
 
 
 
 
 
Doublein, Thomas (2024) Biological inspired control and machine learning 
for clinical rehabilitation and engineering systems. PhD thesis. 
 
https://theses.gla.ac.uk/84709/  
 
 
 
 
    

Copyright and moral rights for this work are retained by the author 

A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge 

This work cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the author 

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the author 

When referring to this work, full bibliographic details including the author, 
title, awarding institution and date of the thesis must be given 

 
 
 
 
 
 

Enlighten: Theses 
https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

https://theses.gla.ac.uk/84709/
mailto:research-enlighten@glasgow.ac.uk


BIOLOGICAL INSPIRED
CONTROL AND MACHINE
LEARNING FOR CLINICAL

REHABILITATION AND
ENGINEERING SYSTEMS

Thomas Doublein

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE
DEGREE OF

DOCTOR OF PHILOSOPHY

JAMES WATT SCHOOL OF ENGINEERING

COLLEGE OF SCIENCE AND ENGINEERING

OCTOBER 2024



To my loving wife and family.



Abstract

Human quiet standing has been studied over the years in order to model controllers

able to replicate variability and intermittency present in human control mechanisms. The

Intermittent Control (IC) framework was proposed as a computational model and can

be described by a serie of open-loop trajectories with close-loop triggering. However, the

original implementation is based on a deterministic approach which requires knowledge of

the underlying system’s dynamics. This thesis explores the capabilities of a data-driven

stochastic Intermitent Controller, using Gaussian Processes (GP), applied mainly to a

Single Inverted Pendulum (SIP).

Throughout this thesis, the Intermitent Controller framework has been adapted to move

toward a data-driven intermittent controller using Reinforcement Learning (RL) and Data

Informativity (DI) to estimate the state feedback gains. Simulations show the benefit of

the open-loop trajectories created by IC in improving the overall estimation of the para-

meters, compared to Continuous Controllers. These results are the initial basis for a de-

terministic data-driven Intermittent Controller. In addition, the integration of GPs within

this IC framework is able to introduce varibility in the generated control input by using

probabilistic open-loop trajectories. Both these implementations have been combined to

create the first data-driven stochastic intermittent controller. Results presented in this

work are showing the capability of this newly controller approach to handle adaptation as

well as switching between deterministic like behavior to fully probabilistic characteristics

based on IC and GP parameters.

iii



Contents

Abstract iii

Acknowledgements xiii

Declaration xiv

1 Introduction 1

1.1 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Overview and structure of the thesis . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Review 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Biological inspired control . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Representation of human quiet standing . . . . . . . . . . . . . . . 10

2.2.2 Continuous Control based modelling . . . . . . . . . . . . . . . . . 12

2.2.3 Intermittent Control based modelling . . . . . . . . . . . . . . . . . 14

2.3 Learning and Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Conventional Adaptive Control . . . . . . . . . . . . . . . . . . . . 19

2.3.2 From model based control to data-driven control . . . . . . . . . . 22

2.3.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.4 Gaussian Processes for Control . . . . . . . . . . . . . . . . . . . . 32

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iv



3 Intermittent Control and Learning 42

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Continuous control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.4 State Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.5 Steady State design . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Intermittent control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Time frames and Triggering . . . . . . . . . . . . . . . . . . . . . . 50

3.3.2 Generalized Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Environment-Agent Structure . . . . . . . . . . . . . . . . . . . . . 54

3.4.2 Solving the ARE via Policy Iteration . . . . . . . . . . . . . . . . . 55

3.4.3 Solving for P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Data Informativity Framework . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6.1 Single-Task GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6.2 Multi-Output GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6.3 Hyper-parameters and Covariance functions . . . . . . . . . . . . . 64

3.6.4 Control input impact . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6.5 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6.6 Negative Log Marginal Likelihood . . . . . . . . . . . . . . . . . . . 70

3.6.7 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6.8 Sampling from the distribution . . . . . . . . . . . . . . . . . . . . 72

3.6.9 Prediction with uncertainties propagation . . . . . . . . . . . . . . 73

3.6.10 Single-Task Sparse GP . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Intermittent Data Driven Control for adaptation 76

4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

v



4.1.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.2 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.2 Data Informativity . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5 Stochastic Intermittent Control 125

5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.1.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.1.2 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.1 Single Task GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2.2 Online retraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6 Adaptive Stochastic Intermittent Data Driven Control 175

6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.2.1 Reinforcement Learning with GP based Hold . . . . . . . . . . . . 179

6.2.2 Data Informativity with GP based Hold . . . . . . . . . . . . . . . 185

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7 Discussion 195

7.1 GP as non-linear probabilistic based Hold . . . . . . . . . . . . . . . . . . 196

7.2 Data Driven Intermittent Controller . . . . . . . . . . . . . . . . . . . . . 198

8 Conclusion and Future work 201

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

vi



8.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

8.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8.3.1 Real-time application of data-driven IC . . . . . . . . . . . . . . . 204

8.3.2 Full non-linear IC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.3.3 Noisy data and DI with IC . . . . . . . . . . . . . . . . . . . . . . 205

8.3.4 Adaptation with RL and GP . . . . . . . . . . . . . . . . . . . . . 205

Appendices 206

A Single Inverted Pendulum system 207

A Non-linear equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

B State-space representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

B Cartpole system 211

A Non-linear equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

B State-space representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

vii



List of Tables

2.1 Model-Free and Model-Based: Pros and Cons. . . . . . . . . . . . . . . . . . . 30

5.1 IC (GP): Assessment of performances . . . . . . . . . . . . . . . . . . . . . . . 136

5.2 IC (GP): Sparse GP applied to cartpole . . . . . . . . . . . . . . . . . . . . . 150

5.3 IC (GP): Multi task GPH time . . . . . . . . . . . . . . . . . . . . . . . . . . 153

viii



List of Figures

2.1 Human pendulum comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Exploration-Exploitation paradox . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Gain Scheduling control model . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Model-Reference Adaptive System control model . . . . . . . . . . . . . . . . 20

2.5 Self-Tuning Regulators control model . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 The observer-predictor-feedback model . . . . . . . . . . . . . . . . . . . . . . 43

3.2 The Intermittent control model . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 ZOH and SMH comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 The Reinforcement Learning architecture . . . . . . . . . . . . . . . . . . . . . 54

3.5 The influence of the kernel selection . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Pre-processing of data for Gaussian processes . . . . . . . . . . . . . . . . . . 70

4.1 The Agent-Critic framework in IC . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Concept of occlusion in intermittent control . . . . . . . . . . . . . . . . . . . 80

4.3 The timing of each system identification . . . . . . . . . . . . . . . . . . . . . 81

4.4 IC (GP): Assessment of variability . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Initial poles location for RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 CC and RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 IC (SMH - Clock driven) and RL: ∆ol = 3ms . . . . . . . . . . . . . . . . . . 87

4.8 IC (SMH - Clock driven) and RL: ∆ol = 50ms . . . . . . . . . . . . . . . . . . 88

4.9 IC (SMH - Event driven) and RL: ∆ol = 3ms and Threshold = 1e−4 . . . . . . 90

4.10 IC (SMH - Event driven) and RL: ∆ol = 50ms and Threshold = 1e−4 . . . . . 91

4.11 CC (DI): with noisy input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.12 CC (DI): with multisine disturbance . . . . . . . . . . . . . . . . . . . . . . . 95

ix



4.13 CC (DI): with multisine disturbance for adaptation . . . . . . . . . . . . . . . 96

4.14 IC (DI): Highlight of Intermittent Control update . . . . . . . . . . . . . . . . 98

4.15 Impact of mismatch between system and IC . . . . . . . . . . . . . . . . . . . 99

4.16 IC (DI): Impact of occlusion and window length . . . . . . . . . . . . . . . . . 101

4.17 IC (DI): Matrices estimation without adaptation . . . . . . . . . . . . . . . . 102

4.18 IC (DI): Impact of tDI - Timeserie . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.19 IC (DI): Impact of tDI - DI est. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.20 IC (DI): Impact of tDI for adaptation - Timeserie . . . . . . . . . . . . . . . . 106

4.21 IC (DI): Impact of tDI for adaptation - DI est. . . . . . . . . . . . . . . . . . . 107

4.22 IC (DI): Impact of occ. for adaptation without redesign - Timeserie . . . . . . 108

4.23 IC (DI): Impact of occ. for adaptation without redesign - DI est. . . . . . . . . 109

4.24 IC (DI): Adaptation with redesign . . . . . . . . . . . . . . . . . . . . . . . . 110

4.25 IC (DI): Impact of occlusion for adaptation. Fast system changes . . . . . . . 112

4.26 IC (DI): Impact of occlusion for adaptation - DI est. Fast system changes . . . 113

4.27 IC (DI): Impact of tDI for adaptation - Slow system changes . . . . . . . . . . 115

4.28 IC (DI): Impact of occlusion for adaptation - DI est. Slow system changes . . 116

4.29 IC (DI): Impact of vu for adaptation . . . . . . . . . . . . . . . . . . . . . . . 118

4.30 IC (DI): Impact of tDI for adaptation (cart pole) . . . . . . . . . . . . . . . . . 119

4.31 IC (DI): Impact of tDI for adaptation (cart pole) . . . . . . . . . . . . . . . . . 120

5.1 IC (GP): Highlight of Intermittent Control update . . . . . . . . . . . . . . . 126

5.2 Gaussian Processes: Sampling from a distribution . . . . . . . . . . . . . . . . 129

5.3 IC (GP): Integration within IC . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4 IC (GP): Intermittent Control with Single-Task GP . . . . . . . . . . . . . . . 134

5.5 IC (GP): From SMH to GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.6 IC (GP): Assessment of goodness of the GP . . . . . . . . . . . . . . . . . . . 137

5.7 IC (GP): Multisine data used for initial GP training . . . . . . . . . . . . . . 138

5.8 IC (GP): Assessment of impact of IC parameters . . . . . . . . . . . . . . . . 139

5.9 IC (GP): Assessment of variability . . . . . . . . . . . . . . . . . . . . . . . . 141

5.10 IC (GP): Multi-step ahead prediction . . . . . . . . . . . . . . . . . . . . . . . 142

5.11 IC (GP): with uncertainties propagation enabled . . . . . . . . . . . . . . . . 144

x



5.12 IC (GP): Triggering based on GP standard deviation . . . . . . . . . . . . . . 146

5.13 IC (GP): Sparse GP applied to cartpole . . . . . . . . . . . . . . . . . . . . . 149

5.14 IC (GP): Intermittent Control with Multi-Task GP . . . . . . . . . . . . . . . 151

5.15 IC (GP): Multi-task GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.16 IC (GP): Evolution of GP for adaptation . . . . . . . . . . . . . . . . . . . . . 154

5.17 IC (GP): Measure evolution with relearning . . . . . . . . . . . . . . . . . . . 156

5.18 IC (GP): Training points versus optimisation time . . . . . . . . . . . . . . . . 157

5.19 IC (GP): Retraining time impact . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.20 IC (GP): Impact of incremental relearning . . . . . . . . . . . . . . . . . . . . 160

5.21 IC (GP): Adaptation without forgetting factor . . . . . . . . . . . . . . . . . . 162

5.22 IC (GP): Adaptation with forgetting factor . . . . . . . . . . . . . . . . . . . 164

5.23 IC (GP): tGP = 10 and 5 seconds. Fast system changes . . . . . . . . . . . . . 165

5.24 IC (GP): tGP = 3 and 1 seconds. Fast system changes . . . . . . . . . . . . . . 166

5.25 IC (GP): tGP = 10 and 5 seconds. Slow system changes . . . . . . . . . . . . . 168

5.26 IC (GP): tGP = 3 and 1 seconds. Slow system changes . . . . . . . . . . . . . . 170

6.1 IC (RL, DI, GP): Highlight of Intermittent Control update . . . . . . . . . . . 176

6.2 Diagram of relearning timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.3 IC (GP and RL, clock-driven): ∆ol = 3ms . . . . . . . . . . . . . . . . . . . . . 180

6.4 IC (GP and RL, clock-driven): ∆ol = 50ms . . . . . . . . . . . . . . . . . . . . 181

6.5 IC (GP and RL, clock-driven): ∆ol = 50ms and slow poles . . . . . . . . . . . . 182

6.6 IC (GP and RL, event-driven): ∆ol = 100ms . . . . . . . . . . . . . . . . . . . 184

6.7 Diagram of data selection for assessment . . . . . . . . . . . . . . . . . . . . . 185

6.8 IC (GP and DI): Impact of timings . . . . . . . . . . . . . . . . . . . . . . . . 186

6.9 IC (GP and DI): Thresh. = 0.01 rad, ∆ol = 3, 10, 100 ms. . . . . . . . . . . . 189

6.10 IC (GP and DI): DI estimation. Thresh. = 0.01 rad, ∆ol = 3, 10, 100 ms. . . . 190

6.11 IC (GP and DI): Thresh. = 0.1 rad, ∆ol = 3, 10, 100 ms. . . . . . . . . . . . . 191

6.12 IC (GP and DI): DI estimation. Thresh. = 0.01 rad, ∆ol = 3, 10, 100 ms. . . . 192

7.1 Summary diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.1 Inverted pendulum model of human standing . . . . . . . . . . . . . . . . . . 208

xi



B.1 Cartpole system model use for simulation. The cart can only move to the right

or left (x axis) to keep the pole balanced. . . . . . . . . . . . . . . . . . . . . . 211

xii



Acknowledgements

I would like to express my deepest appreciation to Dr. Henrik Gollee who generously

provided expertise and support on multiple subjects, especially Intermittent Control. His

invaluable feedback has been a great help to ensure completion of this project. Words

cannot express my gratitude to Dr. J. Alberto Álvarez Martín for his amazing support

and knowledge about control. He was always available to brainstorm ideas, debugging

code or dealing with Git issues, and he always kept me motivated during rough time. I

also wanted to thank all members of the Center of Rehabilitation Engineering.

To Elizabeth, my heartfelt thanks go out to you for your unwavering support and constant

encouragement. Your dedication and belief in me have been instrumental in helping me

complete my PhD. A special thank you to my parents and siblings for all the support

and kind words when needed. I also would like to recognize Wallace and our newly added

family member, Leonard, for their endless entertainment and emotional support.

Finally, I am grateful to the Engineering and Physical Sciences Research Council (EPSRC)

for their financial support, which was crucial in enabling the completion of this project.

xiii



Declaration

I declare that, except where explicit reference is made to the contribution of others, that

this dissertation is the result of my own work and has not been submitted for any other

degree at the University of Glasgow or any other institution

Thomas Doublein

xiv



Chapter 1

Introduction

In control theory, open-loop control fully relies on the known dynamics of the systems. As

the output of the system is not assessed, it is not possible to compensate for any internal

or external disturbances. In contrast, closed-loop control, also known as feedback control,

compares the system’s response to the reference to control the system accordingly and

compensate for any disturbance.

In contrast to the open and closed-loop approach, Intermittent Control (IC) uses a se-

quence of open-loop trajectories with intermittent feedback. This implementation can be

widely applied to different systems such as biomedical applications. The trigger mech-

anism present in IC closing the feedback loop allows to switch between an exploration

and an exploitation phase. In the IC implementation by Gawthrop and Wang 2009, the

open-loop trajectories are generated by a deterministic closed-loop representation of the

plant.

1



1. Introduction 2

In the idea of designing a controller to minimize the error between the set point and

the actual output of the system, the term ”optimal control” was introduced in the late

1950s. One approach to this problem has been developed by Richard Bellman called

dynamic programming and is based on a nineteenth-century theory of Hamilton and Jacobi

(Peng 1992). This approach has been applied to Continuous Controllers as well as the

Intermittent Controllers.

Intermittent Control has been used to answer some of the questions in human motor

control such as balancing tasks and quiet standing (Craik 1947; Gawthrop 2009; Gawthrop

and Wang 2009; Gawthrop et al. 2011; Loram et al. 2011; Gawthrop et al. 2013, 2014a;

Zgonnikov and Lubashevsky 2015; Michimoto et al. 2016). Studies on human balancing

have shown that similar quiet standing dynamics behavior can be found in an inverted

pendulum system (Winter et al. 1998; Gatev et al. 1999). Previous research (Loram et al.

2011) has proven the robustness of IC in the case of pendulum balancing using tapping

control. It is now used to understand and learn how human control works, for example

after a Spinal Cord Injury.

Following Spinal Cord Injury (SCI), the rehabilitation can be quite long and the human

body has to relearn basic tasks such as walking. However, 80% of patients can become

independent ambulators after this kind of injury (Burns et al. 1997). Since rehabilitation

is a process of relearning, it provides a great base for understanding the human learning

process and designing novel rehabilitation approaches following SCI. Learning, relearn-

ing, or adaptation to new physical properties has been studied in the context of control

(Martín 2018; Martín et al. 2021) using recent approaches such as Machine Learning and

Reinforcement Learning (Renaudo et al. 2015).



. Introduction 3

Artificial Intelligence (AI), Machine Learning (ML), and more specifically Reinforcement

Learning (RL) have been used in the context of control theory to map a specific state to

an action. Moreover, this mapping is learned by RL algorithms and can adapt itself to

deal with situations where the system’s dynamics evolve through time. RL is based on

the idea of dynamical systems theory, such as dynamic programming, specifically in the

context of optimal control of incompletely-known Markov decision processes (Strehl and

Littman 2008; Van Otterlo and Wiering 2012; Ghavamzadeh et al. 2015).

1.1 Aims and Objectives

The main aim of this research was to investigate the potential of data-driven techniques

applied to the IC framework for rehabilitation and engineering systems purposes.

The detailed aims are:

• (1) to evaluate the robustness of IC with system identification techniques applied

to systems with unknown dynamics. As the trigger mechanism allows us to explore

the data space when desired, while exploiting feedback when needed, it is expected

that the switching between open and closed-loop regimes would improve learning

overall, leading to better control performances.

• (2) to explore the potential of probabilistic modeling integrated within the Inter-

mittent Control framework relying on Gaussian Processes. The expectation was to

achieve a more accurate representation of human control, focusing on incremental

relearning behavior while keeping variability.

The first objective was to adapt the intermittent control framework to be used with any

system identification techniques, hence being able to test multiple algorithms using the

same conditions, as well as the capabilities of integrating any type of generalized hold.



1.1. Aims and Objectives 4

The second objective was to adapt and implement algorithms taking into consideration

the presence of events in the Intermittent Control while still performing accurately. The

implementation was based on occlusion techniques, a time-varying window for data col-

lection, and a triggering mechanism in IC.

The last objective was to evaluate and validate the robustness of a data-driven Intermit-

tent Control on systems with unknown dynamics in simulation, to then apply it within a

physics engine, with limited knowledge of the plant.

1.1.1 Approach

In this section, the approach used to reach the aims and objectives is described. In its

original form, Intermittent Control relies on the knowledge of the plant’s dynamics in order

to be designed appropriately. When dealing with systems where the dynamics are partially

or completely unknown, a data-driven approach can be considered more appropriate. This

is explored in this work, with implementations tested against a Single Inverted Pendulum

as well as the Cartpole system.

The first step is to implement and/or adapt available data-driven algorithms to fit within

the Intermittent Control framework. Two algorithms, Reinforcement Learning (RL), with

policy iteration algorithm and Data Informativity (DI) have been adapted and compared

to assess accuracy and limitations in estimating the current plant. Reinforcement Learn-

ing being a direct method, is estimating the feedback gain directly without the need to

estimate the system matrices first, as is the case with Data Informativity.



1.1. Aims and Objectives 5

The second step is to evaluate the potential of Gaussian Processes (GP) within the In-

termittent Controller to replace the traditional System-Matched Hold (SMH) which re-

spresents and internal model of the controlled systems. This allows the implementation

of a non-linear probabilistic controller.

By combining GP and RL/DI, it is possible to get an accurate model representing the sys-

tem’s dynamics as well as accurate state feedback which includes non-linear stochastic and

probabilistic components. This fully data-driven approach allows using the Intermittent

Control with time-varying plants.

1.1.2 Thesis contributions

The main contribution is that, for the time, a fully data-driven and stochastic Intermittent

Control system has been implemented. This implementation is divided into two parts,

using two different algorithms:

• Integration of a probabilistic hold (Gaussian processes) to replace the traditional

deterministic hold (SMH). The results show the capability of Gaussian Processes

to model system dynamics with data generated from an Intermittent Controller. In

addition, by tweaking the number of points used by the GP or the time between each

retraining, experiments have shown the capability of varying variability without the

need for external disturbance such as noise.

• Integration of Reinforcement Learning and Data Informativity frameworks to estim-

ate the optimal state feedback to accurately update online the Intermittent Con-

troller. Even though RL is showing some limitations in the sampling of the data,

Data Informativity benefits from the open-loop behavior in estimating accurately

the underlying system.



1.1. Aims and Objectives 6

1.1.3 Publications

Conference proceedings

J.A. Álvarez-Martín, T. Doublein, H. Gollee, J. Müller, R. Murray-Smith. ”Understanding

the variability of pointing tasks with event-driven intermittent control”, In proceedings

of the 25th International Symposium on Mathematical Theory of Networks and Systems

MTNS 2022. Bayreuth, Germany, 2022

In preparation

• T. Doublein, J.A. Álvarez-Martín, H. Gollee. ”Stochastic Intermittent Control for

engineering systems”. This paper will cover the integration of GP within the In-

termittent Control framework. Experiments will be applied to the Single Inverted

Pendulum and compared to the traditional SMH response under different condi-

tions.

• T. Doublein, J.A. Álvarez-Martín, H. Gollee, R. Murray-Smith. ”Stochastic Data-

driven Intermittent Control for adaptation”. This paper will extend the previous

stated paper by addind additional algorithm with the IC framework to create a

fully data-driven IC that can be used for adaptation.



1.2. Overview and structure of the thesis 7

1.2 Overview and structure of the thesis

This thesis is separated into eight chapters as follows:

In Chapter One, a short introduction presenting the high-level motivation for using the

Intermittent Control framework is described as well as the motivation and aims of this

project, followed by the overview of the thesis.

Chapter Two presents a literature review of biologically inspired control, explaining human

control behavior and its strong links with intermittent control. Learning and adaptation

are introduced and conventional adaptive control techniques are mentioned. Model-based

control and data-driven control are compared, where Data Informativity is discussed. Then

the use of Reinforcement Learning and Gaussian Processes for control are investigated,

followed by other advanced techniques.

Chapter Three introduces the theoretical background of the Intermittent Control imple-

mentation. It explains the implementation similarity with continuous control with the

addition of triggering and the presence of a generalized Hold. Reinforcement Learning

theory is presented followed by the Data Informativity framework. Then, Gaussian Pro-

cesses theory is explained, focusing on the data processing, optimization of the GP, and

prediction using Single Task and Multi-Task GP. An overall discussion ends this chapter.

Chapter Four looks into system identification techniques such as Reinforcement Learning

and Data Informativity within the Intermittent Control Framework. This chapter focuses

first on the implementation and the assessment of the quality of the system identification.

Then, experimental results are presented, starting with Data Informativity and followed

by Reinforcement Learning, and a discussion.



1.2. Overview and structure of the thesis 8

Chapter Five focuses on the integration of Gaussian Processes into the Intermittent Con-

trol Framework. Implementation and assessment of GP in IC are described followed by

experimental results, looking at single-task, multi-task, and online retraining of the GP.

In Chapter Six, system identification techniques from Chapter Four and Gaussian pro-

cesses based Hold from Chapter Five are combined to implement a fully data-driven

Intermittent Controller. This chapter looks at the impact of Intermittent control and its

parameters in the context of adaptation. Experimental results are shown followed by a

discussion.

Chapter seven is devoted to a general discussion, summarizing the findings of this work.

It is split between the stochastic and the data-driven implementation of the intermittent

control.

The final chapter presents the overall conclusion of this thesis, followed by the limitations

and additional ideas as potential future work.



Chapter 2

Literature Review

2.1 Introduction

Standing, walking, or even running are part of our daily routine. However, despite the

apparent simplicity of these tasks, human control mechanisms are still not fully understood

by researchers. For many years, scientists and engineers have been aiming to understand

the mechanism and develop physiological models of the human control process. In this

chapter, biological-inspired control literature is reviewed, introducing sensory feedback as

well as the Psychological Refractory period. Continuous control and intermittent control

approaches are compared. In the second section, learning and adaptation are investigated,

first by looking at conventional adaptive control before moving toward Gaussian Processes

and Reinforcement Learning applied to control. Finally, other approaches not used for this

work will be mentioned.

9



2.2. Biological inspired control 10

2.2 Biological inspired control

In this section, human quiet standing is described, followed by an overview of the two

main approaches used to mimic human behavior: continuous and intermittent control.

2.2.1 Representation of human quiet standing

Composed of muscles, and nerves, as well as non-linear dynamics such as joint visco-

elasticity, the human biomechanics can be considered as a very complex mechanical sys-

tem. Despite the human upright body being described as an unstable system, neural-

sensorial mechanisms present in the human body can compensate for this instability

(Cotoros and Baritz 2010). In 1931, Telford 1931 discovered experimentally the pres-

ence of the Psychological Refractory period (PRP), where the human control action is

not affected by any sensory feedback for a small amount of time following the previous

action. This mechanism can be seen as a delay that can be correlated to a temporary bot-

tleneck in processing, due to the cognitive system still processing the previous stimulus.

Hence, the human control action is behaving on an open-loop regime for this short period.

Moreover, stochastic fluctuations in neuronal activity, synaptic transmission, and sensory

processing are also part of the Central Nervous System (CNS) which can be represented

as noise (Faisal et al. 2008).



2.2. Biological inspired control 11

Variability is an important characteristic in the context of human control. For example,

in the case of a repeated task, the control input generated by the human controller is not

deterministic and each trajectory is slightly different from the previous one. As demon-

strated by Jones et al. 2002; Faisal et al. 2008; Gollee et al. 2017; Martín et al. 2021, this

variability is a combination of factors such as neural spike initiation-propagation, as well

as a variation in the decision making processes happening in the Central Nervous System

(CNS).

To start studying human control, it is necessary to introduce a simpler representation of

the human body. The Single Inverted Pendulum (SIP) is often used as a model of the

human body sway during quiet standing as it displays similar behavior when actuated at

the ankle joint (Winter et al. 1998; Loram and Lakie 2002; Bottaro et al. 2005; Morasso et

al. 2020) (see Figure 2.1). However, other models have also been introduced to represent

human standing such as a model with an additional degree of freedom and controlled

using reciprocal and synergistic muscle action at multiple joints (Jacobs 1997) as well

as a linear pinned-polymer model of posture control including quadratic non-linearity

(Alonso-Sanchez and Hochberg 2000). In this work, the model presented by Lakie et al.

2003; Loram et al. 2005; Loram et al. 2009; Gawthrop et al. 2011 is used and equations

are presented in Appendix A. To increase the complexity of the SIP model, a cartpole

model has been used as an analogy for balancing a stick (Yoshikawa et al. 2016). Model

details are presented in Appendix B.



2.2. Biological inspired control 12

Figure 2.1: Pendulum as a representation of the human standing

2.2.2 Continuous Control based modelling

Wolpert et al. 1995 ran experiments to prove the existence of an internal model in the

CNS. A set of three experiments has been conducted, using no applied force, followed

by an assistive and then resistive force exerted on the arm of participants. The goal was

to estimate with the free arm the position of the hidden hand. Bias and variance were

evaluated and then modeled using a Kalman filter. The latter was able to reproduce the

bias and variance of the estimated a forward model of the hand, under all three conditions.



2.2. Biological inspired control 13

Winter et al. 1998 has used stiffness control to model human control during quiet standing.

Experiments were performed with eyes opened and eyes closed and have shown that

vision does not appear to play a role during quiet standing. In addition, stiffness control

presents potential advantages in the presence of disturbances in the standing. In another

study, Peterka et al. 2000 used a PID continuous feedback, closed-loop control to generate

a realistic Stabilogram Diffusion Function (SDF) that summarizes the displacement of

the Center-of-Pressure (COP). This model uses variations in time delays and a neural

controller to interpret change in SDFs as opposed to open-loop and closed-loop behavior.

Additionally, Todorov and Jordan 2002 used optimal feedback control to model human

control behavior. The minimal intervention principle is used to explain the variability

present in human control actions. They also demonstrated that mechanical redundancy

plays a role in the solution to perform the motor system’s task well. Motor variability is

seen as an opportunity to perform system identification and is proposed as the strongest

support for the optimal feedback control framework.

The models by Winter et al. 1998 and Peterka et al. 2000 represent stable posture control.

However, some of the sway characteristics are impacted by the intrinsic muscle stiffness

(Winter et al. 1998) and the background noise introduced (Peterka et al. 2000). Bottaro

et al. 2005 used sliding mode control theory to match more consistently experimental

postural data using Intermittent stabilization’s models. Sway movement around the ref-

erence was assessed and shows that attention level and quality of sensory information

can influence the amplitudes of those movements. The combination of variable structure

systems and sliding motion control is proposed as an appropriate framework to model the

intermittent stabilization process. In addition, Loram et al. 2014 proposed an intermittent

controller that helps explain the potential neuro-physiological basis in human movement

motion, such as the refractory period.



2.2. Biological inspired control 14

2.2.3 Intermittent Control based modelling

Even though the Continuous Control framework presented above has helped in under-

standing human control (Wolpert et al. 1995; Peterka et al. 2000; Todorov and Jordan

2002; Bottaro et al. 2005), fundamental aspects of human control such as intermittent

feedback, temporal refractory periods or triggered responses are not covered. Craik 1947

introduced that human control systems operate using intermittent feedback loops as op-

posed to continuous control. He also mentions key concepts such as resilience, efficiency,

and optimization. The presence of intermittency enhances the resilience of the control

input by acting as a sort of filtering and smoothing. Intermittent feedback also helps in

reducing cognitive load, hence improving efficiency by only providing feedback sensory

information when necessary. ibid. is also proposing that intermittent control helps in

minimizing the use of resources, and then optimizing control processes on the relevant

feedback information.

Following the work by Telford 1931 and Craik 1947, Vince 1948 and Navas and Stark 1968

investigated the relationship between PRP and intermittency in human control. Craik

1947 and Vince 1948 showed that the PRP can be explained as a delay in the feedback

loop. Based on experiment results as well as physiological considerations, Navas and Stark

1968 suggests that sampling of sensory information is irregular and asynchronous, hence

indicating input-synchronized feedback rather than clock-driven intermittency.

The first algorithmic intermittent control model was introduced by Neilson et al. 1988

and applied to visual pursuit tracking tasks. Experimental results were modeled using in-

termittent control and incorporating internal model inaccuracy and some speed-accuracy

trade-offs. By doing so, multiple tracking behaviors were accounted for such as inaccuracies

in the stimulus responses.



2.2. Biological inspired control 15

Based on Neilson et al. 1988 and adapted for control-engineering purposes, Ronco et al.

1999 introduced an intermittently moving-horizon approach during which the control sig-

nal evolves in an open-loop fashion. Similarly explained in Craik 1947, intermittency in

the control loop is helping reduce the computational burden. In addition, Intermittent

Continuous-time Generalised Predictive Control (ICGPC) shows robustness to measure-

ment noise. Also, OLIFO (Open-Loop Intermittent Feedback Optimal) control behavior is

compared to biological motor control and shows consistent similarities. This work was ex-

panded by Gawthrop and Wang 2007, where clock-driven intermittent control is presented

for its flexibility in the control. If the intermittent interval ∆ is very small (∆ = 1ms), the

intermittent controller is behaving closely to a continuous controller. However, by increas-

ing this intermittent interval, the control input coming from the intermittent controller

changes but also deteriorates if increased too much. Modelling of human stick balancing

has also been investigated by Gawthrop et al. 2013.

Another implementation of this model is to use event-driven intermittent control as

presented by Gawthrop and Wang 2009. In this implementation, triggering is now based

on the difference between the states of the plant and the states estimated by the model

in the Intermittent Controller Hold. With this implementation, the notion of threshold is

introduced. The triggering occurs if the difference explained above is above this threshold.

However, this threshold can be set to 0, hence falling back to a clock-driven intermittent

control if needed.

Also mentioned in ibid. is the capability of the intermittent control to have different Hold

dynamics during the open-loop intervals. Two approaches are presented there: Zero Order

Hold (ZOH) and System Matched Hold (SMH). While ZOH simply holds the control input

until the next event, the SMH approach uses a closed-loop representation of the plant,

hence evolving during the open-loop interval. Results explained that ZOH is inappropriate

for event-driven intermittent control due to the time-varying open-loop interval and SMH

is showing useful properties. As SMH is showing similar behavior as continuous control



2.2. Biological inspired control 16

during the open-loop regime, differentiating between the two can be difficult; this has been

named masquerading properties (Gawthrop and Wang 2009). As previously mentioned,

delays due to PRP need to be compensated similarly to the continuous controller case by

using a predictor as they might introduce instability and loss of performance as shown by

Hongxia Wu et al. 2002.

Later, tapping has also been introduced as an alternative to ZOH and SMH implement-

ations by Gawthrop et al. 2011. Contrary to the continuous-like behavior from SMH,

tapping is considered a discontinuous approach by using the Laguerre function and it

shows good stability and precision (Huang and Mason 2000). The main advantage of tap-

ping control is its capability of overcoming the effect of nonlinear friction in systems as

presented by Gawthrop and Gollee 2012 where continuous contact of the hand of parti-

cipants with a joystick is compared to a tapping strategy. Intermittent Tapping Control

(ITC) uses fixed-interval pulses of variable amplitude during an open loop. This type of

fixed-interval pulse can be compared to pulses used in functional electrical stimulation

of muscle. In addition, the notion of ’taps’ has been observed in human motion control

(Loram et al. 2011).

Even though this thesis relies on the Intermittent Predictive Control implementation by

Gawthrop et al. 2011; Gawthrop and Wang 2009; Gawthrop et al. 2011; Gawthrop and

Gollee 2012; Gawthrop et al. 2013; Gollee et al. 2017, it is worth mentioning additional

frameworks where intermittent controller is used differently. While this implementation is

always outputting a control input, using sensory feedback at triggering or using generated

states from the hold during the open-loop interval, the intermittent controller called Act-

and-Wait (AAW) by Stépán and Insperger 2006 is switching periodically the control input

on and off. One key feature of the AAW controller is being a suitable alternative for control



2.2. Biological inspired control 17

systems with feedback delays. Commonly called the state-space intermittent feedback

strategy by Morasso et al. 2020, this intermittent controller lets the system evolve itself

and then applies a new control action if the system reaches an unstable area of the state-

space (Gawthrop et al. 2014b) for an analysis of the different IC approaches.

2.3 Learning and Adaptation

In complex systems, it is important to understand the system dynamics to yield a robust

controller while maintaining performance. Two common approaches are learning and ad-

aptation. In this section, the concept of learning and adaptation is described as well as the

role of machine learning, more specifically RL, to overcome these two problems (Tsypkin

1971).

Learning Control, is dealing with an unknown system in addition to these unknown

parameters. Learning control is based on the ability of the control system to develop a

mathematical representation of the system’s behavior. It implies that the control system

contains sufficient computational ability to achieve it. This type of control can be seen as

an extend of adaptive control.

Adaptive Control, is the capability for the controller to update its mode of operation

to achieve the best control law for a particular situation. There are three main inherent

functions for any adaptive system to be able to evolve in the best manner: (i) getting

continuous access to the current states of the systems or being able to identify the under-

lying process, (ii) being able to compare the current performance of the control to know

if adaptation is needed to achieve a defined optimal performance, and (iii) being able to



2.3. Learning and Adaptation 18

properly modify its characteristics to drive the control system to the target. In the case

of adaptive control, the system’s dynamics are known but the dynamic’s coefficients are

unknown. These coefficients also called parameters, are estimated over time and used to

update the control law accordingly (Åström and Wittenmark 2013; Hardy et al. 2019).

To know enough information about a system, it is necessary for the controller to explore

the state-action space. However, in some cases, the exploration can be dangerous as the

system can have some restricted working area on the state-action space; it is necessary to

exploit the already known information to improve the present decisions. There is a trade-off

between exploration and exploitation and this is called the exploitation and exploration

paradox and it is summarized in Figure 2.2. RL by being focused on exploitation and

exploration problems have a good potential to be integrated within the context of IC.

Figure 2.2: Summary of Exploration-Exploitation paradox (modified from Fig.1 in Hardy
et al. 2019)



2.3. Learning and Adaptation 19

2.3.1 Conventional Adaptive Control

As presented by Åström and Wittenmark 2013, adaptive control can be split into three

different schemes: Gain Scheduling, Model-Reference Adaptive System (MRAS), and Self-

Tuning Regulators (STR).

Gain Scheduling

Gain Scheduling involves measuring changes in the system’s operating conditions and to

update the controller gain accordingly. This results in being able to overcome changes

in the process. This was originally used as a flight control system, when the gain of the

controller depends on some variable, for example, the current speed of the aircraft or the

altitude. Based on some operating conditions, the controller gain is updated (Nichols et al.

1993; Leith and Leithead 2000). This scheme is presented in Figure 2.3 and is composed

of two loops: the inner loop is composed of the controller and the system, while the outer

loop is composed of the Gain Schedule block which updates the gain of the controller

based on operating conditions.

