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Abstract

Since the first direct detection of Gravitational Waves (GWs) by Laser Interferometer
Gravitational-Wave Observatory (LIGO), GW astronomy has advanced rapidly across
theoretical, observational, and instrumental sciences. While the detection rate from the
LIGO-Virgo-KAGRA collaboration (LVK) continues to rise, several Third-Generation
(3G) ground-based GW detectors are being proposed for the 2030s, aiming to detect
millions of GW events per year with significantly improved signal-to-noise ratios. The in-
creased precision in GW astronomy will generate vast amounts of data, posing challenges
in data analysis concerning robustness and efficiency. Ensuring robustness in data anal-
ysis is crucial for deriving accurate scientific conclusions, while efficiency is essential for
performing analyses within manageable timeframes and hardware constraints—especially
for time-sensitive tasks in transient astronomy.

This thesis aims to investigate the challenges of robustness and efficiency and explore
possible solutions. In Chapters 1 and 2, we give an overview of the basic concepts in
GW astrophysics and data analysis, and bring up the robustness and efficiency challenges.
For robustness, we show how data analysis can lead to incorrect scientific conclusions us-
ing the example of testing general relativity with inaccurate waveforms and overlapped
signals in Chapter 3. We investigate the error accumulation effects on the catalog level
and we identify the waveform inaccuracy as the primary contributor to systematic er-
rors. Following this, in Chapter 4, we propose a waveform accuracy assessment approach
that can be readily applied to parameter estimation results without numerical relativity
simulations. With this method, we examine parameter estimation results from the latest
LVK public event catalogs GWTC-2.1 and GWTC-3, and make predictions of waveform
accuracy requirements for the future detectors. For efficiency, we focus on the long Binary
Neutron Star (BNS) signals expected in the 3G detectors. In Chapter 5, we demonstrate
pre-merger source localization for long BNS signals with multi-band matched filtering and
a semi-analytical localization algorithm. Using our method, we show that it is possible to
provide accurate sky localizations more than 30 minutes before the merger. We also pro-
vide a forecast on the detection rate of well-localized early-warning BNS events. Further,
in Chapter 6, we develop machine learning models equipped with a suite of data pre-
processing methods for the full parameter estimation of hours-long BNS signals, which is
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prohibitively slow using traditional methods. The models’ precision is validated against
analytical forecasts and the accuracy is confirmed by self-consistency tests. The thesis
concludes with a summary of the findings and an outlook on high-precision GW data
analysis in Chapter 7.
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Notations and Conventions

Indices

I will use Greek letters (µ, ν, . . . ) for tensor indices in four-dimension spacetime and Latin
letters (i, j, k, . . . ) for the three-dimension spatial indices and matrix indices. 0 is used
for the time-like index for four-dimension tensors. Repeated indices represent summation
unless otherwise stated.

Metric

The generic metric is denoted as gµν ; Minkowski metric is denoted as ηµν and has sign
(−,+,+,+).

Unit and constants

By default, I set the speed of light c = 1 and write the Newton constant G explicitly. I
may use geometrized units, c = G = 1, in contexts related to gravitational wave waveforms
and the use will be stated in advance. The solar mass is denoted by M⊙.

Riemann and Ricci tensor, Einstein equations

The conventions for Riemann and Ricci tensor and Einstein equations are aligned with
Misner, Thorne and Wheeler (1973) [5]. The Christoffel symbol is

Γρµν =
1

2
gρσ (∂µgσν + ∂νgσµ − ∂σgµν) , (1)

and the Riemann tensor is defined as

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + ΓµαρΓ

α
νσ − ΓµασΓ

α
νρ. (2)

The Ricci tensor is Rµν = Rα
µαν and Ricci scalar is R = gµνRµν . The Einstein equations

(or, Einstein field equations) read

Rµν −
1

2
Rgµν = 8πGTµν , (3)
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where Tµν is the energy-momentum tensor.

Fourier transform in data analysis

The Fourier transform for the time-domain data d(t) is

d̃(f) =

∫ +∞

−∞
d(t)e−2πiftdt, (4)

and the inverse Fourier transform is

d(t) =

∫ +∞

−∞
d̃(f)e2πiftdf. (5)

