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Abstract

The thesis consists of three chapters. All chapters study monetary and fiscal policy interactions
in tractable heterogeneous agent economies. Tractable Heterogeneous Agents New Keynesian
(THANK) models use simplifying assumptions regarding how inequality enters the economy and
allow us to study the qualitative rather than the quantitative difference between heterogeneous
agent New Keynesian models and the nested representative agent framework. These simplifica-
tions allow us to observe the inter-temporal trade-offs and study the distributional consequences of
monetary and/fiscal policy in general equilibrium settings, without having to sacrifice the analyti-
cal tractability of the key results. As such, throughout this thesis we use these frameworks to study
monetary and fiscal policy interactions.

In chapter one, we aim to better understand how the Heterogeneous Agent New Keynesian
(HANK) economy differs from the nested Representative Agent New Keynesian (RANK) frame-
work and how the policy mix is affected. We employ the analytically tractable HANK framework
of Acharya et al. (2023) that combines the overlapping generations structure of Blanchard (1985)
with the incomplete market model of Aiyagari (1994). We augment the model along two dimen-
sions. First, we introduce a general debt structure and depart from the assumption that aggregate
debt exists in zero net supply. An assumption that limits the models predictions regarding the long-
run equilibrium as well as its dynamics. Next, we introduce “declining labour efficiencies“, as a
proxy for the time spent in retirement, which results in richer inter- generational wealth inequality.
We show that the parameter space that ensures a unique rational expectation equilibrium changes
as we add more layers of heterogeneity. Finally, we argue that in the absence of aggregate risk, the
fiscally- led policy mix (AF/PM) is preferred by a policy maker who values “equity“ more than
“efficiency“ to the alternative monetary-led policy mix (AM/PF) in response to a transitionary (“
mit“) shock since it causes smaller deviations in inequality as well as in the MPC -out-of- cash on
hand.

Next, in chapter two, we extend once more the framework of Acharya et al. (2023) to analyse
optimal monetary and fiscal policy in a tractable heterogeneous agent New Keynesian (HANK)
economy where overlapping generations of households wish to save for retirement and precau-
tionary reasons. While monetary policy can affect the households’ ability to self-insure against
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shocks, fiscal policy has a greater impact on such behaviour both in steady-state and in response
to aggregate shocks. A policy maker, even one wishing to minimize inequality solely, would, in
steady state, provide insufficient government debt to enable households to save for retirement and
accumulate precautionary savings. This is because they prefer to suppress interest rates below
households’ rate of time preference, facilitating borrowing in the face of idiosyncratic shocks. The
Ramsey policy maker faces a trade-off between “ equity“ and “ efficiency“ and due to the costs of
servicing that debt with distortionary taxation will issue even less debt, driving equilibrium interest
rates down further. We explore the relative efficacy of monetary and fiscal policy in responding to
aggregate shocks in this environment, under different tax instruments.

Furthermore, in chapter three, we study optimal monetary policy in a tractable HANK envi-
ronment with meaningful amount of government debt. The model admits both idiosyncratic and
aggregate risk. The idiosyncratic shocks are uncorrelated between each other as well as with the
aggregate shock. We assume that there exists a consolidated monetary- fiscal authority. The mon-
etary authority pursues optimal (Ramsey) monetary policy whilst the fiscal authority follows a
simple non- linear tax rule. Our aim is to provide a clear distinction between the notions of dis-
continuous labour market participation (DLMP) and infrequent asset market participation (IAMP),
which are typically intertwined in the literature. In a HANK- DLMP model, constrained house-
holds are able to use assets to smooth their inter- temporal consumption. As such, the long run
equilibrium as well as the model’s dynamics under optimal monetary policy are different from
both the nested representative agent model and from the HANK- IAMP framework. We demon-
strate that DLMP frictions are an important source of heterogeneity on their own merit and should
not be overlooked. Finally, we find that despite the presence of imperfect risk sharing, the model
delivers perfect self-insurance and the policy maker in our framework will not deviate from price
stability in steady state (Woodford (2003)). This result is unaffected by the amount of outstanding
government debt or the presence of direct redistribution.

Finally, throughout this thesis we investigate how household heterogeneity affects the conduct
of monetary and fiscal policy. We explore the merits of different modelling assumptions regarding
inequality and focus on how policy changes as we add more layers of heterogeneity. All models
are calibrated for the US economy for the period 1985- 2021.
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Motivation

The main research theme of this thesis is the interaction between monetary and fiscal policy in
a tractable heterogeneous agent environment. The first and second chapters build on the seminal
work of Acharya and Dogra (2020) and Acharya et al. (2023), who created a tractable OLG-
HANK framework to study "monetary" puzzles and optimal monetary policy, respectively. This
model combines the Perpetual Youth (PY, henceforth) household structure of Blanchard (1985)
with the standard incomplete market heterogeneous agent model of the Aiyagari (1994) tradition
in a standard New Keynesian environment. Hence, we refer to this class of models as OLG-HANK.

Our contribution lies in developing the fiscal side of the framework to jointly study monetary
and fiscal policy. This is done by introducing a meaningful supply of government bonds, assets of
different maturities, different tax instruments, and phased retirement.

The motivation behind this extension has been twofold. First, monetary policy affects inequal-
ity through the real interest rate, and these effects are transitory. This means that the duration of the
effects is linked to price stickiness. More specifically, in this framework, monetary policy affects
inequality through the "income-risk" channel and the "self-insurance" channel. That is, the cycli-
cality of the variance of the partially uninsurable income risk will influence the extent to which
monetary policy can mitigate the magnitude of the idiosyncratic risk following an unanticipated
aggregate shocks ("income-risk" channel). Whereas the "self-insurance" channel indicates that by
lowering the interest rate, the cost of borrowing reduces, and households are able to use assets to
smooth their consumption and partially self-insure against adverse realizations of the idiosyncratic
income shock.

On the other hand, fiscal policy has a permanent effect on inequality. Our economic envi-
ronment features an endogenously determined non-trivial wealth distribution without imposing
exogenous binding borrowing limits; in fact, it shapes the distribution of consumption in the econ-
omy. In this framework, distortionary taxes, as well as the supply of government bonds, fulfill
roles that are not present in the standard New Keynesian model. Distortionary taxes still cause
efficiency losses as they discourage households’ supply of labor. However, they also reduce the
variance between the pre-tax and post-tax labor income. Since high taxation diminishes the dif-
ference in the labor income of households who draw high and those who draw low realizations of
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the idiosyncratic shock, causing intra-generational income inequality to drop. Still, higher taxation
reduces households’ ability to borrow against their expected future income. Similarly, a higher
supply of government bonds allows households to at least partially fulfill their desire to save for
retirement as well as for precautionary reasons but at the cost of higher servicing costs.

Additionally, contrary to the original paper, we also depart from the assumption that newly-
born agents receive a lump-sum transfer that essentially guarantees that all cohorts enjoy the same
average consumption and wealth, effectively eliminating inter-generational wealth inequality. Fur-
thermore, the assumption of phased retirement acts as another form of inequality since it increases
the magnitude of the OLG channel, increasing households’ desire to save and smooth their con-
sumption over their lifetimes.

Thus, the model manages to incorporate intra-generational income inequality as well as inter-
generational wealth inequality without losing its analytic tractability. This is made possible by re-
lying on constant absolute risk aversion (CARA, henceforth) household preferences and normally
distributed idiosyncratic shocks while abstaining from aggregate risk. As such, when investigating
the model’s dynamics, we consider a one-time unanticipated shock to the perfect foresight path.

In the first chapter, we look at monetary and fiscal policy interactions in an economy where both
policies are conducted by following simple rules. In this environment, the real interest rate deviates
from its steady-state value only if inflation deviates from the steady-state target of zero inflation.
Similarly, taxes deviate from their equilibrium value if and only if the value of the aggregate
government debt deviates from the exogenously given target. We examine how the steady-state
allocations, determinacy properties, as well as the system’s response to aggregate (unanticipated)
shocks depend on each added layer of heterogeneity and on the fiscal instruments available.

In the second chapter, we focus on optimal monetary and fiscal policy. The model features
a policymaker who combines the powers and responsibilities of the monetary and fiscal authori-
ties and has access to commitment technology. The policymaker considers the inequality present
in the economy when optimally deciding on the level of policy instruments. Specifically, these
instruments include the real interest rate and the aggregate supply of government bonds financed
by distortionary income taxes. Households still wish to save for retirement and insure against id-
iosyncratic risk. Thus, we define a "golden rule" of steady-state savings as a benchmark where the
government supplies enough bonds to satisfy households’ consumption-smoothing desires, which
in turn pushes the steady-state real interest rate to align with the rate of time preference. This ques-
tion of a modified "golden" rule of savings is not new to the OLG literature, but our work creates
a benchmark due to the inclusion of the incomplete market component.

The problem that the policymaker faces is not trivial. It is illustrated by the social welfare
function that the policymaker wishes to maximize. This function consists of a consumption maxi-
mization component that reflects the typical desire for "efficiency" known from the NK literature,
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as well as an inequality component. The policy maker’s problem is further complicated by the
fact that inter-generational consumption/wealth inequality and intra-generational income inequal-
ity move in opposite directions. An increase in the aggregate supply of bonds allows households
to save more but at the cost of higher income taxes and a higher real interest rate. As the interest
rate rises, the cost of using assets to self-insure against idiosyncratic risk also rises, increasing
intra-generational income inequality.

We examine this issue under different scenarios: where the policymaker is fully optimal, max-
imizes a welfare criterion that incorporates only an efficiency component, or focuses solely on
reducing inequality in the economy.

In Chapter 3, we again study the interactions between optimal monetary policy and fiscal pol-
icy. Here, the policymaker pursues optimal monetary policy under commitment in a tractable
heterogeneous agent environment with a meaningful supply of government bonds. However, as
in Chapter 1, the fiscal authority follows a simple rule where taxes deviate from their steady-state
level only if the value of government debt exceeds an exogenous target. We extend the framework
of Chien and Wen (2021) by introducing nominal rigidities, transfers to constrained households,
and long-term government bonds. The model features (exogenous) stochastic transitions between
labor market participation and non-participation, deviating from the assumption of Keynesian-
constrained consumers who face infrequent asset market participation (IAMP). Unlike the original
paper, constrained households do not face equilibrium binding borrowing constraints but are sub-
ject to portfolio re-balancing costs. In the absence of borrowing constraints on constrained house-
holds, the policymaker is unable to affect consumption inequality in the steady state or in response
to an aggregate shock. Nonetheless, households have unequal exposure to an aggregate shock.

Even in the extreme case where non-participating households can freely adjust their asset po-
sitions and thus have the same exposure to a change in the interest rate (as in the RANK case),
optimal monetary policy still differs from the RANK benchmark because the policy maker’s ac-
tions will reallocate wealth following an aggregate shock. Therefore, our tractable HANK model
with discontinuous labor market participation (DLMP) features two types of Ricardian consumers.

The policymaker has access to commitment technology and considers the behavior of the fiscal
authority before solving their program. In this chapter, for comparability purposes, we assume
that all economies display the same annualized debt-to-GDP ratio, the same government consump-
tion, and, where applicable, the same level of exogenous transfers to constrained households. We
compare the steady-state allocations and aggregate dynamics of both the nested representative
agent model and the tractable HANK model with infrequent asset market participation (IAMP).
As noted by Cantore and Freund (2021), this latter HANK specification is an extreme case of our
model where constrained households face a binding borrowing constraint that prohibits them from
taking any asset position and incurs infinite portfolio re-balancing costs.

14



Essentially, we start with the standard representative agent specification and show how each
additional layer of heterogeneity affects both steady-state allocations and optimal policy dynamics.
This is done through a combination of theoretical results and numerical simulations.
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Chapter 1

Monetary and fiscal policy interactions in a
tractable HANK economy
Based on joint work with T. Kirsanova and C. Leith
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Abstract

In this paper, we aim to better understand how the Heterogeneous Agent New Keyne-

sian (HANK) economy differs from the nested Representative Agent New Keynesian (RANK)

framework and how the policy mix is affected. We employ the analytically tractable HANK

framework of Acharya et al. (2023) that combines the overlapping generations structure of

Blanchard (1985) with the incomplete market model of Aiyagari (1994). We augment the

model along two dimensions. First, we introduce a general debt structure and depart from the

assumption that aggregate debt exists in zero net supply. An assumption that limits the models

predictions regarding the long- run equilibrium affects its dynamics. Next, we further intro-

duce “declining labour efficiencies“, as a proxy for the time spent in retirement, which results

in richer inter- generational wealth inequality. We show that the parameter space that ensures

a unique ration expectation equilibrium changes as we add more layers of heterogeneity. Fi-

nally, we argue that in the absence of aggregate risk, the fiscally- led policy mix (AF/PM) is

preferred to the alternative monetary-led policy mix (AM/PF) in response to a transitionary

("mit") shock since it causes smaller deviations in inequality. The model is calibrated for the

US economy for the period 1985- 2021.

1.1 Introduction

In the aftermath of the financial crisis, the heterogeneous agent New Keynesian (HANK, hence-
forth) framework emerged as an apparatus to study the distributional consequences of monetary
and fiscal policy. Although reduction of inequality is not part of the mandate of any central bank
yet, prominent policy makers have devoted entire speeches calling for more research on the im-
plications of monetary policy on inequality and redistribution (See Carney 2016 ; Draghi 2016;
Yellen 2017).

In this paper we study the interactions between monetary and fiscal policy in a HANK econ-
omy. Our model is an extension of the seminal work of Acharya & Dogra (2020) and Acharya et al.
(2023) who added uninsurable income risk and a Perpetual Youth (PY, hereafter) structure to an
otherwise standard representative agent New Keynesian (RANK, henceforth) model. This frame-
work falls under the umbrella of the so- called tractable HANK (THANK) models. This class of
models rely on simplifying assumption regarding the way that inequality enters the economy. They
are used to study the qualitative rather than the quantitative difference between the HANK and the
nested RANK specification.

The framework features a CARA utility function that allows for linear aggregation and thus,
we are able to solve the model without having to impose either a degenerate wealth distribution
or a zero liquidity constraint. We further augment the framework by introducing declining income
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profiles (See Blanchard (1985)) to allow for richer inter-generational wealth inequality and also
expand the fiscal side of the economy. More specifically, we allow assets of different maturities
(short and long term bonds) to enter the households’ balanced sheets and a realistic equilibrium
debt- to - GDP ratio. The model abstracts from marginal propensity to consume (MPC, henceforth)
heterogeneity and instead focuses on the role that uninsurable income risk and inter-generational
wealth inequality play in order to identify differences in the policy mix compared to the nested
representative agent economy. We further assume that the only source of uncertainty in the model
comes from the idiosyncratic histories and from the households’ stochastic lifespans.

We also investigate the differences in the long- run equilibrium, determinancy areas as well
as dynamics between the RANK and a plethora of different (nested) HANK specifications. We
find that with each extra layer of inequality that we add, both the long- run equilibrium as well
as the areas of determinancy (See, Leeper 1991) are affected. Following Auclert (2019), we only
consider the policy response to a transitory ("mit") aggregate shock. Hence, after the one- time
aggregate shock is realised, households have perfect foresight. The consolidated monetary- fiscal
authority relies on simple rules to conduct monetary and fiscal policy. We keep the policy response
coefficients constant across the different specifications and thus, the monetary and fiscal policy
have identical responses across all frameworks. However, the joint monetary- fiscal policy response
in specifications that feature household heterogeneity always has redistributive effects. In line with
Auclert (2019), we find that since our framework abstracts from marginal propensity to consume
heterogeneity and binding equilibrium borrowing constraints, following an aggregate shock, the
policy response will affect the wealth disparity in the economy but the policy maker will still be
unable to redistribute consumption towards younger/poorer households.

As we know from the seminal work of Leeper (1991), there exist two areas of the parameter
space that ensure a unique rational expectations equilibrium. The first regime requires a monetary-
led policy mix whilst the alternative requires a fiscally- led policy mix. We find that although both
policy mixtures are able to stabilise the economy in response an unanticipated aggregate shock,
a fiscally- led regime might be preferable for the HANK economy, since it is consistent with a
smaller deviation in the dispersion of wealth as well as smaller initial deviations in the sensitivity
of individual consumption to changes in individual income, in response to the shock. However, if
the policy maker is willing to sacrifice “equity” for “ efficiency” the monetary led regime is still
preferred.

1.2 Literature Review

The paper contributes to large literature that studies the distributional consequences of monetary
and/or fiscal policy using discrete- time tractable HANK or simply THANK models (See for in-
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stance, Bilbiie 2008; Bilbiie 2024; Broer et al. 2020; Challe 2020; Cantore & Freund 2021; De-
bortoli & Galí 2018 ; Komatsu 2023; among others). Papers in this literature rely on simplifying
assumption regarding how inequality enters the economy and focus on the qualitative rather than
the quantitative difference between HANK and the nested RANK model. These simplifications
allow us to observe the inter-temporal trade-offs and study the distributional consequences of mon-
etary and/fiscal policy in a general equilibrium setting, without having to sacrifice the analytical
tractability of the key results. Most papers in this literature rely on generalisations of the seminal
work of Galí et al. (2007) and Bilbiie (2008). A key advantage of these specifications is that this
class of HANK models can be solved and/or estimated using well- known techniques from the
representative agent literature1. Yet, they are able to trace the dynamics of the large quantitative
models quite closely. However, more recent studies have also exploited the concept of "Recursive
Contracts" of Marcet & Marimon (2019) or the assumption of "truncated idiosyncratic histories" of
Le Grand et al. (2022) to employ larger- more quantitative- models and still obtain some analytical
results without moving to a continuous- time set up. However, most of these studies still rely on
the assumption a “zero liquidity limit“ or a degenerate wealth distribution to further simplify their
analysis.

Papers in this literature use marginal propensity to consume (MPC, hereafter) heterogeneity
and/or partially uninsurable income risk to explore the differences between HANK and RANK
economies. Following Acharya & Dogra (2020) and Acharya et al. (2023) we abstract from MPC
heterogeneity and instead rely only on cross- sectional income inequality and inter-generational
wealth inequality to study the differences between the two frameworks. As discussed above, we
augment the friction from the OLG channel by including declining labour efficiency. This assump-
tion strengthens the “Overlapping generations“- wealth inequality channel that shapes the long-
run equilibrium, areas of determinancy as well as the model dynamics. Our paper complements
the work the Monacelli & Colarieti (2022), who augment the seminal model of Acharya & Dogra
(2020) by including richer cross- sectional income inequality. They rely on the assumption of het-
eroskedastic income processes to introduce MPC heterogeneity in a parsimonious way. The papers
that build on the seminal work of Acharya & Dogra (2020) make use of the CARA utility and (iid)
normally distributed idiosyncratic shocks that considerably simplifies the aggregation process. As
such, we can operate under the assumption that there exist an infinite type of agents in the economy
without turning the wealth distribution into an infinite dimension object.

Finally, our work also complements the studies who have examined monetary and/or fiscal pol-
icy using standard New Keynesian environments embed with Blanchard- Yaari consumers. Leith
& Wren-Lewis (2000) first investigated monetary and fiscal policy interactions in an economy with
non- Ricardian agents. Chadha & Nolan (2007) provided a systematic characterisation of mone-

1See for instance, Judd 1998, Miranda & Fackler 2004, Maußner 2005
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tary and fiscal policy rules in a OLG- RANK business cycle economy. Kirsanova et al. (2007)
used an open- economy version of the OLG- RANK framework to examine fiscal policy issues in
a monetary union. Whilst, Leith & Von Thadden (2008) introduced the Blanchard- Yaari consumer
structure into a New Keynesian with capital accumulation to study how government debt affects
the determinancy of the system. Finally, Nistico (2016) and Rigon & Zanetti (2018) used a simi-
lar OLG- RANK framework to study how optimal monetary policy and/or fiscal policy change in
environments with Non- Ricardian consumers.

1.3 Model

The economic environment that we describe in this chapter follows closely the model of Acharya
et al. (2023). Our model is a combination of a Bewley (1977), Huggett (1993) and Aiyagari (1994)
economy in which households face (partially) uninsurable idiosyncratic income risk coupled with
the overlapping generations structure of Blanchard (1985). The model employs Constant Abso-
lute Risk Aversion (CARA) preferences and normally distributed shocks to individual household
labour supply to develop a tractable heterogeneous agent model for the analysis of monetary policy.
The model is capable of describing both macroeconomic aggregates and measuring social welfare
whilst accounting for heterogeneity.

Following Galí (2021), we refer to this class of models as OLG- HANK. This adoption of the
Blanchard- Yaari (BY, henceforth) or “perpetual youth" model has significant advantages. The
main benefits of Blanchard’s economy over the competing overlapping generations frameworks is
that the average lifetime of an agent can be parameterised. That is to say that the “PY" model
nests within itself the infinitely lived agent model (as a special case). For us, the adoption of this
“perpetual youth" structure a- la Blanchard- Yaari (1985), practically means that in every period
each household faces a constant probability of survival (ϑ). For simplicity, the population is fixed
and normalised to 1. Hence,the size of a newly born cohort at any date t is (1−ϑ) and the size of
a cohort at period t of agents born at any date s < t is (1−ϑ)ϑ t−s.

However, this structure also harbours additional advantages. Most importantly, it allows us
to solve the model without having to impose any borrowing constraints. Since, the existence
of transversality conditions permits us to refrain from imposing any restrictions on asset trading
(household debt level) whilst ruling out ponzi-schemes. This endogenously determines a steady-
state distribution of wealth, affecting the response to shocks and implying an additional external-
ities that are absent in models without government debt. Overlapping generations of households
will decide whether to save by purchasing risk free assets, not internalizing the impact of these de-
cisions on the equilibrium real interest rate . A feature absent from both the standard representative
agent model as well as the heterogeneous agent model of Acharya & Dogra (2020) and Acharya
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et al. (2023) where government debt is in zero net supply (See Acemoglu 2008 chapter 9, for a
textbook exposition).

Next, we augment the OLG- channel by assuming that the dis- utility of supplying labor income

decreases with age in order to mimic economic retirement. This approach generates a desire to
save in anticipation of falling incomes, akin to saving for retirement and provides us with richer-
inter-generational wealth inequality.

In our framework, agents can hold two types of (risk- free) actuarial bonds which they buy
from the stand-in financial intermediary. These intermediaries are just an aggregation device used
to convert actuarial bonds into government bonds.

The production side of the economy is kept deliberately simple. As discussed above the model
features a consolidated monetary- fiscal authority. The policy maker conducts monetary and fis-
cal policy following simple rules. Additionally, the fiscal authority is also tasked with issuing
government debt, public consumption and provide subsidies to households.

Finally, we also abstract from aggregate risk and only allow for a one-time unanticipated tran-
sitionary shock at date t = 0, after which all households have perfect foresight. The complete
derivation of the model and the proofs of the propositions can be found in appendix A.

1.3.1 Households

The economy is populated by cohorts of Blanchard- Yaari individuals that have constant survival
probability in any period, 0 < ϑ < 1, see Blanchard (1985). At any time t, an individual i which
belongs to generation born at time s≤ t derives utility from age-dependent real private consumption
cs

t (i) and real government consumption Gt . They also derive dis-utility from labour supply, ls
t (i) ,

and, exogenously, dist-utility rises with age reflecting a desire to retire, Θs
t =κ (t− s). This gradual

withdrawal from the labour market will create a desire to save for ‘retirement’ and will ensure
that the government wishes to issue a plausible level of government debt in the Ramsey steady-
state. Crucially, households face uninsurable idiosyncratic shocks to dis-utility from labour ξ s

t (i)∼(
ξ̄ ,σ2

t
)

; these shocks are independent across time and individuals. The variance of this shock may
vary with economic activity and there is only idiosyncratic risk.

We assume CARA preferences so utility takes form:

Us = Ei

∞

∑
t=s

(βϑ)t−s
(
−1

γ
e−γ(cs

t (i)+χGt)−ρe
1
ρ
(ls

t (i)+Θs
t−ξ s

t (i))
)

Individuals invest in long and short term nominal actuarial bonds A L,s
t (i) and A S,s

t (i). The short-
term bonds are issued at price q̃t , paying out one unit of current one period later. While, following
Woodford (2001), the longer-term bonds, issued at price P̃M

t , pay an initial coupon of one unit of
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currency which falls to ς s, s period’s later. Longer maturity debt matters as, following shocks,
the revaluation effects on wealth held in the form of longer-term bonds through fluctuations in
bond prices will be greater, which, in turn, will affect the impact of that shock on the distribution
of wealth (See Leeper & Leith (2016a) for a discussion). Households receive after tax-wages,
(1− τt)Ptwt ls

t (i), where the labor income tax, levied at rate τt , is the the sole source of govern-
ment tax revenues in our benchmark model. We also introduce a lump-sum tax, PtTt , which will
used to replace distortionary taxation as a means of eliminating the effects of tax distortions for
demonstrative purposes only. Each household receives dividends, Ptdt .2 Their budget constraint at
time t is

Ptcs
t (i)+ P̃M

t A L,s
t+1 (i)+ q̃tA

S,s
t+1 (i)

=
(
1+ ς P̃M

t
)
A L,s

t (i)+A S,s
t (i) (1.1)

+(1− τt)Ptwt ls
t (i)+Ptdt−PtTt

Each individual is born with zero bond holdings, A L,s
s = A S,s

s = 0 and there is no fiscal trans-
fer to newborns and/or wealth tax on existing households to ensure ex ante equality between all
households as in Acharya et al. (2023).

We define real asset holdings (i.e. the ratio of the number of each type of assets to the price
level) as,

aJ,s
t (i) =

A J,s
t (i)
Pt−1

,J ∈ {L,S} (1.2)

and introduce a measure of real assets

As
t (i) =

(
1+ ς P̃M

t
)

aL,s
t (i)+aS,s

t (i)
(1+πt)

(1.3)

Then, we can re-write the budget constraint in real terms as:

ϑ

Rt
As

t+1 (i) = As
t (i)+ ys

t (i)− cs
t (i) (1.4)

where net household income is defined as,

ys
t (i) = ηt ls

t (i)+dt−Tt , (1.5)

2For simplicity we assume that dividends are shared equally across households. It would be possible to allow
dividends to vary with household labor supply or the state of the economy as in Acharya & Dogra (2020). In our
economy another possibility might be to allow dividends paid to individual households to vary with age, reflecting
re-balancing of portfolios from equities to bonds over the life-cycle.
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the post-tax wage is
ηt = (1− τt)wt , (1.6)

and we can define the ex ante real interest rate Rt as follows,

ϑ

Rt
= q̃t (1+πt+1) .

Note that the ex post real rate will differ depending on the proportion of short and long-term bonds
the household possesses in the presence of aggregate ‘shocks’ to the perfect foresight equilibrium
path since additional capital gains/losses are possible on long-term bonds when the path of interest
rates differ from what was expected.

The solution to an individual’s optimisation problem can be summarized by the following
Proposition derived in Appendix A2.9.1.

Proposition 1 (Individual’s Optimisation) In equilibrium, the optimal date t consumption and

labour supply decisions of a household i born at date s are,

cs
t (i) = Ct−χGt +µtms

t (i) (1.7)

ls
t (i) = ρ ln(ηt)−Θ

s
t −ργ (cs

t (i)+χGt)+ξ
s
t (i) (1.8)

where

ms
t (i) = As

t (i)−ϕtΘ
s
t +ηt

(
ξ

s
t (i)− ξ̄

)
is demeaned ‘cash-on-hand’, Ct is a measure of common consumption, µt is the ‘marginal propen-

sity to consume (MPC) out of cash-on-hand and ϕt is the after-tax value of the human wealth of an

individual supplying one unit of labor supply. This latter variable is used to value the income lost

to retirement within households and for the population as a whole. The evolution of these variables

is given according to:

1
µt

=
ϑ

Rt µt+1
+(1+ργηt) (1.9)

ϕt = ηt +
ϑ

Rt
ϕt+1 (1.10)

Ct =−
µtϑ

Rt µt+1γ
ln(βRt)+

ϑ µt

Rt µt+1
Ct+1−

ϑ µt

Rt µt+1

γ

2
µ

2
t+1η

2
t+1σ

2
t+1 (1.11)

−µt
ϑ

Rt
κϕt+1 +µt

(
ηt
(
ρ log(ηt)+ ξ̄

)
+dt−Tt +χGt

)
where Rt =

ϑ

q̃t(1+πt+1)
is real interest rate.

The solution to the household’s optimization problem implies that their consumption equals a
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measure of consumption, Ct , which only depends on aggregate variables, after adjusting for the
substitutability between private and public consumption in utility, χGt , plus a term that is idiosyn-
cratic, µtms

t (i). This final term depends on household i’s cash-in-hand, ms
t (i), which comprises

their financial assets, As
t (i), minus the age-dependent loss of human wealth due to retirement that

period, ϕtΘ
s
t , and the extent to which their labor income varies due to their idiosyncratic shock

to labor dis-utility, differing from the population average, ηt
(
ξ s

t (i)− ξ̄
)
. In turns, the household

labor supply depends positively on the post-tax real wage, negatively on consumption, with adjust-
ments made for both age-dependent retirement and idiosyncratic shocks to the disutility of labor
supply.

A negative shock to labor supply, ξ s
t (i) < ξ̄ , reduces household income and results in a fall

in consumption, where ∂cs
t (i)

∂ξ s
t (i)

= µtηt = µt (1− τt)wt . This fall will be greater the higher the
marginal propensity to consume out of cash-on-hand, µt , and the greater the post-tax real wage.
Households are therefore more insulated from the direct impact of the shock the higher the tax
rates. As a result of the fall in consumption, they will work harder, where ∂ ls

t (i)
∂ξ s

t (i)
= 1− γρµtηt =

1− γρµt (1− τt)wt < 1. Again, a lower marginal propensity to consume and a higher tax rate
will reduce the household’s desire to maintain consumption by working harder in the period of
the shock. Aside from working harder, the household can also maintain consumption through
borrowing. Its ability to do so is implicit in the marginal propensity to consume.

We can iterate the marginal propensity to consume out of cash-on-hand forwards to obtain:

µt

Rt
=

[
∞

∑
s=0

ϑ s (1+ργ (1− τt+s)wt+s)

∏
s+1
j=1 Rt+ j−1

]−1

. (1.12)

This formula is the same as in Acharya et al. (2023), except it incorporates dependency on the
future post-tax real wage rate. It indicates that the propensity to consume increases with interest
rates but decreases with future post-tax wages. Therefore, after experiencing a negative idiosyn-
cratic shock to labor supply, which reduces their cash-on-hand, ms

t (i), households can maintain
consumption closer to Ct when the marginal propensity to consume is low. This occurs when in-
terest rates are low, making borrowing to smooth consumption less costly, or when post-tax wages
are expected to be higher in the future, making it less expensive to repay any borrowing. Addi-
tionally, the presence of the tax rate implies that a lower tax rate makes it less costly (in utility
terms) to increase future labor supply to pay off any debt incurred to smooth consumption. Thus,
future distortionary taxation inhibits self-insurance, although high tax rates at the time of the shock
mitigate its direct impact, as part of the lost income would have been taxed anyway.

Meanwhile, the component of household consumption driven by aggregate variables, Ct , can
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be iterated forwards to obtain:

Ct =−
1
γ

∞

∑
s=0

Qt+s,t
µt

µt+s
ln(βRt+s)−

γµt

2

∞

∑
s=0

Qt+s,t µ
2
t+sw

2
t+s(1− τt+s)

2
σ

2
t+s

+µt

∞

∑
s=0

Qt+s,tyt+s−κµt

∞

∑
s=1

Qt+s,tϕt+s. (1.13)

The first term has the same interpretation as in Acharya & Dogra (2020), capturing the impact
of variations in interest rates relative to the impatience of households. If interest rates are typ-
ically higher than the rate of time preference, current consumption will be lower as households
increase savings and cut current consumption. The discount factor, Qt+s,t =

ϑ s

∏
s−1
j=0 Rt+ j

, accounts

for both the interest rate on financial assets and the probability of death, 1− ϑ . The second
term is attributable to precautionary savings. A higher variance of idiosyncratic shocks, σ2

t+s,
increases the variance of post-tax income, w2

t+s(1− τt+s)
2σ2

t+s, which, after applying the marginal
propensity to consume, captures the variance in consumption across households, µ2

t+sw
2
t+s(1−

τt+s)
2σ2

t+s. The third term represents the discounted value of per capita post-tax income from la-
bor, dividends, and transfers, after adjusting for the utility generated by public consumption, yt =(
ηt
(
ρ log(ηt)+ ξ̄

)
+dt−Tt +χGt

)
. Lastly, the equation includes the discounted value of the in-

come lost due to the gradual retirement of the population throughout their working lives. Taxation
affects this measure of aggregate consumption through its impact on the marginal propensity to
consume, as discussed above, positively by reducing the variance of post-tax income but nega-
tively by reducing the level of post-tax income and, therefore, the discounted value of that income.

It follows that net income (2.5) can be written as

ys
t (i) = ηt (ρ log(ηt)+ξ

s
t (i))−ηtΘ

s
t −ργχηtGt−ργηtcs

t (i)+dt−Tt . (1.14)

Aggregation of the household budget constraint yields

ϑ

Rt
At+1 = ϑAt + yt− ct , (1.15)

where

At =

(
1+ ς P̃M

t
)

aL
t +aS

t

1+πt
,

and aJ
t is an aggregation of long term (J = L) and short term (J = S) bonds.

The straightforward aggregation of income (2.14) yields:

yt = ηt
(
ρ log(ηt)+ ξ̄

)
− κϑ

(1−ϑ)
ηt−ργηt χGt−ργηtct +dt−Tt , (1.16)
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and aggregation of (2.7) yields

ct = Ct−χGt +µtϑ

(
At−

κ
1−ϑ

ϕt

)
. (1.17)

This latter expressions indicates that per capita consumption equals the consumption measure, Ct ,

driving individual household consumption in (2.7), after adjusting for the substitutability between
private and public consumption, χGt , and the extent to which, in aggregate, households have
successfully saved for retirement. At >

κ
1−ϑ

ϕt implies that household financial wealth exceeds the
loss of human wealth due to retirement across the population.

Aggregated first order conditions for the individuals’ problem yield the following relationships,
derived in Appendix 2.9.3.

Proposition 2 (Aggregated Individuals’ Optimisation) In equilibrium, the optimal date t the

aggregate total consumption and labour supply decisions are:

xt =−
1
γ

log(βRt)+ xt+1 +µt+1 (1−ϑ)At+1−
γ

2
µ

2
t+1η

2
t+1σ

2
t+1−κµt+1ϕt+1, (1.18)

nt = ρ logηt−
κϑ

1−ϑ
+ ξ̄ −ργxt , (1.19)

xt = ct +χGt , (1.20)

Ct = xt−µtϑ

(
At−

κ
(1−ϑ)

ϕt

)
. (1.21)

The dynamics of xt resemble that of consumption in a representative agent model, but with
notable differences. Typically, consumption is expected to grow whenever the interest rate exceed
the rate of time preference, βRt > 1. In other words, consumption jumps down when interest
rates unexpectedly rise, as the discounted value of future post-tax income across the economy
falls. Consumption then recovers as interest rates return to normal levels. However, there is an
additional term, µt+1 (1−ϑ)At+1, attributable to the aggregation across finitely-lived generations.
This term would not exist if households were infinitely lived and ϑ = 1. Instead, finite lives
imply that government debt (which is mapped to households assets as Bt = ϑAt) are net assets
for households. Households currently alive do not expect paying for all the surpluses backing
government debt, implying that any increase in those assets increases consumption. As above, the
term γ

2 µ2
t+1η2

t+1σ2
t+1 measures the variance of consumption across households due to idiosyncratic

shocks, providing a motive for precautionary saving, which in turn reduces current consumption.
Finally, consumption is reduced by the ongoing loss of post-tax income due to retirement.

It is helpful to consider the steady-state of this relationship to see how these additional factors
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influence interest rates:

1
γ

log(βR) = µ (1−ϑ)(A− κ
1−ϑ

ϕ)− γ

2
µ

2
η

2
σ

2. (1.22)

In the absence of idiosyncratic risk or finite lives, the steady-state interest rate in a representative
agent economy would be consistent with household preferences, βR = 1. However, the desire
for precautionary savings drive down the steady-state interest rate relative to these preferences,
while the accumulation of assets beyond what is needed to fund retirement in an OLG economy,
A > κ

1−ϑ
ϕ , raises interest rates. If the government could provide sufficient assets for households to

satiate their desire for precautionary savings and their need to smooth consumption in retirement,
then the steady-state interest rate would equal the households rate of time preference, provided :

B− κ
1−ϑ

ϕ =
1
2

ϑ

1−ϑ
γµη

2
σ

2. (1.23)

This is crucial for determining the infimum of the fiscal response coefficient that ensures passive
fiscal policy.

1.3.2 Firms

The economy features two production sectors. A perfectly competitive final good producing sector
as well as a monopolistically competitive intermediate good sector. The final good producing firms
are identical and thus, we model this sector as a single stand-in aggregate firm that is the typical
CES aggregator- that combines intermediate varieties into the final good:

Yt =

[∫ 1

0
(yt ( j))

εt−1
εt d j

] εt
εt−1

where, Yt denotes the quantity of the final good, yt ( j) denotes the demand for intermediate
input j, and εt > 1 governs the elasticity of substitution between any two intermediate varieties.

There is continuum j ∈ [0,1] of intermediate good producing firms, each producing a differen-
tiated variety. Each firm j produces its differentiated product according to the production function

yt ( j) = ztht ( j)

where, ht ( j) stands for the labour demand of firm j whist zt is the aggregate technology (TFP)
shock. We abstract from aggregate risk and only permit a one- time anticipated aggregate shock to
the level of labour productivity z0, at t = 0. Under the assumption that the shock decays geometri-
cally:
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log(zt) = ρ
t
z log(z0)+ et

Intermediate firms face a quadratic cost a- la- Rotemberg (1982) when changing their prices.
The firm’s problem becomes choosing {Pt ( j)}∞

t=0 in order to maximise :

max
Pt( j)

∞

∑
t=0

m0,t

((
Pt ( j)

Pt
− (1− s)

wt

zt

)
yt ( j)− Φ

2

(
Pt ( j)

Pt−1 ( j)
−1
)2

Yt

)
subject to monopolistic demand

yt ( j) =
(

Pt ( j)
Pt

)−εt

Yt

Solving the firms’ profit maximisation problem yields the NK Price Phillips Curve

Φπt (1+πt)(1+ rt) = (1− εt +(1− s)εt
wt

zt
)(1+ rt)+ΦEt

(
πt+1 (1+πt+1)

Yt+1

Yt

)
(NKPC)

Their profit is distributed as dividend:

dt = (Yt− (1− s)wtHt)−
Φ

2
π

2
t Yt . (1.24)

where, Ht stands for the aggregate labour demand3.

1.3.3 Government

The model features a consolidated monetary-fiscal authority. In each period, the monetary author-
ity chooses the level of the nominal interest rate {It}. Whereas, the fiscal authority chooses the level
of the outstanding government debt

{
bL

t ,b
S
t
}

. Given the aggregate bond supply, the level of subsi-
dies s ∈ [0,1] and public spending{Gt = G0 ∈ R+,∀t} then, they adjust the level of taxes (τt ,T R

t )

to ensure fiscal solvency. Since, changes in government spending typically involve parliamentary
procedures, we are going to assume that they are held constant and determined exogenously. We
further assume that the maturity of long-term bonds is the same as the maturity of actuarial bonds.

The government budget constraint (GBC, henceforth) is given as

PM
t BL

t+1 +qtB
S
t+1 =

(
1+ ςPM

t
)
BL

t +BS
t +PtGt− τtPtwtnt−PtTt

3See Appendix 1.8.2 for the aggregation and the derivation of the market clearing conditions. Labour
market clearing requires aggregate labour supply to equal aggregate labour demand hence, Ht :=

∫ 1
0 nt ( j)d j =

(1−ϑ)∑
t
s=−∞ ϑ t−s ∫ 1

0 ls
t (i)di = nt .
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Where, the Lump Sum taxes/transfers are defined as

Tt = swtHt−T R
t

We can re-write the GBC in real terms, using the nominal interest rate as:

(1+πt+1)

[
PM

t
(1+πt+1)

bL
t +

bS
t

It

]
+ τtwtHt = bS

t−1 +
(
1+ ςPM

t
)

bL
t−1 +Gt +Tt

where,

Bt =

((
1+ ςPM

t
)

bL
t +bS

t
)

(1+πt)

and

bJ
t =

BJ
t

Pt−1
,J ∈ {L,S}.

In the benchmark case, we assume that the government raises revenue using distortionary
income taxes {τt}. However, we also investigate an alternative scenario where the only Lump
Sum taxes are available. We further assume that both taxes

(
τt ,T R

t
)

and the nominal interest rate
(It = Rt (1+πt+1)) each follows a simple rule. To simplify our analysis further, we set the short
term debt in zero net supply

(
bS

t+1 = bS
t = 0,∀t

)
thus, we can immediately drop it from the GBC

altogether. Hence,

(1+πt+1)

[
PM

t
(1+πt+1)

bL
t+1

]
+ τtwtHt =

(
1+ ςPM

t
)

bL
t +Gt +Tt (1.25)

1.3.4 Policy Rules

The policy maker conducts monetary policy by following a simple interest rate rule. The nominal
interest rate (It) deviates from its long term value in response to deviations in inflation or in the
output gap. Throughout this chapter we operate under the assumption that the inflation target is
zero (π∗ = 0) . So, the Taylor- like rule takes the form

It
Ī
=

(
1+πt

1+π∗

)φπ
(

Yt

Ȳ

)φY

A value of φπ > 1 indicates that the so- called "Taylor Principle" is satisfied and the gross
nominal interest rate (It = 1+ it) adjusts by more compared to the size of the inflation deviation.
Although we have included the general form of the Taylor rule, throughout this paper we are going
to assume that φY = 0. Since, as shown by Schmitt-Grohé & Uribe (2007) “Interest-rate rules that
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feature a positive response to output can lead to significant welfare losses.“
Similarly, the fiscal policy follows a simple non- linear rule where taxes deviate from their

steady state value if and only if the value of outstanding government debt
(
PM

t bL
t
)

deviates from
the equilibrium target.

Hence, if the government has access only to distortionary income taxation (τt) then the feed-
back rule is given as:

τt = τ̄ ·
(

PM
t bL

t

PMb̄L

)φb

Whereas, if the fiscal authority raises revenue using Lump Sum taxes
(
T R

t
)

instead, the tax rule
takes the form

T R
t = T̄ ·

(
PM

t bL
t

PMb̄L

)φb

The rules abstract from any lagged interest rate or tax terms since, as stated in Leith & Wren-
Lewis (2000) tax smoothing would indicate " that fiscal policy is conducted in very similar manner
to optimal discretionary policy" and this is not the focus of this chapter.

Financial Intermediaries

Financial intermediaries trade actuarial and government bonds.
The real profit of intermediaries is the difference between total bonds and total amount of

actuarial bonds in the economy in t +1 :

Π =
(
1+ ςPM

t+1
)

bL
t+1 +bS

t+1−
(
1+ ς P̃M

t+1
)

ϑaL
t+1−ϑaS

t+1 (1.26)

where bJ
t+1 are total government bonds and ϑaJ

t+1 are total actuarial bonds at time t + 1, i.e.
ϑaJ

t+1 = (1−ϑ)∑
t+1
s=−∞ ϑ t+1−s ∫ 1

0 aJ,s
t+1 (i)di.

The intermediaries maximise (2.27) subject to constraint:

−P̃M
t aL

t+1− q̃taS
t+1 +PM

t bL
t+1 +qtbS

t+1 ⩽ 0. (1.27)

Optimization yields
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1
q̃t

=

(
1+ ς P̃M

t+1
)

P̃M
t

(1.28)

q̃t = ϑqt (1.29)

1
qt

=

(
1+ ςPM

t+1
)

PM
t

(1.30)

and so the profit is zero.
Denote short-term nominal interest rate

1
1+ it

= qt (1.31)

and the real gross interest rate is

Rt = 1+ rt =
ϑ

q̃t (1+πt+1)
=

1
qt (1+πt+1)

=
1+ it

1+πt+1
(1.32)

1.3.5 Market Clearing

We use individual budget constraint (2.15), Government budget constraint (2.26), profit of financial
intermediaries (2.27), aggregation of income (2.5), profit of monopolistic firms (2.25) yield the
market clearing condition, or the resource constraint:

Yt = ct +Gt +
Φ

2
π

2
t Yt (1.33)

Now, using (2.27) we can rewrite consumption decision (2.21) in terms of aggregate debt:

Ct = ct +χGt−µt

(
Bt−

ϑκ
1−ϑ

ϕt

)
(1.34)

Finally, as shown in Appendix 1.8.2, the clearing of the labour market requires the aggregate
labour supply (Ht) to equal aggregate labour demand (nt) hence,

Ht :=
∫ 1

0
nt ( j)d j = (1−ϑ)

t

∑
s=−∞

ϑ
t−s
∫ 1

0
ls
t (i)di = nt (1.35)

And, in an effort to provide the reader with more consistent notation for the rest of the chapter
we will denote the aggregate labour supply or demand by nt .
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1.3.6 Competitive Equilibrium

The private sector equilibrium {xt ,Yt ,πt ,wt ,bL
t ,P

M
t ,Rt ,µt ,ϕt ,σ

2
t } given policy {It ,Gt ,T

p
t ,τt} and

deterministic disturbances zt and εt is given by the following system:
Aggregate Consumption Euler Equation

xt =

[
−1

γ
log(βRt)+ xt+1 +

(1−ϑ)
ϑ

µt+1

(
PM

t
qt

bM
t+1 +bS

t+1

)
− γ

2 µ2
t+1 (1− τ0)

2
ωt+1− κ̄µt+1φt+1

]

MPC recursion

1
µt

=
ϑ

Rt µt+1
+(1+ργηt)

Labour decline recursion

ϕt = (1− τt)wt +
ϑ

Rt
ϕt+1

Output

Yt

zt
=

[
ρ log((1− τt)wt)+ ξ̄

−κ ϑ

1−ϑ
−ργxt

]
Phillips curve

πt (1+πt) =

[
1− εt +(1− s)εt

wt
zt

Φ
+

1
Rt

πt+1 (1+πt+1)
Yt+1

Yt

]

Resource Constraint.(
1− Φ

2
π

2
t

)
Yt = xt +(1−χ)Gt−

1
γ

log(1+ τ
c
t )

Government budget constraint

PM
t bM

t+1 =
1

(1+πt+1)

((
1+ ςPM

t
)

bM
t +Gt− τtwtnt−Tt + swtnt

)
Bond Pricing equation
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PM
t Rt =

(
1+ ςPM

t+1
)

(1+πt+1)

Rt =
It

1+πt+1

Idiosyncratic income risk (cyclicality equation)

ωt = w2
σ

2 exp(2φσ (Yt−Y ))

where in the last equation, following Acharya et al. (2023), we assumed that risk is pro-cyclical
if φσ > 0 and counter-cyclical if φσ < 0.

Social Welfare Function

We define the aggregate welfare function at time t = 0 as:

W0 = (1−ϑ)

(
0

∑
s=−∞

ϑ
−s
∫ 1

0
W s

0 (i)di+
∞

∑
s=1

β
s
∫ 1

0
W s

s (i)di

)
, (1.36)

where the first term represents the utility of generations that are alive at time zero. The currently
alive are treated equally after accounting for their relative size. The second term represents the
utility of unborn generations, with s > 0, and the utility of each such generation is discounted with
weight β s. Appendix 2.9.6 shows that this welfare measure can be written as follows:

W0 =
∞

∑
t=0

β
tUt ,

where
Ut =−

1
γ
(1+ γρηt)e−γxt St , (1.37)

and St satisfies the recursion:

St =
(

ϑe−
γ

ϑ
Wt St−1 +1−ϑ

)
eγWt e

1
2 γ2µ2

t η2
t σ2

t . (1.38)

Here
Wt = µt

(
Bt−

ϑκ
(1−ϑ)

ϕt

)
(1.39)

measures the extent to which society has succeeded in financing its retirement. It extends the
form of the welfare function considered in Acharya et al. (2023) by accounting for inter- gener-
ational inequality as well as the distribution of consumption driven by idiosyncratic shocks. The
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first part of the social welfare function captures the utility generated by per capita levels of private
and public consumption, less the disutility of labor supply. The second element adjusts that mea-
sure for the welfare effects of inequality, driven by both idiosyncratic shocks and the distribution
of consumption and labor supply across generations due to the endogenous accumulation of assets
and age-related withdrawal from the labor market.

Although, we are not concerned with the conduct of optimal policy in this chapter, the above
derivations allows us to obtain a simple but micro- founded inequality statistic. As such, we are
going to use this recursion for the wealth inequality in the economy to gauge impact of the policy
response to a transitionary shock. From the representative agent literature, we know that a mon-
etary policy led regime is more efficient. However, in heterogeneous agent economies the policy
response is going to redistribute wealth amongst households and as such the policy maker is faced
with a trade- off between “equity“ and “efficiency“. Hence, we can use this Inequality statistic to
better understand these trade- offs.

