
 
 
 
 
 
 
 
 

 

Daryanavard, Sama (2024) Real-time predictive artificial intelligence: deep 

reinforcement learning for closed-loop control systems and open-loop signal 

processing. PhD thesis. 

 

 

https://theses.gla.ac.uk/84692/  

 

 

 

Copyright and moral rights for this work are retained by the author  

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge  

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author  

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author  

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 

 
 
 
 

 
 
 
 
 
 
 

Enlighten: Theses  

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 
 

https://theses.gla.ac.uk/84692/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


Real-Time Predictive Artificial Intelligence:

Deep Reinforcement Learning for Closed-Loop

Control Systems & Open-Loop Signal Processing

Sama Daryanavard

Submitted in fulfilment of the requirements for the

Degree of Doctor of Philosophy

School of Engineering

College of Science and Engineering

University of Glasgow

July 25, 2024



2



Abstract

Reactive mechanisms, such as reflexes, respond to disturbances only after they have oc-

curred. In contrast, learning entities operate on principles of anticipation and prediction,

enabling them to preemptively counteract potential disturbances. This research intro-

duces a framework that integrates learning capabilities into traditional reflex systems,

creating a comprehensive closed-loop platform tailored for reinforcement learning, partic-

ularly in robotics. Central to our approach is the use of backpropagation through deep

neural networks. Although inherently an open-loop algorithm, we demonstrate through

mathematical derivation that minimising the reflex error is equivalent to minimising the

unknown open-loop error. We illustrate how the reflex error can be utilised to train the

system.

Our innovative method involves applying backpropagation within closed-loop control

systems, utilising z-transformation and intricate mathematical derivations. This approach

offers significant advantages over existing algorithms. It functions as an online algorithm

that learns in real-time, eliminating the need for pre-training or the use of physics engines.

Additionally, it is particularly well-suited to continuous state-space applications, such as

robotics, where defining all discrete states is non-trivial or impossible. One of the most

striking advantages is the speed of convergence, which approximates one-shot learning due

to the availability of the error signal from the reflex at every time-step for training the

network, unlike scenarios where the reward or punishment signal is sparse. This makes the

developed learning algorithm very fast compared to conventional Reinforcement Learning

approaches.

This research culminates in the development of four distinct algorithms: CLDL, SAR,

PAM, and Echo learning, each characterised by unique attributes and intricacies. These

algorithms are inspired by biological processes and the functioning of the human brain.

We rigorously tested these algorithms on a line-following robot, conducting experiments

in both real-world scenarios and simulated environments to ensure reproducibility. The

outcomes demonstrate successful path navigation by the robot without relying on its

inherent reflex mechanism.

Furthermore, we present evidence that our platform can be effectively adapted for

unsupervised open-loop systems with minimal adjustments. We show how EMG noise is
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removed from EEG signals without any training. This study not only proposes a novel

approach to integrating learning into robotic reflex systems but also broadens the potential

applications of such algorithms in various automated processes.

This work makes significant contributions to the field of reinforcement learning by pro-

viding an open-source C++ logic library containing the algorithms for all aforementioned

paradigms. Additionally, it includes two deployment libraries that demonstrate how to

implement these algorithms on both simulated and real-world robots, as well as another

library for signal processing, such as noise cancellation.
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Teaser

It is another rainy day in Glasgow, and the temperature outside has dropped to around

3°C. Inside, the central heating system is working hard to warm up the flat. With a

continuous hum, it cycles on and off to maintain the indoor temperature at a cosy 19°C.

However, has the heating system learned how to maintain the set temperature? No.

On most mornings, the postman knocks on the door, and I typically open the door a few

seconds later, resulting in some loss of heat. The heating system does nothing to prevent

this. Instead, once the door has been opened and a drop in temperature has been detected,

it attempts to compensate for the already-lost heat. In reality, upon closer inspection, the

heating system never quite maintains the temperature at a consistent 19°C; it is more

of an illusion. It repeatedly falls just below or rises slightly above the set temperature,

perpetuating this cycle. This system is limited to the simplistic response pattern of:

“if too much, do less, and if too little, do more.”

This does not exemplify intelligence; it resembles more of a reactive mechanism, such

as a reflex that is always late. An intelligent system, on the other hand, would truly

maintain the temperature at a constant 19°C by executing precisely the right action at

the right time. Intelligent systems have a proactive working pattern of:

“do the right thing at the right time, so as to not be too much or too little.”

But what would it take for the heating system to truly learn? Section 2.2 answers this

question. This thesis is concerned with the study of such learning systems. This is the

realm of artificial intelligence (AI), and more specifically, reinforcement learning (RL).

xxxi
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Chapter 1

Preface

1.1 Objectives

In the Teaser, a question was posed: How can a heating system not only react but adap-

tively learn to maintain a cosy temperature of 19°C, even in the face of changes such as the

brief temperature drop caused by a postman’s visit? The concept of reactive systems was

introduced, highlighting that while these systems are efficient in their response to imme-

diate changes, they lack the capacity to learn from recurring events. This work proposes a

novel framework that integrates learning capabilities into such existing reactive systems.

Biological reflex mechanisms serve as prime examples of reactive systems, inspiring

the novel learning paradigm introduced here. Their role in organismal learning is the

cornerstone of this approach. In the engineering context of this work, however, a biological

reflex is represented by a uniquely designed feedback control loop. Consequently, the

incorporation of learning capabilities into the reflex is depicted by a tailored control loop,

supported by biological arguments1.

This project can be broadly segmented into two primary tasks:

1.1.1 Development of the Integrated Platform

The first task is to create a comprehensive platform that seamlessly integrates and in-

terlocks reflex mechanisms with learning processes. The aim is to facilitate collaborative

operations and signal exchanges between these components. A key aspect of this develop-

ment is the derivation of control systems, utilising z-transformation techniques to enhance

functionality and responsiveness.

1Thus, in this work, the terms “reflex” and “feedback control loop” are used interchangeably.

1



2 CHAPTER 1. PREFACE

1.1.2 Construction of the Learning Unit

The second task involves the creation of a learning unit as a critical component to be

embedded within the platform. This involves the establishment of a robust mathematical

and technical framework. The framework is designed to optimally position the learning

unit within the system, ensuring it functions effectively in concert with other elements of

the platform.

The deliberate separation between the platform and the learning units underscores the

adaptability and flexibility of the final product. This design decision allows for significant

versatility: the platform is engineered to be compatible with a wide array of learning

algorithms, as long as they meet the specified input-output criteria. This universal design

ensures that the platform can be utilised with different learning algorithms, enhancing its

utility and scope. As a result of this flexibility, the learning algorithm becomes highly

versatile and domain-agnostic, transcending the limitations of being confined to a single

use-case scenario. The structure of this system acts as a comprehensive guide or blueprint

for incorporating learning capabilities into existing reflex systems. This aspect is pivotal, as

it offers a standardised approach to enhancing various applications with advanced learning

functionalities. To ensure the effectiveness and reliability of this approach, there is a

strong focus on detailed and rigorous mathematical derivations. This foundational work

is essential to validate the algorithm’s effectiveness and robustness in diverse applications.

1.1.3 Application of the Algorithms

As a proof of concept, the developed algorithm is implemented on a line-following robot,

demonstrating its ability to learn and navigate a path without relying solely on reactive

actions. However, it is important to note that the applicability of this algorithm extends

far beyond this particular task. It can be effectively employed in any reactive system that

engages with its environment to maintain a desired state.

With this purpose in mind, the algorithm is transformed into a stand-alone and custom-

built C++ logic library designed for versatile applications (Daryanavard and Porr, 2020b).

Additionally, to further enhance the practical applicability of these algorithms, this library

was also developed as a CUDA logic library for implementation on GPUs, leveraging

parallel programming (Porr, 2021).

Additionally, two separate packages are developed for the deployment of the logic

library. Specifically, for the line-following task, a deployment package in simulation (Porr

and Daryanavard, 2020) and a deployment package on a physical robot (Daryanavard and

Porr, 2020c) are developed, serving as an illustrative example of how this library can be

effectively applied for the broader objective of predictive learning in various contexts.
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1.2 Thesis Outline

Figure 1.1: Timeline of projects in this work and organisation and order of its chapters.

The above objective was realised during the second year, marked by a publication that ver-

ified the novelty, validity, and acceptance of the algorithm. Subsequently, in the following

years, three additional algorithms were created, building upon the foundation established

by the initial one, driven by fresh research insights and innovative ideas. This thesis

comprises six chapters, each representing a substantial portion of the work as indepen-

dent projects. These chapters follow a predominantly chronological order, with a few

exceptions.

Figure 1.1 provides a visual representation of the timeline for each major project, il-

lustrating their progression from inception through development, experimentation, and,

where applicable, publication. In this figure, the dark grey segments denote the rele-

vant contributions made by the supervisor, while the white segments represent the work

undertaken as part of this research. The light grey portions signify the involvement of

undergraduate students in the projects. The arrows in Figure 1.1 depict the experimental

results and their relation to the comparative analysis of different algorithms.



4 CHAPTER 1. PREFACE

� Chapter 2 delves into the ICO learner and CLDL, offering comparative results be-

tween the two (a), as well as a comparison of CLDL learning to its own reflex (b).

Replicating input correlation (ICO) learner, initially introduced by the supervisor

in 2006 (Porr and Wörgötter, 2006), served as an ideal warm-up project for this

research.

This led to the creation of the CLDL algorithm, which constituted the primary

objective and focus of this work. Subsequent projects emerged as supplementary

outcomes of this effort. The development of the initial GUI interface was undertaken

by Bruno Manganelli and his team as part of their undergraduate project.

� Chapter 3 introduces an algorithm rooted in CLDL but inspired by neuroscience

principles. This chapter presents the results of the comparison between these two

algorithms (c).

� Chapter 4 presents the PaM algorithm, which extends the concepts from SaR with

additional features and functionalities. This chapter includes a comparison of PaM

to CLDL (d).

� Chapter 5 introduces the FCL algorithm (Porr and Miller, 2020). Although this was

developed by the supervisor, it is presented here due to its significance in relation to

other algorithms within this work. Additionally, this chapter features a comparison

between FCL and CLDL (e), as conducted by Innes Aitken.

� Chapter 6 presents the Echo learning algorithm, which draws inspiration from FCL

and CLDL. The chapter showcases the results of this algorithm (f) in comparison

to SaR and CLDL.

All the aforementioned algorithms are discussed within the context of closed-loop con-

trol, which will be extensively explored.

� Chapter 7 demonstrates how this platform can be adopted for open-loop applications,

such as signal processing. This adaptation led to the development of the DNF

algorithm, which was applied to EEG noise removal as a proof of concept. The setup

and execution of experiments for this project were carried out by Henry Cowan and

Lucia Munoz Bohollo as part of their undergraduate projects.

Finally, Chapter 8 provides a conclusion of this project.



Chapter 2

Closed-Loop Deep Learning (CLDL)

2.1 Introduction

In the teaser section, we introduced a heating system that operates reflexively. We posed

a pivotal question: how can this system evolve to reliably and precisely maintain a set

temperature? We promised to provide an answer. Essentially, the heating system must

discern a correlation between the postman’s arrival and the subsequent temperature drop.

Then, at the sight of the postman arriving, it must adjust the heat output with precision,

both in timing and intensity, to preemptively counteract the expected heat loss when the

door opens.

This project aims to design a methodology for integrating a predictive learning module

into an existing reflex-based system. In the following motivation section, we conceptualise

and develop such an adaptive learning system. We will review relevant literature and

historical developments of intelligent systems, situating our project within the broader

context of similar endeavours. Throughout the following section, we will persistently

revisit the heating system example to render our reasoning and arguments more concrete

and relatable.

5
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2.2 Motivation: Comprehensive Literature Exploration

2.2.1 Adaptive Learning in Nature

Learning and adaptation are omnipresent in nature, evident among humans, animals, and

even microscopic organisms. These entities exhibit an exceptional ability to learn from

their surroundings, adjusting adeptly to unexpected changes and anomalies. For example,

after experiencing a burn, we instinctively become cautious around hot surfaces and avoid

similar harmful situations. This behaviour prompts the question: how do living beings

navigate and adapt to their environments with such ease? More relevant to this work, how

can we design machines to emulate this kind of adaptive learning? The answer lies in our

aspiration to create machines capable of achieving human-like proficiency in tasks without

the need for explicit programming. This is the very essence of artificial intelligence (AI)

(Russell, 2010).

2.2.2 Artificial Intelligence (AI)

2.2.2.1 Simulating Learning & Adaptation

AI strives to simulate the extraordinary learning and adaptive capacities seen in nature,

aiming to equip machines with the ability to learn autonomously, adapt, and make de-

cisions similar to human cognition. For decades, researchers have faced the challenge of

capturing the essence of human-like learning within machines. In their pursuit of under-

standing and replicating this phenomenon, experts have sought inspiration from a plethora

of disciplines. Consequently, AI has evolved as a multidisciplinary domain, intertwining

elements of cognitive psychology, neuroscience, control theory, mathematics, statistics,

and more (Winston, 1984). As a result, this field has emerged to encompass many sub-

fields (Samoili et al., 2020). machine learning (ML) (Alpaydin, 2016), deep-learning (DL)

(Goodfellow et al., 2016; LeCun et al., 2015), natural language prosessing (NLP) (Grosz

et al., 1986), computer vision (Szeliski, 2022), robotics (Murphy, 2019), and expert sys-

tems (Turban, 1995) are a few examples of the breadth and depth of AI’s reach. Within

this vast landscape, this work, deeply rooted in the paradigm of trial and error, is pre-

dominantly anchored in reinforcement learning (RL), a prominent and influential subfield

of AI (Sutton and Barto, 2018; Wiering and Van Otterlo, 2012; Li, 2017).

2.2.2.2 History, Developments & Milestones

The history of AI is a tale of human ingenuity and perseverance, spanning several decades

of groundbreaking research and technological advancements. This began when a group

of pioneering researchers such as John McCarthy, Marvin Minsky, and others set out to
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create machines that could perform tasks traditionally done by humans (McCarthy, 1959;

Nilsson, 2009). They are often honoured as the fathers of AI (Andresen, 2002).

One of the earliest works in AI was the Turing Test, proposed by Alan Turing in

1950. It was designed to determine whether a machine could exhibit intelligent behaviour

equivalent to, or indistinguishable from, that of a human. It was a revolutionary idea that

captured the imagination of many, and set the stage for a new era of AI research (Turing,

2012).

In the 1960s, AI research shifted its focus towards symbolic reasoning and expert

systems. These systems used rules-based approaches to simulate human decision-making

and marked a major milestone in the field. However, this approach eventually gave way to

the development of machine learning algorithms, which could learn from data and improve

over time (Buchanan and Smith, 1988).

The greatest achievement in AI came in 1997, when IBM’s Deep Blue chess computer

defeated world champion Garry Kasparov (Clark, 1997; Campbell et al., 2002). It was

a historic moment that showcased the power of AI to out-perform even the best human

minds. From there, machine learning continued to power breakthroughs in areas such

as natural language processing (Mishra and Kumar, 2020) and computer vision, leading

to advances in applications like speech recognition, image classification, and autonomous

driving (Szeliski, 2022; Siciliano et al., 2008).

The journey to make machines think like humans has been paved with many notable

works and achievements. The development of neural networks, the creation of the first

autonomous vehicles, and the use of RL to teach machines to play games like Go are

a few examples (Sutton and Barto, 2018; Silver et al., 2016). Today, natural language

processing models like Google’s BERT and OpenAI’s GPT-3 are pushing the boundaries

of what machines can do (Kublik and Saboo, 2022; Brown et al., 2020; Lund and Wang,

2023).

2.2.2.3 Interdisciplinary Approaches in AI

When developing advanced learning algorithms, it has become increasingly evident that

interdisciplinary approaches, borrowing insights from fields as diverse as psychology and

robotics, hold the promise of breakthroughs (Dwivedi et al., 2021). Naturally, this work

also navigates through various subjects, weaving multiple threads of reasoning through

time. Specifically, explorations in the psychology of adaptive behaviour and the neuro-

physiological study of the brain and the nervous system provide valuable insights into how

organisms learn and adapt to their environments. From there, the realms of RL, con-

trol theory, and cybernetics offer technical frameworks and mathematical tools to design

machines that can simulate the remarkable learning observed in organisms. In essence,

we embark on a journey that spans both the depths of biological understanding and the
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heights of computational excellence. Furthermore, we employ a robotic task to serve as a

platform where theoretical models meet tangible actions in real-time.

Figure 2.1 presents a map of the aforementioned fields. The x-axis positions each

field on a spectrum with biological fields on the left and engineering fields on the right,

while the y-axis represents the spectrum from open-loop to closed-loop systems. Artificial

intelligence is depicted at the centre as an overarching umbrella spanning the entire y-axis,

though it does not extend to the biologically realistic end of the x-axis. Other fields are

appropriately positioned on this map, with arrows indicating their flexibility and blocked

ends showing their boundaries. The various algorithms, which will be introduced in the

upcoming chapters, are placed around the edges of this map where they respectively sit.
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Psychology

Motor Control

Neuroscience
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Deep Learning
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FCL ICO, CLDL

DNF

SaR, PaM, Echo

Reinforcement Learning

Figure 2.1: A comprehensive map detailing the spectrum of fields discussed in the
literature review. On the x-axis, fields are positioned from biological (left) to engineering

(right). The y-axis represents the spectrum from open-loop to closed-loop systems.

2.2.3 Concept of Disturbances

Returning to the heating system analogy, before we explore how a learning module can

be designed and added to the reflex, a fundamental question to consider is: how can we
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differentiate a learning system from a reflexive one? To put it simply, would we know it,

if we were faced with an intelligent system?

Imagine a steady state scenario where external conditions remain unchanged, no post-

man arrives, and no doors or windows are opened. This allows the temperature to stay at

a steady 19◦C. In this static scenario, it is inconsequential whether the heating system is

a basic reflex or an intelligent one; it simply does not need to act. In other words, in the

absence of the postman, or any other disturbances, a learning heating system and a basic

one are indistinguishable.

The concept of disturbances, as they relate to control systems, was first introduced by

James Watt when he developed a feedback mechanism for controlling the speed of steam

engines (Ghosh and Ghosh, 2015). However, in the field of cybernetics, Ashby defined dis-

turbance as the phenomenon that causes a deviation from the desired state in an organism

(Ashby, 1956; Porr and Wörgötter, 2005). Disturbances play a central role in Ashby’s con-

ception of cybernetics. For a system to deal with disturbances from its environment and

maintain its stability, it must have a sufficient variety of responses. Learning, in this

context, can be seen as a mechanism by which a system increases its internal variety to

match or surpass the variety in disturbances it faces from its environment (Ashby, 1956).

The postman represents an unpredictable disruption that offsets the system from its

balance. The agent or organism’s primary goal is to preserve and uphold its desired state.

What differentiates a simple reflex from a learning system is the manner in which they

address the disturbances.

2.2.4 Reflexive Systems in Response to Disturbances

Let us consider this for the reflex. The desired state for reflex essentially equates to

a desired input; that being a temperature of 19◦C. This is because an agent can only

infer its state in the environment via its sensory inputs (Porr and Miller, 2020). Reflexes

are involuntary reactions to specific stimuli, allowing an organism to regain equilibrium

after it is disturbed. At any given moment of time, the reflex senses the temperature

of the room and compares this to its desired input temperature. The difference of the

two generates an error signal which indicates that the desired state is lost. The reflex

responds to this disturbance reactively after it has occurred. This inherent delay is the

fundamental characteristic of a reflex; it is always late (Porr and Wörgötter, 2002a). Von

Foerster termed this the “blind spot” of reflex (Porr and Wörgötter, 2005). The delay

between the occurrence of a stimulus and the system’s response can lead to unintended

consequences, as the system might be responding to outdated information. We will show

in this work how a learning module can overcome this challenge.

The concept of reflexes and desired state is fundamental to many disciplines, including

motor control and classical control theory. The study of motor control has deep roots,
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beginning in the 19th century when Paul Broca identified the brain’s motor cortex as

responsible for movement and speech (Gross, 2007). Later, Charles Sherrington explored

how sensory information affects motor actions, introducing the concept of reflex and the

term “synapse” (Swazey, 1968).

2.2.5 Reflex in Biology

Motor control’s genesis emerged from two distinct arenas. One centred on neurophysi-

ology, focusing on neural processes without considering the movement. In contrast, the

second sprouted from psychology, examining high-level skills without delving into neurol-

ogy. These threads intertwined in the 1970s, marking the birth of motor control (Schmidt

et al., 2018; Shadmehr et al., 2010). A significant influencer was Anatol Feldman who

presented the equilibrium point hypothesis (EPH), suggesting voluntary movements arise

from shifting the limb’s equilibrium position, not from direct commands for muscle forces

or joint torques (Feldman, 1986). This emphasises reflexes’ role in motor control. Accord-

ing to Feldman, the central nervous system (CNS) does not dictate muscle activations but

modulates muscle reflex sensitivities to achieve movements. This perspective reshapes our

understanding of motor learning, suggesting that practising refines equilibrium points and

reflex sensitivities.

2.2.6 Reflex in Control Theory

In classical control theory, a reflex can be likened to a fixed feedback controller which

measures system outcomes, contrasts them with desired outcomes, and makes necessary

adjustments (Phillips and Harbor, 1991). However, key differences lie in their focal points:

biological reflexes centre on the desired input (or state), whereas closed-loop controllers

are geared towards the desired output (Porr and Miller, 2020). In fact, organisms only

realise their outputs when sensory inputs provide feedback about them. The outputs

and desired actions are only evident from the standpoint of an external observer (Porr

and Wörgötter, 2005). This closed loop established between action and sensory inputs is

crucial. In 1987, R.A. Schmidt pioneered this interrelation between action and perception

(Schmidt, 1987, 2016). Prinz emphasised the significance of sensory inputs in what is

termed as “ideo-motor” actions. This concept refers to movements that are executed in

alignment with perceived movements, highlighting situations where actions appear to be

directly guided by perception (Prinz, 2016). Furthermore, traditional control requires that

the properties of the controlled system is known. In contrast, organisms, and the subject

of this work, neither possess nor rely on such information about the environment (Phillips

and Harbor, 2000). Instead, the learning module independently forms an understanding

of the environment and its properties. This renders control theory approaches unsuitable
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for explaining the learning in organisms. Nevertheless, the analytical framework provided

by control theory will guide the subsequent sections, where we aim to derive mathematical

representations for both the reflex and the learning entity.

2.2.7 Learning Systems in Response to Disturbances

Consider the heating system again, the postman’s arrival momentarily disrupts the tem-

perature, and the system’s reflex restores the balance, then stays dormant until another

disturbance takes place. While reflexes act post-event, a learning system proactively acts

in anticipation of these disturbing events.

Just like the reflex, the learning system also continually processes environmental inputs,

such as the temperature and a view of the street outside. However, a unique input to the

learner is the error signal generated by the reflex during disturbances. This distinguishes

between sensory input from the environment and the body itself. This concept was first

introduced by RA Schmidt (Schmidt et al., 2018).

Unlike the reflex, the learner does not aim for a desired state, instead, it strives to

consistently receive an error signal of zero. To achieve their respective goals, the reflex

employs a fixed and pre-programmed response, whilst the learner learns to fine-tune its

predictive actions (Schmidt et al., 2018).

2.2.8 Importance of Correlation in Learning

Initially, the learner has no skills but continuously observes its environment, retaining

a short memory of these observations. This short memory, facilitated by low pass FIR

filters (Proakis, 2007), becomes pivotal to the learning abilities of the learner which will be

discussed and derived in the following Section 2.4.3.3. When the first disruption occurs,

the inexperienced learner remains passive, allowing the disturbance to unsettle the reflex,

causing it to react and rectify. The generated error is noticed by the learner. Lacking a

predefined response, what does the learner do?

Confronted with the error, the learner consults its recent memory, identifying events

preceding the error. Perhaps it observed the postman approaching and a bird flying off

the tree. It notes a correlation between these events and the error. On receiving the next

error, it notes the postman again but perhaps no bird activity. Over time, it solidifies the

correlation between the postman and the error, dismissing other uncorrelated events.

2.2.9 Classical Conditioning

Observing correlations between events is prevalent in both human and animal behaviours.

The learning system described above bears some resemblance to classical conditioning, a

learning mechanism famously exemplified by Ivan Pavlov’s experiments with dogs (Pavlov,
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1932). In this study, a dog was trained to associate a bell’s ring with impending food.

While the dog initially salivated only at the sight or scent of food, after numerous instances

of hearing the bell before being fed, it began to salivate just at the bell’s sound. This

demonstrated how a previously neutral stimulus (the bell) could, through association

with an unconditioned stimulus (food), evoke a conditioned response — salivation. In

classical conditioning, however, the agent remains passive, lacking any direct interaction

with either one of the stimuli. This means, its actions do not influence subsequent events.

This represents an open-loop scenario, which does not adequately capture the learning

model we aim to put forward in this study.

2.2.10 Operant Conditioning

Unlike classical conditioning that centres on associating two stimuli, operant condition-

ing emphasises correlating behaviours with their ensuing consequences. In this learning

approach, the agent actively engages with its environment, responds to stimuli, and as-

sesses the outcomes of its actions. This dynamic interplay forms a closed-loop learning

framework; this is a fundamental aspect of RL. B.F. Skinner, a renowned American psy-

chologist, pioneered the concept of operant conditioning using the ‘Skinner Box’, a device

that rewarded rats for pressing a lever (Skinner, 1963). Through techniques like “shaping”,

the rats were trained to associate pressing the lever with receiving food.

2.2.11 Learning & Early Disturbance Response

Applying this to the heating analogy, it is, therefore, crucial for the learner to do more

than just observe correlations. The learner must act upon the initial stimuli, such as seeing

the postman’s arrival, to influence the subsequent stimulus, which is preventing the error

signal. To successfully accomplish this, the learner acts with foresight. For instance, it

might preemptively increase the temperature a few seconds after the postman rings the

bell. By doing so, it effectively counteracts any potential heat loss when the door opens.

In order for the learner to form anticipatory actions, it requires a broader range of

environmental inputs compared to the reflex. While the reflex only becomes aware once

the door has been opened, the learner possesses the capability to observe the external

environment and track unfolding events. This grants the learner a head start, allowing it

to detect disturbances before the reflex, thus providing an opportunity to act and fend off

the disturbance. In fact, the activation of the reflex serves as a temporal marker; events

that take place before reaching the reflex are deemed early, while those occurring after the

reflex are categorised as late (Porr and Wörgötter, 2005). Thus, the reflex action itself is

by definition always late. In this way, the learner has knowledge of earlier disturbances

which allows it to form predictive actions. This concept is mathematically formulated in
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Section 2.4 using z-transformation (Diniz et al., 2010).

At a high level, this framework describes how a predictive learning module can be

added to operate in conjunction with the reflex to proactively mitigate errors. A pressing

question that emerges now is: how does the learner internally craft these anticipatory

actions? It is the intricacies of the learner’s internal architecture and mechanisms that

empower it to undertake such adaptive learning.

Before delving into the intricacies of the learner’s inner workings, it is essential to

establish a comprehensive understanding of the learning platform. This platform outlines

the interaction between the agent, encompassing both its reflex and learning modules,

and the environment, including disturbances. It provides a blueprint for how inputs and

outputs of these components are connected. A pivotal feature of this platform is its closed-

loop learning system. While we have discussed closed-loop adaptive behaviour from a

psychological perspective, translating this into machine learning requires an analytical

framework. This is precisely what RL and control theory provide.

2.2.12 Markov Decision Problem

These fields both date back to 1950s when Richard Bellman pioneered the markov de-

cision problem (MDP) as a methodology for modelling decision-making scenarios char-

acterised by sequential actions and unpredictable outcomes. The “Markovian” property

refers to the idea that the future state of the environment depends only on the current

state and action, and not on prior states or actions (Bellman, 1957). This property sim-

plifies the decision-making process as the agent only needs to consider the current state to

determine the best action and not the history of states or actions. Bellman’s mathematical

framework laid the foundation for both RL and optimal control and subsequently became

a cornerstone concept in decision theory and the broader realm of AI (Bellman, 1966).

2.2.13 Optimal Control

Optimal control is a subfield of control theory, offering a mathematical framework to devise

control policies that optimise specific performance metrics of a system, such as minimising

costs or maximising efficiency (Kirk, 2004). Its foundations predate those of RL, tracing

back to the pioneering work by Euler and Lagrange in the 18th century on the calculus of

variations (Bliss, 1930). By the 1960s, the field had evolved further, with Lev Pontryagin

introducing ‘Pontryagin’s Maximum Principle’ (Kopp, 1962). This principle provided the

necessary conditions for achieving optimal control, marking a significant advancement in

the domain (Boltyanskii et al., 1960).

Bellman’s equation is a fundamental concept in RL which describes the recursive re-

lationship between the value of a state and the values of its successor states (Bellman,
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1966). This concept is analogous to the principle of optimality in dynamic programming,

a method in optimal control (Lewis and Vrabie, 2009). In a conventional feedback control

system, for example, there is a similar interplay between the controller (agent) and its

controlled entity (environment) (Wörgötter and Porr, 2005). The distinguishing factor

lies in their operational mechanisms. In control theory, the controller is predefined and

the dynamics and properties of the environment are fully or partially known. Conversely,

in RL, the agent learns how to function and does so in the backdrop of an unknown

environment.

2.2.14 Reinforcement Learning (RL)

The history of RL dates back to the early days of AI research, but it was not until the 1990s

that significant progress was made in the field (Sutton and Barto, 1998). This journey

can be divided into two main threads that eventually merged to form modern RL. The

first thread is related to learning by trial and error, which originated from the psychology

of animal learning, as explained above. This thread influenced early work in AI and led

to the revival of RL in the 1980s. The second thread focuses on optimal control and the

use of value functions and dynamic programming to solve the problem of optimal control.

The two threads remained largely independent, except for a third thread that involved

temporal-difference methods. In the late 1980s, these three threads converged, giving rise

to the field of RL as it is known today (Sutton and Barto, 2018).

Fundamentally, RL faces the question: what to do to achieve a specific goal? Drawing

from our prior example, this involves determining the timing and extent of temperature

adjustments when the postman is seen so as to prevent reflex errors when the door is

opened. In this example, there is no direct instruction dictating the exact actions to

undertake. Instead, the learner is intimately connected to its environment through its

sensorimotor pathways. Positioned within a given state in the environment, the agent

executes an action. This action affects the environment, leading the agent to a subsequent

state and it receives a form of reinforcement signal — reward or penalty. Recognising

this new state via sensory feedback, the agent deduces implications about its actions

and surrounding conditions, setting the stage for its next move. This cyclical interaction

describes a closed-loop system between the agent and the environment, embodying the

foundational framework of trial-and-error learning (Sutton and Barto, 2018).

2.2.15 Trial-and-Error Learning

Learning by trial-and-error, has been a major focus in the history of RL. This idea can be

traced back to Edward Thorndike’s ‘Law of Effect’, which states that actions followed by

satisfying outcomes are more likely to be repeated, while actions followed by discomfort
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are less likely to occur (Thorndike, 1927).

Early computational investigations of trial-and-error learning were conducted in the

1950s and 1960s. Researchers explored the use of analogue machines and neural networks

for RL tasks (McCulloch and Pitts, 1943). However, there was some confusion between

trial-and-error learning and supervised learning, leading to a lack of research in genuine

trial-and-error learning during this time and arguably today. There were a few exceptions

to this trend, such as Donald Michie’s development of RL systems for playing tic-tac-toe

and balancing a pole (Michie, 1963).

The learning approach discussed in this context resonates with reinforcement learn-

ing (RL) principles where agents learn from feedback in the form of success or failure

signals rather than predetermined training examples in supervised learning. Using the

heating analogy, learning-by-example method would necessitate instructing the agent on

all potential scenarios concerning the postman’s arrival. Each situation would come with

a precise labelled action for the agent to execute. For instance, the agent would be told,

should the postman approach the door while it’s raining, increase the temperature by

precisely 2◦C, and do so exactly 3 seconds after the doorbell rings. This approach quickly

becomes unfeasible due to the innumerable combinations of parameters. Some of these pa-

rameters might be unidentified, or they may be governed by complex, unpredictable rules.

Conversely, with the trial-and-error approach intrinsic to RL, the agent autonomously

decides on an action, such as raising the temperature by 1◦C. Subsequently, it receives a

feedback signal, which could be zero, small, or substantial, representing the accuracy of

its action. Over time, the agent adjusts its actions based on this feedback, striving for

optimal performance without needing predefined labelled examples (Sutton and Barto,

2018).

In supervised learning, there is a clear separation between training and performance.

The agent undergoes an extensive training period, learning from numerous scenarios and

their desired outcomes. Once trained, the agent then operates based on this accumulated

knowledge. Contrastingly, in this work, there is no distinct training and performance

phases. The learner begins with no task knowledge and progressively learns within each

trial, seamlessly integrating learning and performance to achieve its objective.

The revival of the trial-and-error practice in RL can be attributed to Harry Klopf, who

emphasised the importance of hedonic aspects and the drive to achieve desired outcomes in

adaptive behaviour. Klopf’s ideas highlighted the distinction between supervised learning

and RL (Klopf, 1986; Sutton and Barto, 2018).

In recent years, RL has led to breakthroughs in areas such as game playing (Mnih

et al., 2015; Silver et al., 2016, 2017), robotics (Lillicrap et al., 2015), and NLP (Mishra and

Kumar, 2020). Some of the key achievements in the field of RL include the development of

AlphaGo, a computer program that defeated a human world champion at the game of Go
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(Silver et al., 2016), and AlphaZero, a program that achieved superhuman performance

in multiple board games without any prior knowledge of the rules (Silver et al., 2017).

RL has also been applied to robotics, where agents have learned to perform tasks such as

grasping objects and navigating environments (Lillicrap et al., 2015).

2.2.16 Temporal Difference (TD) Learning

Temporal difference (TD) learning is a foundational concept within RL. In the 1980s,

Richard Sutton introduced TD learning, which has become a cornerstone technique in RL

(Sutton, 1988b; Sutton and Barto, 2018). This approach allows algorithms to learn from

each experience and adjust their behaviour accordingly by updating the expected reward

of an action based on the difference between the expected and actual reward received.

