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Stratification, costratification, relative

tensor-triangular geometry and singularity

categories

Charalampos Verasdanis



Abstract. We develop the theory of stratification for a rigidly-compactly
generated tensor-triangulated category using the smashing spectrum and the small
smashing support. Our first result, outside the stratified context, is that the
Hochster dual of the Balmer spectrum is the Kolmogorov quotient of the smash-
ing spectrum equipped with a certain topology. Within the stratified context, we
prove that it suffices to check stratification on certain smashing localizations and
we investigate connections between big prime ideals, objectwise-prime ideals and
homological primes. We give a characterization of the Telescope Conjecture in
terms of the homological spectrum and the homological support. Moreover, we
study induced maps between smashing spectra and prove a descent theorem for
stratification.

We develop the theory of costratification in the setting of relative tensor-
triangular geometry and prove that costratification is equivalent to the colocal-
to-global principle and cominimality. We also introduce and study prime localizing
submodules and prime colocalizing hom-submodules, in the first case, generaliz-
ing objectwise-prime localizing tensor-ideals. Further, we prove that it suffices to
check costratification on certain localizations with respect to smashing submodules
and certain covers of the associated space of supports/cosupports. We apply our
results to show that the derived category of quasi-coherent sheaves over a noether-
ian separated scheme is costratified, generalizing a result of Neeman for noetherian
rings.

Finally, we classify the colocalizing subcategories of the singularity category
of a locally hypersurface ring and then we generalize this result to schemes with
hypersurface singularities.
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Introduction

This thesis consists of three parts developed in Chapters 2, 3, 4, corresponding
to the author’s papers [Ver23c, Ver23a, Ver23b], respectively. Before we explain
the main results of each part, let us give a summary of the concepts in tensor-
triangular geometry that are related to our work.

∗ ∗ ∗

Tensor-triangular geometry started with Balmer’s work [Bal05] that associates
with each essentially small tensor-triangulated category K = (K,⊗, 1) the space
Spc(K) of prime ideals of K, that we call the Balmer spectrum, together with a
support Supp(x) ⊆ Spc(K), for each object x ∈ K. The pair (Spc(K),Supp) is the
universal support data that classifies the thick tensor-ideals of K, providing a unifi-
cation of previously known classifications of thick subcategories in stable homotopy
theory [DHS88], algebraic geometry [Nee92, Tho97] and modular representa-
tion theory [BCR97]. Tensor-triangular geometry has seen great fruition in the
past couple decades and besides conceptual clarity, it provides tools that allow the
transfer of techniques and ideas between different disciplines, one instance being
gluing techniques abstracted from algebraic geometry and then applied to modular
representation theory [BF07].

Often, K = Tc arises as the subcategory of compact objects of a “big” tensor-
triangulated category T. In this setting, the analogous problem is the classification
of localizing tensor-ideals and colocalizing hom-ideals of T. This is an extremely
hard problem to completely solve, but what one can do is use the Balmer spectrum
Spc(Tc) of the compact objects to study T. In [BF11] (assuming that Spc(Tc) is
noetherian, a condition that was later improved to “weakly noetherian” [BHS23b])
Balmer–Favi extended the support of [Bal05] to arbitrary not necessarily compact
objects of T, while abstracting Rickard’s idempotent representations [Ric96] and
giving algebro-geometric applications.

The classification of localizing tensor-ideals via means of support theory is
known as stratification. This term was coined by Benson–Iyengar–Krause [BIK11a,
BIK11b] when they classified the localizing tensor-ideals of the stable module
category of a finite group, while the idea first emerged in [Nee92] for derived
categories of commutative noetherian rings. Inspired by these results, Barthel–
Heard–Sanders [BHS23b] initiated a systematic treatment in general big tensor-
triangulated categories using the Balmer–Favi support and, under a certain topo-
logical restriction on the Balmer spectrum, they proved that stratification implies
the Telescope Conjecture (meaning that every smashing tensor-ideal is generated by
compact objects). The theory of stratification does have limitations. For instance,
the presence of non-zero tensor-nilpotent objects (such as the Brown–Comenetz
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8 INTRODUCTION

dual of the sphere spectrum in the stable homotopy category) ensures that the
category is not stratified.

Dually, the study of colocalizing hom-ideals leads to the theory of cosupport
and costratification, which was initiated by Bensor–Iyengar–Krause [BIK12], in-
spired by the classification of colocalizing subcategories of the derived category of a
commutative noetherian ring by Neeman [Nee11]. Their main application was the
classification of Hom-closed colocalizing subcategories of the stable module category
of a finite group. Compared to the theory of support and stratification, the theory
of costratification has not been explored as much. Our aim, as we shall explain in
more detail later, is to develop the theory of costratification (in the broader context
of relative tensor-triangular geometry [Ste13]) and thereby provide a unification
of the two aforementioned classifications. Additionally, we provide an application
on derived categories of schemes. Work on costratification has also been done in-
dependently by Barthel–Castellana–Heard–Sanders [BCHS23].

A common theme in tensor-triangular geometry is the approximation of the
Balmer spectrum Spc(Tc) by other spaces via certain comparison maps. One such

construction is the homological spectrum Spch(Tc) [Bal20a, Bal20b] consisting of
the homological prime ideals of T (these are subcategories of the abelian category
of modules Mod(Tc)) which gives rise to nilpotence theorems. Further, there is

a surjective map φ : Spch(Tc) → Spc(Tc), which is bijective if and only if the
homological spectrum is T0 [BHS23a]. This holds in all known examples [BC21]
and led to Balmer’s “Nerves of steel conjecture” that φ is always bijective. It is
interesting to note that the associated support theory (which does not require any
topological assumptions on the homological spectrum) satisfies the Tensor Product

Formula: Supph(X ⊗ Y ) = Supph(X) ∩ Supph(Y ), which is a strong property.
However, one cannot expect to have detection of vanishing in general.

More recently, Balchin–Stevenson [BS23], building on the work of Krause
[Kra00, Kra05a] and Balmer–Krause–Stevenson [BKS20], based on the hypoth-
esis that the lattice of smashing ideals S⊗(T) is a spatial frame, studied the sup-
port theory stemming from the smashing spectrum Spcs(T) — the space associ-
ated with S⊗(T) via Stone duality. Notably, there is a surjective continuous map
ψ : Spcs(T) → Spc(Tc)∨ from the smashing spectrum to the Hochster dual of the
Balmer spectrum, which is a homeomorphism if and only if T satisfies the Tele-
scope Conjecture. The hope is that, in examples where the Telescope Conjecture
fails, the smashing spectrum (with the accompanying notion of small support) can
serve as a better tool than the Balmer spectrum in classifying localizing ideals.
The small smashing support is constructed by assuming that the smashing spec-
trum is TD — the dual notion of “weakly noetherian”. Our intention is to prove
results about stratification by using the smashing spectrum instead of the Balmer
spectrum. We will also study connections between the smashing spectrum, the
homological spectrum and the Telescope Conjecture.

A given triangulated category K may not be equipped with an obvious tensor
product and so one may not be able to access the machinery of tensor-triangular
geometry. In some situations, there is a different setup available and that is a
tensor-triangulated category T acting on K. This allows us to construct an induced
support and cosupport for objects of K and use similar methods. This is the realm
of relative tensor-triangular geometry and has been initiated by Stevenson [Ste13],
with applications including the classification of localizing subcategories of certain
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singularity categories [Ste14b] and some progress regarding derived categories of
representations of small categories [AS16]. Our contribution here is the classifi-
cation of colocalizing subcategories of the singularity category of a scheme with
only hypersurface singularities. We achieve this by applying the abstract theory
developed for costratification, after dealing with certain technical challenges.

Part I: Stratification and the smashing spectrum

Hypothesis. We denote by T a rigidly-compactly generated tensor triangu-
lated category (big tt-category) as in Definition 1.1.17 and we assume that the frame
S⊗(T) of smashing ideals of T is a spatial frame. We also assume that the smashing
spectrum Spcs(T) is TD, i.e., all of its points are locally closed; see Definition 1.4.12.

Our first result, which is Proposition 2.1.7, is that ψ : Spcs(T) → Spc(Tc)∨

exhibits the Hochster dual of the Balmer spectrum as the Kolmogorov quotient
of the smashing spectrum equipped with the small topology ; namely, the topology
with basis of open subsets consisting of the smashing supports of compact objects
of T.

Next, we establish results concerned with stratification, using the smashing
spectrum and the small smashing support in place of the Balmer spectrum and
the Balmer–Favi support. To an extent (specifically in Sections 2.2, 2.3, 2.4) our
results are inspired by work of Barthel–Heard–Sanders [BHS23a, BHS23b]. In
fact, under the presence of the Telescope Conjecture, the two stratification theories
are equivalent and we recover many of their results. We expand on this point in
detail in Section 2.5.

Definition (2.2.1). The category T is stratified by the small smashing support
if the maps

P(Spcs(T)) Loc⊗(T),
τ

σ

between the powerset of the smashing spectrum and the collection of localizing
ideals of T, defined by

τ(W ) = {X ∈ T | Supps(X) ⊆W} & σ(L) =
⋃
X∈L

Supps(X)

are mutually inverse bijections.

The motivating factor to our approach to stratification is that (under the as-
sumption that the Balmer spectrum is generically noetherian) the Telescope Con-
jecture is a consequence, and thus a necessity, for T to be stratified by the Balmer–
Favi support. The proof cannot be reproduced and it is neither obvious nor is it
expected that the Telescope Conjecture is a consequence of smashing stratification.
In particular, it is still unclear whether the “Universality Theorem” of [BHS23b]
can be applied. Note, however, that an example of a category that is stratified by
the small smashing support and fails the Telescope Conjecture is yet to be found.
One case under investigation is the derived category of a rank 1 non-noetherian
valuation domain.

Definition (2.2.3). Let ΓP ∈ T be the Rickard idempotent associated with
P ∈ Spcs(T), as in Definition 1.4.15.

(a) T satisfies the local-to-global principle if for every object X ∈ T, it holds that
loc⊗(X) = loc⊗(ΓP ⊗X | P ∈ Spcs(T)).



10 INTRODUCTION

(b) T satisfies minimality if for every P ∈ Spcs(T), it holds that loc⊗(ΓP ) is a
minimal localizing ideal.

Theorem (2.2.15). The category T is stratified by the small smashing support
if and only if T satisfies the local-to-global principle and minimality.

A consequence of Theorem 2.2.15 is that in the case where T is stratified by the
small smashing support, a localizing ideal is a big prime if and only if it is objectwise-
prime. Moreover, there is a bijective correspondence between the set of meet-prime
smashing ideals and the set of big prime localizing ideals; see Corollary 2.2.24
and Corollary 2.2.25.

In Section 2.3, we reduce stratification to smashing localizations and closed
covers of the smashing spectrum.

Theorem (Corollary 2.3.10). Suppose that T satisfies the local-to-global prin-
ciple. Then T is stratified by the small smashing support if and only if T/P is
stratified by the small smashing support, for every P ∈ Spcs(T).

Theorem (Corollary 2.3.14). Suppose that Spcs(T) =
⋃
VSi , where {Si} is a

finite set of smashing ideals, and assume that each T/Si is stratified by the small
smashing support. Then T is stratified by the small smashing support. If T satisfies
the local-to-global principle, then the finiteness condition on {Si} can be dropped.

In Section 2.4, under the hypothesis that T is stratified by the small smashing
support, we construct an injective comparison map ξ : Spch(Tc) → Spcs(T) from
the homological spectrum to the smashing spectrum, which is bijective if and only
if the homological support detects vanishing; see Proposition 2.4.4. Then we make
a connection between the homological spectrum and the Telescope Conjecture.

Theorem (2.4.5). Let T be a big tt-category whose smashing spectrum is TD
and assume that T is stratified by the small smashing support. Then T satisfies the
Telescope Conjecture if and only if Spch(Tc) is T0 and Supph detects vanishing of
objects.

Finally, in Section 2.6, we study the image of the map Spcs(F ) : Spcs(U) →
Spcs(T) induced by a coproduct-preserving tensor-triangulated functor F : T → U

and we prove the following descent result.

Theorem (Corollary 2.6.10). Let F : T → U be a coproduct-preserving tt-
functor between big tt-categories whose smashing spectra are TD and let G be the
right adjoint to F . Assume that Spcs(F ) : Spcs(U) → Spcs(T) is a homeomor-
phism. Provided that loc(1U) = U and loc(G(1U)) = T, if U is stratified by the
small smashing support, then T is stratified by the small smashing support.

Part II: Costratification and actions of tensor-triangulated categories

Hypothesis. We denote by T a big tt-cagegory and by K a T-module, that
means a compactly generated triangulated category upon which T acts via a functor
− ∗ − : T ×K → K with relative internal-hom [−,−]∗ : Top ×K → K. We denote
by IK the product of the Brown–Comenetz duals of the compact objects of K.
See Section 3.1 for details. For simplicity, one could consider K = T and ∗ = ⊗.

Our goal is to study the class of colocalizing hom-submodules of K, that is those
colocalizing subcategories C ⊆ K such that [X,A]∗ ∈ C, ∀X ∈ T, ∀A ∈ C. The
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starting point is to consider a good support–cosupport pair (sΓ, cΓ) on T with values
in a space S (for example the Balmer–Favi support–cosupport or the smashing
support–cosupport or the BIK support–cosupport; see Example 3.2.8) and use the
induced support–cosupport (s∗Γ, c

∗
Γ) on K; see Section 3.2. The reason we do not

fix a specific support–cosupport pair is for conceptual clarity. So, for each point
s ∈ S, we have a non-zero object Γs ∈ T. These objects are pairwise orthogonal
idempotents in the sense that Γs ⊗ Γs ∼= Γs and Γs ⊗ Γr = 0 if s 6= r. If A ∈ K,
then s∗Γ(A) = {s ∈ S | Γs ∗A 6= 0} and c∗Γ(A) = {s ∈ S | [Γs, A]∗ 6= 0}.

Definition (3.2.13). The category K is costratified if the maps

P(c∗Γ(IK)) Colochom(K),
τc∗

Γ

σc∗
Γ

between the powerset of the subspace c∗Γ(IK) ⊆ S and the collection of colocalizing
hom-submodules of K, defined by

τc∗Γ(W ) = {A ∈ K | c∗Γ(A) ⊆W} & σc∗Γ
(C) =

⋃
A∈C

c∗Γ(A)

are mutually inverse bijections.

The space c∗Γ(IK) consists precisely of those points s ∈ S such that Γs ∗K 6= 0.
The inclusion c∗Γ(IK) ⊆ S is not an equality in general. For instance, one could
take K = 0, in which case c∗Γ(IK) = ∅. Apart from the trivial case, if R is a
commutative noetherian ring, then for the action of the derived category T = D(R)
on the singularity category K = S(R), it holds that c∗Γ(IK) = SingR ⊆ SpecR the
singular locus of R. This is studied in Chapter 4. Note that if K = T and ∗ = ⊗,
then c∗Γ(IK) = S.

Our first main result of this part is that costratification is equivalent to two
conditions: the colocal-to-global principle and cominimality, which are in a sense
dual to the more well-established local-to-global principle and minimality [BIK11a,
Ste13, Ste17, BHS23b].

Definition (3.2.15).

(a) K satisfies the colocal-to-global principle if

colochom(A) = colochom([Γs, A]∗ | s ∈ S), ∀A ∈ K.

(b) K satisfies cominimality if, for all s ∈ S, colochom([Γs, IK]∗) is minimal in
Colochom(K) in the sense that it does not contain any non-zero proper colocal-
izing hom-submodule of K.

Theorem (3.2.21). The category K is costratified if and only if K satisfies the
colocal-to-global principle and cominimality.

The following result, which extends Stevenson’s [Ste13, Proposition 6.8], will
be very useful for the applications.

Proposition (3.2.25). If T satisfies the local-to-global principle, then K satis-
fies the local-to-global principle and the colocal-to-global principle.

The next theme of this part concerns two classes of subcategories of K. The
class of prime localizing submodules and the class of hom-prime colocalizing hom-
submodules. The former generalizes the concept of an objectwise prime localizing
tensor-ideal in the context of relative tensor-triangular geometry, while the latter
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seems to be new even for K = T. These two notions are intimately related with the
Action Formula (which generalizes the Tensor Product Formula; see Remark 3.3.16)
and the Internal-Hom Formula, respectively, which are properties that a support–
cosupport pair may or may not satisfy. We shall focus more on the results regarding
hom-submodules.

Definition (3.3.3).

(a) A proper localizing submodule L ⊆ K is called prime if X ∗ A ∈ L implies
X ∗K ⊆ L or A ∈ L.

(b) A proper colocalizing hom-submodule C ⊆ K is called hom-prime if [X,A]∗ ∈ C

implies [X, IK]∗ ∈ C or A ∈ C.

If K is costratified, then we have a complete description of the hom-prime
colocalizing hom-submodules in terms of the space c∗Γ(IK).

Theorem (3.3.10). If K is costratified, then there is a bijective correspondence
between hom-prime colocalizing hom-submodules of K and points of c∗Γ(IK). A point
s ∈ c∗Γ(IK) is associated with Ker[Γs,−]∗ = colochom([Γr, IK]∗ | r 6= s).

Definition (3.3.13).

(a) K satisfies the Action Formula (AF) if

s∗Γ(X ∗A) = sΓ(X) ∩ s∗Γ(A), ∀X ∈ T, ∀A ∈ K.

(b) K satisfies the Internal-Hom Formula (IHF) if

c∗Γ([X,A]∗) = cΓ([X, IT]) ∩ c∗Γ(A), ∀X ∈ T, ∀A ∈ K.

(It holds that cΓ([X, IT]) = sΓ(X).)

Let AnnT(K) = {X ∈ T | X ∗K = 0}. If AnnT(K) = 0, then we say that K is
a conservative T-module.

Theorem (Proposition 3.3.14, Proposition 3.3.15).

(a) If K satisfies the Action Formula, then Ker(Γs ∗ −) is a prime localizing sub-
module, ∀s ∈ S. If K is a conservative T-module, then the converse holds.

(b) If K satisfies the Internal-Hom Formula, then Ker[Γs,−]∗ is a hom-prime colo-
calizing hom-submodule, ∀s ∈ S. If K is a conservative T-module, then the
converse holds.

(1) If T satisfies minimality, then K satisfies the Action Formula and the Internal-
Hom Formula.

(2) If K is a conservative T-module and K satisfies cominimality, then K satisfies
the Internal-Hom Formula.

(3) If T satisfies the Internal-Hom Formula, then T satisfies the Action Formula.

We then reduce costratification to certain smashing localizations. Our result is
stated in full generality in Theorem 3.4.4. As a special case, we obtain the following:

Corollary (3.4.7). Suppose that every point of Spc(Tc) is visible. Then:

(a) T satisfies cominimality if and only if T/ loc⊗(p) satisfies cominimality, for all
p ∈ Spc(Tc).

(b) Suppose that T satisfies the colocal-to-global principle. Then T is costratified if
and only if T/ loc⊗(p) is costratified, for all p ∈ Spc(Tc).
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Moreover, we reduce costratification to covers of the Balmer spectrum. If V
is a Thomason subset of Spc(Tc) and U is the complement of V , we denote by
T(U) the category T/TV , where TV is the localizing ideal of T generated by those
compact objects supported on V .

Corollary (3.4.8). Suppose that every point of Spc(Tc) is visible and that
Spc(Tc) =

⋃
j∈J Uj is a cover of Spc(Tc) by complements of Thomason subsets.

If T(Uj) satisfies cominimality, for all j ∈ J , then T satisfies cominimality. If,
moreover, T satisfies the colocal-to-global principle, then T is costratified.

We also obtain the following generalization, which is the analogous version
of [Ste13, Theorem 8.11] for hom-submodules.

Theorem (3.4.9). Suppose that every point of Spc(Tc) is visible and that
Spc(Tc) =

⋃
j∈J Uj is a cover of Spc(Tc) by complements of Thomason subsets.

If K(Uj) (as a T(Uj)-module) satisfies cominimality, for all j ∈ J , then K satisfies
cominimality. If, moreover, K satisfies the colocal-to-global principle, then K is
costratified.

Finally, using the general machinery developed throughout, we first give in The-
orem 3.5.4 a more streamlined proof of Neeman’s classification of the colocalizing
subcategories of the derived category of a commutative noetherian ring and then
we generalize this result to schemes:

Theorem (3.5.8). The derived category D(X) of quasi-coherent sheaves over
a noetherian separated scheme X is costratified.

Part III: Colocalizing subcategories of singularity categories

Let R be a commutative noetherian ring. The singularity category S(R) =
Kac(InjR), i.e., the homotopy category of acyclic complexes of injective R-modules,
was introduced and studied in [Kra05b] (wherein it was called the stable derived
category) where it was shown that S(R) is a compactly generated triangulated cat-
egory and that there is a stabilization functor IλQρ : D(R) → S(R) that can be
used to describe the compact objects of S(R). As we have already discussed, a
classic problem regarding such categories is the classification of the localizing and
colocalizing subcategories. Since S(R) is not tensor-triangulated (at least not in
any obvious way) the machinery of tensor-triangular geometry is not readily avail-
able. However, in [Ste14b] Stevenson utilized the action of D(R) on S(R) defined
by tensoring the objects of S(R) with K-flat resolutions and classified the localiz-
ing subcategories of S(R), for a locally hypersurface ring R and then generalized
this classification result to the singularity category S(X) of a noetherian separated
scheme X with hypersurface singularities.

In this part, we apply the theory of costratification developed in Chapter 3 in
order to classify the colocalizing subcategories of S(R), for a locally hypersurface
ring R and then we generalize our result to the singularity category of a scheme
with hypersurface singularities. Specifically, for the case of rings, using the action
of D(R) on S(R), we obtain a notion of cosupport for the objects of S(R). The
cosupport of an object A ∈ S(R) is

Cosupp(A) = {p ∈ SpecR | HomR(gp, A) 6= 0} ⊆ SingR,
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where gp = K∞(p)⊗RRp is the Balmer–Favi idempotent associated with p ∈ SpecR
and SingR is the singular locus of R. The assignment of cosupport allows us to
define the maps

Coloc(S(R)) P(SingR),
σ

τ

where σ(C) =
⋃
A∈C Cosupp(A) and τ(W ) = {A ∈ S(R) | Cosupp(A) ⊆ W}. One

should note that when the acting category, in this case D(R), is generated by its
tensor-unit as a localizing subcategory, then every colocalizing subcategory of the
category acted upon, in this case S(R), is a hom-submodule and thus our results
regarding colocalizing hom-submodules apply to all colocalizing subcategories.

If X is a noetherian separated scheme and D(X) is the derived category of
quasi-coherent sheaves on X, one can use the action of D(X) on S(X) in a similar
fashion to obtain the notions of cosupport and costratification.

Theorem (4.5.7, 4.6.1). Let R be a locally hypersurface ring. Then S(R) is
costratified, i.e., the maps σ and τ defined above are mutually inverse bijections.
Let X be a noetherian separated scheme with hypersurface singularities. Then S(X)
is costratified.



CHAPTER 1

Preliminaries

This chapter consists of preliminary material on the basic structures that we will
be discussing throughout this work. Specifically, tensor-triangulated categories and
various spectra and support theories associated with them (the Balmer spectrum,
the homological spectrum and the smashing spectrum). We assume familiarity with
the language and basic concepts of category theory such as functors, natural trans-
formations, adjunctions, limits, colimits, additive categories, abelian categories,
monoidal categories etc.; see e.g. [Rie16, Mac98]. For the convenience of the
reader, we will briefly provide some definitions concerning triangulated categories,
mostly to establish terminology and notation. We refer the reader to [Nee01] for
a more in depth discussion.

1.1. Tensor-triangulated categories

In this section, we recall some standard definitions and concepts about tri-
angulated categories such as Brown representability, purity, modules and Brown–
Comenetz duals of compact objects and the main structure that we will be studying
in the sequel: a rigidly-compactly generated tensor-triangulated category.

Triangulated categories.

Definition 1.1.1. A triangulated category is a triple T = (T,Σ,∆) that consists of
an additive category T, an additive automorphism Σ: T → T called the suspension
functor and a class ∆ of diagrams in T of the form X → Y → Z → ΣX, called
triangles, such that the following properties are satisfied:

TR1(a): The class ∆ is closed under isomorphisms in the sense that if

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

∼=f ∼=g ∼=h ∼=Σf

is a commutative diagram such that X → Y → Z → ΣX ∈ ∆ and f, g, h
are isomorphisms, then X ′ → Y ′ → Z ′ → ΣX ′ ∈ ∆.

TR1(b): For all X ∈ T, it holds that X
IdX−−→ X −−→ 0 −−→ ΣX ∈ ∆.

TR1(c): For all morphisms f : X → Y , there exists a triangle

X
f−→ Y −→ Z −→ ΣX ∈ ∆.

TR2: It holds that

X
f−→ Y

g−→ Z
h−→ ΣX ∈ ∆

15
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if and only if

Y
−g−−→ Z

−h−−→ ΣX
−Σf−−−→ ΣY ∈ ∆.

TR3: For all commutative diagrams of the form

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

f

u

g

v

h

Σu

f ′ g′ h′

where both rows are triangles in ∆, there exists a morphism w : Z → Z ′

such that w ◦ g = g′ ◦ v and Σu ◦ h = h′ ◦ w.
TR4: For all composable pairs of morphisms f : X → Y and g : Y → Z, there

exists a commutative diagram

X Y X ′ ΣX

X Z Y ′ ΣX

0 Z ′ Z ′ 0

ΣX ΣY ΣX ′ Σ2X

f

IdX g IdΣX

g◦f

IdZ′

Σf

such that all rows and columns are triangles in ∆.

Definition 1.1.2. Let T be a triangulated category. An additive subcategory S of
T is called a triangulated subcategory if the following two conditions are satisfied:

(a) ΣX ∈ S and Σ−1X ∈ S, for all X ∈ S.
(b) If X → Y → Z → ΣX is a triangle in T such that X,Y ∈ S, then Z ∈ S.

If a triangulated subcategory S is thick, i.e., closed under taking summands, then
we will refer to S as a thick subcategory of T, skipping the term “triangulated”. If,
moreover, S is closed under coproducts (resp. products) then S is called a localizing
(resp. colocalizing) subcategory.

Definition 1.1.3. Let T be a triangulated category. For each object X ∈ T, the
smallest thick (resp. localizing, resp. colocalizing) subcategory of T containing X is
called the thick (resp. localizing, resp. colocalizing) subcategory of T generated by X
and is denoted by thick(X) (resp. loc(X), resp. coloc(X)).

Definition 1.1.4. An additive functor F : T1 → T2 between triangulated categories
is called a triangulated functor if F ◦Σ and Σ◦F are naturally isomorphic functors
and the image of each triangle X → Y → Z → ΣX in T1, i.e., the diagram
FX → FY → FZ → FΣX ∼= ΣFX, is a triangle in T2.

Definition 1.1.5. An additive functor H : T → A, where T is a triangulated
category and A is an abelian category, is called a homological functor if for each
triangle X → Y → Z → ΣX in T, the sequence HX → HY → HZ is exact in A.
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If H is an additive contravariant functor that sends triangles to exact sequences,
then H is called a cohomological functor.

Definition 1.1.6. An object X in a triangulated category T is called compact if the
functor HomT(X,−) : T → Ab, where Ab denotes the category of abelian groups,
preserves coproducts.

Remark 1.1.7. The subcategory of compact objects of a triangulated category T

is denoted by Tc and is a thick subcategory of T.

Definition 1.1.8. A triangulated category T with coproducts is called compactly
generated if its subcategory of compact objects is essentially small, i.e., there is
only a set of isomorphism classes of compact objects, and if HomT(X,Y ) = 0, for
all compact objects X, then Y = 0.

A key feature of compactly generated triangulated categories is the following
result, known as Brown representability, which in turn ensures the existence of
certain adjunctions.

Theorem 1.1.9 ([Nee96, Theorem 3.1]). Let T be a compactly generated triangu-
lated category and let H : Top → Ab be a cohomological functor that sends coprod-
ucts to products. Then H is representable, i.e., there exists an object X ∈ T and a
natural isomorphism H ∼= HomT(−, X).

Theorem 1.1.10 ([Nee96, Theorem 4.1]). Let F : T1 → T2 be a triangulated
functor and assume that T1 is compactly generated. If F preserves coproducts, then
F has a right adjoint.

Purity and modules. Let T be a compactly generated triangulated category.

Recollection 1.1.11. The category Mod(Tc) of additive functors {Tc}op → Ab is
a Grothendieck abelian category. The functor h : T → Mod(Tc) that sends an object

X ∈ T to h(X) = X̂ = HomT(−, X)|Tc is called the restricted Yoneda functor and
is conservative, homological and preserves products and coproducts. A morphism

f : X → Y is called a pure monomorphism if f̂ : X̂ → Ŷ is a monomorphism.
An object X ∈ T is called pure-injective if, for all objects Y ∈ T, every pure
monomorphism f : X → Y splits (meaning that there exists a morphism g : Y → X
such that g ◦ f = IdX). According to [Kra00, Theorem 1.8] (see also [Bel00,

Theorem 8.6]) an object X ∈ T is pure-injective if and only if X̂ is an injective
object of Mod(Tc). (In fact, an object E ∈ Mod(Tc) is injective if and only if there

exists a pure-injective object X ∈ T such that E ∼= X̂; see [Kra00, Corollary 1.9].)

Recollection 1.1.12. Let T and U be compactly generated triangulated cate-
gories and let F : T → U be a coproduct-preserving triangulated functor. By The-
orem 1.1.10, F has a right adjoint G : U → T. If G preserves coproducts, then G
preserves pure-injective objects: There is an induced adjunction

Mod(Tc) Mod(Uc),
F

⊥
G

where F is an exact functor and F and G commute with the restricted Yoneda
functors. Since G is the right adjoint of an exact functor, G preserves injective
objects. Since pure-injective objects are precisely those objects whose image under
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the restricted Yoneda functor is injective, it follows that G preserves pure-injective
objects; see [Kra00, Proposition 2.6].

