and 9 and 14 for males). Additionally,
BSGSSMQR provided slightly fluctuating growth curves, while AQMM showed strong,
smooth trends throughout the ages. In terms of the centred WAZ, modest departures were
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Figure 6.13: Comparison of AQMM and BSGSSMQR growth curves for the centred raw
weight

observed, particularly at the beginning of the age rage. Growth curves from approximately
ages 4 to 10 years are relatively close. However, for ages 10 to 14 years (older children),
modest departures were noted, especially in BSGSSMQR for females. The departures in
quantile growth curves for both growth measurements between the two methods may be
attributed to the varying splines used in each approach. Additionally, it was observed that
both methods similarly provided growth curves that did not appear to capture the GUS
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data well when including both random intercepts and slopes, as seen in Section 6.1.

−5.0

−2.5

0.0

2.5

5.0

1 3 4 5 6 8 10 12 14

Age (years)

C
e

n
tr

e
d

 W
A

Z

Model

AQMM

BSGSSMQR

Quantile

0.10th

0.50th

0.90th

(a) Male

−5.0

−2.5

0.0

2.5

5.0

1 3 4 5 6 8 10 12 14

Age (years)

C
e

n
tr

e
d

 W
A

Z

Model

AQMM

BSGSSMQR

Quantile

0.10th

0.50th

0.90th

(b) Female

Figure 6.14: Comparison of AQMM and BSGSSMQR growth curves for the centred WAZ

As the quantile growth curves from both approaches were relatively comparable, I vali-
dated this by calculating the percentage of points above the 0.10th, 0.50th, and 0.90th
quantiles, finding that the results were similar to those of AQMM, as the percentages of
observations above each percentile did not align closely with the expected values. This
suggests that BSGSSMQR exhibits similar behaviour to AQMM when both random in-
tercepts and random slopes were selected, indicating that neither model fits the GUS data
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well. In context of BSGSSMQR, this could be attributed to the method used (see the
last term of equation 5.14 in Section 5.8.2), which the regularisation parameter (λ3) is
restricted to 1, allowing the data to guide the modelling process and avoiding the need
for additional hyperparameter tuning. While this approach has yielded good results in
simulation studies, it does not guarantee optimal outcomes and may ultimately lead to
model misspecification in the context of random effect selection when applied to the real
data. In the feature work, this parameter should be allowed to vary or be estimated rather
than remaining fixed at 1.

6.3.2 Identification of risk factors

Table 6.14 presents a summary of significant or selected risk factors associated with centred
raw weight at two different quantiles (τ = 0.10 and τ = 0.90), as fitted from the dataset
of children aged 4 to 14 years. The comparison highlights the differences in how the
AQMM and BSGSSMQR approaches identify and estimate these risk factors. It can be
observed that the bootstrap method implemented in AQMM identified significant risk
factors that varied across the two quantiles. For example, low birth weight has different
point estimates at both quantiles. Additionally, some factors, such as equivalised income
are signficant at τ = 0.10 but not at τ = 0.90. In contrast, BSGSSMQR identified the
same risk factors, which remained consistent across these specified quantiles in terms of
both magnitudes and directions.

Table 6.14: Significant (selected) risk factors associated with the centred raw weight along
with their point estimates: comparing AQMM and BSGSSMQR

Factor τ = 0.10 τ = 0.90
AQMM BSGSSMQR AQMM BSGSSMQR

Low birth weight (Yes) -1.24 -1.64 -1.72 -1.59
Deprivation quintile (4) 0.15 0.14
Equivalised income 0.21 0.10 0.10

Regarding WAZ (see Table 6.15), significant risk factors identified by AQMM varied no-
ticeably across the two quartiles. In contrast, only one risk factor, low birth weight ,
was selected by BSGSSMQR, and this was only at the 0.10th quantile. It can be observed
that AQMM provided a consistent magnitude and direction of significant risk factors that
appeared at both quantiles, except for low birth weight
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Table 6.15: Significant (selected) risk factors associated with the centred WAZ along with
their point estimates : comparing AQMM and BSGSSMQR

Factor τ = 0.10 τ = 0.90
AQMM BSGSSMQR AQMM BSGSSMQR

Low birth weight (Yes) -0.62 -0.05 -0.55
Respondent’s current health (Very good) 0.03 0.03
Respondent’s current health (Good) 0.05
Smoking cigarettes while pregnant (Yes) 0.14 0.13
Deprivation quintile (2) 0.05
Deprivation quintile (4) 0.13 0.12
Equivalised income 0.03 0.02

6.4 Chapter summary

In this chapter, two different framework methods, such as frequentist and Bayesian ap-
proaches, were applied to the GUS data, which consists of longitudinal child growth data
(LCGD) from Scotland. The former, a method known as AQMM, facilitates the analysis
of this data within a mixed-effects model framework. This method enables the easy fitting
of non-linear trajectories through the mixed effects representation of smoothing splines.
Additionally, it involves identifying risk factors by incorporating potential variables as
fixed effects (non-linear predictors and linear predictors) in the quantile mixed model and
identifying these through the bootstrap method. I applied the AQMM approach with cu-
bic P-splines in two key aspects: constructing reference growth charts and identifying risk
factors associated with child growth measurements. In the first aspect, it was observed
that the reference growth curves fitted by this approach, using only random intercepts,
were well-aligned with both GUS datasets (the entire dataset and the dataset of children
aged 4 to 14 years) and varied by sex and growth measurement scale. It is evident that
raw weight and WAZ exhibited non-linear curves, while raw height and HAZ displayed
curves that are more linear. Some extreme quantile curves, such as 0.04th and 0.90th
quantiles, exhibited non-parallel trends with other quantiles in WAZ, raw height, and
HAZ. In the second aspect, the risk factors were evaluated in relation to child physical
growth measurements using the dataset of children aged 4 to 14 years, representing the
school-age children and young people in primary or secondary school in Scotland. The
analysis indicates that significant risk factors varied across the two quantiles and different
child growth measurements.

The latter approach, the Bayesian sparse group LASSO-mixed quantile regression model
(BSGSSMQR), was also applied to analyse the same dataset as the previous method, with
a focus on the simultaneous selection of both fixed and random effects. This method
facilitates modelling of non-linear relationships between child growth measurements and
predictors using cubic B-splines with quantile knots. By utilising a Bayesian LASSO-type
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approach with spike and slab priors on quantile regression coefficients, it enables users to
select relatively large B-spline bases for constructing the smoothing function. Addition-
ally, it allows for the automatic removal of some bases that lack data support by shrinking
the coefficients of these bases towards zero. This methodology is also employed for the
selection of linear predictors. Furthermore, a Bayesian LASSO-type approach is used in
the selection of random effects, shrinking their standard deviations towards zero. The
analysis reveals that age exhibited a non-linear effect on raw weight across the lower and
upper quantiles. Selected risk factors (fixed effects) slightly differ across two weight mea-
surement scales, but exhibit consistency in risk factor selection across the three specified
quantiles, as mentioned previously. Moreover, the results indicate that there was vari-
ability in individual linear trends, such as intercepts and slopes, which were selected in
the three specified quantile models. However, it was observed that BSGSSMQR, with
selected random intercepts and random slopes, did not produced quantile growth curves
that fit to the GUS data well. This may be due to the penalty term used for random
effect selection, which leads to the misspecification of random effects. Therefore, this issue
should be addressed in future work.

In comparison, BSGSSMQR exhibits similar behaviour to AQMM in terms of fitting quan-
tile growth curves using the GUS data. Furthermore, BSGSSMQR demonstrates greater
parsimony in variable selection than the bootstrap method implemented in AQMM. While
AQMM identified risk factors associated with child growth measurements that vary across
quantiles, BSGSSMQR resulted in more consistent variable selection across quantiles.



Chapter 7

Conclusions

The primary focus of this thesis is to thoroughly examine longitudinal child growth data
using statistical models, with a particular emphasis on quantile regression. The aim is to
provide comprehensive insights into physical growth and development of children. This
comprehensive understanding can subsequently be used to inform policies focused on pre-
vention, promotion, and support, ensuring children experience healthy growth. The scope
of the research extended beyond mere data description; it encompassed capturing the
characteristics of the data to accurately reflect child growth and also evaluating potential
risk factors affecting growth across diverse children’s groups.

As discussed in Chapter 2, longitudinal child growth data (LCGD) offer unique advan-
tages over cross-sectional data, notably the ability to track trends and changes in individual
child’s growth over time. Tools such as child growth charts or models, derived from this
type of data, addresses fundamental scientific questions in child growth studies. However,
these advantages come with complexities, including varying non-linear growth patterns,
heterogeneous variability, and autocorrelation within individuals. To account for the latter
two features, mixed-effects models have been a popular statistical approach, while spline
methods typically model the first feature. This integration forms what is known as flexible
mixed-effect models, as discussed in Chapter 3. However, these models primarily focus on
modelling the central location of child growth measurements, such as the mean, and may
not adequately describe growth changes across the diversity of children’s groups.

To address this limitation, this thesis outlines a quantile regression based on a likelihood-
based method via the asymmetric Laplace (AL) distribution, combined with random effects
and splines. This method estimates the conditional quantiles of the dependent variable,
representing several locations of child growth measurements. However, this approach
has crucial limitations in inference using the bootstrap method, potentially leading to
inappropriate results in fixed effects selection. Moreover, it lacks a specific method for
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selecting random effects. Consequently, this study aimed to overcome these challenges by
developing Bayesian variable selection methods within the quantile mixed-effects models.