While TD learning has proven to be a powerful and flexible approach to RL, it is not

without its drawbacks. One major limitation is that TD learning relies on a fixed learning

rate, which can lead to slow convergence or instability in some situations. Additionally,

TD learning can suffer from overfitting and may not generalise well to new or unseen

environments. Despite these, TD learning remains a popular and widely used approach

in RL research (Mnih et al., 2015; Sutton and Barto, 2018), which has been refined and

extended in numerous works, including the Q-learning (Q-learning) (Watkins and Dayan,

1992), and the SARSA algorithm (Rummery and Niranjan, 1994).

2.2.17 Q-Learning

Q-learning is one of the most well-known and foundational algorithms in the RL domain.

Introduced by Peter Dayan (Watkins and Dayan, 1992) in the 1990s, Q-learning established

itself as one of the most widespread RL algorithms. At its core, it is a method for finding

optimal policies for MDPs by learning a Q-function that assigns a value to each state-

action pair. The Q-function represents the expected reward for taking a particular action

in a given state and following the optimal policy thereafter. This is a value-based method.

These methods estimate the value of different actions or states and use this information

to make decisions about which actions to take (Sutton and Barto, 2018).

Despite its success, Q-learning has some limitations. Namely, it requires complete

knowledge of the MDP, which is often not available in practice, and it can suffer from

overestimation of Q-values, which can lead to suboptimal policies (Sutton and Barto,

2018). One important limitation of Q-learning is that it assumes a discrete state space,

which restricts its applicability to problems with a finite number of states. In many real-

world problems, however, the state space may be continuous, making it impossible to

represent the state space using a discrete grid (Sutton and Barto, 2018).

Unlike Q-learning, our work employs an RL approach in a continuous state space which
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is more readily applicable to robotic applications. This allows our system to better handle

complex environments where there are infinite number of states, and state transitions occur

smoothly and continuously. This enables the agent to learn and adapt more effectively to

changing conditions in real-world scenarios.

While conventional RL approaches are designed for discrete state and action spaces

with discrete-time dynamics, optimal control offers solutions for continuous state and

action spaces and with continuous-time dynamics. The modern landscape of control theory

and RL research often blurs the boundaries between these fields, leading to more holistic

and powerful approaches to decision-making problems (Lewis et al., 2012; Lillicrap et al.,

2015), as is the case in this work.

However, continuous RL is also an emerging field that aims to bridge this gap (Gu et al.,

2016). To address this limitation, researchers have developed extensions of Q-learning that

can handle continuous state spaces. For example, the use of function approximation or

discretisation techniques can be used to approximate the Q-function in continuous state

spaces (Mnih et al., 2015). Other approaches, such as actor-critic methods and policy

gradient methods, are specifically designed to handle continuous state and action spaces

(Sutton and Barto, 2018).

In the context of RL and, more specifically, in actor-critic methods, ‘actor’ and ‘critic’

refer to two distinct components of the learning system that work together to optimise the

agent’s behaviour. These methods aim to combine the advantages of value-based learning

and policy-based learning.

The actor is responsible for determining the best action given a particular state, essen-

tially defining the policy. The critic, on the other hand, evaluates the action taken by the

actor by computing the value function of the state, effectively providing feedback on the

actor’s decisions. The actor uses this feedback to refine its policy. Thus, in this method,

while the actor is learning the optimal policy, the critic assists by evaluating the goodness

of the actions taken based on the expected rewards (Szepesvári, 2022).

The learning approach in this study also utilises a dual mechanism, enabling the learner

to refine its actions based on continuous feedback from the reflex error. What sets our

work apart from the actor-critic method, is the multifaceted role of the reflex error. Not

only does it offer feedback for the learner’s improvement, but it also actively intervenes to

re-establish the desired state.

Let us recap what has been explained about the platform so far. The platform con-

sists of a biologically-inspired reflex, conceptualised as a fixed feedback loop in control.

Disturbances are directed to the reflex’s input. The output of the reflex is guided by

the error it perceives which acts on the environment. Additionally, the platform inte-

grates a learning unit inspired by the psychology of adaptive behaviour. It receives early

disturbances as input. Its output comprises predictive actions which also act on the en-
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vironment. The learner is formulated as an outer closed loop which surrounds the inner

reflex. At this point, they remain decoupled except for the mutual influences they exert

on the environment. Crucially, to couple these loops and facilitate learning, the reflex’s

error is channelled to the learner as an input. Having provided a comprehensive outline

of the platform, we will now delve into the intricate inner mechanics of the learner.

2.2.18 Neuroscientific Foundations of Learning

At the beginning of this section, we explained the operational mechanics of a learning

module through the lens of the psychology of adaptive behaviour and the principles of

RL. However, the intricate internal mechanisms of such learners are derived from neu-

roscience (Uden and Guan, 2022). The multifaceted architecture and nuanced opera-

tions of the human brain and the entire nervous system have provided researchers with

a wealth of insights and inspirations for designing AI algorithms. These biological con-

cepts not only offer an understanding of cognition and neural communication but also

serve as invaluable blueprints, driving innovation and sophistication in the design of AI

algorithms. This synergy between the realms of neuroscience and AI paves the way for

more biologically-aligned and efficient learning systems, bridging the gap between nature’s

design and human-engineered intelligence.

Neuroscience is the study of the nervous system and its functions and has a rich

history that spans centuries. Early civilisations recognised the significance of the brain.

The Greek physician Hippocrates proposed that the brain was the seat of intelligence

and consciousness (Breitenfeld et al., 2014). The brain is the central organ of perception,

cognition, emotion, and action, and it operates through intricate electrochemical signalling

in a complex, dynamic, and adaptable network of neurons (Uden and Guan, 2022).

2.2.18.1 Regions of the Brain

The brain is organised into distinct regions, both structurally and functionally, with each

area dedicated to specific tasks. The Cerebral Cortex, the outermost layer of the brain,

plays a pivotal role in higher-order cognitive functions such as thinking, planning, and

language (Mountcastle, 1998). It is segmented into the frontal, parietal, temporal, and oc-

cipital lobes. Wilder Penfield made significant contributions to understanding the brain’s

layout by pioneering the mapping of the human cortex (Penfield and Rasmussen, 1950).

He achieved this by stimulating various brain areas in epilepsy patients during surgery.

Another remarkable revelation about the brain came from a 19th-century incident involv-

ing a railroad worker. After surviving an accident where a tamping iron pierced through

his brain, the man exhibited profound personality changes. This unexpected event shed

light on the crucial role that the frontal lobe plays in governing personality and behaviour
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(Damasio et al., 1994).

2.2.18.2 Neurons & Synapses

Neurons are the primary signalling units of the brain, organised into complex networks or

circuits. In the late 19th and early 20th century, scientists developed staining techniques

to visualise these neurons. While Golgi believed in the reticular theory, suggesting that

the nervous system was a single continuous network, Cajal’s observations supported the

neuron doctrine by revealing individual nerve cells (Glickstein, 2006). These nerve cells

communicate with one another through junctions known as synapses. Sir Charles Sher-

rington and Edgar Adrian further described the nature of the synapse and the transmission

of impulses between neurons (Swazey, 1968). Through these synapses, signals propagate

from one neuron to another, resulting in the “all-or-none” firing of the neurons (McCul-

loch and Pitts, 1943). This process gives rise to thoughts, memories, and all cognitive

processes. Information processing in the brain is a result of the collective activity of these

intricate networks.

2.2.18.3 Plasticity

Eric Kandel demonstrated that learning and memory involve changes at the synaptic level.

This is the concept of plasticity, meaning the structure and function of the brain can change

in response to experience, learning, or injury (Hawkins et al., 1993). Synaptic plasticity,

changes in the strength of connections between neurons, is considered a key mechanism

underlying learning and memory (Abbott and Nelson, 2000). The brain’s ability to change

and adapt in response to experiences, has been a key source of inspiration for AI and

machine learning algorithms (Lillicrap et al., 2020).

2.2.18.4 Hebbian Learning

One of the simplest of these algorithms is Hebbian learning. As mentioned above, one as-

pect of the learning paradigm explained in the heating example is the classical conditioning

where the learner observes a correlation between the postman’s arrival and the subsequent

error. Underlying this behavioural phenomena, there are changes happening in the brain

at the level of neural circuits. It is here that Hebbian learning can play a role. The ability

of synapses to strengthen or weaken over time based on activity is termed synaptic plastic-

ity. Donald Hebb is often credited for this concept which is captured by the famous phrase

“cells that fire together, wire together”, this is known as Hebb’s rule or Hebbian theory

(Hebb, 1949a). It describes the homosynaptic learning rules where changes in synaptic

strength occur at synapses that have recently experienced activity. This is in contrast to

heterosynaptic learning rules which involve changes in synapses which were not directly
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activated by recent presynaptic or postsynaptic activities (Kulvicius et al., 2010). This

helps distinguish between correlation-based learning and value-based learning, evaluative

and non-evaluative learning (Wörgötter and Porr, 2005).

While Hebbian learning can provide a mechanism for synaptic changes in associative

learning, classical conditioning at the behavioural level involves more complex processes,

and the entirety of classical conditioning cannot be reduced solely to Hebbian learning.

Furthermore, in this form of associative plasticity, the synaptic wiring can grow indefinitely

and become extremely strong. This is because, as a connection strengthens, it is more

likely to be further strengthened in the future due to its increased influence on post-

synaptic firing (Porr and Wörgötter, 2006; Zenke et al., 2017). To counteract this, various

normalisation mechanisms, such as synaptic scaling, are believed to be in place in the brain

to ensure that synaptic strengths remain within reasonable limits and maintain network

stability (Turrigiano, 2008). An extension of Hebbian learning, Oja’s rule introduces a

normalisation factor to the learning process, ensuring that the weights of the connections

do not grow indefinitely (Oja, 1997).

Spike-timing-dependent plasticity (STDP) is a more refined version of Hebbian learning

(Markram et al., 2011). Here, the change in synaptic weight is determined not only by

simultaneous activations but also by the precise timing of spikes. If a post-synaptic neuron

fires immediately after a pre-synaptic neuron, the synapse is strengthened; if the order is

reversed, the synapse is weakened (Saudargiene et al., 2005).

2.2.18.5 Neurotransmitters

Beside simultaneous activations of neurons and the timing of their spikes, neurotrans-

mitters also influence synaptic plasticity. These are fundamental chemical messengers

that facilitate the transfer of information within the nervous system. They are released

in synapses from one neuron and are received by receptors on another. Various chemi-

cal substances, including dopamine, serotonin, glutamate, and gamma-aminobutyric acid

(GABA), act as neurotransmitters (Webster, 2001). Their pivotal roles in signalling and

modulating brain activity have a profound influence on behaviour. Drawing inspiration

from the intricate workings of neurotransmitters, particularly the influence of dopamine

on synaptic plasticity in the brain, new algorithms have emerged. These algorithms utilise

a modulating signal to determine the adaptability of neuron’s weights. This modulating

signal, much like the reward signals in our brains, serves as an essential feedback mecha-

nism.
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2.2.19 Model-Based Learning

Up to this point, we emphasised our objective of introducing a learning module to supple-

ment an existing reflex mechanism. We have explored the learning operation from both

psychological and neuroscientific perspectives. We have explained how RL and optimal

control provide a framework for this learning. Although we have frequently referenced to

the learner and the learning process, a vital question remains: what exactly is the learner

learning? An internal model.

In the context of the heating system analogy, the system operates with foresight. By

leveraging this anticipatory awareness, it proactively adjusts its actions to ensure its pri-

mary objective — consistently maintaining an error-free equilibrium. The human brain’s

ability to predict and simulate the world around it has been a subject of fascination and

study across various disciplines. Central to this idea is the concept of ‘internal models’

(Imamizu et al., 2000). These are representations or simulations of the external envi-

ronment that the brain uses to guide perception, cognition, and action (Imamizu and

Kawato, 2009). The history and understanding of these models span several fields, from

neuroscience to control theory and artificial intelligence.

2.2.19.1 Internal Models

The seeds of the internal models concept can be traced back to the 19th century when

Hermann von Helmholtz proposed that the brain uses internal models to interpret sensory

data, effectively acting as an inference machine. Helmholtz suggested that our perception

of the world is a result of the brain’s best guess based on these internal representations

(von Helmholtz, 1925).

2.2.19.2 Internal Models in Neuroscience & Psychology

As our understanding of the brain deepened in the 20th century, the idea of internal

models evolved. One of the fields that is primarily concerned with this phenomena is

motor control. The field of motor control learning is concerned with how reflex and learnt

movements are controlled, specifically how the CNS is organised to coordinate and allow

for such movements (Schmidt et al., 2018).

Historically, the desired movement trajectory has been a primary focal point for many

researchers. However, Todorov argued for a broader view by suggesting that sensory

feedback should be integrated into our understanding. Instead of solely focusing on the

trajectory, taking sensory feedback into account can offer a more comprehensive under-

standing of how movements are controlled (Todorov, 2004).

Later, researchers started to think of movement control as an interactive communica-

tion between the organism and the environment, in the form of feedback loops, similar to
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control theory. The combining of the control and communication theory was later called

Cybernetics by Wiener (Wiener and von Neumann, 1949). Later, in the late 20th century,

researchers looked deeper into how different regions of the brain play a role in movement

control.

The cerebellum, responsible for motor control, as well as Basal Ganglia which is in-

volved in movement regulation and reward-based learning, became focal points for this

discussion (Larkum, 2013). Mitsuo Kawato, in the 1990s, built on earlier theories to

propose that the cerebellum operates as an adaptive controller, refining internal models

of the body and the environment (Tsukahara and Kawato, 1982). These models allow

for smoother, more coordinated movements. Kawato introduced the feedback error learn-

ing (FEL) technique when studying the cerebellum’s involvement in motor control (Tsuka-

hara and Kawato, 1982). Later he applied this technique to adaptive non-linear feedback

control (Kawato et al., 1987) which became a widely used technique.

MacKinnon in 2007 proposed that activities as routine as walking are not just reac-

tionary or reflexive. Instead, they can be seen as anticipatory adjustments, suggesting

that the brain always predicts the next state (MacKinnon et al., 2007).

In 2011, Wolpert formulated several principles for motor control (Wolpert et al., 2011).

One significant point he highlighted was that our brain encodes what we have learned about

movements, influencing our reactions when errors occur. These cognitive representations

can be understood as either intricate models or broader concepts about the expected

functioning of movements. In the context of motor control and planning, two main types

of internal models are often discussed: forward models and inverse models. Both play

crucial roles, but they serve distinct functions.

2.2.19.3 Forward Models

A forward model predicts the next state of a system given a current state and an action,

meaning the sensory consequences of a motor command (Popa and Ebner, 2019). For

instance, if you decide to move your arm, your brain’s forward model can predict the

expected sensory feedback such as the feeling of the arm moving, or the visual input

of seeing the arm move. One of the benefits of forward models is error correction. By

comparing the actual sensory feedback to the predicted feedback from the forward model,

the brain can correct for any discrepancies.

A compelling rationale for the necessity of an internal model is the inherent delay

between issuing a motor command and receiving sensory feedback in real-time motor

control. To navigate this challenge, organisms are compelled to construct adaptive internal

models, encompassing both their own bodies and the external world. The forward model

provides immediate predictions, while the inverse model can adjust future actions based

on these predictions and actual feedback. Forward models are only useful if they produce
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unbiased predictions. Evidence shows that forward models remain calibrated through

motor adaptation which is a type of learning driven by sensory prediction errors (Shadmehr

et al., 2010).

2.2.19.4 Inverse Models

An inverse model, on the other hand, determines the necessary action to achieve a desired

outcome. If you know where your hand is and you want to touch your nose, the inverse

model figures out the motor command required to get your hand from its current position

to your nose. This is beneficial for goal-directed actions. It allows the brain to determine

the necessary movements to achieve a specific sensory outcome or goal. Having an inverse

model allows for a more direct route to achieving a desired outcome.

2.2.19.5 Interplay of Forward & Inverse Models

The interplay between forward and inverse models is crucial for effective motor control

and learning. The synergy of the two allows for learning through prediction errors. When

we learn a new motor skill, our forward model’s predictions may not match the actual

outcomes. These prediction errors can be used to refine the inverse model, making it more

accurate over time.

Before executing a movement, the brain can use the forward model to simulate various

actions and predict their outcomes. The results of these simulations can then inform the

inverse model to select the best action.

In 1998, Kawato andWolpert presented the modular selection and identification for con-

trol (MOSAIC) model, a modular paradigm for motor control (Wolpert and Kawato, 1998).

Within this framework, forward models influence the contribution of each inverse model’s

output, integrating them into the ultimate motor command. Subsequently, they showcased

this concept in the context of grasping various objects (Haruno et al., 2001)

Fast forward to 2017, Maffei introduced a novel perspective. Contrary to the prevalent

belief that motor errors predominantly drive the prediction or learning for anticipatory

control, he proposed that the brain or human behaviour learns more from future sensory

errors. In other words, it is not just the errors in our actions that inform our future

movements but also the errors in what we sense and perceive (Maffei et al., 2017). To

test this theory, he simulated and compared both approaches and found that adaptation

rooted in the sensory domain results in control that robustly mirrors that of biological

systems. The intricacies of this anticipatory motor control were further highlighted using

the example of pole balancing with hierarchical sensory predictive control (HSPC) (Maffei

et al., 2017).

Later, Kawato and his team implemented a hierarchical structure of the neural model

to enhance trajectory control in an industrial robot manipulator (Miyamoto et al., 1988).
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Notably, the neural network model demonstrated the capability to generalise the move-

ments it had learned. This approach presents a significant advantage over traditional con-

trol methods where the error is essentially the control output of the feedback controller.

This controller calculates a forward model (known as the inverse dynamics) through het-

erosynaptic plasticity, utilising a preceding signal, such as the impact or a cue (Miyamoto

et al., 1988). Kawato suggested in 1999 that both kinetic and dynamic internal models

are keys to motor control (Kawato, 1999).

2.2.19.6 Internal Dynamics in Control Theory

In control theory, systems are optimised based on feedback (Harbor and Phillips, 2000).

The concept of an “adaptive controller”, as suggested by Kawato in relation to the cerebel-

lum, can be seen as a biological counterpart to engineered control systems. The forward

and inverse dynamics serve complementary roles in many control systems. While the for-

ward dynamics predict the consequences of actions, the inverse dynamics determine the

actions required to achieve desired consequences. In advanced motor control systems, like

those found in some robots or humans, the predictions of the forward dynamics can be

used to refine or adjust the control commands determined by the inverse dynamics. This

iterative feedback process can improve accuracy and adaptiveness.

2.2.19.7 Internal Models in Reinforcement Learning (RL)

The concept of internal models is pivotal in the field of RL, categorising agents into

two distinct learning approaches: model-based learning and model-free learning (Sutton

and Barto, 2018). Agents utilising model-based methods maintain an internal model of

the environment, adapting and refining their actions based on received reward signals to

optimise outcomes.

Possessing an internal model of the environment allows the application of planning

methods such as dynamic programming to deduce an optimal policy. The model’s pre-

dictive capabilities regarding future states and rewards enable the simulation of potential

sequences of actions and states, aiding in identifying the most advantageous actions to

pursue. Techniques like Value Iteration or Policy Iteration employ the model explicitly to

derive the optimal policy (Bellman, 1957).

Furthermore, the internal model can be harnessed to compute or update value func-

tions. In dynamic programming methods, for instance, the Bellman equation is utilised

in conjunction with the model to update value estimates. Knowing the behaviour of the

environment through the model and possessing an estimate of the value of future states

through the value function allows for the combination of these elements to estimate the

value of current states.
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2.2.19.8 Internal Models in Cybernetics

Cybernetics, the study of systems, communication, and control in animals and machines,

directly taps into the idea of internal models. Pioneers like Norbert Wiener and Ross

Ashby hypothesised that both living organisms and machines utilise feedback mechanisms

to adapt and reach goals, mirroring the brain’s use of internal models to predict and adjust

to its environment.

2.2.20 Practical Implementations & Case Studies

Thus far, we have examined both the platform and the learner from broad psychological

and intricate neurophysiological perspectives. Now, we shift our attention to instances

where such a learner is integrated into this platform for continuous online learning.

In the early 2000s, Bernd Porr and colleagues pioneered one of the initial frameworks

illustrating how the agent’s adaptive behaviour can be structured within a closed-loop

platform for continuous learning. Their work highlighted the process of learning a reflex’s

forward model. By enhancing the reflex and the ideal set point with the agent’s predic-

tive capabilities, a cohesive closed-loop learning environment was established (Porr and

Wörgötter, 2002a). Utilising a linear learning algorithm, they demonstrated the system’s

ability to apply feed-forward control, and analytically proved that slower feedback loops

could effectively be substituted by their corresponding feed-forward controllers, thereby

crafting a forward model.

Following this work, they illustrated that this platform could harness temporal-sequence

learning to produce proactive anticipatory actions. This was realised by leveraging a sec-

ond sensor event that occurred earlier and was causally coupled. This principle evolved

into the development of the ISO learning algorithm, which is geared towards unsupervised

temporal sequence learning (Porr and Wörgötter, 2003). The algorithm’s efficacy was as-

sessed in both open- and closed-loop behavioural feedback scenarios. Their experiments

showcased that a robot, by recognising the correlation between its preliminary range-finder

signals and subsequent collision signals, could adeptly avoid collisions.

Later, they demonstrated that this platform could leverage error feedback from the

reflex and associate it with contextual environmental input, facilitating predictive learning.

This was termed ICO learning, which shares similarities with Hebbian learning. However,

the exclusive use of input correlations to the neurons yielded superior stability compared to

traditional Hebbian methods (Porr and Wörgötter, 2006). In this learning paradigm, the

error signal combines with the weighted neuron activations to produce a command for both

the reflex and learning processes. A notable benefit of this approach is the behavioural

relevance of the error signal. However, the direct combination of the error and activations

introduces information loss, which limits the platform, making it challenging to adapt to
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more intricate structures.

Their future works showed how a network also employing sensor predictions was able

to improve the steering actions of a car where a non-optimal hard-wired steering is then

quickly superseded by a forward model, based on camera information of the road ahead

(Kulvicius et al., 2007). This group of learning paradigms shows that it is possible to

achieve one-shot learning because at every step the error signal from the reflex, meaning the

proportional integral derivative (PID) controller, is available for learning. This platform’s

limitation to a single layer is evident in its dedicated chained architecture, which restricts

network topology design due to the error signal merging with activation.

Subsequent research by the same group demonstrated the effectiveness of incorporat-

ing sensor predictions in refining the steering actions of a car. In their experiments, an

initially non-optimal hardwired steering mechanism was rapidly overtaken by a forward

model using camera-based data of the upcoming road (Kulvicius et al., 2007). Such learn-

ing paradigms suggest the potential for one-shot learning, as the error signal from the

reflex, provided by the PID controller, is consistently available for learning. Similar to

ICO learning, this platform’s restriction to a single layer results in a specialised chained

architecture, showing that the network’s design is constrained by directly merging the

error signal and activation.

2.2.21 Neural Networks

As highlighted earlier, the foundational mechanisms of the learners in these studies draw

inspiration from the functioning of neurons and synapses in the brain. For instance, ICO

learning exhibits a marked enhancement in stability compared to traditional Hebbian

learning. However, the brain utilises multiple layers of neurons to achieve its remarkable

learning capabilities. To harness this potent attribute for machine learning, it is imper-

ative to construct more intricate architectures with deeper layers of artificial neurons.

Artificial neural networks (ANNs) serve as computational frameworks inspired by the in-

tricate workings of biological neural processes (Bishop, 1995). Just as the human brain

comprises interconnected neurons, neural networks (NNs) consist of layers of nodes, or

artificial neurons, designed to simulate these biological counterparts. Much like synapses

in the brain, connection weights within NNs play a pivotal role in determining how nodes

communicate and influence each other. These connection weights, analogous to synaptic

strengths, are fine-tuned through a learning process.

In the realm of NNs, each node processes its input and makes activation decisions

through the application of non-linear functions, closely resembling the firing behaviour of

biological neurons. This non-linearity allows NNs to capture complex relationships within

data, enabling them to model intricate patterns and make sophisticated decisions.

Moreover, ANNs, particularly DNNs, demonstrate a hierarchical approach to handling
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information, mirroring how the human brain processes sensory data in stages. This hier-

archical feature allows DNNs to extract increasingly abstract and meaningful features as

data progresses through the network layers.

2.2.22 Deep Learning

Here we employ a DNN for the learner. Deep learning is a subfield of machine learning

that focuses on algorithms inspired by the structure and function of the brain, such as

ANNs. This involves training multi-layered neural networks (Goodfellow et al., 2016).

Deep-learning (DL) was introduced by researchers such as Warren McCulloch and Wal-

ter Pitts in the 1940s (McCulloch and Pitts, 1943). Later, Frank Rosenblatt introduced

the Perceptron, one of the earliest neural network models (Rosenblatt, 1958). The idea

of using DNN existed at this time, but the challenge was finding a feasible way to train

these networks. In the early 1970s, Seppo Linnainmaa wrote about the “reverse mode of

automatic differentiation”, which is essentially the basis for back-propagation (BP), but it

was not applied to neural networks at that time (Schmidhuber, 2014). Later in the 1980s,

Werbos introduced the BP algorithm in his Harvard Ph.D. thesis, “Beyond Regression”

(Werbos, 1974). Later in 1986, in a landmark paper titled “Learning representations by

back-propagating errors”, David Rumelhart, Geoffrey Hinton, and Ronald Williams popu-

larised the BP algorithm in the context of neural networks (Rumelhart et al., 1986). Their

work brought significant attention to the algorithm in the machine learning and cognitive

science communities. However, the term “deep-learning” started gaining traction in the

2010s. A breakthrough came when a DNN called “AlexNet” achieved a record-breaking

performance on the ImageNet Large Scale Visual Recognition Challenge, a prestigious

image classification competition (Deng et al., 2009).

The multi-layered architecture of DNNs enables them to learn a hierarchical repre-

sentation of data. In tasks like image recognition, for instance, the initial layers might

capture basic features like edges and textures, while deeper layers synthesise these into

more complex patterns like shapes and objects (Bishop, 1995). This makes it a suitable

choice for the robotic application in this work, where the camera view is fed into a DNN

to generate the predictive motor actions.

2.2.23 The Synergy of Deep Learning & Reinforcement Learning

One of the key advancements in Q-learning has been the use of DNNs to approximate the

Q-function in high-dimensional state spaces (Guo et al., 2014; Gu et al., 2016). This has led

to the development of deep Q-networks (DQNs), which have been shown to outperform

traditional Q-learning on a range of tasks (Mnih et al., 2015). The success of RL is

owed to the synergy between DL and Q-learning, which has enabled RL agents to learn
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complex policies from high-dimensional sensory inputs (Sewak, 2019). DL has provided

a powerful framework for function approximation, feature learning, and representation

learning, which are essential for dealing with high-dimensional states and complex actions

in RL problems. DNN can learn to represent the state and action spaces in a compact

and efficient way, enabling RL agents to make decisions based on complex and abstract

information (Goodfellow et al., 2016; Gu et al., 2016).

2.2.24 Back-Propagation (BP)

BP works by computing the gradient of a loss function with respect to each weight in the

network by applying the chain rule of calculus (Chauvin and Rumelhart, 2013). After

feeding input data forward through the network to obtain a prediction, the algorithm

calculates the difference between the prediction and the true target; this is the open-loop

error. This error is then propagated backward through the network, adjusting the weights

to minimise the error. The process is iteratively repeated using many input-output pairs

until the network’s weights converge to values that minimise the prediction error. BP

is inherently an open-loop (supervised) learning algorithm used for training multi-layer

neural networks. Section 2.6.3 shows how back-propagation is utilised in this work for

closed-loop (reinforcement learning) applications.

2.2.25 Closed-Loop BP

Previously we detailed the integration of the learner within the platform, resulting in a

closed-loop interactive system between the agent and its environment. We also highlighted

our decision to employ DL as the foundation for this learner. The current challenge is

to align the input-output relationships of the learner within the platform to those of the

DNN.

The DNN primarily processes camera inputs, which provide a visual representation of

the environment, specifically the road ahead. This is consistent with the platform’s design,

where the learner also uses the camera feed as its primary input. However, a significant

difference lies in the handling of errors. While the DNN is designed to handle output

errors, the learner is not configured to do so. Moreover, in a closed-loop context, the error

resulting from the agent’s actions or outputs is not directly discernible. As mentioned,

such errors are typically identifiable only by an external observer or the supervisor in

supervised learning (Porr and Wörgötter, 2005).

In this study, we demonstrate how DL with BP remains a viable candidate for this

application. We argue that minimising the closed-loop error is analogous to minimising

the open-loop output error, refer to Section 2.6.2. Our claims are supported through

mathematical derivations, programming, and a combination of simulated and real-world
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experiments.

2.2.26 Evaluation Criteria & Research Gap Analysis

In this section, we identify criteria essential for evaluating learning algorithms in terms

of their application and usability. We will present a table summarising these points for

the algorithms discussed above. This table will highlight the current research gaps and

illustrate how the novel algorithm introduced in this work addresses and potentially closes

these gaps. Through this comprehensive evaluation, we aim to demonstrate the superiority

and innovation of our proposed algorithm in the context of these key criteria.
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CLDL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Continuous RL - ✓ ✓ x x ✓ x ✓ - - x
Deep Learning - - x ✓ x - x ✓ - - x
Deep Q-Nets - x ✓ ✓ x ✓ x ✓ - - x
Hebbian Learning x - ✓ ✓ x - ✓ ✓ x ✓ x
ICO Learning ✓ ✓ ✓ x ✓ ✓ ✓ ✓ ✓ ✓ ✓
ISO Learning ✓ ✓ ✓ x ✓ ✓ ✓ ✓ ✓ ✓ ✓
Optimal Control ✓ ✓ ✓ x x ✓ x x ✓ x x
PID Controller ✓ ✓ ✓ x x ✓ x x ✓ x x
Q-Learning - x ✓ x x ✓ x ✓ - - x
RL - x ✓ x x ✓ x ✓ - - x
SARSA - x ✓ x x ✓ x ✓ - - x
TD Learning - x ✓ x x ✓ x ✓ - - x
Temporal Sequence ✓ ✓ ✓ ✓ - ✓ - - - - -

Table 2.1: Learning & Control Algorithms Capability Matrix
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2.3 Neural Networks: Theoretical Concepts & Fun-

damentals

The architecture of artificial neural networks is designed to mimic the interconnections

found in the human brain. A neural network comprises numerous individual neurons that

are organised in layers and interconnected in a structured arrangement.

2.3.1 Structure of Neural Networks (NNs)

Figure 2.2 illustrates an example of a neural network architecture. The network receives

a set of inputs, which are initially directed into the first layer of neurons. These neurons

perform computations on the inputs and transmit their results to the subsequent layer

of neurons. This iterative process continues through the network’s various layers until it

reaches the final layer, which generates the network’s final output.

In the network, each neuron receives input from multiple other neurons and uses these

inputs to calculate its own output. Subsequently, the output of each neuron is transmitted

to other neurons within the next layer. This process is iteratively carried out for each layer

of the network until the final output is generated.

The configuration and connectivity of neurons within a neural network can be flexibly

modified to accomplish various objectives, including tasks such as classification, regression,

or pattern recognition. Learning involves fine-tuning the strength of connections between

neurons. This adjustment process enables the network to learn and generate the desired

output when provided with a specific set of inputs.

2.3.2 Indexing of Layers & Neurons

In a neural network, neurons are structured into layers, where each layer comprises a

group of neurons responsible for processing input data in a specific manner. To facilitate

precise indexing of neurons within the network, we define the total number of layers as L.

These layers are indexed sequentially from the input to the output layer using the set of

integers {0, 1, . . . , ℓ − 1, ℓ, ℓ + 1, . . . , L − 1, L}. The total number of neurons within each

layer is denoted by capital letters like I, J , or K, and individual neurons are assigned

indices from the set of integers {0, . . . , i, . . . , I}, {0, . . . , j, . . . , J}, and {0, . . . , k, . . . , K},
respectively. Each neuron is uniquely identified using the notation nOℓ

j, where the subscript

j corresponds to the neuron’s index, and the superscript ℓ represents the layer index in

which the neuron resides.
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Figure 2.2: Depicts the architecture of an artificial neural network. The input layer
(layer 0) receives user inputs ρ, which are processed through the hidden layers (layers ℓ
to L− 1), culminating in the generation of outputs at the output layer. Circles represent

individual neurons, vertical groupings indicate the distinct layers, and solid lines
illustrate the interconnections between neurons across layers.

2.3.3 Neuron Connections

Neural networks can be categorised based on the connectivity patterns among their neu-

rons.

2.3.3.1 Matrix of Connectivity Cℓ

The inter-neuron connections between adjacent layers can be conveniently represented

using a matrix denoted as Cℓ, with ℓ signifying the layer index. Within this matrix,

the entry at position (j, k), denoted as Cℓ(j, k), indicates whether neuron j in layer ℓ

is connected to neuron k in layer (ℓ + 1). Specifically, if neuron j in layer ℓ is indeed

connected to neuron k in layer (ℓ+ 1), then the value of Cℓ(j, k) is set to 1, otherwise, it

is set to 0.



32 CHAPTER 2. CLOSED-LOOP DEEP LEARNING (CLDL)

Cℓ =



(ℓ+1)→ 0 ... k ... K

ℓ↓ 0 1 . . . 0 . . . 1

... . . . . . . . . . . . . . . .

j 0 . . . 1 . . . 0

... . . . . . . . . . . . . . . .

J 1 . . . 0 . . . 1


JK

A neural network is categorised as fully connected when all entries in the connectivity

matrix Cℓ are set to 1 for each layer ℓ = 0, . . . , L − 1. This implies that every neuron in

each layer is connected to every neuron in the adjacent deeper layer.