Recollection 1.1.13. Let x be a compact object of T and consider the functor
Hx := HomZ(HomT(x,−),Q/Z) : Top → Ab. Since x is compact and Q/Z is an
injective object of Ab, it follows that Hx is a cohomological functor that sends
coproducts to products. So, by Brown representability, Hx is representable. The
representing object of Hx is denoted by Ix and is called the Brown–Comenetz dual
of x. The functor HomT(−, Ix)|Tc is an injective object of Mod(Tc); see [Nee98].
Hence, Ix is pure-injective. Choosing a skeleton for the subcategory of compact
objects, the product of the associated Brown–Comenetz duals is denoted by I.
Being a product of pure-injective objects, I is also pure-injective. Using the fact
that T is compactly generated, one can easily check that I is a cogenerator of T

in the sense that HomT(X,ΣnI) = 0, ∀n ∈ Z implies that X = 0. It holds that
T = coloc(I). This follows from the fact that the Brown–Comenetz duals of the
compact objects form a perfect cogenerating set for T; see [Kra02]. We use the
symbol IT if there is any possibility for confusion.

Tensor-triangulated categories.

Definition 1.1.14. A tensor-triangulated category (tt-category) is a triple (T,⊗, 1)
that consists of a triangulated category T and a symmetric monoidal product

−⊗− : T × T → T

that we call the tensor product, that is a triangulated functor in both variables.
The object 1 ∈ T denotes the tensor-unit.

Definition 1.1.15. A triangulated subcategory X of a tt-category T is called a
tensor-triangulated subcategory (tt-subcategory) if 1 ∈ X and X⊗Y ∈ X, ∀X,Y ∈ X.

Definition 1.1.16. A triangulated functor F : T1 → T2 between tt-categories is
called a tensor-triangulated functor (tt-functor) if F is a monoidal functor, i.e., if
F (X ⊗ Y ) ∼= FX ⊗ FY .

Let T = (T,⊗, 1) be a tensor-triangulated category that is compactly gener-
ated and suppose that the tensor product preserves coproducts in both variables.
As a consequence of Brown representability, for every object X ∈ T, the functor
X ⊗ − has a right adjoint [X,−]. These right adjoints assemble into a bifunctor
[−,−] : Top×T → T called the internal-hom. The dual of an object X ∈ T, denoted
by X∨, is [X, 1]. Let X,Y be two objects of T. Tracing the identity morphism IdY
through the composite

T(Y, Y ) ∼= T(1⊗ Y, Y )
(εX,1⊗Y )∗−−−−−−−→ T(X∨ ⊗X ⊗ Y, Y ) ∼= T(X∨ ⊗ Y, [X,Y ])

where εX,1 : X∨⊗X → 1 is the counit of adjunction, gives rise to a natural evalua-
tion map X∨ ⊗ Y → [X,Y ]. The object X is called rigid if this natural evaluation
map is an isomorphism, for all Y ∈ T.

Definition 1.1.17. Let T = (T,⊗, 1) be a tensor-triangulated category with co-
products. Then T is called rigidly-compactly generated, henceforth a big tt-category,
if the following conditions are satisfied:

(a) T is compactly generated.
(b) −⊗− : T × T → T preserves coproducts in both variables.
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(c) Tc is a tensor-triangulated subcategory of T.
(d) The rigid objects of T coincide with the compact objects.

Convention 1.1.18. From now on, T will always denote a big tt-category.

Example 1.1.19. The following are examples of big tt-categories. See [BF11] for
more details.

(a) SH the stable homotopy category of spectra. The tensor product of SH is the
smash product and the tensor unit is the sphere spectrum. The subcategory of
compact objects of SH is SHfin the subcategory of finite spectra.

(b) D(R) the unbounded derived category of a commutative ring R. The tensor
product of D(R) is the left derived tensor product of complexes and the tensor
unit is the image of R in D(R). The subcategory of compact objects of D(R)
is Dperf(R) the subcategory of perfect complexes of R-modules, i.e., those com-
plexes that are quasi-isomorphic to bounded complexes of finitely generated
projective R-modules.

(c) D(X) the unbounded derived category of quasi-coherent sheaves ofOX -modules
over a quasi-compact separated scheme X. The tensor product of D(X) is the
left derived tensor product of complexes of OX -modules and the tensor unit
is the image of OX in D(X). The subcategory of compact objects of D(X)
is Dperf(X) the subcategory of perfect complexes of OX -modules, i.e., those
complexes that are locally quasi-isomorphic to bounded complexes of locally
free sheaves of OX -modules.

(d) Mod(kG) the stable module category of the group algebra kG, where G is a
finite group. The tensor product of Mod(kG) is over k with diagonal G-action
and the tensor unit is k with trivial G-action. The subcategory of compact ob-
jects of Mod(kG) is mod(kG) the subcategory of finite dimensional kG-modules.

Definition 1.1.20. A subcategory I of a tt-category T is called a tensor-ideal if
X ⊗ Y ∈ I, ∀X ∈ I, ∀Y ∈ T. A thick (resp. localizing) subcategory of T that
is a tensor-ideal is called a thick tensor-ideal (resp. localizing tensor-ideal). For
simplicity, a tensor-ideal will be called an ideal, skipping the adjective “tensor”.

Definition 1.1.21. For each object X ∈ T, the smallest thick (resp. localizing)
ideal of T containing X is called the thick (resp. localizing) ideal generated by X
and is denoted by thick⊗(X) (resp. loc⊗(X)). The collections of thick ideals and
localizing ideals of T are denoted by Thick⊗(T) and Loc⊗(T), respectively.

Lemma 1.1.22. Let F1 : T1 → T2 be a coproduct-preserving tt-functor and let
F2 : T1 → T1 be a coproduct-preserving triangulated endofunctor of T1 such that the
following condition holds: F2(X ⊗ Y ) ∼= X ⊗ F2Y, ∀X,Y ∈ T1. Then for every
collection of objects X ⊆ T1, if X ∈ loc⊗(X), then FiX ∈ loc⊗(Fi(X)), i = 1, 2.

Proof. The collection {Y ∈ T1 | FiY ∈ loc⊗(Fi(X))} is a localizing ideal of T1

that contains X. Hence, it contains loc⊗(X) and, as a result, FiX ∈ loc⊗(Fi(X)).
�

1.2. The Balmer spectrum

In this section, we recall the Balmer spectrum, the classification of thick tensor-
ideals of a tensor-triangulated category and the Balmer–Favi support, which ex-
tends the support of compact objects to arbitrary objects.
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Definition 1.2.1 ([Bal05]). Let K be an essentially small tt-category, e.g., K = Tc

the subcategory of compact objects of a big tt-category T. A proper thick ideal p
of K is called a prime ideal if X ⊗ Y ∈ p implies that X ∈ p or Y ∈ p. The Balmer
spectrum of K, denoted by Spc(K), is the set of prime ideals of K. Let X be an
object of K. The set Supp(X) = {p ∈ Spc(K) | X /∈ p} ⊆ Spc(K) is called the
support of X. If T is a big tt-category, when we say the Balmer spectrum of T we
mean Spc(Tc).

Lemma 1.2.2 ([Bal05, Lemma 2.6]). Let K be an essentially small tt-category.
The support, as defined above, satisfies the following properties:

(a) Supp(0) = ∅ & Supp(1) = Spc(K).
(b) Supp(X ⊕ Y ) = Supp(X) ∪ Supp(Y ).
(c) Supp(ΣX) = Supp(X).
(d) Supp(Y ) ⊆ Supp(X) ∪ Supp(Z), for any triangle X → Y → Z → ΣX.
(e) Supp(X ⊗ Y ) = Supp(X) ∩ Supp(Y ).

Remark 1.2.3. Lemma 1.2.2 implies that the subsets of Spc(K) of the form
Supp(X) comprise a basis of closed subsets for a topology on Spc(K). We always
consider Spc(K) as a topological space equipped with the aforementioned topology.

Definition 1.2.4. Let K be an essentially small tt-category. A thick ideal I of K
is called radical if {X ∈ K | ∃n ≥ 1: X⊗n ∈ I} = I.

Definition 1.2.5. Let K be an essentially small tt-category. A subset V of Spc(K)
is called Thomason if V is a union of closed subsets each with quasi-compact com-
plement.

The Thomason subsets of the Balmer spectrum parametrize radical thick ideals
in the sense of the following classification theorem:

Theorem 1.2.6 ([Bal05, Theorem 4.10]). Let K be an essentially small tt-category.
The map that sends a Thomason subset V of Spc(K) to the thick ideal KV =
{X ∈ K | Supp(X) ⊆ V } is an inclusion-preserving bijection between the collec-
tion of Thomason subsets of Spc(K) and the collection of radical thick ideals of K.
Its inverse is given by mapping a radical thick ideal I to the Thomason subset⋃
X∈I Supp(X).

Remark 1.2.7. If K is the subcategory of compact objects of a big tt-category, then
all thick ideals of K are radical and so, Balmer’s theorem provides a classification
of all thick ideals of K.

∗ ∗ ∗
Let T be a big tt-category.

Definition 1.2.8. A localizing ideal S ⊆ T is called a smashing ideal if the quotient
functor jS : T � T/S admits a right adjoint kS : T/S ↪→ T that preserves coproducts.
The collection of smashing ideals of T is denoted by S⊗(T).

Remark 1.2.9. The collection S⊗(T) is a set; see [Kra00, Theorem 4.9] and
also [BF11, Remark 2.16].

Recollection 1.2.10. As explained in [BF11], every S ∈ S⊗(T) corresponds to a
triangle (TS) : eS → 1→ fS, where eS is a left idempotent, fS is a right idempotent
and eS ⊗ fS = 0 (with these three conditions being equivalent). Moreover, for any
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object X ∈ T, the associated localization triangle iSrS(X)→ X → kSjS(X), where
iS : S→ T is the inclusion functor and rS : T → S is its right adjoint, is isomorphic
to eS ⊗ X → X → fS ⊗ X, i.e., the triangle obtained by tensoring (TS) with X.
More succinctly, the localization and acyclization functors corresponding to S are
given by tensoring with fS and eS, respectively.

A point p ∈ Spc(Tc) is called visible (weakly visible in [BHS23b]) if there exist
Thomason subsets V,W of Spc(Tc) such that {p} = V ∩ (Spc(Tc) \ W ) [BF11,
Ste13]. The Balmer spectrum is called weakly noetherian if all of its points are
visible. In particular, if Spc(Tc) is noetherian, then every point of Spc(Tc) is visible.
According to Balmer’s classification theorem, the subsets V and W correspond to
thick ideals Tc

V , T
c
W of compact objects. Let TV = loc⊗(Tc

V ) and TW = loc⊗(Tc
W ).

(It should be noted that the localizing subcategories generated by Tc
V and Tc

W

are already tensor-ideals.) Since the ideals TV and TW are compactly generated,
they are smashing ideals [Mil92]. Therefore, they have associated left and right
idempotents eV , fV and eW , fW , respectively. Let gp = eV ⊗ fW . Then the objects
{gp | p ∈ Spc(Tc) and p is visible} are pairwise-orthogonal tensor-idempotents. As-
suming that all points of Spc(Tc) are visible, the Balmer–Favi support of an object
X ∈ T is Supp(X) = {p ∈ Spc(Tc) | gp ⊗X 6= 0}.

Remark 1.2.11. The reason we use the same notation for the Balmer–Favi support
and the support of compact objects, as in Definition 1.2.1, is that they coincide on
the compact objects.

Proposition 1.2.12 ([BF11, Proposition 7.17, Theorem 7.22]). Assuming that
all points of Spc(Tc) are visible, the Balmer–Favi support satisfies the following
properties:

(a) If x ∈ Tc, then the Balmer–Favi support of x is equal to the support of x, as
in Definition 1.2.1.

(b) Supp(0) = ∅ & Supp(1) = Spc(Tc).
(c) Supp(

∐
i∈I Xi) =

⋃
i∈I Supp(Xi).

(d) Supp(ΣX) = Supp(X).
(e) Supp(Y ) ⊆ Supp(X) ∪ Supp(Z), for any triangle X → Y → Z → ΣX.
(f) Supp(X ⊗ Y ) ⊆ Supp(X) ∩ Supp(Y ).
(g) Supp(X ⊗ y) = Supp(X) ∩ Supp(y), ∀X ∈ T, ∀y ∈ Tc.

Recollection 1.2.13. Let V be a Thomason subset of Spc(Tc) and let U be its
complement. Since TV is a smashing ideal, the quotient T(U) := T/TV is a big
tt-category and moreover, Spc(T(U)c) ∼= U ; see [BF07, Proposition 1.11].

1.3. The homological spectrum

In this section, we recall some standard facts about modules and the homo-
logical spectrum. The reader that wishes to learn more about the structure of the
module category should consult [BKS20, Appendix A], while information about
the homological spectrum can be found in [Bal20a].

The category Mod(Tc) has a right exact tensor product defined via Day con-
volution and the restricted Yoneda functor h : T → Mod(Tc) is monoidal. Since
Mod(Tc) is a Grothendieck abelian category, it also admits an internal-hom functor
[−,−] : Mod(Tc)op ×Mod(Tc) → Mod(Tc). The subcategory of finitely presented
objects of Mod(Tc) is denoted by mod(Tc). An additive subcategory of mod(Tc) is
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called a Serre subcategory if it is closed under subobjects, extensions and quotients.
A maximal Serre ideal of mod(Tc) is called a homological prime ideal.

Construction 1.3.1. For each homological prime ideal B, there exists a unique
maximal localizing Serre ideal B′ of Mod(Tc) that contains B, constructed in the
following way: Let loc⊗(B) be the localizing Serre ideal of Mod(Tc) generated by B.
Then the Gabriel quotient Mod(Tc)/ loc⊗(B) remains a Grothendieck category and
inherits the monoidal structure of Mod(Tc) in such a way that the quotient functor
QB : Mod(Tc) → Mod(Tc)/ loc⊗(B) is monoidal. The injective envelope of the
tensor-unit of Mod(Tc)/ loc⊗(B) is of the form (QB◦h)(IB), for some pure-injective

object IB ∈ T. Then B′ = Ker[−, ÎB] is the unique maximal localizing Serre ideal
of Mod(Tc) that contains B.

Definition 1.3.2. The homological spectrum of T, denoted by Spch(Tc), is the set
of homological prime ideals and the homological support of an object X ∈ T is the
set

Supph(X) = {B ∈ Spch(Tc) | X̂ /∈ B′}.

Remark 1.3.3. Due to the fact that the restricted Yoneda functor is conservative,
Supph(X) = {B ∈ Spch(Tc) | [X, IB] 6= 0}.

Lemma 1.3.4 ([Bal20a, Section 4]). The homological support satisfies the follow-
ing properties:

(a) Supph(0) = ∅ & Supph(1) = Spch(Tc).

(b) Supph(
∐
i∈I Xi) =

⋃
i∈I Supph(Xi).

(c) Supph(ΣX) = Supph(X).

(d) Supph(Y ) ⊆ Supph(X) ∪ Supph(Z), for any triangle X → Y → Z → ΣX.

(e) Supph(X ⊗ Y ) = Supph(X) ∩ Supph(Y ).

Remark 1.3.5 ([Bal20b, Remark 3.4 & Corollary 3.9]). The map

φ : Spch(Tc)→ Spc(Tc), B 7→ h−1(B) ∩ Tc

is surjective and φ−1(Supp(x)) = Supph(x), ∀x ∈ Tc. The last relation shows that

when Spch(Tc) is equipped with the topology with basis of closed subsets consisting
of the homological supports of compact objects, φ is continuous.

1.4. The smashing spectrum

This section is devoted to the smashing spectrum of a big tt-category and the
associated support theory.

Recollection 1.4.1. The collection S⊗(T) of smashing ideals, ordered by inclu-
sion, is a complete lattice [Kra05a]. That is, every collection of smashing ideals
has an infimum (meet) and a supremum (join). The join of a collection of smash-
ing ideals {Si}i∈I is

∨
i∈I Si := loc⊗(

⋃
i∈I Si) and the meet of {Si}i∈I , denoted

by
∧
i∈I Si, is the join of all smashing ideals contained in

⋂
i∈I Si. The meet of

finitely many smashing ideals is their intersection. On the contrary, the meet of
infinitely many smashing ideals is not necessarily their intersection; see [BKS20,
Remark 5.12]. By [BKS20, Theorem 5.5], S⊗(T) is a frame. This means that finite
meets distribute over arbitrary joins.
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Remark 1.4.2. In a previous version of their work [BS23], Balchin–Stevenson
claimed that S⊗(T) is a spatial frame, i.e., S⊗(T) is isomorphic to the lattice of
open subsets of a topological space. Subsequently, it was discovered that there is a
mistake in their proposed proof. Details and counterexamples to their arguments
can be found in [BS23, Appendix A]. Hence, the statement “the frame of smashing
ideals of a big tt-category is a spatial frame” is still an open problem. Nevertheless,
even if counterexamples to this statement are found, assuming that S⊗(T) is a
spatial frame and building on this hypothesis is still fruitful since examples of
interest, notably derived categories of valuation domains satisfy it [BŠ17].

Hypothesis 1.4.3. For the rest of this work, we assume that the frame S⊗(T) of
smashing ideals of T is a spatial frame.

Definition 1.4.4 ([BS23]). The space corresponding to the spatial frame S⊗(T)
via Stone duality is called the smashing spectrum of T and is denoted by Spcs(T).
The smashing spectrum consists of the meet-prime smashing ideals of T. Namely,
those smashing ideals P that satisfy the following property: if S1, S2 are two smash-
ing ideals such that S1 ∩ S2 ⊆ P , then S1 ⊆ P or S2 ⊆ P .

Remark 1.4.5. For details on Stone duality, see [Jon82].

Recollection 1.4.6. The lattice isomorphism S⊗(T)→ O(Spcs(T)), given by Stone
duality, maps a smashing ideal S to the open subset US = {P ∈ Spcs(T) | S * P}.
Accordingly, the closed subsets of Spcs(T), being the complements of open subsets,
are of the form VS = {P ∈ Spcs(T) | S ⊆ P}. Since S⊗(T) → O(Spcs(T)) is order-
preserving, S ⊆ R if and only if US ⊆ UR. The union of a collection of open subsets
{USi}i∈I is given by U∨

i∈I Si
. Similarly, the intersection of two (or finitely many)

open subsets US and UR is US∩R. Lastly, the closure of a point P ∈ Spcs(T) is VP .

Recollection 1.4.7. Since the spatial frame S⊗(T) corresponds to Spcs(T) via
Stone duality, it follows that Spcs(T) is a sober space, i.e., every non-empty irre-
ducible closed subset of Spcs(T) has a unique generic point. According to [BS23,
Remark 3.2.12], Spcs(T) most likely does not have a basis of quasi-compact open
subsets.

Remark 1.4.8. A space X is called spectral if X sober, quasi-compact and X has
a basis of quasi-compact open subsets that is closed under finite intersections. As
mentioned in Recollection 1.4.7, by [BS23, Remark 3.2.12], it is likely that Spcs(T)
is not a spectral space (equivalently S⊗(T) is not a coherent frame).

∗ ∗ ∗

Definition 1.4.9. Let X be an object of T. The subset

supps(X) = {P ∈ Spcs(T) | X /∈ P}
of Spcs(T) is called the big smashing support of X.

Lemma 1.4.10 ([BS23, Lemma 3.2.8]). The big smashing support satisfies the
following properties:

(a) supps(0) = ∅ & supps(1) = Spcs(T).
(b) supps(

∐
i∈I Xi) =

⋃
i∈I supps(Xi).

(c) supps(ΣX) = supps(X).
(d) supps(Y ) ⊆ supps(X) ∪ supps(Z), for any triangle X → Y → Z → ΣX.
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(e) supps(X ⊗ Y ) ⊆ supps(X) ∩ supps(Y ).
(f) supps(x⊗ y) = supps(x) ∩ supps(y), ∀x, y ∈ Tc.

If x ∈ Tc, then Supp(x) is a closed subset of Spc(Tc). Analogously, if X ∈ T

and loc⊗(X) ∈ S⊗(T), then supps(X) is an open subset of Spcs(T). In particular,
if x ∈ Tc, then loc⊗(x) ∈ S⊗(T). Thus, supps(x) is an open subset of Spcs(T).

Lemma 1.4.11. Let X ∈ T and R =
∧
{S ∈ S⊗(T) | X ∈ S}. Then UR ⊆

supps(X), with equality when loc⊗(X) is a smashing ideal.

Proof. Let I =
⋂
{S ∈ S⊗(T) | X ∈ S}. Then we have UR =

⋃
{UL | L ∈

S⊗(T), L ⊆ I}. Let L be a smashing ideal such that L ⊆ I and assume that
P ∈ UL, in other words L * P . If X ∈ P , then I ⊆ P (since P is a smashing ideal
that contains X). As a result, L ⊆ P , which has been ruled out by assumption.
So, X /∈ P , meaning that P ∈ supps(X). If loc⊗(X) is a smashing ideal, then
loc⊗(X) = R. Therefore, UR = Uloc⊗(X) = supps(X). �

Next we discuss a refinement of the big smashing support, designed to handle
non-compact objects more effectively; see [BS23, Section 3.3]. This refined support,
called the small smashing support, is constructed in a way similar to the Balmer–
Favi support. In the case of the derived category of a commutative noetherian ring
it recovers Foxby’s small support [Fox79].

Definition 1.4.12. Let X be a topological space. A point x ∈ X is called locally
closed if there exist an open subset U ⊆ X and a closed subset V ⊆ X such that
{x} = U ∩ V . If every point of X is locally closed, then X is called TD.

Remark 1.4.13. Since the TD separation axiom does not appear to be as popular
as the rest of the separation axioms, e.g., T0, T1, T2, it might be useful to provide
some explanations. To this end, let X be a topological space. The specialization
preorder on the points of X is defined as follows: x ≤ y if x ∈ {y}; equivalently,

{x} ⊆ {y}. The downward closure of a point x ∈ X is ↓ x = {z ∈ X | z ≤ x}.
Evidently, ↓ x = {x}. The space X is TD if ↓ x \ {x} is a closed subset, for every
x ∈ X. One can easily check that this definition is equivalent to the one given
in Definition 1.4.12. Any T1 space is TD and any TD space is T0. The original
source where the TD separation axiom was studied is [AT62].

Remark 1.4.14. By [BS23, Lemma 3.3.10], if Spcs(T) is TD, then for every point
P ∈ Spcs(T), there exists a smashing ideal S such that {P} = US ∩ VP .

Definition 1.4.15. Suppose that Spcs(T) is TD and let P be a point of Spcs(T)
and S a smashing ideal of T such that {P} = US∩VP . Then the object ΓP = eS⊗fP
is called the Rickard idempotent corresponding to P .

Recollection 1.4.16. Let P ∈ Spcs(T) be a locally closed point and consider an
open subset US such that US ∩ VP = {P}. Since S * P , it follows that ΓP =
eS ⊗ fP 6= 0. If UR is another open subset that contains P , then US∩R ∩ VP =
{P}. It then holds that eS ⊗ fP and eS∩R ⊗ fP = eS ⊗ eR ⊗ fP are isomorphic.
Therefore, restricting to smaller open neighborhoods of P does not alter the Rickard
idempotent ΓP . More generally, if US1∩VP1 = US2∩VP2 , then eS1⊗fP1

∼= eS2⊗fP2 .
This shows that ΓP does not depend on the choice of open and closed subsets whose
intersection is P . See [BS23, Lemma 3.3.9] for details.



1.4. THE SMASHING SPECTRUM 25

Definition 1.4.17. Assuming that Spcs(T) is TD, the small smashing support of
an object X ∈ T is

Supps(X) = {P ∈ Spcs(T) | ΓP ⊗X 6= 0}.

Lemma 1.4.18. The analogous properties (a)-(f) of Lemma 1.4.10 hold for the
small smashing support. If S is a smashing ideal, then US = Supps(eS), VS =
Supps(fS). Further, for all X ∈ T, Supps(X) ⊆ supps(X), with equality when
X ∈ Tc.

Proof. The claimed properties follow from the definition of the small smashing
support. For the rest, see [BS23, Lemma 3.3.11 & Lemma 3.3.15]. �

∗ ∗ ∗

Definition 1.4.19. We say that T satisfies the Telescope Conjecture if every smash-
ing ideal S of T is compactly generated, i.e., there exists a collection of compact
objects {xi}i∈I ⊆ Tc such that S = loc⊗({xi}i∈I).

Let L be a localizing ideal of T. We denote by Lc the subcategory of compact
objects of L, i.e., those objects x ∈ L such that the functor HomT(x,−) preserves
coproducts of objects of L. The following lemma, which is a well-known and useful
observation regarding compact objects in smashing ideals, shows that the Telescope
Conjecture (as stated in Definition 1.4.19) is equivalent to the statement that every
smashing ideal S is generated by compact objects of S, i.e., objects of Sc. We give
a tt-flavored proof.

Lemma 1.4.20. Let S be a smashing ideal of T. Then Sc = S ∩ Tc.

Proof. First, we will prove the following claim: Let X ∈ S. Then

HomT(X, eS ⊗ Y ) = HomT(X,Y ), ∀Y ∈ T. (†)

Consider the idempotent triangle associated with S and tensor it with Y . This gives
us the triangle Σ−1(fS ⊗ Y )→ eS ⊗ Y → Y → fS ⊗ Y . Applying HomT(X,−), we
obtain the exact sequence

HomT(X,Σ−1(fS⊗Y ))→ HomT(X, eS⊗Y )→ HomT(X,Y )→ HomT(X, fS⊗Y ).

Since X ∈ S and fS ⊗ Y ∈ S⊥, the first and last terms of the above exact sequence
are 0. We infer that HomT(X, eS ⊗ Y )→ HomT(X,Y ) is an isomorphism.

Clearly, S ∩ Tc ⊆ Sc. Let x ∈ Sc and let {Xi}i∈I ⊆ T. Then

HomT(x,
∐
i∈I

Xi) = HomT(x, eS ⊗
∐
i∈I

Xi)

= HomT(x,
∐
i∈I

(eS ⊗Xi))

=
⊕
i∈I

HomT(x, eS ⊗Xi)

=
⊕
i∈I

HomT(x,Xi).

The first and fourth equalities are due to (†) and the third equality holds because
x ∈ Sc and eS ⊗ Xi ∈ S. This proves that x is a compact object of T and so
Sc ⊆ S ∩ Tc, which completes the proof. �
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Remark 1.4.21. If S is a compactly generated localizing ideal of T, then S is
a smashing ideal [Mil92]. The Telescope Conjecture is concerned with the con-
verse statement. There are cases where it is known to be true, such as for derived
categories of commutative noetherian rings [Nee92] (or noetherian schemes more
generally [AJS04]) and derived categories of absolutely flat rings [Ste14a, BŠ17],
and there are cases where it fails: derived categories of some non-noetherian valua-
tion domains [BŠ17, Example 5.24] (see also [BS23, Section 7]) and a construction
by Keller [Kel94].

The smashing spectrum is related to the Balmer spectrum via the following map
that gives a characterization of the Telescope Conjecture. Recall that the Hochster
dual of a topological space X is the space X∨ with open subsets the Thomason
subsets of X.

Recollection 1.4.22. The map ψ : Spcs(T)→ Spc(Tc)∨ that sends a meet-prime
smashing ideal P to P ∩ Tc is surjective and continuous. Furthermore, the Tele-
scope Conjecture for smashing ideals holds if and only if ψ is a homeomorphism;
see [BS23, Section 5].



CHAPTER 2

Stratification and the smashing spectrum

In this chapter, we first prove in Section 2.1 that the Hochster dual of the
Balmer spectrum is the Kolmogorov quotient of the smashing spectrum equipped
with a certain topology. Then in Section 2.2, we prove that stratification is equiv-
alent to the local-to-global principle and minimality and in Section 2.3, we prove
that it suffices to check stratification on certain smashing localizations. Further,
in Section 2.4, we investigate connections between big prime ideals, objectwise-
prime ideals and homological primes and give a characterization of the Telescope
Conjecture in terms of the homological spectrum and the homological support. Fi-
nally, in Section 2.6, we study induced maps between smashing spectra and prove
a descent theorem for stratification. The results of this chapter first appeared
in [Ver23c].

2.1. The small topology

We prove that the Hochster dual of the Balmer spectrum is the Kolmogorov
quotient of the smashing spectrum, when the latter is endowed with the topology
with basis consisting of the smashing supports of compact objects. We conclude
that the smashing spectrum is T0 with the aforementioned topology if and only
if the meet-prime smashing ideals are compactly generated, i.e., the meet-prime
Telescope Conjecture holds.

Definition 2.1.1. The collection {Supps(x) ⊆ Spcs(T) | x ∈ Tc} is a basis for a
topology on Spcs(T) that we denote by T and call the small topology. The small
topology is coarser than the topology provided by Stone duality (henceforth called
the standard topology).

Remark 2.1.2. The comparison map ψ : Spcs(T) → Spc(Tc)∨ remains contin-
uous when Spcs(T) is equipped with the small topology, since for all x ∈ Tc,
ψ−1(Supp(x)) = Supps(x), which is open in the small topology.

Remark 2.1.3. Let x ∈ Tc. Since Supps(x) is quasi-compact in the standard
topology on Spcs(T), which is finer than the small topology, it follows that Supps(x)
is quasi-compact in the small topology. As discussed in Lemma 1.4.11, Supps(x) =
Uloc⊗(x). Therefore, the subsets Supps(x), where x ∈ Tc, comprise a basis of quasi-

compact open subsets for the small topology on Spcs(T). Since loc⊗(x)∩ loc⊗(y) =
loc⊗(x ⊗ y), ∀x, y ∈ Tc, it follows that the small topology has a basis of quasi-
compact open subsets that is closed under finite intersections. In general, the small
topology is not sober; see [BS23, Section 7].

Lemma 2.1.4. Let P be a point of Spcs(T). The closure of P in the small topology

is given by {P}
T

= Vloc⊗(P c).