I use tilde to denote frequency domain data when there might be confusion. I may also
omit the tilde when there is no necessity to distinguish frequency domain signals and time
domain signals.
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Chapter 1

Gravitational waves: physics, sources
& detectors

Gravitational Waves (GWs) are ripples of spacetime predicted by Einstein’s General Rel-
ativity (GR) in 1916, revealing that perturbations of spacetime caused by massive ac-
celerating objects can propagate as waves. Theoretical investigations on GWs not only
enrich the picture of the physical universe but also provide valuable insights and tools
into observational astrophysics. This chapter gives a brief introduction to the physics of
GWs. I will begin with the Einstein field equations and linear expansion to derive the
basic properties of GWs in Sec. 1.1. Next, I will discuss the astrophysical sources of GWs
in Sec. 1.2 and the methods for detecting them in Sec. 1.3. In Sec. 1.4, I will introduce
waveform modeling for Compact Binary Coalescence (CBC) signals, which will be the
focus of this thesis.

1
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1.1 Gravitational waves under general relativity
The concept of Gravitational Waves (GWs) (the gravitational equivalent of electromag-
netic waves) can be traced back to 1893, first proposed by Oliver Heaviside. However,
it was not theorized until 1916 when Albert Einstein predicted the existence of gravi-
tational radiation in spacetime, i.e. GWs, with his General Relativity (GR), in which
spacetime is described by Riemann manifold and gravity is essentially the curvature of the
manifold. Although there was initial skepticism about the existence of GWs, even from
Einstein himself, due to gauge symmetry and singularity issues, it was finally proven that
GW is a well-defined concept mathematically and physically in the 1960s. The theory
of GWs rapidly advanced thereafter, including GWs in many non-GR theories. Given
the breadth of the subject, this section will introduce the basic theory of GWs, focusing
on the linearized theory within the framework of GR, and will discuss the properties of
GWs. The equations and conventions for general relativity closely follow the textbook by
Maggiore [6], except that we set c = 1.

1.1.1 The Einstein field equations and linearized theory

In general relativity, the geometry of spacetime and the distribution of matter are related
via the Einstein field equations

Rµν −
1

2
Rgµν = 8πGTµν , (1.1)

where Rµν is the Ricci tensor, R is the Ricci scalar, gµν is the metric of the spacetime
and Tµν is the energy-momentum tensor (see detailed definitions in Notations and Con-
ventions). The left-hand side, often referred to as the Einstein tensor Gµν , describes how
spacetime is curved; the right-hand side contains the mass (energy), momentum and stress
within that spacetime. The Einstein’s equations reveal the essence of gravity to a higher
level than Newton’s theory does: gravity originates from the curvature of spacetime and
tells matter how to move, while matter, in the meantime, dictates how spacetime curves.

The Einstein field equations are tensor equations relating a set of (0, 2) tensors in the
four-dimensional spacetime. When fully written out, the equations are 16 coupled and
nonlinear differential equations, but not all equations are independent. By construction,
Rµν , gµν and Tµν are all symmetric tensors (e.g. Rµν = Rνµ), which naturally reduces the
number of independent components to 10. Some of the remaining degrees of freedom could
be fixed by gauge symmetry. General relativity is invariant under all possible coordinate
transformations xµ → x′µ, where x′µ can be any differentiable function of xµ that has a
differentiable inverse. This allows us to choose convenient coordinate systems to simplify
the Einstein’s equations in different scenarios, as we will do later in the linear expansion
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form of the Einstein’s equations.
Consider a perturbation in a flat spacetime, the metric can be expanded as

gµν = ηµν + hµν , |hµν | ≪ 1, (1.2)

where ηµν is the Minkowski metric of flat spacetime and hµν is the perturbation to the
spacetime. Since any derivatives of ηµν are zero, the Christoffel symbols and Riemann
tensor can be easily calculated to the linear order (i.e. ignoring O(h2) terms)

Γρµν =
1

2
gρλ (∂µgνλ + ∂νgλµ − ∂λgµν)

=
1

2
ηρλ (∂µhνλ + ∂νhλµ − ∂λhµν) ,

(1.3)

Rµνρσ = ηµλ∂ρΓ
λ
νσ − ηµλ∂σΓ

λ
νρ

=
1

2
(∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ) .