Conversely, if the connectivity matrix Cℓ contains non-unity entries, the network is

classified as a convolutional neural network (CNN). Such networks are commonly em-

ployed in image processing tasks where the input data exhibits a grid-like structure, such

as pixels in an image. In CNN, neurons in one layer are exclusively connected to a localised

region of neurons in the adjacent layer, rather than establishing connections with all neu-

rons in that layer. This approach enables the network to efficiently process substantial

volumes of data while reducing the number of parameters requiring learning.

2.3.3.2 Matrix of Recursivity Rℓ

The matrix of recursivity, denoted as Rℓ, characterises the connections of neurons in layer

ℓ to their own inputs. If a neuron’s output is fed back into its own input, the corresponding

entry in Rℓ is assigned a value of 1; otherwise, it is set to 0. When all entries in Rℓ are

0 for every layer ℓ, the network is referred to as ”feed-forward”. In such networks, the

output of neurons in one layer does not loop back into their own input or any previous

layer’s input.

Conversely, if one or more entries in Rℓ are non-zero for any layer ℓ, the network is

labelled as ”recurrent”. This indicates that the output of neurons can feed back into their

own input or the input of previous layers, thereby creating a loop or feedback mechanism

within the network.

Rℓ =



ℓ↓

0 0

... . . .

j 1

... . . .

J 0


J1

For all algorithms in this work, a fully connected feed-forward neural network is em-

ployed. This signifies that all neurons within a layer establish connections with all neurons
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in the preceding layer, and there are no connections that loop back into the same layer or

any previous layers. In other words, the matrix of connectivity Cℓ consists of all 1’s, while

the matrix of recursivity Rℓ comprises entirely of 0’s for every layer ℓ.

2.3.4 Inside Neurons: The Building Blocks of NNs

Having provided an overview of the network and detailed the connections among neurons,

the following delves deeper into the inner workings of individual neurons. Neurons serve

as the fundamental building blocks of neural networks, mirroring the function of biological

nerve cells in the brain.

In the context of ANN, neurons play a role inspired by their biological counterparts.

In machine learning, neurons can be thought of as mathematical functions that perform

two main operations: they calculate a weighted sum of inputs and then apply a non-linear

function to the result. Each neuron, as a mathematical function, produces a unique output

for a given set of inputs. Figure 2.3 provides an illustration of a typical neuron, denoted

as nOℓ
j.

Figure 2.3: Illustrates the forward pass of signals within the jth neuron in layer ℓ,
progressing from input values αℓ−1

i , to their weighted summation at node aO, through the
activation function σ, and ultimately producing the output αℓ

j.

2.3.4.1 The Output of the Neuron

The term used to describe the output of neurons is ”activation”. This terminology draws

inspiration from biology, where neurons are often considered either active, resulting in an

output of 1, or inactive, yielding an output of 0. However, in many machine learning
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applications, artificial neurons generate a continuous value within the range of 0 to 1.

These activations are represented by α and are indexed as αℓ
j for the nOℓ

j neuron.

2.3.4.2 The Inputs to the Neuron

The inputs to each neuron are derived from the activations of neurons in the preceding

layer, with the exception of the first layer where the inputs are initially supplied by the

user or the environment. As depicted in Figure 2.3, for the neuron nOℓ
j, the inputs are

specifically represented as αℓ−1
i:0→I .

2.3.4.3 Neuron’s Function

As previously mentioned, neurons perform a computation involving a weighted sum of

their inputs, which is then passed through a non-linear function. Each input to a neuron

is associated with a distinct weight, representing the strength of the connections between

neurons and the extent of their influence on one another. These weights are represented

by ω. Specifically, the weight that signifies the connection strength between neurons nOℓ−1
i

and nOℓ
j is denoted as ωℓ

ij.

The result of this weighted sum of inputs is referred to as the accumulation, represented

by the symbol ν, and it is indexed as νℓ
j for neurons nOℓ

j. This operation is depicted in

Figure 2.3 at node aO, and it is formulated as follows:

νℓ
j = ΣI

i=0(ω
ℓ
ij · αℓ−1

i ) + bℓj (2.1)

Here, b represents the bias of the neuron. Nevertheless, it is worth noting that in this

work, biases are deliberately set to zero to ensure the production of DC-free outputs.

2.3.4.4 Neuron’s Non-Linearity

The accumulation ν undergoes a transformation through a non-linear function to generate

the neuron activations. This function is commonly referred to as the activation function

of neurons. In most cases, an activation function maps an input space ranging from −∞
to +∞ to an output space of (0, 1). Examples of such functions include the hyperbolic

tangent, arctangent, and the logistic function.

In this work, the conventional logistic function, often referred to as the sigmoid function

σ, is employed. Please refer to Figure 2.4 for visualisation. For the purposes of this work,

a vertical translation of −0.5 is applied to achieve a symmetrical output space spanning

from −0.5 to 0.5, encompassing both positive and negative values:
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Figure 2.4: The solid line represents the conventional logistic function. The long-dashed
line illustrates the activation function employed in this study, a logistic function shifted
vertically by -0.5 units. Notably, both functions produce identical derivatives depicted by

the short dashed line. y-axis: Amplitude of the neuron’s output. x-axis: Range of
accumulated input values for the activation function, spanning from negative to positive

infinity.

σ(x) =
1

1 + e−x
− 0.5 (2.2)

With these considerations, the calculation of neuron activations is as follows:

αℓ
j = σ(νℓ

j) = σ(ΣI
i=0(ω

ℓ
ij · αℓ−1

i )) (2.3)

2.3.5 Forward Propagation of Inputs

Forward propagation entails the iterative forward movement of signals through the net-

work. This process commences with the reception of inputs ρm at the first layer, followed

by the propagation of activations through the hidden layers. Finally, it concludes with

the return of outputs to the user at the final layer. These three stages are summarised as

follows:
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α0
n = σ(ν0

n) = σ(ΣM
m=0(ω

0
mn · ρm)) input layer (2.4)

. . .

αℓ
j = σ(νℓ

j) = σ(ΣI
i=0(ω

ℓ
ij · αℓ−1

i )) hidden layer (2.5)

αℓ
k = σ(νℓ

k) = σ(ΣJ
j=0(ω

ℓ
jk · αℓ−1

j )) hidden layer (2.6)

. . .

αL
z = σ(νL

z ) = σ(ΣY
y=0(ω

ℓ
yz · αL−1

y )) output layer (2.7)

The forward propagation through the hidden layers involves a recursive process, which

is visually depicted in Figure 2.5 for two arbitrary neurons, namely nOℓ
j and nOℓ+1

k .

Figure 2.5: Illustrates the interconnections between neurons and the forward propagation
of activations. The activation from the jth neuron in layer ℓ, together with that of other

neurons in this layer, are channelled to the kth neuron in layer ℓ+ 1.

2.3.6 Contextual Application of Neural Networks

Neural networks can be categorised based on how their output is utilised within the context

of their application and use-case, primarily contingent on the manner in which their output

is evaluated.

2.3.6.1 Open-Loop Context: Unsupervised Learning

Unsupervised learning, a fundamental neural network context, primarily revolves around

data clustering and feature extraction. In this paradigm, the network’s output does not

undergo evaluation for correctness or error. Instead, the network’s task is to sort input
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data into clusters based on inherent patterns and similarities. This context finds use in

applications where the primary objective is to reveal hidden structures within data, such

as image segmentation, anomaly detection, and recommendation systems.

2.3.6.2 Open-Loop Context: Supervised Learning

Supervised learning stands in stark contrast to unsupervised learning, as it involves the

evaluation of network outputs. In an open-loop context, the network operates on labelled

data, where each input is associated with a known target or label. The network’s primary

purpose here is to learn a mapping from inputs to outputs that minimises the prediction

error.

Crucially, the evaluation of output does not influence subsequent inputs, making it a

classic example of open-loop learning. Applications abound in fields like image classifica-

tion, natural language processing, and regression tasks, where accuracy is paramount.

2.3.6.3 Closed-Loop Context: Reinforcement Learning

The most intriguing and dynamic application of neural networks is found in RL, where

the output evaluation has a direct impact on the next set of inputs, hence the learning is

closed-loop. RL is a form of minimal supervision, and it is central to many cutting-edge AI

applications. In RL, an agent interacts with an environment and learns to make sequences

of decisions to maximise a cumulative reward signal. This process is iterative and involves

a continuous feedback loop, where the network’s actions directly affect future observations

and rewards. As mentioned in the introduction, this is the type of learning employed in

this work.

2.3.6.4 Training vs. Performing Phase

In conventional RL, an agent typically goes through two phases: training and performing.

During training, the agent explores its environment, learns a policy, and adjusts its neural

network weights to optimise its decision-making process. Once the training is complete,

the agent transitions to the performing phase, where it utilises its learned policy to interact

with the environment. This dichotomy is crucial for ensuring safe and effective RL.

2.3.6.5 Online vs. Offline Learning

In this work, all presented algorithms operate online, meaning there is no training phase

to the learning; the agent starts by performing, and this performance improves over time.

This type of learning in RL involves continuous adaptation of the agent’s policy based

on real-time feedback, making it suitable for dynamic and evolving environments. In
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contrast, offline learning involves training the agent on a fixed dataset, which may not

adapt to changes in the environment.

2.3.6.6 Discrete vs. Continuous Actions

Agents in RL can make discrete or continuous actions. Discrete actions involve choosing

from a predefined set of actions such as moving left or right, while continuous actions allow

for a broader range of choices such as continuous motion control. The choice between these

action spaces depends on the nature of

the task and the environment. In this work, a robot learns to navigate its environment

in a continuous manner.

2.3.7 Mathematical Derivations of Open-Loop Deep Learning

Equation 2.4 shows the computation of the outputs of a neural network based on user

inputs and associated weights. In supervised learning, the target outputs are predefined,

here represented as βL
n . These target outputs serve as benchmarks to assess the perfor-

mance of the network, enabling the quantification of the associated errors eLn as follows:

eLn = βL
n − αL

n (2.8)

2.3.7.1 Cost Function

The error above may manifest as either positive or negative, with the ultimate goal being

its reduction to zero. The cost function serves as a metric quantifying the divergence from

the desired output. It is most frequently characterised by mean squared error (MSE):

C =
1

2N
ΣN

n=0(e
L
n)

2 (2.9)

(2.10)

The cost function is always positive and measures the deviation from the desired out-

put, irrespective of the sign of the error. Given a continuous error signal, the cost function

is differentiable which allows for the use of calculus optimisation techniques to minimise

the cost function. This in turn ensures that the error signal is kept as close to zero as

possible.
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2.3.7.2 Gradient Descent Method (GDM)

Gradient descent is a widely-used optimisation algorithm in machine learning and deep

learning, aimed at minimising the cost function above, which quantifies the disparity

between a model’s predictions and actual values. The objective is to identify the network’s

weights that will minimise this function and, in turn, enhance the model’s accuracy. In

the context of this research, the focus is on determining the optimal weight configuration

that ensures the cost function is minimised across all outputs.

This method operates iteratively: the system commences with a set of arbitrary pa-

rameters arising from a random weight initialisation. Subsequently, the gradient of the

cost function is computed, yielding a vector that indicates the direction of the most pro-

nounced increase in the loss. The parameters are then adjusted by taking a step counter

to this gradient direction.

Various versions of gradient descent exist, including stochastic gradient descent (SGD),

mini-batch gradient descent, and advanced optimisation techniques like Adam and RM-

Sprop Zou et al. (2019). These techniques modify the learning rate throughout training,

aiming for quicker and steadier convergence. However, for the purposes of this research,

we adhere to the conventional gradient descent method (GDM) described above.

2.3.7.3 Backpropagation: A Mathematical Approach

Backpropagation is the algorithm employed to determine the gradients of the cost function

in relation to the network’s weights. It provides insights into how alterations in the

parameters influence the cost. This relationship underscores the sensitivity of the cost

function with respect to a specific weight, which is expressed as:

∂C

∂ωℓ
ij

(2.11)

This signifies that an adjustment of − ∂C
∂ωℓ

ij
to that specific weight will exert the most

substantial influence on the minimisation of the cost function.

2.3.7.3.1 Chain Rule Our aim is to derive an expression that addresses weight changes

across all deeper layers. To achieve this, we further elaborate on Equation 2.11 using the

chain rule, with the accumulation of the neurons serving as the connecting term:

∂C

∂ωℓ
ij

=
∂C

∂vℓj

∂vℓj
∂ωℓ

ij

(2.12)
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The second derivative is the activation of the neuron linked to that particular weight,

as elaborated in Equation 2.4:

∂vℓj
∂ωℓ

ij

= αℓ−1
j (2.13)

To elaborate on the first partial derivative, we can re-express Equation 2.4 in the

following manner:

vℓ+1
k = ΣJ

j=0(ω
ℓ+1
jk · σ(v

ℓ
j)) (2.14)

With the re-expressed equation in place, we can now expand the first partial derivative:

∂C

∂vℓj
=

(
ΣK

k=0(ω
ℓ+1
jk

∂C

∂vℓ+1
k

)
)
· σ′(vℓj) (2.15)

It is important to highlight that the summation now iterates over k, representing the

number of neurons in the ℓ+ 1 layer.

2.3.7.3.2 Learning Rule Integrating the two partial derivatives back into Equa-

tion 2.12 yields:

∂C

∂ωℓ
ij

=
(
ΣK

k=0(ω
ℓ+1
jk

∂C

∂vℓ+1
k

)
)
· σ′(vℓj) · αℓ−1

i (2.16)

This concludes the mathematical derivation of the learning rule, ensuring that every

term in the preceding equation is known.

2.3.7.4 Backpropagation: A Computational Approach

From a computational perspective, not all terms in Equation 2.16 are accessible to each

neuron for evaluation. This necessitates a data flow capable of disseminating the requisite

information for this computation across the network.

Examining the parameters in Equation 2.16, a neuron readily accesses its own activa-

tion, denoted as vℓj, and the inputs to the neuron, represented as αℓ−1
j . However, it does

not have direct access to weights in the subsequent layer ωℓ+1
kt or to the sensitivity of the

cost function concerning the accumulations of neurons in the following layer. It is these

parameters that must be disseminated throughout the network.
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2.3.7.4.1 Recursion The recursive step is evident in Equation 2.15. Here, the com-

putation of ∂C
∂vℓj

is contingent on the value of ∂C

∂vℓ+1
k

. This term, which is called the neuron’s

internal error, is symbolised by δ.

δℓj =
∂C

∂vℓj
=

(
ΣK

k=0(ω
ℓ+1
jk δℓ+1

k )
)
· σ′(vℓj) (2.17)

This internal error, δ, computed for every neuron, becomes a crucial piece of informa-

tion stored within that neuron.

Figure 2.6: Illustrates the backpropagation of the internal error δ through the network.
The green lines highlight the path taken by the internal error values as they move

backwards across layers, starting from the output layer and reaching the input layer.

In Figure 2.6 the green pathways show how this internal error is propagated back-

wards through the layers. As the backpropagation algorithm progresses, this δ value is

systematically propagated backwards throughout the layers of the network. By maintain-

ing and transmitting this error term, each neuron plays its part in the iterative process of

fine-tuning the network’s weights, helping optimise the overall network for the given task.

2.3.7.4.2 Learning Rule The computational learning rule (or the update rule), using

the internal error, transforms the previous heavy expression in Equation 2.16 into a more

computationally friendly one. Replacing the chain rule derivatives with a single term of

internal error δ, yields:

∆ωℓ
ij

OPDL

= ηδℓj · αℓ−1
i (2.18)
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where ∆ωℓ
ij represents the change to be applied to this weight, η is the learning rate,

determining the

size of the weight update step, δℓj is the internal error for this neuron, and αℓ−1
i is the

activation received from the previous layer weighted by this weight. This is the open-loop

learning. In essence, it shows how much and in what direction the weight ωℓ
ij should be

adjusted in order to reduce the error of the network. The magnitude of the adjustment is

influenced by the product of the internal error of the current neuron and the activation of

the neuron from the previous layer. The learning rate η ensures that the adjustments are

made in controlled increments.

Figure 2.7: Illustrates the incorporation of the learning rule pathway into the forward and
back propagation pathways to complete the signal flow within the network. Node dO
highlights the point at which weight adjustments are made, driven by internal error δ

computations.

With the addition of the learning rule pathway, Figure 2.7 shows the comprehensive

flow of signals within the neural network. This flow begins with the forward propagation

of activations (in blue), followed by the backward propagation of errors (in green), and

culminating in the application of the learning rule (in purple). The learning rule, integral

to the weight adjustment process, is denoted by node dO. This visualisation offers a holistic

perspective of the neuron’s operations, encompassing both the information processing and

the weight optimisation stages.

2.4 Design & Derivation of Learning Platform

In this work, all presented learning algorithms are based on a common platform that

incorporates both a reflex and a learning loop. Before introducing the unique aspects of
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each algorithm, we define and explain these common loops.

2.4.1 Reflex: an Agent without Intelligence

In biology, a reflex is an inherent driver of an organism’s behaviour, triggered by invol-

untary actions in response to stimuli. Reflexes provide immediate responses, ensuring the

organism’s survival and success. In this work, we apply the presented learning algorithm

to a navigational task where the robot follows a path. However, the system is not de-

signed to track the path explicitly. Instead, the algorithm responds to any disturbances

that deviate from the desired state of the reflex.

For instance, a bend in the path is considered a disturbance. When the robot en-

counters a bend, its innate reflex mechanism prompts an immediate reaction to recover

from the disturbance. Technically, the reflex mechanism is modelled as a fixed closed-loop

controller.

2.4.1.1 Reflex Platform

Figure 2.8: The Reflex platform: Illustrates the reflex mechanism within an
agent-environment boundary marked by a grey dashed rectangle. The reflex loop is

highlighted in dark blue within the agent and in light blue in the environment. Node 1O
represents the reflex innate mechanism, comparing input I to the desired input Id,
generating an error signal E. This error signal acts on the environment through the
motor command transfer function RM , resulting in action A. Node 2O serves as the
summation point where this action counteracts disturbance D. After passing through
the reflex environment’s transfer function RE, it creates a new state S sensed by the
reflex sensory transfer function RS, leading to a new input I and completing the loop.

Figure 2.8 illustrates the block diagram of the reflex loop. A biological reflex is modelled

using a fixed feedback controller. A key distinction is that biological agents lack an external

observer or operator. Consequently, the set point or desired state remains constant and
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cannot be controlled. Thus, it is modelled within the boundary of the agent rather than

as an input to the system, as would be the case with conventional feedback controllers.

This diagram shows the connection between the reflex mechanism within an agent

and its environment. The agent and the environment interact directly, exchanging inputs

and outputs. A grey dashed rectangle delineates the boundary between the agent and

the environment. The reflex pathway is illustrated in dark blue within the agent and in

light blue within the environment. This configuration is consistent across all platforms

presented in this work.

2.4.1.2 Reflex Objective & the Error Signal

The disturbance acting on the reflex is denoted as DR. The state of the agent, represented

by the variable S, is perceived through one or multiple sensory inputs. The transfer

function that converts the states into sensory inputs is illustrated with . As a result,

a desired state can be likened to a desired sensory input, denoted as Id. To maintain its

ideal state, the agent must compare any incoming sensory input, I, with its desired input

at the summation node 1O. If the actual input deviates from the desired input, a non-zero

signal known as the error, E, is produced. Hence, the aim of the reflex can be concisely

stated as maintaining a zero error signal.

E = Id − I Therefore:

{
if E = 0→ I = Id desired

if E ̸= 0→ I ̸= Id undesired
(2.19)

2.4.1.3 Reflex Action

Reflexes detect environmental changes and trigger motor actions to modify their state in

response. When a reflex experiences a deviation from its desired state, indicated by a

non-zero error, it takes an appropriate action, denoted as A, to restore its desired state.

This restorative action is informed by a transfer function that translates the error into

motor actions, represented by for the reflex.

These restorative actions counteract environmental disturbances, which occur at node

2O, where the agent’s actions and the environmental disturbances interact to create the

next state. The environment transforms the agent’s actions and disturbances into new

states, described by the environment’s transfer function, represented by .

2.4.1.4 z-space Derivation of Error

We employ z-transformation to derive the expression of the closed-loop error in the z-

domain. Detailed explanations of z-transformation are provided in Appendix A.4. This

approach is chosen due to the intricate recursive characteristics of closed-loop platforms,
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which make it challenging to formulate an expression of the error signal directly in the

time domain. Z-transformation translates this recursion into simple algebraic equations.

Our objective is to obtain an expression for E in terms of the closed-loop signals and

functions. By substituting for I in Equation 2.19, we obtain:

E = Id −
=I︷︸︸︷

SRS (2.20)

Referring to node 2O, we can substitute for S to obtain:

E = Id −
=S︷ ︸︸ ︷

(A+DR)RE RS (2.21)

Substituting for A completes the recursion for the error signal:

E = Id − (

=A︷ ︸︸ ︷
ERM +DR)RERS (2.22)

Rearranging the above equation with respect to E gives:

E(1 +RMRERS) = Id −DRRERS (2.23)

Finally, E is found as:

E =
Id −DRRERS

1 +RMRERS

(2.24)

Prior to deriving the closed-loop expression for the error in the platform with a learning

loop, it is crucial to acknowledge that the error E is impacted by the disturbance DR,

without any counteracting factor that could potentially nullify the effect of the disturbance.

In other words, the agent has no control over other variables in the equation, namely RE,

RS, and RM , therefore, a non-zero disturbance DR directly results in an error.

2.4.2 In Search of an Intelligent Agent

Suppose the agent can generate an output O that pre-emptively counteracts the distur-

bance before it enters the system. We add this term to the expression of E as follows:
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E =
Id − (O +DR)RERS

1 +RMRERS

(2.25)

In such a scenario, the O term would be capable of neutralising (or cancelling out) the

disturbance even before it is detected by the reflex. Precisely, if we let O = Id
RERS

−DR,

then E = 0. In the following section, we demonstrate how a learning loop can be designed

and incorporated into the platform to furnish the agent with the ability to generate such

O term.

2.4.3 The Learner: an Agent with Intelligence

2.4.3.1 Learning Platform

Figure 2.9: A generic learning platform is integrated with the reflex platform: The
learning loop depicted in dark green within the agent boundaries and light green in the
environment. At node 3, the learner’s action is combined with the early disturbance,
delayed by T time steps using z−T in z-space. This summation creates a new learner

state, S ′, sensed by the sensory transfer function LS to generate inputs I ′. These inputs
are filtered through a FIR filter bank FB to optimise correlation with the error. The

filtered signals pass through the network to produce output P , which is then processed by
the learner’s motor unit, LM . This action is directed to node 2, where it attempts to
counteract the disturbance at the reflex loop’s entry point. If successful, no error is

generated. If unsuccessful, a non-zero error signal is generated and sent to the learner
for training via the purple pathway.

Figure 2.9 shows a general learning platform where a learning loop is integrated into

the previously illustrated reflex loop (Figure 2.8). The learning loop is depicted with solid

lines highlighted in dark green within the agent and light green in the environment.

Like the reflex loop, the learning loop interacts with its environment by receiving

sensory inputs and producing motor outputs. The goal of the learning system is to prevent
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disturbances from reaching the reflex, similar to the previously mentioned O term. To

achieve this, the learning mechanism must have: 1) prior knowledge of the disturbance,

and 2) the ability to act upon it before it reaches the reflex.

Therefore, it is important to differentiate between the disturbance as it appears to the

learning loop (DL) and the disturbance once it reaches the reflex (DR). The difference

between these two disturbances is the time delay between them. This is because a distur-

bance first appears in the field of view (FoV) of the learner before it can reach the reflex

sensors. The transfer function in z-space represents this delay. In the z-space, this

relationship can be expressed as:

DR = DL · z−T (2.26)

Just like in the reflex loop, an early disturbance (DL) in the learner’s environment (LE)

leads to a new state (S ′) for the learner. The learner’s sensory unit (LS) translates this

new state into sensory inputs (I ′), which the learner uses to generate an output through

its motor effector. This results in an action (A′) exerted on the environment.

2.4.3.2 Error Feedback for Learning

In contrast to a reflex, a learner does not possess an innate, fixed response to disturbances.

Rather, it acquires the ability to improve its actions through a process of learning. The

learner requires instructive external feedback on its performance. As previously mentioned,

in a reflex loop, a non-zero error signal is generated when the desired state is lost. This

error signal serves as feedback for training the learner. However, this approach provides

minimal feedback, only indicating whether the action taken was adequate or not, without

offering detailed instructions on the correct actions to take.

2.4.3.3 The Importance of Delays & Correlation for Learning

Unlike the reflex mechanism, the learning loop does not rely on a preferred or desired

input. Instead, it monitors the inputs and the subsequent error signals to learn about

their correlation, with the goal of generating an output that will result in zero subsequent

error. The key concept here is correlation. For the learner to identify the correlation

between inputs and their corresponding errors, the inputs must not be transient.

To achieve this, a filter bank (FB) is required to introduce a sufficient amount of

delay to the inputs, allowing them to persist long enough to be correlated with their

corresponding errors. This delay must match the delay between the two disturbances

explained above. However, the delay between when events are perceived by the learner

and when they reach the reflex cannot be modelled with a precise number of sampling
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delays. This is because these events travel through the non-linear environment, which

affects the delay unpredictably. The actions taken by the learner can influence this delay.

In fact, once the learner has fully adapted, the disturbing events never reach the reflex,

effectively making this delay infinite. Additionally, various factors such as the speed of

the robot and the angle of the bend can also influence this time delay. Due to these

complexities, the delay is modelled using a filter bank, which allows for a wide range of

time delays to be covered. Further details about the FB are presented in later sections.

2.4.3.4 z-space Derivation of Error

With the addition of the learning loop, we can derive an updated expression for the error

signal. Referring to Equation 2.20 and the summation node 2O in Figure 2.9, we substitute

S with:

E = Id −
=S︷ ︸︸ ︷

(A+ A′ +DR)RE RS (2.27)

Substituting for A and A′ yields:

E = Id − (

=A︷ ︸︸ ︷
ERM +

=A′︷ ︸︸ ︷
PLM +DR)RERS (2.28)

We have now completed the recursion for the error signal. Rearranging to solve for E,

we obtain:

E(1 +RMRERS) = Id − (PLM +DR)RERS (2.29)

Finally, E is calculated as:

E =
Id − (PLM +DR)RERS

1 +RMRERS

(2.30)

As seen earlier in Equation 2.25, the learning loop has now equipped the agent with

a factor O = PLM that can mitigate the effects of later disturbance DR before it reaches

the reflex. This means that by generating an appropriate output P = Id
RERSLM

− DR

LM
, the

learner can ensure zero error.

It is important to note that this output depends upon the transfer functions of both

the learner and the reflex. Thus, to generate this output, the neural network constructs a
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forward model of the environment, encompassing these transfer functions.

2.4.4 Towards Specific Learning Paradigms

The generic learning platform defines the relationships between all inputs, outputs, dis-

turbances, and errors, with the ultimate aim of generating the correct output P . However,

this output is a function of the intrinsic connections and inner workings of the learner.

The learner must find the correct internal parameters to generate the correct output. The

error signal plays a crucial role in this process by fine-tuning the internal parameters,

which in turn affects the error signal itself. In other words, learning can be thought of as a

continuous “dialogue” between the internal parameters of the learner and the error signal.

The specific ways in which the error signal is utilised to adjust the internal parameters give

rise to unique learning rules and algorithms. In the upcoming sections, we will introduce

and delve into these specialised learning paradigms: ICO and CLDL in this chapter, and

SaR, PaM, FCL, and Echo in the following chapters.

2.5 Design & Derivation of Input Correlation (ICO)

Learning

The first learning algorithm examined in this study is the ICO learner. This paradigm

aligns with the overarching learning framework presented above, featuring a learner com-

prising a single layer of neurons responsible for input correlation. The development of

this algorithm was not a primary aspect of this undertaking; credit goes to Bernd Porr

for developing this algorithm (Porr and Wörgötter, 2006). However, replicating this algo-

rithm provided an introductory step and a preparatory exercise for the principal project

- CLDL.

2.5.1 Motivation: An Overview

The ICO learner operates by adjusting weights based on input correlations, drawing a

comparison to the well-established Hebbian learning principle. In Hebbian learning, the

strength of synaptic connections is modulated by correlating input and output activities.

However, Hebbian methods are known to encounter issues related to self-correlation, po-

tentially causing instability and restricting the feasible learning rate (Porr and Wörgötter,

2006).

In contrast, the ICO learner follows a unique learning rule related to the ISO-learning

rule of Porr and Wörgötter (2003). However, the ICO learner deviates by substituting the

derivative of the reflex input for the derivative of the output within the learning rule. This
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innovative approach relies exclusively on input correlations, effectively embracing a dis-

tinct heterosynaptic learning mechanism. Consequently, this strategy yields significantly

improved outcomes.

By excluding the output in the learning rule, the problematic autocorrelation element

that leads to destabilisation is eliminated. This elimination enables the use of higher

learning rates. Mathematically, it has been demonstrated that this new rule can achieve

the theoretical optimum of one-shot learning under ideal conditions.

2.5.2 Learning Platform

Figure 2.10 illustrates the positioning of the ICO learner within the overarching generic

learning platform. At the interface between the learner and the platform are the predictive

inputs denoted as I ′, predictive action represented as P , and the error signal E.

Figure 2.10: Displays the ICO learner platform: The error signal is first filtered by He,
and the derivative of the filtered result Ue is transmitted to the neurons of the ICO

learner. A weighted signal derived from Ue is subsequently sent to the summation point
within the ICO learner.

2.5.3 Inner Working of Neurons

Figure 2.11 provides insight into the internal configuration of an ICO learner, designed to

produce a singular output. The ICO learner encompasses a single layer of neurons, with

its inputs designated as I ′i. These inputs undergo filtration by the impulse response Hij.

Filters Hi1 are in effect in this case, and the dotted filters Hi2 show how more filters can

be added to the learner.

In the z-domain, this relationship can be articulated as:

I ′iHij = Ui (2.31)
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Figure 2.11: Illustrates the inner mechanisms of the ICO learner: The predictive inputs
Ii undergo filtering via filters Hij resulting in Ui, each weighted by ρi, followed by

summation with the filtered and weighted error term Ueρe. This process yields the ICO
output denoted as P , which aligns with the platform output. During the training process,

the derivative of the filtered error Ue is correlated with the filtered inputs, driving
adjustments in the weights.

The feedback error signal, denoted as E, serves as an additional input to the neuron.

Note that the error is filtered by He, meaning it is altered prior to being processed by the

neuron.

EHe = Ue (2.32)

The neuron generates an output by aggregating the weighted filtered inputs, encom-

passing both the predictive inputs and the error signal:

P = ρeUe + ΣN
i=1(ρiUi) (2.33)

Here, P represents the learner’s output, which functions as the predictive steering

command for the robot. The dashed lines in Figure 2.11 demonstrate how the ICO learner

could be expanded to incorporate additional predictive inputs and individual filter banks

for each input. It is crucial to note that the structure of the ICO learner is confined to a

single layer of neurons. Each filter in the filter bank is tailored to approximate a specific

time interval between the occurrence of the predictive signal and the generation of the

corresponding error signal. By employing a sufficiently extensive filter bank, it becomes
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feasible to approximate all suitable time intervals, as demonstrated in Porr and Wörgötter

(2003).

2.5.4 Learning Rule

In a mathematical context, learning unfolds through the adjustment of neurons’ weights,

with learning deemed successful when these weights reach a stable state. The alteration

of the weights is governed by the correlation between the inputs, encompassing both the

error and predictive signals, hence the term ICO. The update rule for the weights of the

ICO learner can be expressed as follows:

dρi
dt

= µui
due

dt
(2.34)

In the equation above, µ symbolises the learning rate, while the presence of the deriva-

tive signifies the utilisation of the differential learning mode, as elaborated in Porr and

Wörgötter (2006).

2.5.5 Limitation

A significant drawback of the ICO learner is its confinement to a single layer. This lim-

itation curtails the network’s ability to effectively process large input sets and extract

intricate, complex features. The differentiation and correlation of the error signal with

neuron inputs render this signal unsuitable for propagation within multi-layer configura-

tions. This prepares the scene for the introduction of the main project, wherein the shallow

structure is substituted with a deep network of neurons. This deep architecture proves

effective at handling extensive input sets and extracting complex and hidden features due

to its multi-layer architecture. This approach, termed CLDL, will be comprehensively

examined in the forthcoming section.

2.6 Design & Derivation of CLDL Algorithm

2.6.1 Learning Platform

As explained earlier, the closed-loop learning platform relies on the error signal derived

from the reflex loop to provide feedback and enable the learning process. Yet, the precise

manner in which this feedback is harnessed hinges upon the architecture and operational

aspects of the learning unit. In this section, we delve into the application of a deep neural

network as the learning unit within the framework of the closed-loop learning platform.

This concept is depicted in Figure 2.12, which showcases the utilisation of a deep neural

network employing the backpropagation (BP) technique. In direct contrast to the ICO
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learner, the error signal is fed to the learner at the output layer and is subsequently

propagated through the various layers of the network.

Figure 2.12: Displays the closed-loop deep learning (CLDL) platform. It illustrates that
the error signal undergoes transformation through the TR transfer function and is

subsequently introduced into the deep network at its output. This, in turn, triggers weight
adjustments in each layer through the process of backpropagation.

Section 2.3 outlined a mathematical derivation of the backpropagation technique in

the context of open-loop deep neural networks. In this section, we will illustrate the

customisation of this technique for implementation in closed-loop learning platforms in

which the error linked with the output of the network P is not a known entity. This

implies that neither the agent nor the environment is aware of the desired output Pd.