27
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Proof. The basic closed subsets of T are those of the form Vloc⊗(x), where
x ∈ Tc. Thus,

{P}
T

=
⋂

P∈Vloc⊗(x)

Vloc⊗(x)

= V∨(loc⊗(x)|loc⊗(x)⊆P )

= V∨(loc⊗(x)|x∈P c)

= Vloc⊗(
⋃
x∈Pc loc⊗(x))

= Vloc⊗(P c). �

Remark 2.1.5. The Kolmogorov quotient KQ(X) of a topological space X is the
quotient of X with respect to the equivalence relation that identifies two points
x, y ∈ X if {x} = {y}. The space KQ(X) is T0 and the quotient map X → KQ(X)
is a surjective continuous map that is an initial object in the category of continuous
maps out of X into T0 spaces. The space X is T0 if and only if the quotient map
X → KQ(X) is a homeomorphism.

Definition 2.1.6. We say that T satisfies the meet-prime Telescope Conjecture if
every meet-prime smashing ideal P of T is compactly generated, i.e., P = loc⊗(P c).

Proposition 2.1.7. The map ψ : Spcs(T) → Spc(Tc)∨ exhibits Spc(Tc)∨ as the
Kolmogorov quotient of (Spcs(T),T). Moreover, the following are equivalent:

(a) (Spcs(T),T) is spectral.
(b) (Spcs(T),T) is T0.
(c) ψ : (Spcs(T),T)→ Spc(Tc)∨ is a homeomorphism.
(d) T satisfies the meet-prime Telescope Conjecture.

Proof. Let P,Q ∈ Spcs(T). By Lemma 2.1.4, {P}
T

= {Q}
T

if and only if
Vloc⊗(P c) = Vloc⊗(Qc). It follows, by Stone duality, that loc⊗(P c) = loc⊗(Qc).
Consequently, P c = Qc, i.e., ψ(P ) = ψ(Q). This shows that two points of
(Spcs(T),T) have the same closure if and only if they get identified under ψ. Let
V be a subset of Spc(Tc) such that ψ−1(V ) is closed in the small topology. Then
ψ−1(V ) =

⋂
i∈I Vloc⊗(xi), for some family of compact objects {xi}i∈I . Since

Spcs(T) \ ψ−1(Supp(xi)) = Spcs(T) \ Uloc⊗(xi) = Vloc⊗(xi),

it follows that ψ−1(V ) = ψ−1(
⋂
i∈I(Spc(Tc) \ Supp(xi))). Since ψ is surjective,

V =
⋂
i∈I(Spc(Tc) \ Supp(xi)), thus V is closed in Spc(Tc)∨. This shows that ψ is

a quotient map. Therefore, KQ((Spcs(T),T)) = Spc(Tc)∨.
As an immediate consequence, we infer that (Spcs(T),T) is T0 if and only if

ψ : (Spcs(T),T) → Spc(Tc)∨ is a homeomorphism. If P is a meet-prime smashing
ideal, i.e., a point of Spcs(T), then one can easily see that ψ is a bijection if and
only if P = loc⊗(P c) since P c = loc⊗(P c)c. Also, note that when ψ is a bijection,
ψ−1 : Spc(Tc)∨ → (Spcs(T),T) is automatically continuous. The equivalence of
conditions (a), (b), (c) and (d) is now clear (since Spc(Tc)∨ is a spectral space). �

Remark 2.1.8. By [BS23, Corollary 5.1.5], ψ : Spcs(T) → Spc(Tc)∨ is a home-
omorphism if and only if the Telescope Conjecture holds. Let S be a smashing
ideal. Then US is open in the small topology if and only if there is a collection
of objects {xi}i∈I ⊆ Tc such that US =

⋃
i∈I Supps(xi) = Uloc⊗(

∐
i∈I xi)

. Equiv-

alently, S = loc⊗(
∐
i∈I xi) = loc⊗({xi}i∈I), so S is compactly generated. This
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shows that the Telescope Conjecture holds if and only if the small and standard
topologies on Spcs(T) coincide. It should be noted that when ψ is a bijection,
one can only infer that the meet-prime Telescope Conjecture holds, as we have
seen in Proposition 2.1.7. The map ψ−1 : Spc(Tc)∨ → Spcs(T), which is given
by ψ−1(p) = loc⊗(p), is continuous (in the standard topology) if and only if the
Telescope Conjecture holds. However, to the author’s current knowledge, there is
no example where the meet-prime Telescope Conejcture holds but the Telescope
Conjecture fails. For instance, for the derived category of a rank 1 non-noetherian
valuation domain, the Telescope Conjecture already fails for meet-prime smashing
ideals; see [BS23, Section 7].

Remark 2.1.9. Barthel–Heard–Sanders [BHS23a] proved an analogous result for

the homological spectrum: The map φ : Spch(Tc) → Spc(Tc), as in Remark 1.3.5,

exhibits Spc(Tc) as the Kolmogorov quotient of Spch(Tc). Thus, Spch(Tc) is T0

if and only if φ is a homeomorphism. In all examples where the map φ has been
computed, it is known to be a homeomorphism; see [Bal20b]. Whether this is
always true or not is still under investigation. In contrast, as was shown in Propo-
sition 2.1.7, the smashing spectrum is T0 with respect to the topology with basis
consisting of the supports of compact objects if and only if the meet-prime Telescope
Conjecture holds.

2.2. Stratification

The first goal of this section is to prove Theorem 2.2.15, showing that stratifi-
cation by the small smashing support is equivalent to two conditions — the local-
to-global principle and minimality — that make it easier to verify stratification in
practice. If the Telescope Conjecture holds, Theorem 2.2.15 recovers [BHS23b,
Theorem 4.1]. The second goal is to use Theorem 2.2.15 in order to establish a
bijective correspondence between the smashing spectrum and the big spectrum of
a stratified big tt-category.

Definition 2.2.1. A big tt-category T such that Spcs(T) is TD is stratified by

the small smashing support if the maps P(Spcs(T)) Loc⊗(T),
τ

σ
between the

powerset of the smashing spectrum and the collection of localizing ideals of T,
defined by

τ(W ) = {X ∈ T | Supps(X) ⊆W} & σ(L) =
⋃
X∈L

Supps(X)

are mutually inverse bijections.

Remark 2.2.2. By the properties of Supps, it is clear that τ and σ are well-defined.

Definition 2.2.3. Let T be a big tt-category such that Spcs(T) is TD.

(a) T satisfies the local-to-global principle if for every object X ∈ T, it holds that
loc⊗(X) = loc⊗(ΓP ⊗X | P ∈ Spcs(T)).

(b) T satisfies minimality if for every P ∈ Spcs(T), it holds that loc⊗(ΓP ) is a
minimal localizing ideal.

Remark 2.2.4. Suppose that T satisfies the local-to-global principle. Then we
have T = loc⊗(1) = loc⊗(ΓP ⊗ 1 | P ∈ Spcs(T)) = loc⊗(ΓP | P ∈ Spcs(T)).
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Remark 2.2.5. Clearly, if loc⊗(ΓP ) is minimal, then loc⊗(ΓP ) = loc⊗(ΓP ⊗X),
for every object X ∈ T such that ΓP ⊗ X 6= 0. Provided that the local-to-global
principle holds, the converse also holds.

Remark 2.2.6. If T satisfies the local-to-global principle, then Supps detects van-
ishing of objects, i.e., Supps(X) = ∅ ⇔ X = 0. Another simple observation is
that

loc⊗(ΓP ⊗X | P ∈ Spcs(T)) = loc⊗(ΓP ⊗X | P ∈ Supps(X)). (2.2.7)

Remark 2.2.8. If S ∈ S⊗(T), then σ(S) =
⋃
X∈S Supps(X) ⊆ US = Supps(eS).

Since eS ∈ S, it follows that σ(S) = US. In other words, the map σ extends the
bijection S⊗(T)→ O(Spcs(T)) that takes a smashing ideal S to the open subset US.
The maps σ, τ , and their respective restrictions, assemble into the diagram

O(Spcs(T)) S⊗(T)

P(Spcs(T)) Loc⊗(T)

∼=

τ

σ

where the two obvious squares commute.

Classification of localizing ideals.

Lemma 2.2.9. It holds that σ◦τ = Id (therefore, τ is injective and σ is surjective).

Proof. If W ∈ P(Spcs(T)), then σ(τ(W )) =
⋃

Supps(X)⊆W Supps(X) ⊆W . In

addition, Supps(ΓP ) = {P} ⊆ W, ∀P ∈ W . Thus, W ⊆ σ(τ(W )), showing that
σ ◦ τ = Id, which proves the statement. �

Lemma 2.2.10. Suppose that T satisfies minimality. Then the following hold:

(a) loc⊗(ΓP ⊗X | P ∈ Spcs(T)) = loc⊗(ΓP | P ∈ Supps(X)), ∀X ∈ T.
(b) loc⊗(ΓP | P ∈ σ(L)) ⊆ L, ∀L ∈ Loc⊗(T).

Proof.

(a) If P ∈ Supps(X), i.e., ΓP ⊗ X 6= 0, then loc⊗(ΓP ) = loc⊗(ΓP ⊗ X) due to
minimality of loc⊗(ΓP ). In conjunction with (2.2.7):

loc⊗(ΓP | P ∈ Supps(X)) = loc⊗(ΓP ⊗X | P ∈ Spcs(T)).

(b) Let P ∈ σ(L). Then there exists an object X ∈ L such that ΓP ⊗X 6= 0. Since
X ∈ L, it holds that ΓP ⊗X ∈ L. So, loc⊗(ΓP ) = loc⊗(ΓP ⊗X) ⊆ L. This
proves that ΓP ∈ L, ∀P ∈ σ(L). Hence, loc⊗(ΓP | P ∈ σ(L)) ⊆ L. �

Lemma 2.2.11. Let E be a set of objects of T. Then σ(loc⊗(E)) =
⋃
X∈E Supps(X).

Proof. The result is deduced by the following host of equivalences making
use, in the second one, of the fact that Ker(ΓP ⊗−) is a localizing ideal:

P /∈
⋃
X∈E

Supps(X)⇔ E ⊆ Ker(ΓP ⊗−)

⇔ loc⊗(E) ⊆ Ker(ΓP ⊗−)

⇔ P /∈
⋃

X∈loc⊗(E)

Supps(X) = σ(loc⊗(E)). �
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Remark 2.2.12. Suppose that T is stratified by the small smashing support. In-
voking Lemma 2.2.11, we obtain: Supps(X) = Supps(Y ) ⇔ loc⊗(X) = loc⊗(Y )
(which implies that Supps(X) = Spcs(T)⇔ loc⊗(X) = T). Consequently, the small
smashing support distinguishes between objects that generate different localizing
ideals. More precisely, we can define an equivalence relation on the class of objects
of T by declaring two objects X,Y to be equivalent if loc⊗(X) = loc⊗(Y ). In
case T is stratified by the small smashing support, X is equivalent to Y if and only
if Supps(X) = Supps(Y ).

Lemma 2.2.13. Suppose that T satisfies the local-to-global principle and let X ∈ T

be a non-zero object and P ∈ Spcs(T). If X ∈ loc⊗(ΓP ), then ΓP ⊗X 6= 0.

Proof. SinceX ∈ loc⊗(ΓP ), it holds that loc⊗(X) ⊆ loc⊗(ΓP ). Lemma 2.2.11
and the fact that σ is order-preserving lead to:

Supps(X) = σ(loc⊗(X)) ⊆ σ(loc⊗(ΓP )) = Supps(ΓP ) = {P}.

As a result, Supps(X) is either empty or equal to {P}. Remark 2.2.6 implies that
Supps(X) 6= ∅. Consequently, Supps(X) = {P}. Hence, ΓP ⊗X 6= 0. �

Remark 2.2.14. If X ∈ loc⊗(ΓP ) is a non-zero object and loc⊗(ΓP ) is minimal,
then Ker(ΓP ⊗ −) ∩ loc⊗(ΓP ), being a localizing ideal, is either zero or loc⊗(ΓP ).
The latter cannot hold, since ΓP 6= 0. It follows that ΓP ⊗X 6= 0.

Theorem 2.2.15. The category T is stratified by the small smashing support if and
only if T satisfies the local-to-global principle and minimality.

Proof. (⇒) Suppose that T satisfies the local-to-global principle and mini-
mality. Since σ ◦ τ = Id, it suffices to show that τ ◦ σ = Id. Let L be a localizing
ideal of T. The relation L ⊆ (τ ◦ σ)(L) follows from the definition of τ and σ. Let
X ∈ (τ ◦ σ)(L), i.e., Supps(X) ⊆ σ(L). Then

loc⊗(X) = loc⊗(ΓP ⊗X | P ∈ Spcs(T)) (local-to-global principle)

= loc⊗(ΓP ⊗X | P ∈ Supps(X)) (2.2.7)

= loc⊗(ΓP | P ∈ Supps(X)) (Lemma 2.2.10)

⊆ loc⊗(ΓP | P ∈ σ(L)) (Supps(X) ⊆ σ(L))

⊆ L. (Lemma 2.2.10)

As a result, X ∈ L. So, (τ ◦ σ)(L) ⊆ L implying that τ ◦ σ = Id.
(⇐) Let X be an object of T such that ΓP ⊗X 6= 0, i.e., P ∈ Supps(X). Then

Supps(ΓP ⊗X) ⊆ Supps(ΓP )∩Supps(X) = {P}∩Supps(X) = {P}. Since ΓP is an
idempotent, P ∈ Supps(ΓP ⊗X). Therefore, Supps(ΓP ⊗X) = {P} = Supps(ΓP ).
According to Lemma 2.2.11, σ(loc⊗(ΓP ⊗ X)) = Supps(ΓP ⊗ X) = Supps(ΓP ) =
σ(loc⊗(ΓP )). Since σ is injective, loc⊗(ΓP ⊗ X) = loc⊗(ΓP ). This establishes
minimality. Next, use the relation Supps(ΓP ⊗ X) = {P}, when P ∈ Supps(X),
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and Lemma 2.2.11 to deduce that

σ(loc⊗(ΓP ⊗X | P ∈ Supps(X))) =
⋃

P∈Supps(X)

Supps(ΓP ⊗X)

=
⋃

P∈Supps(X)

{P}

= Supps(X)

= σ(loc⊗(X)).

Since σ is injective, loc⊗(X) = loc⊗(ΓP ⊗ X | P ∈ Supps(X)). Consequently, T
satisfies the local-to-global-principle. �

Corollary 2.2.16. If T satisfies the local-to-global principle and minimality, then
the collection Loc⊗(T) of localizing ideals of T is a set and every localizing ideal
of T is generated by a set of objects, hence by a single object.

Proof. The first half of the statement is immediate from Theorem 2.2.15.
The second half stems from [KS17, Lemma 3.3.1] by specializing the arguments to
localizing ideals instead of general localizing subcategories, as noted in [BHS23b,
Proposition 3.5]. �

Objectwise and big primes.

Definition 2.2.17. Let L be a proper localizing ideal of T.

(a) L is called objectwise-prime if X ⊗ Y ∈ L implies X ∈ L or Y ∈ L.
(b) L is called radical if X⊗n ∈ L implies X ∈ L, for all n ≥ 1.
(c) L is called a big prime if L is radical and I1 ∩ I2 ⊆ L implies I1 ⊆ L or I2 ⊆ L,

for all radical localizing ideals I1, I2.

The collection of big prime localizing ideals of T, introduced in [BS23] and called
the big spectrum of T, is denoted by SPC(T). Evidently, if L is objectwise-prime,
then L is radical.

The big prime ideals are precisely the meet-prime elements of the lattice of
radical localizing ideals partially ordered by inclusion. If I1 and I2 are radical
localizing ideals, then I1 ∩ I2 =

√
I1 ⊗ I2, where I1 ⊗ I2 is the smallest localizing

ideal containing the collection {X ⊗ Y | X ∈ I1, Y ∈ I2} and
√
I is the smallest

radical localizing ideal containing an ideal I; see [BS23, Lemma 4.1.3]. Hence, in
case all localizing ideals are radical, it holds that I1 ∩ I2 = I1 ⊗ I2, resembling the
more familiar definition of prime ideals in a (not necessarily commutative) ring.

Proposition 2.2.18. Suppose that T satisfies minimality. Then the following hold:

(a) Supps(X ⊗Y ) = Supps(X)∩Supps(Y ), ∀X,Y ∈ T. (Tensor Product Formula)
(b) Ker(ΓP ⊗−) is an objectwise-prime localizing ideal of T, ∀P ∈ Spcs(T).

Proof. First of all, the statements (a) and (b) are equivalent, since they both
state: ∀X,Y ∈ T, ∀P ∈ Spcs(T): ΓP ⊗ X ⊗ Y = 0 if and only if ΓP ⊗ X = 0
or ΓP ⊗ Y = 0. Let X,Y ∈ T such that ΓP ⊗ X 6= 0 and ΓP ⊗ Y 6= 0. If
Y ∈ Ker(ΓP⊗X⊗−), then loc⊗(ΓP ) = loc⊗(ΓP⊗Y ) ⊆ loc⊗(Y ) ⊆ Ker(ΓP⊗X⊗−).
Therefore, ΓP ∈ Ker(ΓP ⊗X⊗−), which is a contradiction, since we assumed that
ΓP ⊗X 6= 0. This proves that ΓP ⊗X ⊗ Y 6= 0 and the proof is complete. �
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Remark 2.2.19. From Remark 2.2.6 and Proposition 2.2.18, we learn that if T is
stratified, then Supps detects vanishing of objects and satisfies the Tensor Product
Formula. As a consequence, T cannot have any non-zero ⊗-nilpotent objects.

Lemma 2.2.20. Let L be a localizing ideal of T. Then

τ(σ(L)) =
⋂

L⊆Ker(ΓP⊗−)

Ker(ΓP ⊗−).

Proof. Let X be an object of T. Then X /∈
⋂

L⊆Ker(ΓP⊗−) Ker(ΓP ⊗ −) if

and only if there exists P ∈ Spcs(T) such that L ⊆ Ker(ΓP ⊗−) and ΓP ⊗X 6= 0.
Equivalently, P ∈ Supps(X) and P /∈

⋃
Y ∈L Supps(Y ) = σ(L). In other words,

Supps(X) * σ(L). By definition of τ , the latter happens if and only if X /∈
τ(σ(L)). �

Corollary 2.2.21. If T is stratified by the small smashing support, then all local-
izing ideals of T are radical.

Proof. Let L be a localizing ideal of T. Since T is stratified, it holds that
τ ◦ σ = Id. Further, Lemma 2.2.20 implies that L =

⋂
L⊆Ker(ΓP⊗−) Ker(ΓP ⊗ −).

By Theorem 2.2.15, T satisfies minimality. According to Proposition 2.2.18, each
Ker(ΓP ⊗ −) is objectwise-prime, hence radical. Since radical ideals are closed
under intersections, L is radical. �

Lemma 2.2.22. Suppose that T satisfies the local-to-global principle. Then for all
P ∈ Spcs(T), it holds that Ker(ΓP ⊗−) = loc⊗(ΓQ | Q 6= P ).

Proof. Let P and Q be distinct meet-prime smashing ideals. Since ΓP⊗ΓQ =
0, it follows that ΓQ ∈ Ker(ΓP ⊗−). Therefore, loc⊗(ΓQ | Q 6= P ) ⊆ Ker(ΓP ⊗−).
If X ∈ Ker(ΓP ⊗−), then loc⊗(X) = loc⊗(ΓQ ⊗X | Q 6= P ) ⊆ loc⊗(ΓQ | Q 6= P ).
Hence, Ker(ΓP ⊗−) ⊆ loc⊗(ΓQ | Q 6= P ), proving the claimed equality. �

Proposition 2.2.23. Suppose that T is stratified by the small smashing support.
Then every objectwise-prime localizing ideal L is of the form Ker(ΓP ⊗ −), for a
unique P ∈ Spcs(T).

Proof. If P 6= Q are meet-prime smashing ideals, then ΓP ⊗ ΓQ = 0 ∈ L.
Therefore, ΓP ∈ L or ΓQ ∈ L. Since T = loc⊗(ΓP | P ∈ Spcs(T)) and L is proper
by definition, L contains all Rickard idempotents except one. So, there exists a
meet-prime smashing ideal P such that Ker(ΓP ⊗ −) = loc⊗(ΓQ | Q 6= P ) ⊆ L,
where the equality is by Lemma 2.2.22. Suppose that this containment relation is
proper. Then there exists an object X ∈ L such that ΓP ⊗X 6= 0. Since loc⊗(ΓP )
is minimal, loc⊗(ΓP ⊗ X) = loc⊗(ΓP ). Moreover, ΓP ⊗ X ∈ L implies ΓP ∈ L.
This forces L = T, leading to a contradiction. Uniqueness follows from the fact
that ΓP ⊗ ΓQ = 0 if and only if P 6= Q. �

Corollary 2.2.24. Suppose that T is stratified by the small smashing support. Then
the big prime localizing ideals of T coincide with the objectwise-prime localizing
ideals of T and there is only a set of such. In particular,

SPC(T) = {Ker(ΓP ⊗−) | P ∈ Spcs(T)}.

Proof. This follows from Corollary 2.2.21, Proposition 2.2.23 and [BS23,
Lemma 4.1.7]. �
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Corollary 2.2.25. Suppose that T is stratified by the small smashing support. Then
the map Spcs(T)→ SPC(T), P 7→ Ker(ΓP ⊗−) is bijective.

Remark 2.2.26. Let P be a meet-prime smashing ideal of T. It is straightforward
to verify that σ(Ker(ΓP ⊗ −)) = Spcs(T) \ {P}. Utilizing this relation and Re-
mark 2.2.8 leads to the following series of equivalences:

Ker(ΓP ⊗−) ∈ S⊗(T)⇔ Ker(ΓP ⊗−) = P ⇔ VP = {P}.
The first equivalence holds because if Ker(ΓP ⊗−) is smashing, then Ker(ΓP ⊗−)
is contained in some Q ∈ Spcs(T). Since ΓQ /∈ Q, it holds that ΓP ⊗ ΓQ 6= 0.
Therefore, P = Q. Combined with the inclusion P ⊆ Ker(ΓP ⊗ −), we obtain
Ker(ΓP ⊗ −) = P . This also explains why Ker(ΓP ⊗ −) = P ⇒ VP = {P}. If
VP = {P}, then ΓP = fP . Thus, Ker(ΓP ⊗−) = Ker(fP ⊗−) = P .

Corollary 2.2.27. Suppose that T is stratified by the small smashing support. Then
the smashing objectwise-prime localizing ideals of T correspond to the closed points,
with respect to the standard topology, of Spcs(T).

Proof. The claim follows from Corollary 2.2.25 and Remark 2.2.26. �

We conclude with an observation about the small and big smashing supports.

Proposition 2.2.28. The small and big smashing supports coincide, meaning that
Supps(X) = supps(X), ∀X ∈ T, if and only if every point of Spcs(T), with respect
to the standard topology, is a closed point, i.e., Spcs(T) is T1.

Proof. It holds that

Supps = supps ⇔ (∀X ∈ T, ∀P ∈ Spcs(T) : ΓP ⊗X 6= 0⇔ X /∈ P ).

Equivalently, P = Ker(ΓP ⊗−), ∀P ∈ Spcs(T). By Remark 2.2.26, this statement
holds if and only if every point of Spcs(T) is a closed point. �

Example 2.2.29. Let R be a commutative absolutely flat ring, i.e., every R-
module is flat. Then D(R) satisfies the Telescope Conjecture; see [Ste14a, BŠ17].
Therefore, Spcs(D(R)) ∼= Spec(R)∨ is T1, since in this particular case Spec(R) is
Hausdorff (and Spec(R) ∼= Spec(R)∨). Hence, the small and big smashing supports
on D(R) coincide.

2.3. Smashing localizations

The aim of this section is to prove that if a big tt-category T satisfies the local-
to-global principle and each meet-prime smashing localization T/P is stratified by
the small smashing support, then T is stratified by the small smashing support.
If T satisfies the Telescope Conjecture, this recovers [BHS23b, Corollary 5.3]. The
local-to-global principle hypothesis cannot be dropped. Further, we show that if
Spcs(T) admits a cover by finitely many closed subsets such that each corresponding
smashing localization is stratified, then T is stratified.

Meet-prime smashing localizations.

Recollection 2.3.1. Let L be a localizing ideal of T. Then the collection of
localizing ideals of T/L stands in bijection with the collection of localizing ideals
of T that contain L. More precisely, if jL : T → T/L is the quotient functor, then
the map that takes a localizing ideal R ⊆ T/L to j−1

L (R) is a bijection with inverse
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given by taking direct images of localizing ideals of T under jL. In case jL has a
right adjoint kL, the following property (known as the projection formula) holds:
kL(jL(X)⊗ Y ) ∼= X ⊗ kL(Y ), ∀X ∈ T, ∀Y ∈ T/L [BDS16].

Remark 2.3.2. In keeping with the notation of Recollection 2.3.1, if L is a smash-
ing ideal, then kLjL = −⊗ fL. Further, if R is a localizing ideal that contains L,
then (− ⊗ fL)−1(R) = R. Indeed, if X ⊗ fL ∈ R, then tensoring the idempotent
triangle corresponding to L with X yields eL ⊗X → X → fL ⊗X. Since L ⊆ R,
it follows that eL ⊗X ∈ R, thus X ∈ R. Since R is an ideal, the converse inclusion
also holds.

Let P be a smashing ideal of T (not necessarily meet-prime). Then T/P is a
big tt-category and the quotient functor jP : T → T/P is an essentially surjective
coproduct-preserving tt-functor with a fully faithful right adjoint kP : T/P → T

that preserves coproducts, since jP preserves rigid=compact objects. Therefore,
jP induces an injective continuous map f : Spcs(T/P ) → Spcs(T). By identifying
Spcs(T/P ) with VP , the induced map f is identified with the inclusion VP ↪→
Spcs(T). If Spcs(T) is TD, then Spcs(T/P ) is TD, since being TD is a hereditary
topological property. If Q ∈ Spcs(T/P ), i.e., Q ⊇ P , then the corresponding Rickard
idempotent is jP (ΓQ).

Lemma 2.3.3. Let P ∈ S⊗(T) and let Q ∈ Spcs(T) such that P * Q. Then
jP (ΓQ) = 0.

Proof. Let S be a smashing ideal such that {Q} = US∩VQ (recall that Spcs(T)
is assumed TD). Since P * Q, we have UP∩S ∩ VQ = UP ∩ US ∩ VQ = {Q}. This
means ΓQ = eP∩S⊗fQ = eP ⊗eS⊗fQ. So, jP (ΓQ) = jP (eP )⊗jP (eS)⊗jP (fQ) = 0,
due to the fact that eP ∈ P . �

Proposition 2.3.4. Suppose that T satisfies the local-to-global principle. Then
T/P satisfies the local-to-global-principle, for every P ∈ S⊗(T).

Proof. By assumption, T satisfies the local-to-global principle and so we have
1T ∈ loc⊗(ΓQ | Q ∈ Spcs(T)). So, 1T/P = jP (1T) ∈ loc⊗(jP (ΓQ) | Q ∈ Spcs(T)) =

loc⊗(jP (ΓQ) | Q ∈ VP ). Here we used Lemma 1.1.22 and Lemma 2.3.3. Thus,
T/P = loc⊗(jP (ΓQ) | Q ∈ VP ), meaning that T/P satisfies the local-to-global
principle. �

Lemma 2.3.5. Let P be a smashing ideal of T. Then

j−1
P (loc⊗(jP (X))) = loc⊗(eP , X),

where jP : T → T/P is the quotient functor.

Proof. Clearly, loc⊗(eP , X) ⊆ j−1
P (loc⊗(jP (X))). Since kP jP (X) ∼= fP ⊗X,

it follows that jP (X) ∈ k−1
P (loc⊗(eP , X)). Thus, loc⊗(jP (X)) ⊆ k−1

P (loc⊗(eP , X)).

Therefore, j−1
P (loc⊗(jP (X))) ⊆ (kP jP )−1(loc⊗(eP , X)) = loc⊗(eP , X), with the

last equality by Remark 2.3.2. �

Remark 2.3.6. Let P be a meet-prime smashing ideal of T and let S be a smashing
ideal of T such that US ∩ VP = {P}. Applying jP to the idempotent triangle
corresponding to P yields jP (eP ) → 1T/P → jP (fP ). Since jP (eP ) ∼= 0, it follows
that jP (fP ) ∼= 1T/P , so jP (ΓP ) ∼= jP (eS). Conclusion: jP (ΓP ) is a left idempotent.
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Proposition 2.3.7. Let P be a meet-prime smashing ideal of T. Then loc⊗(ΓP )
is minimal in Loc⊗(T) if and only if loc⊗(jP (ΓP )) is minimal in Loc⊗(T/P ).

Proof. (⇒) Suppose that loc⊗(ΓP ) is minimal and let X ∈ loc⊗(jP (ΓP ))
be a non-zero object. Since jP (ΓP ) is a left idempotent, jP (ΓP ) ⊗ X 6= 0. Write
X = jP (Y ), for some Y ∈ T. Then jP (ΓP⊗Y ) = jP (ΓP )⊗X 6= 0, thus ΓP⊗Y 6= 0.
It follows, by minimality of loc⊗(ΓP ), that loc⊗(ΓP ⊗ Y ) = loc⊗(ΓP ). Hence,
ΓP ∈ loc⊗(Y ). Invoking Lemma 1.1.22 for the functor jP results in jP (ΓP ) ∈
loc⊗(jP (Y )) = loc⊗(X). Conclusion: loc⊗(jP (ΓP )) is minimal.