Figure 2.3: Block diagram of the Gain Scheduling Scheme (modified from Fig. 1.17 in
Åström and Wittenmark 2013)



2.3. Learning and Adaptation 20

Model-Reference Adaptive System (MRAS)

MRAS has been implemented to solve problems where performance specifications are

given in terms of a reference model (Kojabadi 2005). It is based on a reference model that

represents how the process output should respond to a specific input (see Fig. 2.4). The

adjustment mechanism is based on the error between the reference model output and the

plant output. The objective is to bring the error to zero by adjusting the parameters of

the controller (Åström and Wittenmark 2013).

Figure 2.4: Block diagram of the Model-Reference Adaptive System (MRAS) Scheme
(modified from Fig. 1.18 in Åström and Wittenmark 2013)

Self-Tuning Regulators (STR)

STR is based on a system identification approach. Contrary to the two previous schemes,

the STR scheme estimates the process parameters for the first time. Then, the controller

is designed based on the new parameters estimation (P.E. Wellstead 1979). It is composed

of two loops (see Fig. 2.5): the inner one is used as a feedback loop, while the outer one

is composed of an estimation block, as well as a controller design block. This loop is used

to update the controller parameters.



2.3. Learning and Adaptation 21

Figure 2.5: Block diagram of the Self-Tuning Regulators (STR) Scheme (modified from
Fig. 1.19 in Åström and Wittenmark 2013)

These three adaptive schemes are split into two different methods: direct or indirect. As

the indirect method is estimating the plant dynamics to design the controller, the direct

approach is directly updating controller parameters. The indirect approach is split into

two parts: system identification and controller design.

As presented in section 2.2.3, Intermittent Control requires a Hold system, that represents

the system close loop dynamics in the case of the SMH. System identification techniques

have been used in the past as presented by Martín 2018, where Kalman filters have been

integrated with the IC framework proposed by Gawthrop et al. 2014a.

Gaussian Processes can be seen as a sort of indirect method (system identification)

whereas Reinforcement Learning, on the other hand, can be visualized as the direct

method.



2.3. Learning and Adaptation 22

2.3.2 From model based control to data-driven control

Before 1960, most control designs relied on well-established methods such as the Bode

and Nyquist plot as well as Ziegler-Nichols charts. Most of these implementations rely

on graphical design methods (Gevers 2002). Since 1960, modern control theory has been

developed in the following areas: system identification, optimal control, and adaptive con-

trol. This increase in research papers on these topics is related to the newly introduced

parametric state space representation created by Kalman 1960. Whilst system identifica-

tion allows to create a mathematical representation of the actual dynamical system (Ljung

1999), optimal control and adaptive rely on the model produced by the previously stated

method to design a correctly designed controller.

2.3.2.1 Model Based control

The introduction of parametric state space representations by Kalman 1960 in combina-

tion with optimal control techniques led to a specific type of control named Model-Based

Control (MBC). Controller design usually relies on well-trusted linear control algorithms

such as LQR design, pole placement, or robust control. As presented in Brosilow and

Joseph 2002, a multitude of model-based controllers have been implemented over the

years such as feed-forward, cascade, output constraint as well and model predictive con-

trol. Hjalmarsson et al. 1996 mentioned that using closed-loop data for system identifica-

tion can obtain a more accurate controller if the identification time is long enough. This

approach links to iterative identification.



2.3. Learning and Adaptation 23

As explained above, all previously stated control-designed techniques rely on having a

mathematical representation of the plant. Most identification theories have been focused

on getting the perfect representation of the ’true system’ by implementing complicated

modeling techniques (Gevers 2002). However, moving from an ideal representation to

an approximation of the true model started appearing in the literature in the 1980s.

Ljung 1999 shifted the attention from an ideal system identification towards a use-case

identification dependency. He also mentions that identifying a multi-output system can

be difficult, and it is possible to replace it with multiple single-output models when used

for simulation purposes.

Following this idea of only getting an approximation of the model, Gevers 2002 mentioned

that low order model-based controller can lead to higher performance. This can be ex-

plained by the reduced order of the controller, hence reducing computation load. Ljung

1999 has mentioned linear and ready-made models that can be used when physical insight

is not known enough to model dynamical systems. The idea is to only specify the order of

the model for the ready-made model. The four most common ones are based on transfer

function models: Output Error (OE) (used by Carrillo et al. 2009 to identify system oper-

ating in closed-loop), ARX, Box-Jenkins (BO), and ARMAX model. Subspace Estimation

Techniques for State Space Models are also mentioned, as this is helping identifying the

state space matrices, for a localized set of sample data, using the subspace projection tech-

nique. Stenman 1999 demonstrated that the ’model-on-demand’ approach can generate

prediction errors with similar more advanced techniques such as as fuzzy identification

and artificial neural networks. Others techniques, such as frequency-domain identification

are also mentioned.



2.3. Learning and Adaptation 24

2.3.2.2 Data-driven control

In contrast to model-based control, data-driven control is using online or offline data to

optimize a policy (Hou and Jin 2013). This means that the controller does not need an ex-

plicit representation of the dynamical system to be designed. As presented by Hjalmarsson

2002, Iterative feedback tuning can be used on linear and non-linear systems. This tech-

nique approximates the correct gradient of the underlying system properties which leads

to a robust controller as it covers a large class of systems.

More recently, Guo et al. 2019 have extended data-driven control to be applied to Multi-

Input/Multi-Output (MIMO) non-linear systems. This model-free adaptive predictive

control (MFAPC) method is based on a time-varying pseudo-jacobian matrix as well

as dynamic linearization techniques. It is stated that due to the addition of predictive

control, the algorithm has strong robustness as well as excellent tracking performances.

Luppi et al. 2022 have used data-driven control to stabilize non-linear systems. Whilst

conditions are met to ensure that the system is stabilizable, the algorithm is only using

input and output data generated during the experiment to directly design a state feedback

controller.

Data-driven control has the advantage of being able to solve complex stabilization prob-

lems without the need for a model by simply using data recorded from an experiment.

However, this assumes that data is carrying enough information for the algorithm. Even

without explicitly mentioning it, algorithms rely on data sufficiently rich to converge to-

wards accurate results (Mareels and Gevers 1988). The concept of persistence of excitation

was introduced in 1966 by Åström and Torsten 1965 and has been used thoroughly since

by Ljung 1971; Moore 1983; Bai and Sastry 1985; Goodwin and Eam Khwang Teoh 1985;

Green and Moore 1986; Mareels et al. 1987; Mareels and Gevers 1988.



2.3. Learning and Adaptation 25

Willems et al. 2005 uses the persistence of excitation as well as the controllability condi-

tion to assert that using a single trajectory from a linear system, it is possible to generate

all trajectories. These results introduced important implications for system identification

methods as well as data-driven control. Van Waarde et al. 2020 has extended Willems

et al. 2005 fundamental lemma by implementing an algorithm that allows using mul-

tiple trajectories. This improvement has shown its capability of identifying linear systems

where data samples are missing. It is also possible to use this implementation to model

unstable systems by using multiple small trajectories. Then, Yu et al. 2021 extended this

algorithm by replacing the controllability condition with controllable subspace, unobserv-

able subspace, as well as certain subspace associated with the measured trajectories. This

paper also proves that the excitation signal can be reduced to a certain degree of minimal

polynomial. Additional results show the equivalent between model predictive control and

data-driven predictive control, even applied to uncontrollable systems, with the advantage

of reducing drastically the amount of data to design such a controller.

van Waarde et al. 2020 introduced the notion of Data Informativity. It has been introduced

to assess whether the data is carrying enough information for system analysis and control

design. This algorithm is also able to reduce the rank condition on the persistence of

excitation signal in some cases, such as stabilization using state feedback control. As

stated in ibid., the proposed data-driven approach can solve controllability analysis and

stabilization problems where traditional system identification could not, due to the lack

of information in the data. Data Informativity is a important concept that allows the

data-driven technique to outperform traditional system identification techniques in some

cases. Whilst ibid. has been focused on noise-free data, this work was extended to noisy

input-state data in Van Waarde et al. 2023.



2.3. Learning and Adaptation 26

2.3.2.3 Limitations and challenges

As presented above, model-based control and data-driven control are two available options,

whether system dynamics are known or not. The main difference is the need to know or

not the system dynamics to design the controller.

As the order of the system increases, model-based control becomes more and more un-

feasible by the increase in the order of the controller and becomes not suitable for real-life

applications. It is necessary to use model reduction techniques first. However, as the com-

plexity of the approximation of the system decreases, the risk of instability arises due to

un-modeled dynamics. The trade-off is between the complexity and accuracy of the model

versus the effort and cost attributed to the design of the controller.

As presented in Hou 2013, the Data-Driven control theory presents some robustness issues

due to the un-modeled dynamics. Moreover, data gathered for the estimation might be

contaminated by noise or missing data due to sensor issues. Another issue with data-driven

control is the data processing method available for online processing. Most algorithms,

such as machine learning ones are used offline due to the intensive computation.

Model-based control and data-driven can also be updated online to answer the problem of

adaptation. However, iterative identification and control can lead to unplanned instability.

Moreover, in some adaptive control algorithm implementations, controller parameters are

updated at each sample step. This constant change in the control’s parameters can be

seen as non-linearity in the closed-loop dynamics, hence making the stability analysis very

complex (Gevers 2002). Other generic problems are also affecting the implementation



2.3. Learning and Adaptation 27

of model-based and data-driven adaptive controllers: problems of transient instability,

suddenly unstable close loops, or even impractical control objectives. As presented in

Anderson and Dehghani 2008, data-driven adaptive control is limited by its application

beyond experimental examples.

2.3.3 Reinforcement Learning

Over the past few decades, interest in Artificial Intelligence and Machine Learning has

risen considerably. Machine Learning can be split into three main categories: Supervised,

Unsupervised, and Reinforcement Learning. As Supervised Learning is oriented to solve

classification and regression problems, and Unsupervised Learning focuses on association

and clustering problems, RL is focused on exploitation and exploration problems. The

main objective is to teach an agent (the controller) to interact with its environment

(the system). This chapter describes the origin and background of RL and explains the

difference between model-free and model-based RL algorithms.

2.3.3.1 Background of Reinforcement Learning

Introduced in the 1950s by Richard Bellman, dynamic programming is a mathematical

optimization that consists split into recursive sub-problems a complicated one to simplify

it. It is now widely considered the only feasible way of solving general stochastic optimal

control problems (Sutton and Barto 2018). As described by Bellman himself as ”the curse

of dimensionality”, this approach is limited by the number of state variables as it grows

exponentially with it. Even with this computational limitation, it is still more efficient

and widely applicable than other general methods.



2.3. Learning and Adaptation 28

Dynamic programming has been improved by integrating extensions to partially observ-

able Markov Decision Processes (MDPs). This mathematical framework is used for mod-

eling decision-making processes where the outcomes it are split between randomness and

under the influence of a control law. Machine Learning algorithms rely on these Processes.

MDPs can only be applied if the Markov property is respected for a stochastic process: the

distribution probability of the future state is only dependent on the current state without

involving a prior event.

The MDPs are trying to create a mapping between states, actions, and rewards. This

mapping is commonly called a policy and can be seen as a control law. RL is the form-

alization of dynamic programming applied as an optimal control of incompletely-known

MDPs. The objective of RL is to learn a task by trying to maximize a numerical reward

signal. Same as the MDPs, the RL algorithm tries to map the best action to take according

to the current states based on the best reward.

RL is based on a Environment-Agent framework. The Environment is a representation of

the system we are trying to control. On the other hand, the Agent is the active decision-

maker on the environment to control it. The basic architecture is presented in Figure 3.4

on page 54.

The most common way to understand RL is as a Trial-Error scheme. The Agent is

improving its knowledge of the Environment by exploring the state-space area by trying

an action and receiving a reward related to it. It is important to notice that in some cases,

actions may affect the next state of the system, which subsequently affects the following

rewards. RL is simply trying to capture the most important aspect of a dynamical system,

to be able to control it to achieve a specific goal (Sutton and Barto 2018).



2.3. Learning and Adaptation 29

RL is moving towards an important integration with mathematical, statistical, or even

optimization problematic. The mathematical framework of RL can be split into two dif-

ferent categories: Model-Free or Model-Based Algorithm. The following section goes into

more detail about each scheme.

2.3.3.2 Model-Free and Model-Based approach

From learning how to play tic-tac-toe to balancing a cart-pole pendulum, RL can be used

to solve very different problems. One common distinction is the difference of action-state

space between them. While a system such as a tic-tac-toe game has a finite number of

actions and states, the action-state space of other systems is continuous.

In the case of discrete action-state space, it is theoretically possible for an agent to explore

every state-action and learn about the reward associated with it. On the continuous action-

state space, it is more generalized to find a value function which is a function of the current

state s, current action A, and an end-state s′. Some studies have shown the possibility

of discretizing the state-space to estimate the value function using Q-learning discrete

algorithm (Gaskett et al. 1999; Smart and Kaelbling 2000).

In RL, the policy π or π(s|a) corresponds to the mapping of some state s to the probabil-

ities of selecting each possible action given that state. There are two types of policies: the

On-Policy and the Off-Policy. While the Off-Policy is independent of the agent’s actions,

the On-Policy is basing decisions on the previous state-action pair.



2.3. Learning and Adaptation 30

RL is based on two different methods: Model-Free and Model-Based model. The difference

between them is the prior knowledge or not of the environment, i.e the system to be

controlled. Each of these two models has some pros and cons which are summarized in

Table 2.1.

Model Pros Cons

Model-Free
- Computationally less complex
- Accurate representation of the
environment not needed

- Need experiences for gathering
training data
- Exploration more dangerous
- No explicit idea of how
environmental dynamics affects
the system

Model-Based - Safe to plan exploration and can
train from simulated experiences

- Agent Quality based on the model
implementation
- The model can become difficult to
learn
- Computationally more complex

Table 2.1: Model-Free and Model-Based: Pros and Cons.

The model-free method is used when there is no prior knowledge of the Environment, and

the gain of information is based on the trial-error scheme. The model-based method, on

the other hand, is focused on a model. Using a baseline policy, such as random actions

or any educated policy, the output trajectory data is used to fit a model. Iteratively, the

model is improving based on its new knowledge of the Environment.

As presented in Table 2.1, Model-free and Model-Based approaches have both advantages

and inconveniences. The exploration aspect of the model is an important factor. It is

important to introduce the terminology exploitation and exploration. While exploitation

is trying to get as good as possible based on what is already known, exploration is trying

to reach an unknown part of the state-action space to improve its learning. unsafe areas

are highly recommended to be avoided. A model-free algorithm can be dangerous to use



2.3. Learning and Adaptation 31

in that case where not knowing the dynamics of the systems can lead to an exploration of

these unsafe regions. Studies on robotic tasks show that in some cases model-free systems

reach similar or better performance than Model-based ones (Renaudo et al. 2015). This is

partially due to the high number of states and the difficulty in modeling the environment.

2.3.3.3 Limitations

While RL shows promising results, some limitations have to be taken into consideration.

As presented by Lin 1991, RL is dependent on the representation of the system. One

possible approach, for example, is to reduce the number of inputs. ibid. is also describing

the slow speed of convergence.

The unwise use of sensing is another limitation. To comprehend the environment dy-

namics, the agent needs to sample the state-action domain. The presence of unsafe area

can complicate this exploration phase. In real-world systems, an agent cannot take into

consideration all world states as they may be irrelevant to the system. It is necessary to

decide how to use sensors efficiently while still being able to control the plant (Whitehead

and Ballard 1991; Tan 1991). As stated by Kober et al. 2013, RL is difficult to apply

in the robotics fields due to the high-dimensional continuous state spaces. One possible

approach to solve these problems is to split the model into a multitude of simpler models

as described by Narendra et al. 2016. This approach is stated as an order of magnitude

faster than the use of a single model.

Cutler and How 2015 is the training of a real-world system based on an already pre-

trained policy via simulation using Probabilistic Inference for Learning Control (PILCO).

To reduce the number of samples needed to train a model, the merge of RL and Gaussian

processes has increased over the last years (Engel et al. 2003, 2005; Kuss and Rasmussen



2.3. Learning and Adaptation 32

2003). Furthermore, Osband et al. 2018 highlighted the importance of deep Reinforcement

Learning uncertainties in its benefits towards efficient exploration. This approach is also

able to scale better than other approaches, especially focusing on linear representations.

More recently, Miller et al. 2024 used nearest neighbors look-up to implement a direct

sparsification method of the dataset. This can be used to improve computation time.

2.3.4 Gaussian Processes for Control

The GP learning method, contrary to Reinforcement Learning is closer to system identific-

ation as the main two goals are to identify an interpretation of the data (system modeling)

or be able to predict unseen data (predictive aspect) (Rasmussen 1997). One of the main

aims of machine learning is to be able to generalize and identify the relationship between

input and output observed data. One common approach is to use parametric modeling

when the underlying order of the function can be approximated. However, selecting a form

of the function for the algorithm to fit some coefficients based on training data can be

quite difficult and needs a lot of trial and error. As presented by Seeger 2004; Lawrence

et al. 2002, when the underlying function expresses high non-linearity, hence difficult to

describe with a predesigned function, a non-parametric algorithm can be quite powerful

in the identification.

Due to their simplicity, flexibility, and non-parametric design, Gaussian Processes (GP)

are commonly used to solve complex machine learning problems (Seeger 2004). GP models

are considered black-box modeling, ideal for non-linear functions. Furthermore, contrary

to other commonly used modeling techniques for non-linear architectures, GP can be fitted

to the data without the need to use non-convex optimization routines, which simplifies the

optimization (Lawrence et al. 2002). In addition, GP do not use a set of basis functions



2.3. Learning and Adaptation 33

but relies on finding the relationship between input-output data (Kocijan 2016; Petelin

and Kocijan 2011), which can be easily adapted to any kind of function. Also, GP rely

on Bayesian theory, hence adding a probabilistic element that is suitable not only for

classification problems but also regression (Quiñonero-Candela et al. 2007).

Gaussian processes are composed of two main elements: one or multiple covariance func-

tions and some associated hyperparameters. Covariance functions, also called kernel func-

tions, help to determine the shape of the prior and posterior distribution of the GP and are

parameterized by a vector of hyperparameters. As presented by Rasmussen and Williams

2006, kernels can take multiple forms such as Squared Exponential, Matern, or Rational

Quadratic. In addition, covariance functions can be combined, with addition, subtrac-

tion, or dot product. However, each of these kernels has some hyperparameters that need

to be optimized for the GP model to represent accurately the input-output data. These

hyperparameters are optimized to fit the input-output data relationship. In the case of

the Squared Exponential (SE) Kernel, also called Radial Basis Function (RBF) Kernel,

the unique associated hyperparameter is a length-scale. The learning of these hyperpara-

meters is sometimes ignored by the literature as mentioned by Quiñonero-Candela et al.

2007. It is important to note that accurate hyperparameter values are crucial and the

optimization routine used for finding them can be quite computationally expensive. For

example, the algorithm described by Storn and Price 1997 can be used to optimize GP

hyperparameters, but the good convergence property is getting in the way of optimization

speed. This can become difficult when applied to real-time applications. Another approach

by Durichen et al. 2015 proposed using repeated training phases with different initial hy-

perparameters and keeping the best optimization based on the Negative Log Marginal

Likelihood (NLML) (Rasmussen and Williams 2006). The one approach that has been

trusted is the deterministic conjugate gradients minimizer as presented by Rasmussen

1997, compared to alternative optimization techniques in Rasmussen and Williams 2006

and used in Deisenroth and Rasmussen 2011; Deisenroth 2010; Bonilla et al. 2007.



2.3. Learning and Adaptation 34

In the engineering field, GP can be quite an attractive way for modeling unknown dynam-

ical systems. As presented by Petelin and Kocijan 2011; Kocijan 2016, due to its design,

the number of training data for modeling can be quite small, especially compared to al-

ternative self-learning approaches such as neural networks (Nguyen and Widrow 1990) or

fuzzy models (Jang et al. 1992). From a practical point of view, GPs provide simplicity

through their non-parametric approach and low amount of points for training compared

to alternative approaches. But in addition to this, the Automatic Relevance Detection

(ARD) naturally present in GPs (Kocijan et al. 2005), allows understanding the import-

ance of each input using the values of the hyperparameters. In addition, prior knowledge

can also be included in the design and GP is also able to handle noisy data, often present

in sensor reading, due to its probabilistic underlying approach (Kocijan 2016). Once the

GP model is created, predictions can be generated for unseen data points. Each predic-

tion comes from a normal distribution, with a mean value, prediction output, as well as

a variance, representing uncertainties, that can be associated with the confidence of the

predicted output (Petelin and Kocijan 2011; Kocijan 2016).

Looking at dynamical systems, most applications have been using a linear state space

representation of the systems for state estimation as well as system identification routine.

As presented in Eleftheriadis et al. 2017, Gaussian Processes have been used to model non-

linear state space model and is named Gaussian Process State Space Model (GPSSM).

By using GP, this representation of the plant can be based on a low number of sampling

points as well as incorporating probabilistic properties. As mentioned by Kocijan 2016,

even though the output of the model is continuous, it is possible to use discretized data

as training data.



2.3. Learning and Adaptation 35

2.3.4.1 GP for Regression and control

In the engineering field, it is quite common to consider a model structure to be linear due

to the well-established identification algorithm available. Although this approximation

can be enough for control using techniques such as feedback control design or models

predictive control, the underlying non-linearity can introduce non-desirable behavior in

the control, especially when the complexity of the model is increasing. This is where

non-linear modeling techniques are required.

As presented by Kocijan et al. 2005, GP models can model from identification data non-

linear dynamical model. Rasmussen 1997 has bench-marked the use of GP for regression

purposes against several methods, using both generated as well as simulation data: GP

models can perform similarly to neural networks both in modeling and prediction. Whilst

this approach is an alternative to other identification methods, it has been used over

the years within model-based control (Girard 2004; Kocijan et al. 2003; Rasmussen and

Williams 2006; Williams et al. 2008; Petelin and Kocijan 2011; Kocijan 2016) due to its

probabilistic capability.

Girard 2004 has explored the benefits of using Gaussian Processes over the previously

stated method. The focus has been to use the model’s uncertainties to improve the mod-

eling as well as the forecasting and control, especially for non-linear dynamical systems.

This work has introduced the propagation of the uncertainty method, to help unrealistic

growing uncertainties coming from a single step prediction. This method has been used

to implement a cautious controller. This controller uses an automated regularising beha-

vior to adapt to local uncertainties. Results show that including the variance improves

robustness and tracking performances (Murray-Smith et al. 2003).



2.3. Learning and Adaptation 36

Kocijan et al. 2003 has been a main actor in the use of model-based predictive control

based on Gaussian processes. This implementation relies on a fixed model that has been

identified offline and, hence is not adaptive. Even if some issues are presented such as some

concern about the efficiency of the non-linear optimization approach or the lack of stability

verification, it has been shown that using non-linear model predictive control based on

Gaussian Processes has a higher level of robustness due to the information contained in

the model.

Rasmussen and Williams 2006 has presented an example of how Gaussian Processes Re-

gression (GPR) can outperform linear regression methods, but also non-linear methods

such as Local Polynomial Wavelet Regression (LPWR) in the case of high dimensional

system (seven degrees-of-freedom SARCOS anthropomorphic robot arm). Williams et al.

2008 presents similar results, comparing Linear Regression to single-task GP applied to

a six-jointed manipulator arm (PUMA 560). The amount of samples used for training is

also investigated. Linear Regression (LR) errors are stabilized around 200 samples while

GP predictions keep improving as the amount of sample increases.

In Kocijan 2016 summarize adaptive control using GP and focus on gain scheduling as

well as iterative learning. The concept of evolving GP is also mentioned. Petelin and

Kocijan 2011 introduced the concept of evolving GP (eGP) models. This concept has

been introduced for scenarios where systems might be changing over time, or the operating

region keeps changing. Whilst this type of control problem can be solved using iterative

learning control (Hjalmarsson 2002), it is not currently implemented for GPs. Contrary

to previously stated GP-based model predictive control, where adaptation is not covered,

this concept of eGP is recursively adapting online the overall GP structure (regressors,

basis vectors, type of covariance function, and hyperparameters) using incoming data.

The author mentions that eGP can be considered as a higher level of adaptation of non-

parametric and probabilistic models. Results are presented against a stable non-linear

system and show that it can be successfully controlled.



2.3. Learning and Adaptation 37

As previously mentioned, multiple independent single-output GP can be used to represent

each output of a single system. Even though this method is widely used due to its simpli-

city, it can be considered as sub-optimal (Rasmussen and Williams 2006) or detrimental

(Caruana 1997), hence multi-output learning can be beneficial in the learning. Bonilla

et al. 2007 has implemented a multi-output GP also called multi-task GP. This method

relies on the modeling of the dependencies between each output/task of the model. This

implementation uses a shared covariance function across each output to learn the inter-

dependencies between each output. Additionally, a “free-form” task-similarity matrix is

used based on the assumption that tasks are correlated inside the same cluster. Using

this multi-task GP approach, it is necessary to update the likelihood function to optimize

to take in consideration the additional hyperparameter in the task-similarity matrix. Ex-

periments have been based on two commonly used datasets and results show that using

Multi-Task GP can provide a reduction of the mean absolute error by 6 times. The as-

sumption of an inter-task similarity matrix presented here has been proven inherent in the

work presented by Williams et al. 2008. Experiments have demonstrated the improvement

of the learning when sample data is shared between tasks. It has been demonstrated that

multi-output GP performs well for extrapolation tasks in the context of learning inverse

dynamics models.

Following Bonilla et al. 2007 and Williams et al. 2008, Leen et al. 2012 has extended the

multi-task GP framework by looking at asymmetric multi-task learning. Even though Chai

2009 applied a symmetrical multi-task model to an asymmetrical structure, Leen et al.

2012 has implemented an asymmetric multi-task GP model, also called ”focus multi-task

GP”. The main takeaway from this approach is to simplify the independence assumption

related to the secondary tasks. As presented by Durichen et al. 2015, GP modeling is

healthcare is often focused on a single univariate output time series, in other words,

single-task GP. To improve the robustness of the tools as well as using multiple sensors,

multi-task GP can be used to model multiple correlated multivariate physiological time

series simultaneously. As explained in the research paper, the most important advantage

is to be able to incorporate uneven sample time series into a single model, without the



2.3. Learning and Adaptation 38

need to use techniques such as down-sampling or interpolation. Experiments on real-

world data sets are presented such as vital-sign signals as well as motion compensation

in radiotherapy. It has been shown that multi-task GP (MTGP) can be used as a flexible

approach in various biomedical applications.

2.3.4.2 GP Challenges

Although Gaussian Processes have been used as modeling techniques, there are some chal-

lenges present in using them in a wide range of applications. As mentioned by Kocijan

2016, due to the probabilistic aspect present in this framework, GP modeling can provide

estimated prediction over the entire space. However, one common problem present in the

control system is to obtain meaningful samples as the data lies around the equilibrium

region (Girard 2004). There are four main GP challenges: assessing model accuracy, hand-

ling noisy data, correct selection of the kernel, and optimization of the modeling based

on the number of samples.

Due to its non-parametric nature, assessing the GP model accuracy with the system can

be quite complicated. Instead, assessing performance might be an option to consider, such

as mean squared error or negative log predictive probability. Another possible approach

is to use a measure related to the speed of the approximation. This could be looking at

the learning time of the hyperparameter or the number of iterations for the optimization

routine. As proposed by Quiñonero-Candela et al. 2007, one possible approach is to fix

a “computational budget” of available time, and can be considered as a computationally

efficient approximation measure.



2.3. Learning and Adaptation 39

Whilst Gaussian Processes can handle noisy data, it is worth mentioning that the noise

distribution is considered to be Gaussian distributed. In the case of non-Gaussian noise,

the assumption used for learning the hyper-parameter using the marginal likelihood is

not correct anymore (Kocijan 2016). However, this issue can also be present in other

parametric and non-parametric approaches used for system identification.

One of the main design parameters present in the GP framework is the use of kernels

functions, also commonly called covariance functions. A lot of kernels are available to

pick from, however, this can be quite difficult to select the correct one. As mentioned by

Quiñonero-Candela et al. 2007, the main driver for this selection is based on the complexity

of the underlying system, as well as the number of inputs present and the presence of noise.

In other words, kernels are fully dependent on the system (Kocijan 2016). Some research

investigated the potential of an automated kernel selection framework (Duvenaud et al.

2013). This approach uses a combination of base kernels and has been shown to outperform

traditional kernel selection in multiple tasks.

Finally, one of the main drawbacks of the Gaussian Processes modeling is the compu-

tational burden related to the amount of training data (Kocijan et al. 2005; Quiñonero-

Candela et al. 2007; Lawrence et al. 2002; Durichen et al. 2015; Seeger 2004). On top of

the specific issues with the dynamical system, such as data outside the equilibrium space,

the optimization routine relies on the inverse of a high dimensional covariance matrix.

This can be considered as a concern, this can be seen as a serious problem in the case of

real-time applications, with a computation increasing by O(n3), where n represents the

amount of sample used for training. However, as mentioned by Seeger 2004 and presen-

ted by Lawrence et al. 2002; Quiñonero-Candela et al. 2007; Snelson and Ghahramani

2005, some work has been focused on introducing sparse approximation to reduce the

complexity of the optimization for modeling.



2.3. Learning and Adaptation 40

Sparse Gaussian processes have been introduced to help the computational effort required

by the optimization algorithm. Quiñonero-Candela et al. 2007 has analyzed the perform-

ance of different sparse algorithms using a uniformed interpretation presented as ”exact

inference with an approximate prior”, to enable a direct comparison. Presented as Fully

Independent Training Conditional (FITC) in ibid., Snelson and Ghahramani 2005 in-

troduced the Sparse Pseudo-input Gaussian Processes (SPGP) likelihood approximation.

This approach shows significant improvement especially when looking for an extremely

sparse solution. The method relies on moving the data point, called the inducing point,

to an optimal location without constraining it. This leads to a better solution and it can

model some non-stationary effects.

In more recent research by Grancharova et al. 2023 and Krivec et al. 2021, new algorithms

are proposed to improve GP optimization such as using sub-optimal distributed predict-

ive control or variational GP-NARX models with the use of Graphical Processing Unit

(GPU). Alternatively, other approaches are also available, such as conventional system

identification, fuzzy modeling (Jang et al. 1992), neural networks (Nguyen and Widrow

1990) as well as Support Vector Machine (SVM) to model dynamical systems.

2.4 Summary

In this chapter, biological-inspired control as well as the concept of learning and adaptation

was investigated. Two main approaches have been proposed: Continuous Control and

Intermittent Control. Whilst Continuous Control helped in understanding human control,

multiple fundamental aspects of human control are not covered. Intermittent Control

has been introduced to be able to model uncovered aspects such as the psychological

refractory period. The Intermittent Control framework used for this work is based on the

implementation made by Gawthrop and Wang 2009.



2.4. Summary 41

This implementation relies on an underlying Continuous Controller with an additional

triggering mechanism as well as a Hold. The Hold is used to generate trajectory during

the open-loop intervals. This Hold is originally based on two main approaches: ZOH and

SMH. Whilst ZOH simply holds a constant value during the entire open-loop interval,

SMH relies on the linear representation of the closed-loop dynamics of the system. This

requires to know the system matrices in the state-space representation of the system.

Learning and adaptation have been previously integrated within the Intermittent Control

framework (Martín 2018). The work presented in this thesis combines two approaches to

tackle the redesign of the controller when needed. First, Reinforcement Learning (direct

approach) is proposed to estimate the optimal state feedback gains present in the con-

troller. Secondly, Data Informativity (indirect approach) is proposed to redesign the Hold

block as well as the state feedback gains. This approach can also redesign the hold as

the system matrices are getting estimated by the algorithm. Finally, Gaussian Processes

are introduced as an alternative to model the system dynamics inside the controller. This

allows incorporating a probabilistic non-linear element into it.



Chapter 3

Intermittent Control and Learning

3.1 Introduction

Open-loop trajectories combined with intermittent feedback is the key design principal

of the Intermittent Controller. As described by Gawthrop and Wang 2011, the intermit-

tent control relies on a continuous controller model, following observer-predictor-feedback

design (Kleinman 1969). Figure 3.1 shows the block diagram of this implementation in

the context of human motor control and is composed of four main parts:

– A plant, corresponding to the Neuro-muscular system (NMS) block combined in

series with the system block. The use of a NMS block here is to represent a model

that captures the dynamics of the muscles/actuators in the human body. The output

of this block ue, combined with a disturbance d is used as an input for the system.

The output of the system is represented by y.

– An observer block, which provides an estimate of the missing states that cannot be

accessed directly from the system.

42



3.1. Introduction 43

– A predictor and a delay block, which are used to introduce a delay in the feedback.

This represents delays present in the human controller, for example as due to signal

propagation in the central nervous system. The predictor block is here to predict

states to overcome these delays.

– A state feedback block, which has the purpose to compute the control input needed

for the plant. This is based on the predicted states and not the actual states of the

system.

NMS System Observer

PredictorState FB Delay

+
-

+
-

Figure 3.1: u and ue represent the input and the output of the Neuro-Muscular System
block and d represents the disturbance, respectively. y is the output of the system. xo is
the observed states and the product xssw represents the state version of the set-point w.
xp are the predicted states and td is the time delay compensated by the predictor. The
thin and thick arrows are respectively the scalar signals and vector versions for the case
of a single-input, single-output system. This figure is based on the representation given
by Gawthrop and Wang 2011

In this chapter, first the theory of Continuous control is presented. Then in section 3.3,

Intermittent Control theory is explained, augmenting the continuous control implementa-

tion with triggering and a generalized hold. System identification theory is then presented,

starting with Reinforcement Learning and Data Informativity in section 3.4 and 3.5 re-

spectively, followed by Gaussian Processes in section 3.6.



3.2. Continuous control 44

3.2 Continuous control

The fundamental aspect of implementing an intermittent controller relies on the stability

of the design of the continuous controller shown in Figure 3.1. To correctly design this

underlying continuous controller, linear control theory is used, and it is necessary to

perform the following steps: observer design, state-predictor design, state feedback design,

and finally steady-state design. The details of the implementation of each of these blocks

are described in section 3.2.2, 3.2.3 and 3.2.4.

3.2.1 System

The state-space system follows these equations:


ẋ(t) = Ax(t)+Bu(t)+Bdd(t)

y(t) = Cx(t)+Du(t)

x(0) = x0

(3.1)

where:

– x(t) is the n×1 states vector at time t,

– u(t) is the nu ×1 control input vector at time t,

– d(t) is the nu ×1 disturbance vector at time t,

– y(t) is the no ×n task vector at time t,

– x0 is the states vector at initial time t = 0

– A is the n×n matrix corresponding to the dynamics of the plant,

– B is the n×nu input matrix,

– Bd is the disturbance matrix,

– C is the ny ×n output matrix,



3.2. Continuous control 45

– D is the ny ×n feed-through matrix.

n, nu and ny represent the number of states in the system, the number of input and the

number of output respectively. It is implicitly expected that the plant is both controllable

and observable.

3.2.2 Observer

Contrary to simulated systems, in a real-world system usually not all states can be read

by sensors. In this case, it is necessary to use an observer to estimate the missing states.

The observer is a dynamical model that reconstructs the full states of the system xo from

measurements of the system outputs. Using the state-space approach, it is possible to

design an observer based on Kwakernaak and Sivan 1974:

ẋo(t) = Aoxo(t)+Bu(t)+L[yo(t)−vy(t)] (3.2)

where:

– Ao = A−LCo is the matrix describing the observer dynamics.

– xo(t) is the observed states at time t,

– yo(t) is the measured output signals from the system at time t,

– vy(t) is the measurement noise at time t,

– Co is the no ×n observer matrix,

– L is the n×no Observer Gain Matrix, which can be design using different approach,

such as pole placement or linear-quadratic optimization.

Moreover, the observer can be augmented as a disturbance observer, if the plant contains

disturbance dynamics (Goodwin et al. 2001).



3.2. Continuous control 46

3.2.3 Predictor

Time delays can introduce performance issues and instability in the system if they are

not handled properly on the feedback loop and are present in human control systems.

To overcome the time delay that can be contained in some systems and controllers, a

predictor can be used. Using Smith 1959 as a starting point, multiple versions of a state

predictor have been implemented such as Kleinman 1969; Gawthrop 1977. This section

focuses on the implementation of Kleinman 1969 and the equation of the state-predictor

can be written as:

xp(t +∆) = eA∆x0(t)+
∫ ∆

0
eAt ′Bu(t − t ′)dt ′ (3.3)

where:

– ∆ is time interval where the predicted stated are estimated,

– xp(t) are the predicted states at time t +∆,

– xp,0(t) are the states at the initial condition of this estimation.

The first term of 3.3 is the state-transition and the second term is known as a convolution

integral. This integral can be a bottleneck for real-time systems: it is important to keep

in consideration the solution accuracy in opposition to the execution speed.

3.2.4 State Feedback

The state feedback control law can be defined as follows:

u(t) =−kxp(t) (3.4)

where:



3.2. Continuous control 47

– xp(t) is the predicted state vector at time t,

– k is feedback gain vector,

– u(t) is the control input at time t.