Instead, the desired input to the reflex mechanism of the agent is known, therefore, the

error can be defined at the point of reflex input. This is called input-control. To establish

this distinction, we define the closed-loop cost function as the quadratic form of the closed-

loop error:

Cc = E2 (2.35)

The objective is to formulate a learning rule that adjusts the weights to minimise the

closed-loop cost function. This minimisation process is instrumental in attaining zero error

and accomplishing the overarching learning goal. Adhering to the approach outlined in

Mehta and Merhav (1986), we perform partial derivatives within the z-domain and operate

under the assumption that weight adjustments over time occur at a relatively gradual

pace compared to the dynamics of the closed-loop system (Porr and Miller, 2020). This

allows us to represent the sensitivity of the cost function concerning the weights as follows:
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∂Cc

∂ω
= 2|E|∂E

∂ω

∣∣∣
ωmin

= 0

{
E = 0, learning goal

E ̸= 0, local minima
(2.36)

To derive an update rule, it is advantageous to distinguish between the closed-loop

context and the internal dynamics of the network. This distinction is imperative due

to the unique characteristics and the rate of change of these components. While closed-

loop signals exhibit rapid changes, the inner parameters are presumed to undergo slower

variations. The network’s output P acts as the intermediary signal or factor bridging

these two domains. By employing the chain rule, as explained in the theory section, we

can mathematically represent this relationship as follows:

∂Cc

∂ω
=

∂Cc

∂P
· ∂P
∂ω

= GcGn (2.37)

The initial partial derivative, termed the closed-loop gradient, exclusively concerns

the closed-loop dynamics, whereas the second derivative, the network gradient, is solely

relevant to the network’s internal mechanisms. With this distinction established, we can

now delve into the examination of each of these gradients within the framework of their

respective systems.

Commencing with the closed-loop gradient and referencing Equation 2.35, we acquire:

Gc :=
∂Cc

∂P
= 2|E|∂E

∂P
(2.38)

By referencing Equation 2.30, the derivative of E with respect to P is determined as

follows:

Gc = 2|E| −LMRERS

1 +RMRERS

= 2|E|TR (2.39)

Where TR is the transfer function of the reflex loop.

2.6.2 Drawing Parallels to Open-Loop Learning

This section explores the connection between closed-loop deep learning and the conven-

tional, widely accepted open-loop deep learning methodologies. It serves to demonstrate

that minimising our closed-loop error is equivalent to minimising the open-loop error. In

practical applications like robot navigation and other real-life robotic tasks, the open-loop
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error is unavailable. Thus, it becomes imperative to address this discrepancy and show

how the closed-loop error can effectively be employed for training purposes and minimised

by the learner.

In contrast to closed-loop applications, the open-loop error Eo is determined at the

network’s output. This is output-control. It represents the difference between the net-

work’s output P and the desired output Pd, the latter being a known quantity in open-loop

applications. This is calculated as:

Eo = Pd − P (2.40)

Therefore, the open-loop cost function is defined as follows:

Co = Eo
2 = (Pd − P )2 (2.41)

The network’s objective is to minimise this cost function, a goal accomplished through

the utilisation of the gradient descent technique. Similar to Equation 2.37 for the closed-

loop scenario, the minimisation of this cost function with respect to the network’s weights

results in:

∂Co

∂ω
=

∂Co

∂P

∂P

∂ω
= GoGn (2.42)

Here, we encounter the network gradient again. However, the first partial derivative

corresponds to the open-loop gradient. By applying equations 2.41 and 2.40, this can be

calculated as:

Go = 2Eo
∂Eo

∂P
= 2Eo = 2(Pd − P ) (2.43)

Given this definition, we can explore the interconnection between the open-loop and

closed-loop errors. In the closed-loop scenario, solely the intended input to the reflex is

ascertainable. Yet, it is understood that this intended input can solely be generated by

the desired output of the network. To articulate this interrelation, we substitute for Id in

Equation 2.28 in the ensuing manner:
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E = (ERM + PdLM +DR)RERS − (ERM + PLM +DR)RERS (2.44)

= (Pd − P )LMRERS (2.45)

= Eo LMRERS (2.46)

This signifies that the deviation in parameter P cannot be measured directly. Rather,

it traverses through the motor actions of the learner LM , the reflex’s environmental compo-

nent RE, and the sensory unit of the reflex RS before becoming evident as the closed-loop

error E. As depicted in Equation 2.46, it is evident that the minimisation of the open-loop

error mirrors the minimisation of the closed-loop error, and vice versa. Nevertheless, this

is contingent upon the product (or sequence) of the aforementioned transfer functions not

equating to zero:

LMRERS ̸= 0 , therefore: E = 0 ⇐⇒ Eo = 0 (2.47)

Therefore, it becomes viable to substitute the open-loop error and cost function with

their closed-loop counterparts for the gradient descent technique.

Having established the dynamics of the closed loop, we transition to investigating the

intrinsic interconnections and parameters within the network. This involves understanding

how these elements acquire the ability to produce desired outputs through the process of

learning.

2.6.3 Inner Working of Neurons

Forward propagation and back-propagation were explained in previous sections. The key

distinction in this context is that the closed-loop cost function is based on the closed-loop

error. The sensitivity of this cost function to the weights is determined by separating the

dynamics of the platform from those of the network.

We previously explored the platform gradient and linked it to the open-loop gradient.

In this section, we will delve into the network gradient, denoted as Gn. When considering

a specific weight, this is defined as:

Gn =
∂P

∂ωℓ
ij

(2.48)

This is then unravelled using the chain rule, with the linking term being the activation

of the corresponding neuron:
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Figure 2.13: Displays the internal connections between two neighbouring neurons within
PaM network. Forward propagation of inputs in shown with the left-to-right solid lines
highlighted in green. σ is the sigmoid activation function and Aℓ

j denotes the activation
of the jth neuron in layer ℓ. [ω]ℓij is the weight matrix associated with inputs I to this

layer. The summation node aO corresponds to Equation 2.4. Backpropagation pathway is
shown with right-to-left dashed lines highlighted in blue. The summation at node bO and
product at node cO correspond to Equation 2.16. The internal error at node dO, together
with the learning rate η and the input to the neuron Aℓ−1

i , join to drive the learning rule,
corresponding to Equation 2.54.

Gn =
∂P

∂vℓj
·
∂vℓj
∂ωℓ

ij

(2.49)

The latter partial derivative is the activation of the neuron associated with the weight:

∂vℓj
∂ωℓ

ij

= αℓ−1
i (2.50)

The former partial derivative contains the linking term related to the closed-loop plat-

form. This term is termed the “linking error”, denoted by γ. It is computed using the

back-propagation technique explained in Section 2.3:

γℓ
j =

∂P

∂vℓj
=

∂P

∂αℓ
j

·
∂αℓ

j

∂vℓj
= ΣK

k=0(ω
ℓ+1
jk γℓ+1

k ) · σ′(vℓj) (2.51)

Recall the derivation of the open-loop internal error presented in Equation 2.17. By

definition, the internal error represents the sensitivity of the cost function with respect to
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the accumulation within a neuron. In the closed-loop context, this is expressed as:

δℓj =
∂C

∂vℓj
=

∂C

∂P
· ∂P
∂vℓj

(2.52)

Based on the derivations presented in Equations 2.39 and 2.51, we can conclude the

following:

δℓj = 2|E| −LMRERS

1 +RMRERS

∂P

∂αℓ
j

= 2|E|TR · γℓ
j (2.53)

2.6.4 Learning Rule

The learning rule for closed-loop deep learning can be formally articulated as:

∆ωℓ
ij

CLDL
= η

∂C

∂ωℓ
ij

= ηδℓj(z)α
ℓ−1
i (−z), η << 1 (2.54)

Wherein the learning rate, denoted by η, is sufficiently small to ensure that the net-

work’s dynamics are inconsequential in relation to those of the closed-loop platform. The

employment of the complex variable z serves to underscore for the reader that this learning

paradigm operates within the z-space, in contrast to the open-loop approach.

To authenticate the back-propagation mechanism in the z-space, we can dissect the

update rule for an arbitrary weight component and subsequently investigate expressions

pertinent to the propagation dynamics.

∆ωℓ
ij = η · ∂C

∂ωℓ
ij

(2.55)

= η · ∂C
∂P

· ∂P
∂vℓj

·
∂vℓj
∂ωℓ

ij

(2.56)

= η · 2|E| −LMRERS

1 +RMRERS

· ΣK
k=0(ω

ℓ+1
jk γℓ+1

k ) · σ′(vℓj) ·αℓ−1
i (2.57)

Distributing the closed-loop term inside the summation and subsequently refining the

expression, we obtain:
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∆ωℓ
ij = η · ΣK

k=0(ω
ℓ+1
jk δℓ+1

k )αℓ−1
i (2.58)

= η · ΣK
k=0(ω

ℓ+1
jk

∆ωℓ+1
jk

η · αℓ
j

)αℓ−1
i (2.59)

= η · ΣK
k=0(ω

ℓ+1
jk ∆ωℓ+1

jk )
αℓ−1
i

η · αℓ
j

(2.60)

= ΣK
k=0(ω

ℓ+1
jk ∆ωℓ+1

jk )
αℓ−1
i

αℓ
j

(2.61)

It is evident that the weight modifications in deeper neural layers exert an influence

on the weight adjustments in the proximal layer, thereby illustrating the propagation

mechanism inherent to the closed-loop system.
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2.7 Application & Experimental Setup

The learning paradigms developed in the previous sections are implemented and evaluated

using a line-following robot, encompassing both simulation-based and custom-built phys-

ical robot experiments. In both scenarios, the robot is positioned on a canvas and tasked

with navigating a looped path.

2.7.1 Simulation Environment

The simulation environment was constructed using Enki (Porr and Daryanavard, 2020),

a software framework developed in the Qt C++ programming language. This choice

facilitated the integration of physics principles into the simulation framework. Figure 2.14

depicts the simulation environment, showcasing the canvas—a JPEG image simulating a

100 cm by 100 cm playground incorporating the c-shaped looped pathway. The primary

objective for the robot involves adhering to this trajectory with a symmetrical orientation

relative to the path.

Figure 2.14: The environment for simulations modelled with Qt: The canvas, the
c-shaped path, and the robot (not to scale) placed on it.

2.7.2 Real Experimental Setup

2.7.2.1 The Playground: Canvas

Figure 2.15 showcases the experimental setup. The canvas measures 80cm by 100cm,

featuring a looped path resembling the shape of a butterfly. This canvas was employed as
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the physical setting for our empirical investigations. Within this setting, the primary aim

of the robot is to trace the path while maintaining a symmetrical position relative to the

path.

Figure 2.15: The environment for the real experiments: The canvas, the path, and the
robot (not to scale) placed on it.

2.7.2.2 The Custom-Made Physical Robot

The robot was constructed using a Parallax SumoBot as a mechanical test-bed. A RPi

served as the central computational unit, and an Arduino Nano was utilised as the motor

controller. Figures 2.16 portray schematic drawings of the robot (not to scale). The robot’s

chassis accommodates a battery and houses component wiring. It incorporates two wheels,

an array of light sensors, and a camera. The RPi functions as the central processing unit

for hosting learning algorithms, which can be accessed remotely over WiFi.

The robot can navigate utilising either its reflex mechanism, its learning algorithm, or

a combination of both. In the following sections, we will detail the attributes of the reflex

and learning mechanisms. These components are shared between the simulated robot and

the custom-built robot. Pictorial representation of the robot are shown in Figure 2.17.

2.7.2.3 Wireless Transmission

The robot is equipped with a wireless navigation system powered by a battery bank. This

setup enables the robot to navigate its designated path smoothly. For the purpose of

monitoring and controlling the experiments, a wireless communication arrangement was
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Figure 2.16: Shows the configuration of the robot and the canvas on which it navigates. A
battery bank is placed on the chassis that powers the raspberry pi 3B+ (RPi) and

provides power to the array of light sensors [G]6 and the motors. The camera provides
vision of the path ahead from point aO to bO. The star sign marks a disturbance in the

path, such as a bend. A) Shows the side view B) Shows the top view

established between a personal computer and the RPi enclosed within the robot. This con-

figuration facilitates real-time tracking of the robot’s movements, parameter adjustment,

and data collection throughout the course of the experiments.

2.7.2.4 Graphical User Interface (GUI)

The experiments were monitored using a custom-designed GUI, depicted in Figure 2.18.

This tool is essential for manipulating the physical parameters of the setup to determine

the optimal configuration for the experiments. Specifically, the error multiplier and net

output multiplier can be adjusted via a sliding bar to identify a configuration that enables

stable trials across a broad range of learning rates. Once these parameters are identified,

they are maintained consistently across all trials for a given set of results.

Additionally, the GUI displays signals from the sensors (coloured traces), the resulting

error signal (black trace), and the integral error (white trace) for monitoring purposes.

The top section shows the number of time-steps or iterations of learning, as well as the



2.7. APPLICATION & EXPERIMENTAL SETUP 63

A) Isometric View B) Side View

C) Front View

D) Top View

Figure 2.17: Pictorial representation of the custom-made robot: A) Isometric view, B)
Side view, A) Front view, and A) Top view.

maximum and average values of the error integral, including the threshold below which

successful learning is achieved. Furthermore, the raw and final values of the error and

network output, after multiplication by their respective gains, are presented in the top

banner.

2.7.3 Reflex Components of the Robot

2.7.3.1 Light-Dependent Resistor (LDR) Array

The reflex mechanism receives sensory inputs from an array of light sensors. This array

comprises six light dependent resistor (LDR) symmetrically positioned underneath the

robot’s chassis in proximity to the canvas, as illustrated in Figure 2.16A. The LDR will

be referred to as the ‘sensor’ in the following sections. On the left and right sides of the

robot, individual sensors are labelled as S1,2,3 and S∗1,2,3, respectively. The star symbol

indicates the sensor’s symmetrical positioning relative to its counterpart on the opposite

side of the robot, as depicted in Figure 2.16B.
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Step:97      Thsh:0.002         Net out:   -0.0160(-0.0192)

Max:0.155    ave:0.095          Error:     +0.0000(+0.0000)

Error Multiplier:

Net Output Multiplier:

(base & power)

0.00                                                        10.00

0.00                                                        10.00

0.00                                                        20.00

1.90

1.20

0.00

Statistics & Options

Figure 2.18: Custom-designed GUI used for monitoring and manipulating physical
parameters during experiments. The interface allows adjustment of the error multiplier
and net output multiplier to achieve stable trials across various learning rates. Displayed
signals include sensor outputs (coloured traces), error signal (black trace), and integral
error (white trace). The top section shows the number of learning iterations, maximum
and average values of the error integral, threshold for successful learning, and the raw

and final values of error and network output after gain multiplication.

2.7.3.2 Sensors’ Field of View (FoV)

Each sensor receives reflected light from a small section of the canvas positioned directly

beneath it. We term this area the FoV of the sensor, depicted by a dotted circle encom-

passing sensor S∗1 in Figure 2.16B.

2.7.3.3 Grey-Scale Value (GSV)

During navigation, these sensors translate changes in reflected light intensity into voltage

fluctuations, which are sampled by the 8-bit analog to digital converters (ADCs) on the

Arduino Nano (28 = 256). As a sensor’s FoV transitions from fully capturing the black

path to capturing only the white background, it generates a voltage potential (Vi) within

the range of ∆V = (600− 1500)[mV ]. We determine the grey value (G) of each sensor by
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linearly mapping its voltage potential to a range of [0, 256) ∈ N. This range signifies the

gray-scale value (GSV) of the sensor’s FoV.

Gi = (Vi − 600)×
(
256

∆V

)
(2.62)

2.7.3.4 Measure of Deviation

The G values of the sensors are directly proportional to the presence of the black path

in their respective FoVs. This characteristic facilitates the determination of the vertical

alignment of each individual sensor concerning the path, thereby serving as a measure

of the robot’s relative positioning. For example, in Figure 2.16B, sensor S∗3 is vertically

aligned with the path, resulting in a low grey value value, closer to 0, while the other

sensors exhibit high grey value values, closer to 256. The alignment of this sensor with

the path indicates a significant overall deviation of the robot to the left. Conversely, the

alignment of sensor S1 would imply a slight overall deviation to the right.

2.7.3.5 The Error Signal (E)

From a technical perspective, the robot’s deviation from the path is measured by a

weighted sum of the discrepancies in G between symmetrical sensor pairs. Consequently,

the experimentally obtained value of E, as defined earlier in Equation 2.20, can be repre-

sented as:

E = Σ3
i=1Ki(Gi −G∗i ) [GSV ] (2.63)

The weighting factor, Ki, increases linearly with i to capture the extent of deviation.

Thus, the further the active

sensor is from the centreline, the more pronounced the spike in E. This signifies a

greater deviation, where a positive value implies deviation to the left, and a negative

value implies deviation to the right.

2.7.4 Learning Components of the Robot

2.7.4.1 Camera Image

A camera provides predictive sensory inputs for the robot’s learning process by capturing

a 1280× 720 pixel image of the surrounding environment. Unlike the light sensors, which

are based on voltage readings, the camera directly provides the GSV of the pixels within
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the range of [0, 256) ∈ N. This information enables the robot to anticipate steering by

providing insight into the path in the near distance.

To alleviate computational demands, the camera image is segmented into square re-

gions, as depicted in Figure 2.16B. Each region is assigned the average GSV of the pixels

it encompasses, thereby generating a sensory input from the camera in the form of an

8× 12 matrix denoted as [I]mn. Similar to the light array sensors, the differences between

symmetrical entries in this matrix quantify the expected degree of deviation in the near

distance:

Cij = Iij − Iij∗ (2.64)

1 ≤ i ≤ m, 1 ≤ j ≤ ⌊n
2
⌋ and j∗ + j = n+ 1

The 8× 6 matrix formed by the camera signals Cij contains information about forth-

coming turns. A non-zero value of Cij indicates a turn, with j representing the sharpness

of the bend, i representing the distance of the turn from the current position, and the sign

of Cij indicating whether the turn is to the right or left. These matricised camera signals

are then fed into the network.

2.7.4.2 Filter Bank (FB) & Predictors

To achieve an optimal correlation with the error signal during learning (Daryanavard and

Porr, 2020a), each camera signal undergoes a delay via a FB of 5 finite impulse response

(FIR) filters represented by Fh.

Pk = Fh ∗ Cij (2.65)

where 1 ≤ h ≤ 5, 1 ≤ i ≤ m, 1 ≤ j ≤ ⌊n
2
⌋

This produces a sequence of 240 predictor signals denoted as Pk, which are then sup-

plied to the learner. It is worth noting that the predictors do not convey any explicit

information to the learner; they are essentially the camera view but grouped together and

filtered. However, the learner deduces the relevant information from these signals, which is

then used to turn right or left with the correct timing and intensity. This process results

in the generation of the anticipatory action of the learner, which is integrated into the

overall motor command sent to the robot, as described below.
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2.7.5 Motor Command (MC)

The robot manoeuvres by modifying the speeds of the right and left wheels, labelled as

VR and VL respectively. These wheels typically rotate at a constant speed of V0 = 5[ cms ]

when idle, and their velocities are adjusted through a motor command (MC) sent to them

for modulation. Precisely, the MC is defined as:

VR = V0 +MC, for right wheel.

VL = V0 −MC, for left wheel.
(2.66)

The MC is generated collaboratively by both the reflex mechanism and the learner.

Therefore, it constitutes the sum of the reflex and predictive actions outlined in Section 2.5:

MC = A+ A′ (2.67)

The proportionality constant of A is linked to E, whereas A′ is calculated as a weighted

sum of the activations in the output layer:

A ∝ E, reflex action.

A′ = f([A]L) = [M ]1,n · [A]Ln,1, predictive action.
(2.68)

Where [M ] signifies a weighting matrix applied to the activations of the output layer.

This is a one-dimensional matrix that, when multiplied by the outputs of the network,

results in a single scalar value that is sent to the motors for steering action. The use of

this matrix allows for varying degrees of steering control for the robot, contingent on the

active neuron and its associated weight factor. In particular, the weight factor can be

tuned to enable sharp, moderate, or gradual steering adjustments.

2.7.6 Experimental Procedures

Throughout the experiments, the robot was consistently positioned at the same location

on the canvas, ensuring reproducibility of the results. The process of data collection and

learning initiated when any of the robot’s sensors initially detected the path. Starting from

this juncture, the robot commenced learning and adapting to follow the path, with the

learning process vigilantly monitored via the GUI. Once the robot successfully generated

the model of its environment, it would automatically deactivate the wheels and come to a

halt, signifying the completion of the learning process. This methodology guaranteed the
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reliability and consistency of the robot’s learning process across all experiments.

2.7.6.1 Data Collection

The sampling rate for the experiment was established at 33Hz on the Arduino Nano. The

data collected from all experiments encompassed several crucial parameters for the analysis

of the robot’s learning process. These factors comprised the error signal E, error’s moving

average Ē over a fixed number of steps n as in Equation 2.69, absolute error integral ⟨E⟩
over the entire duration of the trial N , see Equation 2.70, predictors GSV readings I ′,

predictive motor command A′, network’s outputs Pi, individual neuron’s weight changes

ωℓ
ij, final weight distribution of the first layer, and the (x, y) coordinates of the robot to

plot its trajectory.

Error average: Ē =
1

n
Σt−n

t E(t) (2.69)

Error integral: ⟨E⟩ = ΣN
t=0 |E(t)| (2.70)

From the gathered data, we derived an additional primary factor: the time required to

attain successful learning. These metrics were employed to compare the various learning

modalities introduced in this study. Through this data analysis approach, we were able

to gain valuable insights into the robot’s learning process and the effectiveness of different

learning strategies. The data collected and scrutinised in this investigation provided a

comprehensive understanding of the learning process, aiding in the identification of the

most effective avenues for achieving successful learning.

In this work, the Euclidean distance of weights in each layer is used as an indicator of

weight convergence stability. This is calculated as the multidimensional distance of the

weight matrix [ω] at time t
′
from its initialisation matrix at time t0:

Ed(t
′
) = Euclidean([ω]

∣∣∣
t′
, [ω]

∣∣∣
init

) (2.71)

= 2

√
ΣI,J

i,j=0(ω
ℓ
ij

∣∣∣
t′
− ωℓ

ij

∣∣∣
t0
)2

This parameter is calculated within individual layers of the network where ℓ is constant.

2.7.6.2 Condition for Successful Learning

In this study, the criterion for the success of the robot’s learning process was established

as the point at which the error signal fell below 1 % of its maximum value and sustained

that state for a minimum of 100 time steps.
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tS = T if ⟨E⟩ < max(E)/100

∣∣∣∣∣
T−100

T

and T > 100 (2.72)

To avoid erroneous identification of the success condition, the program initiated the

evaluation process after the initial 100 steps had lapsed, thereby allowing for the accu-

mulation of errors. This methodology ensured precise detection of the success condition,

guaranteeing that the learning process had fully concluded before being deemed success-

ful. By defining the success condition in this manner, we achieved a precise assessment

of the efficacy of diverse learning modalities and pinpointed the most effective approaches

for attaining successful learning outcomes. This approach to setting the success condition

upheld the reliability and accuracy of the results obtained throughout this thesis.

2.7.6.3 Network Architecture

In the following chapters, we present the results of comparing various learning algorithms.

All experiments in this study utilised a fully connected feedforward neural network. In

all experiments, the networks are initialised with random weights and do not use any bias

terms. This design choice stems from the fact that the network is intended to receive pre-

dictive inputs and generate motor commands, both of which are DC-free difference signals.

Additionally, the control error used to train the network is also DC-free by definition.

Different network architectures were explored. Figure 2.19 illustrates the architecture

of the network used in this study. It depicts FIR filter banks before the input layer,

consisting of five low-pass filters acting on each input. This feature is consistent across all

experiments. Additionally, the output layer consists of three neurons, and their weighted

sum of activations produces the predictive action. This facilitates slow, moderate, and

fast steering.

However, the network’s shape can vary from experiment to experiment, depending on

the number of layers and the number of neurons in each layer. The number of predictor

signals can also vary between experiments, influencing the number of neurons in the first

layer. At the start of each results section, we will specify these varying parameters.

2.8 Results

2.8.1 Successful Replica of ICO Learner

As described in preceding sections, the replication of the ICO learner served as an initial

endeavour within this project. The experiments pertaining to the ICO learner were con-

ducted using the simulation program introduced above. The robot was designed with two
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Figure 2.19: Architecture of the neural network used across all experiments: a
feedforward network composed of fully connected layers. This figure illustrates the

filtering stage of the predictors with a filter-bank (FB), resulting in time-delayed inputs to
the network. This aspect is consistent across all experiments. There are three neurons in

the output layer, which remains constant across all experiments. Nonetheless, the
number of predictors, hidden layers and the number of neurons in those layers can vary

for each experiment.

predictors, and, in alignment with the architecture of the ICO learner, one neuron was

assigned to each predictor. The readings from each predictor were filtered by a low-pass

FIR filter.

2.8.1.1 Error Minimisation

Figures 2.20A and B illustrate the GSV readings for the two predictors depicted as solid

lines, accompanied by their filtered signals presented as dashed lines. Figure 2.20C show-

cases the error signal during a reflex trial as a grey solid line and the error signal during

a learning trial involving the ICO learner as black solid lines.

These results clearly show that in the absence of learning, the reflex error persists

throughout the trial duration. However, in another trial with the learning mechanism

engaged, the error signal diminishes to zero at approximately 50[s], with only two minor

pulses occurring later at 200[s] and 320[s]. This decrease in error is due to the actions

of the predictors shown in panels A and B, which supply input to the ICO learner, thus
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Figure 2.20: Results from simulated experiments with the ICO learner. A, B) Displaying
the activity of the two predictors along with their filtered signals using a low-pass FIR
filter. C) Depicting the error signal during a reflex trial in grey, and during a learning

trial in black traces. The y-axes represent the activities in GSV, while the x-axes
represent time in seconds.

generating the steering command. These predictor signals correlate with the error signal

and drive the weight changes essential for learning.

2.8.1.2 Weight Changes

As reiterated earlier, the ICO learner was structured with two inputs. The weights associ-

ated with these inputs are visualised in Figure 2.21. Notably, the weight changes depicted

in panels A and B mirror the behaviour of the corresponding predictor inputs showcased

in Figures 2.20A and B, respectively.

This concludes the simulated experiments involving the ICO learner, which serves as

a reference point for evaluating the CLDL algorithm, explored in subsequent sections.

2.8.2 Initial CLDL Algorithm (1.0.0) versus ICO Learner

The following findings in this section refer to result (a) in Figure 1.1 in the preface. Moving

from the preliminary exercise, we proceeded to devise the initial CLDL algorithm. To

facilitate a meaningful comparison, we executed a simulated trial employing an identical

robot configuration as the ICO trial. This entailed having two predictors, each filtered by
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Figure 2.21: Weight changes in a simulated trial with the ICO learner. A) Depicts the
alterations in the weight linked to the first predictor. The y-axis denotes the relative
amplitude, and the x-axis corresponds to time in seconds. B) Illustrates the results for

the second weight associated with the second predictor.

the FIR filters with the same characteristics. The neural network was structured with a

simple architecture, comprising two layers: an input layer featuring two neurons to receive

the predictors and an output layer encompassing a single neuron responsible for generating

the motor command.

2.8.2.1 Error Minimisation

The behaviour of the two aforementioned predictors is illustrated in Figures 2.22A and B.

Panel C further showcases the error signal during the reflex trial (grey line) overlaid with

the error signal during the CLDL learning trial. It is evident that in the learning trial,

the error has been significantly reduced in contrast to the reflex trial.

Furthermore, comparing these outcomes with the ICO learner’s results underscores a

distinct enhancement in the error profile. Primarily, the initial spikes within the first 50

seconds exhibit reduced magnitudes and occur less frequently. Secondly, the subsequent

pulses seen at 200 seconds and 320 seconds are notably more negligible in comparison to

those of the ICO learner.

2.8.2.2 Weight Changes

The weights of the neurons were initialised to 1 before the learning trial. Figure 2.23

illustrates the weight changes pertaining to the neurons linked with the predictors, as
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Figure 2.22: Results from simulated experiments with CLDL. A, B) Displaying the
activity of the two predictors along with their filtered signals using a low-pass FIR filter.
C) Depicting the error signal during a reflex trial in grey, and during a learning trial in
black traces. The y-axes represent the activities in GSV, while the x-axes represent time

in seconds.

observed in the learning trial. Notably, their alterations align with the behaviour of the

predictors in Figures 2.22A and B, as anticipated.

This concludes the initial experiments involving CLDL, and its comparison with the

ICO learner. The subsequent stages involve the expansion of CLDL to encompass addi-

tional layers and neurons, handle a greater number of predictors, and eventually extend

to deployment on a physical robot. The forthcoming sections delineate the progressive

evolution of CLDL into a robust and comprehensive algorithm.

2.8.3 Finalised CLDL Algorithm (2.0.0)

The following findings in this section refer to result (b) in Figure 1.1 in the preface.

The results presented in this section are published in our journal paper Daryanavard and

Porr (2020a). This section is divided into two segments. Initially, we present the outcomes

derived from simulations. Subsequently, we unveil the results from experiments conducted

on the physical robot.
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Figure 2.23: Weight changes in a simulated trial with CLDL. A) Depicts the alterations
in the weight linked to the first predictor. The y-axis denotes the relative amplitude, and
the x-axis corresponds to time in seconds. B) Illustrates the results for the second weight

associated with the second predictor.

2.8.3.1 Experiments in Simulation

Compared to the prior findings, the simulation environment underwent enhancements,

evolving into a more intricate configuration. In this advanced setup, the robot was

equipped with multiple predictors, and the neural network was expanded to encompass

four layers, comprising 40 neurons in the input layer, 12 neurons in the first hidden layer,

6 neurons in the second hidden layer, and a single neuron in the final layer. This leads to

a collective count of 59 neurons.

2.8.3.1.1 Error Minimisation Figure 2.24A exhibits the error signal throughout a

reflex trial. In this trial, the robot engages in navigation without the help of learning,

essentially setting the learning rate to zero (η = 0). This trial serves as a reference

point for evaluating the learner’s performance, providing a visual basis for subsequent

comparisons.

The reflex error signal is observed to persist continuously throughout the simulation, as

depicted in Figure 2.24A. The error’s sign changes every time the robot alters its direction,

and the error signal only reaches zero when transitioning from negative to positive. This

evidences that the reflex controller fails to maintain a constant zero error.

In contrast, Panel B visually represents the error signal observed during a learning

simulation utilising a learning rate of η = 10−2. Evidently, the error signal experiences a
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Figure 2.24: Illustrates the error signal for CLDL experiments conducted within the
simulation environment. A) Depicts the error during a trial with the reflex mechanism

solely, wherein learning is inactive. B) Displays the error for a learning trial. The y-axis
represents the error magnitude in GSV, while the x-axis signifies time in seconds.

notable reduction. The learning process occurs rapidly, with only an initial spike and

three subsequent pulses at cross-overs of the path, converging within approximately 2

seconds.

2.8.3.1.2 Euclidean Weight Distance & Convergence Figure 2.25 showcases the

Euclidean distance between the weights and their initial random values during the learning

trial. The graph visually depicts a progressive rise from zero, gradually converging to

approximately 1. Given that the error signal is disseminated as a weighted sum of internal

errors, all layers display similar behaviour in their weight adjustments. As predicted, the

timing of weight modifications corresponds to instances when the error signal registers as

non-zero.

2.8.3.1.3 Input Layer Weight Distribution Figure 2.26 presents the weight distri-

bution within the first layer, accentuating the relative significance of each input as dictated

by their respective weights, ranging from larger to smaller values. Each block relates to

the cluster of filtered signals originating from each predictor.

This weight distribution exhibits a discernible pattern where the outermost predictor
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Figure 2.25: Depicts the Euclidean weight distance within each layer of the neural
network during a learning trial with CLDL in the simulation environment. The y-axis

represents the relative amplitude, while the x-axis corresponds to time in seconds.

Figure 2.26: Illustrates the weight distribution within the first layer of the neural
network. The y-axis represents the index of neurons in this layer, while the x-axis

signifies the index of inputs (the filtered predictors) to this layer. The final weight values
are colour-mapped using a greyscale, where black signifies the highest value and white

represents the lowest value. Each block corresponds to one predictor input.

locations bear larger weights (darker shading), while the innermost locations are assigned

smaller weights (lighter shading). The spatial configuration of each predictor in relation to

the robot is shown in Figure 2.27. Another noteworthy observation relates to the predictor

rows situated closer to the robot, manifesting a more pronounced gradient compared to

those situated further ahead. Both observations align with expectations, as the robot

generates a more robust output for sharper steering when the detected path veers farther

from the centre but remains in proximity to the robot. Conversely, the robot generates a

smaller output for milder steering if the path only slightly diverges from the centre with

the bend appearing in the distance.

2.8.3.1.4 Robot Tracking To provide an enhanced visual contrast between the reflex

and learning trials, the tracking data is graphically presented in Figure 2.28. These figures
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Figure 2.27: Illustration of the virtual robot and its surrounding environment: The robot
consists of a body equipped with two wheels, each with speeds denoted as Vr and Vl, and
two ground sensors referred to as Gr and Gl. These ground sensors are responsible for
generating the closed-loop error E. The robot is positioned on a track and possesses

forward vision facilitated by 16 symmetrical ground light sensors labelled as Ij. These
sensors provide data used to calculate the predictors denoted as Pi which are filtered and

fed into the neural network.

show the trajectory of the robot during both a reflex trial (Panel A) and a learning trial

(Panel B). The visual representation underscores that the presence of learning imparts an

anticipatory characteristic to the steering, resulting in a smoother trajectory. Conversely,

in the absence of learning, the steering response is reactive and triggers abrupt changes.

2.8.3.1.5 Statistics & Reproducibility As demonstrated in Figure 2.24, the learn-

ing algorithm has the capacity to markedly diminish the error. An accurate gauge of this

reduction is the average absolute error. To ascertain the reproducibility of the outcomes of

the trial portrayed in that figure, supplementary simulations were conducted. The average

absolute error magnitude was recorded across simulation runs employing a spectrum of

learning rates η : {10−5, 10−4, 10−3, 10−2, 10−1}, with each instance repeated 10 times.

Figure 2.29 depicts the outcome of these simulation runs. It demonstrates that higher

learning rates enable the robot to minimise the error more effectively.

2.8.3.2 Real-world Physical Experiments

This section provides the outcomes of experiments conducted using the physical robot. As

before, we proceed to compare the performance of the CLDL algorithm with that of the

reflex mechanism, which functions as a benchmark for assessing all learning paradigms.
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Figure 2.28: Illustrates the trajectory of robot navigation during CLDL simulations. A)
Depicts a trial with reflex, wherein learning is inactive. B) Displays a trial with active
learning. The axes depict the x and y coordinates of the robot in centimetres. In both

instances, the initial robot position is indicated, and the navigation direction is
represented by arrows.