1.4 Calibration & Simulations

The model is calibrated to a quarterly frequency. The calibration of most parameters is standard
and generally follows the one in Acharya & Dogra (2020). We calibrate the household discount
rate β = (1.02)−1/4 to match the real interest rate of 2% per annum, which is the average in the
US over the Great Moderation period (1984-2021). The coefficient of relative risk aversion is set
to γ = 3 whilst while the Frisch elasticity of substitution is set at ρ = 1/3 to match the empirical
evidence (see, e.g., Fagereng et al. (2017); Christelis et al. (2015)).

Fiscal parameters are based on data over the same period. Specifically, the coefficient ς sets
the maturity of government debt to be 20 quarters, which is a close match of the 5.4 years observed
in the data (Fund 2016). The parameter G generates a spending share G/Y = 0.15, see IMF IFS
data.4 For simplicity, the relative weight on government consumption in utility, χ, is set to 0.05,
which is a free parameter that generally ensures that government expenditure does not get fully
wasted.

The elasticity of substitution between goods, ε, is set to 4.3 based on evidence in Hall (2018)
and corresponds to an approximate 31% average mark up.

Our model features nominal rigidities following Rotemberg (1982). The majority of recent
papers in the macro literature that calibrate their frameworks for the US economy choose prices to
change every 10 months (See Klenow & Kryvtsov (2008); Klenow & Malin (2010); Nakamura &
Steinsson (2008) ; Gopinath & Rigobon (2008) and Kehoe & Midrigan (2015).). As the Rotemberg

4The relevant data series are NGDP_XDC and NCGG_XDC.
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(1982) and Calvo (1983) models generate isomophic linearized New Keynesian Phillips curves, the
equivalent Rotemberg model parameter is Φ = 37.5.

The parameter (ξ̄ ) capturing the average endowment of time available for work is set to 2,
which normalizes output to be close to one.

We choose the survival rate to be consistent with an average lifespan of 80 years, see SSA
data.5 The declining labor supply efficiency parameter, κ, is chosen to be consistent with 20 years
of retirement, in line with the US data over the last 50 years.6

We follow Guvenen et al. (2014), who document the standard deviation of one-year growth
rate of log earnings to be about 0.5. This yields σ = 0.33 for the baseline calibration.

Furthermore we calibrate the persistence of deterministic disturbances for productivity and
elasticity of substitution to be 0.95 and 0.9 respectively. This again follows Acharya et al. (2023)
who adopt the empirical estimates of Bayer et al. (2020).

Finally, we consider two distinct values for the interest rate feedback coefficient on inflation
and the fiscal response coefficient on aggregate debt. When the monetary policy is active, the
Taylor principle needs to be satisfied and hence, φπ = 1.5. Where as, when monetary policy is
passive φπ = 0.95. In line with results from table 1.3, when the fiscal policy is passive φb = 0.2
and under active fiscal policy the tax feedback on debt is set to φb = 0.04.

All computations regarding the model dynamics were implemented in the RISE toolbox (Maih
2015).The summary of coefficients is given in Table 1.1.

1.5 Discussion

In this section we discuss the monetary and fiscal policy interactions in an analytically tractable
HANK environment. First, we analyse the model’s long- run equilibrium and then we move on to
discuss the determinancy properties as well as the model’s dynamics in response to transitionary
("mit") shock.

We compare steady state of the standard the representative agent model against a plethora of
HANK specifications. More specifically, we begin with the standard HANK model of Acharya
& Dogra (2020), where the only source of risk comes from the households’ individual history
of idiosyncratic shock. Next, following Acharya et al. (2023), we introduce a Blanchard- Yaari
structure to the consumer side. Allowing households to have stochastic finite lifespans, introduces
inter-generational consumption/ wealth inequality to the model. This additional source of hetero-
geneity alters both the long- run equilibrium as well as the policy response. Finally, we further
augment the OLG channel by including an additive declining income profiles component that fur-

5See Period Life Table at www.ssa.gov.
6See https://crr.bc.edu/wp-content/uploads/2024/04/Average-retirement-age_2021-CPS.pdf
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Table 1.1: Calibration

Description Parameter Value Source
Time discount factor β 0.995 data

survival rate ϑ 0.9961 data
Labour efficiency parameter κ 0.00011 data

Demand elasticity ε 4.2 Hall (2018)
Average price duration δθ 0.75 Kehoe & Midrigan (2015)

Debt Maturity ς 20 Leeper & Zhou (2021)
Preference for public good χ 0.0 Free parameter

Average idiosyncratic Productivity ξ̄ 2 Acharya & Dogra (2020)
Risk aversion coefficient γ 3 Acharya & Dogra (2020)

Inverse of Frisch elasticity ρ 1/3 Fagereng et al. (2017)
Government Spending G

Y 0.15 data
Persistence of TFP shock ρz 0.95 Bayer et al. (2020)

Persistence of Cost- push shock ρε 0.9 Bayer et al. (2020)
St Dev of idiosyncratic earnings σ 0.33 data

Policy feedback coefficients
Monetary policy feedback on Inflation φπ 1.5; 0.95

Fiscal policy feedback on Debt φb 0.2; 0.04

ther enriches the inter- generational wealth heterogeneity. As discussed above, the idea stems from
the seminal work of Blanchard (1985), where households become less productive over time (i.e.
loss of productivity due to health deterioration). This latter component creates a stronger consump-
tion smoothing motive for the households and thus, increases the aggregate asset demand. We refer
this final extension HANK- OLG- DIP.

We show that in the presence of meaningful amount of aggregate debt, the OLG structure of
the model has a bigger impact than the market incompleteness (IM, henceforth). Since, the sole
presence of uninsurable income risk creates very small quantitative differences from the nested
RANK model. As shown by Auclert (2019), for the monetary policy to have a redistributive
role7, households in the economy must have unequal exposure to aggregate shocks. The same
requirement is also necessary for the fiscal policy to be able to redistribute consumption following
a shock. Our model does not feature a binding equilibrium borrowing limit or unequal access to the
financial market hence, there is no redistribution channel present in the transmission mechanism
of either monetary or fiscal policy. Once again, following the recent HANK literature, the absence
of redistribution channels speaks to the policy maker’s inability to redistribute consumption across
households following a shock. Since, in response to an unexpected “transitionary“ ("mit") shock,
the policy response will always redistribute wealth across agents.

7In the language of Auclert (2019), the monetary policy has a redistributive role if a change in the interest rate can
redistribute consumption (not just wealth) amongst consumers.
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Finally, we find that the inclusion of the BY structure has a profound effect on both the model’s
steady state and in the determinancy regions. Across all specifications, we operate under the as-
sumption that agents enter the market with zero wealth. And, unlike the seminal paper of Acharya
& Dogra (2020) and Acharya et al. (2023), we allow the time that a household spends in the mar-
ket to matter. That is to say that we do not focus our analysis around the “egalitarian“ equilibrium
where every cohort has the same wealth. Hence, as in the standard perpetual youth model, house-
holds’ consumption smoothing objective makes them borrow when they are young and repay their
debt when older. As a result, in the HANK- OLG framework with declining income profiles,
agents exhibit the strongest consumption smoothing desire that delivers the highest aggregate asset
demand.

1.5.1 Steady State

In this section we compare the long- run equilibrium of the different (nested) HANK specifications
that we consider against the benchmark RANK model. Table 1.2 below shows the models’ steady
state under different assumptions on heterogeneity. Column 1 and column 2 report the steady state
of the standard RANK and HANK environments, respectively. These specifications are the closest
to Acharya & Dogra (2020). In these frameworks agents are infinitely lived and the only source
of uncertainty in the economy comes from the different idiosyncratic histories of the households.
Next, as discussed above, we augment our HANK specification by introducing a Blanchard- Yaari
households structure so that the model can also feature heterogeneity due to consumers’ stochastic
life- spans. As such, column 3 reports the steady state of this HANK- OLG specification. Once
again in this version of the economy, households heterogeneity stems not not only due to the
different histories of the idiosyncratic shock but also from the fact that household wealth is also
proportional to the time they have spend in the market. Finally, in column 4, we present the long-
run equilibrium of the HANK- OLG model with declining income profiles (HANK- OLG- DIP).
In this last specification we have further augmented the frictions coming from the overlapping
generations channel causing an increase in the consumption smoothing motive whilst lowering the
aggregate labour supply. As discussed above, this decline labour productivity is captured by a
linear term that enter the individual household’s budget constraint, capturing the fact that as the
agent grows older there is a propositional loss in productivity due health deterioration.

The steady state amount of aggregate asset holdings is set exogenously to reflect an annualised
debt to GDP ratio of +43% for all models.

As expected, we find that across all HANK specifications, the presence of incomplete asset
markets and uninsurable income risk causes the steady state (ss,henceforth) real interest rate to
be consistently different from the rate of time preference (R ̸= β ). And since, we only consider
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the (efficient) zero- inflation steady state, the notion of the real and nominal interest rate become
indistinguishable. As discussed above in the household block, the steady state interest rate is
determined by four main components:

R =
1
β︸︷︷︸

RANK

exp

−1
2

γ
2
µ

2 (1− τ0)
2 w2

σ
2

←−−−−−−−−−−−−−−→
IM

+ γ
(1−ϑ)

ϑ
µ
(
1+ ςPM)bM

←−−−−−−−−−−−−−−−−→
OLG

− γκ̄µφ̄
←−−→

DLP


In the absence of income inequality and OLG frictions the model reduces to a standards RANK

model where R = 1
β

(RANK component). From the Hugget- Bewley- Aiyagari literature (See,
Ljungqvist & Sargent 2018 Chapter 17 for a textbook treatment) we know that in the presence of
uninsurable income risk and infinite- lived households, the equilibrium interest rate is found to be
below the rate of time preference

(
R = 1

β
exp
(
−1

2γ2µ2 (1− τ0)
2 w2σ2

)
< 1

β

)
(IM component).

However, the OLG frictions present in our model also shape the equilibrium interest rate. From
table 1.2, we observe that the HANK- OLG framework, delivers a higher equilibrium interest
rate than both the plain- HANK model as well as the nested RANK. This is due to the effects
of the OLG component

(
(1−ϑ)

ϑ
µ

PM

q bM
)

and our modelling assumption that government debt is
positive in steady state. Everything else constant, the higher the steady state amount of outstanding
government debt, the higher the equilibrium real interest rate.

In contrast, both the nested HANK model (with infinitely lived agents) and OLG- HANK
with declining income profiles, display lower steady state value for the real interest rate. In the
HANK- OLG framework with declining income profiles, the additional term associated with the
decline in the labour efficiency moves in the same direction as the idiosyncratic (IM) compo-
nent. Thus, reducing the effect of positive (aggregate) asset holdings on the real interest rate(
(1−ϑ)

ϑ
µ

PM

q bM−κµφ

)
.

Intuitively, in this specifications, households display the largest precautionary savings motive.
As such, they require lower compensation to hold the exogenous amount of outstanding govern-
ment debt.
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Table 1.2: Steady State Comparison between RANK and all HANK specifications.

RANK HANK HANK- OLG HANK– OLG- DIP
Key Parameters (1) (2) (3) (4) (5) (6) (7) (8)

Survival Rate θ 1 1 1 1 0.9961 0.9961 0.9961 0.9961
Decline in labour supply κ 0 0 0 0 0 0 1e−4 1e−4

Steady State
Income tax τ 0.20758 − 0.20757 − 0.20782 − 0.21047 −

Lump Sum Tax T p − 0.156891 − 0.156885 − 0.15706 − 0.15668
Inequality S − − 1.00013 1.00011 1.00255 1.003198 1.002152 1.002897

Aggregate Consumption c 0.8419 0.880678 0.8419 0.880678 0.84185 0.880678 0.82724 0.86663
MPC (cash-on-hand) µ 0.003112 0.002838 0.00312 0.00284 0.0056 0.00509 0.00553 0.00501

Inflation π 0 0 0 0 0 0 0 0
Real Interest rate R 1.005025 1.005025 1.005022 1.005022 1.00513 1.00512 1.0050023 1.004975
Aggregate Output Y 0.9899 1.02868 0.9899 1.02868 0.98985 1.02868 0.97524 1.0146

Wage w 0.7619 0.7619 0.7619 0.7619 0.7619 0.7619 0.7619 0.7619
Real Gov. Debt bM 0.08556 0.08891 0.08556 0.08891 0.08573 0.08908 0.084254 0.08761

Asset Prices PM 19.9 19.9 19.9011 19.9014 19.859 19.862 19.91 19.92
Annualised Debt- to- GDP bM ·PM

4·Y 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43
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As a result, this specification delivers the lowest steady state value for the real interest rate.
However, the steady state level of the real interest also depends on the tax instrument available. In
fact, there is a causal relationship between the two. Under lump sum taxes (T ), the size of the IM
component increases thus, forcing the real interest rate to take a smaller value.

Furthermore, from the no- arbitrage condition we know that bond prices are inversely related
to the nominal interest rate. So, in the zero inflation steady state (π = 0), the specification that
reported the lowest (highest) steady state interest rate will also display the highest (lowest) steady
state bond price. As such, we find that the HANK- OLG framework that features declining labour
productivity reports the highest equilibrium asset price whilst the lowest value is found in the
HANK- OLG specification.

As expected, the aggregate labour supply takes the highest equilibrium value in the plain
RANK model with infinitely- lived agents. Additionally, since the effect of the (partially-) unin-
surable income risk is not quantitatively significant, the HANK and nested RANK both report the
same steady state output. However, from the expression for the optimal labour supply we see that
the inclusion of a BY structure causes households’ to have a lower optimal labour supply.

n = ρ logη− κϑ

1−ϑ
+ ξ̄ −ργx

Consequently, the more layers of OLG frictions are introduces, the model delivers lower steady
state aggregate aggregate labour supply and hence, lower aggregate output. After all, as shown
by Ascari & Rankin (2007), in the BY model with standard preferences and endogenous labour
supply, as households grow older, they want to the number of hours that they provide to the market
and instead, rely more on their financial wealth for consumption. In fact households who belong
to very old cohorts ideally would want to have a negative labour supply. So naturally, the optimal
aggregate labour decreases and these effects from the OLG channel are further amplified with the
addition of declining labour efficiency.

Moreover, aggregate consumption follows the same pattern. After all, aggregate consumption
is connected to aggregate output through the economy’s resource constraint. Additionally, we
can also observe that all specifications feature the same equilibrium wage rate. Since, at the zero
inflation steady state, the equilibrium wage rate depends solely on the elasticity of substitution
between intermediate varieties(ε).

Furthermore, across specifications, the steady state tax rate depends on the value of outstanding
government debt, the equilibrium level of public spending as well as the size of the tax base. Hence,
from the steady state expression for the government budget constraint, we know that steady state
taxes (τ,T ) are given as:
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1. If the policy maker has access to only distortionary income taxes (T = 0) :

τ =

(
(1−q)

B
Y
+

G0

Y

)
z
w

2. Whereas, if the policy maker has access to only Lump Sum taxes instead, then.:

T =

(
(1−q)

B
Y
+

G0

Y

)
Y

As such, with B
Y ,G0,z,w held constant across all HANK specifications, the steady state tax

level depends inversely on the steady state value of output and the equilibrium real interest rate.
Hence, it come as no surprise the highest steady state income tax is reported in the HANK- OLG-
DIP specification and the lowest in the plain HANK with infinitely lived agents.

Finally, let us turn our attention to the marginal propensity to consume (MPC) out- of- cash-
on hand (µ). This µ recursion captures the sensitivity of individual consumption to changes in
individual income (See, Acharya & Dogra 2020; Acharya et al. 2023). The steady state value of
µ is determined by the interplay between net labour income (η), the survival rate(ϑ) and the real
interest rate (R = 1+ r).

µ =
(R−ϑ)

(1+ργη)R

As a result, we find that our benchmark HANK- OLG model features the highest MPC out-
of- cash- on- hand. In any case, any variation of plain HANK model augmented with an OLG-
component will always exhibit higher steady state MPC. Intuitively, the inclusion of finite lifetimes
introduces an additional source of inequality in the economy (overlapping generations wealth in-
equality) causing individual consumption to become more sensitive to changes in the individual
income.

1.5.2 Log-linear approximation

For the remainder of the chapter, I work with a log-linear approximation of the system around the
efficient steady state. Variables without time-subscript represent steady- state values and hatted
variables are log deviations from the zero inflation steady state. Whereas, variables with time
subscript that are not hatted represent the log deviation of variables with zero steady state level.
The (reduced) linearised system is as follows:
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1. Government Budget Constraint

(
1+ ςPM)

I
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+
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I
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τwY
z

(
zρ+Y

zρ

)
ẑt
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2. Labour decline recursion

ϑφ̄

R
φ̂t+1 +

ϑϕ

R
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(1− τ)w

[
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zρ

ẑt

]
+φ̄ φ̂t
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1+γzρ

zρ

)
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R Ît


3. The µ Recursion(

ϑ

R

)
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(
ϑ

R
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(
1+ γzρ
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(

ϑ

R

)
Ît

4. Bond Pricing Equations

P̂M
t + Ît =

(
ςPM

1+ ςPM

)
P̂M

t+1

5. Aggregate Consumption Euler Equation

YŶt +
1
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6. The NK Phillips curve

βΦπt+1 = Φπt +

(
1+

Y
zρ

)
ε

w
z
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1− w

z

)
εε̂t− ε

w
z

(
1+ γzρ

zρ

)
YŶt− ε

w
z

τ

1− τ
τ̂t

7. Taylor Rule

Ît = φππt +φY Ŷt

8. Fiscal rule

• If the government raises revenue using Distortionary Income taxes:

τ̂t = φbb̂M
t +φbP̂M

t

• If the government raises revenue using Lump Sum taxes:

T̂ R
t = φbb̂M

t +φbP̂M
t

However, when calculating the model’s dynamics we also make use of the following auxil-
iary expressions:

9. The Wage rate
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Y
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τ
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10. Net labour Income

η̂t =

(
1+ γzρ

zρ

)
YŶt−
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11. Inequality Recursion
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12. Proxy for the effect of the OLG component on aggregate welfare

WŴt =W µ̂t +µ
(
1+ ςPM)bL

(
ςPM

1+ ςPM PM
t + b̂L

t −πt

)
−µ

ϑκ
(1−ϑ)

(ϕϕ̂t)

(The complete derivations of the log-linearised system can be found in Appendix C.)

1.5.3 Determinancy in an analytically tractable HANK-OLG economy

Leeper (1991) first showed the existence of two areas for the parameter space that guarantee deter-
minacy of a unique rational expectations equilibrium (REE, henceforth).

The first regime features active monetary policy and passive fiscal policy (AM/PF or monetary-
led policy mix). In this regime the monetary authority adjusts the nominal interest rate by more
compared to an inflation deviation (φπ > 1) whilst the fiscal authority focuses on debt sustainability.
So, in response to an aggregate shock, taxes deviate as to keep the dynamics of the real value of
outstanding government debt on a stable path.

The second regime displays passive monetary policy and active fiscal policy (PM/AF or fiscal-
led policy mix). In this scenario, the monetary authority does not display a strong reaction to excess
inflation. Namely, the inflation reaction coefficient, in the monetary rule, is less unity (φπ < 1) and
the fiscal authority no longer focuses on adjusting fiscal surpluses to stabilise the aggregate debt.

In this section we examine how the size of the fiscal response coefficient necessary to ensure
a stable equilibrium, is affected by the presence of (partially) uninsurable income risk and/ or the
overlapping wealth inequality.

From the linearised government budget constraint, we observe that the size of the debt stabilisa-
tion coefficient primarily depends on the type of tax instrument(s) available and size of equilibrium
interest rate. In the most general case, the log- linearised government budget constraint takes the
form:

ς

R
P̂M

t+1 + b̂M
t+1 =

(
(τ− s)w

PMbM

(
Y
z

)
(ẑt)+Rb̂M

t + ς P̂M
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τw
PMbM

Y
z
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T
PMbM

(
T̂t
)
+ R̂t

)
• If the fiscal authority has access only to distortionary income taxes

(
T̂t = 0

)
then,

ς

R
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t+1 =

(
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(
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z

)
(ẑt)+Rb̂M

t + ς P̂M
t −

τw
PMbM

Y
z
(τ̂t)+ R̂t

)
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where,
τ̂t = φbb̂M

t +φbP̂M
t

Then, if the fiscal authority is concerned with stabilising the aggregate debt, we find ourselves
in monetary- led regime and the fiscal feedback coefficient has to be

φ
τ
b >

z(R−1)
τwY

PMbM

to ensure a stable path for the debt dynamics(
R−φb

τw
PMbM

Y
z

)
< 1

In this monetary- led regime, the Taylor principle needs to be satisfied (φπ > 1) regardless of
the tax instrument available. Now, following convention8 we have chosen the value of inflation
reaction coefficient to be φπ = 1.5.

• On the other hand, when the government can only use Lump Sum taxes to raise tax revenue
(τ̂t = 0), the linearised government budget constraint takes the form

ς

R
P̂M

t+1 + b̂M
t+1 =

(
(τ− s)w

PMbM

(
Y
z

)
(ẑt)+Rb̂M

t + ς P̂M
t −

T
PMbM

(
T̂t
)
+ R̂t

)
where,

T̂t = φbb̂M
t +φbP̂M

t

In this case, if the fiscal authority wishes to ensure stable debt dynamics (i.e. pursue passive
fiscal policy), then the fiscal response coefficient (φ T

b ) has to be

φ
T
b > (R−1)

PMbM

T
to once again ensure that

(
R−φb

T
PMbM

)
< 1

Whilst once more, active monetary policy is requires that we set the inflation response coefficient

to φπ = 1.5.

8See the Calibration section for the relevant discussion on parameter values.
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It is evident that the size of the fiscal reaction coefficient has three key determinants. Firstly,
it depends (inversely) on the steady state amount of tax revenue. As such, when the government
raises revenue using only distortionary income taxes, the aggregate labour supply and thus ag-
gregate output are lower. Next, the steady state amount of the real government debt

(
bM) . This

steady state quantity is set to correspond to an exogenous and fixed debt to GDP ratio. Every-
thing else equal, whether φ τ

b ⪋ φ T
b depends on the size of the tax revenue of each specification

(See proposition 3 below).

Proposition 3 Since, aggregate output is always higher when the government has access to Lump

Sum taxes
(
Y T > Y τ

)
, everything else equal, whether φ τ

b ⪋ φ T
b depends on the size of the tax

revenue
(

τwn ⪋ T
)

as well as on the steady state real interest rate (R), in each specification.

Moreover, the steady state value of the real interest rate (R), is determined by the assumptions
regarding market (in)completeness and the size of the OLG frictions. As such, the HANK and
HANK- OLG framework with declining labour efficiency, where R < 1

β
, require a smaller fiscal

response coefficient to stabilise debt. As discussed above, we know that across the four specifica-
tion the steady state real interest rate is found to take the smallest value in the HANK- OLG with
decline labour efficiencies and the highest in the benchmark HANK- OLG. More specifically,

RHANK−OLG−DIP < RHANK < RRANK < RHANK−OLG

Hence, the necessary size for the fiscal feedback coefficient (on aggregate debt) to ensure stable
debt dynamics must be

φ
HANK−OLG−DIP
b < φ

HANK
b < φ

RANK
b < φ

HANK−OLG
b

This result is confirmed by table 1.3. The table contains the infimum value of the fiscal re-
sponse coefficient in the monetary- led regime (AM/PF), under different tax instruments. Given
our calibration, we find that across all specifications the infimum value of φb to ensure a stable path
for debt dynamics is consistently higher under Lump Sum taxes (φ T

b > φ τ
b ). Whilst, the inflation

reaction coefficient (φπ ) governing the intensity of monetary policy’s response to a deviation in
inflation from the steady state target (π∗ = 0) is held constant at 1.5, across all specifications,
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Table 1.3: Infimum of the debt response coefficient in monetary- led regime (AM/PF).

RANK HANK HANK- OLG HANK- OLG- DIP
Fiscal Reaction coefficient
Under distortionary income tax

(
φ τ

b

)
0.054649364 0.054622388 0.055725357 0.053657674

Under lump sum tax
(
φ T

b

)
0.056668501 0.056640819 0.05767765 0.055414387

1.5.4 Determinancy Areas

Figures 1.1 and 1.2, display the determinancy regions under distortionary income taxes and Lump
Sum taxes, respectively. As discussed previously, this framework abstracts from aggregate risk and
features only idiosyncratic income risk and uncertainty due to households’ stochastic life spans.
Hence, the model has only one predetermined state variable, the aggregate debt level (bM). And,
in line with the empirical literature, we always operate under the assumption that the idiosyncratic
income risk is counter-cyclical (See Guvenen et al. (2014)).

The figures below display the areas of determinacy for the parameter space that guarantee a
unique REE equilibrium for the different model specifications. The bottom left corner of each
graph corresponds a fiscally- led policy mix whilst the top right corner, where all values of φπ > 1,
correspond to a monetary- led policy mix. We compare the parameter space of the standard RANK
model to the HANK model of Acharya & Dogra (2020) and then, against the specification that
also allow for inter- generational wealth inequality due to the OLG component and the subsequent
assumption of declining income profiles.

We observe that, regardless of the tax instrument available, the benchmark HANK- OLG model
(without declining labour productivity) displays a unique REE equilibrium in regime with both
active monetary and fiscal policy.

Interestingly enough, it is evident from figures 1.1 and 1.2, that in a fiscally- led regime, the
maximum size of the inflation response coefficient is proportional to the steady state value of the
real interest rate. As such, in the RANK model where R = 1

β
the upper bound for φπ approaches 1.

Conversely, in the HANK and HANK- OLG with declining income profiles, where the equi-
librium interest rate is significantly below the rate of time preference, we see that the lower bound
is significantly smaller. Finally, as discussed above, the HANK- OLG model that features R > 1

β

and so, the supremum for φπ is marginally above 1 in the fiscally- led regime.
Overall, we can visually confirm that across all specifications, the minimum fiscal response

coefficient to ensure stable debt dynamics is consistently higher under Lump Sum taxes. The
inclusion of partially uninsurable income risk has narry an effect on the model’s determinacy. The
difference in the infimum of the fiscal response coefficient is in the 5th decimal place whilst the
difference in the inflation response coefficient is marginally larger. As expected, we find that both
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the addition of inter- generational wealth inequality as well as the tax instrument available play a
more significant role in altering the areas of determinancy. And in fact, with each added layer of
household heterogeneity we observe a non- negligible change.

48



Figure 1.1: Determinancy under Distortionary income tax.
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Figure 1.2: Determinancy under Lump Sum tax.
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1.5.5 Dynamics under monetary and fiscal policy

In this section, we look at the policy response to an unanticipated transitionary cost push shock. In
the appendix B, we also present the policy response to a one- time TFP shock. In either case, after
the aggregate shock is realised, households have perfect foresight.

In the benchmark case, illustrated by Figures 1.3 and 1.4, the policy maker has access only to
distortions income taxes. Since the model abstracts from marginal propensity to consume hetero-
geneity and binding equilibrium borrowing limits, the policy response to the shock is unable to
redistribute consumption from wealthy/older agents to indebted households9 (See Auclert (2019)).

Additionally, both monetary and fiscal policy are conducted following simple rules, with the
size of the feedback coefficients held constant across all specifications. Hence, the policy response
is not affected by the size or the type of inequality that is present in the economy.

In response to a positive (unanticipated) cost push shock, there is an unambiguous effect on
inflation regardless of household heterogeneity or the tax instrument available. Following the
shock, inflation immediately rises causing the nominal interest rate (NIR) to also rise. The size
of this initial jump depends on the policy mix. In the monetary- led regime where the monetary
policy reacts more aggressively to excess inflation, the initial jump is considerably smaller (almost
half). In either case, the nominal interest rate and tax dynamics are governed by the Taylor rule
and the fiscal rule, respectively. So, after the initial response to the shock, both inflation and the
interest rate begin to move back towards the steady state. The speed of the convergence is linked
to the strength of the inflation response coefficient.

As expected from the no- arbitrage condition, asset prices(PM) are inversely related to the
nominal interest rate. As such, after the shock is realised, asset prices immediately drop and then,
the series starts to move back towards the long run equilibrium, tracing the interest rate path.

Furthermore, the initial jump in inflation also reduces the real value of the outstanding gov-
ernment debt. Since, both asset prices and government debt initially falls, so do taxes. After all,
regardless of the tax instrument available, the tax response depends solely on the asset price dy-
namics and the asset demand deviations. In line Schmitt-Grohé & Uribe (2004), following the
shock, both taxes and the government debt dynamics resemble almost a random walk. This be-
haviour of government bonds allows the policy maker to steadily smooth out tax distortions over
time.

Similarly, following the realisation of the aggregate shock, aggregate consumption initially
drops. This result is driven by the fact that in response to a positive cost push shock, wages
fall due to the initial rise in inflation, causing the non- financial income of household to decline.
Additionally,the aggregate labour is bounded by the value of ξ̄ . Hence, households can only

9In this framework, indebted households are agents who either recently entered the market or those with a history
of drawing "bad" realisation of the idiosyncratic shocks.
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partially adjust their labour supply, following the shock. Now, since aggregate consumption and
aggregate output are connected through the resource constraint, the two series display near identical
dynamics.

Although the policy response is identical across the different frameworks, in the specifications
that feature household heterogeneity, the policy response will redistribute wealth across agents.
As discussed above, the initial jump in inflation reduces the value of the aggregate asset hold-
ings. So, households who belong to older cohorts as well as those who have a history of “good“
realisations of the idiosyncratic shock experience a decline in their wealth following the shock.
Whereas, households who belong to younger cohorts as well as those who consistently drew “low“
realisations of the idiosyncratic productivity shock their welfare improves, following the jump in
inflation, since the real value of their outstanding obligations decreases. However, older cohorts
make up the majority of the active population. And, at the same time, the initial positive interest
rate response to the inflation deviation causes the cost of borrowing to increase.

As such, following the shock, inequality initially rises. In fact, the behaviour of the series
is determined by the behaviour of aggregate debt, causing it to behave almost as a unit root, in
response to the shock. As expected, the deviation in inequality is considerably larger in the HANK-
OLG specifications.

As we move from the HANK to the HANK- OLG specifications, the amount of wealth inequal-
ity, in the economy, increases. As discussed above, the HANK- OLG model with declining labour
efficiencies displays the largest amount of inequality across the different HANK frameworks. As
such, it comes as no surprise that in response to the shock, the sensitivity of individual consump-
tion to changes in individual income (µ) rises the most in this specification. Consequently, this
version of the HANK model also experiences the largest initial jump in inequality, following the
shock. Interestingly, the initial jump in both µ and S are smaller in the PM/AF regime.

Moreover, the response of the Debt- to- GDP ratio is identical across all specifications. The
fact that ratio falls in response to the shock indicates that the initial decrease in aggregate output
is larger than the decrease in the value of the outstanding government debt. This result persists in
both the AM/PF and AF/PM regimes.

Finally, as shown by figure 1.5, both policy combinations AM/PF or AF/PM will stabilise the
economy, in response to the unanticipated aggregate shock. However, for policy maker who is
more concerned with “equity“ than “efficiency“, they have an incentive to purse a PM/AF policy
mix, following the transitory shock. Since, the fiscally- led regime exhibit the smallest initial
increase in both MPC out of cash on hand and in wealth inequality.
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Figure 1.3: Transitionary Cost Push shock:All Cases AM/PF.
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Figure 1.4: Transitionary Cost Push shock:All Cases PM/AF.
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1.6 Conclusion

We study monetary and fiscal policy interactions in THANK environment that features (partially)
insurable income risk and rich inter-generational wealth inequality. The assumption of the CARA
utility and normally distributed (iid) idiosyncratic productivity simplify the aggregation process
and allows us to compute the distribution of wealth in a discrete- time environment. We find that
each layer of heterogeneity that we add to the model, it has a significant impact on both the model’s
long run equilibrium and determinancy properties. Additionally, deviating from the assumption of
“zero- liquidity“ implies an additional externalities absent from models without government debt.

Furthermore, in the presence of outstanding of government debt, the OLG frictions play a big-
ger part in shaping the model’s steady state as well as in determining the areas of the parameter
space that ensures the existence of unique stable rational expectations equilibrium. Under pas-
sive fiscal policy, we show that the infimum coefficient value for the fiscal feedback on debt is
determined by the amount/types of inequality and the tax instrument available.

Moreover, the model abstracts from marginal propensity to consume heterogeneity and binding
equilibrium borrowing constraints. As such, in response to an aggregate shock the policy response
will affect the wealth dispersion among agents but the policy response is still unable to redistribute
consumption from wealth/older households to younger/ poorer agents. Although, we abstract of the
study of optimal policy, we have derived a utilitarian Social welfare criterion and a corresponding
micro- founded wealth inequality statistic.

Finally, despite the fact that the conduct of monetary and fiscal policy is identical across all
frameworks, we find that for a policy maker who is more concerned with “equity“ rather than
“efficiency“, pursuing a fiscally- led (AF/PM) mix might be preferable. Since, a fiscally- led
regime results in smaller initial jump in inequality as well as in the smallest MPC rise in response
to an unanticipated aggregate “transitionary“ shock.
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1.7 Appendix

1.8 Appendix A

1.8.1 Proof of Proposition 1

Proof. We form the following Lagrangian

Ls = Ei

∞

∑
t=s

(βϑ)t−s
(
−1

γ
e−γ(cs

t (i)+χGt)−ρe
1
ρ
(ls

t (i)+Θs
t−ξ s

t (i))

+λ
s
t (i)

((
cs

t (i)−ηt ls
t (i)−dt +Tt + P̃M

t aL,s
t+1 (i)+ q̃ta

S,s
t+1 (i)

)
(1+πt)

−
(
1+ ς P̃M

t
)

aL,s
t (i)−aS,s

t (i)
))

so the FOCs are

0 = e−γ(cs
t (i)+χGt)+λ

s
t (i)(1+πt)

0 =−e
1
ρ
(ls

t (i)+Θs
t−ξ s

t (i))−λ
s
t (i)ηt (1+πt)

0 = λ
s
t (i) P̃M

t (1+πt)−Ei
(
1+ ς P̃M

t+1
)

βϑλ
s
t+1 (i)

0 = λ
s
t (i) q̃t (1+πt)−βϑEiλ

s
t+1 (i)

from where (there is no aggregate risk)

λ
s
t (i) =−

1
(1+πt)

e−γ(cs
t (i)+χGt)

ls
t (i) = ρ logηt− γρ (cs

t (i)+χGt)−Θ
s
t +ξ

s
t (i)

cs
t (i) =−

1
γ

log
βϑ

q̃t (1+πt+1)
+χGt+1−χGt−

1
γ

logEie−γcs
t+1(i)

1
q̃t

=

(
1+ ς P̃M

t+1
)

P̃M
t

The Euler equation, using normality of consumption distribution, can also be written as

cs
t (i) =−

1
γ

log
(

βϑ

q̃t (1+πt+1)

)
+χGt+1−χGt +Eics

t+1 (i)−
γ

2
Vics

t+1 (i) . (1.40)

To obtain expressions for expectation and variance of consumption, we do the following three
steps.
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First, substitute labour supply into the budget constraint:

As
t+1 (i) =

Rt

ϑ

(
As

t (i)+Xt−ηtΘ
s
t +ηt

(
ξ

s
t (i)− ξ̄

)
− (1+ργηt)cs

t (i)
)

(1.41)

where we denoted
Xt = ηt

(
ρ logηt + ξ̄ −ργχGt

)
+dt−Tt .

Second, assume that individual consumption can be parameterised as

cs
t (i) = Xt +µt

(
As

t (i)+ηt
(
ξ

s
t (i)− ξ̄

)
−ϕtΘ

s
t
)

(1.42)

Lead it one period:

cs
t+1 (i) = Xt+1 +µt+1

(
As

t+1 (i)+ηt+1
(
ξ

s
t+1 (i)− ξ̄

)
−ϕt+1Θ

s
t+1
)

(1.43)

= µt+1

(
Rt

ϑ

(
(1− (1+ργηt)µt)

(
As

t (i)+ηt
(
ξ s

t (i)− ξ̄
))

+Xt

−(1+ργηt)Xt +(−ηt +(1+ργηt)µtϕt)Θs
t

))
+Xt+1 +µt+1ηt+1

(
ξ

s
t+1 (i)− ξ̄

)
−µt+1ϕt+1 (Θ

s
t +κ)

where in the second line we used the budget constraint, parameterisation (2.60) and the fact that
Θs

t+1 = κ (t +1− s) = κ (t− s)+κ = Θs
t +κ.

Finally, we obtain expressions for expectation and variance terms. Because cs
t+1 (i) is normally

distributed by i, its mean and variance are determined as follows:

Eics
t+1 (i) = Xt+1 +µt+1


Rt
ϑ
(1− (1+ργηt)µt)

(
As

t (i)+ηt
(
ξ s

t (i)− ξ̄
))

+Rt
ϑ
(Xt− (1+ργηt)Xt)

+Rt
ϑ
(−ηt +(1+ργηt)µtϕt)Θs

t


−µt+1ϕt+1 (Θ

s
t +κ)

Vics
t+1 (i) = µ

2
t+1η

2
t+1σ

2
t+1

(note that Eiξ
s
t+1 (i) = ξ̄ , but Eiξ

s
t (i) = ξ s

t (i) , Viξ
s
t+1 (i) = σ2

t+1, but Viξ
s
t (i) = 0).

We now use these expressions and parameterisation (2.60) and substitute them into the con-
sumption Euler equation (2.58) to find coefficients Xt ,µt and ϕt .
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Substitution into the Euler equation yields:

Xt +µt
(
As

t (i)+η
s
t
(
ξ

s
t (i)− ξ̄

)
−ϕtΘ

s
t
)

=−1
γ

log(βRt)+χGt+1−χGt−µt+1ϕt+1 (Θ
s
t +κ)− γ

2
µ

2
t+1η

2
t+1σ

2
t+1

+Xt+1 +µt+1
Rt

ϑ

(
(1− (1+ργηs

t )µt)
(
As

t (i)+ηs
t
(
ξ s

t (i)− ξ̄
))

+(Xt− (1+ργηt)Xt)+(−ηt +(1+ργηt)µtϕt)Θs
t

)
.

Collect coefficients on independent states: 1,As
t (i) ,ξ

s
t (i) ,Θ

s
t . This yields three independent

equations on µt ,κt and Xt :

Xt−µtηt ξ̄ =−1
γ

log(βRt)+χG̃t+1−χG̃t +Xt+1−
γ

2
µ

2
t+1η

2
t+1σ

2
t+1 (1.44)

+µt+1

(
Rt

ϑ
(Xt− (1+ργηt)Xt)−

Rt

ϑ
(1− (1+ργηt)µt)ηt ξ̄

)
−µt+1ϕt+1κ

µt = µt+1
Rt

ϑ
(1− (1+ργηt)µt) (1.45)

−µtϕt = µt+1

(
Rt

ϑ
(−ηt +(1+ργηt)µtϕt)

)
−µt+1ϕt+1 (1.46)

Provided that µt ̸= 0 The dynamic equation on evolution of the marginal propensity to consume
ot of cash in hands can be expressed as:

1
µt
− (1+ργηt) =

ϑ

Rt µt+1
(1.47)

the equation for ϕt becomes[name it!]

ϕt = ηt +
ϑ

Rt
ϕt+1 (1.48)

and the evolution of the measure of aggregate consumption Xt is:

Xt =−
ϑ µt

γµt+1Rt
log(βRt)+

ϑ µt

µt+1Rt
Xt+1 +

ϑ µt

µt+1Rt
χGt+1

− ϑ µt

µt+1Rt
χGt +µtXt−

ϑ µt

Rt
κϕt+1−

ϑ µt

µt+1Rt

γ

2
µ

2
t+1η

2
t+1σ

2
t+1

Introduce new variable:
Ct = Xt +χGt
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then we arrive to

Ct =−
ϑ µt

γµt+1Rt
log(βRt)+

ϑ µt

µt+1Rt
Ct+1−

ϑ µt

Rt
κϕt+1−

ϑ µt

µt+1Rt

γ

2
µ

2
t+1η

2
t+1σ

2
t+1

+µt
(
ηt
(
ρ log(ηt)+ ξ̄

)
+dt−Tt +χGt

)
after all terms with Gt are combined.

1.8.2 Aggregation

Define aggregate consumption, income, labour supply and labour demand

ct := (1−ϑ)
t

∑
s=−∞

ϑ
t−s
∫ 1

0
cs

t (i)di

yt := (1−ϑ)
t

∑
s=−∞

ϑ
t−s
∫ 1

0
ys

t (i)di

Ht :=
∫ 1

0
ht ( j)d j

nt := (1−ϑ)
t

∑
s=−∞

ϑ
t−s
∫ 1

0
ls
t (i)di

From labour market clearing conditions we know that aggregate labour supply must equal
aggregate labour demand hence:

nt :=
∫ 1

0
nt ( j)d j = (1−ϑ)

t

∑
s=−∞

ϑ
t−s
∫ 1

0
ls
t (i)di = Ht

Define aggregate actuarial bonds, J = {S,L}:

ϑaJ
t := (1−ϑ)

t

∑
s=−∞

ϑ
t−s
∫ 1

0
aJ,s

t (i)di.

To aggregate the household budget constraint, we need to compute (1−ϑ)∑
t
s=−∞ ϑ t−s ∫ 1

0 aJ,s
t+1 (i)di.
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Note that

ϑaJ
t+1 = (1−ϑ)

t+1

∑
s=−∞

ϑ
t+1−s

∫ 1

0
aJ,s

t+1 (i)di = (1−ϑ)
t

∑
s=−∞

ϑ
t+1−s

∫ 1

0
aJ,s

t+1 (i)di

+(1−ϑ)
∫ 1

0
aJ,t+1

t+1 (i)di

= ϑ (1−ϑ)
t

∑
s=−∞

ϑ
t−s
∫ 1

0
aJ,s

t+1 (i)di

then

aJ
t+1 = (1−ϑ)

t

∑
s=−∞

ϑ
t−s
∫ 1

0
aJ,s

t+1 (i)di

It follows

ϑAt = (1−ϑ)
t

∑
s=−∞

ϑ
t−s
∫ 1

0
As

t (i)di,

As
t+1 = (1−ϑ)

t

∑
s=−∞

ϑ
t−s
∫ 1

0
As

t+1 (i)di,

where
Finally, note that

t

∑
s=−∞

ϑ
t−s (t− s) = ϑ

t−t (t− t)+ϑ
t−t+1 (t− t +1)+ϑ

t−t+2 (t−2) = ...

=
∞

∑
k=1

kϑ
k =

ϑ

(1−ϑ)2

so that agggregation of sick days yields

(1−ϑ)
t

∑
s=−∞

ϑ
t−s
∫ 1

0
Θ

s
t di = (1−ϑ)

t

∑
s=−∞

ϑ
t−s
∫ 1

0
κ (t− s)di

= κ (1−ϑ)
t

∑
s=−∞

ϑ
t−s (t− s)

=
κϑ

1−ϑ

Aggregation of household budget constrain (2.4) yields:

ϑ

Rt

(
P̃M

t
q̃t

aL
t+1 +aS

t+1

)
(1+πt+1)

= ϑ

((
1+ ς P̃M

t
)

aL
t +aS

t
)

(1+πt)
+ yt− ct (1.49)
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or
ϑ

Rt
At+1 = ϑAt + yt− ct

where

At =

((
1+ ς P̃M

t
)

aL
t +aS

t
)

(1+πt)
=

(
P̃M

t−1
q̃t−1

aL
t +aS

t

)
(1+πt)

and
yt = ηtnt +dt−Tt .

1.8.3 Proof of Proposition 2

Proof. We start with the derived relationship:

Xt =−
ϑ µt

γµt+1Rt
log(βRt)+

ϑ µt

µt+1Rt
Xt+1 +

ϑ µt

µt+1Rt
χGt+1

− ϑ µt

µt+1Rt
χGt +µtXt−

ϑ µt

Rt
κϕt+1−

ϑ µt

µt+1Rt

γ

2
µ

2
t+1η

2
t+1σ

2
t+1

Recall that
Xt = Ct−χGt

and
ct = Ct−χGt +µt

(
ϑAt−

ϑκ
(1−ϑ)

ϕt

)
So we can parameterise

Xt = Ct−χGt = ct−µt

(
ϑAt−

ϑκ
(1−ϑ)

ϕt

)
Xt+1 = ct+1−µt+1

(
ϑAt+1−

ϑκ
(1−ϑ)

ϕt+1

)
and substitute these two relationships

ct−µt

(
ϑAt−

ϑκ
(1−ϑ)

ϕt

)
=− ϑ µt

γµt+1Rt
log(βRt)+

ϑ µt

µt+1Rt

(
ct+1−µt+1

(
ϑAt+1−

ϑκ
(1−ϑ)

ϕt+1

))
+

ϑ µt

µt+1Rt
χGt+1−

ϑ µt

µt+1Rt
χGt +µtXt−

ϑ µt

Rt
κϕt+1−

ϑ µt

µt+1Rt

γ

2
µ

2
t+1η

2
t+1σ

2
t+1
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Substitute
Xt = ηt

(
ρ log(ηt)+ ξ̄ −ργχGt

)
+dt−Tt

and use budget constraint

ϑAt =
ϑ

Rt
At+1−ηt

(
ρ log(ηt)+ ξ̄

)
+

κϑ

(1−ϑ)
ηt +ργηt χGt +ργηtct−dt +Tt + ct

and (2.9)-(2.10) to arrive to the following Euler equation

ct +χGt =−
1
γ

log(βRt)+ ct+1 +χGt+1 +(1−ϑ)µt+1At+1−
γ

2
µ

2
t+1η

2
t+1σ

2
t+1−µt+1κϕt+1

Labour supply (2.8) is is straightforwardly aggregated to

nt = ρ log(ηt)−κ
ϑ

1−ϑ
−ργ (ct +χGt)+ ξ̄

Derivation of Phillips Curve

Firm j solves the following optimization problem

max
Pt( j)

∞

∑
t=0

β
t

((
Pt ( j)

Pt
Yt ( j)− (1− s)wtnt ( j)

)
− Φ

2

(
Pt ( j)

Pt−1 ( j)
−1
)2

Yt

)

subject to monopolistic demand

Yt ( j) =
(

Pt ( j)
Pt

)−εt

Yt

and production function
Yt ( j) = ztnt ( j)

Substitute

max
Pt( j)

∞

∑
t=0

β
t

((
Pt ( j)

Pt
− (1− s)

wt

zt

)(
Pt ( j)

Pt

)−εt

Yt−
Φ

2

(
Pt ( j)

Pt−1 ( j)
−1
)2

Yt

)
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to yield the following first order condition:

0 = β
t

(
(1− εt)

(
Pt ( j)

Pt

)−εt Yt

Pt
+ εt (1− s)

wt

zt

(
Pt ( j)

Pt

)−εt−1 Yt

Pt
−Φ

(
Pt ( j)

Pt−1 ( j)
−1
)

Yt

Pt−1 ( j)

)

+β
t+1
(

Φ

(
Pt+1 ( j)
Pt ( j)

−1
)

Yt+1
Pt+1 ( j)
P2

t ( j)

)
All firms are identical so Pt ( j) = Pt and, therefore:

πt (1+πt) =
1− εt +(1− s)εt

wt
zt

Φ
+β

Yt+1

Yt
πt+1 (1+πt+1)

The profit of firms, distributed as dividends

dt = (Yt− (1− s)wtnt)−
Φ

2
π

2
t Yt

Financial Intermediaries

Financial intermediaries trade actuarial and government bonds.
At time t they buy short and long-term actuarial bonds and pay with short and long term gov-

ernment bonds, so the budget constraint of intermediaries is

−P̃M
t aL

t+1− q̃taS
t+1 +PM

t bL
t+1 +qtbS

t+1 ⩽ 0, (1.50)

where aJ
t+1 = (1−ϑ)∑

t
s=−∞ ϑ t−s ∫ 1

0 aJ,s
t+1 (i)di.

Their profit one period later is, therefore

Π =
(
1+ ςPM

t+1
)

bL
t+1 +bS

t+1−
(
1+ ς P̃M

t+1
)

ϑaL
t+1−ϑaS

t+1

where bJ
t+1 are total government bonds at time t + 1, and ϑaJ

t+1 are total actuarial bonds at time
t +1, i.e. ϑaJ

t+1 = (1−ϑ)∑
t+1
s=−∞ ϑ t+1−s ∫ 1

0 aJ,s
t+1 (i)di.