This feedback gain k can be computed via different methods such as Pole Placement

(PP) (Laub and Wette 1984) as well as Linear Quadratic Regulator (LQR) (Anderson

and Moore 1990) using dynamic programming. k has to be designed carefully to ensure

the system’s stability. To do that, the real part of all eigenvalues of the matrix Ac need

to be negative. This ensures an exponential convergence to zeros as t → ∞. The following

section explains the LQR approach and the way to solve it.

Linear quadratic regulator

The system in (3.1) is subject to the following infinite-horizon optimal control problem:

V (x0) = min
u(t)

∫ ∞

0

(
x(τ)T Qx(τ)+u(τ)T Ru(τ)

)
dτ (3.5)

where Q and R are semi-positive and positive definite matrices respectively. The solution

to this minimisation problem is obtained by solving an Algebraic Riccati Equation (ARE)

of the following form:

AT P+PA+Q−PBR−1BT P = 0 . (3.6)

Assuming that the system matrices A and B are known, then it is possible to solve for

P, which is an n× n real symmetric positive-definite matrix. The state feedback that

minimises (3.5) is then given by

k = R−1BT P (3.7)

One way to solve this optimization problem is to use Dynamic Programming, where the

ARE in Equation (3.6) is solved backward in time, extending the horizon to infinity. This

reduces the problem from an infinite horizon optimization (Schochetman and Smith 1989)

to a finite one. The only requirement, as stated before, is that the matrices A and B should

be known.



3.2. Continuous control 48

3.2.5 Steady State design

To respect the control law known as the regulation and the tracking problems, it is ne-

cessary to design the steady-state characteristics carefully to reduce steady-state error to

zero. It is possible to re-write (3.1) as:

0n×1 = Axss(t)+Buss(t)

yss(t) = Cxss(t)
(3.8)

where xss, uss and yss are the steady-state versions of the states, inputs and outputs. For

the case where yss = 1, (3.8) can be rewrite as follows:

A B

C 0

xss

uss

=

0n×1

1

 (3.9)

By solving for xss and uss, the control input is equivalent to

u(t) =−k(x(t)−xssw(t))+ussw(t)

=−kx(t)+(uss +kxss)w(t)
(3.10)

where w(t) is the setpoint. It is possible to define r = uss +kxss such as:

u(t) =−kx(t)+ rw(t) (3.11)

One of the main advantages of this approach is the steady-state computation which can

be done offline: only the feedback gain k needs to be determined to ensure the stability

of the system. Common approaches can be used such as Linear Quadratic Regulator or

Pole-placement (presented in Section 3.2.4). In addition, the control error xw(t) can be

computed as:

xw(t) = xo(t)−xssw(t) (3.12)



3.3. Intermittent control 49

3.3 Intermittent control

IC, as discussed by Gawthrop and Wang 2011, is an extension of a continuous controller

design. This approach adds a triggering algorithm, a Generalized Hold which introduces

a variation on which states are used by the state feedback block as shown in Figure 3.2.

NMS System Observer

Trigger

PredictorState FB Hold Delay

+
-

+
-

Figure 3.2: Block diagram of the intermittent controller designed by Gawthrop and Wang
2011. The state-estimates xw is compared to the hold states xh on the Trigger block.
According to a certain criteria, an event at time ti is generated: this closes the feedback
loop. At time ti, the Hold is reinitialised with the predictor states. The states xh are used
to generate the control input u. The signals shown by dashed lines are only updated
at time ti when the feedback-loop is closed. The thin and thick arrow are scalar signals
and vector version for the case of a single-input, single-output system respectively. This
diagram is based on the representation given in Gawthrop and Wang 2011

This section introduces and describes the notion of intermittency as well as the different

time frames present on the IC. Furthermore, the open-loop period based on a generalized

hold is described.



3.3. Intermittent control 50

3.3.1 Time frames and Triggering

Different time frames involve in Intermittent Control

In the case of IC, different time frames need to be introduced. Three different time frames

are used in this type of control: continuous, discrete, and intermittent times and can be

described as follows:

Continuous Time, is the common time used by the system to evolve, denoted as t.

Discrete Time, is the time sampled every intermittent interval ∆(i), denoted as t(i) and

described as:

∆i = t(i+1)− t(i) (3.13)

Where t(i) represents the time when an event is triggered. In addition, the sampling delay

∆s is introduced to represent the time delay between the event and the observed states

used for the feedback. This delay can be described as follows:

ts(i) = t(i)−∆s (3.14)

Intermittent Time, is the time describing the length of an open-loop interval and is

denoted as τ . It is reset to zeros at each feedback loop event and is described as:

τ = t − t(i) (3.15)

The time between an event and the end of the sampling delay can be describe as:

τs = t − ts(i) (3.16)



3.3. Intermittent control 51

It is also important to introduce the minimum open-loop interval ∆min which represents

the time limit before another event can trigger the feedback loop.

0 < ∆min < ∆i (3.17)

Trigger

Triggering in IC can be controlled using two different modes: Clock-Driven or Event-

Driven. In Clock-Driven mode, the feedback loop every ti generated by a clock and is

constant. This time ti needs to be larger than ∆min.

In Event-Driven mode, the open-loop hold state xh and the closed-loop observed state

xw are used to trigger a sampling event. Different approaches can be used, as presented

by Gawthrop et al. 2011. One approach is the error quadratic function which can be

described as:
ehp(t) = xh(t)−xw(t)

eT
hp(t)Qtehp(t)−q2

t >= 0
(3.18)

where:

– xh(t) is the open-loop hold state at time t,

– xw(t) is the closed-loop observed state at time t,

– Qt is a positive semi-definite matrix,

– qt is an arbitrary threshold,

If the quadratic error exceeds the threshold qt and ti > ∆min, the feedback loop is closed. If

the threshold is set to zero, then IC in Event-Driven mode acts similarly to a Clock-Driven

IC.



3.3. Intermittent control 52

3.3.2 Generalized Hold

During the open-loop period, the control input needed by the system is generated by the

hold block. Two approaches can be used as described by (Gawthrop et al. 2011): (1) a

System-Matched Hold (SMH) implementation, or (2) the Tapping Hold based on Laguerre

functions.

In this section, only the first approach is going to be described. The main idea behind this

algorithm is to implement the dynamics of the closed-loop systems matrix Ac as presented

by Gawthrop and Wang 2011. The closed-loop state space vector can be defined as xc

and replacing u in (3.1), we obtain


ẋc(t) = Acxc(t)

y(t) = Cxc(t)

xc(0) = x0

(3.19)

where

Ac = A−Bk (3.20)

Figure 3.3 compares the state evolution using ZOH and SMH during multiple open-loop

intervals. The states used for the states’ feedback depends on whether the trigger is

activated or not and follows the following pattern:

x(t) =


xp(t) if trig,

xc(t) otherwise.
(3.21)



3.3. Intermittent control 53

Figure 3.3: Comparison between Zero Order Hold (ZOH) and System Matched Hold
(SMH) during multiple open-loop intervals. Initial states are identical for both Holds.
ZOH is constant during the entire open-loop whilst SMH generated states are converging
towards zero.

3.4 Reinforcement Learning

In this section, an overview of Reinforcement Learning is given. The Policy Iteration

algorithm is developed to solve the Algebraic Riccati Equation (ARE) and to extract the

state feedback gain vector.



3.4. Reinforcement Learning 54

3.4.1 Environment-Agent Structure

To understand the working principle of RL, it is necessary to introduce some terminology.

As presented in Figure 3.4, there is an Environment and an Agent. As introduced in section

2.3.3.1, the environment represents the system (also named the world) that the agent is

trying to control. At each iteration, the agent interacts with the Environment using some

action A (similar to a control input). According to this action, the Environment returns

the (possibly partial) states s of the system as well as a reward r associated with it.

Denoted by V (s), the value function efficiently measures the potential future rewards we

may obtain based on the current state. The reward is a number representing how good or

bad the current state of the Environment is. Through an episode, this loop is performed

multiple times.

Figure 3.4: Baseline architecture of RL

States, similar as presented in section 3.2.2, might be on partial in some scenario. Two

different notations are used: s is the complete description of the states while o is the

partial description (similar to the observed states xo in the context of IC).



3.4. Reinforcement Learning 55

Actions can be represented in two different action spaces. Most artificial settings, e.g.

video game environments have a discrete action space, meaning having a finite number of

moves available. Real-world systems, such as robots evolve in a continuous action space.

This knowledge of the system is very important, as it limits which algorithm can be used

in a specific Environment.

The sequence of states and actions is called the trajectory. The Policy represents a rule

under which the agent is trying to find the optimal trajectory for a specific goal. The policy

can be either deterministic or stochastic. As deterministic models are fully determined

by some initial conditions and parameter values, the stochastic approach is closer to real-

world representation due to the presence of inherent randomness.

3.4.2 Solving the ARE via Policy Iteration

The class of algorithms named Policy-Iteration is based on a two step process: the policy

evaluation, equivalent to system identification in Control Theory, and the policy improve-

ment, equivalent to optimal control. One approach presented by Vrabie et al. 2007 has

been to find the optimal control policy without solving directly Bellman’s equation, and

has shown very good results in finding the optimal state-feedback gain vector in the case

of a continuous-time systems with unknown internal dynamics. We used this method to

obtain the optimal values of the state-feedback gain in Equation (3.4), with minor modi-

fications to make it work under the IC framework. Moreover, this algorithm estimates k

without the need to know the system matrix A in (3.1) on page 44.



3.4. Reinforcement Learning 56

Assuming that k is a set of gains that stabilises (3.1), then the closed-loop system can be

described by

ẋc(t) = Acxc(t)

xc(0) = x0 ,
(3.22)

where Ac = A−Bk. Then, an infinite horizon quadratic cost based on k can be defined

as follows

V (x(t)) =
∫ ∞

t
x(τ)T (Q+kT Rk

)
x(τ)dτ = xT (t)Px(t) , (3.23)

where P is also the solution of a Lyapunov matrix equation of the following form

(A−Bk)T P+P(A−Bk) =−
(
kT Rk+Q

)
. (3.24)

In (3.24), V (x(t)) is a Lyapunov function for the system in (3.1). The cost function in

(3.23) can be re-expressed as

V (x(t)) =
∫ t+T

t
xT (τ)

(
Q+kT Rk

)
x(τ)dτ +V (x(t +T )) (3.25)

By using V (x(t)) = xT (t)Px(t) and with an initial stabilising controller k0, the policy

iteration method can be used recursively in an online manner as follows:

xT (t)Px(t) =
∫ t+T

t
xT (τ)

(
Q+kT Rk

)
x(τ)dτ +xT (t +T )Px(t +T ) (3.26)

ki = R−1BT P (3.27)

This formulation of the policy iteration method comes from the work by Murray et al.

2002.



3.4. Reinforcement Learning 57

Notice that (3.26) and (3.27), do not depend on the system matrix A but they do assume

knowledge of B to calculate the optimal gain k. Therefore, by observing the states x(t)

and x(t +T ), and knowing B it is possible to implement the algorithm online to find the

individual entries of the matrix P, which is the solution to the ARE defined in (3.24). To

do this, we can write xT (t)Px(t) as:

xT (t)Pix(t) = p̄T
i x̄(t) (3.28)

where x̄(t) is a quadratic polynomial basis vector that has elements of the form

{
xi(t)x j(t)

}
i=1,n; j=i,n . (3.29)

Also, p̄ can be understood as the result of a vector valued matrix function v(.) that acts

on matrix P as follows

p̄ = v(P) . (3.30)

The purpose of v(.) is to re-arrange the matrix of the elements of P into a column vector

by stacking the diagonal terms and also the off-diagonal elements in the upper triangular

part of P. The off-diagonal terms are taken as 2Pi j.

Using the formulation in (3.28), we can re-write (3.26) as

p̄T (x̄(t)− x̄(t +T )) =
∫ t+T

t
x(τ)T (Q+kT Rk

)
x(τ)dτ

≡ d (x̄(t),k)
(3.31)

In (3.31), the vector p̄ is what we want to estimate, which corresponds to the relevant

elements in matrix P, the difference x(t)−x(t +T ) can be measured from the evolution of

the system and acts as a regression vector of incoming data. However, the important part

of (3.31) lies on the right-hand side, which is equivalent to the calculation of a classical



3.4. Reinforcement Learning 58

LQR cost function using a specific control signal defined by a gain k:

d (x̄(t),ki)≡
∫ t+T

t
x(τ)T (Q+kT

i Rki
)

x(τ)dτ . (3.32)

The cost in (3.32) can be calculated by measuring only the states over the interval [t, t +T ],

since all the other quantities are known. This is the reason why there is the need for an

initial stabilizing gain, which will ensure the correct computation of d (x̄(t),ki) over the

first interval.

3.4.3 Solving for P

The main idea is to obtain the elements of P, therefore, at each iteration step i of the

algorithm (these steps are different than those imposed by the sampling interval) and

after a sufficient number of state-trajectory points are collected (under the influence of

the same ki), a least-squares method can be used to solve for p̄i. This effectively minimises

the error between d (x̄(t),ki) and p̄T
i (x̄(t)− x̄(t +T )).

The condition of having a sufficient number of state-trajectory points, to solve for P, is

met if a minimum of N ≥ n(n+1)/2 measurements x̄i are collected using the time-interval

T . N in this case corresponds to the number of independent elements in the matrix P. For

instance, a 3×3 matrix would have 6 independent elements, three corresponding to the

diagonal terms, and the other three are in the upper-triangular part. The least-squares

solution is then given by:

p̄i =
(
XXT)−1

XY , (3.33)

where

X =
[
x̄1

∆ x̄2
∆ . . . x̄N

∆
]
, (3.34)

x̄i
∆ = x̄i(t)− x̄i(t +T ) , (3.35)



3.4. Reinforcement Learning 59

Y =
[
d
(
x̄1(t),ki

)
d
(
x̄2(t),ki

)
. . . d

(
x̄N(t),ki

)]T
. (3.36)

The resulting architecture brings adaptive capabilities to a standard state-feedback con-

troller with the distinction that the system has to be augmented with an extra state V (t)

where V̇ (t) = xT (t)Qx(t)+uT (t)Ru(t), to compute the associated cost of a given control in-

put u(t) and subsequently of a feedback gain k. This can be seen as calculating d (x̄(t),ki)

or the right hand side of (3.32). This ensures that the algorithm would eventually converge

to the optimal control input after several improvements or updates of the state-feedback

gain k. An important condition is that this algorithm requires enough excitation to solve

for P, if the excitation is lost because the states reached the steady state then the updates

of k should be stopped to avoid incorrect estimates.

3.5 Data Informativity Framework

In this section, Data Informativity theory is described and explained. Data Informativity

has been defined as part of system analysis and control design. The notion of informativity

is usually perceived as information contained in the data, hence playing a major role in

system identification.

In this implementation of the Data Informativity algorithm, measurements of the data

are assumed to be exact, not corrupted by noise. This implementation fully relies on the

algorithm described in van Waarde et al. 2020. Van Waarde et al. 2023 has extended this

algorithm to handle noisy data, but it is not presented here. Assuming the representation

of the true system follows the Equation 3.1, the systems equations can be written in the

form:



3.5. Data Informativity Framework 60

X+

Y−

=

A B

C D

X−

U−

 (3.37)

where:

• X− is the state at the current time.

• U− is the control input at current time.

• Y− is the output corresponding to the next iteration.

• X+ is the state at the next iteration.

With multiple data points, X−, U−, Y−, X+ can be written as an array of states and control

input as follow:

X− :=
[
X1
− X2

− ... Xq
−

]
U− :=

[
U1
− U2

− ... Uq
−

]
Y− :=

[
Y 1
− Y 2

− ... Y q
−

]
X+ :=

[
X1
+ X2

+ ... Xq
+

]
(3.38)

where q represent the length of the data.

Then, using the theorem 34 in van Waarde et al. 2020, if

rank

X−

U−

= n+nu (3.39)

where:

• n is the number of states in the system



3.5. Data Informativity Framework 61

• nu is the number of control input

is equivalent to Equation (3.40)

X−

U−

[V1 V2

]
=

1 0

0 1

 (3.40)

It is then possible to solve:

[
V1 V2

]
=

X−

U−

−1 1 0

0 1

 (3.41)

To solve Equation (3.41), multiple approaches can be used. However, the implementation

within Intermittent Control framework is using the least square algorithm.

Once V1 and V2 are computed, it is then possible to compute the following:

Â B̂

Ĉ D̂

=

X+

Y−

[V1 V2

]
(3.42)

Hence, Â = X+V1 and B̂ = X+V2. Once Â and B̂ are estimated, it is possible to use the

LQR method with pre-defined Qc and Rc matrices to compute the state feedback k (in

Section 3.2.4). Due to the data being discretized based on dt, it is necessary to get back

to a continuous form of matrices A and B.



3.6. Gaussian Processes 62

3.6 Gaussian Processes

In this section, the theory behind Single-Task and Multi-Task Gaussian Processes is ex-

plained as well as the different covariance functions that can be used with the Intermit-

tent Control Framework. The hyper-parameters optimization via the minimisation of the

Negative Log Marginal Likelihood is also explained. Then, the concept of sparse GPs is

introduced.

3.6.1 Single-Task GP

A simple way to understand Gaussian Processes (GP) is to start with single-task GP. The

objective is to create a mapping of a function y(t) linking a set of inputs X = [x1,x2, ...,xN ]
T

and output Y = [y1,y2, ...,yN ]. The input X is n multidimensional while the output Y is

one dimensional. Consider the system:

y(t) = f (x(t))+ ε(t) (3.43)

where ε(t)∼N (0,σ f ) is white Gaussian noise with variance σ f and x(t)∈Rn is the input

state at the instant t. For a multidimensional system, one approach is to create a GP per

output state. Another alternative is to use Multi-Task GP.

To find a GP fitting the output data Y , we assume that y(t)∼N (0,K) where K = Σ+σ f I

is the kernel matrix.



3.6. Gaussian Processes 63

3.6.2 Multi-Output GP

As mentioned above, in the case of single-task GP, each GP is only mapping the relation

to the input states x to a single output y. However, each output might be correlated to the

other, and treating it as a multitude of single independent tasks could result in missing

information and be sub-optimal.

To take into account this potential correlation between tasks, Bonilla et al. 2007 imple-

mented a multi-task model. In addition to the regular single-task kernel present in the

single-task GP, the multi-task model adds a ”free-form” covariance matrix to model the

inter-task dependencies. The covariance matrix is now expressed as:

K(x,x′) = K f (x,x′)⊗Kx(x,x′) (3.44)

where ⊗ is the Kronecker product, K f (x,x′) the inter-task matrix and Kx(x,x′) is the

Kernel Matrix (similar to the single-task case).

There is an addition of nt × nt hyper-parameters where nt is the number of tasks. This

can be reduced by taking the Cholesky decomposition of the matrix K f (x,x′) resulting

in nt +(nt × (nt − 1))/2 hyper-parameters. This approach does not scale well when the

number of tasks is high.



3.6. Gaussian Processes 64

3.6.3 Hyper-parameters and Covariance functions

Different covariance functions, also called kernel functions, can be used depending on the

complexity of the function y(t) that is modeled. The kernel functions presented here are

the Square exponential Kernel, the Periodic Kernel, the Matern, and the Noise Kernel.

Even though non-stationary kernel functions exist, this work is using previous research

such as Deisenroth et al. 2015, where simple non-linear kernel functions can be used to

model a dynamical non-linear system. In addition, linear kernel functions are not used

in this work as GP is introduced in IC to capture the non-linearity present in the plant.

Kernel functions presented here described in Williams and Rasmussen 2006.

To fit a GP to the data, it is necessary to tune the coefficient of the kernel: the hyper-

parameters. The number of hyper-parameters is linked with the complexity of the covari-

ance function used.

3.6.3.1 Square exponential Kernel

The Square exponential kernel function, also called Radial Basis Function (RBF) kernel

function, is expressed as:

KSE(x,x′) = σ2
y exp

(
−(x− x′)2

2l2

)
(3.45)

In the case of multidimensional input, Equation (3.45) can be expressed as follow:



3.6. Gaussian Processes 65

KSEARD(x,x
′) = σ2

y exp
(
−(x− x′)T P−1(x− x′)

2

)
(3.46)

where P is the diagonal matrix with each 1/l parameters in the case where x is multi-

dimensional (also called Automatic Relevance Determination (ARD)). For this kernel, the

list of the hyper-parameters is the following:

ζSE = [l1,1, l1,2, . . . , l1,n,σy] (3.47)

where n is the number of inputs. li,i is the length-scale of the input xi. The larger li,i is,

the lower is the importance of the input xi and vice-versa. σy is the amplitude coefficient

related to the output selected for the training.

The Square exponential kernel function is the most used function when there is no previous

knowledge of the system. The main advantage of this kernel function is the smoothness

of the output (see Figure 3.5 (first row) on page 68).

3.6.3.2 Periodic Kernel

The Periodic Kernel is expressed as:

KPeriodic(x,x′) = σ2
y exp

(
−2sin2(π|x− x′|/p)

l2

)
(3.48)

For this kernel, the list of the hyper parameters is the following:

ζPeriodic = [l, p,σy] (3.49)



3.6. Gaussian Processes 66

where p is the periodicity coefficient.

The Periodic Kernel function is very useful to fit the data with a signal with periodic

behaviour (see Figure 3.5 (fourth row)). However, this specific function assumes perfect

periodicity without any attenuation factor over time. One approach is to combine a peri-

odic and a square exponential kernel function (see Section 3.6.3.5).

3.6.3.3 Matern Kernel

The Matern Kernel is expressed as:

KMatern(x,x′) =
1

Γ(ν)2ν−1

(√
2ν
l

|x− x′|

)ν

Kν

(√
2ν
l

|x− x′|

)
(3.50)

where Kν is a modified Bessel function and Γ(ν) is the gamma function. ν is often set at
3
2 or 5

2 called Matern32 or Matern52.

For this kernel, the list of the hyper-parameters is similar as the Square exponential

Kernel:

ζMatern = [l1,1, l1,2, . . . , l1,nx ,σy] (3.51)

where nx is the number of inputs. The Matern kernel is very similar to the Square Ex-

ponential kernel. However, based on the ν value, it is possible to introduce less smooth

behaviours (Williams and Rasmussen 2006) as presented in Figure 3.5, rows 2 and 3.



3.6. Gaussian Processes 67

3.6.3.4 Noise Kernel

The Noise Kernel is expressed as:

KNOISE(x,x′) = σ2
f I (3.52)

For this kernel, there is only one hyper-parameter:

ζNoise =
[
σ f
]

(3.53)

This kernel is very useful for computational purpose to assure a Positive Definite Matrix.

3.6.3.5 Kernel combination

One big advantage of using GP and kernel-based methods is to be able to mix kernels

via sum or product and still get a kernel. For example, if the function y(t) is periodic

with an attenuation over time, it is possible to multiply a Periodic Kernel, to take into

consideration the periodicity, multiplied by a Square Exponential Kernel, to compensate

for the attenuation (see Figure 3.5 (last row)).



3.6. Gaussian Processes 68

Figure 3.5: Comparison of the different kernel: Square exponential, Matern 52, Matern 32,
Periodic, Square exponential × Periodic. Left column: Sample from the prior distribution.
Middle column: kernel representation. Right column: slice of the kernel at 0, 180 and 360.

3.6.4 Control input impact

The first implementation of GPs within IC was using closed-loop data for training. Hence,

the GP model was modeling the closed-loop dynamics of the plant under the influence of

the controller. This approach required training two separate GPs: one for the Hold block,

and one for the predictor. Whilst the closed-loop dynamics are required inside the Hold,

it is necessary to get an open-loop dynamics model for the predictor. However, the plant

operates in an unstable region of the state space, so it is difficult to gather data without

the use of a controller.



3.6. Gaussian Processes 69

In a second implementation, the control input is also part of the training, thus the GP

can understand the impact of the control input on the output data. This allows us to

get a single GP that can represent open and closed-loop dynamics by simply adding the

properly designed control input to the GP directly. In this case, the GP is now purely

representing the dynamics of the plant, with or without control input. To use the GP as

closed-loop behavior inside the Hold, for example, setting the control input to u =−kx is

sufficient. For getting the open-loop behavior, the control input has to be set to u = 0.

3.6.5 Data pre-processing

Data is the most important part of the estimation to ensure enough information is con-

tained in it. However, depending on the system the GP is trying to model, the range of

data can be quite important. To keep any training data in a small state space area, it is

necessary to pre-process the data before training the GP.

Starting with the output of the GP, it is converted into a difference between the next

output states and the input one.

yGP = y(t +1)− y(t) = ∆X (3.54)

where yGP is the output used for training of the GP.

This allows us to keep the output data in a small range, directly linked to the sampling

time used by the simulation. By increasing the sampling time, the range of the input is

growing as the system has more time for its motion.



3.6. Gaussian Processes 70

The second data processing is converting any angle of the system into a sine and cosine

decomposition. Whilst this creates an additional hyperparameter in the GP, this is helping

in the case of the pendulum, cart pole, and Furuta pendulum as the pendulum can do

multiple spins. This also allows us to limit the data between -1 and 1. In the context of

Intermittent Control, GP is using the states of the plant in addition of the control input

generated by the controller as training data.

Figure 3.6: Data pre-processing diagram. If a state is an angle, it is decomposed into sin
and cos, else it is directly passed to the GP. In case of the Predictor, u = 0 while in the
hold, u = −kX . This diagram is representing two single task GPs (one per state). In the
case of a multi task GP, the GP will output all the states.

3.6.6 Negative Log Marginal Likelihood

To estimate the best hyper-parameters for each covariance function, it is necessary to

optimize a likelihood function. A multitude of likelihood functions can be optimized such

as Bernoulli, Gaussian, or even Poison Likelihood. For our purpose, the Negative Log

Marginal Likelihood is used which is given by:

log(p(yGP|x,ζ )) =− 1
2

log|K|︸ ︷︷ ︸
Complexity

− 1
2

yT
GPK−1yGPy︸ ︷︷ ︸

Data fit

− 1
2

log(2π)︸ ︷︷ ︸
constant

(3.55)



3.6. Gaussian Processes 71

where x and yGP is the inputs and output used for training respectively, ζ is the hyper-

parameters and K is the Kernel. The objective is to minimize the Negative Log Marginal

Likelihood.

For this optimization problem, the minimize function implemented by Williams and

Rasmussen 2006 (also used by many GP regression algorithms such as PILCO (Deisenroth

2010)) based on the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is used for its

reliable performance. In the case of the Multi-Task GP, the Polack-Ribiere algorithm is

used. This method being a gradient-based optimizer, it is necessary to compute the de-

rivative of the Negative Log Marginal Likelihood (Williams and Rasmussen 2006):

∂
∂ζ j

log(p(yGP|x,ζ )) =
1
2

yT
GPK−1 ∂K

∂ζ j
K−1yGP −

1
2

tr
(

K−1 ∂K
∂ζ j

)
=

1
2

tr
(
(ααT −K−1)

∂K
∂ζ j

) (3.56)

where α = K−1y and j is the hyperparameter index.

3.6.7 Prediction

Once the hyper-parameters are estimated by solving the negative log Marginal likelihood,

it is possible to predict an unknown point. For the collection of outputs (yGP,ypred)
T , we

can write:

 yGP

ypred

∼ N (0,Kpred) (3.57)

where

Kpred =

[K(x,x)] [K∗][
KT
∗
]

[K∗∗]

 (3.58)



3.6. Gaussian Processes 72

with K∗ = K(x,xpred) and K∗∗ = K(xpred,xpred). xpred is the input state used for the pre-

diction. The prediction is a Gaussian Distribution with mean and variance (Williams and

Rasmussen 2006):

µ(xn+1) = K∗(xn+1)
T K−1yGP

σ2(xn+1) = K∗∗(xn+1)−K∗(xn+1)
T K−1K∗(xn+1)

(3.59)

3.6.8 Sampling from the distribution

Gaussian processes can generate randomly generated samples following a kernel using mul-

tivariate normal sampling. This can be done by sampling curve from N (µ(xn+1),K∗∗(xn+1)).

In the case of dynamical systems, it is not possible to obtain xn+1 in a single computation;

it is necessary to use the GP as a multi-step ahead prediction using the output from the

previous iteration. Once the prediction is done for a pre-determined horizon, it is possible

to compute K∗∗(xn+1). µ(xn+1) is the multi-step ahead prediction output.

However, using this approach can result in unnatural small prediction uncertainties. The

next section looks at taking into consideration the uncertainties propagation from the

previous iteration.



3.6. Gaussian Processes 73

3.6.9 Prediction with uncertainties propagation

In the case of dynamical systems, the states at the next iteration are dependent on the

current state, and even the previous one in some cases. It is necessary to know the current

state to compute the following one. Due to this chain reaction problem, it is not possible

to query the state at time tx without computing all the states until reaching this time: it is

necessary to use the GP as a multi-step ahead. However, uncertainties can be inaccurate

if not taken into consideration correctly.

One approach proposed by Girard 2004 is to use iterative multi-step ahead forecasting.

This method uses the history of the state for a certain time L and computes the next iter-

ation using a different kernel which is aware of the uncertainties at the previous iteration.

One drawback is the necessity to use the history of states to make this approach work.

Moreover, the prediction length directly depends on the length of the state history used.

Based on the previously stated approach, Deisenroth 2010 implemented a similar frame-

work only based on the current uncertainty of the prediction, which makes easier the

computation:

xpred(t +1),ψ(xpred(t +1))∼ N (xpred(t),K,ψ(xpred(t))) (3.60)

where xpred(t) is the input for the GP at time t, K is the kernel of the GP and ψ(xpred(t))

is the uncertainties associated to xpred(t).

However, only having the uncertainty at the current iteration and not a full kernel, it is

more difficult to sample a curve from the distribution respecting the standard deviation

envelop computed one step at a time.



3.6. Gaussian Processes 74

3.6.10 Single-Task Sparse GP

Even if GP is considered to be data-efficient, the complexity of the optimization of the

hyper-parameters is O(N3), where N is the number of sample used for training. The idea

behind Sparse GP is to reduce this complexity to O(M2N) by taking only M induced

points that bring information to the optimization.

Originally called Spatial Gaussian Predictive Process (SGPP) by Snelson and Ghahramani

2005, this approximation has been renamed Fully Independent Training Conditional

(FITC) algorithm by Quiñonero-Candela et al. 2007. The optimization is focused on the

induce point location. In the FITC algorithm, the most popular inducing point method,

the hyper-parameters stay constant during the optimization and the new Likelihood func-

tion to minimize is expressed as:

−log(p(y|X ,θ)) =
1
2

log(|Qxx +G|)+ 1
2

yT (Qxx +G)−1y+
n
2

log(2π) (3.61)

where Qxx = Kxς K−1
ςς Kςx and G = diag[Kxx −Qxx]+σ2

noiseI. ς is the array of the inducing

points of length M.

More up-to-date algorithms can be used such as Grancharova et al. 2023 and Krivec et al.

2021, however the FITC is the algorithm used in this thesis when using Sparse GPs.



3.7. Conclusion 75

3.7 Conclusion

This Chapter presents the algorithms used in the Thesis. First, the Continuous Control

theory is described, followed by the Intermittent Control Theory, where additional blocks

are introduced.

Reinforcement Learning Learning theory is explained, focusing on the Policy Iteration

algorithm implemented by Vrabie et al. 2007. This algorithm is used to estimate the

optimal state-feedback gains required by the controller. Then, Data Informativity is de-

scribed. Due to its indirect nature, by estimating the systems matrices A and B, to then

compute the feedback gains, the output of the algorithm can be used within the Hold as

well as the state feedback block.

Finally, Gaussian Processes theory is introduced, looking at some of the kernel functions

commonly used for regression purposes, as well as the hyperparameters. Two different

models of GPs have been described: Single-Task and Multi-Task. The purpose of GPs

in this application is to model the internal dynamics of the plant, using online data

while providing information about uncertainties. Approaches to implement uncertainty

propagation for multistep ahead prediciton were also described.



Chapter 4

Intermittent Data Driven Control
for adaptation

The Intermittent Controller is proposed as a biological-inspired controller, presented in

Section 2.2, helping in understanding the human control behavior, especially during quiet

standing. As explained in Section 2.2.1, quiet human standing can be modeled as a Single

Inverted Pendulum balancing task. Intermittent control is based on an underlying con-

tinuous controller implementation which requires a set of state feedback gains to stabilize

the system. As explained in Section 3.2.4, the state feedback can be designed using Pole

Placement and the LQR method. However, both of these approaches require knowing the

system matrices A and B to ensure the stability of the controller (see Equation (3.4)).

In this section, Data-driven approaches are used to estimate the optimal state feedback

gains required by the system and it is the first proposed contribution. First, Reinforcement

Learning is investigated, as this direct approach estimates the state feedback gains k

without the need to estimate the system’s matrices first. Secondly, Data Informativity

is used to estimate the system matrices A and B, then passed to the LQR method to

estimate k. This approach can be considered as indirect. Finally, a discussion section

compares the main differences between these two approaches.

76



4.1. Methods 77

4.1 Methods

In this section, the implementation of the Reinforcement Learning algorithm as well as

the Data Informativity framework with the Intermittent Control framework is explained.

Then, evaluation criteria are introduced to assess the output of each of the algorithms

based on data generated by an intermittent controller.

4.1.1 Implementation

This section is split between two different implementations. Whilst the data used by

both algorithms are coming from the same system, it is getting processed differently.

In the first part, implementation details about Reinforcement Learning in the context

of Intermittent Control are explained, followed by implementation details of the Data

Informativity algorithm within the IC framework. As shown by Gawthrop and Wang

2009, the stability of the Intermittent Controller is ensured.

4.1.1.1 Combined IC-RL framework

In this section we introduce in the form of a diagram, the combination of the policy

iteration algorithm and the current IC framework, under the actor-critic architecture. In

Figure 4.1, we can see a conceptual representation of how these elements interact. From

it, we can see that three blocks are part of this new architecture, the Critic, the block

labeled as V̇ (t), and the Actor, which contains a general IC and a Design stage. The V̇ (t)

block has the role of estimating the LQR cost associated with the current input u(t) (see



4.1. Methods 78

Section 3.4.2) by performing Equation (3.5) based on the observed states. If there is no

observer then the system states x(t) are used. The values of the cost V̇ (t) are then used

by the Critic at time intervals defined by T , to estimate the values of the elements in P

once enough information is collected.

The role of the Actor is to provide an optimal policy based on several updates of the

matrix k which is obtained from P using Equation (3.7). The events generated by IC at

ti have the additional functionality of controlling when the updates would happen. With

the current formulation, these updates happen only when an event is generated; therefore,

if the Critic has already computed a new value of P, the re-design will only be triggered

when the next event happens. One way to ensure that a new value is considered as soon

as possible is to force an event as soon as a new estimate of P has been found.

IC System Observer

Design Critic

+
-

Actor

Figure 4.1: The Agent-Critic framework combined with IC and a policy iteration method.
The quantities y(t), u(t), w(t) represent the output, input, and set-point respectively.
The product xssw(t) is the vector version of the set-point w(t) and the observed states are
defined by xo. The block labeled as V̇ (t) has the role of estimating the LQR cost associated
with the current input u(t) by performing V̇ (t) = xT

o (t)Qxo(t)+uT (t)Ru(t) based on the
observed states. If there is no observer then the system states x(t) are used. The Critic
then computes the new values of matrix P once a sufficient number of samples have been
collected at time intervals defined by T . This information is then passed to a re-designed
stage that computes the new feedback gain k, which is part of the parameters that the
IC needs to operate. IC uses its internal triggering mechanism to start a redesign only
when an event is generated at ti. The grey box represents the elements that are part of the
Actor. The black dashed lines represent quantities that are defined only at event times.



4.1. Methods 79

The Design block has the role of re-computing all the relevant quantities for IC to operate

properly. This involves the computation of a new hold that is based on the updated k.

The set of parameters and quantities that are sent to IC as a consequence of a re-design

is shown as φc, which includes k.

There are some limitations of the stated approach regarding the system and the method.

It is necessary to get access to the full states without the need of an observer. In addition,

as previously stated, it is necessary to start with a stable controller to gather points for

the first estimation.

4.1.1.2 Combined IC-Data Informativity framework

In this section, the adaptation of the Data Informativity to fit within the Intermittent

Control is explained. One of the main differences to a continuous controller is the presence

of events with the Intermittent Controller. The term occlusion is introduced, which has

for purpose to hide the data coming from the plant following a triggering event when

passed to the algorithm. Figure 4.2 shows graphically how this is implemented.



4.1. Methods 80

Figure 4.2: Concept of occlusion for Data Informativity. The data is coming from an
Intermittent Controller applied to a Single Inverted Pendulum. The grey area represents
the window of data passed to the algorithm. The red box shows the occluded data.

Figure 4.2 shows the response of an Intermittent Controller applied to the Single Inverted

Pendulum. This figure shows two highlighted areas: the grey one represents the window

size of the data passed to the algorithm and the red area shows the data that is occluded,

hence not used for the estimation of A and B. The occluded area is applied to a single

time step before the event and can be any length following the event.

