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1 Abstract

Single cell RNA-sequencing has transformed transcriptomic analysis, giving researchers unparalleled
access to minute changes in gene expression at the level of single cells. This resolution is especially
useful when analysing biological processes, as cells (and their transcriptome) from various points in
the process can be captured. The applications of scRNA-seq to parasite life cycles is thus clear. In
this thesis, I have applied scRNA-seq and a variety of analysis methods to interrogate the transitions
that occur in the Trypanosomatid group of parasites, specifically Trypanosoma brucei and Trypanosoma
cruzi. Firstly, a tool was created that aligns and compares biological processes across time between two
conditions. This tool returns more accurate alignments of asymmetrical processes than current tools
and allows extraction of meaningful genes that define the differences between the two conditions. Next,
we confirmed the effectiveness of scRNA-seq to profile the transcriptome of T. cruzi, in the process
capturing marker genes of the four major life cycle stages of the parasite and creating the first scRNA-
seq atlas of T. cruzi. From this data the process of metacyclogenesis was captured at the single cell
level, characterising various differentially expressed genes by their expression peak across the process
and identifying several differentially expressed RNA binding proteins which had not previously been
associated with metacyclogenesis. The transcriptomic profile of trypomastigote subsets was investigated,
possibly identifying functional trypomastigote subsets in the context of infection. Finally, we utilised
scRNA-seq on the RBP6 overexpression in vitro model of the insect stage life cycle of T. brucei to
identify genes which drive the transition of life cycle stages. These results revealed an unexpected lack of
transcriptomic signature epimastigotes being generated by the model but did capture the generation of
few metacyclic-like cells who express mVSG but have many differences in transcriptome when compared
to the in vivo forms, including metabolism associated genes. PCF-like cells, high in expression of PAG,
were also detected in the data, with the transcriptome of these cells being highly expressed towards the
end of the RBP6 overexpression process in published bulk RNA-seq data of the model.
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5 Introduction

Even within the same tissue or life cycle stage, cells exhibit heterogeneity in terms of gene expression
(H. Chen et al. 2019, Briggs, Marques, et al. 2023, Smircich, Perez-Diaz, et al. 2023). This heterogeneity
makes it unwise to analyse the transcriptome of tissues and stages at a bulk level, as this transcriptomic
heterogeneity is lost when the mRNA contents of all the cells are combined together into an additive
sample. To make sure this heterogeneity is preserved, cells will need to be assessed as individuals, rather
than as a bulk.

5.1 ScRNA-sequencing technologies

As early as 2002, methods have existed to capture the transcriptome of single cells (Levsky et al. 2002).
At the beginning of single cell RNA-sequencing’s (scRNA-seq) life, however, the number of genes that
could be captured was incredibly low, nowhere near the level of whole transcriptome, which could be
achieved with bulk RNA-seq; meaning scRNA-seq had some way to go to truly realise its potential. It
was not until 2009 when the first whole transcriptome scRNA-seq analysis was carried out by Tang and
colleagues (Tang et al. 2009) on mouse embryos. To capture the whole transcriptome of a single cell, the
authors first extracted a single cell from a mouse embryo and lysed it to release the contents of the cell.
Poly adenylated sequences were then converted into cDNA through reverse transcription and sequenced,
before mapping and counting of the amplified fragments was carried out to quantify the amount of mRNA
within the cell. There are of course downsides to Tang and colleagues’ methods including low throughput
and PCR amplification bias possibly causing noise in gene expression profiles (S. Li et al. 2014, Dijk,
Jaszczyszyn, and Thermes 2014, H. Shi, Y. Zhou, et al. 2021). Fortunately, modern scRNA-seq methods
have ways to mitigate these issues. For the issue of PCR amplification one of the most common methods
is the addition of a Unique Molecular Identifier (UMI) to the mRNA molecules prior to sequencing; UMIs
can be used to identify which amplified sequence originates from the same mRNA by matching their
UMI and collapsing them into one when it comes to calculating gene expression counts (Kivioja et al.
2011). Interestingly, some papers suggest that the effect of amplification bias (due to lack of UMI) on
differential expression is only mild to negligible (Parekh et al. 2016). For low throughput, droplet-based
methods (such as 10X Chromium and drop-seq (Macosko et al. 2015)) are applied to separate out the
single cells using microfluidics. Briefly, cells are sent through a microfluidic system where they meet with
a bead coated in oligonucleotides, before both are encapsulated in oil. Within this oil droplet, the cells
are lysed and the mRNA is captured through hybridisation with the oligonucleotides. This makes the
throughput of droplet-based methods high, but the need to rely on microfluidics systems means there is
limited capacity to customise the process

An alternative to droplet-based methods are plate-based methods, such as SMART-seq3 (Hagemann-
Jensen, Ziegenhain, P. Chen, et al. 2020) and MARS-seq (Keren-Shaul et al. 2019), on the other hand,
use Fluorescence-activated Cell Sorting to separate individual cells into wells on a plate. The use of a
plate places a limit on the number of cells that can be sequenced compared to droplet-based methods and
the protocols have lower throughput that droplet-based methods. Plate-based method protocols however
are more customisable, for example it is possible to deplete ribosomal RNA (rRNA) before sequencing
occurs (Reid et al. 2018). Furthermore, transcript information is richer in plate-based methods (e.g.
SNP and isoform information (Hagemann-Jensen, Ziegenhain, and Sandberg 2022)) as many of them
allow the full length of the transcript to be captured (Probst et al. 2022).

All of the previous discussion is not to say that modern scRNA-seq techniques are without issues;
there are many of them. One of the key issues with the technology is the prevalence of dropout events,
where a gene is expressed in a cell but is not captured during sequencing (Haque et al. 2017). The
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reasons for this range from the efficiency of mRNA capture to low expression of genes and, whatever the
reasons, this leads to scRNA-seq data having a high number of zero values and uncertainty over whether
a zero is biological (the gene is not expressed in the cell) or technical (a dropout event has occurred)
(Jiang et al. 2022).

Going forward, the methods and issues discussed surrounding analysis of scRNA-seq data, or the
data itself, will be in reference to 10X single cell RNA-sequencing (unless stated otherwise) as this is the
only type of scRNA-seq data analysed in the course of this thesis.

5.2 Processing pipeline of Single Cell RNA-sequencing

The data generated using scRNA-seq is said to be high dimensional and sparse. High dimensional as
it contains information on the expression of thousands of genes within thousands of cells, and sparse
because it contains many zero values (P. Qiu 2020).

Thus, scRNA-seq data requires many preprocessing steps to allow downstream analysis to be com-
pleted accurately. As analysis of scRNA-seq is still a relatively new field, pipelines are still under
development to best analyse the data, though there are certain steps which are essential to the analysis
of scRNA-seq and some which are only essential depending on the context of the analysis. A suggested
pipeline of scRNA-seq data analysis is outlined in figure 1, showing essential and optional processing of
scRNA-seq data analysis. This figure will be commented on and referenced to throughout the rest of
this section.

The initial steps of scRNA-seq analysis can be categorised as quality control measures. When cells
are being processed, some may be in the process of dying; releasing their contents into the cell suspen-
sion solution. When the cells are encapsulated in their oil droplet, mRNA (known as ambient mRNA)
released from dead/dying cells could also be captured in the bubble and can ultimately be amplified and
captured in the final count information for that cell, contaminating the results (Fig. 2A). Methods like
SoupX and DecontX (Yang et al. 2020, Young and Behjati 2020) aim to eliminate the contamination
by adjusting the count matrices to remove ambient mRNA counts by utilising information contained in
the raw count matrices, and by modelling the likelihood that counts come from cell-specific mRNA or
ambient mRNA, respectively (Fig.1A). As these methods alter the count matrices directly, any incorrect
adjustment of the matrices will be propagated through the rest of the analysis and into the downstream
results, meaning caution should be taken when utilising these tools. The dead/dying cells themselves
can still be captured in the droplets (Fig.1D) and droplets can exist with just ambient mRNA (Fig.1C).
These types of low quality cell need to be removed from the data. To remove the latter from the data,
filters are applied to remove cells with low numbers of UMI and gene counts (Fig.1B). The former type
of low quality cell is removed through assessing the percentage of reads coming from the mitochondria,
with the assumption that damaged/dying cells will have compromised cell membranes which cause cy-
toplasmic mRNA to leave the cell, while the mitochondrial mRNA remains (Fig. 2D, Ilicic et al. 2016)

The final type of low quality cell are doublets, where two cells are encapsulate by the same oil droplet
(Fig.2B). To remove doublets the UMI and gene counts are looked at, with the assumption that cells
with high amounts are likely to be doublets (Fig.1B). Some doublets may be made up of cells with low
mRNA counts, so only removing cells with high levels of mRNA does not mean all doublets will be
caught. To try and better identify doublets in scRNA-seq data, a variety of doublet detection tools exist
(Xi and J. J. Li 2021) (Fig.1C).
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Figure 1: A pipeline of scRNA-seq analysis

Graphical representation of the various steps required to analyse a scRNA-seq dataset. A variety of
quality control methods can be applied to the expression data, such as removing contaminating mRNA
(A), dead/dying cells (B) and doublets (C). The raw gene expression values (blue) are then normalised
(red) to make cells comparable and remove expression outliers (D). Genes that are highly (blue) and
lowly (red) variable in terms of their expression are identified, with the top n highly variable genes
being used for further downstream processing (E). The normalised expression values of the highly

variable genes are then scaled (F) before Principal Component Analysis (PCA) is carried out on the
scaled expression values (G). The PC space is then used as the basis for clustering (H) and further
dimensionality reduction (I). Finally, the clusters are annotated by their cell type (or other such

labelling strategy) (J)

There is a large degree of variability in terms of total mRNA content of a given cell (Marinov et al.
2014). This difference can be captured in the scRNA-seq data itself and can prove to be a bias when
not addressed before downstream analysis is carried out. This is due to cells with higher mRNA counts
having higher gene expression values and thus having a larger impact on the downstream processes, like
differential expression. To deal with this effect, the raw gene expression data is normalised. The most
commonly used normalisation method in scRNA-seq analysis is known as ”library size” normalisation,
where the read counts are normalised by a cell’s library size, i.e. the total number of mRNA molecules
present in a given cell, and is then scaled by a factor, either by a constant or the median of the total
counts of all cells in the dataset, and log transformed (Fig.1D). This ensures that expression values can
be expressed as a proportion of the scale factor. This type of normalisation method is naive, as it takes
no sources of variation into account apart from total mRNA count, and thus could be influenced by many
different forms of variation that are not related to the total mRNA count. Examples of such sources of
variation could be those of sex, ethnicity, percentage of mitochondrial reads per cell, among others. As
such, more complex normalisation methods have been devised such as scTransform, which normalises
the data by modelling the gene expression of a given dataset and can take in (and adjust for) covariates,
when modelling gene expression (Hafemeister and Satija 2019).

In the community, there has been much debate on which methods perform best for normalisation. Ar-
guably, the two biggest recent benchmarks of normalisation methods come from Booeshaghi & colleagues
(Booeshaghi et al. 2022) and Ahlmann-Eltze & Huber (Ahlmann-Eltze and Huber 2023), although they
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Figure 2: Graphical example of low quality cells in scRNA-seq datasets

Low quality cells can take on many forms in scRNA-seq data. Some cells could have mRNA
contamination from other cells within its oil droplet (A), some could be two cells contained within the
same droplet (doublets) (B), others could just be a droplet that contains only mRNA (C) and some

cells may dead or damaged (D).

are by no means complimentary in terms of their findings. Booeshaghi & colleagues suggest that pro-
portional fitting of the data, followed by log transformation and another round of proportional fitting,
is the most optimal way normalise scRNA-seq data, while Ahlmann-Eltze & Huber disagree, concluding
that it does not properly remove the effects of sequencing depth. Instead, they come to the conclu-
sion that standard ”library size” normalisation performs best. This inability to reach a consensus on
a gold-standard normalisation method is further confounded by each benchmark paper designing their
own metrics on how to best assess how well normalisation is performing.

The next step in the scRNA-seq data analysis pipeline is to identify highly variably expressed genes
in the dataset, with these genes being the basis by which that the cells will be grouped and displayed
(Fig.1E). The reasons for this are two-fold. First, by only using a subset of the genes in the dataset, it
reduces the dataset size and thus computational time. The second, and arguably most important reason,
is that as the goal of the scRNA-seq analysis is to identify cell types, and therefore keeping genes which
are expressed at similar levels in all the cells (i.e. lowly variable genes) will only serve to make all the
cells seem similar and thus, make them harder to separate. The most highly variable genes, however,
will likely separate the cells in the dataset and reveal the underlying transcriptomic differences between
the cells.

While identifying the top n highly variable genes helps to capture genes which are biologically mean-
ingful, as the n is usually in the low thousands, there is still the issue of how to display the transcriptomic
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relationship between cells in the dataset in a way which can be easily interpreted and how to further re-
duce the dimensionality of the data in order to save on computing cost and time. For this task, Pxrincipal
Component Analysis (PCA) (Pearson 1901) is performed on the dataset, allowing the dimensionality of
the dataset to be reduced, while maintaining some of the relevant signal in the high dimensional original
data space. PCA requires that the data space has a mean of 0 and a standard deviation of 1, thus scaling
of the data is performed to transform the data to fit these specifications (Fig.1F). Around the scaling
step, many scRNA-seq data analysis tools allow users to regress the effect of specific variables out of
one’s dataset.

Intuitively, PCA involves fitting a line of best fit to the high dimensional data space and embeds
the points (in the case of scRNA-seq data, these are cells) onto that line (Fig.1G). This line is the first
Principal Component (PC), and constitutes a dimensionality reduction of the original data space down
to one dimension. To create the second PC, a line orthogonal to the first PC is drawn through the data
and, for the third PC, a line is drawn that is orthogonal to that of the second PC and so forth. Each
subsequent PC will explain less and less variation of the original space, thus containing less biological
information and more noise. There is thus a point at which including more PCs only adds unwanted
noise into your analysis (Cattell 1966). To identify how many PCs to use, the proportion of variance
captured by each PC is plotted, with the PCs that capture a high proportion of variation being used in
future processes.

One of the main goals of scRNA-seq analysis is to be able to group cells in the dataset based on their
transcriptome, in order to identify groups of similar types of cells. Groups of cells are identified using
clustering methods, an umbrella term to describe methods which aims to group together individuals who
have similar feature values (Fig.1H). Each clustering method has its own process for identifying clusters
but, for scRNA-seq analysis, the two most popular clustering methods, developed by Leiden & Louvain
(Traag, Waltman, and Eck 2019 & Blondel et al. 2008), have similar starting requirements for clustering.
Using the cell embeddings in the PCA space, the k (by default Scanpy sets k = 15 and Seurat sets k =
20) nearest cells for each cell, in terms of euclidean distance, is stored in a graph. Because each cell has
to be connected to k cells, cells that are isolated can end up connected to cells very far away from itself.
As such, the graph needs to be pruned to remove these spurious connections, which can be achieved
in different ways. In Seurat, Jaccard similarity is used to modify the edge weights. In the context of
scRNA-seq data analysis, Jaccard similarity compares the number of shared nearest neighbours of two
cells with the total number of nearest neighbours that the two cells have. Cells which share many nearest
neighbours will have a high Jaccard similarity and are thus very similar to one another, while those that
share few nearest neighbours will have the opposite. Thus, high Jaccard similarity positively weights the
edges of similar (or close) cells, while having a negative effect on the weights of dissimilar (or far-away)
cells. This refined nearest neighbours graph is the basis for Louvain and Leiden clustering.

Once clusters are created, the gene expression profiles of the cells within the clusters, and differences
between the clusters, can be identified. However, before this step, further dimensionality reduction is
usually carried out, but this represents a controversial area of transcriptomic analysis for a variety of rea-
sons. Arguably the most widely used methods of further dimensionality reduction are Uniform Manifold
Approximation and Projection (UMAP) (McInnes et al. 2018) and t-distributed Stochastic Neighbor
Embedding (tSNE) (Maaten and Hinton 2008) (Fig.1I). The main difference between tSNE and UMAP
is their preservation of local and/or global distances. Preservation of local distance can be thought of
as grouping points together that are of the same type. Preservation of global distances, however, can
be thought of as placing points near each other that are not identical, but are still similar in some way.
As an example, lets take the fashion Modified National Institute of Standards and Technology database
(fMNIST) dataset (Xiao, Rasul, and Vollgraf 2017), which contains black and white photos of various
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Figure 3: fMINST dataset plotted using tSNE and UMAP

fMINST dataset plotted using tSNE (left) and UMAP (right) embeddings. Points are coloured by what
article of clothing they are.

articles of clothing. In figure 3, we can see the tSNE and UMAP embeddings of the fMNIST dataset.
On both embeddings, all images of the same type of clothing are close together; showing a preservation
of local distances. When looking outside of the same type of clothing, on the UMAP, the footwear is
spatially localised together away from everything else, while on the tSNE plot it is spatially adjacent to
many other types of clothing. This shows a preservation of global distances by UMAP, but not by tSNE.

The claims that UMAP and tSNE can ”preserve distances” are called into question by Chari &
Pachter (Chari and Pachter 2023), who show that nearest cells in the ambient space (matrix of the
normalised expression of the highest variable genes for all the cells) do not match the nearest cells in
the UMAP or tSNE space, meaning local distances are not preserved. For global distances, the au-
thors find that the list of closest cell types to a given cell type are often not well correlated between the
UMAP/tSNE embeddings and the ambient space, suggesting that global distances are not well preserved
either. This finding is not as impactful, as it assumes that any deviation from the ambient is equally
wrong, when in reality some rankings are more wrong than others. To go back to the fMNIST example,
the ambient space closest types of clothing for sneakers being ankle boot, sandal then shirt and in the
UMAP space being sandal, ankle boot then shirt is equally wrong (in the eyes of the metric) as the
ambient space being ankle boot, sandals, shirt and the UMAP space being ankle boot, shirt, sandals
(both have a Kendall’s Tau = 0.333), despite the fact that thinking shirts and sandals are equally close
to sneakers is incorrect (Fig.4).

Dimensionality reduction will corrupt the distances between cells due to the process of trying to
project 1000s of dimensions worth of data into 2D. This will ultimately cause lack of preservation of
original distances between the ambient and UMAP/tSNE space. The authors main issue with UMAP
and tSNE is not that this distortion occurs, it is that they are being used without the knowledge that
the distances are not necessarily preserved, and thus could bias conclusions which are based off of quan-
titatively interpreting the distances of cells (or cell types) on a UMAP or tSNE plot.

The final point in the pipeline, involves assigning a cell type/state identity to the clusters. The
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Figure 4: Table showing a hypothetical ordering of similar items of clothing to sneakers

Table detailing two hypothetical scenarios (blue and red) showing how close a picture of ankle boots,
sandals and shirts are to sneakers in an ambient and UMAP space, with the Kendalls’s Tau correlation

of the two scenarios displayed in the bottom row of the table.

most common means of annotating clusters is through marker gene analysis informed manual analysis or
automated annotation with reference mapping tools (Fig.1J). Marker gene analysis involves comparing
the gene expression across cells in one cluster with the expression in all the other cells in the dataset.
Summary statistics are generated which include p-value, log2 fold change (log2FC) and percentage of
cells in which the gene is expressed. These statistics are used to filter the list of genes down to the
markers of each of the clusters. Through assessing the established literature for these marker genes, cell
types are then annotated. The issues with this approach are that it can be time consuming to search
the literature for genes, and the top marker genes of a cell are not necessarily helpful in annotating the
cell type. For example, the top marker genes of a cell that is undergoing proliferation will likely be cell
cycle associated genes that, while informative, will not inform on what the cell type is. The advantage
of reference mapping (Ianevski, Giri, and Aittokallio 2022 & Aran et al. 2019) is that it is automated
and thus less time consuming than manually annotating the clusters. The downsides of this approach
are the requirement of a reference (which may not exist) to use for mapping and the performance of the
tools varying across different dataset contexts (Cheng et al. 2023).

5.3 Integrating scRNA-seq datasets

The pipeline described previously, and seen in Figure 1, applies to the scenario where one only requires a
single dataset and a single condition to be analysed. It is commonplace to have many different conditions
and controls to be compared; whether that be comparing wild type vs genetic perturbations, disease vs
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healthy, or treated vs untreated. In any experiment, the aim should be to keep as many of the variables
the same wherever possible. In a gel electrophoresis experiment, for example, one mitigates many biases
by running all the samples on the same gel, at the same time, in the same place, at the same ambient
temperature, with the same reagents on the same machine. In scRNA-seq, these variables rarely ever
match up for a variety of reasons. For 10X based scRNA-seq, the more cells loaded means more doublets
will be in the data (Genomics 2018), meaning large samples (or indeed numerous samples) will be split
up into different runs. This fact means that several of the variables mentioned early are now different,
all of which has an effect on the gene expression data that comes out at the end (Tran et al. 2020),
making replicate samples seem different from one another and obscuring real biological variation. These
technical differences are known as batch effects (Tung et al. 2017). To try and correct the data for
these technical differences, integration of scRNA-seq data has become a standard part of the scRNA-seq
analysis pipeline, when multiple datasets are compared.

As of November 2020, there were 49 scRNA-seq integration methods (Luecken, Buttner, et al. 2022),
all of which have different approaches to the problem of integrating datasets. One of the most popu-
lar and best performing methods, Harmony (Korsunsky et al. 2019), creates clusters (global clusters)
of cells on the PCA space which maximize diversity of batch. Within each cluster, groups batch into
clusters (batch clusters) and calculate a correction factor, which brings the batch cluster centroids closer
to the centroid of their assigned global cluster. From this, Harmony can then adjust the cell positions
in the PCA space. Another method, batch balanced k nearest neighbours (BBKNN) (Polanski et al.
2020), constructs a k-nearest neighbours (kNN) graph of the PCA space where each cell is connected
not to cells within its own batch, but to ones in the other batches. This kNN graph is then fed into a
dimensionality reduction method such as UMAP to get the integrated embeddings of the cells. Given
the variability in how integration methods correct for technical batch effects, comparison of integration
method performance and consistency will be investigated throughout this thesis.

The strength of integration lies in its ability to allow fair comparisons between conditions, facilitating
the identification of differentially expressed genes between the conditions for a given cell type, allowing
researchers insight into what transcriptomic changes the conditions might cause to a type of cell (Briggs,
Rojas, et al. 2021, Dooley et al. 2023 & Alivernini et al. 2020). There are, however, several issues which
hinder the application of integration methods. The first issue is how beneficial the benchmarking metrics
of integration quality are. One of the most commonly used metrics for comparing how good integration
methods are is to see how much cell label overlap there is within clusters generated from the integrated
space (Luecken, Buttner, et al. 2022). As benchmarking papers take a variety of different datasets from
different papers, there is likely to be contradictions in annotation between them, thus standardisation
needs to be carried out to ensure metrics can be performed as expected. This can, and has, lead to
disagreement between the authors of the paper describing the data and the authors of the benchmarking
paper as to what cell types are present in the data. For example, in the benchmarking paper by Luecken
and colleagues (Luecken, Buttner, et al. 2022) they identify populations of Natural Killer (NK) T cells in
datasets from Oetjen and colleagues (Oetjen et al. 2018) and from Sun and colleagues (Sun et al. 2019).
The authors of the original papers, however, did not annotate any clusters as NK T cells. NK T cells are
a type of invariant T cell which share characteristics of both T cells and NK cells, and are a relatively
rare cell type (Maas-Bauer et al. 2024), making up only 0.19% of the immune cells in Tabula Sapiens
dataset (Tabula Sapiens et al. 2022). In the human immune cell dataset used for benchmarking in the
Luecken and colleagues paper, NK T cells make up 8% of the total cells and are more populous than
the transcriptionally similar and more common CD8+ T cells, which make up 6% of the dataset. This
disparity and uncertainty of cell type annotation will ultimately lead to the clustering derived metrics,
assessing integration performance, to be biased and inaccurate.
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The second issue is how to best tune an integration. In the Seurat integration tutorial (Seurat 2023),
the integration requires one to choose the number of principal components one would like to use to
integrate the data, but no guidance is given in the tutorial for choosing how many dimensions one should
use. In Harmony, a convergence plot can be viewed to see how well the data has integrated towards a
local minimum on the objective function. This plot, however, does not accurately reflect how optimally
integrated the data is in some cases (Korsunsky 2020). Harmony also has other tuneable parameters
with little solid guidance on how to tune them, such as its theta parameter, which controls how diverse
the clusters are in terms of batch.

In a similar vein to lack of clarity on how to tune integration, there is a lack of clarity on how
integration fits into a standard scRNA-seq pipeline. To illustrate this, reference will be made to the
Scanpy tutorials for standard scRNA-seq analysis (Scanpy 2024) and the integration analysis (scanpy
n.d.). At time of writing, the recommended standard scRNA-seq analysis pipeline tells users to scale
their normalised count data by the median of total UMI counts over the cell, rather than the constant
10,000 which is often used. The integration tutorial starts off by loading in two separate datasets, with no
normalisation steps being carried out before the integration takes place. As the datasets were loaded in
separately, this gives users the, not unreasonable, assumption that datasets were normalised individually,
before integration, and they would thus follow the Scanpy tutorial which details normalisation, with each
dataset’s normalised expression values being scaled by the median of its total counts. For datasets with
the same median total counts, this will not matter, but often one dataset will have a higher median total
counts and thus their expression values will be inflated relative to the other dataset, affecting possibly
effecting differentially expressed (DE) gene analysis. This shows how the lack of clarity not only affects
integration, but can also affect all the downstream processes of it.

Despite these downsides, the process of integrating data is an essential part of scRNA-seq analysis
and more research should be devoted to this subject to ensure that it is continued to be investigated and
improved upon.

5.4 Trajectory inference

Much of the previous sections has focused on the preprocessing and integration steps that are required
to make scRNA-seq data analysable in a meaningful way. Now, the focus will turn to the methods that
can be applied downstream of these preprocessing steps to generate results and discover novel biology.

Many systems of biology are continuous processes that occur over a span of time. Examples of such
include parasite life cycles (Briggs, Rojas, et al. 2021), haematopoiesis (H. Chen et al. 2019), embryo-
genesis (Trapnell et al. 2014), immune cell activation, to name but a few. As the transcriptomes of the
cells undergoing these processes will change across time to facilitate progression through the underlying
biological process, the transcriptomic changes that occur across the biological process will be encoded
in the scRNA-seq data. By accessing this data, more information on the transcriptomic changes that
occur, and even drive, these processes could be better understood. The field of scRNA-seq analysis which
deals with extracting gene expression changes overtime is Trajectory Inference (TI). Like integration,
the specifics of how each method derives a trajectory depends on the method, but at its simplest level,
most TI methods can be thought of as a join-the-dot puzzle solved with mathematics, rather than the
human eye.

Most TI methods first require cells to be projected in some low dimensional space. Tools range from
being apathetic about what reduced dimension space is used (e.g. Slingshot (Street et al. 2018)) to
recommending one particular method like Monocle (Trapnell et al. 2014, X. Qiu et al. 2017 & Cao et al.
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2019), which runs based on UMAP embeddings. There are even some dimensionality reduction methods
that have been built with the express purpose of capturing scRNA-seq trajectories like PHATE (Moon
et al. 2019) (Fig.5A).

Given that the embedding of cells in a low dimension space can have outliers or differences in distri-
bution patterns, it would not be computationally reasonable, or indeed sensible, to construct a trajectory
connecting each cell in the dataset to one another. Instead, most TI methods create clusters, or take
user-defined clusters for the dataset and find the centroids of these clusters (Fig.5B). A tree is then
constructed between the centroids in such a way that minimises the distances between the centroids
(Fig.5C). As the tree is undirected, TI cannot give any guidance on where the start and end points of
the process are. Therefore, TI methods asks the users to define the start point of the trajectory, and
identify the possible paths from the start centroid to the end centroids, which the methods define as
centroids which only have one edge. Cells are then projected onto the closest point of the tree. This can
be thought of as a projection onto a one dimensional line (Fig.5D).

From the projection of cells onto the line, the approximation of how far each cell is through the
biological process (referred to as pseudotime) can be calculated. Pseudotime values are assigned in a
variety of ways, but usually a starting cell is chosen and then the closest cell to that has its pseudotime
set equal to the euclidean distance from it to the starting cell. The closest point to that cell then has
its pseudotime assigned as the pseudotime of the cell, plus the euclidean distance of the closest cell to
it. This process repeats until every cell is assigned a pseudotime value (Fig.5E). Through assigning cell
pseudotime, it’s possible to look at gene expression changes over time.

TI is not without its downsides. As dimensionality reduction methods play a key role in determining
the trajectory output, the issues surrounding the distortion of cell relationships when reducing dimen-
sionality will plague the output of TI. Another issue is the reliance on the user to choose the start and
end points of the trajectory. For areas of biology which have been studied, this of course could be derived
from the literature. In the scenarios where the start and end points are unknown, TI is unable to identify
the order of the gene expression changes that occur across the process. This could lead to inaccurate
characterisation of the biological process; especially as TI packages often randomly choose start and end
points when the user does not define them. This problem can be ameliorated with the use of RNA
velocity, which utilises the ratios of unspliced to spliced mRNA to calculate the initial (high rates of
transcription, thus high unspliced mRNA) and terminal (high rates of splicing and degradation, thus
low unspliced mRNA) states of a biological process and thus the order of cells through a process can be
recapitulated (La Manno et al. 2018). While RNA velocity can be combined with TI to help produce
more biologically accurate and meaningful results (Lange et al. 2022), its binary decision of unspliced vs
spliced mRNA and reliance on dimensionality reduction methods for visualisation (among other things)
means that its overall accuracy has been called into question (Gorin et al. 2022).

Both TI and RNA velocity are indirect estimates of cell fates and movements through their devel-
opment. To perform more accurate analysis of cell developmental processes and fates, direct ways of
inferring these are required. Such approaches include metabolic labelling and lineage tracing. The for-
mer process labels nascent RNA with 4sU, which can be converted into a cytosine analog when induced
with iodoacetamide. By looking at the detection of U to C mutations in the RNA compared to the
reference, old vs new RNA transcripts can be distinguished, and thus a cells velocity estimated. RNA
velocity uses spliced to unspliced RNA as a proxy of cell velocity, but the proportion of unspliced reads
can be very low (Gorin et al. 2022) and the percentage of unspliced reads has high variability between
genes (Maizels, Snell, and Briscoe 2024), making estimation of nascent transcription prone to noise. The
distribution of metabolic labelled RNA is higher for genes compared with unspliced reads, with a more
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uniform distribution across genes, meaning metabolic labelling provides less noisy estimates of RNA
velocity dynamics (??). Lineage tracing on the other hand allows cell lineages to be traced through an
expressible, heritable barcode which can be induced to mutate its sequence. The changes in the express-
ible barcode over cell generations allows daughter cells to be identified, and thus a cell lineages traced
(Wagner and A. M. Klein 2020).

Despite its downsides, TI has been applied in a variety of contexts to reveal novel biology. One
particular area of application is to analyse the life cycle of parasites (Briggs, Rojas, et al. 2021, Real
et al. 2021, Howick, Russell, et al. 2019 & Howick, L. Peacock, et al. 2022). Parasite life cycles lends
itself to TI analysis as, unlike mammalian cell samples, which could contain a variety of cells undergoing
independent biological processes, the transition through the life cycle stages is the central process that
drives transmission and infection.

5.5 ScRNA-seq analysis of parasites

The earliest paper to apply scRNA-seq to parasites was by Poran and colleagues (Poran et al. 2017),
who used a droplet-based UMI scRNA-seq method to profile the transcriptomic changes that accompany
sexual commitment in Plasmodium falciparum. In this paper they showed that despite the parasite hav-
ing less RNA content than mammalian cells, the average number of transcripts recovered per cell was
similar to that of mammalian cells (Poran et al. 2017). They also identify several novel genes which may
facilitate sexual commitment in the parasite, showing that scRNA-seq is a powerful tool for investigating
the transcriptomic changes that occur across the parasite life cycle. Since the Poran and colleagues
paper, many more researchers have used scRNA-seq to profile parasites. In 2019 the first single cell
transcriptomic atlas of a parasites life cycle stages was generated by Howick and colleagues (Howick,
Russell, et al. 2019) for Plasmodium falciparum, identifying marker genes for all its life cycle stages. Ap-
plication of scRNA-seq has spread out to other parasites like Schistosoma mansoni (Wendt et al. 2020
& Diaz Soria, Lee, et al. 2020) and Toxoplasma (Xue et al. 2020). In 2018, the first scRNA-seq analysis
of a member of the kinetoplastid group, Trypansoma brucei (T. brucei), was carried out by Müller and
colleagues (Müller et al. 2018), showing the expression of VSG across WT and histone variant knockout
BSF and metacyclic cells. Since then, the application of scRNA-seq method to T. brucei has continued,
shedding light on the various transitions and stages occurring across its life cycle (Vigneron et al. 2020,
Briggs, Rojas, et al. 2021, Hutchinson et al. 2021, Howick, L. Peacock, et al. 2022 & Briggs, Marques,
et al. 2023); opening opportunities to apply this method to study other members of the kinetoplastids.

Despite the existence of multiple papers which apply scRNA-seq to parasites, the presence of parasite
datasets in the papers describing the scRNA-seq analysis methods themselves (or subsequent bench-
marks) is rare. For example, the original papers describing the 15 integration methods that Luecken and
colleagues (Luecken, Buttner, et al. 2022) test in figure 3 of their benchmark paper, do no contain any
applications to parasite scRNA-seq datasets. Furthermore in the benchmark paper, itself only human
and mouse datasets are tested. There is thus a lack of information on how these methods perform on
parasite datasets in general.

5.6 Introduction to Kinetoplastids

The kinetoplastids comprise a group of protists characterised by the presence of a kinetoplast; a struc-
ture within the parasite mitochondrion which contains encodes for a variety of genes (Amodeo, Bregy,
and Ochsenreiter 2023). Some species within the kinetoplastid group contribute to a variety of human
and animal diseases: T. brucei which causes human and animal African Trypanosomiasis, Trypanosoma
cruzi (T. cruzi) which causes Chagas disease, Leishmania which causes Leishmaniasis and a variety of
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Trypanosomes which cause the animal specific disease Nagana (K. Stuart et al. 2008 & Fetene et al. 2021).

The gene expression of kinetoplastids is polycistronic (Clayton 2019), meaning multiple genes are co-
transcribed at the same time as one continuous polycistron unit and later undergo trans-splicing into in-
dividual transcripts. The consequence of this is that gene expression regulation is not facilitated through
controlled activation of RNA II polymerase activity, rather through controlling post-transcriptional pro-
cesses including mRNA stability and export (Fernandez-Moya and Estevez 2010). This makes mRNA
binding factors an area of great focus in kinetoplastid research, as they are important facilitators of gene
regulation and thus play a key role in regulating essential biological processes within the parasite. Many
mRNA binding factors that affect mRNA stability in T. brucei have been identified (Archer et al. 2009,
Hartmann et al. 2007 & Ling, Trotter, and Hendriks 2011), with each being associated with different
biological functions such as cell cycle (Archer et al. 2009) or stabilising life cycle stage-specific transcripts
(Ling, Trotter, and Hendriks 2011).

5.7 The life cycle of T. brucei

Arguably the most well-studied of the kinetoplastid family is Trypanosoma brucei (T. brucei), given
(among other things) the stability of culture in vitro (Cunningham 1977, Baltz et al. 1985 & H. Hirumi
and K. Hirumi 1989), capacity to carry out CRISPR/Cas9 gene editing (Rico, Jeacock, et al. 2018),
ability to induce overexpression of genes and perform RNAi, the latter not being possible in many Leish-
mania subgenus (Lye et al. 2022) or in T. cruzi (Kolev, Tschudi, and Ullu 2011).

The life cycle of T. brucei takes place over two main phases, a mammalian and insect stage (Matthews
2005). The first major form in the mammalian stage of the parasite life cycle is the metacyclics. These
are a cell cycle-arrested form of the parasite which is preadapted for the mammalian host environ-
ment upon transmission during a bloodmeal due to the upregulation of glycolysis associated genes and
proteins and expression of surface metacyclic variable surface glycoprotein (mVSG) (Christiano et al.
2017). Upon transmission into the mammal, the metacyclics rapidly differentiate into slender form cells
(Matthews 2005). This form readily replicates within the host; protected from the host’s innate and
adaptive immune system by a Variable Surface Glycoprotein (VSG) coat (Barry and McCulloch 2001).
The slender forms have the capacity to infect teneral tsetse flies (the parasites vector) upon bloodmeal
(Schuster et al. 2021), however the efficiency of infection is very low, with the brunt of successful infec-
tions being achieved by the next mammal stage in T. brucei development: the cell cycle arrested stumpy
form (Matthews, Ellis, and Paterou 2004 & Ngoune et al. 2024), which are pre-adapted to infect the
teneral tsetse fly (Rico, Rojas, et al. 2013). Stumpy forms develop from slender forms through a quorum
sensing mechanism, triggered by high cell density (Reuner et al. 1997) and driven by the accumulation
of oligopeptides, which are transported by a G protein-coupled receptor encoded by TbGPR89 into the
cell to induce the differentiation of slender to stumpy forms (Rojas et al. 2019). These oligopeptides are
generated from host peptides by peptidases secreted by the parasite into the environment (Tettey, Rojas,
and Matthews 2022). Upon taking a bloodmeal from an infected host, stumpy forms are transferred into
the teneral tsetse fly where they differentiate into procyclic forms (PCF) in the posterior midgut of the
fly (Rotureau and Van Den Abbeele 2013).
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Figure 5: Overview of the Trajectory Inference process

A typical Trajectory Inference (TI) process starts with projecting the cells into a reduced dimension
space (e.g. UMAP) and assigning cells into clusters (A). Centroids are then calculated for the clusters

(B) and a tree is constructed using the cluster centroids as nodes in the tree (C). Cells are then
projected onto the closest point of the tree line (D) and pseudotime is calculated by summing the

pseudotime of the previous cell and the distance (E).

24



Figure 6: Artistic impression of the T. brucei life cycle

Metacyclic form parasites are transmitted into the mammalian host when a bloodmeal is taken by an
infected tsetse fly (A). The metacyclic forms then transition into replicative slender forms (B). The
slender forms release peptidases which break down host proteins into oligopeptides, which are then
sensed by the parasites (C). The accumulating oligopeptides eventually signal the slender parasite to

transition into its non-replicative stumpy form (D). The stumpy forms are then taken up into the tsetse
fly during a blood meal (E). The stumpy forms transition into replicative PCFs (F) before crossing the

peritrophic matrix into the ectoperitrophic space (G). PCFs eventually cross back through the
peritrophic matrix into the gut lumen and transition into replicative long epimastigotes (H). The long
epimastigotes subsequently invade the salivary glands of the parasite (I) and divide asymmetrically into
long and short epimastigotes (J). The short epimastigotes attach to the salivary gland epithelium and
colonise it, before differentiating into mammal infective, non-replicative metacyclics (K). Metacyclics

detach from the epithelium and invade the host upon bloodmeal of the parasite, restarting the life cycle
(L). This figure is partially adapted from Aksoy 2019 (S. Aksoy 2019). Replicative parasite forms are

denoted by the blue circle arrow and non-replicative forms are denoted by the red barred circle.
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When the BSF parasite is exposed to a coldshock in vitro, it causes the expression of PCF-associated
surface protein EP procyclin and makes the parasites more sensitive to citrate/cis aconitate (CCA) (En-
gstler and Boshart 2004), which is used to differentiate bloodstream forms into PCF in vitro (Czichos,
Nonnengaesser, and Overrath 1986 & Ziegelbauer et al. 1990). Coldshock also induces the trafficking
of Protein Associated with Differentiation (PAD) 2 to the surface of stumpy forms which belongs to a
family of proteins that help mediate stumpy to PCF transition, as the inhibition of their gene expression
through RNA interference causes a reduction in CCA responsiveness and PCF development (Dean et al.
2009).