The Lagrangian is

Π =
(
1+ ςPM

t+1
)

bL
t+1 +bS

t+1−
(
1+ ς P̃M

t+1
)

ϑaL
t+1−ϑaS

t+1

+λt

(
−P̃M

t aL
t+1− q̃taS

t+1 +PM
t bL

t+1 +qtbS
t+1

)
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and the first order conditions are:

∂

∂bL
t+1

:
(
1+ ςPM

t+1
)
+λtPM

t

∂

∂bS
t+1

: 1+λtqt

∂

∂aL
t+1

:−
(
1+ ς P̃M

t+1
)

ϑ −λt P̃M
t

∂

∂aS
t+1

:−ϑ −λt q̃t

From where we have:

1
q̃t

=

(
1+ ς P̃M

t+1
)

P̃M
t

(1.51)

q̃t = ϑqt (1.52)

1
qt

=

(
1+ ςPM

t+1
)

PM
t

(1.53)

and so the profit is zero:

Π =
(
1+ ςPM

t+1
)

bL
t+1 +bS

t+1−ϑaS
t+1−ϑ

(
1+ ς P̃M

t+1
)

aL
t+1 (1.54)

=
1
qt

(
PM

t bL
t+1 +qtbS

t+1− q̃taS
t+1− P̃M

t aL
t+1

)
= 0

and
Rt =

ϑ

q̃t (1+πt+1)
=

1
qt (1+πt+1)

(1.55)

1.8.4 Social Welfare Function

Aggregation of Welfare

Recall that

ls
t (i) = ρ logηt−Θ

s
t −ργ (cs

t (i)+χGt)+ξ
s
t (i)

cs
t (i) = Ct−χGt +µtms

t (i)

ms
t (i) = As

t (i)+ηt
(
ξ

s
t (i)− ξ̄

)
−ϕtΘ

s
t
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so the (remaining at p) life-time utility of an agent born at s at time p > s can be written as
(substitute labour supply)

W s
p (i) =

∞

∑
t=p

(βϑ)t−pU s
t (i) (1.56)

where

U s
t (i) =−

1
γ

e−γ(cs
t (i)+χGt)−ρe

1
ρ
(ls

t (i)+Θs
t−ξ s

t (i))

=−1
γ

e−γ(cs
t (i)+χGt)−ρe

1
ρ
(ρ log(ηt)−ργ(cs

t (i)+χGt))

=−1
γ

e−γ(cs
t (i)+χGt)−ρηte−γ(cs

t (i)+χGt)

=−1
γ
(1+ γρηt)e−γ(cs

t (i)+χGt)

=−1
γ
(1+ γρηt)e−γ(Ct+µtms

t (i))

The social welfare function at time t = 0 is defined as

W0 = (1−ϑ)
0

∑
s=−∞

ϑ
−s
∫ 1

0
W s

0 (i)di+
∞

∑
s=1

(1−ϑ)β
s
∫ 1

0
W s

s (i)di (1.57)

where the first term is utility of generations that are alive at time zero. The second term is utility
of unborn generations, with s > 0, each such generation is treated with weight β s.

We can rewrite the welfare function in a more convenient way. Denote

U s
t =−1

γ
(1+ γρηt)

∫ 1

0
e−γ(Ct+µtms

t (i))di

is t-period utility of a cohort born at time s.
Then

W0

(1−ϑ)
= U 0

0 +ϑU −1
0 +ϑ

2U −2
0 + ...

+β
(
U 1

0 +ϑU 0
0 +ϑ

2U −1
0 + ...

)
+ ...

+β
t (U t

t +ϑU t−1
t +ϑ

2U t−2
t + ...+ϑ

sU t−s
t
)
+ ...

=
∞

∑
t=0

β
t

∞

∑
s=0

ϑ
sU t−s

t =
∞

∑
t=0

β
t

t

∑
v=−∞

ϑ
t−vU v

t

where in the last line we used new index v = t− s.
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Recycling notation, we get

W0 =−
1
γ

∞

∑
t=0

β
t (1+ γρηt)e−γCt

(
(1−ϑ)

t

∑
s=−∞

ϑ
t−s
∫ 1

0
e−γµtms

t (i)di

)
(1.58)

W0 =−
1
γ

∞

∑
t=0

β
t (1+ γρηt)e−γCt

(
(1−ϑ)

t

∑
s=−∞

ϑ
t−s
∫ 1

0
e−γµtms

t (i)di

)
(1.59)

Denote

Σt = (1−ϑ)
t

∑
s=−∞

ϑ
t−s
∫ 1

0
e−γµtms

t (i)di

so that
W0 =

∞

∑
t=0

β
tUt

where
Ut =−

1
γ
(1+ γρηt)e−γCt Σt

Here (1+ γρηt)e−γCt only depends on aggregate variables, so will be the same for a represen-
tative agent.

Σt = (1−ϑ)∑
t
s=−∞ ϑ t−s ∫ 1

0 e−γµtms
t (i)di is a welfare cost of inequality. It is increasing in the

within cohort dispersion of consumption. If there is risk then Σt is increasing, and this decreases
the overall level of welfare.

1.8.5 Recursion

Derive Σt recursion.

Σt = (1−ϑ)
t

∑
s=−∞

ϑ
t−s
∫ 1

0
e−γµtms

t (i)di

= (1−ϑ)
t−1

∑
s=−∞

ϑ
t−s
∫ 1

0
e−γµtms

t (i)di+(1−ϑ)
∫ 1

0
e−γµtmt

t(i)di

= (1−ϑ)
t−1

∑
s=−∞

ϑ
t−seγµtκ(t−s)ϕt

∫ 1

0
e−γµt(As

t (i)+ηt(ξ s
t (i)−ξ̄))di

+(1−ϑ)
∫ 1

0
e−γµtηt(ξ s

t (i)−ξ̄)di

= (1−ϑ)
t−1

∑
s=−∞

ϑ
t−seγµtκ(t−s)ϕt It +(1−ϑ)e

1
2 γ2µ2

t η2
t σ2

t
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where
It =

∫ 1

0
e−γµt(As

t (i)+ηt(ξ s
t (i)−ξ̄))di =

∫ 1

0
e−γµtAs

t (i)e−γµt(ηt(ξ s
t (i)−ξ̄))di

Integral It is an expectation of a product of two functions (uniformly distributed), and as As
t (i) is not

correlated with
(
ξ s

t (i)− ξ̄
)

seesome f ormulaabovewhichexpresseswealthasa f unctiono f pastshocksonly, thenexpectationo f aproductisequaltoaproducto f expectations,wecanwriteIt =∫ 1
0 e−γµt(ηt(ξ s

t ( j)−ξ̄))d j
∫ 1

0 e−γµtAs
t (i)di = e

1
2 γ2µ2

t η2
t σ2

t
∫ 1

0 e−γµtAs
t (i)di

Recall the budget constraint (2.59):

As
t+1 (i) =

Rt

ϑ

(
As

t (i)+ηt
(
ξ

s
t (i)− ξ̄

)
+Xt−ηtΘ

s
t − (1+ργηt)cs

t (i)
)

substitute out consumption using (2.60)

As
t+1 (i) =

Rt

ϑ

(
(1− (1+ργηt)µt)

(
As

t (i)+ηt
(
ξ s

t (i)− ξ̄
))

+Xt− (1+ργηt)Xt− (ηt− (1+ργηt)µtϕt)Θs
t

)

and simplify using (2.65) and (2.64)

µt+1As
t+1 (i) =

(
µt
(
As

t (i)+ηt
(
ξ s

t (i)− ξ̄
))
− (µtϕt−µt+1ϕt+1)Θs

t

+µt+1
Rt
ϑ
(Xt− (1+ργηt)Xt)

)
.

Take a lag and substitute this expression into formula for It to obtain a recursion for this integral:

It =
∫ 1

0
e−γµt(As

t (i)+ηt(ξ s
t (i)−ξ̄))di = e

1
2 γ2µ2

t η2
t σ2

t

∫ 1

0
e−γµtAs

t (i)di

= e
1
2 γ2µ2

t η2
t σ2

t

∫ 1

0
e−γ(µt−1(As

t−1(i)+ηt−1(ξ s
t−1(i)−ξ̄)))

× e−γ

(
µt

Rt−1
ϑ

(Xt−1−(1+ργηt−1)Xt−1)−(µt−1ϕt−1−µtϕt)Θ
s
t−1

)
di

= e
1
2 γ2µ2

t η2
t σ2

t e−γ

(
µt

Rt−1
ϑ

(Xt−1−(1+ργηt−1)Xt−1)−(µt−1ϕt−1−µtϕt)Θ
s
t−1

)

×
∫ 1

0
e−γ(µt−1(As

t−1(i)+ηt−1(ξ s
t−1(i)−ξ̄)))di

= e
1
2 γ2µ2

t η2
t σ2

t e
−γ

(
µt

Rt−1
ϑ (Xt−1−(1+τc

t−1+ργηt−1)Xt−1)−
(

µt−1ϕt−1−µtϕt
κt

κt−1

)
κ(t−1−s)

)
It−1

= e
1
2 γ2µ2

t η2
t σ2

t e−γ

(
µt

Rt−1
ϑ

(Xt−1−(1+ργηt−1)Xt−1)−(µt−1ϕt−1κ−µtϕtκ)(t−1−s)
)
It−1
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Note that, by definition,

Σt−1 = (1−ϑ)
t−1

∑
s=−∞

ϑ
t−1−s

∫ 1

0
e−γµt−1ms

t−1(i)di

= (1−ϑ)
t−1

∑
s=−∞

ϑ
t−1−s

∫ 1

0
e−γµt−1(As

t−1(i)+ηt−1(ξ s
t−1(i)−ξ̄)−ϕt−1Θs

t−1)di

= (1−ϑ)
t−1

∑
s=−∞

ϑ
t−1−se−γµt−1(−ϕt−1Θs

t−1)
∫ 1

0
e−γµt−1(As

t−1(i)+ηt−1(ξ s
t−1(i)−ξ̄))di

so that

Σt−1 = (1−ϑ)
t−1

∑
s=−∞

ϑ
t−1−seγµt−1ϕt−1κ(t−1−s)It−1

Now, isolate this term:

Σt = (1−ϑ)
t−1

∑
s=−∞

ϑ
t−seγµtκ(t−s)ϕt It +(1−ϑ)e

1
2 γ2µ2

t η2
t σ2

t

= (1−ϑ)
t−1

∑
s=−∞

ϑ
t−seγµtκ(t−s)ϕt e

1
2 γ2µ2

t η2
t σ2

t e−γ

(
µt

Rt−1
ϑ

(Xt−1−(1+ργηt−1)Xt−1)−(µt−1ϕt−1κ−µtϕtκ)(t−1−s)
)
It−1

+(1−ϑ)e
1
2 γ2µ2

t η2
t σ2

t

= e
1
2 γ2µ2

t η2
t σ2

t (1−ϑ)
t−1

∑
s=−∞

ϑ
t−seγµtκ(t−s)ϕt+γ(µt−1ϕt−1κ−µtϕtκ)(t−1−s)e−γ

(
µt

Rt−1
ϑ

(Xt−1−(1+ργηt−1)Xt−1)
)
It−1

+(1−ϑ)e
1
2 γ2µ2

t η2
t σ2

t

= e
1
2 γ2µ2

t η2
t σ2

t (1−ϑ)
t−1

∑
s=−∞

ϑ
t−seγ(µtϕtκ+µt−1ϕt−1κ(t−1−s))e−γ

(
µt

Rt−1
ϑ

(Xt−1−(1+ργηt−1)Xt−1)
)
It−1

+(1−ϑ)e
1
2 γ2µ2

t η2
t σ2

t

= eγµtϕtκe
1
2 γ2µ2

t η2
t σ2

t e−γ

(
µt

Rt−1
ϑ

(Xt−1−(1+ργηt−1)Xt−1)
)
ϑ (1−ϑ)

t−1

∑
s=−∞

ϑ
t−s−1eγµt−1ϕt−1κ(t−1−s)It−1

+(1−ϑ)e
1
2 γ2µ2

t η2
t σ2

t

to obtain recursive relationship:

Σt = ϑe−γµt

(
Rt−1

ϑ
(Xt−1−(1+ργηt−1)Xt−1)−κϕt

)
e

1
2 γ2µ2

t η2
t σ2

t Σt−1 +(1−ϑ)e
1
2 γ2µ2

t η2
t σ2

t

Introduce new variable Zt to yield

Σt =
(

e−
γ

ϑ
µt(Rt−1Zt−1−ϑκϕt)ϑΣt−1 +1−ϑ

)
e

1
2 γ2µ2

t η2
t σ2

t (1.60)
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where

Zt = Xt− (1+ργηt)Xt (1.61)

= ηt
(
ρ log(ηt)+ ξ̄ −ργχGt

)
+dt−Tt− (1+ργηt)(Ct−χGt)

= ηt
(
ρ log(ηt)+ ξ̄

)
− (1+ργηt)Ct +χGt +dt−Tt

We can represent Zt in a different form:

ct +χGt−ϑ µt

(
At−

κ
1−ϑ

ϕt

)
= Ct

then

Zt = ηt
(
ρ log(ηt)+ ξ̄

)
− (1+ργηt)

(
ct +χGt−ϑ µt

(
At−

κ
1−ϑ

ϕt

))
+χGt +dt−Tt

use
yt = ηtρ log(ηt)+ηt ξ̄ −ηtκ

ϑ

1−ϑ
−ργηtct−ργχηtGt +dt−Tt .

to obtain
yt +κ

ϑ

(1−ϑ)
ηt +ργηtct−dt +Tt +ηtργχGt = ηt

(
ρ log(ηt)+ ξ̄

)
.

Zt = yt− ct +(1+ργηt)µtϑAt +
ϑ

(1−ϑ)
κηt− (1+ργηt)µt

ϑκ
1−ϑ

ϕt (1.62)

(1+ργηt)µt = 1− ϑ µt

µt+1Rt

Zt = yt− ct +(1+ργηt)µtϑAt−
ϑ

(1−ϑ)

ϑ

µt+1Rt
(κµt+1ϕt+1−κµtϕt)

Furthermore, the aggregated budget constraint:

ϑ

Rt
At+1−ϑAt = yt− ct

using which

Zt =
ϑ

Rt
At+1−ϑAt +(1+ργηt)µtϑAt−

ϑ

(1−ϑ)

ϑ

µt+1Rt
(κµt+1ϕt+1−κµtϕt)

=
ϑ

Rt
At+1−

ϑ µt

µt+1Rt
ϑAt−

ϑ

(1−ϑ)

ϑ

µt+1Rt
(κµt+1ϕt+1−κµtϕt)

=
ϑ

Rt

(
At+1−

ϑ

(1−ϑ)
κϕt+1

)
− ϑ µt

µt+1Rt

(
ϑAt−

ϑ

(1−ϑ)
κϕt

)
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so that

Zt =
ϑ

µt+1Rt

(
µt+1

(
At+1−

ϑ

(1−ϑ)
κϕt+1

)
−µt

(
ϑAt−

ϑ

(1−ϑ)
κϕt

))
(1.63)

It is apparent that if the aggregate asset holding is zero then Zt = 0 and we obtain the same
recursive formula for Σt as reported in Acharya et al (2020).

Using intermediation constraint (2.28) we rewrite (2.81)

µt+1RtZt = µt+1

(
Bt+1−ϑ

ϑ

(1−ϑ)
κϕt+1

)
−ϑ µt

(
Bt−

ϑ

(1−ϑ)
κϕt

)
(1.64)

Introduce new variable
Wt = µt

(
Bt−

ϑκ
(1−ϑ)

ϕt

)
then

µt+1RtZt =Wt+1−ϑWt +ϑκµt+1ϕt+1 (1.65)

Denote
St = eγµt

(
Bt− ϑκ

(1−ϑ)
ϕt

)
Σt

Then

Ut =−
1
γ
(1+ γρηt)e−γ

(
xt−µt

(
Bt− ϑκ

(1−ϑ)
ϕt

))
Σt

=−1
γ
(1+ γρηt)e−γxt St

Use (2.83) to rewrite (2.78)

St =
(

e−
γ

ϑ
Wt ϑSt−1 +1−ϑ

)
eγWt e

1
2 γ2µ2

t η2
t σ2

t (1.66)

1.8.6 Proof of Proposition 3

Let us denote by b̆ the exogenous annualised debt to GDP ratio (in steady state)
(

b̆ = PMbM

4Y

)
. Under

Lump Sum taxes, if the fiscal authority wishes to ensure a stable path for the debt dynamics then:

φ
T
b > (R−1)

PMbM

T
However, we can re- write this expression using the (annualised) debt- to- GDP ratio that is

held constant across the different specifications. In this case,
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φ
T
b > 4b̆(R−1)

Y
T

Similarly, under distortionary income taxes, passive fiscal policy requires that

φ
τ
b > 4b̆(R−1)

z
τw

where, the steady state productivity is normalised to unity (z = 1). From the aggregate produc-
tion function we know that the steady state output is

Y = zn = n

Hence, we can re- write the expression for the fiscal policy feedback coefficient as

φ
τ
b > 4b̆(R−1)

Y
τwn

Hence, everything else equal, the difference in size of the debt stabilisation coefficient under
distortionary income taxes and lump sum taxes is determined by the difference in the output to tax
revenue ratio. More specifically, we know that aggregate labour supply and thus, aggregate output
is always higher under Lump Sum taxes

(
Y T > Y τ

)
. As such whether φ τ

b ⪋ φ T
b depends on the

size of the tax revenue
(

τwn ⪋ T
)

and the interest rate level in each specification.

Finally, the size of the fiscal reaction coefficient also depends on the steady state real interest
rate (R). Unlike the standard representative agent framework, in our model, the steady state real
interest rate is not necessarily equal to the rate of time preference

(
R ̸= 1

β

)
. More specifically,

our assumption regarding the type(s) of inequality present in our economy, shapes the steady state
value of the real interest rate and with, it the size of the fiscal response coefficient necessary to
ensure stable debt dynamics.

R =
1
β

exp

−1
2

γ
2
µ

2 (1− τ0)
2 w2

σ
2

←−−−−−−−−−−−−−−→
IM

+ γ
(1−ϑ)

ϑ
µ
(
1+ ςPM)bM

←−−−−−−−−−−−−−−−−→
OLG

− γκ̄µφ̄
←−−→

DLP


As in Acharya and Dogra (2020), allowing for partially uninsurable income risk, captured by

the IM component, decreases the size of the fiscal response necessary to ensure fiscal solvency.
The rationale behind this result is that by allowing income inequality, we admit an extra term in
the aggregate consumption Euler equation, which drives the steady state real interest down, below
the rate of time preference. A well known result the Bewley- Aiyagari literature.

However, even without IM component, having introduced a perpetual youth (OLG) structure
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in the household side allows aggregate asset holdings to enter the aggregate consumption Euler
equation. As such, even in the absence of incomplete asset markets, the OLG- RANK model
delivers a different steady state interest rate than the nested RANK and hence, we require a more
aggressive fiscal response. Finally, admitting a richer OLG channel, by introducing declining
income profiles creates a similar effect as the IM component. Households’ labor income declines
with age (i.e. lose in productivity due to illness) increases their consumption smoothing motive,
causing the overall (steady state) demand for savings to increase and consequently resulting in a
fall for the (steady state) interest rate.Thus, the interest effect on the fiscal response coefficient is
an aggregate of the outstanding value of the government debt, the amount of uninsurable income
risk and the friction created by the households’ stochastic lifespans.

1.9 Appendix B

Policy response to an one- time TFP shock
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1.10 Appendix C

Derivation of the (Reduced) Log- linearised System

1. Government Budget Constraint

(1+πt+1)

(
1+ ςPM

t+1
)

It
bM

t+1 =

( (
1+ ςPM

t
)

bM
t +Gt

−τtwt
Yt
zt
−Tt + swt

Yt
zt

)

(1+πt+1)

(
1+ ς

(
1+ P̂M

t+1
)

PM)
I
(
1+ Ît

) bM (1+ b̂M
t+1
)
=


(
1+ ς

(
1+ P̂M

t
)

PM)bM (1+ b̂M
t
)

+Gt

−τ (1+ τ̂t)w(1+ ŵt)
Y(1+Ŷt)
z(1+ẑt)

−T
(
1+ T̂t

)



(
1+ ςPM)

I
bM

(
1+ b̂M

t+1 +πt+1

+ ςPM

1+ςPM P̂M
t+1− Ît

)
=

( (
1+ ςPM)bM

(
1+ ςPM

1+ςPM P̂M
t + b̂M

t

)
+Gt

−τwY
z

(
1+ τ̂t + ŵt + Ŷt− ẑt

)
−T

(
1+ T̂t

) )

(
1+ ςPM)

I
bM
(

b̂M
t+1 +πt+1 +

ςPM

1+ ςPM P̂M
t+1

)
=


ςPMbM (P̂M

t
)

+
(
1+ ςPM)bM (b̂M

t
)

−τwY
z

(
τ̂t + ŵt + Ŷt− ẑt

)
−T

(
T̂t
)

+

(
(1+ςPM)

I bM
)

Ît


Recall that

ŵt =

(
1+ γzρ

zρ

)
YŶt−

Y
zρ

ẑt +
τ

1− τ
τ̂t
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(
1+ ςPM)

I
bM
(

b̂M
t+1 +πt+1 +

ςPM

1+ ςPM P̂M
t+1

)
=



ςPMbM (P̂M
t
)

+
(
1+ ςPM)bM (b̂M

t
)

−τwY
z

(
τ̂t +

(
1+γzρ

zρ

)
YŶt− Y

zρ
ẑt +

τ

1−τ
τ̂t + Ŷt− ẑt

)
−T
(
T̂t
)

+

(
(1+ςPM)

I bM
)

Ît



(
1+ ςPM)

I
bM (b̂M

t+1 +πt+1
)
+

ςPMbM

I
P̂M

t+1 =



+τwY
z

(
zρ+Y

zρ

)
ẑt

ςPMbM (P̂M
t
)

+
(
1+ ςPM)bM (b̂M

t
)

−τwY
z

(
1+
(

1+γzρ

zρ

)
Y
)

Ŷt

−wY
z

(
τ

1−τ

)
τ̂t

−T
(
T̂t
)

+

(
(1+ςPM)

I bM
)

Ît


1. Government Budget Constraint

(
1+ ςPM)

I
bM (b̂M

t+1 +πt+1
)
+

ςPMbM

I
P̂M

t+1 =



+τwY
z

(
zρ+Y

zρ

)
ẑt

ςPMbM (P̂M
t
)

+
(
1+ ςPM)bM (b̂M

t
)

−τwY
z

(
1+
(

1+γzρ

zρ

)
Y
)

Ŷt

−wY
z

(
τ

1−τ

)
τ̂t

−T
(
T̂t
)

+

(
(1+ςPM)

I bM
)

Ît


2. Labour decline recursion

ϑφ̄

R
φ̂t+1 = φ̄ φ̂t + τwτ̂t +

ϑϕ

R
R̂t− (1− τ)wŵt

with,

ŵt =

(
1+ γzρ

zρ

)
YŶt−

Y
zρ

ẑt +
τ

1− τ
τ̂t
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η̂t =

(
1+ γzρ

zρ

)
YŶt−

Y
zρ

ẑt

we can re-write it as

ϑφ̄

R
φ̂t+1 =


φ̄ φ̂t + τwτ̂t +

ϑϕ

R R̂t

−(1− τ)w
(

1+γzρ

zρ

)
YŶt

+(1− τ)w
[

Y
zρ

ẑt

]
−(τw) τ̂t



ϑφ̄

R
φ̂t+1 =


(1− τ)w

[
Y
zρ

ẑt

]
+ φ̄ φ̂t

−(1− τ)w
(

1+γzρ

zρ

)
YŶt

+ϑφ̄

R R̂t


3. The miu Recursion

1
µ

µ̂t +ργηη̂t−
ϑ

Rµ
R̂t =

ϑ

Rµ
µ̂t+1

With,

η̂t =

(
1+ γzρ

zρ

)
YŶt−

Y
zρ

ẑt

It can be simplified to

ϑ

Rµ
µ̂t+1 =

1
µ

µ̂t +ργη

(
1+ γzρ

zρ

)
YŶt−ργη

Y
zρ

ẑt−
ϑ

Rµ
R̂t

µ̂t+1 =

(
R
ϑ

)
µ̂t + γηµ

(
R
ϑ

)(
1+ γzρ

z

)
YŶt− γηµ

(
R
ϑ

)
Y
z

ẑt− R̂t

4.Bond Pricing Equations

P̂M
t + R̂t +πt+1 =

(
ς

R

)
P̂M

t+1

5.Agg. Consumption Euler Equation
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[
YŶt +

1
γ

(
1− γ

(1−ϑ)
ϑ

µ̄RPMbM
)

R̂t

− (1−ϑ)
ϑ

µ̄RPMbMP̂M
t

]
=



+
(

1−φγµ̄2 (1− τ0)
2

ω

)
YŶt+1

+ (1−ϑ)
ϑ

µ̄RPMbM (b̂M
t+1
)

+ (1−ϑ)
ϑ

µ̄RPMbMπt+1

+
(
(1−ϑ)

ϑ
µ̄RPMbM− γ µ̄2 (1− τ0)

2
ω− κ̄µ̄ φ̄

)
(µ̂t+1)

−κ̄µ̄ φ̄
(
φ̂t+1

)


6.The NK Phillips curve

Φπt +

(
1− ε

w
z

)
εε̂t− ε

w
z
(ŵt)+ ε

w
z
(ẑt) = βΦπt+1

with,

ŵt =

(
1+ γzρ

zρ

)
YŶt−

Y
zρ

ẑt +
τ

1− τ
τ̂t

It can be simplified to

βΦπt+1 = Φπt +

(
1− ε

w
z

)
εε̂t− ε

w
z

(
1+ γzρ

zρ

)
YŶt− ε

w
z

τ

1− τ
τ̂t +

(
1+

Y
zρ

)
ε

w
z
(ẑt)

The policy block (PB) Now suppose, the log- linearised Taylor rule

Ît = φππt +φY Ŷt

and, the fiscal rule yield

τ̂t = φbb̂M
t +φbP̂M

t

Using the log-linearised Fisher equation Ît = R̂t +πt+1, we can re- write the
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1. Government Budget Constraint

(
1+ ςPM)

I
bM (b̂M

t+1 +πt+1
)
+

ςPMbM

I
P̂M

t+1 =



+τwY
z

(
zρ+Y

zρ

)
ẑt

ςPMbM (P̂M
t
)

+
(
1+ ςPM)bM (b̂M

t
)

−τwY
z

(
1+
(

1+γzρ

zρ

)
Y
)

Ŷt

−wY
z

(
τ

1−τ

)
τ̂t

−T
(
T̂t
)

+

(
(1+ςPM)

I bM
)

Ît



2. Labour decline recursion

ϑφ̄

R
φ̂t+1 +

ϑϕ

R
πt+1 =


(1− τ)w

[
Y
zρ

ẑt

]
+φ̄ φ̂t

−(1− τ)w
(

1+γzρ

zρ

)
YŶt

+ϑϕ

R Ît


3. The miu Recursion(

ϑ

R

)
µ̂t+1−

(
ϑ

R

)
πt+1 = µ̂t + γηµ

(
1+ γzρ

z

)
YŶt− γηµ

Y
z

ẑt−
(

ϑ

R

)
Ît

4.Bond Pricing Equations

P̂M
t + Ît =

(
ςPM

1+ ςPM

)
P̂M

t+1

5. Agg. Consumption Euler Equation

YŶt +
1
γ

Ît =



+1
γ
πt+1

+
(

1− γ µ̄2 (1− τ0)
2

ωφY

)
YŶt+1

+ (1−ϑ)
ϑ

µ̄ςPMbM (P̂M
t+1
)

+
(
(1−ϑ)

ϑ
µ̄
(
1+ ςPM)bM− γ µ̄2 (1− τ0)

2
ω− κ̄µ̄ φ̄

)
(µ̂t+1)

−κ̄µ̄ φ̄
(
φ̂t+1

)
+ (1−ϑ)

ϑ
µ̄
(
1+ ςPM)bMb̂M

t+1
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6.The NK Phillips curve

βΦπt+1 = Φπt +

(
1+

Y
zρ

)
ε

w
z

ẑt +

(
1− w

z

)
εε̂t− ε

w
z

(
1+ γzρ

zρ

)
YŶt− ε

w
z

τ

1− τ
τ̂t

Different Discount Factor

Φ

R
πt+1 = Φπt + ε

w
z

(
1+

Y
zρ

)
ẑt +

(
1− w

z

)
εε̂t− ε

w
z

(
1+ γzρ

zρ

)
YŶt− ε

w
z

(
τ

1− τ

)
τ̂t

The policy block (PB) Now suppose, the log- linearised Taylor rule

Ît = φππt +φY Ŷt

and, the fiscal rule yields

τ̂t = φbb̂M
t +φbP̂M

t

1.11 Matrix Form

• To produce the Determinacy Graphs we make use of the following system:
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(1+ςPM)
I bM 0 0 ςPMbM

I 0 (1+ςPM)
I bM

0 ϑφ̄

R 0 0 0 ϑϕ

R

0 0 1 0 0 −1

0 0 0
(

ςPM

1+ςPM

)
0 0

(1−ϑ)
ϑ

µ̄
(
1+ ςPM)bM −κ̄µ̄ φ̄ α1 0

(
1−φY γ µ̄2 (1− τ0)

2
ω

)
Y 1

γ

0 0 0 0 0 βΦ





b̂M
t+1

ϕ̂t+1

µ̂t+1

P̂M
t+1

Ŷt+1

πt+1


=

=



(
1+ ςPM)bM 0 0 ςPMbM −τwY

z

(
1+
(

1+γzρ

zρ

)
Y
)

0

0 φ̄ 0 0 −(1− τ)w
(

1+γzρ

zρ

)
Y 0

0 0
( R

ϑ

)
0 γηµ

( R
ϑ

)(1+γzρ

z

)
Y 0

0 0 0 1 0 0
0 0 0 0 Y 0

0 0 0 0 −ε
w
z

(
1+γzρ

zρ

)
Y Φ





b̂M
t

ϕ̂t

µ̂t

P̂M
t

Ŷt

πt


+



(
(1+ςPM)

I bM
)

ϑϕ

R

−
(

ϑ

R

)
1
γ

1
γ

(
1− γ

(1−ϑ)
ϑ

µ̄RPMbM
)

0


[
Ît
]

+



−wY
z

(
τ

1−τ

)
0
0
0
0

− ε

z

(
τw

1−τ

)


[τ̂t ]+



−T

0
0
0
0
0


[
T̂t
]

α1 =
(
(1−ϑ)

ϑ
µ̄
(
1+ ςPM)bM− γ µ̄2 (1− τ0)

2
ω− κ̄µ̄ φ̄

)
Calculating the Policy Block For Monetary Policy
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[
Ît
]
=



(
(1+ςPM)

I bM
)

ϑϕ

R

−
(

ϑ

R

)
1
γ

1
γ

(
1− γ

(1−ϑ)
ϑ

µ̄RPMbM
)

0


[

0 0 0 0 φY φπ

]
=



0 0 0 0 bM φY
I

(
PMς +1

)
bM φπ

I

(
PMς +1

)
0 0 0 0 1

RϑϕφY
1
Rϑϕφπ

0 0 0 0 − 1
RϑφY − 1

Rϑφπ

0 0 0 0 φY φπ

0 0 0 0 1
γ
φY
(
PMRbMγ

µ

ϑ
(ϑ −1)+1

) 1
γ
φπ

(
PMRbMγ

µ

ϑ
(ϑ −1)+1

)
0 0 0 0 0 0



For Fiscal Policy

[τ̂t ] =



− τw
PMbM

Y
z

0
0
0
0

− ε

z

(
τw

1−τ

)


[

φb 0 0 φb 0 0
]
=



− 1
PM

Y
bM

w
z τφb 0 0 − 1

PM
Y

bM
w
z τφb 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

w
z τε

φb
τ−1 0 0 w

z τε
φb

τ−1 0 0



[
T̂t
]
=



− T
PMbM

0
0
0
0
0


[

φb 0 0 φb 0 0
]
=



− 1
PM

T
bM φb 0 0 − 1

PM
T

bM φb 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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1.11.1 The dynamics of the log- linearised model: Response to unanticipated (transitionary) aggregate
shock (Impulse Responses)

In this section, we present the matrix for the system dynamics in response to an aggregate shock. We are looking at first order perturba-
tions around the zero inflation steady state. As such, the certainty equivalence result holds and we can drop the expectation operator.To
calculate system dynamics around the efficient steady state we use the following system. The main difference is that we have included
the deterministic shocks.

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 ς

R 0 1

0 0 0 ϑφ̄

R 0 0 0 ϑϕ

R

0 0 0 0 1 0 0 −1
0 0 0 0 0

(
ς

R

)
0 0

0 0 (1−ϑ)
ϑ

µ̄RPMbM −κ̄µ̄ φ̄ α1 0
(

1−φγµ̄2 (1− τ0)
2

ω

)
1
γ

0 0 0 0 0 0 0 Φ

R





ẑt+1

ε̂t+1

b̂M
t+1

ϕ̂t+1

µ̂t+1

P̂M
t+1

Ŷt+1

πt+1


//

=



ςz 0 0 0 0 0 0 0

τwY
z

(
zρ+Y

zρ

)
0 ςε 0 0 0 0 0 0

(τ−s)w
PMbM

(Y
z

)
0 R 0 0 ς ς 0

(1− τ)w Y
zρ

0 0 φ̄ 0 0 −(1− τ)w
(

1+γzρ

zρ

)
Y 0

−γηµ
( R

ϑ

) Y
z 0 0 0

( R
ϑ

)
0 γηµ

( R
ϑ

)(1+γzρ

z

)
Y 0

0 0 0 0 0 1 0 0

0 0 0 0 0 − (1−ϑ)
ϑ

µ̄RPMbM Y 0(
1+ Y

zρ

)
ε

w
z

(
1− w

z

)
ε 0 0 0 0 −ε

w
z

(
1+γzρ

zρ

)
Y Φ





ẑt

ε̂t

b̂M
t

ϕ̂t

µ̂t

P̂M
t

Ŷt

πt


+



0
0
1

ϑϕ

R

−1
1

1
γ

(
1− γ

(1−ϑ)
ϑ

µ̄RPMbM
)

0



[
Ît
]
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+



0
0

− τw
PMbM

Y
z

0
0
0
0

− ε

z

(
τw

1−τ

)


[τ̂t ]+



0
0

− T
PMbM

0
0
0
0
0



[
T̂t
]

α1 =
(
(1−ϑ)

ϑ
µ̄RPMbM− γ µ̄2 (1− τ0)

2
ω− κ̄µ̄ φ̄

)

Computing the Policy Block For Monetary Policy

[
Ît
]
=



0
0
1

ϑϕ

R

−1
1

1
γ

(
1− γ

(1−ϑ)
ϑ

µ̄RPMbM
)

0



[
0 0 0 0 0 0 φY φπ

]
=
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=



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 φY φπ

0 0 0 0 0 0 1
RϑϕφY

1
Rϑϕφπ

0 0 0 0 0 0 −φY −φπ

0 0 0 0 0 0 φY φπ

0 0 0 0 0 0 1
γ
φY
(
PMRbMγ

µ

ϑ
(ϑ −1)+1

) 1
γ
φπ

(
PMRbMγ

µ

ϑ
(ϑ −1)+1

)
0 0 0 0 0 0 0 0


For Fiscal Policy

[τ̂t ] =



0
0

− τw
PMbM

Y
z

0
0
0
0

− ε

z

(
τw

1−τ

)



[
0 0 φb 0 0 φb 0 0

]
=



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 − 1

PM
Y

bM
w
z τφb 0 0 − 1

PM
Y

bM
w
z τφb 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 w

z τε
φb

τ−1 0 0 w
z τε

φb
τ−1 0 0



[
T̂t
]
=



0
0

− T
PMbM

0
0
0
0
0



[
0 0 φb 0 0 φb 0 0

]
=



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 − 1

PM
T

bM φb 0 0 − 1
PM

T
bM φb 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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Once we have calculated the system dynamics, we make use of the following expressions to
retrieve the response of Wealth inequality to the aggregate shock

St =
(

ϑe−
γ

ϑ
Wt St−1 +1−ϑ

)
eγWt e

1
2 γ2µ2

t η2
t σ2

t . (1.67)

Here

Wt = µt

(
Bt−

ϑκ
(1−ϑ)

ϕt

)
(1.68)

= µt

(((
1+ ςPM

t
)

bL
t +bS

t
)

(1+πt)
− ϑκ

(1−ϑ)
ϕt

)
(1.69)

= µt

(((
1+ ςPM

t
)

bL
t
)

(1+πt)
− ϑκ

(1−ϑ)
ϕt

)
(1.70)

Bt =

((
1+ ςPM

t
)

bL
t +bS

t
)

(1+πt)

St =
(

ϑe−
γ

ϑ
Wt St−1 +1−ϑ

)
eγWt e

1
2 γ2µ2

t η2
t σ2

t . (1.71)

σt = σ
2 exp(2φ (Yt−Y ))

σ
2 (1+2σ̂t) = σ

2 exp
(
2φ
(
Y
(
1+ Ŷt

)
−Y
))

In steady state ω = w2σ2

(1+2σ̂t) =
(
exp
(
2φYŶt

))︸ ︷︷ ︸
≈1+2φYŶt

σ̂t = φYŶt

Log- linearising inequality around the zero inflation steady state yields:

St =
(

ϑe−
γ

ϑ
Wt St−1 +1−ϑ

)
eγWt e

1
2 γ2µ2

t η2
t σ2

t .

88



St(
ϑe−

γ

ϑ
Wt St−1 +1−ϑ

) = eγWt e
1
2 γ2µ2

t η2
t σ2

t .

(
1+ Ŝt

)
S(

ϑe−
γ

ϑ
W(1+Ŵt)

(
1+ Ŝt−1

)
S+1−ϑ

) = eγW(1+Ŵt)e
1
2 γ2µ2η2σ2(1+2µ̂t)(1+2η̂t)(1+2φYŶt).

(
1+ Ŝt

)
S(

ϑ
(
1+ Ŝt−1− γWŴt

)
e−

γ

ϑ
W S+1−ϑ

) =
(
1+ γWŴt

)
eγW e

1
2 γ2µ2η2σ2

eγ2µ2η2σ2(µ̂t+η̂t+φYŶt).

(
1+ Ŝt

)
S=

(
ϑ
(
1+ Ŝt−1− γWŴt

)
e−

γ

ϑ
W S

+1−ϑ

) 1
+γ2µ2η2σ2 (µ̂t + η̂t +φYŶt

)
+γWŴt

eγW e
1
2 γ2µ2η2σ2

(
1+ Ŝt

)
S =


(

ϑe−
γ

ϑ
W S+

(
Ŝt−1− γWŴt

)
ϑe−

γ

ϑ
W S

+γ2µ2η2σ2 (µ̂t + η̂t +φYŶt
)
+ γWŴt

)
eγW e

1
2 γ2µ2η2σ2

+
(
1+ γ2µ2η2σ2 (µ̂t + η̂t +φYŶt

)
+ γWŴt

)
(1−ϑ)eγW e

1
2 γ2µ2η2σ2



(
1+ Ŝt

)
S =


(

ϑe−
γ

ϑ
W S+

(
Ŝt−1− γWŴt

)
ϑe−

γ

ϑ
W S

+γ2µ2η2σ2 (µ̂t + η̂t +φYŶt
)
+ γWŴt

)
eγW e

1
2 γ2µ2η2σ2

+
(
1+ γ2µ2η2σ2 (µ̂t + η̂t +φYŶt

)
+ γWŴt

)
(1−ϑ)eγW e

1
2 γ2µ2η2σ2


We know that in steady state:

S = ϑe−
γ

ϑ
W SeγW e

1
2 γ2µ2η2σ2

+(1−ϑ)eγW e
1
2 γ2µ2η2σ2

S
(

1−ϑe−γ
(1−ϑ)

ϑ
W e

1
2 γ2µ2η2σ2

)
= (1−ϑ)eγW e

1
2 γ2µ2η2σ2

S =
(1−ϑ)eγW e

1
2 γ2µ2η2σ2

(1−ϑe−γ
(1−ϑ)

ϑ
W e

1
2 γ2µ2η2σ2

)
.
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SŜt =


ϑe−γ

(1−ϑ)
ϑ

W e
1
2 γ2µ2η2σ2 (

SŜt−1
)

+γ

(
(2−ϑ)eγW −Sϑe−γ

(1−ϑ)
ϑ

W
)

e
1
2 γ2µ2η2σ2 (

WŴt
)

+
(
γ2µ2η2σ2 (µ̂t + η̂t +φYŶt

))
(2−ϑ)eγW e

1
2 γ2µ2η2σ2


where,

Wt = µt

(
Bt−

ϑκ
(1−ϑ)

ϕt

)
= µt

(((
1+ ςPM

t
)

bL
t +bS

t
)

(1+πt)
− ϑκ

(1−ϑ)
ϕt

)

= µt

(((
1+ ςPM

t
)

bL
t
)

(1+πt)
− ϑκ

(1−ϑ)
ϕt

)

W
(
1+Ŵt

)
= µ (1+ µ̂t)

 ((1+ςPM(1+PM
t ))(1+b̂L

t )bL)
(1+πt)

− ϑκ
(1−ϑ)ϕ (1+ ϕ̂t)



W
(
1+Ŵt

)
=

 µ
(
1+ ςPM)bL

(
1+ µ̂t +

ςPM

1+ςPM PM
t + b̂L

t −πt

)
−µ

ϑκ
(1−ϑ)ϕ (1+ µ̂t + ϕ̂t)



WŴt =


µ

((
1+ ςPM)bL− ϑκ

(1−ϑ)
ϕ

)
︸ ︷︷ ︸

=W

µ̂t

+µ
(
1+ ςPM)bL

(
ςPM

1+ςPM PM
t + b̂L

t −πt

)
−µ

ϑκ
(1−ϑ) (ϕϕ̂t)



WŴt = W µ̂t +µ
(
1+ ςPM)bL

(
ςPM

1+ ςPM PM
t + b̂L

t −πt

)
−µ

ϑκ
(1−ϑ)

(ϕϕ̂t)
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1.12 Steady State

We are looking at zero inflation steady state(π = 0). And, to simplify the analysis, we are going to
drop χG̃t from the household utility function(χ = 0), so xt = ct +χG̃t ⇒ xt = ct

1 : π = 0

2 : bS = 0

3 : bM = 0.43 ·
(

4Y
PM

)
4 : PM =

1
((1+π)R− ς)

5 : LS_Tax : T = PM (R−1)bM
t +G0 + sw

Y
z

6 : DI_Tax : τ =
z

wY

(
PM (R−1)bM

t +G0 + sw
Y
z

)
7 : ω̄ = w2

σ
2

8 : w = z
(

ε−1
(1− s)ε

)
9 : η = (1− τ)w

10 : R =
1
β

exp
(

γ
(1−ϑ)

ϑ
µ
(
PMRbM)− γ

2
µ

2 (1− τ0)
2 w2

σ
2− κ̄µφ

)
11 : R = I

12 : µ =

(
R−ϑ

(1+ργη)R

)
13 : ϕ = (1− τ)w

(
R

R−ϑ

)

14 : x =

 zρ

(1+ργz) log((1− τ)w)+ zξ̄

(1+ργz)

− (1−χ)G0
(1+ργz) −

zκ̄
(1+ργz)

(
ϑ

1−ϑ

)


15 : Y = x+(1−χ)G0

16 : W = µt

(((
1+ ςPM)bL)
(1+π)

− ϑκ
(1−ϑ)

ϕ

)

17 : S =
(1−ϑ)eγW e

1
2 γ2µ2η2σ2

(1−ϑe−γ
(1−ϑ)

ϑ
W e

1
2 γ2µ2η2σ2

)
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Chapter 2

Equity versus Efficiency: Optimal
Monetary and Fiscal Policy in a HANK
Economy
Based on joint work with T. Kirsanova and C. Leith
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Abstract

We extend Acharya et al. (2023) to analyse optimal fiscal policy in a tractable heteroge-

neous agent New Keynesian (HANK) economy where overlapping generations of households

wish to save for retirement and precautionary reasons. While monetary policy can affect the

households’ ability to self-insure against shocks, fiscal policy has a greater impact on such

behavior both in steady-state and following shocks. A policy maker solely focused on min-

imizing inequality would provide insufficient government debt to enable households to save

for retirement and accumulate precautionary savings. Why? The trade off between inter- and

intra-generational equity means it wishes to suppress interest rates below households’ rate of

time preference, facilitating household borrowing in the face of idiosyncratic shocks. The

Ramsey policy maker faces a further trade-off - equity versus efficiency - and due to debt ser-

vice costs will issue even less debt, driving equilibrium interest rates down further. We explore

the relative efficacy of monetary and fiscal policy in responding to aggregate shocks in this

environment.

2.1 Introduction

There is growing interest in issues of inequality in macroeconomics. Politicians have awoken to the
possibility that the policy consensus has not always been felt to benefit all of society, leading pop-
ulist politicians to highlight dissatisfaction with the status quo (?). Central banks are increasingly
conscious of the distributional impacts of their policies.1 Popular treatments debate the relative
importance of intra- generational (?) versus inter- generational (?) inequality. However, technical
issues often make it difficult to provide well-founded normative policy recommendations which
address these concerns. This paper seeks to make progress in this area by considering (non-trivial)
fiscal policies, including the evolution of long-term government debt, alongside monetary policy in
an environment where there are meaningful trade-offs between efficiency and equity, both within
and across generations.

Specifically, we analyze jointly optimal monetary and fiscal policy in a heterogeneous-agent
New Keynesian (HANK) economy. To achieve this, we build upon the insights of Acharya, Challe
& Dogra (2023) and Acharya & Dogra (2020), who develop a tractable heterogeneous-agent econ-
omy for analyzing optimal monetary policy and monetary policy ‘puzzles’, respectively. We extend
the overlapping-generation model of Acharya et al. (2023) by developing the fiscal side, which was
kept deliberately simple given their primary focus on monetary policy. Thus, we introduce long-
term government debt, financed by distortionary labor income taxes, and allow it to evolve over

1US Fed chairman Jerome ? used his Jackson Hole speech to stress the desirability of running the economy close
to maximum employment in order to spread the benefits of economic growth more widely.
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time in accordance with optimal policy. The presence of government debt and the absence of fis-
cal transfers to new-born generations, implies that intergenerational inequality is driven not only
by idiosyncratic labor supply shocks but also by differing levels of accumulated wealth, which
optimal policy must address. By assuming that the disutility of labor supply rises with age, we
mimic a desire to save for retirement, which augments the motive for precautionary savings and
leads, in equilibrium, to the government optimally issuing plausible levels of government debt to
facilitate such saving behavior without sub-optimally suppressing interest rates. The differences in
wealth across and within generations endogenously generate differences in the exposure to aggre-
gate shocks, which optimal policy will account for.

In Acharya et al. (2023), there are two channels through which monetary policy impacts in-
equality. First, the extent to which the variance of idiosyncratic risk is pro- or counter-cyclical
allows monetary policy to influence the magnitude of that risk following aggregate shocks—the
‘income-risk’ channel. Second, by lowering interest rates, monetary policy facilitates households’
self-insurance; it becomes cheaper to buy bonds to smooth consumption and easier to borrow
against future income when a relatively loose monetary policy expands the economy, raising future
income against which one can borrow—the ‘self-insurance’ channel. They examine the cyclical-
ity of consumption risk to explain how monetary policy should respond to shocks. In our model,
distortionary tax rates and the level of debt also impact inequality, and can be more significant.

Distortionary labor taxation mitigates the initial impact of an idiosyncratic income shock since
part of the lost income would have been taxed anyway. However, anticipated future tax rates
also affect the household’s ability to borrow against future post-tax income in order to smooth
consumption — expectations of higher future taxes increase the costs of earning income to repay
any borrowing undertaken to offset a negative idiosyncratic shock. Additionally, distortionary
labor income taxation leads to the usual loss of efficiency by discouraging worker effort.

In our overlapping-generation (OLG) economy, the extent to which the government issues debt
to facilitate household saving, both for retirement and as protection against idiosyncratic shocks,
affects equilibrium real interest rates, both in response to shocks and in the steady state. While
monetary policy only has a transitory (for as long as prices are sticky) impact on real interest rates
– and, through that, inequality – debt policy can have a permanent influence on inequality. As a
benchmark, we define a ‘golden rule’ level of steady-state debt that would align the equilibrium
real interest rate with households’ rate of time preference, enabling savings for retirement and pre-
cautionary savings. We explore how optimal policy diverges from this benchmark. A policy maker
aiming to minimize inequality only would not issue sufficient debt to ensure that equilibrium inter-
est rates reached this benchmark. Instead, they would allow interest rates to lie below households’
rate of time preference, implying there are insufficient assets to enable households to save for re-
tirement, let alone accumulate precautionary savings. This will drive a degree of inter-generational
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inequality as consumption falls throughout households’ lifetimes. The policy maker is prepared
to allow this inter- generational inequality since, by suppressing interest rates, the policy maker
facilitates household borrowing in the face of negative idiosyncratic shocks, thereby mitigating
intra- generational equity. However, the micro-founded social welfare function not only exhibits
a concern for equity, but also for efficiency. Taking account of efficiency leads the policy maker
to issue even less debt, suppressing interest rates further, as issuing debt crowds out economic
activity, especially when taxes are distortionary. Thus, the Ramsey policy maker faces a trade-off
between both inter- and intra-generational equity and efficiency, which leads to them issuing debt
but to a lesser extent than needed to facilitate saving for retirement and achieving the ‘golden rule’
interest rate.

We quantify where the balance is struck in these trade-offs and find that Ramsey policy comes
close to achieving the minimum level of inequality - inequality is only 0.001% higher than its min-
imal value under the fully-optimal Ramsey policy, and 0.007% lower than if the policy maker only
cared for efficiency. This can also be seen in the steady-state levels of debt issued by the Ramsey
policy maker - 54% of GDP - which is only slightly below the level of 58% that would be chosen
by a policy maker seeking in minimize inequality alone. In contrast caring only for efficiency
would lead to far lower debt levels of 31% of GDP. Therefore, optimal policy is dominated by a
concern for equity.