Following on the concept of event, and open-loop trajectories within Intermittent Control,

it is important to time the use of any algorithm output with the triggering time. The

diagram in Figure 4.3 visualizes when the output of the estimation is getting used by the

Intermittent Controller. Assuming tDI = n, where tDI is the set time to perform the Data



4.1. Methods 81

Informativity computation:


True, if t > tDI and trig0

False, otherwise
(4.1)

It is necessary to wait for an event in the Intermittent Controller in addition to the time

t > tDI. Hence, the Data Informativity is not performed evenly due to the fact that it

needs to wait for the next triggering. This can be represented in Figure 4.3.

DI = True

Figure 4.3: Timing of Data Informativity with Intermittent Framework. The data dis-
played is representing the open-loop interval. Dashed vertical line represents when DI is
used. The Data Informativity is running every time t > n and trig0 is true. This introduces
an unevenly distributed time between each algorithm run.

4.1.2 Evaluation criteria

Only computer simulations are used as analytical tools which helps with time-varying

system experiements. Multiple measures are computed during the simulation to assess

the controller’s performance. Five measures are computed in the time domain, using

simulation data. First, the Root Mean Square Error (RMSE) is computed for each state

(θ̇ and θ for the pendulum) between the measured states and the reference (zero in the



4.1. Methods 82

regulation case).

θ̇RMSE(θ̇ ,wθ̇ ) =

√
∑N−1

i=0 (θ̇i −wθ̇i
)2

N
(4.2)

θRMSE(θ ,wθ ) =

√
∑N−1

i=0 (θi −wθi)
2

N
(4.3)

The mean of the control input and the mean of the open-loop interval are also computed.

This is to assess if the control input is correctly balanced and to measure if the open-loop

is close to the SMH response, and not triggering at the minimum open-loop interval. In

the IC framework, the open-loop interval between each trigger can be used as a proxy

to assess how well the Hold matches with the plant dynamics. If the open-loop interval

∆ol is long, then the match between the output states from the hold closely matches the

system’s states. On the other hand, if ∆ol is short, the states generated by the hold do

not represent the closed-loop system’s dynamics correctly (see Figure 4.15) even though

the θRMSE is low.

uMEAN =
1
N

N

∑
t=1

u(t) (4.4)

∆olMEAN =
1
N

N

∑
t=1

∆ol(t) (4.5)

One additional measure computed is the variability of the control input. This is done

using the cross-correlation of the signal between two consecutive open-loop intervals.

(a∗ v)n =
∞

∑
m=−∞

amvn−m (4.6)



4.1. Methods 83

where a is the control signal during one open-loop interval and v is the control signal

during the following one. Each signal is normalized using

anorm =
a−a

σa −N
(4.7)

where a is the mean value of the array a, σa is the standard deviation of a and N is the

length of the array.

Then the variability is computed as:

Ψ =−max(|(a∗ v)n|)+1 (4.8)

By normalizing both arrays a and v, Ψ is bounded between 0 and 1, where 0 represents

no variability and 1 shows high variability. Figure 4.4 shows the output of the cross-

correlation between two open-loops intervals.

Figure 4.4: Example of cross-correlation applied to consecutive open-loop interval. The
top row is showing the angle timeserie coming from the simulation for the current and
previous open-loop interval. The bottom row is showing the output of the cross-correlation
function. (a) is showing high correlation between the two signal (Ψ= 0) and (b) is showing
a low correlation (Ψ = 0.4)



4.1. Methods 84

The output of Reinforcement Learning and Data Informativity are different. Reinforce-

ment Learning is outputting the state feedback gains k directly whereas the Data Inform-

ativity framework is outputting the system matrices A and B. It is needed to compared

both approach to the optimal value differently. In the case of RL, the error between

the optimal gains and the estimated one is investigated. Similarly, when using the DI

algorithm, the error is computed between each element of the system matrices A and B.

In the case of the Single Inverted Pendulum, the system matrices A and B as well as the

state feedback k can be represented as:

A =

A1,1 A1,2

A2,1 A2,2

 B =

B1

B2

 k =

k1

k2



Similarly, this can be expanded to the cartpole system as follow:

A =


A1,1 A1,2 A1,3 A1,4

A2,1 A2,2 A2,3 A2,4

A3,1 A3,2 A3,3 A3,4

A4,1 A4,2 A4,3 A4,4


B =


B1

B2

B3

B4


k =


k1

k2

k3

k4





4.2. Results 85

4.2 Results

In the following section, Intermittent Control is applied to the Single Inverted Pendu-

lum (see Appendix A). The goal of each algorithm is to estimate correctly the optimal

state feedback of the system. First, Reinforcement Learning is assessed followed by Data

Informativity. The Continuous Controller is compared with the Intermittent Controller

using SMH.

4.2.1 Reinforcement Learning

As previously mentioned, Reinforcement Learning requires an initial stable controller.

Figure 4.5 shows the location of the initial poles in relationship to the optimal poles. The

optimal poles are located at [−6.83,−2,92] when using the LQR method with Q = I and

R = 1. Four sets of initial poles are used for all following RL-based simulations: [−8.1,−8],

[−4.1,−4], [−3.1,−3], [−2.1,−2]. Two initial sets of poles are located in-between the

optimal one, one set on the left of the optimal one, making the initial controller faster,

and one set closer to the imaginary axis, making the controller slower.

Real

Imaginary

Optimal Poles

[-
8.

1;
 -8

]

[-
4.

1;
 -4

]

[-
3.

1;
 -3

]

[-
2.

1;
 -2

]

Initial Poles

[-6.83; -2.92]

Figure 4.5: Diagram showing the location of the initial poles compared to the optimal
poles applied to the SIP system.



4.2. Results 86

4.2.1.1 Continuous Control

Two of the initial poles are located in between the optimal poles and the two other initial

poles are located on either side of the optimal ones. These four conditions are tested

using a Continuous Controller first, as this algorithm has been designed to work with this

specific type of controller. Figure 4.6 shows the results of this algorithm.

Figure 4.6: Reinforcement Learning applied with a Continuous Controller on the Single
Inverted Pendulum. Each column is starting with a different initial pole conditions. From
left to right: [−8.1,−8], [−4.1,−4], [−3.1,−3], [−2.1,−2]. Top row is the states of the
SIP. Second row is the control input. The last row is the estimation of k. The horizontal
black dashed line is the optimal value for k. Each vertical grey line representation a new
k estimation.

As presented in Figure 4.6, the Reinforcement Learning algorithm can converge to the

optimal poles, meaning the optimal gains for k for all initial sets of poles. For the four

initial poles, it takes between 3 and 5 iterations for the algorithm to converge to the

optimal value, which can be achieved below 15ms with dt = 1ms.



4.2. Results 87

4.2.1.2 Intermittent Control

Knowing that Continuous Control can be used with this Reinforcement Learning frame-

work, Intermittent Control is now used to assess its capabilities to converge to the optimal

k values. The following figures are assessing the convergence of the state feedback gain

under different sets of minimum open-loop intervals and thresholds within IC. In the first

simulation, the Intermittent Controller is operating in clock-driven mode, explained in

Section 3.3.1, and the minimum open-loop interval is set to 3ms. These parameters are

used to replicate as closely as possible a continuous controller with an intermittent one.

Figure 4.7: Reinforcement Learning applied to Intermittent Control on Single Inverted
Pendulum. Clock-driven mode with ∆ol = 3ms. Each column is starting with a different
initial pole conditions. From left to right: [−8.1,−8], [−4.1,−4], [−3.1,−3], [−2.1,−2].
Top row is the states of the SIP. Second row is the control input. Third row is the open-
loop interval, ans last row is the estimation of k. The horizontal black dashed line is the
optimal value for k. each vertical grey line is a k estimation.



4.2. Results 88

As presented in Figure 4.7, the state feedback can converge toward the optimal value when

the initial poles are located in between the optimal poles. It is taking 6 and 11 iterations

respectively, whilst only 4 and 5 iterations are required by the Continuous Controller.

In addition, when initial poles are located outside the optimal ones, the algorithm is

not able to converge, and this brings instability in the pendulum response. When the

initial poles are [−8.1,−8], only k2 is converging to the correct target. In the following

simulations, Intermittent Control is kept in clock-driven mode, however, the minimum

open-loop interval is increased to 50ms.

Figure 4.8: Reinforcement Learning applied to Intermittent Control on Single Inverted
Pendulum. Clock-driven mode with ∆ol = 50ms. Each column is starting with a different
initial pole conditions. From left to right: [−8.1,−8], [−4.1,−4], [−3.1,−3], [−2.1,−2].
Top row is the states of the SIP. Second row is the control input. Third row is the open-
loop interval, ans last row is the estimation of k. The horizontal black dashed line is the
optimal value for k. each vertical grey line is a k estimation.



4.2. Results 89

In comparison to Figure 4.7, when the minimum open-loop interval is increased, 3 out

of 4 initial conditions can converge towards the optimal gains (see Figure 4.8). As the

minimum open loop is larger than before, it is now taking longer for the RL algorithm

to get data, due to the increased in time between each event. However, it is taking fewer

iterations to converge toward the optimal gains: [−8.1,−8]: 4 iterations, [−4.1,−4]: 3

iterations and [−3.1,−3]: 5 iterations. This is now in a similar range as the Continuous

Controller. However, it is worth mentioning the time for IC to get the amount of sample

needed by the algorithm, which can be too long in the case of a fast unstable system.

In the results presented above, the Intermittent Controller is operating in clock-driven

mode. This is forcing a triggering from the controller at a fixed interval. This approach is

not monitoring the states of the plant as a triggering mechanism. Next the Intermittent

Controller is operating in event-driven mode, which allows different lengths of open-loop

interval by comparing the states predicted by the Hold and the actual states from the

plant. When operating in event-driven mode, the length of the open-loop interval can be

used as a proxy for the match between the hold and the plant. The threshold is now set

to 1e−4 rad and even though the threshold is very small, it is enough for the Intermittent

Controller to not trigger at the minimum open-loop interval once the optimal gain is

found. Results can be seen in Figure 4.9.

The minimum open-loop is set to 3ms, to allow fast triggering when the gains used by the

controller are not optimal. Focusing on the two middle simulations, where initial poles

are [−4.1,−4] and [−3.1,−3] respectively, the Intermittent Controller can increase its

open-loop interval to around 1.3 seconds once the optimal gain is used for control.



4.2. Results 90

Figure 4.9: Reinforcement Learning applied to Intermittent Control on Single Inverted
Pendulum. Event-driven mode with ∆ol = 3ms and Threshold = 1e−4. Each column is
starting with a different initial pole conditions. From left to right: [−8.1,−8], [−4.1,−4],
[−3.1,−3], [−2.1,−2]. Top row is the states of the SIP. Second row is the control input.
Third row is the open-loop interval, ans last row is the estimation of k. The horizontal
black dashed line is the optimal value for k. each vertical grey line is a k estimation.



4.2. Results 91

In contrast to Figure 4.7, in addition to the initial poles located in-between the optimal

one, the simulation where the initial poles are [−2.1,−2] is stable. However, the optima-

tion started converging toward a non-optimal set of gains, which forced the Intermittent

Controller to trigger at the minimum open-loop interval for some time. This allowed the

algorithm to estimate gains faster and finally converge to the optimal one. Similarly to

the clock-driven case, the minimum open-loop intervals are increased to 50ms to assess

the reliability of this algorithm with Intermittent Control.

Figure 4.10: Reinforcement Learning applied to Intermittent Control on Single Inverted
Pendulum. Event-driven mode with ∆ol = 50ms and Threshold = 1e−4. Each column is
starting with a different initial pole conditions. From left to right: [−8.1,−8], [−4.1,−4],
[−3.1,−3], [−2.1,−2]. Top row is the states of the SIP. Second row is the control input.
Third row is the open-loop interval, ans last row is the estimation of k. The horizontal
black dashed line is the optimal value for k. each vertical grey line is a k estimation.



4.2. Results 92

Figure 4.10 is based on an Intermittent Controller operating in event-driven mode and

using a minimum open-loop interval of 50ms. Similarly to all cases presented before, the

initial poles located in between the optimal ones converge to the optimal gains. However,

focusing on the initial poles outside the optimal one has changed compared to when the

minimum open-loop interval is set to 3ms. When the initial poles are [−8.1,−8], even

though the simulation is stable, k2 is not converging the optimal value. Looking closely

at the case where the initial poles are [−2.1,−2] between a minimum open-loop of 3ms

(Figure 4.9) and 50ms (Figure 4.10), the plant is getting into an unstable regime. This is

due to the minimum open-loop being larger, which limits the Intermittent Controller to

trigger fast enough to reach the minimum of 3 samples required by the algorithm.

4.2.2 Data Informativity

As presented in the previous section, Reinforcement Learning has been used to estimate

the optimal state feedback for the plant. However, there are two drawbacks to using this

algorithm. First, it is required to start with a stable controller. Even though this controller

is stable, it might not converge to the optimal gain depending on the IC parameters used.

Secondly, this approach is only estimating k without computing the system matrices A

and B. Hence, this framework cannot be used to redesign the Hold block in the case of

adaptation as it is still necessary to get these matrices to design the controller.

Focusing on Intermittent Control, Martín 2018 used the Kalman filter to handle adapta-

tion cases. In this section, Data Informativity is used to perform the system identification.

First, this framework is applied to a Continuous Controller, then it is applied to an In-

termittent Controller.



4.2. Results 93

4.2.2.1 Continuous Control

In this section, the Data Informativity framework is applied within a Continuous Con-

troller to evaluate its capability without the influence of intermittency present in the

Intermittent Controller. The simulation is based on the Single Inverted Pendulum (see

Appendix A).

One issue with Continuous Control is the lack of persistence of excitation, hence the Data

Informativity framework is not able to solve the least square optimisation problem due to

the rank condition not being met (Equation (3.39)). To overcome this, control input noise

has been added on top of the state feedback input. This is to ensure that the pendulum

is in constant motion throughout the simulation.

As shown in Figure 4.11, Data Informativity is used to estimate the system matrices. The

coefficients A1,2, B1, K1 and K2 are not being estimated accurately by the algorithm. One

important thing to notice is the flip sign of the coefficient A1,2 (from positive to negative).

This change in sign could bring instability if the output of the Data Informativity was

used to redesign the controller. In addition, the control input is always updated due to

the noise being propagated back to the controller via the system.

To keep some excitation of the system without the use of noise, it has been decided to

move from normally distributed noise to a multisine signal. This allows us to specify a

predefined range of frequency, a phase delay as well as an amplitude for each sinusoidal

signal. By using this type of signal, it is possible to decompose it by each excited frequency,

which can be useful when doing frequency analysis.



4.2. Results 94

Figure 4.11: Data Informativity applied to noisy Continuous Controller. The Top row are
the two states of the Single Inverted Pendulum (θ̇ and θ ). The second row is the control
input with noise generated by a state feedback controller. Row 3 and 4 plot the true
value (red) and the estimated one (grey) using the Data Informativity Framework. Each
subplots represents in order: A1,1, A1,2, B1, K1, A2,1, A2,2, B2 and K2.



4.2. Results 95

Figure 4.12: Data Informativity applied to Continuous Controller with multisine disturb-
ance. The Top row are the two states of the Single Inverted Pendulum (θ̇ and θ ). The
second row is the control input with noise generated by a state feedback controller. Row 3
and 4 plot the true value (red) and the estimated one (grey) using the Data Informativity
Framework. Each subplots represents in order: A1,1, A1,2, B1, K1, A2,1, A2,2, B2 and K2.



4.2. Results 96

In Figure 4.12, moving from a noisy disturbance to a multisine disturbance is helping

the Data Informativity algorithm to estimate more accurately the underlying system.

However, this approach requires applying a disturbance to the system to reach enough

excitation and get an accurate estimation.

This technique has been also applied in the case of time-varying system, where the pen-

dulum length changes through time. This change of length is directly affecting the value

of the matrices A and B, hence modifying the optimal state feedback k coming from the

LQR method.

Figure 4.13: Data Informativity applied to Continuous Controller with multisine disturb-
ance. The Top row are the two states of the Single Inverted Pendulum (θ̇ and θ ). The
second row is the control input with noise generated by a state feedback controller. Row 3
and 4 plot the true value (red) and the estimated one (grey) using the Data Informativity
Framework. Each subplots represents in order: A1,1, A1,2, B1, K1, A2,1, A2,2, B2 and K2.



4.2. Results 97

As presented in Figure 4.13, the length of the pendulum changes at 50, 100, 150, and

200 seconds, moving from 1 meter to 1.2, back to 1 then dropping to 0.8 to finally be

back at 1 meter. Loram et al. 2006 shows the effect of the length of the pendulum on the

time constant of the system. They show the intrinsic neuromuscular limitation from the

frequency response of the human controller. This simulation helps understand the limit of

the algorithm when the system is getting easier or harder to control (increase or decrease,

respectively, of the length of the pendulum). The output of the Data Informativity al-

gorithm is quite noisy due to the speed at which the algorithm is used. The estimation is

close to the actual value and can be used to capture change in the system. However, it is

necessary to add a disturbance signal to ensure persistence of excitation.

4.2.2.2 Intermittent Control

As presented in the section above, the Continuous Controller needs to have an external

disturbance signal to keep persistent excitation. In this section, Data Informativity is

applied with data coming from an Intermittent Controller to estimate the system matrices

A and B. When system is considered as a time-varying system, adaptive control can be

use to ensure the match between the controller and the system. However, adaptive control

can be quite complicated when applied to an unstable system. As stated in Section 2.2,

Intermittent Control is used to replicate human control behavior, and the combination

of open and closed-loop helps. Figure 4.14 highlights the corresponding block in the IC

framework which is updated when both matrices are estimated.



4.2. Results 98

NMS System Observer

Trigger

State FB Hold

+
-

+
-

Figure 4.14: Intermittent Control block diagram. Block of the controller updated by the
Data Informativity algorithm are highlighted in green.

To understand the impact of a badly designed Hold block in the Intermittent Controller

compared to the impact of wrong state feedback, the following set of simulations have been

run and presented in Figure 4.15. Each column represents (a) Hold and state feedback

correct, (b) Hold correct, state feedback wrong and (c) Hold wrong and state feedback

accurate. During the simulation, the pendulum length starting at 1m is increased to 1.2m

at 50 seconds and then reduced back to 1m at 100 seconds before going down to 0.8 at

150 seconds. It is then reset to 1m at 200 seconds.



4.2. Results 99

Figure 4.15: Assessment of the impact of having mismatch between Plant and IC. Pen-
dulum is changing length at 50, 100, 150 and 200 seconds to create mismatch between
plant and the controller. Each column represents: Update of the Hold and state feedback
gains, update of the hold only and update of the state feedback gains only. Top row is
the velocity of the pendulum, second row is the angle of the pendulum. Third row is the
control input coming from the intermittent controller. Last row is the open loop interval.

As presented in Figure 4.15, having either the hold or the state feedback wrong impacts

the overall performance of the intermittent controller. On the left column, the hold and

state feedback are applied at the correct time when the system changes. In the middle

column, the state feedback keeps its original value, designed for a 1-meter pendulum whilst

the pendulum length changes every 50 seconds. The hold is getting updated to match the

plant. In the last column, the hold keeps its original design, using the 1-meter pendulum,

and only the state feedback is updated to match the pendulum’s length.



4.2. Results 100

Looking at the bottom row, the open-loop interval shows the impact of having wrong

matrices. In the case of an accurate hold only, the open-loop is quite matching with the

right column. However, the control input is getting impacted when the pendulum length is

increased to 1.2 meters. This is then impacting the system’s states that are balancing the

pendulum unevenly. Focusing on the last column, where the hold is not getting updated

to match the plant, the overall impact is more noticeable compared to the previous case.

On top of a faster triggering when the hold does not match the system, the angle of the

pendulum also does not match the reference. The pendulum is now balancing around

0.25 rad. When the pendulum length is decreased to 0.8m, the open-loop interval is also

significantly decreased compared to the case when the controller is fully designed on the

plant. It is worth mentioning that the controller is still making the system stable in this

case.

One significant difference between the control signal from the Intermittent Controller

compared to the Continuous Controller is the presence of events, resulting in some dis-

continuity in the control input. To account for this discontinuity, occlusion is used (see

Section 4.1.1.2) and Figure 4.16 summarizes the impact of the window length of the data

used for identification and the occlusion window.



4.2. Results 101

Figure 4.16: Estimation of the coefficient A1,2 from the matrix A in the state space repres-
entation of the Single Inverted Pendulum (SIP). The x-axis represents the window size in
ms, and the y-axis represents the value estimated by the Data Informativity framework.
Each window size is having different occlusion window size: None, 10, 50, 100 and 200ms
(applied after the event in Intermittent Framework).

Multiple observations can be made from Figure 4.16. This figure is focusing on the coef-

ficient A1,2 from the matrix A. This is due to this coefficient being more impacted when

the pendulum length is updated. Without using the occlusion technique (light orange),

increasing the window size, thus having more data for the estimations, is narrowing the

spread of the A1,2 coefficient. However, the median value of multiple estimations is di-

verging from the nominal true value. By adding the occlusion window, the offset of the

median value is reduced and is getting closer to the true value. In addition, the spread of

multiple estimations is reduced. It is worth noticing that the estimation is not improved

by increasing the occlusion window. Based on these results, each following simulation will

use an occlusion window of 10ms except where stated differently.



4.2. Results 102

Similarly to the work performed with the Continuous Controller in section 4.2.2.1, Data

Informativity is applied using data generated by the controller itself, hence coming from

the Intermittent Controller in this case. In this first simulation presented in Figure 4.17,

the DI algorithm is run every tDI = 1sec. Similarly to the Continuous Controller case, the

estimation generated by the DI framework is not used to update the controller online.

Figure 4.17: Data Informativity applied to SMH Based Intermittent Controller. The top
row are the two states of the Single Inverted Pendulum (θ̇ and θ ). The second row is the
control input with noise generated by a state feedback controller. Row 3 and 4 plot the
true value (red) and the estimated one (grey) using the Data Informativity Framework.
Each subplots represents in order: A1,1, A1,2, B1, K1, A2,1, A2,2, B2 and K2. The system is
not changing during the simulation.



4.2. Results 103

Based on an Intermittent Controller, the Data Informativity can estimate accurately

the matrices A and B without the need for any external disturbance as the excitation

introduced by the Intermittent Controller is enough. The occlusion is enabled in this

simulation, however, having tDI = 1sec and the open-loop interval higher than tDI, the

Data Informativity is performed at each triggering in IC, thus there is no triggering to

occlude in the data.

In contrast to the previous simulation, the following simulation uses the output of the Data

Informativity framework to redesign the controller online. The newly designed controller

is then used until the next Data Informativity computation. It is important to remember

that the DI algorithm is only performed when the controller is closing the loop to avoid

updating the controller during an open-loop interval (c.f: Figure 4.3). The following two

figures show the impact of the DI windows during the simulation.

Figure 4.18 shows the impact of the variable tDI in conjunction with τ in Intermittent

Control for the time series. Figure 4.19 shows the output of the Data Informativity al-

gorithm and few observations can be made. If tDI < ∆OL, the Data Informativity algorithm

is only using a single open-loop interval to estimate the plant. When tDI = 1 second, the

estimation of the matrices coefficients is the furthest away compared to the other tDI value.

However, the estimation is close to the true value. Increasing tDI to 2 seconds makes the

output of the Data Informativity oscillate between two values. This is due to the algorithm

taking a single event or two, based on the timing of the events. The estimation is moving

a little around the nominal value due to the timing of each event but stays close to the

nominal value. Moreover, increasing tDI to 5 seconds gives enough data to the algorithm

to estimate the matrices coefficient very closely to the nominal value as well as removing

any type of variability in the DI output.



4.2. Results 104

Figure 4.18: Impact of the tDI in Intermittent Control. The three figures are using a
different tDI: (a) tDI = 1sec, (b) tDI = 2sec, (c) tDI = 5sec. The top row shows the two
states of the Single Inverted Pendulum (θ̇ and θ ). The second row is the control input
with noise generated by a state feedback controller. The last row is the variability of θ
(in grey) and θRMSE (in red)



4.2. Results 105

Figure 4.19: Impact of the tDI in Intermittent Control. The three colors correspond respect-
ively to tDI = 1sec (green), tDI = 2sec (orange), tDI = 5sec (blue). Each subplots represents
in order: A1,1, A1,2, B1, K1, A2,1, A2,2, B2 and K2.

Whilst the DI algorithm can estimate the system matrices accurately when the system

is not changing through time, the focus is now to assess if this technique can handle

any change of plant parameters during the simulation. Based on the previous assessment

presented in Figure 4.15, it is important to keep the matrices of the plant and the one

used to design the controller in sync to ensure better performances, such as regulation

and tracking. In the following simulations, the system is getting updated at 30 seconds.

The initial pendulum length of 1 meter is increased to 1.2 meters. This modification of

the system is shown in the following figures in rows three and four of Figure 4.20 and is

changing the matrices A and B as follows:

A =

−0.3 19.62(→ 17.84)

1 0

B =

4(→ 3.31)

0

 (4.9)



4.2. Results 106

Figure 4.20 is divided in two. The left set of plots is based on tDI = 5sec whereas the right

side is using tDI = 10sec. Based on previous results, these simulations are using occlusion

of the events. By increasing tDI, the amount of data used by the Data Informativity

algorithm is increased. This helps to get a more consistent estimation as presented in

Figure 4.18. However, in the case of adaptation, it is important to react quickly to any

potential change that could bring instability to the system.

Figure 4.20: Impact of the tDI in Intermittent Control applied to the Single Inverted
Pendulum. The two figures are using a different tDI: (a) tDI = 5sec and (b) tDI = 10sec.
The top row shows the two states of the Single Inverted Pendulum (θ̇ and θ ). The second
row is the control input with noise generated by a state feedback controller. The last row
is the variability of θ (in blue) and θRMSE (in red). The system is getting updated at 30
seconds during the simulation: the length of the pendulum is moving from 1m to 1.2m

Once the system is changing from 1m to 1.2m, there is a noticeable change in the behavior

of the system’s states. The Data Informativity estimation being consistent in estimating

the plant matrices allows it to be run repetitively and, hence can be used to estimate

new matrices and be used to redesign the controller when a change occurs during the

simulation. In both cases, the algorithm is estimating accurately the new set of matrices

introduced by the increase of the pendulum’s length as presented in Figure 4.21. The



4.2. Results 107

Intermittent Controller is redesigned after each estimation from the Data Informativity,

which helps the states of the system go back to the symmetrical balancing behavior. Whilst

increasing tDI is also increasing the amount of data available to the Data Informativity

algorithm, the results of the estimation stay accurate with tDI = 5 seconds and tDI = 10

seconds, and the variability range is unchanged. The variability is only going up when

the system is changing hence the two following open-loop intervals are not alike anymore,

then it is back to nearly zero once the matrices are correctly estimated.

Figure 4.21: Impact of the tDI in Intermittent Control applied to the Single Inverted
Pendulum. The two colors correspond respectively to tDI = 5sec (green) and tDI = 10sec
(orange). Each subplots represents in order: A1,2, K1, B1 and K2. The system is getting
updated at 30 seconds during the simulation: the length of the pendulum is moving from
1m to 1.2m.

Based on the previous simulation, it is clear that Data Informativity can be used with IC

to detect changes in the system. However, it is important to assess if this framework can

handle more difficult changes in the system. Increasing the pendulum length is making

this system slower and easier to control. Moreover, even if the controller is not getting

updated, it can control the longer pendulum. The following simulation updates the length



4.2. Results 108

of the pendulum multiple times, in both directions. The pendulum starts with an initial

length of 1m, like previously, and increases to 1.2m at 50 seconds. Then comes back to 1m

at 100 seconds before dropping to 0.8m at 150 seconds. Finally, the pendulum is increasing

again back to 1m at 200 seconds.

Figure 4.22: Data Informativity output using SMH Based Intermittent Controller without
redesign, tDI = 1sec. The left side does not have occlusion. Occlusion is enable on the right
side. The top row shows the two states of the Single Inverted Pendulum (θ̇ and θ ). The
second row is the control input with noise generated by a state feedback controller. The
last row is the variability of θ (in blue) and θRMSE (in red). The system length is changing
through the simulation: start at 1m, go to 1.2m at 50s, back to 1m at 100s, then lowered
to 0.8 at 150s then back to 1m at 200s.

Figure 4.22 is using tDI = 1sec. The output of the Data Informativity algorithm is not

used to update the controller online. This is to emphasize the importance of the occlusion

technique where the data passed to the Data Informativity contains discontinuity due to

events in the intermittent control input. As explained, the controller can keep the pen-

dulum stable even with different lengths. Alternative approaches such as linear stability

analysis can be used as the pendulum is operating around the equilibrium point. The



4.2. Results 109

triggering is getting smaller as the length is changing, due to the mismatch between the

plant and the controller. When the pendulum’s length increases to 1.2m, the algorithm

accurately estimates the matrices A and B with or without occlusion. However, when the

pendulum’s length decreases to 0.8m, the occlusion effect plays a major role.

Figure 4.23: Impact of the tDI in Intermittent Control applied to the Single Inverted
Pendulum without redesign. tDI = 1sec. The two colors correspond respectively to tDI =
5sec (green) and tDI = 10sec (orange). Each subplots represents in order: A1,2, K1, B1 and
K2. The system length is changing through the simulation: start at 1m, go to 1.2m at 50s,
back to 1m at 100s, then lowered to 0.8 at 150s then back to 1m at 200s.

Without the occlusion enabled, the coefficient A1,2 is not properly estimated: 11.2 instead

of 24.5. This is then reflected in the values of the state feedback k between 150 and 200

seconds. With the occlusion enabled, the estimation is closer to the true value: 22.7 instead

of 24.5. In addition, the estimation of B is also more accurate, hence the state feedback

computation is almost identical to the true value during the entire simulation.



4.2. Results 110

Now that the estimation of matrices by the Data Informativity has been verified as ac-

curate, especially using occlusion, the estimation output of Data Informativity is used to

redesign the Hold and state feedback gain in the controller, which are highlighted in green

in Figure 4.14.

Figure 4.24: Data Informativity output using SMH Based Intermittent Controller with
redesign. Occlusion is enabled. The top row are the two states of the Single Inverted
Pendulum (θ̇ and θ ). The second row is the control input with noise generated by a state
feedback controller. Third row is the open-loop interval τ . Fourth row is the variability
of θ (in blue) and θRMSE (in red). Then, row 5 and 6 represent the matrices coefficients
using the Data Informativity Framework: true value (red) and the estimated one (green).
Each subplots represents in order: A1,1, A1,2, B1, K1, A2,1, A2,2, B2 and K2. The system
length is changing through the simulation: start at 1m, go to 1.2m at 50s, back to 1m at
100s, then lowered to 0.8 at 150s then back to 1m at 200s.



4.2. Results 111

Data presented in Figure 4.24 uses the output of the Data Informativity for the online

redesign of the controller, and occlusion is enabled. Significant improvements compared to

Figure 4.22 and Figure 4.23 can be noticed: the plant keeps its symmetrical behavior even

when the system is changing. Moreover, the DI estimation is almost perfect, especially

focusing on the state feedback values. These tests ensured that DI can be used to give an

accurate estimation of the plant to design an Intermittent Controller.

One more test focuses on slow and small changes in the system, where states and control

input do not change significantly when an update is made, hence more difficult to detect.

In Figure 4.25, the system is getting updated every 10 seconds between 30 seconds and

70 seconds, changing the pendulum length from 1m to 1.2m (0.04m / 10 sec). Then the

length is getting decreased similarly, from 150 seconds to 240 seconds, going from 1.2m

to 0.8m (-0.04m / 10 sec). In the first part of the simulation, as the system is growing, it

is getting easier to control. However, in the second half of the simulation, the pendulum

is getting harder to control as the poles for this system are getting closer to 0. First, the

Intermittent Controller is not getting using the output of the DI algorithm (top row in

Figure 4.25). Then, the same experiment in run with the Intermittent Control using the

output of the DI algorithm (bottom row in Figure 4.25).



4.2. Results 112

Figure 4.25: Data Informativity using Intermittent Control with and without updating
the controller. tDI = 1 sec. The top two subplots are not updating the controller with DI
output. The bottom two are using the output of the DI for redesign. The two on the left
are not using occlusion and the two on the right are using occlusion. The top row shows
the two states of the Single Inverted Pendulum (θ̇ and θ ). The second row is the control
input with noise generated by a state feedback controller. The last row is the variability of
θ (in blue) and θRMSE (in red). The system is getting updated every 10 seconds between
30 seconds and 70 seconds, changing the pendulum length from 1m to 1.2m (0.04m /
10 sec). Then the length is getting decreased similarly, from 150 seconds to 240 seconds,
going from 1.2m to 0.8m (-0.04m / 10 sec).



4.2. Results 113

Multiple conclusions can be drawn from Figure 4.25. Enabling occlusion is only having

an impact when the controller is not getting redesigned. This is due to tDI = 1sec being

below the open-loop interval, hence each redesign occurs within an open loop, so no event

needs to be removed. The occlusion only helps when the pendulum’s length is getting

below 1m. Moreover, redesigning the controller is helping in keeping the θRMSE low as the

state is not drifting away from the reference.

Figure 4.26: Data Informativity using Intermittent Control with and without updating
the controller. tDI = 1sec. The four colors correspond respectively to: no occlusion and
no redesign (green), occlusion enabled and no redesign (orange), no occlusion and with
redesign (blue) and occlusion enabled and with redesign (grey). Each subplots represents
in order: A1,2, K1, B1, and K2. The system is getting updated every 10 seconds between
30 seconds and 70 seconds, changing the pendulum length from 1m to 1.2m (0.04m /
10 sec). Then the length is getting decreased similarly, from 150 seconds to 240 seconds,
going from 1.2m to 0.8m (-0.04m / 10 sec).

Furthermore, as the pendulum is getting longer, the Data Informativity can capture with

good accuracy the matrices A and B coefficients (see Figure 4.26). Looking at the time

series, the open-loop interval is decreasing significantly due to the pendulum angle θ

not being centered on 0 anymore. The control input is not strong enough for the new

pendulum length. However, the controller is still ensuring that the system remains stable.



4.2. Results 114

In the second half of the simulation, θ is slowly going back to 0 as the pendulum decreases

its length. It is worth to notice the open-loop interval quickly increases when the pendulum

is back to the 1-meter length, matching the initially designed controller, showing the proxy

of using the open-loop interval as an indicator of the match between the hold and the plant.

Once the pendulum length is lower than the one used for designing the controller, the

open-loop interval is reduced again. This is due to a control input being too aggressive for

the size of the system. This can be captured by looking at θ̇ , the velocity of the pendulum,

which is increasing at each system change.

In addition, when the occlusion is disabled and the controller is not getting redesigned,

the output of the DI algorithm is drifting away from the actual value, especially visible in

Figure 4.26 (A1,2). Enabling the occlusion is helping bring back the offset in the estimation,

however, this is still not enough to get to the correct value. By redesigning the controller,

the data passed to the algorithm is then rich enough to properly estimate A. Interestingly,

B estimation is accurate in all cases. As this estimation is being performed at tDI = 1

second, it can be quite noisy as seen in Figure 4.26 (A1,1). However, the state feedback

computed using A and B is more accurate when occlusion is enabled.

Whilst the previous simulations were using tDI = 1sec, it is worth assessing the impact of

the time between retraining. The evolution of the system is similar to the previous sim-

ulation where the pendulum’s length is increasing and decreasing in a ”smooth” manner.

The following simulations use 4 different values for tDI: 1, 3, 5, and 10 seconds. Results

are shown in Figure 4.27 and 4.28.



4.2. Results 115

Figure 4.27: Impact of the tDI in Intermittent Control. The four figure are using a different
tDI: (a) tDI = 1 sec, (b) tDI = 3 sec, (c) tDI = 5 sec and (d) tDI = 10 sec. The top row shows
the two states of the Single Inverted Pendulum (θ̇ and θ ). The second row is the control
input with noise generated by a state feedback controller. The last row is the variability of
θ (in blue) and θRMSE (in red). The system is getting updated every 10 seconds between
30 seconds and 70 seconds, changing the pendulum length from 1m to 1.2m (0.04m /
10 sec). Then the length is getting decreased similarly, from 150 seconds to 240 seconds,
going from 1.2m to 0.8m (-0.04m / 10 sec).



4.2. Results 116

Focusing on tDI = 10sec, this estimation time is the same as the update of the system. First,

looking at the time series output in Figure 4.27, the pendulum’s angle is not centered on

0 as soon as the pendulum length changes. As the pendulum increases its length, θ starts

drifting away from the set point. Due to the update of the controller, the estimation from

the DI framework does not diverge as the system changes. However, the Data Informativity

algorithm is always lagging in its estimation of the system due to tDI being the same as

the timing when the system changes. When the pendulum stops increasing at 70 seconds,

the estimation is getting back ”in-sync”.

Figure 4.28: Data Informativity using Intermittent Control with different tDI. The four
colors correspond respectively to: tDI = 1 sec (green), tDI = 3 sec (orange), tDI = 5 sec
(blue) and tDI = 10 sec (grey). Each subplots represents in order: A1,2, K1, B1, and K2.
The system length is changing through the simulation: start at 1m, go to 1.2m at 50s,
back to 1m at 100s, then lowered to 0.8 at 150s then back to 1m at 200s.