7.1 Modelling the longitudinal child growth data with

flexible quantile models

In Chapter 4, two flexible quantile models were discussed for modelling longitudinal child
growth data. The first is an existing method known as the quantile specific autoregressive
model (QSAM), which is based on the regression spline approach. This model utilises
three components to describe data: a non-parametric function, a first-order autoregressive
model, and a linear predictor function. It has been applied to longitudinal child growth
data for constructing reference growth curves. The second model is the additive quantile
mixed model (AQMM), which incorporates elements of both the additive quantile model
and the mixed-effect model. The former is employed to capture the non-linear relation-
ship, while the latter accounts for the dependency between observations taken from the
same individual at different times. In this chapter, several simulation studies were con-
ducted to explore the performances of these two methods when implemented with the
context of longitudinal child growth data. In terms of the modelling process, AQMM
allows users to employ any spline method to model the non-linear relationship between
child growth measurements and age, accommodating a relatively large number of bases.
In contrast, QSAM requires optimisation in terms of the number of bases used. Accord-
ing to the simulation results, AQMM proved to be the superior model for estimating the
quantiles of child growth measurements, particularly when the simulated data exhibited
autocorrelated growth outcomes, in scenarios of homogeneous and heterogeneous vari-
ability, and with both balanced and unbalanced data. Moreover, when simulated data
exhibited variability in individual linear trends (intercepts and temporal slopes), AQMM
maintained its predictive performance and acceptable computational efficiency. This ob-
servation still occurred in scenarios that simulated data had additional features such as the
between-individual differences in intra-individual variation and autocorrelation. However,
it should be noted that these variations should not be large. This is because, in AQMM,
the error variance and the variance of the random effects are treated as homogeneous
across individual groups or levels of covariates. Overall, AQMM is a suitable choice for
implementation with longitudinal child growth data and is therefore used as the model to
fit real data in Chapter 6.
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7.2 Variable selection methods in quantile regression

Chapter 5 focused on variable selection methods in the context of quantile regression, aim-
ing to address the limitations of the AQMM approach in this area. Two main aspects were
considered: variable selection in fixed effects within the quantile model and variable selec-
tion including both fixed and random effects within the quantile mixed model. The first
aspect specifically aimed to identify a more effective method capable of selecting variables
in quantile models containing only fixed effects. This method would then be extended for
variable selection in the context of the quantile mixed model in the second aspect. In the
first aspect, two novel Bayesian variable selection methods were proposed. These methods
were developed by integrating Bayesian LASSO-type methods with spike-and-slab priors
on quantile regression coefficients, similar to the work of Xu and Ghosh (2015). The first
method, named as BGLSSQR, is based on the Bayesian group LASSO, which facilitates
the selection of variables exhibiting group structures. The second method, BSGSSQR, ex-
tends the first, allowing for the selection of a group of predictors and individual within a
group using Bayesian sparse group LASSO. The performance of each method was assessed
through simulation studies and compared with existing methods. The results indicated
that these two proposed methods generally yielded biased estimators, similar to other
regularisation methods, whether frequentist or Bayesian. Notably, they were superior to
both existing frequentist and Bayesian approaches and maintained their predictive perfor-
mance and model selection accuracy in both simple and complex scenarios. This included
situations with high sparsity, either independence or correlation among predictors, and a
variety of variable groups and predictors. However, BSGSSQR offers an advantage over
BGLSSQR as it also provides the ability to select individual levels within a group variable.

Therefore, BSGSSQR was exclusively chosen for incorporation into the quantile mixed
model as the proposed method for the second aspect mentioned earlier. This proposed
method, BSGSSMQR, incorporates elements of BSGSSQR and introduces a decomposi-
tion for the covariance matrix of random effects, enabling the simultaneous selection of
both fixed and random effects. Unlike AQMM, BSGSSMQR estimates the smooth func-
tion through spline coefficients estimated in a penalised form. In AQMM, however, the
smooth function is estimated by treating a set of spline coefficients as random variables,
which are then predicted in a linear mixed model. In this aspect, a simulation study was
also conducted to assess the proposed method in comparison to AQMM. Regarding the
fixed effect selection, the proposed method demonstrates good performance compared with
the bootstrap method implemented in AQMM. Moreover, it facilitates the simultaneous
selection of random effects.
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7.3 Analysis of longitudinal child growth data in Scot-

land

In Chapter 6, the analysis of real data is presented. The longitudinal child growth data
from the Growing up in Scotland (GUS) study were employed for this purpose. Initially,
the AQMM approach was applied with two objectives: constructing the reference growth
charts and identifying risk factors associated with child growth measurements. This ap-
proach was chosen based on results from Chapter 4, which suggested that this approach is
suitable and flexible for analysing these data. In the first objective, AQMM demonstrated
that reference growth curves exhibited non-linear patterns in both males and females,
particularly in measurements relating to weight. In terms of identifying risk factors asso-
ciated with child growth measurements, the bootstrap method was utilised. The results
indicated that significant risk factors varied across the lower (the 0.10th), and upper (the
0.90th) quantiles. Some risk factors were significant at lower quantiles but not at upper
ones (or vice versa), while others showed significance across these two quantiles with either
the same or differing magnitudes of effect. Furthermore, the results indicate that there
was variation in individual linear trends (intercepts and slopes) across the two specified
quantiles, especially in both the raw scale of weight and height. However, the variation in
slopes on both the z-score scale of weight and height was small.

Secondly, BSGSSMQR was applied to identify risk factors associated with child growth
measurements only relating to weight, and to account for and indicate necessary variation
at the individual level, as such as in intercept and slopes. For the raw weight, age was non-
linearly associated with this growth measurement across two specified quantiles. Its effect
appeared consistent throughout the age range. Three risk factors, Low birth weight,
Deprivation quintile, and Equivalised income, were selected consistent across two
specified quantile models. Regarding accounting for variation at the individual-level, both
random intercepts and random slopes were selected in the model. This indicates that
there was individual variability in both intercept and growth velocity around the popu-
lation prediction at the lower, and upper ends of the raw weight distribution. It implies
that the growth of individual children deviates from the population by a shift in the in-
tercept, and that they also grow faster or slower than the population across quantiles.
Meanwhile, for the z-score scale of weight or WAZ, age was non-linearly associated with
this growth measurement at two quantile models. Only Low birth weight was selected
as the risk factor at the 0.10th quantile. There was individual variability in both intercept
and growth velocity around the population prediction for this measurement as well, but
variability seemed to be small across two quantiles of the WAZ distribution. However,
BSGSSMQR appears to select unnecessary individual variability, specifically in the form
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of random slopes, leading to poor model fit. This may explain why the quantile growth
curves did not fit the GUS data well.

In the comparison between AQMM and BSGSSMQR, it was found that the latter is more
parsimonious than the former, resulting in a model with the fewest possible variables
or parameters. However, most of significant risk factors selected in BSGSSMQR are a
subset of those in AQMM. This evidence is akin to the work of Xu and Ghosh (2015),
as BSGSSMQR was developed in a similar manner. Another point to note is that while
the bootstrap method implemented in AQMM cannot assess the significance of the basis
functions for age, this can be evaluated using BSGSSMQR.

7.4 Implications of empirical findings for policy in Scot-

land

The findings presented in this thesis, particularly those from Chapter 6, offer opportu-
nities to identify actionable steps, enhance current effects and programmes, and address
gaps in policy decisions for prioritising interventions in Scotland, with a focus on reducing
child obesity in school-age children and young people in primary or secondary education.
The strength of my research findings lies in analysing risks factors affecting child growth
in school-age children and young people in primary or secondary education in Scotland.
The evidence presented here would be beneficial for the Scottish government and public
health agencies. For example, three risk factors – Low birth weight, Deprivation quin-
tile and Equivalised income – were found to be significantly associated with the 90th
percentile of the weight growth distribution, indicating that children in the highest 10%
of the weight growth distribution are likely at risk of obesity. However, it is important
to note that child obesity is typically defined using specific criteria such as body mass
index (BMI) percentiles, rather than directly from weight growth distribution percentiles.
Nonetheless, these findings can provide valuable preliminary information in this context.

Firstly, it is found that children at the higher end of the weight distribution (those in the
90th percentile) who were born with low birth weight tend to have lower weights com-
pared to their peers who were not born with low birth weight. This suggests that low birth
weight has a particularly strong association with reduced weight at the higher end of the
distribution. While these children may still be heavier than others, their weight is less than
it would be if they had not been born with low birth weight. In terms of policy-making,
particularly for reducing child overweight or obesity, the Scottish government should im-
plement comprehensive policies that address various aspects of this issue. First, nutrition
should be prioritised by implementing programmes to educate parents and communities
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on appropriate meal for low-birth-weight children. Second, this group of children should
have their growth monitored and evaluated frequently.

Secondly, a deprivation quintile categorizes a population into five groups based on the level
of deprivation they experience, which includes a lack of resources or access to basic needs
such as income, employment, education, healthcare, safety, housing, and services. This
measure serves as a poverty risk factor associated with child growth, reflecting the impact
of childhood poverty. In the context of the GUS study, the first quintile (Deprivation
quintile 1) represents the least deprived 20% of the population and the fifth quintile (De-
privation quintile 5) represents the most deprived 20%. This implies that children whose
parents fall into higher quintiles of deprivation are more likely to face childhood poverty
than those in lower quintiles. In this analysis, it is evident that children living in the 4th
quintile of deprivation had a higher 0.90th quantile of weight compared to those in other
quintiles. This suggests that living in more deprived areas may contribute to increased
weight in children, raising the likelihood of them becoming overweight or obese. To re-
duce the risk of childhood obesity, the Scotland government or relevant authorities should
consider strategies aimed at reducing childhood poverty, such as implementing policies
specifically targeting families living in high level of deprivation. Fortunately, in March
2022, the Scottish Government launched the “Best Start, Bright Futures: tackling child
poverty delivery plan 2022 to 2026 ” (APS Group Scotland, 2022), which includes relevant
policies to reduce in this regard. The evidence from this thesis supports this policy and
highlights the importance of focusing on children living in deprived areas, particularly
those in deprivation quintile 4.