(⇐) Suppose that loc⊗(jP (ΓP )) is minimal. Then P ( j−1
P (loc⊗(jP (ΓP ))),

which is minimal over P . By Lemma 2.3.5, this reads P ( loc⊗(eP ,ΓP ). Pick
a non-zero object X ∈ loc⊗(ΓP ). Since loc⊗(ΓP ) ⊆ loc⊗(fP ) = Im(− ⊗ fP ), it
follows that X ⊗ fP ∼= X 6= 0, i.e., X /∈ P . This shows that loc⊗(ΓP ) ∩ P = 0.
Therefore, P ( loc⊗(eP , X) ⊆ loc⊗(eP ,ΓP ). Since loc⊗(eP ,ΓP ) is minimal over P ,
it follows that loc⊗(eP , X) = loc⊗(eP ,ΓP ), so ΓP ∈ loc⊗(eP , X). By Lemma 1.1.22,
ΓP ∼= ΓP ⊗ΓP ∈ loc⊗(ΓP ⊗ eP ,ΓP ⊗X) = loc⊗(ΓP ⊗X). As a result, loc⊗(ΓP ) =
loc⊗(ΓP ⊗X) ⊆ loc⊗(X), so ΓP ∈ loc⊗(X). Conclusion: loc⊗(ΓP ) is minimal. �

Proposition 2.3.8. The category T satisfies minimality if and only if T/P satisfies
minimality, for every P ∈ Spcs(T).

Proof. Suppose that T satisfies minimality. Let P ∈ Spcs(T) and Q ∈
Spcs(T/P ), i.e., Q ∈ VP and consider a non-zero object jP (X) ∈ loc⊗(jP (ΓQ)).
The fact that loc⊗(jP (ΓQ))∩ jP (Q) = 0 leads to X /∈ Q. Now ponder the quotient
jQ : T → T/Q. The ideal loc⊗(ΓQ) is minimal by assumption, so by Proposi-
tion 2.3.7, loc⊗(jQ(ΓQ)) is minimal. Equivalently, loc⊗(eQ,ΓQ) is minimal over Q.
Since X /∈ Q, it follows that loc⊗(eQ, X) = loc⊗(eQ,ΓQ). Invoking Lemma 2.2.11
yields Supps(eQ) ∪ Supps(X) = Supps(eQ) ∪ Supps(ΓQ). Thus, UQ ∪ Supps(X) =
UQ ∪ {Q}. Since Q /∈ UQ, we infer that Q ∈ Supps(X), which means that
ΓQ ⊗ X 6= 0. Further, minimality of loc⊗(ΓQ) implies that ΓQ ∈ loc⊗(X). In
consequence, jP (ΓQ) ∈ loc⊗(jP (X)), proving that loc⊗(jP (ΓQ)) is minimal. The
converse implication is given by Proposition 2.3.7. �

Remark 2.3.9. The right-hand implication in Proposition 2.3.8 holds without
assuming that P is necessarily meet-prime.

Corollary 2.3.10. Suppose that T satisfies the local-to-global principle. Then T is
stratified by the small smashing support if and only if T/P is stratified by the small
smashing support, for every P ∈ Spcs(T).

Proof. Combine Proposition 2.3.4 and Proposition 2.3.8. �

Remark 2.3.11. If T is not assumed to a-priori satisfy the local-to-global principle,
the converse of Corollary 2.3.10 does not hold in general. For instance, if R is
an absolutely flat ring that is not semi-artinian (semi-artinian means that every
non-zero homomorphic image of R, in the category of R-modules, contains a simple
submodule) then D(R) does not satisfy the local-to-global principle, even though its
localizations D(k(p)) (where k(p) is the residue field at p ∈ Spec(R)) are stratified;
see [Ste14a, Theorem 4.7].

Stratification and closed covers.
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Proposition 2.3.12. Suppose that Spcs(T) =
⋃
VSi , where {Si} is a finite set of

smashing ideals, and assume that each T/Si satisfies the local-to-global principle.
Then T satisfies the local-to-global principle.

Proof. By an easy induction argument, it suffices to prove the statement in
the case Spcs(T) = VS1

∪ VS2
. Consider the quotient functor jSi : T → T/Si, where

i = 1, 2. Since T/Si satisfies the local-to-global principle and Spcs(T/Si) ∼= VSi ,
it holds that jSi(1) = 1 ∈ loc⊗(jSi(ΓP ) | P ∈ VSi). By Lemma 2.3.5, it follows
that 1 ∈ loc⊗(eSi , {ΓP }P∈VSi

). If P ∈ VSi , i.e., P ⊇ Si, then fP ⊗ fSi
∼= fP .

Thus, ΓP ⊗ fSi ∼= ΓP . Invoking Lemma 1.1.22, we have fSi ∈ loc⊗(ΓP | P ∈ VSi).
Therefore, fSi ∈ loc⊗(ΓP | P ∈ Spcs(T)). So, fS1 ⊕ fS2 , fS1 ⊗ fS2 ∈ loc⊗(ΓP |
P ∈ Spcs(T)). From the Mayer–Vietoris triangle fS1∩S2

→ fS1
⊕ fS2

→ fS1
⊗ fS2

,
see [BF11, Theorem 3.13], it follows that fS1∩S2

∈ loc⊗(ΓP | P ∈ Spcs(T)). Since
V0 = Spcs(T) = VS1

∪VS2
= VS1∩S2

, we have S1∩S2 = 0. Consequently, fS1∩S2
= 1.

In conclusion, 1 ∈ loc⊗(ΓP | P ∈ Spcs(T)), which proves that T satisfies the local-
to-global principle. �

Proposition 2.3.13. Suppose that Spcs(T) =
⋃
VSi , where {Si} is a set of smash-

ing ideals, and assume that each T/Si satisfies minimality. Then T satisfies mini-
mality.

Proof. By assumption, if P ∈ Spcs(T), then P lies in some VSi . In other
words, there exists some Si such that Si ⊆ P . The category T/P can be realized as
a localization of T/Si, as in the following commutative diagram:

T T/Si

T/P (T/Si)/jSi(P ).'

Since T/Si satisfies minimality, it follows by Proposition 2.3.8 that T/P satisfies
minimality. In conclusion, T/P satisfies minimality, for every P ∈ Spcs(T). So,
again by Proposition 2.3.8, T satisfies minimality. �

Corollary 2.3.14. Suppose that Spcs(T) =
⋃
VSi , where {Si} is a finite set of

smashing ideals, and assume that each T/Si is stratified by the small smashing
support. Then T is stratified by the small smashing support. If T satisfies the
local-to-global principle, then the finiteness condition on {Si} can be dropped.

Remark 2.3.15. The case of the trivial cover Spcs(T) =
⋃
P∈Spcs(T) VP in Propo-

sition 2.3.13 recovers the statement of Proposition 2.3.8. In Proposition 2.3.12, if
{Si} is allowed to be an infinite set, then the most we can deduce is that T/P sat-
isfies the local-to-global principle, for every P ∈ Spcs(T). As we have already seen
in Remark 2.3.11, this is not enough to guarantee that T satisfies the local-to-global
principle.

Remark 2.3.16. Results of similar flavor appear in [BHS23b], where Spc(Tc) is
covered by complements of Thomason subsets and the notion of support considered
is the Balmer–Favi support. Note that the cover {VSi} of Spcs(T) in the above re-
sults consists of closed subsets, which are complements of open subsets. This should
not come as a surprise since, by Stone duality, smashing ideals of T correspond to
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open subsets of Spcs(T), while thick ideals of Tc correspond to Thomason subsets
of Spc(Tc).

2.4. Comparison maps

Let T be a big tt-category such that Hypothesis 1.4.3 holds and whose smashing
spectrum is TD and assume that T is stratified by the small smashing support. Let B
be a homological prime. By [BS23, Lemma 5.2.1], χ(B) := h−1(B′) = Ker[−, IB]
is a big prime localizing ideal of T, where B′ is the unique maximal localizing
ideal of Mod(Tc) that contains B and IB is the associated pure-injective object;
see Construction 1.3.1. Corollary 2.2.24 asserts that χ(B) = Ker(ΓP ⊗ −), for a

unique P ∈ Spcs(T). This produces a well-defined map ξ : Spch(Tc) → Spcs(T)

that associates each B ∈ Spch(Tc) with the unique P ∈ Spcs(T) such that χ(B) =
Ker(ΓP ⊗−).

By construction, ξ is the composite Spch(Tc)
χ−→ SPC(T)

∼=−→ Spcs(T), where
the second map is the inverse of the map that takes P ∈ Spcs(T) to Ker(ΓP ⊗−);
see Corollary 2.2.25.

Lemma 2.4.1. The map ξ : Spch(Tc)→ Spcs(T) is injective.

Proof. It suffices to show that χ : Spch(Tc) → SPC(T) is injective. To this
end, let B and C be two distinct homological primes. According to [Bal20a,
Corollary 4.9], [IB, IC] = 0. Thus, IB ∈ χ(C). Since IB /∈ χ(B), it follows that
χ(B) 6= χ(C). �

Lemma 2.4.2. Let X be an object of T. Then ξ−1(Supps(X)) = Supph(X).

Proof. Let B be a homological prime and let IB ∈ T be the associated pure-
injective object. Then χ(B) = Ker[−, IB] = Ker(Γξ(B) ⊗ −). It follows from the

definition of Supps and Supph that ξ−1(Supps(X)) = Supph(X). �

Remark 2.4.3. If Spc(Tc) is weakly noetherian and T is stratified by the Balmer–

Favi support, then the comparison map φ : Spch(Tc) → Spc(Tc) is a homeomor-
phism; see [BHS23a, Theorem 4.7]. In our case, we had to assume that T is
stratified by the small smashing support (with the analogous topological hypothe-

sis being that Spcs(T) is TD) to even obtain the map ξ : Spch(Tc)→ Spcs(T). This,
however, is not enough to guarantee that ξ is bijective. The failure of surjectivity
of ξ is measured by the “kernel” of the homological support.

Proposition 2.4.4 (cf. [BHS23a, Proposition 3.14]). Let T be a big tt-category
whose smashing spectrum is TD and assume that T is stratified by the small smash-
ing support. The following are equivalent:

(a) ξ is surjective.

(b) ξ(Supph(X)) = Supps(X), ∀X ∈ T.

(c) Supph detects vanishing of objects.

Proof. (a) ⇒ (b) Suppose that ξ is surjective. Lemma 2.4.1 implies that
ξ is bijective. The statement now follows by applying ξ to the relation obtained
in Lemma 2.4.2.

(b)⇒ (c) Suppose that Supph(X) = ∅. It follows, by the assumption we made
in (b), that Supps(X) = ∅. Since T is stratified, by Theorem 2.2.15, T satisfies the
local-to-global principle; so, Supps detects vanishing. As a result, X = 0.
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(c) ⇒ (a) As a special case of Lemma 2.4.2, for X = ΓP : ξ−1({P}) =

Supph(ΓP ). Hence, ξ is surjective if and only if Supph(ΓP ) 6= ∅, ∀P ∈ Spcs(T).

Since ΓP 6= 0 and Supph is assumed to detect vanishing, Supph(ΓP ) 6= ∅; proving
that ξ is surjective. �

The four spectra. We continue to assume that T is a big tt-category whose
smashing spectrum is TD and that T is stratified by the small smashing support.
The spaces Spc(T), Spch(Tc), Spcs(T), SPC(T) are related via the following com-
mutative diagram:

Spch(Tc)

Spcs(T) Spc(Tc)

SPC(T)

ξ φ

χ
ψ

∼=
ω

To begin with, let B be a homological prime such that χ(B) = Ker(ΓP ⊗ −).
Using the relation Ker(ΓP ⊗ −) ∩ Tc = P ∩ Tc yields φ(B) = h−1(B) ∩ Tc =
h−1(B′) ∩ Tc = χ(B) ∩ Tc = ξ(B) ∩ Tc = (ψ ◦ ξ)(B). This shows that ψ ◦ ξ = φ

and also that ψ is equal to the composite Spcs(T)
∼=−→ SPC(T)

ω−→ Spc(Tc), where ω
maps an objectwise-prime localizing ideal to its compact part. Lastly, the triangle
on the left commutes by construction of ξ.

Theorem 2.4.5. Let T be a big tt-category whose smashing spectrum is TD and
assume that T is stratified by the small smashing support. Then T satisfies the
Telescope Conjecture if and only if Spch(Tc) is T0 and Supph detects vanishing of
objects.

Proof. By [BS23, Corollary 5.1.6], T satisfies the Telescope Conjecture if and
only if ψ is bijective. Since ξ is injective and φ is surjective and ψ ◦ ξ = φ, it holds
that ψ is bijective if and only if ξ and φ are bijective. According to Lemma 2.4.1
and Proposition 2.4.4, ξ is bijective if and only if Supph detects vanishing of objects.
By [BHS23a, Proposition 4.5], φ is bijective if and only if Spch(Tc) is T0. We

conclude that T satisfies the Telescope Conjecture if and only if Spch(Tc) is T0 and

Supph detects vanishing of objects. �

2.5. Smashing stratification vs Balmer–Favi stratification

Let T be a big tt-category. The generalization closure of a point p ∈ Spc(Tc) is

gen(p) = {q ∈ Spc(Tc) | p ∈ {q}} = {q ∈ Spc(Tc) | p ⊆ q}. The Balmer spectrum
is called generically noetherian if gen(p) is a noetherian space, for all p ∈ Spc(Tc).
If Spc(Tc) is generically noetherian, then Spc(Tc) is weakly noetherian. For more
details see [BHS23b].

Remark 2.5.1. If X is a spectral space, then X is weakly noetherian if and only if
the Hochster dual space X∨ (whose open subsets are the Thomason subsets of X)
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is TD. In particular, this applies to Spc(Tc). Note that Spcs(T) is likely not spectral;
see [BS23, Remark 3.2.12].

Lemma 2.5.2. Suppose that Spcs(T) is TD and that T satisfies the Telescope Con-
jecture. Then ΓP = gP c , ∀P ∈ Spcs(T).

Proof. Let P ∈ Spcs(T) and S ∈ S⊗(T) such that {P} = US ∩ VP . Since
the Telescope Conjecture holds and Spcs(T) is TD, ψ : Spcs(T) → Spc(Tc)∨ is a
homeomorphism and Spc(Tc) is weakly noetherian. It holds that {P c} = ψ(US) ∩
ψ(VP ) = ψ(US)∩(Spc(Tc)\ψ(UP )), with ψ(US) and ψ(UP ) being Thomason subsets
of Spc(Tc). The thick ideal corresponding to ψ(US) is Tc

ψ(US) = {x ∈ Tc | Supp(x) ⊆
ψ(US)}. For all x ∈ Tc, ψ−1(Supp(x)) = Uloc⊗(x). So, Supp(x) ⊆ ψ(US) if and only
if Uloc⊗(x) ⊆ US, with the latter being equivalent to x ∈ Sc. Therefore, Tc

ψ(US) = Sc.

Similarly, Tc
ψ(UP ) = P c. Consequently, loc⊗(Tc

ψ(US)) = S and loc⊗(Tc
ψ(UP )) = P .

We infer that eψ(US) = eS and fψ(UP ) = fP and as a result, ΓP = gP c . �

Corollary 2.5.3. Suppose that Spcs(T) is TD and that T satisfies the Telescope
Conjecture. Then ψ−1(Supp(X)) = Supps(X), for all X ∈ T.

Theorem 2.5.4. Let T be a big tt-category.

(a) If Spc(Tc) is generically noetherian and the Balmer–Favi support stratifies T,
then T satisfies the Telescope Conjecture, Spcs(T) is TD and the small smashing
support stratifies T.

(b) If Spcs(T) is TD and the small smashing support stratifies T and T satisfies the
Telescope Conjecture, then the Balmer–Favi support stratifies T.

Proof. If Spc(Tc) is generically noetherian and T is stratified by the Balmer–
Favi support, then, by [BHS23b, Theorem 9.11], T satisfies the Telescope Conjec-
ture. Thus, ψ : Spcs(T)→ Spc(Tc)∨ is a homeomorphism. Since Spc(Tc) is weakly
noetherian, Spc(Tc)∨ is TD. Therefore, Spcs(T) is TD, so the small smashing sup-
port is defined. Invoking Lemma 2.5.2 completes the proof of (a).

If T is stratified by the small smashing support and T satisfies the Telescope
Conjecture, then Spcs(T) is a spectral space and, by Corollary 2.5.3, the hypotheses
of [BHS23b, Theorem 7.6] are satisfied. We deduce that the Balmer–Favi support
stratifies T. This proves (b). �

Remark 2.5.5. Let us emphasize once more that if the Telescope Conjecture holds,
the theory of stratification developed here recovers the theory of [BHS23b]. More
explicitly, if T satisfies the Telescope Conjecture, then the following hold:

(a) The comparison map ψ : Spcs(T)→ Spc(Tc)∨ is a homeomorphism.
(b) Spcs(T) is TD if and only if Spc(Tc) is weakly noetherian.

Assuming that Spcs(T) is TD:

(c) The small smashing support coincides with the Balmer–Favi support (under
the identification of the two spectra via ψ).

(d) The formulation of the local-to-global principle and of minimality in Defini-
tion 2.2.3 coincides with those given in [BHS23b].

(e) T is stratified by the small smashing support if and only if T is stratified by the
Balmer–Favi support.

Remark 2.5.6. According to [BHS23b, Theorem 7.6], any stratifying support
theory σ : Ob(T) → P(X) (where X is a weakly noetherian spectral space) that



2.6. INDUCED MAPS AND DESCENT 41

satisfies three equivalent conditions must be “isomorphic” to the Balmer–Favi sup-
port theory and the latter has to stratify T as well. If Spcs(T) is TD and σ = Supps

stratifies T, then the three equivalent conditions we alluded to are equivalent to
the Telescope Conjecture. In [BHS23b, Theorem 9.11], under the hypothesis that
Spc(Tc) is generically noetherian, it is proved that if T is stratified by the Balmer–
Favi support, then the Telescope Conjecture holds. In the case of the small smashing
support, that proof can neither be reproduced nor is it expected that a different
proof exists. Conclusion: The theory of smashing stratification has the potential to
encompass a wider range of categories than the theory of Balmer–Favi stratification,
since the Telescope Conjecture is necessary for a category to be stratified by the
Balmer–Favi support, but it is probably not necessary for smashing stratification.
To be clear, at the time of this writing, an example of a category that is stratified
by the small smashing support and fails the Telescope Conjecture is not known.

2.6. Induced maps and descent

In the first part of this section, we probe the image of the map between smashing
spectra induced by a tensor-triangulated functor; see also [Bal20a] for analogous
results concerning homological spectra. In the second part, we present conditions
under which stratification descends along tensor-triangulated functors. All big tt-
categories involved are assumed to satisfy Hypothesis 1.4.3.

Let F : T → U be a coproduct-preserving tt-functor between big tt-categories.
Then F induces a map of frames S⊗(T)→ S⊗(U), S 7→ loc⊗(FS), which, via Stone
duality, gives rise to a continuous map Spcs(F ) : Spcs(U) → Spcs(T). Explicitly,
Spcs(F ) acts by sending Q ∈ Spcs(U) to

∨
{S ∈ S⊗(T) | S ⊆ F−1(Q)}. Addition-

ally, since F preserves rigid=compact objects, there is an induced continuous map
Spc(F ) : Spc(Uc)→ Spc(Tc) that takes q ∈ Spc(Uc) to F−1(q) ∩ Tc.

Remark 2.6.1. The map Spcs(F ) does not behave in a way similar to the more
classical Spc(F ), namely by taking inverse images. For one, the formula for Spcs(F )
is given by Stone duality, as explained above. More concretely, there are cases where
F−1(Q), for Q ∈ Spcs(U), is not a smashing ideal. An example is the derived base
change functor π : D(Z)→ D(Fp) for a prime number p, as demonstrated in [BS23,
Example 3.4.5].

Lemma 2.6.2. The following square is commutative:

Spcs(U) Spcs(T)

Spc(Uc) Spc(Tc).

Spcs(F )

ψU ψT

Spc(F )

Proof. Let Q ∈ Spcs(U). Then

p1 := (ψT ◦ Spcs(F ))(Q) =
∨
{S ∈ S⊗(T) | S ⊆ F−1(Q)} ∩ Tc,

p2 := (Spc(F ) ◦ ψU)(Q) = F−1(Q ∩ Uc) ∩ Tc = F−1(Q) ∩ Tc.

Clearly, p1 ⊆ p2. For any x ∈ p2, it holds that loc⊗(x) is a smashing ideal of T and
loc⊗(x) ⊆ F−1(Q). This shows that p2 ⊆ p1, thus p1 = p2. �
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Corollary 2.6.3. Let F : T → U be a coproduct-preserving tt-functor between big
tt-categories such that the induced map Spcs(F ) : Spcs(U) → Spcs(T) is a home-
omorphism. If T satisfies the Telescope Conjecture, then U satisfies the Telescope
Conjecture and the induced map Spc(F ) : Spc(Uc)→ Spc(Tc) is a homeomorphism.

Proof. By [BS23, Corollary 5.1.6], the map ψT is a homeomorphism. There-
fore, by Lemma 2.6.2, Spc(F ) ◦ ψU is a homeomorphism. This implies that ψU is
injective. By [BS23, Proposition 5.1.5], ψU is surjective. Hence, ψU is a homeomor-
phism and, again by [BS23, Corollary 5.1.6], U satisfies the Telescope Conjecture.
Since ψU and Spc(F ) ◦ψU are homeomorphisms, Spc(F ) is a homeomorphism. �

The image of Spcs(F ). Let F : T → U be a coproduct-preserving tt-functor
between big tt-categories. By Brown representability, F : T → U has a right adjoint
G : U→ T. Since F is monoidal, hence preserves compact objects, G is lax-monoidal
and preserves coproducts. Further, F and G are related by the projection formula:
G(FX ⊗ Y ) = X ⊗ GY ; see [BDS16, Proposition 2.15]. For Y = 1, we obtain
the equality GF (−) = G(1) ⊗ −. Moreover, G(1) 6= 0, since HomU(1 = F1, 1) ∼=
HomT(1, G(1)).

Proposition 2.6.4. Let F : T → U be a coproduct-preserving tt-functor between
big tt-categories with right adjoint G. Then Im Spcs(F ) ⊆ supps(G(1)). Assum-
ing that Spcs(T) is TD, if G is conservative, i.e., KerG = 0, then Im Spcs(F ) ⊆
Supps(G(1)).

Proof. Let Q ∈ Spcs(U) and P = Spcs(F )(Q). Since P and Q are smashing
ideals, the localizations T/P and U/Q are big tt-categories. Let jP and jQ denote
the corresponding quotient functors with right adjoints kP and kQ, respectively. It
holds that P ⊆ F−1(Q) = Ker(jQ◦F ). Therefore, there exists a unique triangulated

functor F̃ : T/P → U/Q such that F̃ ◦ jP ∼= jQ ◦ F . Moreover, F̃ is monoidal and

preserves coproducts. Hence, F̃ has a right adjoint G̃. Since F̃ ◦jP ∼= jQ◦F a G◦kQ
and F̃ ◦jP a kP ◦G̃, we infer that G◦kQ ∼= kP ◦G̃. Our discussion so far is recorded
in the following diagram:

T T/P

U U/Q.

jP

`

F a

kP

F̃ a
jQ

`

G

kQ

G̃

Applying jP to both sides of G◦kQ ∼= kP ◦G̃, we obtain the relation G̃ ∼= jP ◦G◦kQ.

As a result, jP (G(fQ)) ∼= jP (G(kQ(1))) ∼= G̃(1) 6= 0. This reads G(fQ) /∈ P .
In particular, G(fQ) 6= 0. The next piece of information we need is that the

morphism adjoint to the right idempotent 1→ fQ, i.e., 1
η−→ G(1)→ G(fQ), where

η is the unit of adjunction, is a weak ring. Tensoring this composite with G(fQ)
results in a split monic G(fQ) → G(1) ⊗ G(fQ) → G(fQ) ⊗ G(fQ). It follows
that G(fQ) → G(1) ⊗G(fQ) is split monic. So, G(1) ⊗G(fQ) 6= 0 since it admits
the non-zero object G(fQ) as a summand. Finally, suppose that G(1) ∈ P . Then
G(1) ∈ F−1(Q). This implies that FG(1) ⊗ fQ = 0. By the projection formula,
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G(1) ⊗ G(fQ) = 0, which leads to a contradiction. We conclude that G(1) /∈ P ,
i.e., P ∈ supps(G(1)).

Now assume that KerG = 0. Claim: Ker G̃ = 0. If X ∈ U and G̃(jQ(X)) = 0,

then G(fQ ⊗X) = G(kQ(jQ(X))) = kP (G̃(jQ(X))) = 0. Therefore, fQ ⊗X = 0,
which means that X ∈ Q, so jQ(X) = 0. This proves the claim, which implies that

Ker(G̃(1)⊗−) = Ker G̃F̃ = Ker F̃ . Now let {P} = US ∩VP , so that ΓP = eS⊗ fP .

Since eS /∈ P and P = Spcs(F )(Q), it follows that F (eS) /∈ Q. Thus, F̃ (jP (eS)) =

jQ(F (eS)) 6= 0. In other words, jP (eS) /∈ Ker F̃ . As a result, ΓP ⊗ G(fQ) =

ΓP ⊗ G(kQ(1)) = kP (jP (eS) ⊗ G̃(1)) 6= 0, with the second equality by using the
relation jP (ΓP ) = jP (eS) and the projection formula for jP a kP . Tensoring the
split monic G(fQ) → G(1) ⊗G(fQ) with ΓP , we conclude that ΓP ⊗G(1) 6= 0, so
P ∈ Supps(G(1)). �

Remark 2.6.5. The inclusion Im Spcs(F ) ⊆ supps(G(1)) in Proposition 2.6.4 is
not an equality in general. For instance, let P ∈ Spcs(T) and S ∈ S⊗(T) \ {T}
such that P ( S. Then Supps(fS) = VS 6= supps(fS), since the former does not
contain P (ΓP ⊗ fS = fS ⊗ eS ⊗ fP = 0) while the latter does (fS /∈ P ). Let
jS : T → T/S be the quotient functor and kS its right adjoint. Then Im Spcs(jS) =
VS = Supps(fS) = Supps(kS(1)) 6= supps(kS(1)) = supps(fS). A more concrete
incarnation: Consider the derived category of a rank 1 non-noetherian valuation
domain (A,m), e.g., the perfection of Fp[[x]], with field of fractions Q and let
P = 0 and S = loc(Q/m). In this case, Supps(fS) = {loc(m),D{m}(A)} and
supps(fS) = {0, loc(m),D{m}(A)} = Spcs(D(A)); see [BS23, Section 7].

Stratification and descent. The results that follow are inspired by the arti-
cle [SW21], in which appear descent theorems about tt-functors between R-linear
big tt-categories within the context of stratification in the sense of [BIK11a] (with
subsequent applications in the theory of DG-rings). Contrasted with our setup,
there are two vital differences. First, the local-to-global principle is a property
that holds automatically in their setting. Second, the categories involved have the
same spectrum, namely Spec(R), by assumption. We step closer to the spirit of
the alluded configuration by requiring the induced map on smashing spectra to be
a homeomorphism.

Let F : T → U be a coproduct-preserving tt-functor between big tt-categories
whose smashing spectra are TD and assume that f := Spcs(F ) : Spcs(U)→ Spcs(T)
is a homeomorphism. By Stone duality, the map S⊗(T) → S⊗(U) that carries a
smashing ideal S to loc⊗(FS) is a lattice isomorphism. It follows that f−1(P ) =
loc⊗(FP ) ∈ Spcs(U), ∀P ∈ Spcs(T). Therefore, if {P} = US∩VP , then {f−1(P )} =
Uloc⊗(FS)∩Vloc⊗(FP ). Hence, the Rickard idempotent corresponding to loc⊗(FP ) is

F (eS)⊗F (fP ) = F (ΓP ). Since every smashing-prime of U is realized as loc⊗(FP ),
for a unique P ∈ Spcs(T), we see that the Rickard idempotents of U are precisely
the images, under F , of the Rickard idempotents of T.

Lemma 2.6.6. Let H : C1 → C2 be a coproduct-preserving triangulated functor
(e.g., H = X ⊗ − : T → T for a big tt-category T, or H could be the right adjoint
of a coproduct-preserving tt-functor between big tt-categories). Let A be an object
of C1. Then, for all B ∈ loc(A), it holds that H(B) ∈ loc(H(A)).

Proof. Identical to the proof of Lemma 1.1.22; replace “localizing ideal” with
“localizing subcategory”. �
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Lemma 2.6.7. Let A be an object of T such that loc(A) = T. Then loc(A⊗X) is
a tensor-ideal and loc⊗(X) = loc(A⊗X), for all X ∈ T.

Proof. Let Z ∈ loc(A⊗X) and Y = {Y ∈ T | Y ⊗Z ∈ loc(A⊗X)}. Then Y is
a localizing subcategory of T and we claim that A ∈ Y, i.e., A⊗Z ∈ loc(A⊗X). This
is deduced by the following two series of implications, where we invoke Lemma 2.6.6
for the tensor product:

A⊗A ∈ loc(A)⇒ A⊗A⊗X ∈ loc(A⊗X)⇒ loc(A⊗A⊗X) ⊆ loc(A⊗X),

Z ∈ loc(A⊗X)⇒ A⊗ Z ∈ loc(A⊗A⊗X)⇒ A⊗ Z ∈ loc(A⊗X).

This shows that Y = T, proving the first part of the statement. For the second part,
since loc(A⊗X) is a tensor-ideal, loc(A⊗X) = loc⊗(A⊗X) ⊆ loc⊗(X). Finally,
1 ∈ loc⊗(A) implies X ∈ loc⊗(A⊗X). We infer that loc⊗(X) = loc(A⊗X). �

Remark 2.6.8. Lemma 2.6.7 can be generalized: If A is a set of objects of T such
that loc(A) = T, then loc(A ⊗X | A ∈ A) ∈ Loc⊗(T) and loc⊗(X) = loc(A ⊗X |
A ∈ A), for all X ∈ T.

In the proof of the following theorem, Lemma 1.1.22 and Lemma 2.6.7 will be
used without explicit reference.

Theorem 2.6.9. Let F : T → U be a coproduct-preserving tt-functor between big
tt-categories whose smashing spectra are TD and let G be the right adjoint to F .
Assume that Spcs(F ) : Spcs(U)→ Spcs(T) is a homeomorphism. Then:

(a) If T satisfies the local-to-global principle, then U satisfies the local-to-global
principle.