Figure 2.29: Displays the reproducibility and statistical analysis of results for CLDL
simulations. The graph showcases the average error for learning rates

η : {10−5, 10−4, 10−3, 10−2, 10−1}, each repeated 10 times.
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2.8.3.2.1 Experimental Setup & Network Architecture The experimental setup

and common aspects of the network are detailed in Section 2.7. The network used for these

experiments consisted of 10 hidden layers, each containing 11 neurons, except for the last

layer which had 3 neurons. The purpose of the last layer was to generate outputs for fast,

moderate, and slow steering commands. This design allowed the robot to have different

levels of steering response depending on its state.

The input to this DNN consisted of 48 predictor signals extracted from the camera

view, as described in the section referenced (Section 2.7). These predictor signals were

processed using an array of 5 low-pass FIR filters to form a total of 240 inputs to the

network.

2.8.3.2.2 Error Minimisation: Trial with η = 10−1 Figure 2.30 contrasts a reflex

trial (Panel A) with a learning trial (Panel B) employing a learning rate of η = 10−1. The

graph illustrates both the error signal (solid lines) and its moving average (dashed lines)

across a quarter of the path. As explained earlier, the aim is to diminish the error signal,

ideally converging it to zero.

Figure 2.30: Results of a trial conducted on a real robot using the CLDL algorithm with
a learning rate of 10−1. Both panels display the error signal as a solid line and its

corresponding moving average as a dashed line. On the left side, the y-axis represents the
magnitude of the error signals, while the right side corresponds to the moving average
values. The x-axis represents time in seconds. A) shows these results for a reflex trial,

B) shows these results for a learning trial.
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In Panel A, it is evident that the reflex error persists throughout the duration of the

trial. The moving average of the error reaches its peak of approximately 1.5 GSV at

around 20 seconds and maintains this peak until the trial’s conclusion.

Moving to Panel B, the same trial is repeated, but with the CLDL learning mechanism

activated. The error signal experiences a substantial reduction in both its persistence and

magnitude. Initially, the error appears for a short period of less than 10 seconds before

briefly re-emerging around 40 seconds. It then returns to zero and remains there for the

remainder of the trial. The moving average of the error also illustrates this improvement,

with its maximum remaining below 0.5 GSV.

These results showcase the rapid learning capabilities of the CLDL algorithm, as it

successfully constructs a predictive model of the reflex mechanism in just 40 seconds.

2.8.3.2.3 Error Minimisation: Trial with η = 10−3 For comparison, another trial

with a slower learning rate is investigated.

Figure 2.31: Results of a trial conducted on a real robot using the CLDL algorithm with
a learning rate of 10−3. A) showcases the neural network’s output (P ), B) presents the
error signal as a solid line and its corresponding moving average as a dashed line. On

the left side, the y-axis pertains to the magnitude of the error signals, while the right side
corresponds to the moving average values. The x-axis depicts time in seconds.

In Panel A of Figure 2.31, the output of the network P is depicted for a trial at a

learning rate of η = 10−3. Panel B shows both the error signal and its moving average
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for this trial. A comparison of these results with the reflex error signal presented in

Figure 2.30A highlights a gradual reduction in the error signal.

The formation of the motor command involves a combination of the signal P and the

error signal, as described in Equation 2.68. Notably, as the output of the network P in-

creases in magnitude, the error signal decreases, thereby generating an appropriate motor

command at each point during the trial. This interaction between the network’s output

and the error signal contributes to the improvement in the error reduction observed in this

trial.

With increasing learning rates, the behaviour and convergence of the neural network

can vary widely depending on several factors: 1) Architecture, which includes the number

of layers, neurons per layer, inputs, and outputs, 2) Configuration, which involves aspects

like weight initialisation and the activation functions used, and 3) External Factors which

can include the robot’s speed and the camera view, among others. Neural networks of this

size are highly non-linear and unpredictable. Despite this, there are observable trends and

patterns in the collective results of this work. Generally, a higher learning rate leads to

faster learning. However, beyond a certain threshold, increasing the learning rate further

can result in no additional improvements or even cause instability in the network. This

phenomenon is explored in later experiments involving SaR learning, refer to Section 3.5.7.

2.8.3.2.4 Euclidean Weight Distance & Convergence In this section, we delve

into the analysis of weight changes for the trials discussed earlier. Figure 2.32 provides

insight into the Euclidean distance of the weights from their initial random values. This

distance is a metric used to quantify how much the weights have changed over time. Panels

A and B display this analysis for the two trials presented above, with learning rates of

η = 10−1 and η = 10−3, respectively.

In both cases, the weight changes occur at moments where the error signal is present,

consistent with the error fluctuations observed in Figures 2.30B and 2.31B. This correspon-

dence aligns with the learning rule, which stipulates that weight adjustments are made

when the error signal is non-zero, allowing the system to work towards reducing the error.

If the error signal is zero, there is no need for further weight changes.

Figure 2.32A demonstrates the weight changes for a higher learning rate of 10−1. This

leads to more abrupt and significant weight changes, resulting in an overall greater weight

change magnitude of 8 × 10−1. Panel B depicts the weight changes for a slower learning

rate of 10−3, which results in an overall smaller weight change magnitude of 4× 10−1.

Comparing the two panels highlights a trade-off between weight stability and the time

required for learning. Higher learning rates can lead to unstable behaviour and over-

fitting, while slower learning rates offer more stability at the cost of longer learning times
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Figure 2.32: Depicts the Euclidean weight distances for each layer of the network during
trials with the CLDL algorithm on the real robot. A) displays these results for a trial

with a high learning rate of 10−1, B) shows these results for a trial with a slow learning
rate of 10−3. The y-axis represents the distance of the weights, and the x-axis represents

time in seconds.

Shalev-Shwartz and Ben-David (2014).

2.8.3.2.5 Input Layer Weight Distribution The first layer is of particular impor-

tance as it is the initial point of interaction with the sensory predictive inputs. This

layer reveals the meaning and significance that the network learns to assign to each input

through the assignment of different weights. The weight distributions in the first layer for

the above trials are depicted in Figure 2.33.

The network assigns weights to different input-neuron connections based on the signif-

icance of each connection. In the weight distributions, the inputs generated from each row

of predictors are filtered and organised into blocks, which are highlighted with dashed rect-

angles. The arrangement of these blocks closely follows the positioning of the predictors,

as shown in Figure 2.16B.

In both cases, whether for a higher learning rate (Panel A) or a slower learning rate

(Panel B), the weight distributions exhibit a pattern. The weights assigned to the filtered

signals coming from the outermost column of predictors, such as P30,60,...,210,240, have higher

values (appear darker in the greyscale representation). In contrast, weights assigned to the

filtered signals from the innermost column of predictors, such as P5,35,...,185,215, have smaller

values (appear lighter). This pattern aligns with the network’s behaviour of generating

more significant steering responses for greater deviations, which occur when the path is

detected in the outer portion of the camera view (activating the outermost predictors).

Conversely, the network generates subtler steering responses for smaller deviations, occur-

ring when the path is closer to the middle of the camera view (activating the innermost
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Figure 2.33: Illustrates the weight distributions within the first layer of the neural
network for trials with CLDL on a physical robot. The y-axis represents the index of

neurons, while the x-axis signifies the index of inputs (the filtered predictors). The final
weights are colour-mapped using a greyscale, where black signifies the highest value and
white represents the lowest value. Each block corresponds to one predictor input. A) the
weight distribution is shown for a trial with a higher learning rate of 10−1 B) the weight

distribution is shown for a trial with a slower learning rate of 10−3.

predictors).

Comparing Panels A and B reveals that the weight distribution is more distinct for a

higher learning rate (Panel A). This indicates that with a higher learning rate, the network

quickly adapts its weight distribution to assign more importance to relevant predictors,

resulting in a more efficient learning process.

2.8.3.2.6 Robot Tracking In this section, we compare the performance of the Reflex

algorithm and the CLDL algorithm by visualising their trajectories while the robot navi-

gates the map. To achieve real-time position tracking, the OptiTrack IR motion capture

system was utilised, which comprises 18 IR cameras and provides tracking precision down

to the millimetre level OptiTrack (2019).

Figure 2.34A displays the trajectory of the robot during a Reflex trial, while Fig-

ure 2.34B depicts the trajectory during a Learning trial. The blue line represents the path

for the Reflex trial, and the green line represents the path for the Learning trial (they are

identical). In both cases, the actual trajectory of the robot is illustrated with solid black

lines.

In Panel A, it is evident that when learning is disabled (Reflex trial), the path followed
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by the Reflex algorithm frequently diverges from the blue path. Multiple crossing points,

denoted by star symbols, are observed (eight crossings corresponding to the eight turns in

the path). The trajectory traced by the Reflex algorithm seems to be a skewed version of

the true path.

Conversely, in Panel B, with CLDL learning enabled (using a learning rate of η =

2 · 10−1), the robot’s trajectory aligns closely with the desired path. Slight deviations at

the top portion of the path represent the initial phase of the trial, where the learner is

still acquiring information, and the error has a more pronounced impact on determining

the motor commands.

Figure 2.34: Illustrates the trajectory of robot navigation during CLDL trials with the
physical robot. A) Depicts a trial with reflex, wherein learning is inactive. B) Displays a
trial with active learning with a learning rate of η = 2 · 10−1. The axes depict the x and y
coordinates of the robot in centimetres. In both instances, the initial robot position is

indicated, and the navigation direction is represented by the arrow.

2.8.3.2.7 Statistics & Reproducibility Up to this point, we have presented results

from three types of trials: a Reflex trial and two Learning trials conducted with high and

low learning rates. To ensure the reliability of these outcomes, each trial was repeated five

times.

For a comprehensive understanding of the impact of the learning rate on the robot’s

performance, we incorporated three additional learning rates into the analysis: η = {2 ·
10−3, 2 · 10−2.5, 2 · 10−2, 2 · 10−1.5, 2 · 10−1}. In Figure 2.35A, we showcase the time required

to achieve success in these various trials. The graph reveals an exponential decrease in
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the time needed for success as the learning rate increases.

Figure 2.35: Statistics and Reproducibility of CLDL results: A) shows this metric
against learning rates of: η = {2 · 10−3, 2 · 10−2.5, 2 · 10−2, 2 · 10−1.5, 2 · 10−1}. B) Shows
the effect of random seed in weight initialisation on the time taken to achieve successful

convergence.

The earlier sections demonstrated that weight changes are a robust indicator of in-

ternal stability and convergence within the network. Therefore, it is essential to explore

the potential impact of random weight initialisation on the experimental outcomes. Fig-

ure 2.35B shows the influence of five different random seeds for weight initialisation on

the time required to achieve success in trials with a fixed learning rate of η = 2 · 10−1.
The depicted results indicate that there is no notable disparity in the data across different

random seeds. This reinforces the credibility of the findings, as the time necessary to

achieve success does not appear to be contingent on the specific random seed used for

weight initialisation.

To conclude, the experimentation with the CLDL algorithm has demonstrated its ca-

pacity to minimise the error signal through its predictive capabilities. These findings have

been published Daryanavard and Porr (2020a). By establishing CLDL as a benchmark, it

can provide a foundation for evaluating forthcoming algorithms that will be introduced in

subsequent chapters.
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2.8.4 GPU Implementation with CUDA

Both the forward propagation of input for prediction and the backward propagation for

training a neural network involve extensive calculations. Forward propagation necessitates

activation calculations for each neuron, while back propagation demands initial error com-

putation before updating each neuron’s weights. Currently, the use of a single execution

thread mandates sequential processing of these calculations. This causes longer process-

ing times and notable delays, particularly in larger networks, which is problematic in

closed-loop systems. However, transitioning to GPU implementation can mitigate these

limitations.

Therefore, the CLDL algorithm was also developed in compute unified device architec-

ture (CUDA) language to enable parallel programming and seamless implementation on a

GPU (Porr, 2021). The CUDA, developed by NVIDIA, is a software framework designed

to harness the capabilities of their graphics cards. Based on C++, CUDA enhances func-

tionality with features for memory allocation, multi-threading, and executing code kernels

on the GPU. The following results were achieved in collaboration with an undergraduate

team.

2.8.4.1 Memory Allocation & Initialisation Time

The GPU, connected to the host system via the PCI bus, lacks direct access to the main

computer’s memory. For GPU execution, data must first be transferred from the CPU

to the GPU space. Once processing is complete, the data typically needs to be moved

back to the CPU for further processing. However, if multiple tasks on the same data are

required, memory can be allocated within the GPU, similar to CPU memory allocation.

This GPU memory space is referenced by a pointer, which can be passed to GPU kernels

when invoked by the CPU (Sanders and Kandrot, 2010).

This process incurs a memory allocation overhead on the GPU. Figure 2.36 illustrates

the relationship between the increasing number of layers (bottom axis) and neurons (top

axis) in the network, and the initialisation time required. The graph’s green and blue traces

represent the initialisation times on the GPU and CPU, respectively. It is observable that

the CUDA memory allocation initialisation on the GPU takes longer with an increasing

number of layers and neurons, compared to C++ memory allocation on a CPU.

2.8.4.2 Propagation in Runtime

Once the network is initialised with the required memory allocations, the duration of one

iteration of forward and backward propagation is examined. Figure 2.37 displays this

propagation time, with the GPU’s performance in green and the CPU’s in blue. As the

number of layers and neurons increases, the CPU’s time to complete an iteration rises
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Figure 2.36: Displays the initialisation time needed for memory allocations: The green
trace indicates an increased overhead for GPU memory initialisation as the number of

layers (bottom axis) and neurons (top axis) grows. The blue trace illustrates that memory
allocation on a CPU is less time-consuming.

exponentially. In contrast, the GPU’s propagation time remains relatively stable, even

with an expanding network. This highlights the efficiency of parallel programming and

the effectiveness of harnessing GPU power.

2.8.4.3 Error Minimisation

Figure 2.38 illustrates the error minimisation performance of CLDL on both CPU and

GPU. Panel A presents the benchmark error signal. Panel B demonstrates a learning

trial on the CPU, while Panel C depicts a corresponding trial on the GPU, with identical

specifications. As anticipated, both trials achieve equivalent results. The slight variations

observed between the trials can be attributed to the different random initialisations of

weights.
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Figure 2.37: Illustrates the time required for one iteration of network propagation: The
blue trace represents CPU implementation, revealing that with an increasing number of
layers (bottom axis) and neurons (top axis), the time for the CPU to complete one

iteration grows exponentially. The green trace demonstrates that the GPU
implementation remains largely unaffected by significant increases in network size.

2.9 Discussion

Closed-loop deep learning (CLDL) utilises a multi-layered neural network, in contrast to

earlier studies that often employed shallow neural networks with only a single layer. Shal-

low networks may not capture complex relationships or accurately predict reflex responses.

Model-free RL, a different approach, involves agents learning to make decisions based on

their interactions with the environment without explicitly modelling it, using deep learning

to estimate the expected rewards associated with actions.

Our approach creates forward models, while model-free RL estimates expected rewards.

Although both approaches use deep neural networks and back-propagation, they serve

different purposes (Dolan and Dayan, 2013; Botvinick and Weinstein, 2014). Model-free

RL focuses on learning optimal decision-making policies based on rewards, whereas our

approach builds predictive models of reflexive responses. Integrating both approaches can

lead to hierarchical RL, where the model-free RL component provides a prediction error

signal for an actor, aiding in the development of forward models. This integration allows
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Figure 2.38: Presents the error minimisation in the CLDL algorithm: A) displays the
error signal during a reflex trial as a benchmark. B) illustrates error minimisation in a
learning trial on a CPU, C) demonstrates error minimisation in a learning trial on a

GPU, which shows the same learning outcome.

model-free RL to guide the creation and refinement of forward models, enhancing learning.

Error back-propagation, used in training neural networks, is well-suited for open-loop

scenarios where the system’s actions do not depend on previous states or actions. In

closed-loop systems, where actions affect subsequent states, recursion complicates back-

propagation. We address this by adopting the z-domain mathematical framework, trans-

forming recursive processes into simpler algebraic equations. This transformation allows

the algorithm to handle closed-loop scenarios more effectively, making it suitable for sys-
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tems with feedback loops.

Long short-term memory (LSTM) networks, a type of recurrent neural network (RNN)

designed to handle sequences of data, can capture long-term dependencies (Schmidhuber

et al., 1997). In closed-loop scenarios, LSTM networks unroll recursion and use back-

propagation through time (BPTT) for weight calculation. Unlike typical offline training,

our algorithm calculates network weights in real-time as the agent interacts with its envi-

ronment, enabling online learning and adaptation.

Deep learning is often considered slow due to its iterative nature, adjusting parame-

ters through back-propagation and gradient descent. Deep reinforcement learning (DRL),

combining deep learning with reinforcement learning, can be even slower due to sparse dis-

crete rewards, where feedback is occasional. Systems with continuous error feedback can

learn more quickly, achieving nearly one-shot learning with rapid behavioural adjustments

after few interactions. However, purely continuous systems may limit sophisticated plan-

ning and decision-making due to their reliance on simple reflex behaviours. Combining

model-free DRL for complex tasks with model-based learning for efficient planning strikes

a balance between slow and fast learning, allowing dual-system approaches for complex

tasks and rapid adaptation.

Our novel approach utilises DNN architectures, designed to inherit the advantages

of standard deep learning techniques, such as convolutional layers and high-level feature

development. These features are crucial for extracting meaningful information from raw

sensory data. Deep architectures automatically learn hierarchical data representations,

enabling more sophisticated anticipatory actions in applications like line-following robots.

Forward models are essential in both robotic and biological motor control (Wolpert

and Kawato, 1998; Kawato, 1999). They predict action consequences and ensure optimal

trajectories. Our approach offers opportunities to learn complex forward models using

deep networks, which can be combined with traditional Q-learning to improve movement

planning. This combination enhances decision-making and action execution.

While our model-based approach is tailored to specific situations and may not gener-

alise to different forward models, such as manipulating various objects, the modular se-

lection and identification for control (MOSAIC) Model (Haruno et al., 2001) addresses

this by learning multiple pairs of forward and inverse controllers, although this aspect is

beyond our scope.



Chapter 3

Sign & Relevance (SaR) Learning

3.1 Introduction

In this section, we introduce the SaR learning paradigm. Building on the foundation

of CLDL, a mathematically sound algorithm, we integrate concepts from neuroscience

and biology to create a novel algorithm that better aligns with biological observations of

brain learning. Following a brief motivation emphasising these neuroscientific concepts, we

design and derive the SaR learning platform and its associated learning rule. Subsequently,

we present the results and engage in a discussion.

3.2 Motivation

The development and learning processes of an organism are intimately tied to its inter-

action dynamics with its surroundings. Central to this understanding is the mechanism

by which organisms gauge their environment. This is achieved through the cyclical pro-

cess of receiving sensory inputs, initiating motor outputs, and consequently obtaining new

sensory inputs (Maffei et al., 2017). This perpetual cycle of interaction is rooted in the

concept of closed-loop learning (von Uexküll, 1926; Daryanavard and Porr, 2020a), where

each action, based on its outcome, is categorised as either beneficial or detrimental. It is

within this framework that the principles of reinforcement learning emerge (Dayan and

Balleine, 2002).

The essence of reinforcement learning, particularly in a framework that mirrors bio-

logical systems, is the computation of the reward prediction error. In simple terms, it

is an assessment of the discrepancy between expected and received rewards. During the

1990s, a hypothesis by Schultz et al. (1997) proposed that the neurotransmitter dopamine

encodes this reward prediction error (Bromberg-Martin et al., 2010; Wood et al., 2017;

Takahashi et al., 2017). This proposition drew intriguing parallels between the concept of

temporal difference error, a cornerstone in machine learning algorithms, and the biological

91
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mechanism of dopamine secretion (Sutton, 1988a).

From this perspective, an assumption emerged, suggesting that the brain’s operational

architecture could be likened to the actor-critic model. In this model, dopamine serves

a dual function. Firstly, it acts as a messenger for the reward prediction error. Sec-

ondly, it instigates adaptive synaptic modifications in brain regions such as the striatum

(Humphries et al., 2006). To delve deeper into the actor-critic paradigm, one could con-

ceptualise it as a dual-layered closed-loop system. The innermost layer, or the reflex loop,

generates an error signal. This signal then modulates the outer layer, or the actor, condi-

tioning it to anticipate future actions. Essentially, the actor is sculpted into generating a

predictive model of the reflex, ensuring a more calibrated response to future stimuli (Porr

and Wörgötter, 2002b). As a result, the actor-critic structure is versatile, forming the

foundation for both model-based (Verschure and Coolen, 1991) and model-free learning

systems.

Utilising a global error signal, like the dopamine-based reward prediction error, cer-

tainly possesses intrinsic limitations. One of the key challenges with such an overarching

error signal is its universal impact on all neurons. This broad application of an error signal

can reduce the effectiveness and specificity of multi-layer neural networks, as the collective

modulation could inadvertently constrain the differentiation and function that separate

layers provide (Humphries et al., 2006; O’Reilly and Frank, 2006).

This limitation perhaps provides insight into the distinct architectural differences found

within the brain. The striatum, for instance, is perceived as a single-layered structure that

obtains its dopamine supply mainly from the substantia nigra pars compacta (SNc). Such

a simplistic architecture might be well-suited to the overarching influence of a global error

signal like dopamine.

Cortical networks, notably the orbitofrontal cortex (OFC) and the medial prefrontal

cortex (mPFC), play pivotal roles in the intricate processes of reinforcement learning and

decision-making. Their involvement is not merely a by-product of their cortical status

but is underscored by their unique dopaminergic inputs. Unlike the striatum, these cor-

tices receive their dopamine from the ventral tegmental area (VTA) (Haber et al., 1995;

Berthoud, 2004; Rolls and Grabenhorst, 2008; Dela Cruz et al., 2016). This distinctive

source and the distinct pathways underline the nuanced and multifaceted nature of the

brain’s learning and decision-making mechanisms, suggesting a need for more specific and

tailored error signals for efficient neural function.

When delving into the intricacies of cortical pyramidal neurons, a central aspect to

highlight is the primary mechanisms responsible for inducing neural plasticity. These

mechanisms, which are essentially the brain’s means of adapting and learning from expe-

riences, are primarily governed by distinct learning rules. One of the earliest and most

recognised of these rules is Hebbian learning, where the synaptic strength between neu-
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rons is increased if both neurons are active simultaneously (Hebb, 1949b; Bliss and Lomo,

1973). Later, another form of synaptic plasticity, known as spike-timing-dependent plas-

ticity (STDP), was introduced. In STDP, the change in synaptic strength is determined by

the relative timing of spikes between the presynaptic and postsynaptic neurons (Markram

et al., 1997).

Central to these processes is calcium. The dynamics of postsynaptic calcium concentra-

tions play a decisive role in determining the nature of synaptic changes. Specifically, when

the concentration of calcium is high, long-term potentiation (LTP) is induced, leading to

increased synaptic strength. Conversely, when calcium levels are low, long-term depres-

sion (LTD) is triggered, decreasing synaptic strength (Lu et al., 2001; Castellani et al.,

2001). This observation is crucial because calcium essentially dictates the direction, or

the sign, of plasticity, determining whether the neuron undergoes LTP or LTD.

However, these learning rules do not operate in isolation. They are deeply intertwined

with neuromodulators (Mattson et al., 2004; Lovinger, 2010), with serotonin being partic-

ularly influential (Roberts, 2011; Linley et al., 2013; Luo et al., 2015; Li et al., 2016; Crock-

ett et al., 2009). Dopamine, another potent neuromodulator, also plays a role in synaptic

plasticity (Dela Cruz et al., 2016). In a simplified conceptualisation, while calcium and

the associated learning rules dictate the direction of synaptic change (potentiation or de-

pression), neuromodulators like dopamine and serotonin can be viewed as adjusting the

magnitude or the learning rate of this change.

Drawing from these biological insights, there have been theoretical propositions such

as ISO3 learning. This learning framework is intriguing as it combines the concept of

differential Hebbian learning with a rectified error signal termed as ”relevance”. However,

similar to some of the brain’s biological networks, the ISO3 architecture remains relatively

simplistic, encompassing just a single layer.

This section presents a novel learning mechanism called SaR learning that expands

upon the single-layer approach of ISO3 learning (Porr and Wörgötter, 2003) by incorpo-

rating multiple layers. SaR network utilises a top-down pass of the sign of an error signal

to determine whether to implement LTP or LTD, while a global neuromodulator controls

the learning speed.

3.3 Design & Derivation of SaR algorithm

3.3.1 Learning Platform

The learning platform for SaR is depicted in Figure 3.1. Both the reflex and learning

loops, which were elaborated upon in Section 2.4, remain unchanged in this context.

Similar to the CLDL, the SaR algorithm constructs the forward model of the reflex by

mapping its predictive actions to a set of sensory consequences perceived by the agent,
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Figure 3.1: Illustrates the integration of the SaR learner with the learning platform. The
reflex and the learning loops operate as explained before. The yellow pathway shows the

Sign signal that is fed into the network at the output. The pink pathways show the
Relevance signal that enters every layer of the network for local propagation.

which form the error signal.

A distinctive feature of the SaR paradigm is its provision of instructive feedback on the

error through two separate pathways: 1) the bottom-up transmission of the sign of the

error (highlighted in yellow), and 2) the global intervention involving the rectified error

(highlighted in pink). Please see Figure 3.3 for a detailed illustration.

Figure 3.2: Signal pathways within SaR network: A) Shows the back-propagation of the
Sign signal through the entire network. B) Illustrates the local propagation of the

closed-loop error from each layer to the adjacent layer, resulting in the Relevance signal.
Pi represent the predictive inputs in the input layer and α represents the activation of

each neuron.
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Figure 3.2 provides a detailed illustration of these pathways. In Panel A, we observe

the bottom-up pass of the error’s sign, highlighted in yellow. These traces signify the

transmission of error signals from the reflex loop to the output neurons. The error’s sign

cascades from the final layer down to the deeper layers. Within each layer, the sign of

the resulting value is further conveyed to the deeper layers, resulting in an error value of

either±1 or 0 within each neuron. This, in turn, primes their connections for strengthening

(+1) or weakening (−1), analogous to the processes of LTP and LTD in the context of

neurophysiology.

In Panel B of this figure, we observe the local pass of the error’s modulus, highlighted

in pink. These traces represent the entry of this signal from the closed-loop platform

into every layer. Each neuron receives this value and transmits it to only one adjacent

deeper layer. The absolute value of the resulting sum determines the extent to which the

previously primed connections are strengthened or weakened. This mechanism is akin to

the impact of neuromodulators on plasticity, particularly the role of serotonin.

Figure 3.3: Detailed signal propagation in SaR network.

3.3.2 Inner Working of Neurons

In this section, we derive the learning rule for the SaR paradigm. The top-down passage

of predictive inputs follows the conventional signal flow in a fully-connected feed-forward
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neural network, as established in Section 2.3. This pipeline is represented by the green

lines in Figure 3.4. This process results in the activation of the output neurons, leading

to the generation of both the predictive output P and the predictive action A′.

As shown in Section 2.4, the execution of this action initiates a sequence of events

within the closed-loop platform, culminating in the generation of the error signal defined

in Equation 2.19. This error signal governs the learning process of the SaR network.

Figure 3.4: Displays the internal connections between two neighbouring neurons within
the SaR network. Forward propagation of inputs is shown with the left-to-right solid lines
highlighted in green. σ is the sigmoid activation function and Aℓ

j denotes the activation of
the jth neuron in layer ℓ. [ω]ℓij is the weight matrix associated with inputs I inputs to this
layer. The summation node aO corresponds to Equation 2.4. Backpropagation pathway is
shown with right-to-left dashed lines highlighted in blue. The summation at node bO and
product at node cO correspond to Equation 2.16. The short yellow dashed lines carry the
sign of the internal errors as calculated in Equation 3.2, and pink long-dashed lines show
the pathways for the relevance signal, the summation at node bO and the multiplication at

node cO correspond to Equation 3.3 as it relates to the relevance signal. The
multiplication node dO highlights the production in the learning rule as in Equation 3.4.

3.3.2.1 Sign Signal

Recall the derivation of the internal error in an open-loop network, as described in Equa-

tion 2.17, and for the CLDL algorithm, as shown in Equation 2.52. In Figure 3.4, the

green pipeline serves to carry and propagate the internal error of the neurons. However,

in this work, only the sign of the internal error is utilised for the bottom-up propagation

into deeper layers. The result can be either +1, −1, or 0. This signal, known as the sign

signal and denoted as Sℓ
j , is calculated as follows:



3.4. EXPERIMENTAL SETUP & NETWORK ARCHITECTURE 97

δℓj = σ−1(vℓj) · ΣK
k=0(ω

ℓ+1
jk ·

δℓ+1
k

|δℓ+1
k |

) (3.1)

Sℓ
j =

δℓj
|δℓj|

= {+1,−1, 0} (3.2)

The yellow pathways illustrated in Figure 3.4 depict the calculation of the sign signal.

It is important to note that the derivative of the sigmoid function is strictly positive and,

as a result, has no influence on the resulting sign signal.

3.3.2.2 Relevance Signal

The magnitude of excitation or depression of neurons is, however, determined through a

local pass of the error signal, which is formulated as:

Rℓ
j = |σ−1(vℓj) · ΣK

k=0(ω
ℓ+1
jk · E)| (3.3)

In this context, Rℓ
j represents the relevance signal, which is emphasised by the pink

pathways in Figure 3.4. It is worth noting that, unlike the internal error carried by the

green lines, the relevance signal is not transmitted to deeper layers. Consequently, Rℓ
j is

independent of Rℓ+1
k , and the closed-loop error reinstigates this process in each layer. As

a result, this signal can be simultaneously and globally generated across all layers.

3.3.2.3 Learning Rule

Having clarified the sign and relevance signals, we can now define the learning rule for the

SaR network as follows:

∆ωℓ
ij

SaR
= η · Sℓ

j ·Rℓ
j(z) · αℓ−1

i (−z) (3.4)

This learning process occurs at node dO in Figure 3.4, where all the terms are correlated

to calculate the weight change, with η representing the learning rate.

3.4 Experimental Setup & Network Architecture

The experimental setup and common aspects of the network are detailed in section 2.7.

In this section, we use 48 predictors, meaning the camera captures 240 inputs, thus the
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input layer of the network is initialised with 240 neurons. The network features an en-

coder topology, with 10 hidden layers that linearly decrease in the number of neurons:

{
Input︷︸︸︷
240 ,

Hidden︷ ︸︸ ︷
13, 12, ..., 5, 4,

Output︷︸︸︷
3 }.

3.5 Results

In this section, we present a comparison between the CLDL algorithm and the novel SaR

learning approach. The following findings in this section refer to result (c) in Figure 1.1 in

the preface. To gain a deeper insight, additional experiments were conducted by focusing

on the local propagation of the relevance signal exclusively. This further underscores the

significance of the synergy between the sign and the relevance signal.

3.5.1 Error Minimisation: Trial with η = e−5

Figure 3.5 presents a series of trials conducted with a learning rate of η = e−5. In Panel A

of this figure, we observe the error signal and its moving average in a trial utilising CLDL.

The error signal exhibits persistence for approximately 200 seconds before gradually con-

verging to zero at t1 = 333 seconds.

Panel B displays the same information for a trial with local propagation only, where

the error signal is injected into each layer and propagated for just one layer to drive the

learning process. In this case, learning is notably faster than in the CLDL trial, with the

error signal persisting for only 20 seconds before converging to zero at t2 = 93 seconds.

Finally, Panel C illustrates the results of a trial employing SaR learning, where the

combination of sign and relevance signal propagation drives the weight change as defined

in Equation 3.4. Notably, in this scenario, learning is significantly improved compared to

the two previous trials. The error signal does not persist; instead, it immediately begins

to converge, and learning is achieved at t3 = 42 seconds.

3.5.2 Error Minimisation: Trial with η = e−1

Figure 3.6 presents a similar set of trials to those in Figure 3.5, but with a different learning

rate, η = e−1. In Panel A, during a trial with CLDL, we observe that the error signal

spikes over a period of 25 seconds before fully converging at t4 = 32 seconds.

Panel B shows the results of a trial with local propagation, where the error signal only

spikes twice before fully converging at t5 = 13 seconds.

In Panel C, during a trial with SaR, one-shot learning is achieved. The error signal

spikes once at t = 5 seconds, and learning is completed at t6 = 12 seconds. Further details

regarding this one-shot learning are provided in Figure 3.7.
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Figure 3.5: Comparison of CLDL, the local propagation of the relevance signal, and SaR,
with learning rate of η = e−5

3.5.3 Predictors & Motor Command: Trial with η = e−1

Panel A displays the error signal, Panel B exhibits the activity of one predictor from each

row of the camera view, and Panel C shows the network’s output sent to the motors. The

robot initially encounters the line at time t7 = 8 seconds. Prior to this point, predictive

signals are active, but there is no steering command at the network’s output. Consequently,

the robot encounters the path, and the error signal spikes at t8 = 9 seconds. This error

signal triggers the learning process, which is completed between times t7 and t8.

From this point onward, the network generates an appropriate steering command based

on the activity of the predictors at the input. This ensures that the error signal remains

at zero until the success condition is met at time t = 37 seconds.
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Figure 3.6: Comparison of CLDL, the local propagation of the relevance signal, and
SaR, with learning rate of η = e−1

3.5.4 Euclidean Weight Distance & Convergence

The rapid one-shot learning exhibited in the previous trials raises questions about potential

issues such as over-fitting or unstable learning. To assess the stability and behaviour of

the network, a comparison is made between the nature of the weight changes and the

convergence of the trials as previously presented in Figure 3.6.

Figure 3.8 provides a comparison of weight changes in trials using the various learning

paradigms.

In Panel A, we observe that in the CLDL trial, the total weight changes in all layers

fall within a range of 1 to 4 (highlighted in the grey area) from their initial random values.