We then turn to consider the response to aggregate shocks. Again we examine how fiscal pol-
icy contributes to stabilizing the economy in the face of such shocks, including allowing for the
variance of idiosyncratic shocks to be pro-, counter- or a-cyclical. The benchmark ‘divine coinci-
dence’ result where interest rates would be cut in response to a positive technology shock without
generating deflation, only emerges under special circumstances. In our heterogeneous agent OLG
economy featuring phased retirement and idiosyncratic income shocks these conditions are: (i) no
fiscal policy, other than (ii) a lump-sum tax financed production subsidy which ensures the steady-
state is efficient, and (iii) the policy maker only cares about efficiency, not equity. Relaxing these
conditions creates a meaningful policy problem. In the absence of fiscal policy, monetary policy
engineers a degree of price level control by following an initial period of deflation, with a period
of positive inflation. Seeking to manipulate expectations in this way is a common feature of Ram-
sey policy in the New Keynesian model. However, when reducing inequality becomes part of the
policy objective, the monetary policy maker relaxes policy further, which facilitates households’
ability to borrow to offset negative idiosyncratic income shocks. Introducing fiscal policy and gov-
ernment debt implies that there is a non-trivial distribution of wealth which impacts the evolution
of consumption inequality. Now the policy mix in response to shocks relies on the use of distor-
tionary taxation alongside monetary policy to reduce movements in inflation while simultaneously
facilitating households’ ability to smooth consumption in the face of idiosyncratic shocks.
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An interesting element of our modelled economy is that households can hold longer-term gov-
ernment debt, and not the single period debt often adopted in the literature. Moreover, optimal
policy implies significant variance in the holdings of this debt within and across generations. This
affects the re-distributional impacts of shocks, especially when they are autocorrelated, since the
changes in the entire path of short-term interest rates create capital gains/losses for holders of these
longer-term bonds, a dynamic not present with single-period debt. Under the timelessly optimal
policies we consider, the policy maker commits to not attempt to unexpectedly induce such redis-
tributions, but when they occur as the result of shocks, the policy maker’s policies will be affected
by the extent to which the redistributions affect the evolution of inequality.

2.2 Literature Review:

Our work is related to the large literature on Bewley (1977), Huggett (1993) and Aiyagari (1994)
economies, where households face uninsurable idiosyncratic risk. As already noted, our approach
closely follows that of Acharya & Dogra (2020) and Acharya et al. (2023), utilizing the assump-
tions of CARA utility and normally distributed idiosyncratic shocks to enable us to derive tractable
aggregate relationships and a micro-founded measure of social welfare. Specifically, we extend the
framework of Acharya et al. (2023) to allow a meaningful role for fiscal policy, which turns out to
have significant implications for both the steady-state trade-off between equity and efficiency and
the response to shocks.

The broader Heterogeneous Agent New Keynesian (HANK) literature, which combines house-
hold heterogeneity with sticky prices, typically focuses on a positive description of the impact on
monetary policy in such economies (see Violante n.d., Sargent 2023) for overviews of the key
insights gained from the literature, and Kaplan & Violante (2018) for a survey of the HANK litera-
ture, more generally). This focus is largely due to the computational complexity of modelling opti-
mal policy in an environment where the state space is infinite. Recently, there has been progress in
addressing these computational issues, beginning to explore normative policy issues, particularly
relating to the conduct of monetary policy. See, for example, Bhandari et al. (2021) and Le Grand
et al. (2022) for an analysis of optimal policy, and McKay & Wolf (2022) for a characterization
of optimal policy rules. Additionally, Nuño & Thomas (2022) utilize results from continuous-time
mathematics to track the wealth distribution over time.

A more common approach to addressing normative issues involves making simplifying as-
sumptions to ensure sufficient tractability to analyse optimal policy. For example, it is common to
assume that households cannot borrow and government debt is in zero net supply, which implies
that, in equilibrium, households do not hold any assets – the so-called zero liquidity limit. This
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assumption eliminates the ability of households to self-insure through saving and/or borrowing
and results in a degenerate wealth distribution, allowing for a tractable analysis of optimal policy.
Examples of this approach applied to conventional monetary policy include Bilbiie (2008), Bilbiie
(2021), ? and ?. Auclert (2019) and Bilbiie (2024) extend this consideration to fiscal policy.

Our paper uses a different set of simplifying assumptions, specifically CARA utility and nor-
mally distributed idiosyncratic shocks. This approach implies that the welfare costs of inequality
are captured by a single variable, which evolves recursively, making the Ramsey policy problem
tractable despite the heterogeneity. The cost in doing so is that the marginal propensity to con-
sume is common across households, rather than varying with income/wealth. Nevertheless, our
approach allows for precautionary savings and borrowing in response to idiosyncratic shocks. Fur-
thermore, we extend Acharya et al. (2023) and the literature imposing a zero liquidity limit by
allowing for government debt to be in non-zero supply and determined endogenously. This im-
plies a non-degenerate wealth distribution and that households within and across generations will
face different wealth revaluation effects in the face of aggregate shocks.2

Our model relies on an OLG structure as in Blanchard (1985) and Yaari (1965), to prevent the
distribution of wealth from becoming non-stationary. Optimal policy in such a framework often
focuses on the modified Golden Rule of capital accumulation, stating that the marginal product
of capital should equal the rate of growth of the population plus the households’ rate of time
preference – see the textbook treatment in Blanchard & Fischer (1989). Escolano (1992) obtains
the same result by considering optimal policy in an OLG economy with endogenous labor supply
and various distortionary taxes. This serves as a useful benchmark in interpreting the results in our
OLG heterogeneous agent economy subject to idiosyncratic risk.

2.3 The Model

Our model follows that of Acharya et al. (2023), which employs Constant Absolute Risk Aversion
(CARA) preferences and normally distributed shocks to individual household labour supply to
develop a tractable heterogeneous agent model for the analysis of monetary policy. The model is
capable of describing both macroeconomic aggregates and measuring social welfare, accounting
for heterogeneity. We undertake the following extensions, which make the modelled economy a
tractable framework for examining jointly optimal monetary and fiscal policies in the presence of
household heterogeneity.

First, we allow for the existence of government debt. This endogenously determines a steady-

2Acharya et al. (2023) use a fiscal transfer at the point of birth, and apply a wealth tax to existing households, to
ensure all households are ex ante identical at time t=0. In a previous version of their paper these assumptions were
relaxed to include revaluation effects.
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state distribution of wealth, affecting the optimal response to shocks and implying an additional
externality absent in models without government debt. Overlapping generations of households
will decide whether to save by purchasing government debt, not internalizing the impact of these
decisions on the equilibrium real interest rate – a feature not present in representative agent models
and absent in the heterogeneous agent model of Acharya et al. (2023) when government debt is in
zero net supply (see, chapter 9 of Acemoglu 2008, for a discussion).

Second, in exploring the impact of variation in distortionary tax rates, we do not allow the pol-
icy maker access to lump-sum transfers as a policy instrument to finance the government’s activi-
ties. As a result, raising tax revenues to finance government consumption and service government
debt will add to the distortions associated with monopolistic competition. Distortionary taxation

will also impact post-tax inequality generated by idiosyncratic income shocks. Moreover, we do
not employ a subsidy with which to offset the inefficiencies due to monopolistic competition.

Third, we assume that the disutility of supplying labor income decreases with age in order to
mimic economic retirement. This approach generates a desire to save in anticipation of falling
incomes, akin to saving for retirement, and allows our model to feature a plausible level of govern-
ment debt under the Ramsey policy.

Fourth, as we wish to consider the Ramsey policy problem for such an economy, we develop a

measure of social welfare that accounts for both idiosyncratic shocks within generations and inter-
generational inequality driven by the evolution of the wealth distribution over the life cycle. It also
captures how these factors interact and affect the welfare implications of aggregate shocks.

2.3.1 Households

The economy is populated by cohorts of Blanchard-Yaari individuals that have constant survival
probability in any period, 0 < ϑ < 1, see Blanchard (1985). At any time t, an individual i which
belongs to generation born at time s ≤ t derives utility from age-dependent real private consump-
tion cs

t (i) and real government consumption Gt . They also derive disutility from labour supply,
ls
t (i) , and, exogenously, dist-utility rises with age reflecting a desire to retire, Θs

t = κ (t− s). This
gradual withdrawal from the labour market will create a desire to save for ‘retirement’ and will
ensure that the government wishes to issue a plausible level of government debt in the Ramsey
steady-state. Crucially, households face uninsurable idiosyncratic shocks to disutility from labour
ξ s

t (i) ˜N
(
ξ̄ ,σ2

t
)

; these shocks are independent across time and individuals. The variance of this
shock may vary with economic activity. There is no aggregate risk.

We assume CARA preferences so utility takes form:

Us = Ei

∞

∑
t=s

(βϑ)t−s
(
−1

γ
e−γ(cs

t (i)+χGt)−ρe
1
ρ
(ls

t (i)+Θs
t−ξ s

t (i))
)
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Individuals invest in long and short term nominal actuarial bonds A L,s
t (i) and A S,s

t (i). The short-
term bonds are issued at price q̃t , paying out one unit of current one period later. While, following
Curdia & Woodford (2010), the longer-term bonds, issued at price P̃M

t , pay an initial coupon of
one unit of currency which falls to ρs, s period’s later. Longer maturity debt matters as, following
shocks, the revaluation effects on wealth held in the form of longer-term bonds through fluctu-
ations in bond prices will be greater, which, in turn, will affect the impact of that shock on the
distribution of wealth – see Leeper & Leith 2016b for a discussion. Households receive after tax-
wages, (1− τt)Ptwt ls

t (i), where the labor income tax, levied at rate τt , is the the sole source of
government tax revenues in our benchmark model. We also introduce a lump-sum tax, PtTt , which
will used to replace distortionary taxation as a means of eliminating the effects of tax distortions
for comparison purposes only. Each household receives dividends, Ptdt .3 Their budget constraint
at time t is

Ptcs
t (i)+ P̃M

t A L,s
t+1 (i)+ q̃tA

S,s
t+1 (i)

=
(
1+ρP̃M

t
)
A L,s

t (i)+A S,s
t (i) (2.1)

+(1− τt)Ptwt ls
t (i)+Ptdt−PtTt

Each individual is born with zero bond holdings, A L,s
s = A S,s

s = 0 and there is no fiscal trans-
fer to newborns and/or wealth tax on existing households to ensure ex ante equality between all
households as in Acharya et al. (2023).

Define the ratio of the number of each type of assets to the price level as,

aJ,s
t (i) =

A J,s
t (i)
Pt−1

,J ∈ {L,S} (2.2)

and introduce a measure of real assets

As
t (i) =

(
1+ρP̃M

t
)

aL,s
t (i)+aS,s

t (i)
(1+πt)

(2.3)

Then, we rewrite the budget constraint in real terms:

ϑ

Rt
As

t+1 (i) = As
t (i)+ ys

t (i)− cs
t (i) (2.4)

3For simplicity we assume that dividends are shared equally across households. It would be possible to allow
dividends to vary with household labor supply or the state of the economy as in Acharya & Dogra (2020). In our
economy another possibility might be to allow dividends paid to individual households to vary with age, reflecting
re-balancing of portfolios from equities to bonds over the life-cycle.

99



where net household income is defined as,

ys
t (i) = ηt ls

t (i)+dt−Tt , (2.5)

the post-tax wage is
ηt = (1− τt)wt , (2.6)

and we can define the ex ante real interest rate Rt as follows,

ϑ

Rt
= q̃t (1+πt+1) .

Note that the ex post real rate will differ depending on the proportion of short and long-term bonds
the household possesses in the presence of aggregate ‘shocks’ to the perfect foresight equilibrium
path since additional capital gains/losses are possible on long-term bonds when the path of interest
rates differ from what was expected.

The solution to an individual’s optimisation problem can be summarized by the following
Proposition derived in Appendix 2.9.1.

Proposition 4 (Individual’s Optimisation) In equilibrium, the optimal date t consumption and

labour supply decisions of a household i born at date s are,

cs
t (i) = Ct−χGt +µtms

t (i) (2.7)

ls
t (i) = ρ ln(ηt)−Θ

s
t −ργ (cs

t (i)+χGt)+ξ
s
t (i) (2.8)

where

ms
t (i) = As

t (i)−ϕtΘ
s
t +ηt

(
ξ

s
t (i)− ξ̄

)
is demeaned ‘cash-on-hand’, Ct is a measure of common consumption, µt is the ‘marginal propen-

sity to consume (MPC) out of cash-on-hand and ϕt is the after-tax value of the human wealth of an

individual supplying one unit of labor supply. This latter variable is used to value the income lost

to retirement within households and for the population as a whole. These evolve according to

1
µt

=
ϑ

Rt µt+1
+(1+ργηt) (2.9)

ϕt = ηt +
ϑ

Rt
ϕt+1 (2.10)

Ct =−
µtϑ

Rt µt+1γ
ln(βRt)+

ϑ µt

Rt µt+1
Ct+1−

ϑ µt

Rt µt+1

γ

2
µ

2
t+1η

2
t+1σ

2
t+1 (2.11)

−µt
ϑ

Rt
κϕt+1 +µt

(
ηt
(
ρ log(ηt)+ ξ̄

)
+dt−Tt +χGt

)
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where Rt =
ϑ

q̃t(1+πt+1)
is real interest rate.

The household’s optimization implies that their consumption equals a measure of consumption,
Ct , which only depends on aggregate variables, after adjusting for the substitutability between
private and public consumption in utility, χGt , plus a term that is idiosyncratic, µtms

t (i). This final
term depends on household i’s cash-in-hand, ms

t (i), which comprises their financial assets, As
t (i),

minus the age-dependent loss of human wealth due to retirement that period, ϕtΘ
s
t , and the extent

to which their labor income varies due to their idiosyncratic shock to labor disutility, differing
from the population average, ηt

(
ξ s

t (i)− ξ̄
)
. Household labor supply then depends positively on

the post-tax real wage, negatively on consumption, with adjustments made for both age-dependent
retirement and idiosyncratic shocks to the disutility of labor supply.

A negative shock to labor supply, ξ s
t (i) < ξ̄ , reduces household income and results in a fall

in consumption, where ∂cs
t (i)

∂ξ s
t (i)

= µtηt = µt (1− τt)wt . This fall will be greater the higher the
marginal propensity to consume out of cash-on-hand, µt , and the greater the post-tax real wage.
Households are therefore more insulated from the direct impact of the shock the higher the tax
rates. As a result of the fall in consumption, they will work harder, where ∂ ls

t (i)
∂ξ s

t (i)
= 1− γρµtηt =

1− γρµt (1− τt)wt < 1. Again, a lower marginal propensity to consume and a higher tax rate
will reduce the household’s desire to maintain consumption by working harder in the period of
the shock. Aside from working harder, the household can also maintain consumption through
borrowing. Its ability to do so is implicit in the marginal propensity to consume.

We can iterate the marginal propensity to consume out of cash-on-hand forwards to obtain:

µt

Rt
=

[
∞

∑
s=0

ϑ s (1+ργ (1− τt+s)wt+s)

∏
s+1
j=1 Rt+ j−1

]−1

. (2.12)

This formula is the same as Acharya et al. (2023), except it incorporates dependency on the future
post-tax real wage rate. It indicates that the propensity to consume increases with interest rates but
decreases with future post-tax wages. Therefore, after experiencing a negative idiosyncratic shock
to labor supply, which reduces their cash-on-hand, ms

t (i), households can maintain consumption
closer to Ct when the marginal propensity to consume is low. This occurs when interest rates are
low, making borrowing to smooth consumption less costly, or when post-tax wages are expected
to be higher in the future, making it less expensive to repay any borrowing. Additionally, the
presence of the tax rate implies that a lower tax rate makes it less costly (in utility terms) to increase
future labor supply to pay off any debt incurred to smooth consumption. Thus, future distortionary
taxation inhibits self-insurance, although high tax rates at the time of the shock mitigate its direct
impact, as part of the lost income would have been taxed anyway.

Meanwhile, the component of household consumption driven by aggregate variables, Ct , can
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be iterated forwards to obtain:

Ct =−
1
γ

∞

∑
s=0

Qt+s,t
µt

µt+s
ln(βRt+s)−

γµt

2

∞

∑
s=0

Qt+s,t µ
2
t+sw

2
t+s(1− τt+s)

2
σ

2
t+s

+µt

∞

∑
s=0

Qt+s,tyt+s−κµt

∞

∑
s=1

Qt+s,tϕt+s. (2.13)

The first term has the same interpretation as in Acharya & Dogra (2020), capturing the impact
of variations in interest rates relative to the impatience of households. If interest rates are typ-
ically higher than the rate of time preference, current consumption will be lower as households
increase savings and cut current consumption. The discount factor, Qt+s,t =

ϑ s

∏
s−1
j=0 Rt+ j

, accounts

for both the interest rate on financial assets and the probability of death, 1− ϑ . The second
term is attributable to precautionary savings. A higher variance of idiosyncratic shocks, σ2

t+s,
increases the variance of post-tax income, w2

t+s(1− τt+s)
2σ2

t+s, which, after applying the marginal
propensity to consume, captures the variance in consumption across households, µ2

t+sw
2
t+s(1−

τt+s)
2σ2

t+s. The third term represents the discounted value of per capita post-tax income from la-
bor, dividends, and transfers, after adjusting for the utility generated by public consumption, yt =(
ηt
(
ρ log(ηt)+ ξ̄

)
+dt−Tt +χGt

)
. Lastly, the equation includes the discounted value of the in-

come lost due to the gradual retirement of the population throughout their working lives. Taxation
affects this measure of aggregate consumption through its impact on the marginal propensity to
consume, as discussed above, positively by reducing the variance of post-tax income but nega-
tively by reducing the level of post-tax income and, therefore, the discounted value of that income.

It follows that net income (2.5) can be written as

ys
t (i) = ηt (ρ log(ηt)+ξ

s
t (i))−ηtΘ

s
t −ργχηtGt−ργηtcs

t (i)+dt−Tt . (2.14)

Aggregation of the household budget constraint yields

ϑ

Rt
At+1 = ϑAt + yt− ct , (2.15)

where

At =

(
1+ρP̃M

t
)

aL
t +aS

t

1+πt
,

and aJ
t is an aggregation of long term (J = L) and short term (J = S) bonds.

The straightforward aggregation of income (2.14) yields:

yt = ηt
(
ρ log(ηt)+ ξ̄

)
− κϑ

(1−ϑ)
ηt−ργηt χGt−ργηtct +dt−Tt , (2.16)
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and aggregation of (2.7) yields

ct = Ct−χGt +µtϑ

(
At−

κ
1−ϑ

ϕt

)
. (2.17)

This latter expressions indicates that per capita consumption equals the consumption measure, Ct ,

driving individual household consumption in (2.7), after adjusting for the substitutability between
private and public consumption, χGt , and the extent to which, in aggregate, households have
successfully saved for retirement. At >

κ
1−ϑ

ϕt implies that household financial wealth exceeds the
loss of human wealth due to retirement across the population.

Aggregated first order conditions for the individuals’ problem yield the following relationships,
derived in Appendix 2.9.3.

Proposition 5 (Aggregated Individuals’ Optimisation) In equilibrium, the optimal date t the

aggregate total consumption and labour supply decisions are:

xt =−
1
γ

log(βRt)+ xt+1 +µt+1 (1−ϑ)At+1−
γ

2
µ

2
t+1η

2
t+1σ

2
t+1−κµt+1ϕt+1, (2.18)

nt = ρ logηt−
κϑ

1−ϑ
+ ξ̄ −ργxt , (2.19)

xt = ct +χGt , (2.20)

Ct = xt−µtϑ

(
At−

κ
(1−ϑ)

ϕt

)
. (2.21)

The dynamics of xt resemble that of consumption in a representative agent model, but with
notable differences. Typically, consumption is expected to grow whenever the interest rate exceed
the rate of time preference, βRt > 1. In other words, consumption jumps down when interest
rates unexpectedly rise, as the discounted value of future post-tax income across the economy
falls. Consumption then recovers as interest rates return to normal levels. However, there is an
additional term, µt+1 (1−ϑ)At+1, attributable to the aggregation across finitely-lived generations.
This term would not exist if households were infinitely lived and ϑ = 1. Instead, finite lives
imply that government debt (which is mapped to households assets as Bt = ϑAt) are net assets
for households. Households currently alive do not expect paying for all the surpluses backing
government debt, implying that any increase in those assets increases consumption. As above, the
term γ

2 µ2
t+1η2

t+1σ2
t+1 measures the variance of consumption across households due to idiosyncratic

shocks, providing a motive for precautionary saving, which in turn reduces current consumption.
Finally, consumption is reduced by the ongoing loss of post-tax income due to retirement.

It is helpful to consider the steady-state of this relationship to see how these additional factors
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influence interest rates:

1
γ

log(βR) = µ (1−ϑ)(A− κ
1−ϑ

ϕ)− γ

2
µ

2
η

2
σ

2. (2.22)

In the absence of idiosyncratic risk or finite lives, the steady-state interest rate in a representative
agent economy would be consistent with household preferences, βR = 1. However, the desire
for precautionary savings drive down the steady-state interest rate relative to these preferences,
while the accumulation of assets beyond what is needed to fund retirement in an OLG economy,
A > κ

1−ϑ
ϕ , raises interest rates. If the government could provide sufficient assets for households to

satiate their desire for precautionary savings and their need to smooth consumption in retirement,
then the steady-state interest rate would equal the households rate of time preference, provided :

B− κ
1−ϑ

ϕ =
1
2

ϑ

1−ϑ
γµη

2
σ

2. (2.23)

This becomes a relevant benchmark when considering Ramsey policy below.

2.3.2 Firms

There is a continuum of monopolistically competitive firms. Each firm produces a differentiated
product according to the production technology:

Yt ( j) = ztnt ( j) , (2.24)

where zt is the level of aggregate productivity.
They face cost of price adjustment a la Rotemberg (1982). In the absence of aggregate risk,

firm j solves the following optimization problem

max
Pt( j)

∞

∑
t=0

β
t

((
Pt ( j)

Pt
Yt ( j)−wtnt ( j)

)
− Φ

2

(
Pt ( j)

Pt−1 ( j)
−1
)2

Yt

)
,

subject to monopolistic demand for its product,

Yt ( j) =
(

Pt ( j)
Pt

)−εt

Yt ,

and production function (2.24).
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The profit optimization yields (see Appendix 2.9.4) the following nonlinear Phillips curve,

πt (1+πt) =
1− εt + εt

wt
zt

Φ
+βπt+1 (1+πt+1)

Yt+1

Yt
, ,

and any profit is distributed as a dividend,

dt = (Yt−wtnt)−
Φ

2
π

2
t Yt . (2.25)

2.3.3 Government

The government issues nominal long term and short term bonds, for which the maturity matches
that of the actuarial bonds used by households. The government budget constraint in nominal terms
is

PM
t BL

t+1 +qtB
S
t+1 =

(
1+ρPM

t
)
BL

t +BS
t +PtGt− τtPtwtnt−PtTt

where PM
t is price of long-term bonds, and qt is price of short term bonds. As noted above, the

lump sum taxes, PtTt , are generally set to zero and only used as a replacement for distortionary tax
revenues, τtPtwtnt , when we wish to remove the impact of distortionary taxation on optimal policy.

This can be re-written in real terms,

(1+πt+1)qtBt+1 = Bt +Gt− τtwtnt−Tt (2.26)

where

Bt =

((
1+ρPM

t
)

bL
t +bS

t
)

(1+πt)

and

bJ
t =

BJ
t

Pt−1
,J ∈ {L,S}.

2.3.4 Financial Intermediaries

Financial intermediaries trade actuarial and government bonds. The real profit of intermediaries is
the difference between total bonds and total amount of actuarial bonds in the economy in t +1 :

Π =
(
1+ρPM

t+1
)

bL
t+1 +bS

t+1−
(
1+ρP̃M

t+1
)

ϑaL
t+1−ϑaS

t+1, (2.27)

where bJ
t+1 are total government bonds and ϑaJ

t+1 are total actuarial bonds at time t + 1, i.e.
ϑaJ

t+1 = (1−ϑ)∑
t+1
s=−∞ ϑ t+1−s ∫ 1

0 aJ,s
t+1 (i)di.
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The intermediaries maximize (2.27) subject to the constraint,

−P̃M
t aL

t+1− q̃taS
t+1 +PM

t bL
t+1 +qtbS

t+1 ⩽ 0. (2.28)

and the optimization yields

1
q̃t

=

(
1+ρP̃M

t+1
)

P̃M
t

, (2.29)

q̃t = ϑqt , (2.30)

1
qt

=

(
1+ρPM

t+1
)

PM
t

, (2.31)

such that the intermediaries’ profits are zero and the ex ante returns on short and long-bonds are
equalized. It is important to note, however, that this does not imply that the ex post real interest
rates will be equalized in the presence of one-off shocks to the perfect foresight equilibrium path.

We denote the short-term nominal interest rate as,

1
1+ it

= qt , (2.32)

and the real interest rate is,

Rt =
ϑ

q̃t (1+πt+1)
=

1
qt (1+πt+1)

=
1+ it

1+πt+1
. (2.33)

2.3.5 Market Clearing

We use individuals’ budget constraints (2.15), the government budget constraint (2.26), profit of
financial intermediaries (2.27), aggregation of income (2.5) and the profit of monopolistic firms
(2.25) to obtain the resource constraint,

Yt = ct +Gt +
Φ

2
π

2
t Yt . (2.34)

Finally, using (2.27) we can rewrite consumption decision (2.21) in terms of aggregate debt,

Ct = ct +χGt−µt

(
Bt−

ϑκ
1−ϑ

ϕt

)
. (2.35)
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2.3.6 Private Sector Equilibrium

The dynamic system which determines private sector equilibrium {xt ,Yt ,πt ,ηt ,wt ,Bt ,PM
t ,Rt ,µt ,ϕt ,σ

2
t }

given policy {it ,Gt ,Tt ,τt} and deterministic disturbances zt and εt can be written as follows

xt =−
1
γ

log(βRt)+ xt+1 +
(1−ϑ)

ϑ
µt+1Bt+1−

γ

2
µ

2
t+1η

2
t+1σ

2
t+1−κµt+1ϕt+1, (2.36)

πt (1+πt) =
1− εt + εt

wt
zt

Φ
+βπt+1 (1+πt+1)

Yt+1

Yt
, (2.37)

1
µt

=
ϑ

Rt µt+1
+(1+ργηt) , (2.38)

(1+πt+1)qtBt+1 = Bt +Gt− τtwtnt−Tt , (2.39)

Yt

zt
= ρ logηt + ξ̄ −κ

ϑ

1−ϑ
−ργxt , (2.40)

ηt = (1− τt)wt , (2.41)

Yt = xt +(1−χ)Gt +
Φ

2
π

2
t Yt , (2.42)

PM
t Rt =

(
1+ρPM

t+1
)

(1+πt+1)
, (2.43)

Rt =
1+ it

1+πt+1
, (2.44)

ϕt = ηt +
ϑ

Rt
ϕt+1, (2.45)

σ
2
t = σ

2 exp(2φ (Yt−Y )) , (2.46)

where in the last equation, following Acharya & Dogra (2020), we assumed that risk is procyclical
if φ > 0 and countercyclical if φ < 0. We shall explore this in Section ?? below, when examining
the response to aggregate shocks.

2.3.7 Social Welfare Function

We define the social welfare function at time t = 0 as:

W0 = (1−ϑ)

(
0

∑
s=−∞

ϑ
−s
∫ 1

0
W s

0 (i)di+
∞

∑
s=1

β
s
∫ 1

0
W s

s (i)di

)
, (2.47)
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where the first term represents the utility of generations that are alive at time zero. The currently
alive are treated equally after accounting for their relative size. The second term represents the
utility of unborn generations, with s > 0, and the utility of each such generation is discounted with
weight β s. Appendix 2.9.6 shows that this welfare measure can be written as follows:

W0 =
∞

∑
t=0

β
tUt ,

where
Ut =−

1
γ
(1+ γρηt)e−γxt St , (2.48)

and St satisfies the recursion:

St =
(

ϑe−
γ

ϑ
Wt St−1 +1−ϑ

)
eγWt e

1
2 γ2µ2

t η2
t σ2

t . (2.49)

Here
Wt = µt

(
Bt−

ϑκ
(1−ϑ)

ϕt

)
(2.50)

measures the extent to which society has succeeded in financing its retirement. It extends the form
of the welfare function considered in Acharya et al. (2023) by accounting for inter-generational
inequality as well as the distribution of consumption driven by idiosyncratic shocks. The first
part of the social welfare function captures the utility generated by per capita levels of private and
public consumption, less the disutility of labor supply. The second element adjusts that measure
for the welfare effects of inequality, driven by both idiosyncratic shocks and the distribution of
consumption and labor supply across generations due to the endogenous accumulation of assets
and age-related withdrawal from the labor market.

To gain intuition for these effects, it is helpful to consider the steady-state of the measure of the
social costs of inequality, St . In the steady-state, the expression becomes:

S =
(1−ϑ)eγW e

1
2 γ2µ2η2σ2

(1−ϑe−γ
(1−ϑ)

ϑ
W e

1
2 γ2µ2η2σ2

)
. (2.51)

Taking the partial derivative of this measure of inequality with respect to W yields:

∂S
∂W

= γS(1− (1−ϑ)

ϑ
((1−ϑe−γ

(1−ϑ)
ϑ

W e
1
2 γ2µ2η2σ2

)−1−1). (2.52)

The choice of W that would minimize steady-state inequality, treating µ2η2 as given, would be:

W =
1
2

ϑ

1−ϑ
γµ

2
η

2
σ

2. (2.53)
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This would be insufficient to eliminate inequality but would facilitate a degree of self-insurance by
providing assets for households to undertake both precautionary savings and to save for retirement.
Recall that interest rates are consistent with the household’s rate of time preference when this exact
condition holds – equation (2.23). Therefore, this level of debt is also the one which ensures that the
steady-state equilibrium real interest rates equals the households’ rate of time preference, R= β−1.
However, it is important to note that this will not be consistent with the Ramsey optimum since
the Ramsey policy maker will also take account the endogeneity of µ2η2 and be concerned with
efficiency as well as equity. Increasing W implies higher taxes to sustain the higher debt level and,
by raising interest rates, affects the marginal propensity to consume which reduces the ability of
households to borrow against future income in the face of negative idiosyncratic shocks. Therefore,
in steady-state, even a policy maker with only a concern for inequality would not necessarily
support this level of debt. We shall see below that the Ramsey policy maker delivers a level of debt
which falls short of ensuring R = β−1, even if their objective were to minimize inequality. They
would then wish to reduce debt further if they also have a concern for efficiency. We explore these
trade-off in the next section.

We can also consider special cases to gain further insight. If there were no idiosyncratic shocks,
but there was potential inter-generational inequality due to age-related retirment, then this would
imply steady-state inequality of:

S =
(1−ϑ)eγW

(1−ϑe−γ
(1−ϑ)

ϑ
W )

, (2.54)

and we could eliminate inequality if W = 0 so that B= ϑκ
(1−ϑ)ϕ . In other words, by issuing sufficient

debt to absorb the desire to save for retirement and ensuring interest rates are the same as the
households’ rate of time preference, the policy maker can eliminate steady-state inter-generational
inequality. Households would save by buying government bonds to ensure they had sufficient
assets to maintain consumption even as their income falls due to retirement. This would achieve
consumption equality across generations.

If, however, we reintroduce idiosyncratic shocks while the policy maker balanced the steady-
state level of debt with the discounted value of the income lost through phased retirement, such
that W = 0, then the inequality measure would reduce to:

S =
(1−ϑ)e

1
2 γ2µ2η2σ2

(1−ϑe
1
2 γ2µ2η2σ2

)
, (2.55)

so that when σ2 > 0, then S > 1 due to the costs of idiosyncratic shocks considered by Acharya &
Dogra (2020). This situation would imply that R < β−1 as households still have an additional mo-
tive to undertake precautionary savings, beyond saving for retirement. In the absence of sufficient
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assets to fulfill that desire, interest rates will lie below the households’ rate of time preference. We
shall explore where the Ramsey policy maker chooses to set the steady-state level of debt in the
light of these trade-offs in the next section.

2.4 Optimal Policy

The policymaker seeks to maximize

∞

∑
t=0

β
t
(
−1

γ
(1+ γρηt)Sξ

t exp(−γxt)

)
, (2.56)

subject to the system describing the private sector equilibrium (2.36)-(2.46), the recursion of in-
equality measure (2.49), and the definition (2.50).

In the policy objective (2.56), we can set parameter ξ to either zero or one. When it is one then
the policy maker cares about both equity and efficiency consistent with the micro-founded social
welfare function derived above. When ξ is zero, then the policymaker is concerned only with
efficiency, not equity. We shall also consider another scenario in which the policy maker cares
only about equity and aims to minimize

∞

∑
t=0

β
tSt . (2.57)

We assume that the policymakers have access to a commitment technology and present all first
order conditions in Appendix 2.9.8.

2.5 Calibration & Simulations

The model is calibrated to a quarterly frequency. The calibration of most parameters is standard
and generally follows the one in Acharya et al. (2023). We calibrate the household discount rate
β = (1.02)−1/4 to match the real interest rate of 2% per annum, which is the average in the US over
the Great Moderation period (1984-2021). The coefficient of relative risk aversion is set to γ = 2,
based on evidence in Hall (1988), Campbell & Mankiw (1989) and Attanasio & Weber (1993,
1995), while the Frisch elasticity of substitution is set at ρ = 1/2 following empirical evidence in
e.g., Fagereng et al. (2017), Christelis et al. (2015).

Fiscal parameters are based on data over the same period. Specifically, the coefficient ρ sets
the maturity of government debt to be 20 quarters, which is a close match of the 5.4 years observed
in the data (Fund 2016). The parameter G generates a spending share G/Y = 0.15, see IMF IFS
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data.4 The relative weight on government consumption in utility, χ, is set to 0.05, which is a free
parameter that ensures that government expenditure does not get fully wasted.

The elasticity of substitution between goods, ε, is set to 11 based on evidence in Chari et al.
(2000) and corresponds to an approximate 10% mark up.

Our model features nominal rigidities following Rotemberg (1982). The majority of recent pa-
pers in the macro literature that calibrate their frameworks for the US economy choose prices
to change every 10 months (see Klenow & Kryvtsov 2008 and Klenow & Malin 2010). As
the Rotemberg (1982) and Calvo (1983) models generate isomophic linearized New Keynesian
Phillips curves, the equivalent Rotemberg model parameter is Φ = 106.4. Parameter ξ̄ is set to 2,
which normalizes output to be close to one.

We choose the survival rate to be consistent with an average lifespan of 80 years, see SSA data.5

The declining labor supply efficiency parameter, κ, is chosen to be 0.0011 which is consistent
with 20 years of retirement, in line with the US data over the last 50 years (Center for Retirement
Research (2024)).

We follow Guvenen et al. (2014), who document the standard deviation of one-year growth
rate of log earnings to be about 0.5. This yields σ = 0.33 for the baseline calibration.

Finally, we calibrate the persistence of deterministic disturbances for productivity and elasticity
of substitution to be 0.95 and 0.9 respectively. This again follows Acharya et al. (2023) who adopt
the empirical estimates of Bayer et al. (2020). All computations were implemented in the RISE
toolbox (Maih 2015).

2.6 Steady State

In general, we need to solve the steady-state of the fully optimal policy maker’s problem numer-
ically. However, there are some interesting special cases which can be solved analytically. The
first is in the absence of idiosyncratic shocks, σ2 = 0 and where there fiscal policy instrument is
a lump-sum rather than distortionary tax, then the steady-state of the economy under the policy
maker’s plan under commitment is described by the following proposition.

Proposition 6 With access to lump sum taxes as a policy instrument, then in the absence of id-

iosyncratic shocks, the steady-state is given by,

R =
1
β

, W = 0, S = 1, π = 0, w = η =
ε−1

ε
, ϕ =

Rη

(R−ϑ)
, B =

ϑκ
(1−ϑ)

ϕ , and PM =
1

R−ρ

4The relevant data series are NGDP_XDC and NCGG_XDC.
5See Period Life Table at www.ssa.gov.
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Here the policy maker would choose to eliminate inequality by issuing sufficient debt to fa-
cilitate households saving for retirement by the right amount to ensure consumption is constant
in steady-state, B = ϑκ

(1−ϑ)ϕ . As discussed above this will ensure that the steady-state real in-
terest rate is consistent with the households’ rate of time preference, R = β−1. Issuing more
(less) debt than that would drive interest rates above (below) households’ rate of time preference
and result in consumption rising (falling) over an individual household’s life, creating undesirable
inter-generational inequality.

If we then maintain the assumption that there are no idiosyncratic shocks, σ2 = 0, but the
available fiscal instrument is a distortionary tax on labor income, then the Ramsey policy maker
would only wish to eliminate inter-generational inequality when there is no age-related increase in
the disutility of supplying labor, κ = 0.

Proposition 7 When the available fiscal policy instrument is a distortionary tax on labor income,

then R = 1
β

only holds in the Ramsey steady-state in the absence of both idiosyncratic shocks,

σ2 = 0, and retirement, κ = 0.

This special case implies that the policy maker does not issue debt in steady-state (B = 0). With
phased retirement (κ > 0), in order to ensure interest rates are consistent with the households’ rate
of time preference, the policy maker would need to issue debt which is costly when debt service
costs must be financed through distortionary taxation.

2.7 Discussion

We begin our numerical analysis with an exploration of the steady-state of the model and the
trade-offs between equity and efficiency faced by the Ramsey policy-maker. In the first column
of Table 2.1 we begin with the Ramsey steady-state of our benchmark economy, which features
jointly optimal monetary and fiscal policy. The fiscal policy instrument is a distortionary labor
income tax. Households are subject to idiosyncratic income shocks and must plan for a gradual
withdrawal from the labor market over their lifetimes. The second column repeats this exercise
but removes fiscal policy, leaving the Ramsey planner with only monetary policy as a tool to affect
the equilibrium. The third column returns to the benchmark economy but investigates the steady-
state that would occur if the Ramsey policy did not prioritize addressing inequality. The final
column considers the opposite extreme, where the policy maker focuses solely on equity, seeking
to minimize ∑

∞
t=0 β tSt .

The first point to note, when comparing columns (1) and (2), is the ability of fiscal policy to mit-
igate inequality. Without fiscal policy, individual households’ efforts to save for both precautionary
reasons and retirement drive down the equilibrium real interest rate below the households’ rate of
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Table 2.1: Steady State values in HANK Economy under Commitment (time- inconsistent policy).

Fully Optimal Monetary model Commitment under Commitment under
policy (ξ = 1) Optimal Policy Efficiency (ξ = 0) Equity

(1) (2) (3) (4)
Net real interest
rate, % per annum

R 1.994% 1.956% 1.980% 1.997%

Propensity to con-
sume

µ 0.00507 0.00459 0.00503 0.00507

Per Capita Con-
sumption

c 0.832 0.960 0.834 0.832

Output Y 0.980 0.960 0.982 0.980
Inflation rate, % pa π 0% 0% 0% 0%
Tax rate τ 0.179 – 0.174 0.180
Debt minus Lost
retirement Income

W -0.0013 -0.0133 -0.0058 -0.0004

Debt to output ratio PMB
4Y 53% – 31% 57%

Inequality S 1.00089 1.00147 1.00096 1.00088
Social Welfare U -0.16219 -0.13959 -0.16213 -0.16221

time preference, R < β−1. Since there are no assets available in aggregate for households to hold,
the desire to save for these two motives forces equilibrium returns on saving to fall, discouraging
saving behavior. With the introduction of fiscal policy, the government issues a significant amount
of debt, facilitating household saving and causing interest rates to rise. However, the amount of
debt issued is insufficient to fulfill households’ desires to save for retirement, even before consid-
ering their additional need for precautionary saving. As a result, interest rates do not reach the
households’ rate of time preference but fall slightly short. This shortfall is partly because the taxes
needed to service the debt create an efficiency-reducing distortion in the economy. This implies a
trade-off between equity and efficiency for the Ramsey planner. This trade-off is more clearly seen
in the final two columns, which contrast outcomes where the Ramsey policy maker focuses solely
on efficiency and equity, respectively. In column (3), where the policy maker focuses solely on per
capita averages (setting ξ = 0) and is indifferent to inequality, debt levels at 31% of GDP are well
below the 53% level adopted by the Ramsey policy maker maximizing social welfare. However,
even when the policy maker’s sole objective is minimizing inequality, as in column (4), they still
fall slightly short of issuing enough debt to ensure R = β−1. In fact, when inequality is the sole
policy objective, the government still does not generate enough debt to allow households to fully
save for retirement, as W < 0 and debt is only 4% of GDP higher than in the Ramsey policy case,
at 57% of GDP.

These results are explored further in Figure 2.1. These plot the steady-state value of variables
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Figure 2.1: Debt-to-GDP Ratio and Steady-State Outcomes

given an equilibrium without inflation, π = 0, but conditional on a given steady-state debt-to-GDP
ratio. More specifically, to construct this figure, we exogenously set the steady-state inflation to
zero and create a grid for the annualized debt-to-GDP ratio from 0 to 100. We then solve the
model to find its steady state as it now has as many equations as unknowns. This gives us the
blue line in the picture. However, we need to draw the reader’s attention to the fact that in the
three specifications we consider (fully optimal, Efficiency, Equity), the policy maker pursues both
optimal monetary and optimal fiscal policy under commitment. The optimal policy specifications
will all lie on this line as they deliver zero inflation. In contrast, in the monetary model, there is
no fiscal side, and as such, the problem of the fully optimizing policy maker under commitment is
fundamentally different. Therefore, it comes as no surprise that, for the monetary model, when the
annualized debt-to-GDP ratio is set at zero, the marker for the variables of interest does not lie on
the blue line but rather on the Y-axis. Markers are placed on this line, which denote equilibrium
outcomes under the Fully Optimal policy under commitment (Ramsey)(star), optimal policy under
commitment which is only concerned with per capita averages (hollow circle), optimal policy un-
der commitment which is only concerned with inequality (inverted triangle), and the steady-state
of the model without any fiscal policy (cross). The relative position of the markers implies that
the trade-off between efficiency and equity is resolved firmly towards equity. Given the decline in
labor income as households age, and the subsequent desire to save in anticipation of this ‘retire-
ment’, the policy maker who is concerned with inequality wishes to issue debt to facilitate saving

114



for retirement and prevent the significant inter-generational inequality that would emerge if there
were insufficient assets to smooth consumption over the life-cycle. This leads to steady-state debt
levels of 53% of GDP under Ramsey policy, which falls only slightly short of the 57% debt ratio
which would occur if the policy maker was solely concerned with inequality. It is interesting to
note that even the debt level associated with a desire to minimize inequality is less than needed to
drive interest rates to 2% and supply enough assets to support households’ desire to save for both
retirement and precautionary reasons. The policy maker issues slightly lower debt than this bench-
mark level even when they only care about inequality, since lower interest rates help households
smooth consumption in the face of idiosyncratic shocks. In contrast to the case where minimizing
inequality is the primary policy objective, a policy maker concerned with efficiency alone would
wish to limit debt issuance to 31% of GDP in order to lower the output losses due to distortionary
taxation. The policy maker does not go beyond this by lowering debt further, as the fiscal consol-
idation that would be implied by further debt reduction is more costly than the steady-state gain
from reduced debt-service costs.

As discussed in Propositions 1-3, the desirability of achieving the golden rule interest rate of
R = β−1 depends on the existence of idiosyncratic shocks, the availability of lump-sum taxation,
and the need to save for retirement. Recall that the inclusion of phased retirement augments the
household desire to save. Now, in addition to the precautionary savings motive where households
save to (partially) mitigate the effects of an adverse idiosyncratic shock, they also save to smooth
consumption over their life- cycle. Given our parametrisation (ϑ = 0.9961, κ = 0.0011), an av-
erage household lives for about 80 years and spends approximately 20 of them in retirement. As
such, households need to rely on their financial income for one fourth of their lives. As such, the
assumption gradual withdrawal from the labour market, creates a sufficiently strong savings mo-
tive, enough to generate plausible levels of the aggregate supply of government bonds. Table 2.2
explores these factors further. The first two columns consider the case where the policy maker has
access to lump-sum taxation, with and without labor force participation declining with age. The
final two columns do the same, but in these, the fiscal instrument is a distortionary tax rate. The
figures in brackets are for the same economy, but without idiosyncratic shocks, σ2 = 0. We can
see that without idiosyncratic risk, the policy maker issues sufficient debt to ensure R = β−1 and
eliminate inequality across the first three columns, but does not do so when saving for retirement
becomes relevant. The reason is that retirement requires a sizeable issue of debt to avoid household
saving driving down the equilibrium interest rate, but that debt must be serviced through increases
in distortionary taxation which are costly in terms of efficiency.

When we consider the same variants, but with idiosyncratic risk, the policy maker always fails
to drive interest rates to R = β−1. In fact, they never issue sufficient debt to allow households
to maintain consumption in retirement, even when taxes are lump-sum. The reason is there is a
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need to suppress interest rates below the households’ rate of time preference to facilitate individual
households’ response to idiosyncratic shocks. When taxes are distortionary, the costs of issuing
debt are higher and this inhibits the policy maker further in the sense that interest rates fall further
below households’ rate of time preference.

Table 2.2: Steady State Values in HANK Economy. Corresponding RANK values are in parenthe-
ses.

Lump Sum Tax Income Tax
κ = 0 κ = 0.0011 κ = 0 κ = 0.0011

(1) (2) (3) (4)
Net real interest rate, % p.a. R 1.997%

(2%)
1.997%

(2%)
1.997%

(2%)
1.994%
(1.997%)

Propensity to consume µ 0.00464
(0.00464)

0.00464
(0.00464)

0.00503
(0.00503)

0.00506
(0.00507)

Consumption per capita c 0.8960
(0.8960)

0.8819
(0.8819)

0.848580
(0.8510)

0.8325
(0.8323)

Output Y 1.0440
(1.0440)

1.0299
(1.0299)

0.9991
(0.9990)

0.9505
(0.9803)

Inflation rate, % p.a. π 0%
(0%)

0%
(0%)

0%
(0%)

0%
(0%)

Tax rate τ −
(−)

−
(−)

0.164
(0.165)

0.179
(0.180)

Lump Sum Taxes T 0.147
(0.148)

0.162
(0.162)

−
(−)

−
(−)

Debt minus Lost retirement Income W −0.0005
(0.0)

−0.0005
(0.0)

−0.0003
(0.0)

−0.0013
(−0.0010)

Debt to output ratio, PMB
4Y −2.8%

(0%)
66.5%
(69.3%)

−1.7%
(0%)

53.3%
(54.9%)

Inequality S 1.0011
(1.0000)

1.0011
(1.0000)

1.0009
(1.0000)

1.0009
(1.000002)

Social Welfare U −0.1562
(−0.1560)

−0.1606
(−0.1604)

−0.1575
(−0.1574)

−0.1622
(−0.1621)
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2.8 Conclusions

We extended the overlapping-generation heterogeneous-agent model from Acharya et al. (2023),
by developing the fiscal side. Specifically, we introduced long-term government debt, financed by
distortionary labor income taxes, which evolves over time in accordance with optimal policy. By
further assuming that the disutility of labor supply increases with age, we mimic a desire to save
for retirement, which augments the motive for precautionary savings. This leads, in equilibrium,
to the government optimally issuing plausible levels of government debt to facilitate such saving
behaviour. However, this debt issuance is insufficient to reach the ‘golden rule’ level of debt, which
would equate interest rates with households’ rate of time preference. Instead, the Ramsey policy
maker issues less debt than this level, aiming to suppress interest rates to facilitate households’
ability to smooth consumption in the face of idiosyncratic shocks. The extent to which debt falls
short of the golden rule benchmark depends on whether taxation is lump-sum or distortionary,
the magnitude of the desire to save for retirement, and variance of idiosyncratic shocks. Without
idiosyncratic shocks, we would achieve the golden rule level of debt if taxes were lump sum or
if there was no desire to save for for retirement when taxation is distortionary. With idiosyncratic
shocks, we would never issue this much debt, and households would not be able to fully maintain
consumption in retirement. In this sense, the Ramsey policy maker faces a trade-off between inter-
generational inequality due to retirement and within-generation inequality due to idiosyncratic
shocks. Exploring the trade-off between both forms of equity and efficiency in maximizing social
welfare, our numerical results suggest that this is resolved substantially in favor of equity, with debt
levels significantly above those a policy maker concerned only with efficiency would generate.