(b) Suppose that there exists a collection of objects X ⊆ U such that loc(X) = U and
loc(G(X)) = T. Then: if U satisfies minimality, then T satisfies minimality.

(c) Suppose that loc(1U) = U and loc(G(1U)) = T. Then: if U satisfies the local-
to-global principle, then T satisfies the local-to-global principle.

Proof.

(a) If T satisfies the local-to-global principle, then 1T ∈ loc⊗(ΓP | P ∈ Spcs(T)).
Thus, 1U = F1T ∈ loc⊗(F (ΓP ) | P ∈ Spcs(T)) = loc⊗(ΓQ | Q ∈ Spcs(U)) and
the conclusion follows.

(b) Let X ∈ T and assume that FX = 0. Since loc(G(X)) = T, it holds that
loc⊗(X) = loc(G(X)⊗X) = loc(G(X⊗ FX)) = 0. Thus, X = 0, proving that
F is conservative. Now consider a non-zero object X ∈ loc⊗(ΓP ). Then the
object FX ∈ loc⊗(F (ΓP )) must also be non-zero. Therefore, loc(X ⊗ FX) =
loc⊗(FX) = loc⊗(F (ΓP )) = loc(X ⊗ F (ΓP )), with the second equality by
minimality of U. As a result, loc⊗(X) = loc(G(X)⊗X)) = loc(G(X⊗ FX)) =
loc(G(X⊗ F (ΓP ))) = loc⊗(ΓP ). Consequently, loc⊗(ΓP ) is minimal.

(c) By assumption, U satisfies the local-to-global principle and loc(1U) = U. So,
every localizing subcategory of U is an ideal and 1U ∈ loc⊗(ΓQ | Q ∈ Spcs(U)).
So, G(1U) ∈ loc(GF (ΓP ) | P ∈ Spcs(T)) = loc(G(1U) ⊗ ΓP | P ∈ Spcs(T)) =
loc⊗(ΓP | P ∈ Spcs(T)). Since G(1U) generates T, the proof is complete. �

Corollary 2.6.10. Let F : T → U be a coproduct-preserving tt-functor between big
tt-categories whose smashing spectra are TD and let G be the right adjoint to F .
Assume that Spcs(F ) : Spcs(U) → Spcs(T) is a homeomorphism. Provided that
loc(1U) = U and loc(G(1U)) = T, if U is stratified by the small smashing support,
then T is stratified by the small smashing support.



CHAPTER 3

Costratification and actions of tensor-triangulated
categories

The theme of this chapter is the theory of costratification in the context of
relative tensor-triangular geometry. In Section 3.2, we show that costratification
is equivalent to the colocal-to-global principle and cominimality and also that the
local-to-global principle implies the colocal-to-global principle. In Section 3.3, we in-
troduce and study the classes of prime localizing submodules and prime colocalizing
hom-submodules, the former generalizing objectwise-prime localizing tensor-ideals
and we relate these two classes of subcategories with the Action Formula and the
Internal-Hom Formula. In Section 3.4, we reduce costratification to localizations
with respect to smashing submodules and certain covers of the associated space of
supports/cosupports. As an application, in Section 3.5, we prove that the derived
category of quasi-coherent sheaves over a notherian separated scheme is costrati-
fied, generalizing Neeman’s result for derived categories of commutative noetherian
rings. The results of this chapter first appeared in [Ver23a].

3.1. Actions and basic lemmas

Throughout, T will denote a big tt-category. Let K be a compactly generated
triangulated category and let ∗ : T ×K → K be an action of T on K, in the sense
of [Ste13]. In short, ∗ : T × K → K is a coproduct-preserving triangulated func-
tor in each variable such that there exist natural (in all variables) isomorphisms

αX,Y,A : X ∗ (Y ∗ A)
∼=−→ (X ⊗ Y ) ∗ A and lA : 1 ∗ A

∼=−→ A, ∀X,Y ∈ T, ∀A ∈ K.
The natural isomorphism α is called the associator and the natural isomorphism l
is called the unitor. There is also a host of coherence conditions that need to be
satisfied; we refer the reader to the aforementioned source for details. We call
K = (K, ∗) a T-module.

By definition, for every object X ∈ T, the functor X∗− : K→ K is a coproduct-
preserving triangulated functor. Hence, by Brown representability, X ∗ − admits
a right adjoint [X,−]∗ : K → K. Assembling these right adjoints yields a functor
[−,−]∗ : Top × K → K that we call the relative internal-hom. Since [1,−]∗ is the
right adjoint of 1∗− ∼= IdK, it holds that [1,−]∗ ∼= IdK. Specifically, the composite

m := IdK → [1, 1 ∗ −]∗
[1,l]∗−−−→ [1,−]∗, where the first map is the unit of adjunction,

is a natural isomorphism (which we call the hom-unitor).

Hypothesis 3.1.1. We further assume that the relative internal-hom of K is a
triangulated functor in the first variable, i.e., [−, A]∗ : Top → K preserves trian-
gles, for all A ∈ K. This is true, e.g., if K satisfies a formulation of May’s TC3
axiom ([May01]) replacing the tensor product of T with the action of T on K.
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The proof of [Mur07, Theorem C.1] goes through verbatim. Our assumption is
satisfied by all known examples.

One could, of course, incorporate Hypothesis 3.1.1 in the definition of a T-
module. We decided to state it as an extra hypothesis because the abundance
of examples satisfying it, i.e., all known examples, indicate that it is a property
satisfied by every T-module (even though a proof has not been discovered yet).

Lemma 3.1.2. Let X,Y ∈ T and A ∈ K. Then there exists a natural (in all vari-

ables) isomorphism βX,Y,A : [X ⊗ Y,A]∗
∼=−→ [X, [Y,A]∗]∗ called the hom-associator.

Proof. Let B ∈ K. By the adjunction between the action and the relative
internal-hom and the relation (X ⊗ Y ) ∗B ∼= (Y ⊗X) ∗B ∼= Y ∗ (X ∗B), we have:

HomK(B, [X ⊗ Y,A]∗) ∼= HomK((X ⊗ Y ) ∗B,A)

∼= HomK((Y ⊗X) ∗B,A)

∼= HomK(Y ∗ (X ∗B), A)

∼= HomK(X ∗B, [Y,A]∗)

∼= HomK(B, [X, [Y,A]∗]∗).

Consequently, forB = [X⊗Y,A]∗, the image of the identity morphism on [X⊗Y,A]∗
under the above series of isomorphisms gives a natural (in all variables) isomorphism

βX,Y,A : [X ⊗ Y,A]∗
∼=−→ [X, [Y,A]∗]∗. �

Notation 3.1.3. Let K1 and K2 be two T-modules. For i = 1, 2, the relative
internal-hom of Ki will be denoted by [−,−]i. Let X,Y ∈ T and A ∈ Ki. The asso-
ciator and unitor natural isomorphisms will be denoted by αiX,Y,A and liA, respec-
tively. The hom-associator and hom-unitor natural isomorphisms will be denoted by
βiX,Y,A and mi

A, respectively. The unit and the counit of the action-hom adjunction

will be denoted by uiX,A : A→ [X,X ∗iA]i and ciX,A : X ∗i [X,A]i → A, respectively.

We denote by σX,Y : X ⊗ Y
∼=−→ Y ⊗ X the symmetry natural isomorphism. We

denote by cX,− : X⊗ [X,−]→ IdT the counit of the adjunction X⊗− a [X,−]. Set
X∨ := [X, 1] and define the morphism eviX,A : X ∗i A → [X∨, A]i as the following
composite:

X ∗i A
ui
X∨,X∗iA−−−−−−→ [X∨, X∨ ∗i (X ∗i A)]i

[X∨,αi
X∨,X,A]i

−−−−−−−−−−→∼=
[X∨, (X∨ ⊗X) ∗i A]i

[X∨,σX∨,X∗iA]i−−−−−−−−−−−→∼=
[X∨, (X ⊗X∨) ∗i A]i

[X∨,cX,1∗iA]i−−−−−−−−−→ [X∨, 1 ∗i A]i
[X∨,liA]i−−−−−→∼= [X∨, A]i.

Definition 3.1.4. A functor F : K1 → K2, between T-modules K1 and K2, is
called action-preserving if there is a natural isomorphism φ : F (−∗1−)→ −∗2F (−)
between the functors F (−∗1−), −∗2F (−) : T×K1 → K2 such that, for all X,Y ∈ T

and for all A ∈ K1, the following diagrams commute:

F (X ∗1 (Y ∗1 A)) X ∗2 F (Y ∗1 A) X ∗2 (Y ∗2 FA)

F ((X ⊗ Y ) ∗1 A) (X ⊗ Y ) ∗2 FA,

φX,Y ∗1A

Fα1
X,Y,A

X∗2φY,A

α2
X,Y,FA

φX⊗Y,A
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F (1 ∗1 A) 1 ∗2 FA

FA.

φ1,A

Fl1A
l2FA

Definition 3.1.5. A functor G : K2 → K1, between T-modules K2 and K1, is called
hom-preserving if there is a natural isomorphism ψ : [−, G(−)]1 → G[−,−]2 be-
tween the functors [−, G(−)]1, G[−,−]2 : Top×K2 → K1 such that, for all X,Y ∈ T

and for all B ∈ K2, the following diagrams commute:

[X, [Y,GB]1]1 [X,G[Y,B]2]1 G[X, [Y,B]2]2

[X ⊗ Y,GB]1 G[X ⊗ Y,B]2,

[X,ψY,B ]1

β1
X,Y,GB

ψX,[Y ,B]2

Gβ2
X,Y,B

ψX⊗Y ,B

GB

[1, GB]1 G[1, B]2.

Gm2
B

m1
GB

ψ1,B

Lemma 3.1.6. Let T and K be triangulated categories with T compactly generated
and let F1, F2 : T → K be coproduct-preserving triangulated functors (or contravari-
ant triangulated functors that send coproducts to products). If there is a natural
transformation θ : F1 → F2 such that θx is an isomorphism, for all x ∈ Tc, then θ
is a natural isomorphism.

Proof. The subcategory X = {X ∈ T | θX : F1X → F2X is an isomorphism}
is a localizing subcategory of T that contains Tc. Consequently, X = T and this
proves the statement. �

Lemma 3.1.7. Let F : K1 → K2 be a coproduct and action-preserving triangulated
functor between T-modules and let G : K2 → K1 be the right adjoint to F . Then G
is hom-preserving. If G is coproduct-preserving, then G is action-preserving. If F
is product-preserving, then F is hom-preserving.

Proof. We denote by η : IdK1
→ GF and ε : FG → IdK2

the unit and the
counit, respectively, of the adjunction F a G. Let A ∈ K1, B ∈ K2 and X ∈ T.
Then

HomK1
(A, [X,GB]1) ∼= HomK1

(X ∗A,GB)

∼= HomK2
(F (X ∗A), B)

∼= HomK2(X ∗ FA,B)

∼= HomK2(FA, [X,B]2)

∼= HomK1
(A,G[X,B]2).

For A = [X,GB]1, the image of the identity morphism on [X,GB]1 under the
above series of isomorphisms provides a natural (in both variables) isomorphism
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ψX,B : [X,GB]1 → G[X,B]2 that satisfies the conditions of Definition 3.1.5, show-
ing that G is hom-preserving. More precisely, ψX,B is the following composite:

[X,GB]1
η[X,GB]1−−−−−→ GF [X,GB]1

Gu2
X,F [X,GB]1−−−−−−−−−→ G[X,X ∗2 F [X,GB]1]2

G[X,φ−1
X,[X,GB]1

]2
−−−−−−−−−−−→ G[X,F (X ∗1 [X,GB]1)]2

G[X,F (c1X,GB)]2−−−−−−−−−−→ G[X,FGB]2

G[X,εB ]2−−−−−−→ G[X,B]2.

Now suppose that G preserves coproducts. We define a natural transformation
ξX,B : X ∗1 GB → G(X ∗2 B) as the composite:

X ∗1 GB
ηX∗1GB−−−−−→ GF (X ∗1 GB)

GφX,GB−−−−−→ G(X ∗2 FGB)
G(X∗2εB)−−−−−−−→ G(X ∗2 B).

We claim that the square

X ∗1 GB G(X ∗2 B)

[X∨, GB]1 G[X∨, B]2

ξX,B

ev1
X,GB Gev2

X,B

ψX∨,B
∼=

(3.1.8)

commutes. First, square (3.1.8) can be expanded as follows:

X ∗1 GB GF (X ∗1 GB) G(X ∗2 FGB) G(X ∗2 B)

[X∨, GB]1 GF [X∨, GB]1 G[X∨, FGB]2 G[X∨, B]2

G[X∨, X∨ ∗2 F [X∨, GB]1]2 G[X∨, F (X∨ ∗1 [X∨, GB]1)]2

(1)

ηX∗1GB

ev1
X,GB

GφX,GB

GF ev1
X,GB

G(X∗2εB)

Gev2
X,FGB

(3) Gev2
X,B

η[X∨,GB]1

Gu2
X∨,F [X∨,GB]1

(2)
G[X∨,εB ]2

G[X∨,φ−1

X∨,[X∨,GB]1
]2

G[X∨,F (c1
X∨,GB)]2

where square (1) commutes by naturality of η and square (3) commutes by natu-
rality of ev2

X . Therefore, in order to show that (3.1.8) commutes, it suffices to show
that diagram (2) commutes. We will prove this slightly more generally. We claim
that the following diagram commutes:

F (X ∗1 A) X ∗2 FA

F [X∨, A]1 [X∨, FA]2

[X∨, X∨ ∗2 F [X∨, A]1]2 [X∨, F (X∨ ∗1 [X∨, A]1)]2.

φX,A

F ev1
X,A

ev2
X,FA

u2
X∨,F [X∨,A]1

[X∨,φ−1

X∨,[X∨,A]1
]2

[X∨,F (c1
X∨,A)]2

(3.1.9)
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Set

f1 = u2
X∨,F [X∨,X∨∗1(X∗1A)]1

, g1 = [X∨, φ−1
X∨,[X∨,X∨∗1(X∗1A)]1

]2,

f2 = u2
X∨,F [X∨,(X∨⊗X)∗1A]1

, g2 = [X∨, φ−1
X∨,[X∨,(X∨⊗X)∗1A]1

]2,

f3 = u2
X∨,F [X∨,(X⊗X∨)∗1A]1

, g3 = [X∨, φ−1
X∨,[X∨,(X⊗X∨)∗1A]1

]2,

f4 = u2
X∨,F [X∨,1∗1A]1

, g4 = [X∨, φ−1
X∨,[X∨,1∗1A]1

]2,

f5 = u2
X∨,F [X∨,A]1

, g5 = [X∨, φ−1
X∨,[X∨,A]1

]2,

h1 = [X∨, X∨ ∗2 φX,A]2 ◦ [X∨, φX∨,X∗1A]2 ◦ [X∨, F c1X∨∗1(X∗1A)]2,

h2 = [X∨, φX∨⊗X,A]2 ◦ [X∨, F c1X∨,(X∨⊗X)∗1A]2,

h3 = [X∨, φX⊗X∨,A]2 ◦ [X∨, F c1X∨,(X⊗X∨)∗1A]2,

h4 = [X∨, φ1,A]2 ◦ [X∨, F c1X∨,1∗1A]2,

h5 = [X∨, F (c1X∨,A)]2,

and expand diagram (3.1.9) as below:

F (X ∗1 A) X ∗2 FA

F [X∨, X∨ ∗1 (X ∗1 A)]1 [X∨, X∨ ∗2 F [X∨, X∨ ∗1 (X ∗1 A)]1]2 [X∨, F (X∨ ∗1 [X∨, X∨ ∗1 (X ∗1 A)]1)]2 [X∨, X∨ ∗2 (X ∗2 FA)]2

F [X∨, (X∨ ⊗X) ∗1 A]1 [X∨, X∨ ∗2 F [X∨, (X∨ ⊗X) ∗1 A]1]2 [X∨, F (X∨ ∗1 [X∨, (X∨ ⊗X) ∗1 A]1)]2 [X∨, (X∨ ⊗X) ∗2 FA]2

F [X∨, (X ⊗X∨) ∗1 A]1 [X∨, X∨ ∗2 F [X∨, (X ⊗X∨) ∗1 A]1]2 [X∨, F (X∨ ∗1 [X∨, (X ⊗X∨) ∗1 A]1)]2 [X∨, (X ⊗X∨) ∗2 FA]2

F [X∨, 1 ∗1 A]1 [X∨, X∨ ∗2 F [X∨, 1 ∗1 A]1]2 [X∨, F (X∨ ∗1 [X∨, 1 ∗1 A]1)]2 [X∨, 1 ∗2 FA]2

F [X∨, A]1 [X∨, X∨ ∗2 F [X∨, A]1]2 [X∨, F (X∨ ∗1 [X∨, A]1)]2 [X∨, FA]2

Fu1
X∨,X∗1A

∼=
φX,A

u2
X∨,X∗2FA

(1)
F [X∨,α1

X∨,X,A]1

f1

[X∨,X∨∗2F [X∨,α1
X∨,X,A]1]2

g1

(2)
[X∨,F (X∨∗1[X∨,α1

X∨,X,A]1)]2

h1

(3)
[X∨,α2

X∨,X,FA]2

F [X∨,σX∨,X∗1A]1

f2

(4)
[X∨,X∨∗2F [X∨,σX∨,X∗1A]1]2

g2

(5)
[X∨,F (X∨∗1[X∨,σX∨,X∗1A]1)]2

h2

(6)
[X∨,σX∨,X∗2FA]2

F [X∨,cX,1∗1A]1

f3

(7)
[X∨,X∨∗2F [X∨,cX,1∗1A]1]2

g3

(8)
[X∨,F (X∨∗1[X∨,cX,1∗1A]1)]2

h3

(9)
[X∨,cX,1∗2FA]2

F [X∨,l1A]1

f4

(10)
[X∨,X∨∗2F [X∨,l1A]1]2

g4

(11)
[X∨,F (X∨∗1[X∨,l1A]1)]2

h4

(12)
[X∨,l2FA]2

f5 g5 h5
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It is clear that the squares (1), (2), . . . , (12) commute. Thus, it remains to show
that u2

X∨,X∗2FA ◦ φX,A = h1 ◦ g1 ◦ f1 ◦ Fu1
X∨,X∗1A. Indeed,

h1 ◦ g1 ◦ f1 ◦ Fu1
X∨,X∗1A = [X∨, X∨ ∗2 φX,A]2 ◦ [X∨, φX∨,X∗1A]2

◦ [X∨, F c1X∨∗1(X∗1A)]2 ◦ [X∨, φ−1
X∨,[X∨,X∨∗1(X∗1A)]1

]2

◦ u2
X∨,F [X∨,X∨∗1(X∗1A)]1

◦ Fu1
X∨,X∗1A

= [X∨, X∨ ∗2 φX,A]2 ◦ [X∨, φX∨,X∗1A]2

◦ [X∨, F c1X∨∗1(X∗1A)]2 ◦ [X∨, φ−1
X∨,[X∨,X∨∗1(X∗1A)]1

]2

◦ [X∨, X∨ ∗2 Fu1
X∨,X∗1A]2 ◦ u2

X∨,F (X∗1A)

= [X∨, X∨ ∗2 φX,A]2 ◦ [X∨, φX∨,X∗1A]2

◦ [X∨, F c1X∨∗1(X∗1A)]2 ◦ [X∨, F (X∨ ∗1 u1
X∨,X∗1A)]2

◦ [X∨, φ−1
X∨,X∗1A]2 ◦ u2

X∨,F (X∗1A)

= [X∨, X∨ ∗2 φX,A]2 ◦ [X∨, φX∨,X∗1A]2

◦ [X∨, φ−1
X∨,X∗1A]2 ◦ u2

X∨,F (X∗1A)

= [X∨, X∨ ∗2 φX,A]2 ◦ u2
X∨,F (X∗1A)

= u2
X∨,X∗2FA ◦ φX,A.

We conclude that diagram (3.1.9) commutes and, as a result, square (3.1.8) com-
mutes. If X ∈ Tc, then by [Ste13, Lemma 4.6], eviX,− is an isomorphism. Conse-

quently, the restriction of ξ−,B : −∗1GB → G(−∗2 B) to the compact objects of T
is a natural isomorphism. Since the triangulated functors − ∗1 GB and G(− ∗2 B)
are coproduct-preserving, it follows by Lemma 3.1.6 that ξ−,B is a natural isomor-
phism. It is easy to verify that the conditions of Definition 3.1.4 are satisfied. We
conclude that G is action-preserving.

The proof that if F preserves products, then F is hom-preserving is similar and
left to the interested reader. �

Let K be a T-module. A subcategory L ⊆ K is called a localizing submodule
if L is a localizing subcategory such that X ∗ A ∈ L, ∀X ∈ T, ∀A ∈ L. The
collection of localizing submodules of K is denoted by Loc∗(K). A subcategory
C ⊆ K is called a colocalizing hom-submodule if C is a colocalizing subcategory
such that [X,A]∗ ∈ C, ∀X ∈ T, ∀A ∈ C. The collection of colocalizing hom-
submodules of K is denoted by Colochom(K). Let A be an object of K. The
localizing (resp. colocalizing) submodule of K generated (resp. cogenerated) by A,
i.e., the smallest localizing (resp. colocalizing) submodule of K that contains A, is
denoted by loc∗(A) (resp. colochom(A)). Specializing to the case K = T and ∗ = ⊗,
we obtain the notions of localizing tensor-ideal and colocalizing left hom-ideal.

We define the annihilator of K in T as the subcategory

AnnT(K) := {X ∈ T | X ∗A = 0, ∀A ∈ K} ⊆ T,

which is equal to
⋂
A∈K Ker(−∗A) and hence a localizing ideal of T. If AnnT(K) = 0

(for instance, when K = T and ∗ = ⊗) then K is called a conservative T-module.

Lemma 3.1.10. Let K1,K2 be two T-modules and let A ⊆ Ob(K1) and B ⊆
Ob(K2).
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(a) If F : K1 → K2 is a coproduct and action-preserving triangulated functor, then
F (loc∗(A)) ⊆ loc∗(FA).

(b) If F : Kop
1 → K2 is a triangulated functor that sends coproducts to products and

F (X ∗A) ∼= [X,FA]∗, ∀X ∈ T, ∀A ∈ K1, then F (loc∗(A)) ⊆ colochom(FA).
(c) If G : K2 → K1 is a product and hom-preserving triangulated functor, then

G(colochom(B)) ⊆ colochom(GB).

Proof. We will prove (a). The subcategory X = {A ∈ K1 | FA ∈ loc∗(FA)}
is a localizing submodule of K1 that contains A. Therefore, X contains loc∗(A),
proving the statement. The proofs of (b) and (c) are similar. �

Lemma 3.1.11. Let K be a T-module and assume that T = loc(1). Then every
colocalizing subcategory of K is a hom-submodule.

Proof. Let C be a colocalizing subcategory of K and let A ∈ C. The collection
X = {X ∈ T | [X,A]∗ ∈ C} is a localizing subcategory of T that contains 1. It follows
that X = T, i.e., [X,A]∗ ∈ C, ∀X ∈ T. Hence, C is a hom-submodule of K. �

3.2. Stratification–costratification

Fix a big tt-category T and a T-module K. We always assume that K is
compactly generated. Let IT and IK be the cogenerators of T and K, respectively,
as in Recollection 1.1.13.

Support–cosupport. Fix a topological space S.

Definition 3.2.1 (See also [BHS23b, Definition 7.1]). A support data for T with
values in S is a map s: Ob(T)→ P(S) that satisfies the following properties:

(a) s(0) = ∅ & s(1) = S.
(b) s(

∐
Xi) =

⋃
s(Xi).

(c) s(ΣX) = s(X).
(d) s(Y ) ⊆ s(X) ∪ s(Z), for any triangle X → Y → Z → ΣX.
(e) s(X ⊗ Y ) ⊆ s(X) ∩ s(Y ).

Definition 3.2.2. A cosupport data for T with values in S is a map c: Ob(T) →
P(S) that satisfies the following properties:

(a) c(0) = ∅ & c(IT) = S.
(b) c(

∏
Xi) =

⋃
c(Xi).

(c) c(ΣX) = c(X).
(d) c(Y ) ⊆ c(X) ∪ c(Z), for any triangle X → Y → Z → ΣX.
(e) c([X,Y ]) ⊆ c([X, IT]) ∩ c(Y ).

Remark 3.2.3. Let c : Ob(T)→ P(S) be a cosupport data. It is a straightforward
verification, using the properties of [−, IT], that setting s(X) = c([X, IT]) gives rise
to a support data s : Ob(T)→ P(S).

Definition 3.2.4. Let c : Ob(T) → P(S) be a cosupport data. The support data
s : Ob(T) → P(S) defined by s(X) = c([X, IT]) is called the support data induced
by c. We say that (s, c) is a support–cosupport pair.

Lemma 3.2.5. Let Γ: S → Ob(T) be a map such that Γs := Γ(s) 6= 0, ∀s ∈ S.
Then the maps

sΓ : Ob(T)→ P(S), sΓ(X) = {s ∈ S | Γs ⊗X 6= 0}
cΓ : Ob(T)→ P(S), cΓ(X) = {s ∈ S | [Γs, X] 6= 0}
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are a support and cosupport data, respectively. Moreover, sΓ is induced by cΓ.

Proof. That sΓ and cΓ are a support and cosupport data, respectively, follows
from the fact that Γs⊗− is a coproduct-preserving triangulated functor and [Γs,−]
is a product-preserving triangulated functor. Let X ∈ T. The claim that sΓ is
induced by cΓ follows from the isomorphism [Γs, [X, IT]] ∼= [Γs⊗X, IT] and the fact
that IT is a cogenerator of T. �

Definition 3.2.6. A support–cosupport pair (sΓ, cΓ) is called good if it is induced
by a map Γ: S → Ob(T) such that Γs⊗Γr = 0, ∀s 6= r and Γs⊗Γs ∼= Γs 6= 0, ∀s ∈ S.

Remark 3.2.7. An important feature of a good support–cosupport pair (sΓ, cΓ) is
that sΓ(Γs) = cΓ([Γs, IT]) = {s}, ∀s ∈ S.

Example 3.2.8. The following are good support–cosupport pairs on T:

(a) Assuming that the frame of smashing ideals of T is a spatial frame, the big
smashing support–cosupport pair (supps, cosupps):

supps(X) = {P ∈ Spcs(T) | fP ⊗X 6= 0},
cosupps(X) = {P ∈ Spcs(T) | [fP , X] 6= 0}.

Since Ker(fP ⊗−) = P , it holds that P ∈ supps(X) if and only if X /∈ P . Using
the equality P⊥ = Im(fP ⊗ −), one can deduce that Ker[fP ,−] = (P⊥)⊥, so
P ∈ cosupps(X) if and only if X /∈ (P⊥)⊥.

(b) Assuming further that Spcs(T) is TD, the small smashing support–cosupport
pair (Supps,Cosupps):

Supps(X) = {P ∈ Spcs(T) | ΓP ⊗X 6= 0},
Cosupps(X) = {P ∈ Spcs(T) | [ΓP , X] 6= 0}.

(c) Assuming that every point of Spc(Tc) is visible, the Balmer–Favi support–
cosupport pair (Supp,Cosupp):

Supp(X) = {p ∈ Spc(Tc) | gp ⊗X 6= 0},
Cosupp(X) = {p ∈ Spc(Tc) | [gp, X] 6= 0}.

(d) If R is a graded commutative noetherian ring and T is R-linear, the BIK
support–cosupport pair (suppR, cosuppR):

suppR(X) = {p ∈ Spec(R) | Γp1⊗X 6= 0},
cosuppR(X) = {p ∈ Spec(R) | [Γp1, X] 6= 0}.

See [BIK11a, BIK12].

Remark 3.2.9. Suppose that Spcs(T) is TD and let P ∈ Spcs(T) with associated
idempotent ΓP = eS ⊗ fP . If X is an object of T such that P ∈ Cosupps(X), then
0 6= [ΓP , X] = [eS ⊗ fP , X] ∼= [eS, [fP , X]]. Hence, [fP , X] 6= 0. In other words,
P ∈ cosupps(X). This shows that Cosupps(X) ⊆ cosupps(X), ∀X ∈ T.

Proposition 3.2.10. Assuming that Spcs(T) is TD, the small and big smashing
cosupports coincide, i.e., Cosupps(X) = cosupps(X), ∀X ∈ T, if and only if every
point of Spcs(T) is closed, i.e., Spcs(T) is T1.
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Proof. Since Supps(−) = Cosupps([−, IT]) and supps(−) = cosupps([−, IT]),
if the small and big smashing cosupports coincide, then so do the small and big
smashing supports. By Proposition 2.2.28, it follows that Spcs(T) is T1. Conversely,
if Spcs(T) is T1 and P ∈ Spcs(T), then VP = {P}. This implies that ΓP = fP . So,
[ΓP , X] = 0 if and only if [fP , X] = 0, for allX ∈ T. Hence, Cosupps = cosupps. �

Remark 3.2.11. Assume that Spcs(T) is TD and consider the small smashing
support–cosupport. Then Cosupps(1) = {P ∈ Spcs(T) | [ΓP , 1] 6= 0}. There are
many cases where Cosupps(1) 6= Spcs(T). For instance, Cosupps(Zp) = {(p)} 6=
Spcs(D(Zp)) ∼= Spec(Zp) = {(0), (p)}. For more examples and results concerning
the cosupport in derived categories of commutative noetherian rings, see [Tho18].

Let (sΓ, cΓ) be a support–cosupport pair on T induced by a map Γ: S → Ob(T)
and define the maps

s∗Γ : Ob(K)→ P(S), s∗Γ(A) = {s ∈ S | Γs ∗A 6= 0},
c∗Γ : Ob(K)→ P(S), c∗Γ(A) = {s ∈ S | [Γs, A]∗ 6= 0}.

Lemma 3.2.12. The maps s∗Γ and c∗Γ satisfy the following properties:

(a) s∗Γ(0) = ∅.
(b) s∗Γ(

∐
Ai) =

⋃
s∗Γ(Ai).