Thirdly, equivalised income, a measure that adjusts total household income for household
size and composition using an equivalence scale, is another poverty risk factor associ-
ated with the higher end of the weight distribution. This adjustment accounts for the
specific needs of household members, allowing for comparisons of living standards across
households of different sizes and compositions, with higher equivalised income generally
indicating a higher standard of living. In this thesis, the results reveal that as equivalised
income increases, the weight of children at the 90th percentile of the weight distribution
also tends to increase. This suggests that children in households with higher equivalised
income are likely to be heavier at the upper end of the weight distribution. While higher
income is typically associated with better access to healthy food and healthcare, several
factors could explain this finding. For instance, children in higher-income families might
have greater access to a wide variety of foods, including those that are high in calo-
ries and less nutritious. Additionally, these families might lead more sedentary lifestyles.
This insight could inform policies aimed at weight management and nutritional education.
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However, it is crucial to identify which equivalised income brackets should be targeted to
ensure the effectiveness of these interventions. For example, programmes could focus on
families within equivalised incomes quintiles where children tend to have higher weights,
promoting balanced diets and healthy lifestyles and prevent excessive weight gain.

7.5 Limitations and future work

There are three main limitations to this study: the data, the analytical context and the
proposed methods. Regarding the data, there were relatively few repeated data points in
the GUS dataset. The maximum number of points was seven for weight measurement and
five for height measurement. This limitation arises from the design of the Growing Up in
Scotland study, which aimed to collect these growth measurements at specific sweeps, not
at every sweep. As a result, this led to broadly spaced age intervals, particularly between
10 months and 4 years, which might impact the adequate representation of critical devel-
opment stages.

In Chapter 6, three shortcomings are noted in the analytical context. Firstly, the poten-
tial risk factors were selected based on alignment with a single framework for studying
child growth measurements. This approach may have overlooked other significant risk
factors. For future work, other frameworks should be considered to identify additional
important risk factors. Additionally, some risk factors, such as equivalised income, may
be challenging to modify directly in practice. Secondly, the analysis did not consider inter-
action effects. Including these kinds of effects may provide a more realistic understanding
of child growth, due to the multifaceted nature of growth and development in children,
rather than focusing solely on individual effects. Finally, accounting for variation at the
individual level was limited to random intercepts and random slopes in linear trend. How-
ever, in real-world problems, the situation can be more complex. For example, the trend
may follow a high-order polynomial, such as a quadratic trend. Therefore, in the future
work, these three aspects should be considered to provide a more realistic child growth
model.

In the Bayesian group and sparse group LASSO approaches, there is an underlying assump-
tion that group variables form a non-overlapping structure, such as multiple categorical
variables and bases of smoothing functions representing continuous variables. However,
in real-world scenarios, risk factors associated with child growth and development are not
confined to this structure. They can overlap, meaning that certain factors or indicators are
relevant to multiple aspects or dimension of child’s growth and development. For example,
family income, parental education, and housing conditions might overlap between groups
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related to economic factors and those groups related to environmental factors. Further
work could extend these approaches to accommodate this phenomenon. Another aspect is
that the penalty term used with the regularisation parameter is fixed at 1, associated with
random effect selection in BSGSSMQR appears to mis-specify the random effects, which
may not adequately capture the variability in the GUS data. Therefore, seeking a more
appropriate method should be a focus in future work. One possible idea is to extend the
Bayesian Group LASSO to incorporate shrinkage of random effects with group structure
by using truncated normal priors, thereby addressing a similar problem in the selection
of fixed effects. Moreover, a primary challenge in implementing a Bayesian approach with
the traditional MCMC methods is its computational cost, which escalates with increas-
ing sample size and the number of random effects. In improving this respect of Bayesian
inference, seeking a faster alternative to the traditional methods, such as the Integrated
Nested Laplace Approximation (INLA), may be a viable approach. In literature, there is
interesting work that has applied the INLA method in quantile regression, for example,
Yue and Rue (2011).

Most of approaches in this thesis, including AQMM and the proposed methods, rely on
the independent estimation of each conditional quantile by a likelihood-based method via
the asymmetric Laplace (AL) distribution. Consequently, they may breach the quantile
monotonicity property, as outlined in Section 3.4.4, leading to crossing quantile curves, par-
ticularly in the extreme quantiles. This is especially relevant when constructing reference
child growth curves. In future work, this limitation should be considered. An interest-
ing workaround in this area is the work of Merhi Bleik (2019). The author employed a
Bayesian approach with a Metropolis-Hastings within Gibbs algorithm to estimate simul-
taneous conditional quantile curves.

In conclusion, this thesis aims to examine longitudinal child growth data, with the objec-
tive of providing comprehensive insights into physical growth and development of children.
The models used in this thesis are based on quantile mixed models within both frequentist
and Bayesian frameworks. These approaches were compared through simulation studies
and then applied to the real data, specifically the physical growth measurements (i.e. raw
weight, raw height, WAZ, and HAZ) from the Growing Up in Scotland dataset. The nov-
elty of this work lies in the development of a Bayesian variable selection method within
quantile mixed models, providing a comprehensive framework to address the challenges
associated with the simultaneous selection of both fixed and random effects in these mod-
els. This novel method combines four key components: the Bayesian sparse group LASSO
method, a likelihood function based on the scale mixture representation of the asymmetric
Laplace (AL) distribution, spike and slab priors for quantile regression coefficients, and
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the utilisation of mixed models based on a decomposition for the covariance matrix of
random effects. The first component enables the selection of both group variables and
individuals within these group variables. The second is employed as a working likelihood
in the Bayesian method and for estimating the conditional quantiles. The third is designed
to place a point mass at zero for quantile regression coefficients, ensuring effective identi-
fication and selection variables. The final component is adopted to select random effects.
This model outperforms other methods in terms of model selection accuracy, especially
when the study’s objective is to select variables (fixed effects) exhibiting a non-overlapping
group structure. Additionally, it has the capability of selecting random effects over others.
However, there are some limitations to this work, which have been mentioned previously,
along with future work that could overcome these limitations.



Appendix A

Joint posterior distributions

A.1 Joint posterior distribution of β,η2,v, σ, π0
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A.2 Joint posterior distribution of b,θ2,v, σ, π0, π1
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Appendix B

Additional results from Chapter 4

In this appendix, additional results corresponding to Chapter 4 are presented, specifically
from the two simulation studies conducted (Study 4.1 and 4.2).

B.1 Study 4.1

Each figure representing the results from the homogeneous variance scenario in Study 4.1
is listed in the table below.

Figure Metric Scenario (refer to Table 4.1)
# Data design Variance-covariance types of errors (Ri) Sample sizes

B.1 MAE 1 Balanced data Homogeneous (σ2 = 2, ϕ = 1.45) 100
B.1 MAE 2 Balanced data Homogeneous (σ2 = 2, ϕ = 1.45) 1000
B.1 MAE 5 Unbalanced data Homogeneous (σ2 = 2, ϕ = 1.45) 100
B.1 MAE 6 Unbalanced data Homogeneous (σ2 = 2, ϕ = 1.45) 1000
B.2 RS 1 Balanced data Homogeneous (σ2 = 2, ϕ = 1.45) 100
B.2 RS 2 Balanced data Homogeneous (σ2 = 2, ϕ = 1.45) 1000
B.2 RS 5 Unbalanced data Homogeneous (σ2 = 2, ϕ = 1.45) 100
B.2 RS 6 Unbalanced data Homogeneous (σ2 = 2, ϕ = 1.45) 1000
B.3 PNR 1 Balanced data Homogeneous (σ2 = 2, ϕ = 1.45) 100
B.3 PNR 2 Balanced data Homogeneous (σ2 = 2, ϕ = 1.45) 1000
B.3 PNR 5 Unbalanced data Homogeneous (σ2 = 2, ϕ = 1.45) 100
B.3 PNR 6 Unbalanced data Homogeneous (σ2 = 2, ϕ = 1.45) 1000
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Figure B.1: The MAE of the four models, including the MSE for the true model (MTRUE),
in the homogeneous scenario of Study 4.1. The left column presents the results for the
balanced data scenario, while the right column shows the results for the unbalanced data
scenario. The three rows display the results for quantile levels at 0.10, 0.50 and 0.90,
respectively.
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Figure B.2: The RS of the four models, including the true model (MTRUE), in the
homogeneous scenario of Study 4.1. The left column presents the results for the balanced
data scenario, while the right column shows the results for the unbalanced data scenario.
The three rows display the results for quantile levels at 0.10, 0.50 and 0.90, respectively.
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Figure B.3: The PNR of the four models in the homogeneous scenario Study 4.1. The
left column presents the results for the balanced data scenario, while the right column
shows the results for the unbalanced data scenario. The three rows display the results
for quantile levels at 0.10, 0.50 and 0.90, respectively. The red dashed lines represent the
expected quantile levels, τ = 0.10, 0.50, and 0.90, respectively.
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B.2 Study 4.2

Each figure and table representing the additional results from Study 4.2 is listed in the
table below.