Introducing fiscal policy to the heterogeneous agent model also highlights the role fiscal policy
plays in mitigating inequality. As stressed above, debt plays an important role in facilitating pre-
cautionary and retirement saving. The distortionary labor taxes used to finance that debt also serve
to mitigate inequality by reducing the impact of idiosyncratic shocks on net income, although
high future tax rates will reduce the future post-tax income that households can borrow against
to smooth consumption in the face of negative idiosyncratic shocks. Examining the response to
technology shocks, we find that a policy maker who only cares about efficiency would relax both
monetary and fiscal policies in response to a positive aggregate technology shock – a version of
the divine coincidence. However, as soon as the policy maker cares about inequality, the divine
coincidence is broken. In a monetary-only model, monetary policy shifts away from inflation sta-
bilization towards output stabilization and policy is more relaxed than it would be in the RANK
economy in the face of an identical positive technology shock, to the extent that inflation rises.
This result is discussed in Acharya et al. (2023). In contrast, when we introduce fiscal policy, the
break from the divine coincidence operates in the opposite direction. The movement in tax rates
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designed to facilitate consumption smoothing are applied alongside a monetary policy that implies
inflation falls. These fiscal movements are more pronounced the greater the desire to mitigate in-
equality and the longer maturity of the issued debt stock.
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2.9 Appendix

2.9.1 Proof of Proposition 1

Proof. We form the following Lagrangian

Ls = Ei

∞

∑
t=s

(βϑ)t−s
(
−1

γ
e−γ(cs

t (i)+χGt)−ρe
1
ρ
(ls

t (i)+Θs
t−ξ s

t (i))

+λ
s
t (i)

((
cs

t (i)−ηt ls
t (i)−dt +Tt + P̃M

t aL,s
t+1 (i)+ q̃ta

S,s
t+1 (i)

)
(1+πt)

−
(
1+ρP̃M

t
)

aL,s
t (i)−aS,s

t (i)
))

so the FOCs are

0 = e−γ(cs
t (i)+χGt)+λ

s
t (i)(1+πt)

0 =−e
1
ρ
(ls

t (i)+Θs
t−ξ s

t (i))−λ
s
t (i)ηt (1+πt)

0 = λ
s
t (i) P̃M

t (1+πt)−Ei
(
1+ρP̃M

t+1
)

βϑλ
s
t+1 (i)

0 = λ
s
t (i) q̃t (1+πt)−βϑEiλ

s
t+1 (i)

from where (there is no aggregate risk)

λ
s
t (i) =−

1
(1+πt)

e−γ(cs
t (i)+χGt)

ls
t (i) = ρ logηt− γρ (cs

t (i)+χGt)−Θ
s
t +ξ

s
t (i)

cs
t (i) =−

1
γ

log
βϑ

q̃t (1+πt+1)
+χGt+1−χGt−

1
γ

logEie−γcs
t+1(i)

1
q̃t

=

(
1+ρP̃M

t+1
)

P̃M
t

The Euler equation, using normality of consumption distribution, can also be written as

cs
t (i) =−

1
γ

log
(

βϑ

q̃t (1+πt+1)

)
+χGt+1−χGt +Eics

t+1 (i)−
γ

2
Vics

t+1 (i) . (2.58)

To obtain expressions for expectation and variance of consumption, we do the following three
steps.

First, substitute labour supply into the budget constraint:

As
t+1 (i) =

Rt

ϑ

(
As

t (i)+Xt−ηtΘ
s
t +ηt

(
ξ

s
t (i)− ξ̄

)
− (1+ργηt)cs

t (i)
)

(2.59)
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where we denoted
Xt = ηt

(
ρ logηt + ξ̄ −ργχGt

)
+dt−Tt .

Second, assume that individual consumption can be parameterized as

cs
t (i) = Xt +µt

(
As

t (i)+ηt
(
ξ

s
t (i)− ξ̄

)
−ϕtΘ

s
t
)

(2.60)

Lead it one period:

cs
t+1 (i) = Xt+1 +µt+1

(
As

t+1 (i)+ηt+1
(
ξ

s
t+1 (i)− ξ̄

)
−ϕt+1Θ

s
t+1
)

(2.61)

= µt+1

(
Rt

ϑ

(
(1− (1+ργηt)µt)

(
As

t (i)+ηt
(
ξ s

t (i)− ξ̄
))

+Xt

−(1+ργηt)Xt +(−ηt +(1+ργηt)µtϕt)Θs
t

))
+Xt+1 +µt+1ηt+1

(
ξ

s
t+1 (i)− ξ̄

)
−µt+1ϕt+1 (Θ

s
t +κ)

where in the second line we used the budget constraint, parameterisation (2.60) and the fact that
Θs

t+1 = κ (t +1− s) = κ (t− s)+κ = Θs
t +κ.

Finally, we obtain expressions for expectation and variance terms. Because cs
t+1 (i) is normally

distributed by i, its mean and variance are determined as follows:

Eics
t+1 (i) = Xt+1 +µt+1


Rt
ϑ
(1− (1+ργηt)µt)

(
As

t (i)+ηt
(
ξ s

t (i)− ξ̄
))

+Rt
ϑ
(Xt− (1+ργηt)Xt)

+Rt
ϑ
(−ηt +(1+ργηt)µtϕt)Θs

t


−µt+1ϕt+1 (Θ

s
t +κ)

Vics
t+1 (i) = µ

2
t+1η

2
t+1σ

2
t+1

(note that Eiξ
s
t+1 (i) = ξ̄ , but Eiξ

s
t (i) = ξ s

t (i) , Viξ
s
t+1 (i) = σ2

t+1, but Viξ
s
t (i) = 0).

We now use these expressions and parameterisation (2.60) and substitute them into the con-
sumption Euler equation (2.58) to find coefficients Xt ,µt and ϕt .

Substitution into the Euler equation yields:

Xt +µt
(
As

t (i)+η
s
t
(
ξ

s
t (i)− ξ̄

)
−ϕtΘ

s
t
)

=−1
γ

log(βRt)+χGt+1−χGt−µt+1ϕt+1 (Θ
s
t +κ)− γ

2
µ

2
t+1η

2
t+1σ

2
t+1

+Xt+1 +µt+1
Rt

ϑ

(
(1− (1+ργηs

t )µt)
(
As

t (i)+ηs
t
(
ξ s

t (i)− ξ̄
))

+(Xt− (1+ργηt)Xt)+(−ηt +(1+ργηt)µtϕt)Θs
t

)
.

Collect coefficients on independent states: 1,As
t (i) ,ξ

s
t (i) ,Θ

s
t . This yields three independent
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equations on µt ,κt and Xt :

Xt−µtηt ξ̄ =−1
γ

log(βRt)+χG̃t+1−χG̃t +Xt+1−
γ

2
µ

2
t+1η

2
t+1σ

2
t+1 (2.62)

+µt+1

(
Rt

ϑ
(Xt− (1+ργηt)Xt)−

Rt

ϑ
(1− (1+ργηt)µt)ηt ξ̄

)
−µt+1ϕt+1κ

µt = µt+1
Rt

ϑ
(1− (1+ργηt)µt) (2.63)

−µtϕt = µt+1

(
Rt

ϑ
(−ηt +(1+ργηt)µtϕt)

)
−µt+1ϕt+1 (2.64)

Provided that µt ̸= 0 The dynamic equation on evolution of the marginal propensity to consume
ot of cash in hands can be expressed as:

1
µt
− (1+ργηt) =

ϑ

Rt µt+1
(2.65)

the equation for ϕt becomes[name it!]

ϕt = ηt +
ϑ

Rt
ϕt+1 (2.66)

and the evolution of the measure of aggregate consumption Xt is:

Xt =−
ϑ µt

γµt+1Rt
log(βRt)+

ϑ µt

µt+1Rt
Xt+1 +

ϑ µt

µt+1Rt
χGt+1

− ϑ µt

µt+1Rt
χGt +µtXt−

ϑ µt

Rt
κϕt+1−

ϑ µt

µt+1Rt

γ

2
µ

2
t+1η

2
t+1σ

2
t+1

Introduce new variable:
Ct = Xt +χGt

then we arrive to

Ct =−
ϑ µt

γµt+1Rt
log(βRt)+

ϑ µt

µt+1Rt
Ct+1−

ϑ µt

Rt
κϕt+1−

ϑ µt

µt+1Rt

γ

2
µ

2
t+1η

2
t+1σ

2
t+1

+µt
(
ηt
(
ρ log(ηt)+ ξ̄

)
+dt−Tt +χGt

)
after all terms with Gt are combined.
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2.9.2 Aggregation

Define aggregate consumption, income and labour

ct := (1−ϑ)
t

∑
s=−∞

ϑ
t−s
∫ 1

0
cs

t (i)di

yt := (1−ϑ)
t

∑
s=−∞

ϑ
t−s
∫ 1

0
ys

t (i)di

nt :=
∫ 1

0
nt ( j)d j = (1−ϑ)

t

∑
s=−∞

ϑ
t−s
∫ 1

0
ls
t (i)di

Define aggregate actuarial bonds, J = {S,L}:

ϑaJ
t := (1−ϑ)

t

∑
s=−∞

ϑ
t−s
∫ 1

0
aJ,s

t (i)di.

To aggregate the household budget constraint, we need to compute (1−ϑ)∑
t
s=−∞ ϑ t−s ∫ 1

0 aJ,s
t+1 (i)di.

Note that

ϑaJ
t+1 = (1−ϑ)

t+1

∑
s=−∞

ϑ
t+1−s

∫ 1

0
aJ,s

t+1 (i)di = (1−ϑ)
t

∑
s=−∞

ϑ
t+1−s

∫ 1

0
aJ,s

t+1 (i)di

+(1−ϑ)
∫ 1

0
aJ,t+1

t+1 (i)di

= ϑ (1−ϑ)
t

∑
s=−∞

ϑ
t−s
∫ 1

0
aJ,s

t+1 (i)di

then

aJ
t+1 = (1−ϑ)

t

∑
s=−∞

ϑ
t−s
∫ 1

0
aJ,s

t+1 (i)di

It follows

ϑAt = (1−ϑ)
t

∑
s=−∞

ϑ
t−s
∫ 1

0
As

t (i)di,

As
t+1 = (1−ϑ)

t

∑
s=−∞

ϑ
t−s
∫ 1

0
As

t+1 (i)di,

where
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Finally, note that

t

∑
s=−∞

ϑ
t−s (t− s) = ϑ

t−t (t− t)+ϑ
t−t+1 (t− t +1)+ϑ

t−t+2 (t−2) = ...

=
∞

∑
k=1

kϑ
k =

ϑ

(1−ϑ)2

so that agggregation of sick days yields

(1−ϑ)
t

∑
s=−∞

ϑ
t−s
∫ 1

0
Θ

s
t di = (1−ϑ)

t

∑
s=−∞

ϑ
t−s
∫ 1

0
κ (t− s)di

= κ (1−ϑ)
t

∑
s=−∞

ϑ
t−s (t− s)

=
κϑ

1−ϑ

Aggregation of household budget constrain (2.4) yields:

ϑ

Rt

(
P̃M

t
q̃t

aL
t+1 +aS

t+1

)
(1+πt+1)

= ϑ

((
1+ρP̃M

t
)

aL
t +aS

t
)

(1+πt)
+ yt− ct (2.67)

or
ϑ

Rt
At+1 = ϑAt + yt− ct

where

At =

((
1+ρP̃M

t
)

aL
t +aS

t
)

(1+πt)
=

(
P̃M

t−1
q̃t−1

aL
t +aS

t

)
(1+πt)

and
yt = ηtnt +dt−Tt .

2.9.3 Proof of Proposition 2.

Proof. We start with the derived relationship:

Xt =−
ϑ µt

γµt+1Rt
log(βRt)+

ϑ µt

µt+1Rt
Xt+1 +

ϑ µt

µt+1Rt
χGt+1

− ϑ µt

µt+1Rt
χGt +µtXt−

ϑ µt

Rt
κϕt+1−

ϑ µt

µt+1Rt

γ

2
µ

2
t+1η

2
t+1σ

2
t+1
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Recall that
Xt = Ct−χGt

and
ct = Ct−χGt +µt

(
ϑAt−

ϑκ
(1−ϑ)

ϕt

)
So we can parameterize

Xt = Ct−χGt = ct−µt

(
ϑAt−

ϑκ
(1−ϑ)

ϕt

)
Xt+1 = ct+1−µt+1

(
ϑAt+1−

ϑκ
(1−ϑ)

ϕt+1

)
and substitute these two relationships

ct−µt

(
ϑAt−

ϑκ
(1−ϑ)

ϕt

)
=− ϑ µt

γµt+1Rt
log(βRt)+

ϑ µt

µt+1Rt

(
ct+1−µt+1

(
ϑAt+1−

ϑκ
(1−ϑ)

ϕt+1

))
+

ϑ µt

µt+1Rt
χGt+1−

ϑ µt

µt+1Rt
χGt +µtXt−

ϑ µt

Rt
κϕt+1−

ϑ µt

µt+1Rt

γ

2
µ

2
t+1η

2
t+1σ

2
t+1

Substitute
Xt = ηt

(
ρ log(ηt)+ ξ̄ −ργχGt

)
+dt−Tt

and use budget constraint

ϑAt =
ϑ

Rt
At+1−ηt

(
ρ log(ηt)+ ξ̄

)
+

κϑ

(1−ϑ)
ηt +ργηt χGt +ργηtct−dt +Tt + ct

and (2.9)-(2.10) to arrive to the following Euler equation

ct +χGt =−
1
γ

log(βRt)+ ct+1 +χGt+1 +(1−ϑ)µt+1At+1−
γ

2
µ

2
t+1η

2
t+1σ

2
t+1−µt+1κϕt+1

Labour supply (2.8) is is straightforwardly aggregated to

nt = ρ log(ηt)−κ
ϑ

1−ϑ
−ργ (ct +χGt)+ ξ̄
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2.9.4 Derivation of Phillips Curve

Firm j solves the following optimization problem

max
Pt( j)

∞

∑
t=0

β
t

((
Pt ( j)

Pt
Yt ( j)− (1− s)wtnt ( j)

)
− Φ

2

(
Pt ( j)

Pt−1 ( j)
−1
)2

Yt

)

subject to monopolistic demand

Yt ( j) =
(

Pt ( j)
Pt

)−εt

Yt

and production function
Yt ( j) = ztnt ( j)

Substitute

max
Pt( j)

∞

∑
t=0

β
t

((
Pt ( j)

Pt
− (1− s)

wt

zt

)(
Pt ( j)

Pt

)−εt

Yt−
Φ

2

(
Pt ( j)

Pt−1 ( j)
−1
)2

Yt

)

to yield the following first order condition:

0 = β
t

(
(1− εt)

(
Pt ( j)

Pt

)−εt Yt

Pt
+ εt (1− s)

wt

zt

(
Pt ( j)

Pt

)−εt−1 Yt

Pt
−Φ

(
Pt ( j)

Pt−1 ( j)
−1
)

Yt

Pt−1 ( j)

)

+β
t+1
(

Φ

(
Pt+1 ( j)
Pt ( j)

−1
)

Yt+1
Pt+1 ( j)
P2

t ( j)

)
All firms are identical so Pt ( j) = Pt and, therefore:

πt (1+πt) =
1− εt +(1− s)εt

wt
zt

Φ
+β

Yt+1

Yt
πt+1 (1+πt+1)

The profit of firms, distributed as dividends

dt = (Yt− (1− s)wtnt)−
Φ

2
π

2
t Yt

2.9.5 Financial Intermediaries

Financial intermediaries trade actuarial and government bonds.
At time t they buy short and long-term actuarial bonds and pay with short and long term gov-

ernment bonds, so the budget constraint of intermediaries is

−P̃M
t aL

t+1− q̃taS
t+1 +PM

t bL
t+1 +qtbS

t+1 ⩽ 0, (2.68)
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where aJ
t+1 = (1−ϑ)∑

t
s=−∞ ϑ t−s ∫ 1

0 aJ,s
t+1 (i)di.

Their profit one period later is, therefore

Π =
(
1+ρPM

t+1
)

bL
t+1 +bS

t+1−
(
1+ρP̃M

t+1
)

ϑaL
t+1−ϑaS

t+1

where bJ
t+1 are total government bonds at time t + 1, and ϑaJ

t+1 are total actuarial bonds at time
t +1, i.e. ϑaJ

t+1 = (1−ϑ)∑
t+1
s=−∞ ϑ t+1−s ∫ 1

0 aJ,s
t+1 (i)di.

The Lagrangian is

Π =
(
1+ρPM

t+1
)

bL
t+1 +bS

t+1−
(
1+ρP̃M

t+1
)

ϑaL
t+1−ϑaS

t+1

+λt

(
−P̃M

t aL
t+1− q̃taS

t+1 +PM
t bL

t+1 +qtbS
t+1

)
and the first order conditions are:

∂

∂bL
t+1

:
(
1+ρPM

t+1
)
+λtPM

t

∂

∂bS
t+1

: 1+λtqt

∂

∂aL
t+1

:−
(
1+ρP̃M

t+1
)

ϑ −λt P̃M
t

∂

∂aS
t+1

:−ϑ −λt q̃t

From where we have:

1
q̃t

=

(
1+ρP̃M

t+1
)

P̃M
t

(2.69)

q̃t = ϑqt (2.70)

1
qt

=

(
1+ρPM

t+1
)

PM
t

(2.71)

and so the profit is zero:

Π =
(
1+ρPM

t+1
)

bL
t+1 +bS

t+1−ϑaS
t+1−ϑ

(
1+ρP̃M

t+1
)

aL
t+1 (2.72)

=
1
qt

(
PM

t bL
t+1 +qtbS

t+1− q̃taS
t+1− P̃M

t aL
t+1

)
= 0
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and
Rt =

ϑ

q̃t (1+πt+1)
=

1
qt (1+πt+1)

(2.73)

2.9.6 Social Welfare Function

Aggregation of Welfare

Recall that

ls
t (i) = ρ logηt−Θ

s
t −ργ (cs

t (i)+χGt)+ξ
s
t (i)

cs
t (i) = Ct−χGt +µtms

t (i)

ms
t (i) = As

t (i)+ηt
(
ξ

s
t (i)− ξ̄

)
−ϕtΘ

s
t

so the (remaining at p) life-time utility of an agent born at s at time p > s can be written as
(substitute labour supply)

W s
p (i) =

∞

∑
t=p

(βϑ)t−pU s
t (i) (2.74)

where

U s
t (i) =−

1
γ

e−γ(cs
t (i)+χGt)−ρe

1
ρ
(ls

t (i)+Θs
t−ξ s

t (i))

=−1
γ

e−γ(cs
t (i)+χGt)−ρe

1
ρ
(ρ log(ηt)−ργ(cs

t (i)+χGt))

=−1
γ

e−γ(cs
t (i)+χGt)−ρηte−γ(cs

t (i)+χGt)

=−1
γ
(1+ γρηt)e−γ(cs

t (i)+χGt)

=−1
γ
(1+ γρηt)e−γ(Ct+µtms

t (i))

The social welfare function at time t = 0 is defined as

W0 = (1−ϑ)
0

∑
s=−∞

ϑ
−s
∫ 1

0
W s

0 (i)di+
∞

∑
s=1

(1−ϑ)β
s
∫ 1

0
W s

s (i)di (2.75)

where the first term is utility of generations that are alive at time zero. The second term is utility
of unborn generations, with s > 0, each such generation is treated with weight β s.

We can rewrite the welfare function in a more convenient way. Denote

U s
t =−1

γ
(1+ γρηt)

∫ 1

0
e−γ(Ct+µtms

t (i))di
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is t-period utility of a cohort born at time s.
Then

W0

(1−ϑ)
= U 0

0 +ϑU −1
0 +ϑ

2U −2
0 + ...

+β
(
U 1

0 +ϑU 0
0 +ϑ

2U −1
0 + ...

)
+ ...

+β
t (U t

t +ϑU t−1
t +ϑ

2U t−2
t + ...+ϑ

sU t−s
t
)
+ ...

=
∞

∑
t=0

β
t

∞

∑
s=0

ϑ
sU t−s

t =
∞

∑
t=0

β
t

t

∑
v=−∞

ϑ
t−vU v

t

where in the last line we used new index v = t− s.

Recycling notation, we get

W0 =−
1
γ

∞

∑
t=0

β
t (1+ γρηt)e−γCt

(
(1−ϑ)

t

∑
s=−∞

ϑ
t−s
∫ 1

0
e−γµtms

t (i)di

)
(2.76)

W0 =−
1
γ

∞

∑
t=0

β
t (1+ γρηt)e−γCt

(
(1−ϑ)

t

∑
s=−∞

ϑ
t−s
∫ 1

0
e−γµtms

t (i)di

)
(2.77)

Denote

Σt = (1−ϑ)
t

∑
s=−∞

ϑ
t−s
∫ 1

0
e−γµtms

t (i)di

so that
W0 =

∞

∑
t=0

β
tUt

where
Ut =−

1
γ
(1+ γρηt)e−γCt Σt

Here (1+ γρηt)e−γCt only depends on aggregate variables, so will be the same for a represen-
tative agent.

Σt = (1−ϑ)∑
t
s=−∞ ϑ t−s ∫ 1

0 e−γµtms
t (i)di is a welfare cost of inequality. It is increasing in the

within cohort disperstion of consumption. If there is risk then Σt is increasing, and this decreases
the overall level of welfare.
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2.9.7 Recursion

Derive Σt recursion.

Σt = (1−ϑ)
t

∑
s=−∞

ϑ
t−s
∫ 1

0
e−γµtms

t (i)di

= (1−ϑ)
t−1

∑
s=−∞

ϑ
t−s
∫ 1

0
e−γµtms

t (i)di+(1−ϑ)
∫ 1

0
e−γµtmt

t(i)di

= (1−ϑ)
t−1

∑
s=−∞

ϑ
t−seγµtκ(t−s)ϕt

∫ 1

0
e−γµt(As

t (i)+ηt(ξ s
t (i)−ξ̄))di

+(1−ϑ)
∫ 1

0
e−γµtηt(ξ s

t (i)−ξ̄)di

= (1−ϑ)
t−1

∑
s=−∞

ϑ
t−seγµtκ(t−s)ϕt It +(1−ϑ)e

1
2 γ2µ2

t η2
t σ2

t

where
It =

∫ 1

0
e−γµt(As

t (i)+ηt(ξ s
t (i)−ξ̄))di =

∫ 1

0
e−γµtAs

t (i)e−γµt(ηt(ξ s
t (i)−ξ̄))di

Integral It is an expectation of a product of two functions (uniformly distributed), and as As
t (i) is

not correllated with
(
ξ s

t (i)− ξ̄
)

[see some formula above which expresses wealth as a function of

past shocks only - TK ref to an equation], then expectation of a product is equal to a product of
expectations, we can write

It =
∫ 1

0
e−γµt(ηt(ξ s

t ( j)−ξ̄))d j
∫ 1

0
e−γµtAs

t (i)di = e
1
2 γ2µ2

t η2
t σ2

t

∫ 1

0
e−γµtAs

t (i)di

Recall the budget constraint (2.59):

As
t+1 (i) =

Rt

ϑ

(
As

t (i)+ηt
(
ξ

s
t (i)− ξ̄

)
+Xt−ηtΘ

s
t − (1+ργηt)cs

t (i)
)

substitute out consumption using (2.60)

As
t+1 (i) =

Rt

ϑ

(
(1− (1+ργηt)µt)

(
As

t (i)+ηt
(
ξ s

t (i)− ξ̄
))

+Xt− (1+ργηt)Xt− (ηt− (1+ργηt)µtϕt)Θs
t

)

and simplify using (2.65) and (2.64)

µt+1As
t+1 (i) =

(
µt
(
As

t (i)+ηt
(
ξ s

t (i)− ξ̄
))
− (µtϕt−µt+1ϕt+1)Θs

t

+µt+1
Rt
ϑ
(Xt− (1+ργηt)Xt)

)
.
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Take a lag and substitute this expression into formula for It to obtain a recursion for this integral:

It =
∫ 1

0
e−γµt(As

t (i)+ηt(ξ s
t (i)−ξ̄))di = e

1
2 γ2µ2

t η2
t σ2

t

∫ 1

0
e−γµtAs

t (i)di

= e
1
2 γ2µ2

t η2
t σ2

t

∫ 1

0
e−γ(µt−1(As

t−1(i)+ηt−1(ξ s
t−1(i)−ξ̄)))

× e−γ

(
µt

Rt−1
ϑ

(Xt−1−(1+ργηt−1)Xt−1)−(µt−1ϕt−1−µtϕt)Θ
s
t−1

)
di

= e
1
2 γ2µ2

t η2
t σ2

t e−γ

(
µt

Rt−1
ϑ

(Xt−1−(1+ργηt−1)Xt−1)−(µt−1ϕt−1−µtϕt)Θ
s
t−1

)

×
∫ 1

0
e−γ(µt−1(As

t−1(i)+ηt−1(ξ s
t−1(i)−ξ̄)))di

= e
1
2 γ2µ2

t η2
t σ2

t e
−γ

(
µt

Rt−1
ϑ (Xt−1−(1+τc

t−1+ργηt−1)Xt−1)−
(

µt−1ϕt−1−µtϕt
κt

κt−1

)
κ(t−1−s)

)
It−1

= e
1
2 γ2µ2

t η2
t σ2

t e−γ

(
µt

Rt−1
ϑ

(Xt−1−(1+ργηt−1)Xt−1)−(µt−1ϕt−1κ−µtϕtκ)(t−1−s)
)
It−1

Note that, by definition,

Σt−1 = (1−ϑ)
t−1

∑
s=−∞

ϑ
t−1−s

∫ 1

0
e−γµt−1ms

t−1(i)di

= (1−ϑ)
t−1

∑
s=−∞

ϑ
t−1−s

∫ 1

0
e−γµt−1(As

t−1(i)+ηt−1(ξ s
t−1(i)−ξ̄)−ϕt−1Θs

t−1)di

= (1−ϑ)
t−1

∑
s=−∞

ϑ
t−1−se−γµt−1(−ϕt−1Θs

t−1)
∫ 1

0
e−γµt−1(As

t−1(i)+ηt−1(ξ s
t−1(i)−ξ̄))di

so that

Σt−1 = (1−ϑ)
t−1

∑
s=−∞

ϑ
t−1−seγµt−1ϕt−1κ(t−1−s)It−1

130



Now, isolate this term:

Σt = (1−ϑ)
t−1

∑
s=−∞

ϑ
t−seγµtκ(t−s)ϕt It +(1−ϑ)e

1
2 γ2µ2

t η2
t σ2

t

= (1−ϑ)
t−1

∑
s=−∞

ϑ
t−seγµtκ(t−s)ϕt e

1
2 γ2µ2

t η2
t σ2

t

× e−γ

(
µt

Rt−1
ϑ

(Xt−1−(1+ργηt−1)Xt−1)−(µt−1ϕt−1κ−µtϕtκ)(t−1−s)
)
It−1

+(1−ϑ)e
1
2 γ2µ2

t η2
t σ2

t

= e
1
2 γ2µ2

t η2
t σ2

t (1−ϑ)
t−1

∑
s=−∞

ϑ
t−seγµtκ(t−s)ϕt+γ(µt−1ϕt−1κ−µtϕtκ)(t−1−s)

× e−γ

(
µt

Rt−1
ϑ

(Xt−1−(1+ργηt−1)Xt−1)
)
It−1

+(1−ϑ)e
1
2 γ2µ2

t η2
t σ2

t

= e
1
2 γ2µ2

t η2
t σ2

t (1−ϑ)
t−1

∑
s=−∞

ϑ
t−seγ(µtϕtκ+µt−1ϕt−1κ(t−1−s))

× e−γ

(
µt

Rt−1
ϑ

(Xt−1−(1+ργηt−1)Xt−1)
)
It−1

+(1−ϑ)e
1
2 γ2µ2

t η2
t σ2

t

= eγµtϕtκe
1
2 γ2µ2

t η2
t σ2

t e−γ

(
µt

Rt−1
ϑ

(Xt−1−(1+ργηt−1)Xt−1)
)
ϑ (1−ϑ)

×
t−1

∑
s=−∞

ϑ
t−s−1eγµt−1ϕt−1κ(t−1−s)It−1 +(1−ϑ)e

1
2 γ2µ2

t η2
t σ2

t

to obtain recursive relationship:

Σt = ϑe−γµt

(
Rt−1

ϑ
(Xt−1−(1+ργηt−1)Xt−1)−κϕt

)
e

1
2 γ2µ2

t η2
t σ2

t Σt−1 +(1−ϑ)e
1
2 γ2µ2

t η2
t σ2

t

Introduce new variable Zt to yield

Σt =
(

e−
γ

ϑ
µt(Rt−1Zt−1−ϑκϕt)ϑΣt−1 +1−ϑ

)
e

1
2 γ2µ2

t η2
t σ2

t (2.78)

where

Zt = Xt− (1+ργηt)Xt (2.79)

= ηt
(
ρ log(ηt)+ ξ̄ −ργχGt

)
+dt−Tt− (1+ργηt)(Ct−χGt)

= ηt
(
ρ log(ηt)+ ξ̄

)
− (1+ργηt)Ct +χGt +dt−Tt
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We can represent Zt in a different form:

ct +χGt−ϑ µt

(
At−

κ
1−ϑ

ϕt

)
= Ct

then

Zt = ηt
(
ρ log(ηt)+ ξ̄

)
− (1+ργηt)

(
ct +χGt−ϑ µt

(
At−

κ
1−ϑ

ϕt

))
+χGt +dt−Tt

use
yt = ηtρ log(ηt)+ηt ξ̄ −ηtκ

ϑ

1−ϑ
−ργηtct−ργχηtGt +dt−Tt .

to obtain
yt +κ

ϑ

(1−ϑ)
ηt +ργηtct−dt +Tt +ηtργχGt = ηt

(
ρ log(ηt)+ ξ̄

)
.

Zt = yt− ct +(1+ργηt)µtϑAt +
ϑ

(1−ϑ)
κηt− (1+ργηt)µt

ϑκ
1−ϑ

ϕt (2.80)

(1+ργηt)µt = 1− ϑ µt

µt+1Rt

Zt = yt− ct +(1+ργηt)µtϑAt−
ϑ

(1−ϑ)

ϑ

µt+1Rt
(κµt+1ϕt+1−κµtϕt)

Furthermore, the aggregated budget constraint:

ϑ

Rt
At+1−ϑAt = yt− ct

using which

Zt =
ϑ

Rt
At+1−ϑAt +(1+ργηt)µtϑAt−

ϑ

(1−ϑ)

ϑ

µt+1Rt
(κµt+1ϕt+1−κµtϕt)

=
ϑ

Rt
At+1−

ϑ µt

µt+1Rt
ϑAt−

ϑ

(1−ϑ)

ϑ

µt+1Rt
(κµt+1ϕt+1−κµtϕt)

=
ϑ

Rt

(
At+1−

ϑ

(1−ϑ)
κϕt+1

)
− ϑ µt

µt+1Rt

(
ϑAt−

ϑ

(1−ϑ)
κϕt

)
so that

Zt =
ϑ

µt+1Rt

(
µt+1

(
At+1−

ϑ

(1−ϑ)
κϕt+1

)
−µt

(
ϑAt−

ϑ

(1−ϑ)
κϕt

))
(2.81)

It is apparent that if the aggregate asset holding is zero then Zt = 0 and we obtain the same
recursive formula for Σt as reported in Acharya et al (2020).
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Using inter-mediation constraint (2.28) we rewrite (2.81)

µt+1RtZt = µt+1

(
Bt+1−ϑ

ϑ

(1−ϑ)
κϕt+1

)
−ϑ µt

(
Bt−

ϑ

(1−ϑ)
κϕt

)
(2.82)

Introduce new variable
Wt = µt

(
Bt−

ϑκ
(1−ϑ)

ϕt

)
then

µt+1RtZt =Wt+1−ϑWt +ϑκµt+1ϕt+1 (2.83)

Denote
St = eγµt

(
Bt− ϑκ

(1−ϑ)
ϕt

)
Σt

Then

Ut =−
1
γ
(1+ γρηt)e−γ

(
xt−µt

(
Bt− ϑκ

(1−ϑ)
ϕt

))
Σt

=−1
γ
(1+ γρηt)e−γxt St

Use (2.83) to rewrite (2.78)

St =
(

e−
γ

ϑ
Wt ϑSt−1 +1−ϑ

)
eγWt e

1
2 γ2µ2

t η2
t σ2

t (2.84)

2.9.8 Optimal Policy Under Commitment

The Lagrangian is
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L =
∞

∑
t=0

β̃
t
(
−1

γ
(1+ γρηt)

ψ exp(−ψγxt)Sξ

t

)

+
∞

∑
t=0

β̃
tM1,t

(
−1

γ
log(βRt)+ xt+1 +

(1−ϑ)
ϑ

µt+1Bt+1−κµt+1ϕt+1

− γ

2 µ2
t+1 (1− τt+1)

2
ωt+1− xt

)

+
∞

∑
t=0

β̃
tM2,t

(
1− εt +(1− s)εt

wt
zt

Φ
Ytβ
−1−πt (1+πt)Ytβ

−1 +πt+1 (1+πt+1)Yt+1

)

+
∞

∑
t=0

β̃
tM3,t

(
ϑ

µt+1
+(1+ργηt)Rt−

Rt

µt

)
+

∞

∑
t=0

β̃
tM4,t

(
− logSt +

1
2

γ
2
µ

2
t (1− τt)

2
ωt + γWt + log

(
e−

γ

ϑ
Wt ϑSt−1 +1−ϑ

))
+

∞

∑
t=0

β̃
tM5,t

(((
1+ρPM

t
)

bL
t

(1+πt)
+Gt− τt

wt

zt
Yt−T p

t

)
Rt−

(
1+ρPM

t+1
)

bL
t+1

(1+πt+1)

)

+
∞

∑
t=0

β̃
tM6,t

(
ρ log(ηt)+ ξ̄ − κϑ

1−ϑ
−ργxt−

Yt

zt

)
+

∞

∑
t=0

β̃
tM7,t ((1− τt)wt−ηt)

+
∞

∑
t=0

β̃
tM8,t

((
1+ρPM

t+1
)

(1+πt+1)
−PM

t Rt

)
+

∞

∑
t=0

β̃
tM9,t

(
xt +(1−χ)Gt−

(
1− Φ

2
π

2
t

)
Yt

)

+
∞

∑
t=0

β̃
tM10,t

(
Wt−µt

((
1+ρPM

t
)

bL
t

(1+πt)
− ϑ

(1−ϑ)
κϕt

))

+
∞

∑
t=0

β̃
tM11,t (Rtηt +ϑϕt+1−Rtϕt)+

∞

∑
t=0

β̃
tM12,t

(
w2

σ
2 exp(2φ (Yt−Y ))−ωt

)
and the FOCs are

1 :
∂L
∂ϕt

=−β̃
−1M1,t−1κµt +M10,t µt

ϑκ
(1−ϑ)

−M11,tRt + β̃
−1M11,t−1ϑ

2 :
∂L
∂ µt

= β̃
−1M1,t−1

(
(1−ϑ)

ϑ

(
1+ρPM

t
)

bL
t

(1+πt)
−κϕt− γµt (1− τt)

2
ωt

)
+M3,t

Rt

µ2
t
− β̃

−1M3,t−1
ϑ

µ2
t
+M4,tγ

2
µt (1− τt)

2
ωt

−M10,t

((
1+ρPM

t
)

bL
t

(1+πt)
− ϑκ

(1−ϑ)
ϕt

)

3 :
∂L
∂wt

= M2,t
(1− s)

Φ

εt

zt
Ytβ
−1−M5,t

τt

zt
YtRt +M7,t (1− τt)
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4 :
∂L
∂ηt

=−ρψSξ

t (1+ γρηt)
ψ−1 exp(−ψγxt)

+M3,tργRt +M6,t
ρ

ηt
−M7,t +M11,tRt

5 :
∂L
∂Rt

=−M1,t
1

γRt
+M3,t

(
1+ργηt−

1
µt

)
+M5,t

((
1+ρPM

t
)

bL
t

(1+πt)
+Gt− τt

wt

zt
Yt−T p

t

)
−M8,tPM

t +M11,t (ηt−ϕt)

6 :
∂L

∂Bt+1
= M1,t

(1−ϑ)

ϑ
µt+1

(
1+ρPM

t+1
)

(1+πt+1)
−M5,t

(
1+ρPM

t+1
)

(1+πt+1)

+ β̃M5,t+1Rt+1

(
1+ρPM

t+1
)

(1+πt+1)
− β̃M10,t+1µt+1

(
1+ρPM

t+1
)

(1+πt+1)

7 :
∂L

∂PM
t

=

(
β̃
−1M1,t−1

(1−ϑ)

ϑ
µt +M5,tRt− β̃

−1M5,t−1−M10,t µt

)
ρbL

t
(1+πt)

−M8,tRt + β̃
−1M8,t−1

ρ

(1+πt)

8 :
∂L
∂St

=−1
γ
(1+ γρηt)

ψ exp(−ψγxt)ξ Sξ−1
t

−M4,t
1
St

+ β̃M4,t+1
e−

γ

ϑ
Wt+1ϑ(

e−
γ

ϑ
Wt+1ϑSt +1−ϑ

)

9 :
∂L
∂Wt

= M4,tγ

1− e−
γ

ϑ
Wt St−1(

e−
γ

ϑ
Wt ϑSt−1 +1−ϑ

)
+M10,t
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10 :
∂L
∂πt

=−β̃
−1M1,t−1

(1−ϑ)

ϑ
µt

(
1+ρPM

t
)

bL
t

(1+πt)
2 −M2,t (1+2πt)Ytβ

−1 + β̃
−1M2,t−1 (1+2πt)Yt

−M5,tRt

(
1+ρPM

t
)

bL
t

(1+πt)
2 + β̃

−1M5,t−1

(
1+ρPM

t
)

bL
t

(1+πt)
2

− β̃
−1M8,t−1

(
1+ρPM

t
)

(1+πt)
2 +M9,tΦπtYt +M10,t µt

(
1+ρPM

t
)

bL
t

(1+πt)
2

11 :
∂L
∂xt

= ψ (1+ γρηt)
ψ exp(−ψγxt)Sξ

t −M1,t + β̃
−1M1,t−1−M6,tργ +M9,t

12 :
∂L
∂Yt

=+M2,t

(
1− εt +(1− s)εt

wt
zt

Φ
−πt (1+πt)

)
β
−1

+ β̃
−1M2,t−1πt (1+πt)−M5,tτt

wt

zt
Rt−M6,t

1
zt

−M9,t

(
1− Φ

2
π

2
t

)
+2φM12,tw2

σ
2 exp(2φ (Yt−Y ))

13a :
∂L
∂τt

= β̃
−1M1,t−1γµ

2
t (1− τt)ωt−M4,tγ

2
µ

2
t (1− τt)ωt−M5,t

wt

zt
YtRt−M7,twt

13b :
∂L

∂T p
t

=−M5,tRt

here equation 13a is in case of labour income taxes, and equation 13b is there are lump sum taxes.

2.9.9 Steady State

The FOCS in the steady state can be written as:

1 :
∂L
∂ϕt

=−β̃
−1M1κµt +M10µt

ϑκ
(1−ϑ)

+M11

(
ϑβ̃
−1−Rt

)

2 :
∂L
∂ µt

= β̃
−1M1

(
(1−ϑ)

ϑ

(
1+ρPM)bL

(1+πt)
−κϕ− γµ (1− τ)2

ω

)
+M3

R
µ2 − β̃

−1M3
ϑ

µ2 +M4γ
2
µ (1− τ)2

ω

−M10

((
1+ρPM)bL

(1+π)
− ϑκ

(1−ϑ)
ϕ

)

3 :
∂L
∂wt

= M2
(1− s)

Φ
εY β

−1−M5τY R+M7 (1− τ)
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4 :
∂L
∂ηt

=−ρψSξ (1+ γρη)ψ−1 exp(−ψγx)

+M3ργR+M6
ρ

η
−M7 +M11R

5 :
∂L
∂Rt

=−M1
1

γR
+M3

(
1+ργη− 1

µ

)
+M5

((
1+ρPM)bL

(1+π)
+G− τwY −T p

)
−M8PM +M11 (η−ϕ)

6 :
∂L

∂Bt+1
= M1

(1−ϑ)

ϑ
µ

(
1+ρPM)
(1+π)

−M5

(
1+ρPM)
(1+π)

+ β̃M5R

(
1+ρPM)
(1+π)

− β̃M10µ

(
1+ρPM)
(1+π)

7 :
∂L

∂PM
t

=

(
β̃
−1M1

(1−ϑ)

ϑ
µ +M5R− β̃

−1M5−M10µ

)
ρbL

(1+π)

−M8R+ β̃
−1M8

ρ

(1+π)

8 :
∂L
∂St

=−1
γ
(1+ γρη)ψ exp(−ψγx)ξ Sξ−1

−M4
1
S
+ β̃M4

e−
γ

ϑ
W

ϑ(
e−

γ

ϑ
W

ϑS+1−ϑ

)

9 :
∂L
∂Wt

= M4γ

1− e−
γ

ϑ
W S(

e−
γ

ϑ
W

ϑS+1−ϑ

)
+M10
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10 :
∂L
∂πt

=−β̃
−1M1

(1−ϑ)

ϑ
µ

(
1+ρPM)bL

(1+π)2 −M2 (1+2π)Y β
−1 + β̃

−1M2 (1+2π)Y

−M5R

(
1+ρPM)bL

(1+π)2 + β̃
−1M5

(
1+ρPM)bL

(1+π)2

− β̃
−1M8

(
1+ρPM)
(1+π)2 +M9ΦπY +M10µ

(
1+ρPM)bL

(1+π)2

11 :
∂L
∂xt

= ψ (1+ γρη)ψ exp(−ψγx)Sξ −M1 + β̃
−1M1−M6ργ +M9

12 :
∂L
∂Yt

=+M2

(
1− ε +(1− s)εw

Φ
−π (1+π)

)
β
−1

+ β̃
−1M2π (1+π)−M5τwR−M6

−M9

(
1− Φ

2
π

2
)
+2φM12w2

σ
2

13a :
∂L
∂τt

= β̃
−1M1γµ

2 (1− τ)ω−M4γ
2
µ

2 (1− τ)ω−M5wY R−M7w

13b :
∂L

∂T p
t

=−M5R
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Additionally, the system of constraints can be written as follows.

14 : 0 =−1
γ

log(βR)+
(1−ϑ)

ϑ
µB−κµϕ− γ

2
µ

2
η

2
σ

2

15 : 0 =
1− εt +(1− s)εt

wt
zt

Φ
Ytβ
−1−π (1+π)Y β

−1 +π (1+π)Y

16 : 0 =
ϑ µ

(µ (1+ργη)−1)R
+µ

17 : 0 =− logS+
1
2

γ
2
µ

2
η

2
σ

2 + γW + log
(

e−
γ

ϑ
W

ϑS+1−ϑ

)
18 : 0 = (B+G− τwY −T p)R−B

19 : 0 = ρ log(η)+ ξ̄ − κϑ

1−ϑ
−ργx−Y

20 : 0 = (1− τ)w−η

21 : 0 =

(
1+ρPM)
(1+π)

−PMR

22 : 0 = x+(1−χ)G−
(

1− Φ

2
π

2
)

Y

23 : 0 =W −µ

(
B− ϑκ

(1−ϑ)
ϕ

)
24 : 0 = Rη +ϑϕ−Rϕ

2.9.10 Proof of Proposition 3

Because T p
t is a policy instrument, the budget constraint (2.39) does not bind in the steady state,

and M5 = 0 as follows from the FOC wrt T p
t .

From the FOC wrt bt+1 it follows that

M10 = M1
(1−ϑ)

ϑβ̃
(2.85)

then using this in the FOC wrt PM
t we get M8 = 0 meaning that equation (2.43) does not bind in

the steady state.
Use (2.85) to substitute M10 into the FOC wrt to ϕ , to yield M11 = 0.
Then, in case of RANK σ = 0 and so that ω = 0, use (2.85) in the FOC wrt µ to yield M3 = 0.
The FOC wrt R yields M1 = M10 = 0.
The FOC wrt S suggests that M4 ̸= 0 as the derivative of the utility is never zero.
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Finally, the FOC wrt W can be written as

∂L
∂Wt

= M4γ

(1−ϑ)
(

1− e−
γ

ϑ
W S
)

(
e−

γ

ϑ
W

ϑS+1−ϑ

) = 0

from where
S = e

γ

ϑ
W

Substituting this into the evolution of S equation yields

0 =− γ

ϑ
W + γW

so that W = 0, and S = 1.
The Euler equation then implies

R =
1
β
.

All other results in Proposition 3 follow trivially.
It is essential that σ = 0, the result will break down otherwise.
We see that the level of debt in the steady state will be determined by the rate that labor force

participation declines with age.

2.9.11 Proof of Proposition 4

[I don’t think this works. You can have R = 1
β

without B = 0 and κ = 0. Is it just that we can show

a steady state given κ = 0 even when taxes are distortionary, which has the properties R = 1
β

and

B = 0?]
We need β̃ = β = 1

R .

In a RANK economy, we show that if R = 1
β

then it must be B = 0 and κ = 0, so this is only
possible if there is no declining income.

Suppose R = 1
β

then from the Euler equation (2.36) it follows that W = 0 and from inequality
recursion (??) it follows that S = 1.

The FOC wrt bt+1 combined with the FOC wrt PM
t yields M8 = 0.

From the FOC wrt debt, it follows that M10 = M1
(1−ϑ)

ϑβ̃
. Substitute M10 into the FOC wrt to ϕ ,

to yield M11 = 0.
Then, in case of RANK σ = 0 and the FOC wrt µ yields M3 = 0, once we take into account

the relationship between M10 and M1.

The FOC wrt S suggests that M4 ̸= 0 as the derivative of utility is never zero.
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The FOC wrt W and S = 1 yields M10 = 0, so that M1 = 0.
The FOC wrt η yields M7 = 0
The next point to make is that M5 ̸= 0.
Indeed,
(i) From FOC wrt Y we have M6 =−M5τwR−M9

(ii) FOCs wrt τ and x yield the equation for M5 :

(1−η)Sξ exp(−γx)+M5

(
τwργ +

(
η

ρ
Y − τw

)
(ργ +1)

)
R = 0

this equation has non-trivial solution.
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Chapter 3

Optimal monetary policy in a HANK
economy with meaningful government debt:
A tale of two Ricardian consumers
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Abstract
We study optimal monetary policy in a tractable HANK environment. The model admits

both idiosyncratic and aggregate risk. We assume that there exists a consolidated monetary-

fiscal authority. The monetary authority pursues optimal (Ramsey) monetary policy whilst the

fiscal authority follows a simple tax rule. Our aim is to provide a clear distinction between the

notions of discontinuous labour market participation (DLMP) and infrequent asset market par-

ticipation (IAMP), which are typically intertwined in the literature. In a HANK- DLMP model,

constrained households are able to use assets to smooth their inter- temporal consumption. As

such, the long run equilibrium as well as the model’s dynamics under optimal monetary pol-

icy are different from both the nested representative agent model and from the HANK- IAMP

framework. We demonstrate that DLMP frictions are an important source of heterogeneity on

their own merit and should not be overlooked. Finally, we find that as was the case with the

representative agent model, the policy maker in our framework will not deviate from price sta-

bility in steady state (Woodford 2003). This result is unaffected by the amount of outstanding

government debt or the presence of direct redistribution. The model is calibrated for the US

economy for the period 1985- 2021.

3.1 Introduction

We study optimal Ramsey monetary policy in heterogeneous agent New Keynesian (HANK, hence-
forth) environment. Our framework falls under the umbrella of the the so - called analytically
tractable HANK (THANK) models. Over the last decade, researchers have employed these mod-
els to study the distributional consequences of monetary and fiscal policy (See for instance, Bilbiie
2008;Broer et al. 2020; Challe 2020; Cantore & Freund 2021; Chien & Wen 2021; among oth-
ers). To retain maximal tractability, these models rely on simplifying assumptions regarding how
inequality enters the economy and focus on the qualitative rather than the quantitative differences
from the nested representative agent environment.

In this paper, we wish to disentangle the notion of discontinuous labour market participation
(DLMP, henceforth) from the infrequent asset market participation (IAMP, henceforth) assump-
tion. We demonstrate that exogenous unemployment or rather discontinuous labour market partic-
ipation is an important source of frictions on their own merit- separate from the IAMP frictions-



and should not be overlooked. We extend the heterogeneous agent framework of Chien & Wen
(2021) by adding nominal rigidities and direct wealth transfers to study optimal (Ramsey) mone-
tary policy in a discontinuous labour market participation (DLMP) environment.

This framework is a simplified Aiyagari (1994) type model that admits two idiosyncratic em-
ployment status shocks as well as aggregate uncertainty. In each period, there is a constant share of
“constrained“ and “unconstrained“ households in the economy. By unconstrained households we
refer to the mass of agents who receive a positive realisation of the idiosyncratic state and are thus
able to either enter or to continue having access to the labour market. As such, we use the term
“employed“ throughout this paper to refer to participating households and the term “unemployed“
to refer to non- participating agents. As in Bilbiie & Ragot (2021) and Chien & Wen (2021)
this simplification is made possible by adopting an extension of the “Big representative family“
metaphor of Lucas Jr (1990). Following Bilbiie & Ragot (2021), we assume that “all households
belong to a representative family and that the family head maximizes the inter-temporal welfare of
all members using a utilitarian welfare criterion“. However, the planner has access to limited risk
sharing technology and unlike the standard indivisible labour model of Hansen (1985), employed
consumers enjoy higher consumption and thus, higher utility. We can think of households as be-
ing in two “states“ or rather, two “islands“. In each period, once the aggregate state is realised,
the family head pools resources/assets between households who are on the same island but they
are unable to pool assets between islands or rather across consumer types. The key assumption
is that all allocations made by the family head, take place before agents realise their idiosyncratic
employment status for the current period. After the idiosyncratic status is drawn, the family head
is unable to redistribute assets and thus, the model exhibits imperfect risk sharing1.