(c) s∗Γ(ΣA) = s∗Γ(A).
(d) s∗Γ(B) ⊆ s∗Γ(A) ∪ s∗Γ(C), for any triangle A→ B → C → ΣA of K.
(e) s∗Γ(X ∗A) ⊆ sΓ(X) ∩ s∗Γ(A).

(f) c∗Γ(0) = ∅.
(g) c∗Γ(

∏
Ai) =

⋃
c∗Γ(Ai).

(h) c∗Γ(ΣA) = c∗Γ(A).
(i) c∗Γ(B) ⊆ c∗Γ(A) ∪ c∗Γ(C), for any triangle A→ B → C → ΣA of K.
(j) c∗Γ([X,A]∗) ⊆ cΓ([X, IT]) ∩ c∗Γ(A).

Proof. The argument is essentially the same as the one given in Lemma 3.2.5.
The property c∗Γ([X,A]∗) ⊆ cΓ([X, IT]) ∩ c∗Γ(A) follows from Lemma 3.1.2. �

The (co)local-to-global principle and (co)minimality. We define two
pairs of inclusion-preserving maps

P(S) Loc∗(K)
τs∗

Γ

σs∗
Γ

& P(S) Colochom(K)
τc∗

Γ

σc∗
Γ

by the formulas

τs∗Γ(W ) = {A ∈ K | s∗Γ(A) ⊆W} & σs∗Γ
(L) =

⋃
A∈L

s∗Γ(A),

τc∗Γ(W ) = {A ∈ K | c∗Γ(A) ⊆W} & σc∗Γ
(C) =

⋃
A∈C

c∗Γ(A).

It is clear from the properties of s∗Γ and c∗Γ that the maps τs∗Γ , σs∗Γ
, τc∗Γ , σc∗Γ

are
well-defined. Moreover, Imσs∗Γ

⊆ P(σs∗Γ
(K)) and Imσc∗Γ

⊆ P(σc∗Γ
(K)). In fact,

σs∗Γ
(K) = σc∗Γ

(K) = c∗Γ(IK). The first equality follows from the adjunction Γs ∗− a
[Γs,−]∗. The second equality is a special case of Lemma 3.2.18 using the fact that
K = colochom(IK). If K is a conservative T-module, then Γs ∗ − 6= 0, ∀s ∈ S.
Hence, in this case, σs∗Γ

(K) = S. For K = T and ∗ = ⊗, we obtain the maps
τsΓ
, σsΓ

, τcΓ
, σcΓ

.
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Definition 3.2.13.

(a) K is stratified by Γ if τs∗Γ and σs∗Γ
, between P(c∗Γ(IK)) and Loc∗(K), are mutually

inverse bijections.
(b) K is costratified by Γ if τc∗Γ and σc∗Γ

, between P(c∗Γ(IK)) and Colochom(K), are
mutually inverse bijections.

Remark 3.2.14. Since we will always work with a fixed support–cosupport pair
induced by a map Γ: S → Ob(T), we will omit the reference to Γ in Definition 3.2.13
and say “K is stratified” and “K is costratified”, respectively. We will mention
explicit support–cosupport pairs where appropriate.

Definition 3.2.15 (For (a), see [Ste13, Definition 6.1]).

(a) K satisfies the local-to-global principle if

loc∗(A) = loc∗(Γs ∗A | s ∈ S), ∀A ∈ K.

(b) K satisfies minimality if, for all s ∈ S, loc∗(Γs ∗ A | A ∈ K} is minimal in
Loc∗(K) in the sense that it does not contain any non-zero proper localizing
submodule of K.

(i) K satisfies the colocal-to-global principle if

colochom(A) = colochom([Γs, A]∗ | s ∈ S), ∀A ∈ K.

(ii) K satisfies cominimality if, for all s ∈ S, colochom([Γs, IK]∗) is minimal in
Colochom(K) in the sense that it does not contain any non-zero proper colocal-
izing hom-submodule of K.

Remark 3.2.16. Let X ∈ T. Since K = coloc(IK) = colochom(IK), Lemma 3.1.10
for the functor [X,−]∗ implies that colochom([X, IK]∗) = colochom([X,A]∗ | A ∈ K).
In particular, colochom([Γs, IK]∗) = colochom([Γs, A]∗ | A ∈ K), ∀s ∈ S.

Remark 3.2.17. It is clear from the definition of s∗Γ and c∗Γ that

loc∗(Γs ∗A | s ∈ S) = loc∗(Γs ∗A | s ∈ s∗Γ(A)),

colochom([Γs, A]∗ | s ∈ S) = colochom([Γs, A]∗ | s ∈ c∗Γ(A)).

In addition, if K satisfies the local-to-global (resp. colocal-to-global) principle, then
s∗Γ (resp. c∗Γ) detects vanishing, i.e., s∗Γ(A) = ∅ ⇒ A = 0 and similarly for c∗Γ.
For the case K = T and ∗ = ⊗, it holds that codetection implies detection, since
∅ = sΓ(X) = cΓ([X, IT]) implies [X, IT] = 0, so X = 0.

For the rest of the section, fix a good support–cosupport pair (sΓ, cΓ) on T.

Lemma 3.2.18. Let A be a collection of objects of K. Then we have the following
equalities of subsets of S:

(a) σs∗Γ
(loc∗(A)) =

⋃
A∈A s∗Γ(A).

(b) σc∗Γ
(colochom(A)) =

⋃
A∈A c∗Γ(A).

Proof. We will prove the case of σc∗Γ
. Let s be an element of S. Then

s /∈
⋃
A∈A

c∗Γ(A)⇔ A ⊆ Ker[Γs,−]∗

⇔ colochom(A) ⊆ Ker[Γs,−]∗

⇔ s /∈
⋃

A∈colochom(A)

c∗Γ(A) = σc∗Γ
(colochom(A)). �
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Remark 3.2.19. Let A ∈ K and s ∈ S. It holds that c∗Γ([Γs, A]∗) ⊆ {s}. Hence, if
[Γs, A]∗ 6= 0 (i.e., s ∈ c∗Γ(A)) then c∗Γ([Γs, A]∗) = {s}. In particular, if s ∈ c∗Γ(IK),
then c∗Γ([Γs, IK]∗) = {s}.

Lemma 3.2.20. It holds that σs∗Γ
◦ τs∗Γ = Id and σc∗Γ

◦ τc∗Γ = Id, where both com-
posites are restricted to P(c∗Γ(IK)). In particular, the respective restrictions of τs∗Γ
and τc∗Γ are injective, while σs∗Γ

and σc∗Γ
are surjective.

Proof. We will prove that σc∗Γ
◦ τc∗Γ = Id (restricted to P(c∗Γ(IK))). To this

end, let W be a subset of c∗Γ(IK). Since (σc∗Γ
◦ τc∗Γ)(W ) =

⋃
c∗Γ(A)⊆W c∗Γ(A), we have

(σc∗Γ
◦ τc∗Γ)(W ) ⊆W . Let s be an element of W . Then s ∈ c∗Γ([Γs, IK]∗) = {s} ⊆W .

Therefore, s ∈ (σc∗Γ
◦ τc∗Γ)(W ), completing the proof. �

Theorem 3.2.21. Let (sΓ, cΓ) be a good support-cosupport pair on T.

(a) K is stratified with respect to (sΓ, cΓ) if and only if K satisfies the local-to-global
principle and minimality.

(b) K is costratified with respect to (sΓ, cΓ) if and only if K satisfies the colocal-to-
global principle and cominimality.

Proof. We will only prove (b), since (a) is proved analogously. Suppose that
K is costratified. Then σc∗Γ

is injective. Let A be an object of K. Then

σc∗Γ
(colochom([Γs, A]∗ | s ∈ c∗Γ(A))) =

⋃
s∈c∗Γ(A)

c∗Γ([Γs, A]∗)

=
⋃

s∈c∗Γ(A)

{s}

= c∗Γ(A)

= σc∗Γ
(colochom(A)),

where the first and last equalities are due to Lemma 3.2.18. Since σc∗Γ
is injective,

it follows that colochom([Γs, A]∗ | s ∈ c∗Γ(A)) = colochom(A). Thus, K satisfies the
colocal-to-global principle. In particular, c∗Γ detects vanishing.

Let s be an element of c∗Γ(IK) and A a non-zero object in colochom([Γs, IK]∗).
Then ∅ 6= c∗Γ(A) ⊆ c∗Γ([Γs, IK]∗) = {s}. Therefore, c∗Γ(A) = c∗Γ([Γs, IK]∗). Since
σc∗Γ

is injective, colochom(A) = colochom([Γs, IK]∗). Hence, colochom([Γs, IK]∗) is
minimal.

Suppose that K satisfies the colocal-to-global principle and cominimality. Let
C ∈ Colochom(K). Clearly, C ⊆ (τc∗Γ ◦σc∗Γ

)(C). Let A ∈ (τc∗Γ ◦σc∗Γ
)(C), i.e., c∗Γ(A) ⊆

σc∗Γ
(C). Then

colochom(A) = colochom([Γs, A]∗ | s ∈ c∗Γ(A))

⊆ colochom([Γs, IK]∗ | s ∈ c∗Γ(A))

⊆ colochom([Γs, IK]∗ | s ∈ σc∗Γ
(C))

⊆ C.

The first equality is due to the colocal-to-global principle. The first containment
relation follows from Remark 3.2.16, while the second containment relation is clear.
For the third containment, if s ∈ σc∗Γ

(C), then there exists an object B ∈ C such

that [Γs, B]∗ 6= 0. Since [Γs, B]∗ ∈ colochom([Γs, IK]∗) and the latter is minimal,
it follows that colochom([Γs, IK]∗) = colochom([Γs, B]∗) ⊆ C. We infer that A ∈ C,
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proving that (τc∗Γ ◦σc∗Γ
)(C) = C. So, σc∗Γ

is injective and thus, σc∗Γ
is bijective. This

shows that K is costratified. �

Remark 3.2.22. Theorem 3.2.21 (b) could be stated slightly more generally, re-
placing a good support–cosupport pair (sΓ, cΓ), in the sense of Definition 3.2.6,
with one that satisfies the property stated in Remark 3.2.19, i.e., if A is an object
of K such that [Γs, A]∗ 6= 0, then c∗Γ([Γs, A]∗) = {s}. Similarly, the analogous
property for Theorem 3.2.21 (a) is: if A is an object of K such that Γs ∗ A 6= 0,
then s∗Γ(Γs ∗A) = {s}. This observation will be useful in Section 3.5, where we con-
sider the support–cosupport for objects of the derived category of a commutative
noetherian ring defined by the residue fields.

Local-to-global implies colocal-to-global. Let (sΓ, cΓ) be a (not necessar-
ily good) support–cosupport pair on T.

Lemma 3.2.23. Suppose that T = loc⊗(G). Then the following hold:

(a) loc∗(A) = loc∗(G ∗A), ∀A ∈ K.
(b) colochom(A) = colochom([G,A]∗), ∀A ∈ K.

Proof. We will prove (b). The inclusion colochom([G,A]∗) ⊆ colochom(A)
is clear. Since T = loc⊗(G), it holds that 1 ∈ loc⊗(G). By Lemma 3.1.10 for
the functor [−, A]∗, it follows that A ∼= [1, A]∗ ∈ colochom([G,A]∗). Therefore,
colochom(A) ⊆ colochom([G,A]∗). The proof of (a) is analogous. �

Remark 3.2.24. An easy generalization of Lemma 3.2.23 is the following: If T =
loc⊗(G), for a collection of objects G, then ∀A ∈ K : loc∗(A) = loc∗(G ∗A | G ∈ G)
and colochom(A) = colochom([G,A]∗ | G ∈ G).

Proposition 3.2.25 (See also [Ste13, Proposition 6.8]). If T satisfies the local-to-
global principle, then K satisfies the local-to-global principle and the colocal-to-global
principle.

Proof. Since T satisfies the local-to-global principle, we have the equality
T = loc⊗(Γs | s ∈ S). Hence, by Remark 3.2.24, loc∗(A) = loc∗(Γs ∗ A | s ∈ S)
and colochom(A) = colochom([Γs, A]∗ | s ∈ S), for all A ∈ K. This proves the
statement. �

Corollary 3.2.26. For the case K = T we have: if T satisfies the local-to-global
principle, then T satisfies the colocal-to-global principle.

Example 3.2.27. Let R be a graded commutative noetherian ring such that T is
R-linear and consider the BIK support–cosupport (suppR, cosuppR), which takes
values in suppR(1) ⊆ Spec(R) — this may not be an equality. As explained
in [BHS23b, Corollary 7.11], if T is stratified in the sense of BIK, then suppR(1)
is homeomorphic to Spc(Tc) and the BIK support is identified with the Balmer–
Favi support under this homeomorphism. It then follows that T is stratified by
the Balmer–Favi support. Now since the tensor-idempotents Γp1 (defining the
BIK support) and the tensor-idempotents gp (defining the Balmer–Favi support)
have the same support (which is {p}) it follows that loc⊗(Γp1) = loc⊗(gp). Ap-
plying Lemma 3.1.10 for the functor [−, IT], it follows that colochom([Γp1, IT]) =
colochom([gp, IT]). By Corollary 3.2.26, T satisfies the colocal-to-global principle
with respect to the Balmer–Favi support. Taking into account Theorem 3.2.21,
we conclude that if T is BIK-stratified, then: T is Balmer–Favi-costratified if and
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only if T is BIK-costratified if and only if colochom([Γp1, IT]) is minimal, for all
p ∈ suppR(1). If T = Mod(kG) is the stable module category of the group algebra
of a finite group G, then T is BIK-costratified by the canonical action of H∗(G, k);
see [BIK12, Theorem 11.13]. We infer that Mod(kG) is Balmer–Favi-costratified.

3.3. Prime submodules

In this section we introduce the classes of prime localizing submodules and
hom-prime colocalizing submodules of a given T-module K. The class of prime
localizing submodules generalizes the class of objectwise-prime localizing tensor-
ideals in the context of relative tensor-triangular geometry, while the class of hom-
prime colocalizing submodules specializes to the class of hom-prime colocalizing left
hom-ideals if K = T.

Prime localizing and colocalizing submodules. As before, (sΓ, cΓ) will be
a good support-cosupport pair on T with values in a space S. Given L ∈ Loc∗(K)
and C ∈ Colochom(K), we define two subcategories of T as follows:

L⊗L = {X ∈ T | X ∗K ⊆ L },
C⊗C = {X ∈ T | [X,K]∗ ⊆ C},

where X ∗ K := loc∗(X ∗ A | A ∈ K) and [X,K]∗ := colochom([X,A]∗ | A ∈ K),
with the latter also being equal to colochom([X, IK]∗). Evidently, if L1 ⊆ L2, then

L⊗L
1 ⊆ L⊗L

2 and if C1 ⊆ C2, then C⊗C
1 ⊆ C⊗C

2 .

Remark 3.3.1. Clearly, L⊗L and C⊗C are localizing tensor-ideals of T.

Remark 3.3.2. If K = T and ∗ = ⊗, then L⊗L = L. The inclusion L⊗L ⊆ L

follows from the equality X ⊗ T = loc⊗(X), while the inclusion L ⊆ L⊗L holds
because L is a tensor-ideal.

Definition 3.3.3.

(a) A proper localizing submodule L ⊆ K is called prime if X ∗ A ∈ L implies
X ∈ L⊗L or A ∈ L.

(b) A proper colocalizing hom-submodule C ⊆ K is called hom-prime if [X,A]∗ ∈ C

implies X ∈ C⊗C or A ∈ C.

Remark 3.3.4. If K = T and ∗ = ⊗, then the notion of prime localizing submodule
recovers the notion of objectwise-prime localizing tensor-ideal; see Remark 3.3.2.
The notion of hom-prime colocalizing hom-submodule provides the notion of hom-
prime colocalizing left hom-ideal.

Lemma 3.3.5. Let L be a prime localizing submodule of K and let C be a hom-prime
colocalizing submodule of K. Then L⊗L and C⊗C are objectwise-prime localizing
ideals.

Proof. We will prove that C⊗C is objectwise-prime. The proof for L⊗L is
analogous. Let X,Y ∈ T such that X ⊗ Y ∈ C⊗C. Then [X ⊗ Y,A]∗ ∈ C, ∀A ∈ K.
By Lemma 3.1.2, [X, [Y,A]∗]∗ ∼= [X ⊗ Y,A]∗. Since C is hom-prime, X ∈ C⊗C or
[Y,A]∗ ∈ C. If X /∈ C⊗C, then [Y,A]∗ ∈ C, ∀A ∈ K, i.e., Y ∈ C⊗C. This proves that
C⊗C is objectwise-prime. �

The main result of this section, i.e., Theorem 3.3.10, is a consequence of the
following series of lemmas.
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Lemma 3.3.6. The following statements hold:

(a) Ker(Γs ⊗−) ⊆ Ker(Γs ∗ −)⊗L = Ker([Γs,−]∗)
⊗C, ∀s ∈ S.

(b) If K is conservative, then Ker(Γs ⊗−) = Ker(Γs ∗ −)⊗L, ∀s ∈ S.
(c) If Ker(Γs ⊗ −) = Ker(Γs ∗ −)⊗L, ∀s ∈ S and sΓ detects vanishing, then K is

conservative.

Proof. Let X be an object of T. Then we have X ∈ Ker(Γs ∗−)⊗L if and only
if Γs ∗ (X ∗A) ∼= (Γs⊗X)∗A = 0, ∀A ∈ K, which is equivalent to (Γs⊗X)∗− = 0.
Similarly, using the isomorphism [Γs ⊗ X,−]∗ ∼= [Γs, [X,−]∗]∗, one deduces that
X ∈ Ker([Γs,−]∗)

⊗C if and only if [Γs⊗X,−]∗ = 0. Since (Γs⊗X)∗− a [Γs⊗X,−]∗,
these two functors are either both the zero functor on K or none of them is the zero
functor. Therefore, Ker(Γs ∗−)⊗L = Ker([Γs,−]∗)

⊗C. Since Ker(Γs ∗−)⊗L = {X ∈
T | (Γs ⊗X) ∗ − = 0}, it immediately follows that Ker(Γs ⊗ −) ⊆ Ker(Γs ∗ −)⊗L.
This proves (a).

If K is conservative and (Γs⊗X)∗− = 0, then Γs⊗X = 0. Hence, Ker(Γs⊗−) =
Ker(Γs ∗ −)⊗L. This proves (b).

Let X ∈ T such that X ∗− = 0. Then (Γs⊗X)∗− ∼= X ∗ (Γs ∗−) = 0, ∀s ∈ S.
Therefore, X ∈ Ker(Γs ∗ −)⊗L. This implies that X ∈ Ker(Γs ⊗ −), ∀s ∈ S, i.e.,
Γs⊗X = 0, ∀s ∈ S. Equivalently, sΓ(X) = ∅. Since sΓ detects vanishing, it follows
that X = 0. This proves (c). �

Lemma 3.3.7.

(a) Let L be a prime localizing submodule of K. There is at most one s ∈ c∗Γ(IK)
such that L ⊆ Ker(Γs ∗ −).

(b) Let C be a hom-prime colocalizing submodule of K. There is at most one s ∈
c∗Γ(IK) such that C ⊆ Ker[Γs,−]∗.

Proof.

(a) Similar to (b).
(b) Let s ∈ c∗Γ(IK) and suppose that C ⊆ Ker[Γs,−]∗. Let r ∈ S such that

r 6= s and let A ∈ K. Then [Γs, [Γr, A]∗]∗ = 0 ∈ C. Since C is hom-prime,
Γs ∈ C⊗C ⊆ Ker[Γs,−]⊗C

∗ = Ker(Γs ∗ −)⊗L or [Γr, A]∗ ∈ C ⊆ Ker[Γs,−]∗. For
the equality Ker[Γs,−]⊗C

∗ = Ker(Γs ∗ −)⊗L, see Lemma 3.3.6. The former of
the two does not hold since Γs ∈ Ker(Γs ∗ −)⊗L if and only if Γs ∗ − = 0,
but s ∈ c∗Γ(IK) which means that Γs ∗ − 6= 0. It follows that C contains all
objects [Γr, A]∗, for r 6= s and A ∈ K. So, if C ⊆ Ker[Γr,−]∗, for r 6= s and
r ∈ c∗Γ(IK), then [Γr, A]∗ ∈ Ker[Γr,−]∗, ∀A ∈ K. It follows that [Γr,−]∗ = 0;
thus, Γr ∗ − = 0, which is false since r ∈ c∗Γ(IK). �

Lemma 3.3.8. If K satisfies the colocal-to-global principle, then the following
holds: Ker[Γs,−]∗ = colochom([Γr, IK]∗ | r 6= s), ∀s ∈ S. Analogously, if K satisfies
the local-to-global principle, then Ker(Γs ∗−) = loc∗(Γr ∗A | r 6= s, A ∈ K), ∀s ∈ S.

Proof. Let r, s ∈ S such that r 6= s. Then [Γr, IK]∗ ∈ Ker[Γs,−]∗. Therefore,
colochom([Γr, IK]∗ | r 6= s) ⊆ Ker[Γs,−]∗. Let A ∈ Ker[Γs,−]∗. Then s /∈ c∗Γ(A).
Since K satisfies the colocal-to-global principle,

colochom(A) = colochom([Γr, A]∗ | r ∈ c∗Γ(A))

= colochom([Γr, A]∗ | r 6= s)

⊆ colochom([Γr, IK]∗ | r 6= s).
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See Remark 3.2.17 for the second equality and Remark 3.2.16 for the containment
relation. Hence, A ∈ colochom([Γr, IK]∗ | r 6= s), completing the proof. The case of
Ker(Γs ∗ −) is similar and left to the reader. �

Lemma 3.3.9. Let C ∈ Colochom(K). Then

τc∗Γ(σc∗Γ
(C)) =

⋂
C⊆Ker[Γs,−]∗
s∈c∗Γ(IK)

Ker[Γs,−]∗.

If K is costratified, then C =
⋂

C⊆Ker[Γs,−]∗
s∈c∗Γ(IK)

Ker[Γs,−]∗.

Analogously, if L ∈ Loc∗(K), then

τs∗Γ(σs∗Γ
(L)) =

⋂
L⊆Ker(Γs∗−)
s∈c∗Γ(IK)

Ker(Γs ∗ −).

If K is stratified, then L =
⋂

L⊆Ker(Γs∗−)
s∈c∗Γ(IK)

Ker(Γs ∗ −).

Proof. Let A ∈ K. Then A /∈
⋂

C⊆Ker[Γs,−]∗
Ker[Γs,−]∗ if and only if there

exists s ∈ S such that C ⊆ Ker[Γs,−]∗ and [Γs, A]∗ 6= 0. Equivalently, s /∈ σc∗Γ
(C)

and s ∈ c∗Γ(A). In other words, c∗Γ(A) * σc∗Γ
(C). Since τc∗Γ(σc∗Γ

(C)) consists pre-
cisely of those A ∈ K such that c∗Γ(A) ⊆ σc∗Γ

(C), it follows that τc∗Γ(σc∗Γ
(C)) =⋂

C⊆Ker[Γs,−]∗
Ker[Γs,−]∗. Finally, if K is costratified, then C = τc∗Γ(σc∗Γ

(C)), which

proves the statement (the indexing set of the intersection involved in the claimed
equalities can be considered to consist of points s ∈ c∗Γ(IK) since if s /∈ c∗Γ(IK),
then [Γs,−]∗ = 0 and so Ker[Γs,−]∗ = K so the intersection is not affected). The
rest is similar and left to the reader. �

Theorem 3.3.10. Let K be a costratified T-module. Then there is a bijective cor-
respondence between hom-prime colocalizing submodules of K and points of c∗Γ(IK).
A point s ∈ c∗Γ(IK) is associated with Ker[Γs,−]∗ = colochom([Γr, IK]∗ | r 6= s).

Proof. Let C ∈ Colochom(K) be hom-prime. Then, by Lemma 3.3.9, we have
C =

⋂
C⊆Ker[Γs,−]∗
s∈c∗Γ(IK)

Ker[Γs,−]∗. It follows by Lemma 3.3.7 that C must be contained

in Ker[Γs,−]∗, for a unique s ∈ c∗Γ(IK). Conclusion: C = Ker[Γs,−]∗, for a unique
s ∈ c∗Γ(IK). The equality Ker[Γs,−]∗ = colochom([Γr, IK]∗ | r 6= s) was proved
in Lemma 3.3.8. �

Using Lemma 3.3.7, Lemma 3.3.8 and Lemma 3.3.9, one can prove with anal-
ogous arguments the following:

Theorem 3.3.11. Let K be a stratified T-module. Then there is a bijective corre-
spondence between prime localizing submodules of K and points of c∗Γ(IK). A point
s ∈ c∗Γ(IK) is associated with Ker(Γs ∗ −) = loc∗(Γr ∗A | r 6= s, A ∈ K).

The following observation, which is of independent interest and will not play a
role in the sequel, showcases a conceptual similarity between the theory of actions
of tensor-triangulated categories and the theory of associated primes of modules
over rings. To see this, recall the following result: If R is a ring and M is a
non-zero R-module such that for every non-zero submodule N ⊆ M , it holds that
AnnR(M) = AnnR(N), then AnnR(M) is a prime ideal of R.
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Proposition 3.3.12. Let L be a non-zero localizing submodule of K such that for
every non-zero localizing submodule L′ of K with L′ ⊆ L, it holds that AnnT(L) =
AnnT(L′). Then AnnT(L) is an objectwise-prime localizing ideal of T.

Proof. Let X,Y ∈ T such that X ⊗ Y ∈ AnnT(L). Then (X ⊗ Y ) ∗ L = 0.
Suppose that X /∈ AnnT(L), i.e., X ∗L 6= 0. Then AnnT(X ∗L) = AnnT(L). Since
Y ∗(X∗L) = (X⊗Y )∗L = 0, it follows that Y ∈ AnnT(X∗L), so Y ∈ AnnT(L). �

The action and internal-hom formulas.

Definition 3.3.13.

(a) K satisfies the Action Formula (AF) if

s∗Γ(X ∗A) = sΓ(X) ∩ s∗Γ(A), ∀X ∈ T, ∀A ∈ K.

(b) K satisfies the Internal-Hom Formula (IHF) if

c∗Γ([X,A]∗) = cΓ([X, IT]) ∩ c∗Γ(A), ∀X ∈ T, ∀A ∈ K.

(Recall that cΓ([X, IT]) = sΓ(X).)

Proposition 3.3.14.

(a) If K satisfies the Action Formula, then Ker(Γs ∗ −) is a prime localizing sub-
module, ∀s ∈ S. If K is a conservative T-module, then the converse holds.

(b) If K satisfies the Internal-Hom Formula, then Ker[Γs,−]∗ is a hom-prime colo-
calizing hom-submodule, ∀s ∈ S. If K is a conservative T-module, then the
converse holds.

Proof.

(a) Similar to (b).
(b) The Internal-Hom Formula can be restated as follows: if [Γs ⊗ X,A]∗ = 0

then Γs ⊗ X = 0 or [Γs, A]∗ = 0 — the converse holds by the definition of
cosupport. So, if [X,A]∗ ∈ Ker[Γs,−]∗, then X ∈ Ker(Γs ⊗−) ⊆ Ker[Γs,−]⊗C

∗
or A ∈ Ker[Γs,−]∗; for the first alternative, see Lemma 3.3.6. This means
that Ker[Γs,−]∗ is hom-prime. Now if Ker[Γs,−]∗ is hom-prime and K is
a conservative T-module, then Ker(Γs ⊗ −) = Ker[Γs,−]⊗C

∗ . Therefore, if
[Γs ⊗ X,A]∗ = 0, then Γs ⊗ X = 0 or [Γs, A]∗ = 0, which is precisely the
statement of the Internal-Hom Formula. �

Proposition 3.3.15.

(a) If T satisfies minimality, then K satisfies the Action Formula and the Internal-
Hom Formula.

(b) If K is a conservative T-module and K satisfies cominimality, then K satisfies
the Internal-Hom Formula.

(c) If T satisfies the Internal-Hom Formula, then T satisfies the Action Formula.

Proof. Let s ∈ S, X ∈ T, A ∈ K.

(a) If s ∈ sΓ(X) ∩ s∗Γ(A), then Γs ⊗ X 6= 0 and Γs ∗ A 6= 0. Since loc⊗(Γs) is
minimal, it follows that Γs ∈ loc⊗(Γs⊗X). Hence, Γs ∗A ∈ loc∗((Γs⊗X)∗A).
Since Γs ∗A 6= 0, it holds that Γs ∗ (X ∗A) ∼= (Γs⊗X) ∗A 6= 0. In other words,
s ∈ s∗Γ(X ∗A). Conclusion: K satisfies AF.

Now suppose that s ∈ cΓ([X, IT])∩c∗Γ(A). Then Γs⊗X 6= 0 and [Γs, A]∗ 6= 0
(recall that cΓ([X, IT]) = sΓ(X)). Since loc⊗(Γs) is minimal, it follows that
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Γs ∈ loc⊗(Γs ⊗ X). Hence, [Γs, A]∗ ∈ colochom([Γs ⊗ X,A]∗). It follows that
[Γs ⊗X,A]∗ 6= 0, i.e., s ∈ c∗Γ([X,A]∗). Conclusion: K satisfies IHF.

(b) Suppose that s ∈ cΓ([X, IT])∩c∗Γ(A). Then Γs⊗X 6= 0 and [Γs, A]∗ 6= 0. Aiming
for contradiction, assume that [Γs ⊗ X,A]∗ = 0. Then A ∈ Ker[Γs ⊗ X,−]∗.
Since 0 6= [Γs, A]∗ ∈ colochom([Γs, IK]∗), it follows by cominimality of K that
colochom([Γs, IK]∗) = colochom([Γs, A]∗) ⊆ colochom(A) ⊆ Ker[Γs ⊗ X,−]∗.
Thus, [Γs ⊗X, IK]∗ = [Γs ⊗X, [Γs, IK]∗]∗ = 0. So, [Γs ⊗X,−]∗ = 0. By the
(Γs ⊗X) ∗ − a [Γs ⊗X,−]∗ adjunction, it follows that (Γs ⊗X) ∗ − = 0, i.e.,
Γs ⊗X ∈ AnnT(K). Since K is a conservative T-module, Γs ⊗X = 0, which is
a contradiction. Conclusion: K satisfies IHF.