The weight change in the first layer, as highlighted by the black line, is approximately 2

for this trial, indicating its greater significance, as previously described by Porr and Miller
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Figure 3.7: A trial with SaR: showing the error signal, predictors activity and the motor
command

Figure 3.8: Weight distances for trials with CLDL, local propagation of relevance signal,
and the SaR
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(2020).

Panel B presents the results for the trial with local propagation, where the range of

weight changes for all layers is between 3 and 24, with the first layer showing a weight

change of approximately 10. This significant increase in weight changes raises questions

about the nature and efficiency of learning.

In Panel C, the results for the trial with SaR in presented, where the weight change is

not significantly greater than that of the CLDL trial (almost doubled), with weight changes

ranging from 3 to 8 for individual layers and a total weight change of approximately 7 for

the first layer.

From the observations in this figure, combined with those in Figure 3.6 and Figure 3.5,

it can be concluded that SaR offers much faster learning without the risk of unstable

weight changes or over-fitting.

3.5.5 Input Layer Weight Distribution

As mentioned earlier, the significance of learning at the input layer for a closed-loop organ-

ism is emphasised by Porr and Miller (2020). Figure 3.9 presents the weight distribution in

the first layer of the network after learning is achieved, for the three paradigms mentioned

above.

In Panels A, B, and C, we can see the distribution of weights after trials with CLDL,

local propagation, and SaR, respectively. It is evident that all learning paradigms assign

importance to the predictive signals in a similar pattern. This weight distribution follows

the same trend as explained in-depth in Section 2.8.3.2.4. However, SaR provides a more

distinct pattern of distinction between the predictive signals compared to local propagation

and BP.

3.5.6 Statistics & Reproducibility

Figure 3.10 illustrates the reproducibility of these outcomes.

In Panel A, we observe the total error integrals across 10 trials with each of the learning

paradigms, and in Panel B, we see the time taken to reach the success condition. It is

evident that SaR consistently offers both faster learning and smaller error accumulation

when compared to the other paradigms.

To further validate the results, additional trials were conducted using different learning

rates η = {e−5, e−4, e−3, e−2, e−1}. Figure 3.11 presents this data.

In Section A and B, we observe the error integral and the time taken to reach success

for trials with local propagation and SaR. It is clear that SaR consistently outperforms

local propagation, achieving faster learning with smaller error accumulation. Additionally,

it is noteworthy that as the learning rate increases, both paradigms exhibit improvements
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Figure 3.9: Displays the distribution of weights in the initial layer of the neural network
during the trials with CLDL, local propagation, and SaR. The vertical axis indicates the
neuron indices, whereas the horizontal axis denotes the indices of inputs, namely the
filtered predictors. The greyscale is used to represent the final weights, where black
indicates the highest weight value and white the lowest. Each distinct segment

corresponds to a row of predictors. A) Presents the distribution of weights for a trial
using CLDL. B) Illustrates the weight distribution in a trial involving local propagation.
C) Shows this result for a trial with SaR. All trials were conducted with a learning rate

of e−1.

in terms of error integral and time to success.

3.5.7 Optimal Learning Rate

For a more equitable comparison between SaR and CLDL, we conducted additional sim-

ulation experiments using higher learning rates to identify the optimal settings for each

of these paradigms. Both paradigms failed to converge under the specified success criteria

when using a learning rate of e2. For completeness, we considered learning rates in the

set η = {e−2, e−1, e0, e1, e2}, and repeated the experiments 10 times. The results of these

experiments are presented in Figure 3.12. In Panel A, the results are shown for a deep

neural network with an encoder topology. CLDL performs best at a learning rate of e1,
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Figure 3.10: Reproducibility of the results: a comparison of SaR with CLDL and local
propagation with a learning rate of e−5. A) shows the total error integral during these

trials, and B) shows the time taken to reach success.

reaching an average of 288 steps before convergence, while SaR performs optimally at e0,

requiring an average of 37 steps for convergence. Panel B illustrates a similar outcome for

a network with a square topology. Here, both paradigms achieve their best performance

at a learning rate of e0. CLDL converges in an average of 64 steps, while SaR achieves

success in an average of 15 steps.

3.5.8 Encoder Network Topology

Figure 3.13 illustrates the effect of the number of layers in a network with a typical triangle-

shaped encoder topology. The solid line represents SaR and the dashed line represents

CLDL. The number of hidden layers increases from 0 to 20, with the number of neurons

increasing linearly for each added layer: {
Input︷︸︸︷
240 ,

Hidden︷ ︸︸ ︷
23, 22, ..., 5, 4,

Output︷︸︸︷
3 }. Zero hidden layers

indicate that the network is initialised with one input layer and one output layer, where

inputs are directly fed into the output neurons. Mathematically speaking, there is no

difference between the two algorithms when no hidden layers are present. This has been

experimentally demonstrated, as both algorithms produce identical results. Interestingly,

the SaR algorithm is less affected by variations in the number of layers, as expected from

its single-layer propagation. On the other hand, the CLDL algorithm shows a decrease

in performance as the number of layers increases. It is worth noting that there are no
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Figure 3.11: Reproducibility of the SaR paradigm with different learning rates
η = {e−5, e−4, e−3, e−2, e−1}. A) shows the error signal during these trials, and B) shows
the time taken to reach the success condition. The star-marked boxes represent the results
for SaR learning, while the circle-marked boxes represent the results for local propagation

of the error.

data points for CLDL with more than 12 hidden layers since the success condition was

not met (convergence was not achieved), which is due to the vanishing gradient problem.

It is evident that the SaR network continues to perform well with as many as 20 hidden

layers without significant changes in the results shown.

3.5.9 Square Network Topology

In a triangle-shaped encoder network, the total number of neurons increases drastically

with each added layer. To make a more accurate comparison between the two paradigms,

another set of simulations was conducted using a square-shaped network where the number

of neurons was fixed at 10 per layer for each added layer: {
Input︷︸︸︷
240 ,

Hidden︷ ︸︸ ︷
10, 10, ..., 10, 10,

Output︷︸︸︷
3 }.

Figure 3.14 illustrates the results of these experiments. As the number of hidden layers

increases, both algorithms show some improvement. However, as the number of layers

continues to grow, the SaR algorithm is less affected by the depth of the network, whereas

the CLDL algorithm progressively declines in performance. For CLDL, the time taken to

achieve success grows exponentially with an increasing number of hidden layers, and the

error integral shows a linear growth. This indicates that CLDL suffers from the vanishing

gradient problem in deep networks, unlike its SaR counterpart.
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Figure 3.12: Simulation results with higher learning rates include the time taken to meet
the success condition. Runs exceeding 10,000 steps are considered failures, indicating that
the network did not converge. A) Results with a deep network with an encoder topology.

B) Similar results with a square topology.

A comparison of the two topologies reveals that both algorithms perform better with

a square-shaped network where the number of neurons is the same across all layers. This

is expected because any increase in the number of neurons in triangle-shaped encoder

networks directly affects the weighted sums of inputs and the internal errors in the forward

and backward passes, respectively. As a result, the propagation is more susceptible to

unstable changes, which can negatively impact performance.

The results presented in this work are unaffected by the shape of the path that the robot

follows. The primary reason for this independence is the nature of the learning process

employed. In this application, each time step represents one iteration of learning. Unlike

typical Q-learning applications that aim to achieve a specific goal, such as finding the

optimal route or uncovering a hidden treasure, there is no ultimate objective here. Each

time step constitutes one complete iteration, ensuring that the results and conclusions are

not influenced by the path’s shape. This independence is further highlighted by the fact
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Figure 3.13: The effect of the depth of the network, with an encoder topology, on the total
error integral A), and the time taken to reach the success state B).

that these learning trials occur within seconds, during which the robot traverses only a

small fraction of the path.

3.6 Discussion

SaR offers faster convergence in closed-loop learning tasks, integrating neuromodulators

and calcium-induced LTD or LTP, mirroring neurophysiological functions. This method

may also support multi-modal processing, using any input to understand a forward model.

Lillicrap et al. (2016a) relates deep learning to the cortex but overlooked global neuro-

modulation like serotonin or dopamine. Classic biologically grounded RL models (Schultz

and Suri, 2001; Wörgötter and Porr, 2005; Prescott et al., 2006) use reward prediction

error, similar to the dopaminergic signal in the striatum (Schultz et al., 1997). While

aligning with biological processes, these models face challenges tied to global error sig-

nals in deep structures, where varied layers undergo similar alterations, limiting deeper

structures’ efficacy.
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Figure 3.14: The effect of the depth of the network, with a square topology, on the total
error integral A) and the time taken to reach the success state B).

Over the past two decades, reward-associated neuromodulators have been viewed as

relaying error signals, but this perspective remains debated (Schultz et al., 1997). For in-

stance, serotonin represents both reward and penalty anticipation (Li et al., 2016; Crockett

et al., 2009; Cohen et al., 2015). We mathematically encapsulated this as a ”modulus,”

but neurophysiologically, it might be more fitting as a ”relevance signal,” triggering plas-

ticity (Porr and Wörgötter, 2007). Similarly, the adverse reaction of dopamine neurons

to unfavourable reward predictions has been questioned due to its minimal baseline firing

rate (Schultz, 2004). An alternative reading of serotonin and dopamine cues is as relevance

signals (Porr and Wörgötter, 2007), intensifying plasticity (Lovinger, 2010; Iigaya et al.,

2018), with inherent plasticity learning protocols determining LTP or LTD (Castellani

et al., 2001; Inglebert et al., 2020).

Using global neuromodulation and local plasticity, we illustrate a biologically realistic

processing method in Figure 3.15. This circuit, influenced by Larkum (2013); Rolls (2016)

and enhanced with neuromodulatory innervation (Lovinger, 2010; Iigaya et al., 2018),

features two pathways. The bottom-up route transmits sensor signals from input (”In”)

to output (”Out”) through layers L0 to L2. The top-down path determines the sign of
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Figure 3.15: Proposal of a neurophysiologically realistic model of SaR (Sensation and
Action Replay) learning is depicted in the figure. The model comprises three network

layers, denoted as L0, L1, and L2. Signal processing occurs through three pathways: A)
The “bottom-up” pathway, responsible for transmitting a signal from “In” to “Out” B)
The “top-down” pathway, tasked with conveying the error signal labelled as “Sign” C)
The “modulatory” pathway, which imparts a global signal to‘ all neurons within the
network. In the bottom-up and top-down pathways, signals traverse synapses located
proximate to the respective somas. Conversely, reciprocal connections between neurons

within a layer link to the dendrites, thereby influencing plasticity.

learning and decides which neurons experience LTP or LTD.

The bottom-up pathway conveys the error signal’s sign from layer two to layer zero

via three synapses. Global neuromodulation E governs neuron plasticity (Eq. 3.3), related

to neurophysiology through postsynaptic calcium concentration. Our binary distinction

between LTP and LTD is based on Inglebert et al. (2020). Only significant calcium influx

from both somatic burst spiking and dendritic calcium spikes results in LTP; less leads to

LTD (Tamosiunaite et al., 2007).

Projections to dendrites alone cannot induce neuronal spiking. However, when aligned

with somatic inputs, they prompt long-lasting bursts, causing LTP due to significant

calcium influx (Larkum, 2013). Limited dendritic activation can induce LTD from minor

calcium influx (Inglebert et al., 2020; Shouval et al., 2002). Considering reciprocal neural

connections shown in Figure 3.15, strong spiking in the top-down neuron, due to high L2

synaptic weight, can stimulate the bottom-up neuron, affecting calcium influx. Intense

influx initiates LTP; minor influx leads to LTD. Enhanced bottom-up synaptic weights

intensify activity, influencing the top-down pathway and calcium influx. Thus, weight

development signs between reciprocal neurons in both pathways are mirrored, affected by

mutual connections and calcium concentrations. The neuromodulator adjusts the learning
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rate, modulating LTP or LTD extents. Comprehensive biophysical modelling is needed to

deeply explore this model, potentially benefiting mental illness models (Rolls, 2016).

Both global neuromodulation and local calcium-driven plasticity are essential for ef-

fective behavioural adjustment in learning experiments. Successful cortical learning de-

mands both local calcium plasticity and neuromodulation. Inhibiting the N-methyl-D-

aspartate (NMDA) receptor would interfere with calcium-driven plasticity, potentially

affecting reward- or punishment-based learning. If cortical circuitry determines learning

direction (LTP or LTD) and broadcasts it, disrupting this error transmission would main-

tain generic learning via the neuromodulator but strip its goal-directed nature, making

learning aimless and less valuable.

In the context of optimal control, a similarity between Sign and Relevance learning

and sliding mode control is the decomposition of a signal into its sign and magnitude. In

sliding mode control, this decomposition enhances the stability of the system. Similarly, in

Sign and Relevance learning, it is utilised to improve the learning process and convergence

of the network.



Chapter 4

Prime & Modulate (PaM) Learning

4.1 Introduction

In this section, we introduce the PaM algorithm, building on the concepts previously

introduced for the SaR paradigm. We begin by providing a concise motivation, followed

by the design and derivation of the platform and its associated learning rule. Subsequently,

we present the results section and conclude with a discussion.

4.2 Motivation

Deep learning faces challenges such as the exploding and vanishing gradient problem

(EVGP). This issue arises when the error signal in neural networks, using activation

functions like logistic and hyperbolic tangent (tanh), becomes too small or too large, dis-

rupting learning. To address EVGP, researchers have explored new network architectures

such as long short-term memory (LSTM), better weight initialisation methods, and alter-

native activation functions. Notably, linear rectifying units have been adopted to mitigate

EVGP by transforming network dynamics and learning characteristics (Hanin, 2018).

From a neurophysiological perspective, learning involves both local and global mech-

anisms affecting synaptic plasticity (Reynolds and Wickens, 2002). This interaction has

shown benefits in simple networks but has been less applied to complex architectures (Porr

and Wörgötter, 2007). This study introduces a new learning approach combining local

error back-propagation with global modulation to create a resilient forward model. This

method uses the error signal’s sign for local weight adjustments and a global ”relevance”

signal to enhance these adjustments, preventing EVGP and aligning more closely with

neuroscience models than traditional back-propagation.

The research builds on traditional back-propagation by dividing the error signal into

sign and magnitude components, leading to the development of the SaR algorithm pre-

sented in the previous chapter. The novel approach incorporates environmental cues into

111
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the learning process, allowing systems to adapt dynamically. For example, self-driving

vehicles can adjust their learning rate based on traffic conditions, enhancing safety and

decision-making. This adaptive learning balances quick adaptation with thorough explo-

ration, improving the system’s effectiveness in varied situations.

4.3 Design & Derivation of PaM Algorithm

4.3.1 The Platform

Figure 4.1 illustrates the prime and modulate (PaM) learning paradigm. The reflex and

learning loops function as previously described in Section 2.4. Similar to the CLDL and

SaR algorithms, the PaM learning also constructs a forward model of the reflex using

predictive learning.

Figure 4.1: Depicts the incorporation of the PaM learner in the closed-loop learning
platform. The blue loop illustrates the reflex pathway, while the green loop represents the
learning pathway. The yellow pathway demonstrates the extraction of the priming factor
FP from the error signal, which is then incorporated into the network. The red pathway
showcases the extraction of environmental cues, or the modulating factor FM from both

the reflex and the learner, subsequently employed in the learning process.

The distinctive feature of the PaM algorithm is its incorporation of environmental cues

in the agent’s learning process. This sets it apart from the other paradigms outlined in this

study, where the sole driving force for weight adjustments is the error signal. This applies

whether through a single back-propagation pathway, as in CLDL; a solitary forward-

propagation pathway, as in FCL; a fusion of both, as demonstrated in Echo learning (to

be introduced in the subsequent chapter); or via two distinct pathways, as observed in

SaR.

Analogous to the SaR learning approach, the error’s sign and magnitude are treated

separately and employed for distinct purposes. The error’s sign is routed through the
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yellow pathway, depicted in Figure 4.1, referred to as the priming factor FP . Conversely,

the pink pathway illustrates how the error signal collaborates with other input from the

learner’s environment, culminating in the modulating factor FM that propels the agent’s

learning process.

4.3.2 Inner Workings of Neurons

The PaM network employed a fully connected feed-forward neural network, as detailed in

Section 2.3. In Figure 4.2, you can observe the internal connections between two neurons

within this network. The forward propagation of inputs is indicated by the solid left-to-

right blue lines.

Figure 4.2: Displays the internal connections between two neighbouring neurons within
PaM network. Forward propagation of inputs is shown with the left-to-right solid lines
highlighted in green. σ is the sigmoid activation function and Aℓ

j denotes the activation
of the jth neuron in layer ℓ. [ω]ℓij is the weight matrix associated with inputs I inputs to

this layer. The summation node aO corresponds to Equation 2.4. Backpropagation
pathway is shown with right-to-left dashed lines highlighted in blue. The summation at
node bO and product at node cO correspond to Equation 2.16. The priming pathway is
shown with short yellow dashed lines highlighted in red. This is the sign of the resulting
value from the backpropagation pathway, see Equation 4.1. The modulating pathway is
shown in long pink dashed lines that enter each neuron from the environment, see

Equation 4.2. The priming and modulating factors join at node dO, together with the
learning rate η and the relevant input to the neuron Aℓ−1

i , to drive the learning rule,
corresponding to Equation 4.3.
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4.3.2.1 Priming Factor: FP
ℓ
j

Revisiting the derivation of the internal error for the CLDL algorithm in Equation 2.52,

in this particular paradigm, only the sign of this term is utilised. This sign essentially acts

as a stimulus that prepares the weights for subsequent adjustments—whether it involves

an increase, decrease, or no change. As a result, within this paradigm, it is denoted as the

priming factor:

FP
ℓ
j =

δℓj
|δℓj|

=


+1 primes ω to be increased

0 primes ω to remain unchanged

−1 primes ω to be decreased

(4.1)

4.3.2.2 Modulating Factor: FM

Once primed, the extent of weight adjustment is determined by a secondary signal that

contains collective cues acquired from the environment. These cues convey the significance

of the learning experience at any given moment. In Figure 4.1, RC and LC are functions

devised to extract pertinent cues from the reflex and predictive loops, respectively. Their

correlation is illustrated at the product point 4O. Consequently, this signal is termed the

Modulating Factor FM :

FM = |ERC · I ′LC | (4.2)

In contrast to the relevance signal in the SaR network, this modulating factor does

not propagate through the layers. Instead, it directly influences the weights of all neurons

after they have been primed to either increase, decrease, or remain unchanged.

4.3.2.3 Learning Rule

Given this, the update rule for the PaM paradigm can be defined as:

∆ωℓ
ij

PaM
= η(FP )

ℓ
j · FM(z) · αℓ−1

i (−z) (4.3)

The correlation between the priming and modulating factors takes place at node dO

in Figure 4.2. This represents a generic learning rule, as the definition and customisation

of the modulating factor, which hinges on environmental cues, need to be specified for

particular applications. The subsequent section presents the definition of this factor for

the application discussed in this study.
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4.4 Application-Based Calculation of FM

As shown in Figure 4.1 node 4O, FM is the product of the clues extracted from the reflex

and learner’s loops through RC and LC , respectively. This section shows how these transfer

functions are defined for a line-following application.

Figure 4.3: This schematic diagram illustrates how the robot interacts with its
environment. It depicts the reflex and learner components and how their inputs and

outputs are connected to the environment. The diagram shows that a bend in the path is
detected as a disturbance in the learner’s field of view. This disturbance travels through

the learner’s loop, generating a predictive action. After a time delay of Z−T , the
disturbance reaches the reflex and passes through the reflex mechanism to produce a
reflexive action. In the diagram, d represents the distance from the first point in the
camera view to the error sensors, and h is the distance from the path to the centreline
within the camera view. The angle of deviation is calculated and used as part of the

modulating factor.

Considering the derivative of the error signal, when E > 0, a positive change indicates

a continued deviation, while a negative change implies a return to the centre. Conversely,

when E < 0, a negative change suggests further deviation from the path, while a positive

change implies returning to the centre. Consequently, the product of the error and its

derivative, E ∂E
∂t
, can indicate performance deterioration when its value is positive, and

conversely, signal improvement when negative. The exponential of this product represents

the cue extracted from the reflex environment. This highlights the significance of learning
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at each instance of the trial. We define the reflex clue RC as below:

RC = Z{rc} (4.4)

rc(e(t)) = exp

(
e(t) · de(t)

dt

)
Thus, the learning is mildly modulated when navigation is enhancing, while it becomes

heavily modulated as navigation deteriorates.

The cue derived from the learner’s environment is the angle of deviation. Referring to

Figure 4.3, let d represent the distance from the first point in the camera view to the error

sensors, and h be the distance from the path to the centreline within the camera view.

The angle of deviation can be calculated as follows:

lc(i
′) =

∣∣∣∣arctan(hd )
∣∣∣∣ (4.5)

With this information, the modulating factor, as formulated in Equation 4.2, can be

determined and computed.

4.5 Experimental Setup & Network Architecture

The experimental setup and common aspects of the network are detailed in Section 2.7.

In this section, we use 48 predictors, thus the input layer of the network is initialised

with 240 neurons. The network features a square topology, with 11 hidden layers and 11

neurons in each layer. This is the same architecture used for CLDL experiments.

4.6 Results

The performance of the PaM paradigm is compared with that of the CLDL paradigm,

which serves as a benchmark, as discussed in Section 2.6. The following findings in this

section refer to result (d) in Figure 1.1 in the preface.

4.6.1 Error Minimisation: Trial with η = e−5

Figure 4.4A illustrates the error signal using solid lines and its corresponding moving

average with dashed lines throughout a trial employing CLDL with a learning rate of

η = e−5. The success condition is achieved at time t1 = 266.3[s]. In Panel B, the same

information is presented for a trial utilising PaM, where the success condition is met at
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time t2 = 23.1[s]. The modulating factor FM for the trial with PaM is depicted in Panel

C. This set of trials illustrates a remarkable enhancement in both the speed of learning

and the navigational performance of the robot with the application of PaM.

Figure 4.4: Comparative trials were conducted using the CLDL and PaM paradigms on
the physical robot, employing a low learning rate of η = e−5. A) Displays the error signal
(solid line, left y-axis) along with its moving average (dashed trace, right y-axis) against
time (x-axis) for CLDL. B) Presents the same information for the PaM paradigm, and

C) Illustrates the modulating factor for the PaM trial.

4.6.2 Error Minimisation: Trial with η = e−1

Another set of trials utilising a higher learning rate of η = e−1 is presented in Figure 4.5

where remarkable results are demonstrated. Notably, this includes a one-shot learning

scenario for PaM, with the success condition achieved at time t4 = 12.5[s]. This outstand-
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Figure 4.5: Comparative trials were conducted using the CLDL and PaM paradigms on
the physical robot, employing a high learning rate of η = e−1. A) Displays the error

signal (solid line, left y-axis) along with its moving average (dashed trace, right y-axis)
against time (x-axis) for CLDL. B) Presents the same information for the PaM

paradigm, and C) Illustrates the modulating factor for the PaM trial.

ing performance stands in contrast to CLDL, where the success condition is attained at

approximately t3 = 27[s].

4.6.3 Statistics & Reproducibility

These comparative trial pairs were replicated a total of 50 times across various learning

rates: η = [e−5, e−4, e−3, e−2, e−1].

Figure 4.6A displays the total error integrals for trials utilising PaM (dotted trace)

in comparison to those employing CLDL (dashed trace). As expected, the accumulation
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Figure 4.6: Illustrates the reproducibility of results for the comparison of PaM (dotted
lines) and CLDL (dashed lines) algorithms deployed on an actual robot. A) Presents the
integral of error over the course of the trial across different learning rates. B) Depicts
the time required to attain the success condition in seconds for varying learning rates.

of the error signal is more pronounced in trials with slower learning rates. Although the

total error accumulation is significantly smaller in PaM trials, both paradigms exhibit

linear and equivalent influences, as evident from the slope of the fitted curves.

Figure 4.6B demonstrates the time taken for the robot to achieve the success state

during trials using PaM (dotted trace) in contrast to those utilising CLDL (dashed trace).

This graph reinforces the consistent trend observed in the preceding figures, highlighting

that the PaM paradigm is notably faster than its counterpart. Both methods manifest

accelerated learning with higher learning rates. However, the performance of CLDL is

more significantly affected by variations in the learning rate, indicated by the curvature

of the fitted curve.

4.7 Discussion

Compared to CLDL and SaR, the rapid convergence of PaM may render it susceptible

to local minima. The biological authenticity of deep learning remains complex. A core

concern revolves around the need for weight symmetry during forward and backward

passes, restricting its feasibility to few layers (Lillicrap et al., 2016a). However, if errors

are communicated solely through their sign, this symmetry constraint can be relaxed,

provided there is appropriate interconnectivity ensuring the error’s correct sign (Larkum,
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2013). In neuroscience, this

suggests the ascending pathway governs processes like LTP and LTD. Simultaneously,

neuromodulators, especially serotonin acting as a rectified reward prediction error, can

modulate learning speed (Iigaya et al., 2018) as a third factor (Li et al., 2016). Given

serotonin’s prevalence over dopamine in cortical processing and profound neuronal archi-

tectures, the synergy of local and global learning methods appears promising for neuro-

science and broader applications in machine learning and robotics.



Chapter 5

Forward Propagation Closed-Loop

Learning (FCL)

5.1 Introduction

The forward propagation closed-loop learning (FCL) algorithm was introduced by Bernd

Porr in 2020 (Porr and Miller, 2020). While it was not developed as part of this work, it

is explained here as the subsequent chapter introduces the Echo algorithm, which drew

inspiration from FCL. Moreover, comparing FCL with the CLDL algorithm presented

earlier illustrates the versatility of their shared closed-loop learning platforms. Although

these two algorithms exhibit significant differences, both demonstrate their efficacy and

power within their respective contexts. While CLDL is characterised by mathematical

robustness, FCL aligns more closely with biological plausibility.

5.2 Motivation

For nearly a century, neurophysiology has supported the idea of forward propagation,

initially proposed by Hebb (Hebb, 2005). For LTP to occur, both pre- and post-synaptic

neurons need to be active (Lüscher and Malenka, 2012). Unsupervised learning in these

networks, particularly in the visual cortex, has been demonstrated in an open-loop fashion

(Linsker, 1988; Song et al., 2000). However, these mechanisms alone may not suffice for

training deep networks in closed-loop tasks.

The primary challenge with backpropagation is its requirement for backward-directed

information, necessitating a second set of connections. Although reverse connections need

not be symmetric with forward weights (Lillicrap et al., 2016b), backward-projecting

weights introduce assumptions that may not hold in deeper architectures.

Emerging evidence suggests a mechanism for training deep networks in closed-loop

settings. Different brain oscillations can carry distinct information through the same
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neurons, allowing forward transmission of separate streams (Mizuhara and Yamaguchi,

2007; Canolty and Knight, 2010). These streams exert different effects on plasticity;

higher-frequency components are likely to alter plasticity (Bliss and Lømo, 1973), while

lower-frequency components maintain plasticity relevant to behaviour or mental processes

(Mizuhara and Yamaguchi, 2007). This could enable biological transmission of both ac-

tivity and error signals using the same weights.

5.3 Design & Derivation of FCL Algorithm

Figure 5.1 illustrates the FCL platform. The reflex and learning loops function as previ-

ously described in Section 2.4.

Figure 5.1: (redrawn from (Porr and Miller, 2020)) Illustrates the integration of the
FCL learner into the closed-loop platform. The reflex loop is depicted in blue, and the
learning loop is represented in green. The error signal is received by the network at its

input via the purple pathway.

The forward propagation of predictive inputs adheres to the conventional rules outlined

in Section 2.3. This process is depicted in Figure 5.2 with solid arrows highlighted in blue.

The error signal is received at the input layer and is subsequently propagated forward

using the same weights associated with the predictive inputs. This feedback pathway is

illustrated in Figure 5.1 and Figure 5.2 with purple highlights.

With this, the internal error of the neurons can be defined as:

δℓj =
ΣI

i=0(ω
ℓ
ijδ

ℓ−1
i ) · σ′(vℓj)

ΣI
i=0ω

ℓ
ij

ΣI
i=01

(5.1)

The internal error is normalised by the total sum of the weights and the number of
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Figure 5.2: (redrawn from (Porr and Miller, 2020)) Illustrates the internal connections
of neurons in the FCL network. The blue pathway illustrates the forward propagation of
predictive inputs, while the purple pathway demonstrates the forward propagation of the

closed-loop error.

neurons in that layer. It is important to note that the internal error of layer ℓ depends

on the weighted sum of this term in layer ℓ − 1. This is in contrast to the calculation of

internal error for the conventional backpropagation algorithm, as shown in Equation 2.17,

where the internal error calculation relies on the weighted sum of the term in the deeper

layer ℓ+ 1.

Hence, in the first layer, the closed-loop error is used to initiate this propagation, which

means δ0x = E. Finally, the learning rule for FCL is defined as:

∆ωℓ
ij

FCL
= ηδℓj(z)α

ℓ−1
i (−z), η << 1 (5.2)

This weight change occurs at node dO in Figure 5.2 (Porr and Miller, 2020).

5.4 Experimental Setup & Network Architecture

The experimental setup and shared features of the network are explained in Section 2.7.

In this section, we employ 48 predictors, resulting in the input layer of the network being

initialised with 240 neurons. The network is designed with a square topology, consisting

of 11 hidden layers, each containing 11 neurons. This architecture is consistently used for

the CLDL experiments.
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5.5 Results

This section compares the FCL and CLDL algorithms. These results were gathered using

the line-follower robot in simulation as explained in previous sections. The following

findings in this section refer to result (e) in Figure 1.1 in the preface.

5.5.1 Error Minimisation

Figure 5.3 examines the error signals during two trials for these algorithms with a learning

rate of e−1. Panel A illustrates this data for a trial using the FCL algorithm, while Panel

B showcases the same for the CLDL algorithm. CLDL exhibits a remarkable ability to ex-

pedite error minimisation in contrast to FCL. Specifically, CLDL accomplishes successful

learning in 12.8 seconds, whereas FCL takes a significantly longer 55.6 seconds to reach

a similar level of error reduction. Notably, the small arrows within the figures point out

minuscule error magnitudes that might otherwise go unnoticed. Furthermore, the total

average of the error signal during each trial was calculated: FCL generates only 0.7k units

of error, while CLDL accumulates a more substantial 8.4k units of error.

5.5.2 Euclidean Weight Distance & Convergence

In these experiments, the neural network was initialised with 10 hidden layers. Figure 5.4

offers a visualisation of the weight changes observed during trials with both the FCL and

CLDL algorithms, each utilising a learning rate of e−1. Panel A showcases the Euclidean

distance of weights from their initial random initialisation in the context of the FCL

algorithm, while Panel B does the same for the CLDL algorithm.

Distinct traces for the weight changes in each layer, allowing for a detailed analysis. In

the FCL network, the overall weight changes are substantially more pronounced, reaching

levels of approximately 250 units. Conversely, within the CLDL network, we observe

significantly smaller weight changes, with a maximum value of only 35 units. This could

indicate that FCL is more prone to instability or overfitting. Furthermore, the weight

change patterns exhibit intriguing characteristics. In the FCL network, the weight changes

vary distinctly from layer to layer, while the CLDL network displays a discernible pattern,

with layers falling into two distinct clusters, each exhibiting similar weight change profiles.

5.5.3 Input Layer Weight Distribution

In these experiments, three rows of predictors were utilised, each consisting of 48 units.

Each predictor was processed through five distinct FIR filters, culminating in a total of

720 inputs for the neural network. Consequently, the weight matrix in the network’s first
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Figure 5.3: Comparing the error signals from trials conducted with the FCL and CLDL
algorithms, both employing a learning rate of e−1. A) shows the error signal during a
learning trial with the FCL algorithm. The success condition is achieved after 55.6
seconds of learning. B) shows the error signal during a learning trial with the CLDL

algorithm. The success condition is reached much faster, within 12.8 seconds. The small
arrows highlight subtle error spikes.

layer comprises 720 by 11 elements. Upon achieving successful learning, the final values

of these weights were documented and depicted as a greyscale image in Figure 5.5.

Panel A illustrates the weight distribution for the FCL, while Panel B displays the

same for the CLDL. It is observable that both algorithms have identified the three rows of

predictors by organising the weights into three segments with analogous patterns. Within

each segment, the weights attributed to the signals filtered from the predictors on the

outermost column are notably higher (resulting in a darker appearance in the greyscale

image). In contrast, signals filtered from the innermost column of predictors are assigned

lower weight values, making them appear lighter in the greyscale representation. This

arrangement is indicative of the network’s tendency to generate more pronounced steer-

ing responses for significant deviations, typically observed when the path is detected on

the outer edges of the camera’s field of view. This activates the outermost predictors. In-

versely, the network produces more subtle steering responses for minor deviations, detected

when the path is nearer to the centre of the camera view, thus activating the innermost

predictors.
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Figure 5.4: Comparing the weight changes during trials conducted with the FCL and
CLDL algorithms, both employing a learning rate of e−1. A) Shows the Euclidean weight
distance during a trail with FCL with the highest distance reaching around 250 units. B)
Shows the Euclidean weight distance for CLDL algorithm, with maximum distance of

only 35 units.

However, this pattern is more pronounced in the FCL algorithm compared to the

CLDL, where a seemingly random distribution is still evident. This observation correlates

with the previously noted higher weight change in FCL in Figure 5.4, suggesting its greater

divergence from the initial random distribution than CLDL. This observation is expected

as FCL correlates the error with the visual input from the camera in the input layer.

5.5.4 Statistics & Reproducibility

To thoroughly evaluate the reproducibility of outcomes observed in prior experiments

involving FCL and CLDL, a series of additional trials were executed, each varying in

learning rates. The primary objective of this assessment was to compare the efficacy

of FCL and CLDL using two critical performance metrics: the time required to attain

successful learning and the average total error accumulated during this learning phase.

Figure 5.6 represents these metrics for both FCL and CLDL across a spectrum of learning

rates, specifically η = {e−3, e−2, e−1, e0, e1, e2}.
Panel A of the figure demonstrates that FCL consistently achieves lower overall error

rates across the range of learning rates when compared to CLDL. Panel B shows the time

duration each algorithm requires to reach a state of successful learning. CLDL tends to

learn more rapidly than FCL.