In our set up, all households can either save or borrow in the form of both short term and long
term government bonds. In line with the existing literature, we refer to a household’s ability to
hold assets as “having access to the financial market“. Unlike Chien & Wen (2021), constrained
households do not face a binding borrowing constraint in equilibrium and hence, the model delivers
“perfect self- insurance“ (See proposition 8, below). We show that in order to exist redistribution
channels2 in the transmission mechanism of monetary policy, households need to have unequal
exposure to aggregate shocks (See propositions 14- 15). For our benchmark calibration, house-
holds can freely adjust their asset position at any moment and as such, optimal monetary policy
can affect the dispersion of wealth in the economy but is unable to redistribute consumption from
unconstrained to constrained households. To explore the redistributive consequences of monetary
policy, we follow Cantore & Freund (2021) and introduce portfolio adjustment costs only for con-

1Proposition 8 below shows that for a particular parametrisation of the (un)employment transition matrix, the
model reduces to an indivisible labour model in which case there is perfect risk sharing technology.

2In the language of Auclert (2019), the monetary policy has a redistributive role if a change in the interest rate can
redistribute consumption (not just wealth) amongst consumers.

144



strained consumers. These frictions have no effect on the model’s steady state but they do influence
the optimal policy dynamics. So, in response to a shock, all consumers are able to adjust their net
asset position to smooth their respective inter- temporal consumption. Yet, constrained consumers
incur a cost proportional to the size of the adjustment. Our framework also nests the HANK-
IAMP model as a special case. This scenario requires a “zero- liquidity“ constraint imposed on
constrained households and also, very large (near infinite) portfolio adjustment costs (Ω→ ∞).
To simplify the tracking of the wealth distribution, we adopt the assumption of Bilbiie & Ragot
(2021) where the asset holdings of each household type take a single value in each period and, this
value depends on the most recent realisation of the idiosyncratic shock. Hence, all households with
the same idiosyncratic realisation have the same consumption, labour supply and asset holdings3

(perfect insurance within type).
In our framework, constrained or “unemployed“ households can consume out of their financial

wealth as well as through government subsidies. These "unemployment benefits" are paid as direct
wealth transfers from employed to unemployed consumers, financed via taxes levied on uncon-
strained households4. Although these transfers guarantee that constrained households will always
have positive consumption, their size is not able to affect the equilibrium consumption inequality
in this economy (See proposition 10, below). This result sound be paradoxical at first, but it is
quite intuitive in the context of this model. Since, no consumer type is faced with a binding equi-
librium borrowing constraint, neither the level of transfers nor the level of household wealth can
affect the steady state consumption inequality. This is because households are able to use the asset
market to ensure that they consume the bundle associated with highest welfare for their type. Still
the fact that there exists a non- trivial amount of consumption inequality in this economy alters
the optimal policy’s response compared to the nested RANK model. Unlike the standard Aiya-
gari (1994) model, our environment features "perfect self-insurance". Meaning that despite the
presence of imperfect risk sharing (i.e. unconstrained agents enjoy higher consumption), in steady
state, the interest rate is going to be equal to the rate of time preference (See proposition 8, below)
and households enjoy perfect insurance within type.

Overall, we find that in our benchmark HANK- DLMP framework the policy maker is not faced
with a trade- off between “equity“ and “efficiency“ and thus, the model delivers the equilibrium
price stability result of Woodford (2003). In our HANK- DLMP environment monetary policy
is concerned with preserving the price stability objective whilst the fiscal policy follows a simple
rule to ensure fiscal solvency. The fully optimal policy maker under commitment, takes the tax rule

3If we were to allow households to keep their wealth when they receive a shock that forces them to switch type
then the assumption of perfect insurance within type would no longer hold. As different households would have
different idiosyncratic histories.

4Following Bilbiie et al. (2020) we refer to the fact that direct wealth transfers are made only to constrained
consumers as having a progressive tax system.
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under consideration when solving their program. Meaning that the supply of government bonds
is optimally chosen in each period whereas taxes adjust to return government debt to the target.
Since, in the absence of unequal exposure to aggregate shocks, the policy response will affect the
wealth dispersion but will not be able to redistribute consumption. Although, our paper does not
contribute to the debate whether targeting inequality should be a distinct policy objective5) for a
discussion on optimal policy and the dilemma between “equity“ and “efficiency“., the presence of
consumption inequality alters both the long- run equilibrium of the model as well as the dynamics
under optimal monetary policy. As a result, our model’s predictions differ from both the nested
RANK and also, from the standard HANK- IAMP environment.

3.2 Related Literature

In the last decade, a burgeoning literature has emerged exploring how monetary and fiscal policy
differ in HANK environments compared to the standard representative agent model. The liter-
ature is split between studies who use on large quantitative HANK models and those who rely
on tractable HANK or THANK models. This first class of HANK models focuses on exploring
the quantitative difference between HANK and RANK environments. This strand of the literature
either relies on continuous time models (See Ahn et al. 2017; Kaplan & Violante 2018; Achdou
et al. 2022; Nuño & Thomas 2022; Fernández-Villaverde et al. 2023) or on the assumption of very
large but finite number of different household types in order to compute the wealth distribution.
Representative examples of discrete- time models who assume large but finite number of different
household types are Bhandari et al. (2021) and Le Grand et al. (2022) for an analysis of optimal
policy, Cui & Sterk (2021) on unconventional monetary policy and McKay & Wolf (2022) for
study of optimal policy rules. These models do an excellent job of tracking the data, however, their
complexity turns them into a kind of black box. However, we have to admit that by adopting the
assumption of “Recursive contracts“- made by Marcet & Marimon (2019) or the assumption of
“truncated“ idiosyncratic histories of Le Grand et al. (2022), newer studies afford more tractability
compared to past generations of quantitative heterogeneous- agent- incomplete- market (HAIM,
hereafter) models.

On the other hand, THANK models are used to study the qualitative difference between HANK
and the nested RANK economies. Still, they are able to trace the dynamics of the large quantitative
models. As noted above, our model falls under the umbrella of the THANK models. We introduce
nominal price rigidities to the THANK framework of Chien & Wen (2021) to study optimal mon-
etary policy in an environment that allows for both idiosyncratic and aggregate risk but features
only Ricardian consumers. Our work complements the studies of Auclert (2019), Bilbiie & Ragot

5See Chang (2022), Acharya et al. (2023), Hansen et al. (2023) and Karaferis et al. (2024)
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(2021), Bilbiie (2024), Challe (2020), Chang (2022) and Hansen et al. (2023), amongst others who
rely either on tractable TANK or simplified HANK models to study how optimal monetary policy
differs in the presence of agent heterogeneity. Typically, the literature relies on generalisation of
the seminal TANK model of Galí et al. (2007) and Bilbiie (2008) which features a mass of un-
constrained Ricardian consumers and a mass of constrained “Keynesian households. Constrained
consumers are typically assumed to be hand- to- mouth agents and are forced to consume their en-
tire income in each period. As such, agents in these economies have unequal exposure to aggregate
shocks thus, creating a redistributive role for monetary policy.

Auclert (2019) builds a discrete- time HANK model where the only source of uncertainty
comes from the households’ individual history of idiosyncratic shock. Auclert uses this frame-
work to study optimal monetary policy. They identify three key channels through which monetary
policy can affect redistribution. These are the earnings heterogeneity channel, the Fisher channel
and the interest rate exposure channel. These channels shape the response of individual con-
sumption and labour supply to the unanticipated transitory aggregate shock. They also find that
the maturity structure of the households’ balanced sheet is crucial for determining the welfare as
well as the wealth effects of the shock. This result is also found in ? but in the context of the
RANK model. Including assets with longer maturities in the household’s balance sheet creates a
re- evaluation wealth in response to the shock. As such, even thought the maturity structure of the
households’ balanced sheet is not going to affect the model’s steady state (under Commitment), it
still alters the transmission mechanism of optimal Ramsey monetary policy. Furthermore, Chang
(2022) and Hansen et al. (2023) also study the transmission of monetary policy in a THANK en-
vironment. They investigate whether the central bank should pursue reduction of inequality as an
added objective separate to price stability and the reduction of the output gap. Similarly, Karaferis
et al. (2024) investigate a similar research question, in a tractable HANK environment but unlike
most studies, this paper looks at optimal monetary and optimal fiscal policy interactions without
imposing “zero- liquidity“ in steady state. The paper augments the HANK framework of Acharya
et al. (2023) that allows for a continuum of different household types but relies on a CARA utility
function to considerably simplify the aggregation process and allow for analytic tractability.

As discussed above, since our HANK- DLMP framework features only Ricardian consumers
there is no re- distributive role for monetary policy following a shock, in the benchmark case (See
proposition 13, below). In the language of Auclert (2019) since all households in the economy
share the same inter- temporal substitution there is no redistributive effects6 of monetary pol-
icy. Intuitively, with both consumer types being able to use assets to smooth their inter- temporal

6When discussing the presence of "redistribution channels" or “redistribution effects“ in the transmission mech-
anism for the optimal monetary policy, we refer to the monetary policy’s ability to redistribute consumption between
household types in response to an aggregate shock.
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consumption, a change in the real interest rate will have the same effect on the consumption of
each type. However, by imposing a quadratic portfolio adjustment cost on constrained consumers,
households have unequal exposure to an aggregate shock which gives rise to a redistributive chan-
nel for optimal policy (See proposition 14). As discussed above, due to the absence of a binding
borrowing limit for unemployed consumers, in equilibrium, the model features complete asset mar-
kets. Hence, changes in direct redistribution cannot affect the equilibrium consumption inequality
either. Hence, in equilibrium the policy maker is not facing any trade-off between “equity“ and
“efficiency“.

Finally, our paper also complement the literature that investigates the joint effects of household
heterogeneity and unemployment. This is typically done by incorporating search and matching
frictions (SAM, henceforth) into an otherwise standard TANK7 or THANK model (See for in-
stance, Ravn & Sterk 2017 ;Challe 2020; Broer et al. (2023); ?). Unlike, Challe (2020) or Ravn
& Sterk (2017) who employ an analytical THANK models with endogenous unemployment risk
(via SAM frictions), Chien & Wen (2021) assume that unemployment is exogenous. As such,
their framework nests both the indivisible labour model of Hansen (1985) and the HANK- IAMP
framework as special cases. Broer et al. (2023) introduced SAM frictions and non- zero amount of
aggregate short term government debt to the THANK model of Bilbiie (2024). Their framework
considers the joint effects of IAMP frictions and unemployment. However, they use it to study the
fiscal multipliers. In their framework monetary policy can affect both the size of unemployment as
well as the length of the unemployment spell. Their model is a generalisation of Debortoli & Galí
(2018) and Komatsu (2023), who use a TANK model with SAM frictions to study the transmission
of monetary policy in a tractable environment with household heterogeneity.

3.3 The Model

The economy is populated by a continuum of households. Consumers can be either unconstrained
(i.e. employed) or constrained. And agents move randomly across the two idiosyncratic employ-
ment states. Employed households are the typical optimizing consumers. Constrained or "unem-
ployed" agents consume out of their financial wealth and out of government subsidies. Next, there
is a producer side. This component is kept deliberately simple, consisting of perfectly competi-
tive final goods producers and monopolistically competitive intermediate variety producing firms.
The model features only price rigidities in the style of Rotemberg (1982). Finally, there is a policy
maker who combines the role of the monetary and fiscal authority. The monetary authority pursues
optimal (Ramsey) policy whilst the fiscal authority follows a simple tax rule. The fiscal authority
also provides subsidies to constrained consumers in Lump Sum fashion and issues government

7TANK is an abbreviation that refers to the Two Agent New Keynesian model.
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debt. The complete derivations for each policy block can be found in appendices B- D.

3.3.1 Households

There is a mass 1 of households, indexed by i ∈ [0,1], who discount the future at rate β . They
derive utility from consumption ci

t and dis-utility from labor supply li
t . The felicity function is:

ln
(
Ci

t
)
−
(
H i

t
)1+ϕ

1+ϕ

As in Bilbiie & Ragot (2021) and Chien & Wen (2021) to reduce the complexity of the prob-
lem, we rely on simplifying assumption regarding the way heterogeneity enters the model. As
discussed above, this is done using a generalization of the Lucas Jr (1990) "big representative
family" metaphor8.

The model allows for an idiosyncratic employment status shock in each period as well as
aggregate uncertainty. The idiosyncratic state is denoted by νt ∈ {e,u}. This shock is assumed
to be identically and independently distributed (iid) across consumers and follows a two- state
Markov process. These shocks are not uncorrelated with each other as well as with the aggregate
shock. Namely, if νt = {e}, then households are able to participate in the labour market in which
case, they are earn labour and dividend income. Whereas, if νt = {u}, individuals are not able
to access the labour market and consume only via an unemployment subsidy (T u

t ) and/or through
their financial wealth. In this framework, all consumers can have any position in both assets.
As such, depending on the average mark up (λ ) and the replacement rate (ϑ) which determines
the level of direct wealth transfers, constrained households can be either "savers" or "borrowers".
In the benchmark case, there are no entry or trading barriers in the asset market, so households
regardless of their idiosyncratic status are free to adjust their asset position in each period. In
order to create a redistributive role for monetary policy, we follow Cantore & Freund (2021) and
introduce portfolio adjustment costs only for the constrained consumers.

We denote by pe|e the probability of a household having access to the labour market in period
t +1, provided that they had access in period t (hence, the probability of moving "islands" - switch
to not participating- is pe|u). Similarly, we use pu|u to indicate the probability of keep being unem-
ployed (not participating) in period t + 1, conditional upon not participating in the labour market
in period t (thus, the probability to switch to participating is denoted by pu|e). The unconditional
probabilities of the idiosyncratic employment and unemployment shocks are pe = pe|u

pe|u+pu|e and

8The use of this generalisation of the "family head" and "island" metaphors has been widely used in the THANK
literature. This simplifying tool has been generalized further, in different contexts, by Le Grand et al. (2022), Chien &
Wen (2021), Bilbiie & Ragot (2021) and Bilbiie (2024); among other. Similarly, Heathcote & Perri (2018) have also
relied on a generalization of Lucas Jr (1990) metaphor but they use a different simplifying family structure.
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pu = pu|e

pe|u+pu|e and must also satisfy pe+ pu = 1. Relying on the law of large numbers, these proba-
bilities reflect the share of employed (participating) and unemployed (not participating) households
in aggregate population.

Furthermore, households belong to a big representative family whose head maximizes the inter-
temporal welfare of family members using a utilitarian welfare criterion. Still, the family head has
access only to limited risk sharing technology due to the timing of the decisions.

The timing of the decisions is as follows. In each period, the family head first pools resources
within the “island“. Then, the aggregate shocks are realised and the family head decides the con-
sumption plan and labour supply plan for each household, on each island. Following that, the
households realise their idiosyncratic employment status for the period and move to the corre-
sponding island. Since the family head cannot make transfers to households after the idiosyncratic
shock is realised, they will have to take this as a constraint when solving their program. Once
again, the timing of the actions is responsible for the imperfect risk sharing. To simplify our anal-
ysis, as in Bilbiie & Ragot (2021), in each period instead of keeping track of the entire distribution
of wealth for each household type as in the fully-fledged Bewley-Hugget-Aiyagri model, we are
going to assume that households’ wealth can only two values. And, these values depend only on
the households’ most recent realisation of the idiosyncratic state.

The head of the representative family wishes to maximise the following Welfare criterion

Uo =
∞

∑
t=0

(
β

t)[pe

(
ln(Ce

t )−
(He

t )
1+ϕ

1+ϕ

)
+ pu ln(Cu

t )

]
subject to the budget constraint of each type.

• If the household is allowed to participate in the labour market then, the budget constraint of
an employed consumer takes the form

 Ce
t +(1+πt+1)PM

t

(
α

M(e)
t+1
pe

)
+
[

(1+πt+1)
(1+πt+1)(1+rt)

](
αe

t+1
pe

)
=

 (1− τt)wtHe
t +De

t

+
(
1+ρPM

t
)(

α̂
M(e)
t
pe

)
+
(

α̂e
t

pe

)
− T e

t
pe


where,

α̂
M(e)
t = pe|eaM(e)

t + pe|uaM(u)
t

α̂
e
t = pe|eae

t + pe|uau
t
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Ce
t is the consumption level of an employed consumer in period t. PM

t and α̂
M(e)
t are the price

and the quantity of long- term government bonds, respectively. Similarly, α̂e
t stands for the

quantity of short- term government bonds held by an employed household. The dividends
distributed to an employed household are given as De

t but consumers do not internalise them.
Furthermore, He

t and wt represent the employed consumer’s labour supply and the prevailing
wage rate, respectively. Finally, τt stands for the current level of the distortionary income
tax whilst T e

t is current period’s Lump Sum tax. In the baseline scenario, we assume that the
policy maker has access to only one tax instrument and also, that taxes in general are levied
only against unconstrained consumers.

• Similarly, if household is unable to participate in the labour market in the current period
then, this household type’s budget constraint takes the form


puCu

t

+(1+πt+1)PM
t α

M(u)
t+1

+ (1+πt+1)
(1+πt+1)(1+rt)

αu
t+1

=

(
puDu

t +
(
1+ρPM

t
)

α̂
M(u)
t + α̂u

t +T u
t

−Ω

2 (NAPu
t −NAPu)2

)

where,

α̂
M(u)
t = aM(e)

t pu|e +aM(u)
t pu|u

α̂
u
t = ae

t pu|e +au
t pu|u

NAPu
t =


(1+πt+1)PM

t α
M(u)
t+1 + (1+πt+1)

(1+πt+1)(1+rt)
αu

t+1

−

 (
1+ρPM

t
)(

aM(e)
t pu|e +aM(u)

t pu|u
)

+
(

ae
t pu|e +au

t pu|u
) 


≡ T u

t − puCu
t

With Cu
t being the consumption level of an unemployed household in period t. PM

t and α̂
M(u)
t

are again the price and the quantity long- term government bonds, respectively. Now, α̂u
t stands for

the quantity of short- term government bonds held by an unemployed consumer. Du
t stands for the

share of dividends paid to an unemployed household. Next, NAPu
t refers to the net asset position of

"unemployed" whilst Ω is a parameter controlling the size of the portfolio adjustment cost. Finally,
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T u
t represents the lump sum transfer (i.e.unemployment benefits) paid to the constrained household

type, in each period.
Now, solving the family head’s program yields:

1. The Bond Pricing equation

PM
t = Et

( (
1+ρPM

t+1
)

(1+ rt)(1+πt+1)

)

where, the stochastic discount factor (SDF) takes the form

SDF ≡ Et

(
β

[
pe|e ψe

t+1

ψe
t

+ pu|e (1+Ω
(
NAPu

t+1−NAPu)) ψu
t+1

ψe
t

])
= Et

(
β

[
pe|u

(1+Ω(NAPu
t −NAPu))

ψe
t+1

ψu
t

+ pu|u
(
1+Ω

(
NAPu

t+1−NAPu))
(1+Ω(NAPu

t −NAPu))

ψu
t+1

ψu
t

])
=

1
(1+ rt)

2. The Consumption Euler Equation for each household type:

• The Consumption Euler Equation for the unconstrained household type takes the form:

ψe
t

(1+ rt)
= β

(
pe|eEt

(
ψ

e
t+1
)
+ pu|e (1+Ω

(
NAPu

t+1−NAPu))Et
(
ψ

u
t+1
))

• Whilst, the Consumption Euler Equation for the constrained household type is found
to be:

(1+Ω(NAPu
t −NAPu))

ψu
t

(1+ rt)
= β

(
pe|uEt

(
ψ

e
t+1
)
+ pu|u (1+Ω

(
NAPu

t+1−NAPu))Et
(
ψ

u
t+1
))

where,

ψ
e
t = (Ce

t )
−1

ψ
u
t = (Cu

t )
−1

are the marginal utility of consumption for each type.
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3. The optimal labour supply of the unconstrained consumer type is given by

(1− τt)wt−Ce
t (H

e
t )

ϕ = 0

In general, the entries of the stochastic transitional matrix for the idiosyncratic employment
shock are going to determine whether Ce

t ⪋Cu
t . This property is absent from the standard Aiyagari-

type models. Choosing a symmetric probability matrix for the (un)employment shock (pu|u = pe|e)

guarantees that both consumer types enjoy the same steady state consumption level. However,
we choose to focus only in the case with imperfect risk sharing where, (Ce

t >Cu
t ). And in the

absence of binding borrowing limits on constrained households the model also delivers "perfect
self- insurance" (See proposition 8).

Proposition 8 Under the assumption that both household types are a mass of Ricardian con-

sumers, the model delivers perfect self- insurance
(

1+ r = 1
β

)
. Now, since we choose to focus

only on the case of imperfect risk sharing (Ce
t >Cu

t ), we further require the idiosyncratic state to

be persistent (pu|u ⩾ pe|e) which in turns implies both pu|e + pe|e ≤ 1 and pu|u + pe|u ⩾ 1.

(See Appendix A.1 for the proof of Proposition)

3.3.2 Firms

The economy features two production sectors. A perfectly competitive final good producing sector
as well as a monopolistically competitive intermediate good sector. The final good producing firms
are identical and thus, we model this sector as a single stand-in aggregate firm that is the typical
CES aggregator- that combines intermediate varieties into the final good:

Yt =

[∫ 1

0
(yt ( j))

εt−1
εt d j

] εt
εt−1

where, Yt denotes the quantity of the final good, yt ( j) denotes the demand for intermediate
input j, and εt > 1 governs the elasticity of substitution between any two intermediate varieties.

There is continuum j ∈ [0,1] of intermediate good producing firms, each producing a differen-
tiated variety. Each firm j produces its differentiated product according to the production function

yt ( j) = ztht ( j)

where, zt is the aggregate technology (TFP) shock. We assume that technology is determined
exogenously and follows an AR(1) process
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zt+1 = ρzzt + ε
z
t+1

where, ε
z
t+1

iid∼ N
(
0,σ2

z
)
. Whereas, ht ( j) stands for the labour demand of firm j.

Intermediate firms face a quadratic cost a- la- Rotemberg (1982) when changing their prices.
The firm’s problem becomes choosing {Pt ( j)}∞

t=0 in order to maximise :

max
Pt( j)

∞

∑
t=0

m0,t

((
Pt ( j)

Pt
− (1− s)

wt

zt

)
yt ( j)− Φ

2

(
Pt ( j)

Pt−1 ( j)
−1
)2

Yt

)
subject to monopolistic demand

yt ( j) =
(

Pt ( j)
Pt

)−εt

Yt

Solving the firms’ profit maximisation problem yields the NK Price Phillips Curve

Φπt (1+πt)(1+ rt) = (1− εt +(1− s)εt
wt

zt
)(1+ rt)+ΦEt

(
πt+1 (1+πt+1)

Yt+1

Yt

)
(NKPC)

3.3.3 Government

The model features a consolidated monetary-fiscal authority. The monetary authority has ac-
cess to "commitment technology" and in every period, they optimally choose the level of the
real interest rate {rt}. Whereas, the fiscal authority optimally chooses the level of the outstand-
ing government debt {bt ,bM

t }. Then, given the outstanding government debt, the size of the
direct wealth transfers made to the unemployed households (T u

t ) as well as the level of public
spending{Gt = G0 ∈ R+,∀t} they adjust the level of taxes to ensure fiscal solvency, following a
simple rule. However, since the aim of the paper is the study of optimal monetary policy, we set the
income taxes to zero (τt = τ = 0,∀t). Thus removing the distortionary effects of income taxation
from the optimal policy. Furthermore, since, changes in government spending and/or unemploy-
ment benefits typically involve parliamentary procedures, we are going to assume that they are
held constant and are determined exogenously.
As such, the government budget constraint (GBC, henceforth), in real terms, takes the form

(1+πt+1)PM
t bM

t +
bt

(1+ rt)
+ τtwtHt = bt−1 +

(
1+ρPM

t
)

bM
t−1 +Gt +T u

t −T e
t
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Where, the (aggregate) Lump Sum taxes/transfers in the economy are defined as

Tt = T u
t −T e

t

the difference between the direct wealth transfers (i.e. proxy for unemployment benefits) and
the Lump Sum taxes imposed on unconstrained households. In the benchmark model, we have
have set the wealth transfers as

T u
t = ϑ(1− τt)wtHe

t pu

With ϑ ∈ (0,1] being the parameter controlling the size of the (Lump Sum) unemployment
benefits relative the the employed household’s net labour income. Hence, we refer to ϑ as the
replacement rate. If instead the government raises tax revenue using only Lump Sum taxes, then
unemployment benefits take the form:

T u
t = ϑ(wtHe

t −
T e

t
pe )pu

As discussed above, the tax instrument available always follows a simple rule. Since, the fiscal
authority has access only to Lump Sum taxes :

T e
t = T̄ e ·

(
PM

t bM
t

PMbM(∗)

)ψb

· exp
(

ln
(

ψ
b
t

))
Where, bM(∗) stands for the exogenous steady state target for the real debt and,

ln
(

ψ
b
t

)
= ρψ ln

(
ψ

b
t−1

)
+ ε

ψ

t

ε
ψ

t
iid∼ N

(
0,σ2

ψ

)
To simplify our analysis, we further assume that the short- term government bond is in zero

net supply (bt−1 = bt = 0,∀t). Thus, we can simply drop both short- term bonds and distortionary
income taxes from the government budget constraint. Finally, as discussed above, we are going
to assume that the Lump Sum transfers made to constrained households are held constant (T u

t =

T̄ u,∀t) in the benchmark HANK- DLMP specification.
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3.3.4 Market Clearing

In equilibrium, we require all markets to clear. Thus, by combining the households’ budget con-
straint with the expression for the aggregate dividends and the government budget constraint, we
obtain the (aggregate) resource constraint:

peCe
t + puCu

t =

(
1− Φ

2
π

2
t

)
Yt−Gt−

Ω

2
(NAPu

t −NAPu)2

Consumption Inequality(St)

Following Debortoli & Galí (2018) and Komatsu (2023), we employ a simple measure of con-
sumption inequality (St):

St = 1−Cu
t

Ce
t

This is an index of the consumption gap between the "constrained" and "unconstrained" house-
holds. If both consumer types have the same consumption level (ϑ = 1), then St = 0. However, in
our model constrained consumers always receive transfers that are lower compared to the uncon-
strained agents’ net labour income, St ∈ (0,1).

3.4 Competitive Equilibrium

The competitive equilibrium consists of a price vector
(

pt ,wt ,PM
t
)
, a vector of policy instruments(

bt ,bM
t ,τt ,T e

t ,T
u

t ,rt
)

and an allocation
(
Ce

t ,C
u
t ,H

e
t ,b

M
t+1,bt+1,NAPu

t
)

that induces both the asset
market and the goods market to clear, whilst each household type gets to maximise their individual
utility. The private sector equilibrium is described by the following set of equations.

The marginal utility of consumption for employed

ψ
e
t = (Ce

t )
−1 (eq.(1))

The marginal utility of consumption for unemployed

ψ
u
t = (Cu

t )
−1 (eq.(2))

The Euler equation for an employed household

ψe
t

(1+ rt)
= β

(
pe|eEt

(
ψ

e
t+1
)
+ pu|e (1+Ω

(
NAPu

t+1−NAPu))Et
(
ψ

u
t+1
))

(eq.(3))
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The Euler equation for an unemployed household

(1+Ω(NAPu
t −NAPu))

ψu
t

(1+ rt)
= β

(
pe|uEt

(
ψ

e
t+1
)
+ pu|u (1+Ω

(
NAPu

t+1−NAPu))Et
(
ψ

u
t+1
))

(eq.(4))
The labour supply equation for the employed household

(1− τt)wt−Ce
t (H

e
t )

ϕ = 0 (eq.(5))

The Aggregate resource constraint

peCe
t + puCu

t =

(
1− Φ

2
π

2
t

)
Yt−Gt−

Ω

2
(NAPu

t −NAPu)2 (eq.(6))

Bond Pricing Equation

PM
t = Et

( (
1+ρPM

t+1
)

(1+ rt)(1+πt+1)

)
(eq.(7))

New Keynesian Price Phillips Curve (NKPC)

Φπt (1+πt)(1+ rt) = (1− εt +(1− s)εt
wt

zt
)(1+ rt)+ΦEt

(
πt+1 (1+πt+1)

Yt+1

Yt

)
(eq.(8))

Government Budget Constraint (GBC)

(1+πt+1)PM
t bM

t + τtwtHe
t pe =

(
1+ρPM

t
)

bM
t−1 +Gt +T u

t −T e
t (eq.(9))

Definition of Consumption inequality

St = 1−Cu
t

Ce
t

(eq.(10))

Aggregate Labour Supply9

Ht = peHe
t (eq.(11))

Aggregate Production

Yt = zt (peHe
t ) (eq.(12))

9Appendix C contains all the aggregation calculations.
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Definition of Inflation

1+πt+1 =
pt+1

pt
(eq.(14))

Net asset position of Constrained households (NAPu
t )

NAPu
t =


(1+πt+1)PM

t α
M(u)
t+1 + (1+πt+1)

(1+πt+1)(1+rt)
αu

t+1

−

 (
1+ρPM

t
)(

aM(e)
t pu|e +aM(u)

t pu|u
)

+
(

ae
t pu|e +au

t pu|u
) 

(eq.(15))

≡ T u
t − puCu

t

3.5 Social Welfare Function

The policy maker maximizes an inter-temporal utilitarian welfare criterion. This social welfare
function represents the aggregate welfare in the economy and as such, it is calculated as the
weighted sum of the utility of each household type weighted by each type’s share in the total
population. Given these Pareto weights, the policy maker’s objective can be written as maximizing

∞

∑
t=0

(β )t Wt

where Wt is the period t felicity function of the planner. The Social Welfare criterion takes the
form:

Wt = pu ln(Cu
t )+ pe ln(Ce

t )− pe (1− τt)wt

(1+ϕ)Ce
t

He
t

Alternatively, using the definition of consumption inequality, we can re- write the Social Wel-
fare felicity as

Wt = pu ln(1−St)+ pu ln(Ce
t )− pe (1− τt)wt

(1+ϕ)Ce
t

He
t

Meaning that the aggregate welfare function is increasing in the consumption of the each house-
holds type and decreasing in consumption inequality. Additionally, the policy maker takes into ac-
count the dis-utility caused by the aggregate labour supply as they seek to maximise the aggregate
welfare. Since, we consider only Lump Sum taxes, we can drop the distortionary income tax term
from the social welfare function.
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Optimal Policy under Commitment

The Utilitarian policy maker wishes to maximise the Social Welfare criterion

Wt = pu ln(1−St)+ pu ln(Ce
t )− pe wtHe

t
(1+ϕ)Ce

t

Subject to: the Consumption Euler equation of both types (eq.(3)-eq.(4)), the optimal labour
supply (eq.(5)),the aggregate resource constraint(eq.(6)), the bond pricing equation (eq.(7)), the
Phillips Curve (eq.(8)), the government budget constraint (eq.(9)), the definition of consumption
inequality(eq.(10)) and the expression for the aggregate production (eq.(12)). The problem may
also include auxiliary equations describing the marginal utility of consumption (eq.(1)- eq.(2) or
the expression for the net asset position of constrained households (eq.(15)).
(See the policy maker’s problem in detail the Appendix.)

3.6 Calibration and Simulations

We calibrate our model for the US economy for the period 1985-2021. The model is calibrated
to quarterly frequency. In our benchmark HANK framework,we set the coefficient of relative risk
aversion to γ = 1 whilst the Frisch elasticity of substitution is set at ρ = 1/4, to match the empirical
evidence of Chetty (2012). Next, we follow the empirical estimates of Bayer et al. (2020) and set
the persistence of the cost- push shock to ρε = 0.9. The policy maker’s discount rate, β is 0.9975
to replicate the annual real interest rate of 1 % percent, close to the US average. The annual real
interest rate is calculated, using annualised data on the short term nominal interest rate from the
FRED 10. For simplicity, we further assume that all blocks in the economy (Consumers,firms and
Policy maker) discount the future using the same discount factor.

As discussed above, we have adopted the Lucas Jr (1990) metaphor of a "big representative"
family which results reduces the complexity of the analysis dramatically. This assumption, reduces
the HANK model to a generalised TANK, where households switch type in each period with a
given probability. We have chosen the entries of the transition matrix to reflect a "labour market
participation rate" of pe = 0.65. Consequently, the rate of non- participation in the labour market
is pu = 1− pe = 0.35, in line the US Bureau of Labor Statistics (BLS) data11 for the 1985 -2021.
Hence, the corresponding transition matrix is

10The data series used is REAINTRATREARAT1MO and was taken from the FRED database
(https://fred.stlouisfed.org/).

11The data on the participation rate was the LNS11300000 and it taken from the BLS
database(https://www.bls.gov/).
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pp =

[
pe|e pe|u

pu|e pu|u

]
=

[
0.9 0.1

0.054 0.946

]

Where, pe = pe|u

pe|u+pu|e ≈ 0.65 and pu = pu|e

pe|u+pu|e ≈ 0.35 and also, satisfy pe + pu = 1. The
law of large numbers informs us that these probabilities can be used as a proxy for the share
of participating and non- participating households in the population. However, for the model to
display the standard property of imperfect risk sharing so that constrained consumers have larger
marginal utility of consumption, the entries of the transition matrix must also satisfy pu|u > pe|e

and pu|e + pe|e < 1 and pu|u + pe|u > 1 (See proposition 8, above).
For simplicity, the steady state level of the government expenditure to GDP ratio (G/Y) is

chosen to be 0.0. Following the empirical estimates of Nekarda & Ramey (2011) we set the
replacement rate ϑ = 0.4. However, in the HANK- IAMP literature, the ϑ parameter is treated as
free variable. More specifically, authors choose the value of ϑ so that the model delivers a specific
amount of steady state consumption inequality. As such, when considering the HANK- IAMP
specification, we set ϑ = 0.464 so that the model to deliver (approximately) the same amount
of steady state consumption inequality as our HANK- DLMP framework. We also consider an
alternative parametrization where following the estimates of Karabarbounis & Chodorow-Reich
(2014), we have set ϑ = 0.8.

Following Leeper & Leith (2021), who calibrate their model for the same period, we have set
the maturity of the outstanding debt m = 5 years (20 Quarters) since the average maturity of the US
government debt is found to be about 5.4 years whilst the annualised debt to GDP ratio is found to
be +43% 12.

As discussed above we further simplify our analysis by setting the aggregate supply of short
term debt to zero. Now as for the portfolio adjustment costs, we consider two values for Ω. In the
benchmark case, Ω= 0, meaning that there are no trading barriers in the asset market and all agents
are free to adjust their position at any point in time. We also consider an alternative specification
where, as in Cantore & Freund (2021), we set Ω= 0.07. This latter specification with Ω> 0 allows
us to explore the redistributive role of monetary.

Our model features nominal rigidities a- la Rotemberg (1982). The Rotemberg (1982) and
Calvo (1983) models deliver the same results for the linearized version of the New Keynesian
Phillips curve. We allow prices to adjust every 10 months (approximately). This price spell has
been suggested by the majority of the empirical work13.

The rigidity of the aggregate price level matches that of a typical Calvo model where micro-

12This calculation is done using data from the Federal Reserve Bank of Atlanta (https://www.atlantafed.org/) and
is available in the the appendix of Leeper & Leith (2021); Leeper et al., 2021.

13See Klenow & Kryvtsov 2008,Gopinath & Rigobon 2008, Klenow & Malin 2010 and Kehoe & Midrigan 2015.
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Table 3.1: Baseline Parameterisation

Key Parameters Value Source
Time discount factor β 0.9975 FRED database

Coefficient of Risk aversion γ 1 Bilbiie & Ragot (2021)
Inverse of Frisch Elasticity ρ

1
4 Chetty (2012)

Average Mark- up λ 31% Hall (2018)
Average Price Stickiness θ 0.75 Kehoe & Midrigan (2015)

Replacement rate ϑ 0.4 Nekarda & Ramey (2011)
Annualised Debt-to-GDP PMbM

4Y 43% Leeper & Leith (2021)
Participation rate pe 0.65 BLS database

Fiscal response coefficient ψb 0.0025 Kirsanova & Wren-Lewis (2012)
Persistence of the cost- push shock ρε 0.9 Bayer et al. (2020))

Portfolio Adjustment cost Ω 0|0.07 Cantore & Freund (2021)

level prices change about once per year. Thus, we have chosen the average price stickiness to be
δ = 0.75, implying prices change approximately once every 10 months. Moreover, in line with the
empirical estimates of Hall (2018), we have set the elasticity of substitution between intermediate
varieties to be at ε = 4.2. Implying an average mark- up of about λ = 31%. Furthermore, following
Kirsanova & Wren-Lewis (2012) we have chosen the value of the fiscal response coefficient (ψb)
to 0.0025. Since, this is the lowest value that ensured the system’s stability. Thus, guaranteeing an
active monetary policy. All computations presented in this paper were implemented in the RISE
toolbox (See Maih, 2015).

3.7 Discussion

In this section we discuss the model’s long- run equilibrium and dynamics under optimal monetary
policy. First, we focus on the non- stochastic steady state and compare the long- run equilibrium of
our benchmark HANK- DLMP economy to the steady state of the nested RANK model and also,
against the steady state of the HANK- IAMP framework. For simplicity, we abstract from wage
rigidity and assume that only prices are sticky across all specifications. We further assume that the
size of the constrained population as well as the transitional probabilities are the same across the
different THANK specifications. Overall, we find that in steady state the HANK- DLMP model
exhibits higher consumption inequality, lower consumption for each type and thus, lower aggregate
welfare. In our HANK framework, constrained consumers are not facing any binding borrowing
constraints and they can be either "borrowers" or "savers", in equilibrium.

In fact, as shown by table 3.3 for moderate values of the replacement rate (ϑ) we observe
that constrained consumers tend to be borrowers in equilibrium. As discussed above, we have set
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the income of unemployed households to equal to a fraction of the after- tax labour income of
their unconstrained counterparts. As such, a lower average mark up increases the optimal labour
supply of unconstrained consumers and with it size of the direct wealth transfers. A higher value
for the elasticity of substitution (ε) increases the prevailing wage and hence the optimal labour
supply whilst causing the dividend income to fall. Hence, as ε increases so does the non- financial
income of constrained consumers. Once again, in the language of Bilbiie et al. (2020), we consider
only a progressive tax system, as wealth transfers only redistribute wealth from unconstrained to
constrained consumers.

3.7.1 The Non- Stochastic Steady State

In this subsection, we first discuss the differences in the long-run equilibrium between the HANK
model with discontinuous labour market participation (HANK-DLMP) and the nested representa-
tive agent model. As discussed earlier, the main focus of our chapter is the conduct of optimal
(Ramsey) monetary policy. To avoid the impact of distortionary taxation on optimal policy, we as-
sume that the policymaker raises revenue using only lump-sum taxes. The fiscal authority follows
a simple rule, where taxes deviate from their steady state value only when outstanding govern-
ment debt deviates from the steady-state target. As shown by the definition of the tax rule, this
target is exogenous. For comparability, the steady state level of outstanding government debt is set
exogenously to reflect an annualized debt-to-GDP ratio of 43%, across all specifications.

Intuitively, since the focus of this chapter is to demonstrate how optimal monetary policy differs
from the nested RANK model due to the presence of different Ricardian consumer types in an
environment with a meaningful supply of government bonds, it follows that the exogenous aspect
of the fiscal environment should be kept constant.

The presence of non- trivial amount of steady state consumption inequality somewhat alters
the long- run equilibrium results of the nested RANK model. Although we include a direct wealth
transfer mechanism to guarantee that constrained households are always able to have positive con-
sumption, the size of transfer is not able to affect the steady state consumption inequality. After
all, in an economy populated by only Ricardian consumers neither monetary nor fiscal policy can
affect the equilibrium level of consumption inequality (See propositions 9 and 10).

Proposition 9 below explains the observed differences in the long- run equilibrium level of
taxes, output and aggregate consumption between our benchmark HANK-DLMP framework and
the nested RANK. Whereas, proposition 10 explains the steady state consumption inequality
found in the HANK- DLMP framework.

Proposition 9 Regardless of the tax instrument available, in the zero inflation steady state (π =

0), the presence of non- participating households guarantees that the HANK- DLMP model will
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deliver higher steady state taxes than the nested RANK (τ̄HANK > τ̄RANK or T̄ HANK > T̄ RANK) and

lower aggregate consumption (C̄HANK < C̄RANK).

(See Proof in Appendix A.2)
Intuitively, since a share of the population is unable to supply labour to the market and rely on

government subsidies, both the aggregate labour supply and the tax base are smaller compared to
the nested RANK.

Proposition 10 In our HANK- DLMP framework, constrained households do not face a binding

budget constraint in equilibrium. As such, the steady state level of consumption inequality (S) is

independent of each household type’s wealth or the level of the progressive wealth transfers (T u).

In fact, (S) depends solely on the transitional probabilities of the idiosyncratic (un)employment

shock:

S = 1− pu|e(
1− pe|e

)
= 1− pu|u(

1− pe|u
)

(See Proof in Appendix A.3)
Moreover, we also compare the steady state of our benchmark HANK- DLMP model against

that of the tractable HANK- IAMP model that we typically encounter in the literature. We consider
two alternative values for the replacement rate. One value follows Bilbiie & Ragot (2021) approach
and the alternative, delivers approximately the same steady state amount of consumption inequality
as our HANK- DLMP framework. Despite the different assumptions regarding the non- financial
income of constrained consumers, we can still think of the HANK- IAMP model as a special/nested
case of our HANK- DLMP framework. This latter HANK specification corresponds to a scenario
where constrained consumers face a binding equilibrium borrowing constraint and infinite portfolio
adjustment costs.

Proposition 11 below explains the observed differences in the long- run equilibrium level of
taxes between the HANK- IAMP framework and the nested RANK. Whereas, proposition 12
explains the differences in the steady state consumption inequality observed across the different
THANK frameworks.

Proposition 11 The HANK- IMAP model with imperfect self- insurance (r̃ ̸= r) will always deliver

lower equilibrium aggregate production than the nested RANK (Y HANK < Y RANK). Given our

modelling assumptions that government spending and the debt- to- GDP ratio are exogenous and

held constant across all specifications then, lump sum taxes are going to be higher in the HANK-
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IAMP framework (T HANK > T RANK) if and only if (iff, hereafter) r̃ > rY HANK

Y RANK . Whereas, under

distortionary income taxes, τHANK > τRANK iff r̃ > r wRANK

wHANK .

(See Proof in Appendix A.2)
Interestingly, in the standard HANK- IAMP model with imperfect self- insurance, how steady

state taxes relate the equilibrium tax level of the RANK model, depends on the tax instrument
available as well as on the equilibrium level of the real interest rate and inflation. Furthermore,
in this HANK specification, constrained consumers are unable to take any position in the asset
market. Hence, changes in the amount of direct redistribution have a direct impact on the overall
steady state amount of consumption inequality (S). This result is presented formally in proposition
12, below.

Proposition 12 In the HANK- IAMP framework, the steady state consumption inequality depends

not only on the transitional probabilities of the idiosyncratic state but also on the labour supply of

the Ricardian household as well as on the replacement rate and the ratio of the value of the out-

standing government debt to the after tax labour income. In steady state, consumption inequality

takes the form:

S = 1−ϑ (He)(1+ϕ)−

(
pe|u

pu

) (
1+ρPM)b
(1− τ)wHe (He)1+ϕ

(See Proof in Appendix A.3)
Hence, in this latter HANK specification, everything else equal, a higher value for the exoge-

nous replacement rate (ϑ ), translates to lower steady state consumption inequality. Since, a higher
value for ϑ closes the gap between the labour productivity of optimising and hand- to- mouth
agents without creating the need for a higher tax level to ensure fiscal solvency. Thus resulting in
an overall higher steady state aggregate welfare. As discussed above, this exclusion of constrained
consumers from financial markets, means that this household type is always facing a binding bor-
rowing constraint (αu

t = α
M(u)
t = 0,∀t) coupled with an infinite portfolio adjustment cost (Ω→∞).

In this case, both monetary and fiscal policy can affect both the equilibrium level consumption in-
equality and are able to redistribute both consumption and wealth following an aggregate shock.

RANK vs HANK

Table 3.2 below displays a comparison between the steady state of the different HANK specifica-
tions and the nested RANK model. First, we look at the long- run equilibrium of our benchmark
HANK framework. In the baseline HANK- DLMP model, the policy maker levies taxes only on
unconstrained households. The policy maker uses the revenue raised through taxation to ensure fis-
cal solvency and redistributes part of it to constrained agents (i.e. unemployed workers) to ensure
that constrained agents always have positive consumption.
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Table 3.2: Steady State comparison of RANK vs HANK.

Steady State RANK HANK- DLMP HANK- IAMP
(1) (2) (3) (4)

Parameters
Non- participation. rate pu 0.0% 35% 35% 35%

Replacement rate ϑ − 40% 80% 46.4%
Steady State

Consumption of Unconstrained CR 0.7966 0.755 0.8004 0.79
Consumption of Constrained Cu − 0.4077 0.5905 0.4262

Lump Sum Tax T e 0.0436 0.1264 0.0797 0.0429
Real Interest rate R 1.0025 1.0025 1.0301 1.0024

Net Inflation π̄ 0 0 0.0033 −0.0002
Aggregate. Output Ȳ 0.8366 0.6733 0.7669 0.7025

Real Wages w̄ 0.7619 0.7619 0.7628 0.7619
Real Gov. Debt bM 0.0721 0.058 0.107 0.0602

Asset Prices PM 19.95 19.95 12.333 20.0654
Annualised Debt-to-GDP PMbM

4Y 0.43 0.43 0.43 0.43
Social Welfare W −0.8675 −1.0405 −0.9499 −0.9929

Cons. Inequality S 1 0.46 0.2623 0.4605

Conversely, in the nested RANK as well as in the HANK- IAMP model taxes are levied on
the entire populations. In this latter HANK framework constrained agents consume only out of
the exogenous transfer that they receive. As discussed above, in spite of the different assumptions
regarding the constrained households’ lack of access tot he financial market, this alternative HANK
specification can still be thought a special case of HANK- DLMP model with a zero- liquidity
constraint imposed on constrained households and infinite portfolio adjustment costs (Ω→ ∞).
Comparing the long run equilibrium of RANK model against the different HANK specifications
yields several interesting results.

In line with proposition 8, we observe that the HANK- DLMP model delivers the "perfect self-
insurance" result in equilibrium. As such, the steady state real interest rate is always found to be
equal to the rate of time preference

(
1+ r = 1

β

)
. However, this result is absent from the HANK-

IAMP framework. In this economy, the presence of binding equilibrium borrowing constraints
cause proposition 8 to fail. From Bilbiie (2024) we know that this framework features “perfect
insurance only within type“ and in line with the Aiyagari (1994) literature, the equilibrium interest
rate is different from the rate of time preference. As discussed above, we consider two distinct
values for δ . In column 4, the value of delta is chosen so that the model delivers approximately
the same steady state consumption inequality as the benchmark HANK- DLMP model. Whereas,
in column 3 the value of δ delivers a steady state amount of consumption inequality that roughly
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follows the estimates of Karabarbounis & Chodorow-Reich (2014). Interestingly, when the two
HANK frameworks deliver (approximately) the same amount of equilibrium consumption inequal-
ity, the real interest rate in the HANK- IAMP model is just below the rate of time preference and
the steady state inflation is mildly negative. However, with higher replacement rate, the model
delivers an equilibrium real interest rate above the value implied by complete markets and positive
steady state inflation. In line with proposition 11, we find that in the HANK- IAMP specification
reported in column 3, where (r̃ > 1

β
− 1) the steady state tax level is higher than the equilibrium

tax rate found in the nested RANK. Whilst, column 4 displays the opposite result.
This is hardly surprising since the policy maker is maximising a Utilitarian Welfare criterion

and they are not less "egalitarian" than households. As shown by Chang (2022), when monetary
policy has an additional redistributive role due to the presence of binding borrowing limits on
constrained households, the central bank is unable to simultaneously close the output gap, preserve
the price stability and pursue reduction in inequality as an added objective. According to Chang
2022, for the HANK- IAMP model to deliver zero inflation in steady state, the policy maker is
required to place higher weight on price stability compared to the other policy objectives.

On the other hand, our HANK- DLMP model does not feature binding borrowing limits for
constrained households (in equilibrium) and thus, neither monetary policy nor fiscal policy can
affect the steady state level of consumption inequality (See proposition 10). Hence, the result of
Woodford 2003 that states “when the monetary authority has access to commitment technology the
New Keynesian model will deliver zero inflation in steady state“, still holds. Even in the presence
of unemployment, the economy is populated only by Ricardian consumers. As such, the policy
maker is not facing any trade- off between “efficiency“ and “equity“ in equilibrium. Thus, the
policy maker has no incentive to deviate from the steady state price stability objective. As a result,
both the HANK- DLMP model and the nested representative agent framework always delivering
the same steady state interest rate and inflation.