In the posterior midgut, the PCFs divide readily and shed their VSG coat (Rotureau and Van Den
Abbeele 2013). The shed VSG can be taken up by tsetse fly cardia cells, which maintain the midgut
peritrophic matrix (PM), and causes changes in these cells, like the downregulation of a microRNA
mir-275, disrupting the regular barrier capabilities of the PM (E. Aksoy et al. 2016), possibly aiding the
parasite to move across the PM barrier. The PCFs cross into the anterior midgut and differentiate into
the elongated, cell cycle-arrested mesocyclic stages, which subsequently migrate into the proventriculus,
where they differentiate into the replicative epimastigotes (Van Den Abbeele et al. 1999 & Rotureau and
Van Den Abbeele 2013). The epimastigotes migrate into and along the salivary glands (SG), dividing
asymmetrically into a long and short form (Van Den Abbeele et al. 1999) with it hypothesised that the
short forms play the main role in attaching to, and subsequently colonising, the SG epithelium (Oberle
et al. 2010). The attached epimastigotes then divide asymmetrically again, giving rise to more short-
form epimastigotes, as well as metacyclic cells; restarting the life cycle upon transmission into mammals
(Rotureau, Subota, et al. 2012).

5.8 The life cycle of T. cruzi

The life cycle of T. cruzi, like T. brucei, is split across a mammalian stage and an insect stage, in this
case members of the triatominae family. When triatomines penetrate the skin of a mammal during a
bloodmeal, metacyclic trypomastigotes (contained within the faeces and urine of the triatomine) can pass
into the host and subsequently invade the host cells (Martin-Escolano et al. 2022). Between crossing into
the host tissue and entering the host cells, the parasite is able to be targeted by many components of the
host immune system. To allow survival in the host, the parasite has evolved a variety of mechanisms to
evade the immune system. One of the key defense mechanisms T. cruzi has is to subvert a mechanism
the immune system uses to distinguish self from non-self, namely the presence of sialic acid (SIA). SIA is
found on the surface of all mammalian cells and helps protect itself from immune attack through a variety
of mechanisms, an example being inhibiting the binding of complement to the cell surface (Varki 2011).
T. cruzi is susceptible to such an attack, but it is able to effectively steal host cell surface-bound SIA
through the action of trans-sialidases, a highly polymorphic family of genes which encode surface proteins
that cleave SIA off host cells and transfer them to the surface of the parasite, making them resistant
to attacks from the complement system (Fonseca et al. 2019 & Nardy, Freire-de-Lima, and Morrot 2015).

While the parasite is protected from the host immune system, to progress to the next life cycle stage,
it needs to invade a host cell. The invasion mechanism of the parasite has not been fully elucidated
but there are known interactions that occur between the parasite and host cell (Rodriguez-Bejarano,
Avendano, and Patarroyo 2021). The parasite has a variety of host proteins which facilitate interactions
between the parasite and host, and have been shown to be involved in parasite invasion of host cells.
The glycoprotein 82 (gp82) is one such protein, with research showing that the binding of this protein by
antibodies significantly reduces the infection capabilities of metacyclic trypomastigotes (Ramirez et al.
1993). Gp82 binding to host cells causes the release of calcium ions into the cytosol of the host and para-
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site (Ruiz et al. 1998), through the activation of phospholipase C (Yoshida et al. 2000). This increase in
calcium ion concentration leads to exocytosis of lysosomes (Martins et al. 2011), which promotes uptake
of the parasite into a parasitophorous vacuole (PV) (Batista et al. 2020). Unlike in Leishmania, T. cruzi
does not persist inside the PV, rather it escapes into the cytosol to continue its life cycle (Batista et al.
2020). This egress of the parasite from the PV into the cytosol is dependent on a low pH environment,
with the parasite egress being inhibited when the pH of the PV is raised (Ley et al. 1990). This low pH
environment not only allows the transition of metacyclic trypomastigotes into the next life cycle stage,
amastigotes (Tomlinson et al. 1995), but it also activates Tc-TOX, a protein secreted by the parasite
which functions at a low pH. Tc-TOX has been shown to form pores in the membranes of the PV; allow-
ing parasite egress from the PV (Andrews and Whitlow 1989 & Stecconi-Silva, Andreoli, and Mortara
2003). Within the cytosol, amastigotes begin to replicate and undergo a change in transcriptome that
allows them to adapt to their intracellular environment. The expression of genes encoding surface pro-
teins and flagellar components is downregulated, while a variety of metabolism processes like oxidative
phosphorylation and fatty acid synthesis increase (Y. Li et al. 2016) due to parasite transport of host
molecules like glucose, glutamine and triaglycerols (Shah-Simpson et al. 2017 & Gazos-Lopes et al. 2017),
which fuel their growth.
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Figure 7: Artistic impression of the T. cruzi life cycle

Metacyclic trypomastigote forms enter the mammalian host through a wound created when the
triatomine takes a bloodmeal, where they infect host cells through uptake into a parasitophorous

vacuole, which they subsequently escape from (A). The metacyclic trypomastigotes then transition into
replicative amastigotes (B) which divide readily before transitioning into non-replicative trypomastigote

forms (C). The trypomastigote forms then egress from the cell, where they are taken up by the
triatomine during a bloodmeal (D). In the triatomine’s stomach, the trypomastigotes differentiate into
replicative epimastigote forms (E) which then transition through the triatomine to the rectum where
they differentiate into non-replicative metacyclic trypomastigotes (F) which are then excreted through
the rectum and can infect the mammalian host, restarting the life cycle (G). Replicative parasite forms
are denoted by the blue circle arrow and non-replicative forms are denoted by the red barred circle.

Figure is partially adapted from Garcia and colleagues (E. S. Garcia et al. 2010).
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The parasites multiply inside the host cells and, at some point, begin their differentiation into try-
pomastigote forms. These forms are non-replicative (Taylor et al. 2020) and need to be taken up by the
triatomine to progress to the next stage in their life cycle, thus the parasite needs to egress from the
host cell. For egress, the parasite causes changes in the cytoskeleton of the host cell, such as a decrease
in filamentous actin deposition (Ferreira et al. 2021). These changes in tandem with, or perhaps caused
by, protease activity (Low, Paulin, and Keith 1992) allow the cell to egress from the host cell through
the rupturing of the host cell membrane.

During a bloodmeal, released trypomastigotes can be taken into the triatomine where they enter
the midgut and differentiate into replicative epimastigote forms. The epimastigotes then migrate to the
rectum of the triatomine, where they attach to rectal epithelium. Epimastigotes then differentiate into
non-replicative metacyclic trypmastigotes to start the life cycle over (E. Garcia and Azambuja 1991). In
vitro, metacyclogenesis can be induced by nutrient starvation, cyclic AMP analogs or adenylate cyclase
activators (Gonzales-Perdomo, Romero, and Goldenberg 1988), but what induces metacyclogenesis in
vivo is unknown (Goncalves et al. 2018).

5.9 Problems with scRNA-seq analysis of Trypanosomatids

A common thread when discussing Trypanosomatids is the breadth of knowledge on the mammalian
forms of the parasite and the dearth of knowledge of the insect forms. For T brucei, while bloodstream
and PCF parasites can be readily cultured in vitro (H. Hirumi, Doyle, and K. Hirumi 1977 & Cross and
Manning 1973), and the transitions from slender to stumpy and stumpy to PCF can be recapitulated in
vitro (Rojas et al. 2019 & Czichos, Nonnengaesser, and Overrath 1986), there is no currently published
way to generate the PCF to epimastigote or epimastigote metacyclic transitions in vitro using wild type
(WT) cells. Thus, the insect stages need to be derived from the tsetse fly itself, where successful in-
fections can be difficult to accomplish (Ngoune et al. 2024). In contrast to T. brucei, all the life cycle
transitions of T. cruzi are readily captured in vitro (Kessler et al. 2017, Contreras et al. 1985, Piras 1982
& Hashimoto et al. 2015), however the high category risk nature of the parasite makes working with T.
cruzi difficult and thus no scRNA-seq data has been generated on the parasite.

The problems with scRNA-seq analysis of Trypanosomatids extend beyond issues with culturing and
collecting the parasites, the data generated from these analyses is also difficult to utilise completely. A
common step counted map reads is to remove reads that map to multiple places on the genome, as their
exact origin in the genome cannot be accurately determined. In T. brucei data generated by Vigneron
and colleagues (Vigneron et al. 2020) using 10X 3’ V2 chemistry, 81% of reads mapped to the T. brucei
TREU927 reference genome but the percentage of reads that mapped confidently to the transcriptome
falls to 40.50%. In contrast, the percentage of reads mapping to genome for immune cells from the
blood of a human (generated with the same chemistry kit as the T. brucei data) was 95.2%, with the
percentage confidently mapping to the genome being 92.7%(Genomics 2017). The relatively increase in
reads that map to multiple locations on the genome in T. brucei compared with human immune cells
is likely due to the presence of multigene families which are often highly repetitive in sequence (Pita
et al. 2019). The practical implications of this is the true gene counts for these repetitive genes could
be underestimated and not a insignificant percentage of the reads captured are unusable for scRNA-seq
analysis and thus is wasted sequencing. Due to the nature of gene expression in Trypanosomatids, some
scRNA-seq analysis methods are not currently applicable. RNA velocity relies on the ratios of unspliced
to spliced reads to calculate cell fates, but due to the polycistronic regulation of gene expression, such
information is not available for Trypanosomatids, where only two genes have introns (Berriman et al.
2005 & Siegel et al. 2010).
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6 Aims and Objectives

This thesis seeks to address several aims and objectives across three results chapters.
Chapter 1 - To create a tool to identify changes that occur across time between conditions, a tool

(TrAGEDY) was made that aligns two scRNA-seq trajectories, creating a common time axis on which
the cells can be compared and gene expressions difference identified between the processes.

Chapter 2 - To create the first scRNA-seq atlas of in vitro T. cruzi development and identify tran-
scriptomic changes that define the T. cruzi life cycle stages and their transitions.

Chapter 3 - To investigate the gene expression changes which drive the insect stage T. brucei life
cycle by analysing scRNA-seq data of the RBP6 overexpression model of T. brucei insect life cycle stage
development.

7 Chapter 1: TrAGEDy - Trajectory Alignment of Gene Ex-

pression Dynamics

The following chapter is based off of a paper written by myself which is available on BioRxv: Laidlaw
et al. 2024.

To compare biological processes between conditions, alignment of single cell transcriptomic trajec-
tories can be performed. Current tools place constraints on what data can be aligned. In this chapter
I present Trajectory Alignment of Gene Expression Dynamics (TrAGEDy) which overcomes these con-
straints, allowing the alignment of asymmetric biological processes. Across simulated and real datasets,
TrAGEDy returns correct alignment based on underlying simulated process, where current tools fail.
Across different biological contexts, TrAGEDy can capture biologically relevant genes which other dif-
ferential expression methods fail to detect. TrAGEDy provides a new tool for in-depth analysis of many
emerging single cell transcriptomic datasets.

8 Chapter 1: Introduction

First described in 2014 (Trapnell et al. 2014), Trajectory Inference (TI) methods order cells based on
the gradual change in transcript levels in underlying biological processes captured by single cell RNA-
sequencing (scRNA-seq). Cells are assigned a “pseudotime” value based on their position in the inferred
trajectory, allowing differential gene expression tests over pseudotime. Various methods have been de-
veloped to identify differentially expressed (DE) genes in a biological process of interest, in some cases
allowing targeted comparisons. Notably, TradeSeq (Van den Berge et al. 2020) uses negative binomial
general additive models (GAM) and Wald tests to assess whether a gene is DE over pseudotime within
a trajectory or between lineages of the same trajectory. Alternatively, Monocle’s BEAM (X. Qiu et al.
2017) identifies genes associated with a particular branch of a trajectory, whereas pseudotimeDE (Song
and J. J. Li 2021) uses permutation to account for uncertainty in pseudotime and a zero-inflated negative
binominal GAM to account for expression value dropout. By applying these techniques, dynamic gene
expression patterns associated with a variety of interesting biological events have been investigated, such
as regulators of myogenesis (Trapnell et al. 2014), effector gradients in CD4+ T cells (Cano-Gamez et al.
2020), and life cycle transitions of the pathogen T. brucei (Briggs, Rojas, et al. 2021).
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Some of these methods can be extended to identify DE genes between two conditions where the
common biological process under analysis varies, such as before and after mutation or in an overlapping
response to different stimuli (Van den Berge et al. 2020). One approach is to integrate the separate
datasets together and complete a cluster-based comparison between conditions, treating cells as being at
a discrete stage in development captured in each cluster. A limitation of this approach, however, is that
development may be continuous, with some cells falling between stage boundaries. Another approach is
to integrate the datasets together, perform TI to capture the shared, possibly branching, trajectory and
differential expression tests across this pseudotime axis for each condition, using tools like TradeSeq’s
conditionTest. However, the integration may force similarity between the trajectories, thus obscuring
DE genes.

Alternatively, trajectory alignment can align cells from independently generated trajectories to find a
common pseudotime axis that retains the original ordering of cells without dataset integration. Analysing
aligned trajectories can reveal DE genes across the captured process, as well as differences between con-
ditions. The discrete point at which the genes are DE between conditions can also be found. The first
method described to perform such trajectory alignment was cellAlign (Alpert et al. 2018), which uses
dynamic time warping (DTW) to align two trajectories together. Interpolated points are created across
the trajectory, and gene expression values are assigned to the interpolated points - based on the cells that
are in pseudotime vicinity to the points. Similarity between the conditions is assessed by computing the
distance or correlation between the scaled gene expression values for the interpolated points on opposing
conditions and, from this, the minimum cost path through the interpolated points is calculated using
DTW.

The use of DTW imposes some constraints on the type of alignment that can be analysed. Each
trajectory being compared must have the same start and end points, and each part of a trajectory must
be matched to at least one point in the other trajectory. The practical implication of such limitations
is that cell types that may not be represented on the opposing trajectory are nevertheless matched to a
point on the other trajectory, making interpretation of the subsequent alignment difficult.

Here, we build on the work of cellAlign with Trajectory Alignment of Gene Expression Dynamics
(TrAGEDy), where we make post-hoc changes to the alignment, allowing us to overcome the limitations
of DTW and better reflect differences that may occur across the alignment. We also implement an
approach to identify DE genes across the alignment, in order to better identify differences between
the two conditions. We test TrAGEDy with a variety of simulated scRNA-seq datasets with different
underlying alignments, as well datasets of T. brucei life cycle and T cell development under different
genetic conditions, revealing gene expression changes undetected by current methods without the need
for prior data integration.

9 Chapter 1: Results

A typical workflow for TrAGEDy is as follows (Fig.8). Prior to trajectory alignment with TrAGEDy,
a predefined list of marker genes of the various datasets being aligned is created; top variable genes or
cluster markers can be selected, for example. The two datasets are then projected individually into a re-
duced dimension space using the preselected genes and TI performed on the two datasets independently
(Fig.8A). There is no limitation on what TI method can be used, provided that pseudotime values are
generated for each cell.

TrAGEDy then uses the cellAlign method of creating interpolated points to sample gene expression
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at different points in the trajectory, allowing inherently noisy scRNA-seq data to be smoothed across the
trajectory. The closer a cell is to the interpolated point, the more it contributes to its gene expression.
By changing a parameter that controls a Gaussian pseudotime window, the user can alter the contribu-
tion level that more distal cells have to interpolated point gene expression (Fig.8B).

Dissimilarity between the gene expression of the interpolated points is next assessed. While inter-
polation can smooth out noise, possible batch effects between datasets mean calculating dissimilarity
with methods such as Euclidean distance is problematic without scaling the data first. TrAGEDy uses
Spearman correlation, as it is less sensitive to outliers than Pearson and, unlike Euclidean distance does
not require scaling of gene expression values.
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Figure 8: Graphical overview of the TrAGEDy process.

Trajectory Inference is carried out on two datasets that share a common process but have a difference
in condition (A). TrAGEDy samples gene expression across interpolated points of the trajectory, with

cells with closer pseudotime values to the interpolated points contributing more to their gene
expression (B). TrAGEDy then aligns the pseudotime of the interpolated points then the cells, finally
performing a sliding window comparison between cells at similar points in aligned pseudotime, thereby

extracting DE genes (C).
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TrAGEDy next finds the optimal path through the dissimilarity matrix of the interpolated points,
which constitutes the shared process between the two trajectories. DTW, with alterations, is used to
find the optimal path. To overcome the constraint in DTW that the two processes must start and end at
the same point, we first cut the dissimilarity matrix so the path starts and ends at points that are most
transcriptionally similar to one another (appendix Fig.2). Another constraint of DTW is that all points
must be matched to at least one other point; thus (post-DTW), we pruned any matches that have high
transcriptional dissimilarity, enabling processes that may have diverged in the middle of their respec-
tive trajectories to be compared (appendix Fig.3). Finally, we used the modified alignment to adjust
the pseudotime values of the interpolated points, generating new values as the basis to then adjust the
pseudotime value of each cell (Fig.8C).

To extract DE genes, we performed a sliding window comparison, soft clustering cells at similar
points in aligned pseudotime together and then testing for significance with a Mann-Whitney U test,
extracting genes that are DE at different points in the shared process (Fig.8C). Soft clustering with a
sliding window allows comparisons over a continuous process. Users can define how much overlap there
is between the windows of comparison.

9.1 Aligning simulated scRNA-seq datasets

We tested TrAGEDy’s ability to correctly identify the alignment of trajectories on datasets where the
alignment points were known a priori. Using Dyngen (Cannoodt et al. 2021) we simulated scRNA-seq
datasets with inherent trajectories encoded in the expression values, resulting in three different test cases:
two positive controls and one negative control (Fig.9A).

The first positive test case used two datasets, the first simulating a full developmental progression
involving sequential expression of many genes (wild type; WT), and the second resulting from knockout
(KO) of one of these genes (Fig.9A). Thus, the KO trajectory is truncated at the point at which the
process requires the transcription of the knocked out gene. TrAGEDy correctly aligned these datasets:
the WT and the KO datasets initially align with one another, but the KO finishes its full process
before the WT. For comparison, we also applied cellAlign and Genes2Genes (G2G), another trajectory
alignment method which mainly focuses on aligning single genes, but can also be used to align multiple
genes at once (Sumanaweera et al. 2023). Like TrAGEDy, the cellAlign distance matrix revealed the
initial alignment of the WT and KO, before the KO trajectory ends while the WT continues. However,
cellAlign failed to position the correct end point of the KO trajectory relative to the WT due to running
DTW on the whole dissimilarity matrix. G2G also returns an incorrect alignment, suggesting that the
simulated WT and KO datasets have a 1:1 alignment, although the number of matched genes does
decrease as the trajectories progress (Fig.9B).
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Figure 9: Alignment of simulated single cell RNA sequencing datasets with TrAGEDy and cellAlign.

Schematic showing the process of generating the three different topologies of alignment datasets, each
with 1,500 cells and 250 transcription factors which drive the simulated process. For the diverge

converge and start shared datasets, two datasets were generated using the same simulated expression
model before knockouts were simulated for these datasets. For the negative control dataset, the

expression of the two datasets was simulated using two different models (A). Heatmaps showing the
alignment of the start shared (B), diverge converge (C) and negative control (D) Dyngen simulated
datasets as assessed by TrAGEDy, cellAlign and Genes2Genes (G2G). Each box on the heatmap

represents the alignment score of an interpolated point of each of the two datasets. For TrAGEDy and
cellAlign the score represents transcriptional dissimilarity (as assessed by Spearman’s correlation and
Euclidean distance respectively), while G2G shows the number of genes whose expression patterns is
matched between the two interpolated points. The grey line represents the path of optimal alignment
for TrAGEDy and cellAlign, while in G2G the optimal alignment is represented by a white line. The
alignment heatmap of G2G for the negative control dataset has been edited to remove the alignment

line; reflecting its conclusion that the two datasets share no common alignment.
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To assess how the methods handle a scenario where the trajectories have shared start and end points,
but deviate in the middle, we simulated two datasets with Dyngen that have a diverge-converge back-
bone. By knocking out one of the divergent branches in one dataset (KO 1) and the other divergent
branch in the other dataset (KO 2), we simulated linear trajectories that do not share a common process
in their middle sections (Fig.9A). Applying TrAGEDy to this scenario accurately captured the initial and
terminal alignment of the two trajectories, while leaving the middle sections unaligned. cellAlign failed
to align KO 1 and KO 2 correctly, as cellAlign does not include functionality to prune matches. G2G
also returned an incorrect alignment, as it suggested that there was a 1:1 alignment between the two
simulated KO datasets (Fig.9C) despite the fact that they two datasets are transcriptionally divergent
in the middle of their processes.

For the negative control, two datasets with distinct gene regulatory networks and transcription kinet-
ics models were generated (referred to as model 1 and model 2) (Fig.9A). As there is no shared process
between the conditions, the dissimilarity scores are expected to be high, and no alignment should be
found. The dissimilarity score calculated by TrAGEDy between model 1 and model 2 showed that most
of the matches have a dissimilarity score close to 1, and thus do not share a common process. As
TrAGEDy finds the optimal path by looking at the context of the whole dissimilarity matrix, even if the
dissimilarity scores are high, it will still find a path, as seen in the negative control (Fig.9C). TrAGEDy
will give a warning to the user if the median of the cut dissimilarity matrix scores is over 0.6 and, thus
the user must decide how to interpret the resulting alignment in the context of the overall dissimilarity
score of the path. CellAlign also creates a path through the dissimilarity matrix, which has a higher
overall dissimilarity range than the other two datasets, with the Euclidean distance ranging from ∼7-14
(Fig.9D), while the other two datasets ranged from ∼4-14 (Fig.9B, C). If, instead, Pearson correlation
is selected for cellAlign, it becomes clearer from the alignment heatmap that the two datasets share
little transcriptional similarity (appendix Fig.5C). As G2G directly models insertion and deletions in its
alignment algorithm it can determine that there is no common alignment between the two datasets and,
thus, is the only method to show that there is no underlying alignment in its alignment path (Fig.9D).

These analyses show that TrAGEDy is capable of faithfully capturing the underlying alignments of
simulated biological scRNA-seq datasets, where current methods fail.

9.2 WT vs ZC3H20 KO T. brucei alignment

Simulated data represents a ‘best case’ scenario for benchmarking tools, and often lacks the complexity
of real datasets. We thus decided to apply TrAGEDy to real scRNA-seq datasets where the underlying
processes have been characterised. For our first application, we examined a distinct developmental pro-
cess in the kinetoplastid parasite T. brucei. In the bloodstream of its mammalian host, WT T. brucei
parasites transition from replicative slender forms to non-replicative stumpy forms, through a quorum
sensing mechanism (Reuner et al. 1997, Dean et al. 2009, Rojas et al. 2019 & Matthews 2021). These
stumpy forms are preadapted to survive within the tsetse fly, which acts a vector for parasite transmis-
sion between mammals (Rico, Rojas, et al. 2013). Mutant T. brucei where an RNA binding protein
essential for slender to stumpy differentiation, ZC3H20, has been knocked out (ZC3H20 KO) are unable
to undergo this transition (B. Liu, Kamanyi Marucha, and Clayton 2020, Cayla et al. 2020) and fail to
express stumpy associated genes. Briggs and colleagues (Briggs, Rojas, et al. 2021) used 10X Chromium
to sequence two biological replicates of WT T. brucei parasites (WT01 and WT02) undergoing this
transition in vitro, as well as ZC3H20 KO failing to differentiate in the same conditions. The authors
defined four main clusters, Long Slender (LS) A and B, and Short Stumpy (SS) A and B, to show the
progression of the transition, with LS A being the start and SS B being the end. Thus, the final alignment
is expected to show that the WT and the ZC3H20 KO datasets share an initial common developmental
process, but that the KO process is truncated or branched relative to the WT, as suggested by previous
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analysis using data integration and Slingshot TI.

Figure 10: Analysis of WT and ZC3H20 KO T. brucei development with TrAGEDy.
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TrAGEDy alignment of the WT and ZC3H20 KO trajectories of T. brucei development with
transcriptional dissimilarity calculated with Spearman correlation (A). TrAGEDy alignment of the
interpolated points of the WT and ZC3H20 KO trajectories, showing connections between the two
processes. The interpolated points are displayed across pseudotime before and after the pseudotime
values have been modified by TrAGEDy (B). Venn diagram showing the intersection of the DE genes
captured by TrAGEDy, TradeSeq and Seurat (C). UpSet plot showing the top 10 intersections of DE
genes captured by TrAGEDy across 4 windows of comparison and Seurat over 4 clusters and TradeSeq
over 4 knot comparisons (D). TradeSeq plotSmoother plots showing the expression changes that occur
across the WT (yellow) and ZC3H20 KO (purple) trajectories within the cells of aligned pseudotime,
as calculated by TrAGEDy, which share a common process. The 4 genes plotted were only identified as

being significantly DE by TrAGEDy (E). Heatmap showing DE genes with the highest log 2
fold-change (Log2FC) captured (but not uniquely captured) between the WT and ZC3H20 KO

trajectories at 6 different windows of comparison. Each index is coloured by the Log2FC (red = higher
expression in KO, blue = higher expression in WT) and a * symbol indicates the difference is

significant (Bonferroni corrected p-value < 0.05, Mann-Whitney U test, abs(Log2FC) > 0.5, minimum
percentage expressed > 0.1). A full list of heatmap genes can be found in supplementary table 7 (F).
Barplot showing the number of significant Gene Ontology (GO) terms (Benjamini-Hochberg adjusted
p-value < 0.01) returned when GO enrichment analysis was carried out using TriTrypDB on all the DE

genes returned by TrAGEDy, TradeSeq and Seurat.

PHATE (Moon et al. 2019) embeddings were generated independently for the three datasets: two
WT replicates (WT01 and WT02) and the ZC3H20 KO. The PHATE embeddings were used as the basis
for Slingshot TI to calculate pseudotime values for each of the cells. Applying TrAGEDy to WT01 and
WT02 returned an alignment that started at the same point, and ended just before the final endpoint,
returning a nearly 1:1 alignment, as predicted of biological replicates (appendix Fig.6). We next used
the aligned WT values to perform TrAGEDy alignment between the combined WT replicates and the
ZC3H20 KO dataset. The resulting alignment showed that the two process have an initial point of
alignment but the ZC3H20 KO process was truncated relative to the WT (Fig.10A). Using the DTW
calculated path, we then adjusted the pseudotime values of the trajectories to get a common pseudotime
axis (Fig.10B).

By aligning trajectories rather than integrating the datasets, we expected to preserve more variability
between them, which may be reflected in the DE genes captured. We therefore compared TrAGEDy
against other methods that can extract DE genes between conditions. We compared the differential gene
expression tests by TrAGEDy with established methods of extracting DE genes: we compared TrAGEDy
to a standard Seurat V5 pipeline (Y. Hao, T. Stuart, et al. 2024) of comparing DE genes between condi-
tions, and TradeSeq’s method of comparing DE genes across trajectories from different conditions. DE
genes were defined as genes whose absolute log 2 fold change (Log2FC) was more than 0.75, Bonferroni
corrected p-value was less than 0.05, and were expressed in at least 10% of the cells in one of the compari-
son groups. To ensure comparability between the methods, the Log2FC of a gene between conditions was
calculated using the same formula across all the different methods, namely the formula used in Seurat V5.

TrAGEDy detected more significant DE genes than both Seurat and TradeSeq (Fig.10C, D): TrAGEDy
uniquely captured 164 genes as being DE, while TradeSeq and Seurat only returned 135 and 54, respec-
tively (Fig. 10C, appendix file 1, 2, 3). Furthermore, the genes captured only by TrAGEDy that were
more highly expressed in the WT were consistent with the slender to stumpy transition. These included
the Arginine Kinase AK3 (Tb927.9.6210) (Ooi et al. 2015), RNA binding proteins ZC3H22 and RBP38
(Tb927.7.2680, Tb927.11.5850) (Erben et al. 2021, Sbicego et al. 2003), Protein Associated with Differ-
entiation 1 (PAD1 - Tb927.7.5930) (Dean et al. 2009) and delta-1-pyrroline-5-carboxylate dehydrogenase
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(DP5CDH ) (Tb927.10.3210) (Fig.10F, appendix file 1). For ZC3H20 KO associated genes, two zinc fin-
ger genes, ZC3H38, ZC3H46 (Tb927.10.12800, Tb927.11.16550) (Lueong et al. 2016), were found to be
DE towards the end of the shared process. Plotting the smoothed expression of some of these DE genes
unique to TrAGDEy showed that the expression patterns matches the TrAGEDy output (Fig.10E). In
terms of runtime required to return DE results, both TrAGEDy and Seurat returned results in under a
minute, while TradeSeq took around 2 hours (appendix file 4).

Returning more significant DE genes and attaching biological meaning to individual genes are not
robust metrics for assessing how well a DE gene detection method is performing, as they are prone to
the influence of bias. As an example, randomly assigning 75% of the genes in the dataset to be DE
would end up with more DE genes returned than most DE gene detection methods. Furthermore, there
is no direct ground truth for whether the genes captured are DE or not. To address these issues, we
used the number of significant GO terms returned from each methods DE gene list as a proxy for how
biologically meaningful the output of the DE gene detection methods were likely to be. This approach
was previously utilised in a previous analysis (Song and J. J. Li 2021), to test the usefulness of different
DE gene detection methods (Song and J. J. Li 2021). We ran biological process GO term analysis on the
three methods’ lists of DE genes, with GO term significance being set at Benjamini Hochberg procedure
adjusted p-value < 0.01. Looking at the GO terms generated from the DE gene lists of the three methods
showed that TrAGEDy returned 60 significant GO terms compared to 50 from TradeSeq and 40 from
Seurat (Fig.10G) (appendix file 5), with all but three of the GO terms returned by Seurat also returned
by TrAGEDy and only 15 GO terms being unique to TradeSeq (appendix Fig.7B). When GO terms were
generated on the list of uniquely captured genes for each method, TrAGEDy was the only method to
return any significant GO terms (appendix Fig.7A, appendix file 6).

The above results show that TrAGEDy reveals more biologically relevant information on the slender
to stumpy transitions under WT and ZC3H20 KO conditions than established protocols.

9.3 WT vs Bcl11b KO T cell development analysis

Through applying TrAGEDy to the T. brucei datasets, we replicated an analysis that has already been
carried out. With our next application, we used TrAGEDy in an analysis scenario which has not been
attempted. For this we applied TrAGEDy to a scRNA-seq dataset of in vitro T cell development in WT
and Bcl11b KO mice over two timepoints (W. Zhou et al. 2022). The data contain cells undergoing the
early stages of T cell development in the thymus, from thymus-seeding precursors (TSP) to around the
Double negative (DN) 4/Double positive stage. The authors reported that when Bcl11b expression is
knocked out, the cells deviate from the T cell commitment pathway and develop distinct transcriptomic
signatures around the DN2 stage of T cell development. However, some Bcl11b KO cells still express
markers of T cell pathway commitment, such as the gene for the pre-T cell Antigen receptor α (Ptcra)
(Hwang et al. 2020) and Rag1 (appendix Fig.8), one of the central genes responsible for T cell receptor
gene recombination, suggesting there may be some KO cells that have reached the post DN2 stages where
the cells express a pre-TCR receptor and undergo β-selection (Mombaerts et al. 1992). In this context,
we aimed to use TrAGEDy to compare the WT and Bcl11b KO trajectories of T cell development and
attempted to identify differences in transcriptomes that occur between the WT and Bcl11b KO as they
continue down the normal path of T cell development.
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Figure 11: Analysis of WT and Bcl11b KO trajectories of T cell development with TrAGEDy.
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TrAGEDy alignment of the WT and Bcl11b KO trajectories of T cell development with transcriptional
dissimilarity calculated with Spearman correlation (A). TrAGEDy alignment of the interpolated points

of the WT and Bcl11b KO trajectories, showing connections between the two processes. The
interpolated points are displayed across pseudotime before and after the pseudotime values have been

modified by TrAGEDy (B). Venn diagram showing the intersection of the DE genes captured by
TrAGEDy, TradeSeq and Seurat (C). UpSet plot showing the top 10 intersections of DE genes

captured by TrAGEDy across 6 windows of comparison and Seurat over 6 clusters and TradeSeq over 6
knot comparisons (D). TradeSeq plotSmoother plots showing the expression changes that occur across

the WT (yellow) and Bcl11b KO (purple) trajectories within the cells of aligned pseudotime, as
calculated by TrAGEDy, which share a common process. The 4 genes plotted were only identified as
being significantly DE by TrAGEDy (E). Heatmap showing DE genes captured (but not uniquely

captured) by TrAGEDy with the highest log 2 fold-change (Log2FC) between the WT and Bcl11b KO
trajectories at 6 different windows of comparison. Each index is coloured by the Log2FC (red = higher

expression in KO, blue = higher expression in WT) and a * symbol indicates the difference is
significant (Bonferroni corrected p-value < 0.05, Mann-Whitney U test, abs(Log2FC) > 0.5, minimum
percentage expressed > 0.1). Full list of genes can be found in appendix file 13(F). Barplot showing the

number of significant Gene Ontology (GO) terms (Benjamini-Hochberg adjusted p-value < 0.01)
returned when GO enrichment analysis was carried out using clusterProfiler on all the DE genes

returned by TrAGEDy, TradeSeq and Seurat.

The cells were sequenced over two runs, with each run containing a variety of biological and technical
replicates, as well as cells from different sampling days. For simplicity, the WT cells sequenced in run 1
will be referred to as WT1, the Bcl11b KO cells sequenced in run 1 will be referred to as Bcl11b KO1,
and those sequenced in run 2 as WT2 and Bcl11b KO2, resulting in four individual datasets. When
projected into the PHATE space, some of the WT1 cells were separated from the main body of the
trajectory, which had downstream effects on the alignment, and so these cells were removed because
TrAGEDy cannot function when there are gaps in the pseudotime axis (appendix Fig.9). TrAGEDy
was then used to first align the two datasets for each condition together, resulting in two separate align-
ments: a WT alignment of WT1 and WT2, and a Bcl11b KO alignment of Bcl11b KO1 and Bcl11b KO2
(appendix Fig.10). The WT1 dataset only contains cells from day 10 of sampling, while WT2 contains
cells from day 10 and 13. TrAGEDy captures this difference, showing a strong initial alignment of the
two WT datasets with the WT1 dataset finishing before the WT2 (appendix Fig.10A). TrAGEDy was
then performed on the aligned WT and Bcl11b KO trajectories. The resulting final alignment shows the
two conditions sharing an initial common process, but the Bcl11b KO developmental progression finishes
around the point when cells transition to express both TCR α and β chain genes (Fig.11A, B).

Overall, TrAGEDy returned 1865 DE genes across 6 windows of comparison, while TradeSeq and
Seurat captured 528 DE genes across 6 knots and 6 cluster comparisons, respectively (Fig.11C, appendix
file 8, 9 & 10). All the methods found more DE genes towards the end of the biological process compared
with the beginning (Fig.11D). For genes only captured by one of the methods, TrAGEDy uniquely cap-
tured 1314 DE genes, while Seurat returned 144 and TradeSeq 52 (Fig. 11C, appendix file 8, 9 & 10).
Genes with higher expression in the WT that only TrAGEDy identified as being DE include those associ-
ated with T cell signaling (Cd28, Ctla4 ) (Sansom 2000), cell cycle associated genes (Top2a, Dut, Cenpa)
(Giotti et al. 2019), and those with functions for protecting against reactive oxygen species (ROS) (Prdx4,
Prdx1 ) (Rhee et al. 2012). The genes only TrAGEDy identified as being significantly higher expressed in
Bcl11b KO cells include pro-apoptotic factors (Ikbip, G0s2 and Stk4 ) (Hofer-Warbinek et al. 2004, Welch
et al. 2009, Cinar et al. 2007) and transcription factors (Gata3 and Batf ) (Wan 2014, Betz et al. 2010)
(appendix file 8). Plotting some of the DE genes that only TrAGEDy captured with TradeSeq smoothed
expression show they are concurrent with the patterns of expression TrAGEDy suggests, with Cd28 and
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Ctla4 being more highly expressed in WT T cells, while Gata3 and Sox5 are more highly expressed in
Bcl11b KO cells (Fig.11E). The times taken to return DE results was longer than the T. brucei analysis
for all methods, however Seurat still managed to return results within seconds and TrAGEDy only took
just over two minutes. In contrast, TradeSeq took over 20 hours to return a result (appendix file 4).

TrAGEDy found the most significant GO terms compared to Seurat and TradeSeq (Fig.11G, appendix
file 11). Furthermore, when only the uniquely captured DE genes were utilised, TrAGEDy was the only
method that returned any significant GO terms (appendix fig.11A, appendix file 12). Of the significant
GO terms returned by the methods for their entire DE gene list, only 14 were shared between all three
methods (appendix fig.11B), with many of them being GO terms related to regulation of lymphocyte
development and activation (appendix file 11). Of the GO terms that only TrAGEDy captured, most
of them were related to regulation and activation of cell cycle-associated processes (appendix file 11 & 12).

10 Chapter 1: Materials and Methods

10.1 The TrAGEDy method

The following is an overview of the steps that TrAGEDy takes to analyse a dataset. A workflow diagram
of the TrAGEDy process and its core steps can be seen in appendix figure 1.

10.1.1 Create interpolated points

Performing alignment directly on every cell in a dataset would be computationally and time expensive
and prone to noise. As such, a modification of the cellAlign method was used to smooth gene expression
over the trajectory by creating a user-defined number of interpolated points that sample the gene expres-
sion patterns of surrounding cells at specific points in the process and perform alignment on them. Each
interpolated point is given the same sized set window of pseudotime around it. Cells within that window
contribute highly to the gene expression of the interpolated point, while ones further away contribute
less. TrAGEDy, allows the user to specify a window size, but this value is then weighted by the density
of cells around each interpolated point. Interpolated points with many cells around it will have a smaller
window, while those with few surrounding cells will have a larger window (appendix Fig.1B).

10.1.2 Scoring dissimilarity

For every interpolated point in the two trajectories, we calculate the transcriptomic dissimilarity between
it and all the interpolated points on the other trajectory and store it in a matrix. This can be done using
any metric, e.g. Pearson correlation, Spearman correlation, Euclidean distance, given the right process-
ing of the data (e.g. scaling prior of gene expression prior to Euclidean distance). For our experiments,
Spearman correlation was used to assess dissimilarity. We change the correlation scores to be 1 minus the
correlation score hence, all the dissimilarity scales start from 0 (i.e. least dissimilarity) (appendix Fig.1C).

10.1.3 Identifying the optimal path of the two trajectories

To find the optimal alignment between the interpolated points of the two trajectories, Dynamic Time
Warping (DTW) was utilised. DTW requires that every point on the two processes is matched with
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at least one other point on the opposing process. It also requires that the first and last points of each
process must be matched to one another. To tackle this constraint, TrAGEDy scans the first and last
row and column of the dissimilarity matrix and identifies the indexes with the lowest score from the
beginning and end. These become the initial start and ends points of the process. To make sure no valid
matches are missed from the downstream analysis, TrAGEDy takes the following steps. First, TrAGEDy
finds out how much the absolute dissimilarity changes across the row/column of the beginning and end
changes as we move across them (appendix Fig.2A). The user then defines whether to find the median
or mean of these points and this value is used as a cutting threshold. To give a value to each index
to compare against the cutting threshold, TrAGEDy finds the absolute difference between the scores of
each index in the chosen row/column and the current start/end point (appendix Fig.2B). If there is an
index value which occurs before the current start point or after the current end point whose dissimilarity
score is less than the threshold, it is considered as a possible start/end point (appendix Fig.2B). For each
possible path, we remove the interpolated points that fall before the start point and after the end point
before performing DTW (appendix Fig.2C). To see what paths give us the best dissimilarity scores, we
bootstrap the dissimilarity scores of the matched interpolated points along the path (appendix Fig.2C).
The user can set the number of iterations during bootstrapping but the number of samples taken during
each iteration set as the length of the longest path. The mean bootstrapped dissimilarity scores for each
path is then calculated.

To deal with the scenario where two processes might differ somewhere in the middle of their processes,
TrAGEDy first finds two thresholds for the matched and unmatched indexes (appendix Fig.3A). The
user chooses to use either the mean or median of the dissimilarity score of all the unmatched indexes
and all the matched indexes. If a matched index’s dissimilarity score is closer to that of the unmatched
threshold than the matched threshold then it is cut, otherwise it remains matched (appendix Fig.3B).

10.1.4 Align pseudotime of interpolated points and cells

The aim of aligning the pseudotime of the interpolated points is to give matched interpolated points
similar pseudotime values (appendix Fig.1D). As we have two processes, we have two vectors:

y1i {i ∈ 1 : m}

y2j{j ∈ 1 : n}

where m and n are the number of interpolated points on process 1 and 2 respectively, with y1i being the
pseudotime of the ith interpolated point in process 1 and y2j being the pseudotime of the jth interpolated
point in process 2.