Figure/Table Metric Scenario (refer to Table 4.1)
# Data design Variance-covariance types of errors (Ri) Sample sizes Error distribution

B.4 MAE 1 Balanced data Homogeneous (σ2 = 1, ϕ = 1.45) 100 Normal
B.4 MAE 2 Balanced data Homogeneous (σ2 = 1, ϕ = 1.45) 1000 Normal
B.4 MAE 5 Unbalanced data Homogeneous (σ2 = 1, ϕ = 1.45) 100 Normal
B.4 MAE 6 Unbalanced data Homogeneous (σ2 = 1, ϕ = 1.45) 1000 Normal
B.4 MAE 1 Balanced data Homogeneous (σ2 = 1, ϕ = 1.45) 100 Student’s t
B.4 MAE 2 Balanced data Homogeneous (σ2 = 1, ϕ = 1.45) 1000 Student’s t
B.4 MAE 5 Unbalanced data Homogeneous (σ2 = 1, ϕ = 1.45) 100 Student’s t
B.4 MAE 6 Unbalanced data Homogeneous (σ2 = 1, ϕ = 1.45) 1000 Student’s t
B.5 RS 1 Balanced data Homogeneous (σ2 = 1, ϕ = 1.45) 100 Normal
B.5 RS 2 Balanced data Homogeneous (σ2 = 1, ϕ = 1.45) 1000 Normal
B.5 RS 5 Unbalanced data Homogeneous (σ2 = 1, ϕ = 1.45) 100 Normal
B.5 RS 6 Unbalanced data Homogeneous (σ2 = 1, ϕ = 1.45) 1000 Normal
B.5 RS 1 Balanced data Homogeneous (σ2 = 1, ϕ = 1.45) 100 Student’s t
B.5 RS 2 Balanced data Homogeneous (σ2 = 1, ϕ = 1.45) 1000 Student’s t
B.5 RS 5 Unbalanced data Homogeneous (σ2 = 1, ϕ = 1.45) 100 Student’s t
B.5 RS 6 Unbalanced data Homogeneous (σ2 = 1, ϕ = 1.45) 1000 Student’s t
B.6 PNR 1 Balanced data Homogeneous (σ2 = 1, ϕ = 1.45) 100 Normal
B.6 PNR 2 Balanced data Homogeneous (σ2 = 1, ϕ = 1.45) 1000 Normal
B.6 PNR 5 Unbalanced data Homogeneous (σ2 = 1, ϕ = 1.45) 100 Normal
B.6 PNR 6 Unbalanced data Homogeneous (σ2 = 1, ϕ = 1.45) 1000 Normal
B.6 PNR 1 Balanced data Homogeneous (σ2 = 1, ϕ = 1.45) 100 Student’s t
B.6 PNR 2 Balanced data Homogeneous (σ2 = 1, ϕ = 1.45) 1000 Student’s t
B.6 PNR 5 Unbalanced data Homogeneous (σ2 = 1, ϕ = 1.45) 100 Student’s t
B.6 PNR 6 Unbalanced data Homogeneous (σ2 = 1, ϕ = 1.45) 1000 Student’s t
B.1 Bias, RMSE 1 Balanced data Homogeneous (σ2 = 1, ϕ = 1.45) 100 Normal
B.1 Bias, RMSE 1 Balanced data Homogeneous (σ2 = 1, ϕ = 1.45) 100 Student’s t
B.2 Bias, RMSE 2 Balanced data Homogeneous (σ2 = 1, ϕ = 1.45) 1000 Normal
B.2 Bias, RMSE 2 Balanced data Homogeneous (σ2 = 1, ϕ = 1.45) 1000 Student’s t
B.3 Bias, RMSE 5 Unbalanced data Homogeneous (σ2 = 1, ϕ = 1.45) 100 Normal
B.3 Bias, RMSE 5 Unbalanced data Homogeneous (σ2 = 1, ϕ = 1.45) 100 Student’s t
B.4 Bias, RMSE 6 Unbalanced data Homogeneous (σ2 = 1, ϕ = 1.45) 1000 Normal
B.4 Bias, RMSE 6 Unbalanced data Homogeneous (σ2 = 1, ϕ = 1.45) 1000 Student’s t
B.5 Bias, RMSE 3 Balanced data Heterogeneous (σ2 = 1, ϕ = 1.45, α = −0.50) 100 Normal
B.5 Bias, RMSE 3 Balanced data Heterogeneous (σ2 = 1, ϕ = 1.45, α = −0.50) 100 Student’s t
B.6 Bias, RMSE 4 Balanced data Heterogeneous (σ2 = 1, ϕ = 1.45, α = −0.50) 1000 Normal
B.6 Bias, RMSE 4 Balanced data Heterogeneous (σ2 = 1, ϕ = 1.45, α = −0.50) 1000 Student’s t
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Table B.1: The MBE and RMSE concerning the simulated data under Study 4.2, specifi-
cally focusing on the balanced data design, homogeneous variance-covariance of errors
with two distinct error distributions, and a sample size of 100.

Error Model τ MBE RMSE MBE RMSE
β1 β1 β2 β2

ϵi ∼ Nni
(0,Ri) AQMM1 0.10 0.0115 0.2512 -0.0022 0.0253

AQMM2 0.10 0.0115 0.2513 -0.0021 0.0252
QSAM1 0.10 -0.7832 0.7883 0.0002 0.0357
QSAM2 0.10 -0.7825 0.7876 -0.0011 0.0370

MTRUE Mean 0.0120 0.2497 -0.0008 0.0160
AQMM1 0.50 0.0125 0.2507 -0.0006 0.0185
AQMM2 0.50 0.0125 0.2507 -0.0006 0.0184
QSAM1 0.50 -0.7727 0.7767 0.0007 0.0273
QSAM2 0.50 -0.7800 0.7837 -0.0002 0.0258

AQMM1 0.90 0.0101 0.2545 -0.0005 0.0241
AQMM2 0.90 0.0101 0.2546 -0.0005 0.0241
QSAM1 0.90 -0.7522 0.7594 0.0016 0.0373
QSAM2 0.90 -0.7762 0.7818 0.0007 0.0368

ϵi ∼ Tni,4(0,Σi) AQMM1 0.10 0.0111 0.2476 0.0004 0.0263
AQMM2 0.10 0.0111 0.2476 0.0005 0.0263
QSAM1 0.10 -0.7824 0.7892 0.0029 0.0357
QSAM2 0.10 -0.7801 0.7868 0.0012 0.0366

MTRUE Mean 0.0084 0.2413 -0.0003 0.0167
AQMM1 0.50 0.0080 0.2413 -0.0009 0.0157
AQMM2 0.50 0.0080 0.2412 -0.0009 0.0157
QSAM1 0.50 -0.7466 0.7501 0.0010 0.0254
QSAM2 0.50 -0.7589 0.7622 -0.0003 0.0253

AQMM1 0.90 0.0067 0.2512 -0.0004 0.0252
AQMM2 0.90 0.0066 0.2512 -0.0005 0.0252
QSAM1 0.90 -0.7533 0.7611 -0.0012 0.0389
QSAM2 0.90 -0.7825 0.7891 -0.0018 0.0382
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Table B.2: The MBE and RMSE concerning the simulated data under Study 4.2, specifi-
cally focusing on the balanced data design, homogeneous variance-covariance of errors
with two distinct error distributions, and a sample size of 1000.

Error Model τ MBE RMSE MBE RMSE
β1 β1 β2 β2

ϵi ∼ Nni
(0,Ri) AQMM1 0.10 -0.0002 0.0836 -0.0002 0.0077

AQMM2 0.10 -0.0002 0.0836 -0.0002 0.0077
QSAM1 0.10 -0.7923 0.7928 0.0007 0.0112
QSAM2 0.10 -0.7917 0.7922 0.0008 0.0112

MTRUE Mean 0.0006 0.0813 -0.0002 0.0052
AQMM1 0.50 0.0004 0.0814 -0.0001 0.0060
AQMM2 0.50 0.0004 0.0814 -0.0001 0.0060
QSAM1 0.50 -0.7805 0.7809 0.0002 0.0087
QSAM2 0.50 -0.7894 0.7898 0.0004 0.0087

AQMM1 0.90 0.0008 0.0825 0.0001 0.0076
AQMM2 0.90 0.0008 0.0824 0.0001 0.0077
QSAM1 0.90 -0.7650 0.7655 0.0002 0.0118
QSAM2 0.90 -0.7898 0.7902 0.0000 0.0115

ϵi ∼ Tni,4(0,Σi) AQMM1 0.10 -0.0038 0.0809 0.0002 0.0082
AQMM2 0.10 -0.0038 0.0809 0.0002 0.0083
QSAM1 0.10 -0.7996 0.8001 0.0010 0.0117
QSAM2 0.10 -0.7983 0.7989 0.0008 0.0120

MTRUE Mean -0.0046 0.0792 0.0001 0.0050
AQMM1 0.50 -0.0048 0.0788 0.0001 0.0046
AQMM2 0.50 -0.0048 0.0788 0.0001 0.0046
QSAM1 0.50 -0.7585 0.7588 0.0006 0.0079
QSAM2 0.50 -0.7681 0.7685 0.0001 0.0077

AQMM1 0.90 -0.0057 0.0823 -0.0004 0.0080
AQMM2 0.90 -0.0057 0.0823 -0.0004 0.0080
QSAM1 0.90 -0.7716 0.7723 0.0003 0.0122
QSAM2 0.90 -0.7967 0.7973 0.0002 0.0117
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Table B.3: The MBE and RMSE concerning the simulated data under Study 4.2, specif-
ically focusing on the unbalanced data design, homogeneous variance-covariance of
errors with two distinct error distributions, and a sample size of 100.