(c) Let X,Y ∈ T. Then sΓ(X ⊗ Y ) = cΓ([X ⊗ Y, IT]) = cΓ([X, [Y, IT]]) =
cΓ([X, IT]) ∩ cΓ([Y, IT]) = sΓ(X) ∩ sΓ(Y ). Conclusion: IHF implies AF. �

Remark 3.3.16. In the case K = T, the statement of the Action Formula is:
sΓ(X ⊗ Y ) = sΓ(X) ∩ sΓ(Y ), ∀X,Y ∈ T. This is known as the Tensor Product
Formula (which does not hold in general); see [BF11, BHS23b]. See also [Bal20a]
for a support theory that does satisfy the Tensor Product Formula. On the other
hand, the Internal-Hom Formula states: cΓ([X,Y ]) = sΓ(X) ∩ cΓ(Y ), ∀X,Y ∈ T.
For the BIK support, this is equivalent to stratification of T [BIK12, Theorem 9.5].

3.4. Smashing submodules

Let K be a T-module. Recall our assumption that K is compactly gener-
ated. A smashing submodule of K is a smashing subcategory M ⊆ K that is also
a submodule. Specifically, the quotient functor jM : K → K/M is a coproduct-
preserving and essentially surjective triangulated functor that has a right adjoint
kM : K/M → K (which is necessarily fully faithful) that preserves coproducts —
and products since it is a right adjoint. By Brown representability, kM has a right
adjoint `M : K → K/M (which is necessarily essentially surjective) that preserves
products. By the relations jMkM ∼= Id ∼= `MkM, it follows that jM and `M take the
same values on the image of kM, which is M⊥. The set of smashing submodules
of K is denoted by S∗(K).

Next we describe the action of T on K/M induced by the action of T on K. The
category T×K/M is a triangulated category that is the quotient of T×K over 0×M,
with the quotient functor T×K→ T×K/M being IdT ×jM. Since 0×M is contained
in the kernel of jM ◦∗, it follows that jM ◦∗ factors through T×K/M via a functor
∗ : T×K/M→ K/M. It is straightforward to check that this functor is an action of T
on K/M. If X ∈ T and A = jM(B) ∈ K/M, then X ∗A = jM(X ∗B). The functor
jM : K→ K/M is action-preserving. We denote by [−,−]∗ : Top×K/M→ K/M the
relative internal-hom of K/M. By Lemma 3.1.7, kM is action and hom-preserving
and `M is hom-preserving. Moreover, since IK (the product of the Brown–Comenetz
duals of the compact objects of K) is a pure-injective cogenerator of K and `M is
an essentially surjective right adjoint, it follows that `M(IK) is a pure-injective
cogenerator of K/M. In particular, K/M = coloc(`M(IK)).

Now we describe the colocalizing hom-submodules of K/M. The functor kM
gives a bijective correspondence between the colocalizing subcategories of K/M and
the colocalizing subcategories of K contained in M⊥. Since kM is hom-preserving,
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this bijection restricts to colocalizing hom-submodules, i.e., the maps

Colochom(K/M) {C ∈ Colochom(K) | C ⊆M⊥}
kM

k−1
M

(3.4.1)

are mutually inverse inclusion-preserving bijections. An observation that will be
useful in the sequel is that kM colochom(jM(A)) = colochom(kMjM(A)), ∀A ∈ K.

Let (sΓ, cΓ) be a good support–cosupport pair on T. We denote the induced
support–cosupport on K/M by (sMΓ , c

M
Γ ). Specifically,

sMΓ (jM(A)) = {s ∈ S | jM(Γs ∗A) 6= 0 },

cMΓ (jM(A)) = {s ∈ S | [Γs, jM(A)]∗ 6= 0}.

Then K/M satisfies the colocal-to-global principle if

colochom(jM(A)) = colochom([Γs, jM(A)]∗ | s ∈ S), ∀A ∈ K

and K/M satisfies cominimality if colochom([Γs, `M(IK)]∗) is a minimal colocalizing
hom-submodule of K/M, for all s ∈ S. Finally, let SM = {s ∈ S | [Γs, IK]∗ ∈M⊥}.

Proposition 3.4.2. Let M ∈ S∗(K). The following are equivalent:

(a) K/M satisfies the colocal-to-global principle.
(b) colochom(B) = colochom([Γs, B]∗ | s ∈ S), ∀B ∈M⊥.

As a result, if K satisfies the colocal-to-global principle, then K/M satisfies the
colocal-to-global principle.

Proof. Let A be an object of K and set

C1 = colochom(jM(A)),

C2 = colochom([Γs, jM(A)]∗ | s ∈ S),

D1 = colochom(kMjM(A)),

D2 = colochom([Γs, kMjM(A)]∗ | s ∈ S).

Under the bijection (3.4.1), C1 corresponds to D1, while C2 corresponds to D2 (recall
that kM is hom-preserving). So, if K/M satisfies the colocal-to-global principle,
then C1 = C2. Hence, D1 = D2. Since Im kMjM = M⊥, (b) follows. On the other
hand, if (b) holds, then D1 = D2. As a result, C1 = C2, i.e., K/M satisfies the
colocal-to-global principle. This proves (a).

If K satisfies the colocal-to-global principle, then

colochom(A) = colochom([Γs, A]∗ | s ∈ S), ∀A ∈ K,

so the equality certainly holds for A ∈ M⊥. Therefore, K/M satisfies the colocal-
to-global principle by the equivalence (a)⇔ (b). �

Proposition 3.4.3. Suppose that s ∈ SM. Then colochom([Γs, IK]∗) is a minimal
colocalizing hom-submodule of K if and only if colochom([Γs, `M(IK)]∗) is a minimal
colocalizing hom-submodule of K/M.

Proof. Since s ∈ SM, it holds that [Γs, IK]∗ ∈ M⊥. Hence, [Γs, `M(IK)]∗ ∼=
`M[Γs, IK]∗ ∼= jM[Γs, IK]∗. So, under the bijection (3.4.1), colochom([Γs, `M(IK)]∗)
corresponds to colochom(kMjM[Γs, IK]∗) = colochom([Γs, IK]∗), with the last equal-
ity again because [Γs, IK]∗ ∈ M⊥. Consequently, colochom([Γs, IK]∗) is minimal if
and only if colochom([Γs, `M(IK)]∗) is minimal. �
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Combining Proposition 3.4.2, Proposition 3.4.3 and Theorem 3.2.21, we obtain
the following result.

Theorem 3.4.4. Let {Ms}s∈S be a collection of smashing submodules of K such
that s ∈ SMs , for all s ∈ S. Then:

(a) K satisfies cominimality if and only if K/Ms satisfies cominimality, for all
s ∈ S.

(b) Suppose that K satisfies the colocal-to-global principle. Then K is costratified
if and only if K/Ms is costratified, for all s ∈ S.

Proof. Since s ∈ SMs
, for all s ∈ S, by Proposition 3.4.3 colochom([Γs, IK]∗) is

a minimal colocalizing hom-submodule of K if and only if colochom([Γs, `Ms
(IK)]∗)

is a minimal colocalizing hom-submodule of K/Ms, for all s ∈ S. In other words, K
satisfies cominimality if and only if K/Ms satisfies cominimality, for all s ∈ S. This
proves (a). If K satisfies the colocal-to-global principle, then by Proposition 3.4.2, it
follows that K/Ms satisfies the colocal-to-global principle, for all s ∈ S. Statement
(b) now follows from (a) and Theorem 3.2.21. �

We will apply Theorem 3.4.4 to the case K = T, ∗ = ⊗, S = Spcs(T) and
(sΓ, cΓ) = (Supps,Cosupps) (under Hypothesis 1.4.3 and assuming Spcs(T) is TD).
In this case, if P ∈ Spcs(T), then SP = {Q ∈ Spcs(T) | [ΓQ, I] ∈ P⊥}. Since
ΓP = eS ⊗ fP , for some S ∈ S⊗(T), and P⊥ = Im[fP ,−], it follows that [ΓP , I] =
[eS⊗fP , I] ∼= [fP , [eS, I]] ∈ P⊥. In other words, P ∈ SP . This leads to the following
result:

Corollary 3.4.5. Suppose that Spcs(T) is TD. Then:

(a) T satisfies cominimality if and only if T/P satisfies cominimality, for all P ∈
Spcs(T).

(b) Suppose that T satisfies the colocal-to-global principle. Then T is costratified if
and only if T/P is costratified, for all P ∈ Spcs(T).

Proof. The result is a direct consequence of Theorem 3.4.4, taking into ac-
count the preceding discussion. �

Corollary 3.4.6. Suppose that Spcs(T) is TD and that Spcs(T) =
⋃
j∈J VSj is a

cover of Spcs(T) by closed subsets. If T/Sj satisfies cominimality, for all j ∈ J ,
then T satisfies cominimality. If, moreover, T satisfies the colocal-to-global princi-
ple, then T is costratified.

Proof. Let P ∈ Spcs(T). Then P ∈ VSj , for some j ∈ J . This means that
Sj ⊆ P . Let jSj : T → T/Sj be the quotient functor. Then jSj (P ) is a smashing
ideal of T/Sj such that (T/Sj)/jSj (P ) ' T/P . Since T/Sj satisfies cominimality, it
follows by Corollary 3.4.5 that T/P satisfies cominimality. Since this is true for all
P ∈ Spcs(T), again by Corollary 3.4.5, we conclude that T satisfies cominimality.
The “moreover” part follows by Theorem 3.2.21. �

Essentially via the same arguments (left to the reader) one obtains the anal-
ogous results for the Balmer spectrum and the Balmer–Favi support. What one
needs to note for Corollary 3.4.8 is that, compared to Spcs(T) where the smashing
ideals stand in bijection with open subsets of Spcs(T) (thus closed covers of Spcs(T)
are necessary) the thick ideals of Tc — and by extension the compactly generated
smashing ideals of T — stand in bijection with Thomason subsets of Spc(Tc); hence,
a cover by complements of Thomason subsets is needed.
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Corollary 3.4.7. Suppose that every point of Spc(Tc) is visible. Then:

(a) T satisfies cominimality if and only if T/ loc⊗(p) satisfies cominimality, for all
p ∈ Spc(Tc).

(b) Suppose that T satisfies the colocal-to-global principle. Then T is costratified if
and only if T/ loc⊗(p) is costratified, for all p ∈ Spc(Tc).

Corollary 3.4.8. Suppose that every point of Spc(Tc) is visible and that Spc(Tc) =⋃
j∈J Uj is a cover of Spc(Tc) by complements of Thomason subsets. If T(Uj)

satisfies cominimality, for all j ∈ J , then T satisfies cominimality. If, moreover, T
satisfies the colocal-to-global principle, then T is costratified.

In view of applications involving singularity categories of schemes, which is
dealt with in Chapter 4, we need a version of Corollary 3.4.8 for the more general
case of a T-module K. Let S be a compactly generated localizing ideal of T and set
M = S∗K. Then M is a compactly generated localizing submodule of K; see [Ste13,
Section 4]. The action of T on K induces, as already discussed previously, an action
of T on K/M. Because of the way M is defined, it follows that there is an induced
action of T/S on K/M and a colocalizing subcategory of K/M is a hom T-submodule
if and only if it is a hom T/S-submodule.

Assuming that every point of Spc(Tc) is visible, let V be a Thomason subset
of Spc(Tc) and let U = Spc(Tc) \ V and consider the localizing ideal TV generated
by those compact objects of T whose support is contained in V . By definition, TV
is compactly generated and hence smashing, so there are associated left and right
(respectively) idempotents eV and fV such that TV = loc⊗(eV ) = Ker(fV ⊗−) =
Im(eV ⊗−). We denote by T(U) the category T/TV . It holds that Spc(T(U)c) ∼= U
and we will treat this homeomorphism as an identification. Let KV = TV ∗ K
and let K(U) = K/KV . By the previous paragraph, KV is a compactly generated
localizing submodule of K and there is an induced action of T(U) on K(U) such
that a colocalizing subcategory of K(U) is a hom T-submodule if and only if it is
a hom T(U)-submodule. Further, KV = Im(eV ∗ −) = Ker(fV ∗ −) and K⊥V =
Im[eV ,−]∗ = Ker[fV ,−]∗. By this last observation, it follows that SKV

:= {p ∈
Spc(Tc) | [gp, IK]∗ ∈ K⊥V } = U .

The following result is the analogue of [Ste13, Theorem 8.11] for colocalizing
hom-submodules.

Theorem 3.4.9. Suppose that every point of Spc(Tc) is visible and that Spc(Tc) =⋃
j∈J Uj is a cover of Spc(Tc) by complements of Thomason subsets. If K(Uj) (as a

T(Uj)-module) satisfies cominimality, for all j ∈ J , then K satisfies cominimality.
If, moreover, K satisfies the colocal-to-global principle, then K is costratified.

Proof. If p ∈ Spc(Tc), then there exists jp ∈ J such that p ∈ Ujp . Fix such a
jp ∈ J , for each p ∈ Spc(Tc). Let Vjp be the complement of Ujp . Then we have a
collection {KVjp

}p∈Spc(Tc) of smashing submodules of K such that p ∈ SKVjp
since

the latter is equal to Ujp . The result now follows by an immediate application
of Theorem 3.4.4. �

3.5. Derived categories of noetherian rings and schemes

Throughout, R will denote a commutative noetherian ring. In [Nee11], Nee-
man proved that there is a bijective correspondence between colocalizing subcate-
gories of D(R) and subsets of Spec(R). In this section, we give a more streamlined
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proof of Neeman’s theorem by using the general machinery we developed; specif-
ically Theorem 3.2.21 and Corollary 3.2.26. As a direct consequence, we obtain
a complete description of the RHom-prime colocalizing subcategories of D(R) in
terms of the residue fields of R. Further, using Corollary 3.4.8, we prove that the
derived category of quasi-coherent sheaves over a noetherian separated scheme is
costratified.

We will use the cosupport taking values in Spec(R) defined by the residue
fields k(p). Specifically, if X ∈ D(R), then Cosupph(X) = {p ∈ Spec(R) |
RHomR(k(p), X) 6= 0}. We use the notation Cosupph to avoid conflict with the
Balmer–Favi cosupport. Note that since D(R) is generated by its tensor-unit, every
colocalizing subcategory of D(R) is a left RHom-ideal; apply Lemma 3.1.11 with
T = K = D(R) and ∗ = ⊗L

R and [−,−]∗ = RHomR(−,−). We denote by IR the co-
generator of D(R) that is the product of the Brown-Comenetz duals of the compact
objects; see Recollection 1.1.13.

Lemma 3.5.1. Let p ∈ Spec(R). Then RHomR(k(p), X) ∼=
⊕

i∈Z Σik(p)(Ji) ∼=∏
i∈Z Σik(p)(Ji), for some sets Ji, for all X ∈ D(R). The same holds for the

complex RHomR(X, k(p)).

Proof. Let E be a K-injective resolution of X. Then RHomR(k(p), X) is
the Hom-complex HomR(k(p), E). This is a complex of k(p)-vector spaces, there-
fore it must be quasi-isomorphic to its cohomology complex with zero differential
(which also has k(p)-vector spaces as terms; thus coproducts of copies of k(p)).
For RHomR(X, k(p)), pick a K-projective resolution of X instead of a K-injective
resolution and argue in an identical manner. �

Lemma 3.5.2. Let X be an object of D(R) such that RHomR(k(p), X) 6= 0. Then
coloc(k(p)) = coloc(RHomR(k(p), X)) ⊆ coloc(X).

Proof. It holds that RHomR(k(p), X) ∼=
∏
i∈Z Σik(p)(Ji). Since the inclusion

k(p)(Ji) ↪→ k(p)Ji is a map of k(p)-vector spaces, it must split. So, k(p)(Ji) is a
summand of k(p)Ji . This implies that k(p)(Ji) ∈ coloc(k(p)) and consequently,∏
i∈Z Σik(p)(Ji) ∈ coloc(k(p)). Thus, coloc(RHomR(k(p), X)) ⊆ coloc(k(p)). By

the fact that k(p) is a summand of RHomR(k(p), X), it follows that coloc(k(p)) ⊆
coloc(RHomR(k(p), X)). Since D(R) is generated by its tensor-unit, every colocaliz-
ing subcategory of D(R) is a left RHom-ideal. Hence, RHomR(k(p), X) ∈ coloc(X).
This completes the proof. �

Proposition 3.5.3. The category D(R) satisfies the colocal-to-global principle (in
particular, Cosupph detects vanishing) and, for each p ∈ Spec(R), it holds that
Cosupph(k(p)) = {p}.

Proof. Since D(R) satisfies the local-to-global principle [Nee92], by Corol-
lary 3.2.26, D(R) satisfies the colocal-to-global principle and, by Remark 3.2.17,
Cosupph detects vanishing. Hence, Cosupph(k(p)) 6= ∅. Let q ∈ Spec(R) such
that p 6= q. By Lemma 3.5.1, RHomR(k(p), k(q)) is quasi-isomorphic to a complex
whose terms are of the form k(p)(I) ∼= k(q)(J) and these are both k(p) and k(q)-
vector spaces. Since p 6= q, this can only happen if the indexing sets I and J are
empty. Hence, RHomR(k(p), k(q)) = 0. Consequently, Cosupph(k(p)) = {p}. �

Theorem 3.5.4 ([Nee11]). Let R be a commutative noetherian ring. Then D(R)
is costratified.
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Proof. Let p ∈ Spec(R) and let X be a non-zero object in coloc(k(p)). Then
coloc(X) ⊆ coloc(k(p)). By Proposition 3.5.3, D(R) satisfies the colocal-to-global
principle, Cosupph detects vanishing and Cosupph(k(p)) = {p}. By Lemma 3.2.18,
it follows that Cosupph(X) = {p}, i.e., RHomR(k(p), X) 6= 0. Lemma 3.5.2 implies
that coloc(X) = coloc(k(p)). So, coloc(k(p)) is a minimal colocalizing subcategory.
Moreover, Lemma 3.5.2 implies that coloc(k(p)) = coloc(RHomR(k(p), IR)) and
so, coloc(RHomR(k(p), IR)) is minimal. In conclusion, D(R) satisfies both the
colocal-to-global principle and cominimality; so, Theorem 3.2.21 implies that D(R)
is costratified; see also Remark 3.2.22. �

Theorem 3.5.5. The RHom-prime colocalizing subcategories of D(R) correspond
to points of Spec(R). The correspondence is given by associating p ∈ Spec(R) with
Ker RHomR(k(p),−) = coloc(k(q) | q 6= p).

Proof. Since D(R) is costratified, and a conservative D(R)-module, Theo-
rem 3.3.10 implies that the RHom-prime colocalizing subcategories of D(R) are
precisely of the form Ker RHomR(k(p),−) = coloc(RHomR(k(q), IR) | q 6= p) and
the claimed equality is due to Lemma 3.5.2. �

Remark 3.5.6. One could also work with the Balmer–Favi support–cosupport
(or the smashing support–cosupport since D(R) satisfies the Telescope Conjec-
ture [Nee92]; see also Lemma 2.5.2 and [BS23, Section 6]). There is a homeomor-
phism between Spc(Dperf(R)) and Spec(R) [Nee92]. Using this homeomorphism,
we can express the Balmer–Favi support–cosupport via Spec(R). Let p ∈ Spec(R).
Then the associated Balmer–Favi idempotent is gp = K∞(p) ⊗ Rp (where K∞(p)
is the stable Koszul complex; see Section 4.1 for the definition) and Rp is the
localization of R at p. Let X ∈ D(R). Then

Supp(X) = {p ∈ Spec(R) | gp ⊗X 6= 0},
Cosupp(X) = {p ∈ Spec(R) | RHomR(gp, X) 6= 0}.

It holds that loc(gp) = loc(k(p)) [Ste18, Lemma 3.22]. Therefore,

coloc(RHomR(gp, X)) = coloc(RHomR(k(p), X)) = coloc(k(p)),

with the last equality by Lemma 3.5.2 (provided that RHomR(k(p), X) 6= 0). Since
D(R) is stratified by the Balmer–Favi support [BHS23b, Theorem 5.8], in par-
ticular it satisfies the local-to-global principle, D(R) must also satisfy the colocal-
to-global principle; see Corollary 3.2.26. The equality coloc(RHomR(gp, X)) =
coloc(k(p)) shows that D(R) satisfies cominimality with respect to the Balmer–
Favi support–cosupport. Therefore, by Theorem 3.2.21, D(R) is costratified with
respect to the Balmer–Favi support–cosupport.

Next, we include an example of a category that is not costratified. Recall that a
commutative ring R is called absolutely flat if every R-module is flat and R is called
semi-artinian if every non-zero homomorphic image of R, in the category of R-
modules, contains a simple submodule. An R-module E is called superdecomposable
if E does not admit any non-zero indecomposable summands.

Example 3.5.7 ([Ste14a]). Let R be an absolutely flat ring that is not semi-
artinian. For example, R =

∏
N k, where k is a field. Then there exists a superde-

composable injective R-module E. Let p ∈ Spec(R). Then RHomR(k(p), E) =
HomR(k(p), E). Suppose that there exists a non-zero map k(p) → E. Since R is
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absolutely flat, k(p) is simple and injective. Therefore, the map k(p) → E is a
split monic and so, k(p) is a summand of E, which is a contradiction. This shows
that RHomR(k(p), E) = 0, for all p ∈ Spec(R), i.e., Cosupph(E) = ∅; showcasing
the failure of the cosupport to detect vanishing and consequently, the failure of the
colocal-to-global principle. Hence, D(R) is not costratified.

Theorem 3.5.8. The derived category D(X) of quasi-coherent sheaves over a noe-
therian separated scheme X is costratified.

Proof. By [Ste13, Corollary 8.13], D(X) is stratified. In particular, D(X)
satisfies the local-to-global principle. Hence, by Corollary 3.2.26, D(X) satisfies
the colocal-to-global principle. So, it suffices to prove cominimality. Let {Ui}i∈I
be an open affine cover of X. As X is noetherian, any open subset of X is quasi-
compact, so its complement is Thomason. The corresponding smashing localization
D(X)(Ui) is equivalent to D(Ui). The latter is costratified (in particular it satisfies
cominimality) by Theorem 3.5.4. The result follows by Corollary 3.4.8. �





CHAPTER 4

Colocalizing subcategories of singularity categories

In this chapter, utilizing the results established in Chapter 3 concerning cos-
tratification in relative tensor-triangular geometry, we classify the colocalizing sub-
categories of the singularity category of a locally hypersurface ring and then we
generalize this classification to singularity categories of schemes with hypersurface
singularities. The results of this chapter first appeared in [Ver23b].

The chapter is organized as follows: In Section 4.1, we recall some basic facts
about the tensor-triangular geometry of the derived category of a ring and its action
on the singularity category. Then we study the relative internal-hom functor on the
singularity category. In Section 4.2, we present a few notions concerning Goren-
stein rings and Gorenstein-injective modules, with the key point being that, over a
Gorenstein ring, the stable category of Gorenstein-injective modules is equivalent
to the singularity category. In Section 4.3, using the concept of endofiniteness,
we prove that the images of the residue fields under the stabilization functor are
pure-injective and in Section 4.4 we obtain cogenerators for certain subcategories
of the singularity category. Finally, in Section 4.5 and Section 4.6, we prove the
announced classification theorems.

4.1. Singularity categories

Convention. Throughout, R will denote a commutative noetherian ring.

Let f be an element of R. The stable Koszul complex associated with f is
K∞(f) = R → Rf , where R sits in degree 0 and Rf , the localization of R at f ,
sits in degree 1 and the map R → Rf is the localization homomorphism. Let
I = (f1, . . . , fn) be an ideal of R and set K∞(I) := K∞(f1) ⊗R · · · ⊗R K∞(fn).
Up to quasi-isomorphism, K∞(I) does not depend on the choice of generators for
the ideal I. Since K∞(I) is a bounded complex of flat R-modules, K∞(I) is K-flat,
which means that tensoring with K∞(I) preserves quasi-isomorphisms.

Lemma 4.1.1. Let I, J be ideals of R with J ⊆ I. Then we have the isomorphism
K∞(I/J) ∼= R/J ⊗R K∞(I).

Proof. Let I = (f1, . . . , fn). Then I/J = (f1, . . . , fn). Since

K∞(fi) = (R/J → (R/J)fi)
∼= (R/J ⊗R (R→ Rfi)) = (R/J ⊗R K∞(fi)),

we have K∞(I/J) =
⊗n

i=1K∞(fi) ∼= (
⊗n

i=1R/J)⊗RK∞(I). Since R/J⊗RR/J ∼=
(R/J)/(JR/J) ∼= R/J , we conclude that K∞(I/J) ∼= R/J ⊗R K∞(I). �

Recollection 4.1.2. Recall that the derived category D(R) is a big tt-category
whose subcategory of compact objects is Dperf(R) the subcategory of perfect com-
plexes, i.e., bounded complexes of finitely generated projective R-modules up to
quasi-isomorphism. Treating the homeomorphism Spc(Dperf(R)) ∼= SpecR as an

69
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identification, if p ∈ SpecR, then the Balmer–Favi idempotent associated with p
is gp = K∞(p) ⊗R Rp ∈ D(R), where Rp is the localization of R at p. Note that
gp is K-flat. The Balmer–Favi support (resp. cosupport) of an object X ∈ D(R)
is Supp(X) = {p ∈ SpecR | gp ⊗R X 6= 0} (resp. Cosupp(X) = {p ∈ SpecR |
RHomR(gp, X) 6= 0}).

Recollection 4.1.3. The singularity category of R is S(R) := Kac(InjR) the ho-
motopy category of acyclic complexes of injective R-modules. By [Kra05b], S(R)
is a compactly generated triangulated category and there is a recollement

S(R) K(InjR) D(R),I
⊥

⊥
Q
⊥

⊥

Iλ

Iρ

Qλ

Qρ

where I is the inclusion and Q is the composite K(InjR) ↪→ K(R) � D(R). The
functor IλQρ : D(R) → S(R), called the stabilization functor, induces an equiva-
lence of triangulated categories between the idempotent completion of DSg(R) =
Db(modR)/Dperf(R) and the subcategory of compact objects of S(R). When there
are multiple rings involved, we will use the notation IλQ

R
ρ .

Recollection 4.1.4. The ring R is called a regular ring if Rp is a regular local
ring, i.e., gldimRp <∞, for all p ∈ SpecR (this is just one of the many equivalent
definitions of a regular local ring). It is a fact that R is regular if and only if
S(R) = 0. The singular locus of R is SingR = {p ∈ SpecR | gldimRp = ∞},
i.e., SingR consists of those prime ideals p such that Rp is not a regular local ring.
Clearly, R is a regular ring if and only if SingR = ∅.

A commutative noetherian local ring S is called a hypersurface ring if the
completion of S at its unique maximal ideal is isomorphic to the quotient of a regular
ring by a regular element. It holds that a hypersurface ring is Gorenstein. We say
that R is a locally hypersurface ring if Rp is a hypersurface ring, for all p ∈ SpecR.
It holds that a locally hypersurface ring is Gorenstein; see Definition 4.2.1.

Recollection 4.1.5. By [Ste14b], there is an action ∗ : D(R)×S(R)→ S(R), i.e.,
a coproduct-preserving triangulated bifunctor that satisfies the following properties:
X ∗ (Y ∗A) ∼= (X⊗L

R Y )∗A and R∗A ∼= A, ∀X,Y ∈ D(R), ∀A ∈ S(R). This action

is defined as follows: If X ∈ D(R) and A ∈ S(R), then X ∗A = X̃ ⊗R A, where X̃

is a K-flat resolution of X, i.e., X̃ is a K-flat complex quasi-isomorphic to X.

Remark 4.1.6. The action of D(R) on S(R) does not depend on the choice of
K-flat resolutions, in the sense that different K-flat resolutions of the same object
yield naturally isomorphic functors. Moreover, any complex of R-modules admits
a K-flat resolution that consists of flat R-modules; see [Mur07, Corollary 3.22] for
a more general version of this result concerning schemes. Hence, when we consider
the action of D(R) on S(R), we can assume that all K-flat resolutions involved
consist of flat R-modules.

The discussion in the beginning of Section 3.1 applies to the case of the singu-
larity category. To be specific, if X ∈ D(R), then the functor X ∗ − : S(R)→ S(R)
is a coproduct-preserving triangulated functor. Since S(R) is compactly generated
X ∗ − has a right adjoint [X,−] called [X,−] the relative internal-hom. Note that
[R,−] ∼= IdS(R), since [R,−] is the right adjoint of R ∗ − ∼= IdS(R).
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Let X̃ be a K-flat resolution of X. We have an adjunction

K(R) K(R)
X̃⊗R−

⊥
HomR(X̃,−)

(4.1.7)

that restricts to an adjunction on S(R). We will show this next, using a result of
Emmanouil [Emm23] which was based on work of Št’ov́ıček [Sto14].

Proposition 4.1.8. Let F be a K-flat complex of flat R-modules and let A be an
acyclic complex of injective R-modules. Then HomR(F,A) is an acyclic complex of
injective R-modules. In particular, the adjunction (4.1.7) restricts to an adjunction
on S(R).

Proof. Since A is an acyclic complex that consists of injective R-modules,
hence of pure-injective R-modules, it holds that ΣnA is an acyclic complex of pure-
injective R-modules, for all n ∈ Z. By [Emm23, Proposition 3.1], it follows that
HomK(R)(F,Σ

nA) = 0. Thus, Hn(HomR(F,A)) = HomK(R)(F,Σ
nA) = 0, ∀n ∈ Z.