Interpolated points may only match one another or be a part of a multi-match, where one interpolated
point on one of the trajectories is connected to 2 or more interpolated points on the other trajectory.
For adjusting pseudotime of the former scenario (appendix Fig.4A, Equation 1), given that y1i and y2j
are matched and that y2j < y1i :

y1i:m = y1 i : m+ (y2j − y1i )

For a multi-match, first TrAGEDy aligns the pseudotime of the first section of the multimatch (ap-
pendix Fig.4B, equation 2), using the steps outlined for the individual match, then it does the same
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for the next match which isn’t in the multi-match (appendix Fig.4C, equation 3). The interpolated
points that are multi-matched to one interpolated point on the other process, have their pseudotime
values scaled between the aligned pseudotime value of the first match in the multi-match and the aligned
pseudotime value of the match that occurs after the multi-match, adjusted by the difference between
pseudotime of the next match and the pseudotime of the first match in the multi-match, normalized
by the number of interpolated points being scaled (appendix Fig.4D, equation 4). This leaves us with
an aligned pseudotime axis, where the matched interpolated points have similar pseudotime values (ap-
pendix Fig. 4E). We used the cellAlign method of mapping gene expression values from individual cells
onto interpolated points to map pseudotime values from interpolated points onto the individual cells.

10.1.5 Differential expression analysis with TrAGEDy

TrAGEDy identifies DE genes across pseudotime, between the two conditions by taking a sliding window
soft clustering approach (appendix Fig.1E).

First the cells were assigned to the closest interpolated point in terms of pseudotime via one round
k-means clustering, with the interpolated points acting as the cluster centroid. The interpolated points
that were matched together were grouped, with the cells that were assigned to these interpolated points
acting as a cluster which the window slides over when making comparisons. The user defines how many
windows of comparison will be made across the pseudotime, and how much overlap there will be, in
terms of matched interpolated points, between each successive window.

The user chooses a method of assessing significance using either a t-test or a Mann-Whitney U test.
Log2 fold change (Log2FC) of the genes between conditions is calculated using the same formula used by
Seurat V5. To adjust the p-values to account for multiple testing, Bonferroni correction is used across
all the genes in the dataset.

10.2 Simulated dataset creation and benchmarking

10.2.1 Simulating trajectories with Dyngen

All simulated datasets were simulated with Dyngen (Cannoodt et al. 2021). The first positive control
experiment trajectories were simulated with a linear backbone with parameters drawn from the same
transcription factor, feature and kinetic network distributions. One of the datasets was not modified
beyond the standard pipeline, while the other had a full knockout in the B5 gene module, causing a
stunted process in comparison to the other dataset. The second positive control experiment trajectories
were simulated with a bifurcating-converging backbone with parameters drawn from the same transcrip-
tion factor, feature and kinetic network distributions. One of the datasets had a full knockout in the C1
gene module while the other dataset had a full knockout in the D1 gene module. The negative control
experiment trajectories were simulated with a linear backbone with parameters drawn from different
transcription factor, feature and kinetic network distributions. The specific parameters and program
calls used to simulate the individual datasets can be found on the TrAGEDy (chapter 1) GitHub link in
the “Code Availability” section.
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10.2.2 Applying TrAGEDy, Genes2Genes and cellAlign to simulated trajectories

All simulated datasets were processed using the following. In Seurat, the simulated counts were normal-
ized prior to scaling across all simulated genes. Principal Component Analysis (PCA) was performed on
the scaled data and using the first 5 PCA dimensions clustering was performed at a resolution of 0.2 for
all the datasets as well as UMAP. Slingshot (Street et al. 2018) was performed to get pseudotime values
for each of the cells, using the UMAP space as the basis for the trajectory. To get the feature space, the
top 100 DE genes in terms of Log2FC for each cluster in each dataset were collected for both datasets
being compared. The prior analysis steps were kept the same for both cellAlign and TrAGEDy analysis,
as well as the window size and the number of interpolated points. For cellAlign Euclidean distance
and Pearson correlation was used to calculate dissimilarity, while for TrAGEDy Spearman correlation
was used. For Genes2Genes, a binning number of 20 was used for all the comparisons and the same
feature space was used as in the TrAGEDy and cellAlign analyses. More specific parameter values used
for each dataset can be found on the TrAGEDy (chapter 1) GitHub, linked in “Code Availability” section.

10.3 Analysis of WT vs ZC3H20 KO T. brucei scRNA-seq dataset

10.3.1 Pre-processing of WT vs ZC3H20 KO T. brucei dataset

The processed R dataset (RDS) file containing the final cluster labels was acquired from the authors.
The ‘LS A.1’ and ‘LS A.2’ clusters were merged into the cluster ‘LS A’ and the ‘LS B.1’ and ‘LS B.2’
were merged into the cluster ‘LS B’.

10.3.2 TrAGEDy analysis of WT vs ZC3H20 KO T. brucei dataset

The integrated object was split into the individual datasets (WT01, WT02 and ZC3H20 KO). The top
200 DE genes (defined as absolute Log2FC > 0.75, Bonferroni corrected p-value < 0.05 and the gene
expressed in at least 25% of cells) across the clusters were found for each dataset and used as the basis
for constructing the PHATE space and assessing similarity with TrAGEDy. The number of genes in
the feature space amounted to 455 genes. PHATE embeddings were constructed from the normalised
gene expression count matrix. Pseudotime was calculated using Slingshot for each of the three datasets,
with the ‘LS A’ cluster used as the starting point. The WT01 and WT02 datasets were then aligned
with TrAGEDy, with 50 interpolated points used to align the processes. This TrAGEDy aligned WT
dataset was then aligned against the ZC3H20 KO dataset. Differential expression was carried out over
4 windows, with a gene identified as being DE if the absolute Log2FC was more than 0.75, Bonferroni
corrected p-value < 0.05 and the gene expressed in at least 10% of cells in one of the conditions.

10.3.3 Seurat analysis of WT vs ZC3H20 KO T. brucei dataset

The ‘SS A’ and ‘SS B’ clusters were removed from the integrated dataset, as they are not present in
the ZC3H20 KO dataset, and the FindMarkers function was performed for all the four slender clusters
(LS A.1, LS A.2, LS B.1 & LS B.2) between the WT and ZC3H20 KO conditions. A gene identified as
being DE if the absolute Log2FC was more than 0.75, Bonferroni corrected p-value < 0.05 and the gene
expressed in at least 10% of cells in one of the conditions.
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10.3.4 TradeSeq analysis of WT vs ZC3H20 KO T. brucei dataset

The ‘SS A’ and ‘SS B’ clusters were removed from the integrated dataset. Using the authors PHATE
space, Slingshot was applied to build trajectories. The optimal number of knots for fitting the general
additive model to the dataset was assessed through the evaluateK function, with the optimal number
determined to be 8. fitGAM was run on the dataset followed by the conditionTest function to identify
DE genes between the WT and Bcl11b KO conditions. 4 knot comparisons were made, and a gene were
determined to be DE if the absolute Log2FC was greater than 0.75, Bonferroni corrected p-value < 0.05
and the gene was expressed in at least 10% of the cells that fell within the current knot comparison, in
one of the conditions.

10.4 GO term analysis of T. brucei DE genes

Biological process GO term analysis of the lists of DE genes (either unique DE genes or all of them) for
the three methods was carried out using TriTrypDB. GO terms whose Benjamini-Hochberg corrected
p-value was less than 0.01 were identified as significantly enriched GO terms.

For all cases, genes were analysed in TriTrypDB to get their gene short names and functions (Amos
et al. 2022 & Alvarez-Jarreta et al. 2024).

10.5 Analysis of WT vs Bcl11b KO in vitro T cell development scRNA-seq
dataset

10.5.1 Preprocessing of WT vs Bcl11b KO in vitro T cell development dataset prior to
TrAGEDy analysis

The RDS file containing the scRNA-seq information was acquired from the authors (W. Zhou et al. 2022).

The dataset was split into the WT and Bcl11b KO conditions and then further split into the different
sequencing runs. For each of the four scRNA-seq objects derived from the previous, the data was anal-
ysed using the Seurat V5 pipeline. When the data was scaled, the effects of the cell cycle were regressed
out by passing the cell cycle associated genes Seurat provides into the var.to.regress parameter. For
each dataset, PCA was carried out on the scaled-regressed expression matrix, reducing the dimensions
down to 50. An elbow plot was used to determine the number of Principal Components (PC) used to
create a UMAP space embedding. Clustering was performed using the same number of PCs for UMAP
embedding calculation. Clustree (Zappia and Oshlack 2018) was used to help choose a resolution for
clustering that leads to stable clusters. Clusters were annotated as follows. Clusters that did not express
Cd3 genes but expressed Cd34 were defined as ‘Cd34 TSP’, clusters which did not express Cd34 or Cd3
were characterized as ‘early T’, clusters which had low expression of Cd3 but no Cd34 expression were
characterised as ‘Cd34 lo Cd3 lo T’, those with high Cd3 expression were ‘Cd3 T hi’ and those with
middle levels of Cd3 expression were ”Cd3 T mid”. Clusters which had high expression of Cd3 and
expressed Ptcra and Rag1 were defined as ‘rearrange TCR T’ and those that expressed the TCR signal
transduction molecule Zap70 and some cells that express the gene Trac, were defined as ‘TCR AB T’.
Clusters that express Rora were defined as ‘Rora T’, clusters that expressed high levels of interferon
associated genes were defined as ‘Interferon response’ and cells which clustered out with the main body
of the UMAP were classed as ‘Outlier’. The ‘Interferon response’ and ”Outlier” clusters were removed
before downstream analysis with TI, TrAGEDy, Seurat DE or TradeSeq.
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10.5.2 TrAGEDy analysis of WT vs Bcl11b KO in vitro T cell development dataset

In order to build a gene feature space to construct PHATE embeddings and assess dissimilarity with
TrAGEDy, the feature space for the dataset was made of the combined DE genes for each cluster whose
absolute Log2FC > 0.5, Bonferroni corrected p-value < 0.05 and was expressed in at least 1%, across all
four of the datasets. To reduce the effect of the cell cycle, genes supplied by Seurat as being important
in the cell cycle and genes included in the Mouse Genome Informatics GO term ‘cell cycle’ were removed
from the feature space. For all four of the individual datasets, 10 dimensional PHATE embeddings were
generated from the normalised gene expression count matrix for the features selected previously. For
the WT1 dataset, cells with a pseudotime higher than 0.1 (11 cells) were removed. TI was then car-
ried out using Slingshot on the PHATE embeddings with the Cd34 TSP cluster chosen as the starting
point. TrAGEDy was carried out on each of the conditions, using 100 interpolated points with a window
size of the maximum pseudotime value, from either of the two datasets being analysed, divided by 90.
TrAGEDy aligned pseudotime values were then created, resulting in a TrAGEDy aligned WT and a
TrAGEDy aligned Bcl11b KO dataset.

The WT and Bcl11b KO TrAGEDy aligned datasets were then analysed using TrAGEDy. TrAGEDy
was carried out with the same number of interpolated points and window size as the replicate alignments.
TrAGEDy differential expression test was then carried out across 6 windows of comparison. A gene was
returned as being DE if the absolute Log2FC was greater than 0.75, Bonferroni corrected p-value < 0.05
and the gene was expressed in at least 10% of cells in the window of comparison, in one of the conditions.
The final TrAGEDy aligned WT and Bcl11b KO datasets were then analysed using TradeSeq to create
smooth gene expression plots across the aligned pseudotime.

10.5.3 Seurat analysis of WT vs Bcl11b KO in vitro T cell development dataset

Using Seurat V5 integration (Satija et al. 2015, A. Butler et al. 2018, T. Stuart et al. 2019 & Y. Hao,
S. Hao, et al. 2021, Y. Hao, T. Stuart, et al. 2024), the four datasets were integrated using the ”inte-
grated.cca” method. When the data was scaled, the effects of the cell cycle were regressed out by passing
the cell cycle associated genes Seurat provides into the var.to.regress parameter. PCA was carried out
on the scaled-regressed expression matrix, reducing the dimensions down to 50. An elbow plot was used
to determine the number of PCs used to create a UMAP space embedding. Clustering was performed
using the same number of PCs for UMAP embedding calculation. Clustree was used to help choose a
resolution for clustering that leads to stable clusters and clusters were annotated as described previously.
The FindMarkers function was used to identify DE genes between the conditions for each cluster. Genes
were determined to be DE if the absolute Log2FC was greater than 0.75, Bonferroni corrected p-value
< 0.05 and the gene was expressed in at least 10% of the cells in one of the conditions for the cluster
being compared.

10.5.4 TradeSeq analysis of WT vs Bcl11b KO in vitro T cell development dataset

Using the Seurat integrated, cell cycle regressed dataset; PHATE was carried out, using the scaled
and cell cycle regressed gene expression matrix. Slingshot was then applied to the dataset, using the
Cd34 TSP cluster as the starting point of the trajectory. Cells on the trajectory path which ended
with the TCR AB T cluster was kept and all other cells were removed from the dataset. The optimal
number of knots for fitting the general additive model to the dataset was assessed through the evaluateK
function, with the optimal number determined to be 7. fitGAM was run on the dataset followed by the
conditionTest function to identify DE genes between the WT and Bcl11b KO conditions. 6 different
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knot comparisons were made, and a gene were determined to be DE if the absolute Log2FC was greater
than 0.75, Bonferroni corrected p-value < 0.05 and the gene was expressed in at least 10% of the cells
that fell within the current knot comparison, in one of the conditions.

10.5.5 GO term analysis of T cell DE genes

Biological process GO term analysis of the lists of DE genes (either unique DE genes or all of them) for
the three methods was carried out using the enrichGO command of clusterProfiler. Background genes
were the genes whose expression was more than 5% across the entire integrated T cell dataset. GO terms
whose Benjamini-Hochberg corrected p-value was less than 0.01 were identified as significantly enriched
GO terms.

10.6 Runtime experiments

Packages were run single threaded on a virtual machine with 70 gigabytes of allotted RAM and 3 GHz
clock speed. Runtime experiment code detailing what sections were included for each package when cal-
culating runtime can be found on the TrAGEDy (chapter 1) GitHub, found in the ”Code Availability”
section .

10.7 Package versions

All analysis and experiments were carried out on R were done with version 4.1.2 except for the Dyngen
dataset simulation and the TradeSeq experiments which were carried out on R version 4.1.0. Seurat
version 5.0.3, Dyngen version 1.0.5, phateR version 1.0.7, Slingshot version 2.2.1, Single Cell Experiment
version 1.16.0, cellAlign version 0.1.0, clusterProfiler version 4.2.2 & TradeSeq version 1.6.0 were used.

For the Genes2Genes experiments, analysis was done on Python version 3.8.16 with the following
package versions: genes2genes version 0.2.0, numpy version 1.24.3, pandas version 2.0.3, scanpy version
1.9.3, scipy version 1.10.1, matplotlib version 3.7.1, seaborn version 0.12.2 & scikit-learn version 1.2.2.

11 Chapter 1: Discussion

In this paper we present TrAGEDy, a tool for aligning and comparing single cell trajectories between
conditions. TrAGEDy allows the alignment of processes that start and end at different points by identi-
fying the point at which dissimilarity increases from the minimum dissimilarity point. TrAGEDy assesses
alignments to remove matches with high transcriptional dissimilarity in portions of the trajectories, al-
lowing the algorithm to additionally capture alignments where the processes diverge and/or converge.
TrAGEDy then identifies differences in gene expression over pseudotime between the conditions by tak-
ing a sliding window soft clustering approach, allowing it to identify transient changes in gene expression
over the shared process.

Across multiple simulated datasets, TrAGEDy can find the underlying alignment between two pro-
cesses, where cellAlign and G2G fails, due to its ability to prune matches and identify optimal start and
end points in the dissimilarity matrix (Fig.9A). Across biological replicates and different conditions of
real datasets, TrAGEDy overcomes batch effects to deliver accurate alignments and identify biologically
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relevant genes where TradeSeq and Seurat fail.

As of 2019, there were more than 70 TI methods, all of which have varying performance, functionality
and constraints (Saelens et al. 2019). Additionally, the chosen method of dimensionality reduction (PCA,
UMAP, PHATE, etc) used to generate the embeddings that the trajectory is calculated from also affects
the pseudotime results. We chose PHATE for the reduced dimension embeddings as its purpose is to
identify transitions in scRNA-seq data. User discretion is advised when choosing the TI and dimension-
ality reduction method as different methods will give different cell pseudotime values. The method of
dimensionality reduction is especially important as many popular methods (like UMAP) have been found
to distort cell relationships in the embedding space (Chari and Pachter 2023). Given the variability that
can occur before TrAGEDy is applied, a core assumption of TrAGEDy is that the pseudotime must be
an accurate reflection of the underlying biological process. Another key consideration when applying
TrAGEDy is the density of cells across pseudotime. However, the window TrAGEDy uses to calculate
expression at the interpolated points can be weighted to account for regions with few cells. Notably, if
cells are present that are separated from the main bulk of the process, like in the WT1 T cell dataset
(appendix Fig.9B), this leads to an uneven dissimilarity score between neighboring interpolated points,
thus biasing the end alignment. These outlier cells should thus be removed before TrAGEDy is carried
out, to ensure a smooth and accurate alignment.

In almost all of the simulated datasets discussed here, TrAGEDy was able to correctly align trajecto-
ries, and with greater accuracy than cellAlign and G2G. For cellAlign, the constraints of DTW hamper
it from accurately capturing the underlying alignments, while for G2G it may be due to the fact that
the final alignment is based off of an aggregate of single gene alignments, rather than directly looking
at the global alignment of genes across the cells. Additionally, alignment of real data sets resulted in
expected outcomes, including the complete alignment of biological replicates and partial alignments be-
tween conditions.

To compare DE results of TrAGEDy we also performed differential gene expression tests using two
widely used tools: Seurat and TradeSeq. Although Seurat does not take pseudotime into account when
it performs differential expression tests it is possible to compare cells across conditions, something which
is not possible in many tools designed to specifically analyse trajectories, including pseudotimeDE and
Monocle (Song and J. J. Li 2021 & Trapnell et al. 2014). Low detection of DE genes by Seurat relative
to TrAGEDy could be explained by the fact Seurat does not take pseudotime into account when carrying
out the differential expression tests.

TrAGEDy identifies many known key processes which are required for T. brucei survival in the tsetse
fly. While bloodstream forms do not wholly rely on glycolysis for its energy needs, most of its energy
is produced through this pathway (Durieux et al. 1991 & Taleva et al. 2023). In contrast to mammals,
the tsetse fly is a low glucose environment (Y. Qiu et al. 2018), and the stumpy form is preadapted to
suit these low glucose conditions (Grinsven et al. 2009). In the tsetse fly, the stumpy derived PCFs can
breakdown amino acids for energy, in particular proline (Evans and R. C. Brown 1972, Weelden et al.
2003, Lamour et al. 2005). The parasite converts proline into glutamate through the action of proline
dehydrogenase (PDH ) and DP5CDH with glutamate being further converted, through the action of
glutamate-dehygrogenase, into 2-oxoglutarate, which can be used as an energy source in PCFs (Weelden
et al. 2003, Mantilla et al. 2017). Only TrAGEDy captures DP5CDH as being significantly upregulated
in the WT at the end of the shared process, with TrAGEDy and Seurat both capturing glutamate de-
hydrogenase as being significantly upregulated in the WT towards the end of the shared process. None
of the methods captured PDH as being DE at any point in the shared process. TrAGEDy thus paints
a more complete picture of the proline catabolism pathway, which is active in the preadapted stumpy
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forms, than Seurat or TradeSeq.

One of the key unique findings of TrAGEDy was identifying PAD1 as being significantly upregulated
in the WT towards the end of the shared process. PAD1 is a key marker of stumpy forms, with its
absence inhibiting induced differentiation of the parasite from stumpy to the first tsetse fly stage, PCFs
(Dean et al. 2009). TrAGEDy also uniquely found that the AK3 was significantly upregulated in the
WT compared to the ZC3H20 KO. Northern blot analysis has showed that this gene is more highly
expressed in PCFs compared to bloodstream forms (Voncken et al. 2013, N.B. the paper refers to AK3
as ”AK1”) and the kinase has been shown to be important during tsetse fly infection, with parasite
infectivity reduced when the gene is knocked out Ooi et al. 2015.

A majority of the genes identified as being DE were upregulated in the WT compared with the
ZC3H20 KO. This difference may reflect the fact that the ZC3H20 KO has a truncated development,
and thus its transcriptome does not change as much as the WTs. What genes we did find to be upregu-
lated in the ZC3H20 KO were seen with regulatory elements like zinc finger proteins. The two zinc finger
proteins (ZC3H46 and ZC3H38 ) that only TrAGEDy identified as being upregulated in the ZC3H20
KO have not been identified as being bound by ZC3H20 (B. Liu, Kamanyi Marucha, and Clayton 2020),
but their upregulation in the ZC3H20 KO cells at the end of the shared process may suggest they are
genes whose expression is turned off in the WT due to the effect of ZC3H20.

When analysing the T cell development dataset, TrAGEDy captured more significant DE genes than
Seurat and TradeSeq. While getting a higher number of DE genes is an important benchmark, it is
also important to assess whether these genes fit into the context of the existing literature surrounding
the datasets. TrAGEDy uniquely captured many cell-cycle associated genes as significantly upregulated
in the WT compared with Bcl11b KO. After β-selection, before they begin to rearrange their TCR α
chain, T cells undergo a proliferative burst and then become quiescent (Kreslavsky et al. 2012, Hwang
et al. 2020). In accordance with this, cell cycle genes are mostly DE and upregulated in the WT in the
final two windows (windows 5 and 6). Furthermore, the GO terms that only TrAGEDy captured were
mainly associated with cell cycle function. This indicates that TrAGEDy has managed to capture the
transient changes in proliferative state as WT T cells pass β-selection and prepare to rearrange their
TCR α chain. Furthermore, TrAGEDy uniquely detected an increase in expression of Cd28 and Ctla4
in the WT compared to the Bcl11b KO. This finding further solidifies the conclusion that the WT T
cells are able to pass β-selection while the Bcl11b KO are unable to, as Ctla4 expression increases after
T cell activation and an increase in Cd28 expression has been seen following successful β-selection in
maturing T cells (Linsley et al. 1992 & Teague et al. 2010).

TrAGEDy uniquely identified many transcription factors as being upregulated in the Bcl11b KO
cells. In the original paper, the authors identified a variety of transcription factors whose expression was
associated with Bcl11b KO fate: for example Gata3 and Sox5, which TrAGEDy also identifies as being
upregulated in the Bcl11b KO compared with the WT. Another transcription factor only identified by
TrAGEDy as significantly upregulated in the Bcl11b KO cells at the end of the shared process was Batf.
Previous research shows that mRNA expression of Batf is absent in the DP stages of T cell development
(Williams et al. 2001), which occurs after β-selection, suggesting TrAGEDy is capturing the turning off
of Batf expression as the WT cells transition from DN to DP stages occurs, while the Bcl11b KO stays
DN. This finding also fits with the fact that the TrAGDEy alignment showed that the Bcl11b KO cells
did not reach the stages of expressing TCR α chains, implying β-selection was not successful.

In terms of runtime, Seurat performed the best thanks to its optimisation through the Presto al-
gorithm (Korsunsky et al. 2019) but TrAGEDy was not far behind in terms of runtime and performed
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better than Seurat in terms of the results returned. The main bottleneck for TradeSeq runtime was fit-
ting the general additive models to each gene. The benchmarking of runtime was done single threaded.
TradeSeq can be run in parallel, however the availability of computational power with the capability to
run parallel is not widespread. TrAGEDy thus serves as a better alternative requiring less time to run,
less resources and provides more biological insightful results than TradeSeq.

Due to their respective algorithms, TrAGEDy, G2G and cellAlign are restricted to aligning linear
processes. To overcome this limitation, branching processes could be treated as multiple root-to-leaf
linear processes and aligned and analysed in a pairwise fashion, but how accurate this process would be
is uncertain as the two paths are not independent of one another. Thus, future work needs to be carried
out to identify a method permitting the alignment of complex trajectories in order to better expand the
datasets which trajectory alignment can be applied to.

Ultimately, TI represents an approximation of how a developmental trajectory might look and may
not represent the actual ordering of the cells through the process. Adding extra temporal information
from lineage tracing will help add more biologically validity to single cell data (Wagner and A. M. Klein
2020). TrAGEDy could thus take lineage trace-inferred time, rather than pseudotime, as its input to
allow the analysis of such datasets, allowing it to remain relevant as more sophisticated single cell se-
quencing techniques are introduced. Furthermore, the advent of perturb-seq (Dixit et al. 2016) allows
researchers to more easily generate and analyse the effect of genetic perturbations on processes (Schraivo-
gel et al. 2020), providing multiple and diverse opportunities for TrAGEDy to be applied.

This chapter demonstrates the ability of TrAGEDy to overcome batch effects between datasets, with-
out the need for data integration, and to reveal the underlying alignment between datasets; identifying
shared and dissimilar points across the independent trajectories. With its alignments, TrAGEDy over-
comes constraints of current tools which limit the alignment of datasets which may start and end at
different points or differ in the middle. TrAGEDy can identify more DE genes than other methods,
and in all cases, TrAGEDy can identify more biologically relevant processes enriched in the different
conditions. With the advent of perturb-seq methods, the need for TrAGEDy will become more apparent
and with lineage tracing it will make the time axis more biological accurate. Thus, this tool increases
the capacity to analyse developmental progression using scRNA-seq to reveal meaningful insights into
the shared biological processes.

12 Chapter 2: In vitro single cell transcriptomic atlas of T.

cruzi development

The following work is part of a collaborative project with Dr Manu de Rycker, Dr Marta Garcia-Sanchez
and Professor Thomas Otto. Dr Marta Garcia-Sanchez carried out all wet lab experiments (with assis-
tance by Dr Juliana Da Silva Pacheco and Dr Luciana De Sousa Paradela), the details of which has been
included for information. Text sections and figures in reference to work and generated by collaborates
are credited. I carried out the analysis discussed below.

The single cell resolution of scRNA-seq has made it a great tool for capturing transcriptomic data
from a breadth of varying cell types and life cycle stages. These collections of expansive scRNA-seq
datasets are termed ”atlases”, and allows researchers to have a fine grained and coarse grained look of a
biological system by capturing snapshots of smaller systems embedded in the larger one while allowing
global comparisons of these smaller systems. In this chapter we present the first scRNA-seq atlas of the
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four main in vitro T. cruzi life cycle stages. From this data, we define general marker genes for the four
life cycle stages and show that the atlas can be utilised to annotate novel T. cruzi scRNA-seq datasets.
We also provide insights into possible distinct trypomastigote subsets and identify novel marker genes
of the metacyclogenesis process.

13 Chapter 2: Introduction

As scRNA-seq has become more widespread and cost effective, increasingly larger and more heteroge-
neous datasets are being generated, allowing researchers to capture the transcriptome of entire biological
systems. These analyses (and the datasets within them) are often termed ”atlases”, an increasing popu-
lar term in modern scRNA-seq analysis. In this context, a scRNA-seq atlas is defined as a collection of
curated scRNA-seq datasets which aim to capture the transcriptional heterogeneity of a life cycle, dis-
ease, organ, etc. As these atlases capture a broad spectrum of cell types/life cycle stages, they help serve
as a reference for future researchers to compare their own data, helping to annotate cells and validate
their results.

There are a variety of atlas level studies of mammalian systems, such as Tabula Sapiens (Tabula Sapi-
ens et al. 2022) and Muris (Tabula Muris et al. 2018), which aim to capture the breadth of cells across
different tissues in humans and mice, respectively. Atlas level studies also exist for parasites, although
the breadth of life cycle stages captures varies. For example, many scRNA-seq datasets exist which look
at the parasite in one particular setting i.e. host or vector. For Schistosoma mansoni, across multiple
papers, scRNA-seq data for the larvae and adult forms of the mammalian stages have been captured,
as well as the first intra-vector stage (Diaz Soria, Lee, et al. 2020, Diaz Soria, Attenborough, et al. 2024
& Wendt et al. 2020) however some of the vector stages are still missing. For T. brucei many of the
life cycle stages have been captured over multiple scRNA-seq datasets with the salivary gland insect
stages being captured in vivo (Vigneron et al. 2020, Hutchinson et al. 2021 & Howick, L. Peacock, et al.
2022) and the mammalian stages captured in vitro (Briggs, Rojas, et al. 2021). No paper has specifically
investigated the midgut and proventriculus stages however. Finally. the Malaria Cell Atlas (Howick,
Russell, et al. 2019) is the first parasite atlas and the only parasite atlas to capture all the main life cycle
stages in one study, making it the most comprehensive atlas analysis of parasites thus far.

There are parasites where these types of analysis do not exist, such as Leishmania for which scRNA-
seq data only exists for the promastigote stage (Louradour et al. 2022). In the case of T. cruzi, microarray
data exists for the four main life cycle stages of the parasite (Minning et al. 2009) and bulk RNA-seq
data has been generated on epimastigotes, amastigotes and trypomastigotes (Y. Li et al. 2016) and the
process of epimastigote to metacyclic trypomastigote transition (metacyclogenesis) (Smircich, Eastman,
et al. 2015 & Smircich, Perez-Diaz, et al. 2023). At time of writing, no scRNA-seq data has been pub-
lished on any of the T. cruzi stages.

In this chapter, we present not only the first scRNA-seq datasets of T. cruzi, but the first single
cell transcriptomic atlas of the complete in vitro life cycle of any kinetoplastid. In the atlas, we have
captured the four major life cycle stages of T. cruzi. Briefly, the T. cruzi life cycle is as follows. The
host cell infective metacyclic trypomastigotes, are passed into the host through the T. cruzi vector, the
triatomine. These cells then infect host cells and differentiate into amastigotes. These cells persist inside
of the cell for several days before transitioning into trypomastigotes and escape the host cell by causing
its lysis. The trypomastigotes are then taken up by the triatomine during a bloodmeal and differentiate
into epimastigote forms which then in time differentiate into metacyclic trypomastigotes, restarting the
life cycle. We demonstrate that the atlas can be used to accurately annotate query T. cruzi scRNA-seq
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cells to the different life cycle stages. Finally, utilising the fine resolution of scRNA-seq, we identify
trypomastigote subsets at the transcriptomic level, capture the process of metacyclogenesis, and identify
many novel genes which may play roles in facilitating the form and function of T. cruzi across its life cycle.

14 Chapter 2: Results

14.1 Data generation

The following life cycle stage samples were collected for 10X Chromium V3 3’ scRNA-seq by Dr Marta
Garcia Sanchez with assistance by Dr Juliana Da Silva Pacheco and Dr Luciana De Sousa Paradela:
amastigotes (AMA), either 6, 24 or 120 hours post infection (hpi); epimastigotes (EP); stationary
epimastogites/metacyclic trypomastigotes (SE/MT); and amastigote-derived trypomastigotes (ADT)
(Fig.12A). The scRNA-seq datasets samples were made with the following mixes: A mix of amastig-
otes 120 hours post infection and epimastigotes (EP/AMA120), stationary epimastigotes and metacyclics
(SE/MT), amastigotes 6 hours and 24 hours post infection (AMA6/24), amastigote derived trypomastig-
otes (ADT) and a mix (MIX) of SE/MT, EP, ADT and the three different time points of AMA (Fig.12B).
Replicates were taken of the MIX and SE/MT scRNA-seq samples, for a total of seven samples.

14.2 Mapping and quality control of T. cruzi scRNA-seq data

Cells from the Sylvio X10/1 strain of T. cruzi were utilised for all the data generated in this chapter,
which is part of DTU I (Herreros-Cabello et al. 2020). As such the data was initially mapped against
the Sylvio X10/1 reference (Franzen et al. 2011) using Cellranger Count. For the MIX 1 dataset, this
led to 135 median genes being detected per cell and 2% of reads mapping confidently to the transcrip-
tome (Table 1). The most complete reference genome of a DTU I strain is from the Dm28c 2018 strain
(Herreros-Cabello et al. 2020). To see if the mapping statistics could be improved, the scRNA-seq reads
were mapped against the Dm28c 2018 reference (Berna et al. 2018). With this new mapping, the number
of median genes increased to 216 and the percentage of reads confidently mapping to the transcriptome
increased to 4.7% (Table 1).
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Reference
Genome

Median
genes per
cell

No. of
cells

% reads
mapping to
genome

% reads mapping
confidently to tran-
scriptome

Dm28c
2018

216 5,464 55 4.7

Sylvio
X10/1

135 5,804 15.8 2.0

Table 1: Mapping statistics for the MIX 1 scRNA-seq dataset, when mapped against the
Dm28c 2018 and Sylvio X10/1 references

Figure 12: Sampling and library construction

This figure was designed by Dr Marta Garcia Sanchez and the figure legend was edited from a draft
written by Dr Marta Garcia Sanchez. Samples collected from in vitro cultures: EP: epimastigotes,

collected during the exponential growth phase, SE/MT: a mixture of stationary growth phase
epimastigotes and metacyclic trypomastigotes, ADT: amastigote derived trypomastigotes and

amastigotes isolated from Vero-infected cells at 6, 24, and 120 hours post infection (AMA6, AMA24 and
AMA120 respectively). The sampling times for collecting AMA were based on the findings by Li and
colleagues (Y. Li et al. 2016). To capture the transition from amastigotes to trypomastigotes, the
collecting time of 120 hpi was chosen. The SE/MT sample was collected instead of purifying the
metacyclic trypomastigote population, to preserve the natural progression between insect stages,

allowing for a more comprehensive analysis of the transcriptome changes that occur during
metacyclogenesis. Trypomastigotes were captured 7 days post infection (A). Individual libraries were
constructed for SE/MT (two biological replicates) and ADT from single-cell suspensions. Two more

libraries were prepared by combining AMA6 with AMA24 (AMA6/24), and EP with AMA120

(EP/AMA120) in equal proportion. A second biological replicate was generated by pooling equal
numbers of EP, SE/MT, ADT, AMA6, AMA24 and AMA120 in a single-cell suspension (MIX). Two

libraries (technical replicates) were sequenced for MIX (B). Two bulk RNA-seq libraries were generated
for each of the life cycle stages (C).
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Sample
Total
reads

Total
reads T.
cruzi

Median
genes (T.
cruzi)

% confident
mapping to T.
cruzi transcrip-
tome

% mapping
to T. cruzi
genome

% mapping
to human
genome

AMA6/24 952,950,562 387,850,879 307 1.6 6.3 59.3

EP/AMA120682,978,286 678,197,438 928 14.4 43.1 0.7

ADT 729,447,233 729,447,233 762 7.7 30.1 NA

SE/MT
1

271,060,069 271,060,069 298 18.4 44.4 NA

SE/MT
2

251,411,209 251,411,209 421 21.4 57.4 NA

MIX 1 674,582,011 611,171,302 503 10.1 56.2 9.4

MIX 2 739,240,858 663,838,290 422 9.9 56.8 10.2

Table 2: Mapping statistics returned by 10X Cellranger count for the scRNA-seq datasets
mapped against the Dm28c 2018 2500bp 3’ UTR extended + kDNA + GRCh38 reference

The Dm28c 2018 reference was thus used as the basis for mapping the T. cruzi scRNA-seq data.
Similar to Briggs and colleagues (Briggs, Rojas, et al. 2021), the Dm28c 2018 transcriptome 3’ UTRs
were extended by 2500bp and a kDNA reference was appended to the genome. For datasets which did
not contain amastigote populations (i.e. SE/MT 1, SE/MT 2 and ADT), the data was mapped against
this combined Dm28c 2018, 2500bp 3’ UTR extended + kDNA reference (Table 2). For datasets which
did contain amastigote populations, the data was mapped to a combined Dm28c 2018, 2500bp 3’ UTR
extended + kDNA + GRCh38 human genome reference, to account for the fact that the amastigotes are
derived from human cells and thus human cell reads will likely be present in the data (Table 2).

The mapping percentages of reads to the T. cruzi genome was around ∼40% for most of the datasets,
with the notable exception being the AMA6/24 sample which only had 6.3%. The percentage of reads
mapping to the human genome for the AMA6/24 sample, however, was 59.3%. This suggests most of
the reads in the AMA6/24 sample come from the Vero cells use to grow the parasite (Table 2). The
low percentage of reads mapping confidently to transcriptome compared to T. brucei scRNA-seq runs
(Vigneron et al. 2020 & Briggs, Rojas, et al. 2021) may be caused by the high amount of repetitive DNA
in T. cruzi compared to T. brucei due to the presence of many multigene families in the T. cruzi genome
(Pita et al. 2019). This may also contribute to the lower median genes detected per cell, compared with
T. brucei runs (Table 2).

To filter out low quality cells, cells were assessed on their total genes captured per cell, percentage
of reads that map to the kDNA genes, and (where applicable) the percentage of reads that map to the
human genome. After the quality control cutoffs were applied (Table 1), 31,065 parasite cells and 15,321
parasite genes were left in the atlas. The cell expression values were then normalised by the total sum
of counts, log+1 transformed, and scaled by a factor of 10,000.

14.3 Integrating the atlas samples

In order to mitigate the influence of batch effects on the seven scRNA-seq samples (Fig.12B), the atlas
datasets were integrated together. There are a variety of integration methods available (Luecken, Buttner,
et al. 2022). For this chapter Harmony (Korsunsky et al. 2019), Seurat V5 CCA (Y. Hao, T. Stuart,
et al. 2024) and BBKNN (Polanski et al. 2020) were considered.
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For all integrations, the datasets were first merged together before scaling of the gene expression
values and the effect of total UMI count was regressed out. PCA was then carried out on the scaled and
regressed expression values, only using expression values of the top 2500 most variably expressed genes.
The integration methods were then applied to the PC space, and clustering and UMAP embeddings were
generated based on the adjustments made by the integration methods.

As some of the scRNA-seq samples collected (e.g. ADT and AMA6/24) contain only one life cycle
stage and the MIX samples contain cells from all the life cycle stages, the presence of these samples
across the integrated clustering can be used to assess how well the integration methods are performing.
For example, in the Seurat V5 CCA integration the ADT samples cells were present in every cluster
(Fig.12C), unlike the Harmony and BBKNN integrations where they were present in two and three
clusters respectively (Fig.12A & B). For this reason, Seurat V5 CCA was not utilised for the atlas
integration.

The BBKNN and Harmony integrations are similar to one another in terms of the distribution of
samples across the clusters (Fig.12A & B). As such both could have been valid choices to integrate the
datasets with. BBKNN was ultimately chosen for the final integration to allow myself the opportunity
to carry out a scRNA-seq analysis in the Python programming language rather than R (which the other
two chapters analyses are coded in).

The first 17 PCs were then used as the basis for BBKNN integration, with the resulting BBKNN
graph being used to create UMAP embeddings for the cells and perform Leiden clustering at a resolution
of 0.8, generating 10 clusters (Fig.13A).

Our first goal, having created the basis for the atlas, was to assess whether clusters reflecting the dif-
ferent T. cruzi life cycle stages were captured in the samples. As many of our samples only contain one or
two different cell types, we can use these to assist in the validation of cluster identity, as we would expect
the cells from these datasets to only overlap with cells from the MIX datasets. Over 75% of the cells in
clusters 0 and 9 came from the ADT sample (Fig.13B, C), indicating that the cells in these clusters are
mainly trypomastigotes. Furthermore, around half of the cells in cluster 4 also come from the same ADT
sample, with the other half coming from the MIX samples, which also contain trypomastigotes. The
cells in clusters 0, 4 and 9 thus represent trypomastigotes. Clusters 1 and 2 both mainly originate from
the MIX and EP/AMA120 samples (Fig.13B, C), indicating these clusters represent either epimastigotes
or late-stage amastigotes. Cluster 5 contains many cells from the AMA6/24 (Fig.13B, C) and is spatially
adjacent to cluster 1 on the UMAP, but not to cluster 2. Thus, Cluster 5 may represent amastigote
cells in the early stages of development from trypomastigotes after host infection , and cluster 2 may
represent epimastigote cells.

The remaining clusters contain many cells from the SE/MT scRNA-seq sample. Clusters 3 and 8
are almost completely made up of SE/MT sample cells, meaning they likely represent metacyclic try-
pomastigotes. Clusters 6 and 7 also contain cells from the MIX and EP/AMA120 samples (Fig.13B).
Metacyclic trypomastigotes were generated through prolonged culturing of epimastigotes to trigger differ-
entiation, resulting in a mixed population of epimastigotes and metacyclic trypomastigotes. Therefore,
clusters 6 and 7 could represent cells that are transitioning from epimastigotes to metacyclic trypo-
mastigotes.