Error Model τ MBE RMSE MBE RMSE
β1 β1 β2 β2

ϵi ∼ Nni
(0,Ri) AQMM1 0.10 0.0177 0.2658 0.0008 0.0258

AQMM2 0.10 0.0177 0.2656 0.0007 0.0258
QSAM1 0.10 -0.7662 0.7761 0.0037 0.0478
QSAM2 0.10 -0.7652 0.7751 0.0033 0.0491

MTRUE Mean 0.0204 0.2636 -0.0001 0.0175
AQMM1 0.50 0.0210 0.2644 0.0002 0.0202
AQMM2 0.50 0.0211 0.2646 0.0003 0.0203
QSAM1 0.50 -0.7558 0.7609 0.0007 0.0342
QSAM2 0.50 -0.7601 0.7650 0.0006 0.0338

AQMM1 0.90 0.0195 0.2669 -0.0003 0.0251
AQMM2 0.90 0.0196 0.2669 -0.0002 0.0253
QSAM1 0.90 -0.7514 0.7604 -0.0001 0.0477
QSAM2 0.90 -0.7574 0.7658 -0.0007 0.0488

ϵi ∼ Tni,4(0,Σi) AQMM1 0.10 -0.0129 0.2943 0.0016 0.0284
AQMM2 0.10 -0.0128 0.2944 0.0016 0.0284
QSAM1 0.10 -0.7682 0.7774 0.0036 0.0486
QSAM2 0.10 -0.7688 0.7781 0.0023 0.0496

MTRUE Mean -0.0158 0.2911 -0.0005 0.0185
AQMM1 0.50 -0.0149 0.2900 -0.0011 0.0171
AQMM2 0.50 -0.0151 0.2898 -0.0011 0.0170
QSAM1 0.50 -0.7370 0.7429 0.0005 0.0320
QSAM2 0.50 -0.7406 0.7464 0.0001 0.0317

AQMM1 0.90 -0.0169 0.2977 -0.0020 0.0260
AQMM2 0.90 -0.0166 0.2977 -0.0021 0.0260
QSAM1 0.90 -0.7656 0.7753 -0.0012 0.0509
QSAM2 0.90 -0.7718 0.7819 -0.0013 0.0503
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Table B.4: The MBE and RMSE concerning the simulated data under Study 4.2, specif-
ically focusing on the unbalanced data design, homogeneous variance-covariance of
errors with two distinct error distributions, and a sample size of 1000.

Error Model τ MBE RMSE MBE RMSE
β1 β1 β2 β2

ϵi ∼ Nni
(0,Ri) AQMM1 0.10 0.0007 0.0845 -0.0002 0.0081

AQMM2 0.10 0.0006 0.0845 -0.0002 0.0081
QSAM1 0.10 -0.7711 0.7719 0.0012 0.0156
QSAM2 0.10 -0.7722 0.7731 0.0013 0.0156

MTRUE Mean 0.0015 0.0827 -0.0002 0.0056
AQMM1 0.50 0.0022 0.0834 -0.0002 0.0059
AQMM2 0.50 0.0021 0.0834 -0.0002 0.0059
QSAM1 0.50 -0.7671 0.7676 0.0001 0.0105
QSAM2 0.50 -0.7695 0.7700 0.0002 0.0104

AQMM1 0.90 0.0010 0.0829 0.0002 0.0079
AQMM2 0.90 0.0009 0.0830 0.0003 0.0079
QSAM1 0.90 -0.7676 0.7684 0.0004 0.0148
QSAM2 0.90 -0.7721 0.7729 0.0004 0.0144

ϵi ∼ Tni,4(0,Σi) AQMM1 0.10 0.0062 0.0882 0.0008 0.0084
AQMM2 0.10 0.0062 0.0882 0.0008 0.0083
QSAM1 0.10 -0.7775 0.7785 0.0012 0.0149
QSAM2 0.10 -0.7780 0.7790 0.0014 0.0148

MTRUE Mean 0.0050 0.0856 0.0004 0.0054
AQMM1 0.50 0.0049 0.0855 0.0001 0.0049
AQMM2 0.50 0.0049 0.0855 0.0001 0.0049
QSAM1 0.50 -0.7405 0.7410 0.0005 0.0104
QSAM2 0.50 -0.7425 0.7431 0.0004 0.0102

AQMM1 0.90 0.0039 0.0873 -0.0001 0.0085
AQMM2 0.90 0.0039 0.0872 -0.0001 0.0085
QSAM1 0.90 -0.7726 0.7737 0.0002 0.0147
QSAM2 0.90 -0.7772 0.7782 0.0002 0.0147
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Table B.5: The MBE and RMSE concerning the simulated data under Study 4.2, specifi-
cally focusing on the balanced data design, heterogeneous variance-covariance of errors
with two distinct error distributions, and a sample size of 100.

Error Model τ MBE RMSE MBE RMSE
β1 β1 β2 β2

ϵi ∼ Nni
(0,Ri) AQMM1 0.10 0.0115 0.1798 -0.0014 0.0208

AQMM2 0.10 0.0115 0.1798 -0.0015 0.0208
QSAM1 0.10 -0.7138 0.7183 -0.0004 0.0305
QSAM2 0.10 -0.7118 0.7166 -0.0002 0.0308

MTRUE Mean 0.0115 0.1776 -0.0006 0.0132
AQMM1 0.50 0.0116 0.1786 -0.0006 0.0154
AQMM2 0.50 0.0116 0.1786 -0.0006 0.0154
QSAM1 0.50 -0.7033 0.7071 0.0010 0.0232
QSAM2 0.50 -0.7100 0.7136 -0.0001 0.0225

AQMM1 0.90 0.0111 0.1837 -0.0004 0.0204
AQMM2 0.90 0.0110 0.1836 -0.0004 0.0203
QSAM1 0.90 -0.6860 0.6926 0.0024 0.0315
QSAM2 0.90 -0.7080 0.7135 0.0008 0.0317

ϵi ∼ Tni,4(0,Σi) AQMM1 0.10 0.0097 0.1779 0.0003 0.0219
AQMM2 0.10 0.0097 0.1780 0.0003 0.0218
QSAM1 0.10 -0.7128 0.7188 0.0030 0.0311
QSAM2 0.10 -0.7103 0.7167 0.0003 0.0315

MTRUE Mean 0.0071 0.1725 -0.0002 0.0139
AQMM1 0.50 0.0069 0.1715 -0.0006 0.0134
AQMM2 0.50 0.0069 0.1714 -0.0006 0.0134
QSAM1 0.50 -0.6742 0.6779 0.0001 0.0221
QSAM2 0.50 -0.6839 0.6872 -0.0002 0.0219

AQMM1 0.90 0.0062 0.1829 -0.0003 0.0211
AQMM2 0.90 0.0061 0.1830 -0.0002 0.0210
QSAM1 0.90 -0.6842 0.6909 -0.0016 0.0326
QSAM2 0.90 -0.7122 0.7181 -0.0020 0.0319
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Table B.6: The MBE and RMSE concerning the simulated data under Study 4.2, specifi-
cally focusing on the balanced data design, heterogeneous variance-covariance of errors
with two distinct error distributions, and a sample size of 1000.

Error Model τ MBE RMSE MBE RMSE
β1 β1 β2 β2

ϵi ∼ Nni
(0,Ri) AQMM1 0.10 0.0016 0.0592 -0.0003 0.0063

AQMM2 0.10 0.0016 0.0592 -0.0003 0.0063
QSAM1 0.10 -0.7231 0.7236 0.0009 0.0095
QSAM2 0.10 -0.7212 0.7217 0.0008 0.0095

MTRUE Mean 0.0020 0.0570 -0.0002 0.0042
AQMM1 0.50 0.0020 0.0570 -0.0001 0.0048
AQMM2 0.50 0.0020 0.0570 -0.0001 0.0048
QSAM1 0.50 -0.7114 0.7118 0.0003 0.0078
QSAM2 0.50 -0.7196 0.7199 0.0000 0.0076

AQMM1 0.90 0.0025 0.0584 -0.0002 0.0062
AQMM2 0.90 0.0024 0.0584 -0.0002 0.0062
QSAM1 0.90 -0.6963 0.6969 0.0005 0.0106
QSAM2 0.90 -0.7180 0.7184 0.0002 0.0100

ϵi ∼ Tni,4(0,Σi) AQMM1 0.10 -0.0016 0.0582 0.0001 0.0068
AQMM2 0.10 -0.0016 0.0581 0.0001 0.0068
QSAM1 0.10 -0.7301 0.7306 0.0010 0.0101
QSAM2 0.10 -0.7274 0.7279 0.0005 0.0101

MTRUE Mean -0.0025 0.0563 0.0000 0.0041
AQMM1 0.50 -0.0026 0.0560 0.0000 0.0037
AQMM2 0.50 -0.0026 0.0560 0.0000 0.0037
QSAM1 0.50 -0.6864 0.6868 0.0005 0.0068
QSAM2 0.50 -0.6953 0.6956 0.0001 0.0068

AQMM1 0.90 -0.0034 0.0587 -0.0004 0.0067
AQMM2 0.90 -0.0034 0.0587 -0.0004 0.0067
QSAM1 0.90 -0.7023 0.7030 0.0002 0.0102
QSAM2 0.90 -0.7261 0.7267 0.0004 0.0099



Appendix C

Additional results from Chapter 5

In this appendix, the numerical results from two simulation studies, Studies 5.1 to 5.2,
are presented, as detailed in Chapter 5. Each table representing these numerical results is
listed in the table below.