Once again, in line with proposition 10, the steady state consumption inequality in the HANK-
DLMP framework depends only on the transitional probabilities of the idiosyncratic shock. So,
given our calibration, we find that S = 0.46. Conversely, in the HANK- IAMP framework, the dif-
ferent values for δ result in the distinct levels of equilibrium consumption inequality (See propo-
sition 12). In fact, as shown by columns 3 and 4, an increase in δ translates in higher consumption
for constrained consumers and lower consumption inequality. Additionally, since an increase in δ

does not require an increase in taxation to ensure fiscal solvency, in fact the opposite, it also results
in higher aggregate welfare.

Moreover, as shown by proposition 9 above, regardless of the tax instrument available, the
RANK model always delivers higher steady state aggregate consumption and lower taxes than
the HANK- DLMP framework and the HANK- IAMP framework. In this latter specification,
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Table 3.3: Steady state behaviour of Constrained consumers

HANK- DLMP
Key Parameters
Participation rate pe 65% 65% 65% 65% 65% 65%
Replacement rate ϑ 40% 70% 40% 70% 40% 70%
Average Mark up λ 31% 31% 15% 15% 20% 20%

Steady State
Consumption of Unemployed Cu 0.4077 0.4077 0.4384 0.4384 0.4537 0.4537

Direct Wealth transfers (Individual) T u

pu 0.23819 0.21025 0.28254 0.24937 0.30624 0.270242
Net Asset Position of Unemployed NAPu −0.16951 −0.19745 −0.15586 −0.18903 −0.14746 −0.18346

constrained households are forced to consume their entire non- financial income in each period
which is an exogenous fraction of the Ricardian household type’s net labour income. As a result,
this frameworks assumes a higher aggregate labour supply than the HANK- DLMP model which
also translates to higher output and a lower tax rate. Hence, the HANK- IAMP specification
exhibits lower steady state taxes, higher aggregate production and higher aggregate consumption
than the HANK- DLMP model.

The rationale behind these differences is that the HANK- IAMP specification does not feature
direct wealth transfers. Yet, the non- financial income of constrained households is linked to
the net income of their unconstrained counterparts. Now, since taxes are levied on the entire
population, even if both models feature the same steady state consumption inequality, the aggregate
consumption as well as the consumption of each type will be lower in the HANK- DLMP model.
Nevertheless since constrained consumers in the HANK- IAMP model are always assumed to have
lower labour supply than their unconstrained counterparts, the overall labour supply is still lower
compared to the nested RANK. And, with aggregate consumption and aggregate output being
linked thought the aggregate resource constraint we can conjecture that aggregate consumption is
higher in the representative agent model.

Finally, from table 3.3 we can observe the steady state behaviour of unemployed consumers
in the HANK- DLMP model. We find that the positive effect of a higher replacement rate is
dominated by the adverse effect of higher taxation. Since both household types are Ricardian, a
change in the replacement rate does not affect the optimal consumption plan. Moreover, given the
average mark up in the economy, a replacement rate of ϑ = 40% does not provide unemployed
consumers with enough income to obtain the steady state consumption plan that is consistent with
the maximisation of the policy maker’s program. As such, constrained consumers are borrowers
in equilibrium, causing the aggregate asset holdings in the HANK economy to be lower than in
the nested RANK specification. Finally, a change the average mark up in the economy results in
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a change in the optimal consumption plan. As the elasticity of substitution between intermediate
varieties increases, so does the equilibrium wage and thus the non- financial income of constrained
consumers. Hence, as the average mark- up in the economy decreases, the net asset position of
unemployed households improves.

3.8 Dynamics under optimal monetary policy

In this section, we discuss the aggregate dynamics of our THANK framework under optimal mon-
etary policy, in response to an unanticipated positive cost push shock. First, we provide a com-
parison of the optimal monetary policy response between the RANK, HANK- DLMP and HANK-
IAMP frameworks, under Lump Sum taxes.

This comparison allows us to investigate how the policy maker’s response changes from the
inclusion of household heterogeneity as well as due to the presence of redistributive channels in
the transmission of optimal monetary policy. Propositions 13 below, explains why the sheer pres-
ence of household heterogeneity does not imply a redistributive role for monetary policy. Whilst
propositions 14 and 15 clarify the conditions necessary for the presence of redistribution channels
in the transmission mechanism of monetary policy in the two HANK economies.

Proposition 13 In our benchmark HANK- DLMP model (Ω = 0) all agents have the same elastic-

ity of inter-temporal substitution. Hence, a change in the real interest rate has the same effect on

the marginal utility of consumption of both household types:

dRt

Rt
=

dψe
t

ψe
t

=
dψu

ψu
t

(See Proof in Appendix A.4)
Thus, the admitting including household heterogeneity does not imply a role for redistributive
channels in the monetary transmission mechanism. In the language of Auclert (2019), despite the
presence of imperfect risk sharing, we are still able to obtain the representative- agent response
(dRt

Rt
= dCt

Ct
). In our benchmark scenario where Ω = 0, despite the fact that optimal monetary

policy cannot redistribute consumption across households, it can still affect the wealth dispersion
in the economy. As such, despite the lack of a redistribution motive for consumption, the optimal
monetary policy is still fundamentally different compared to the nested RANK.

Next, proposition 14 below shows that by introducing portfolio adjustment costs to constrained
consumers (only) (Ω > 0), households in our HANK- DLMP economy no longer have equal ex-
posure to aggregate shocks. And naturally, this creates a redistributive role for monetary policy in
response to the shock.
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Proposition 14 In the HANK- DLMP model with portfolio adjustment costs, constrained con-

sumers face trading barrier. In this case, a change in the real interest does not have the same effect

on the marginal utility of consumption of both agent types (dψu
t

dRt
̸= dψe

t
dRt

). For an unconstrained

consumer we find that :

dRt

Rt
=

dψe
t

ψe
t
− pu|e Rt

ψe
t

[
d

dRt

[(
1+Ω

(
NAPu

t+1−NAPu))Et
(
ψ

u
t+1
)]]

dRt

Whereas for a constrained consumer we observe that

dRt

Rt
=

dψu
t

ψu
t
− β

ψu
t

 d
dRt

Et

 pe|u
(

ψe
t+1

(1+Ω(NAPu
t −NAPu))

)
+pu|u (1+Ω(NAPu

t+1−NAPu))
(1+Ω(NAPu

t −NAPu)) ψu
t+1

dRt

(See Proof in Appendix A.4)
In response to an aggregate shock, consumers want to adjust their asset position to smooth

their inter-temporal consumption. Since constrained consumers now face a quadratic portfolio ad-
justment cost, they have unequal exposure to the aggregate shock compared to their unconstrained
counterparts. Thus, a change in the real interest rate will redistribute consumption across house-
hold types. Nevertheless, the policy maker maximises a utilitarian welfare criterion where the
utility of consumption for each type is weighted by their respective share in the total population.
So, even though monetary policy can redistribute consumption, the policy maker places a higher
weight on the consumption of unconstrained households. Similarly, proposition 15 below explains
why we find a redistributive role for monetary policy in the HANK- IAMP framework.

Proposition 15 In the HANK- IAMP model, a change in the real interest does not have the same

effect on the marginal utility of consumption on both agent types. For the Ricardian consumer type

we can still obtain the same response as in the benchmark HANK- DLMP model:

dRt

Rt
=

dψe
t

ψe
t

Whereas, for the Keynesian household type, a change in the real interest has a different effect on

their marginal utility of consumption (ψu
t ):

dψu
t

ψu
t

=
dRt

Rt

[
d

dRt

(
pu

T u
t
+

pu

pu|e
1((

1+ρPM
t
)

bM
t +bt

))] Rt

ψu
t

(See Proof in Appendix A.4)
In the HANK- IAMP specification, even in the event that aggregate debt exists in zero net

supply, a change interest rate will have a distinct effect on the consumption of each type (dRt
Rt

=
dψe

t
ψe

t
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& dψu
t

dRt
= 0). As such, distinct household types in the economy described by either the HANK-

DLMP model with financial frictions (Ω > 0) or the HANK- IAMP model, have unequal exposure
to the aggregate shock. Once more, this implies a role for redistributive channels in the monetary
transmission mechanism.

Furthermore, propositions 14 and 15 above, also demonstrate the importance of the assump-
tions pertaining to the maturity structure of the households’ balanced sheet. In an economy that
features meaningful amount of aggregate debt, the effect of a change in the interest rate on house-
hold consumption depends on the re- evaluation effect of the agent’s net asset position. As dis-
cussed above, this re- evaluation effect is linked to the asset price of bonds with longer maturity
and shape the individual consumption and labour supply response.

Finally, we also explore how the different assumptions regarding the wealth transfers in the
HANK- DLMP framework shape the optimal policy response. Allowing for time- varying transfers
alters the policy maker’s information set. And although the differences in the long- run equilibrium
level for the key variables are quantitatively negligible, these assumptions can have a significant
impact on the model’s dynamics.

3.8.1 Response to an Unanticipated Cost- push shock

We now look at the dynamics, under optimal monetary policy, in response to an unanticipated unit
(positive) cost push Shock. Taxes follow a simple rule that feed backs on debt. The first column
reports the dynamics of the RANK model. The second column shows the response to the unantic-
ipated shock of our benchmark HANK- DLMP economy with constant wealth transfers (T u) and
no entry or trading barriers in the asset market (Ω = 0). Both specifications feature only Ricardian
consumers who can freely adjust their asset position to smooth their inter-temporal consumption,
in response to the shock. As such, despite the presence of household heterogeneity, the policy
maker is unable to affect consumption inequality. Yet, their response will still impact the wealth
dispersion in the economy (See proposition 13). Columns 3 and 4 show the two specifications
where optimal monetary policy has a "redistributive role"14 in response to a shock. In these two
economies, households have unequal exposure to the aggregate shock (See propositions 14 and
15). Column 3 depicts the response of our HANK- DLMP model with constant wealth transfers
(T u) and portfolio adjustment costs imposed only on constrained consumers (Ω = 0.07). Whilst
column 4 reports the dynamics of the standard HANK- IAMP framework with δ = 0.8. This value
for the replacement rate is chosen so that the equilibrium consumption inequality is in line the
empirical estimates.

14Once again, when referring to the "redistributive role" of monetary policy, we are making reference to its capacity
to redistribute consumption among households.
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Following Kirsanova & Wren-Lewis (2012), we set the fiscal feedback coefficient to be as small
as possible to discourage the policy maker from pursuing passive monetary policy. Both the RANK
and the HANK- IAMP frameworks are nested in our HANK- DLMP model. As discussed above,
the HANK- IAMP can be thought as a special case where constrained households are bounded by
a zero liquidity constraint and infinite portfolio adjustment costs. Whilst, the RANK specification
corresponds to a version of the HANK- DLMP model with perfect risk sharing and no financial
friction or binding equilibrium borrowing constraint for the unemployed.

As expected, the unanticipated positive cost push shock causes inflation to overshoot and re-
duce the value of the outstanding government debt across all specifications. Since, the fiscal policy
is actively trying to ensure stable debt dynamics, the monetary authority pursues contractionary
monetary policy following the shock, to suppress inflation. This initial inflation jump reduces the
real value of the outstanding government debt causing taxes to drop following the shock. More
specifically, the tax dynamics are determined jointly by the response of asset prices and the debt
response. From the no- arbitrage condition, we know that asset prices are inversely related to the
nominal interest rate. As such, since both the real interest rate as well as inflation rise immediately
after the positive cost- push shock is realised, both asset prices and real aggregate debt initially fall.
From figure 1, we can observe that since the dynamics of government debt do not display large
deviations in response to the aggregate shock, the tax dynamics are determined by the dynamics of
bond price. However, in line with well- known results of the optimal policy literature, the govern-
ment debt “follows a path very close to a unit-root process, mirroring the path of debt under joint
monetary–fiscal optimisation.“ (See Kirsanova & Wren-Lewis 2012).

As in Dávila & Schaab (2022), in response to the unanticipated positive demand shock, the
initial inflation response is found to be stronger in the HANK- DLMP environments. Intuitively,
the monetary authority has an incentive to use inflation to redistribute wealth and/or consump-
tion towards constrained households. Even though, in the benchmark HANK- DLMP model, all
households have the same exposure to the aggregate shock, allowing for positive inflation still re-
distributes wealth to unemployed consumers. Since, constrained consumers are typically found to
be borrowers in equilibrium.

Furthermore, even in the presence of portfolio adjustment costs on constraint workers, the same
argument still holds. In this case, in response to the shock, the monetary transmission mechanism
can redistributive both consumption and wealth across households (See propositions 14). Follow-
ing the shock, consumers want to adjust their net asset position and smooth their inter- temporal
consumption. Constrained consumers face a quadratic adjustment cost and hence, these trading
barriers penalise them proportionally to the size of the adjustment. Yet, in equilibrium this mass
of households are still borrowers. So even if they are not able to freely adjust their portfolios fol-
lowing the shock, the initial rise in inflation still decreases the real value of their debt obligations.
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Figure 3.1: Policy response to a cost- push shock across all specifications.
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On the other hand, this result is absent from the standard HANK- IAMP framework. In this
HANK specification constrained consumers face a binding “zero- liquidity“ equilibrium constraint
and very large (near infinite) portfolio adjustment costs. In this economy, the positive inflation
deviation has an adverse effect on both household types. Nevertheless, unconstrained households
are still free to adjust their portfolios’ and smooth their inter- temporal consumption. As such,
in this HANK specification, consumption initially inequality rises in response to the positive cost
push shock.

Moreover, after the initial jump, inflation falls below its steady state value and remains below
for a number of periods. This behaviour is consistent with the evidence from the representative
agent framework literature (See Woodford 2003 for a textbook treatment). However, the magnitude
of the deviation differs across frameworks.

As expected, we find that the dynamics of aggregate output mirror the response of aggregate
consumption. Since, unconstrained consumers make up a much higher percentage of the popu-
lation, we find that the output dynamics closely traces the consumption dynamics of the uncon-
strained consumers, in specifications with household heterogeneity.

All in all, we find that the dynamics of the benchmark HANK- DLMP model are closest to
the nested RANK model. This result comes as no surprise since, in line with proposition 13, we
know that policy maker is not faced with a trade- off between “equity“ and “efficiency“ in these
frameworks. Still, due to the very high persistence of the shock after twenty periods the economy
has returned to steady state.

3.8.2 HANK- DLMP: Constant vs Time- varying Transfers

Figures 3.2 depicts a comparison between the two specifications of the HANK- DLMP model. In
the benchmark case, we operate under the assumption that non- participating households receive
a constant transfer in each period. This Lump Sum wealth transfer is equal to a constant fraction
of the steady state after- tax labour income of their unconstrained counterparts (T u = ϑ(wHe−
T e

pe )pu). In the alternative specification, we relax this assumption and although the replacement
rate is held constant, we allow the overall transfer levels made to non- participating households to
be time- varying (T u

t = ϑ(wtHe
t −

T e
t

pe )pu). In either case, we look at the policy response with and
without redistributive channels in the transmission mechanism of optimal monetary policy (Ω = 0
or Ω = 0.07). This allows us to ascertain how the transmission mechanism of optimal monetary is
affected by the assumptions regarding the direct wealth transfers, in response to an unanticipated
aggregate shock.

As discussed above, in the latter scenario with time- varying wealth transfers, the policy maker
has an augmented information set. More specifically, when the policy maker solves their program,

173



0 3 6 9 12 15 18

-0.02

0

0.02

0.04

R

0 3 6 9 12 15 18

0

0.01

0.02

0 3 6 9 12 15 18
-0.1

-0.05

Y

0 3 6 9 12 15 18

-0.02

-0.01

0
b

M

0 3 6 9 12 15 18

2

4

10
-4 S

0 3 6 9 12 15 18

-0.1

-0.05

C
e

0 3 6 9 12 15 18

-0.04

-0.02

C
u

0 3 6 9 12 15 18

-1

-0.5

P
M

0 3 6 9 12 15 18
-2

-1.5

-1

10
-3 T

R

0 3 6 9 12 15 18

-0.02

0

0.02

0.04

R

0 3 6 9 12 15 18

0

0.01

0.02

0 3 6 9 12 15 18
-0.1

-0.05

Y

0 3 6 9 12 15 18

-0.02

-0.01

0
b

M

0 3 6 9 12 15 18
-1

0

1
S

0 3 6 9 12 15 18

-0.1

-0.05

C
e

0 3 6 9 12 15 18

-0.04

-0.02

C
u

0 3 6 9 12 15 18

-1

-0.5

P
M

0 3 6 9 12 15 18
-2

-1.5

-1

10
-3 T

R

0 3 6 9 12 15 18

-0.02

0

0.02

0.04

R

0 3 6 9 12 15 18

0

0.01

0.02

0 3 6 9 12 15 18
-0.1

-0.05

Y

0 3 6 9 12 15 18

-3

-2

-1

0

10
-3 b

M

0 3 6 9 12 15 18

-6

-4

-2
10

-4 S

0 3 6 9 12 15 18

-0.1

-0.05

C
e

0 3 6 9 12 15 18

-0.04

-0.02

C
u

0 3 6 9 12 15 18

-1

-0.5

P
M

0 3 6 9 12 15 18

-5

0
10

-4 T
R

0 3 6 9 12 15 18

-0.02

0

0.02

0.04

R

0 3 6 9 12 15 18

0

0.01

0.02

0 3 6 9 12 15 18
-0.1

-0.05

Y

0 3 6 9 12 15 18

-3

-2

-1

0

10
-3 b

M

0 3 6 9 12 15 18
-1

0

1
S

0 3 6 9 12 15 18

-0.1

-0.05

C
e

0 3 6 9 12 15 18

-0.04

-0.02

C
u

0 3 6 9 12 15 18

-1

-0.5

P
M

0 3 6 9 12 15 18

-5

0
10

-4 T
R

HANK- DLMP (  = 0 & T
u
) HANK- DLMP (  = 0 & T

u

t
) HANK- DLMP (  = 0.07 & T

u

t
)HANK- DLMP (  = 0.07 & T

u
)

Figure 3.2: Policy response to a cost- push shock across all specifications.
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they take into account how the optimal choice of the aggregate labour supply and the wage rate,
will affect both participating and non- participating households. Still, under our assumption that
the policy maker wishes to maximise a Utilitarian Welfare criterion, they still place higher weight
on the consumption (utility) of unconstrained households.

Regardless of household heterogeneity, there is a unambiguous effect on inflation in response
to a positive cost push shock. As the shock hits the economy, inflation initially overshoots and then
drops below the steady state value, where it remains until the series converges back to the long- run
equilibrium. As discussed above this initial jump in inflation reduces the value of the outstanding
government debt.

As discussed above, in response to the shock, the debt dynamics resemble almost a unit- root.
After the initially drop in the real value of outstanding government debt, the series takes very long
time to return to equilibrium. However, relaxing the assumption of constant wealth transfers alters
the dynamics of the aggregate debt, consumption inequality and taxes.

From the asset pricing equation we know that bond prices are inversely related to the nominal
interest rate. Following the shock, since both the real interest rate and inflation initially rise, asset
prices fall following the shock. However, under time- varying wealth transfers, the tax dynamics
no longer mirror the dynamics of asset prices. In this case, the debt dynamics are much larger and
thus the tax response seems to be a weighted average of the response of both series.

Furthermore, the presence of a redistributive role for monetary policy does not affect the con-
sumption dynamics. Absence the effects of distortionary taxation on optimal policy, consumption
(of both types) displays near identical dynamics across all the different frameworks. And, since ag-
gregate consumption is linked with aggregate output through the resource constrained, we observe
that output and consumption display near identical responses.

Finally, from the dynamics of aggregate output and inflation, respectively, we know that in
response to the shock, both aggregate the labour supply and wages initially fall. And, their initial
decrease is much larger than the initial decline in taxes. As such, in the HANK- DLMP model
with financial frictions and time- varying transfers, the initial pursuit of contractionary (“active“)
monetary policy in response to a rise in inflation causes consumption inequality to initially jump.
Intuitively, the rise in inflation may have have reduced the real value of the outstanding debt obli-
gations of constrained consumers however, the decrease in their non- financial income- due to
both positive inflation and lower level of wealth transfers coupled the increased cost of borrow-
ing worsens the financial condition of all households. Since, constrained consumers face trading
barriers in the asset market, the overall consumption inequality initially rises following the shock.
As output and wages start to move back towards their steady state value, the financial condition
of constrained households begin to improve and inequality starts to fall. Yet, due to the very high
persistence of the shock after twenty periods the economy has returned to steady state.
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3.9 Conclusion

The paper shows that unemployment or rather discontinuous labour market participation is an
important source of household heterogeneity separate to infrequent asset market participation fric-
tions and it should not be overlooked.

Although the HANK- DLMP environment nests both the representative agent model as well as
the HANK- IAMP as special cases, it is still fundamentally different from both. This difference is
highlighted in the presence of financial frictions. In the baseline specification, there are no trading
barriers in the asset market and thus, all households have equal exposure to an aggregate shock.
In this case, optimal monetary policy can redistribute wealth but no consumption across agents,
following a shock. Hence, even without redistributive channels in the transmission mechanism
of monetary policy, the optimal policy response is still different to the nested RANK model. To
ensure that constrained households always have positive consumption, we have departed from the
assumption of Chien & Wen (2021) that non- participating households can consume only out of
their financial wealth, and instead, we have introduced direct wealth transfers in each period. In the
language of Bilbiie et al. (2020), we consider only a progressive tax system since wealth transfers
are only made from unconstrained to constrained consumers. These transfers are set to be equal to
constant fraction of the after tax labour income of an unconstrained (i.e. employed) agent. Whether
these transfers are constant or time- varying does not affect significantly the long- run equilibrium
of the model. Still, the assumption has a non- negligible effect on the optimal monetary policy
response to the unexpected shock. Since, with time- varying transfers the policy maker has an
augmented information set.

In the benchmark HANK model, these transfers are financed by levying taxes on unconstrained
households. As such, their level directly affects the level of taxes necessary to ensure fiscal sol-
vency. However, the steady state level of consumption inequality depends solely on the transitional
probabilities of the idiosyncratic (un)employment shock and is unaffected by the level of the di-
rect wealth transfers (See proposition 10). Next, we show that following a shock, monetary policy
can affect redistribution only in models that feature unequal access to the financial markets and/or
Keynesian consumer types (See proposition 14 and 15). Furthermore, contrary to the predictions
of the typical HANK model, our HANK- DLMP specification also delivers perfect self-insurance
despite the presence of imperfect risk sharing and/or portfolio adjustment costs for constrained
consumers (See proposition 8). We further we find that the Woodford (2003) result of zero steady
state inflation always holds for our benchmark HANK specification since the policy maker is not
faced with a trade- off between “equity“ and “efficiency“ in equilibrium.

The same result is not present in the HANK- IAMP model. In line with by Chang (2022), we
find that when there is a binding equilibrium borrowing constraint on constrained households, a
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policy maker who maximises a Utilitarian Welfare criterion cannot simultaneously pursue equilib-
rium price stability objective, close the output gap and target reduction in inequality.

All in all, optimal monetary policy is fundamentally different in the HANK- DLMP envi-
ronment compared to both the typical HANK- IAMP framework and the nested RANK model.
Discontinuous labour market participation frictions are an important source of household hetero-
geneity that should not be overlooked.

3.10 Appendix

The appendices are available upon request.

3.11 Appendix A

Proof of Proposition 8

Full Self- Insurance in the HANK- DLMP framework

Meaning that the Consumption Euler Equation for an unconstrained household takes the form

ψe
t

(1+ rt)
= β

(
pe|eEt

(
ψ

e
t+1
)
+ pu|e (1+Ω

(
NAPu

t+1−NAPu))Et
(
ψ

u
t+1
))

Meaning that the Consumption Euler Equation for an constrained household takes the form

(1+Ω(NAPu
t −NAPu))

ψu
t

(1+ rt)
= β

(
pe|uEt

(
ψ

e
t+1
)
+ pu|u (1+Ω

(
NAPu

t+1−NAPu))Et
(
ψ

u
t+1
))

Where, the non- participating households’ Net asset position (NAPu
t )

NAPu
t =

 (1+πt+1)PM
t α

M(u)
t+1 + (1+πt+1)

(1+πt+1)(1+rt)
αu

t+1

−
((

1+ρPM
t
)(

aM(e)
t pu|e +aM(u)

t pu|u
)
+
(

ae
t pu|e +au

t pu|u
)) 

≡ T u
t − puCu

t

Hence, the stochastic discount factor is given (SDF)
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SDF ≡ Et

(
β

[
pe|e ψe

t+1

ψe
t

+ pu|e (1+Ω
(
NAPu

t+1−NAPu)) ψu
t+1

ψe
t

])
= Et

(
β

[
pe|u

(1+Ω(NAPu
t −NAPu))

ψe
t+1

ψu
t

+ pu|u
(
1+Ω

(
NAPu

t+1−NAPu))
(1+Ω(NAPu

t −NAPu))

ψu
t+1

ψu
t

])
=

1
(1+ rt)

=
1
Rt

In the Non- Stochastic steady state we have

Et

(
β

[
pe|e + pu|e ψu

ψe

])
= Et

(
β

[
pe|u ψe

ψu + pu|u
])

=
1

(1+ r)
=

1
R

• So, if we require both consumer types enjoy the same consumption

ψ
u = ψ

e⇔Cu =Ce

and

pe|e + pu|e = pe|u + pu|u

Meaning that this case requires a symmetric transition matrix and consequently, the share of
constrained and unconstrained consumers are equal. Since the pe|e, pu|e, pe|u, pu|u are the entries of
a stochastic transition matrix the must also satisfy that

pe|e + pe|u = 1

pu|e + pu|u = 1

pe|e +1− pu|u = 1− pe|e + pu|u

Hence,

pe|e = pu|u

pe|u = pu|e
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So, the share of constrained households is

pe =
pe|u

pe|u + pu|e =
pu|e

pe|u + pu|e = pu

And thus,

β =
1

(1+ r)
=

1
R

• Alternatively, if we want to focus on the more realistic case where

ψ
u > ψ

e⇔Ce >Cu

then, for the SDF to hold we require that in equilibrium

pe|e + pu|e ψu

ψe = pe|u ψe

ψu + pu|u

pu|e ψu

ψe − pe|u ψe

ψu = pu|u− pe|e

pu|e ψu

ψe − pe|u ψe

ψu = 1− pu|e−1+ pe|u

pu|e ψu

ψe + pu|e = pe|u ψe

ψu + pe|u

pu|e
(

ψu

ψe +1
)
= pe|u

(
ψe

ψu +1
)

With, ψu > ψe⇒
(

ψu

ψe +1
)
>
(

ψe

ψu +1
)

So for the equality to hold we require

pu|e < pe|u

Consequently, using the property of the stochastic transition matrix that pu|e + pu|u = 1 and
pe|e + pe|u = 1 we find that the above result also translates to
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pu|u > pe|e

In which case, the model implies that pu|e + pe|e < 1 and pu|u + pe|u > 1.

Now, let us turn our focus on the on the "Prefect Self- Insurance" result. Suppose, the model
delivers the typical Aiyagari (1994) result that in steady state Ce >Cu and R < 1

β
.

Once again, from the expression for the SDF, we have

Et

(
β

[
pe|e + pu|e ψu

ψe

])
= Et

(
β

[
pe|u ψe

ψu + pu|u
])

=
1

(1+ r)
=

1
R

And in the Non- Stochastic steady state

β

[
pe|e + pu|e ψu

ψe

]
= β

[
pe|u ψe

ψu + pu|u
]
=

1
(1+ r)

=
1
R

Now, if 1
Rβ

> 1 then[
pe|e + pu|e ψu

ψe

]
=

[
pe|u ψe

ψu + pu|u
]
=

1
β (1+ r)

=
1

βR
> 1

Which requires both

pe|e + pu|e ψu

ψe > 1

1− pe|u + pu|e ψu

ψe > 1

pu|e >
ψe

ψu pe|u

and,

pe|u ψe

ψu + pu|u > 1

Since ψu > ψe whilst pi| j ∈ (0,1) and at the same time pu|e + pe|e < 1 and pu|u + pe|u > 1

This means for
pu|u > 1− pe|u ψe

ψu > 1− pu|e
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From the properties of the stochastic matrix we know that

pu|u = 1− pu|e

which leads to a contradiction.
On the other hand, if 1

Rβ
> 1 then

[
pe|e + pu|e ψu

ψe

]
=

[
pe|u ψe

ψu + pu|u
]
=

1
β (1+ r)

=
1

βR
< 1

Which requires both

pe|e + pu|e ψu

ψe < 1

and,

pe|u ψe

ψu + pu|u < 1

Since pi| j ∈ (0,1) and at the same time pu|e + pe|e < 1 and pu|u + pe|u > 1

Let’s re- arrange the inequalities

pe|e < 1− pu|e ψu

ψe

pu|u < 1− pe|u ψe

ψu

Using the properties of the stochastic matrix that pu|u = 1− pu|e we have

1− pu|e < 1− pe|u ψe

ψu

pe|u < pu|e ψu

ψe

But since,

pe|e < 1− pu|e ψu

ψe

it implies
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pe|e < 1− pu|e ψu

ψe < 1− pe|u

pe|e < 1− pe|u

Which again leads to a contradiction. Hence the model delivers perfect insurance in steady
state.

Proof of Proposition 9 & 11

Steady State taxes and Agg. Consumption:

RANK vs HANK- DLMP

Comparison of Steady State Income Tax between the RANK and the HANK -DLMP model

Looking again at the government budget constraint, we can re- write it in terms of tax revenue

τtwt peHe
t + peT e

t =

(
1+ρPM

t
)

(1+πt)
bM

t−1−PM
t bM

t +Gt + puT u
t

Using the definition of the asset pricing equation, we can substitute (1+ρPM
t )

(1+πt)
with PM

t−1 (1+ rt−1)

τtwt peHe
t + peT e

t = PM
t−1 (1+ rt−1)bM

t−1−PM
t bM

t +Gt + puT u
t

In the baseline model, the policy maker uses only distortionary income taxes to raise revenue
(T e

t = 0) and pays Lump Sum Transfers to unemployed households,

τtwt peHe
t = PM

t−1 (1+ rt−1)bM
t−1−PM

t bM
t +Gt + puT u

t

So, the level of the distortionary income tax is found to be

τt =
PM

t−1 (1+ rt−1)bM
t−1−PM

t bM
t

peHe
t wt

+
Gt + puT u

t
peHe

t wt

The rationale behind this assumption(T e
t = 0 and τt ⩾ 0) is very straight forward. In reality we

do notobserve Lump Sum taxes but unemployment benefits are paid in Lump Sum fashion. Thus,
even in the absence of direct redistribution (T u

t = 0), since a smaller fraction of the economy’s
population is getting taxed

(
peHe

t < HRANK
t

)
, the marginal tax rate needs to be higher in order to

insure fiscal solvency.
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By construction, both in the HANK- DLMP framework as well as in the nested RANK econ-
omy, output(Yt) is produced using only labour(Ht) and technology(zt).

In the HANK economy, aggregate output is given as

Y H
t = peHe

t zt

whereas, in the nested representative agent model

Y R
t = Htzt

So, in steady state

Y H = peHez̄

and

Y R = Hz̄

where, z̄ = 1
Meaning that the steady state tax in each economy is given as

(τHANK ≡)τH =
r
w

PMbM

Y H +
1
w

G0 + puT u

Y H

and

(τRANK ≡)τR =
r
w

PMbM

Y R +
1
w

G0

Y R

As shown by proposition 8, in steady state the HANK- DLMP framework features perfect
self insurance hence, rHANK = rRANK = r = 1

β
− 1. Furthermore, in the zero inflation steady

state
(
πHANK = πRANK = 0

)
, wages depend only on the elasticity of substitution between interme-

diate varieties and since the two models share the same calibration
(
εHANK = εRANK,G0 = 0

)
,

wRANK = wHANK = w = z̄ ε−1
(1−s)ε . Finally, although the aggregate amount of outstanding govern-

ment debt may vary between the two economies, the steady state debt to GDP ratio is exogenously
fixed b̄ = PMbM

4Y H = PMbM

4Y R > 0.
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wτ
H = 4b̄r+

G0 +T u

Y H

= 4b̄r+
T u

Y H

wτ
RANK = 4b̄r+

G0

Y R

= 4b̄r

τH

τR = 1+
T u

4b̄rY H

Meaning that under a progressive tax system (T u > 0 )

τ
HANK > τ

RANK

Now, if instead the policy maker raises tax revenue using Lump sum taxes(T ⩾ 0 and τt = 0),
the tax revenue in each economy is given as

T e
t = PM

t−1 (1+ rt−1)bM
t−1−PM

t bM
t +Gt +T u

t

and
T R

t = PM
t−1 (1+ rt−1)bM

t−1−PM
t bM

t +Gt

In steady state, under the same calibration (as discussed above),

T e = rPMbM +G0 +T u

= 4b̄Y Hr+T u

With T u = ϑ

(
wHHe− T e

pe

)
pu

T e = 4b̄Y Hr+ϑ

(
wHHe− T e

pe

)
pu

(
1+

pu

pe

)
T e = 4b̄Y Hr+ϑ

(
wHHe) pu
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Now, since Y H = z̄peHe = peHe and pu + pe = 1

(
1
pe

)
T e = 4b̄Y Hr+ϑ

(
wHHe) pu

T e = 4peb̄Y Hr+ϑ
(
wHHe pe) pu

T e = 4peb̄Y Hr+ϑ puwHY H

Once again, we have assumed that G0 = 0 (across all specifications). Similarly, in the steady
state of the RANK economy

T R = rPMbM +G0

= 4b̄Y Rr

Hence,

T e

T R =
4peb̄Y Hr

4b̄Y Rr
+

ϑ puwHY H

4b̄Y Rr

T e

T R = peY H

Y R + pu ϑwH

4b̄r
Y H

Y R

T e

T R =

(
1− pu + pu ϑwH

4b̄r

)
Y H

Y R

T e

T R =

(
1+ pu ϑwH−4b̄r

4b̄r

)
Y H

Y R

Since, 4b̄r < ϑwH ⇒ pu ϑwH−4b̄r
4b̄r > 1

Namely, for our benchmark calibration,
(

1+ pu ϑwH−4b̄r
4b̄r

)
≈ 25.456.

Hence,

T e > T R
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Now, let’s look at steady state aggregate consumption. Using the steady state expression for
the aggregate resource in each economy, we can re- write the steady state aggregate consumption
as

CRANK =

(
1− Φ

2
π

2
)

Y R−G0

and

peCe + puCu =

((
1− Φ

2
π

2
)

Y H− Ω

2
(NAPu−NAPu)2−G0

)

CHANK =

(
1− Φ

2
π

2
)

Y H−G0

In the benchmark calibration, G0 = 0 meaning that in the zero inflation steady state

CHANK

CRANK =
Y H

Y R < 1

CHANK <CRANK

RANK vs HANK- IAMP

In the HANK- IAMP model, the aggregate labour supply is always lower compared to nested
representative agent model

HR
t > peHe

t

So, in steady state,

HR > peHe

Once again, let us look at the government budget constraint. We can re- write the government

budget constraint in terms of tax revenue

τtwt (peHe
t )+T e

t =

(
1+ρPM

t
)

(1+πt)
bM

t−1−PM
t bM

t +Gt +T u
t

Using the definition of the asset pricing equation, we can substitute (1+ρPM
t )

(1+πt)
with PM

t−1 (1+ r̃t−1)
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τtwt (peHe
t )+T e

t = PM
t−1 (1+ r̃t−1)bM

t−1−PM
t bM

t +Gt +T u
t

In the baseline model, the central planner uses only distortionary income taxes raise tax revenue
(T e

t = 0) and pays Lump Sum Transfers to unemployed households,

τtwt (peHe
t ) = PM

t−1 (1+ r̃t−1)bM
t−1−PM

t bM
t +Gt +T u

t

So, the level of the distortionary income tax is found to be

τ
H
t =

PM
t−1 (1+ r̃t−1)bM

t−1−PM
t bM

t

(peHe
t )wt

+
Gt +T u

t
(peHe

t )wt

The rationale behind this assumption(T e
t = 0 and τt ⩾ 0) is very straight forward. In reality we

do not observe Lump Sum taxes but unemployment benefits are paid in Lump Sum fashion. Thus,
even in the absence of direct redistribution (T u

t = 0), since a smaller fraction of the economy’s
population is getting taxed

(
peHe

t < HRANK
t

)
, the marginal tax rate needs to be higher in order to

insure fiscal solvency.
By construction, both in the HANK- IAMP framework as well as in the nested RANK econ-

omy, output(Yt) is produced using only labour(Ht) and technology(zt).
In the HANK economy, aggregate output is given as

Y H
t = (peHe

t + pu
δ )zt

whereas, in the nested representative agent model

Y R
t = Htzt

So, in steady state

Y H = (peHe) z̄

and

Y R = Hz̄

Since, the HANK frame work features lower aggregate labour supply,

Y R > Y H
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With z̄ = 1 and T u
t = T u = 0, we can re-write the expression for the steady state tax in each

economy as

τ
H =

r̃
w

PMbM

Y H +
1
w

G0

Y H

and

τ
RANK =

r
w

PMbM

Y R +
1
w

G0

Y R

For our calibration, both the steady state debt- to- GDP ratio and government spending are held
constant: PMbM

Y = ζ̄ and G0 = 0.

τ
H =

r̃
wH

ζ̄

and

τ
RANK =

r
wR

ζ̄

So,

τHANK

τRANK =
r̃

wH
r

wR

=

(
r̃
r

wR

wH

)

So, whether τHANK ⪌ τRANK depends on the r̃ ⪌ r wR
wH

.

Under Lump Sum taxes :

T e
t = PM

t−1 (1+ rt−1)bM
t−1−PM

t bM
t +Gt

So, the steady state level of the lump sum tax is found to be

T e
t = r̃PMbM +Go

or equivalently,
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T e = r̃Y H
ζ̄ +Go

And for the RANK economy

T = rY R
ζ̄ +Go

Given our modelling assumption that Go = 0. The ratio of taxes is

T e

T
=

r̃
r

Y H

Y R︸︷︷︸
<1

So, whether T e ⪌ T depends on the r̃ ⪌ rY H

Y R .

Proof of Proposition 10 & 12

Steady State Consumption Inequality: HANK- DLMP vs HANK- IAMP

Recall that in the HANK- DLMP model both consumer types are optimising. As such, we can find
the optimal consumption bundle for each type using their respective consumption Euler equation:

The marginal utility of consumption for employed

ψ
e
t = (Ce

t )
−1 (eq.(1))

The marginal utility of consumption for unemployed

ψ
u
t = (Cu

t )
−1 (eq.(2))

The Euler equation of the employed households

ψe
t

(1+ rt)
= β

(
pe|eEt

(
ψ

e
t+1
)
+ pu|e (1+Ω

(
NAPu

t+1−NAPu))Et
(
ψ

u
t+1
))

(eq.(3))

The Euler equation of the unemployed households

(1−Ω(NAPu
t −NAPu))

ψu
t

(1+ rt)
= β

(
pe|uEt

(
ψ

e
t+1
)
+ pu|u (1+Ω

(
NAPu

t+1−NAPu))Et
(
ψ

u
t+1
))

(eq.(4))
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Where,
The non- participating households’ Net asset position (NAPu

t )

NAPu
t =

 (1+πt+1)PM
t α

M(u)
t+1 + (1+πt+1)

(1+πt+1)(1+rt)
αu

t+1

−
((

1+ρPM
t
)(

aM(e)
t pu|e +aM(u)

t pu|u
)
+
(

ae
t pu|e +au

t pu|u
)) 

≡ T u
t − puCu

t

The portfolio adjustment costs found in the constrained consumers budget constraint do not
affect the long- run equilibrium. As such, in steady state the model delivers perfect insurance
hence, β (1+ r) = 1. Hence, using the definition of consumption inequality

St = 1− ψe
t

ψu
t

= 1−Cu
t

Ce
t

it is evident that in steady state

1−S ≡ ψe

ψu

=
pu|e(

1− pe|e
)

=
pu|u(

1− pe|u
)

Thus, the steady state consumption inequality in the HANK- DLMP model is found to be

S = 1− pu|e(
1− pe|e

)
= 1− pu|u(

1− pe|u
)

and depends only on the probabilities of the idiosyncratic shock.
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In sharp contract, in the HANK- IAMP model changes in direct redistribution have a direct
impact on the steady state amount of consumption inequality. First, let us consider the HANK-
IAMP framework of Bilbiie & Ragot (2021). In HANK specification, constrained households
consume only out of the exogenous wealth transfer.

The budget constraint of a constrained household takes the form

puCu
t = T u

t + pe|u (1+ρPM
t
)

bt−1

Where
T u

t = pu (1− τt)wtHe
t δ

with δ controlling the fraction of net labour income that constrained households receive. In
line HANK- IAMP literature, we retain the assumption that δ < 1.

Moreover, from the optimal labour supply of the unconstrained type we know that

Ce
t = (1− τt)wt (He

t )
−ϕ

Using the definition of consumption inequality (St) we get that

St = 1−Cu
t

Ce
t

St = 1−
(1− τt)wtδHe

t +
pe|u

pu

(
1+ρPM

t
)

bt−1

(1− τt)wt (He
t )
−ϕ

= 1− δ

(He
t )
−ϕ−1 −

(
pe|u

pu

) (
1+ρPM

t
)

bt−1

(1− τt)wt (He
t )
−ϕ

= 1− δ

(He
t )
−(1+ϕ)

−

(
pe|u

pu

) (
1+ρPM

t
)

bt−1

(1− τt)wtHe
t

(He
t )

1+ϕ

As such, everything else equal, a higher value of δ translates to lower consumption inequality.
So, in steady state

S = 1−δ (He)1+ϕ −

(
pe|u

pu

) (
1+ρPM)b
(1− τ)wHe (He)1+ϕ
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Proof of Proposition 13, 14 & 15

Redistribution Channels for the transmission mechanism of the Monetary
Policy

In the absence of financial market frictions (Ω = 0), the consumption Euler equation for each type
is given as

Consumption Euler Equation for an employed household:

ψ
e
t = βRt

[
pe|eEt

(
ψ

e
t+1
)
+ pu|eEt

(
ψ

u
t+1
)]

Consumption Euler Equation for an unemployed household:

ψ
u
t = βRt

[
pe|uEt

(
ψ

e
t+1
)
+ pu|uEt

(
ψ

u
t+1
)]

Let us look at how a change in the interest rate affect the consumption of each type.
For the unconstrained consumer type:

dψe
t

dRt
= β

(
pe|eEt

(
ψ

e
t+1
)
+ pu|eEt

(
ψ

u
t+1
))︸ ︷︷ ︸

=
ψe

t
Rt

dψ
e
t =

ψe
t

Rt
dRt

dψe
t

ψe
t

=
dRt

Rt

Similarly, from the Consumption Euler Equation for an unemployed household we have
that

dψu
t

dRt
= β

(
pe|uEt

(
ψ

e
t+1
)
+ pu|uEt

(
ψ

u
t+1
))︸ ︷︷ ︸

=
ψu

t
Rt

=
ψu

t
Rt
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dψu

ψu
t

=
dRt

Rt

Hence,

dRt

Rt
=

dψe
t

ψe
t

=
dψu

ψu
t

In the absence of financial market frictions, a change in the real interest rate has the same ef-
fect on the consumption of each type. In which, monetary policy may affect wealth disparity in
the Economy but it is not able to redistribute consumption from unconstrained to constrained con-
sumer. In this case, we state that there are redistribution channels in the transmission mechanism
of monetary policy.

However, by introducing a portfolio adjustment cost for constrained households, we find that
consumers in the economy no longer have equal exposure to aggregate shocks.

The Euler equation of the employed households

ψe
t

Rt
= β

(
pe|eEt

(
ψ

e
t+1
)
+ pu|e (1+Ω

(
NAPu

t+1−NAPu))Et
(
ψ

u
t+1
))

(eq.(3))

The Euler equation of the unemployed households

(1+Ω(NAPu
t −NAPu))

ψu
t

Rt
= β

(
pe|uEt

(
ψ

e
t+1
)
+ pu|u (1+Ω

(
NAPu

t+1−NAPu))Et
(
ψ

u
t+1
))

(eq.(4))

Where,
The non- participating households’ Net asset position (NAPu

t ) is given as

NAPu
t =

 (1+πt+1)PM
t α

M(u)
t+1 + (1+πt+1)

(1+πt+1)Rt
αu

t+1

−
((

1+ρPM
t
)(

aM(e)
t pu|e +aM(u)

t pu|u
)
+
(

ae
t pu|e +au

t pu|u
)) 

≡ T u
t − puCu

t

For the unconstrained consumer type, a change in the real interest rate yields
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dψe
t

dRt
=


β

(
pe|eEt

(
ψe

t+1
)

+pu|e (1+Ω
(
NAPu

t+1−NAPu))Et
(
ψu

t+1
) )︸ ︷︷ ︸

=
ψe

t
Rt

+pu|eRt
d

dRt

[(
1+Ω

(
NAPu

t+1−NAPu))Et
(
ψu

t+1
)]


dψe

t
dRt

=
ψe

t
Rt

+ pu|eRt
d

dRt

[(
1+Ω

(
NAPu

t+1−NAPu))Et
(
ψ

u
t+1
)]

..
dRt

Rt
=

dψe
t

ψe
t
− pu|e Rt

ψe
t

[
d

dRt

[(
1+Ω

(
NAPu

t+1−NAPu))Et
(
ψ

u
t+1
)]]

dRt

Similarly, for the constrained household type

ψu
t

Rt
= βEt

(
pe|u
(

ψe
t+1

(1+Ω(NAPu
t −NAPu))

)
+ pu|u

(
1+Ω

(
NAPu

t+1−NAPu))
(1+Ω(NAPu

t −NAPu))
ψ

u
t+1

)

A change in the real interest rate yields

dψu
t

dRt
=

ψu
t

Rt
+β

d
dRt

Et

 pe|u
(

ψe
t+1

(1+Ω(NAPu
t −NAPu))

)
+pu|u (1+Ω(NAPu

t+1−NAPu))
(1+Ω(NAPu

t −NAPu)) ψu
t+1



dψu
t

ψu
t

=
dRt

Rt
+

β

ψu
t

 d
dRt

Et

 pe|u
(

ψe
t+1

(1−Ω(NAPu
t −NAPu))

)
+pu|u (1+Ω(NAPu

t+1−NAPu))
(1−Ω(NAPu

t −NAPu)) ψu
t+1

dRt

dRt

Rt
=

dψu
t

ψu
t
− β

ψu
t

 d
dRt

Et

 pe|u
(

ψe
t+1

(1+Ω(NAPu
t −NAPu))

)
+pu|u (1+Ω(NAPu

t+1−NAPu))
(1+Ω(NAPu

t −NAPu)) ψu
t+1

dRt

Since, only constrained consumers face a portfolio adjustment cost, a change in the interest
rate will not have the same effect on the consumption of each type. Monetary policy has now a
retribution channel and a change in the real interest rate will not only affect wealth disparity but
also the consumption disparity.

Now, looking in the HANK- IAMP framework , we observe that unconstrained consumers are
identical to those in the benchmark HANK- DLMP framework (Ω = 0) and thus,

dψe
t

ψe
t

=
dRt

Rt
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On the hand, constrained consumers are mass of Keynesian non- optimising agents whose
consumption in every period is

Cu
t =

T u
t

pu +
pu|e

pu

((
1+ρPM

t
)

aM(e)
t +ae

t

)
=

T u
t

pu +
pu|e

pu

((
1+ρPM

t
)

bM
t +bt

)
Meaning that

ψ
u
t =

pu

T u
t
+

pu

pu|e
1((

1+ρPM
t
)

bM
t +bt

)
dψu

t
dRt

=
d

dRt

(
pu

T u
t
+

pu

pu|e
1((

1+ρPM
t
)

bM
t +bt

))

Hence,

dψu
t

ψu
t

=
dRt

Rt

[
d

dRt

(
pu

T u
t
+

pu

pu|e
1((

1+ρPM
t
)

bM
t +bt

))] Rt

ψu
t

We can conclude that in order to have a redistributive role for monetary policy households in
the economy need to display unequal exposure to an aggregate shock.