The above analysis, based on our sampling strategy, provides a first indication that the parasites
are indeed clustered by life-cycle stage. However, unsuccessful integration of the datasets could lead
to incorrect partitioning of cells into different clusters. As mentioned in the introduction, interpreting
the distances between points on a reduced dimension projection has been shown to be problematic due
to distortions when reducing an ambient space with many thousands of dimensions to just two (Chari
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Figure 13: T. cruzi atlas overview

UMAP embeddings of the cells of the T. cruzi atlas where every cell is coloured by their cluster
identity (A). Proportion plot showing the proportion sample origin of the cells across the clusters of the

atlas (B). UMAP embeddings of T. cruzi atlas cells, split by their sample origin, with each cell
coloured by the density of cells in that region of the UMAP. Red means more dense regions of cells,
white means less dense (C). Heatmap showing the normalised expression values of the Scanpy derived

top 20 marker genes (where available) for each of the clusters in the T. cruzi atlas (D). Dotplot
showing the expression of selected marker genes for the clusters in the T. cruzi atlas. Dots are coloured
by the median expression of the gene in each cluster and the size of the dots shows the percentage of

cells (in that cluster) that express the gene (E).

and Pachter 2023). To increase our confidence in the biological relevance of the clustering, we sought
to associate marker genes for our clusters with known life-cycle markers. The Scanpy derived top 20
marker genes per cluster (log2FC > 0.5 and Bonferroni corrected p-value < 0.05) (appendix file 14),
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where available, were plotted in a heatmap for all cells in the integrated dataset (Fig.13D), as well as
violin plots of some selected genes from the marker genes list (Fig.13E).

The following investigation of cluster markers was carried out collaboratively with Dr Marta Garcia
Sanchez.

The genes C4B63 34g140, C4B63 147g63 and C4B63 34g324, which show increased expression in
clusters 0, 4 and 9 (Fig.13E), encode surface proteins from key multi-gene families associated with trypo-
mastigotes: a trans-sialidase from group IV, a mucin-associated surface protein (MASP), and a member
of the Trypomastigote, Alanine, Serine and Valine rich protein subfamily C, respectively. These play dif-
ferent key roles in the biology of trypomastigotes, from the establishment of an effective interaction with
the host cell and invasion, to protection against the host immune response (Ralph et al. 2013, Herreros-
Cabello et al. 2020). C4B63 32g230 was a marker gene of both clusters 1 and 5, and encodes a member
of the amastin glycoprotein family, which is highly expressed in amastigotes (Coughlin et al. 2000). This
fits with our assignments of these clusters as amastigotes based on the sampling analysis. Interestingly,
some trypomastigote-associated transialidases are also markers for cluster 5 (e.g. C4B63 361g15 and
C4B63 51g213), which reflects that this cluster contains cells from the AMA6/24 sample, and thus likely
contains intermediate stages during differentiation from trypomastigotes to amastigotes. This is sub-
stantiated by another marker for this cluster, the lipase encoding gene C4B63 341g12, which is involved
in amastigote development (Y. Li et al. 2016). Furthermore, a marker gene of both cluster 4 and 5 is
C4B63 32g1409c, which encodes chagasin. Chagasin’s primary function is to inhibit and regulate the
action of cruzipain, a parasite-specific cysteine peptidase that plays a key role in parasite invasion of host
cells (C. C. Santos et al. 2005 & V. C. Santos et al. 2021). As cluster 4 represents trypomastigotes and
cluster 5 early amastigotes, the expression of chagasin fits with the biology, as these cells are primed to
infect cells or are in the early stages of host cell infection, respectively. These results are thus consistent
with the previous conclusion that cluster 5 represents early or mid amastigotes.

Our assignment of cluster 2 as epimastigotes is supported by the marker gene C4B63 34g1526c
(Fig.13E), which encodes TcSMUGL, a mucin-type glycoconjugate restricted to the surface of T. cruzi
epimastigotes and is involved in the interaction with the insect vector (Gonzalez et al. 2013). Clusters 3
and 8, which mainly contain cells from the SE/MT sample, show increased expression of C4B63 57g69,
encoding a metallo-peptidase, which has been previously shown to be upregulated in metacyclic trypo-
mastigotes in comparison to the other life cycle stages (Minning et al. 2009 & Smircich, Eastman, et al.
2015). These observations support the suggestion that these two clusters represent metacyclic trypo-
mastigotes. Finally, clusters 6 and 7, which we propose represent cells along the epimastigote to meta-
cyclic trypomastigote differentiation axis, are characterised by expression of marker genes C4B63 12g175
and C4B63 212g9 (Fig.13E). These genes are two putative members of the Nodulin-like/Major Facilitator
Superfamily, which have been previously associated with the epimastigote to metacyclic trypomastigote
transition (Smircich, Eastman, et al. 2015). Taken together, the marker gene analysis supports our
cluster allocation, based on our sampling strategy.

14.4 Bulk RNA-sequencing analysis of the T. cruzi in vitro life cycle

While the paper by Minning and colleagues (Minning et al. 2009) investigates the four main life cycle
stages using microarray, no such paper exists for bulk RNA-seq data. The power of having such any
analysis is not only in terms of its novelty; but also using such a resource to validate findings from the
scRNA-seq data.
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Thus, bulk RNA-seq data for the same life cycle stages and timepoints captured in the scRNA-seq
data was generated by the De Rycker lab (Fig.12C) and mapped against the combined Dm28c 2018
2500bp 3’ UTR extension + kDNA reference genome (Table 3). The data was analysed with DESeq2
(Love, Huber, and Anders 2014) under default parameters. The positioning of the samples in the PC
space was consistent with distinct transcriptomes being present for each of the life cycle stages. The three
amastigote samples were localised next to each other. The epimastigotes and metacyclic trypomastigotes
were both located in the top left of the PC space and the trypomastigote samples were localised together
on the positive end of PC1. Furthermore, the biological replicates of each life cycle stage all localised
together (Fig.14A).

Sample
Number
of input
reads

Uniquely
mapped
reads
%

% of reads
mapped
to multi-
ple loci

% of reads
mapped
to too
many loci

% of
reads un-
mapped:
too short

% of
reads un-
mapped:
other

Total
align-
ments
(fea-
ture-
Counts)

% Suc-
cess-
fully
as-
signed
align-
ments
(fea-
ture-
Counts)

bAMA6 1 23,475,929 41.88 14.48 9.83 31.79 2.02 21,942,505 38.2

bAMA6 2 20,219,803 46.33 16.26 10.92 24.33 2.17 21,107,762 38.2

bAMA24 1 20,498,527 36.14 12.46 5.11 44.57 1.73 16,395,372 38.1

bAMA24 2 24,492,333 35.19 12.00 4.52 46.42 1.87 18,848,721 39.5

bAMA120

1
26,077,005 52.40 17.93 16.22 9.89 3.56 30,285,994 36.4

bAMA120

2
27,749,110 49.86 17.13 21.31 8.70 2.99 31,157,951 35.0

bADT 1 27,090,531 51.03 20.71 22.63 3.91 1.73 34,960,443 31.4

bADT 2 1 21,882,358 48.82 20.93 22.23 5.18 2.84 27,812,588 31.8

bADT 2 2 22,048,702 43.12 19.93 28.85 5.46 2.64 26,768,688 29.3

bEP 1 25,717,422 54.56 19.39 18.14 4.01 3.90 32,736,362 34.3

bEP 2 25,985,438 56.38 18.93 16.58 3.91 4.20 32,444,213 36.8

bSE/MT 1 22,249,655 59.79 18.83 14.13 4.02 3.23 28,940,501 36.5

bSE/MT 2 28,225,858 64.08 18.66 9.96 4.78 2.52 36,415,986 39.5

Table 3: Mapping statistics returned for the T. cruzi bulk RNA-seq datasets mapped against
the Dm28c 2018 + kDNA reference
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We next identified marker genes for the each life cycle collection point by comparing each point
against all other points, extracting genes that had a log2FC greater than 0.5 and a Benjamini-Hochberg
corrected p-value < 0.05. This identifies genes that are markers for each sample, relative to all other
samples (Fig.14C, appendix file 16), as well as for each life-cycle stage relative to all other life-cycle stages
(i.e. all amastigote samples combined) (Fig.14B, appendix file 15). The scaled, normalized expression
values of these markers were plotted on a heatmap, with distinct transcriptomic patterns seen across the
life cycle collection points (Fig. 14B), and the three intracellular amastigote timepoints (Fig.14C).

To identify significant marker genes of the life cycle stages, each life cycle stage was compared against
the other three stages, with significant genes defined and those whose log2FC was greater than 0.5 and
had a Bonferroni corrected p-value < 0.05. To make the marker genes specific to a given life cycle stage,
any genes which overlapped between marker genes lists were removed. This analysis allowed the identi-
fication of highly specific marker genes for each life-cycle stage, with 344 genes significantly upregulated
in bEP, 510 in bSE/MT, 1381 in bAMA, and 1842 in bADT (appendix file 15). A substantial proportion
of the bADT marker genes encode for multigene family surface proteins, including 413 trans-sialidases
from groups I-VIII, 320 MASPs, 488 mucins and 44 glycoprotein (GP63s). All of these proteins are
known to be highly expressed in trypomastigotes (Roberts et al. 2014). Well-defined markers for the
other life cycle stages were also identified, such as amastin (C4B63 32g230) for amastigotes, and mucin
TcSMUGL (C4B63 34g1450c) for epimastigotes. Interestingly, we were able to identify specific markers
for different stages of amastigote development (Fig.14c). Similar to results in the scRNA-seq data, Cha-
gasin (C4B63 32g1409c) were identified as markers of the early amastigote population (bAMA6), further
suggesting that inhibition of cruzipain, or other cysteine proteases, is important at the early stages
of amastigote differentiation. Another marker of interest for this population is ATG7 (C4B63 84g61),
pointing to a role for autophagy in this population. For the bAMA24 population, marker genes include
amastin (C4B63 32g229), three ABC transporters and superoxide dismutase (C4B63 18g258). For the
late bAMA120, marker genes include one Mucin I (C4B63 63g77) and two Mucin II encoding genes
(C4B63 11g418 & C4B63 63g63), a hexose transporter (C4B63 14g3) and two prostaglandin E synthase-
2 genes (C4B63 8g300 & C4B63 50g199).

As stated earlier, the bSE/MT sample does not solely contain metacyclic trypomastigotes, but also
epimastigotes and transitional forms on the path to differentiation towards metacyclic trypomastigotes.
This is reflected in the upregulation of genes involved in the response of T. cruzi epimastigotes to pH and
oxidative stress, as well as nutritional starvation (Smircich, Perez-Diaz, et al. 2023 & Miranda et al. 2006),
such as ascorbate peroxidase (C4B63 135g21), superoxide dismutase (C4B63 9g448) , and arginine kinase
(C4B63 26g282), along with genes involved in cellular signalling. 3’,5’-cyclic adenosine monophosphate
(cAMP) serves as a universal second messenger, previously demonstrated as pivotal in mediating meta-
cyclogenesis in T. cruzi (Rangel-Aldao et al. 1987). Key components of the cAMP signalling pathway
are upregulated in our SE/MT sample, including cAMP phosphodiesterase A (C4B63 4g243) alongside
two protein kinase A catalytic subunits (C4B63 2g156 & C4B63 4g242).

When treating the AMA samples as one, we identified several surface proteins, including five amastins,
15 GP63 surface proteases, a MASP (C4B63 8g96), and eight trans-sialidases, which have all been impli-
cated with the establishment of intracellular infection in T. cruzi (Herreros-Cabello et al. 2020, Alvarez
et al. 2008 & Miranda et al. 2006). Additionally, we identified genes involved in metabolism, predom-
inantly involving lipid metabolism, alongside transporters engaged in scavenging nucleosides and other
essential nutrients. Among these, we identified four nucleoside transporters, one polyamine transporter
(C4B63 2g228), two folate/pteridine transporters (C4B63 7g126 & C4B63 21g273), and nine amino acid
transporters. This is in line with the need for intracellular amastigotes to obtain key metabolites from the
host cell (Caradonna et al. 2013). T. cruzi exhibits auxotrophy for polyamines, folates, and pteridines

60



Figure 14: Analysis of bulk RNA-seq datasets of T. cruzi life cycle stages

PCA plot showing the PC embeddings of the bulk RNA-seq datasets, where each dataset is coloured by
what T. cruzi life cycle stage is contained within it (A). Heatmaps showing the scaled, normalized

expression of the top 10 marker genes in terms of Log2FC for the four main T. cruzi life cycle stages
(B) and the main stages of the T. cruzi life cycle, with the amastigotes subdivided into early, mid or
late amastigotes (C). Heatmap showing the scaled, normalized expression of the top 5 marker genes (in

terms of Log2FC) for the scRNA-seq datasets clusters across the bulk RNA-seq datasets (D).
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(De Pablos et al. 2011 & Kulkarni et al. 2009) and import of amino acids is also critical for survival
(Kimuda et al. 2019).

Among the markers for epimastigotes, we also identified genes involved in cell division, energy
production in the mitochondria, and metabolism, with a predominance of genes involved in amino
acid metabolism (appendix file 15). Additionally, several genes were identified which have been re-
ported in previous studies as epimasigote markers such as arginase (C4B63 4g462) and proline racemase
(C4B63 52g138) (Y. Li et al. 2016 & Smircich, Eastman, et al. 2015).

As we have captured both bulk and single cell RNA-seq data from the in vitro life cycle, we assessed
whether the expression of marker genes derived from our scRNA-seq clusters match up with their re-
spective bulk RNA-seq clusters (Fig.14D). The markers of the scRNA-seq clusters were generally highest
expressed in their equivalent bulk RNA-seq samples, across both biological replicates. Some marker genes
were highly expressed across multiple life cycle bulk RNA-seq samples, with the markers of single-cell
clusters 6 and 7 being highly expressed in both the bEP and bSE/MT bulk RNA-seq samples (Fig.14D).
This supports the suggestion that clusters 6 and 7 represent epimastigote to metacyclic trypomastigote
transitionary cells. Markers for cluster 9, which consists of a relatively small number of cells (Fig.13A),
mainly originating from the ADT sample (Fig.13B) and showed less clear alignment with the bulk data,
with some genes expressed highly in amastigotes, trypomastigotes and epimastigotes (Fig.14D).

From the analysis of the bulk RNA-seq and scRNA-seq datasets, key markers of the four major life
cycle stages are identified, including key metabolism genes for amastigote survival in host cells, proteins
required for trypomastigote invasion of host cells, stress responses in epimastigotes and intracellular
signalling pathways in metacyclic trypomastigotes.

14.5 The T. cruzi in vitro atlas as a tool for annotating datasets

The power of a scRNA-seq atlas is creating a resource that future researchers can utilise to compare with
or bolster their own data when investigating their research questions. As such, one of our goals was to
create a resource that the wider community can utilise to give confidence in their findings. One of the
primary uses of a scRNA-seq atlas is as a reference when predicting cell type labels on an unlabelled
dataset. First, we tested whether the atlas could be used to correctly annotate a subset of cells from the
atlas itself. Using scPoli (De Donno et al. 2023), a model was trained on subsets of the atlas and used
to predict the life cycle stage labels of the rest of the dataset. The model is trained by taking the gene
expression values of the training data cells and identifying some weights which embeds the data into a
latent space (akin to dimensionality reduction) and some other weights which can take the latent space
data and reconstruct it back into the original gene expression data. The weight values are optimised by
minimising the difference in expression values between the original expression data and the reconstructed
expression data. Predictions are then made by embedding the testing data cells, using the same weights
generated from the training, and picking the cell label from the closet training cell in the latent space.
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0.05 (1) 0.05 (2) 0.25 (1) 0.25 (2) 0.5 (1) 0.5 (2) 0.75 (1) 0.75 (2) 0.9 (1) 0.9 (2)

early mid amast 5 0.7985 0.7396 0.7336 0.7286 0.7131 0.7255 0.6309 0.6157 0.4259 0.4700

epi meta trans 6 0.7528 0.7660 0.7607 0.7505 0.7497 0.7595 0.7039 0.6492 0.4660 0.4439

epi meta trans 7 0.5854 0.6144 0.5899 0.6984 0.6004 0.6261 0.5367 0.5685 0.3923 0.3135

epimast 2 0.8738 0.8549 0.8561 0.8470 0.8317 0.8433 0.8241 0.8118 0.7734 0.7867

late amast 1 0.7968 0.7724 0.7561 0.7868 0.7284 0.7408 0.6919 0.6625 0.5734 0.5551

meta 3 0.8520 0.8247 0.7894 0.7845 0.7878 0.7768 0.7552 0.7353 0.7303 0.7452

meta 8 0.7879 0.7500 0.7872 0.7914 0.7447 0.6624 0.6250 0.6577 0.5962 0.6062

trypomast 0 0.7574 0.7776 0.7513 0.7547 0.7451 0.7494 0.7321 0.7325 0.7197 0.7095

trypomast 4 0.7204 0.7453 0.7163 0.7295 0.6969 0.7005 0.6839 0.6783 0.6695 0.6455

trypomast 9 0.6364 0.6957 0.6818 0.6863 0.7333 0.4136 0.6333 0.6047 0.4076 0.2938

Table 4: Table of f1-scores for each cluster and proportion of the atlas used as testing data

Each column represents a different proportion (to the left of the underscore) of the atlas used as testing data
for scPoli and what replicate (within the brackets) it was.
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Figure 15: Annotation results when training scPoli on the T. cruzi atlas dataset

Barplot showing the weighted average F1 score of scPoli (trained on different percentage subsets of the
atlas) predictions of cell type annotations on the testing data (A). Pie chart showing the scPoli cluster
ID predictions for the 48 hours post infection derived amastigotes when trained on the entire T. cruzi

atlas (B).

As model training can be computationally expensive, we trained the scPoli model using increasingly
smaller training data sizes to find an optimal trade-off between annotation accuracy and training size. To
test how well the testing data was annotated, a weighted average f1-score was used. When the f1-score is
close to 1, it represents that the model has perfectly annotated the cells in the datasets, without any false
positives or false negative cell label assignments. The closer to 0 the f1-score, the opposite is true. Across
all of the subsets tested, the weighted average f1-score did not drop below 0.6 (Fig.15A). Furthermore,
the 95% training data subset only returned a slightly higher weighted average f1-score than the 50%
training data subset, showing the atlas can accurately label the cells with only half the atlas (Fig.15A).
Variation was observed in the classifying accuracy of the different clusters. The epimast 2 and meta 3
clusters had f1-scores of ∼0.84 when using 95% of the data to train the model on and ∼0.76 when only
5% was used (Table 4). Conversely, the epi meta trans 7 cluster f1-score with the 95% training subset
was ∼0.58 and decrease to ∼0.35 for the 5% training subset (Table 4).

As the testing and training datasets are derived from cells which come from similar sequencing runs
and were generated in similar ways, it represents a best-case scenario for predicting life cycle stage. As
future researchers’ data may be generated through different means or under different conditions, we next
aimed to see whether the atlas could be used to correctly annotate cells that were sampled independently
from those in the atlas itself. We generated a separate scRNA-seq dataset of amastigotes harvested 48
hpi and used an scPoli model trained on the entire T. cruzi atlas to predict life cycle stage labels. As
these amastigotes lie in between the mid and late stages post-infection amastigotes, we considered a
cluster annotation of late amast 1 or early mid amast 5 as correct and anything else as incorrect. Using
this approach, 72.5% of cells were correctly annotated as amastigote (Fig.15B), suggesting that the atlas
is suitable for supervised labelling of novel T. cruzi scRNA-seq data.

14.6 Cell cycle analysis of the T. cruzi atlas

The replicative status of the different life cycle stages has been well established in the literature, with
metacyclic trypomastigotes and trypomastigotes being non-replicative, and amastigotes and epimastig-
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Figure 16: Cell cycle phase annotation of the atlas cells

UMAP embeddings of the atlas cells coloured by their cell cycle phase using the Chávez and colleagues
(Chávez, Urbaniak, et al. 2021) T. cruzi (A), PCF T. brucei (C) or BSF T. brucei cell cycle genes (E).
Associated proportion plots showing the proportional makeup of each atlas cluster, in terms of cell

cycle phase, for the T. cruzi (B), PCF T. brucei (D) and BSF T. brucei (F) cell cycle genes

otes being replicative (Taylor et al. 2020). We therefore tested whether information on cell cycle phase
could be extracted from the scRNA-seq data. We took the CL Brener Esmeraldo-like genes that Chávez
and colleagues (Chávez, Eastman, et al. 2017) identified as peaking in the different cell cycle phases of
epimastigotes, found their syntenic orthologs in the Dm28c 2018 reference using TriTrypDB (Shanmu-
gasundram et al. 2023), and used these genes to assign cells with a cell cycle phase label using a method
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outlined by Briggs and colleagues (Briggs, Marques, et al. 2023). For all the clusters, very few of the
cells were annotated as ”unlabelled”, indicating that they were present in a detectable cell cycle stage.
However, in terms of the clusters that should contain non-replicating cells, ∼80% of the cells in the
trypomastigote clusters were labelled in terms of cell cycle phase and ∼60% of the cells in the metacyclic
trypomastigote clusters are also labelled Fig.16A, B). For the replicating life cycle phases, a third of the
cells in the epimastigote cluster were ‘unlabelled’ while the amastigote clusters had ∼20% of cells being
‘unlabelled’ (Fig.16A, B).

As many of the clusters that should not contain replicating cells had predicted replicating cells, and
some of the clusters that should be replicating have many cells which are not labelled as such, we wanted
to rule out that the lack of gene expression resolution inherent in scRNA-seq might lead to this disparity.
We did this by checking the expression of the cell cycle marker genes (40 random marker per cell cycle
phase) in our bulk RNA-seq to see if they matched up with the underlying biology. Across the different
cell cycle phase genes and bulk RNA-seq samples, the expression levels of the genes varied, with no
sample having the highest expression values for all the cell cycle genes (Fig.13A, B & C). The cells were
then annotated by cell phase using PCF and BSF T. brucei cell cycle marker genes, identified by Briggs
and colleagues (Briggs, Marques, et al. 2023). These results were almost identical to the ones generated
using the Chávez derived cell cycle genes (Fig.16C, D, E & F). These results highlight an inability to
utilise scRNA-seq data to accurately annotated the cell cycle phase of T. cruzi cells, despite this being
possible with T. brucei and Leishmania.

66



14.7 Characterising trypomastigote heterogeneity

We identified three clusters of trypomastigotes in the atlas, with two of them being the largest and
smallest clusters (in terms of number of cells) of the atlas. The smallest, trypomast 9, only amounts to
208 cells and thus interpreting the marker genes of these cells may be prone to outlier effects. The try-
pomast 0 and trypomast 4 clusters, however, are larger and thus comparisons can be made without the
worry of outlier effects. To identify transcriptomic differences defining these two trypomastigote clusters,
we identified all the significantly DE genes (Log2FC > 0.5, Bonferroni corrected p-value < 0.05) between
the two clusters. 73 genes were identified as being significant markers of trypomast 4, while trypomast 0
had 433 genes (appendix file 17). Marker genes of cluster 0 included a variety of metabolism-associated
genes such as L-threonine metabolism enzymes L-threonine 3-dehydrogenase (LDH ) (C4B63 42g129) and
2-amino-3-ketobutyrate coenzyme A ligase (KBL) (C4B63 32g217, C4B63 32g214) (Schmidt et al. 2001),
and cytochrome oxidase subunits (C4B63 43g134, C4B63 41g212 & C4B63 12g334). Trypomast 4, on
the otherhand, was defined by such markers as GP63 protease and trans-sialidases. While some of the
marker genes of trypomast 0 were also trans-sialidases, only 7 trans-sialidases were markers of trypo-
mast 0, compared to 32 in trypomast 4. Two mRNA binding proteins were also found to be markers of
the trypomast 4 cluster, specifically C4B63 13g223 and C4B63 16g295, whose syntenic orthologs in T.
brucei are ZC3H32 and RBP10 respectively. These results seem to suggest that the trypomastigotes
subsets exist with differing cell states: one with high metabolism associated genes and one with host cell
invasion associated genes, with the former possibly representing a reservoir of trypomastigotes for future
infections and the latter representing cells which are primed to infect host cells

14.8 Identifying markers of T. cruzi metacyclogenesis

ScRNA-seq provides a key advantage over RNA-seq when studying cells undergoing transitions between
different life cycle stages stages. In bulk RNA-seq, cells from different points of the development process
can be present in the same sample and in the input their transcriptomes will be additive, making it
difficult to see what transcriptomic signal is from which cell. We can see this lack of resolution when
looking at the expression of our putative epimastigote to metacyclic trypomastigote transitionary clus-
ters markers on our bulk RNA-seq data (Fig.14D). Due to the single cell nature of scRNA-seq, this issue
does not occur. We sought to identify genes that may play a key role in the transition processes captured
in the data. Of the T. cruzi life cycle transitions, only amastigote to trypomastigote and epimastigote
to metacyclic trypomastigote were carried out for the cells which went into the scRNA-seq and bulk
RNA-seq datasets. This, however, does not mean that the transition processes were captured in the
data. Clusters which contain both SE/MT and EP/AMA120 sample cells were contained within the
data, hinting that the epimastigote to metacyclic trypomastigote transition could have been captured.
No clusters containing a mix of AMA or ADT sample cells were found in the integrated dataset. Further-
more, the main transcriptomic variation in the bulk RNA-seq datasets was between the ADT samples
and every other life cycle stage. These results suggest that the amastigote to trypomastigote transition
has not been captured and that the reason it wasn’t captured was due to the unique transcriptome of
trypomastigotes, compared with the other life cycle stages.

To capture the transition between the epimastigote and metacyclic trypomastigote stages, we utilised
the trajectory inference (TI) package Partition-based Graph Abstraction (PAGA) (Wolf, Hamey, et
al. 2019) on a subclustered version of the atlas, containing cells from the ”epimast 2”, ”meta 3”,
”epi meta trans 6” and ”epi meta trans 7” clusters (Fig.17A, B, C). PAGA functions by assigning pseu-
dotime values to cells based on their connections to other cells in a nearest neighbour graph (built from
the UMAP embeddings). TradeSeq (Van den Berge et al. 2020) was used to capture genes that were
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DE across the epimastigote to metacyclic trypomastigote transition, with 923 genes identified as being
DE across the differentiation process (appendix file 18). To see at what point in the differentiation these
genes were associated with, we took the smoothed expression of the 923 DE genes and ordered them by
their peak expression in pseudotime (Fig.17D). From this, we can predict genes that peak in expression
at the early, middle and late points of differentiation. These three points were defined from the smoothed
expression pseudotime axis, with genes that were highly expressed in the early or early and middle of
the axis being defined as early, the genes highly expressed in the middle of the axis defined as middle
and the genes that were highly expressed late or late and middle of the axis defined as late. 231 genes
displayed expression that peaked early in the transition, 571 genes peaked during the middle stages and
121 genes peaked at the end of the differentiation process (appendix file 18), providing a rich dataset to
study metacyclogenesis.

The expression of known marker genes for epimastigotes and metacyclic trypomastigotes changed as
expected. The expression of L-threonine catabolism enzymes LDH (C4B63 42g129) and KBL (C4B63 32g217)
(Schmidt et al. 2001) significantly changed over metacyclogenesis and peaked early in the process
(Fig.17E). In heme-cultured epimastigotes, the parasites showed high consumption of L-threonine (Silva
Dias Vieira et al. 2023), suggesting L-threonine metabolism may be important to epimastigotes.

Proline racemase (C4B63 52g138) was also found to be highest expressed in the early stages of meta-
cyclogenesis (Fig.17E). This protein exists as two isoforms (Proline racemase A and B), with both being
important in metacyclogenesis. Their overexpression leads to increased numbers of mammalian-infective
metacyclics (Chamond et al. 2005). The two isoform proteins are expressed in different stages - A in sta-
tionary epimastigotes, and B in metacyclic trypomastigotes (Reina-San-Mart́ın et al. 2000) - and have
high sequence similarity, making them hard to disentangle at the transcriptomic level. Nevertheless,
their association with driving metacyclogenesis is consistent with their upregulation at the beginning of
metacyclogenesis.

Next, we focused our analysis on genes whose expression peaked during the middle of the transition.
The expression of C4B63 34g1526c, which encodes a mucin TcSMUG-L surface proteins, peaked during
the middle phase (Fig.17E). In line with this profile, TcSMUG-L is known to be restricted to the surface
of epimastigotes, where it is thought to play a role in attachment of epimastigotes to the insect midgut
epithelium (Gonzalez et al. 2013 & Urban et al. 2011). Several DNA repair proteins, namely RAD51,
RAD50 and RAD54 (C4B63 6g507, C4B63 6g508 & C4B63 28g105) were also found to peak in expres-
sion during the middle phase of metacyclogenesis (Fig.17E).

Finally, we focused on genes whose expression peaked at the late phase of the transition. Known
markers of metacyclic trypomastigotes, the surface protease GP63 (C4B63 16g183) and the cruzipain
inhibitor Chagasin (C4B63 32g1409c), peaked late in the metacyclogenesis process (Fig.17E). The up-
regulation of these enzymes late in the transition may reflect the parasite turning on expression of genes
which regulate infection; preparing for their transfer into the host. Finally, the enzyme citrate synthase
(C4B63 4g184) was also associated with the end of metacyclogenesis (Fig.17E), with citrate synthase
activity shown to be significantly higher in metacyclic trypomastigotes compared to epimastigotes (Adro-
her, Osuna, and Lupiañez 1988).

To assess the validity of the markers as being important in the epimastigote to metacyclic trypo-
mastigote transition, we looked at the expression of the markers in the bulk RNA-seq data. Interestingly,
while the genes that defined the early and late phases of differentiation were highest expressed in the
epimastigote and metacyclic trypomastgote bulk RNA-seq datasets, respectively, no clear pattern was
seen for the genes identified as peaking in the middle of the process (Fig. 17F). This reveals an inherent
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Figure 17: Trajectory analysis of epimastigote to metacyclic trypomastigote transition

FA2 embeddings of the epimastigote, metacyclic trypomastigote, and transitionary cells coloured by
cluster identity (A) and PAGA derived pseudotime (B). PAGA graph of the FA embeddings, with the

dots representing the epimastigote, metacyclic trypomastigote and transitionary clusters. The
thickness of the lines shows how connected the clusters are, as determined by PAGA (C). Heatmap

showing the scaled smoothed expression values (of 50 sampled points across pseudotime) for the genes
whose expression significantly changed over the metacyclogenesis axis. Genes are ordered along the Y

axis by their peak expression across the metacyclogenesis process (D). Plots showing the log1p
transformed expression of selected genes whose expression significantly changed over metacyclogenesis
pseudotime. Cells are coloured by their cluster identity (as in A) and the lines represent the smoothed
expression of genes across pseudotime (E). Heatmap showing the scaled, normalized expression of the

top 10 genes (in terms of Log2FC) for the early, mid and late peaking genes, whose expression
significantly changed over metacyclogenesis pseudotime, on the epimastigote and metacyclic

trypomastigote bulk RNA-seq samples (F). Heatmap showing the scaled smoothed expression values
(for 50 sampled points across pseudotime) for the RNA binding protein encoding genes whose

expression significantly changed over the metacyclogenesis axis. Genes are ordered along the Y axis by
their peak expression across the metacyclogenesis process (G)
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advantage scRNA-seq has over bulk RNA-seq, in that the granularity of results is much greater. Thus,
scRNA-seq is able to identify these transitionary clusters and extract their gene signatures while bulk
RNA-seq fails, as it is a mixture.

Unlike the bulk RNA-seq samples for the amastigotes, multiple time point samples were not taken as
epimastigotes transitioned into metacyclic trypomastigotes. We thus took the bulk RNA-seq data from
Smircich and colleagues (Smircich, Perez-Diaz, et al. 2023), who looked at the epimastigote to metacyclic
trypomastigotes transition across four time points: Day 7, Day 14, Day 21 and Day 28 of culturing the
parasites without nutrient replenishment. As their analysis was carried out on data mapped against the
CL Brener Esmeraldo-like v5.0 reference, we remapped their data against our combined Dm28c 2018
2500bp 3’ UTR extended + kDNA reference genome and analysed the data with DESeq2, as we did
with our bulk RNA-seq data. Remapping of the data did not affect the spatial arrangement of samples
within the PCA embeddings compared with the original mapped data (appendix Fig.14A). We visualised
the expression of our metacyclogenesis-associated genes in the remapped Smircich data. The majority
of the marker genes across the three clusters were highest expressed in the day 7 sample, when the
cells should still be epimastigotes in exponential growth phase, although some scRNA-seq markers of
the metacyclic life cycle stage were higher expressed at final two time points (appendix Fig.14B). This
further highlights the ability of scRNA-seq to capture and clearly visualise gene expression changes that
happen over differentiation, where bulk RNA-seq fails due to its lack of granularity.

Given the polycistronic gene expression nature of kinetoplastids, much of the regulation of gene ex-
pression is done through affecting mRNA stability and half-life. RBPs are trans-acting factors that
engage with cis-acting regulatory sequences in the untranslated regions of mRNAs, mediating mRNA
processing, stabilisation, subcellular localisation, and translation efficiency (Romagnoli et al. 2020). In-
creasing evidence suggests that the expression levels of specific RBPs are closely associated with the
regulation of subsets of mRNAs, influencing parasite differentiation in both T. cruzi and T. brucei (Y.
Li et al. 2016, Sabalette et al. 2023). We therefore examined our pseudotime dataset DE list for other
RBPs with known associations with differentiation. C4B63 19g103 peaked during the middle phase of
the epimastigote to metacyclic trypomastigote transition (Fig.17G). The CL Brener Esmeraldo-like or-
tholog of C4B63 19g103 (TcCLB.507093.220, TcUBP1 ) has been shown to play a role in mediating the
differentiation of T. cruzi epimastigotes into metacyclic trypomastigotes under nutritional starvation
conditions (Sabalette et al. 2023, Romaniuk, Cervini, and Cassola 2016). Overexpression of TcUBP1
leads to upregulation of genes encoding surface proteins and alterations in their subcellular localisation
within replicative parasites, resulting in increased infectivity of trypomastigotes Sabalette et al. 2023.
As well as TcUBP1, three other putative RBPs (C4B63 2g318, C4B63 83g24 and C4B63 18g216) also
peaked in expression during the middle of metacyclogenesis. These three genes were previously shown to
be upregulated in epimastigotes, when compared to amastigote-derived trypomastigotes, and amastig-
otes (Tavares et al. 2021).

C4B63 4g545 showed increased and sustained expression over pseudotime; peaking in the late phase
of the transition (Fig.17G). The gene encodes RBP4, whose ortholog in CL Brener non-Esmeraldo-like
(TcCLB.508901.20) was expressed higher in metacyclic trypomastigotes in a comparative microarray
transcriptome analysis of the four major life cycle stages of T. cruzi (Minning et al. 2009). The ex-
pression of C4B63 18g326, encoding the zinc-finger protein ZFP1, also increased late in the transition
process. A role for ZFP1 in T. brucei BSF differentiation has been suggested (Hendriks and Matthews
2005), and upregulation of this RBP in the stationary stage of T. cruzi epimastigote growth curve has
been previously described (C. Santos et al. 2018).

All the RBPs presented thus far have known roles in metacyclogenesis. Next, we searched the list of
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genes significantly associated with metacyclogenesis to identify RBPs that have not been described as
associated with metacyclogenesis in T. cruzi. C4B63 27g1020c encodes a predicted RBP which peaks
in the middle of metacyclogenesis in our data (Fig.17G) and whose CL Brener Esmeraldo-like syntenic
ortholog has been associated with late-stage amastigotes (Belew et al. 2017). Interestingly, however,
the syntenic ortholog of this gene in the T. brucei TREU927 reference (Berriman et al. 2005) encodes
RBP5, a gene whose expression is upregulated in the mutated RBP6 overexpression model of T. brucei
(which will be discussed in more detail in chapter three) insect development (H. Shi, K. Butler, and
Tschudi 2018). At the start of metacyclogenesis, we identify a peak in expression of an RNA helicase
(C4B63 7g282) whose ortholog in T. brucei (Tb927.4.1500) is part of the mitochondrial RNA binding
complex 1, which edits mRNAs. When expression of Tb927.4.1500 is repressed with RNAi, PCF T. bru-
cei are no longer viable, hinting at an essential role for the gene in the insect stages (Hashimi et al. 2009).

Metacyclogenesis can be induced in epimastigotes through starvation, as done in this paper. During
the middle phase of metacyclogenesis, we identified C4B63 58g143 peaking in expression (Fig.17G). The
syntenic ortholog of this gene in the TREU927 T. brucei reference (Tb927.10.2370) encodes a protein
which is significantly enriched in starvation granules in T. brucei PCFs (Kafkova et al. 2018). The
upregulation of this gene in the transitionary middle phases of metacyclogenesis, where the parasite is
starved, may suggest this gene is similarly associated with starvation in T. cruzi. Our data thus supports
the roles of RBPs in facilitating life cycle transitions in T. cruzi.

15 Chapter 2: Materials and Methods

15.1 Sample collection

The samples were generated by Dr Marta Garcia-Sanchez with assistance by Dr Juliana Da Silva Pacheco
and Dr Luciana De Sousa Paradela of the University of Dundee. The ”Sample Collection” subsection
within this section (written by Dr Marta Garcia-Sanchez and edited by Dr Manu de Rycker of University
of Dundee) details how the biological samples were generated.

15.1.1 Parasite culture

T. cruzi parasites from the Silvio strain (MHOM/BR/78/Silvio; clone X10/1/7) subclone A1 were used
in this study (Roberts et al. 2014).

Epimastigotes were grown at 28°C in RTH/FBS [RPMI 1640 medium (Sigma, St Louis, MO, USA)
supplemented with 0.4% (w/v) trypticase peptone (BD, Le Pont de Cleix, France), 25 µM hemin (Sigma,
St Louis, MO, USA), 17 mM Hepes (Formedium LTD, Hunstaton, UK) pH 7.4, and 10% (v/v) heat-
inactivated foetal bovine serum (FBS, Gibco, Paisley, UK)]. The cultures were maintained in exponential
growth by continuous passages of 3X10/15 cells/ml every three days.

Metacyclogenesis was induced by nutritional starvation as previously described (MacLean et al. 2018).
Briefly, epimastigotes were transferred to a culture flask containing fresh RTH/FBS to a density of 3x105

cells/ml and were maintained at 28°C without media change. The relative percentage of metacyclic try-
pomastigotes to stationary phase epimastigotes was determined by microscopic examination of parasites.
On day 10 of culture, the highest percentage of parasites that displayed a metacyclic trypomastigote-like
shape (∼50%) was observed, aligning with findings reported for the Medellin strain (TcI) (Garcia-Huertas
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et al. 2023).

Intracellular amastigotes were grown in Vero cells, as described by MacLean and colleagues (MacLean
et al. 2018). In brief, metacyclic trypomastigote-rich cultures were incubated with a monolayer of Vero
cells (ECCAC 84113001) at a multiplicity of infection (MOI) of 10 overnight at 37°C 5% CO2 in Min-
imum Essential Medium (MEM, GlutamaxTM Supplement) (Gibco, Paisley, UK) supplemented with
10% FBS. After overnight infection, extracellular parasites were removed and the Vero cell monolayer
was washed three times with serum-free MEM, followed by addition of fresh MEM 10% FBS. Infected
flasks were maintained at 37°C 5% CO2 and the medium was replaced at 72 hours post-infection (hpi).
At seven days post-infection (dpi) tissue-culture derived trypomastigotes emerging from infected Vero
cells were harvested and used to set-up new infections at MOI 1.5.

15.1.2 Sample collection

Epimastigotes (EP) were collected in the exponential growth phase, from 2 days-old cultures initi-
ated with 3x105 cells/ml. A mixture of stationary phase epimastigotes and metacyclic trypomastigotes
(SE/MT) was obtained from a 10 days-old culture initiated with 3x105 epimastigotes/ml. Amastigote
derived trypomastigotes (ADT) were harvested from the supernatant of infected Vero cells at 7 dpi. EP,
SE/MT and ADT were put in falcon tubes and left undisturbed for 1 h (at 28 °C for EP and SE/MT,
and at 37 °C 5% CO2 for ADT). To avoid collecting dead parasites and co-purified Vero cells, the su-
pernatant, containing viable and motile cells, was collected. Parasites were pelleted and washed once in
ice-cold phosphate-buffered saline (PBS) by centrifugation at 1,350 x g for 5 min at 4 °C.