Table Study Metric Error distribution Note
C.1 5.1 MBE Standard normal Comparison in eight different methods
C.2 5.1 RMSE Standard normal Comparison in eight different methods
C.3 5.1 MBE t3 Comparison in eight different methods
C.4 5.1 RMSE t3 Comparison in eight different methods
C.5 5.1 MBE χ2

3 Comparison in eight different methods
C.6 5.1 RMSE χ2

3 Comparison in eight different methods
C.7 5.1 MBE Standard normal Comparison between BGLSSQR and BSGSSQR in two different iteration numbers for estimating λ
C.8 5.1 RMSE Standard normal Comparison between BGLSSQR and BSGSSQR in two different iteration numbers for estimating λ
C.9 5.1 MBE t3 Comparison between BGLSSQR and BSGSSQR in two different iteration numbers for estimating λ
C.10 5.1 RMSE t3 Comparison between BGLSSQR and BSGSSQR in two different iteration numbers for estimating λ
C.11 5.1 MBE χ2

3 Comparison between BGLSSQR and BSGSSQR in two different iteration numbers for estimating λ
C.12 5.1 RMSE χ2

3 Comparison between BGLSSQR and BSGSSQR in two different iteration numbers for estimating λ
C.13 5.2 MBE Standard normal Comparison in eight different methods
C.14 5.2 RMSE Standard normal Comparison in eight different methods
C.15 5.2 MBE t3 Comparison in eight different methods
C.16 5.2 RMSE t3 Comparison in eight different methods
C.17 5.2 MBE χ2

3 Comparison in eight different methods
C.18 5.2 RMSE χ2

3 Comparison in eight different methods

278
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Appendix D

Additional results from Chapter 6

D.1 The quantile growth curves from the AQMM mod-

els, fitted with both random intercepts and random

slopes.

In this section, the results from the fitted quantile models with random intercepts and
random slopes for each child’s physical growth measurements, are presented. Each figure
representing the results is listed in the table below.

Figure Physical growth measurement Dataset
D.1 Raw weight Entire GUS dataset
D.2 Raw weight Children aged 4 - 14 years GUS dataset
D.3 WAZ Entire GUS dataset
D.4 WAZ Children aged 4 - 14 years GUS dataset
D.5 Raw height Children aged 4 - 14 years GUS dataset
D.6 HAZ Children aged 4 - 14 years GUS dataset
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D.2 The initial fitted quantile models via AQMM for

identifying risk factors

In this section, the results from the initially fitted quantile models for each child’s physical
growth measurements, are presented. Each table representing the results is listed in the
table below.

Table Physical growth measurement Dataset
D.1 (Centred) Raw weight Children aged 4 - 14 years GUS dataset
D.2 (Centred) WAZ Children aged 4 - 14 years GUS dataset
D.3 (Centred) Raw height Children aged 4 - 14 years GUS dataset
D.4 (Centred) HAZ Children aged 4 - 14 years GUS dataset



APPENDIX D. ADDITIONAL RESULTS FROM CHAPTER 6 305

Table D.1: Estimates from the initial AQMM with cubic P-splines for the (centred)
raw weight growth measurement in children aged 4 - 14 years from the GUS dataset
(standard errors in brackets)†

τ = 0.10 τ = 0.90
Fixed effects
(Intercept) -1.5730 (0.8611) 0.5189 (1.1984)
Sex (Male) 0.2439 (0.1419) 0.2878 (0.1696)
Low birth weight (Yes) -0.7644c (0.3121) -1.0506c (0.4918)
Ethnicity of a child (White) -1.8112a (0.4939) -0.2500 (1.0306)
Child’s health in general (Good) 0.1460 (0.1138) 0.2682 (0.1605)
Child’s health in general (Fair, Bad, Very Bad) -0.4911 (0.3615) 0.8954c (0.3993)
Number of accidents or injuries of child 0.1329 (0.0669) -0.0398 (0.0611)
Child’s birth order 0.0385 (0.0857) -0.0966 (0.0705)
Mother’s marital status (Single) 0.1753 (0.1710) 0.1856 (0.1716)
Mother’s marital status (Other) 0.6132c (0.2449) 0.4520 (0.2648)
Urban-rural classification (Other urban) 0.2544 (0.1837) 0.2639 (0.2228)
Urban-rural classification (Small, accessible towns) 0.3878 (0.2358) 0.5496 (0.3403)
Urban-rural classification (Small, remote towns) 0.0201 (0.4044) 0.5269 (0.4535)
Urban-rural classification (Accessible rural) 0.3678 (0.2620) 0.4463 (0.2483)
Urban-rural classification (Remote rural) 0.6765b (0.2400) 0.9063b (0.2841)
Household size 0.0601 (0.0931) -0.0230 (0.0907)
Mother’s age at first child’s birth (<20 years old) 0.4231 (0.2712) 0.2608 (0.2695)
Mother’s age at first child’s birth (≥ 30 years old) 0.0769 (0.2582) 0.2485 (0.2830)
Respondent’s alcoholic drinks (Every day) 0.1338 (0.6117) 2.5442a (0.6300)
Respondent’s alcoholic drinks (4 - 6 times a week) 0.3451 (0.4442) 0.7871 (0.4572)
Respondent’s alcoholic drinks (2 - 3 times a week) 0.4216 (0.4587) 0.9630c (0.4397)
Respondent’s alcoholic drinks (Once a week) 0.4228 (0.4603) 0.3681 (0.4210)
Respondent’s alcoholic drinks (2 - 3 times a month) 0.6421 (0.4653) 0.9546b (0.4241)
Respondent’s alcoholic drinks (Once a month or less) 0.5578 (0.5430) 0.5538 (0.6114)
Respondent’s alcoholic drinks (Not in the last year) 0.1097 (0.5024) 1.4186 (0.4908)
Respondent’s current health (Very good) 0.0090 (0.1338) 0.1473 (0.1431)
Respondent’s current health (Good) 0.0999 (0.1562) 0.5085 (0.2776)
Respondent’s current health (Fair, Poor) 0.3452 (0.2625) 0.5541 (0.3211)
Smoking cigarettes while pregnant (Yes) -0.0117 (0.2036) 0.0755 (0.3056)
Drinking alcohol while pregnant (≥ 3 - 4 times a week) 2.6610a (0.6045) 8.8987a (0.5973)
Drinking alcohol while pregnant (1 - 2 times a week) 0.8922 (0.6103) 0.5750 (0.5746)
Drinking alcohol while pregnant (2 - 3 times a month) 0.5578 (0.5157) 0.4190 (0.4525)
Drinking alcohol while pregnant (<once a month) 0.2469 (0.5141) 0.1961 (0.4682)
Respondent’s health problem(s) in a year (Yes) 0.0028 (0.1460) 0.2172 (0.2615)
Respondent’s current job (No) -0.1942 (0.3191) 0.4275 (0.3904)
Deprivation quintile (2) 0.3622c (0.1537) 0.5553c (0.2320)
Deprivation quintile (3) 0.3015c (0.1485) 0.5256c (0.2423)
Deprivation quintile (4) 0.6619b (0.2195) 0.9131a (0.2323)
Deprivation quintile (5) 0.3926 (0.2501) 0.7185c (0.3430)
Equivalised income 0.5379a (0.0779) 0.1776 (0.1269)
Linear basis term of Age (in year) -73.6778 (73.8015) -77.2178 (78.0153)

Random effects
σ̂0 (SD of intercepts Age in year) 2.3570 1.8232
σ̂1 (SD of slopes of the Age in year) 0.7299 0.5840
ρ̂01 (Correlation of intercepts and slopes) -0.9657 -0.9505

a p < 0.001, b p < 0.005, c p < 0.05
† The reference categories are given in Tables 2.9 to 2.11.
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Table D.2: Estimates from the initial AQMM with cubic P-splines for (centred) WAZ
in children aged 4 - 14 years form the GUS dataset (standard errors in brackets)†