In the three other simulations, where tDI = 5sec, tDI = 3sec, and tDI = 1sec, the DI algorithm

has time to get to the correct matrices for the controller to be used with the appropriate

matching system as seen in Figure 4.28. The angle of the pendulum is getting away

from the reference and then brought back to the set point once the controller matches



4.2. Results 117

the system before the plant changes again. Then the system changes and the matrices

estimations follow the same pattern as previously mentioned. It is important to notice

that reducing tDI can help the controller to be ”in-sync” with the current plant, however,

the amount of data is getting reduced and brings more variability in the estimation.

Even though this implementation is not designed to handle noisy data, it is worth assessing

its performance in this situation. This is because the Intermittent Controller is breaking

the feedback loop, hence preventing the noise from propagating as much as the Continuous

Controller case. In the following simulation, input noise has been added to the controller

input before being applied to the system. This is used to represent motor noise. Results

are shown in Figure 4.29.

In comparison to Figure 4.24, the output of the Data Informativity presented in Figure

4.29 shows an offset with the true value. This offset is mostly affecting coefficients A1,2

and B1, which is only affecting the computation of the state feedback k2. However, it gives

a more accurate matrices estimation compared to the Continuous Controller (presented

in Figure 4.11). Even with this discrepancy in the matrices estimation, the Intermittent

Controller is still able to adapt and control the single inverted pendulum with a high level

of noise. This also helps in bringing some variability in the simulation.

Cartpole system To increase the complexity of the system to estimate by the DI al-

gorithm, the plant is moved to a cart pole system for the next simulations (see the model

in Appendix B). The DI algorithm is now estimating 16 coefficients (4-by-4 system) for

the matrix A as well as 4 additional ones for the matrix B. Following the similar approach

applied to the pendulum, in these simulations, the pole of the cart pole system changes



4.2. Results 118

Figure 4.29: Data Informativity output using SMH Based Intermittent Controller with
redesign and vu = 0.1. Occlusion is enabled. The top row are the two states of the Single
Inverted Pendulum (θ̇ and θ ). The second row is the control input with noise generated
by a state feedback controller. Third row is the open-loop interval τ . Fourth row is the
variability of θ (in blue) and θRMSE (in red). Then, row 3 and 4 represents the matrices
coeffients using the Data Informativity Framework: true value (red) and the estimated
one (green). Each subplots represents in order: A1,1, A1,2, B1, K1, A2,1, A2,2, B2 and K2.
The system length is changing through the simulation: start at 1m, go to 1.2m at 50s,
back to 1m at 100s, then lowered to 0.8 at 150s then back to 1m at 200s.



4.2. Results 119

through time, from 1m to 1.2m (0.04m / 10 seconds) as well as its mass 1kg to 1.2kg

(0.04kg / 10seconds). Similarly to the pendulum, the length and weight then decrease

similarly, starting at 150 seconds in the simulation: 0.04m / 10 seconds and -0.04kg / 10

seconds. Results are shown in Figure 4.30.

In these simulations, the weight is also updated to introduce bigger changes in matrices

A, B, and k. It has been decided to focus on A1,3, A3,1, A3,2, A4,2, B1,3, B1,3, k1,2 and

k1,4 as they are the coefficients that are changing the most in matrices A, B and k (see

Appendix B Equation B.3). Figure 4.30 and 4.31 show the impact of the tDI value in

getting the correct estimation, in conjunction with the presence of the occlusion or not.

Figure 4.30: Impact of the tDI in Intermittent Control applied to the Cart Pole with
occlusion enabled. The three figures are using a different tDI: (a) tDI = 10sec, (b) tDI = 5sec
and (c) tDI = 3sec. The top row shows the two states of the Single Inverted Pendulum
(θ̇ and θ ). The second row is the control input with noise generated by a state feedback
controller. The last row is the variability of θ (in blue) and θRMSE (in red). The system
is getting updated every 10 seconds between 30 seconds and 70 seconds, changing the
pendulum length (and mass) from 1m (kg) to 1.2m (kg) (0.04m (kg)/ 10 sec). Then the
length is getting decreased similarly, from 150 seconds to 240 seconds, going from 1.2m
(kg) to 0.8m (kg)(-0.04m (kg)/ 10 sec)



4.2. Results 120

Even having to estimate more coefficients for this system, the DI algorithm is still able to

accurately estimate the matrices A and B for the cart pole system. Moving to a system

with a higher number of states is amplifying the importance of the occlusion windows to

hide the sharp discontinuity in the data passed to the algorithm.

Figure 4.31: Impact of the tDI in Intermittent Control applied to the Cart Pole with
occlusion enabled. The three figures are using a different tDI: (a) tDI = 3 sec, (b) tDI = 5
sec and (c) tDI = 10 sec. The top row shows the two states of the Single Inverted Pendulum
(θ̇ and θ ). The second row is the control input with noise generated by a state feedback
controller. The last row is the variability of θ (in grey) and θRMSE (in red). The system
is getting updated every 10 seconds between 30 seconds and 70 seconds, changing the
pendulum length (and mass) from 1m (kg) to 1.2m (kg) (0.04m (kg)/ 10 sec). Then the
length is getting decreased similarly, from 150 seconds to 240 seconds, going from 1.2m
(kg) to 0.8m (kg)(-0.04m (kg)/ 10 sec)

Similarly to the pendulum simulations, tDI has been decreased gradually to ensure that

the controller designed through the DI algorithm output is applied ”in sync” with the

system. These simulations have occlusion enabled. For the cart pole system, going from

tDI = 10 sec to tDI = 5 sec is already introducing significant variability in the matrices

estimations. Enabling the occlusion is helping in that regard. Similarly to results presented

in Figure 4.17, moving to tDI = 3 sec without occlusion compared to occlusion enabled is

not improving the estimation. This is mostly related to the estimation being performed

every open-loop interval.



4.2. Results 121

Whilst Data Informativity gives an accurate estimation of the system matrices A and

B, this algorithm can become difficult in the case of a high dimension system changing

fast as presented in the cart pole system. Moreover, this implementation of the algorithm

is not made to handle noisy data, hence it introduces an estimation issue and implies a

wrongly designed controller.

4.2.2.3 Summary

As presented in this section, Data Informativity can be used with the Intermittent con-

troller framework. Moreover, it can detect changes in the system accurately and this

information can be used to redesign the controller. In comparison to the Continuous Con-

troller, it is not necessary to add any external signal to get an accurate estimation of the

plant via this algorithm. This is due to the constant motions introduced by the intermit-

tency. However, this intermittency is also bringing discontinuity in the control signals. As

presented above, Data Informativity can be improved by simply using occlusion around

the triggering event happening in Intermittent Control. The focus has been on the single

inverted pendulum, an unstable plant, however, this has been also applied to the cart

pole system and showed similar results even though the system is more complex.

Whilst the Data Informativity framework is quite efficient for the noiseless case, the

estimation starts to deviate from the correct value when some noise is added to the

simulation. It is known that this algorithm has been designed for noiseless simulation.

However, by opening the loop, Intermittent Control can reduce the noise propagation,

hence still being able to use to a certain extent the noiseless implementation of this

framework.



4.3. Discussion 122

4.3 Discussion

In this chapter, the Reinforcement Learning and Data Informativity frameworks have been

applied in the context of Intermittent Control. Both of these frameworks have been ori-

ginally designed for continuous control, where the control input is continuously generated

from the current state of the plant.

Focusing on the Reinforcement Learning implementation, it can be used within Inter-

mittent Control to find the optimal set of gains for the pendulum system. However, this

algorithm needs an initial stable set of controller gains to start with. Even though this

condition is met, convergence is not ensured using Intermittent Control due to the latency

in getting samples induced by the triggering mechanism.

The main drawback of this approach is the data that can be passed to the algorithm.

This data can only be captured at the time of an event. This is due to the similarity with

the continuous controller when the loop is closed. Hence operating the Intermittent Con-

troller in a clock-driven mode can be the best option to ensure stability. This is disabling

the advantages of Intermittent Control in opening the loop. However, even though the

Intermittent Controller is looking very similar to Continuous Control when the minimum

open-loop is set to a small value, this is enough for the estimation to perform accurately

as presented in Section 4.2.1. In addition, this algorithm is only able to estimate the state

feedback without estimating the system matrices A and B which makes this approach not

suitable for adaptation.

In contrast to the Reinforcement Learning implementation, the Data Informativity can

use all data generated by the Intermittent Controller, hence it is not necessary to operate

in a clock-driven mode. In addition, this can be applied at each triggering event to react

quickly to any changes in the system. In comparison to the continuous controller, it is



4.3. Discussion 123

not necessary to apply any additional disturbance signal to get an accurate estimation

of the matrices. This is an important advantage as it is possible to keep the system

operational and use this data for estimation without having to disturb regular operating

mode. Moreover, by adjusting the timing tDI, it is possible to get a stable estimation or get

some variability due to the constant refresh of the controller during simulation. Finally,

even with the presence of noise, it is possible to get an estimation good enough to keep

stability in the system even when it is changing over time.

Whilst both approaches have advantages and drawbacks, the following work is focused

on Data Informativity only, as this can capture accurate changes in the system as well as

estimating both A and B matrices instead of simply getting the estimation of the state

feedback. This allows a full redesign of the intermittent controller when needed as simply

updating k is not enough when the system is changing over time, creating a mismatch

between the plant and the Hold in the controller (see Figure 4.15).

4.4 Summary

An overview of the work accomplished in this Chapter is summarized in Table 4.1. This

table focuses on the pros and cons of using the RL / DI framework with a SMH based IC

applied to Single Inverted Pendulum system. In addition, limitations and generalizations

are mentioned. Everything is based on simulation data only, allowing easy assessment of

the Intermittent Controller against different set of parameters, as well as system properties

changing through time.



4.4. Summary 124

Algorithms Pros Cons Limitations
RL + SMH Capability to con-

verge to optimal state
feedback gains

Only able to use data
at triggering time,
when the loop is
closed

Initial stable poles
need to be located in
between the optimal
poles

DI + SMH The algorithm is able
to use open-loop gen-
erated data. Fast and
accurate estimation
of system matrices.

Need occlusion of
events to improve
identification

No variability in the
output signal from
the controller.

Table 4.1: Summary table covering Chapter 4 contributions.

Some generalisation can be made for each algorithm. First, in a real application, it is

not possible to get access to the optimal poles of the system. Using RL with SMH can

help to determine the approximate location of the optimal poles if the initials poles are

converging or not. Focusing on the DI with SMH, Intermittent Control estimate the open-

loop dynamics of the system compared to the Continuous Controller which estimate the

closed-loop dynamics.



Chapter 5

Stochastic Intermittent Control

Intermittent control relies on knowing the system’s matrices A and B in order to design

the hold matrix Ac as well as the state feedback. However, these matrices can be difficult to

obtain using Continuous Controller as presented in Section 4.2.2.1. The need of knowing

the system matrices to design the hold is limiting the opportunities of Intermittent Control

to be applied more widely. In this section, traditional System-Matched Hold (SMH) is

replaced by Gaussian Processes. These Gaussian Processes are helping in moving forward

a data-driven implementation of the Intermittent Controller, hence avoiding the need of

knowing the underlying dynamics of the system.

First, Single Task Gaussian Processes is being investigated as well as how GP computing

could be optimized, such as using Sparse GP, using system knowledge to reduce the

number of GP as well as discarding states in some situations. After that, Multi Task GPs

will be introduced to reduce the number of GP optimisation to a single one for any system

dimensions. Then, adaptation using GP is investigated using online data for retraining.

125



5.1. Methods 126

5.1 Methods

When Gaussian Processes are used to model the system’s dynamics, they are used to

replace the Hold block in the Intermittent Control framework as presented in Figure 5.1.

However, due to the parameterized nature of GPs using hyperparameters, they don’t

provide a direct representation of the system matrices A and B. Hence, the state feedback

cannot be estimated from this model. The GP is using the control error as input when

the Intermittent Controller is triggering. During the open-loop, GPs are using their own

output as input for the next iteration. As presented in Figure 3.6.5, the GP is using output

∆X which is getting added to the current state. The trigger block (see Figure 5.1) is also

updated, now using the GP uncertainties as an alternative triggering mechanism.

NMS System Observer

Trigger

State FB Hold

+
-

+
-

Figure 5.1: Intermittent Control block diagram. Block of the controller updated by the
Gaussian Processes algorithm are highlighted in green.

5.1.1 Implementation

Using the same process as described in Section 4.2.2, the idea is to excite the system (in

a stable regime) with a multisine input for the GPs to represent the system dynamic. If

the system is unstable, a controller is needed in order to gather data in the correct region

of the state space. However, this controller does not need to be perfect.



5.1. Methods 127

In the context of Gaussian Processes Regression (GPR), the goal is to find a representation

of a dynamical function. In our case, we are trying to learn the dynamics of the plant. In

the following discretized system:

x(t +1) = ADx(t)+BDu(t)

x(t +1) =
[
AD BD

]x(t)

u(t)

 (5.1)

the state at the next iteration depends on the current state as well as the control input.

It is similar as:

x(t +1) = f (x(t),u(t)) (5.2)

Assuming that f (x(t),u(t))∼ N (0,K), the system becomes:

 Y

xn(t +1)

∼ N (0,Kpred) (5.3)

where n correspond to the nth state in the case of the single-task GP and Y is the output

recorded during training.

In this section, Gaussian Processes are integrated into the Intermittent Control Frame-

work. For now, the focus is on the generalized hold and the predictor.



5.1. Methods 128

5.1.1.1 GP based Hold

Considering an Intermittent Controller using SMH as generalized hold, the Hold state

xh(t +1) is computed using (see section 3.3.2):

xh(t +1) = Acxh(t) (5.4)

which is equivalent to (using Equation (3.20)):

xh(t +1) = (A−Bk)xh(t)

= Axh(t)−Bkxh(t)
(5.5)

Taking the Equation (5.2) and u(t) =−kx, and replacing in Equation (5.1):

x(t +1) = f (x(t),u(t))

= Ax(t)+Bu(t)
(5.6)

Using the Equation (5.3)

Axh(t)∼ N (0,Kpred) (5.7)

then we obtain:

xh(t +1) = N (xh(t)|0,Kpred) (5.8)

Step-by-step

At each iteration, the previous estimated state is used as an input. In addition, there are

two ways of getting a sample from N (xh(t)|0,Kpred):



5.1. Methods 129

• use xhtmp = µ , where µ is the mean of the distribution. This is called the ”naive”

approach and bring very small variance in the case of multiple step ahead prediction

(Kocijan 2008).

• use a sample of xhtmp ∈N (µ,σ) as returned value. This allows to bring uncertainties

into the IC framework.

Pre-computed trajectory

Another approach is to use a pre-computed trajectory for the next open-loop interval.

This is using the GP as a multi-step ahead prediction instead of a single step. This

approach helps us on the uncertainties being unnaturally low in the case of single-step

prediction (ibid.). In addition, the pre-computed trajectory can be based on the mean

of the distribution or the possibility to draw a sample from the distribution in order to

increase the variability of the response of Intermittent Control. Figure 5.2 shows the mean

sampling compared to sampling from the distribution.

−1.0

−0.5

0.0

0.5

1.0

X
1

0 500 1000 1500 2000 2500 3000 3500 4000

Time (ms)

−0.4

−0.2

0.0

0.2

0.4

X
2

Figure 5.2: Example of sampling from a distribution. The dash line is the mean of the
distribution. The shaded area is the standard deviation of the prediction. Each gray line
represents a sample from the distribution.



5.1. Methods 130

It is necessary to fix a maximum open-loop interval in the Intermittent Control Framework

to implement this in order to put an upper limit on the calculation of the distribution.

The GP being the representation of the dynamical system, it is necessary to repeat the

prediction one step at a time as the next point to query is the output of the previous

prediction.

5.1.1.2 GP based Predictor

Similar to the GP based Hold, it is possible to extend the GP to the predictor. The

idea is identical with the small modification of a multi-step ahead prediction instead of a

single-step.

At the time of an event, the input of the predicted states are reset to the system states

x(t).

xp = x(t) (5.9)

Then, depending on the sampling time of the data during training of the GP, it is possible

to compensate the delay as:

xp = N (xp(t)|0,Kpred) (5.10)

The Equation (5.10) has to be repeated to compensate for any delay present in the

controller. In the case of the predictor, the GP has to represent the open-loop dynamics

of the system. In this case, the control input given to the GP is fixed at zero. Similarly

to the Hold, the output of the distribution can be based only on the mean or as a sample

of N (µ,σ).



5.1. Methods 131

5.1.1.3 Prediction uncertainties

Moving from a deterministic approach such as System Matched Hold, Gaussian processes

brings new information from the Hold block. There is now an uncertainty linked to the

prediction. This can be used to make the Intermittent Control smarter in two different

way:

• If the uncertainties of a prediction are rapidly growing over time, this might indicate

that the underlying GP could benefit from retraining. This would help deciding if

the GP needs to be retrained.

• If the uncertainties are high but the mean prediction is accurate, it could be used

as a safety triggering. This will reset the uncertainties to zeros and the GP will be

aware of the current states of the plant.

5.1.2 Evaluation criteria

As presented above, Gaussian Processes are not a direct representation of the system

matrices. Instead, hyperparameters are estimated to represent the link between input and

output of the system. Hence, it is not possible to use regular control techniques to assess

how close the GP representation is from the actual system by comparing matrices directly.

In order to evaluate the goodness of the GP (see Equation (5.11)), two additional measures

are computed, both in time and frequency domain, in addition to those presented in

Section 4.1.2. The two measures are based on simulations ran outside the Intermittent

Control context, directly computed with the GP. The GP is paired with a continuous

controller in order to simulate the model of the plant under the influence of a state

feedback controller with a multisine disturbance signal. The output generated by the GP



5.1. Methods 132

is assessed against the true output of the plant under the same conditions. The fit between

the two dataset is compute using the following equation:

Fit = 100×
1−∥Sp − Ŝ∥
∥Sp − Ŝ∥

(5.11)

where Sp is the signal generated by the plant and Ŝ is the signal generated by the GP. The

response is investigated in both time and frequency domain. Assessing the GP in these

conditions is similar to investigate the model accuracy inside the Hold as it is modeling

the closed-loop dynamics of the plant.

5.2 Results

As summarized in Figure 5.3, GP can be implemented in different ways such as Single Task

GP (STGP) or Multi Task GP (MTGP). In this section, the Hold block in Intermittent

Control is replaced by Gaussian Processes. In the first results section, the focus is on

Single Task GP, covering the use of single step and multi step ahead prediction, as well as

Uncertainty Prediction. The computation needed for GP is also being considered and some

options are layed out and tested to improve computation time. Following this, Intermittent

Control Hold is using Multi Task GP. The main driver for this implementation is to have

a single GP that can represent all the states of the system, hence removing complexity

in the modelling of multiple separated GPs. Finally, online retraining is looked at in the

case of Single Task GP in order to improve the accuracy of the GP over time, using data

coming from the simulation itself. The simulations presented in this Chapter are applied

to the Single Inverted Pendulum (see Appendix A.



5.2. Results 133

Hold

Predictor

Single Task

Multi Tasks

Sparse GP

Single Step

Multi Steps

Uncertainties 
propagation

GP Type Prediction Type

Figure 5.3: Overview of GP Hold (GPH) implementation within the IC framework.

Even though it is possible to replace the predictor with Gaussian processes as presented

in Section 5.1.1.2, all following simulations are not using any delay, hence the use of a

predictor is not required. In addition, in these simulations, the observer (see section 3.2.2)

is not used as it is assuming that all states of the system can be measured.

5.2.1 Single Task GP

This section is focusing on the response of the Intermittent Controller using a Single Task

Gaussian Process as the Hold. First, the output of the Hold will use the mean of the pre-

diction of the GP assuming that the previous iteration is not coming from a probabilistic

process. Then, Uncertainty Propagation (UP) is used to consider the probability associ-

ated with the previous prediction during an open-loop interval. Lastly, the optimisation

of the GP computing is investigated, in order to improve the possibility of using GP in a

real time settings.



5.2. Results 134

5.2.1.1 Full GP

As explained in Section 5.1.1.1, each state of the system is represented by its own GP. In

the case of the pendulum, two GPs are being trained using each state as the output and

are using the same set of inputs (θ̇ , θ , u). Figure 5.4 is summarizing the implementation

of Single Task GP within the Intermittent Controller.

NMS System

Trigger

Hold 

+
-

+
-

State FB

Figure 5.4: Intermittent Control block diagram with detailed of Gaussian Process Hold
when using Single Task GP.

The mean of the GP is used as the states predicted by the Hold. This approach can be

seen as similar to a Kalman Filter. At each iteration, each GP is using the data from

the previous iteration as input similarly to SMH during the open-loop, and it is using the

measure states as input when IC is triggering. This implementation is the default whenever

GP Hold (GPH) is used, except in Section 5.2.1.2, where Multi-Task GP is used. In this

section, Single Task is used in different operation modes. Single step is looked at first, then

the focus is moved toward multi step ahead prediction followed by use of Uncertainties

Propagation.



5.2. Results 135

Single Step prediction

As an initial simulation, presented in figure 5.5, IC is using a System Matched Hold from

0 to 20 seconds plus next event. This first part of the simulation is then passed to the

GP optimization routine which randomly selected 20 points from the first 20 seconds

of the simulation in order to train the two GPs (one per state). Then, for the rest of

the simulation, the Intermittent Controller is using the Gaussian Process based Hold

(GPH). It is necessary to train the GPs before applying it in IC using system data, hence

Intermittent Control has been used to generate it. Even though the output generated

by the Intermittent Controller appears to be periodic, this is only due to the triggering

mechanism. The kernel function used is a combination of the Square Exponential function

with the added Noise covariance function. Based on the range of motion of the pendulum,

linear covariance function could have been used as well.

Figure 5.5: Intermittent Control applied to Single inverted Pendulum. SMH is used from
0 to 20 seconds (+ next event) (blue line) and GP based Hold is used after (orange line).
GP is trained using SMH data and is using single step ahead prediction.



5.2. Results 136

As explained in Section 5.1.2, multiple measures are computed to assess the Gaussian

processes estimation, outside and within the Intermittent Controller. These measures are

presented in the following table, showing the differences between SMH and GPH. This

computation is discarding the transient from the simulation as it is not present for both

holds.

θ̇RMSE θRMSE uMEAN τMEAN τST D Ψ
(rad/s) (rad) (Nm) (s)

SMH 0.141 0.054 -0.002 1.85 0.107 0.04
GPH 0.177 0.059 -0.023 1.29 0.206 0.31

Table 5.1: Assessment of SMH vs GPH. θ̇RMSE and θRMSE are the Root Mean Square
Error for θ̇ and θ respectively. uMEAN is the mean of the control input. τMEAN and τST D
are the mean and standard deviation of the open-loop interval. Ψ is the variability of the
open-loop interval (see Section 4.1.2).

As presented in Table 5.1, System-Matched Hold and GP based Hold are similar when

comparing the RMSE of both states. However, the mean of the control input is increased

as well as the variability. The mean of the open-loop interval is decreased when using the

GPH, which can be seen in Figure 5.5. In addition to these measures, the goodness of the

GP (see Equation (5.11)) is also assessed outside Intermittent control and it is presented

in Figure 5.6. This estimation is giving 99.59% fit for the multisine signal and 99.13% fit

regarding the transfer function estimation between the state space representation of the

system and the GP in the frequency domain.

As presented in Figure 5.5, the GPs are trained using the first part of the simulation using

an Intermittent Controller with SMH. GP is very reliable in estimating the correct sys-

tem dynamics. However, this is using pre-designed intermittent controller with a System

matched Hold trajectory. Pre-recorded trajectory from the plant can be used for training

the GP in order to start the simulation with a GP based Hold. In order to get these



5.2. Results 137

Figure 5.6: Assessment of goodness of the GP. Left plot: response of the GP compared to
the state space representation of the plant. Right plot: Frequency response of both State
space and GP from the multisine input. Fit are respectively 99.59% and 99.13%

pre-recorded trajectories, a combination of a state feedback controller is used, to ensure

stabilisation of the plant in a unstable location in conjunction with multisine disturbance

with frequency ranging from 0.1Hz to 5Hz, with a step size of 0.1Hz. The Figure 5.7 is

showing the evolution of the states under the previously stated control input.

As presented in Figure 5.7, the data is centered around 0 and has some excitation due

to the multisine disturbance. However, in order to keep the system stable, it is necessary

to add a state feedback controller to stabilize the plant around the unstable location.

Due to the presence of the controller, the system dynamics estimated by the GP are

representing the closed-loop behavior of the plant. This model can be used directly in the

Hold, replacing the Ac matrix. In addition, the number of points used for training the GPs

can be arbitrarily chosen: this is having a big impact on the overall performance of the

GPs, and impacts the performances of the controller. However, it is possible to change

this value in order to get more or less variability.



5.2. Results 138

Figure 5.7: Example of training data passed to the GP for training. The top row shows the
Single Inverted Pendulum’s states during the simulation under the control input applied
(bottom row). The control input is composed of a state feedback controller in addition of
a multisine disturbance signal.

Pre-recorded data from the plant can be used for training GPs in order to start the

simulation with a GP based Hold. Training data for the GPs has been generated using

a multisine disturbance applied to the system. In order to keep the system stable, it is

necessary to add a state feedback controller. Hence, the system estimated by the GP will

represent the close loop dynamics of the plant. This model can be used as is directly

in the hold, replacing the Ac matrix. For each simulation, the training data is randomly

generated using a range of frequency between 0.1Hz and 5Hz. In this specific scenario, the

GPs are representing the closed-loop dynamics of the system, hence it is not necessary to

pass a control input to the GP when being used in the hold.



5.2. Results 139

In order to assess the reliability of the GPs using a multisine as training excitation signal,

multiple conditions have been tested: influence of the number of points used for training

as well as using different ∆OL and Threshold coefficient inside IC. Figure 5.8 is showing

the impact of the number of point used for training as well as the impact of ∆OL and

Threshold coefficients.

Figure 5.8: Summary of GP trained using multisine control input. The first row is showing
the RMSE for (a) θ̇ and (b) θ . The second row is (c) the mean of the control input and
(d) the mean of τ , the open-loop interval. The red star is representing the output from
a SMH based Intermittent Controller. The box plot is showing the output from multiple
GP based IC. Each shade of green is representing the amount of points used for the GP
training.

In the case of clock-driven Intermittent control (when the threshold is set to zero), GP

behaviour is identical to the SMH case. In addition, setting ∆OL = 0.003s is forcing the

Intermittent to act very similarly to a continuous controller.



5.2. Results 140

Increasing the threshold from 0 to 0.01, hence having event-driven Intermittent Controller

is allowing bigger open-loop intervals as shown in Figure 5.8, quadrant (d). However, even

if the RMSE of θ̇ and θ are closely matching with the SMH, the open-loop interval is

only sligtly above half of the one coming from the SMH simulation (1.25sec compared to

2sec).

Another interesting finding is the influence of the number of points used for training.

For all the different values of ∆OL and Threshold, 70 points for the GPs is giving the

lowest spread in all the different simulations. Comparing to 10 or 90 points, some of the

simulations are showing some outliers, forcing the Intermittent Controller to trigger at

the minimum open-loop interval (in the case of ∆OL = 0.1).

In addition to the RMSE and mean value shown above, the variability of the pendulum

angle θ has been assessed using the cross-correlation between two following open-loop

intervals. The main idea of using GP is to introduce variability in the simulation without

the need of additional disturbance such as noise. Figure 5.9 is showing the impact of

the number of point used for the training of the GP with the overall variability of the

simulation.

Focusing on the clock-driven case, where the Threshold is 0, there is very low variability.

This is due to the Intermittent Controller acting very closely to a Continuous Control.

Increasing the Threshold coefficient is giving more freedom for the GP to generate a non-

ideal state trajectory. This is emphasize when the number of points use for the initial

training is particularly low, such as the 10 and 30 points case. Increasing the number

of points is cancelling the opportunities for the GP to have some variability. However,

as presented in the figure (figure above with RMSE), adding more point than necessary

could then reduce the overall performance of the Intermittent Controller, such as getting

in a minimum open-loop interval regime.



5.2. Results 141

Figure 5.9: Assessment of the variability when using a GP based Hold in Intermittent Con-
trol. The x-axis is representing different set of parameters inside IC: ∆OL and Threshold.
The y-axis is showing the variability computed from the cross correlation between two
consecutive open-loop interval.

Multi Step ahead prediction

In previous results, GPs are used similarly to the System Matched Hold, computing one

step at a time. In this section, GPs are pre-computing the next open-loop interval when

the Intermittent Controller is closing the loop. This is an intermediate step between single

step ahead prediction and the use of uncertainties propagation described in the following

section. By having future trajectories computed at triggering, it is necessary to fix a

maximum open-loop interval in advance to set a prediction horizon. Figure 5.10 is showing

the impact of using multi step ahead prediction compared to single step prediction, by

changing prediction mode during the simulation.

Using multi step prediction is not changing the behaviour seen in the single step predic-

tion as long as the maximum open-loop interval is larger than the ∆OL of the simulation.

This is simply due to the prediction being made ahead of time without having any im-

pact on the algorithm used. However, this approach can be quite limiting in a real-time



5.2. Results 142

Figure 5.10: Intermittent Control switching between single-step prediction and multi-step
prediction. The grey box is showing when the multi-step ahead prediction is enabled. The
top row represents the state of the plant: θ̇ and θ . The second row is the control input
generated by the controller. The third row is the open-loop interval. Last row is the error
between the plant and the hold states.



5.2. Results 143

implementation as the next horizon is computed when an event occurred. This is similar

to Model Predictive Control, however, the prediction is coming from a Gaussian Process

and it requires higher computational effort. In addition, forcing a maximum open-loop

interval can force an event if this is reached, even if it is not required.

Using Uncertainties Propagation

Previously, uncertainties have not been used as part of the computation of the next state

prediction by the GP. It was assumed that the state passed to the GP has not uncertainties

associated with it. However, in the case of dynamical system, where the next state is

dependant on the previous states, skipping these uncertainties results in abnormally low

uncertainties for the prediction of the GP. Even though only the mean of the output is

used as the output of the prediction, using the uncertainties propagation is impacting the

computation of the mean.

In this section, the prediction of the next state is using the current states as well as the

associated uncertainties if it is coming from a previous prediction. To understand the

impact of the uncertainties propagation, the following simulation is starting with GPs

using multi-step ahead prediction, then, uncertainties propagation is enabled around 20

seconds. Uncertainties propagation is then disabled again to verify that the controller

is going back to its original behaviour. The GPs used for this simulation are the same

through the entire simulation, only the prediction mode is changing.

Presented in Figure 5.11, the controller is switching between two modes: with and without

uncertainties propagation enable, represented by the grey box. Multiple observations can

be made from this simulation. Firstly, the behaviour of the Intermittent Controller is

changing when the uncertainty propagation is enabled. The states of the system as well

as the control input is switching from the symmetric repeated behaviour to one with

more variability. Furthermore, the open-loop interval is slightly increasing for some events

during the uncertainties propagation.



5.2. Results 144

Figure 5.11: Intermittent Control switching between regular prediction and uncertainties
propagation prediction. The grey box is showing when the uncertainties propagation is
enabled. The top row represents the state of the plant: θ̇ and θ . The second row is the
control input generated by the controller. The third row is the open-loop interval. Fourth
row is the prediction error. Fifth row is the standard deviation generated by the velocity
GP. Last row is the pendulum velocity generated by the Hold. The right column is a
zoomed version between 20 seconds and 28 seconds.



5.2. Results 145

Another observation is related to the standard deviation coming from the GPs. When GP

is not using uncertainties propagation, the standard deviation is abnormally low due to

the fact that the GP is not aware that the input is coming from a previous prediction,

hence the following prediction is considering the prediction as the first one of an open-

loop, when readings are made from the plant. However, when enabling the uncertainties

propagation mode, the standard deviation is now increasing in a more natural way. As the

open-loop is increasing, the standard deviation is growing accordingly. As presented in

the last row of Figure 5.11, the hold states are compared to the hold states coming from

a System-Matched Hold. As the uncertainties are increasing, the hold states estimated by

the GP are not matching the SMH states anymore. The standard deviation is divided by

50 in the figure in order to be able to read the hold states values. The amplitude of the

standard deviation is impacted by the small number of points used for the training of the

GP as well as the length of the prediction. In this simulation, the simulation sampling

time is DT = 1ms and the prediction horizon is around 1.3 seconds, equivalent to 1300

steps prediction.

Now that the standard deviation of the GPs is outputting reliable values, it is possible

to use it as another triggering mechanism within the Intermittent Trigger Block. The

following simulation is using a combination of triggering. In addition to the standard

triggering relying on the difference between the Hold states and the system states, another

threshold is based on the amplitude of the standard deviation of the output of the GP.

This can be seen as a triggering when the GP model is becoming too uncertain of the

prediction. In this simulation, the standard deviation threshold is only applied to the GP

predicting the velocity.



5.2. Results 146

Figure 5.12: Intermittent Control switching between regular prediction and uncertainties
propagation prediction. The grey box is showing when the uncertainties propagation is
enabled. Triggering is modified to trigger on both the prediction error ep and GPstd. The
top row represents the state of the plant: θ̇ and θ . The second row is the control input
generated by the controller. The third row is the open-loop interval. Fourth row is the
prediction error. Fifth row is the standard deviation generated by the velocity GP. Last
row is the pendulum velocity generated by the Hold. The right column is a zoomed version
between 20 seconds and 28 seconds.



5.2. Results 147

Figure 5.12 is showing the impact of introducing a new triggering mechanism based on

the uncertainties of the GP prediction. Similarly to Figure 5.11, the beginning of the sim-

ulation is without the uncertainties propagation enabled. Then, uncertainties propagation

is switched on, which changes the response of the controller. Focusing on original trigger-

ing mechanism, the prediction error ep is not reaching the threshold when uncertainties

propagation is enabled. This is due to the standard deviation of the GP exceeding its own

threshold, hence triggering earlier.

Even though these simulations are bringing novelty into the behaviour of the control

input due to the newly introduced triggering mechanism, it is important to notice two

main drawbacks. First, the computation time of uncertainties propagation is longer due to

the algorithm used. Using single step ahead prediction is taking roughly a similar amount

of time as the simulation. When using uncertainties propagation, the simulation is taking

10 times the simulation length: each minute of simulation is approximately taking 10

minutes to run. The algorithm used is the one developed by Deisenroth and Rasmussen

2011, and has been translated from Matlab to Python. In addition, with low number

of points GP, the computation of the standard deviation is not stable due to the non

convergence of the least square algorithm when solving Equation (3.60).

5.2.1.2 Optimization of GP computing

As presented above, GP can be beneficial in the intermittent control framework to bring

some variability into the control signal and to get towards a data-driven Intermittent

controller. However, it is important to notice the computational burden of this technique,

especially when the number of points is getting bigger. Whilst this is not too much of

a concern in the case of simulations, it is something to consider in the case of real-time

implementation.



5.2. Results 148

To improve this aspect, multiple approaches have been implemented to improve the com-

putation issue. Two possible techniques are presented in this section: using Sparse GP

to limit the number of points used by the GP and using known information about the

system to remove the need for extra input states of the GP by using the derivative of the

GP output for velocity trajectories.

Sparse GP

In this section, sparse GP is used instead of the traditional full GP implementation in the

Hold and applied to the Cartpole (see Appendix B). Similarly to the Full GP implementa-

tion, each state is having its own Sparse GP representation. In this section, the behaviour

of the Intermittent Controller is assessed as the number of points removed from the Full

GP to the Sparse GP is increasing. Figure 5.13 is comparing the impact of the number of

inducing points used by the sparse GP from the Full GP.

The first half of the simulation is using a SMH then the hold is swapped to a GP hold.

The first column is using a full GP while the three following columns are based on the

sparse GP of the full GP. Whilst the dynamics between the Full GP and the Sparse GP

using 30 and 10 points are similar, the dynamics change quite substantially when the

sparse GP is using only 5 inducing points.



5.2. Results 149

Figure 5.13: Comparison of different sparse inducing point number applied to the cart
pole following a SMH simulation. The control swap from SMH to GP at the next event
after 10s and the training is based on the multi sine training data with state feedback.
(c.f: Figure 5.7)

To understand the differences, multiple measures are computed per different GP cases

and are summarized in Table 5.2. First, the RMSE of the cart position is higher when

GP is used. However, this is due to the transient response being included in the SMH

case. By sparsing the GP from 40 points to 30 and 10, the RMSE of the cart as well as

the angle of the pole are not changed. Similar results can be observed in the mean of

the control input, in the open-loop interval, for the standard deviation of the latter, and

for the variability coefficient. An important change can be observed when the number of

inducing points in the GP reaches 5 data points. The behaviour of the controller is now

different from all previous cases. This is due to the GP’s inability to accurately represent

the system dynamics with a small number of points. The total time to run the simulation

tsim decreases by using sparse GP compared to the Full GP implementation (from 105±5

seconds to 82±9). However, this is still fifteen times higher than the SMH approach.