Amastigotes (AMA) were obtained from Vero cells infected with ADT and washed at 6 hpi as in-
dicated above. At the time points selected (6, 24, and 120 hpi), intracellular AMA were isolated from
the host cells following the protocol described by Dumoulin and colleagues (Dumoulin et al. 2020), with
minimum modifications. MOI 1.5 was used for 120 hpi samples and MOI 10 for 6 and 24 hpi samples.
Infected monolayers were washed with ice-cold PBS and scraped into 3 ml PBS. Infected cells suspen-
sions were lysed using the gentleMACSTM dissociator with gentleMACSTM M tubes (Miltenyi Biotec,
Bergisch Gladbach, Germany) and the “Protein” protocol. The ensuing lysates were passed through a
PD-10 desalting column (Cytiva, Little Chalfont, UK) equilibrated with PBS to remove debris. AMA
were eluted in 3.5 ml ice-cold PBS and were washed 3 times in 15 ml PBS by centrifugation at 1,350 x
g for 5 min at 4 °C, to remove host cell RNA and debris.

The resulting pellets containing EP, SE/MT, ADT, and the three time-points for AMA (AMA6,
AMA24 and AMA120) were resuspended in ice-cold PBS and kept on ice. For bulk RNA-seq experiments,
2x10/17 parasites per sample were pelleted and frozen on dry ice until RNA extraction. For scRNA-seq
experiments, parasites were diluted in PBS to 1x106 cells/ml.

15.1.3 Cell viability assessment

Aliquots from all parasite stages diluted at a density of 1x106 cells/ml were stained for 5 min at room
temperature with SYTOX™ AADvanced™ Dead Cell Stain (Life Technologies, Eugene, OR, USA), fol-
lowing manufacturers’ recommendations. A total of 20,000 events per sample were acquired using a
CytoFLEX flow cytometer (Beckman Coulter, Indianapolis, IN, USA) set to excitation at 488 nm and
emission at 647 nm wavelengths. Percentage of viable cells was determined with the CytExpert v2.4
software (Beckman Coulter). Parasites killed with three cycles of freezing and thawing were used as
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positive control for SYTOX AADvanced staining.

15.1.4 Bulk RNA-seq – RNA extraction, library preparation and sequencing

Total RNA was extracted using RNeasy Mini Kit (Qiagen, Hilder, Germany) following the manufac-
turer’s protocol, with an on-column DNase digestion step with the RNAse-Free DNase Set (Qiagen).
Two biological replicates for each life cycle stage were prepared and sent to Novogene Co., Ltd (Cam-
bridge, UK) for rRNA removal, library construction and sequencing. RNA quantity and integrity were
measured with an Agilent 2100 bioanalyzer using the RNA Nano 6000 Assay Kit (Agilent Technologies,
Santa Clara, CA, USA) and by agarose gel electrophoresis. A total of 1 µg total RNA per sample
was used as input material for the lncRNA library preparation. RRNA was depleted from total RNA
and strand-specific libraries were generated using NEBNext® UltraTM RNA Library Prep Kit for Illu-
mina® (New England BioLabs, Ipswich, MA, USA) following manufacturer’s recommendations. Index
codes were added to attribute sequences to each sample.

Quality of the library was assessed by Agilent 2100 bioanalyzer, followed by quantification by qRT-
PCR. The different libraries were pooled according to the effective concentration and the target amount
of data – 6 Gb raw data per sample – and were sequenced by the Illumina NovaSeq 6000 (Illumina Inc.,
San Diego, CA, USA). Paired-end 150bp reads were generated.

15.1.5 Single-cell RNA-seq – library preparation and sequencing

Single-cell RNA-seq experiments were performed using Chromium Single Cell Gene Expression solution
(10X Genomics, Pleasanton, CA), according to the manufacturer’s guidelines. Single-cell suspensions of
16,500 cells in PBS were prepared for SE/MT and ADT (Fig.1B). AMA6 was combined with AMA24,
and EP was combined with AMA120 in equal proportion, in two cell suspensions of 16,500 cells each. Two
technical replicates were collected for the SE/MT sample. A second biological replicate was prepared in
a separate experiment by pooling equal quantities of EP, SE/MT, ADT, AMA6, AMA24 and AMA120
for 21,000 cells in total. For this pool, two technical replicates were collected (labelled MIX1 and MIX2)
(Fig.12B). Single-cell libraries were generated using the Chromium Next GEM Single Cell 3’ Reagent
Kit v3.1 and the Chromium Next GEM Single Cell 3’ Reagent Kit v3.1 - Dual Index (10X Genomics)
for the first and second biological replicates respectively. Briefly, single-cell suspensions were loaded
onto a Chromium Controller instrument in a Chromium Next GEM Chip G (10X Genomics) to obtain
single-cell Gel beads in EMulsion (GEMs). Barcoded cDNA was obtained from GEMs and amplified
by PCR in a PCRmax Alpha Cycler 1 thermal cycler (Cole-Parmer, Saint Neots, UK). End repair and
A-tailing, adapter ligation, post-ligation cleanup with SPRIselect (Beckman Coulter, Brea, CA, USA),
and sample index PCR and cleanup steps were performed as per the manufacturer’s instructions. Final
library sample index PCR cycle parameters were selected based on quantification of barcoded cDNA
samples with a Qubit 2.0 (Life technologies, Carlsbad, CA, USA), using the Qubit dsDNA HS Assay Kit
(Life technologies, Eugene, OR, USA): SE/MT samples were amplified by PCR with 16 cycles while the
rest of samples were amplified with 14 cycles. Single-cell libraries were sent to Novogene Co., Ltd for
sequencing. Libraries were quantified by Qubit and quality was tested in an Agilent 2100 Bioanalyzer,
before sequencing on the Illumina NovaSeq 6000 platform with PE150 strategy for 20 Gb raw data per
sample.
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15.2 Bioinformatics analysis

15.2.1 Creating reference transcriptomes for mapping

The 3’ UTRs gene annotations of the T. cruzi Dm28c 2018 (Grisard et al. 2014) were extended by 2500
base pairs as described in Briggs and colleagues (Briggs, Rojas, et al. 2021). The Dm28c 2018 genome was
appended with the T. cruzi maxicircle kDNA sequence. Two combined references were created with Cell
Ranger v6.0.0. Both of the combined references contained the Dm28c 2018 3’ UTR extended genome with
kDNA maxicircle sequences, while the combined reference 2 also contained the GRCh38 human reference

15.2.2 Mapping and counting of life cycle bulk RNA-seq samples

All samples were mapped against combined reference 1 using STAR on default parameters (Dobin et al.
2013). Count matrices for the samples were generated using featureCounts (Liao, Smyth, and W. Shi
2014). Where multi-mapping and multi-overlapping genes were not counted, the minimum overlapping
bases was 1 and paired reads were treated as a single fragment, not two individual reads. The MIX 1
dataset was also mapped against the Sylvio X10/1 genome (Franzen et al. 2011).

15.2.3 Processing and analysis of bulk RNA-seq samples

The genes whose read counts were less than 10 in 11 of our bulk RNA-seq samples were removed from
the dataset, as well as the kDNA maxicircle genes.

To identify marker genes for the different life cycle stages captured, the following process was em-
ployed. Each life cycle stage was contrasted with another using the default parameters of the results()
command in DESeq2 (Love, Huber, and Anders 2014). Genes were identified as markers of the life cycle
stage/sample if they were significantly DE (i.e. they had a Benjamini-Hochberg adjusted p-value < 0.05)
and higher expressed (Log2FC > 0.5) in the life cycle stages/samples compared to the other life cycle
stages/samples.

15.2.4 Mapping and counting scRNA-seq reads

For each sample, reads uniquely mapping to annotated genes on the created references were counted and
assigned to a cell using the Cell Ranger Count function (Cell Ranger v6.0.0 - Default settings). Samples
SE/MT and ADT were mapped against combined reference 2, while AMA6/24, EP/AMA120 and the
MIX1 and MIX2 samples were mapped against combined reference 1.

15.2.5 Quality control and processing of scRNA-seq samples

Count data output from Cell Ranger was loaded into an AnnData object for analysis using Scanpy (Wolf,
Angerer, and Theis 2018). Cell quality was assessed by looking at the total number of genes captured
per cell, the percentage of reads mapping to the kDNA maxicircle, and the percentage of reads mapping
to the human genome (for the samples that were mapped against combined reference 1, containing the
human genome). Cells with high numbers of genes detected were removed as they could be doublets.
Cells with low numbers of genes detected were removed as they may be dying cells or droplets which only
contained ambient RNA. Cells with high percentage mapping to the kDNA maxicircle were removed as
they may represent dying cells (Ilicic et al. 2016). Cells which had a high percentage of reads mapping
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to the human genome were removed as we want to only capture individual parasite cells for analysis.
The threshold values used for cell selection for each dataset are given in appendix table 1.

The count matrix of the AnnData (Virshup et al. 2021) objects for each sample were normalized
through the following process. A cell’s counts were divided by the total sum of counts for the cell,
multiplied by 1000, before 1 was added to each value of the count matrix (to remove 0 values), and then
finally the counts were transformed by natural logarithm. As some of the samples contain homogenous
populations of cells (e.g. the trypomastigote sample, which just contains trypomastigotes), no filtering
out of genes was performed, in order to retain genes which may uniquely define these subsets of these
seemingly homogenous populations.

The individual AnnData objects were then concatenated to make a single AnnData object, and the
normalised count matrix of all the genes and cells was stored in the raw layer of the AnnData object. The
top 2500 most variable genes (in terms of normalized dispersion) were found for the concatenated dataset;
these genes will be used for the scaling, dimensionality reduction, integration and clustering analyses
outlined below. As the entire kDNA maxicircle was compressed down to two genes (forward and reverse
sequence), the kDNA maxicircle genes were removed from the top 2500 most variable genes list in order to
make sure the levels of kDNA gene expression was not driving the clustering or dimensionality reduction.

The effect of total number of genes per cell was regressed out of the count matrix in the active layer
of the AnnData object, before the data was scaled to a mean of 0 and unit variance. Any scaled values
above 10 were clipped to 10. PCA was performed on the scaled and regressed matrix, with the first 50
principal components (PCs) being calculated.

15.2.6 Integration of T. cruzi atlas samples

The Harmony (Korsunsky et al. 2019) and Seurat V5 CCA (Y. Hao, T. Stuart, et al. 2024) integrations
were carried out in R (version 4.1.0). The mitochondrial genes were removed from the expression matrices.
The expression values were then normalised using the NormalizeData function and the top 2500 variably
expressed genes were identified. The normalised expression values were scaled and the PC embeddings
of the cells identified. The PC embeddings were used for the basis for Harmony an Seurat integration.
UMAP and Louvain clustering was then run on the first 10 integrated dimensions.

The final atlas integration was carried out using BBKNN (Polanski et al. 2020), with the batch key
being the metadata column containing which sample each cell came from. Default values were used,
apart from the number of PCs which was chosen to be 17, based on the variance ratio plot of the first
50 PCs. The BBKNN neighbour graph was used as the basis for creating a Uniform Manifold Approx-
imation and Projection (UMAP) (McInnes et al. 2018) embeddings of the data, and assigning cells to
clusters through the Leiden algorithm (Traag, Waltman, and Eck 2019) at a resolution of 0.7.

15.2.7 Cell cycle analysis of the T. cruzi atlas

The 305 T. cruzi cell cycle markers were taken from supplementary table 4 of Chávez and colleagues
(Chávez, Eastman, et al. 2017). Cell cycle mapping was carried out as described in Briggs and colleagues
(Briggs, Marques, et al. 2023). Briefly, for each individual dataset, the cell cycle genes were filtered down
to those which had at least one transcript captured in 10% or more of the cells in the dataset. For each
of the cell cycle phases (G1, S, G2), a score was calculated using the Seurat function MetaFeature. As
the original code was written in R, it was converted into equivalent Python code so it could be used
on AnnData objects. In order to express this score as a ratio, the MetaFeature score was divided by
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the mean score for each phase. Cells were assigned the phase based on whichever phase had the highest
score ratio, except if the cell had a phase ratio score of less than 1.05 for all phases, in which case it was
assigned as ‘Unlabelled’. The same process was repeated using the PCF and BSF T. brucei cell cycle
markers derived from Briggs and colleagues (Briggs, Marques, et al. 2023). The G1e and G1l genes were
combined into one G1 gene list.

15.2.8 Analysis of epimastigote to metacyclic trypomastigote transitions in scRNA-seq
data

The epi 2, meta 3 and epi meta trans 7 and 8 clusters were extracted from the atlas object into their
own object. All subsequent analysis was performed on this subsetted dataset.

The data was rescaled and reclustered in Scanpy before ForceAtlas (FA) 2 (Jacomy et al. 2014) em-
beddings were created for the cells and pseudotime analysis carried out with PAGA (Wolf, Hamey, et al.
2019). Cells with PAGA pseudotime values more than 0.65 were removed from the dataset. The data
was then converted to SingleCellExperiment (Amezquita et al. 2020) format for fitting of the general
additive models using tradeSeq (Van den Berge et al. 2020), across the PAGA pseudotime. For both
datasets, the models were fitted over 7 knots. An association test was then carried out to identify which
genes have significant expression changes over the pseudotime axis, where significant genes were those
with a log2FC more than 0.25, a Bonferroni corrected p-value of less than 0.05 and expression in at least
10% of cells in the dataset.

To generate the smoothed expression plot sorted by expression peak, the expression values of the genes
identified by tradeSeq as being DE were smoothed using the predictSmooth() function. The smoothed
expression values were then scaled, before they were fourier transformed using the FitWave function
from the metR library. The genes were then ordered by peak across pseudotime. Genes were defined as
early, middle or late based on the following criteria: Smoothed expression pseudotime between 0-16 =
early, 17 - 33 = middle, 34-50 = late.

15.2.9 Analysis of trypomastigote subsets

The trypomast 0 and trypomast 4 clusters were subsetted into their own object and the significantly
DE genes (absolute log2FC > 0.5, Bonferroni corrected p-value < 0.05) between the two clusters were
identified.

15.2.10 Reference mapping using the T. cruzi atlas

The following training to test data proportion sets were created: 0.95:0.05, 0.75:0.25, 0.5:0.5, 0.25:0.75
& 0.05:0.95. The training sets were then used to train a scPoli (De Donno et al. 2023) model and predict
the cell type of the test dataset. This process was repeated once more before weighted average f1-scores
were calculated. ScPoli was run using mainly default parameters apart from: an embedding dimension
of 7, the condition keys being the sequencing run, and sample IDs when training on the atlas training set.

15.2.11 Annotating an unrelated scRNA-seq run using the T. cruzi atlas

A new scRNA-seq dataset was generated from amastigotes isolated from 48 hpi cultures. Sample collec-
tion and library preparation followed the procedures described in sections 2.1.2, 2.1.3 and 2.1.5, except
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that the cultures of Vero infected cells were washed at 16 hpi rather than 6 hpi. A scPoli model was then
trained on the entire T. cruzi atlas and used to predict the cell type label of the 48 hpi amastigotes.

15.2.12 Package versions

STAR version 2.7.11a

FeatureCounts version 2.0.6

Analyses in Python were carried out on Python version 3.8.16. Specific package versions for Python
analysis are as follows: anndata – 0.9.1, h5py – 3.8.0, leidenalg – 0.10.1, matplotlib – 3.7.1, numpy –
1.24.3, pandas – 2.0.3, pip – 23.0.1, scanpy – 1.9.3, scvi-tools – 0.20.3, scArches – 0.5.10, seaborn –
0.12.2, scipy – 1.19.1, scikit-learn – 1.2.2, umap-learn – 0.5.3, bbknn – 1.6.0, fa2 – 0.3.5, igraph – 0.10.6,
pytorch-lightning - 1.9.5

Analyses in R were carried out on R version 4.1.0. Specific package versions for R analysis are as
follows: singlecellexperiment – 1.14.1, tradeSeq – 1.6.0, metR – 0.15.0, ComplexHeatmap – 2.8.0

16 Chapter 2: Discussion

In this chapter I have shown that not only can the transcriptome of T. cruzi be captured using scRNA-
seq, but that the information captured can allow a finer resolution view of the life cycle stages of T.
cruzi and the transition between epimastigote and metacyclic trypomastigote cells.

In the atlas, we defined clusters for all four of the major life cycle stages of T. cruzi, transitionary
cells between epimastigotes and metacyclic trypomastigotes, different development stages of amastigotes
and trypomastigote subsets, and validated their identity through matched bulk RNA-seq data and es-
tablished literature.

When predicting the life cycle stage annotations, the f1-scores varied between the life cycle stages.
The lowest scores tended to be the smaller clusters, such as the epi meta trans 7 and trypomast 9, and
thus their low scores could be explained by the lack of adequate training data for the task. Furthermore,
the weighted average f1-score tended to be ∼0.75 across the different training subsets. This score fits
into the ranges of weighted average f1-scores scPoli achieves for human datasets (De Donno et al. 2023),
meaning the predictive ability of the T. cruzi atlas is on-par with human datasets. With the annotation
of the 48 hpi amastigotes, we show that the atlas can be used to annotate novel data which is not
represented in the atlas. This result is especially important as one of the primary uses of the atlas is to
allow researchers to perform preliminary annotations of their own data using the atlas.

ScRNA-seq data from T. brucei (Briggs, Marques, et al. 2023) and Leishmania major (L. major)
(Marques, Laidlaw, Briggs et al, unpublished data) show that cells can be separated out and annotated
based on their cell cycle phase using scRNA-seq data. The lack of ability to replicate this in T. cruzi
using either a list of T. cruzi derived genes (Chávez, Eastman, et al. 2017) or syntenic orthologs from
T. brucei is thus an interesting observation. One reason for why this could be the case is that Chávez
and colleagues derived the cell cycle markers using DESeq (Anders and Huber 2010), which has been
obsolete since the publication of DESeq2 in 2014 (Love, Huber, and Anders 2014). Furthermore, when
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testing significance of a gene, they did not compare one cell cycle phase against all the others, but rather
which ones were next in the cell cycle. For example, to derive the cell cycle markers of S phase, they
compared the S phase sample with the G2M sample. On top of this, they only have one sample per cell
cycle phase, meaning DESeq2 cannot be run as it requires at least two samples per condition tested.
Given the low number of samples and out-of-date analysis software, this could lead to false positive cell
cycle associated genes being present in the list, leading to inaccurate cell cycle phase labelling. While
this could explain why the T. cruzi derived genes did not lead to successful annotations, the cell cycle
phase annotations for the L. major analysis were derived from syntenic orthologs of the T. brucei genes
and were accurate, which is not the case for the T. cruzi data.

An alternative explanation for why the cell could not be correctly annotated is that cell cycle is
regulated at the translatome or proteome level. This would fit with the findings of this thesis chapter,
where the T. cruzi cells could not be successfully annotated with a list of cell cycle phase marker genes
derived from T. brucei or T. cruzi itself. In fact, another paper by Chávez and colleagues (Chávez,
Urbaniak, et al. 2021) suggests that the parasite does regulate cell cycle at the levels of translatome and
proteome, although why this differs from Leishmania and T. brucei remains an interesting question.

The other possible option is that the T. cruzi cell cycle phase is able to be accurately annotated
using transcript level data, but the genes involved are not orthologous to ones in T. brucei, nor were
they correctly derived in the paper by Chávez and colleagues (Chávez, Eastman, et al. 2017). To confirm
whether or not this is the case, a new experiment should be carried out where multiple bulk RNA-seq
samples are collected for each phase, and DESeq2 is used to analyse the data.

Trypomastigotes in the blood and in culture have two morphological forms: slender and broad. Slen-
der forms display increased infectiveness of host cells in comparison to the broad forms as they can
infect cells via direct invasion of host cells, while the broad forms infect through phagocytosis (Brener
and Chiari 1963, Schmatz, Boltz, and Murray 1983 & Martin-Escolano et al. 2022). Other research has
demonstrated that there exists two subsets of trypomastigote, which have high and low expression of
trans-sialidase protein, with the trans-sialidase high cells being able to effectively invade host cells, while
their lowly expressing counterparts having significantly reduced infection capability (Pereira et al. 1996).
While the previously cited paper did not comment on the morphology of the two subsets, and the images
taken of the two subsets are not high definition enough to distinguish morphological differences, these
could represent the broad and slender form trypomastigotes. In our data we have captured two clusters,
one with high trans-sialidase (trypomast 4) and one with low trans-sialidase expression (trypomast 0),
which may correspond to these two subsets.

Having characterised functional differences between the two subsets, the next question is what fac-
tors might influence the cells to go towards these different forms. As stated above, RBPs can influence
cellular processes and differentiation, and thus may influence trypomastigote form. Orthologs of the T.
brucei genes RBP10 and ZC3H32 were markers of the trypomast 4 cluster, both of which are associated
with the BSF stages of T. brucei. ZC3H32 knockout is fatal to BSF but not PCF (C. Klein, Terrao,
and Clayton 2017), and RBP10 is only expressed at the protein level in BSF forms (B. Liu and Clayton
2022). Furthermore, lack of RBP10 expression in BSF T. brucei causes them to transition into PCFs,
and expression of RBP10 in PCFs causes them to transition to BSFs. These previous findings mark
these RBPs as being key markers of parasites while in the mammalian host and, combined with the
findings of this analysis, may implicate them as a marker of invasive trypomastigotes.

Ultimately, these findings are speculative as there is uncertainty over whether these two clusters rep-
resent the two trypomastigote subsets, and no wetlab validation has been carried out of these findings.
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To date, only cell morphology, infection capability and, perhaps, trans-sialidase protein expression have
been used to distinguish the subsets. Future research should thus be undertaken to isolate these two
populations, and to perform transcriptomic and proteomic analysis on the samples to see whether or not
these two clusters match to the biological relevant subsets of trypomastigote.

Through the interpretation of the genes that were found to be significantly changing in expression
across the pseudotime axis, we show that the process of metacyclogenesis has been captured. The
downregulation of L-threonine metabolism genes over the course of metacyclogenesis may reflect the
parasite preadapting to the mammalian environment by switching off redundant metabolism associated
processes, similar to the metacyclic forms in T. brucei (Christiano et al. 2017). The upregulation of
Chagasin towards the end of the pseudotime axis demonstrates that the metacyclic trypomastigotes may
be preparing to invade host cells when passed back into the mammalian host.

The finding that several genes encoding homologous recombination proteins peak during the middle
of metacyclogenesis is an interesting finding. Previous studies have shown that overexpression of RAD51
in epimastigotes promotes resistance to some oxidative stresses, and overexpression in amastigotes leads
to higher intracellular parasitaemia (Gomes Passos Silva et al. 2018). The roles of the recombination
proteins in metacyclogenesis has not been commented on. Interestingly, mRNA levels of RAD51 pos-
itively correlate with dormancy in epimastigotes, and heterozygous knockout of RAD51 in CL Brener
parasites leads to a reduction in dormant epimastigotes (Resende et al. 2020). Dormancy as a biological
concept has been discussed in T. cruzi and bacteria and fungi (Harms, Maisonneuve, and Gerdes 2016
& Sánchez-Valdéz et al. 2018) with the common definition being that dormancy represents a reversible
state a cell enters where its growth and metabolism slow down, allowing it to survive certain stresses.
Exposure to drugs are one such stress, with dormant T. cruzi amastigotes generally more resistant to
drugs than non-dormant cells (Sánchez-Valdéz et al. 2018). Interestingly, these dormant amastigotes
occur without initial drug stresses, suggesting they are not induced into dormancy by drug exposure;
leaving the driver of dormancy in amastigotes unknown (Sánchez-Valdéz et al. 2018). In the paper
by Resende and colleagues (Resende et al. 2020), they induce epimastigote dormancy through starving
the cells of nutrients over six days, leading to the generation of stationary epimastigotes. Whether or
not stationary epimastigotes are dormant cells is up for debate. Stationary epimastigotes are cell cycle
arrested and undergo metabolic changes in comparison to exponential phase epimastigotes (Barisón et
al. 2017), which could fit the definition of cellular dormancy. As nutrient starvation is used to induce
metacyclogenesis (MacLean et al. 2018), factors which influence cell dormancy may be important in the
process, such as the recombination proteins.

Along with metabolic, repair and invasion protein gene expression changes, we also identify changes
in expression of RBP genes across the pseudotime axis that are known to be associated with metacyclo-
genesis. This gives further evidence that this process is captured in the atlas data.

While the markers of metacyclogenesis mentioned previously validate that we have captured the pro-
cess of metacyclogenesis in the atlas data, they do not reveal insights into the process that were not
previously described. It is thus important that we have not only captured known markers of metacy-
clogenesis, but also identified RBPs which have not previously been associated with metacyclogenesis.
These markers thus represent possible novel findings in terms of metacyclogenesis associated markers,
and work should be done to generate KO models for these genes to see whether the KOs affect the
process of metacylogenesis.

With this analysis we have established a bedrock of T. cruzi transcriptomic heterogeneity, which
future researchers can build their research upon. That is not to say we have created an exhaustive atlas
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of the parasite transcriptome. The main transition captured in the atlas was between the epimastig-
otes and metacyclic trypomastigotes, leaving the trypomastigote to epimastigote and trypomastigote to
amastigote transitions uncaptured due to them not being carried out and the amastigote to trypomastig-
ote transition uncaptured due to large differences in transcriptome. Furthermore, these transcriptomic
changes are reflective of what occurs in parasite under in vitro conditions, which may not reflect what
changes occurs in the parasite in vivo.

All of the above is not to say that this atlas is a perfect representation of the T. cruzi life cycle, as
certain observations exist which do not fit with the biology of the system. One example of this is that
while the AMA6/24 sample has many cells present in the early mid amast 5 cluster, these cells also make
up part of the epi meta trans 7 cluster. There are a variety of reasons why this could have occurred,
the most likely of which are due to difficulties with integration and difficulties working with non-model
organisms. We tested out Seurat V5 CCA, BBKNN and Harmony to integrate the datasets, and came
to the conclusion that BBKNN and Harmony performed well, but that doesn’t mean they performed
perfectly, and some cells could be badly integrated. Integration of parasite data is itself a problematic
procedure as the tools used to integrate were most likely only tested on mammalian datasets which, in
general, have better annotated transcriptomes and thus more dynamic expression data. This becomes
increasingly strained for Trypanosomatids which are not only parasites, but have a different mode of gene
expression to other parasites and mammals. As stated in the introduction, the combined problem of
many integration methods, but lack of consistent ways to assess integration method performance, makes
choosing the correct integration method for datasets difficult. On top of this, most trypanosomatid
scRNA-seq datasets are of T. brucei (Briggs, Rojas, et al. 2021, Briggs, Marques, et al. 2023, Vigneron
et al. 2020, Howick, L. Peacock, et al. 2022 & Hutchinson et al. 2021), the most studied trypansomatid.
The presence of AMA6/24 sample cells in the epi meta trans 7 cluster may also explain why it is the
second most predicted cluster ID for the 48 hpi amastigote dataset analysis.

Although we have presented biological evidence for our life cycle stage assignments to clusters, we
cannot be 100% confident that the clusters represent what we say they do, and thus future users of the
data should be wary of this limitation. Despite limitations, this atlas is the first step in dissecting the
T. cruzi life cycle at single cell resolution to better understand what transcriptomic changes define the
transitions between its host and vector stages and the variability of cell phenotype within specific life
cycle stages.

17 Chapter 3: Transcriptomic analysis of RBP6 overexpres-

sion induced T. brucei insect life cycle stages

Unlike the mammalian stages (and their transitions) which can be captured in vitro, the insect stages of
T. brucei (under WT conditions) requires the presence of its vector: the tsetse fly. This makes captur-
ing the insect life cycle stages more difficult and as a consequence knowledge of their transitions is not
as great compared with the mammalian stages. In this chapter I implement the RBP6 overexpression
model of T. brucei insect stage development and apply scRNA-seq to the model in order to identify the
drivers of life cycle stage transition. The results show that the transcriptomic signature of epimastigotes
are seemingly absent in the RBP6 overexpression dataset, while a population of PAG expressing cells is
present which may be generated by the RBP6 overexpression process. I also highlight a lack of consis-
tency in integration method performance for T. brucei scRNA-seq datasets.
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18 Chapter 3: Introduction

Within the insect and mammalian forms of T. brucei (T. brucei), the parasite undergoes many transitions
between different distinct life cycle phases (Matthews 2005). The transitions within the mammalian
stages, slender to stumpy (Reuner et al. 1997, Rojas et al. 2019), and between mammalian and insect
stages, stumpy to PCF (Czichos, Nonnengaesser, and Overrath 1986, Dean et al. 2009, Schuster et al.
2021 & Ngoune et al. 2024), are well understood in terms of the mechanisms that allow their progression.
This stands in contrast to that of the insect stage life cycle transitions, where the mechanisms that drive
the transitions are largely unknown. While the slender to stumpy and stumpy to PCF transitions for
wild type cells can be captured in vitro (Cross and Manning 1973, H. Hirumi, Doyle, and K. Hirumi 1977,
Czichos, Nonnengaesser, and Overrath 1986), this is not the case for the transitions in the insect stages,
i.e. PCF to epimastigote and epimastigote to metacyclic. Like many organisms, control of transition
in T. brucei is partially done through changes in transcriptome. As such, bulk and single cell RNA-seq
techniques have been applied to shed more light on what drives the transitions in these stages, revealing
gene expression differences in metabolism, surface coat, environmental responses, among others (Telleria
et al. 2014, Vigneron et al. 2020, Hutchinson et al. 2021, Howick, L. Peacock, et al. 2022). In vivo work
is required to capture these transitions by infecting tsetse flies with stumpy form parasites. However,
there are complications with this approach such as the efficiency of infection (Ngoune et al. 2024), and
the need to isolate the parasites from the tsetse fly itself. Thus, ways to try and capture the insect life
cycle stages in vitro has been of key interest to T. brucei researchers.

The polycistronic nature of gene expression in the parasite means that it is largely facilitated through
controlling mRNA stability and splicing post transcriptionally, rather than through controlled activation
of RNA II polymerase activity (Fernandez-Moya and Estevez 2010). Therefore, mRNA binding factors
are important in facilitating the transitions in the life cycle forms. Because of their role in gene regu-
lation, targeting these mRNA binding factors has been shown to cause changes in the steady state of
cells. The first paper to describe such an effect was from Kolev and colleagues (Kolev, Ramey-Butler,
et al. 2012), who showed that overexpressing the gene encoding RNA binding protein 6 (RBP6 ), in
PCFs over several days, causes the emergence of morphologically epimastigote and metacyclic stage
cells, and the switching on of VSG protein expression. The metacyclics generated using the RBP6
overexpression model can be transitioned to mammalian stages through in vivo infection of mice, but
not in vitro (Fig.18). In vitro transitions of RBP6 metacyclics to mammalian stage forms would be
shown in a later paper by the authors in which they isolated a mutant strain of T. brucei where a single
point mutation (substituting a glutamine (Q106) for a lysine) in the RBP6 gene allowed for the in vitro
transition of metacyclics into the mammalian stages when RBP6 was overexpressed (H. Shi, K. Butler,
and Tschudi 2018). The only downside to this second model of T. brucei development, is the apparent
lack of epimastigote generation, as shown by the lack of brucei alanine-rich protein (BARP) protein
expression (Fig.18). Further papers highlighted more factors involved in differentiation, most notably
RBP10, where RNA interference (RNAi) caused slender stage parasites to become cell cycle arrested,
express the stumpy specific marker PAD1, and be able to transition into PCFs when RNAi was induced
(Mugo and Clayton 2017) (Fig.18). Furthermore, the authors also showed that expression of RBP10 in
in vitro cultured PCFs (derived from mammalian form cells) had reduced growth, but proliferated and
expressed variable surface glycoprotein (VSG) when transferred to mammalian form culture conditions.
Whether these cells entered a stumpy stage is unknown (Mugo and Clayton 2017) (Fig.18).

As some insect form life cycle stages are left out in the RBP10 and RBP6 point mutation models,
this leaves the RBP6 overexpression model the in vitro approach which appears to most accurately
reflect the in vivo life cycle of the parasite. The model has already been used to examine metabolic
changes that occur across the insect stage transitions (Dolezelova et al. 2020), so its applicability to
investigate the different insect stages has been validated, and thus would make a good model for inves-
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Figure 18: Diagram showing the progression of the in vivo T. brucei life cycle and genetic
alteration mediated in vitro life cycles

Diagram showing how the T. brucei life cycle progresses across the in vivo life cycle (black line) and
various in vitro models of the life cycle such as: RBP6 overexpression (red), RBP6 mutant

overexpression (orange), RBP10 overexpression (green) and RBP10 deletion (blue). The background of
the diagram details whether the life cycle stages are found in the host (pink) or vector (light blue). A

mix of the two colours shows that the life cycle stages are found in both.
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tigating the transcriptomic changes that occur during transitions between the insect stage forms. As
cells do not necessarily transition in synchrony, methods like bulk RNA-sequencing are ill advised to
capture the transcriptome of asynchronous cell-cell transitions, as their transcriptomic signal could be
silenced or clouded by the signal from non-transitionary cells. Single cell RNA-sequencing (scRNA-seq),
on the other hand, allows the transcriptome of individual cells to profiled, avoiding the issue of clouded
signal. In the context of T. brucei, scRNA-seq has been applied across various papers to profile different
life cycle stages of the parasite and its transitions. The first application was by Müller and colleagues
(Müller et al. 2018) who used scRNA-seq to show that mVSG gene expression switching can be induced
through deletion of histone variants. Vigneron and colleagues (Vigneron et al. 2020) were next, profil-
ing the SG of infected tsetse flies to better understand the process of metacyclogenesis. Through this,
the authors identified several surface marker genes of metacyclic cells, notably SGM1.7. Briggs and
colleagues (Briggs, Rojas, et al. 2021) were the first to analyse the mammalian stages of the parasite,
capturing the transition of slender into stumpy BSFs under WT conditions and when the transition is
blocked due to knockout of the gene encoding ZC3H20. Hutchinson and colleagues (Hutchinson et al.
2021) captured cells from the SG of the tsetse fly in order to identify the dynamics of mVSG expression,
identifying pre-metacyclic cells which transcribe more than one mVSG. Howick and colleagues (Howick,
L. Peacock, et al. 2022) also utilised scRNA-seq to analyse cells in the SG, focusing on the sexual forms
of the parasite and identifying conserved markers of these forms.

In this chapter, we implement the RBP6 overexpression in T. brucei PCFs in vitro, and confirm that
it leads to the emergence of morphologically epimastigote form cells. I also perform scRNA-seq on the
RBP6 overexpression PCFs at three pooled timepoints post inducement. I show that the scRNA-seq
and previously described bulk RNA-seq results mirror each other in terms of transcriptional changes of
marker gene expression at different points post inducement. I also show an apparent lack of epimastigote
cell generation by the RBP6 overexpression system as well as the possible presence of life cycle stages
which may not have a parallel in the in vivo system. Finally, we show that the transcriptome of RBP6
overexpression cells matches neither in vivo derived insect stage cells or in vitro non-differentiating PCFs,
with many genes differentially expressed between the datasets, including key metabolic genes.

19 Chapter 3: Results

19.1 Implementing RBP6 overexpressing PCFs

Primers specific to the 427 Lister strain RBP6 gene (Tb427.03.2930) were taken from the original authors
paper (Kolev, Ramey-Butler, et al. 2012), with a one base substitution in the reverse primer (to match
the genomic sequence of the 427 Lister RBP6 gene), and used to PCR-amplify the RBP6 nucleotide se-
quence from 427 Lister gDNA. The PCR product was analysed using gel electrophoresis, a band between
the 600 and 800 base pair (bp) DNA ladder bands was seen (Fig.19A). The predicted sequence length
of the RBP6 Open Reading Frame (ORF) in Lister 427 is 726 bp, which would fit with the location of
the band within the gel; thus a sequence of DNA from the Lister 427 gDNA of roughly the same length
as the RBP6 gene in Lister 427 was successfully amplified.

To engineer a plasmid which would allow the overexpression of the RBP6 gene, the pLEW100v5
plasmid was utilised (Wirtz et al. 1999), as it allows for tetracycline-induced overexpression of a gene
in parasites which have both a tetracycline repressor and the T7 RNA polymerase. Digestion of the
plasmid with the restriction enzymes BamHI and HindIII should separate the plasmid into the insert
(1877bp in length) and the backbone (5808bp in length). The digested plasmid, ran on an agarose gel,
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Figure 19: Gel electrophoresis results for the amplification of RBP6, digestion of pLEW100v5
and digestion of engineered RBP6 overexpression plasmid

Photographs of agarose gels from gel electrophoresis experiments of the digested pLEW100v5 plasmid
(A), PCR amplified RBP6 gene + negative control without polymerase (B) and the cut engineered

plasmid containing the pLEW100v5 backbone and the RBP6 gene insert (C).

showed two strong bands near the 2000bp and 6000bp bands of the DNA ladder (Fig.19B). These results
show that the plasmid can be successfully separated into the backbone and insert.

The backbone of the plasmid was extracted from the gel and purified prior to ligation with the
amplified RBP6 ORF, creating the RBP6 overexpression plasmid (OE-plasmid). To see if the length of
the new insert matched that of the RBP6 gene, a digestion with HindIII and BamHI was carried out.
The results show two bands of similar lengths to the 850bp and 6000bp DNA ladder bands (Fig.19C),
showing that the insert of the OE-plasmid has the same bp length as the RBP6 gene. To ensure that the
RBP6 gene sequence was successfully ligated into the OE-plasmid without loss of information, Sanger
sequencing was performed on the insert site of the OE-plasmid, utilising primers which bound upstream
(primer JM42) and downstream (primer HDK430) of the insertion site. The sequences were aligned to
the Lister 427 RBP6 ORF using EMBOSS Needle (Madeira et al. 2024) (appendix file 19 & 20) as well
as Benchling, with both of the primers binding the RBP6 ORF, however the HDK430 primer bound
on the RBP6 ORF itself, rather than downstream of it (Fig.20A). The alignments revealed possible
frameshifts and single nucleotide polymorphisms, although many of these were not captured by both the
forward and reverse Sanger sequences (Fig.20C). Both sequences however showed a deletion of a CAA
repeat compared with the reference RBP6 ORF (Fig.20B).

The OE-plasmid was then cloned into transformation competent DH5-α E. coli to allow OE-plasmid
stocks to be replenished if the original batch was depleted. Several transformation attempts were made,
leading to the generation of a plate with clones, which were isolated and stored long-term at -80°c. The
linearized OE-plasmid was then transfected into the tetracycline-induced overexpression competent 29:13
Lister 427 PCFs (Wirtz et al. 1999), with two clones generated after drug selection: clone C1 and clone

84



Figure 20: Alignments of the Sanger sequences against the 427 Lister RBP6 ORF

Various screenshots showing the nucleotide alignment of the forward (bottom track) and reverse
(middle track) Sanger sequences against the RBP6 ORF from Lister 427 (top track). These

visualisations show the start of the reverse Sanger sequence (A) as well as deletions (B) and frameshift
and single nucleotide polymorphisms (C) in the Sanger sequences compared to the RBP6 ORF.

D5.

One of the effects of RBP6 overexpression induction should be a decrease in growth of the parasite
(Kolev, Ramey-Butler, et al. 2012). This is due to the fact that metacyclics are quiescent, unlike the
PCFs and epimastigotes. Thus, when RBP6 overexpression is induced in the transfected clones, there
should be a decline in the growth curve. The C1 and D5 clones were split into two cultures each, one
where RBP6 overexpression was induced with 10 µg/ml of tetracycline and one where it was not. The
parasites were then cultured for seven days, with the parasites being passaged down to 2x105 cells/ml
each day. While the uninduced clones maintained approximately the same density across the seven days,
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a steady decline in density of the induced clones can be seen over the same time period (Fig.21). These
results provide evidence that RBP6 overexpresson is working, in that, generation of non-replicating cells
by RBP6 overexpression would reduce cell density relative to the uninduced at each passage, but does
not prove it.

Figure 21: Growth curve of the engineered RBP6 overexpressing clones

Concentrations of the C1 and D5 RBP6 overexpression clones when induced to express RBP6 over
seven days. For each clone, an uninduced culture was kept for the same length of time. The cells were
cultured in SDM-79. Each line represents one culture. The culture samples with ’+’ represent that

they are induced with tetracycline while ’-’ indiciates they were not induced by tetracycline.