3.12 Appendix B

The Household Optimisation Problem

Optimisation Problem of the head of each (representative) family The head of each (rep-
resentative) family wishes to maximise the following Welfare criterion

Uo =
∞

∑
t=0

(
β

t)[pe

(
ln(Ce

t )−
(He

t )
1+ϕ

1+ϕ

)
+ pu ln(Cu

t )

]

=
∞

∑
t=0

(
β

t)[pe ln(Ce
t )+ pu ln(Cu

t )− pe (H
e
t )

1+ϕ

1+ϕ

]

subject to the budget constraint given that the household might be either
1. employed
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peCe
t +(1+πt+1)PM

t α
M(e)
t+1 +

(1+πt+1)

(1+πt+1)(1+ rt)

(
α

e
t+1
)
=(1− τt)wtHe

t pe

←−→
=Ht

+ peDe
t +
(
1+ρPM

t
)

α̂
M(e)
t +α̂

e
t −T e

t

or,
2. unemployed

puCu
t

+(1+πt+1)PM
t α

M(u)
t+1

+ (1+πt+1)
(1+πt+1)(1+rt)

αu
t+1

=

(
puDu

t +
(
1+ρPM

t
)

α̂
M(u)
t + α̂u

t +T u
t

−Ω

2 (NAPu
t −NAPu)2

)

puCu
t +(1+πt+1)PM

t α
M(u)
t+1 +

(1+πt+1)

(1+πt+1)(1+ rt)
α

u
t+1 =

 puDu
t︸ ︷︷ ︸

=0

+T u
t +

(
1+ρPM

t
)(

aM(e)
t pu|e +aM(u)

t pu|u
)

+
(

ae
t pu|e +au

t pu|u
)
− Ω

2 (NAPu
t −NAPu)2


where, the household’s Net asset position (NAPu

t )

NAPu
t =

 (1+πt+1)PM
t α

M(u)
t+1 + (1+πt+1)

(1+πt+1)(1+rt)
αu

t+1

−
((

1+ρPM
t
)(

aM(e)
t pu|e +aM(u)

t pu|u
)
+
(

ae
t pu|e +au

t pu|u
)) 

≡ T u
t − puCu

t

Setting up the Lagrangian:

Lt = max
{Ce

t ,Ht ,bt+1}∞
t=s

Et

∞

∑
t=s

(β )t−s



pe ln(Ce
t )+ pu ln(Cu

t )− pe (He
t )

1+ϕ

1+ϕ

+ψe
t


(1− τt)wtHe

t pe−T e
t +De

t pe− peCe
t

+
(
1+ρPM

t
)(

aM(e)
t pe|e +aM(u)

t pe|u
)
+
(

ae
t pe|e +au

t pe|u
)

−(1+πt+1)PM
t

(
aM(e)

t+1

)
− (1+πt+1)

(1+πt+1)(1+rt)

(
ae

t+1
)



+ψu
t



puDu
t +T u

t − puCu
t

+
(
1+ρPM

t
)(

aM(e)
t pu|e +aM(u)

t pu|u
)
− (1+πt+1)PM

t α
M(u)
t+1

+
(

ae
t pu|e +au

t pu|u
)
− (1+πt+1)

(1+πt+1)(1+rt)
αu

t+1

−Ω

2


(1+πt+1)PM

t α
M(u)
t+1 −

(
1+ρPM

t
)(

aM(e)
t pu|e +aM(u)

t pu|u
)

+ (1+πt+1)
(1+πt+1)(1+rt)

αu
t+1−

(
ae

t pu|e +au
t pu|u

)
−NAPU


2
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FOCs

∂Lt

∂Cu
t

= 0 :
(

pu

Cu
t

)
− pu

ψ
u
t = 0

1
∂Lt

∂Cu
t
= 0 : ψ

u
t =

1
Cu

t

∂Lt

∂Ce
t

= 0 :
pe

Ce
t
− pe

ψ
e
t = 0

2
∂Lt

∂Ce
t
= 0 : ψ

e
t =

1
Ce

t

∂Lt

∂He
t

= 0 :−pe (He
t )

ϕ +ψ
e
t (1− τt)wt pe = 0

∂Lt

∂He
t

= 0 : (He
t )

ϕ = ψ
e
t (1− τt)wt

∂Lt

∂He
t

= 0 : Ce
t (H

e
t )

ϕ = (1− τt)wt

Alternatively, given that only employed households supply labour, we can re-write the expres-
sion in terms of the aggregate labour supply

3 : Ce
t

(
Ht

pe

)ϕ

= (1− τt)wt

∂Lt

∂α
M(e)
t+1

= 0 :


−(β )t−s

ψe
t Et
(
(1+πt+1)PM

t
)

+(β )t+1−sEt

(
ψe

t+1
(
1+ρPM

t+1
)

pe|e
)

+(β )t+1−sEtψ
u
t+1

((
1+ρPM

t+1
)

pu|e
)

+(β )t+1−s
Ω
(
NAPu

t+1−NAPu)Etψ
u
t+1

((
1+ρPM

t+1
)

pu|e
)

= 0

∂Lt

∂α
M(e)
t+1

= 0 : PM
t = Et

(
β

(
ψe

t+1

ψe
t

pe|e +
(
1+Ω

(
NAPu

t+1−NAPu)) ψu
t+1

ψe
t

pu|e
) (

1+ρPM
t+1
)

(1+πt+1)

)
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4 : PM
t = Et

(
β

(
ψe

t+1

ψe
t

pe|e +
(
1+Ω

(
NAPu

t+1−NAPu)) ψu
t+1

ψe
t

pu|e
) (

1+ρPM
t+1
)

(1+πt+1)

)

∂Lt

∂α
M(u)
t+1

= 0 :

 +(β )t+1−s pe|uEt
(
ψe

t+1
(
1+ρPM

t+1
))

−(β )t−s
ψu

t (1+Ω(NAPu
t −NAPu))PM

t Et (1+πt+1)

+(β )t+1−s pu|uEt
(
ψu

t+1
(
1+Ω

(
NAPu

t+1−NAPu))(1+ρPM
t+1
))
= 0

∂Lt

∂α
M(u)
t+1

= 0 :

(
βEt

((
1+ρPM

t+1
)(

pe|uψe
t+1 + pu|uψu

t+1
(
1+Ω

(
NAPu

t+1−NAPu))))
= ψu

t (1+Ω(NAPu
t −NAPu))PM

t Et (1+πt+1)

)

PM
t = Et

(
β

(
1+ρPM

t+1
)

(1+πt+1)(1+Ω(NAPu
t −NAPu))

(
pe|u ψe

t+1

ψu
t

+ pu|u ψu
t+1

ψu
t

(
1+Ω

(
NAPu

t+1−NAPu))))

5 : PM
t =

1
(1+Ω(NAPu

t −NAPu))
Et

(
β

(
pe|u ψe

t+1

ψu
t

+ pu|u (1+Ω
(
NAPu

t+1−NAPu)) ψu
t+1

ψu
t

) (
1+ρPM

t+1
)

(1+πt+1)

)

∂Lt

∂αe
t+1

= 0 :

 −(β )t−s ψe
t

(1+rt)

+(β )t+1−s pe|eEtψ
e
t+1

+(β )t+1−s pu|eEt
(
ψu

t+1
(
1+Ω

(
NAPu

t+1−NAPu)))
= 0

∂Lt

∂αe
t+1

= 0 : βEt

(
pe|e

ψ
e
t+1 + pu|e

ψ
u
t+1
(
1+Ω

(
NAPu

t+1−NAPu)))= ψe
t

(1+ rt)

The consumption Euler equation of an employed household is

6 : ψ
e
t = β (1+ rt)

(
pe|eEt

(
ψ

e
t+1
)
+ pu|e (1+Ω

(
NAPu

t+1−NAPu))Et
(
ψ

u
t+1
))

∂Lt

∂αu
t+1

= 0 :


(β )t+1−s pe|uEt

(
ψe

t+1
)
− (β )t−s

ψu
t

(
1

(1+rt)

)
+(β )t+1−sEt

(
ψu

t+1
)

pu|u− (β )t−s
ψu

t
Ω(NAPu

t −NAPu)
(1+rt)

+pu|u (β )t+1−sEt
(
ψu

t+1
)
Et
(
Ω
(
NAPu

t+1−NAPu))
= 0
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∂Lt

∂αu
t+1

= 0 : ψ
u
t =

(1+ rt)β

(1+Ω(NAPu
t −NAPu))

(
pe|uEt

(
ψ

e
t+1
)
+Et

(
ψ

u
t+1
(
1+Ω

(
NAPu

t+1−NAPu))) pu|u
)

The consumption Euler equation of an unemployed household is

7 : ψ
u
t =

β (1+ rt)

(1+Ω(NAPu
t −NAPu))

(
pe|uEt

(
ψ

e
t+1
)
+ pu|u (1+Ω

(
NAPu

t+1−NAPu))Et
(
ψ

u
t+1
))

Now, combining either eq.(4) with eq. (6) or eq.(5) with eq.(7) yields the expression for the
Bond Pricing equation

PM
t =

(
Et

( (
1+ρPM

t+1
)

(1+ rt)(1+πt+1)

))
meaning that the stochastic discount factor (SDF) is given as

SDF ≡ Et

(
β

[
pe|e ψe

t+1

ψe
t

+ pu|e (1+Ω
(
NAPu

t+1−NAPu)) ψu
t+1

ψe
t

])
= Et

(
β

[
pe|u

(1+Ω(NAPu
t −NAPu))

ψe
t+1

ψu
t

+ pu|u
(
1+Ω

(
NAPu

t+1−NAPu))
(1+Ω(NAPu

t −NAPu))

ψu
t+1

ψu
t

])
=

1
(1+ rt)

=
1
Rt

Meaning that the Consumption Euler Equation for an employed household takes the form

ψe
t

(1+ rt)
= β

(
pe|eEt

(
ψ

e
t+1
)
+ pu|e (1+Ω

(
NAPu

t+1−NAPu))Et
(
ψ

u
t+1
))

Meaning that the Consumption Euler Equation for an unemployed household takes the
form

(1+Ω(NAPu
t −NAPu))

ψu
t

(1+ rt)
= β

(
pe|uEt

(
ψ

e
t+1
)
+ pu|u (1+Ω

(
NAPu

t+1−NAPu))Et
(
ψ

u
t+1
))

Where,
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The household’s Net asset position (NAPu
t )

NAPu
t =


(1+πt+1)PM

t α
M(u)
t+1 + (1+πt+1)

(1+πt+1)(1+rt)
αu

t+1

−

 (
1+ρPM

t
)(

aM(e)
t pu|e +aM(u)

t pu|u
)

+
(

ae
t pu|e +au

t pu|u
) 


= T u

t − puCu
t

3.13 Appendix C

Firms’ Problem

Phillips Curve

Intermediate firms face a quadratic cost when changing their Price. The firm’s problem becomes
choosing
{Pt ( j)}∞

t=0 in order to maximise :

max
Pt( j)

∞

∑
t=0

m0,t

((
Pt ( j)

Pt
− (1− s)

wt

zt

)
yt ( j)− Φ

2

(
Pt ( j)

Pt−1 ( j)
−1
)2

Yt

)
subject to monopolistic demand

yt ( j) =
(

Pt ( j)
Pt

)−εt

Yt

Substitute

max
Pt( j)

∞

∑
t=0

m0,t

((
Pt ( j)

Pt
− (1− s)

wt

zt

)(
Pt ( j)

Pt

)−εt

Yt−
Φ

2

(
Pt ( j)

Pt−1 ( j)
−1
)2

Yt

)

0 =

 m0,t

 (1− εt)
(

Pt( j)
Pt

)−εt Yt
Pt

+εt (1− s) wt
zt

(
Pt( j)

Pt

)−εt−1 Yt
Pt
−Φ

(
Pt( j)

Pt−1( j) −1
)

Yt
Pt−1( j)


+Et

(
m0,t+1

(
Φ

(
Pt+1( j)
Pt( j) −1

)
Yt+1

Pt+1( j)
P2

t ( j)

))


All firms are identical so Pt ( j) = Pt and

πt (1+πt) =
1− εt +(1− s)εt

wt
zt

Φ
+Et

(
m0,t+1

m0,t

Yt+1

Yt
πt+1 (1+πt+1)

)
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The stochastic discount factor isT u
t

m0,t = Π
t
s=0 (1+ rs)

−1

So, we can re- write the NK Price Phillips Curve

Φπt (1+πt)(1+ rt) =

(
1− εt +(1− s)εt

wt

zt

)
(1+ rt)+ΦEt

(
πt+1 (1+πt+1)

Yt+1

Yt

)
(NKPC)

3.14 Appendix D

Aggregation and Market Clearing

The obtain the aggregate system, we need to first to aggregate the individual relationships found
from the individual household’s.

Namely, the aggregate labour supply is

Hs
t =

∫ 1

0
H i

t di

=
∫ pu

0
Hu

t du+
∫ 1

pu
He

t de

=
∫ pu

0
Hu

t du+
∫ 1

(1−pe)
He

t de

= peHe
t + puHu

t

However, given that only employed households are able to supply labour to the market (Hu
t = 0),

the aggregate labour supply is

Hs
t = peHe

t

The aggregate labour demand

Hd
t =

∫ 1

0
ht ( j)d j

For labour market to clear, we require

Hs
t = Hd

t = Ht
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Meaning that aggregate labor demand is equal to the labour supply of employed households

Ht = peHe
t

Similarly, the aggregate consumption is

Ct =
∫ 1

0
Ci

tdi

= peCe
t + puCu

t

Whilst the aggregate dividends take the form

Dt =
∫ 1

0
Di

tdi

= peDe
t + puDu

t

Unless otherwise specified, we are going to assume that dividends are equally distributed across
employed households only (Du

t = 0).

De
t =

Dt

pe

Unemployed households receive a Lump Sum (direct wealth) transfer of T u
t

pu . The aggregate
amount paid to constrained households is

T u
t =

∫ pu

0

T u
t

pu di

= pu T u
t

pu

Similarly, assuming that the transfer is financed via Lump Sum taxes imposed on the employed
consumers then,

T e
t =

∫ pe

0

T e
t

pe di

= pe T e
t

pe
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The aggregate level of transfers is given as

Tt = T u
t −T e

t

Additionally, for markets to clear we require the aggregate stock of private savings (of either
duration) should equal the aggregate supply of government debt.

For the long term assets, we have

bM
t+1 = α

M(e)
t+1 +α

M(u)
t+1

whilst for the short- term (1-period) assets

bt+1 = α
e
t+1 +α

u
t+1

As explained in the government block, the supply of short term assets is set to zero.

Finally, since we require all markets to clear, combining the household budget constraint with
the expression for aggregate dividends and the government budget constraint, we obtain the (ag-
gregate) resource constraint

Aggregate Resource Constraint The Budget Constraint of
1. employed

(1+πt+1)PM
t

(
aM(e)

t+1

)
+

(1+πt+1)

(1+πt+1)(1+ rt)

(
ae

t+1
)
+ peCe

t =


(1− τt)wtHe

t pe−T e
t +De

t pe

+
(
1+ρPM

t
)(

aM(e)
t pe|e +aM(u)

t pe|u
)

+
(

ae
t pe|e +au

t pe|u
)


2. unemployed

puCu
t +(1+πt+1)PM

t α
M(u)
t+1 +

(1+πt+1)

(1+πt+1)(1+ rt)
α

u
t+1 =

 puDu
t︸ ︷︷ ︸

=0

+T u
t +

(
1+ρPM

t
)(

aM(e)
t pu|e +aM(u)

t pu|u
)

+
(

ae
t pu|e +au

t pu|u
)
− Ω

2 (NAPu
t −NAPu)2



Combining the two yields
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peCe

t + puCu
t

+(1+πt+1)PM
t

(
α

M(e)
t+1 +α

M(u)
t+1

)
+ (1+πt+1)

(1+πt+1)(1+rt)

(
αe

t+1 +αu
t+1
)

=



(1− τt)wtHt +Dt

+
(
1+ρPM

t
)(

aM(e)
t

(
pe|e + pu|e

)
+aM(u)

t

(
pe|u + pu|u

))
+
(

ae
t

(
pe|e + pu|e

)
+au

t

(
pe|u + pu|u

))
−Ω

2 (NAPu
t −NAPu)2

+T u
t −T e

t


Recall that aggregate government debt

bt = α
e
t+1 +α

u
t+1

bM
t = α

M(e)
t+1 +α

M(u)
t+1

 peCe
t + puCu

t

+(1+πt+1)PM
t bM

t

+ 1
(1+rt)

bt

=

 (1− τt)wtHt +Dt +
(
1+ρPM

t
)

bM
t−1 +bt−1

−Ω

2 (NAPu
t −NAPu)2

+T u
t −T e

t


The government budget constraint

(1+πt+1)PM
t bM

t +
bt

(1+ rt)
+ τtwtHt = bt−1 +

(
1+ρPM

t
)

bM
t−1 +Gt +T u

t −T e
t

Combining the two yields

(peCe
t + puCu

t +Gt) = wtHt +Dt−
Ω

2
(NAPu

t −NAPu)2

peCe
t + puCu

t =

(
wtHe

t pe +Dt−Gt−
Ω

2
(NAPu

t −NAPu)2
)

With aggregate dividends are

Dt =

(
1− Φ

2
π

2
t

)
Yt−wtHe

t pe

So, the Aggregate Budget Constraint

peCe
t + puCu

t =

(
1− Φ

2
π

2
t

)
Yt−Gt−

Ω

2
(NAPu

t −NAPu)2
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where, the household’s Net asset position (NAPUt)

NAPu
t =

 (1+πt+1)PM
t α

M(u)
t+1 + (1+πt+1)

(1+πt+1)(1+rt)
αu

t+1

−
((

1+ρPM
t
)(

aM(e)
t pu|e +aM(u)

t pu|u
)
+
(

ae
t pu|e +au

t pu|u
)) 

≡ T u
t − puCu

t

3.15 Appendix E

Social Welfare Function

The household preferences for consumption and labour, are captured by the standard CRRA felicity

U i
t = ln

(
Ci

t
)
−
(
H i

t
)1+ϕ

1+ϕ

Where, the type of household is indexed by i = {R,u}.

The aggregate welfare function that the policy maker seeks to maximize is the aggregate utility
function of the economy’s population. As in Chien & Wen (2021), social welfare function takes
the same form as the function the head of each family wishes to maximises under a different set of
constraints.

Wt =
∫ 1

0
U i

t di

=
∫ pu

0
Uu

t du+
∫ 1

pu
Ue

t de

= pe ln(Ce
t )+ pu ln(Cu

t )− pe (H
e
t )

1+ϕ

1+ϕ

To simplify our analysis, we can substitute in the expression for the optimal labour supply

Ht = He
t pe

We can re-write the aggregate welfare as:
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Wt = pe ln(Ce
t )+ pu ln(Cu

t )− pe

(
Ht
pe

)1+ϕ

1+ϕ

= (1− pu) ln(Ce
t )+ pu ln(Cu

t )− pe

(
Ht
pe

)1+ϕ

1+ϕ

= pu ln
(

Cu
t

Ce
t

)
←−−−−→

+

=ln(1−St)

ln(Ce
t )− pe

(
Ht
pe

)1+ϕ

1+ϕ

From the household’s optimality conditions we have that the labour supply equation for the
employed household is given as

(1− τt)wt

Ce
t

= (Ht)
ϕ

As such, we can re-write the Social Welfare function as

Wt = pe ln(Ce
t )+ pu ln(Cu

t )− pe (1− τt)wt

Ce
t (1+ϕ)

He
t

= pu ln(1−St)+ ln(Ce
t )− pe (1− τt)wt

Ce
t (1+ϕ)

He
t

We can easily observe from this expression that the negative effect inequality(St) has on aggre-
gate welfare(Wt) is proportional to the size of the "unemployed" population (pu). Also, although
the central planner might wish to reduce (1−St),the will never try to eliminate it completely. Fi-
nally, when the policy maker has access to distortionary income taxes, we need to also substitute
in the tax rule. Hence, The Social Welfare function takes the form

Wt = pu ln(1−St)+ ln(Ce
t )− pe

1− τ̄

(
PM

t bM
t+1

PMbM

)φb
 wt

Ce
t (1+ϕ)

He
t
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3.16 Appendix F

The policy maker’s problem (HANK- DLMP model)

• In the benchmark case, we assume that wealth transfers are exogenous and constant (T u
t = T u)

Under distortionary income taxes

Lt =
∞
t=0 (β )

t



(
pu ln(Cu

t )+ pe ln(Ce
t )− pe

(
1− τ̄

(
PM

t bM
t+1

PMbM

)φb
)

wt
Ce

t (1+ϕ)H
e
t

)
+λ 1

t

(
peCe

t + puCu
t +Gt +

Ω

2 (NAPu
t −NAPu)2−

(
1− Φ

2 π2
t
)

Yt

)
+λ 2

t

(
βEt

(
pe|e (Ce

t+1
)−1

+ pu|e (1+Ω
(
NAPu

t+1−NAPu))(Cu
t+1
)−1
)
− (Ce

t )
−1

Rt

)
+λ 8

t

 βEt

(
pe|u (Ce

t+1
)−1

+ pu|u (1+Ω
(
NAPu

t+1−NAPu))(Cu
t+1
)−1
)

−(1+Ω(NAPu
t −NAPu))

(Cu
t )
−1

Rt


+λ 3

t

(
Et

(
(1+ρPM

t+1)
(1+πt+1)

)
−RtPM

t

)
+λ 4

t

([(
1− εt +(1− s)εt

wt
zt

)
−Φπt (1+πt)

]
YtRt +ΦEt (πt+1 (1+πt+1)Yt+1)

)
+λ 5

t

((
1− τ̄

(
PM

t bM
t+1

PMbM

)φb
)

wt (Ce
t )
−1− (He

t )
ϕ

)
+λ 6

t

((
(1+ρPM

t )
(1+πt)

bL
t +Gt +T u

t − τ̄

(
PM

t bM
t+1

PMbM

)φb
wt peHe

t −T p
t

)
Rt−Et

(
(1+ρPM

t+1)
(1+πt+1)

bL
t+1

))
+λ 7

t (peHe
t zt−Yt)

+λ 9
t (T

u
t − puCu

t −NAPu
t )


FOCs
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∂Lt

∂Ce
t

= 0 :



pe

Ce
t

(
1+
(

1− τ̄

(
PM

t bM
t+1

PMbM

)φb
)

wt
Ce

t (1+ϕ)H
e
t

)
+peλ 1

t

−pe|e (Ce
t )
−2

λ 2
t−1 +λ 2

t
(Ce

t )
−2

Rt

−λ 8
t−1 pe|u (Ce

t )
−2

−λ 5
t

(
1− τ̄

(
PM

t bM
t+1

PMbM

)φb
)

wt (Ce
t )
−2


= 0

Multiply across by (Ce
t )

2

∂Lt

∂Ce
t

= 0 :



peCe
t + pe

(
1− τ̄

(
PM

t bM
t+1

PMbM

)φb
)

wt
(1+ϕ)H

e
t

+peλ 1
t (C

e
t )

2− pe|uλ 8
t−1

−pe|eλ 2
t−1

+
λ 2

t
Rt

−λ 5
t

(
1− τ̄

(
PM

t bM
t+1

PMbM

)φb
)

wt


= 0

∂Lt

∂NAPu
t
= 0 : λ

1
t Ω(NAPu

t −NAPu)+Ωpu|e
λ

2
t−1 (C

u
t )
−1+Ωpu|u

λ
8
t−1 (C

u
t )
−1−Ω

(Cu
t )
−1

Rt
λ

8
t −λ

9
t = 0

∂Lt

∂Cu
t

= 0 :


pu

Cu
t
+ puλ 1

t − pu|eλ 2
t−1 (1+Ω(NAPu

t −NAPu))(Cu
t )
−2

−λ 8
t−1 pu|u (1+Ω(NAPu

t −NAPu))(Cu
t )
−2

+λ 8
t (1+Ω(NAPu

t −NAPu))
(
(Cu

t )
−2

Rt

)
−λ 9

t pu

= 0

∂Lt

∂Cu
t

= 0 :


puCu

t +λ 1
t pu (Cu

t )
2−λ 2

t−1 pu|e (1+Ω(NAPu
t −NAPu))

−λ 8
t−1 pu|u (1+Ω(NAPu

t −NAPu))

+
λ 8

t
Rt
(1+Ω(NAPu

t −NAPu))−λ 9
t pu (Cu

t )
2

= 0

:

∂Lt

∂Yt
= 0 :


−λ 1

t
(
1− Φ

2 π2
t
)

Yt

+λ 4
t

((
1− εt +(1− s)εt

wt
zt

)
−Φπt (1+πt)

)
RtYt

+
λ 4

t−1
β

Φ(1+πt)πtYt

−λ 7
t Yt

= 0
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∂Lt

∂πt
= 0 :



λ 1
t (ΦπtYt)−

λ 3
t−1
β

(
(1+ρPM

t )
(1+πt)

2

)
−λ 4

t Φ(1+2πt)YtRt

+
λ 4

t−1
β

Φ(1+2πt)Yt

−λ 6
t

(
(1+ρPM

t )
(1+πt)

2 bM
t

)
Rt +

λ 6
t−1
β

(
(1+ρPM

t )
(1+πt)

2

)
bM

t


= 0

∂Lt

∂Rt
= 0 :


+λ 2

t
(Ce

t )
−1

(Rt)
2 +λ 8

t (1+Ω(NAPu
t −NAPu))

(Cu
t )
−1

(Rt)
2 −λ 3

t PM
t

+λ 4
t

((
1− εt +(1− s)εt

wt
zt

)
−Φπt (1+πt)

)
Yt

+λ 6
t

(
(1+ρPM

t )
(1+πt)

bL
t +Gt +T u

t − τ̄

(
PM

t bM
t+1

PMbM

)φb
wt peHe

t −T p
t

)
= 0

∂Lt

∂wt
= 0 :



−pe
(

1− τ̄

(
PM

t bM
t+1

PMbM

)φb
)

He
t

Ce
t (1+ϕ)

+λ 4
t (1− s)εt

Yt
zt

Rt

+λ 5
t

(
1− τ̄

(
PM

t bM
t+1

PMbM

)φb
)
(Ce

t )
−1

−λ 6
t

(
peτ̄

(
PM

t bM
t+1

PMbM

)φb
He

t

)
Rt


= 0

∂Lt

∂He
t

= 0 :


−pe

(
1− τ̄

(
PM

t bM
t+1

PMbM

)φb
)

wt
Ce

t (1+ϕ)

−ϕλ 5
t (H

e
t )

ϕ−1

−λ 6
t

(
τ̄

(
PM

t bM
t+1

PMbM

)φb
wt pe

)
Rt

+peztλ
7
t


= 0

∂Lt

∂He
t

= 0 :


−pe

(
1− τ̄

(
PM

t bM
t+1

PMbM

)φb
)

wt
Ce

t (1+ϕ)H
e
t

−ϕλ 5
t (H

e
t )

ϕ

−λ 6
t

(
τ̄

(
PM

t bM
t+1

PMbM

)φb
wt peHe

t

)
Rt

+λ 7
t Yt


= 0
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∂Lt

∂PM
t

= 0 :



(
peτ̄

(
φb
PM

t

)(
PM

t bM
t+1

PMbM

)φb wt
Ce

t (1+ϕ)H
e
t

)
−λ 3

t Rt

+

(
λ 3

t−1
β

)(
ρ
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)
−λ 5

t
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(
φb
PM

t

)(
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t bM
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t
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ρ
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)(
PM

t bM
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(
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t
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)
+βλ 6
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(
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)
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= 0

Under Lump Sum taxes

Lt =
∞
t=0 (β )

t



(
pu ln(Cu
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t )− pe wt

Ce
t (1+ϕ)H

e
t

)
+λ 1

t

(
peCe

t + puCu
t +Gt +
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(
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FOCs

∂Lt

∂Ce
t

= 0 :
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Ce
t

(
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e
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• Now allowing transfers to be time-varying alters the policy maker’s information set regard-
less of the tax instrument available.

Under distortionary income taxes, T u
t = ϑ
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∞
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(
PM

t bM
t+1

PMbM

)φb
wt peHe

t −T p
t

Rt−Et

(
(1+ρPM

t+1)
(1+πt+1)

bL
t+1

)
+λ 7

t (peHe
t zt−Yt)

+λ 9
t

(
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+
λ 2

t
Rt

−λ 5
t

(
1− τ̄

(
PM

t bM
t+1

PMbM

)φb
)

wt


= 0

∂Lt
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∂Cu
t

= 0 :


pu

Cu
t
+ puλ 1

t − pu|eλ 2
t−1 (1+Ω(NAPu
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+
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Under Lump Sum taxes T u
t = ϑ
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∞
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3.17 Appendix G

In this section we derive a tractable HANK model in the tradition of Bilbiie & Ragot (2021) and
Bilbiie (2024). Once again, we rely on the family metaphor of Lucas Jr (1990) to simplify our
analysis. Each individual household belongs to a big representative family. Thee so-called "family
head" maximizes the inter temporal welfare of all family members using a utilitarian welfare cri-
terion (all family members are equally weighted). This model also features imperfect risk sharing,
in the sense that the family head can reshuffle assets between members- individual with the same
realisation of the idiosyncratic shock- but not across different household types. Essentially, the
model offers perfect insurance but only within type.

In every period there exist two groups of household types: an optimising Ricardian group
and a Hand -to -Mouth (M-to-M, henceforth) group. As in our benchmark HANK model, each
household’s initial wealth in period t takes only two possible values that depend on the current state
of idiosyncratic shock but that are independent of the household’s past history. The idiosyncratic
shock determines whether the household will have access to the financial markets (or rather
access to a savings vehicle) or not. To keep the notation as close as possible to our main model,
we will assume again that the idiosyncratic stock takes again two values vt = {e,u} where this "e”
this time will denote a typical optimising consumer type whilst ”u” will denote a constrained or
"H-to-M" type.
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Both THANK frameworks feature marginal propensity to consume (MPC, henceforth) hetero-
geneity and full insurance within type.

As in Bilbiie (2019, 2024), the consumption and saving choices of a household households
are identical within group. We denote the level of consumption, labor supply, and asset holdings

(savings) for the Ricardian households in period t as ce
t ,H

e
t ,

α
M(e)
t+1
pe , and ae

t+1
pe . Similarly, for the H-to-

M consumer, we use Hu
t , cu

t ,
α

M(u)
t+1
pu and au

t+1
pu to denote the labour supply, consumption and savings.

For simplicity, we assume again 2x2 Markov- transition matrix,

pp =

[
p(e|e) p(e|u)
p(u|e) p(u|u)

]
Where, the entries denote the probability of one retaining their idiosyncratic status (Optimising

or H-to-M household) or the probability of switching type. This Representative family assumption
simplifies the model considering thus, allowing us to derive an number of analytical results.

The budget constraints for the Ricardian{e} and Non- Ricardian{u} households are given,
respectively, by
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α
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where,
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t pe|u = ae

t pe|e

Or rather,
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+
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=
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Where, Ce
t is the consumption level in period t, PM

t and α̂
M(e)
t are the price and quantity long

term government bonds. α̂e
t stands for the short government bonds. For simplicity we assume that

α̂e
t exists in zero net supply. The aggregate dividends are given as De

t but the households do not
internalise them. Furthermore, He

t and wt represent the labour supply and the aggregate wage rate,
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for the Ricardian type. Finally, τt stand for distortionary income tax and Tt for a Lump Sum tax
imposed on both consumer types consumers.

We can simplify further the budget constraint for each household type. For the Ricardian type,
the budget constraint takes the form:
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+

(1+πt+1)
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+
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t pu|e +aM(u)
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and for the Keynesian type:
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t pu + pu|e (1+ρPM
t
)

aM(e)
t + pu|eae

t +T u
t

)
Since,

Du
t = 0;

Hu
t = δ

Where, Cu
t is the consumption level in period t, PM

t and α̂
M(u)
t are the price and quantity long

term government bonds. α̂u
t stands for the short government bonds. Since, H- to -M households

do not have access to the financial market au
t and aM(u)

t are always zero. Finally, Hu
t represents the

labour supply of the constrained household type and T u
t stands for a lump sum transfer to them.

Household (optimisation) Problem
The head of each representative family wishes to maximise the following (utilitarian) wel-

fare criterion
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Uo =
∞

∑
t=0

(
β

t)[pe

(
ln(Ce

t )−
(He

t )
1+ϕ

1+ϕ

)
+ pu

(
ln(Cu

t )−
(δ )1+ϕ

1+ϕ

)]

=
∞

∑
t=0

(
β

t)[pe ln(Ce
t )+ pu ln(Ce

t )− pe (H
e
t )

1+ϕ

1+ϕ
− pu (δ )

1+ϕ

1+ϕ

]

subject to the budget constraint given that the household is going to be (with a given probability)
either

1. Ricardian

peCe
t +(1+πt+1)PM

t α
M(e)
t+1 +

(
(1+πt+1)

(1+πt+1)(1+ rt)

)
α

e
t+1 =

(
(1− τt)wtHe

t pe +De
t pe +

(
1+ρPM

t
)

pe|eaM(e)
t

+pe|eae
t −T e

t

)

or,
2. Non- Ricardian

puCu
t =

(
pu|e (1+ρPM

t
)

aM(e)
t + pu|eae

t +(1− τt)wtδ pu
)

Solving the hhs optimisation problem

Lt = max
{Ce

t ,Ht ,bt+1}∞
t=s

Et

∞

∑
t=s

(β )t−s



pe ln(Ce
t )+ pu ln(Cu

t )− pe (He
t )

1+ϕ

1+ϕ
− pu (δ )1+ϕ

1+ϕ

+ψe
t


(1− τt)wtHe

t pe +De
t pe−T e

t

+
(
1+ρPM

t
)

pe|eaM(e)
t − (1+πt+1)PM

t α
M(e)
t+1

+pe|eae
t −
(

(1+πt+1)
(1+πt+1)(1+rt)

)
αe

t+1

−peCe
t


+ψu

t

(
(1− τt)wtHu

t pu + pu|e (1+ρPM
t
)

aM(e)
t + pu|eae

t +T u
t − puCu

t

)



FOCs
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∂Lt

∂Ce
t
= 0 : Et (β )

t−s
(

pe

Ce
t
−ψ

e
t pe
)
= 0

∂Lt

∂Ce
t
= 0 : ψ

e
t =(Ce

t )
−1

∂Lt

∂Cu
t
= 0 : Et (β )

t−s
(

pu

Cu
t
− pu

ψ
u
t

)
= 0

∂Lt

∂Cu
t
= 0 : ψ

u
t = (Cu

t )
−1

∂Lt

∂He
t
= 0 : Et (β )

t−s (−pe (He
t )

ϕ +ψ
e
t ((1− τt)wt pe)

)
= 0

∂Lt

∂He
t
= 0 : Ce

t (H
e
t )

ϕ = (1− τt)wt

∂Lt

∂αe
t+1

= 0 :
(
−(β )t−s

(
ψe

t
(1+ rt)

)
+ pe|e (β )t+1−sEt

(
ψ

e
t+1
)
+ pu|e (β )t+1−sEt

(
ψ

u
t+1
))

= 0

∂Lt

∂αe
t+1

= 0 : ψ
e
t = β (1+ rt)

[
pe|eEt

(
ψ

e
t+1
)
+ pu|eEt

(
ψ

u
t+1
)]

∂Lt

∂α
M(e)
t+1

= 0 :

 −(β )t−s
ψe

t
(
(1+πt+1)PM

t
)

+(β )t+1−s pe|eEt
(
ψe

t+1
)
Et
(
1+ρPM

t+1
)

+(β )t+1−s pu|eEt
(
ψu

t+1
)
Et
(
1+ρPM

t+1
)
= 0

∂Lt

∂α
M(e)
t+1

= 0 : ψ
e
t
(
(1+πt+1)PM

t
)
= β

[
pe|eEt

(
ψ

e
t+1
)
+ pu|eEt

(
ψ

u
t+1
)]

Et
(
1+ρPM

t+1
)

∂Lt

∂α
M(e)
t+1

= 0 : PM
t = Et

(
1+ρPM

t+1

(1+ rt)(1+πt+1)

)

The Consumption Euler equation takes the form
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ψ
e
t = β (1+ rt)

[
pe|eEt

(
ψ

e
t+1
)
+ pu|eEt

(
ψ

u
t+1
)]

where, ψu
t = (Cu

t )
−1 & ψe

t =(Ce
t )
−1

as such, the stochastic discount factor (SDF) is given as

SDF :
1

(1+ rt)
= β

[
pe|eEt

(
ψe

t+1
)

ψe
t

+ pu|eEt
(
ψu

t+1
)

ψe
t

]

The bond pricing equation takes the form

PM
t = Et

( (
1+ρPM

t+1
)

(1+ rt)(1+πt+1)

)

Social Welfare Function

The household preferences for consumption and labour, are captured by the standard CRRA felicity

U i
t = ln

(
Ci

t
)
−
(
H i

t
)1+ϕ

1+ϕ

Where, the type of household is indexed by i = {R,u} .
The aggregate welfare function that the policy maker seeks to maximize is the aggregate utility

function of the economy’s population. As in Chien & Wen (2021), it the same function that the
head of each family is wishes to maximises under different set of constraints.

Wt =
∫ 1

0
U i

t di

=
∫ pu

0
Uu

t du+
∫ 1

pu
Ue

t de

= pe ln(Ce
t )+ pu ln(Cu

t )− pu (δ )
1+ϕ

1+ϕ
− pe (H

e
t )

1+ϕ

1+ϕ

To simplify the problem, we will substitute in the expression for the the optimal labour supply
as well as the expression for consumption inequality.

225



Wt = pe ln(Ce
t )+ pu ln(Cu

t )− pu (δ )
1+ϕ

1+ϕ
− pe (1− τt)wt

Ce
t (1+ϕ)

He
t

= pu ln(1−St)+ ln(Ce
t )− pu (δ )

1+ϕ

1+ϕ
− pe (1− τt)wt

Ce
t (1+ϕ)

He
t

The Policy maker’s optimisation problem

The Ramsey policy maker wishes to maximise the following program

Under distortionary Income taxes

Lt =
∞
t=0 (β )

t



pu ln(Cu
t )+ pe ln(Ce

t )− pu (δ )1+ϕ

1+ϕ
− pe

(
1− τ̄

(
PM

t bM
t+1

PMbM

)φb
)

wt
He

t
Ce

t (1+ϕ)

+λ 1
t
(
(peCe

t + puCu
t )+Gt−

(
1− Φ

2 π2
t
)

Yt
)

+λ 2
t

(
βEt

(
pe|e (Ce

t+1
)−1

+ pu|e (Cu
t+1
)−1
)
− (Ce

t )
−1

Rt

)
+λ 8

t

((
1− τ̄

(
PM

t bM
t+1

PMbM

)φb
)

wtδ pu + pu|e (1+ρPM
t
)

bM
t +T u

t − puCu
t

)
+λ 3

t

(
Et

(
(1+ρPM

t+1)
Rt(1+πt+1)

)
−PM

t

)
+λ 4

t

((
1− εt +(1− s)εt

wt
zt

)
Yt−Φπt (1+πt)Yt +Φβ fEt (πt+1 (1+πt+1)Yt+1)

)
+λ 5

t

((
1− τ̄

(
PM

t bM
t+1

PMbM

)φb
)

wt−Ce
t (H

e
t )

ϕ

)
+λ 6

t

((
(1+ρPM

t )
(1+πt)

bL
t +Gt +T u

t − τ̄

(
PM

t bM
t+1

PMbM

)φb
wt (peHe

t + puδ )−T p
t

)
Rt−Et

(
(1+ρPM

t+1)
(1+πt+1)

bL
t+1

))
+λ 7

t (zt (peHe
t + puδ )−Yt)


FOCs
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∂Lt

∂Ce
t

= 0 :



pe

Ce
t

(
1+
(

1− τ̄

(
PM

t bM
t+1

PMbM

)φb
)

wt
Ce

t (1+ϕ)H
e
t

)
+peλ 1

t

−pe|e (Ce
t )
−2

λ 2
t−1 +λ 2

t
(Ce

t )
−2

Rt

−λ 5
t

(
1− τ̄

(
PM

t bM
t

PMbM

)φb
)

wt (Ce
t )
−2


= 0

Multiply across by (Ce
t )

2

∂Lt

∂Ce
t

= 0 :



peCe
t + pe

(
1− τ̄

(
PM

t bM
t+1

PMbM

)φb
)

wt
(1+ϕ)H

e
t

+peλ 1
t (C

e
t )

2

−pe|eλ 2
t−1

+
λ 2

t
Rt

−λ 5
t

(
1− τ̄

(
PM

t bM
t+1

PMbM

)φb
)

wt


= 0

∂Lt

∂Cu
t

= 0 :
[

pu

Cu
t
+ pu

λ
1
t − pu|e

λ
2
t−1 (C

u
t )
−2−λ

8
t pu
]
= 0

∂Lt

∂Cu
t

= 0 :
[

puCu
t +λ

1
t pu (Cu

t )
2−λ

2
t−1 pu|e−λ

8
t pu (Cu

t )
2
]
= 0

∂Lt

∂Yt
= 0 :


−λ 1

t
(
1− Φ

2 π2
t
)

Yt

+λ 4
t
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1− εt +(1− s)εt
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zt

)
−Φπt (1+πt)

)
RtYt

+
λ 4

t−1
β

Φ(1+πt)πtYt

−λ 7
t Yt

= 0

∂Lt

∂πt
= 0 :



λ 1
t (ΦπtYt)

−λ 3
t−1
β

(
(1+ρPM

t )
(1+πt)

2

)
−λ 4

t Φ(1+2πt)YtRt

+
λ 4

t−1
β

Φ(1+2πt)Yt

−λ 6
t

(
(1+ρPM
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(1+πt)

2 bM
t

)
Rt +

λ 6
t−1
β

(
(1+ρPM

t )
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2

)
bM

t


= 0
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∂Lt

∂Rt
= 0 :
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t

(
peτ̄
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β
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Under Lump Sum taxes
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∞
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Concluding Remarks

The main contribution of this thesis is the study of monetary and/or fiscal policy in environments
with heterogeneous agents.

In the first two chapters, we develop the fiscal side of the OLG-HANK model of Acharya and
Dogra (2020) and Acharya et al. (2023) to study monetary and fiscal policy interactions in an
environment that features both intra-generational income inequality and inter-generational con-
sumption/wealth inequality. This is primarily achieved by allowing for a non-trivial, endogenously
determined, wealth distribution that shapes consumption disparity in the economy and also by
deviating from the assumption that households are ex-ante identical.

In the first chapter, we demonstrate how the steady-state allocations, determinacy properties,
and the system’s response to unanticipated aggregate shocks depend on each layer of heterogeneity
introduced and on the fiscal instruments available. We find that the OLG channel, which is the
product of Blanchard-Yaari frictions and the households’ phased retirement assumption, dominates
the incomplete markets channel and shapes our results.

The key variable responsible for both the steady-state allocations and the determinacy proper-
ties of the environment is the real interest rate. According to the long-standing representative agent
literature, in the case of the infinite-horizon representative agent model (RANK, henceforth), the
steady-state real interest rate is equal to the rate of time preference (R = 1

β
). In this scenario,

households are able to use the asset market to fully insure themselves against idiosyncratic shocks.
However, if the model features (partially) uninsurable idiosyncratic risk, in the Bewley-Hugget-

Aiyagari tradition, then in steady state, the framework delivers a value for the real interest rate
below the rate of time preference (see Ljungqvist and Sargent, 2020, Ch. 17). Meanwhile, the
inclusion of Blanchard-Yaari (1985) consumers results in households’ assets entering the aggregate
consumption Euler equation. Thus, the value of the equilibrium real interest rate also depends on
the aggregate supply of government bonds. This means that a higher supply of government bonds
results in a higher equilibrium real interest rate.

Moreover, we also explore the implications of phased retirement, where labor income declines
over the life cycle. This feature strengthens the households’ savings motive by creating a desire to
save in order to smooth consumption over the life cycle. Although phased retirement strengthens
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the OLG channel, it still suppresses the steady-state real interest rate. We show that the higher the
steady-state interest rate, the higher the required value of the fiscal response coefficient necessary
to ensure stable debt dynamics. Consequently, the baseline OLG-HANK model of Acharya et al.
(2023) requires the strongest fiscal response, while our OLG-HANK model with phased retirement
requires the smallest.

In response to a one-time unanticipated aggregate shock, a fiscally-led policy mix (AF/PM)
might be preferred by a policymaker who values "equity" more than "efficiency." Although both
a fiscally-led policy regime (AF/PM) and a monetary-led mix (AM/PF) are capable of stabilizing
the economy (see Grohe-Schmitt and Uribe, 2004), we find that in a scenario where fiscal policy is
active, regardless of the tax instrument available, the deviations in inequality and in the sensitivity
of individual consumption to changes in adjusted wealth are smaller. Hence, we argue that this
policy mix might be preferred by a policymaker who cares more about "equity."

In Chapter 2, we use the framework outlined above to investigate jointly optimal monetary and
fiscal policy. The model features a policymaker who combines the powers and responsibilities of
both monetary and fiscal authorities and has access to commitment technology. The policymaker
takes into account the inequality present in the economy when solving their program. The presence
of commitment technology refers to the "time inconsistent" policy that the policymaker pursues.

More specifically, they commit not to try to redistribute wealth or consumption through a policy
surprise and instead adjust the level of policy instruments only once in response to an unanticipated
aggregate shock. The model allows for deriving a micro-founded social welfare function that
consists of an aggregate consumption maximization or "efficiency" component as well as on an
"inequality" component. Both inter-generational and intra-generational inequality are captured by
a simple recursive variable, which is the same as the "inequality" component of the social welfare
function. Thus, contrary to the representative agent case, the fully optimal policymaker is tasked
not only with maximizing "efficiency" but also with maximizing "equity."

Households still wish to save to satisfy their consumption-smoothing motive and to partially
insure against idiosyncratic risk. As such, we define a "golden rule" of steady-state savings as
a benchmark where the government supplies enough bonds to meet households’ consumption-
smoothing desires. If the golden rule of steady-state government debt is achieved, the real steady-
state interest rate is pushed to the rate of time preference. However, a higher real interest rate
reduces households’ ability to insure against idiosyncratic risk.

Additionally, a higher supply of government bonds requires a higher level of distortionary
income taxes to ensure fiscal solvency. High taxes reduce the variance between agents’ pre- and
post-tax labor income but also reduce households’ ability to borrow against their future income if
they experience a low realization of an idiosyncratic shock.

Furthermore, high distortionary income taxes cause the standard efficiency losses associated
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with a decrease in households’ willingness to supply labor to the market. Consequently, the pol-
icymaker faces a non-trivial dilemma between mitigating inter-generational consumption/wealth
inequality and intra-generational income inequality. In other words, they face a trade-off between
"equity" and "efficiency."

We consider three distinct scenarios. In the first case, the policy maker maximizes social wel-
fare (the fully optimal case), which includes both an "efficiency" and an "equity" component. In
the other two scenarios, we silence one of the two components depending on the policy maker’s
objectives. In the second scenario, the policymaker focuses solely on "efficiency" maximization,
while in the third case, they are concerned only with reducing inequality- "equity" maximisation
case.

Although there is no instance where the "golden rule" of steady-state savings is fully achieved,
the policy maker with only the "equity" objective comes the closest to achieving the target. Still,
the outcome of the fully optimal case is remarkably close, indicating that the policymaker under
commitment places more emphasis on "equity" than on "efficiency."

Finally, in Chapter 3, we study optimal monetary policy under commitment in a tractable het-
erogeneous agent economy with a meaningful supply of government bonds. Similar to Chapter
1, the fiscal policy follows a simple tax rule where taxes deviate from their steady-state level if
and only if the value of the outstanding government debt exceeds the exogenous target. More
specifically, we extend the framework of Chien and Wen (2021) by introducing nominal rigidities,
exogenous transfers to constrained households, and long-term government bonds. The model fea-
tures (exogenous) stochastic transitions between labor market participation and non-participation,
deviating from the assumption of Keynesian-constrained consumers due to households’ infrequent
asset market participation (IAMP). Unlike the original paper, constrained households do not face
equilibrium binding borrowing constraints but are subject to portfolio rebalancing costs in our
benchmark case. Hence, our tractable HANK model with discontinuous labor market participation
(DLMP) features two types of Ricardian consumers.

We show through propositions and numerical results that even without the presence of Keyne-
sian consumers, binding equilibrium borrowing constraints, or portfolio rebalancing costs on con-
strained households, optimal policy in THANK environment remains sufficiently different from the
representative agent case. Without Keynesian households or binding equilibrium borrowing con-
straints on non-participating consumers, the policymaker cannot affect steady-state consumption
inequality. In fact, we show that in our framework only the choice of the transitional probabilities
of the idiosyncratic shock determines the steady-state level of consumption inequality. If the model
also abstains from portfolio rebalancing costs on non-participating agents, then the optimal mone-
tary policy is unable to affect consumption inequality even in response to an aggregate shock. Still,
the fact that constrained consumers can adjust their portfolios to smooth the effects of the shock
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implies that the fully optimal policymaker’s actions (under commitment) will redistribute wealth
across the different household types.

As such, the model features perfect self-insurance, while the entries of the stochastic transition
matrix for the idiosyncratic shock are chosen so that we focus on a more realistic case where
unconstrained consumers enjoy higher consumption than their constrained counterparts. Since, if
the transition matrix is symmetric then, the model reduces to the standard indivisible labor model of
Hansen (1985). Our framework delivers the zero steady-state inflation result of Woodford (2003)
despite the presence of constrained consumers. Additionally, the fact that only a fraction of the
population supplies labor to the market ensures that both the aggregate steady-state consumption
and output will always be lower than those found in the steady state of the nested RANK model.
Also, the lower tax base guarantees the presence of taxes in the HANK specification. Still, the
optimal policy response to the unanticipated aggregate shock is closer to the RANK model than to
the tractable HANK model with infrequent asset market participation (IAMP).
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