5.2. Results 150

xRMSE θRMSE uMEAN τMEAN τST D Ψ tsim
Hold Type (rad/s) (rad) (Nm) (s) (s)
SMH 0.0461 0.002921 0.001112 2.266 0.1481 0.1795 5±0
Full GP 0.0781 0.002778 0.010355 1.677 0.0131 0.0082 105±5
Sparse 30 0.0737 0.002618 0.010056 1.672 0.0045 0.0051 82±9
Sparse 10 0.0727 0.002617 0.009588 1.688 0.0053 0.0059 84±11
Sparse 5 0.0353 0.009466 0.004407 0.449 0.1910 0.3836 76±10

Table 5.2: Assessment of SMH vs GPH. xRMSE and θRMSE are the Root Mean Square Error
for the position of the cart and the angle of the pendulum θ respectively. uMEAN is the
mean of the control input. τMEAN and τST D are the mean and standard deviation of the
open-loop interval. Ψ is the variability of the open-loop interval (see Section 4.1.2). tsim is
the simulation time compared across 10 simulations.

Introducing system knowledge

Another approach is to introduce system knowledge to reduce the complexity of the

GP-based Hold. Even though the main focus is to rely on a full data-driven approach,

dynamical control is often using combined states such as velocity and position, thus these

two states are directly related. Focusing on the Single Inverted Pendulum, the two states

used for control are θ and θ̇ . In previous simulations, each state is represented by its

own independent GP. This involves retraining per state, as well as the need to invert

the kernel matrices as many times as states. In this section, the idea is to use system

knowledge to simplify the representation of the Hold as well as improving computation

time. The following approach can be applied to the Single Inverted Pendulum: a GP model

is predicting the angle θ , then a simple derivative function ( xi−xi−1
dt ) is used to compute θ̇ .

To assess the computational effort with this approach compared to the traditional ”one

GP per state” approach, 10 simulations of 20 seconds each with dt = 1ms were run and

timed for both cases. The total time of these 10 simulations is then converted to an

iterations per second value (10 × 20 seconds / dt / total time) to obtain an average of

iterations per second. Whilst the traditional case did 1035± 40 iterations/second, the

derivative case achieved 914±18 iter./s. It is more computationally intensive to run the

derivative case for online state estimation in the Hold. This is due to two main factors.



5.2. Results 151

In the ”one GP per state” case, the GP estimates the velocity at time t +dt, however, in

the derivative version, the velocity computed using the angle value at t+dt is the velocity

at t. Hence, it is necessary to iterate through the GP representing the angle twice, using

the previous computed angle as an input. The second factor is the state decomposition

needs to be done twice in the derivative case, whilst this is done for both GP at once in

the other case. One positive improvement is the simplification of the optimisation of the

GP, as this only required to optimise a single GP. The derivative case can be seen as a

more accurate representation of the system (assuming that the angle GP is accurate) due

to the fact that both states are properly evolving in a physical sense. This is not assured

in the ”one GP per state” approach as both states are computed independently.

Multi Task GP

Whilst the previous approach is using system knowledge to simplify the representation of

the system using GP, this approach can simplify it a step further. Focusing on systems

where states cannot be inferred from another one, the multi-task approach presented by

Bonilla et al. 2007 can be used. The multi-task approach is using an inter-task matrix

to model the system dynamic with a single kernel. With some matrix simplifications, it

is possible to keep the number of hyper-parameters below the number needed for the

”one GP per state” approach. Figure 5.14 shows the difference is the implementation in

comparison to Figure 5.4.

NMS System

Trigger

 Hold 

+
-

+
-

State FB

Figure 5.14: Intermittent Control block diagram with detailed of Gaussian Process Hold
when using Multi Task GP.



5.2. Results 152

The following simulation is based on a GPH using the multi-task implementation. Sim-

ilarly to the single task GP, the training data is based on a close loop representation of

the plant, as this is using system data which has been generated with the state feedback

controller with a multisine disturbance as presented in Figure 5.7.

Figure 5.15: Intermittent Control applied to Single inverted Pendulum with multi-task
GPH. Top row are the states of the Single Inverted Pendulum. The second row is the
control input generated by the Intermittent Controller. The bottom row is the open-loop
interval.

In Figure 5.15, the multi-task GPH is using 60 points for training. The fit in the time

domain is 96.51% and 99.0% in the frequency domain. Whilst this implementation is

able to stabilise the pendulum, getting a good representation of the system’s dynamic

using multi-task GPs can be more difficult than single-task GP. More training points are

necessary to reach good performance compared to the single task GP case, however, this

does not slow down the execution significantly. Table 5.3 is summarises the iterations per

second value based on the number of points used for the training:



5.2. Results 153

Training points Iteration per second
10 898±3 it/s
20 892±3 it/s
40 893±2 it/s
60 890±2 it/s
80 889±2 it/s
100 874±23 it/s

Table 5.3: Iteration speed for Intermittent Control using Multi-task GPH.

5.2.2 Online retraining

As presented before, a GP based hold is designed at the start of the simulation and it is

not getting updated through the simulation. However, it is possible to add more training

points to the GP, needing a new optimisation when points are added. This approach is

similar to the Data Informativity (Section 4.2.2) as the goal is to improve the response of

the GP based Hold.

Similarly to Figure 5.5, the GPs are retrained using previous data generated by the

controller itself. However, in this case, the data is originally coming from a GP based

Hold instead of being a SMH.

Depending on the origin of the training data, the GP might be representing the closed-

loop dynamics of the plant as a state feedback controller is here to keep the Single Inverted

Pendulum stable even with the multi sine applied as a disturbance. However, the training

data coming from the Intermittent Controller will be estimating the open-loop dynamics

of the Single Inverted Pendulum (see section 4.2.2.2).



5.2. Results 154

Figure 5.16: Diagram representation of the type of system the GP is modelling.

Following the first retraining, all data from the initial GP is dropped. The training data

for the GP cannot be mixed between two different systems. In addition, in the case of

the GP being a representation of the open-loop dynamics, it is necessary to pass a state

feedback control input (−kX) similarly to the SMH implementation.

Initially, the plant is not changing, and the GP based hold is trying to reach the correct

representation of the dynamics of the plant. Then, similarly to the test case used in the

Data Informativity framework, the system is changing from an initial length to another

one, focusing on assessing the capability of the GP to learn the new system. Then the

case of the system changing progressively every 10 seconds is also looked at.



5.2. Results 155

5.2.2.1 Model improvement over time

In this first section, the Single Inverted Pendulum is not changing overtime. The main

focus is for the GP to learn the correct dynamics of the plant after multiple retraining.

Similarly to the initial training, it is up to the user to decide how many points from the

trajectory is used for retraining. However, as presented in the Section 5.2.1.2, adding more

points for optimising the GP is making computation slower, for both the optimisation as

well as predicting the following state.

Moreover, it is also up to the user to decide when the optimisation is taking place to fit

in the Intermittent Control framework. Similarly to the Data Informativity implement-

ation, the GP retraining is performed when the controller is closing the loop. With this

implementation, the controller is not changing during an open-loop interval.

Firstly, the influence of the number of points used for retraining is investigated as well as

the time used between each retraining. Figure 5.17 shows the evaluation criteria measures

in order to assess the optimal combination of points used for training and retraining time

of the GPs.

Retraining the GP using online data can improve the open-loop interval. It is also de-

creasing the spread of the RMSE for both state as well as the mean of the control input.

However, keep adding points to the existing GPs is slowing the simulation as well as the

optimisation. It is important to notice that adding points to the GP is not always benefi-

cial, as results show when the GP is using 90 training points. The root mean square error

spread is getting wider and the open-loop interval is also decreased.



5.2. Results 156

Figure 5.17: Evolution of the five measures for assessing the goodness of the GP when
it is retrained online over 10 simulations. The first and second rows are the RMSE for
both states of the system. The third row is showing the distribution of the mean of the
control input and the fourth row is the mean of the open-loop interval. The last row is
the variability over two open-loop.



5.2. Results 157

Figure 5.18: GP optimisation time related to the amount of points used for training.

Figure 5.18 shows the impact of the number of points used for retraining the GP. As also

demonstrated in section 5.2.1.2, the time is increasing when adding more points for the

optimisation of the GP. However, in the previous section, the optimisation time is not

having an impact as the GP is computed before the simulation is starting, only the compu-

tation of the next states can be considered as a limitation for real-time application. In this

scenario, the optimisation is also impacting the possibility of using the GP in a real-time

settings, as the GP optimisation is taking multiple seconds in order to find the optimal

hyper parameters. This optimisation time is mainly impacted by the implementation of

the algorithm (see Section 3.6.6) using Python.



5.2. Results 158

Figure 5.19: Impact of the number of points used for retraining in function of the retraining
interval. The left column is adding 5 points to the current GP and the right column
is adding 10 points at each retraining. The top row is the RMSE of the angle of the
pendulum through the simulation and the bottom row is the mean open-loop interval.
Each simulation is 60 seconds.

Figure 5.19 shows the impact of the number of points on the retraining time and the

RMSE and open loop interval. As points are taken randomly from the trajectory, it might

occur that the response of the controller is degraded following a training compared to the

previous iteration. This can be seen in Figure 5.19 (left column), where the Root Mean

Square Error of the angle is increasing over multiple retraining to then going back to

lower value. The same pattern can be seen when using 10 points for retraining (Figure

5.19 (right column)), however, it seems more consistent. In most cases, this is happening

when the Root Mean Square Error of the states and the mean of the control input are close

to optimal conditions (see Figure 5.20 (blue line)). Hence, the retraining over multiple



5.2. Results 159

instance is only adding similar data points that already exist in the training data set for

the GP. In addition, the open-loop interval of the GP is not improving over time as the

number of points used for training keeps increasing. Keeping retraining GPs by adding

more and more points without discarding old one can not only degrade the GP but also

increase the required optimisation time.

As the state’s RMSE and the Mean Open-loop interval can be used as proxies to assess

the goodness of the GP, these measures can also be used to stop the retraining of the GP.

By using this stop-relearning approach, four new thresholds are introduced, to stop the

retraining of the GP when criteria are met. The first two thresholds are applied to the

RMSE of the two states present in the system, θ̇ and θ . The third threshold is applied

to the mean of the control input. Then the fourth threshold is applied to the standard

deviation of the open-loop interval. The retraining is stopped when the plant is following

the reference with a low error, and having consistent open-loop interval with symmetrical

control input. The following timeseries is showing the impact of stopping the relearning

of the GP when the four conditions stated above are met.

Figure 5.20 shows two time series of the same initial GP with and without the stop

relearning flag enabled. The retraining time is set to 10 seconds plus waiting for the next

event. When the GP is not stopped from retraining, represented in blue, the angle of

pendulum is drifting away from the reference after the second retraining. However, the

response of the controller following the first retraining is already giving a low RMSE as

well as a mean control input around 0. However, it is going back to a low RMSE after the

third retaining.



5.2. Results 160

Figure 5.20: GP based Intermittent Controller. Top subplots: without stop retraining.
Bottom subplots: With stop retraining. Vertical lines: GP relearning. The top row is the
velocity of the pendulum: θ̇ . The second row is the angle of the pendulum: θ . The third
row is the control input generated with GP based Intermittent Control and the last row
is the open-loop interval. The blue is without stop retraining. The orange color is with
stop retraining enable.



5.2. Results 161

In comparison, when the stop relearning flag is enabled, in orange in Figure 5.20, a single

retraining is done around 10 seconds. When it is time for the second retraining, the four

thresholds mentioned above are avoiding an additional retraining, which helps keeping

the simulation operating as it should as well as avoid unnecessary GP retraining, thus

saving computation time. In addition, the number of points used by the GP not growing

is helping in reducing the computational burden at each time step, where the inverse of a

matrix is calculated.

Knowing that GP is able to improve using online data coming from the Intermittent

Controller, the focus is moved to adaptation using GP in the next section.

5.2.2.2 Adaptation applied to SIP

In this section, the pendulum length is changing through time, similarly to the simula-

tions presented in Section 4.2.2.2. First, the pendulum length is increased a single time

during the simulation. Then, in the following set of simulation, the pendulum’s length

is increasing then decreasing in order to increase the complexity for the adaptation al-

gorithm. Finally, the changes of the plant parameters are evolving progressively, hence

the discrepancy between the controller and the plant is less spontaneous.

Initially, the length of the pendulum is changing once during the simulation, from 1meter

to 1.2meter. Similarly to Section 4.2.2 where Data Informativity is used, the objective is

to assess if this GP based Hold is able to detect and retrain accordingly when the system

is changing. It is important to note that GP is only integrated the Hold block inside

the Intermittent Controller, hence the state feedback is not updated when the GP gets

updated. Previously, the system was not changing over time, so keeping state feedback



5.2. Results 162

constant was not an issue. However, in this case, it is important to assess the impact of

only updating the Hold without updating the state feedback. First, the state feedback k

is updated accordingly with the system’s updates. Figure 5.21 shows the impact of the

GP retraining when the pendulum’s length is changing.

Figure 5.21: GP based Intermittent Controller. Pendulum’s length changing at 50 seconds
from 1m to 1.2m. Vertical grey line: GP retraining. The top row represents then velocity
of the pendulum (θ̇ ), and the second row is the angle (θ ). The third row is the control
input generated with GP based Intermittent Control and the last row is the open-loop
interval. The blue line represents the timeserie when the GP keeps retraining whereas the
orange line is stopping the relearning when pre-defined conditions are met.

In the first half of the simulation, the system stays constant, hence the GPs are only

learning about a single system. After the first retraining at around 10 seconds, the open-

loop interval is increasing. The states responses as well as the control input are similar

to before. However, when the GPs keep retraining a second time, the response of the

controller is getting off centered. This is not present when the stop retraining flag is



5.2. Results 163

enabled as the response of the Intermittent Controller is considered good enough based

on the threshold on the states and control input. Moreover, unnecessary optimisations are

not happening in contrast to the blue line: the GPs retrained at 40 seconds are back to

similar controller response as the one at 10 seconds.

In the second half of the simulation, the pendulum length is increased to 1.2m. In both

simulations, the response of the controller is impacted by this change. This is due to the

GP initially gathering data from two different systems and trying to optimize the hyper

parameters to fit both output training data. It is easily noticeable that the GP estimation

is actually getting degraded when the training data is coming from two different systems.

In order to avoid this issue, a forgetting factor has been introduced. This forgetting factor

is helping in discarding old data and only use recent data from the optimisation of the GP.

This forgetting factor has been set to two retraining times. This means that data used

by the GP is not older than 2 previous retraining period. When the system is changing,

the GP is getting data points from two different systems for only one optimisation. Then,

after the second retraining, all data is coming from the newly updated system. Figure 5.22

shows the impact of using this forgetting factor, where the open-loop interval is getting

back to around 1.4 seconds, in contrast to the 0.2 seconds present in Figure 5.21.



5.2. Results 164

Figure 5.22: GP based Intermittent Controller. Pendulum’s length changing at 50 seconds.
Stop retraining is enable. Forgetting factor is enabled. Vertical red lines: GP retraining.
The top row is the two states of the Single Inverted Pendulum (θ̇ and θ ). The second
row is the control input generated with GP based Intermittent Control and the third row
is the open-loop interval. The last row is the variability of θ (in blue)

At the first retraining after 50 seconds, the GP is retrained using data from the system

before and after the change of length, similarly to the previous simulations. However,

when the second retraining is happening, all data passed for the retraining belongs to the

newly updated length, hence the optimisation of the GP is improved in comparison to

the simulation shown in Figure 5.21. In addition minimum open-loop interval threshold

has been implemented. This is helping by forcing retraining when the GP response is still

below the threshold. This is too avoid the case where the states are matching the set point

due to a very small triggering interval.



5.2. Results 165

The same approach is used when the plant is changing following the stairs pattern as used

in Section 4.2.2. Figure 5.23 is showing the impact of the retraining interval tGP.

Figure 5.23: GP based Intermittent Controller. Forgetting factor is enabled. (a) tGP = 10
sec and (b) tGP = 5 sec. Vertical red lines: GP retraining. The top row shows the two states
of the Single Inverted Pendulum (θ̇ and θ ). The second row is the control input generated
with GP based Intermittent Control. The third row shows the open-loop interval. Forth
row is the % fit of the GP. The last row is the variability of θ (in blue) and θRMSE (in
red). Vertical lines represents a retraining of the GP (red). The system length is changing
through the simulation: start at 1m, go to 1.2m at 50s, back to 1m at 100s, then lowered
to 0.8 at 150s then back to 1m at 200s.

As stated in Section 5.1.2, assessing the fit of the GP to the actual plant can be diffi-

cult due to the black box representation. The approach used here is based on applying

similar control input to both plants (true and GP representation) and to compute the fit

percentage between the two. For both tGP, the GP and the true system start from some

initial conditions ([0; 0.1]) and a state feedback controller is applied to each of them. This

is using the correct state feedback for the current system. In the case where the plant

dynamics are fully unknown, getting an accurate representation of k can be complicated.



5.2. Results 166

Figure 5.24: GP based Intermittent Controller. Forgetting factor is enabled. (a) tGP = 3 sec
and (b) tGP = 1 sec. Vertical red lines: GP retraining. The top row is the two states of the
Single Inverted Pendulum (θ̇ and θ ). The second row is the control input generated with
GP based Intermittent Control. The third row is the open-loop interval. Forth row is the
% fit of the GP. The last row is the variability of θ (in blue) and θRMSE (in red). Vertical
lines represents a retraining of the GP (red). The system length is changing through the
simulation: start at 1m, go to 1.2m at 50s, back to 1m at 100s, then lowered to 0.8 at
150s then back to 1m at 200s.



5.2. Results 167

Here, the focus is to understand the capabilities of the GP in estimating accurately the

plant. Similarly to the Data Informativity results in Section 4.2.2, the longer the retrain-

ing time is, the longer the controller is lagging in term of design to the plant. In these

simulations, the system’s changes are slow enough for the GP to get multiple retraining

iterations per system change.

In the case where tGP = 10 sec (Figure 5.23 (a)), the fit of the GP is decreasing when the

GP is retrained with the mix of two systems. Then it gets back close to 100%. Similar

results can be seen in Figure 5.23 (b) and Figure 5.24 (a) and (b). However, when the

retraining time decreases, the fit percentage is getting more variable. This can be clearly

seen where the retraining time is 1 second, and the pendulum length is 0.8m (between

150 and 200 seconds in the simulation). In order to keep more stability into the GP

representation of the plant, keeping a long retraining time is more beneficial. However,

this can bring instability of the control system if the plant is changing toward heavily

unstable conditions and the retraining is only happening 10 seconds later. It is worth

mentioning that each of these simulations are still stable no matter the retraining time

tGP.

Similarly to the Data Informativity results, if the retraining time is larger than the time

where the system is changing, the controller is always lagging behind. Decreasing the time

between each retraining can help avoiding it. However, due to the lack of data available for

training the GP, it is possible that the GP is not reaching the best possible representation

of the system. For example, this can be seen in Figure 5.24 (b), when the pendulum’s

length is decreased to 0.8m: the fit value of the GPs is jumping back an forth compared

to a stabilized fit above 80% for the subplots (a), (b) in Figure 5.23 and in subplot (a) in

Figure 5.24 (a).



5.2. Results 168

The results above show that Gaussian Processes are able to be used within Intermittent

Control to handle adaptation when the pendulum parameters are changing fast. In Figure

5.25 and 5.26, the pendulum’s length is changing more slowly. The pendulum’s length is

getting updated every 10 seconds between 30 seconds and 70 seconds, changing from

1m to 1.2m (0.04m / 10 sec). Then the length is decreasing similarly, from 150 seconds

to 240 seconds, going from 1.2m to 0.8m (-0.04m / 10 sec). Similarly to the previous

simulations, the different retraining times tGP are compared: 10, 5 (Figure 5.25), 3 and 1

seconds (Figure 5.26).

Figure 5.25: GP based Intermittent Controller. Forgetting factor is enabled. (a) tGP = 10
sec and (b) tGP = 5 sec. Vertical red lines: GP retraining. The top row is the two states of
the Single Inverted Pendulum (θ̇ and θ ). The second row is the control input generated
with GP based Intermittent Control. The third row is the open-loop interval. Forth row
is the % fit of the GP. The last row is the variability of θ (in blue) and θRMSE (in red).
Pendulum’s length changing from 1m to 1.2m (0.4m/10sec) starting at 30 seconds. Then
decrease from 1.2m to 0.8m (-0.4m/10sec).



5.2. Results 169

Retraining the controller every 10 seconds is making the whole design of the controller

off-sync similarly to the results presented in Figure 4.28, due to the similar time frame

for the plant to update its length. This is noticeable when focusing on the increase of

θRMSE and the decrease of % fit between 30 and 90 seconds. The open loop interval is

also decreasing during this period, before going back to an average of 1.5 seconds between

90 and 150 seconds. Similar behaviour can be observed when the pendulum is gradually

decreasing its length.

The same observation can be made when tGP = 5 seconds, however the % fit in the fre-

quency domain is not becoming as low as before. This is due to the GP being able to

retraining with only data coming from the updated plant. Moreover, when tGP = 3 seconds,

shown in Figure 5.26, the % fit is staying above 75% in the first 100 seconds. The variab-

ility however is getting higher due to the more regular update of the GP. Similar results

can be observed when tGP = 1 second and it is worth mentioning θRMSE being lower due

to a single second where the plant and the controller are not matching. When tGP = 10

seconds, this time is increased to 60 seconds, when the pendulum’s length stop increasing.

Furthermore, the % fit of the GP when tGP = 1 second is quickly going from 0% to 100%

after a single retraining.



5.2. Results 170

Figure 5.26: GP based Intermittent Controller. Forgetting factor is enabled. (a) tGP = 3
sec and (b) tGP = 1 sec. Vertical red lines: GP retraining. The top row is the two states of
the Single Inverted Pendulum (θ̇ and θ ). The second row is the control input generated
with GP based Intermittent Control. The third row is the open-loop interval. Forth row
is the % fit of the GP. The last row is the variability of θ (in blue) and θRMSE (in red).
Pendulum’s length changing from 1m to 1.2m (0.4m/10sec) starting at 30 seconds. Then
decrease from 1.2m to 0.8m (-0.4m/10sec).

The retraining time tGP is having an important role in the behaviour of the Intermittent

Controller. If the objective is to keep a low variability, having a longer tGP can be beneficial.

However, if the system is changing through time, it is important to have tGP below this

change rate. This is allowing the GP to get multiple retraining with data coming from

a unique plant. The number of retrainings per unique system is the value set in the

forgetting factor used for the results presented in Figure 5.22. In order to get a low θRMSE ,

decreasing tGP is beneficial but this is increasing the variability of the simulation as well

as the open-loop interval.



5.2. Results 171

The incorporation of GP to replace the traditional SMH has interesting benefits, especially

in the adaptation case. However, this approach is not able to estimate the state feedback

gain required by the Intermittent Controller. In this section, the state feedback gains have

been redesigned in sync with the change of the system. Hence, this is assuming that the

system changes are known. However, based on results presented in Figure 4.15, whether

the state feedback are updated or not is not introducing much differences.

5.3 Discussion

Switching from a deterministic hold approach to a stochastic one, this chapter has shown

the feasibility of Gaussian Processes to model system dynamics instead of using the tradi-

tional System Matched Hold in the Intermittent Control Framework. One of the advant-

ages of using Gaussian Process is moving toward a data-driven approach. By using data

generated by the Intermittent Controller, the GPs are able to model the open-loop system

dynamics in contrast to the closed-loop one when using data coming from a Continuous

Controller as presented in Figure 5.16 when training the initial GP using a mutisine

disturbance (Figure 5.7).

In addition, GP is able to introduced variability in two different ways with the need of

adding additional disturbance signals such as noise. By enabling uncertainties propaga-

tion, it is possible to generate a new set of trajectories which shift away from a perfect

representation of the plant’s dynamics as presented in Figure 5.11. Another way of adding

variability into the controller output is to often retrain the GP. This optimisation is up-

dating the hyper parameters of the GP which are slightly different from the previous ones

due to the newly added data. Moreover, GP is able to accurately model the system’s

dynamics with a low number of points, which then can keep the optimisation as well as

the next state prediction fast.



5.3. Discussion 172

Gaussian Processes are able to take advantage of the open-loop trajectories generated by

the Intermittent Controller in order to retrain using online data. With the effect of the

triggering, hence constant motion of the plant, the data gathered is around the operating

area and are ideal to train a GP. Furthermore, it is possible to adjust GP specific para-

meters to influence the controller behaviour. For example, adjusting the number of point

used for training could lead to a more accurate representation of the systems dynamics,

however this is not without some limitations.

Whilst using GP is helping moving towards a fully data driven Intermittent Controller,

this approach can show some limitations. As shown in Figure 5.18, the optimisation time

of the GP is highly impacted by the number of points used for training. In the case

of simulation, it is possible to artificially pause the simulation until the optimisation

is finished. However, this is not realistic when applied to real-time systems. Another

downside of using GP is focusing on the state feedback estimation. This approach is only

able to model an approximation of the system’s dynamics, however, due to GP being

based on hyper parameter, it is not possible to get matrices A, B or even k due to the

non-linear covariance function used to model the data.

As presented in Figure 5.20, it is possible to stop the retraining of the GP when the

behaviour of the controller is aligned with our requirements. However, there is not an em-

pirical way of fixing these ”stop relearning” thresholds, and it needs to be done manually

depending on the Intermittent Controller parameters used. Finally, it is worth mentioning

that while GP is able to accurately estimate the system’s dynamics using online data, it

is necessary to gather data for a certain period of time before retraining. This time period

can be an issue if the system changes are too important and loose stability before the GP

retraining.



5.3. Discussion 173

As presented in chapter 4.2, it is possible to use Data Informativity or Reinforcement

Learning to estimate the accurate state feedback for the controller. In this chapter, the

Hold is using a Gaussian Processes model. In the following chapter, both state feedback

estimation frameworks are used in a GP based Intermittent Controller, in order to move

towards a fully Adaptive Stochastic Intermittent Data Driven Controller.

5.4 Summary

An overview of the work accomplished in this Chapter is summarized in Table 5.4. This

table focuses on the pros and cons of using different types of GP within IC. In addi-

tion, limitations and generalizations are mentioned. Everything is based on simulation

data only, allowing easy assessment of the Intermittent Controller against different sets

of parameters, as well as system properties changing through time and not needing an

observer to access all states.

Algorithms Pros Cons Limitations
Full GP Can use uncertainties

propagation to intro-
duce variability

Each state is con-
sidered independent

Optimisation Time

Sparse GP Reduce the complex-
ity of the GP

Double optimisa-
tion (Full GP then
Sparse)

Level of sparsity can
heavily affect the
controller behavior

Multi Task
GP

Matrices that model
inter-task relationship

More training data is
required for training

This does not im-
prove computation
speed for real-time
application

Uncertainty
Propaga-
tion

Introduce variability
without external dis-
turbances

Slow computation
time

Multi step ahead pre-
diction required to
sample from the dis-
tribution

Table 5.4: Summary table covering Chapter 5 contributions.



5.4. Summary 174

The fundamental limitation of these approaches is about the state feedback gains. Even

though, these algorithms can model the dynamics of the plant, k is not getting estimated.

The main outcome of this chapter is that GP is able to model the open-loop dynamics of

the plant even under the influence of the controller. In addition, the Square Exponential

Kernel function is able to model the dynamics of the pendulum and the cartpole systems.



Chapter 6

Adaptive Stochastic Intermittent
Data Driven Control

As presented in Chapter 4, both Reinforcement Learning and Data Informativity can get

an accurate state feedback estimation that can be used within the Intermittent Control-

ler. Data Informativity estimates the system matrices A and B used to design the Hold

block and the state feedback. However, as presented in Section 4.2.2.2, the variability of

this approach is low due to the high accuracy of the matrices estimation as well as the

deterministic nature of the Hold in both the noiseless and noisy cases.

Whilst the Reinforcement Learning implementation is not able to estimate the system

matrices A and B that are necessary to obtain an accurate controller, there is a need to

find an alternative for the implementation of the Hold block. Gaussian Processes have

been used as a replacement for the traditional SMH, using a data-driven approach and

results are presented in Chapter 5. In this chapter, the focus is to apply Reinforcement

Learning and Data Informativity in conjunction with a GP-based Hold and assess its

characteristics in multiple scenarios.

175



6.1. Methods 176

6.1 Methods

Similarly to previous sections, the following block diagram highlights which parts of the

Intermittent Controller are getting updated online with both the Reinforcement Learning

and Data Informativity algorithms, as well as the Gaussian Processes relearning.

NMS System Observer

Trigger

State FB Hold

+
-

+
-

Figure 6.1: Intermittent Control block diagram of the controller updated by the Rein-
forcement Learning, Data Informativity and GP algorithms are highlighted in green.

The Hold is updated using the GP model, whereas the State Feedback block is updated

with the estimation coming from the Reinforcement Learning or Data Informativity frame-

work. Even though results are showing the estimation of system matrices A and B where

Data Informativity is used, these are only passed to the LQR design method to generate

a state feedback gain. These matrices are not used in the hold in any of the results in this

Chapter. The trigger block is updated using an approach similar to the one presented in

Section 5.2.1.1, where Uncertainty can be used as a triggering mechanism.



6.1. Methods 177

Syst
em

ID
 1

Syst
em

ID
 2

Syst
em

ID
 3

GP init.

Pre-recorded data

Start

State Feedback Design

 Hold Design

Syst
em

ID
 4

Time

Syst
em

ID
 5

Syst
em

ID
 6

Syst
em

ID
 7

Syst
em

ID
 8

Retraining 1

Retraining 2

Retraining 3

Retraining 4

System update

Figure 6.2: Diagram representation of the timing between Hold and State feedback re-
design. Hold Design is based on Gaussian Processes. State feedback design can use Rein-
forcement Learning or Data Informativity.

The diagram in Figure 6.2 shows the implementation of the framework combining the

Gaussian process re-learning process and the state feedback relearning process. The state

feedback relearning process can use the Reinforcement Learning algorithm or the Data

Informativity. Both of the redesigns are using their own timing which can be set to any

value and do not need to be in sync with each other. However, similarly to previous indi-

vidual retraining presented in Chapter 4, it is necessary to be synced with the triggering

mechanism of Intermittent Control, hence avoiding any change of controller during an

open-loop interval.

Focusing on the state feedback estimation part, only data recorded between each retrain-

ing is used to estimate the next set of matrices. This approach is feasible due to the

consistency in the estimation, especially when using the Data Informativity algorithm

(results presented in Section 4.2.2.2). For the Gaussian Process optimization, the data

from the previous retraining to the current time can be combined with the data already



6.1. Methods 178

passed to the GP currently in use. This combination of overlapping data between mul-

tiple retraining can be controlled by increasing or decreasing the forgetting factor (results

presented in Section 5.2.2, see Figure 5.22) that allows to select the amount of previous

retraining data used for the current retraining. Even if the GP training is quite reliable

in estimating the correct system dynamics, having a wrong Hold has a bigger impact

than having inaccurate state feedback coming from the system identification process as

presented in Figure 4.15.

In this Chapter, simulations are applied the Single Inverted Pendulum (see Appendix A).

Similarly to Chapter 4 and Chapter 5, the pendulum length is changing to assess the

responsivity of the Intermittent Controller.

6.2 Results

This section presents the results of simulations where system identification algorithms are

used in conjunction with a GP-based Hold. Firstly, Reinforcement Learning and Gaussian

Processes are analyzed, and then, Data Informativity and GP-based Hold are looked into.



6.2. Results 179

6.2.1 Reinforcement Learning with GP based Hold

In this section, Intermittent Control using the traditional SMH is compared to using GPH

when Reinforcement Learning is used to estimate the state feedback gain and it is applied

to a time invariant Single Inverted Pendulum. To assess the capabilities of GPH over the

SMH, multiple conditions are tested including the variation of the threshold, allowing to

switch between clock-driven and event-driven mode, as well as the initial poles used by

the controller.

As explained in Section 3.4.2, the algorithm must start with a stable controller k0. When

Qc = I and Rc = 0.1, the LQR method is resulting in an optimal gain of kopt = [2.36,9.91].

This corresponds to the following poles: [−6.83,−2.92]. It has been decided to start with

three different sets of initial stable poles: [−3.1,−3], [−8.1,−8] and [−2.1,−2]. In the first

set of poles, both of them are located in between the two optimal poles, and in the second

set, the control is designed with poles to the left of the optimal poles, thus the controller

is faster. In the last condition, the controller is slower, hence closer to being unstable.

In addition, it is also necessary to sample point only when the loop is closed as presented

in Section 4.2.1. Results, with clock-driven mode enabled, with controller poles located

at [−3.1,−3] and with a minimum open loop interval of 3ms, are shown in Figure 6.3.

As presented in Figure 6.3, both controllers are outputting very similar control signals

and the estimation of the state feedback gain converges to the optimal value after 11

estimations for both types of Hold. The controller operating in clock-driven mode with a

very low open-loop interval is similar to a continuous controller.



6.2. Results 180

Figure 6.3: Reinforcement Learning with GP based Hold. The system is the Single inverted
Pendulum. Top row is the states of the SIP. Second row is the control input outputted
by the Intermittent controller. The third row is the open-loop interval. The last row is
the estimation of state feedback gain. The dash line represents kopt . The left side is using
SMH and the right side is using GPH. Intermittent parameters: min∆ol = 3ms, clock-driven
mode, controller poles: [−3.1,−3].



6.2. Results 181

Next, the minimum open loop interval is increased to 50ms. This is forcing more time

between each retraining as the algorithm is expecting 3 samples to calculate the controller

gains. Moreover, the poles of the controller are set now to [−8.1,−8]. Results are shown

in Figure 6.4.

Figure 6.4: Reinforcement Learning with GP based Hold. The system is the Single inverted
Pendulum. Top row is the states of the SIP. Second row is the control input outputted by
the Intermittent controller. The third row is the open-loop interval. The last row is the
estimation of state feedback gain. The dash line represents kopt . The left side is using SMH
and the right side is using GPH. Intermittent parameters: min∆ol = 50ms, clock-driven
mode, controller poles: [−8.1,−8]

Similarly to Figure 6.3, Figure 6.4 shows the capability for both SMH and GPH to estimate

the correct state feedback gain even though the initial gain is not located around the

optimal location. For both hold types, the estimation takes 4 iterations to converge to

the correct gains. By increasing the mimimum open loop interval to 50ms, the states of



6.2. Results 182

the system can vary more between each sample, thus reducing the amount of estimation

needed. However, the last optimization is around 550ms, which is much longer than the

case where the mimimum open loop interval equal 3ms, where the last optimization is at

around 125ms.

Keeping the same minimal open loop interval, the initial controller poles are changed to

the more difficult case, where cpoles = [−2.1,−2].

Figure 6.5: Reinforcement Learning with GP based Hold. The system is the Single inverted
Pendulum. Top row is the states of the SIP. Second row is the control input outputted
by the Intermittent controller. The third row is the open-loop interval. The last row is
the estimation of state feedback gain. The dash line represents kopt . The left side is using
SMH and the right side is using GPH. Intermittent parameters: min∆ol = 50ms, clock-
driven mode, controller poles: [−2.1,−2]



6.2. Results 183

The SMH case is unstable whilst the GPH case is keeping the Single Inverted Pendulum

stable. However, both of these simulations are not converging towards the optimal solution.

The final state feedback gain computed for SMH is [−3.1,17] and the one for GPH is

[4.1,18.1]. In the case of SMH, the first gain is estimated as negative which is the reason

for the instability. When GPH is used, the state feedback gain estimation diverges, creating

more excitation due to the probabilistic nature of the hold (around 700ms), with the result

that the system is able to get back closer to the optimal gains.

Moving away from the clock-driven case, the Intermittent Control threshold has been

set to 0.0001. This is setting up the Intermittent Controller to event mode, allowing for

open-loop intervals to be longer than the mimimum open loop interval. Both of these

simulations are keeping the SIP stable, however, GPH is only updating the state feedback

gain once whereas the SMH case is updating twice, allowing it to get closer to the optimal

gain. This is due to the threshold of relearning present in the Reinforcement Learning

algorithm that needs to be exceeded by the cost value. This threshold can have quite a

negative impact on the simulation if set too low, as the retraining will never stop even

though the optimal value is found. This can result in instability, especially when the

controller is clock-driven with a very low minimum open loop interval, resulting in a lack

of persistence of excitation.

Even though Reinforcement Learning can converge towards an accurate state feedback

estimation in some cases, it does not use the full potential of Intermittent Control features

specifically the open-loop data. It is worth highlighting the ability of GPH to keep the

system stable even though the state feedback is wrong for a certain period. In addition,

Reinforcement Learning required a significant amount of fine-tuning when applied to the

GPH as seen in Figure 6.6, where the gains are only estimated once.



6.2. Results 184

Figure 6.6: Reinforcement Learning with GP based Hold. The system is the Single inverted
Pendulum. Top row is the states of the SIP. Second row is the control input outputted by
the Intermittent controller. The third row is the open-loop interval. The last row is the
estimation of state feedback gain. The dash line represents kopt . The left side is using SMH
and the right side is using GPH. Intermittent parameters: min∆ol = 100ms, Threshold =
0.0001, controller poles: [−3.1,−3]



6.2. Results 185

6.2.2 Data Informativity with GP based Hold

As presented in the previous section, the Intermittent Controller with GPH can be used

with the Reinforcement Learning algorithm. However, it is not able to use open-loop

intervals as previously mentioned. In this section, Intermittent Control uses a GP-based

Hold, and Data Informativity is used to estimate the state feedback gains required by the

controller for a time variant Single Inverted Pendulum (see Appendix A).