(1.4)

Contracting over µ and ρ we can get the Ricci tensor Rµν , further contracting µ and
ν we can get the Ricci scalar R:

Rµν =
1

2

(
∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh−□hµν

)
, (1.5)

R = ∂µ∂νh
µν −□h. (1.6)

where □ = −∂20 + ∂21 + ∂22 + ∂23 = −∂20 + ∇2 is the d’Alembert operator. Putting them
together, we can write the Einstein tensor, i.e. the right-hand side of the Einstein field
equations to the linear order under perturbation Eq. 1.2

Gµν = Rµν −
1

2
ηµνR

=
1

2
(∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh−□hµν − ηµν∂µ∂νh

µν + ηµν□h) .
(1.7)

The above expression can be further simplified by defining the trace-reversed part of
hµν , similar to the relation between the Ricci tensor and the Einstein tensor:

h̄µν = hµν −
1

2
ηµνh, (1.8)

where h = ηµνhµν is the trace of hµν . The trace of h̄µν equals −h, and the same transfor-
mation to h̄µν can bring hµν back. The Einstein tensor can be written in terms of h̄µν as
follows:

Gµν = −1

2

(
□h̄µν + ηµν∂

ρ∂σh̄ρσ − ∂ρ∂ν h̄µρ − ∂ρ∂µh̄νρ
)
. (1.9)

As mentioned earlier, general relativity is invariant under all possible smooth coordi-
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nate transformations. We want to find a set of coordinates that simplifies Eq. 1.9. Intu-
itively, if h̄µν follows the Lorenz gauge condition (in analogy to Lorenz gauge condition in
electrodynamics ∂µAµ = 0)

∂µh̄µν = 0, 1 (1.10)

then the last 3 terms in Eq. 1.9 will vanish. We can prove that this is possible. Consider
the following coordinate transformation

xµ → x′µ = xµ + ξµ(x). (1.11)

The metric will transform as

gµν(x) → g′µν (x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x). (1.12)

Assuming derivatives of ξµ are of the same order of hµν and substituting Eq. 1.2 and
Eq. 1.8, h̄µν is transformed to

h̄µν → h̄′µν = h̄µν − (∂µξν + ∂νξµ − ηµν∂ρξ
ρ) , (1.13)

and therefore
∂ν h̄µν →

(
∂ν h̄µν

)′
= ∂ν h̄µν −□ξµ. (1.14)

This means that, if Lorenz gauge condition is not satisfied under the current coordinate,
i.e., ∂ν h̄µν = fµ(x) ̸= 0, we can always find a new coordinate by transformation Eq. 1.11
such that

□ξµ = fµ(x), (1.15)

which admits solutions since the d’Alembert operator is invertible, and therefore Lorenz
gauge condition is satisfied in the new coordinate. In other words, we can always adopt
the Lorenz gauge condition. The solution to Eq. 1.15 is given by the Green’s function of
the d’Alembert operator

ξµ(x) =

∫
d4xG(x− y)fµ(y), (1.16)

where
□xG(x− y) = δ4(x− y). (1.17)

Referring back to the field equations, since the last three terms in Eq. 1.9 vanish under
the Lorenz gauge condition, the field equations with linear perturbation are simplified to

1This is also called the Hilbert gauge, the Harmonic gauge or the De Donder gauge as they are essen-
tially equivalent in the flat background. The latter two are more generic, defined in curved background
as ∂µ (g

µν√−g) = 0. The name “Lorenz” is sometimes misspelled as “Lorentz” in some literature - the
gauge is first used by Ludvig Lorenz (who invented retarded potential) but there is a more famous Hendrik
Lorentz (the Lorentz transformation, Lorentz force, …).
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a wave equation (hence we have the name gravitational “waves”)