Note that at high learning rates of η = {e1, e2}, the learning process becomes unstable.

In these cases, the behaviour of the network is unreliable, with some trials resulting in

success while others result in failure. This explains the inconsistent results seen at these
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Figure 5.5: Displays the distribution of weights in the initial layer of the neural network
during the trials with FCL and CLDL in a simulated environment. The vertical axis
indicates the neuron indices, whereas the horizontal axis denotes the indices of inputs,
namely the filtered predictors. The greyscale colour map is used to represent the final
weights, where black indicates the highest weight value and white the lowest. Each
distinct segment corresponds to a row of predictors. A) Presents the distribution of

weights for a trial using FCL. B) Illustrates the weight distribution in a trial involving
CLDL. Both experiments were conducted with a learning rate of e−1.

learning rates.

These findings provide valuable insights into the learning dynamics and efficiency of

the FCL and CLDL algorithms, contributing to a deeper understanding of their practical

applications in neural network training.

5.6 Discussion

Comparing CLDL and FCL reveals that both separately propagate errors and activations

with shared weight values but differ in the error propagation direction.

The ICO learning method (Porr and Wörgötter, 2006) learns by correlating an error

signal at its input with an activation. Unlike FCL, ICO sums the error signal with the

weighted activation, allowing direct equivalence with reflex actions. However, intertwining

error and learned signals may lead to information loss, making it unsuitable for deep

networks (Kulvicius et al., 2007). This intertwining implies direct behavioural implications

for both signals. Conversely, FCL exhibits greater adaptability, where the error signal

becomes increasingly adaptable as it moves through layers, avoiding information loss.
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Figure 5.6: Comparative evaluation of FCL and CLDL performance metrics at learning
rates of η = {e−3, e−2, e−1, e0, e1, e2}. A) Illustrates the average total error, showing that

FCL maintains lower error totals across all learning rates. B) Depicts the time to
success, showing that CLDL generally learns faster.

Neurophysiological debates often centre on plasticity, with high postsynaptic calcium

concentration leading to LTP (Malenka et al., 1999; Bennett, 2000), and lower concentra-

tion resulting in LTD (Mulkey and Malenka, 1992). Achieving pronounced postsynaptic

activity necessitates robust presynaptic drive, resulting in calcium influx (Meunier et al.,

2017). This scenario might cause synaptic weight to continuously amplify itself. However,

if the learning signal and actual activity pass through the same synapse but remain dis-

tinct (Lindsay et al., 2017) by employing varied frequencies, FCL emerges as a promising

mechanism. It facilitates stable learning relevant to behaviour, steered by heterosynaptic

plasticity and Hebbian learning for the error signal, ensuring consistent adjustments.



Chapter 6

Echo Learning: Bi-Directional Error

Propagation

6.1 Introduction

This chapter introduces the Echo learning paradigm. Following a brief motivation, we

present the learning rule, followed by the results and discussion.

6.2 Motivation

The inspiration for this paradigm emerged from the robust mathematical foundation un-

derlying error backpropagation in CLDL and the biologically plausible rationale behind

the forward propagation of error in FCL. The concept of Echo learning naturally evolves

from synergising these two well-established paradigms.

In Echo learning, the idea is to leverage the strengths of both these paradigms. The

error signal does not merely propagate in a unidirectional manner; instead, it oscillates

back and forth until its magnitude diminishes to a negligible value, which is then discarded.

This iterative process occurs in each learning iteration. Therefore, Echo learning effectively

harnesses the capabilities of both CLDL and FCL.

Specifically, the instability observed in FCL can be mitigated in Echo learning due to its

incorporation of backpropagation. Likewise, the exploding and vanishing gradient problem

(EVGP) observed in CLDL can be effectively managed in Echo learning, as errors are

propagated multiple times through FCL.

6.3 Design & Derivation of Echo Algorithm

Figure 6.1 illustrates the learning platform for the Echo algorithm. The reflex and learning

loops were explained in Section 2.4. The feedback pathway is presented in purple, show-
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casing the bidirectional flow of the closed-loop error signal, encompassing both backward

and forward propagation.

Figure 6.1: Depicts the arrangement of the Echo learner on a generic learning platform.
The blue loop illustrates the reflex pathway, while the green loop represents the learning
pathway. The purple pathway showcases the bidirectional utilisation of the closed-loop

error for the learning process.

The distinctive feature of Echo learning lies in the fact that the weights undergo mul-

tiple rounds of adjustments until a specific condition is satisfied. This is in contrast to the

paradigms discussed earlier, where weight changes occur once per cycle of the closed-loop

platform. In the initial step, the network undergoes a round of weight changes dictated

by the CLDL learning rule as described in Equation 2.54. The propagation according to

CLDL terminates after causing weight changes in the first layer. The internal errors of

neurons in the first layer are then propagated forward through the network to induce a sec-

ond round of weight adjustments based on the FCL learning rule as in Equation 5.2. This

recursive process repeats until the total sum of absolute weight changes in the terminating

layer (first layer for CLDL and last layer for FCL) approaches zero Σij|∆ω0 or L| << ϵ.

This conditional cycle can be represented mathematically as follows:

Σij |∆ω0|<<ϵ←−−−−−−−
terminate

∆ω
CLDL

∣∣
L→0

Σyz |∆ωL|>>ϵ
↼−−−−−−−−−−−−−−−−⇁
Σij |∆ω0|>>ϵ

∆ω
FCL

∣∣
0→L

Σyz |∆ωL|<<ϵ−−−−−−−−→
terminate

(6.1)

Here, ϵ represents the threshold set for terminating the learning process. In this study,

it was established as 10−6.
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6.4 Experimental Setup & Network Architecture

The experimental setup and the network’s common features are described in section 2.7. In

this section, we utilise 48 predictors. The network employs an encoder topology, featuring

10 hidden layers that decrease linearly in the number of neurons: {
Input︷︸︸︷
240 ,

Hidden︷ ︸︸ ︷
13, 12, ..., 5, 4,

Output︷︸︸︷
3 }.

6.5 Results

This section presents the results of a trial employing the Echo learning paradigm and

compares it to the outcomes of trials using CLDL and SaR paradigms. The following

findings in this section refer to result (f) in Figure 1.1 in the preface.

6.5.1 Error Minimisation

Figure 6.2 depicts the error signals using solid black traces and their corresponding moving

averages with dashed traces, during 100[s] trials with a learning rate of η = e−1 for the

aforementioned paradigms. In Panel A, CLDL establishes a benchmark for evaluating

Echo learning. It showcases a gradual reduction of the error signal in less than 90[s].

The error signal spikes reach approximately −10[GSV ]. The moving average of the error

peaks at just under 1[GSV ] around 20[s] and progressively diminishes until it falls below

the threshold value for success condition at roughly 95[s], signifying the attainment of the

success condition.

As seen in Section 3, SaR learning demonstrates quicker learning than CLDL. Panel B

reinforces this observation as a trial with SaR exhibits error signal spikes lasting less than

20[s], with values reaching around −5[GSV ]. The moving average of the error reaches

its peak value of 0.5[GSV ] around 15[s], and the success condition is met at about 25[s].

This marks a noteworthy enhancement over CLDL performance.

Panel C presents the results for Echo learning, which outperforms even the SaR learner.

The error spikes persist for only 10[s] but reach lower values of −7[GSV ]. The moving

average of the error reaches its peak of under 0.5[GSV ] at around 10[s], and the success

condition is achieved at 20[s]. This outcome aligns with expectations, given that Echo

learning leverages the strengths of both CLDL and FCL. However, the rapid learning

speed raises concerns about stability and potential limitations related to local minima.

6.5.2 Euclidean Weight Distance & Convergence

Examining the weight changes provides insights into the stability of learning. Figure 6.3

illustrates the Euclidean distance of weights in the first layer for the trials mentioned

above.
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Figure 6.2: Illustrates Comparative Trials involving CLDL, SaR, and Echo paradigm
with learning rate of η = e−1, deployed on a real robot. The error signals are presented
with solid lines on the left y-axis, while their corresponding moving averages are depicted
with dashed lines on the right y-axis, both in terms of GSV. The x-axis represents the

duration of the trial in seconds. A) Depicts this information for CLDL. B)
Demonstrates the same for SaR, and C) Presents this for Echo learning.

In Panels A and B, CLDL and SaR exhibit total weight distances of approximately

30 and 45 respectively. This comparison indicates that the improved performance of SaR

learning comes with a moderate increase in weight distance. However, for Echo learning,

depicted in Panel C, the Euclidean distance of weights swiftly reaches its maximum value

of 90 within the initial 20[s] of the trial. This represents a significant increase compared to

both CLDL and SaR. This suggests that Echo learning might be susceptible to unstable

weight changes or potential convergence to local minima.
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Figure 6.3: Illustrates the Euclidean Weight Changes for trials involving CLDL, SaR,
and Echo learning, all with a learning rate of η = e−1. A) Depicts this information for
CLDL. B) Demonstrates the same for SaR and C) Presents this for Echo learning.

subsectionInput Layer Weight Distribution

Analysing the weight distribution in the first layer after meeting the success condition

can provide further insights into the performance of these paradigms. Figure 6.4 presents

this information for the trials discussed above.

In Panels A and B, the weight distributions for CLDL and SaR respectively exhibit

trends consistent with those observed in Sections 2 and 3, respectively. In summary, the

emergence of blocks and the gradients within each block demonstrate that the network has

effectively assigned significance to each predictive signal. However, SaR learning displays

a more distinct definition of these characteristics.

Panel C portrays this information for Echo learning. A distinctive observation here is

the apparent shift of gradients within each block to the left. In other words, within each

block, from left to right, the columns transition from white to black and then back to grey.

This phenomenon can be attributed to Echo algorithm’s remarkably fast learning, which

has limited its exploration of the environment. Echo learning has predominantly employed

only a few predictors for navigation, resulting in the grey colouration of other unused

predictors, that appears after the black columns. This observation supports the notion

that the Echo learner might be prone to converging to local minima and may not fully

explore the entirety of the environment. However, such behaviour can be advantageous in

specific applications.
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Figure 6.4: Displays the distribution of weights in the first layer after the trial has
concluded. The y-axis represents the index of neurons in the first layer, while the x-axis
denotes the index of the filtered predictive inputs. The weight values are translated into a

greyscale image, where black corresponds to the maximum value and white to the
minimum. Each original predictor and its filtered signals constitute a block within this
image. A) Depicts this information for CLDL. B) Demonstrates the same for SaR, and

C) Presents this for Echo learning.

6.6 Flexible Library for Future Algorithm Develop-

ment

The evolution of the Echo learning algorithm, a type of reinforcement learning algorithm,

led to the development of a versatile C++ library. Throughout the project, this library

was continuously enhanced to support innovative and experimental learning methods.

One of the key features of this C++ library is its flexibility in handling error signals.

These signals can be injected at any layer of the neural network and can propagate in

multiple directions across numerous parallel streams. This allows for a highly customisable

approach to error correction and learning.
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Furthermore, the library enables the creative combination of internal error signals

to adjust the weights within the neural network. These adjustments can occur once or

multiple times during each iteration of the closed-loop learning platform. This flexibility

makes the library a powerful tool for exploring and implementing a wide range of learning

algorithms.

6.7 Discussion

Echo learning features a bidirectional oscillation of the error signal, ensuring thorough error

minimisation. This iterative process enhances learning accuracy and reduces the likelihood

of converging to local minima. Integrating backpropagation within this hybrid approach

mitigates the instability typically observed in forward propagation closed-loop learning

(FCL), stabilising the learning process and preventing divergence.

Echo learning mirrors the biological process observed in humans and other organisms

when encountering new learning scenarios. Instead of learning from a single data point or

experience in isolation, organisms reflect on and reprocess the experience multiple times

to draw broader conclusions. For instance, if we touch a hot surface, we learn from the

immediate pain and mentally iterate the experience to conclude that touching the surface

with the other hand or from different angles would yield the same painful result. We do

not need to physically repeat these actions; our brains extrapolate the outcomes through

cognitive iterations. Similarly, Echo learning revisits each learning experience multiple

times, refining its understanding and enhancing learning from a single instance.

This biological analogy is further supported by the fact that internal errors in the input

layer still contain information about the predictive inputs. These errors can be seen as non-

linear filtered versions of the original inputs that have propagated through the network.

Consequently, these internal errors retain different forms of the same information and can

be used to further train the network.

Echo learning also addresses the vanishing gradient problem (VGP) common in deep

learning (DL). By propagating errors multiple times, the algorithm keeps gradients within

a manageable range, improving training reliability, particularly in deep networks. The

mathematical representation of the learning rule provides a clear framework for the termi-

nation condition. The threshold ϵ plays a crucial role in balancing convergence speed and

accuracy. While the additional iterations increase computational complexity, the benefits

in terms of stability and accuracy justify the extra computational effort.

Furthermore, Echo learning scales well for larger and more complex neural network ar-

chitectures and is suitable for a wide range of applications, from simple classification tasks

to complex scenarios like reinforcement learning and autonomous systems. Future research

could focus on optimising the threshold ϵ, experimenting with different network architec-
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tures, and exploring the impact of Echo learning on various types of neural networks, such

as convolutional and recurrent neural networks. Studies on real-world applications could

provide practical insights and guide further improvements.



Chapter 7

Deep Neuronal Filter (DNF)

7.1 Introduction

In the previous chapters, we explored six closed-loop applications of the proposed algo-

rithms. This section presents the adaptability of this learning platform for open-loop

applications. An open-loop platform essentially omits the environment, not in a physical

sense, but in terms of its functional role in the feedback system. In other words, the

agent’s actions do not influence its subsequent sensory inputs. Signal processing stands

as one of the most intriguing use cases for open-loop learning systems, where the system

takes in raw data and generates desired variations in that data.

7.2 Motivation

In a variety of fields such as communications, acoustics, and biomedical engineering, the

challenge of low signal to noise ratio (SNR) is prevalent. This is particularly evident

in electroencephalogram (EEG) measurements (Green et al., 1985; Henry, 2006; Britton

et al., 2016), which are characterised by low amplitude signals in the range of a few µV .

These signals are often overwhelmed by interference from sources significantly stronger

than the EEG signals (Fatourechi et al., 2007). This section focuses on EEG as a case

study, aiming to eliminate non-stationary electromyogram (EMG) noise. However, the

techniques for enhancing SNR proposed here are applicable to beyond just EEG signals.

Two primary methods exist for enhancing the SNR of EEG signals: real-time process-

ing and offline post-processing. The latter is predominantly achieved through principal com-

ponent analysis (PCA) or independent component analysis (ICA) (McMenamin et al.,

2010; Fitzgibbon et al., 2007; Delorme et al., 2007). Both PCA and ICA techniques ini-

tially examine the unprocessed signals to distinguish and segregate signal and noise com-

ponents. This process, conducted offline, necessitates steady signal and noise correlations

over time and requires significant computational resources.

137
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In contrast, real-time algorithms process EEG signals as they are received, on a sample-

by-sample basis, without the need for pre-analysis. Examples of such methods include

bandpass filters, the short-time fourier transform (STFT), and wavelet transform (Ahmadi

et al., 2012; Jirayucharoensak et al., 2013, 2019). These techniques, however, still require

some prior knowledge of the noise characteristics to appropriately adjust the filter settings.

Muscle noise presents a particular challenge due to its non-stationary nature, stemming

from both voluntary and involuntary muscle contractions in the facial area.

When EEG electrodes are positioned on top of the head, around the Cz region, it is

often assumed that the noise affecting the EEG signals comes from external sources and

impacts all electrodes uniformly. In contrast, EEG signals are believed to be generated

locally (Fitzgibbon et al., 2015). To address this, a secondary, auxiliary electrode is

employed exclusively to measure the noise, which can then be subtracted from the primary

EEG electrode’s signal. A commonly used design for this auxiliary electrode is a ring-

shaped configuration surrounding the main EEG electrode. This method, where noise is

simply subtracted from the signal, is known as the “Laplace operator” (Makeyev et al.,

2016; Fitzgibbon et al., 2015; Garcia-Casado et al., 2019; Aghaei-Lasboo et al., 2020; Besio

et al., 2006). While the concept of straightforward noise subtraction is theoretically sound,

the practical application is more complex due to the dynamic and intricate relationship

between brain-generated EEG and the signals captured at the electrodes. This complexity

necessitates the use of a sophisticated, composite electrode that incorporates an adaptive

filter, continuously learning and adjusting to the ever-changing signal and noise conditions.

This section introduces a pioneering proof of concept for an innovative, cost-effective,

and easily manufacturable compound electrode. This electrode is paired with a novel deep

learning algorithm, called deep neuronal filter (DNF), to form a system that adaptively

filters out noise from EEG signals. The system operates by algorithmically generating

a counter-signal that opposes the noise, effectively neutralising it. The efficacy of this

approach is demonstrated through the successful elimination of wideband muscle EMG

noise from EEG recordings.

The outcome of this collaborative effort is documented in a publication in Plos One

(Porr et al., 2022). Notably, the establishment of the setup and the experimental pro-

cedures were conducted by two undergraduate students, Henry Cowan and Lucia Munoz

Bohollo.

7.3 Design & Derivation of DNF Algorithm

In this section, we delve into the functionality and characteristics of the open-loop learning

platform in a broad context. Subsequent sections detail the application of this platform

to noise cancellation scenarios.
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Figure 7.1 illustrates an open-loop platform designed for real-time signal processing

employing deep-learning. It bears resemblance to the closed-loop platform that served as

the foundation for all 6 closed-loop algorithms explained in preceding chapters. In this

instance, however, the transfer functions of the reflex and learner environments, denoted

as RE and LE in Figure 2.9, have been omitted. This alteration renders the previously

interlocked reflex and learning loops now “open”, thus the term “open-loop”.

Figure 7.1: Open-Loop Deep Learning Platform for Signal Processing. This illustration
highlights the removal of the transfer functions of the environment, rendering the

platform open at node 0O, where the signals originate. The raw data follows the blue
pathway, while the complementary data travels through the green pathway, housing the
deep learner, represented by a DNN. At node 1O, the DNN’s output is subtracted from
the raw data, resulting in the error signal used for DNN training and serving as the

output of the DNF filter, as shown at node 2O.

The dashed grey shape marks the agent boundary; however, due to the absence of an

environment, the term “agent” is now less fitting. Instead, this is now denoted as the

deep neuronal filter (DNF), serving as the unit responsible for signal processing.

Highlighted in blue within Figure 7.1, the previous inner reflex loop has transformed

into an open-loop pathway that carries raw data. The deep learner’s task is to modify this

data to align with user preferences. To achieve this, the network employs an additional

input termed the complementary data. This traverses the open-loop pathway highlighted

in green, previously recognised as the outer predictive learning loop.

The raw and complementary datasets originate from a physical entity like the electrode

at node 0O, these signals are fed into an ADC, ADC1 and ADC2, and the outcomes are

labelled as I[n] and I ′[n] respectively.

The network feeds the complementary data into a delay time buffer depicted as TB.

Generating the output P [n], referred to as the “remover”, which aims to remove undesired

components from the raw data at node 1O. After a suitable delay introduced by T , the raw

data reaches this node synchronously with the remover. The outcome of the subtraction
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process at 1O yields the open-loop desired signal, also known as the error signal E[n] which

is fed back into the learner for training and tuning.

7.3.1 A Paradox: Desired Output & Error Signal

In the above section, the data flow of both the raw and complementary pathways resulted in

the generation of the intended signal, or the error signal E[n]. This signal holds significant

importance within this framework, serving as both the feedback employed to train and

fine-tune the deep learner, and also as the desired output of the DNF which is returned to

the user. This presents a paradox, as it is conventionally anticipated that the error signal

should approach zero following successful learning. However, this signal also functions as

the output of the DNF which is expected to be a non-zero signal which carries the desired

attributes of the raw data.

This seemingly paradoxical statement can be resolved by revisiting Section 2.4.3.3,

which underscores that learning is not solely propelled by the error, but by its correlation

with the inputs. Based on this premise, this signal is explored in-depth in the following

section.

7.3.2 Superimposition of Signal & Noise

As mentioned earlier, the goal of the DNF is to eliminate unwanted components of the

raw data. This section delves deeper into how this elimination takes place and derives an

expression for the learning rule in the context of open-loop signal processing. All data

sets are expressed as a superimposition of signal and noise. Signal S[n] represents the

desired portion of the data, while noise N [n] represents the unwanted portion that the

deep learner aims to remove. With this, the raw data can be expressed as:

I[n] = CSS[n] + CNN [n] (7.1)

where CS and CN are the coefficients that describe the amount of the signal and noise

in the raw data, respectively. Similarly, the complementary data is also a superimposition

of the signal and the noise:

I ′[n] = C ′SS[n] + C ′NN [n] (7.2)

where C ′S and C ′N are the coefficients that describe the amount of the signal and noise

in the complementary signal, respectively. Note that any of these coefficients could be
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zero. Equation 7.3 below represents an alternative representation of the complementary

data:

I ′[n] = h[n] ∗ (α · S[n] +N [n]) (7.3)

where h[n] is an arbitrary filter, and 0 < α ≪ 1 models the crosstalk between the

root I[n] and ring I ′[n] electrode signals, as the signal of the root electrode will also stray

into the outer ring. Therefore, the output of the network, which is a function of the

complementary data and the internal parameters of the network, can be expressed as:

P [n] = N(I ′[n], [ω]) (7.4)

= N(C ′SS[n], [ω]) + N(C ′NN [n], [ω]) (7.5)

= CPSS[n] + CPNN [n] (7.6)

Here, N represents the neural network as a function and [ω] is the weight matrix of the

network. The signals are separated under the assumption that the network operates in the

linear regime of the activation function. Thus, the network’s output can be expressed as a

superimposition of signal and noise with coefficients CPS and CPN , respectively. Finally,

the error signal can now be calculated as:

E[n] = P [n]− I[n] (7.7)

= (CPSS[n] + CPNN [n])− (CSS[n] + CNN [n]) (7.8)

= (CPSS[n]− CSS[n]) + (CPNN [n]− CNN [n]) (7.9)

= (CPS − CS)S[n] + (CPN − CN)N [n] (7.10)

= CESS[n] + CENN [n] (7.11)

This demonstrates that the error signal is also a superimposition of the original signal

and noise. All four of the aforementioned data sets contain components of the signal and

noise. This is a crucial concept for understanding the functionality of the DNF.

7.3.3 Learning Objective

The aim is to remove the noise component of the raw data. In mathematical terms, this

is represented as below:
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Learning goal:

{
Noise is removed CPN = CN

The signal remains CPS ̸= CS

∴ E[n] = CESS[n] (7.12)

This illustrates the ideal error signal. During the initial stages of learning, the error is

a blend of noise and signal, as evident from Equation 7.7. Once learning is accomplished,

however, the resultant error comprises solely the signal. While this outcome aligns with

the desired output of the DNF, the question arises: how can a non-zero error signify the

successful convergence of the network and yet induce no further adjustments? This query

is tackled in the subsequent section by examining the learning rule.

7.3.4 Learning Rule

The learning rule in this context is governed by the open-loop update rule that was de-

rived in Section 2.3. However, unlike typical applications of deep learning, the precise

desired output of the network remains unknown here, as observed in the aforementioned

closed-loop paradigms as well. Even though the desired output is not ascertainable, a

closer examination of the learning rule reveals how the learning objective can still be

accomplished with specific signal prerequisites.

Referring to Equation 2.18, the internal error that propels the alteration of weights

within each neuron is contingent on the feedback error in this scenario. This function is

essentially the inverse of the network’s function from the last layer to the relevant layer ℓ.

Meanwhile, the input to each neuron is determined by the complementary data fed into

the network; this function corresponds to the network’s forward function from the initial

layer to the relevant layer ℓ. Consequently, the counterpart of weight change for the DNF

can be formulated as:

∆ωℓ
ij

DNF
= ηN−1(E[n], [ω]Tℓ←L) · N(I ′[n], [ω]0→ℓ) (7.13)

≡ ηE[n] · I ′[n] (7.14)

Hence, it can be demonstrated that the alteration in weight is indirectly influenced by

the correlation between the error signal and the complementary data. These elements,

as previously demonstrated, consist of both signal and noise. Upon substituting these

elements, we obtain:
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∆ωℓ
ij

dnf

≡ η(CESS[n] + CENN [n]) · (C ′SS[n] + C ′NN [n]) (7.15)

≡ η(CESC
′
S)S[n] · S[n] + (CESC

′
N + ηC ′SCEN)S[n] ·N [n] + η(CENC

′
N)N [n] ·N [n]

(7.16)

The correlation of similar waves leads to a substantial peak (S[n] · S[n] and N [n] ·
N [n]), whereas the correlation of opposing waves results in a negligible value (S[n] ·N [n]).

Therefore, the weight change can be approximated and summarised as:

∆ωℓ
ij

DNF
≡ η(CESC

′
S)S[n] · S[n] + η(CENC

′
N)N [n] ·N [n] (7.17)

Here, the noise and signal constituents of both the error and complementary data

correlate to drive the weight change. This bears resemblance to the FIR match filter as

the noise and signal components of the same data are being correlated here. However,

the distinction is in the application and properties of the filter. Matched filters are used

to detect repeated patterns in a signal, whilst the DNF is designed for noise removal. In

matched filters the pattern is time-reversed and used as filter coefficients, whereas neither

one of the signals from the two electrodes is time-reversed here.

7.3.4.1 Effective Learning Rate

It is crucial to emphasise that the effective learning rate ηe is directly proportional to the

amplitude of the noise reference x[n], as expressed in the equation:

ηaℓ−1i · δℓj ≡ ηI ′[n]︸ ︷︷ ︸
ηe

·E[n] (7.18)

To maintain a constant effective learning rate, one can either normalise the noise

reference x[n] or dynamically adjust the learning rate when the average amplitude of x[n]

fluctuates. In this study, we opted to directly set the learning rates to accommodate the

two different noise reference amplitudes of x[n] for the P300 task (η = 10) and the jaw

muscle task (η = 2.5). This adjustment ensured that the effective learning rates were

consistent between the two tasks.

The equation above also illustrates that learning reaches convergence when the corre-

lation between the noise reference x[n] and

the error signal e[n] diminishes. This signifies that no frequency components of the
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noise present in the outer electrode signal persist in the output of the DNF filter, indicating

successful noise removal.

7.3.5 Resolving the Paradox

Referring to Equation 7.17, it can be deduced that the noise components of the error and

complementary data correlate up to the point where this element is eliminated from the

error data (also being the desired output). Similarly, the signal component of both can

correlate until it is eliminated from the desired output (also being the error).

Consequently, it is necessary for the complementary data to exclusively carry attributes

of the noise, with C ′N ̸= 0, while retaining none of the characteristics of the signal, C ′S ≈ 0.

This configuration would ensure that the noise components correlate, prompting a weight

change that subsequently eradicates noise from the error (and the output). Simultaneously,

this setup would prevent the signal component of the error from correlating with any

aspects of the complementary data, thus averting its removal. Note that if the noise

components do not correlate in time, they can pass through the filter, however, the large

enough delay line can help capture noise components that might be delayed in time.

Moreover, in the context of this application, the electrodes are centimetres apart and

therefore it is unlikely for their noise component to experience a significant delay in time.

In effect, the earlier contradiction is resolved by recognising that as long as the com-

plementary data avoids containing signal attributes, the error feedback, comprising solely

signal traits, would yield a zero correlation, thereby halting further adjustments to the

network or the output. Thus, the error signal can exclusively encompass the signal and

also function as the desired output. This concludes the derivation of the DNF learning

framework. The following section outlines the application of this learning paradigm to

EEG signal processing.

7.4 Experimental Setup

The derivations discussed form part of this study. However, the experimental setup,

electrode fabrication, and execution of the experiments were all conducted by Henry Cowan

and Lucia Munoz Bohollo. These elements are briefly described here to ensure clarity and

comprehensiveness for the reader.

7.4.1 Smart Deep Electrode

As previously demonstrated, the electrodes must be designed such that one channel cap-

tures the raw data containing both signal and noise. Conversely, the collection of com-

plementary data requires a setup that primarily captures noise, minimising the signal
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component. This rationale led to the development of the smart deep electrode tailored for

EEG signals.

7.4.1.1 Architecture & Working Principle

Brain signals are generally believed to originate “locally”, from a small surface area of the

scalp. In contrast, artefactual noise is thought to stem from more distant sources, resulting

in a “global” uniform strength across the scalp. Consequently, the smart electrode is

designed with two isolated electrodes.

Figure 7.2: Schematic Diagram of the Compound Electrode: Depicts the root and ring
electrodes in blue and green, respectively, along with their respective material

composition, and the dimensions of each electrode are indicated.

Figure 7.2 presents the architectural layout of this compound electrode. It comprises an

inner section referred to as the root electrode and an encompassing outer section known

as the ring electrode. Collectively, they constitute the smart deep electrode. The root

electrode acquires both the local EEG signal of interest and the inevitable global noise

(S[n] + N [n]). On the other hand, the ring electrode is strategically designed to solely

capture the global noise (N [n]), ideally excluding any portion of the EEG signal of interest.

This electrode design aligns with the signal requisites discussed in Section 7.3.5 and is

compatible with the open-loop learning platform.

7.4.1.2 Fabrication

The electrode was produced through 3D printing, chosen due to the intricate nature of

the design and the proven success of this manufacturing technique (Velcescu et al., 2019;

Rohaizad et al., 2019; Salvo et al., 2012). The team’s proficiency with this approach

(Ntagios et al., 2019) further supported this decision. The final product was crafted to be

flexible, durable, and biocompatible.

Poly-lactic acid (PLA) was selected due to its ability to ensure proper adhesion to

the backing material, which is crucial for the electrode’s conductivity (Chen et al., 2014).
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Subsequently, a layer of Ag/AgCl was applied to the electrodes, as this combination has

proven effective in comparable applications (Rohaizad et al., 2019). The wires of the

electrode were then affixed using pure silver paste and epoxy. Notably, this electrode

design holds potential for scalability into a wearable cap for EEG data acquisition.

7.4.1.3 Electrode Positioning & Device

Data acquisition was performed using a two-channel DC-coupled bio-amplifier called Attys

(Glasgow Neuro LTD) and software programs attys-ep and attys-scope. The data was

digitised at the electrode measurement points without any analogue filtering (Porr et al.,

2022).

Figure 7.3: Electrode Placement According to the International 10-20 System: It shows
that the compound electrode was positioned at the subject’s Cz location on the head. The
root electrode was linked to the positive input of Channel 1, while the ring electrode was
connected to the positive input of Channel 2 of the Attys. The A2 electrode was attached
to the negative input of Channel 1, while the A1 electrode was connected to the negative

input of Channel 2, serving as the ground reference.

The compound electrode was placed on the subject’s head at the Cz position of the

international 10 − 20 system. This electrode’s inner part was connected to Channel 1,

and the outer ring to Channel 2 of the Attys. Standard adhesive electrodes A2 and

A1 were placed behind the right and left ears, respectively, connecting to the negative

inputs of Channels 1 and 2. Channel 2 also served as the ground. This configuration is

schematically depicted in Figure 7.3. Each subject participated in two sessions without

intervals to ensure consistent electrode signals.
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7.4.2 Data Acquisition

7.4.2.1 Session 1: EEG with EMG Noise Generation

The aim of the first session was to create an EEG signal contaminated with EMG noise.

Participants were instructed to contract their jaw muscles every 15 seconds for two minutes,

inducing EMG noise. The sampling rate was set at 500 Hz to ensure a uniform response in

the EEG frequency band ranging from 0 to 100 Hz. The smooth roll-off of the sigma-delta

converter towards the Nyquist frequency of 250 Hz was a key factor in this setting.

7.4.2.2 Session 2: Acquiring Noise-Free EEG Signal Power

The focus of the second session was to capture the power of a noise-free EEG signal. As

complete muscle inactivity, which would eliminate EMG noise, was not feasible, evoked

potentials were used to minimise EMG noise. P300 visually induced oddball stimuli were

employed for this purpose. Participants were exposed to a black and white chequerboard

pattern that inverted every second, with brightly coloured horizontal bars (oddball stimuli)

appearing randomly between every 7 to 13 seconds. Participants were tasked with silently

counting these oddball stimuli. The sampling rate for this session was 250 Hz, appropriate

for measuring the peak power of evoked potentials, which primarily have low-frequency

components.

7.4.2.3 P300 Signal

The signal obtained from the inner electrode is a composite of baseline EEG, EMG, and

the deliberately created EEG signal c[n]. To realistically estimate c[n], the power of the

primary peak of the P300 evoked potential is used. This is based on the median power

observed between 300 ms and 500 ms, accommodating the 100 ms latency in wireless

transmission between the ADC and the P300 software. The P300 is conceptualised as

a pulse at 300 ms, detectable by systems like a P300 speller. The use of a median over

this interval slightly underestimates the power, which aligns with the reality of real-time

brain computer interface (BCI) systems that typically average over shorter durations, thus

dealing with lower signal strengths for c[n]. Using the median filter, therefore, corrects for

potentially overly optimistic signal strength estimations.

7.4.2.4 Muscle Noise

The noise analysis primarily targets the power of EMG noise generated by facial and

jaw muscles, excluding low-frequency components like EOG or electrode drift. The pe-

riodogram using the Welch method is employed for this analysis. The method’s window

length equals the sampling rate, providing power density in 1 Hz bins. The power den-
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sity samples from 5 Hz to 125 Hz are summed to determine the total noise power in this

frequency range.

7.4.3 SNR Calculation

The SNR is calculated using the following formula:

SNR =
median(v2P300,±100 ms)∑125 Hz

k=5 HzWelch(v)[k]
(7.19)

This equation represents how the SNR is determined in this application. The numera-

tor involves the median of the squared values of the P300 signal within a ±100 ms window,

reflecting the power of the signal component, particularly the P300 evoked potential. The

denominator sums the power density (calculated using the Welch method) of the noise

component in the frequency range of 5 Hz to 125 Hz, capturing the EMG and other noise

present in the signal. The formula is applied to various signals to evaluate their SNR.