As mentioned, Shi and colleagues (H. Shi, K. Butler, and Tschudi 2018) reported that a mutation in
the RBP6 gene, which causes a glutamine (Q106) to be replaced by a lysine, leads to major changes in
the RBP6 overexpression process. As one mutation can have such a major effect on the outcome of the
RBP6 overexpression process, the presence of many amino acid changes in the RBP6 insert ORF of the
engineered plasmid may complicate the results. Given these concerns, all future sections in this thesis
which involve the RBP6 overexpression model, were carried out using an established RBP6 overexpres-
sion cell line gifted by Dr Lucy Glover of the Institut Pasteur. Furthermore, at the suggestion of Dr
Lucy Glover, when the cells were being induced to overexpress RBP6, they were maintained in SDM-80,
not SDM-79. SDM-80 and SDM-79 are very similar culture mediums, with SDM-79 containing a higher
concentration of glucose than SDM-80 does. SDM-80 also contains a higher concentration of proline,
thus SDM-80 is more reflective of the parasite environment (Schönenberger and Brun 1979 & Lamour
et al. 2005).

To ensure the new RBP6 overexpression parasites behaved as expected, a parasite growth curve of
the cells induced to overexpress RBP6 was compared with uninduced parasites. A growth defect in the
RBP6 overexpression induced parasites can be seen from day three onwards, however a 42.3% decline
in uninduced sample cell density was seen between day three and day four, before increasing by 53.2%
between day four and day five (Fig.22).

86



Figure 22: Growth curves of the gifted RBP6 overexpression cells

Concentrations of the RBP6 overexpression cells (gifted by Dr Lucy Glover) over five days of RBP6
overexpression inducement, as well as an uninduced control. The induced cells were cultured in
SDM-80 while the uninduced cells were cultured in SDM-79. Each line represents one culture.

19.2 Image analysis of the Pasteur RBP6 overexpressing cells

To validate that the RBP6 overexpressing cells were changing into epimastigotes and metacyclics, an
immunofluorescence assay (IFA) was carried out. To distinguish the different stages, an anti-EP procy-
clin and anti cross-reacting determinant (CRD) (the latter gifted to us by Dr Lucy Glover) was utilised.
CRD is an epitope on the glycosyl-phosphatidylinositol anchor of the VSGs, meaning it can be used to
distinguish metacyclics, which express VSG, from epimastigotes and PCFs, which do not (Zamze et al.
1988). EP procyclin, on the other hand, is expressed on PCFs and epimastigotes, but not on metacyclics
(Acosta-Serrano et al. 2001). To separate PCFs from epimastigotes, the positioning of the DAPI-stained
nucleus and kinetoplastid was assessed, as the kinetoplastid is closer to the posterior end of the cell than
the nucleus in epimastigotes, while the opposite is true of PCFs (Sunter and Gull 2016).

IFAs were carried out for three, four and five days post- RBP6 overexpression induction. Uninduced
cells were also cultured for this length of time as a control. Information from Dr Lucy Glover suggested
that these days were the optimal time points, as the cells should be at the boundaries of PCF to epi-
mastigote, and epimastigote to metacyclic, transitions. The growth curve of the cells captured for IFA
can be seen in Figure 22.

For each of the timepoints, IFAs of tetracycline induced and uninduced cells were taken. The induced
and uninduced day four and induced day three samples were not processed due to bad slide quality and
the day five uninduced sample slide was accidentally broken.
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Figure 23: CRD and EP procyclin protein expression

IFA images of cells from uninduced cells three days post experiment start and RBP6 overexpression
induced cells five days post inducement (A). Representative images at day five post RBP6

overexpression of possible epimastigote cells (B). Scale bars are 3µm.
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All cells in the uninduced day three sample were anti-EP procyclin and anti-CRD positive across
the cell body, with some cells having visually higher fluorescence of anti-CRD than others (Fig.23A).
In the uninduced day three cells, no anti-CRD fluorescence should be detected, as the cells should be
PCFs. The presence of staining with anti-CRD suggests perhaps the antibody is non-specific or the
overexpression of RBP6 is leaky and thus metacyclic forms are generated. No cells with its kinetoplastid
closer to the posterior of the cell than the nucleus could be seen in the day three uninduced sample,
suggesting no epimastigote cells are present.

The induced day five sample cells were also anti-EP procyclin and anti-CRD positive, with some cells
having visually higher fluorescence of anti-CRD than others (Fig.23A). The anti-CRD fluorescence was
distributed across the cell body in all the induced day five cells, while the anti-EP procyclin fluorescence
pattern was not distributed across the cell body in all the cells. Five cells (out of 19) had anti-EP
fluorescence across the cell body (Fig.23B Top & Middle row), while 14 cells (out of 19) had localised
expression of anti-EP that formed spots (Fig.23A). The anti-EP procyclin localisation on the day five
post-inducement bears a striking resemblance to intracellular IFA images of PCFs, where EP procyclin
is inhibited from being trafficked to the surface (L. Liu et al. 2013). These anti-EP spots could represent
cellular debris, however the bright field view of the slide was obscured by general debris across all of the
IFAs taken, making this possibility difficult to assess.

For the induced day five sample, cells with their kinetoplastid closer to the posterior end could be
seen (Fig.23B Top row), suggesting epimastigotes were generated. Definitively identifying epimastigotes
was difficult as many cells could be seen in which their kinetoplastid and nucleus overlapped (Fig.23B
Middle & Bottom row).

These results of the IFA show that despite the fact that the uninduced sample should be expressing
RBP6 at baseline levels, metacyclic-like cells have been generated in the sample (as marked by anti-CRD,
yet retained EP procyclin). This could suggest either leaky RBP6 overexpression, or high amounts of
non-specific antibody staining. The leaky overexpression hypothesis may explain why the uninduced
samples had drops in cell density consistent with RBP6 overexpression. Furthermore, the differentiation
induced by RBP6 overexpression does not appear to be fully complete, as all cells are both EP procyclin
and CRD positive across the induced and uninduced samples.

19.3 Single cell RNA sequencing data analysis of the RBP6 overexpression
model of T. brucei development

19.3.1 Capturing the transcriptome of RBP6 overexpressing single cells

A staggered RBP6 induction was carried out to generate three samples on the day of scRNA-seq sample
collection: day three, day four and day five post-induced RBP6 overexpression. The cells from each
induced sample were mixed together with a day three:day four:day five cell count ratio of 1:2:2, before
scRNA-seq was carried out (Fig.24). More day four and five cells were taken in comparison to day three
to ensure a greater chance of capturing metacyclics, as they make up a greater proportion of cells later
in the inducement process.

89



Figure 24: Growth curves of the RBP6 overexpressing cells before scRNA-seq

Concentrations of the RBP6 overexpressing cells after different lengths of overexpression inducement
(three days, four days and five days) as well as an uninduced control. The overexpression-induced cells
were collected for scRNA-seq on the fifth day of the experiment. The induced cells were cultured in

SDM-80, while the uninduced cells were cultured in SDM-79. Each line represents one culture.

19.3.2 Overview and quality control of the RBP6 overexpression scRNA-seq dataset

The scRNA-seq data was mapped against a combined reference of the TREU927 genome (with 3’ UTRs
extended by 2500bp) (Briggs, Rojas, et al. 2021), kDNA genes and mVSG genes (Hutchinson et al. 2021)
using the 10X Cellranger Count pipeline. Approximately 16000 cells were sent for sequencing, with the
filtered output of 10X Cellranger Count returning 11458 cells, with 1117 median genes returned per cell
and 1644 median UMIs per cell. While 90.2% of the reads mapped to the reference genome, only 27.9%
of the reads mapped confidently to the genome, signifying most of the reads captured mapped to more
than one gene. There was only a drop of 3.8% between the reads confidently mapping to genome and
reads confidently mapping to the transcriptome (24.1%). Genes whose reads were captured in less than
10 cells in the dataset were also removed, leaving 8589 genes.

The percentage of reads mapping to genes from the kDNA or ribosomal RNA (rRNA) were then cal-
culated for each cell. The median values of these across the dataset were 1.99% and 1.82%, respectively
(Fig.25B, C). These metrics, along with the total number of genes captured per cell, were used to filter
out low quality cells. Cells with percentage of kDNA reads more than 5, percentage of rRNA reads more
than 4.5, and number of genes per cell less than 400 were removed from the dataset, as these are likely
to be stressed, dying or ambient cells (Fig.25B, C). Cells whose number of genes per cell was more than
2500 were also removed, as these could represent doublets. After these quality control steps, 10965 cells
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Figure 25: Quality control metric values for the RBP6 overexpression scRNA-seq dataset

Violin plots showing, for each cell in the dataset, the number of genes captured per cell (A), percentage
of reads that map to ribosomal RNA genes (B) and percentage of reads that map to kinetoplastid DNA

genes (C).

91



were left in the dataset (Fig.25A).

The count expression values were normalised by the total sum of UMI per cell, log(x+1) transformed
and scaled by the median total counts across all the cells. To choose which genes would make up the
feature space of the analysis, the top 2000 highly variable genes were found using Seurat.

The data was then scaled and the effect of total UMI count of a cell regressed out of the scaled
expression data. Principal Component Analysis (PCA) was then carried out on the scaled, regressed
expression values of the 2000 highly variable expressed genes across all the cells. Louvain clustering was
then run on the dataset using the first 12 Principal Components (PCs), with a clustering resolution of
0.6 chosen (generating 9 clusters) (Fig.26A, C). Cells were then embedded in a 2 dimensional space using
UMAP, using the first 12 PCs as the basis for UMAP embedding calculation.

Across the insect stage development, cell cycle status changes, with PCFs and epimastigotes being
replicative and metacyclics arrested (Taylor et al. 2020). To see what phase of the cell cycle each of the
cells in the dataset were in, a method outlined by Briggs and colleagues (Briggs, Marques, et al. 2023) was
used to assign a cell cycle phase score to each cell and then assign a phase label depending on the highest
score. The cell cycle phases considered were early G1 (G1e), late G1 (G1l), S or G2/mitosis (G2M).
The majority of the cells in clusters 2 and 5 were assigned as being in S-phase of the cell cycle, while
cluster 4 was dominated by cells which were assigned a G1l label. Cluster 7 had more than 50% of the
cells assigned the G1e label and cluster 3 was mainly cells labelled as G2M (Fig.26B, D). The rest of the
clusters did not have a particular cell cycle phase identity, making up a majority of the cells (Fig.26B, D).

19.3.3 Regressed analysis of the RBP6 overexpression scRNA-seq dataset

The above analysis shows that the cell cycle was one of the key determinants of cell clustering and em-
beddings in the low dimension spaces when analysing the RBP6 overexpression data (Fig.26B, D). The
strong signal of the cell cycle could thus be masking the biological signal of the insect life cycle stage
transitions. The scRNA-seq analysis of the RBP6 overexpression dataset was therefore repeated, with
the effect of cell cycle phase score regressed out of the data, and the 130 cell cycle genes that were in the
variable feature space removed. PCA was carried out again, with the first 10 PCs being used to generate
Louvain clustering (at a resolution of 0.6) and 2D UMAP embeddings (Fig.27A, B, C). The cell cycle
label distribution across the clusters was now more uniform, with no cell cycle label being the majority
in any cluster. Cluster 5, however, had just under 50% of its cells labelled as G1e phase (Fig.26B, D).
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Figure 26: Analysis of the RBP6 overexpression scRNA-seq dataset with total UMI count
regressed out

Clustree plot showing how cells are assigned to clusters across different resolutions for Louvain
clustering. The final chosen resolution is outlined in a black rectangle (A). UMAP embeddings of the

RBP6 overexpression scRNA-seq cells coloured by cell cycle phase (B) and cluster identity (C).
Proportion plot showing the proportion of cells within each cluster that have a given cell cycle phase

annotation (D).
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Figure 27: Analysis of the RBP6 overexpression scRNA-seq dataset with total UMI count
and cell cycle phase regressed out.

Clustree plot showing how cells are assigned to a cluster across different resolutions for Louvain
clustering. The finalised resolution is outlined in a black rectangle (A). UMAP embeddings of the
RBP6 overexpression scRNA-seq cells coloured by cell cycle phase (B) and cluster identity (C).

Proportion plot showing the proportion of cells within each cluster that have a given cell cycle phase
annotation (D).

94



Figure 28: Effect of ribosomal protein encoding gene expression on the PCA embedding of
the RBP6 overexpression scRNA-seq

PCA embeddings of the RBP6 overexpression scRNA-seq dataset, coloured by the ribosomal protein
encoding gene meta feature (A). Dotplot of the top 25 genes most associated with the positive and

negative end of PC1 (B). Dotplots showing the relationship between ribosomal protein encoding gene
meta feature and PC value (PCs 1-4) for all the cells. Lines represent a linear regression line, with

accompanying R value (C).
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Cells with high expression of ribosomal protein-encoding genes were located towards the positive side
of PC1, while the cells with low expression appeared to be towards the negative side of PC1 (Fig.28A).
To see whether ribosomal protein expression explains the positioning of cells across the PCs, the re-
lationship between ribosomal protein-encoding gene meta feature and the first four PCs was assessed.
While all the p-values returned were less than 0.05, the R values for PC2, PC3 and PC4 were all close
to zero. The relationship between PC1 and ribosomal protein meta feature had an R of 0.89, suggesting
a strong correlation between the two variables (Fig.28C). Furthermore, the top 25 genes associated with
the positive values of PC1 were all ribosomal protein-encoding genes (Fig.28B). These results suggest
that ribosomal protein gene expression is one of the major signals of the RBP6 overexpression scRNA-
seq dataset, and explains the most variation in the cells.
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Figure 29: Analysis of the RBP6 overexpression scRNA-seq dataset with total UMI count,
cell cycle phase and ribosomal protein encoding gene expression regressed out.

Dotplot showing the relationship between ribosomal protein encoding gene meta feature and PC 1 for
all cells where ribosomal protein gene meta feature scores is regressed out. Line represents a linear
regression line, with accompanying R value (A). UMAP embeddings of the RBP6 overexpression

scRNA-seq cells coloured by cluster annotations (B). Violin plots showing the normalised expression of
(left to right): GPEET, EP1 procyclin, EP2 procyclin and BARP (C). Heatmap showing the scaled,
normalised expression of the top 10 marker genes (in terms of log2FC) averaged across cells in each of

the annotated clusters (D). Legend in the bottom right corner shows the cluster number and
annotation labels of the clusters as seen in B, C and D.
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Given the above data, a new analysis was performed where the effect of ribosomal protein-encoding
gene expression, cell cycle and total UMI count was regressed out of the dataset. Regressing out ribo-
somal protein-encoding gene expression caused a lack of polarisation of cells across PC1, depending on
their ribosomal protein encoding gene meta feature (Fig.29A). Seven clusters were generated using this
analysis process.

To identify what the different clusters represent in terms of life cycle stage or state, marker gene anal-
ysis was performed on the dataset. Marker genes were identified as genes whose absolute log2 fold change
(log2FC) was greater than 0.5, Bonferroni corrected p-value less than 0.05, and where they were expressed
in at least 5% of cells in one of the conditions. The markers were then ordered by decreasing log2FC.
A marker gene of cluster 0 was the zinc finger encoding protein ZC3H36 (Tb927.10.12760). Nine of the
ten top marker genes (in terms of log2FC) of cluster 1 encode retrotransposon hot spot (RHS) proteins,
specifically five RHS pseudogenes (Tb927.1.90, Tb927.4.240, Tb11.0820, Tb927.2.1130 & Tb927.6.5160),
two RHS5 (Tb927.2.240 & Tb927.4.250), an RHS4 (Tb927.1.70) and a RHS7 (Tb927.7.2020), while the
other is a gene encoding a putative major vault protein (Tb11.v5.0641) (appendix file 21).

Markers of cluster 2 include many histone encoding genes (Tb927.7.2920, Tb927.10.10580, Tb927.10.10590,
Tb927.5.4180, Tb927.11.1800, Tb927.11.1880, Tb927.11.1860), while markers of cluster 3 include a try-
paredoxin peroxidase (Tb927.9.5770) and cyclophilin A (Tb927.11.880) (Fig.29D) (appendix file 21).
The main markers of cluster 4 were Procyclin Associated Genes (Tb927.10.10210, Tb927.10.10230,
Tb927.10.10220, Tb927.10.7160, Tb927.10.10240) (Fig.29D) (appendix file 21). The cluster 5 markers
include hexokinase (Tb927.10.2010), two glucose transporters (Tb927.10.8520, Tb927.10.8510), GPEET
procyclin (Tb927.6.510) and ZC3H37 (Tb927.10.12780) (Fig.29D) (appendix file 21). Finally, cluster 6
markers include VSGs (Tb09.v4.0119, Tb927.11.17870), Expression Site Associated Genes (Tb927.1.4910,
Tb927.1.4890), adenosine transporters (Tb927.2.6220, Tb927.2.6200) and SGM1.7 (Tb927.7.6600) (Fig.29D)
(appendix file 21).

ZC3H36 was one of eight transcripts that were found to be upregulated in the mutated RBP6 overex-
pression model (compared with uninduced cells), but not in the WT RBP6 overexpression model (H. Shi,
K. Butler, and Tschudi 2018). Given this, the expression values of the other seven transcripts were thus
visualised across the RBP6 overexpression scRNA-seq dataset (Fig.15). None of the other transcripts
were more highly expressed in cluster 0 (Fig.15) or were part of its significant marker gene list (appendix
file 21). However, Tb927.10.12840 and Tb927.4.4940 (which encode a mitochondrial carrier protein and
a hypothetical protein respectively) were more highly expressed in cluster 5 and were significant marker
genes of that cluster (Fig.15) (appendix file 21).

SGM1.7 has previously been identified as a transcriptomic marker of T. brucei metacyclics (Vigneron
et al. 2020) and GPEET is a marker of PCFs, which is expressed highly during early stages of tsetse fly
infection (Knüsel and Roditi 2013). Other markers of the insect form stages include EP procyclin, which
is expressed on epimastigotes and PCFs (Acosta-Serrano et al. 2001), and the BARP family, which are
expressed in epimastigotes (Urwyler et al. 2007). When looking at the expression of the most abundantly
expressed BARP in the dataset (Tb927.9.15640), a distinct lack of localised BARP expression was seen
across the clusters. The EP procyclins, on the other hand, were expressed highly in clusters 0,1,2,3 and
4, with expression being lower in cluster 6, and the lowest in cluster 5 (Fig.29C). Cluster 5, however,
had markedly higher GPEET expression than the other clusters (Fig.29C).

There is no publicly available scRNA-seq dataset of the RBP6 overexpression model of T. brucei de-
velopment, so there are no equivalent datasets to compare these results with. As a proxy for this, the bulk
RNA-seq data of the RBP6 overexpression model generated by Doleželová and colleagues (Dolezelova
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et al. 2020) was used to assess the findings of the scRNA-seq data. When looking at the expression
of the top 10 (in terms of log2FC) marker genes of the scRNA-seq clusters in the bulk RNA-seq data,
the markers of clusters 4 and 6 are highest expressed at the day eight timepoint, while the markers of
cluster 5 are highest expressed in the uninduced cells (Fig.30A). The marker genes of the other clusters
do not have as strong a timepoint expression association, although the expression of cluster 1 markers
are lowest expressed in the uninduced cells, and the cluster 2 markers are lowest expressed at the end
of the process (Fig.30A). These results validate that the scRNA-seq data contains cells that have a sim-
ilar transcriptomic profile at the start and end points of the RBP6 overexpression process. While the
expression of EP2 procyclin and SGM1.7 increase in expression over the RBP6 induction captured by
the bulk RNA-seq data, BARP expression in the induced samples appears to be static, only increasing
from the levels seen in the uninduced samples (Fig.30B, C & D).

To assign labels to the clusters, the following annotation strategy was carried out, where clusters
were annotated based on the marker genes of the clusters and the expression of GPEET, EP procyclins
1 and 2, as these represent defined markers of the insect stage life cycle. Clusters that had medium ex-
pression (relative to the other clusters) of GPEET and high expression of EP procyclins were annotated
as such, as well as by the results of their marker gene analysis. For example, cluster 1 was annotated as
”RHS EP hi GPEET mid” as many of its marker genes encoded RHS proteins, and it had high expres-
sion of EP procyclins and medium expression of GPEET (Fig.29B, D). Clusters 4 and 6 were defined
as ”late” as their marker genes were highly expressed in the late stages of the RBP6 overexpression
bulk RNA-seq datasets, with cluster 4 being marked additionally by its high expression of PAG genes
(Fig30A, Fig.29B, D). As cluster 5 was marked by the high expression of GPEET and low expression
of EP procyclins, so they were annotated as ”early Procyclics” (Knüsel and Roditi 2013) (Fig.29B, C).
The high GPEET expression and the marker genes were the highest expressed in the uninduced bulk
RNA-seq data (Fig.30A), suggesting that cluster 5 represents PCF cells that are unresponsive to over-
expression stimuli, or are unable to overexpress the protein.

19.4 Integration of RBP6 overexpression cells and in vivo insect life cycle
stage cells

Given the that the marker genes of cluster 6 were highest expressed at the end of the bulk RNA-seq
timecourse and included VSG transcripts and SGM1.7, the likely conclusion drawn would be that these
cells contain metacyclic forms. When the individual expression values for each cell in the dataset are plot-
ted, however, these genes were expressed at similar levels in most of the RBP6 overexpression dataset
clusters, with a few outliers. For example, expression of SGM.17 was at a similar level to the other
clusters, except for one cell, which had high expression of the gene (Fig.31A). Furthermore, when the
expression of the mVSGs were plotted, some cells with high expression of these genes could be seen in
cluster 6 (Fig.31B). Together, these results suggest that very few metacyclics have been captured in the
scRNA-seq data.

To try to confirm whether or not metacyclics were present in the scRNA-seq dataset, the RBP6
overexpression scRNA-seq dataset was integrated with a scRNA-seq dataset of in vivo insect life cycle
stages. There are three published scRNA-seq datasets that capture T. brucei cells directly from the
insect. Howick and colleagues (Howick, L. Peacock, et al. 2022) captured cells from the tsetse fly’s
proventriculus, midgut and salivary glands using a modified protocol of the plate based SMART-seq2
method (Picelli et al. 2014). The SMART-seq2 data contains full length transcript, non-UMI reads, while
the RBP6 overexpression dataset contains 3’ enriched UMI reads. As different scRNA-seq capture tech-
nologies can introduce large batch effects (Luecken and Theis 2019), the RBP6 overexpression dataset
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Figure 30: Comparison of scRNA-seq and bulk RNA-seq datasets of RBP6 overexpressing
T. brucei cells

Heatmap of the scaled, normalised gene expression of the top 10 marker genes (in terms of log2FC) of
the annotated clusters as seen in Fig.29 across the bulk RNA-seq datasets from Doleželová and

colleagues (Dolezelova et al. 2020) that contain RBP6 overexpressing T. brucei cells across two (2d),
four (4d), six (6d) and eight (8d) days of RBP6 overexpression, as well as uninduced cells (0d). The

annotated cluster names as well as cluster ID for the marker lists are given to the left of the heatmaps.
(A). Normalised expression of EP 2 Procyclin (B), BARP (C) and SGM1.7 (D) across the bulk

RNA-seq datasets of RBP6 overexpressing and uninduced T. brucei cells.
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Figure 31: Expression values of cluster 6 marker genes plotted at the single cell level

Heatmap showing the normalised expression values for each cell of the top 10 (in terms of log2FC)
significant marker genes of cluster 6 (A). Violin plots showing the normalised gene expression of the

mVSG genes (B).
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was not integrated with this dataset. Vigneron and colleagues (Vigneron et al. 2020) have data with 3’
enriched UMI reads, but they only captured cells in the salivary glands of the tsetse fly, and they did
not identify any midgut PCFs. Finally, while Hutchinson and colleagues (Hutchinson et al. 2021) only
sampled parasites from the salivary gland (identifying mVSG expressing cells), they detected midgut
stage parasites in their data, and they also used a 3’ enriched UMI reads based sequencing method.
Thus, the RBP6 overexpression scRNA-seq and Hutchinson scRNA-seq datasets were integrated using
Harmony (Korsunsky et al. 2019) integration (Fig.32A & C, Fig.33A & B).

The clusters split up along the lines of the dataset origin, showing little mixing of the datasets. Fur-
thermore, some of the resulting cluster groupings did not reflect the underlying biology. For example,
the cells from the in vivo insect stage life cycle dataset marked ”Midgut forms”, ”Metacyclics” and
”Pre-metacyclic” grouped together in the integrated cluster 5, despite the midgut forms and metacyclics
being at the opposite points of the insect stage life cycle development (Fig.18, Fig.32D, Fig.33A & B).
From the Clustree it can be observed that clusters mainly containing in vivo insect stage life cycle cells
and the clusters that mainly contain RBP6 overexpression cells did not share a common lineage, suggest-
ing a lack of transcriptomic similarity between the cells (Fig.32C). As expected, cluster specific BARP
expression was seen in the in vivo insect stage life cycle dataset epimastigote clusters (Fig.32B).

While the possible metacyclic cluster cells in the RBP6 overexpression dataset did not share a lot
of overlap with the ”Pre-metacyclic” and ”Metacyclics” clusters from the in vivo insect stage life cycle
dataset, the overlap of the ”Midgut forms” and ”Pre-metacyclic” and ”Metacyclics” call into question
the accuracy of the integration. Thus, two more integration methods were attempted, Seurat V5 CCA
Y. Hao, T. Stuart, et al. 2024 and fastMNN (Haghverdi et al. 2018). For the Seurat V5 CCA integration,
the RBP6 overexpression metacyclics and the in vivo metacyclics share a common lineage in the Clustree
(Fig.34C), but they separate from each other early in the tree. The ”early Procyclics” from the RBP6
overexpression mostly form their own independent lineage, with little crossover with any other life cycle
stage (Fig.34D). In the fastMNN integration, the possible metacyclic cells from the RBP6 overexpres-
sion and in vivo metacyclics were contained within cluster 4, and there was some overlap between the
”Midgut forms” and the ”early procyclics” (Fig.34). While there is an expectation that the ”Midgut
forms” and the ”early procyclics” cells would overlap, there is a possibility that the ”Midgut forms”
cells represent later PCFs as they have higher expression of EP procyclins than the ”early procyclics”
cells and have lower GPEET expression (Knüsel and Roditi 2013) (Fig.32B). The epimastigotes from
the in vivo insect life cycle stage dataset mostly cluster on their own (Fig.34B). This is consistent with
the lack of BARP expression in the RBP6 overexpression cells (Fig.32B), which may confirm a lack of
epimastigote transcriptomic signature cells in the RBP6 overexpression dataset.

The lack of consistent integration of the in vivo insect life cycle stage dataset and the RBP6 overex-
pression dataset makes it difficult to assess whether or not the possible metacyclics cluster in the RBP6
overexpression dataset contains metacyclics. To investigate the differences between the in vivo meta-
cyclics and the in vitro cells in the ”late possibleMetacyclics” cluster, the DE genes (absolute log2FC >
0.5, Bonferroni corrected p-value < 0.05 & expressed in at least 10% of the cells in one of the cluster
conditions) were found between the two. 2167 genes were identified as being significantly DE between
the possible metacyclic RBP6 overexpression clusters and the metacyclics cluster from the in vivo in-
sect life cycle stage dataset, with 1891 genes significantly higher expressed in the RBP6 overexpression
dataset cells and 276 genes significantly higher expressed in the in vivo insect life cycle stage dataset
cells (appendix file 22).

DE genes significantly higher expressed in the in vivo insect life cycle stage dataset metacyclics include
several invariant surface glycoproteins (ISG) (ISG64 :Tb927.5.1410, ISG65 :Tb927.2.3270 & ISG75 :Tb927.5.350),
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Figure 32: Results of the harmony integration of the in vivo insect stage cells and the RBP6
overexpression generated cells.

UMAP embedding of the harmony integrated datasets, with the cells coloured by the dataset they
come from (A). Violin plots showing the normalised expression of GPEET procyclin (Top left), EP1
procyclin (Top right), EP2 procyclin (bottom left) and BARP (bottom right) (B). Clustree plot

showing the cell changes between clusters across the different resolution settings. The chosen resolution
for the harmony integration is surrounded in a black box (C). Proportion plot showing the proportional

distribution of the cell types identified in the RBP6 overexpression and in vivo insect stage cell
datasets across the clusters of the integrated dataset (D). The black lines on B and D are used to

separate the original clusters by whether they are from the Hutchinson (in vivo insect life cycle stage
cells) or Laidlaw (RBP6 overexpression cells) datasets.
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Figure 33: Split UMAP results of the harmony integration of the in vivo insect stage cells
and the RBP6 overexpression generated cells.

UMAP embedding of the harmony integration, split by whether the cells are from the Hutchinson (in
vivo insect life cycle stage cells) or Laidlaw (RBP6 overexpression cells) datasets. Cells are coloured by

original cell type IDs (A) and new integrated clustering IDs (B).
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Figure 34: Integration results of the in vivo and RBP6 overexpression T. brucei datasets
using fastMNN and Seurat

Clustree plot showing the cell changes between clusters across the different resolution settings for the
fastMNN (A) and Seurat (B) integrations. The chosen resolution for the integrations is surrounded in a

black box. Proportion plot showing the proportional distribution of the cell types identified in the
RBP6 overexpression and in vivo insect stage cell datasets across the clusters of the fastMNN (B) and
Seurat (D) integrated object. The black lines on B and D are used to separate the original clusters by
whether they are from the Hutchinson (in vivo cells) or Laidlaw (RBP6 overexpression cells) datasets.
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a glycosomal phosphofructokinase (Tb927.3.3270), SGM1.7 (Tb927.7.6600), alternative oxidase (Tb927.10.7090)
and a succinate dehydrogenase (Tb927.9.5960) (appendix file 22). As many of these genes seem to play
a role in metabolism, metabolic pathway enrichment was carried out using TriTrypDB with KEGG and
MetaCyc pathways (Caspi et al. 2014 & Kanehisa et al. 2017), with many of the significantly enriched
(Benjamini-Hochberg adjusted p-value < 0.05) pathways associated with glycolysis found (appendix file
23).

DE genes significantly higher expressed in the ”late possibleMetacyclics” cluster cells include PDH
(Tb927.7.210) andDP5CDH (Tb927.10.3210), glutamate dehydrogenase (Tb927.9.5900), LDH (Tb927.6.2790),
repressor of differentiation kinase 2 (Tb927.4.5310) and cytochrome oxidase subunits (Tb927.1.4100,
Tb927.9.3170, Tb927.10.280 & Tb927.3.1410). Metabolic pathway enrichment analysis revealed signifi-
cant enrichment of TCA cycle-associated pathway genes in the DE gene list (appendix file 24).

Christiano and colleagues (Christiano et al. 2017) used the RBP6 overexpression system to generate
metacyclics and identify transcriptomic differences between metacyclics and PCFs. All the DE genes
mentioned in the previous paragraph with significantly higher expression in the in vivo insect life cycle
stage dataset cells were found by the authors to be upregulated in metacyclics versus the PCFs at the
transcript level. Furthermore, many of the genes (specifically PDH, DP5CDH, glutamate dehydrogenase
and cytochrome oxidase subunits) that were significantly higher expressed in the possible metacyclics
from the RBP6 overexpression dataset, were identified by the authors as being higher expressed in PCFs
compared to metacyclics, at the transcript level.

Metacyclics are said to be preadapted to the host environment, and one of the ways in which this
occurs is by changing their metabolism from mainly oxidative phosphorylation to glycolysis-based en-
ergy system (Christiano et al. 2017). The enrichment of glycolysis metabolic pathway genes in the in
vivo metacyclics specific DE genes reflect this preadaptation, while the enrichment of TCA genes in the
RBP6 overexpression possible metacyclics specific DE gene list, show that this change in metabolism is
not present, at least not to the same degree. These results indicate that the possible metacyclic cluster
in the RBP6 overexpression dataset are not transcriptionally similar to in vivo metacyclics and thus
may not represent metacyclics.

19.5 Integration of RBP6 overexpression cells and in vitro culture PCFs

These results lead to an alternative hypothesis that the overexpression failed, and these cells instead rep-
resent PCFs. To test this hypothesis, the RBP6 overexpression dataset was integrated with a scRNA-seq
of fresh in vitro SDM-79 cultured PCFs (Briggs, Marques, et al. 2023) (Fig.35A, B, Fig.36A, B). The
results of the Harmony integration shows that less than 5% of the in vitro PCFs co-cluster with either
the ”early Procyclics” or the possible metacyclics cluster (Fig.35D). While the expression values of EP1
and EP2 procyclin are comparable between the in vitro PCFs and the ”late possibleMetacyclics” cluster,
GPEET expression is higher in the in vitro PCF cells; with expression levels comparable to that of the
”early Procyclics” cluster cells (Fig.35C, Fig.36A, B).

When integration was repeated with Seurat V5 CCA and fastMNN, a lack of consistent integration
was seen, similar to the integration of the RBP6 overexpression and in vivo insect life cycle stages
dataset (Fig.37). The Seurat integration had 93.6% of ”early Procyclics” cells forming a unique cluster
(Fig.37C, D), while the fastMNN integration had 46.7% of these cells mixed in with other cells in the
RBP6 overexpression dataset (Fig.37A, B). While the Seurat integration had the possible metacyclics
and the in vitro PCFs sharing a common clustering ancestor (Fig.37C), both Harmony and fastMNN
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Figure 35: Integration and comparison of the in vitro PCFs and RBP6 overexpression T.
brucei datasets

UMAP embedding of the harmony integrated datasets, with the cells coloured by the dataset they
come from (A). Violin plots showing the normalised expression of GPEET (Top left), EP1 procyclin

(Top right), EP2 procyclin (bottom left) and BARP (bottom right) (B). Clustree plot showing the cell
changes between clusters across the different resolution settings. The chosen resolution for the harmony
integration is surrounded in a black box (C). Proportion plot showing the proportional distribution of
the cell types identified in the RBP6 overexpression and in vitro PCF datasets across the clusters of
the integrated dataset (D). The black lines on B and D are used to separate the original clusters by
whether they are from the Briggs (in vitro PCFs) or Laidlaw (RBP6 overexpression cells) datasets.
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Figure 36: Split UMAP results of the harmony integration of the in vitro PCFs and RBP6
overexpression T. brucei datasets

UMAP embedding of the harmony integration, split by whether the cells are from the Briggs (in vitro
PCFs) or Laidlaw (RBP6 overexpression cells) datasets. Cells are coloured by original cell type IDs

(A) and new integrated clustering IDs (B).

had most of these cells being unrelated to the in vitro PCFs (Fig.35A, Fig.37A).

As the results of the integration showed disagreement over the relationship between the RBP6 over-
expression dataset possible metacyclics and the in vitro derived PCFs, the DE genes between these
clusters was identified in a similar fashion to the analysis carried out for the in vivo metacyclics versus
the RBP6 overexpression possible metacyclics.

In total, 1946 significant DE genes were identified, with 1703 DE genes found to be significantly more
highly expressed in the in vitro PCFs and 243 DE genes found to be significantly higher expressed in the
RBP6 overexpression possible metacyclics (appendix file 25). These genes include PDH (Tb927.7.210),
DP5CDH (Tb927.10.3210), glutamate dehydrogenase (Tb927.9.5900) and LDH (Tb927.6.2790), all of
which are higher expressed in PCFs compared to RBP6 overexpression metacyclics (Christiano et al.
2017) (appendix file 25). No metabolic pathway genes were significantly enriched in either the in vitro
PCFs or RBP6 overexpression ”late possibleMetacyclics” cells DE gene lists (appendix file 26 & 27).
These results suggest that the ”late possibleMetacyclics” cells are not transcriptionally similar to in vitro
PCFs, and thus may represent RBP6 overexpression generated metacyclics.
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Figure 37: Integration results of the in vitro PCFs and RBP6 overexpression T. brucei
datasets using fastMNN and Seurat

Clustree plot showing the cell changes between clusters across the different resolution settings for the
fastMNN (A) and Seurat (C) integrations. The chosen resolution for the integrations is surrounded in a

black box. Proportion plot showing the proportional distribution of the cell types identified in the
RBP6 overexpression and in vitro PCF datasets across the clusters of the fastMNN (B) and Seurat (D)
integrated object. The black lines on B and D are used to separate the original clusters by whether

they are from the Briggs (in vitro PCFs) or Laidlaw (RBP6 overexpression cells) datasets
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Throughout this chapter thus far, the assumption has been that the ”early Procyclics” cluster repre-
sents cells which are unresponsive to the induced RBP6 overexpression and, thus, remain as early PCFs.
In every integration with the in vitro PCFs dataset, apart from fastMNN, the ”early Procyclics” cells
cluster mostly by themselves (Fig.35D, Fig.37B, D), indicating that they may not share transcriptional
similarity with the in vitro PCFs. To test this, the significant DE genes between the ”early Procyclics”
cluster and the in vitro PCFs were identified. 3235 genes were identified as being significant DE between
the ”early Procyclics” cluster and the in vitro PCFs, with 3020 genes significantly higher expressed in the
in vitro PCFs, and 210 genes significantly higher expressed in the ”early Procyclics” cluster (appendix
file 28). Given the large amount of genes significantly higher expressed in the in vitro PCFs, GO term
analysis was carried out on the lists of genes, with a significant GO term defined as benjamini adjusted
p-value less than 0.05. Only four significant GO terms were identified for the in vitro PCF DE genes,
with these being related to RNA and non-coding RNA processing (appendix file 29). 81 significant GO
terms were found in the ”early Procyclics” DE genes, with many describing the regulation of cellular
metabolism; including the TCA cycle GO term (appendix file 30).

A key experimental difference between the in vitro PCFs and the RBP6 overexpression dataset (be-
yond the overexpression system) is that the in vitro PCFs were grown in SDM-79, while the RBP6
overexpression cells were grown in SDM-80. The original paper describing SDM-80 (Lamour et al. 2005)
showed that levels of glucose consumption decrease and levels of proline consumption increase in SDM-80
grown PCFs. Thus, differences between the two populations may exist in terms of glucose and proline
metabolism-associated genes.

For overall differences in metabolism, TCA cycle metabolic pathway genes were significantly enriched
in the DE genes associated with the ”early Procyclics” cluster, while no significantly enriched pathways
were seen in the in vitro PCFs DE genes (appendix 31 & 32). Focusing on specific metabolism genes, the
in vitro PCFs had significantly higher expression of phosphofructokinase (Tb927.3.3270), phosphoglyc-
erate kinase (Tb927.1.700) and pyruvate kinase 1 (Tb927.10.14140), while the ”early Procyclics” had
significantly higher expression of cytochrome oxidase subunit IV (Tb927.1.4100), glutamate dehydro-
genase (Tb927.9.5900), citrate synthase (Tb927.10.13430), Fumarate hydratase class I (Tb927.3.4500),
glycosomal malat dehydrogenase (Tb927.10.15410) and hexokinase (Tb927.10.2010) (appendix file 28).
These DE genes were found in Christiano and colleagues (Christiano et al. 2017) to be higher expressed
at the mRNA level in RBP6 overexpression-derived metacyclics and in vitro PCFs, respectively. This
pattern did not hold completely, however, with glycosomal glyceraldehyde 3-phosphate dehydrogenase
(Tb927.6.4280) being significantly higher expressed in the in vitro PCFs scRNA-seq cluster, but was
higher expressed in in vitro PCFs in the Christiano and colleagues (Christiano et al. 2017) paper. Fur-
thermore, alternative oxidase (Tb927.10.7090) was significantly higher expressed in the ”early Procyclics”
cluster but identified as higher expressed in RBP6 overexpression derived metacyclics in the Christiano
and colleagues (Christiano et al. 2017) paper (appendix ref 28). These results fit with the different
metabolism requirements of the cell, with the ”early Procyclics” having higher expression of PCF-
associated metabolism genes due to the glucose-sparse proline-rich culture media, while the in vitro
PCFs have more metacyclic-associated metabolism genes, due to the high concentration of glucose in
their culture media. These results may suggest that differences in culture environment have caused
transcriptomic expression differences between the in vitro PCFs and the possible RBP6 overexpression
unresponsive cells.
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19.6 Integration consistency of T. brucei scRNA-seq datasets

The integrations of the RBP6 overexpression scRNA-seq dataset with the in vitro PCF and in vivo
insect life cycle stage scRNA-seq datasets showed a lack of consistent results across the three integration
methods tested. The common denominator of these integrations was the RBP6 overexpression dataset,
leaving open the possibility that the integration methods simply fail to consistently integrate that par-
ticular dataset.