τ = 0.10 τ = 0.90
Fixed effects
(Intercept) -0.3973 (0.2720) -0.0355 (0.2860)
Sex (Male) 0.0695 (0.0387) 0.0735 (0.0415)
Low birth weight (Yes) -0.5640a (0.0994) -0.5203a (0.1000)
Ethnicity of a child (White) -0.2383 (0.1480) -0.0817 (0.1800)
Child’s health in general (Good) 0.0102 (0.0190) 0.0091 (0.0207)
Child’s health in general (Fair, Bad, Very Bad) 0.0177 (0.0638) 0.0256 (0.0476)
Number of accidents or injuries of child 0.0033 (0.0067) -0.0006 (0.0097)
Child’s birth order 0.0114 (0.0222) 0.0050 (0.0201)
Mother’s marital status (Single) 0.0089 (0.0217) -0.0058 (0.0248)
Mother’s marital status (Other) 0.1016a (0.0290) 0.0777c (0.0364)
Urban-rural classification (Other urban) 0.0289 (0.0430) 0.0283 (0.0372)
Urban-rural classification (Small, accessible towns) 0.0756 (0.0415) 0.0317 (0.0508)
Urban-rural classification (Small, remote towns) 0.1057 (0.0891) 0.0323 (0.0860)
Urban-rural classification (Accessible rural) 0.0921 (0.0538) 0.0642 (0.0483)
Urban-rural classification (Remote rural) 0.1385 (0.0713) 0.0701 (0.0659)
Household size -0.0042 (0.0165) -0.0117 (0.0156)
Mother’s age at first child’s birth (<20 years old) 0.0905 (0.0688) 0.0862 (0.0784)
Mother’s age at first child’s birth (≥ 30 years old) -0.0049 (0.0732) 0.0810 (0.0707)
Respondent’s alcoholic drinks (Every day) 0.0592 (0.1774) -0.0175 (0.1740)
Respondent’s alcoholic drinks (4 - 6 times a week) 0.0869 (0.1517) 0.1265 (0.1516)
Respondent’s alcoholic drinks (2 - 3 times a week) 0.0959 (0.1485) 0.1602 (0.1477)
Respondent’s alcoholic drinks (Once a week) 0.1078 (0.1504) 0.1406 (0.1485)
Respondent’s alcoholic drinks (2 - 3 times a month) 0.1479 (0.1536) 0.1819 (0.1540)
Respondent’s alcoholic drinks (Once a month or less) 0.1082 (0.1818) 0.1798 (0.1667)
Respondent’s alcoholic drinks (Not in the last year) 0.3505c (0.1724) 0.3782c (0.1705)
Respondent’s current health (Very good) 0.0321 (0.0200) 0.0946a (0.0165)
Respondent’s current health (Good) 0.0535c (0.0247) 0.1154a (0.0216)
Respondent’s current health (Fair, Poor) 0.0816c (0.0374) 0.1370b (0.0414)
Smoking cigarettes while pregnant (Yes) 0.1464c (0.0561) 0.1529c (0.0615)
Drinking alcohol while pregnant (≥ 3 - 4 times a week) 0.0832 (0.2299) 0.3270 (0.2260)
Drinking alcohol while pregnant (1 - 2 times a week) 0.1812 (0.2003) 0.0872 (0.2080)
Drinking alcohol while pregnant (2 - 3 times a month) 0.0499 (0.2104) -0.0413 (0.2046)
Drinking alcohol while pregnant (<once a month) 0.0128 (0.2128) -0.0420 (0.2172)
Respondent’s health problem(s) in a year (Yes) 0.0016 (0.0297) 0.0173 (0.0410)
Respondent’s current job (No) 0.0603 (0.0567) 0.0559 (0.0461)
Deprivation quintile (2) 0.0780b (0.0289) 0.1002a (0.0225)
Deprivation quintile (3) 0.0980b (0.0359) 0.1013b (0.0303)
Deprivation quintile (4) 0.2025a (0.0442) 0.1876a (0.0408)
Deprivation quintile (5) 0.1452b (0.0533) 0.1327c (0.0520)
Equivalised income 0.0638a (0.0143) 0.0296b (0.0106)
Linear basis term of Age (in year) -0.0582 (0.2014) -0.2817 (0.2752)

Random effects
σ̂0 (SD of intercepts Age in year) 0.2421 0.2290
σ̂1 (SD of slopes of the Age in year) 0.0158 0.0155
ρ̂01 (Correlation of intercepts and slopes) -0.2193 -0.3401

a p < 0.001, b p < 0.005, c p < 0.05
† The reference categories are given in Tables 2.9 to 2.11.
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Table D.3: Estimates from the initial AQMM with P-splines for (centred) raw height
growth measurement in children aged 4 - 14 years from the GUS dataset (standard
errors in brackets)†

τ = 0.10 τ = 0.90
Fixed effects
(Intercept) -1.6005 (1.4547) -0.0701 (1.6519)
Sex (Male) 0.6641a (0.1887) 1.1732a (0.1882)
Low birth weight (Yes) -2.1866a (0.4718) -1.3232b (0.4346)
Ethnicity of a child (White) -1.8065a (0.5023) -0.4995 (1.1266)
Child’s health in general (Good) -0.1595 (0.0903) 0.1260 (0.1623)
Child’s health in general (Fair, Bad, Very Bad) -0.6563 (0.3522) 1.1967b (0.3773)
Number of accidents or injuries of child 0.0156 (0.0364) 0.0825 (0.0423)
Child’s birth order -0.2347c (0.1071) -0.2582c (0.1050)
Mother’s marital status (Single) -0.0071 (0.1523) 0.1033 (0.0879)
Mother’s marital status (Other) 0.4886 (0.2497) 0.5001c (0.1877)
Urban-rural classification (Other urban) 0.1092 (0.2177) -0.0368 (0.2487)
Urban-rural classification (Small, accessible towns) 0.0455 (0.4200) -0.0853 (0.4516)
Urban-rural classification (Small, remote towns) 0.7555 (0.4730) 0.9896c (0.4328)
Urban-rural classification (Accessible rural) -0.1790 (0.2651) -0.0611 (0.2834)
Urban-rural classification (Remote rural) 0.3167 (0.3019) 0.0124 (0.2822)
Household size 0.2432b (0.0892) -0.0705 (0.0842)
Mother’s age at first child’s birth (<20 years old) 0.9058c (0.3886) 1.2333a (0.3483)
Mother’s age at first child’s birth (≥ 30 years old) -0.1122 (0.3858) 0.1576 (0.4002)
Respondent’s alcoholic drinks (Every day) 1.8615 (0.9351) 2.5695b (0.9222)
Respondent’s alcoholic drinks (4 - 6 times a week) 0.9724 (0.8821) 1.2598 (0.9126)
Respondent’s alcoholic drinks (2 - 3 times a week) 0.7774 (0.9409) 0.8533 (0.9559)
Respondent’s alcoholic drinks (Once a week) 1.0236 (0.9279) 0.8180 (0.9723)
Respondent’s alcoholic drinks (2 - 3 times a month) 1.0411 (0.9525) 0.9474 (0.9630)
Respondent’s alcoholic drinks (Once a month or less) 1.2501 (1.0733) 0.8176 (0.9609)
Respondent’s alcoholic drinks (Not in the last year) -0.2073 (0.9728) 1.3810 (0.9751)
Respondent’s current health (Very good) 0.1140 (0.1542) 0.1742 (0.1474)
Respondent’s current health (Good) 0.3205 (0.1634) 0.1849 (0.1554)
Respondent’s current health (Fair, Poor) 0.2025 (0.2175) 0.1380 (0.1902)
Smoking cigarettes while pregnant (Yes) -0.5189c (0.2409) -0.5287 (0.3097)
Drinking alcohol while pregnant (≥ 3 - 4 times a week) 2.2742 (1.1685) 13.6933a (1.1170)
Drinking alcohol while pregnant (1 - 2 times a week) 1.1275 (1.0104) 1.5553 (1.0854)
Drinking alcohol while pregnant (2 - 3 times a month) 0.3728 (1.0028) 0.4252 (1.0230)
Drinking alcohol while pregnant (<once a month) 0.1081 (1.0135) 0.2434 (1.0309)
Respondent’s health problem(s) in a year (Yes) -0.0267 (0.1374) 0.3700b (0.1178)
Respondent’s current job (No) 0.3846 (0.3192) 0.7009c (0.3036)
Deprivation quintile (2) 0.8082a (0.1333) 0.2422 (0.1825)
Deprivation quintile (3) 0.2347 (0.1777) 0.3256 (0.2714)
Deprivation quintile (4) 0.4816c (0.2274) 0.6295b (0.1904)
Deprivation quintile (5) 0.0740 (0.2723) 0.3199 (0.2411)
Equivalised income 0.2687a (0.0644) 0.1760b (0.0657)
Linear basis term of Age (in year) -90.3927 (83.8725) -92.0816 (84.9448)

Random effects
σ̂0 (SD of intercepts Age in year) 1.8536 1.7352
σ̂1 (SD of slopes of the Age in year) 0.2908 0.2820
ρ̂01 (Correlation of intercepts and slopes) 0.2371 0.3611

a p < 0.001, b p < 0.005, c p < 0.05
† The reference categories are given in Tables 2.9 to 2.11.
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Table D.4: Estimates from the initial AQMM with P-splines for (centred) HAZ in
children aged 4 - 14 years from the GUS dataset (standard errors in brackets)†