□h̄µν = −16πGTµν . (1.18)

There are naturally ten degrees of freedom, but the Lorenz gauge condition imposes four
constraints, leaving only six degrees of freedom. Some of these can still be fixed by applying
additional gauges and we will leave this to the next section. The Lorenz gauge also implies

∂νTµν = 0, (1.19)

which is the conservation of energy-momentum tensor.
The calculations involving metric perturbations and approximations to linear order, as

shown above, are referred to as linearized theory. Linearized gravity is effective when the
gravitational field is weak, which is often the case for gravitational waves. For perturba-
tions on a curved background, we will face the problem of how to separate the background
and the waves. It is hard to tell the fundamental distinction between a curved spacetime
and small fluctuations over it, but on a macroscopic level, the spacetime curvature and
fluctuations may have different length scales and therefore be separable. This is important
when it comes to the energy carried by GWs, and there has been a debate about whether
GWs can carry energy, or, whether there is a well-defined energy-momentum tensor for
GWs. The answer is yes, and details can be found in, e.g., Refs. [5, 6]

1.1.2 Polarizations of gravitational waves

Let us consider the propagation of GWs in the vacuum. The right-hand side of Eq. 1.18
vanishes, which leads to

□h̄µν = 0, (1.20)

and the plane waves solution is simply

h̄µν = Cµνe
ikσxσ , (1.21)

where kσ = (ω, k1, k2, k3) is the 4-wavevector, xσ is the position vector, and Cµν is the
(symmetric) polarization tensor of GWs. Substituting the solution Eq. 1.21 back to wave
equation Eq. 1.20, we get

kµkµ = 0, (1.22)

which means GWs travel along null trajectories, in other words, at the speed of light.
Substituting the solution Eq. 1.21 into Lorenz gauge Eq.1.10, we get

kµCµν = 0, (1.23)



CHAPTER 1. GRAVITATIONAL WAVES: PHYSICS, SOURCES & DETECTORS 6

which means the wavevector is orthogonal to the polarization tensor, eliminating four
degrees of freedom of Cµν . This leaves us with six independent components of Cµν , cor-
responding to the number of independent equations in Eq. 1.20. However, the Lorenz
gauge ∂µh̄µν = 0 does not fully fix all degrees of freedom: we can still perform coordinate
transformation xµ → x′µ = xµ + ζµ without breaking Lorenz gauge as long as ζµ satisfies
□ζµ = 0. There are four additional degrees of freedom inside ζµ to be fixed, so finally
there should only be two degrees of freedom. We choose ζµ with the following procedure:

1. The first component ζ0 can be chosen such that the trace h̄ = 0. We get h̄µν = hµν

after doing this and we can omit the bar over hµν thereafter.

2. The three spatial components ζ i can be chosen such that h0i = 0. Substituting this
into Lorenz gauge we get ∂0h00 = 0, which means h00 is a constant and can be set
to 0 with a trivial coordinate transformation too. Putting these together we get
h0µ = 0.

In fact, ζµ can be constructed to satisfy both the wave equation and the aforementioned
gauge requirements: 

ζµ = Bµe
ikσxσ

B0 = − i
2k0

(
C00 +

1
2
Cµ
µ

)
Bj =

i
2k20

[
−2k0C0j + kj

(
C00 +

1
2
Cµ
µ

)] (1.24)