This section is separated into two parts: (1) understanding the influence of timing between

the GP retraining and the Data Informativity timing tDI, (2) understanding the impact

of the IC parameters, such as threshold and minimum open-loop interval.

The assessment of the performance is a combination of the assessment presented in Sec-

tions 4.1.2 and 5.1.2. In addition, to compare different values for tDI and tGP, the data used

to compute the measures is based on the last 20 seconds before the system changes its

length. This is to ensure that the transient effect of changing the system is not included.

Figure 6.7 is a diagram representation of the data selection.

1

1.2

0.8

Time (s)

Length (m)

Data used for assessment

50 100 150 200 250

Figure 6.7: Diagram representation of the data used for the assessment. Pendulum length
is updated every 50 seconds and data selected for assessment is inside yellow boxes.



6.2. Results 186

6.2.2.1 Influence of relearning timings

In this section, the influence of the timing used for the Data Informativity compared to

the one used for the GP retraining is assessed. Multiple timing combinations are presented

in Figure 6.8 where tDI is 1 or 5 seconds and tGP is 1, 5, or 10 seconds. Each box plot

contains 3 simulations. The threshold in IC is set to 0.1 rad and the minimum open loop

interval is set to 10ms.

Figure 6.8: Assessment of the impact of the timings tDI and tGP. Top row is θRMSE , second
row is τMEAN , third row is % fit using multisine signal and last row is the variability. The
system (Single Inverted Pendulum) changes at 50, 100, 150 and 200 seconds as shown in
Figure 6.7.



6.2. Results 187

As shown in Figure 6.8, depending on the timing of tDI and tGP, it is possible to get

different behaviors from the controller. When tDI and tGP are both set to 1 second, the

variability of the simulation is the highest of all cases. In addition, θRMSE stays low and

consistent across the set of the 3 simulations. However, when the pendulum length is going

back to 1 meter at the end of the simulation, 1 of the 3 simulations is getting a higher

error. Looking at τMEAN , the triggering is faster at the end of the simulation, which can

then be seen as less variability, presented in the last row. When tDI and tGP are both equal

to 5 seconds, even though both retraining are in sync like the previous case, the main

difference is the overall variability in the 20-second window. This is due to the redesign of

the GP which introduces a bump in the variability more often. This can be seen in Figure

5.23 and 5.24, for example, when tGP is 1 or 10 seconds.

Two different tests have been run where tDI is faster than tGP: 1/5 and 5/10. Focusing on

tDI = 1 second and tGP = 5 seconds, the overall θRMSE across different pendulum length is

more consistent than when tDI = tGP. The τMEAN however, is in a similar range. The % fit

when the pendulum is going back to 1 meter halfway through the simulation is reduced to

around 77%, which can be seen also in the variability increasing due to the low accuracy

in the modeling of the system’s dynamics. When tDI = 5 seconds and tGP = 10 seconds,

the % fit is the lowest of all different timing cases, which can be translated on the other

measures. τMEAN spread is the widest of all, and the standard deviation of θRMSE is also

large for most of the pendulum lengths.

Finally when tDI is slower than tGP, θRMSE is the most consistent between each simulation

and across the different pendulum’s lengths. The overall % fit is also consistent and τMEAN

is around 1 second. It is getting lower when the pendulum length is decreased to 0.8 meters,

due to the system being harder to control.



6.2. Results 188

In conclusion, based on the desired behavior of IC, it is possible to change tDI and tGP

accordingly. To ensure repeated behavior without the variability becoming too large, using

a long tGP is recommended. If variability is required, decreasing tGP is having the most

significant impact compared to tDI. Changing tDI does not have a strong impact, as long

as it is quick enough to capture changes in the system matrices A and B to compute k in

time before the system becomes unstable. Hence, keeping tDI low and only varying tGP is

recommended.

6.2.2.2 Impact of IC parameters

In this section, the impact of ∆ol and the threshold is assessed to understand the limit

of the combined implementation of Data Informativity with Gaussian Processes. tDI and

tGP are set to 5 and 10 seconds respectively. ∆ol values are: 3ms, 10ms and 100ms and the

threshold value is changing from 0.01 rad to 0.1 rad. The threshold is only applied to the

angle of the pendulum.

For the results shown in Figures 6.9 and 6.10, the threshold is fixed at 0.01 rad and

∆ol is varying between 3ms, 10ms, and 100ms. Figure 6.9 shows that by increasing the

minimum open-loop interval, the θRMSE is getting lower, especially when the pendulum

length is moving from 1 meter to 0.8 meters. Regarding the % fit, the GP can get to

the correct system’s dynamics no matter what the minimal open-loop interval is. Figure

6.10 indicates that it is also possible to get to the accurate system matrices A and B

using a GP-based Hold. The values A1,2 and B1 are matching the target value, thus the

computation of k using the LQR method is also accurate.



6.2. Results 189

Figure 6.9: Influence of IC parameters applied to the Single inverted Pendulum. Threshold
is 0.01 rad (angle). Different minimum open-loop: (a) ∆ol = 3 ms, (b) ∆ol = 10 ms and
(c) ∆ol = 100 ms. The top row shows the two states of the Single Inverted Pendulum (θ̇
and θ ). The second row is the control input with noise generated by a state feedback
controller. The third row is the open-loop interval and the fourth row is the GP’s fit. The
last row is the variability of θ (in grey) and θRMSE (in red). Vertical lines represents tDI
(grey) and tGP (red). The system length is changing through the simulation: start at 1m,
go to 1.2m at 50s, back to 1m at 100s, then lowered to 0.8 at 150s then back to 1m at
200s.



6.2. Results 190

Figure 6.10: Influence of IC parameters applied to the Single inverted Pendulum.
Threshold = 0.01 rad (angle). Different minimum open-loop: ∆ol = 3 ms (green), ∆ol = 10
ms (orange) and ∆ol = 100 ms (blue). Each subplots represents in order: A1,2, K1, B1, and
K2. The system length is changing through the simulation: start at 1m, go to 1.2m at 50s,
back to 1m at 100s, then lowered to 0.8 at 150s then back to 1m at 200s.

Intermittent Control can keep the system stable as well as correctly estimating A and

B when using a low threshold of 0.01 rad. Next, the threshold is increased to 0.1 rad,

allowing more motion from the system. Similarly to the previous set of simulations, three

different ∆ol values are assessed: 3ms, 10ms, and 100ms. Results are shown in Figures 6.11

and 6.12.

Starting with ∆ol = 3 ms and ∆ol = 10 ms, both simulations are keeping the pendulum

system stable. In addition, using the lowest ∆ol is helping to improve the fit of the GP

model when the system is changing length. Regarding the variability and the θRMSE , both

of those measures stay in the same range. However, increasing ∆ol to 100 ms is bringing

instability when the pendulum is reducing its length to 0.8 meters. This is due to the

coefficient A1,2 not being estimated correctly, hence generating an unstable state feedback

gain when passed to the LQR method, which can be seen in Figure 6.12. This results in



6.2. Results 191

Figure 6.11: Influence of IC parameters applied to the Single inverted Pendulum.
Threshold is 0.1 rad (angle). Different minimum open-loop: (a) ∆ol = 3 ms, (b) ∆ol = 10 ms
and (c) ∆ol = 100 ms. The top row shows the two states of the Single Inverted Pendulum
(θ̇ and θ ). The second row is the control input with noise generated by a state feedback
controller. The third row is the open-loop interval and the fourth row is the GP’s fit. The
last row is the variability of θ (in grey) and θRMSE (in red). Vertical lines represents tDI
(grey) and tGP (red). The system length is changing through the simulation: start at 1m,
go to 1.2m at 50s, back to 1m at 100s, then lowered to 0.8 at 150s then back to 1m at
200s.



6.2. Results 192

the GP not getting meaningful data to model the plant in the upright position, hence the

% fit after 150 seconds is 0. The variability is close to 0 due to triggering at the minimum

open-loop interval. Even when the pendulum length is returning to a length of 1 meter,

the controller is not able to recover.

Figure 6.12: Influence of IC parameters applied to the Single inverted Pendulum.
Threshold = 0.1 rad (angle). Different minimum open-loop: ∆ol = 3 ms (green), ∆ol = 10
ms (orange) and ∆ol = 100 ms (blue). Each subplots represents in order: A1,2, K1, B1, and
K2. The system length is changing through the simulation: start at 1m, go to 1.2m at 50s,
back to 1m at 100s, then lowered to 0.8 at 150s then back to 1m at 200s.

6.3 Discussion

In this chapter, GP-based Hold and state feedback design algorithms were used simultan-

eously. This is the first implementation of a fully data-driven probabilistic Intermittent

Controller.



6.3. Discussion 193

Initially, Reinforcement Learning and GPH were used and assessed to evaluate its cap-

ability to obtain the optimal state feedback online whilst keeping the plant stable. With

results presented in Section 6.2.1, this implementation accurately estimate the corrrect

state feedback, similar to System-matched Hold. In addition, in certain cases, GPH can

keep the system stable due to its different response compared to SMH as shown in Figure

6.5, where initial poles are close to the imaginary axis. One limitation of this approach is

the need to operate in clock-driven mode to avoid instability generated by long open-loop

intervals with wrong state feedback gains. This is occurring when the initial control is

designed with poles which are not close enough to the optimal ones. This is a limitation

regarding the retraining of the GP as the amplitude of motion of the pendulum induced

by this controller closely matches a Continuous Controller, hence not giving enough ex-

citation to train the GP.

Next, Data Informativity and GPH were used together to control and estimate the sys-

tem dynamics. This combination of algorithms was investigated with varying retraining

timings as well as different Intermittent Control parameters such as the ∆ol and the

Threshold. By varying the timings tDI and tGP, it is possible to introduce more or less

variability in the movement of the system while keeping the plant close to the set point.

The retraining time also plays a role in the fit percentage of the GP model. One advantage

of using Data Informativity is its capability to estimate the system matrices A and B,

unlike the Reinforcement Learning approach where only k is estimated. Where system

dynamics are fully unknown, getting an accurate estimation of k can be quite difficult.

However, the drift in the gains can be used as a proxy to assess an underlying time variant

system. This could also be done by observing at the hyperparameters of the GP, however,

the translation to a physical component is harder.



6.3. Discussion 194

In conclusion, the two state feedback estimation approaches presented, Reinforcement

learning and Data Informativity, can be used with a stochastic Intermittent Controller

based on GPs. However, the Data Informativity approach is preferred due to its ease

of use as well as full advantage of the open-loop trajectories present in the intermittent

Controller.

6.4 Summary

An overview of the work accomplished in this Chapter is summarized in Table 6.1. This

table focuses on the pros and cons of using GP with the RL and DI framework. In addition,

limitations are also explained.

Algorithms Pros Cons Limitations
RL + GP Improved results

compared to SMH:
states estimation able
to converge where ini-
tials poles are close to
imaginary axis

Not able to use data
sample generated
during open-loop tra-
jectories

IC in Clock driven
mode recommended
to ensure fix trigger-
ing to gather data in
time for next optim-
isation

DI + GP Able to introduce
variability from the
control input com-
pared to SMH + DI.
Able to use open-loop
generated data

Combination of GP
with DI might res-
ult in instability in
especially with large
minimum open-loop
interval and high
threshold

Limited by the speed
of the GP optimisa-
tion

Table 6.1: Summary table covering Chapter 6 contributions.

Some generalisation can be made for each algorithm. Similarly to RL with SMH, RL

with GP can be used to determine the approximated location of the optimal poles if the

estimation does not converge. Regarding using DI with GP, keeping a small minimum

open-loop interval is beneficial where a high threshold is required.



Chapter 7

Discussion

The discussion is separated into two sections. First, the introduction of stochastic elements

into the Intermittent Control framework by using Gaussian Processes is discussed by using

Gaussian Processes, followed by an evaluation of the full data-driven implementation of

IC. Figure 7.1 is a summary diagram representation of all algorithms used within the

intermittent controller during this project.

Gains estimation

Hold State feedback

GP

A

B

LQR KDI

RL K
Single Task

Multi Tasks

Single Step 
Prediction

Multi Step 
Prediction

Sparse

Uncertainties Prop.
Prediction

System
Modelling

Figure 7.1: Summary diagram covering this work within the IC framework. GP: Gaussian
Processes. DI: Data Informativity. RL: Reinforcement Learning. A and B are the system
matrices. K is the state feedback gain vector. In GP, blue represents different type of
prediction, white is the type of GP.

195



7.1. GP as non-linear probabilistic based Hold 196

7.1 GP as non-linear probabilistic based Hold

In the implementation originally presented by Gawthrop and Wang 2007, the hold present

in the Intermittent Controller is based on a deterministic representation of the closed-loop

system dynamics. This hold is directly derived from the system itself, hence its name of

System-Matched Hold. However, this approach relies on knowing the system’s equations

to be able to implement this hold. As presented in Chapter 5, Gaussian Processes can be

used in place of the hold, to integrate a stochastic element into the intermittent controller.

Due to their probabilistic nature, GPs can generate open-loop trajectories that are not

deterministic, hence acting as a new source of variability into the control. Note that in

Continuous Control, it would be required to add a disturbance signal such as noise to

generate such trajectories.

Gaussian process modeling uses system’s data to optimize its hyperparameters. However,

when using data coming from a continuous controller, the GP is modeling the closed-loop

dynamics with the influence of the controller. Although this representation can be used

in the Intermittent Controller’s Hold as such, this model is only able to generate closed-

loop trajectories whereas a GP trained based on Intermittent Controller generated data

is modeling an open-loop representation. In the current implementation, GP models can

be based on different types of GP such as single-task or multi-task (Bonilla et al. 2007).

Even though it is necessary to get a system model before starting any controller, GP has

the capability of using online data for retraining, hence improving model representation

gradually throughout the simulation. Chapter 5 shows simulation results of this approach.

GP can take advantage of the open-loop trajectories generated by the intermittent con-

troller to gather data around the operating target, allowing exploration and exploitation.

The number of points used for retraining as well as the history of points have an impact

on the overall performance of the controller. In the case of adaptation to a system which



7.1. GP as non-linear probabilistic based Hold 197

changes over time, it is important to not mix training data that are part of two different

systems for the GP to model. A forgetting factor has been introduced to help get an

accurate GP, even when the system is changing during the simulation. This can be seen

as a short-term memory parameter when compared to human motor control.

In addition to being able to control a system with a GP-based IC, it is also possible to

generate different types of control by simply modifying some GP parameters, similar to

modifying IC parameters. For example, as the GP relies on training data to model the sys-

tem dynamics, changing the number of training points has an impact on the overall model

as well as the computational effort required for the optimization as presented in Figure

5.18. Moreover, enabling uncertainty propagation is allowing any perfect GP to gener-

ate trajectories that drift away from the traditional SMH representation (Figure 5.11),

allowing more variability in the control. Additionally, it is possible to use the prediction

uncertainty from the GP to modify the triggering mechanism: this allows a shorter time

between events during the learning process when the uncertainty of the GP is growing

faster.

Gaussian processes present many advantages compared to the traditional SMH imple-

mentation, by bringing non-linearity as well as probabilistic trajectories generation. The

non-linearity can be considered as an advantage as it helps to model system dynamics

outside the linear range. However, there are still some limitations when using this imple-

mentation in a real-time application, such as the computational burden of this approach.

As the number of training data is increasing, the computational cost is growing as well.

In addition, the computation of the GP optimization in the adaptation case is also an

issue. Depending on the amount of data, the GP optimization can take multiple seconds,

which makes it unsuitable for real-time applications. Finally, this approach is only able

to update the hold present in IC but it is also required to update the state feedback gains

accordingly.



7.2. Data Driven Intermittent Controller 198

7.2 Data Driven Intermittent Controller

As discussed above, Gaussian Processes were implemented as a hold alternative to the

traditional SMH. This approach is helping move towards a data-driven intermittent con-

troller. However, the state feedback is also required to be known, and updated in the

case of adaptation to ensure stability of the plant. To estimate the state feedback gains

required by the system, two approaches have been compared: (a) a direct approach, using

Reinforcement Learning, and (b) an indirect approach, using Data Informativity. Other

Indirect approaches have previously been evaluated within Intermittent Control, such as

Kalman Filters (Martín 2018).

As presented in Chapter 4, Reinforcement Learning and Data Informativity are both able

to estimate the correct state feedback gains for the controller. However, both approaches

are different in the way of computing it: Reinforcement Learning requires a stable initial

controller whereas Data Informativity does not. As these approaches have been designed

to be used with Continuous Controllers, adaptation to the IC framework was required.

Reinforcement Learning is only able to use data when an event occurs. Operating IC in

clock-driven mode is helping to ensure getting data for the algorithm in a fixed amount

of time. However, as results show in Section 4.2.1, keeping open-loop intervals small is

required for stability. Two main comments can be made: (i) when using the RL algorithm,

all data generated when the IC is operating in an open-loop fashion is not used, and (ii)

the IC is not operating with long open-loop intervals, hence the system response is closed

to a continuous controller, without much motion introduced.

On the other hand, Data Informativity has shown advantages when used with Intermittent

over Continuous Control. As no excitation is present in CC without adding an external

disturbance signal, Data Informativity is not able to perform accurately. In addition,

when tested with some added noise, the estimation of the system matrices A and B



7.2. Data Driven Intermittent Controller 199

were inaccurate. However, adding a multi-sine signal to provide external excitation was

sufficient to improve accuracy. When used with IC simulation data, the DI algorithm can

accurate estimation of the system dynamics, represented by A and B without the need

for additional disturbance signals. The intrinsic motion generated by the controller itself

is enough to converge to the correct matrices while not forcing it to disturb the regular

operating mode of the system to be able to estimate accurately its dynamics.

In addition, by occluding events and only using open-loop trajectory data, the algorithm

can get closer to the true value of the plant. Compared to the RL algorithm, DI can take

full advantage of open-loop trajectories generated by IC to improve the matrix estimation.

It is also possible to adjust the time tDI to improve the stability of the matrix estimation.

Reducing this value below the open-loop interval of the IC forces an update of the state

feedback at each event. Whilst this brings some variability in the response, it can also

cause some instability, especially when the minimum open-loop interval and threshold in

IC are set to large values.

As presented in Chapter 6, both RL and DI can be used with the GP-based hold. Focusing

on RL and GP, the improvement over SMH is quite small due to the need to use clock-

driven mode. This implementation can get to the optimal state feedback gains, however,

convergence depends on the initial controller pole location. In addition, adaptation with

RL and GP is not covered due to the lack of excitation of the system for GP retraining.

When combining DI and GP, results show great potential, especially when adapting to

a changing system; both GPs and estimated system matrices are reaching the optimal

values. By varying both tDI and tGP, it is possible to introduce more or less variability into

the simulation. This is also having an impact on the GP modeling. However, these two

timings need to be matched to the IC parameters to ensure the stability of the estimation,

especially when the minimum open-loop interval is set to a large value.



7.2. Data Driven Intermittent Controller 200

In conclusion, both RL and DI can get to the correct state feedback gains, in combination

with a GP-based Hold. However, due to the current RL algorithm limitation of operating

in clock-driven mode, the recommended approach is to use Data Informativity to take full

advantage of open-loop trajectories generated by the Intermittent Controller.



Chapter 8

Conclusion and Future work

This chapter summarizes the work achieved during this PhD. It is divided into three

sections: conclusion, limitations of the current work, and future work.

8.1 Conclusion

The main aim of this research was to investigate the potential of data-driven techniques

within the intermittent control framework for rehabilitation and engineering systems pur-

poses. The results presented in this thesis can be summarized as follows:

• Using a Gaussian Process-based Hold in Intermittent Control, it is possible to bring

different open-loop dynamics compared to the traditional System-Matched Hold

without the need for external disturbances. Changing the GP parameters allows

to switch between symmetric repeated behavior, similar to SMH in the noise-free

case, to more variability in the signal when uncertainty propagation is enabled. In

addition, GP can model open-loop dynamics even though it is using data generated

with a controller.

201



8.1. Conclusion 202

• Whilst Reinforcement Learning is quite limited when using it with Intermittent

Control, Data Informativity has shown its capabilities in estimating accurate state

feedback gains by using intermittent control generated trajectories. This algorithm

is also capable of handling cases where the system’s parameters are varying with

time.

• When combining the GP and DI algorithms, the intermittent controller is fully data-

driven. Results show the capabilities of such a controller to cope with adaptation.

In addition, tuning IC or GP parameters can help switch the control input from a

deterministic to a stochastic one, by generating probabilistic open-loop trajectories.

As an overall conclusion, fully data-driven stochastic intermittent control could help in

understanding learning mechanisms in a human motor control context due to its probabil-

istic nature. This implementation can also apply to engineering systems, where adaptation

is prioritized in relation to accuracy.

8.2 Limitations

The current implementation of the Non-linear Probabilistic model-based Data-driven In-

termittent Controller has some limitations as presented below:

• Real-time implementation: With the introduction of Gaussian Processes as an al-

ternative to the System Matched Hold, real-time issues were introduced. This is

mainly due to two issues: (a) optimization of the Gaussian Processes online that

cannot be achieved in less than one discrete time iteration due to the computa-

tional complexity, and (b) the prediction of the next iteration, where it is necessary

to compute the inverse of a matrix for each of the GP. The second reason cannot be

solved easily as discussed in Chapter 5.2.1.2 by only introducing previous knowledge



8.2. Limitations 203

of the system or using Multi-Task GP. This issue can be addressed by using faster

hardware and/or using a different programming language which is more suitable for

real-time application. However, improving the optimisation of the GP has not been

looked as part of this thesis.

• Partial non-linear controller: the original Intermittent Controller is based on linear

system equations, hence all tracking and regulation equations are using linear al-

gebra, similarly to the computation of the state feedback using the LQR method.

With the approach presented in Chapter 5, the use of Gaussian processes is only par-

tially introducing non-linearity into the Intermittent Controller Framework. Even if

the use of such a hold is helping to capture dynamics of the plant more accurately,

the state feedback gain is only accurate for a small range around the linearisation.

• System Identification with noisy data: As shown in Chapters 4 and 6, Data Inform-

ativity and Reinforcement Learning Frameworks both have difficulty in estimating

the correct state feedback gain if noise is introduced into the simulation. Similarly

to the noiseless case, this framework can estimate the system matrices A and B in

contrast to the Reinforcement Learning approach, where only the state feedback k

is estimated, hence not being feasible as the only relearning mechanism.

• Reinforcement Learning algorithm: The currently implemented algorithm is only

able to use data at the time of an event. This approach does not use the full potential

of the trajectories generated by the open-loop behavior of the intermittent controller.

• The current work presented in this thesis has been applied to simple dynamical sys-

tems such as the Single Inverted Pendulum and the Cartpole system. Even though

this approach has only been apply to two and four state system, the methods shown

here be easy to apply to higher order systems.



8.3. Future work 204

8.3 Future work

In this section, potential follow-up ideas are explored to improve and overcome the lim-

itations listed above:

• Real-time application of data-driven IC

• Full non-linear Intermittent Controller

• Noisy data and Data Informativity with Intermittent Control

• Adaptation with RL and GP

8.3.1 Real-time application of data-driven IC

Real-time application is not feasible with the current implementation of the algorithm.

One possible approach would be to use some sort of pipelining, where the GP is being

optimized at the same time that the simulation is running to keep the system stable. Once

the GP is optimized, it can be substituted into the hold for the rest of the simulation.

However, if the system is under unstable conditions, the GP rapidly is very important,

to avoid bringing the system into an unstable area. Using the proposed approach to a

real-life case study is feasible with the current state of technology. In addition, improving

the computation time for each state prediction from the GP should also be investigated.

Advances in computer performance, such as using GPU could contribute to reaching a

real-time application.



8.3. Future work 205

8.3.2 Full non-linear IC

The Intermittent Controller is based on an underlying continuous controller. Even if the

GP can represent the entire dynamics of the system, for example, a full rotation of the

pendulum, all controller components are based on a linear control: state feedback and a

triggering mechanism. One possible avenue is to create an intermittent implementation

of the PILCO algorithm by Deisenroth and Rasmussen 2011.

8.3.3 Noisy data and DI with IC

The current implementation of the Data Informativity framework is only based on the

noiseless case. However, a new implementation by Van Waarde et al. 2023 can handle

noisy data. It could improve the estimation of the current noise-free implementation in

Intermittent Control when input noise is present.

8.3.4 Adaptation with RL and GP

The current implementation of the RL algorithm can only gather data when an event in

IC occurs. However, using the open-loop data generated by the Intermittent Controllercan

be beneficial, similar to the Data Informativity case when used compared to a Continuous

Controller. This modification in the algorithm could also be beneficial for the GP as the

system’s motions are required to get an accurate representation of the system’s dynamics.

Currently, operating in clock-driven mode is recommended, hence system states closely

match those of a Continuous Controller.



Appendices

206



Appendix A

Single Inverted Pendulum system

The single inverted pendulum model is a traditional example in control systems and it

is widely used to illustrate the results and the implementation details of many control

strategies. In addition, some authors have used this model to describe the human bal-

ance control problem, contrasting simulation and experimental data (Loram et al. 2009;

Nomura et al. 2013). For the purpose of this model, the dynamic bias model of human

standing described in (Lakie et al. 2003; Loram et al. 2005; Loram et al. 2009; Gawthrop

et al. 2011) is used. This model considers that the control signal that is applied to main-

tain a human inverted pendulum balanced is generated by a tendon that is connected

in series with a contractile element (in this case the calf muscle) which is in charge of

generating a torque. The equation of motion of the pendulum is as follows

Jθ̈ = mghsin(θ)+T , (A.1)

where J is the moment of inertia, θ is the angular position with respect to the vertical,

m is the mass of the pendulum, g is the gravitational acceleration, and h is the distance

from the joint to the centre of mass. The small angle approximation θ = sin(θ) is used

to simplify the equation to a linear model. The ankle torque T is defined as

T =−cmgh(θ −θ0)−V θ̇ , (A.2)

207



A. Single Inverted Pendulum system 208

with c being the ratio between the tendon stiffness kp, the load stiffness defined by the

product ke = mgh, and V is the ankle viscosity. The input is provided by θ0 (known as

the bias) which represents the active muscle shortening in angular terms. Considering

the pendulum angle θ (in radians) and the bias θ0 as output and input respectively, the

model can be written as a transfer function, resulting in

θ =
cmgh

J

s2 + V
J s+(c−1) mgh

J

θ0 . (A.3)

as reported in Loram et al. 2009. The fact that c is smaller than 1 implies that the tendon

stiffness is not enough to stabilise the pendulum on its own, requiring additional control

effort provided by the muscle. In ibid., this model was implemented in simulation, where

the input θ0 was provided by a subject holding a joystick, thus θ0 was proportional to

the motion of the joystick. In Fig. A.1 a simple diagram of the inverted pendulum is

presented.

Figure A.1: Inverted pendulum model of human standing. The input θ0 represents the
contraction of the muscle as an angle that influences the pendulum via a spring of stiffness
kp, which represents the ankle joint tendon. The output θ is the angle of the pendulum
with respect of the vertical line, m is the mass, and h is the distance from the joint to the
centre of mass.



A. Non-linear equations 209

A Non-linear equations

One way to simulate dynamical systems is to use a numerical integration algorithm such

as the Runge-Kutta method (Dormand and Prince 1980) to solve the differential equations

that describe the dynamics. In order to do this, we can substitute (A.2) in (A.1) as follows

to obtain a suitable form for these type of algorithms:

θ̈ =
mghsin(θ)− cmgh(θ −θ0)−V θ̇

J
. (A.4)

Knowing that θ0 is the control input to the system, we can replace it with u to match

common control engineering terminology. Also, if we use the following assignments: θ̇ = x0

and θ = x1, we can re-write expression (A.4) to get

ẋ0 =
mghsin(x1)− cmgh(x1 −u)−V x0

J

ẋ1 = x0 .

(A.5)

Expression (A.5) can now be implemented in a simulation environment to be solved using

numerical integration.

B State-space representation

Consider the following linear dynamical system description of order n

ẋ(t) = Ax(t)+Bu(t)

y(t) = Cx(t) ,
(A.6)



B. State-space representation 210

where x ∈ Rn, y ∈ Rny and u ∈ Rnu correspond to the system state, output and input

respectively, and t represents continuous time. A is an n×n matrix, B and Bd are n×nu,

and C is ny × n. If we define the state vector x(t) =
[

θ̇ θ
]T

, where θ̇ is the angular

velocity, and use the parameters of the inverted pendulum described in the previous

section, the transfer function in (A.3) can be written as state-space model as follows

ẋ(t) =

 −V
J

(1−c)mgh
J

1 0

x(t)+

 cmgh
J

0

u(t) (A.7)

y =
[

0 1
]

x(t) . (A.8)

Using the values for the following parameters V = 2.9, c = 0.85, m = 70 kg, h = 92cm,

g = 9.81 and J = 77, the final state-space model is:

ẋ(t) =

 −0.037 1.231

1 0

x(t)+

 6.98

0

u(t) (A.9)

y =
[

0 1
]

x(t) . (A.10)



Appendix B

Cartpole system

Figure B.1: Cartpole system model use for simulation. The cart can only move to the
right or left (x axis) to keep the pole balanced.

211



A. Non-linear equations 212

A Non-linear equations

Similar to the Single Inverted Pendulum system, the simulation of the cartpole system is

based on the Runge-Kutta method (Dormand and Prince 1980) to solve the differential

equations that describe the dynamics. This system is based on the following non-linear

equations:

ẋ0 = x2

ẋ1 = x3

ẋ2 =

−(Ip +Mpl2
p)Beqx2 − (M2

pl3
p + IpMplp)∗ sin(x1)x2

3 −Mplp cos(x1)Bpx3

+(Ip +Mpl2
p)u+M2

pl2
pgcos(x1)sin(x1)

(Mc +Mp)Ip +McMpl2
p +M2

pl2
p sin2(x1)

ẋ3 =

(Mc +Mp)Mpglp sin(x1)− (Mc +Mp)Bpx3 −M2
pl2

p sin(x1)cos(x1)x2
3

−Mplp cos(x1)Beqx2 +Mplp cos(x1)u
(Mc +Mp)Ip +McMpl2

p +M2
pl2

p sin2(x1)

(B.1)

Expression (B.1) can now be implemented in a simulation environment to be solved using

numerical integration.

B State-space representation

Consider the following linear dynamical system description of order n

ẋ(t) = Ax(t)+Bu(t)

y(t) = Cx(t) ,
(B.2)



B. State-space representation 213

where x ∈ Rn, y ∈ Rny and u ∈ Rnu correspond to the system state, output and input

respectively, and t represents continuous time. A is an n×n matrix, B and Bd are n×nu,

and C is ny×n. If we define the state vector x(t) =
[

x θ ẋ θ̇
]T

, where ẋ is the velocity

of the cart and θ̇ is the angular velocity of the pendulum, the state-space model as follows:

ẋ(t) =


0 0 1 0

0 0 0 1

0
M2

pl2
pg

∆
−Beq(Ip+Mpl2

p)

∆
−MplpBp

∆

0 Mplpg(Mp+Mc)
∆

−BeqMplp
∆

−Bp(Mp+Mc)
∆


x(t)+


0

0
IpMpl2

p
∆

Mplp
∆


u(t) (B.3)

y =

 1 0 0 0

0 1 0 0

x(t) . (B.4)

Using the values of the following parameters Beq = 4.3, Bp = 0.0024, Ip = 0.0079, Mp = 0.23

Kg, Mc = 0.7031 Kg, lp = 0.3302 m and g = 9.81 m.s−2 and ∆ = (IpMc+McMpl2
p+MpIp) =

0.025, the final state-space model is:

ẋ(t) =


0 0 1 0

0 0 0 1

0 2.2629 −5.6713 0.0072

0 27.8037 −13.0609 −0.0895


x(t)+


0

0

1.3189

3.0374


u(t) (B.5)

y =

 1 0 0 0

0 1 0 0

x(t) . (B.6)



Bibliography

Alonso-Sanchez, Francisco and David Hochberg (Nov. 2000). ‘Renormalization Group

Analysis of a Quivering String Model of Posture Control’. In: Physical Review E 62.5,

pp. 7008–7023. ISSN: 1063-651X, 1095-3787. DOI: 10.1103/PhysRevE.62.7008. arXiv:

cond-mat/0007400.

Anderson, Brian D O and Arvin Dehghani (2008). ‘Challenges of Adaptive Control–Past,

Permanent and Future’. In: Annual Reviews in Control.

Anderson, Brian D. O. and John B. Moore (1990). Optimal Control: Linear Quadratic

Methods. USA: Prentice-Hall, Inc. ISBN: 0136385605.

Åström, Karl J and Björn Wittenmark (2013). Adaptive control. Courier Corporation.

Åström, Karl-Johan and Bohlin Torsten (Sept. 1965). ‘Numerical Identification of Linear

Dynamic Systems from Normal Operating Records’. In: IFAC Proceedings Volumes 2.2,

pp. 96–111. ISSN: 14746670. DOI: 10.1016/S1474-6670(17)69024-4.

Bai, E.W. and S.S. Sastry (Aug. 1985). ‘Persistency of Excitation, Sufficient Richness and

Parameter Convergence in Discrete Time Adaptive Control’. In: Systems & Control

Letters 6.3, pp. 153–163. ISSN: 01676911. DOI: 10.1016/0167-6911(85)90035-0.

Bonilla, Edwin V, Kian M Chai and Christopher Williams (2007). ‘Multi-Task Gaussian

Process Prediction’. In: Advances in neural information processing systems 20.

Bottaro, Alessandra et al. (Aug. 2005). ‘Body Sway during Quiet Standing: Is It the

Residual Chattering of an Intermittent Stabilization Process?’ In: Human Movement

Science 24.4, pp. 588–615. ISSN: 01679457. DOI: 10.1016/j.humov.2005.07.006.

214

https://doi.org/10.1103/PhysRevE.62.7008
https://arxiv.org/abs/cond-mat/0007400
https://doi.org/10.1016/S1474-6670(17)69024-4
https://doi.org/10.1016/0167-6911(85)90035-0
https://doi.org/10.1016/j.humov.2005.07.006


BIBLIOGRAPHY 215

Brosilow, Coleman and Babu Joseph (2002). Techniques of Model-Based Control. Prentice-

Hall International Series in the Physical and Chemical Engineering Sciences. Upper

Saddle River, N.J: Prentice Hall. ISBN: 978-0-13-028078-7.

Burns, Stephen P. et al. (Nov. 1997). ‘Recovery of Ambulation in Motor-Incomplete Tet-

raplegia’. In: Archives of Physical Medicine and Rehabilitation 78.11, pp. 1169–1172.

ISSN: 00039993. DOI: 10.1016/S0003-9993(97)90326-9.

Carrillo, F.J., A. Baysse and A. Habbadi (2009). ‘Output Error Identification Algorithms

for Continuous-Time Systems Operating in Closed-Loop’. In: IFAC Proceedings Volumes

42.10, pp. 408–413. ISSN: 14746670. DOI: 10.3182/20090706-3-FR-2004.00067.

Caruana, Rich (1997). ‘Multitask learning’. In: Machine learning 28, pp. 41–75.

Chai, Kian M (2009). ‘Generalization errors and learning curves for regression with multi-

task Gaussian processes’. In: Advances in neural information processing systems 22.

Cotoros, Diana and Mihaela Baritz (2010). ‘Biomechanical analyzes of human body sta-

bility and equilibrium’. In: Proceedings of the World Congress on Engineering. Vol. 2.

Craik, Kenneth J. W. (1947). ‘Theory of the human operator in control systems’. In:

British Journal of Psychology. General Section 38.2, pp. 56–61. ISSN: 0373-2460. DOI:

10.1111/j.2044-8295.1947.tb01141.x.

Cutler, Mark and Jonathan P. How (May 2015). ‘Efficient Reinforcement Learning for

Robots Using Informative Simulated Priors’. In: 2015 IEEE International Conference

on Robotics and Automation (ICRA). Seattle, WA, USA: IEEE, pp. 2605–2612. ISBN:

978-1-4799-6923-4. DOI: 10.1109/ICRA.2015.7139550.

Deisenroth, Marc and Carl E Rasmussen (2011). ‘PILCO: A model-based and data-

efficient approach to policy search’. In: Proceedings of the 28th International Conference

on machine learning (ICML-11), pp. 465–472.

Deisenroth, Marc Peter (2010). Efficient reinforcement learning using Gaussian processes.

Vol. 9. KIT Scientific Publishing.