These include: a) The root electrode signal d[n], b) The output e[n] from DNF, c) The

output from a standard LMS-based FIR filter, and d) The result of a Laplace operator,

calculated by directly subtracting the raw outer electrode signal d̃[n] from the inner one

x̃[n]. The Laplace operator is described in Appendix B.

This SNR calculation method aims to assess the effectiveness of different signal pro-

cessing techniques in enhancing the quality of the EEG signal by comparing their ability

to suppress noise while preserving the signal of interest.

7.5 Experimental Setup & Network Architecture

The experimental setup and common aspects of the network are detailed in section 2.7.

The network used for DNF is designed with L = 6 layers. The number of neurons I(ℓ)

per layer index ℓ is calculated as:

b = e
lnNtapsx

L−1 (7.20)

I(ℓ) = ⌊
Ntapsx

bℓ−1
⌋ where: ℓ : 1, . . . , L (7.21)

which guarantees that the output layer consists of exactly one neuron which generates

the “remover” signal. In our case with Ntapsx = 50 inputs to the DNF this results in:

I = 50, 22, 10, 4, 2, 1 neuron(s) per layer which means that the first layer is fully connected

with the same number of neurons to the delay line and then the number of neurons are

reduced in the form of a funnel as done in auto-encoders.
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7.6 Results

The following findings in this section refer to result (g) in Figure 1.1 in the preface.

7.6.1 Complete Trial

Figure 7.4 shows the real-time learning progress of the DNF over a 2-minute period for

one subject. In Panel A, the raw signal represents the I[n] signal from the root electrode.

Notably, the voluntary jaw muscle contractions occurring every 15 seconds are clearly

identifiable and marked with an asterisk (*). In the intervals between muscle contractions,

the signal is likely a mixture of baseline EEG and lower-amplitude involuntary facial EMG

activity. In Panel B, the complementary trace displays the signal from the ring electrode

I ′[n], where the EMG bursts resulting from the jaw muscles are clearly visible. Both

the raw and complementary data are subsequently fed into the DNF. The most critical

internal signal is the remover P [n] in Panel C, which serves to eliminate noise (as described

in Equation 7.1). The outcome of the subtraction, denoted as E[n], is observable in Panel

D.

7.6.2 Euclidean Weight Distance & Convergence

The DNN consists of 6 layers, and its weight evolution, as related to Figure 7.4, is depicted

in Figure 7.5 over the two-minute duration. The plot illustrates the change in weights

from their initial random values. Learning is most rapid during jaw muscle contractions

due to the higher amplitude of the noise reference I ′[n], resulting in a higher effective

learning rate, as defined in Equation 7.18. Learning continues at a slower rate between

EMG bursts. Around the 60-second mark, learning stabilises, with only minor weight

adjustments until the end of the experiment. The filter operates in a closed-loop fashion,

leading to corrective actions as the weights decrease following a jaw contraction. This

indicates that jaw muscle recruitment and involuntary muscle activity exhibit slightly

different correlations, prompting the network to adapt accordingly.

7.6.3 Noise Removal Process

Figure 7.6 shows truncated versions of the signals in Figure 7.6, specifically between 89[s]

and 90[s], capturing the onset of a jaw clench around 89.5[s]. Panel A shows the raw signal

Ī[n] originating from the root electrode. To illustrate the noise removal process, this signal

is delayed by T steps according to Figure 7.1. Panel B shows the noise reference I ′[n] from

the ring electrode, which is fed into the DNF and enters its tapped delay line TB. The

DNF then generates the remover signal P [n] shown in Panel C, which effectively cancels
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Figure 7.4: Signal Traces: A) The raw signal I[n] from the root electrode, carrying a
mixture of EEG and EMG B) The complementary signal I ′[n] from the ring electrode,
serving as the noise reference C) The output of the DNN known as the remover P [n] D)
And the DNF output E[n], which serves as the output of the DNF and the error signal

for training.

out the noise in Ī[n]. Panel D shows the output of the DNF E[n], which also serves as the

error signal used for training.

Recall that the DNF eliminates anything present in both the contaminated signal I[n]
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Figure 7.5: Weight Evolution Over a 2-Minute Learning Trial with DNF: Illustrates the
Euclidean distance of weights within the DNN, showcasing the input layer in green, the

output layer in blue, and the hidden layers in grey.

and the noise reference I ′[n]. This is clearly evident in the presence of the large peak in

both the contaminated signal and the noise reference. Consequently, the DNF learns to

eliminate this peak while preserving the remainder of the signal. It is worth noting that

E[n] is also the error signal, which is no longer correlated with the noise reference I ′[n].

This de-correlation is reflected in the learning rule described in Equation 7.17, leading to

the stabilisation of weights, as observed around the 90[s] mark in the learning process as

seen in Figure 7.5.

7.6.4 P300 Averages

To compute the SNR, the power of the signal and the power of the noise must be com-

puted separately, as seen in Equation 7.19. Initially, we focus on evaluating the signal

power. This entails estimating the power of the primary P300 peak observed during ex-

perimental session 7.4.2.2. Importantly, there is no need to pass the EEG containing the

P300 through the DNF since event-related averaging effectively eliminates the EMG noise.

However, for verification, the P300 peaks were examined before and after noise reduction,

as demonstrated in Figure 7.7.

The P300 inherently has a low frequency, and with the DNF and least mean-squares

(LMS) filter eliminating higher EMG frequencies, one would expect minimal alteration

in the P300 shape. This expectation is validated by comparing the unfiltered P300 in
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Figure 7.6: Truncated Signal Traces focusing on one EMG activity: A) The delayed raw
signal Ī[n] from the root electrode, carrying a mixture of EEG and EMG B) The

complementary signal I ′[n] from the ring electrode, serving as the noise reference C) The
output of the DNN known as the remover P [n] D) And the DNF output E[n], which

serves as the final output of the DNF filter and the error signal for training.

Figure 7.7 Panel A with the filtered P300 in Panel B and C. In all cases, the original EEG,

the DNF output, and the LMS filter exhibit distinct peaks, and the square of these peak

values represents the signal power. A comparison of the P300 from the original electrode



7.6. RESULTS 153

signal in Panel A with that of the DNF output in Panel B reveals a reduction in the DNF’s

P300 peak by approximately a quarter

(from 10 µV to 7.5 µV), whereas the LMS filter has minimal impact. This implies that

the DNF filter must further reduce noise compared to the LMS filter to achieve an overall

SNR improvement, even though it diminishes the P300 peak. LMS filters are described in

Appendix C.

This outcome is expected because there is a crosstalk between the root and the ring

electrodes as described in Equation 7.3, where EEG from the root electrode is partially

present at the ring electrode. Since the DNF removes anything present in both the noise

reference I ′[n] and its input signal I[n], it treats the α > 0 crosstalk of the EEG signal at

the outer electrode as noise, reducing the amplitude of the noise-free EEG at its output.

Lastly, in Panel D, it is evident that the Laplace operator entirely eliminates the P300

peak, making it impossible to calculate SNR solely based on the Laplace operator. With

the signal power for SNR calculated, we can proceed to assess the noise power.

7.6.5 Noise Power Density

Figure 7.8 illustrates the power spectral density of the root signal d[n] and the outcomes

from both the DNF and a standard LMS-based adaptive FIR filter. Remarkably, the DNF

filter consistently reduces the noise to approximately 0.1 · 10−11[V 2/Hz] for frequencies

over 10 Hz. In contrast, the noise from the inner electrode d[n] exhibits substantial

fluctuations, ranging from 0.2 to 0.8 · 10−11[V 2/Hz]. Although the LMS-tuned FIR filter,

a linear filter with a single layer, does achieve noise reduction, it underperforms by merely

diminishing spectral components proportionally and fails to completely eliminate noise

peaks, such as those at 35[Hz], 40[Hz], and 45[Hz].

7.6.6 Statistics & Reproducibility of SNR Improvements

Figure 7.9 A and B displays the individual SNR variations for different subjects using

DNF and LMS filters respectively. In each Panel, the SNR calculations for the raw data

I[n] are presented on the left-hand side. It is clear that subjects with the poorest SNR

at −20dB, particularly those with strong EMG bursts from jaw muscles, see the most

significant improvement, as depicted in this figure. However, some subjects experienced

only marginal enhancement, possibly due to poor electrode contact, resulting in minimal

correlation between the inner and outer electrodes.

To verify the statistical significance of the noise reduction, we calculated the SNR for

each subject pre- and post-filtering (expressed in dB) to determine the SNR enhancement:
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Figure 7.7: P300 Averages for one subject. While observing a chequerboard that
alternated every second, the subject was presented with sporadic stimuli every 7 seconds

to 13 seconds in a randomised pattern. The recording duration was 5 minutes. A)
Event-triggered average derived from the root electrode I[n]. B) Event-triggered average

derived from the output E[n] of the DNF. C) Output obtained from the LMS filter
(adaptive FIR filter). D) Output obtained from the Laplace filter: Ĩ[n]− Ĩ ′[n], with DC

and 50 Hz components removed following the subtraction operation.

∆SNR = SNRRoot − SNRDNF or LMS (7.22)
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Figure 7.8: Noise power density: This is calculated in 1 Hz bins for the root electrode
I[n], the DNF output E[n], and the output of the conventional LMS-based adaptive FIR

filter.

Figure 7.9 C exhibits the SNR improvements for both DNF and LMS filters. Our

novel DNF (p = 0.000013) and an LMS-tuned adaptive FIR filter (p = 0.000192) both

significantly enhanced the SNR. However, the DNF outperforms the LMS filter (p =

0.000026) in terms of effectiveness.

Figure 7.9: SNR calculations using Equation 7.19: A) SNR in dB measured at both the
root electrode I[n] and the DNF output E[n] for each subject. B) SNR in dB for the
conventional LMS-based adaptive FIR filter, analysed across all subjects. C) SNR
improvements for both DNF (∆SNRDNF = 4.1± 2.8 dB) and LMS-based FIR filter

(∆SNRLMS = 1.8± 1.3 dB).
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7.7 Discussion

The LMS technique requires additional electrodes around the eyes. Alternative strate-

gies, such as neural networks, have been utilised to create a ’remover’ signal to eliminate

EEG artefacts (Islam et al., 2016). Our approach employs a standard deep net with a

non-linear activation function, differing from methods using radial basis functions (Mateo

et al., 2013) or functional-link neural networks (FLNNs) for non-linear decision boundaries

(Jafarifarmand and Badamchizadeh, 2013). Some have integrated FLNN with adaptive

neural fuzzy systems for enhanced efficiency (Hu et al., 2015). Our model is computation-

ally advantageous due to its broad availability and compatibility with optimised hardware.

DL, traditionally used as a classifier, has been effectively applied in EEG artefact

detection, achieving up to 90% accuracy (Craik et al., 2019; Webb et al., 2021; Bahador

et al., 2020). It aids ICA-based algorithms in identifying EMG noise components (Makeig

et al., 1995; Delorme et al., 2007; Lee et al., 2020). Research has explored various network

structures, such as fully connected neural networks, convolutional networks, and the unique

encoder/decoder architecture DeepSeparator, for direct EMG noise removal (Zhang et al.,

2021; Yu et al., 2022). Only certain networks proved stable for EMG removal. In contrast,

DNF model achieves real-time continuous training and filtering. These models were trained

by focusing on the error between clean EEG and filter output rather than reference noise

(Yang et al., 2018; Nguyen et al., 2012). Since obtaining clean EEG is challenging, these

are often synthetically generated (Zhang et al., 2021). Most EEG noise reduction studies

rely on synthetic data and lack detailed analysis (Urigüen and Garcia-Zapirain, 2015).

Traditional mechanical EEG electrodes, unchanged since the first EEG (Umlauf, 1948),

predominantly use Ag/AgCl cups (McAdams, 2006). Electrode-skin resistance impacts

EEG’s SNR (Schwab and Chock, 1953). New BCI and consumer EEG often use dry

electrodes (Guger et al., 2012), spurring innovations in electrode design, such as spring

contact probes, to reduce resistance (Krachunov and Casson, 2016; Velcescu et al., 2019;

Nathan and Jafari, 2015; Liao et al., 2011). However, these designs focus on skin contact,

not the spatial signal-noise distribution, necessitating compound electrodes.

BCI advancements (McFarland et al., 1997) show that electrode spatial distribution

enhances SNR, as evidenced in ECG and EEG studies (Besio et al., 2006; Garcia-Casado

et al., 2019; Aghaei-Lasboo et al., 2020). Optimal ring spacing improves the efficiency of

the Laplace operator (Besio et al., 2006; Makeyev et al., 2016; Makeyev, 2018). However,

real-world electrode impedance variability limits the effectiveness of analogue spatial aver-

aging. Software-based Laplacian approximation (Fitzgibbon et al., 2015) offers a solution

but faces computational costs and spatial resolution limits. Concentric ring electrodes are

practical (Besio et al., 2006) yet assume ideal recording conditions. Our adaptive algo-

rithm addresses these imperfections, particularly with dry electrodes, focusing on relevant

noise (e.g., EMG) through high-pass filtering.
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Conclusion

This work has successfully achieved its primary objective of developing a learning algo-

rithm capable of augmenting reactive agents with proactive capabilities. This objective

was realised through a carefully structured approach, consisting of two primary tasks: the

development of an integrated platform and the construction of the learning unit.

The integrated platform was designed to seamlessly integrate reflex mechanisms with

learning processes, enhancing collaborative operations and signal exchanges between these

components. This platform was engineered with adaptability and flexibility in mind,

allowing it to be compatible with a wide range of learning algorithms, thus making it

highly versatile and domain-agnostic.

The learning unit, a critical component embedded within the platform, was meticu-

lously designed with a robust mathematical and technical framework. This framework

optimally positioned the learning unit within the system, ensuring effective coordination

with other platform elements. The deliberate separation between the platform and the

learning unit underscored the adaptability and flexibility of the final product, offering a

standardised approach to enhancing various applications with advanced learning function-

alities.

Furthermore, the applicability of the developed algorithm was demonstrated through

its implementation on a line-following robot, showcasing its ability to learn and navigate a

path without relying solely on reflex actions. Additionally, the algorithm was transformed

into a stand-alone C++ logic library, along with deployment packages for both simulation

and physical robot scenarios, illustrating its broader utility for predictive learning in vari-

ous contexts. This is left behind as a legacy for future researchers and developers to build

upon.

Throughout the course of this research, several algorithms were developed, building

upon each other’s foundations and contributing to the field of closed-loop control and

learning. These algorithms were: CLDL, SaR, PaM, Echo, and DNF. Each chapter of

this thesis represents one of these algorithms, which made up a substantial portion of the
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work. The many result sections presented in each chapter focused on comparative results

and analyses. These algorithms are summarised and concluded below.

8.1 Comparative Summary of Developed Algorithms

8.1.1 Closed-Loop Deep Learning (CLDL) Algorithm

8.1.1.1 Pros

� Real-Time Adaptation: Integrates deep learning with a closed-loop control sys-

tem for real-time learning and prediction.

� Continuous Processing: Operates within a continuous loop, enhancing learning

speed and effectiveness.

� Predictive Modelling: Builds forward models for anticipatory actions, improving

decision-making and reflexive responses.

8.1.1.2 Cons

� Generalisation Limitations: Requires further work to generalise to different for-

ward models.

� Complexity in Integration: Combining CLDL with traditional Q-learning and

other methods may add complexity to implementation.

8.1.1.3 Applications

� Control Systems: Effective for applications requiring fast and continuous learning,

such as robotics and automated systems.

� Real-Time Adaptation: Suitable for environments needing rapid adaptation, like

a line-follower robot in both simulations and real-world scenarios.

8.1.2 Sign and Relevance (SaR)

8.1.2.1 Pros

� Biologically Inspired: SaR leverages insights from neuroscience, incorporating

neuromodulators like dopamine and serotonin, which enhance learning efficiency

and convergence.

� Multi-Layered Architecture: Supports complex and nuanced learning processes.
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� Closed-Loop Framework: Mimics biological processes, enhancing the algorithm’s

adaptability and real-world application.

� Error Signal Separation: Improves the learning process and network convergence

by separating error signal sign and magnitude.

8.1.2.2 Cons

� Complexity: The sophisticated, multi-layered structure and biologically inspired

mechanisms may make it more challenging to implement and tune compared to

simpler algorithms.

� Resource Intensive: Requires significant computational resources due to its com-

plexity and multi-layered approach.

8.1.2.3 Applications

� Mental Health Research: Understanding mental illnesses and reward-based learn-

ing processes.

� Machine Learning Enhancement: Improving the efficiency and convergence of

machine learning algorithms.

8.1.3 Prime and Modulate (PaM)

8.1.3.1 Pros

� Mitigates EVGP: Addresses error signal vanishing and exploding gradient prob-

lems, which are common in traditional neural networks.

� Biologically Inspired: Utilises neurophysiological processes, combining local error

back-propagation with global modulation.

� Dynamic Adaptation: Incorporates environmental cues, allowing dynamic ad-

justment of learning rates.

8.1.3.2 Cons

� Local Minima Susceptibility: Rapid convergence can lead to the algorithm being

trapped in local minima.

� Weight Symmetry Reduction: Reduces the need for weight symmetry but may

require careful balancing of local and global learning signals.
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8.1.3.3 Applications

� Self-Driving Vehicles: Enhancing decision-making and safety by dynamically ad-

justing learning rates based on traffic conditions.

� General Deep Learning: Improving stability and performance in deep learning

models.

8.1.4 Echo

8.1.4.1 Pros

� Bidirectional Error Propagation: Enhances learning accuracy and prevents in-

stability by oscillating errors through the network until minimised.

� Vanishing Gradient Mitigation: Maintains gradients within a manageable range,

improving training reliability.

� Scalability and Versatility: Suitable for various neural network architectures and

applications.

8.1.4.2 Cons

� Computational Demand: Bidirectional oscillation can be computationally inten-

sive, potentially slowing down training times.

� Implementation Complexity: The iterative error minimisation process may be

complex to implement and fine-tune.

8.1.4.3 Applications

� Classification Tasks: Reliable and accurate training for simple to complex classi-

fication tasks.

� Reinforcement Learning: Robust framework for reinforcement learning scenarios.

8.2 Summary of Features, Strengths, and Constraints

The table below presents a summary of the features, strengths and constrains of each of

the algorithms developed as part of this work.
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Algorithm Features Strengths Constraints Applications

SaR Multi-layered

architecture,

neuromodula-

tors, error signal

separation

Biologically

realistic,

enhanced

learning

efficiency

Complexity,

resource-

intensive

Mental health

research,

machine

learning

enhancement

PaM Local error

back-

propagation,

global

modulation,

dynamic

learning rate

adjustment

Addresses

EVGP, rapid

convergence

Local minima

susceptibility,

balancing local

and global

signals

Self-driving

vehicles, general

deep learning

Echo Bidirectional

error

propagation,

iterative

minimisation

Improved

learning

accuracy,

gradient

management

Computational

demand,

implementation

complexity

Classification

tasks,

reinforcement

learning

CLDL Closed-loop

control,

real-time

learning,

predictive

modelling

Real-time

adaptation,

continuous

learning

Generalisation

limitations,

integration

complexity

Control systems,

real-time

adaptation

Table 8.1: Comparison of Learning Algorithms

8.3 Future Work

The exploration of learning algorithms such as SaR, PaM, Echo, and CLDL has demon-

strated the potential of biologically inspired mechanisms and advanced error handling

techniques in improving learning efficiency and robustness. To build upon this founda-

tion, future work can be directed towards the following areas:

8.3.1 Exploring Other Network Architectures

While the current study focused on feed-forward neural networks, future research should

investigate the application of these algorithms to other architectures, such as convolutional
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neural networks (CNNs), recurrent neural networks (RNNs), and transformers. These

architectures are highly relevant for tasks involving image and sequence data, and under-

standing how SaR, PaM, Echo, and CLDL algorithms perform in these contexts could

reveal new strengths and application areas.

8.3.2 Complex Robotic Applications

Extending the application of these learning algorithms to more sophisticated robotic sys-

tems represents a promising direction. For example, developing a robotic arm designed for

stroke rehabilitation that mimics the movements of a healthy arm can provide significant

therapeutic benefits. Implementing the CLDL algorithm in this scenario could facilitate

real-time adaptation and precise control, while SaR and PaM could enhance the learning

of nuanced motor patterns based on the patient’s unique recovery progress.

8.3.3 Incorporating Discrete Decision-Making Capabilities

Integrating discrete decision-making processes within these learning frameworks could sig-

nificantly broaden their utility. For instance, in the context of autonomous driving, an

algorithm that combines continuous learning with discrete decisions, such as overtaking a

car or navigating complex intersections, would enhance both safety and efficiency. This

could involve the development of hybrid models that incorporate reinforcement learning

for decision-making alongside the continuous learning capabilities of CLDL or the stability

of the Echo algorithm.

8.3.4 Scalability and Efficiency Improvements

Addressing the computational demands and complexity of implementing these algorithms

is crucial for their widespread adoption. Future research should focus on optimising these

algorithms to run more efficiently on modern hardware, potentially through parallel pro-

cessing techniques or leveraging specialised hardware such as GPUs and TPUs. Addition-

ally, simplifying the implementation and tuning processes will make these algorithms more

accessible to practitioners.

8.3.5 Cross-Disciplinary Applications

Exploring the application of these algorithms beyond traditional machine learning and

robotics domains can uncover new opportunities. For instance, the SaR algorithm’s incor-

poration of neuromodulators could be applied in cognitive neuroscience research to model

and understand complex brain functions. Similarly, PaM’s dynamic adaptation capabili-

ties could be valuable in financial modelling and other dynamic, data-driven industries.
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By pursuing these avenues, future research can build on the promising results of SaR,

PaM, Echo, and CLDL algorithms, leading to more versatile, efficient, and reliable intel-

ligent systems.

8.4 Final Words

In conclusion, this research project has not only achieved its primary objectives but has

also contributed to the advancement of knowledge in the field of predictive learning for

reactive agents. The algorithms developed within this work offer a valuable framework for

enhancing the capabilities of a wide range of systems, paving the way for more adaptive

and intelligent applications in various domains. The rigorous mathematical derivations

and experimental validations conducted throughout this work ensure the effectiveness and

reliability of the proposed approach, making it a valuable contribution to the fields of

reinforcement learning, robotics, and control systems.

The research stands apart from conventional trends within the field due to its dis-

tinctive characteristics and innovative approach. Unlike many research endeavours that

primarily focus on theoretical simulations or offline analysis, this work is firmly rooted

in real-time applications involving physical platforms. This aspect introduces a level of

complexity and practicality that is not commonly explored in the field. Moreover, the al-

gorithms developed and the manner in which they are applied to enhance the capabilities

of reactive agents are remarkably novel and unique. This research delves into uncharted

territories by pushing the boundaries of what is achievable in the realm of autonomous

decision-making in dynamic environments. Echo learning is a prime example of this. As

a result, it not only contributes to the advancement of knowledge in this field but also

opens up new horizons for the development of intelligent and adaptable systems that can

operate effectively in real-world scenarios.

In the realm of future work, an exciting avenue of exploration could involve the devel-

opment of algorithms for making hard decisions in dynamic environments. Such decisions

might include determining whether to overtake an obstacle on the path, whether to stop

abruptly, or to execute a complete turn-around manoeuvre. This endeavour would com-

plement the soft decision-making algorithm presented in this work, as it would extend the

scope of the learning capabilities to encompass complex and high-stakes scenarios.
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Appendix A

Digital Signal Processing (DSP)

The entirety of this appendix is adopted from Bernd Porr’s lecture notes for Digital Signal

Processing course (Porr, 2020).

A.1 Fourier Transform

The Fourier transform, represented by the formula:

F{x(t)} = X(ω) =

∫ +∞

−∞
x(t)e−jωt dt (A.1)

provides a powerful method to analyse the frequency content of a signal. However, it is not

always suitable for causal systems. One limitation of the Fourier transform is its reliance

on the entire signal spanning from −∞ < t < +∞. This becomes impractical for causal

signals, which are typically defined only for t ≥ 0 (Porr, 2020).

A.2 Laplace Transform

To the limitation of Fourier transform, the Laplace transform was introduced. It is de-

signed to handle continuous, causal signals more effectively. The Laplace transform is

given by:

L{h(t)} = H(s) =

∫ +∞

0

h(t)e−st d (A.2)

where s is a complex parameter s = σ + jω.

The Laplace transform, unlike the Fourier transform, not only analyses the frequency

components but also provides a broader view by taking the region of convergence into

account. This makes it more suited for systems that are both causal and described by

differential equations (Porr, 2020).
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A.2.1 Properties

The properties Laplace transform simplify the analysis of linear time-invariant (LTI) sys-

tems and the solution of differential equations. These properties are as below in detail:

A.2.1.1 Integration

Integration property shows that integration in the time domain corresponds to multipli-

cation by 1
s
in the s-domain:

L
{∫ t

0

f(τ)dτ

}
=

1

s
F (s) (A.3)

A.2.1.2 Differentiation

Differentiation property implies that differentiation in the time domain becomes multipli-

cation by s in the s-domain:

L{f ′(t)} = sF (s)− f(0−) (A.4)

A.2.1.3 Time Shift

Time Shift property reveals that a time delay (or shift) in the time domain translates to

a multiplication by an exponential term in the s-domain:

L{f(t− a)u(t− a)} = e−asF (s) (A.5)

where u(t) is the unit step function.

A.2.1.4 Convolution

Convolution property asserts that convolution in the time domain corresponds to multi-

plication in the s-domain. If L{f1(t)} = F1(s) and L{f2(t)} = F2(s) then:

L{f1(t) ∗ f2(t)} = F1(s)F2(s) (A.6)

where ∗ denotes convolution.
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A.3 Filters

Figure A.1: (redrawn from (Porr, 2020)) Shows the filter operation as a black box with a
Delta pulse as in input and its time-domain impulse response.

Consider Figure A.1 , which depicts a causal filter operating in continuous time. This

filter is illustrated as a “black box” to emphasise that we are focusing on its overall

behaviour rather than its internal structure or workings.

If we denote: x(t) as the input signal, h(t) as the system’s impulse response, and y(t)

as the output signal,

then the relationship between the input and the output in the time domain, for a LTI

system, is given by the convolution integral:

y(t) = x(t) ∗ h(t) =
∫ +∞

−∞
x(τ)h(t− τ) dτ (A.7)

In the Laplace domain, the convolution operation in the time domain becomes a mul-

tiplication. If: X(s) is the Laplace transform of x(t), H(s) is the Laplace transform of

h(t), and Y (s) is the Laplace transform of y(t), then:

Y (s) = X(s) ·H(s) (A.8)

Thus, the filter’s operation can be succinctly described as a convolution in the time

domain and a multiplication in the Laplace space (Porr, 2020).

A.3.1 Characterisation

There are two primary ways to characterise a filter:
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A.3.1.1 Impulse Response

The impulse response of a filter is the output y(t) when a delta pulse, δ(t), is applied as

the input. Mathematically:

x(t) = δ(t) (Delta Pulse) (A.9)

h(t) = y(t) (Impulse Response) (A.10)

The filter is fully characterised by its impulse response, h(t).

A.3.1.2 Transfer Function

The Laplace transform of the impulse response is termed the Transfer Function, H(s).

When evaluated with s = jω, we obtain the frequency response of the filter, H(jω). The

frequency response conveys the following:

Magnitude Response:

The absolute value of the frequency response is found as:

|H(jω)| (A.11)

which provides the amplitude or magnitude for every frequency ω, similar to the Fourier

Transform magnitude spectrum.

Phase Response: The angle (or phase) of the frequency response, denoted as θ, offers

insights into the phase shift introduced by the filter at each frequency:

ϕ = arg(H(jω)) (A.12)

A.4 z-Transformation

In Digital Signal Processing (DSP), signals are discrete (or sampled). This means the

Laplace transform, which is used for continuous signals, is not directly applicable. How-

ever, if we consider sampled signals as a sum of shifted impulses, we can still use the

concept of Laplace transform and then transition to the more suitable z-transform (Porr,

2020).

Given a sampled signal:
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x(t) =
∞∑
n=0

x(n)δ(t− nT ) (A.13)

where δ(t) is the Dirac delta function and T is the sampling period.

If we feed this signal into the Laplace transform, we get:

X(s) =
∞∑
n=0

x(n)e−snT (A.14)

Expanding upon this, we can express X(s) as:

X(s) =

∫ ∞
0

x(t)e−stdt (A.15)

=
∞∑
n=0

x(n)

∫ ∞
0

δ(t− nT )e−stdt (A.16)

=
∞∑
n=0

x(n)(e−sT )n (A.17)

If we introduce a new complex variable z such that:

z−1 = e−sT (A.18)

we arrive at the z-transform:

X(z) =
∞∑
n=0

x(n)z−n (A.19)

Here, e−sT = z−1 acts as a unit delay in the z-domain, meaning it delays the signal by

one sample. Referring to time shift property of Laplace transform in Equation A.5, this is

analogous to the e−sT term in the Laplace domain that introduces a delay of T seconds.

A.5 Finite Impulse Response (FIR) Filters

Finite Impulse Response (FIR) filters are a class of digital filters that have a finite number

of non-zero impulse response values. One way to derive an FIR filter is by sampling the

impulse response of an analogue filter. An impulse response of an analogue filter, can be
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formulated as:

h(t) =
∞∑
n=0

h(nT )δ(t− nT ) (A.20)

When we transform this impulse response into the Laplace domain, we have:

H(s) =
∞∑
n=0

h(nT )(e−sT )n (A.21)

This can be further represented in terms of the z-transform. It is worth noting that e−sT

can be interpreted as a delay by one time step (as given by Equation A.5). Consequently,

z−n represents a delay by n time steps. This can be mathematically expressed as:

H(z) =
∞∑
n=0

h(nT )(z−1)n (A.22)

This equation gives the z-transform of the impulse response h(t) of the filter. When

we want to filter a signal X(z) using H(z), we can use the following formula:

H(z)X(z) =
∞∑
n=0

h(nT )z−n X(z) (A.23)

This summation offers a direct procedure to filter the signal X(z). To set up a digital

filter (as depicted in Fig. 16), all that is required is the impulse response of the filter,

h(nT ). However, in practical scenarios, this impulse response does not extend to infinity.

Instead, it spans a limited number of samples, often referred to as “taps”. For instance, a

filter utilising 100 samples of h(nT ) has 100 “taps”. This necessitates a delay line capable

of holding M = 100 samples:

H(z)X(z) =
M∑

m=0

h(mT )z−mX(z) (A.24)

This represents the equation for a Finite Impulse Response filter, obtained by sampling

an analogue impulse response h(t) at time intervals of T . When we transition into the

time domain, the FIR filter performs the following operation:

y(n) =
M−1∑
m=0

h(m)x(n−m) (A.25)
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A.5.1 Convolution

While FIR filters draw inspiration from the concept of convolution, they do not perform

a perfect convolution operation.

In the above section the FIR filter was derived from the analogue domain. When

represented in the time domain, this translates to a discrete and causal convolution oper-

ation, primarily using the sampled Laplace transform. However, this process encounters

a significant hurdle: it extends towards infinite time. This necessitates an infinite number

of delay steps, which would practically take infinite time to execute.

Therefore, it is more appropriate to state that FIR filters approximate the convolution

operation which arises due to the limitations posed by the finite number of taps (N). To

further complicate matters, to compensate for the limitations of these taps, a technique

called windowing is employed. While this aids in the design and performance of FIR

filters, it simultaneously pushes the filter’s operation further from the pure convolution

operation (Porr, 2020).
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Appendix B

Laplace Operator

The Laplace operator is used as a spatial filter to improve the spatial resolution of EEG

signals. It involves subtracting the weighted average of signals received from neighbouring

electrodes from from each electrode’s signal. This process aims to emphasise signal features

that are specific to a particular electrode while reducing the contribution of common

sources of noise that are shared across neighbouring electrodes (Makeyev et al., 2016).

Mathematically, for a given electrode at a particular time point, the Laplace-transformed

signal is obtained by taking the difference between the electrode’s signal and the average

of its neighbouring electrode signals, each multiplied by a weight. Consider a discrete

EEG signal recorded at a specific electrode i and time point t. The Laplace-transformed

signal Li(t) for that electrode and time point can be calculated as:

Li(t) = Xi(t)−
1

n− 1

n−1∑
j=1

wijXj(t) (B.1)

Where Li(t) is the Laplace-transformed signal for electrode i at time point t. Xi(t)

is the raw EEG signal recorded at electrode i and time point t. n is the total number

of electrodes. wij are the weights assigned to the neighbouring electrodes (Besio et al.,

2006).
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Appendix C

Least Mean Square (LMS) Filters

Another significant technique for noise cancellation, equalisation, and adaptive signal pro-

cessing is the LMS-based FIR filter (Widrow et al., 1975). The effectiveness of DNF is

also assessed against this technique in the results section of this chapter. An LMS-based

FIR filter refers to a digital FIR filter that uses the least mean-squares (LMS) algorithm

for adaptive filtering (Hayes, 1996). The goal of such a filter is to adjust its coefficients in

real-time to minimise the difference between the desired output and the actual output of

the filter. The operational procedure of LMS filters can be broken down into five distinct

steps:

C.1 Filter Coefficients

Consider an FIR filter with coefficients h[k], where k is the index of the coefficient. The

input signal at time n is denoted as x[n], and the desired output (target) at time n is

denoted as d[n].

C.2 Output Calculation

The output of the FIR filter at time n is calculated as the sum of weighted input samples:

y[n] =
M−1∑
k=0

h[k] · x[n− k] (C.1)

where M is the number of filter taps (coefficients).
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C.3 Error Calculation

The error at time n is the difference between the desired output d[n] and the actual output

y[n]:

e[n] = d[n]− y[n] (C.2)

C.4 Coefficient Update

The LMS algorithm updates the filter coefficients based on the error and the input signal.

The update equation for the kth coefficient is given by:

h[k](n+ 1) = h[k](n) + µ · e[n] · x[n− k] (C.3)

where µ is the learning rate, controlling the speed of coefficient adjustments.

C.5 Iteration

The above steps are performed iteratively for each time instant n, adapting the filter

coefficients in such a way that the error is minimised over time.
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