τ = 0.10 τ = 0.90
Fixed effects
(Intercept) -0.3705 (0.3349) -0.0095 (0.3635)
Sex (Male) 0.0394 (0.0398) 0.0528 (0.0401)
Low birth weight (Yes) -0.3873a (0.1018) -0.3561b (0.1227)
Ethnicity of a child (White) -0.4522b (0.1327) -0.2133 (0.1458)
Child’s health in general (Good) 0.0200 (0.0202) 0.0253 (0.0218)
Child’s health in general (Fair, Bad, Very Bad) 0.1629b (0.0544) 0.0026 (0.0554)
Number of accidents or injuries of child 0.0057 (0.0063) 0.0165 (0.0091)
Child’s birth order -0.0360 (0.0205) -0.0438 (0.0219)
Mother’s marital status (Single) -0.0002 (0.0204) 0.0323 (0.0218)
Mother’s marital status (Other) 0.1222b (0.0357) 0.0878c (0.0366)
Urban-rural classification (Other urban) -0.0558 (0.0537) -0.0465 (0.0551)
Urban-rural classification (Small, accessible towns) 0.0213 (0.0998) -0.0220 (0.0992)
Urban-rural classification (Small, remote towns) 0.1934c (0.0817) -0.0417 (0.0854)
Urban-rural classification (Accessible rural) -0.0026 (0.0645) -0.0453 (0.0649)
Urban-rural classification (Remote rural) 0.0841 (0.0578) -0.0494 (0.0697)
Household size 0.0342c (0.0150) 0.0167 (0.0143)
Mother’s age at first child’s birth (<20 years old) 0.2299b (0.0746) 0.1918c (0.0788)
Mother’s age at first child’s birth (≥ 30 years old) 0.0361 (0.0830) 0.0858 (0.0852)
Respondent’s alcoholic drinks (Every day) 0.4011 (0.2185) 0.2770 (0.2189)
Respondent’s alcoholic drinks (4 - 6 times a week) 0.3604 (0.1993) 0.3771 (0.2013)
Respondent’s alcoholic drinks (2 - 3 times a week) 0.3169 (0.2148) 0.3922 (0.2184)
Respondent’s alcoholic drinks (Once a week) 0.2929 (0.2132) 0.3415 (0.2171)
Respondent’s alcoholic drinks (2 - 3 times a month) 0.3164 (0.2170) 0.2986 (0.2187)
Respondent’s alcoholic drinks (Once a month or less) 0.3140 (0.2192) 0.3527 (0.2262)
Respondent’s alcoholic drinks (Not in the last year) 0.4117 (0.2196) 0.4199 (0.2271)
Respondent’s current health (Very good) 0.0665c (0.0304) 0.0739b (0.0264)
Respondent’s current health (Good) 0.0594 (0.0316) 0.0856b (0.0310)
Respondent’s current health (Fair, Poor) 0.0884 (0.0460) 0.1170c (0.0443)
Smoking cigarettes while pregnant (Yes) 0.0096 (0.0567) 0.0029 (0.0686)
Drinking alcohol while pregnant (≥ 3 - 4 times a week) 0.1485 (0.2677) -0.0248 (0.2592)
Drinking alcohol while pregnant (1 - 2 times a week) 0.3029 (0.2361) 0.0427 (0.2426)
Drinking alcohol while pregnant (2 - 3 times a month) 0.0822 (0.2299) -0.0155 (0.2390)
Drinking alcohol while pregnant (<once a month) 0.0403 (0.2411) -0.0521 (0.2394)
Respondent’s health problem(s) in a year (Yes) 0.0427 (0.0316) 0.0616 (0.0386)
Respondent’s current job (No) 0.1758a (0.0472) -0.0358 (0.0793)
Deprivation quintile (2) 0.0450 (0.0291) 0.1092a (0.0295)
Deprivation quintile (3) 0.0594 (0.0381) 0.1249b (0.0403)
Deprivation quintile (4) 0.1666a (0.0432) 0.1519a (0.0400)
Deprivation quintile (5) 0.0716 (0.0630) 0.1126 (0.0627)
Equivalised income 0.0773a (0.0120) 0.0349c (0.0148)
Linear basis term of Age (in year) -0.5654 (0.7325) -0.8248 (0.7906)

Random effects
σ̂0 (SD of intercepts Age in year) 0.2961 0.2544
σ̂1 (SD of slopes of the Age in year) 0.0125 0.0111
ρ̂01 (Correlation of intercepts and slopes) -0.0024 -0.2784

a p < 0.001, b p < 0.005, c p < 0.05
† The reference categories are given in Tables 2.9 to 2.11.
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D.3 Convergence diagnostic for basis functions of age

In this section, the trace plots of parameter values sampled across iterations of the MCMC
algorithm (Gibbs sampler) for each basis function of age from the BSGSSMQR approach
are presented. The corresponding figures and tables are listed in the table below.

Table/Figure Physical growth measurement Quantile
Table D.5 Centred raw weight 0.10
Figure D.7 Centred raw weight 0.10
Table D.6 Centred raw weight 0.90
Figure D.8 Centred raw weight 0.90
Table D.7 Centred WAZ 0.10
Figure D.9 Centred WAZ 0.10
Table D.8 Centred WAZ 0.90
Figure D.10 Centred WAZ 0.90

Table D.5: Summary of the Gelman-Rubin diagnostic (R̂GR) and the effective sample size
(nedf ) for the basis functions of age in the 0.10th quantile model of centred raw weight

Basis functions R̂GR nESS Basis functions R̂GR nESS

S(Age1) 1.01 1741.96 S(Age13) 1.00 8254.70
S(Age2) 1.02 1767.76 S(Age14) 1.00 4901.42
S(Age3) 1.02 1601.01 S(Age15) 1.00 7452.05
S(Age4) 1.01 1941.03 S(Age16) 1.00 2406.93
S(Age5) 1.00 14994.25 S(Age17) 1.00 7701.98
S(Age6) 1.01 2361.61 S(Age18) 1.00 9210.66
S(Age7) 1.00 6414.97 S(Age19) 1.00 4713.92
S(Age8) 1.00 4135.52 S(Age20) 1.00 6766.25
S(Age9) 1.00 4777.40 S(Age21) 1.00 19606.34
S(Age10) 1.00 2868.32 S(Age22) 1.00 7782.71
S(Age11) 1.00 17641.05 S(Age23) 1.00 3665.70
S(Age12) 1.01 3635.28
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Figure D.7: Trace plots of MCMC samples for the basis function of age in the 0.10th
quantile model for the centred raw weight
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Figure D.7: Trace plots of MCMC samples for the basis functions of age in the 0.10th
quantile model for the centred raw weight
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Figure D.7: Trace plots of MCMC samples for the basis functions of age in the 0.10th
quantile model for the centred raw weight
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Table D.6: Summary of the Gelman-Rubin diagnostic (R̂GR) and the effective sample size
(nESS) for the basis functions of age in the 0.90th quantile model of centred raw weight

Basis functions R̂GR nESS Basis functions R̂GR nESS

S(Age1) 1.00 1816.57 S(Age13) 1.00 7088.39
S(Age2) 1.00 1811.73 S(Age14) 1.00 4566.57
S(Age3) 1.00 2097.07 S(Age15) 1.00 7185.10
S(Age4) 1.01 2029.34 S(Age16) 1.00 2749.09
S(Age5) 1.00 11116.86 S(Age17) 1.00 8593.54
S(Age6) 1.00 2421.07 S(Age18) 1.00 10800.54
S(Age7) 1.00 6099.08 S(Age19) 1.00 4616.71
S(Age8) 1.00 4006.02 S(Age20) 1.00 9027.55
S(Age9) 1.00 4949.80 S(Age21) 1.00 19146.58
S(Age10) 1.00 2873.13 S(Age22) 1.00 7995.44
S(Age11) 1.00 16660.90 S(Age23) 1.00 3785.37
S(Age12) 1.00 3639.22
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Figure D.8: Trace plots of MCMC samples for the basis functions of age in the 0.90th
quantile model for the centred raw weight
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Figure D.8: Trace plots of MCMC samples for the basis functions of age in the 0.90th
quantile model for the centred raw weight
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Figure D.8: Trace plots of MCMC samples for the basis functions of age in the 0.90th
quantile model for the centred raw weight
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Table D.7: Summary of the Gelman-Rubin diagnostic (R̂GR) and the effective sample size
(nESS) for the basis functions of age in the 0.10th quantile model of centred WAZ

Basis functions R̂GR nESS Basis functions R̂GR nESS

S(Age1) 1.00 5428.26 S(Age13) 1.00 9221.06
S(Age2) 1.00 7640.17 S(Age14) 1.00 9864.20
S(Age3) 1.00 8155.14 S(Age15) 1.00 15558.88
S(Age4) 1.00 6290.41 S(Age16) 1.01 16913.26
S(Age5) 1.00 12681.58 S(Age17) 1.00 12289.54
S(Age6) 1.00 5180.32 S(Age18) 1.00 13102.25
S(Age7) 1.00 8437.51 S(Age19) 1.00 12971.56
S(Age8) 1.00 8658.72 S(Age20) 1.00 13992.16
S(Age9) 1.00 14997.07 S(Age21) 1.00 15680.10
S(Age10) 1.00 17016.42 S(Age22) 1.00 19253.56
S(Age11) 1.00 12779.09 S(Age23) 1.00 16838.39
S(Age12) 1.00 6930.02
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Figure D.9: Trace plots of MCMC samples for the basis functions of age in the 0.10th
quantile model for the centred WAZ
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Figure D.9: Trace plots of MCMC samples for the basis functions of age in the 0.10th
quantile model for the centred WAZ
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Figure D.9: Trace plots of MCMC samples for the basis functions of age in the 0.10th
quantile model for the centred WAZ
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Table D.8: Summary of the Gelman-Rubin diagnostic (R̂GR) and the effective sample size
(nESS) for the basis functions of age in the 0.90th quantile model of centred WAZ

Basis functions R̂GR nESS Basis functions R̂GR nESS

S(Age1) 1.00 7842.93 S(Age13) 1.00 13798.07
S(Age2) 1.00 6948.66 S(Age14) 1.00 14982.34
S(Age3) 1.00 6216.75 S(Age15) 1.00 16131.35
S(Age4) 1.00 6674.05 S(Age16) 1.00 16132.59
S(Age5) 1.00 11888.85 S(Age17) 1.00 18548.21
S(Age6) 1.00 6219.62 S(Age18) 1.01 16245.99
S(Age7) 1.00 8825.37 S(Age19) 1.00 14808.61
S(Age8) 1.00 10172.28 S(Age20) 1.00 15328.17
S(Age9) 1.00 15374.77 S(Age21) 1.00 15646.25
S(Age10) 1.00 20404.15 S(Age22) 1.00 15548.94
S(Age11) 1.00 18723.43 S(Age23) 1.00 16108.53
S(Age12) 1.00 13568.80
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Figure D.10: Trace plots of MCMC samples for the basis functions of age in the 0.90th
quantile model for the centred WAZ
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Figure D.10: Trace plots of MCMC samples for the basis functions of age in the 0.90th
quantile model for the centred WAZ
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Figure D.10: Trace plots of MCMC samples for the basis functions of age in the 0.90th
quantile model for the centred WAZ
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