Deisenroth, Marc Peter, Dieter Fox and Carl Edward Rasmussen (Feb. 2015). ‘Gaussian

Processes for Data-Efficient Learning in Robotics and Control’. In: IEEE Transactions

on Pattern Analysis and Machine Intelligence 37.2, pp. 408–423. ISSN: 0162-8828,

2160-9292. DOI: 10.1109/TPAMI.2013.218. arXiv: 1502.02860 [cs, stat].

https://doi.org/10.1016/S0003-9993(97)90326-9
https://doi.org/10.3182/20090706-3-FR-2004.00067
https://doi.org/10.1111/j.2044-8295.1947.tb01141.x
https://doi.org/10.1109/ICRA.2015.7139550
https://doi.org/10.1109/TPAMI.2013.218
https://arxiv.org/abs/1502.02860


BIBLIOGRAPHY 216

Dormand, John R and Peter J Prince (1980). ‘A family of embedded Runge-Kutta for-

mulae’. In: Journal of computational and applied mathematics 6.1, pp. 19–26.

Durichen, Robert et al. (Jan. 2015). ‘Multitask Gaussian Processes for Multivariate Physiolo-

gical Time-Series Analysis’. In: IEEE Transactions on Biomedical Engineering 62.1,

pp. 314–322. ISSN: 0018-9294, 1558-2531. DOI: 10.1109/TBME.2014.2351376.

Duvenaud, David et al. (May 2013). Structure Discovery in Nonparametric Regression

through Compositional Kernel Search. arXiv: 1302.4922 [cs, stat].

Eleftheriadis, Stefanos et al. (2017). ‘Identification of Gaussian Process State Space Mod-

els’. In: Advances in neural information processing systems 30.

Engel, Yaakov, Shie Mannor and Ron Meir (2003). ‘Bayes meets Bellman: The Gaussian

process approach to temporal difference learning’. In: Proceedings of the 20th Interna-

tional Conference on Machine Learning (ICML-03), pp. 154–161.

– (2005). ‘Reinforcement learning with Gaussian processes’. In: Proceedings of the 22nd

international conference on Machine learning, pp. 201–208.

Faisal, A. Aldo, Luc P. J. Selen and Daniel M. Wolpert (Apr. 2008). ‘Noise in the Nervous

System’. In: Nature Reviews Neuroscience 9.4, pp. 292–303. ISSN: 1471-003X, 1471-

0048. DOI: 10.1038/nrn2258.

Gaskett, Chris, David Wettergreen and Alexander Zelinsky (1999). ‘Q-Learning in Con-

tinuous State and Action Spaces’. In: Advanced Topics in Artificial Intelligence. Ed. by

G. Goos et al. Vol. 1747. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 417–428.

ISBN: 978-3-540-66822-0 978-3-540-46695-6. DOI: 10.1007/3-540-46695-9_35.

Gatev, Plamen et al. (Feb. 1999). ‘Feedforward Ankle Strategy of Balance during Quiet

Stance in Adults’. In: The Journal of Physiology 514.3, pp. 915–928. ISSN: 0022-3751,

1469-7793. DOI: 10.1111/j.1469-7793.1999.915ad.x.

Gawthrop, P. J. (1977). ‘Studies in identification and control’. PhD thesis. Oxford Uni-

versity.

Gawthrop, P J (Aug. 2009). ‘Frequency-Domain Analysis of Intermittent Control’. In:

Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and

Control Engineering 223.5, pp. 591–603. ISSN: 0959-6518, 2041-3041. DOI: 10.1243/

09596518JSCE759.

https://doi.org/10.1109/TBME.2014.2351376
https://arxiv.org/abs/1302.4922
https://doi.org/10.1038/nrn2258
https://doi.org/10.1007/3-540-46695-9_35
https://doi.org/10.1111/j.1469-7793.1999.915ad.x
https://doi.org/10.1243/09596518JSCE759
https://doi.org/10.1243/09596518JSCE759


BIBLIOGRAPHY 217

Gawthrop, P. J. and L Wang (Nov. 2007). ‘Intermittent Model Predictive Control’. In:

Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and

Control Engineering 221.7, pp. 1007–1018. ISSN: 0959-6518, 2041-3041. DOI: 10.1243/

09596518JSCE417.

Gawthrop, Peter, Henrik Gollee and Ian Loram (July 2014a). Intermittent Control in Man

and Machine. arXiv: 1407.3543 [cs, q-bio].

Gawthrop, Peter and Liuping Wang (Dec. 2011). ‘The System-Matched Hold and the

Intermittent Control Separation Principle’. In: International Journal of Control 84.12,

pp. 1965–1974. ISSN: 0020-7179, 1366-5820. DOI: 10.1080/00207179.2011.630759.

Gawthrop, Peter et al. (Feb. 2011). ‘Intermittent Control: A Computational Theory of

Human Control’. In: Biological Cybernetics 104.1-2, pp. 31–51. ISSN: 0340-1200, 1432-

0770. DOI: 10.1007/s00422-010-0416-4.

Gawthrop, Peter et al. (Dec. 2013). ‘Human Stick Balancing: An Intermittent Control

Explanation’. In: Biological Cybernetics 107.6, pp. 637–652. ISSN: 0340-1200, 1432-

0770. DOI: 10.1007/s00422-013-0564-4.

Gawthrop, Peter et al. (Apr. 2014b). ‘Intermittent Control Models of Human Standing:

Similarities and Differences’. In: Biological Cybernetics 108.2, pp. 159–168. ISSN: 0340-

1200, 1432-0770. DOI: 10.1007/s00422-014-0587-5.

Gawthrop, Peter J and Henrik Gollee (Oct. 2012). ‘Intermittent Tapping Control’. In:

Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and

Control Engineering 226.9, pp. 1262–1273. ISSN: 0959-6518, 2041-3041. DOI: 10.1177/

0959651812450114.

Gawthrop, Peter J. and Liuping Wang (Dec. 2009). ‘Event-Driven Intermittent Control’.

In: International Journal of Control 82.12, pp. 2235–2248. ISSN: 0020-7179, 1366-5820.

DOI: 10.1080/00207170902978115.

Gevers, Michel (2002). ‘Modelling, Identification and Control’. In: Identification and Con-

trol. DOI: https://doi.org/10.1007/978-1-4471-0205-2_1.

Ghavamzadeh, Mohammad et al. (2015). ‘Bayesian Reinforcement Learning: A Survey’.

In: Foundations and Trends® in Machine Learning 8.5-6, pp. 359–483. ISSN: 1935-8237,

1935-8245. DOI: 10.1561/2200000049. arXiv: 1609.04436 [cs, stat].

https://doi.org/10.1243/09596518JSCE417
https://doi.org/10.1243/09596518JSCE417
https://arxiv.org/abs/1407.3543
https://doi.org/10.1080/00207179.2011.630759
https://doi.org/10.1007/s00422-010-0416-4
https://doi.org/10.1007/s00422-013-0564-4
https://doi.org/10.1007/s00422-014-0587-5
https://doi.org/10.1177/0959651812450114
https://doi.org/10.1177/0959651812450114
https://doi.org/10.1080/00207170902978115
https://doi.org/https://doi.org/10.1007/978-1-4471-0205-2_1
https://doi.org/10.1561/2200000049
https://arxiv.org/abs/1609.04436


BIBLIOGRAPHY 218

Girard, Agathe (2004). ‘Approximate methods for propagation of uncertainty with Gaus-

sian process models’. PhD thesis.

Gollee, Henrik et al. (Nov. 2017). ‘Visuo-manual Tracking: Does Intermittent Control with

Aperiodic Sampling Explain Linear Power and Non-linear Remnant without Sensor-

imotor Noise?’ In: The Journal of Physiology 595.21, pp. 6751–6770. ISSN: 0022-3751,

1469-7793. DOI: 10.1113/JP274288.

Goodwin, G. and Eam Khwang Teoh (June 1985). ‘Persistency of Excitation in the Pres-

ence of Possibly Unbounded Signals’. In: IEEE Transactions on Automatic Control 30.6,

pp. 595–597. ISSN: 0018-9286. DOI: 10.1109/TAC.1985.1103997.

Goodwin, Graham Clifford, Stefan F Graebe, Mario E Salgado et al. (2001). Control

system design. Vol. 240. Prentice Hall Upper Saddle River.

Grancharova, Alexandra et al. (2023). ‘Distributed predictive control based on Gaussian

process models’. In: Automatica 149, p. 110807.

Green, Michael and John B. Moore (Sept. 1986). ‘Persistence of Excitation in Linear

Systems’. In: Systems & Control Letters 7.5, pp. 351–360. ISSN: 01676911. DOI: 10.

1016/0167-6911(86)90052-6.

Guo, Yuan et al. (2019). ‘Data-Driven Model-Free Adaptive Predictive Control for a Class

of MIMO Nonlinear Discrete-Time Systems With Stability Analysis’. In: 7.

Hardy, Jay H., Eric Anthony Day and Winfred Arthur (June 2019). ‘Exploration - Exploit-

ation Tradeoffs and Information-Knowledge Gaps in Self-Regulated Learning: Implica-

tions for Learner-Controlled Training and Development’. In: Human Resource Manage-

ment Review 29.2, pp. 196–217. ISSN: 10534822. DOI: 10.1016/j.hrmr.2018.07.004.

Hjalmarsson, Håkan (2002). ‘Iterative feedback tuning—an overview’. In: International

journal of adaptive control and signal processing 16.5, pp. 373–395.

Hjalmarsson, Håkan, Michel Gevers and Franky De Bruyne (Dec. 1996). ‘For Model-Based

Control Design, Closed-Loop Identification Gives Better Performance’. In: Automatica

32.12, pp. 1659–1673. ISSN: 00051098. DOI: 10.1016/S0005-1098(96)80003-3.

https://doi.org/10.1113/JP274288
https://doi.org/10.1109/TAC.1985.1103997
https://doi.org/10.1016/0167-6911(86)90052-6
https://doi.org/10.1016/0167-6911(86)90052-6
https://doi.org/10.1016/j.hrmr.2018.07.004
https://doi.org/10.1016/S0005-1098(96)80003-3


BIBLIOGRAPHY 219

Hongxia Wu, Hui Ni and G.T. Heydt (2002). ‘The Impact of Time Delay on Robust

Control Design in Power Systems’. In: 2002 IEEE Power Engineering Society Winter

Meeting. Conference Proceedings (Cat. No.02CH37309). Vol. 2. New York, NY, USA:

IEEE, pp. 1511–1516. ISBN: 978-0-7803-7322-8. DOI: 10.1109/PESW.2002.985276.

Hou, Zhongsheng (2013). ‘From Model-Based Control to Data-Driven Control: Survey,

Classification and Perspective’. In: Information Sciences.

Hou, Zhongsheng and Shangtai Jin (2013). Model free adaptive control. CRC press Boca

Raton, FL, USA:

Huang, Wesley H and Matthew T Mason (2000). ‘Mechanics, planning, and control for

tapping’. In: The International Journal of Robotics Research 19.10, pp. 883–894.

Jacobs, Ron (Aug. 1997). ‘Control Model of Human Stance Using Fuzzy Logic’. In:

Biological Cybernetics 77.1, pp. 63–70. ISSN: 0340-1200, 1432-0770. DOI: 10.1007/

s004220050367.

Jang, Jyh-Shing R et al. (1992). ‘Self-learning fuzzy controllers based on temporal back-

propagation’. In: IEEE Transactions on neural networks 3.5, pp. 714–723.

Jones, Kelvin E., Antonia F. De C. Hamilton and Daniel M. Wolpert (Sept. 2002). ‘Sources

of Signal-Dependent Noise During Isometric Force Production’. In: Journal of Neuro-

physiology 88.3, pp. 1533–1544. ISSN: 0022-3077, 1522-1598. DOI: 10.1152/jn.2002.

88.3.1533.

Kalman, R. E. (Mar. 1960). ‘A New Approach to Linear Filtering and Prediction Prob-

lems’. In: Journal of Basic Engineering 82.1, pp. 35–45. ISSN: 0021-9223. DOI: 10.

1115/1.3662552.

Kleinman, D (1969). ‘Optimal control of linear systems with time-delay and observation

noise’. In: IEEE Transactions on Automatic Control 14.5, pp. 524–527.

Kober, Jens, J. Andrew Bagnell and Jan Peters (Sept. 2013). ‘Reinforcement Learning in

Robotics: A Survey’. In: The International Journal of Robotics Research 32.11, pp. 1238–

1274. ISSN: 0278-3649, 1741-3176. DOI: 10.1177/0278364913495721.

Kocijan, J. et al. (2003). ‘Predictive Control with Gaussian Process Models’. In: The

IEEE Region 8 EUROCON 2003. Computer as a Tool. Vol. 1. Ljubljana, Slovenia:

IEEE, pp. 352–356. ISBN: 978-0-7803-7763-9. DOI: 10.1109/EURCON.2003.1248042.

https://doi.org/10.1109/PESW.2002.985276
https://doi.org/10.1007/s004220050367
https://doi.org/10.1007/s004220050367
https://doi.org/10.1152/jn.2002.88.3.1533
https://doi.org/10.1152/jn.2002.88.3.1533
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1109/EURCON.2003.1248042


BIBLIOGRAPHY 220

Kocijan, Juš (2008). ‘Gaussian process models for systems identification’. In: Proc. 9th

Int. PhD Workshop on Sys. and Cont, pp. 8–15.

Kocijan, Juš (2016). Modelling and Control of Dynamic Systems Using Gaussian Pro-

cess Models. Advances in Industrial Control. Cham: Springer International Publishing.

ISBN: 978-3-319-21020-9 978-3-319-21021-6. DOI: 10.1007/978-3-319-21021-6.

Kocijan, Juš et al. (Dec. 2005). ‘Dynamic Systems Identification with Gaussian Processes’.

In: Mathematical and Computer Modelling of Dynamical Systems 11.4, pp. 411–424.

ISSN: 1387-3954, 1744-5051. DOI: 10.1080/13873950500068567.

Kojabadi, H Madadi (2005). ‘Simulation and Experimental Studies of Model Reference

Adaptive System for Sensorless Induction Motor Drive’. In: Simulation Modelling Prac-

tice and Theory.

Krivec, Tadej, Gregor Papa and Juš Kocijan (2021). ‘Simulation of variational Gaussian

process NARX models with GPGPU’. In: ISA transactions 109, pp. 141–151.

Kuss, Malte and Carl Rasmussen (2003). ‘Gaussian processes in reinforcement learning’.

In: Advances in neural information processing systems 16.

Kwakernaak, H. and R. Sivan (1974). Linear Optimal Control Systems. Vol. 19. USA: John

Wiley & Sons, Inc., pp. 631–632. ISBN: 0471511102. DOI: 10.1109/TAC.1974.1100628.

Lakie, M, N Caplan and ID Loram (2003). ‘Human balancing of an inverted pendulum

with a compliant linkage: neural control by anticipatory intermittent bias’. In: Journal

of Physiology 551, pp. 357–370.

Laub, AJ and M Wette (1984). Algorithms and software for pole assignment and observers.

Tech. rep. California Univ., Santa Barbara (USA). Dept. of Electrical and Computer …

Lawrence, Neil, Matthias Seeger and Ralf Herbrich (2002). ‘Fast sparse Gaussian pro-

cess methods: The informative vector machine’. In: Advances in neural information

processing systems 15.

Leen, Gayle, Jaakko Peltonen and Samuel Kaski (Oct. 2012). ‘Focused Multi-Task Learn-

ing in a Gaussian Process Framework’. In: Machine Learning 89.1-2, pp. 157–182. ISSN:

0885-6125, 1573-0565. DOI: 10.1007/s10994-012-5302-y.

Leith, D. J. and W. E. Leithead (2000). ‘Survey of gain-scheduling analysis and design’. In:

International Journal of Control 73.11, pp. 1001–1025. DOI: 10.1080/002071700411304.

https://doi.org/10.1007/978-3-319-21021-6
https://doi.org/10.1080/13873950500068567
https://doi.org/10.1109/TAC.1974.1100628
https://doi.org/10.1007/s10994-012-5302-y
https://doi.org/10.1080/002071700411304


BIBLIOGRAPHY 221

Lin, Long-Ji (1991). ‘Self-Improvement Based On Reinforcement Learning, Planning and

Teaching’. In: Machine Learning Proceedings 1991. Elsevier, pp. 323–327. ISBN: 978-1-

55860-200-7. DOI: 10.1016/B978-1-55860-200-7.50067-2.

Ljung, Lennart (1971). Characterization of the Concept of ’Persistently Exciting’ in the

Frequency Domain. English. Research Reports TFRT-3038. Department of Automatic

Control, Lund Institute of Technology (LTH).

– (1999). System Identification: Theory for the User. 2nd ed. Prentice Hall Information

and System Sciences Series. Upper Saddle River, NJ: Prentice Hall PTR. ISBN: 978-0-

13-656695-3.

Loram, Ian D, Peter J Gawthrop and Martin Lakie (2006). ‘The frequency of human,

manual adjustments in balancing an inverted pendulum is constrained by intrinsic

physiological factors’. In: The Journal of physiology 577.1, pp. 417–432.

Loram, Ian D. and Martin Lakie (May 2002). ‘Human Balancing of an Inverted Pen-

dulum: Position Control by Small, Ballistic-like, Throw and Catch Movements’. In:

The Journal of Physiology 540.3, pp. 1111–1124. ISSN: 0022-3751, 1469-7793. DOI:

10.1113/jphysiol.2001.013077.

Loram, Ian D., Constantinos N. Maganaris and Martin Lakie (2005). ‘Human postural

sway results from frequent, ballistic bias impulses by soleus and gastrocnemius’. In: The

Journal of Physiology 564.1, pp. 295–311. ISSN: 1469-7793. DOI: 10.1113/jphysiol.

2004.076307. URL: http://dx.doi.org/10.1113/jphysiol.2004.076307.

Loram, Ian D. et al. (Jan. 2011). ‘Human Control of an Inverted Pendulum: Is Continuous

Control Necessary? Is Intermittent Control Effective? Is Intermittent Control Physiolo-

gical?’ In: The Journal of Physiology 589.2, pp. 307–324. ISSN: 0022-3751, 1469-7793.

DOI: 10.1113/jphysiol.2010.194712.

Loram, Ian David et al. (2014). ‘Does the motor system need intermittent control?’ In:

Exercise and Sport Sciences Reviews 42.3, pp. 117–125.

Loram, ID, M Lakie and P Gawthrop (2009). ‘Visual control of stable and unstable loads:

what is the feedback delay and extent of linear time-invariant control?’ In: The Journal

of Physiology 587.Pt 6, pp. 1343–65.

https://doi.org/10.1016/B978-1-55860-200-7.50067-2
https://doi.org/10.1113/jphysiol.2001.013077
https://doi.org/10.1113/jphysiol.2004.076307
https://doi.org/10.1113/jphysiol.2004.076307
http://dx.doi.org/10.1113/jphysiol.2004.076307
https://doi.org/10.1113/jphysiol.2010.194712


BIBLIOGRAPHY 222

Luppi, Alessandro, Claudio De Persis and Pietro Tesi (2022). ‘On Data-Driven Stabiliza-

tion of Systems with Nonlinearities Satisfying Quadratic Constraints’. In.

Mareels, I. M. Y. and M. Gevers (Oct. 1988). ‘Persistency of Excitation Criteria for Linear,

Multivariable, Time-Varying Systems’. In: Mathematics of Control, Signals, and Systems

1.3, pp. 203–226. ISSN: 0932-4194, 1435-568X. DOI: 10.1007/BF02551284.

Mareels, I.M.Y. et al. (Jan. 1987). ‘How Exciting Can a Signal Really Be?’ In: Systems

& Control Letters 8.3, pp. 197–204. ISSN: 01676911. DOI: 10.1016/0167-6911(87)

90027-2.

Martín, J. Alberto Álvarez (2018). ‘Adaptive multivariable intermittent control: theory,

development, and applications to real-time systems’. PhD thesis. University of Glasgow.

Martín, J. Alberto Álvarez et al. (Oct. 2021). ‘Intermittent Control as a Model of Mouse

Movements’. In: ACM Transactions on Computer-Human Interaction 28.5, pp. 1–46.

ISSN: 1073-0516, 1557-7325. DOI: 10.1145/3461836.

Michimoto, Kenjiro et al. (Aug. 2016). ‘Reinforcement Learning for Stabilizing an Inver-

ted Pendulum Naturally Leads to Intermittent Feedback Control as in Human Quiet

Standing’. In: 2016 38th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC). Orlando, FL, USA: IEEE, pp. 37–40. ISBN:

978-1-4577-0220-4. DOI: 10.1109/EMBC.2016.7590634.

Miller, Caleb J et al. (2024). Exploration with Scalable Gaussian Process Reinforcement

Learning. Tech. rep. Lawrence Livermore National Laboratory (LLNL), Livermore, CA

(United States).

Moore, J. (Jan. 1983). ‘Persistence of Excitation in Extended Least Squares’. In: IEEE

Transactions on Automatic Control 28.1, pp. 60–68. ISSN: 0018-9286. DOI: 10.1109/

TAC.1983.1103142.

Morasso, Pietro, Amel Cherif and Jacopo Zenzeri (May 2020). ‘State-Space Intermittent

Feedback Stabilization of a Dual Balancing Task’. In: Scientific Reports 10.1, p. 8470.

ISSN: 2045-2322. DOI: 10.1038/s41598-020-64911-7.

Murray, J.J. et al. (May 2002). ‘Adaptive Dynamic Programming’. In: IEEE Transactions

on Systems, Man and Cybernetics, Part C (Applications and Reviews) 32.2, pp. 140–

153. ISSN: 1094-6977. DOI: 10.1109/TSMCC.2002.801727.

https://doi.org/10.1007/BF02551284
https://doi.org/10.1016/0167-6911(87)90027-2
https://doi.org/10.1016/0167-6911(87)90027-2
https://doi.org/10.1145/3461836
https://doi.org/10.1109/EMBC.2016.7590634
https://doi.org/10.1109/TAC.1983.1103142
https://doi.org/10.1109/TAC.1983.1103142
https://doi.org/10.1038/s41598-020-64911-7
https://doi.org/10.1109/TSMCC.2002.801727


BIBLIOGRAPHY 223

Murray-Smith, Roderick et al. (Sept. 2003). ‘Adaptive, Cautious, Predictive Control with

Gaussian Process Priors’. In: IFAC Proceedings Volumes 36.16, pp. 1155–1160. ISSN:

14746670. DOI: 10.1016/S1474-6670(17)34915-7.

Narendra, Kumpati S., Yu Wang and Snehasis Mukhopadhay (Dec. 2016). ‘Fast Reinforce-

ment Learning Using Multiple Models’. In: 2016 IEEE 55th Conference on Decision and

Control (CDC). Las Vegas, NV, USA: IEEE, pp. 7183–7188. ISBN: 978-1-5090-1837-6.

DOI: 10.1109/CDC.2016.7799377.

Navas, Fernando and Lawrence Stark (Feb. 1968). ‘Sampling or intermittency in hand

control system dynamics’. In: Biophysical Journal 8.2, pp. 252–302. ISSN: 00063495.

DOI: 10.1016/S0006-3495(68)86488-4.

Neilson, P. D., M. D. Neilson and N. J. O’Dwyer (Jan. 1988). ‘Internal Models and

Intermittency: A Theoretical Account of Human Tracking Behavior’. In: Biological Cy-

bernetics 58.2, pp. 101–112. ISSN: 0340-1200, 1432-0770. DOI: 10.1007/BF00364156.

Nguyen, Derrick H and Bernard Widrow (1990). ‘Neural networks for self-learning control

systems’. In: IEEE Control systems magazine 10.3, pp. 18–23.

Nichols, R.A., R.T. Reichert and W.J. Rugh (June 1993). ‘Gain Scheduling for H-infinity

Controllers: A Flight Control Example’. In: IEEE Transactions on Control Systems

Technology 1.2, pp. 69–79. ISSN: 10636536. DOI: 10.1109/87.238400.

Nomura, Taishin et al. (2013). ‘Modeling human postural sway using an intermittent

control and hemodynamic perturbations’. In: Mathematical Biosciences 245.1. SI :

BIOCOMP 2012, pp. 86 –95. ISSN: 0025-5564. DOI: http://dx.doi.org/10.1016/j.

mbs.2013.02.002. URL: http://www.sciencedirect.com/science/article/pii/

S0025556413000485.

Osband, Ian, John Aslanides and Albin Cassirer (2018). ‘Randomized prior functions for

deep reinforcement learning’. In: Advances in Neural Information Processing Systems

31.

P.E. Wellstead D. Prager, P. Zanker (Aug. 1979). ‘Pole assignment self-tuning regulator’.

English. In: Proceedings of the Institution of Electrical Engineers 126 (8), 781–787(6).

ISSN: 0020-3270. URL: https://digital-library.theiet.org/content/journals/

10.1049/piee.1979.0171.

https://doi.org/10.1016/S1474-6670(17)34915-7
https://doi.org/10.1109/CDC.2016.7799377
https://doi.org/10.1016/S0006-3495(68)86488-4
https://doi.org/10.1007/BF00364156
https://doi.org/10.1109/87.238400
https://doi.org/http://dx.doi.org/10.1016/j.mbs.2013.02.002
https://doi.org/http://dx.doi.org/10.1016/j.mbs.2013.02.002
http://www.sciencedirect.com/science/article/pii/S0025556413000485
http://www.sciencedirect.com/science/article/pii/S0025556413000485
https://digital-library.theiet.org/content/journals/10.1049/piee.1979.0171
https://digital-library.theiet.org/content/journals/10.1049/piee.1979.0171


BIBLIOGRAPHY 224

Peng, Shige (Feb. 1992). ‘A Generalized Dynamic Programming Principle and Hamilton-

Jacobi-Bellman Equation’. In: Stochastics and Stochastic Reports 38.2, pp. 119–134.

ISSN: 1045-1129. DOI: 10.1080/17442509208833749.

Petelin, Dejan and Jus Kocijan (Apr. 2011). ‘Control System with Evolving Gaussian

Process Models’. In: 2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems

(EAIS). Paris, France: IEEE, pp. 178–184. ISBN: 978-1-4244-9978-6. DOI: 10.1109/

EAIS.2011.5945910.

Peterka, Robert J et al. (2000). ‘Postural Control Model Interpretation of Stabilogram

Diffusion Analysis’. In: Biological cybernetics 82.4, pp. 335–343.

Quiñonero-Candela, Joaquin, Carl Edward Rasmussen and Christopher K. I. Williams

(Aug. 2007). ‘Approximation Methods for Gaussian Process Regression’. In: Large-Scale

Kernel Machines. Ed. by Léon Bottou et al. The MIT Press, pp. 203–224. ISBN: 978-

0-262-25579-0. DOI: 10.7551/mitpress/7496.003.0011.

Rasmussen, Carl Edward (1997). ‘Evaluation of Gaussian processes and other methods

for non-linear regression’. PhD thesis. University of Toronto Toronto, Canada.

Rasmussen, Carl Edward and Christopher K. I. Williams (2006). Gaussian Processes for

Machine Learning. Adaptive Computation and Machine Learning. Cambridge, Mass:

MIT Press. ISBN: 978-0-262-18253-9.

Renaudo, Erwan et al. (2015). ‘Respective Advantages and Disadvantages of Model-based

and Model-free Reinforcement Learning in a Robotics Neuro-inspired Cognitive Ar-

chitecture’. In: Procedia Computer Science 71, pp. 178–184. ISSN: 18770509. DOI:

10.1016/j.procs.2015.12.194.

Ronco, Eric, Peter J Gawthrop and David J Hill (1999). Open-Loop Intermittent Feedback

Optimal Control: reference manual to an on-line simulation package. Tech. rep. Citeseer.

Schochetman, Irwin E and Robert L Smith (1989). ‘Infinite horizon optimization’. In:

Mathematics of Operations Research 14.3, pp. 559–574.

Seeger, Matthias (2004). ‘Gaussian processes for machine learning’. In: International journal

of neural systems 14.02, pp. 69–106.

Smart, William D and Leslie Pack Kaelbling (2000). ‘Practical reinforcement learning in

continuous spaces’. In: ICML, pp. 903–910.

https://doi.org/10.1080/17442509208833749
https://doi.org/10.1109/EAIS.2011.5945910
https://doi.org/10.1109/EAIS.2011.5945910
https://doi.org/10.7551/mitpress/7496.003.0011
https://doi.org/10.1016/j.procs.2015.12.194


BIBLIOGRAPHY 225

Smith, O. J. (1959). ‘A controller to overcome dead time’. In: ISA Journal 6, pp. 28–33.

Snelson, Edward and Zoubin Ghahramani (2005). ‘Sparse Gaussian processes using pseudo-

inputs’. In: Advances in neural information processing systems 18.

Stenman, Anders (1999). Model on Demand: Algorithms, Analysis and Applications.

Linköping Studies in Science and Technology Dissertation 571. Linköping: Univ. ISBN:

978-91-7219-450-2.

Stépán, Gábor and Tamás Insperger (Jan. 2006). ‘Stability of Time-Periodic and Delayed

Systems — a Route to Act-and-Wait Control’. In: Annual Reviews in Control 30.2,

pp. 159–168. ISSN: 13675788. DOI: 10.1016/j.arcontrol.2006.08.002.

Storn, Rainer and Kenneth Price (1997). ‘Differential evolution–a simple and efficient

heuristic for global optimization over continuous spaces’. In: Journal of global optimiz-

ation 11, pp. 341–359.

Strehl, Alexander L. and Michael L. Littman (Dec. 2008). ‘An Analysis of Model-Based

Interval Estimation for Markov Decision Processes’. In: Journal of Computer and System

Sciences 74.8, pp. 1309–1331. ISSN: 00220000. DOI: 10.1016/j.jcss.2007.08.009.

Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement Learning: An Introduc-

tion. Second edition. Adaptive Computation and Machine Learning Series. Cambridge,

Massachusetts: The MIT Press. ISBN: 978-0-262-03924-6.

Tan, Ming (1991). ‘Case-Sensitve Reinforcement Learning for Adaptive Classification and

Control’. In: Proceedings of the Eighth International Conference, Evanston, Illinois,

pp. 358–362.

Telford, CW (1931). ‘The refractory phase of voluntary and associative responses’. In: J.

of Exp. Psychol. 14, pp. 1–36.

Todorov, Emanuel and Michael I. Jordan (Nov. 2002). ‘Optimal Feedback Control as a

Theory of Motor Coordination’. In: Nature Neuroscience 5.11, pp. 1226–1235. ISSN:

1097-6256, 1546-1726. DOI: 10.1038/nn963.

Tsypkin, Y.Z. (1971). ‘3. Adaptation and Learning’. In: Adaptation and Learning in Auto-

matic Systems. Ed. by Ya.Z. Tsypkin. Vol. 73. Mathematics in Science and Engineering.

Elsevier, pp. 44 –75.

https://doi.org/10.1016/j.arcontrol.2006.08.002
https://doi.org/10.1016/j.jcss.2007.08.009
https://doi.org/10.1038/nn963


BIBLIOGRAPHY 226

Van Otterlo, Martijn and Marco Wiering (2012). ‘Reinforcement Learning and Markov

Decision Processes’. In: Reinforcement Learning. Ed. by Marco Wiering and Martijn

Van Otterlo. Vol. 12. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 3–42. ISBN:

978-3-642-27644-6 978-3-642-27645-3. DOI: 10.1007/978-3-642-27645-3_1.

van Waarde, Henk J. et al. (Jan. 2020). Data Informativity: A New Perspective on Data-

Driven Analysis and Control. arXiv: 1908.00468 [math].

Van Waarde, Henk J et al. (2020). ‘Willems’ fundamental lemma for state-space systems

and its extension to multiple datasets’. In: IEEE Control Systems Letters 4.3, pp. 602–

607.

Van Waarde, Henk J. et al. (Dec. 2023). ‘The Informativity Approach: To Data-Driven

Analysis and Control’. In: IEEE Control Systems 43.6, pp. 32–66. ISSN: 1066-033X,

1941-000X. DOI: 10.1109/MCS.2023.3310305.

Vince, Margaret A (Mar. 1948). ‘The intermittency of control movements and the psycho-

logical refractory period’. In: British Journal of Psychology. 38.3, pp. 149–157. ISSN:

0373-2460. DOI: 10.1111/j.2044-8295.1948.tb01150.x.

Vrabie, D., O. Pastravanu and F. L. Lewis (2007). ‘Policy iteration for continuous-time

systems with unknown internal dynamics’. In: 2007 Mediterranean Conference on Con-

trol Automation, pp. 1–6.

Whitehead, Steven D. and Dana H. Ballard (July 1991). ‘Learning to Perceive and Act

by Trial and Error’. In: Machine Learning 7.1, pp. 45–83. ISSN: 0885-6125, 1573-0565.

DOI: 10.1007/BF00058926.

Willems, Jan C et al. (2005). ‘A note on persistency of excitation’. In: Systems & Control

Letters 54.4, pp. 325–329.

Williams, Christopher et al. (2008). ‘Multi-task gaussian process learning of robot inverse

dynamics’. In: Advances in neural information processing systems 21.

Williams, Christopher K and Carl Edward Rasmussen (2006). Gaussian processes for

machine learning. Vol. 2. MIT press Cambridge, MA.

Winter, David A. et al. (Sept. 1998). ‘Stiffness Control of Balance in Quiet Standing’.

In: Journal of Neurophysiology 80.3, pp. 1211–1221. ISSN: 0022-3077, 1522-1598. DOI:

10.1152/jn.1998.80.3.1211.

https://doi.org/10.1007/978-3-642-27645-3_1
https://arxiv.org/abs/1908.00468
https://doi.org/10.1109/MCS.2023.3310305
https://doi.org/10.1111/j.2044-8295.1948.tb01150.x
https://doi.org/10.1007/BF00058926
https://doi.org/10.1152/jn.1998.80.3.1211


BIBLIOGRAPHY 227

Wolpert, Daniel M., Zoubin Ghahramani and Michael I. Jordan (Sept. 1995). ‘An Internal

Model for Sensorimotor Integration’. In: Science 269.5232, pp. 1880–1882. ISSN: 0036-

8075, 1095-9203. DOI: 10.1126/science.7569931.

Yoshikawa, Naoya et al. (Apr. 2016). ‘Intermittent Feedback-Control Strategy for Sta-

bilizing Inverted Pendulum on Manually Controlled Cart as Analogy to Human Stick

Balancing’. In: Frontiers in Computational Neuroscience 10. ISSN: 1662-5188. DOI:

10.3389/fncom.2016.00034.

Yu, Yue et al. (Apr. 2021). On Controllability and Persistency of Excitation in Data-

Driven Control: Extensions of Willems’ Fundamental Lemma. arXiv: 2102.02953 [cs,

eess].

Zgonnikov, Arkady and Ihor Lubashevsky (Nov. 2015). ‘Double-Well Dynamics of Noise-

Driven Control Activation in Human Intermittent Control: The Case of Stick Balancing’.

In: Cognitive Processing 16.4, pp. 351–358. ISSN: 1612-4782, 1612-4790. DOI: 10.1007/

s10339-015-0653-5.

https://doi.org/10.1126/science.7569931
https://doi.org/10.3389/fncom.2016.00034
https://arxiv.org/abs/2102.02953
https://arxiv.org/abs/2102.02953
https://doi.org/10.1007/s10339-015-0653-5
https://doi.org/10.1007/s10339-015-0653-5

	Thesis cover sheet
	2024DoubleinPhD
	Abstract
	Acknowledgements
	Declaration
	Introduction
	Aims and Objectives
	Approach
	Thesis contributions
	Publications

	Overview and structure of the thesis

	Literature Review
	Introduction
	Biological inspired control
	Representation of human quiet standing
	Continuous Control based modelling
	Intermittent Control based modelling

	Learning and Adaptation
	Conventional Adaptive Control
	From model based control to data-driven control
	Reinforcement Learning
	Gaussian Processes for Control

	Summary

	Intermittent Control and Learning
	Introduction
	Continuous control
	System
	Observer
	Predictor
	State Feedback
	Steady State design

	Intermittent control
	Time frames and Triggering
	Generalized Hold

	Reinforcement Learning
	Environment-Agent Structure
	Solving the ARE via Policy Iteration
	Solving for P

	Data Informativity Framework
	Gaussian Processes
	Single-Task GP
	Multi-Output GP
	Hyper-parameters and Covariance functions
	Control input impact
	Data pre-processing
	Negative Log Marginal Likelihood
	Prediction
	Sampling from the distribution
	Prediction with uncertainties propagation
	Single-Task Sparse GP

	Conclusion

	Intermittent Data Driven Control for adaptation
	Methods
	Implementation
	Evaluation criteria

	Results
	Reinforcement Learning
	Data Informativity

	Discussion
	Summary

	Stochastic Intermittent Control
	Methods
	Implementation
	Evaluation criteria

	Results
	Single Task GP
	Online retraining

	Discussion
	Summary

	Adaptive Stochastic Intermittent Data Driven Control
	Methods
	Results
	Reinforcement Learning with GP based Hold
	Data Informativity with GP based Hold

	Discussion
	Summary

	Discussion
	GP as non-linear probabilistic based Hold
	Data Driven Intermittent Controller

	Conclusion and Future work
	Conclusion
	Limitations
	Future work
	Real-time application of data-driven IC
	Full non-linear IC
	Noisy data and DI with IC
	Adaptation with RL and GP


	Appendices
	Single Inverted Pendulum system
	Non-linear equations
	State-space representation

	Cartpole system
	Non-linear equations
	State-space representation