A benchmarking of integration method consistency on T. brucei scRNA-seq data was thus performed
on the Seurat V5 CCA, Harmony and fastMNN integration methods. The hypothesis for this test is that
consistent integrations will be those where the k-nearest neighbours to every cell in the integrated space
is similar across all integrations. Inspired by Chari and Pachter (Chari and Pachter 2023), consistency
was tested by finding the 30 nearest neighbours of each cell, in the integrated reduced dimension space,
and calculating Jaccard similarity (Jaccard 1901) of the neighbours for each cell across the three integra-
tions. An explanation of how Jaccard similarity was used in this context can be seen in figure 16. The
lower the Jaccard similarity, the less similar the cells are and the higher the score the more similar they are
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Figure 38: Graphical explanation of Jaccard similarity

Histograms of the Jaccard similarities of a given cells nearest neighbours across different integration
pairwise comparisons: Harmony and fastMNN (red), Seurat V5 CCA and fastMNN (green) and Seurat
V5 CCA and Harmony (blue). Integrations were down across the Vigneron (10X Chromium in vivo
insect life cycle stage dataset) and Hutchinson (inDrop in vivo insect life cycle stage dataset) (A),
Briggs (in vitro PCFs) and Hutchinson (B), and Vigneron and Briggs (C). The higher the Jaccard

similarity score, the more similar the cell neighbour lists are
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To test the consistency of the integration methods, they were applied to the pairwise combinations
of the following three scRNA-seq datasets: in vitro PCFs (Briggs, Marques, et al. 2023), in vivo insect
life cycle stage cells captured using inDrop (Hutchinson et al. 2021), and in vivo insect life cycle stage
cells captured using 10X Chromium (Vigneron et al. 2020). Across all the dataset pairwise integrations,
fastMNN had very low Jaccard similarity with either Seurat V5 CCA or Harmony (Fig.38A, B & C).
Conversely, Seurat V5 CCA and Harmony Jaccard similarity had more similarity with one another, with
a median Jaccard similarity of around 0.75 in the in vitro PCFs and inDrop in vivo insect life cycle stage
cell integration (Fig.38B); however, for the in vitro PCFs and 10X Chromium in vivo insect life cycle
stage cell integration, the median Jaccard similarity was around 0.25 (Fig.38C). These results show a
general lack of consistency of the three integration methods, with fastMNN sharing very little overlap in
cell neighbours with the other integration methods.

20 Chapter 3: Materials & Methods

20.1 Preparation of PCF T. brucei culture media

20.1.1 Procedure to make Semi defined media 79 (SDM-79)

A glass flask containing 450 ml (premade and sterlised) incomplete SDM-79 was put in a 37°c waterbath
for 2 minutes. Inside of a fume hood, 50ml of Fetal Bovine Serum (FBS), 1ml of Haemin and 5ml
of Streptomycin/penicillin was added to the glass flask of incomplete SDM-79 and was mixed through
swirling. Another sterilised glass flask was taken into the fume hood as well as a Millipore ®Steritop.
The Steritop was screwed onto the empty glass flask and a vacuum pipe attached to the Steritop nozzle.
A vacuum was created before the complete SDM-79 was poured into the Steritop. The complete, filtered
SDM-79 was stored long term in a fridge at 4°c .

20.1.2 Procedure to make Semi defined media 80 (SDM-80)

In a 2 litre plastic container, the components listed in table 5 were added (this table is derived from a
protocol written by Dr Federica Giordani):
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Table 5: Components and their required volumes/masses for creating Semi defined media 80 (SDM-80)
Component 1 litre 2 litre
NaH2PO4 157 mg 314 mg
NaCl 6.8 g 13.6 g
MgSO4 100 mg 200 mg
KCl 400 mg 800 mg
CaCl2 200 mg 400 mg
L-Arginine 100 mg 200 mg
L-Methionine 70 mg 140 mg
L-Phenylalanine 80 mg 160 mg
L-Threonine 350 mg 700 mg
L-Tyrosine 100 mg 200 mg
Taurine 160 mg 320 mg
L-Alanine 200 mg 400 mg
L-Asparagine 13.2 mg 26.4 mg
L-Aspartate 13.3 mg 26.6 mg
L-Glutamate 14.7 mg 29.4 mg
L-Glutamine 200 mg 400 mg
Glycine 7.5 mg 15 mg
L-Serine 60 mg 120 mg
HEPES 8 g 16 g
MOPS 5 g 10 g
NaHCO3 2.2 g 4.4 g
Pyruvate 220 mg 440 mg
Mercaptoethanol (neat) 35 µl 70 µl
Hypoxanthine 14 mg 28 mg
Thymidine 4 mg 8 mg
Vitamins 100 X (Sigma, M6895) 10 ml 20 ml
Essential amino acids 50 X (Gibco BRL, 1130-036) 20 ml 40 ml
Phenol Red 4 ml 8 ml
Hemin (2.5 mg/ml) (dissolved in 0.1 M NaOH) 2 ml 4 ml
Dialysed Foetal Calf Serum 100 ml 200 ml
H2O up to 1 litre up to 2 litre
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The pH of the solution was then adjusted 7.4, with pH measurements carried out with a Fisher
Scientific Accumet AE150.

The media was then filtered sterilised and stored at 4°c

The SDM-80 media was then supplemented with 10 mM of Proline before filter sterilisation carried
out again.

20.2 In vitro culturing of PCF T. brucei

29:13 T. brucei PCF cells were cultured and maintained in complete, filtered SDM-79 media. The cells
were stored in non-vented sterile flasks at 27°c in 5% CO2.

Drugs were added to the cultures at concentrations detailed in table 6.

Table 6: Drug concentrations for selecting T. brucei PCF cells. Table showing the final concen-
trations of each drug

Drug name Concentration
Hygromycin 50 µg/ml
G418 (Neomycin) 10 µg/ml
Phleomycin 2.5 µg/ml
Puromycin 1 µg/ml

20.2.1 Calculating T. brucei culture concentrations

A glass coverslip was placed on a Neubauer chamber haemocytometer and 10 µl of cell culture was
pipetted in-between the haemocytometer and the glass coverslip. Cells were counted on the 25 central
squares (each square dimensions = 0.2 mm x 0.2 mm), specifically the top left, top right, bottom left,
bottom right and central square.

Where the total cell count = (cellCount× 5)× (1× 104)

20.3 Gel electrophoresis

0.5 g of Agarose powder was added to a conical flask, before the addition of 50 ml of 1X Tris-acetate-
EDTA (TAE) buffer. The solution was microwaved at 800 watts for 60 seconds, after which the flask was
removed (ensuring hands are protected from the heat) and cooled by applying cold water gently to the
outside of the flask. The flask was swirled while the cold water was applied to ensure the solution did not
start to solidify. 2.5 µl of SYBR Safe DNA gel stain was then added, and the mixture swirled once again
to mix the stain into the agarose solution. The solution was then poured into a gel dock, before a gel
comb was added. Any bubbles were moved away from the comb towards the end or edge of the gel us-
ing a pipette tip. The gel was then allowed to set at room temperature, before the gel comb was removed.

The gel dock was inserted into the gel container and flooded with 1X TAE buffer, ensuring the gel
wells were completely flooded and no section of gel was above the surface. For each sample loaded onto
the gel, a 10:1 DNA to DNA gel loading dye (ThermoFisher) mixture was created. 50 µl of DNA/loading
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dye mixture was then added to the wells, along with 10 µl of Invitrogen 1kb plus DNA ladder. A par-
ticular voltage was then applied to the tank for a specific amount of time.

20.4 Gel extraction

The following procedure is adapted from the QIAquick ®Gel Extraction kit.

Using ultra violet light, the desired band was excised from the gel using a razor. The gel was
transferred to an eppendorf and its mass calculated. A gel volume was calculated, with a gel volume
being equal to 100 µl 100mg of gel. 3 times the gel volumes of QG buffer was added to the eppendorf
which was then incubated at 50°c for 10 minutes (or until the gel has melted) with vortexing every 2-3
minutes. 1 gel volumes worth of isopropanol was then added, and was mixed through swirling. The
contents of the eppendorf were then transferred to a QIAquick spin column, which was then centrifuged
1 minute at 18000g. The flow through was then discarded. 750 µl of PE buffer was then added to the
QIAquick column, before further centrifugation at 18000 x g for 1 minute. The flow through was again
discarded before the QIAquick column was centrifuged again at 18000g for 1 minute. The QIAquick
column was then placed into a microcentrifuge tube (with its cap removed but not thrown away) and 25
µl of EB buffer was added to the centre of the QIAquick column membrane. The sample was left for 5
minutes before centrifugation at 18000g for 1 minute. The sample was stored long term in a -18°c freezer.

20.5 Creating ampicillin-resistance agar plates

14 g of LB broth+agar powder was added to 400ml of deionized water in a capped glass flask. The
cap of the flask was loosened slightly before it was put into a water bath autoclave set at 55°c for 30
minutes. After 30 minutes, the autoclave water bath was switched off and the mixture was left for a
further 20 minutes. The glass flask was then taken out of the autoclave water bath and 400 µl of 100 µg
µl concentration Ampicillin was added. The Ampicillin was only added when the glass flask had cooled
down, but was still warm. The bench work surface was cleaned with ethanol and a Bunsen burner set
up, before around 20ml of the molten agar mixture was added to 20 different petri dishes. The dishes
were stored long term in a 5°c cold room.

20.6 Assessing concentration of DNA

Nucleic acid concentration was assessed using a NanoDrop. Briefly, 1µl of nucleic acid samples was
pipetted onto the NanoDrop pedestal, and the nucleic acid concentration, 260/280 ratio and 260/230
ratio were noted.

20.7 Creating the RBP6 overexpression plasmid

20.7.1 Amplifying RBP6 gene from T. brucei genomic DNA with polymerase chain re-
action

Lister 427 T. brucei genomic DNA (gDNA) was acquired from Dr Mark Girasol. The primers used to
amplify the RBP6 sequence were derived from Kolev and colleagues (Kolev, Ramey-Butler, et al. 2012)
paper, with the only change being the substitution of an adenine to a thymine on the 25th base of the
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Table 7: RBP6 gene binding primers. Sequence of primers used to amplify the RBP6 gene sequence.
The substituted adenine to thymine nucleotide between the Kolev and colleagues (Kolev, Ramey-Butler,
et al. 2012) reverse primer and our reverse primer is highlighted in red.
Primer name Primer sequence (5’ - 3’)
RBP6 forward primer TATATAAAGCTTATGTTCTACCCCAACAGCCCGCAGACCTCGCCACAGC

RBP6 reverse primer CATCATGGATCCTCAACCAGCGGC T CCGCGGGAACCCGCATGAACG

reverse primer. The primer sequences can be found on table 7.

The polymerase chain reaction (PCR) 50 µl mastermix components and volumes for amplifying the
RBP6 sequence are as follows: 1 µl 10 mM dNTP mix (Promega), 10 µl 5X Phusion® High-Fidelity
(HF) Buffer (New England Biolabs; NEB), 0.5 µl Phusion® HF DNA Polymerase (NEB), 2.5µl of RBP6
forward and reverse primer and 1.18 µl of Lister 427 gDNA

A negative control mastermix was also made, with the volume of gDNA being replaced with deionised
water. A mastermix was also made with the inclusion of 1.5 µl Dimethylsulfoxide (DMSO), which changes
the total volume of deionised water added to 30.82 µl.

The PCR was performed using a MJ Research PTC-200 Peltier thermal cycler with the following
sequence of temperatures and lengths: 1. 98°c for 30 seconds, 2. 98°c for 10 seconds, 3. 72°c for 1
minute, 4. Repeat step 2 thirty times, 5. 72 °c for 10 minutes. The PCR mix was then stored at 4°c
until removed for long term storage at -4°c.

Gel electrophoresis of the PCR product was carried out, with 100 volts passed through the gel for 60
minutes. A gel extraction was then carried out on the RBP6 PCR product.

20.7.2 Extracting pLEW100v5 plasmid backbone

The pLEW100v5 plasmid was ordered from AddGene.

The following restriction enzyme double digest protocol was obtained from NEBcloner. A double
restriction enzyme digest was carried out on the pLEW100v5 plasmid with high fidelity (HF) HindIII
and BamHI restriction enzymes. In an eppendorf tube, 1µg of pLEW100v5 plasmid DNA, 5 µl of 10X
rCutSmart buffer, 0.75 µl of HF HindII and HF BamHI restriction enzymes was added, and made up
to 50 µl with deionised water. The eppendorf was incubated at 37°c for 15 minutes before transfer to
ice. Gel electrophoresis was performed on the digested pLEW100v5 plasmid solution at 100 volts for
60 minutes. The backbone of the pLEW100v5 gel band (∼5000bp) was removed and put through gel
extraction. The extracted pLEW100v5 backbone was then stored long term at -18°c.

20.7.3 Ligation of RBP6 gene sequence into pLEW100v5 plasmid

The RBP6 gene PCR product was digested in a similar fashion to the pLEW100v5 plasmid (see the
previous sub sub section).

The following protocol for ligation of enzyme was adapted from NEBcloner T4 DNA Ligase (M0202)
protocol. A ligation mix was created with the following components and volumes: 2 µl of T4 DNA ligase
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buffer, 1µl of T4 DNA ligase, 3.1 µl of digested RBP6 sequence (∼68ng of DNA), 4 µl of pLEW100v5
backbone (∼50.8 ng of DNA) and 9.9 µl of deionised water. The ligation mix was mixed gently using a
pipette tip and left at room temperature for 10 minutes. The enzymes were heat inactivated on a 65°c
heatblock for 10 minutes, before transfer to ice for 5 minutes. The solution was then immediately used
for transformation into DH5-α E. coli. This plasmid will henceforth be referred to as OE-plasmid

20.7.4 Transformation of engineered RBP6 overexpression plasmid into DH5-α E. coli

The protocol for transforming the engineered OE-plasmid into DH5-α E. coli was adapted from the
NEBcloner High Efficiency Transformation Protocol (C2987H). DH5-α E. coli were thawed on ice before
the entire volume of ligated OE-plasmid was added. The tube was flicked 5 times to mix cells. The
mixture was placed on ice for 45 minutes before it was heat shocked at 42°c for 30 seconds. The sample
was placed on ice for 5 minutes, before the mixture was transferred to a tube of room temperature SOC
media and placed in a shaker for 60 minutes at 37°c.

50µl of transformed bacteria were transferred onto the ampicillin Agar plates and spread, before the
plates were incubated at 37°c overnight (∼12-18 hours).

20.7.5 Extraction and purification of engineered RBP6 overexpression plasmid from DH5-
α E. coli

Colonies from the plates were picked with a pipette tip and placed into a falcon tube of liquid LB, then
incubated at 37°c overnight (∼12-18 hours).

The following procedure is taken from the QIAprep ®Spin Miniprep kit protocol. 2.5 ml of the
overnight bacterial culture was centrifuged at 6800 g for 3 minutes at room temperature. The pelleted
bacteria was then resuspended in 250 µl of QIAprep P1 buffer before transfer to a microcentrifuge tube.
250 µl of QIAprep P2 buffer was then added and the tube mixed through inversion 4-6 times, or until
the solution became clear. This step should not be allowed to run for no more than 5 minutes. 350 µl
of QIAprep N3 buffer was then added to the tube before mixing through inverting the tube 4-6 times.
The tube was then centrifuged for 10 minutes at 18000g.

The supernatant of the tube was then poured into a QIAprep spin column, before centrifugation for
60 seconds at 18000g. The flow-through was discarded, before 0.75 ml of QIAprep PE buffer was added
to the QIAprep spin column. The spin column was then centrifuged again for 1 minute at 18000 g,
and the flow-through again discarded, before another centrifugation step was carried out for 1 minute at
18000 g.

The QIAprep column was then placed into a microcentrifuge tube with its cap broken off (but still
kept). 25 µl of QIAprep EB buffer was then added to the center of the spin column and left for 5 minutes
before centrifugation at 18,000 x g for 1 minute. The resulting purified OE-plasmid was stored long term
in a freezer at -18°c.

Gel electrophoresis was performed on the miniprep extracted sample. 1 g of agarose and 10 ml TAE
was used to create the gel, and 100 volts was passed through the gel for 54 minutes.
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20.7.6 Sanger sequencing of RBP6 overexpression plasmid insert

Sanger sequencing was carried out using the Eurofins mix2seq kit and service. Briefly, 1.54 µl of purified
RBP6 -pLEW100v5 plasmid, 13.46 µl of deionized water, and 2 µl of either JM42 or HDK430 primer 8
were added to the mix2seq kit tubes and were sent off for Sanger sequencing.

The two resulting Sanger sequences were aligned (individually) against the sequence of the Lister 427
RBP6 gene (Tb427.03.2930) using EMBOSS Needle (Madeira et al. 2024) and Benchling.

Table 8: Sequence of Sanger sequence primers used to amplify the RBP6 gene insert from
the pLEW100v5 plasmid.

Primer name Primer sequence (5’ - 3’)
JM42 TTGAAGACTTCAATTACACC
HDK430 TAACCAACCTGCAGGCG

20.7.7 Transfection of engineered RBP6 overexpression plasmid into 29:13 T. brucei cells

The following procedure is adapted from the NEBcloner NotI-HF restriction enzyme digest protocol
(Order R3189). 10 µg of OE-plasmid was linearised using the NotI HF restriction enzyme. The master
mix was set up with the following components and volumes: 50 µg/ml of linearised OE-plasmid, 50 µl of
10X rCutSmart buffer, 10 µl of HF-NotI restriction enzyme. The solution was made up to 500 µl with
deionised water. The mastermix was then incubated at 37°c for 10 minutes before long term storage in
a -18°c fridge.

Transfection buffer (Burkard, Jutzi, and Roditi 2011) was created with the following molar concen-
trations dissolved in deionised water: 90mM sodium phosphate, 5 mM potassium chloride, 0.15 mM
calcium chloride, 50 mM HEPES. The solution was filter sterilised, before long term storage at 4°c.

2x107 29:13 Lister 427 PCFs cells (maintained in SDM-79) were collected into a 50ml falcon tube and
centrifuged for 5 minutes at 1000g. The supernatant was removed and the cells were resuspended in 200
µl of transfection buffer, before being centrifuged for a further 5 minutes at 1000 g. The supernatant
was discarded and 200 µl of transfection buffer was added slowly, gently resuspending the cells. 10 µg
of linearised OEplasmid was then added and the suspension mixed gently. The suspension was then
transferred into a BioRad 0.2 cm electrode gap cuvette and placed in an Amaxa electroporator, before
being zapped on the X-0001 program. The cells were then transferred to a flask containing SDM-79
media with no drugs, and incubated overnight at 27°c.

The next day, 9 ml of cell culture was added to a 50 ml falcon tube and centrifuged at 1000 x g for
10 minutes. While the cells were spinning, conditioned media was made with the following components:
6 ml of FBS, 9 ml of media isolated from active cell culture and 45 ml of fresh culture. 2.5 µg/ml of
Phleomycin was also added to the media to select for cells which have successfully had the OE-plasmid
transfected.

Three 50 ml falcon tubes were filled with a 1:10, 1:100 and 1:1000 ratio of transfection culture to
conditioned media. The dilutions were then transferred to a plastic reservoir and 180 µl diluted culture
was added to each well of a 96 well plate. The plates were then sealed with parafilm and incubated for
a week and a half at 27°c. The plates were monitored for growth in the wells, with any wells that had
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cell growth being isolated and cultured in SDM-79 with selection drugs, before long term storage at -80°c.

20.8 Inducing overexpression of RBP6 in 29:13 T. brucei cells

RBP6 OE 29:13 PCFs were maintained in either SDM-79 or SDM-80 at a concentration of 2x105 cells/ml.
The cells were induced each day with 10 µg/ml of tetracycline and the required drugs to maintain an in
vitro PCF culture.

20.9 Immunofluorescence assay of RBP6 overexpressing T. brucei PCF
cells

An anti-CRD antibody was sourced from Dr Lucy Glover at the Institut Pasteur.

A blocking solution of 1% Bovine serum albumin, 0.2% Tween and 1X PBS was created.

Dilutions of antibody in blocking solution were made as specified in table 9.

Table 9: Dilutions of antibody
Antibody Dilution
anti-CRD rabbit 1:5000
anti-EP Procyclin mouse 1:750
594 anti-rabbit 1:1000
488 anti-mouse 1:1000

A five day RBP6 overexpression inducement was carried out, as previously described, on the RBP6
overexpression cells gifted by Dr Lucy Glover. The cells were maintained in SDM-80 during the course
of the inducement. At the same time, a culture of uninduced cells were also maintained (in SDM-79).
Samples were taken at days three, four and five post-inducement for the induced and uninduced cultures.
Table 10 details the four slides that were made up for each day.

The following steps occur within hood. 2x106 cells were collected and transferred to a falcon tube.
The cells were then centrifuged at 1,500 rpm for 10 minutes, before the supernatant was extracted. The
cells were then resuspended in 1 ml of PBS and transferred to an eppendorf. The cells were centrifuged
again at 3000 rpm for three minutes. ∼50 µl of supernatant was left in the eppendorf while the rest was
removed. The pellet was resuspended in the remaining supernatant.

Table 10: Slide makeup for IFA imaging for each day of the inducement sampled
Slide No. Antibodies Condition DAPI
1 Yes Induced Yes
2 No Induced Yes
3 Yes Uninduced Yes
4 No Uninduced Yes
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200 µl of poly-L-lysine was pipetted onto lens tissue and the surface of a slide with reaction wells was
wiped with it a few times. Using a PAP pen, a circle was drawn around the reaction wells which were
to have cells in them.

The ∼50 µl of resuspended cells was then pipetted into one of the wells and left to incubate for
5 minutes. The supernatant was then removed carefully and slowly via pipetting, before 25 µl of 4%
formaldehyde was added to the well and left for 4 minutes. The formaldehyde was then removed carefully
and slowly via pipetting, before 50 µl of glycine was added to the slide and left for 10 minutes. The
glycine was then removed carefully and slowly via pipetting, and the glycine addition step was repeated
once more. 50 µl of PBS was then added to the well and left for 5 minutes, before it was carefully and
slowly removed via pipetting. This step was repeated once more.

25 µl of the blocking solution was added to the well and left for 1 hour inside a wet chamber (a
container with a wet paper towel inside). The blocking solution was removed slowly and carefully via
pipetting.

If antibody was to be added to the well, 25 µl of primary antibody was added and allowed to incubate
inside the wet chamber for 1 hour. The primary antibody was removed removed slowly and carefully via
pipetting before 50 µl of PBS was added to the well and left for 5 minutes, then removed. The PBS wash
was repeated once more. 25 µl of secondary antibody was added and allowed to incubate inside the wet
chamber for 1 hour. The primary antibody was removed slowly and carefully via pipetting before 50 µl of
PBS was added to the well and left for 5 minutes, then removed. The PBS wash was repeated once more.

5 µl of DAPI was then added to the well and allowed to incubate in the wet chamber for 4 minutes.
A cover slip was then added, and any air bubbles were squeezed out. The coverslip and slide were sealed
using nail varnish, and the slide was stored in a opaque box at 4°C long term.

20.10 Imaging of RBP6 overexpression IFA slides

Z-stack images were taken on a Leica DiM8 microscope using the DAPI, GFP and Y5 channels. The
images were processed using Fiji (Schindelin et al. 2012).

20.11 Single cell RNA sequencing of RBP6 overexpressing 29:13 T. brucei
cells

The following steps outlining the procedure for inducing RBP6 overexpression in PCFs, was adapted
from a protocol from Dr Lucy Glover.

The RBP6 overexpressing PCF cells were transferred to a flask containing SDM-79 and allowed to
recover for two days. The culture (referred to hereafter as the ”control” flask) was then diluted down
to 2x106 cells/ml and 1 ml of this culture was transferred into an eppendorf, before being centrifuged
at 800 g for 5 minutes. The supernatant was then removed by pipetting and the cells resuspended in
1 ml of SDM-80. The resuspended cells were then transferred into a culture flask marked ”Day 5” and
selection drugs were added at their respective concentrations, as well as 10 µg of tetracycline per ml of
culture volume. This process was repeated for the next two days, with the creation of a Day 4 culture
flask the next day and a Day 3 culture flask the day after that.
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At the start of each day, all culture flasks were diluted down to 2x106 cells/ml and a selection drugs
added based on the volume of media added to dilute the cells. The control flask was diluted with SDM-79
and no tetracycline was added, while the Day 5, 4 and 3 flasks were diluted with SDM-80, and 10 µg of
tetracycline was added per ml of media to dilute the cells.

While the inducement experiment was occurring, a PSG + 0.04% bovine serum albumin (BSA) so-
lution was created. The PSG solution consisted of (for 500 ml of PSG): 0.244 g of sodium phosphate
monobasic dihydrate, 1.275 g of sodium chloride, 4.04 g of disodium phosphate, 75 g of D-glucose and
500 ml of deionised water. The pH of the solution was then adjusted to 7.8 using hydrochloric acid.

The following steps outlining the procedure for preparing T. brucei for 10X scRNA-seq was adapted
from a protocol from Dr Emma Marie Briggs.

After 5 days from the start of the experiment, the cell concentrations were all calculated and 2x106

cells from the Day 5, Day 4 and Day 3 culture flasks were transferred to separate eppendorf tubes, before
being centrifuged for 10 minutes at 400 g. The supernatant was removed via pipetting with wide bore
pipette tips, and the cells resuspended in 1 ml of PSG + 0.04% BSA solution with wide bore pipette
tips. This centrifguation and resuspension was repeated twice, but on the last repeat only 200 µl of PSG
+ 0.04% BSA was added to resuspend the cells. The cells were then passed through a Flowmi®cell
strainer and the concentration of cells in each sample was calculated.

The Day 4 and Day 5 samples were all diluted down to a concentration of 1.2x104 cells/ml and the
Day 3 sample diluted down to 6x103 cells/ml using PSG and 0.04% BSA. 10 µl of Day 4 and Day 5 and
6 µl of Day 3 were added to the same eppendorf tube and mixed via stirring with a pipette tip. 17 µl of
the sample mix was then put into an eppendorf on ice and transferred to undergo the 10X sequencing
process, which was carried out by Julie Galbraith of University of Glasgow Polyomics, using the 10X 3’
V3 kit.

20.12 Mapping the RBP6 overexpression single cell RNA-seq data

The combined TREU927 with kinetoplastid DNA (kDNA) genes genome reference, with the 3’ untrans-
lated regions extended by 2500 base pairs, was obtained from Dr Emma Marie Briggs (Briggs, Rojas,
et al. 2021). The metacyclic VSG (mVSG) gene sequences were taken from Hutchinson and colleagues
(Hutchinson et al. 2021) (who in turn obtained them from Müller and colleagues (Müller et al. 2018))
and appended to the 3’ UTR extended combined reference. The scRNA-seq data was mapped against
the combined TREU927 UTR extended + kDNA + mVSG reference using Cellranger Count (version
7.0.0) with default settings.

20.13 Analysis of the RBP6 overexpression dataset

20.13.1 Quality control and preprocessing

The filtered count matrix generated from the 10X Cellranger count pipeline was loaded into R as a
Seurat object.

Genes which were expressed in less than 10 cells were filtered out of object, and cells which had a
total gene count of less than 400 or more than 2500 were removed. The percentage of reads which map
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to ribosomal RNA (rRNA) or kinetoplastid RNA (kRNA) was calculated for each cell and cells whose
percentage rRNA was more than 4.5% and kRNA was more than 5% were removed from the object.
The expression data was then normalised using Seurat NormalizeData() function, with the scale factor
set as the median of total UMI counts across the cells. The top 2000 most variably expressed genes were
identified with Seurat and used as the feature space basis of the dataset.

The normalised expression was then scaled to have a mean of 0 and a standard deviation of 1, and
the effect of total UMI count was regressed out. The scaled, regressed expression data was then used as
the basis for performing Principal Component Analysis (PCA), with the first 50 principal components
(PCs) calculated. The standard deviation of the 50 PCs was calculated and used to determine the PC
cutoff. A k-nearest neighbors (kNN) graph was then constructed from the cell embeddings in the first
11 PCs, with the edges of the cell connections refined using Jaccard Similarity (Jaccard 1901) of each
cells nearest neighbours. This refined nearest neighbours graph was used as the basis to perform Louvain
clustering (Blondel et al. 2008). Louvain clustering was performed at resolutions of: 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 and the results were visualised using Clustree (Zappia and Oshlack 2018).
Using the Clustree output, a final clustering resolution of 0.6 was chosen. The first 12 PCs were then
used as the basis for performing Uniform Manifold Approximation and Projection (UMAP), with the 12
PC space being reduced down to a 2D UMAP (McInnes et al. 2018).

20.13.2 Cell cycle labelling of the RBP6 overexpression scRNA-seq dataset

Each cell in the dataset was assigned a cell cycle phase label of: early G1, late G1, S or G2-Mitosis
phase using the method outlined in Briggs and colleagues (Briggs, Marques, et al. 2023). Briefly, a list
of genes associated with each of the four phases (derived from the Briggs and colleagues paper (Briggs,
Marques, et al. 2023)) was used to created a meta feature of cell cycle phase using Seurat’s MetaFeature
function. The meta feature scores were then normalised by dividing by the mean score, and phase labels
were assigned based on which cell cycle phase had the highest score. If multiple meta feature scores
were above 1.05 the cell was assigned a value of ”undecided” and if all were less than 0.9 then they were
assigned a value of ”unlabelled”.

20.13.3 Analysis of the RBP6 overexpression process

The analysis described in the previous paragraph was repeated twice, with the only changes being that
one repeat had cell cycle genes removed from the highly variable genes list and the second repeat being
that, along with total UMI count, the four phases meta feature score were regressed out. The rest of
the analysis described in the subsection involves the data generated when regressing out the total UMI
count and the four phases meta feature scores.

Marker genes for the cell cycle and UMI regressed dataset were defined as genes whose log2 fold
change (log2FC) was greater than 0.25, expressed in at least 5% of cells in either the target cluster or
the rest of the dataset and had a Bonferroni corrected p-value of less than 0.05.

All of the genes of the TREU927 genome were extracted from TriTrypDB (Shanmugasundram et al.
2023), and the genes whose product description contained ”ribosomal protein” or ”ribosomal subunit
protein” were extracted. This list of genes was then filtered to only include genes that were expressed in
at least 10% of cells in the dataset. A ribosomal protein expression meta feature was then created, using
the filtered gene list, by Seurat’s MetaFeature function. The meta feature of a cell was then normalised
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by the mean of all the meta feature values for the cells. Pearson correlation was then carried out on the
relationship between the ribosomal protein meta feature, and the PC values of the first four PCs and a
p-value calculated using linear regression, with the alternative hypothesis being that there is a significant
negative correlation between the two variables. Significance for this test was set at a p-value of less than
0.05.

A new analysis was performed with cell cycle genes and ribosomal protein genes removed from the
highly variable genes and total UMI count, the four phases meta feature score and the ribosomal protein
feature score regressed out. Clustering and dimensionality reduction was completed as set out previously,
with the number of PCs used being 15 and the clustering resolution being 0.5.

20.13.4 Comparison of scRNA-seq and bulk RNA-seq RBP6 overexpression data

The raw count matrices of the induced RBP6 overexpression (and uninduced control) bulk RNA-seq
samples were taken from Doleželová and colleagues (Dolezelova et al. 2020). The count matrices had
their genes transformed into the syntenic orthologs of the TREU927 genome, before being processed
with DESeq2 with default parameters.

The top 10 markers genes (in terms of log2FC) were extracted for each cluster and their scaled nor-
malized expression was plotted for the bulk RNA-seq datasets. As some genes in the top 10 marker gene
list were not present in the bulk RNA-seq data, the list of top marker genes (in terms of log2FC) was
searched for the next most highly expressed gene until 10 genes were returned.

20.13.5 Cluster annotation of RBP6 overexpression scRNA-seq data

Clusters were annotated based on the following criteria. Cluster 0 was annotated as ”ZC3H36 EP hi GPEET mid”
as a significant marker of the cluster was the expression of ZC3H36, and it had high expression of the EP
procyclins and middle expression of GPEET procyclin. Cluster 1 was annotated as ”RHS EP hi GPEET mid”
as several of its markers were Retrotransposons, and it had high expression of the EP procyclins and mid-
dle expression of GPEET procyclin. Cluster 2 was annotated as ”histone EP hi GPEET mid” as several
of its markers were histones, and it had high expression of the EP procyclins and middle expression of
GPEET procyclin. Cluster 3 was annotated as ”EP hi GPEET mid” as it had high expression of the EP
procyclins, and middle expression of GPEET procyclin. Cluster 4 was annotated as ”late RBP6 PAG”
because the top 10 marker genes of that cluster (in terms of log2FC) were highly expressed in the final
days of the RBP6 overexpression bulk RNA-seq data, and several of its markers were PAGs. Cluster 5
was annotated as ”early Procyclics” because the top 10 marker genes of that cluster (in terms of log2FC)
were highly expressed in the early days of the RBP6 overexpression bulk RNA-seq dataset, and it highly
expressed GPEET procyclin. Cluster 6 was annotated as ”late Metacyclics” because the top 10 marker
genes of that cluster (in terms of log2FC) were highly expressed in the final days of the RBP6 overex-
pression bulk RNA-seq data, and marker genes of the cluster included several VSG pseudogenes and a
metacyclic form marker gene SGM1.7.
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20.14 Integration of RBP6 overexpression scRNA-seq data and in vivo
insect stage scRNA-seq data

The integrated rds object was taken from the Hutchinson and colleagues (Hutchinson et al. 2021) paper,
and the ”Lib1” batch cells (i.e. the cells from the first sequencing run performed by the author) isolated.
Cell cycle phases were assigned as previously described, as well as the ribosomal protein meta feature
score calculated. Metabolic pathway enrichment analysis was carried out with KEGG and Metacyc
(Caspi et al. 2014 & Kanehisa et al. 2017)

The Hutchinson in vivo dataset and the RBP6 overexpression dataset were then merged together,
with only the 7,131 genes that were present in both the original datasets kept. The datasets were nor-
malised using Seurat, with the scale factor being the median of the total UMI across the cells in both
datasets. The top 2000 variable features were then identified with Seurat, and the normalised expres-
sion values of the merged dataset were scaled. The effect of UMI, cell cycle phase meta feature score
and ribosomal protein meta feature score was regressed out. The data were then integrated together
using the Harmony (Korsunsky et al. 2019) method of integration. The Harmony embeddings were then
used as the basis for Louvain clustering, and UMAP embeddings were also generated from the Harmony
embeddings, with the first 12 Harmony embedding dimensions used. A clustering resolution of 0.3 was
chosen based on the Clustree, generating 8 clusters. The above steps were repeated using Seurat V5
Canonical Correlation Analysis (CCA) (Y. Hao, T. Stuart, et al. 2024) and fastMNN (Haghverdi et al.
2018) integration, with the number of integrated dimensions used being the first 12 and 15 and the
clustering resolutions being 0.8 and 0.5, respectively.

DE gene analysis was carried out between the ”Metacyclics” cluster of the Hutchinson in vivo insect
stage dataset, and the ”late possibleMetacyclics” cluster of the RBP6 overexpression dataset. Signifi-
cantly DE genes were identified as genes with Bonferroni corrected p-value < 0.05, absolute log2FC >
0.5, and were expressed in at least 10% of cells in one of the clusters being compared.

20.15 Integration of RBP6 overexpression scRNA-seq data and in vitro
PCFs

The integrated PCF rds object was taken from the Briggs and colleagues (Briggs, Marques, et al. 2023),
paper and the fresh log-phase PCF cells were kept in the dataset. The Lister 427 2018 genome gene
IDs of the dataset were transformed into their syntenic orthologs in the TREU927 genome. The Briggs
PCF dataset and the RBP6 overexpression dataset were then merged together, with only the 7013 genes
that were present in both the original datasets kept. The datasets were normalised using Seurat, with
the scale factor being the median of the total UMI across the cells, in both datasets. The top 2000
variable features were then identified with Seurat, before the normalised expression values of the merged
dataset was scaled and the effect of UMI was regressed out. The data was then integrated together
using the Harmony (Korsunsky et al. 2019) method of integration. The Harmony embeddings were then
used as the basis for Louvain clustering and UMAP embeddings were also generated from the Harmony
embeddings, with the first 11 Harmony embedding dimensions used. A clustering resolution of 0.4 was
chosen based on the Clustree, generating 7 clusters. The above steps were repeated using Seurat V5
Canonical Correlation Analysis (CCA) (Y. Hao, T. Stuart, et al. 2024) and fastMNN (Haghverdi et al.
2018) integration, with the number of integrated dimensions used being the first 11, and the clustering
resolutions being 0.6 and 0.4, respectively. Metabolic pathway enrichment analysis was carried out with
KEGG and Metacyc (Caspi et al. 2014 & Kanehisa et al. 2017)
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20.16 Testing consistency of integration methods on T. brucei scRNA-seq
data

The fastq files from NCBI BioProject ID PRJNA562204 (Vigneron et al. 2020) were downloaded and
mapped against the combined TREU927, 2500bp 3’ UTR extension plus kDNA genes genome reference
using Cellranger Count (v7.0.0). Quality control of the cells was carried out as specified by the original
paper.

Pairwise integrations of the in vitro PCF (Briggs, Marques, et al. 2023), inDrop in vivo insect life
cycle stage cells (Hutchinson et al. 2021) and 10X Chromium in vivo insect life cycle stage cells (Vi-
gneron et al. 2020) scRNA-seq datasets was carried out as follows. The datasets were normalised with
the Seurat NormalizeData function, with the scale factor being the median of total UMIs across the two
datasets. The top 2000 variable features were then identified with Seurat, before the normalised expres-
sion values of the merged dataset was scaled and the effect of UMI was regressed out. PCA was then run
on the scaled regressed expression values, with the first 50 PCs being captured. The datasets were then
integrated with Seurat V5 CCA, fastMNN and Harmony separately, and the 30 nearest neighbours for
each cell in the integrated space was calculated using the kNN function from dbscan (Ester et al. 1996).
Jaccard similarity was then assessed using the Jaccard function from mlr3measures.

20.17 Package Versions

The analyses described in this chapter were carried out using R version 4.3.2.
Specific package versions are as follows: Seurat 5.0.1, harmony 1.2.0, dbscan 1.2-0, clustree 0.5.1,

batchelor 1.19.1, stringr 1.5.1, presto 1.0.0, DESeq2 1.42.0, ggplot2 3.5.2, ml3rmeasures 0.5.0

21 Chapter 3: Discussion

In this chapter an implementation of the RBP6 overexpression model of the insect stage life cycle of T.
brucei was attempted, and scRNA-seq was carried out on a working example of the RBP6 overexpression
model. The results of this analysis are broadly inconclusive as to what processes drive the transition of
the parasite through its insect life cycle stages.

The RBP6 gene was first amplified from T. brucei Lister 427 gDNA and inserted into a tetracycline
inducible overexpression construct. The engineered construct was successfully used to generated two over
expression cell lines. However, sequencing revealed several unexpected difference in the RBP6 coding
region compared to that of the reference genome. As this resulted in several changes to the expressed
RBP6protein compared to the published model (Kolev, Ramey-Butler, et al. 2012), these cell lines were
not continued with. A validated model of RBP6 overexpression was thus sourced from Dr Lucy Glover
of the Institut Pasteur.

In the uninduced day three samples, all cells were fluorescent for EP procyclin, as expected. No meta-
cyclics are expected at this timepoint, yet many cells also expressed CRD. Metacyclics lose EP procyclin
surface protein expression in favour of VSG (Acosta-Serrano et al. 2001), meaning the IFA results do not
fit with established biology. These results are inconsistent with the scRNA-seq data, which showed very
few cells expressing mVSG. Thus the CRD IFA may not be optimal, lacking either antibody specificity
or incorrect IFA procedure.
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The seeming lack of epimastigotes in both the microscopy analysis and scRNA-seq results is an inter-
esting finding. With respect to the microscopy, there are several possible reasons for this absence. The
first is that as an antibody marker of epimastigotes (i.e. BARP) was not available, second is that the
kinetoplastid and nucleus localisation does not appear to be a 100% determinant of epimastigotes in the
RBP6 overexpression system. Doleželová and colleagues (Dolezelova et al. 2020) performed IFAs using
BARP on RBP6 overexpressing cells, and found cells which express surface BARP, but do not have the
correct kinetoplastid and nucleus positioning for epimastigotes. This disparity in the kinetoplastid and
nucleus positioning was the key reason why the distances between them were not interpreted. The IFA
results and lack of evidence of epimastigotes in the scRNA-seq data mean that whether epimastigotes
are generated by the RBP6 overexpression process cannot be determined.