In other words, HomR(F,A) is acyclic. Each term of the complex HomR(F,A) is
a product of R-modules of the form HomR(M,N), where M is a flat R-module
and N is an injective R-module. So, the functor HomR(−,HomR(M,N)), which is
naturally isomorphic to HomR(M ⊗R −, N), is exact. Equivalently, HomR(M,N)
is an injective R-module. Since injective R-modules are closed under products,
HomR(F,A) consists of injective R-modules.

By what we just proved, we conclude that the restrictions of the functors in-
volved in (4.1.7) on S(R) take values in S(R). Hence, we obtain the adjunction

S(R) S(R).
X̃⊗R−

⊥
HomR(X̃,−)

�

Corollary 4.1.9. Let X ∈ D(R) and let X̃ be a K-flat resolution of X that consists

of flat R-modules. Then [X,−] = HomR(X̃,−) : S(R)→ S(R).

Proof. The claim follows immediately from Proposition 4.1.8 due to the fact

that HomR(X̃,−) is right adjoint to X̃ ⊗R − = X ∗ −. �

Lemma 4.1.10. Every colocalizing subcategory C of S(R) is a hom-submodule over
D(R) (meaning that [X,A] ∈ C, ∀X ∈ D(R), ∀A ∈ C).

Proof. Since D(R) = loc(R), the claim follows by Lemma 3.1.11. �

4.2. Gorenstein rings

In this section, we recall some facts about Gorenstein rings, Gorenstein-injective
and Gorenstein-projective modules and the stable category of Gorenstein-injective
modules.

Definition 4.2.1. Let R be a commutative noetherian ring and M an R-module.

(a) The ring R is called Gorenstein if R has finite injective dimension as an R-
module.

(b) The R-module M is called Gorenstein-injective if there exists an acyclic com-
plex C that consists of injective R-modules such that HomR(I, C) is acyclic,
for all injective R-modules I and M = Z0C the kernel of the zeroth differential
of C. Such a complex C is called a complete injective resolution of M .
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(c) The R-module M is called Gorenstein-projective if there exists an acyclic com-
plex C that consists of projective R-modules such that HomR(C,P ) is acyclic,
for all projective R-modules P and M = Z0C the kernel of the zeroth differen-
tial of C. Such a complex is called a complete projective resolution of M .

(d) The Gorenstein-injective envelope of M is (if it exists) a Gorenstein-injective
R-module GR(M) together with a morphism f : M → GR(M) such that the
following two conditions hold: First, for all Gorenstein-injective R-modules G
and morphisms g : M → G, there exists a morphism h : GR(M)→ G such that
g = h ◦ f . Second, if h : GR(M)→ GR(M) is a morphism such that h ◦ f = f ,
then h is an isomorphism.

(e) The Gorenstein-projective cover of M is (if it exists) a Gorenstein-projective
R-module GR(M) together with a morphism f : GR(M) → M such that the
following two conditions hold: First, for all Gorenstein-projective R-modules G
and morphisms g : G→M , there exists a morphism h : G→ GR(M) such that
g = f ◦ h. Second, if h : GR(M)→ GR(M) is a morphism such that f = f ◦ h,
then h is an isomorphism.

Proposition 4.2.2 ([EJ00, Theorem 11.3.2, Theorem 11.6.9]). If R is a Goren-
stein ring, then any R-module admits a Gorenstein-injective envelope. If, more-
over, R is local, then any finitely generated R-module admits a finitely generated
Gorenstein-projective cover.

Recollection 4.2.3. The category GInjR of Gorenstein-injective R-modules is an
exact subcategory of ModR with exact sequences those short exact sequences of
Gorenstein-injective R-modules. In fact, GInjR is a Frobenius exact category, i.e.,
GInjR has enough projectives and enough injectives and its projective and injective
objects coincide: they are precisely the injective R-modules. So, GInjR the stable
category of Gorenstein-injective R-modules is a triangulated category. According
to [Kra05b, Proposition 7.13], if R is a Gorenstein ring, there is an equivalence

of triangulated categories S(R)
'−→ GInjR given by mapping A ∈ S(R) to Z0A

with inverse given by sending a Gorenstein-injective R-module M to a complete
injective resolution C(M). Furthermore, by [Ste14b, Corollary 4.8], the functors
GR,Z

0IλQρ : ModR→ GInjR are naturally isomorphic.

4.3. Endofiniteness, pure-injectivity and residue fields

The goal of this section is to prove that, for a Gorenstein ring, the images of
the residue fields under the stabilization functor are pure-injective objects of the
singularity category, which is a key result that we will need in the sequel.

Remark 4.3.1. Let p be a prime ideal of R. Since Rp ⊗R − : ModR → ModRp

is an exact functor with right adjoint res : ModRp → ModR, it follows that res
preserves injective modules. Moreover, since R is noetherian, localization preserves
injective modules, so Rp ⊗R − preserves injective modules. Consequently, we have
an adjunction

S(R) S(Rp).

Rp⊗R−

⊥
res

Since the categories S(R) and S(Rp) are compactly generated and res preserves
coproducts, by Recollection 1.1.12, it follows that res : S(Rp) → S(R) preserves
pure-injective objects.
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An object X of a triangulated category T is called endofinite if, for all compact
objects C of T, it holds that HomT(C,X) is a finite length module over EndT(X).
By [Kra99, Theorem 1.2] (see also [KR00, Proposition 3.3] and [Kra23, Propo-
sition 5.6]) endofinite objects are pure-injective.

Proposition 4.3.2. Let R = (R,m, k) be a local Gorenstein ring. Then IλQρ(k)
is an endofinite (hence a pure-injective) object of S(R).

Proof. Since k = R/m is a finitely generated R-module, it follows that k
is an object of DSg(R). As we have already discussed in Recollection 4.1.3, the
subcategory of compact objects of S(R) is equivalent to the closure under summands
of the image of DSg(R) under IλQρ. Further, by [Orl06, Lemma 1.11], every
object of DSg(R) is of the form ΣiM , where M is a finitely generated R-module.
Consequently, it suffices to show that HomDSg(R)(Σ

iM,k) is a module of finite
length over Λ := EndDSg(R)(k). Since R is a local Gorenstein ring and M is a
finitely generated R-module, it follows that M has a finitely generated Gorenstein-
projective cover GR(M); see Proposition 4.2.2. Let c(M) be a complete projective
resolution of GR(M) that consists of finitely generated projective R-modules. Now
we compute:

HomDSg(R)(Σ
iM,k) ∼= HomR(M,Σ−iGR(k))

∼= Êxt
−i
R (M,k)

= H−i(HomR(c(M), k))

with the second isomorphism by [Kra05b, Proposition 7.7] and the subsequent
equality by definition. Since c(M) is a complex of finitely generated R-modules,
it follows that HomR(c(M), k) is a complex of finite dimensional k-vector spaces.
Hence, H−i(HomR(c(M), k)) is a finite dimensional k-vector space. Consequently,
HomDSg(R)(Σ

iM,k) is a finite dimensional k-vector space. In particular, for M = k

and i = 0, we have that Λ is a finite dimensional k-algebra. So, HomDSg(R)(Σ
iM,k)

is a Λ-module that is finite dimensional over k, thus it has finite length over Λ. In
conclusion, k is an endofinite object of DSg(R) and so IλQρ(k) is an endofinite
(hence a pure-injective) object of S(R). �

Proposition 4.3.3. Let R be a Gorenstein ring. Then IλQρ(k(p)) is a pure-
injective object of S(R).

Proof. SinceR is a Gorenstein ring, we have thatRp is a local Gorenstein ring.

Hence, by Proposition 4.3.2, IλQ
Rp
ρ (k(p)) is a pure-injective object of S(Rp). We

have IλQ
R
ρ (k(p)) = IλQ

R
ρ (res k(p)) = res IλQ

Rp
ρ (k(p)). According to Remark 4.3.1,

res : S(Rp) → S(R) preserves pure-injective objects. Hence, IλQ
R
ρ (k(p)) is pure-

injective. �

4.4. Cogeneration

Our goal here is to prove that if R = (R,m, k) is a hypersurface ring, then the
image of the functor [gm,−] : S(R) → S(R) is cogenerated by IλQρ(k). The key
results we will need are Proposition 4.3.3 and the following:
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Lemma 4.4.1. Let R = (R,m, k) be a local Gorenstein ring. Then, in S(R),

HomR(K∞(m), IλQρ(k(p))) ∼=

{
IλQρ(k), p = m,

0, p 6= m.
(4.4.2)

Proof. We will first prove (4.4.2) for the case p = m, by induction on the
Krull dimension of R. In the case dimR = 0, we have SpecR = {m}. Thus, m
consists of nilpotent elements. Let m = (f1, . . . , fn). Then each fi is nilpotent.
Therefore, Rfi = 0 and so K∞(m) =

⊗n
i=1K∞(fi) =

⊗n
i=1R

∼= R. We have
HomR(K∞(m), IλQρ(k)) ∼= HomR(R, IλQρ(k)) ∼= IλQρ(k).

Now let d > 0 and assume that (4.4.2) (for p = m) holds for all local Gorenstein
rings of dimension strictly less than d and suppose that dimR = d. Let x ∈ m
be a regular element (such an element exists by the prime avoidance lemma and
our assumption that dimR = d > 0). Then R/(x) is a local Gorenstein ring with
residue field (R/(x))/(m/(x)) ∼= R/m = k and dimR/(x) = d−1. By Lemma 4.1.1,
K∞(m/(x)) ∼= R/(x)⊗R K∞(m). We have

HomR(K∞(m), IλQ
R
ρ (k)) ∼= HomR(K∞(m), res IλQ

R/(x)
ρ (k))

∼= res HomR/(x)(R/(x)⊗R K∞(m), IλQ
R/(x)
ρ (k))

∼= res HomR/(x)(K∞(m/(x)), IλQ
R/(x)
ρ (k))

∼= res IλQ
R/(x)
ρ (k)

∼= IλQ
R
ρ (k).

The first and last isomorphisms hold because the singularity category of a Goren-
stein ring is equivalent to the stable category of Gorenstein-injective modules and
Z0IλQρ = G(−) on modules (see Recollection 4.2.3) and by [Ste14b, Remark
6.11], taking Gorenstein-injective envelopes commutes with restriction. The second
isomorphism follows from the internal-hom version of the adjunction

K(R) K(R/(x)),

R/(x)⊗R−

⊥
res

which asserts that the functors

res HomR/(x)(R/(x)⊗R −,−), HomR(−, res(−)) : K(R)op ×K(R/(x))→ K(R)

are naturally isomorphic. The fourth isomorphism holds by the inductive hypoth-
esis. This completes the proof of (4.4.2) for the case p = m.

Let p 6= m be a prime ideal of R. Then necessarily p ( m since m contains all
prime ideals. We have

HomR(K∞(m), IλQ
R
ρ (k(p))) ∼= HomR(K∞(m), res IλQ

Rp
ρ (k(p)))

∼= res HomRp
(Rp ⊗R K∞(m), IλQ

Rp
ρ (k(p)))

= 0.

The first two isomorphisms are justified in the same way as in the calculation in
the previous paragraph, replacing R/(x) with Rp. Since p ( m, it follows that
loc(K∞(m)) = M ( P = Ker(Rp⊗R−), where P and M are the smashing subcate-
gories of D(R) corresponding to p and m, respectively. Hence, K∞(m)⊗R Rp = 0.
This explains the last equality, completing the proof. �
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The following lemma is well-known and easy to prove. We present it for the
convenience of the reader.

Lemma 4.4.3. Let G : T → U be a product-preserving triangulated functor between
triangulated categories with products and let X be a collection of objects of T. Then
G coloc(X) ⊆ coloc(GX).

Proof. It is straightforward to verify that L = {X ∈ T | GX ∈ coloc(GX)}
is a colocalizing subcategory of T that contains X. It follows that coloc(X) ⊆ L,
which proves the statement. �

Recollection 4.4.4. Let T be a compactly generated triangulated category. If X is
a cogenerating set of objects of T (in the sense that ⊥X = 0) that consists of pure-
injective objects, then T = coloc(X), which means that the smallest colocalizing
subcategory of T that contains X is T. This holds because the pure-injective objects
of T form a perfect cogenerating set in the sense of [Kra02]. Also, [BCHS23,
Section 9] provides a detailed account on the concept of perfect (co)generation.

Proposition 4.4.5. Let R be a locally hypersurface ring. Then

S(R) = coloc(IλQρ(k(p)) | p ∈ SingR).

Proof. Let L = ⊥{ΣnIλQρ(k(p)) | n ∈ Z, p ∈ SingR}. Then L is a localizing
subcategory of S(R) that does not contain any IλQρ(k(p)), for p ∈ SingR. Indeed,
if IλQρ(k(p)) ∈ L, then HomS(R)(IλQρk(p), IλQρk(p)) = 0 and this implies that
IλQρ(k(p)) = 0, which is false when p ∈ SingR. Consequently, by [Ste14b, Theo-
rem 6.13], we have L = 0, i.e., {ΣnIλQρ(k(p)) | n ∈ Z, p ∈ SingR} is a cogenerating
set for S(R). Since, by Proposition 4.3.3, the objects IλQρ(k(p)) are pure-injective,
it follows that S(R) = coloc(IλQρ(k(p)) | p ∈ SingR); see Recollection 4.4.4. �

Proposition 4.4.6. Let R = (R,m, k) be a hypersurface ring. Then [gm,S(R)] =
coloc(IλQρ(k)).

Proof. Since [gm,−] = HomR(gm,−) : S(R) → S(R) is a product-preserving
triangulated functor, by Lemma 4.4.3 and Proposition 4.4.5 we have [gm,S(R)] =
coloc([gm, IλQρ(k(p))] | p ∈ SingR) = coloc(IλQρ(k)), with the last equality due
to Lemma 4.4.1. �

4.5. Locally hypersurface rings

The main result of this section is Theorem 4.5.7, which classifies the colocalizing
subcategories of the singularity category S(R) of a locally hypersurface ring R in
terms of the singular locus SingR.

Cosupport and costratification. Let A be an object of S(R). The cosupport
of A is Cosupp(A) = {p ∈ SpecR | HomR(gp, A) 6= 0}.

Lemma 4.5.1. The assignment Cosupp: Ob S(R) → P(SpecR) satisfies the fol-
lowing properties:

(a) Cosupp(0) = ∅.
(b) Cosupp(

∏
Ai) =

⋃
Cosupp(Ai).

(c) Cosupp(ΣA) = Cosupp(A).
(d) Cosupp(A) ⊆ Cosupp(B) ∪ Cosupp(C), for all triangles A→ B → C of S(R).
(e) Cosupp([X,A]) ⊆ Supp(X) ∩ Cosupp(A).
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Proof. See Lemma 3.2.12. �

Remark 4.5.2. Recall that by Lemma 4.1.10, all colocalizing subcategories of S(R)
are hom-submodules and so all results concerning colocalizing hom-submodules
apply to all colocalizing subcategories of S(R).

We denote by IS(R) the product of the Brown–Comenetz duals of the compact
objects of S(R). Then IS(R) is a pure-injective cogenerator of S(R); see Recollec-
tion 4.4.4.

We define the maps

Coloc(S(R)) P(SpecR),
σ

τ

where σ(C) =
⋃
A∈C Cosupp(A) and τ(W ) = {A ∈ S(R) | Cosupp(A) ⊆ W}. The

maps σ and τ are inclusion-preserving. By Section 3.2 and [Ste14b, Proposition
5.7], it follows that σ(S(R)) = Cosupp(IS(R)) = SingR. Hence, σ(C) ⊆ σ(S(R)) =
SingR. This shows that σ : Coloc(S(R)) → P(SingR) is well-defined. From now
on, we will consider the codomain of σ and the domain of τ to be P(SingR). It
holds that σ ◦ τ = Id; see Lemma 3.2.20.

Our goal is to prove that if R is a locally hypersurface ring, then S(R) is
costratified in the sense of Definition 3.2.13, i.e., that τ ◦ σ = Id. To achieve this,
we will first treat the case of R being a hypersurfce ring by using the equivalent
characterization of costratification given by Theorem 3.2.21 and then Theorem 3.4.4
will allow us to prove the more general case of locally hypersurface rings. Let
us begin by spelling out in detail what it means for S(R) to satisfy the colocal-
to-global principle and cominimality. According to Definition 3.2.15 (taking into
account Lemma 4.1.10):

(a) S(R) satisfies the colocal-to-global principle if

coloc(A) = coloc(HomR(gp, A) | p ∈ SingR), ∀A ∈ S(R).

(b) S(R) satisfies cominimality if coloc(HomR(gp, IS(R))) is a minimal colocalizing
subcategory of S(R), ∀p ∈ SingR.

Theorem 3.2.21 states that S(R) is costratified if and only if S(R) satisfies the
colocal-to-global principle and cominimality.

Colocalizing subcategories of S(R), for a locally hypersurface ring R.

Lemma 4.5.3. Let R = (R,m, k) be a local Gorenstein ring and let x ∈ R be a regu-

lar element. Let G be a non-zero object of [gm,S(R)] and set M̃ = HomR(R/(x), G)

viewed as a complex of R/(x)-modules. Then M̃ ∈ [gm/(x),S(R/(x))] and M̃ 6= 0.
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Proof. Since gm = K∞(m) is a left idempotent, it holds that [gm,S(R)] =
Im[gm,−]. Therefore, HomR(gm, G) = [gm, G] ∼= G. We have

res[gm/(x), M̃ ] = res HomR/(x)(gm ⊗R R/(x), M̃)

∼= HomR(gm, res M̃)

= HomR(gm,HomR(R/(x), G))

∼= HomR(gm ⊗R R/(x), G)

∼= HomR(R/(x),HomR(gm, G))

∼= HomR(R/(x), G)

= res M̃.

Hence, [gm/(x), M̃ ] ∼= M̃ . This shows that M̃ ∈ Im[gm/(x),−] = [gm/(x),S(R/(x))].
By the equivalence between S(R) and GInjR, as described in Recollection 4.2.3,
if G′ is the object of GInjR corresponding to G, then pdR HomR(R/(x), G′) =
idR HomR(R/(x), G′) =∞; see [Ste14b, Lemma 6.6]. Thus, HomR(R/(x), G′) 6= 0

and so HomR(R/(x), G) 6= 0. Since HomR(R/(x), G) is the restriction of M̃ , we

conclude that M̃ 6= 0. �

A compactly generated triangulated category T is called pure-semisimple if
every object of T is pure-injective.

Lemma 4.5.4. Let T be a pure-semisimple triangulated category such that the only
localizing subcategories of T are 0 and T. Then the only colocalizing subcategories
of T are 0 and T.

Proof. Let X be a non-zero object of T. Then ⊥ coloc(X) is either 0 or T.
The latter is false, since in that case X would have to be 0. So, ⊥{ΣnX | n ∈ Z} =
⊥ coloc(X) = 0. This means that the set of suspensions of X is a cogenerating set
of T. Since T is pure-semisimple, X is pure-injective. Consequently, by Recollec-
tion 4.4.4, T = coloc(X). This shows that T is cogenerated by any of its non-zero
objects. As a result, the only colocalizing subcategories of T are 0 and T. �

Proposition 4.5.5. Let R be an artinian hypersurface ring with unique maximal
ideal m. Then [gm,GInjR] (resp. [gm,S(R)]) is a minimal colocalizing subcategory
of GInjR (resp. S(R)).

Proof. Every R-module is Gorenstein-injective, i.e., ModR = GInjR and
further, ModR is a pure-semisimple compactly generated triangulated category; see
the explanations in the proof of [Ste14b, Lemma 6.8]. It follows by Lemma 4.5.4
that the only colocalizing subcategories of ModR are 0 and ModR. Consequently,
[gm,GInjR] = ModR = GInjR is a minimal colocalizing subcategory of GInjR.
By the equivalence S(R) ' GInjR, it also holds that [gm,S(R)] = S(R) is a minimal
colocalizing subcategory of S(R). �

Proposition 4.5.6. Let R = (R,m, k) be a hypersurface ring. Then [gm,S(R)] is
a minimal colocalizing subcategory of S(R).

Proof. If dimR = 0, then R is an artinian hypersurface and the claim holds
by Proposition 4.5.5. Now suppose that dimR = n > 0 and that the claim holds
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for all hypersurface rings of dimension strictly less than n. There exists a regu-
lar element x ∈ R such that R/(x) is a hypersurface and dimR/(x) = n − 1; see
the explanations in the proof of [Ste14b, Theorem 6.12]. Let G be a non-zero

object of [gm,S(R)] and set M = HomR(R/(x), G) and denote by M̃ the com-
plex M viewed as a complex of R/(x)-modules. By Lemma 4.5.3, it holds that

M̃ ∈ [gm/(x),S(R/(x))]. Further, res M̃ = M ∈ coloc(G). The last assertion holds
because coloc(G) is a hom-submodule; see Lemma 4.1.10 and Recollection 4.2.3.
By the inductive hypothesis, [gm/(x),S(R/(x))] is minimal and by Lemma 4.5.3,

M̃ 6= 0. Hence, coloc(M̃) = [gm/(x),S(R/(x))] = coloc(IλQ
R/(x)
ρ (k)), with the last

equality by Proposition 4.4.6. Since res is a product-preserving triangulated func-

tor, it follows by Lemma 4.4.3 that res coloc(M̃) ⊆ coloc(res M̃) = coloc(M). The

latter is contained in coloc(G). Consequently, res coloc(IλQ
R/(x)
ρ (k)) ⊆ coloc(G)

and so IλQ
R
ρ (k) = res IλQ

R/(x)
ρ (k) ∈ coloc(G). So, coloc(IλQ

R
ρ (k)) ⊆ coloc(G). We

infer that coloc(G) = coloc(IλQ
R
ρ (k)) = [gm,S(R)] (with the last equality by Propo-

sition 4.4.6) and so [gm,S(R)] is a minimal colocalizing subcategory of S(R). �

Theorem 4.5.7. Let R be a locally hypersurface ring. Then S(R) is costratified.

Proof. Since D(R) satisfies the local-to-global principle, S(R) satisfies the
colocal-to-global principle; see Proposition 3.2.25. Let p ∈ Sing(R) and set Mp =
Ker(Rp ⊗R − : S(R) → S(R)). Then Mp is a smashing subcategory of S(R) and

S(Rp) ' S(R)/Mp and Mp
⊥ = Im(Rp ⊗R −) = Im[Rp,−]. So, [gp, IS(R)] =

[K∞(p) ⊗R Rp, IS(R)] ∼= [Rp, [K∞(p), IS(R)]] ∈ Mp
⊥. Since Rp is a hypersurface,

by Proposition 4.5.6, S(Rp) satisfies cominimality at the unique closed point of
SpecRp. By Proposition 3.4.3, S(R) satisfies cominimality at p. Hence, S(R) is
costratified; see Theorem 3.2.21. �

Recall from Definition 3.3.3 that a proper colocalizing subcategory C of S(R)
is called hom-prime if, for all X ∈ D(R) and A ∈ S(R), if [X,A] ∈ C, then
[X, IS(R)] ∈ C or A ∈ C.

Theorem 4.5.8. Let R be a locally hypersurface ring. Then there is a bijective
correspondence between points of SingR and hom-prime colocalizing subcategories
of S(R). A point p ∈ SingR is associated with Ker(HomR(gp,−) : S(R) → S(R)),
with the latter being equal to coloc(HomR(gq, IS(R)) | q 6= p).

Proof. According to Theorem 4.5.7, S(R) is costratified. By Lemma 4.1.10,
every colocalizing subcategory of S(R) is a hom-submodule. Further, SingR =
Cosupp(IS(R)). The claim now follows by applying Theorem 3.3.10. �

Example 4.5.9. Let k be a field. Then R = k[x]/(x2) is a commutative noether-
ian local ring with unique maximal ideal m = (x)/(x2) and residue field k. In fact,

SpecR = {m}, so dimR = 0. The sequence · · · → R
x·−→ R

x·−→ R→ k → 0 is a min-
imal projective resolution of k and so pdR k = ∞, implying that gldimR = ∞.
Hence, R is not a regular ring. It follows that SingR = SpecR. Applying
the functor HomR(−, R) to the above projective resolution (after deleting k) re-

sults in the sequence 0 → R
x·−→ R

x·−→ R → · · · , which is exact. Therefore,
ExtnR(k,R) = 0, ∀n ≥ 1. Since R is a commutative noetherian local ring of finite
Krull dimension (equal to 0), by [Mat89, Theorem 18.1], it follows that idRR = 0.
Hence, R is a Gorenstein ring. The ideal m is nilpotent (m2 = 0) and so the
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completion of R with respect to m is isomorphic to R, i.e., R is a complete ring.
Since k[x] is regular and x2 is a regular element of k[x], it follows that R is a
hypersurface ring. By Theorem 4.5.7, it follows that S(R) is costratified and the
colocalizing subcategories of S(R) stand in bijection with P(SingR) = {∅,SingR}
and so Coloc(S(R)) = {0,S(R)}. One could of course reach this conclusion by in-
voking Lemma 4.5.4, since R is a hypersurface ring of Krull dimension zero, so S(R)
is pure-semisimple and the only localizing subcategories of S(R) are 0 and S(R).
The unique hom-prime colocalizing subcategory of S(R) is 0 and corresponds to
the unique point m of SpecR.

4.6. Schemes with hypersurface singularities

In this section, we generalize Theorem 4.5.7 to schemes with hypersurface sin-
gularities. First let us recall some facts about derived categories of schemes.

Let X be a noetherian separated scheme with structure sheaf OX . We denote
by QCohX the abelian category of quasi-coherent OX -modules and by D(X) the
derived category of QCohX. The derived category D(X) is a rigidly-compactly
generated tensor-triangulated category with tensor product the left derived tensor
product of complexes of OX -modules and unit OX concentrated in degree zero. The
subcategory of compact objects of D(X) is Dperf(X) the subcategory of complexes
that are locally quasi-isomorphic to bounded complexes of locally free sheaves of
OX -modules. There is a homeomorphism Spc(Dperf(X)) ∼= X and we will treat this
as an equality. The singularity category of X is S(X) = Kac(InjX) the homotopy
category of acyclic complexes of injective quasi-coherent OX -modules, which is a
compactly generated triangulated category by [Kra05b].

The results in the following discussion can be found in [Ste14b, Section 7].
Let U be an open subset of X and let Z = X \ U . Let D(X)Z be the local-
izing subcategory of D(X) generated by those compact objects supported on Z.
We denote by D(X)(U) the category D(X)/D(X)Z . Then there is an equivalence
D(X)(U) ' D(U). There is an action of D(X) on S(X) that induces a support
theory for objects of S(X) (and a cosupport theory in the sense of Chapter 3). We
denote by S(X)(U) the localizing subcategory of S(X) generated by those compact
objects supported on Z. The category S(X)(U) is equivalent to S(U) and the action
of D(X) on S(X) gives rise to an action of D(U) on S(U). If {Ui ∼= SpecRi} is an
open affine cover of X, then the singular locus of X is SingX =

⋃
SingRi.

Theorem 4.6.1. Let X be a noetherian separated scheme with hypersurface singu-
larities. Then S(X) is costratified, i.e., there is a bijective correspondence between
SingX and the collection of colocalizing hom-submodules of S(X) given by mapping
a colocalizing hom-submodule of S(X) to its cosupport.

Proof. LetX =
⋃
Ui be an open affine cover ofX. Then each Ui is isomorphic

to SpecRi for a commutative noetherian ring Ri that is locally a hypersurface. By
the above discussion, we have an action of D(Ui) = D(Ri) on S(Ui) = S(Ri) and
since Ri is locally a hypersurface, S(Ri) is costratified by Theorem 4.5.7. A direct
application of Theorem 3.4.9 implies that S(X) is costratified. �

Theorem 4.6.2. Let X be a noetherian separated scheme with hypersurface sin-
gularities. Then there is a bijective correspondence between points of SingX and
hom-prime colocalizing submodules of S(X). A point x ∈ SingX is associated with
Ker([gx,−] : S(X)→ S(X)), with the latter being equal to coloc([gy, IS(X)] | y 6= x).
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Proof. By Theorem 4.6.1, S(X) is costratified. The result now follows imme-
diately from Theorem 3.3.10. �
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[Mur07] Daniel Murfet. The mock homotopy category of projectives and Grothendieck duality.
Ph.D. thesis, 2007.

[Nee01] Amnon Neeman. Triangulated categories, volume 148 of Annals of Mathematics Stud-

ies. Princeton University Press, Princeton NJ, 2001.
[Nee11] Amnon Neeman. Colocalizing subcategories of D(R). J. Reine Angew. Math., 653:221–

243, 2011.

[Nee92] Amnon Neeman. The chromatic tower for D(R). Topology, 31:519–532, 1992.
[Nee96] Amnon Neeman. The Grothendieck duality theorem via Bousfield’s techniques and

Brown representability. J. Amer. Math. Soc., 9(1):205–236, 1996.
[Nee98] Amnon Neeman. Brown representability for the dual. Invent. Math., 133:97–105, 1998.

[Orl06] Dmitri Orlov. Triangulated categories of singularities and D-branes in Landau–

Ginzburg models. Tr. Mat. Inst. Steklova, 246(3):227–248, 2006
[Ric96] Jeremy Rickard. Idempotent modules in the stable category. J. London Math. Soc. (2),

56(1):149–170, 1997.
[Rie16] Emily Riehl. Category Theory in Context. Aurora Modern Math Originals. Dover Pub-

lications, 2016.

[Ste13] Greg Stevenson. Support theory via actions of tensor triangulated categories. J. Reine

Angew. Math., 681:219–254, 2013.
[Ste14a] Greg Stevenson. Derived categories of absolutely flat rings. Homology, Homotopy and

Applications, 16(2):45–64, 2014.
[Ste14b] Greg Stevenson. Subcategories of singularity categories via tensor actions. Com-

pos. Math., 150:229–272, 2014.

[Ste17] Greg Stevenson. The local-to-global principle for triangulated categories via dimension

functions. J. Algebra, 473:406–429, 2017.



BIBLIOGRAPHY 83

[Ste18] Greg Stevenson. A tour of support theory for triangulated categories through ten-

sor triangular geometry. In Building Bridges Between Algebra and Topology, 63–101.
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