At day five post-RBP6 overexpression, all cells that were visualised were fluorescent in the anti-CRD
channel. Previous accounts from Dr Lucy Glover (personal communications) indicated that sampling
days three, four and five post RBP6 overexpression induction would lead to the generation of some, but
not many, metacyclics, and only at around day five would they begin to appear. Therefore, while it is
more accurate that all the cells are fluorescent in anti-CRD channel at day five post-inducement than
day three post-inducement, these results still do not reflect previous results of this implementation of the
RBP6 overexpression system and indicate that non-specific fluorescence was detected with anti-CRD
staining. The localisation of anti-EP procyclin on the surface of the day five post-inducement samples
presents one of the most interesting results of the IFA analysis. No previous literature has described the
”spot” localised surface expression of EP procyclin on T. brucei cells. The images, however, look similar
to intracellular imaging of the protein, where EP procyclin cannot be trafficked to the surface, and in-
stead it localises near the Golgi apparatus (L. Liu et al. 2013). Assuming that the day five post-induction
results represents intracellular EP procyclin, these results could represent the EP procyclin trafficking
to the surface being switched off and the switching on of mVSG trafficking. However, it should be noted
that no permeabilisation of the cells was carried out during the IFA procedure, and thus intracellular
protein should not be detectable.

Taken at face value, as all the uninduced day three and induced day five sample cells displayed, by
fluorescence, CRD expression, it indicates that RBP6 overexpression had occurred in both the samples.
As the uninduced should not be overexpressing RBP6, the results may indicate that overexpression of
RBP6 is leaky. In both the IFA and scRNA-seq growth curves, the uninduced samples undergo drops
in cell concentration, which could be reflective of RBP6 overexpression occurring, lending more weight
to the hypothesis that the cell line has leaky RBP6 overexpression.

Although the image analysis could not conclusively identify what life cycle stages were present in the
data, the transcriptomic output of the scRNA-seq data allows some insight into this aspect.

Combining the results of the in vivo insect life cycle stages and in vitro culture PCF integrations with
the RBP6 overexpression dataset, it suggests that the ”late possibleMetacyclics” cluster cells are neither
RBP6 overexpression unresponsive PCFs, nor are they fully formed metacyclics. For the former, this
was initially suggested through the decreased expression of GPEET compared with the in vitro PCFs.
As GPEET is a marker of in vitro PCFs, if the ”late possibleMetacyclics” cluster did represent RBP6
overexpression unresponsive PCFs, one would expect similarly high expression of GPEET, but this is
only seen in the ”early Procyclics”. Furthermore, while the in vitro PCFs were cultured in SDM-79 and
the RBP6 overexpression cells were cultured in SDM-80, the latter should rely more heavily on proline
for its energy. Despite this, proline catabolism genes PDH and DP5CDH were more lowly expressed
in the ”late possibleMetacyclics” cluster cells compared with the in vitro culture PCFs, suggesting that
these cells have started to undergo a metabolic switch away from proline as a major energy source.
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Evidence supporting the conclusion that the ”late possibleMetacyclics” cluster does not represent
fully formed metacyclics is mainly driven by the lack of mVSG and SGM1.7 expression in most of the
cells. Although the fact that some of these cells do have high expression of these genes suggests some of
the cells have become fully formed metacyclics, or that the switching on of mVSG happens early on in
the differentiation process. When compared to in vivo metacyclics, the expression of metacyclic marker
genes is lower in the RBP6 overexpression ”late possibleMetacyclics” cluster and the expression of PCF
marker genes are higher. However, as the expression of the PCF marker genes are not as high as in the
in vitro PCFs, it may suggest these cells are transitioning towards the metacyclic stage, with a few of
the cells reaching the metacyclic stage, as seen by high mVSG expression.

The most likely reasons for why so few metacyclic forms were seen is that a late enough time point,
post-RBP6 overexpression induction, was not captured. Observations by Dr Lucy Glover found that
metacyclics begin to appear at day 5 post-RBP6 overexpression induction, but do not peak at this time
point. The reason a later time point was not taken is that, while metacyclics increase in proportion
after day five post-inducement, the amount of cell death also increases. As these dead cells could end
up captured in the scRNA-seq data, later time points were not taken. The reasons for why cell death
is higher towards the end of the RBP6 overexpression process is not known. It could possibly be that
prolonged induced RBP6 overexpression is lethal in cells, or that the concentration of glucose in SDM-80
is not high enough to sustain the metacyclics, which have changed their metabolism to utilise glucose as
the major energy source.

Discussing the prospect of whether the ”early Procyclics” cluster does in fact represent RBP6 over-
expression unresponsive PCFs, the evidence in this chapter suggests they might be, but this is not
confirmed. The cluster has GPEET high and EP procyclin mid expression, indicative of early PCFs
(Knüsel and Roditi 2013), and the marker genes of this cluster are highest expressed in the uninduced
bulk RNA-seq datasets of RBP6 overexpression cells, giving evidence towards the conclusion that they
are RBP6 overexpression unresponsive cells. The lack of integration of the ”early Procyclics” with the
in vitro PCFs is the most direct evidence against the conclusion that the ”early Procyclics” represent
RBP6 overexpression unresponsive cells, as the in vitro PCFs should, in effect, be similar to PCFs that
do not respond to RBP6 overexpression, i.e. static in terms of life cycle stage. Furthermore, over 3000
genes were significantly DE between the groups, representing around 27% of all the genes annotated in
the TREU927 genome (Berriman et al. 2005) and around 37% of the 8589 genes (that passed the quality
control threshold) captured in the RBP6 overexpression scRNA-seq dataset. There are thus two com-
peting points of evidence: the comparison with the RBP6 overexpression bulk RNA-seq data suggesting
that the ”early Procyclics” cluster cells are RBP6 overexpression unresponsive cells, and the in vitro
PCF scRNA-seq data suggesting they are not. In my opinion, the evidence that the marker genes of the
”early Procyclics” cluster are most highly expressed in the RBP6 overexpression uninduced bulk RNA-
seq sample is more compelling than the transcriptomic differences between ”early Procyclics” cluster and
the in vitro PCF cells. This is primarily motivated by the fact the culture environments of the RBP6
overexpression bulk RNA-seq and scRNA-seq cells were the same, i.e. the cells were cultured in SDM-80.
While metabolomic changes induced by SDM-79 and SDM-80 have been assessed (Lamour et al. 2005),
no paper has identified the transcriptomic or proteomic changes that they cause in PCFs. This makes
it difficult to know whether the gene expression changes that are seen between the ”early Procyclics”
and the in vitro PCFs reflect genuine changes caused by RBP6 overexpression, or whether this reflects
transcriptome changes brought about by differences in energy sources.

With PCFs and (albeit few) metacyclics confirmed in the transcriptomic data, the ”elephant in the
room” from the scRNA-seq data is the absence of epimastigotes, which should be generated by the RBP6
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overexpression system. The expression of epimastigote marker BARP was consistently sparse across all
the cells after RBP6 overexpression, with mRNA expression levels never reaching the peaks they do in
in vivo derived epimastigotes. As some metacyclic-like cells were generated in the scRNA-seq dataset,
it stands to reason that epimastigotes should have been generated, as they are the intermediary stage
between PCF and metacyclics. There are several possible reasons for why epimastigotes did not appear
in the scRNA-seq data. The first, and perhaps most unlikely, is that the RBP6 gene being overexpressed
is the mutated form described in Shi and colleagues (H. Shi, K. Butler, and Tschudi 2018). As dis-
cussed in the introduction, this model fails to generate epimastigotes, as no BARP protein expression
was detectable in the samples. This conclusion is unlikely for a variety of reasons. The RBP6 gene
sequence in the OE-plasmid was checked by Dr Lucy Glover, and the mutation was not identified in
the OE-plasmid insert. The likelihood of this mutation happening spontaneously in culture, and then
becoming the dominant form of PCF is thus very low. Interestingly, while BARP protein expression is
absent in the mutated RBP6 overexpression cells, mRNA expression of BARP is still detectable(H. Shi,
K. Butler, and Tschudi 2018).

Another possible explanation for the lack of epimastigotes is that no life cycle stages beyond PCFs
were present in the day three, four or five post-RBP6 overexpression induction, i.e. no epimastigotes
and no metacyclics were present. While this explanation is more likely than the previous, I would argue
it is still unlikely. The most direct evidence against this is the presence of cells whose marker genes are
highest expressed at the end points of the RBP6 overexpression bulk RNA-seq data, and cells which
highly express mVSG can be identified. Ultimately, no satisfying answer can be found for why an epi-
mastigote transcriptome signature is not present in the dataset. At present, I can think of no probable
reason why cells with epimastigote transcriptomic signatures were not identified, thus it appears to be a
quirk of this particular scRNA-seq dataset, as it is not a signature that is seen in other transcriptomic
analyses of the system (Dolezelova et al. 2020).

Due to the uncertainty in terms of life cycle stage allocation (and the apparent lack of others) to many
of the cells in the RBP6 overexpression dataset, future single cell transcriptomic work with this model
may benefit from the use of plate-based, rather than droplet-based, methods. In the Malaria Cell Atlas
paper (Howick, Russell, et al. 2019), the authors utilisation of Smart-seq2 (Picelli et al. 2014) meant
that they could isolate the life cycle stages and assign them to wells, allowing them to know the identity
of the cell without having to rely on the cells’ transcriptome. In terms of the RBP6 overexpression cells,
it could be possible to isolate them based on their characteristics, such as kinetoplastid and nucleus
positioning, or certain genes (like BARP or PAG) could be tagged with mCherry to allow the sorting of
cells before the transcriptome is captured, helping eliminate some of the uncertainty when it comes to
identifying life cycle stages.

Thus far, a lot of emphasis has been placed on the analysis of the ”late possibleMetacyclics” and
the ”early Procyclics” clusters. This is due to the fact they represent clusters which have the most
noticeable similarity with defined life cycle stages of the parasite or have a strong association with a
particular timepoint of the RBP6 overexpression. This next section of discussion shall thus focus on the
other clusters, whose place in the RBP6 overexpression process (or indeed the in vivo life cycle) is not
clear.

The ”ZC3H36 EP hi GPEET mid” cluster was defined as such due to its GPEET and EP procyclins
expression levels and the presence of ZC3H36 (Tb927.10.12760) in its marker gene list, although this gene
is also highly expressed in the ”late possibleMetacyclics” cluster. The expression of this gene, coupled
with the lack of epimastigotes in the data, gives more weight to the hypothesis that the mutated RBP6
overexpression system has been captured, as it is uniquely upregulated in the mutated RBP6 overexpres-
sion form compared to the uninduced cells, with the same upregulation not seen when comparing the WT
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model with uninduced cells (H. Shi, K. Butler, and Tschudi 2018). This picture is not clear cut, as only
two of the other similarly upregulated transcripts were identified as significant marker genes of the clus-
ters, with both of these two being marker genes of the ”early Procyclics” cluster, which are hypothesised
to be RBP6 overexpression uninduced cells, thus they don’t share the same pattern as that described in
the mutated RBP6 overexpression model paper (H. Shi, K. Butler, and Tschudi 2018). Within parasites
across the tsetse fly tissue, ZC3H36 transcript is highest expressed in those in the proventriculus (Sav-
age et al. 2016 & Naguleswaran et al. 2021), where PCFs, mesocyclic PCFs and epimastigote forms are
present (Sharma et al. 2009). No direct investigation of ZC3H36 has been carried out, so its functions
are not understood. Although, given the importance of RNA-binding proteins in allowing life cycle tran-
sitions (Kolev, Ramey-Butler, et al. 2012, Mugo and Clayton 2017, Briggs, Rojas, et al. 2021, B. Liu,
Kamanyi Marucha, and Clayton 2020 & Cayla et al. 2020), it may play a role in the transitions or pro-
cesses that occur in the proventriculus. It is thus possible that the ”ZC3H36 EP hi GPEET mid” cluster
may represent cells undergoing such a transition in the RBP6 overexpression model. Complicating this
picture is the high expression of ZC3H36 in the ”late possibleMetacyclics” cluster, a population that in
vivo would be found in the salivary glands, where expression of ZC3H36 mRNA is low (Naguleswaran
et al. 2021).

The RHS proteins are split into 7 subfamilies (RHS1-RHS7) across 118 genes, with 78 of these genes
being pseudogenes (Florini et al. 2019). The functions of the subfamilies vary. RNAi of RHS6 causes
an accumulation of cells lacking a nucleus and associates with several replication factor C subunit pro-
teins, suggesting a role in DNA replication (Florini et al. 2019), RHS4 is part of the RNA polymerase
II complex (Devaux et al. 2006, Das et al. 2006), suggesting a role in transcription, and RHS2 is found
to immunoprecipitate with ribosomal and RNA-binding proteins (Florini et al. 2019), suggesting a role
in post-transcription processes. Therefore, expression of RHS encoding genes in the RBP6 overexpres-
sion cells may be related to the fact that the parasites will have to undergo many morphological and
physiological changes due to the effect of RBP6 overexpression, and RHS helps facilitate these changes.
This hypothesis is strengthened by the fact that many of the RHS are lowest expressed in the uninduced
samples from the bulk RNA-seq RBP6 overexpression dataset.

In both the Kolev and Doleželová papers (Kolev, Ramey-Butler, et al. 2012 & Dolezelova et al. 2020),
life cycle stage proportion changes across the RBP6 overexpression inducement. The start of the process
is dominated by PCFs, before giving rise to epimastigotes, then to metacyclics and then, at the very end,
PCFs begin to become more prevalent again. Kolev and colleagues (Kolev, Ramey-Butler, et al. 2012)
did not comment on this trajectory; however Doleželová and colleagues (Dolezelova et al. 2020) offer two
explanations for this observation. 1: the cells are dying once the metacyclic stages are reached and the
PCFs left are those that are unresponsive to RBP6 overexpression and thus replicate and become the
main proportion of cells in the culture. 2: the cells revert back to PCFs, after metacyclics stages have
been achieved.

As discussed, the early (possibly RBP6 overexpression unresponsive) PCFs identified in the RBP6
overexpression scRNA-seq data and the PCFs from the in vitro scRNA-seq dataset (Briggs, Marques,
et al. 2023) are marked by high GPEET expression. If the PCFs that appear at the end of the overex-
pression timecourse were RBP6 overexpression unresponsive PCFs, there should be an upregulation of
GPEET expression, consistent with more early PCFs, at the end of the RBP6 overexpression inducement
time course. Doleželová and colleagues (Dolezelova et al. 2020), however, show that GPEET expression
does not increase in the last timepoint (where PCFs make up 50% of cells); in fact, across the entirety of
the RBP6 overexpression-induced samples it remains downregulated in comparison to uninduced cells.
This observation suggests that the PCFs at the end of the RBP6 overexpression are responsive in some
way to the RBP6 overexpression process (or the environment it creates in culture), as there are key
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transcriptomic differences between the uninduced and the late stages of RBP6 overexpression. In the
scRNA-seq RBP6 overexpression dataset, there are two clusters annotated as being ”late” in the RBP6
overexpression process, as their marker genes were highly expressed in the late stages of RBP6 overex-
pression in the bulk RNA-seq data. One of these clusters (”late RBP6 PAG”), had higher EP procyclins
expression and lower GPEET expression than the ”early Procyclics”, which could indicate that they are
later stage PCFs (Knüsel and Roditi 2013). Thus, this cluster could represent the PCF-like cells that
are seen at the end of the RBP6 overexpression process.

The main markers of ”late RBP6 PAG” cluster are the PAGs, named as such as they are located
downstream of the procyclins and contained within the same transcription unit (Koenig-Martin, Yam-
age, and Roditi 1992), with PAG1, PAG2 and PAG3 increasing in terms of mRNA expression across
BSF to PCF differentiation (Haenni et al. 2006). The functions of these genes are not known, although
they are not essential for cell survival or infectivity (Haenni et al. 2006). In the insect stages, mRNA
expression of the PAGs is high in the midgut but low in the salivary glands (Naguleswaran et al. 2021),
making them higher expressed in PCFs than in metacyclics/epimastigotes, which would fit with our
conclusion that the cluster that expresses them has PCF-like gene expression. These results could im-
ply that RBP6 overexpression leads to the generation of PCFs that are not transcriptionally similar to
uninduced PCFs. Whether or not this is due to the direct effects of RBP6 or some environmental signal
is not known, nor is it known what the direct descendants of these cells are in terms of life cycle stage.
It is, however, an interesting point of future enquiry to try and identify the lineage and cause of these cells.

While it can be expected that the cell cycle would have an influence on the transcriptome of the cells
(and thus their clustering and reduced dimension embeddings), the finding that ribosomal protein gene
expression also has a strong influence is interesting. There is an argument to be made that ribosomal
protein gene expression should not have been regressed out as it may represent an important marker of
the T. brucei insect life cycle stages. While this is a valid point, previous scRNA-seq papers that have
investigated the single cell and bulk transcriptomic changes that occur across the insect stages (Vigneron
et al. 2020, Naguleswaran et al. 2021, Hutchinson et al. 2021 & Howick, L. Peacock, et al. 2022), show
that a variety of non-ribosomal protein genes can be used to separate out the major insect life cycle
stages, therefore regressing out ribosomal protein gene expression may not negatively impact the results.
There is a paucity of research on ribosomal protein gene expression in T. brucei, but some conclusions
can be drawn from the literature that does exist. As mentioned, mRNA stability is an important mech-
anism for controlling gene expression in T. brucei. Ribosomal protein encoding genes are some of the
most stable transcripts in T. brucei, with their half life often exceeding 120 mins (Manful, Fadda, and
Clayton 2011) and the transcripts being more stable in PCFs compared with mammalian forms (Fadda
et al. 2014), suggesting some life cycle stage specific regulation.

While the Hutchinson, Naguleswaran and Vigneron papers (Vigneron et al. 2020, Hutchinson et al.
2021 & Naguleswaran et al. 2021) do not comment on ribosomal protein gene expression changes across
the in vivo, Howick and colleagues (Howick, L. Peacock, et al. 2022) find that a variety of genes which
contribute towards ribosomal GO terms are highest expressed in the middle time points of salivary gland
colonisation and lowest at the later timepoints, suggesting that it could play a time dependent role in
salivary gland colonisation, and thus possibly metacyclic cell development. Furthermore, Christiano and
colleagues (Christiano et al. 2017) found that 106 out of the 200 highest expressed genes in PCFs, com-
pared with RBP6 overexpression derived metacyclics, encoded ribosomal proteins. As ribosomal protein
gene expression appears to be associated with different life cycle stages of T. brucei, whether or not this
is a driver of life cycle stage development or a byproduct represents an area of biology which should be
studied more.
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Accuracy of integrations was not tested, only consistency. As discussed in the thesis general intro-
duction, assessing biological accuracy of integrations can be fraught with issues where the extent of cell
heterogeneity is not appreciated, and thus, assessing integration accuracy would require an entire chapter
in of itself. As such, no certain comment can be made on which integration method is the best for T.
brucei. A suggestion from this chapter might be that fastMNN performs well, as the integrations of the
RBP6 overexpression cells with the in vitro PCFs and in vivo insect life cycle stages was, seemingly, the
most biologically accurate. What is clear from the results is that there was relatively little agreement
over the three integration methods as to the nearest neighbours of the cells. Interestingly, fastMNN
had the lowest overall agreement with the other integration methods, but seemed to perform the best
on integrating the RBP6 overexpression cells. Harmony and fastMNN are considered as two of the
best performing integration methods for mammalian datasets (Luecken, Buttner, et al. 2022), thus their
inconsistent integrations for the T. brucei samples show that perhaps their similarly high performance
on mammalian datasets does not translate well into T. brucei. Given these disparities in integration
consistency (and perhaps integration accuracy), research should be dedicated to testing more integration
methods on the T. brucei scRNA-seq datasets with a focus on biologically accuracy of the integration.

If the experiments in this chapter were to be repeated again, there are several aspects that would
be changed. The first is that uninduced cells should have been included in the scRNA-seq sample to
serve as a comparison for the RBP6 overexpressed cells. While there is some confidence in saying that
the ”early Procyclics” represent RBP6 overexpression unresponsive cells (and thus practically speaking
uninduced cells), more assured confirmation would have come from including uninduced cells in the
sample. The second change would be ensuring that the cells are only cultured in one type of media for
the length of the experiment. For the IFA and scRNA-seq experiments, the seeding culture of uninduced
cells for the day three, four and five post-RBP6 overexpression inducement samples were maintained in
SDM-79. While this means that the cells had three days to adjust to the environment before sampling,
the seeding culture should have been maintained in SDM-80 to ensure that the parasites were fully
adapted to the environment before RBP6 overexpression was induced.

The aim of this chapter, initially, was to utilise the RBP6 overexpression model to identify genes
important in transition of T. brucei through its insect life cycle stages. Instead, this chapter has become
a dissection of the RBP6 overexpression model itself and how well it represents the in vivo insect life
cycle stages. If the results of this chapter are taken at face value, it suggests that the RBP6 overex-
pression model poorly represents the in vivo process due to the lack of transcriptomic signature for key
life cycle stages and presence of cells with a transcriptomic that is not seen in the in vivo data, i.e.
the PAG expressing cells. These results, however, should not be taken at face value for several reasons.
First, the results are often contradictory of each other, for example the IFAs suggesting many metacyclic
cells were present while the scRNA-seq analysis suggesting only a few were generated. Second, the lack
of transcriptomic signature epimastigotes has not been commented on in other papers, albeit no other
paper has used scRNA-seq to analyse the RBP6 overexpression system.

All the papers that have used this model have started from the assumption that the model captures
the distinct developmental stages of the parasite in the tsetse fly in vivo life cycle of the parasite (H.
Shi, K. Butler, and Tschudi 2018, (Dolezelova et al. 2020, H. Shi, K. Butler, and Tschudi 2018, Kolev,
Ramey-Butler, et al. 2012, Hutchinson et al. 2021 & Christiano et al. 2017). Given the brevity of the
original paper (Kolev, Ramey-Butler, et al. 2012), more work should be done to validate that this is the
case, as results within this chapter and other papers (Dolezelova et al. 2020) suggest that it may not be
as reflective of the in vivo life cycle as the authors present.
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22 Conclusion and future directions

Throughout this thesis, a variety of scRNA-seq analysis methods have been applied (and one created)
to extract information on the life cycle stages (and transitions between them) of Trypanosomatids.

In chapter one I created TrAGEDy, a method which can accurately align both mammalian stage T.
brucei and mammalian cell trajectories across different conditions, and reveal gene expression differences
between them, which are not revealed by other contemporary methods. One of the reasons why TrAGEDy
was developed was to provide a tool which could compare the RBP6 overexpression induced life cycle
with the in vivo life cycle of T. brucei. This comparison was not carried out due to the unexpected results
seen in the RBP6 overexpression data, such as the lack of pure metacyclic cells and epimastigotes, and
the presence of possible unidentified life cycle stages which may be specific to the RBP6 overexpression
model i.e. the PAG expressing PCFs. The application of TrAGEDy to both a mammalian and parasite
scRNA-seq dataset was an intentional choice. As stated in the introduction, many scRNA-seq analysis
methods are only tested on mammalian datasets, specifically those of human and mouse. As parasites
typically have less RNA content than mammalian cells (and in the case of kinetoplastids have a different
type of gene expression (Clayton 2019)), these represent differences which could lead to inconsistencies
in scRNA-seq analysis method performance. It is for this reason that TrAGEDy was applied to both
parasite and mammalian datasets, with the results showing that TrAGEDy performs well in the context
of both human and T. brucei datasets.

While version one of TrAGEDy outperformed its competitors in terms of alignment and gene ex-
pression changes identified, there are several changes which would be included in future versions of the
package to address the limitations with the current version. The first limitation is that TrAGEDy can
only compare two conditions at a time which, given the availability of perturb-seq (Dixit et al. 2016),
leaves it limited in what it can compare. Future versions of the package could thus allow multi-condition
comparisons and alignments. Secondly, modern scRNA-seq methods do not integrate or align datasets
in a pairwise manor, instead performing these actions for all the datasets at the same time. TrAGEDy
requires users to manually align each replicate of a condition, which can be time consuming when
many replicates are present in the analysis, so future versions should include ways to perform parallel
alignments, not pairwise. Thirdly, TrAGEDy is limited to aligning linear trajectories, which makes its
applications to more complex processes, like malaria sexual commitment or haematopoiesis, problematic.
Finally, TrAGEDy does not allow additional modality information to be utilised when calculating sim-
ilarity, so future versions could allow proteomic data, for example, to be included when aligning datasets.

For the second chapter (as part of a collaboration with the University of Dundee) we document the
transcriptome of the four major life cycle stages of T. cruzi at the single cell level. With this, we create
the first scRNA-seq atlas of the four major T. cruzi life cycle stages, and show that the atlas can be
utilised to accurately annotate novel data, reinforcing its use for the wider T. cruzi community by allow-
ing them to quickly annotate their scRNA-seq datasets. Beyond the novelty of the dataset, we capture
the process of metacyclogenesis at the single cell level, identifying a variety of novel RBPs which may
influence the parasites progression from epimastigote to metacyclic trypomastigote form cells. Finally,
I identify possible trypomastigote subpopulations which may have differing roles when it comes to sus-
taining T. cruzi infection in the mammalian host.

There is an implication that atlases represent a definitive database of a biological system. That is not
to say it is a ground truth in terms of understanding all the processes that occur within the system, but
certainly in terms of the cell types which appear within it. It is my opinion that many atlases (especially
mammalian ones) fail in this task, and the reason for this lies in the lack of importance placed on in-depth
cell type annotation in many scRNA-seq papers, and the narrowness of markers used to separate cell
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types. Referring back to the integration benchmark paper by Luecken and colleagues (Luecken, Buttner,
et al. 2022) discussed in the introduction, they defined the difference between NK and NK T cells as
being that they both express NKG7 and GZMA, while NK cells lack expression of CD4 or CD8. NKG7,
GZMA, CD4/CD8 positive is a narrow definition of what an NK T cell is, and could also describe a
conventional CD8+ T cell (Ng et al. 2020). As cell type annotation was not the primary task of the
paper they, understandably, did not delve deep into this facet. For atlases, however, correct cell type
annotation is perhaps one of the most important parts of the process, but it is often neglected. For
example, both the Tabula Muris and Tabula Sapiens extensively profile a variety of organs across mice
and humans, respectively. However, they do not annotate any cells as γδ T cells, a population which is
enriched at mucosal sites (G. Q. Li et al. 2023), many of which have been sampled in these atlases.

To the credit of the Tabula Muris authors, the paper contains a lengthy supplementary table de-
tailing marker gene expression across all the different samples, along with their cell type annotations.
However, they often define cell types using only one or two genes, which may explain why the γδ T cells
were not identified. The Tabula Sapiens paper opted for automatic annotation of their clusters using
onClass (S. Wang et al. 2021), which may have annotated them as NK cells or NK T cells, as they are
all cytotoxic leukocyte populations. As γδ T cells are a well-defined immune subset, whose distribution
throughout mouse/human tissues is known, their apparent absence in the data should have been spotted
and commented on. All that said does not mean I am blind to the fact that the complexity of entire
mammals is beyond that of parasites, and thus this presents a challenge when it comes to analysing and
annotating atlas level mammalian datasets. My point, rather, is that there are aspects from parasite
atlas papers which could be utilised to give more confidence when annotating. An example of this comes
from Howick and colleagues (Howick, Russell, et al. 2019), who utilised SMART-seq for the Malaria Cell
Atlas initially, allowing individual life cycle stage cells to be isolated accurately and labelled as such in
the output. Following this, they generated 10X scRNA-seq data (allowing them to capture more cells)
and used the previous SMART-seq data to provide accurate annotations of the 10X scRNA-seq data.

In the third and final chapter, an attempt was made to utilise the RBP6 overexpression model of
the T. brucei insect stage development, in order to capture these life cycle transitions in vitro. Instead,
the results suggested that this system is perhaps not reflective of the parasites in vivo development, as
cells with an epimastigote transcriptomic signature could not be identified. The scRNA-seq and IFA
data revealed metacyclic-like cells but these did not represent metacyclic cells generated in vivo, leav-
ing open the question of whether the RBP6 overexpression process generates true metacyclics. In the
RBP6 overexpression bulk RNA-seq data from Doleželová and colleagues (Dolezelova et al. 2020), PAG
expression is highest at the end of the RBP6 overexpression process. In the scRNA-seq data generated
for this chapter, I show that these PAG expressing cells have the transcriptomic signature of PCFs, giv-
ing evidence that these represent the PCF cells present at the end of the RBP6 overexpression process
(Kolev, Ramey-Butler, et al. 2012. Dolezelova et al. 2020) Thus, a point of future interest is elucidating
their role in the process, and whether or not these represent a life cycle stage which is found in vivo. An
interesting finding was how variable the methods were in their results. In the RBP6 overexpression in-
tegrations, Seurat V5 CCA and Harmony were quite similar to one another in terms of their integration,
but for the T. cruzi atlas they returned very different results. The exact reasoning behind this finding
is not known. One hypothesis could be that there exists a diverse range of batch-effect-driven gene
expression changes that some integration methods are better suited to correct for than others. It would
therefore be useful to the field to understand the reasons why integration methods can be so similar for
some datasets but diverge in others. Furthermore, as integration methods are usually tested only on
mammalian data, a benchmark study of integration methods on parasite data would be beneficial to the
community, identifying methods which may work well for parasite data, but not for mammalian.

The resolution of scRNA-seq makes it an excellent tool for investigating the life cycle stages and
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transitions of Trypanosomatids. Using scRNA-seq, many hypothesises have been generated throughout
this thesis concerning the validity of the RBP6 overexpression model of T. brucei development, the func-
tional characteristics of T. cruzi trypomastigotes and drivers of metacyclogenesis in T. cruzi. Future
work should be dedicated to confirming these results in the wet lab. This thesis also highlights the lack
of attention paid to non-mammalian datasets when it comes to scRNA-seq method development, and
highlights some inconsistencies in the performance of well-utilised integration methods across parasite
scRNA-seq datasets. This thesis stands on a bedrock of foundational scRNA-seq analysis of kinetoplas-
tids, further contributing to this burgeoning field, and it further shows the power of scRNA-seq to reveal
novel findings about the transcriptome of Trypanosomatids.
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23 Code Availability

The code used to generate the results of the chapters can be found at the following GitHub repositories:

Chapter 1 - https://github.com/No2Ross/TrAGEDy

Chapter 2 - https://github.com/No2Ross/TcruziAtlas

Chapter 3 - https://github.com/No2Ross/TbruceiRBP6

24 Appendices

24.1 Appendix files

The appendix files (and their descriptions) can be found at the following GitHub repository:

https://github.com/No2Ross/ThesisAppendixFiles

24.2 Appendix tables

Sample
Gene
counts
minimum

Gene
counts
maximum

Percentage reads
mapping to kine-
toplastid genes
maximum

Percentage reads
mapping to hu-
man transcriptome
maximum

AMA6/24 200 750 20 50
EP/AMA120 400 2000 30 10
ADT 200 1500 25 NA
SE/MT 1 150 1000 40 NA
SE/MT 2 200 1250 40 NA
MIX 1 150 1500 28 30
MIX 2 200 1250 30 30

Appendix Table 1: Filtering parameters for each of the T. cruzi scRNA-seq datasets
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Sample
Number
of input
reads

Uniquely
mapped
reads %

% of
reads
mapped
to multi-
ple loci

% of
reads
mapped
to too
many loci

% of
reads un-
mapped:
too many
mis-
matches

% of
reads un-
mapped:
too short

% of
reads un-
mapped:
other

bAMA6 1 23,475,929 61.52 15.50 9.83 0 11.24 1.91
bAMA6 2 20,219,803 61.24 17.02 10.92 0 8.76 2.06
bAMA24 1 20,498,527 63.24 13.80 5.10 0 16.23 1.62
bAMA24 2 24,492,333 63.34 13.64 4.53 0 16.73 1.76
bAMA120 1 26,077,005 56.16 17.90 16.22 0 6.22 3.50
bAMA120 2 27,749,110 53.25 17.05 21.31 0 5.44 2.94

Appendix Table 2: Mapping statistics returned for the T. cruzi amastigotes bulk RNA-seq datasets
mapped against the Dm28c 2018 + kDNA reference + GRCh38 reference

24.3 Appendix figures
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Appendix Figure 1: Workflow of TrAGEDy process.

Workflow detailing the different parts of the TrAGEDy process. Sections which were derived from
cellAlign are noted in the process boxes. TrAGEDy starts with the user performing Trajectory

Inference (TI) on the datasets individually using a shared feature space (A). The pseudotime and gene
expression of the cells is then used to create interpolated points using the method defined by cellAlign
(B). From the interpolated points, TrAGEDy then works out the optimal alignment by first identifying
the optimal start and end points before running DTW and pruning any suboptimal matches (C). The
alignment path is then used to adjust the pseudotime of the interpolated points, and then subsequently
the cells themselves (D). DE genes are then identified across the shared process to see identify what
gene expression changes occur before the datasets diverge from one another (E). TrAGEDy offers a

variety of ways to visualise the changes across the alignment (F).
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Appendix Figure 2: Graphical explanation of the TrAGEDy process of identifying the optimal start and
end points.

TrAGEDy identifies the optimal start and end points by first finding the slice of the score matrix from
the start (outlined in blue) and end (outlined in purple) which contains the lowest dissimilarity score
match (box coloured orange). TrAGEDy then finds the mean/medians of the score differences between
adjacent matches on the start and end slice (A). The means/medians are then used as threshold for

considering which matches are the optimal start and end points, with matches whose dissimilarity score
is less than the threshold and before the current start match and after the current match (green box)
are considered as possible start/end matches (B). For each of the possible paths through the data

TrAGEDy performs the following steps. First, it removes any matches (shown in red) that fall outwith
the select start and end points and then performs DTW on the cut score matrix. The matches included
in the DTW path are then bootstrapped and the mean of the bootstrapped paths is calculated (C).
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Appendix Figure 3: Graphical explanation of the TrAGEDy process of cutting highly dissimilar matches.

To remove matches from the path which are not optimal TrAGEDy goes through the following process.
An unmatched threshold and matched threshold are created by taking the mean/median of scores of
the unmatched and matched points respectively (A). Simply, if the absolute difference between a
matches score is closer to the unmatched threshold than the matched threshold it is cut and if the

opposite is true, it is kept (B).
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Appendix Figure 4: Graphical explanation and example of the alignment of interpolated point pseudo-
time values, from the DTW calculated path.

There are two types of movement that can occur when aligning pseudotime values, an individual match
(A, B & C) or a multi-match (D). For the individual match, the pseudotime value of the interpolated
point with the highest value (and all the subsequent interpolated points) are brought down by the
difference between the lower pseudotime value and the higher pseudotime value. For multi-match
points, the match that occurs after it is adjusted then the first match in the multi-match. All the

interpolated points that are matched to the same interpolated point are then scaled between
pseudotime of the initial match in the multi-match and the pseudotime of the next match modified by
the difference between the two, normalised by the number of interpolated points to be scaled. This

then gives us aligned pseudotime values for all the interpolated points (E).
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Appendix Figure 5: cellAlign alignments of simulated datasets using Pearson correlation dissimilarity
score.

Heatmaps showing the alignment of the two datasets across the three Dyngen simulated alignment
topologies. Each box of the heatmap shows the transcriptional dissimilarity (as assessed by Pearson
correlation) of interpolated points of the two datasets with blue meaning low dissimilarity and red
meaning high dissimilarity. The grey line denotes the optimal alignment of the interpolated points.
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Appendix Figure 6: TrAGEDy alignment of biological replicates of WT slender to stumpy T. brucei
transition.

TrAGEDy alignment of the WT01 and WT02 slender to stumpy T. brucei development trajectories.
Dissimilarity in gene expression of interpolated points was calculated using Spearman correlation with

blue meaning low dissimilarity and red meaning high dissimilarity.
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Appendix Figure 7: Further GO term analysis of WT vs ZC3H20 KO T. brucei bloodstream form
development.

Barplot showing the number of significant Gene Ontology (GO) terms (Benjamini-Hochberg adjusted
p-value < 0.01) returned when GO enrichment analysis was carried out using clusterProfiler on the
unique DE genes returned by TrAGEDy, TradeSeq and Seurat (A). Venn diagram showing the

intersections of significant GO terms (Benjamini-Hochberg adjusted p-value < 0.01) found by the three
methods using clusterProfiler on all the DE genes returned by TrAGEDy, TradeSeq and Seurat (B).
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Appendix Figure 8: Expression of markers associated with DN3 stage of T cell development in Bcl11b
KO and WT T cells.

UMAP showing the normalised gene expression levels of Ptcra (pre-T cell receptor α chain) and Rag1
(recombination activating gene 1) in T cells under WT (right column) and Bcl11b KO (left column)

conditions.
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Appendix Figure 9: Impact of outlier cells on TrAGEDy alignments.

Plot showing the PHATE embeddings of the WT1 T cell dataset with each cell coloured by its cell type
annotation. Circle identifies cells which are separate from the main body of the trajectory (A).

TrAGEDy alignment of the WT1 and WT2 T cell datasets when the cells circled in A are kept in the
trajectory. Dissimilarity in gene expression of interpolated points was calculated using Spearman

correlation with blue meaning low dissimilarity and red meaning high dissimilarity.
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Appendix Figure 10: TrAGEDy alignment of WT and Bcl11b KO T cell sequencing run trajectories.

TrAGEDy alignment of the WT1 and WT2 T cell development trajectories (A) and the Bcl11b KO1
and Bcl11b KO2 T cell development trajectories (B). Dissimilarity in gene expression of interpolated

points was calculated using Spearman correlation with blue meaning low dissimilarity and red meaning
high dissimilarity.
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Appendix Figure 11: Further GO term analysis of WT vs Bcl11b KO T cell development.

Barplot showing the number of significant Gene Ontology (GO) terms (Benjamini-Hochberg adjusted
p-value < 0.01) returned when GO enrichment analysis was carried out using clusterProfiler on the
unique DE genes returned by TrAGEDy, TradeSeq and Seurat (A). Venn diagram showing the

intersections of significant GO terms (Benjamini-Hochberg adjusted p-value < 0.01) found by the three
methods using clusterProfiler on all the DE genes returned by TrAGEDy, TradeSeq and Seurat (B).
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Appendix Figure 12: T. cruzi atlas integration method testing

Proportion plots showing the distribution of cells from the five main sampling strategies (the MIX1 and
MIX2 and SE/MT 1 and SE/MT 2 replicates have been collapsed together) across the clusters

generated from the BBKNN (A), Harmony (B) and Seurat V5 CCA (C) integration methods. The
sampling strategy legend for the entire figure can be seen the right of panel B.
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Appendix Figure 13: Expression of cell cycle phase marker genes in the bulk RNA-seq datasets

Heatmaps showing the the scaled normalised expression values across the T. cruzi bulk RNA-seq
datasets for 50 randomly selected marker genes of the G1 (A), G2M (B) and S (C) cell cycle phases.

The genes were taken from Chávez and colleagues (Chávez, Urbaniak, et al. 2021)
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Appendix Figure 14: scRNA-seq metacyclogenesis marker gene expression in bulk RNA-seq
samples of metacyclogenesis

PCA plot showing the bulk RNA-seq datasets coloured by the four different time points of
metacyclogenesis sampled by Smircich and colleagues (Smircich, Perez-Diaz, et al. 2023) (A). Heatmap
showing the scaled normalised expression values for the metacyclogenesis bulk RNA-seq datasets of the
top 10 (in terms of Log2FC) genes found to be significantly associated with metacyclogenesis from the

scRNA-seq analysis (B).
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Appendix Figure 15: Expression of mutated RBP6 overexpression cell marker genes

Violin plots of the scRNA-seq RBP6 overexpression dataset, showing the normalized expression values
of the eight transcripts that were identified by Shi and colleagues(H. Shi, K. Butler, and Tschudi 2018)
as upregulated over the RBP6 overexpression process in the mutated RBP6 form but not the WT

RBP6 form.
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Appendix Figure 16: Graphical explanation of Jaccard similarity

Jaccard similarity is calculated by finding the overlap and union of two lists and dividing them. In the
context of this chapter, the lists are the nearest neighbours of each cell in the integrated space of two
integration methods. In the example in this figure, the 5 nearest neighbours of a cell in the Harmony

integrated space and the fastMNN integrated space.
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