In conclusion, the polarization tensor Cµν (or the solution hµν) should follow

C0µ = 0, C i
i = 0, ∂iCij = 0, (1.25)

and these conditions collectively define the Transverse-Traceless gauge (TT gauge). There
is no residual gauge freedom under the TT gauge, and GWs are characterized by only two
independent polarizations. Consider GWs propagating along z direction and the plane
wave solution Eq. 1.21, the metric perturbation can be expressed as

hTT
µν (t, z) =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


µν

cos[ω(t− z)] = (h+C++h×C×)µν cos[ω(t− z)] (1.26)

and

C+ =


0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

 , C× =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 (1.27)
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are the two polarization tensors of GWs. They are called “plus” and “cross” polarizations
(Fig. 1.1), in the sense that they respectively modify the proper distance (and hence the
motion of test particles) in the “plus” and “cross” directions. Consider the interval ds2

ds2 =− c2dt2 + {1 + h+ cos[ω(t− z)]} dx2 + {1− h+ cos[ω(t− z)]} dy2

+ 2h× cos[ω(t− z)]dxdy + dz2,
(1.28)

and two points along x-axis at x1 and x2 (x2 − x1 = L). When a GW contains only plus
polarization passes by, the proper distance between the two points is

s = (x2 − x1) [1 + h+ cos(ωt)]1/2 ≃ L

[
1 +

1

2
h+ cos(ωt)

]
. (1.29)

Since C+ only has two non-zero opposite components at xx and yy, the proper distance
between x1 and x2 changes periodically along x and y direction: x-direction expands while
y-diretion contracts, and then this alternation reverses, forming a “+” shape. Similarly, the
effect of the cross mode is a rotation of 45◦ of the plus’. This effect can also be understood
by observing a circle of stationary test masses on the x− y plane. The separation of test
masses Sµ is governed by the geodesic deviation equation

D2

Dτ 2
Sµ = Rµ

νρσU
νUρSσ, (1.30)

where D
Dτ

is the covariant derivative and U ν is the four-velocity of test masses. To the
leading order, corrections of U ν by h can be ignored so it is simply (1, 0, 0, 0), and we
can use τ ∼ t for the slowly-moving particles. The Riemann tensor reduces to Rµ00σ =
1
2
∂0∂0hµσ in the equation, and the geodesic deviation equation takes the form

S̈µ =
1

2
ḧTT
µν S

ν . (1.31)

Consider δx = S1 − x0 and δy = S2 − y0, they can be easily solved when we separate plus
and cross polarizations:

δx(t) =
h+
2
x0 sinωt, δy(t) = −h+

2
y0 sinωt (plus),

δx(t) =
h×
2
y0 sinωt, δy(t) =

h×
2
x0 sinωt (cross).

(1.32)

The motion of the test masses is visualized in Fig. 1.1. h+ and h× stretch and compress
the ring in different directions, composing the shapes of “+” and “×”.
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𝝎t 𝟎 𝟏
𝟐𝝅
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ℎ!

ℎ×

Figure 1.1: Illustrations of the effects of two polarizations of GWs. Test messes are
arranged in a ring on the x− y plane and the ring is stretched and compressed when the
plus (middle row) and cross (bottom row) polarizations GW pass by along the z-axis.

1.1.3 Generation of gravitational waves

The plane-wave solution is a showcase of how GWs behave in the vacuum. However, to
understand how gravitational waves are generated from physical sources, we need to solve
Eq. 1.18. We can use the same method in solving Eq. 1.16 with the Green’s function
defined in Eq. 1.17. However, now we are considering waves that move forward in the
time coordinate: the waves at position xi at time x0 are generated by the source at yi at
a time t0 before x0, therefore, we should use the retarded Greens function

G (xσ − yσ) = − 1

4π|x − y|δ
[
|x − y| −

(
x0 − y0

)]
θ
(
x0 − y0

)
, (1.33)

where x = (x1, x2, x3), y = (y1, y2, y3) are spatial vectors, and θ (x0 − y0) = 1 when
x0 − y0 > 0 and = 0 otherwise. The GW solution is then written as

h̄µν (x
σ) = −16πG

∫
G (xσ − yσ)Tµν (y

σ) d4y

= 4G

∫
Tµν(t− |x − y|, y)

|x − y| d3y.

(1.34)

Here xσ = (t, x). We integrated y0 in the second line by limiting y0 to t− |x− y|, i.e., the
retarded time tr. The physical picture of Eq. 1.34 is clear: the perturbation of gravitational
field at (t, x) arises from the cumulative influence from matter located at y at the retarded



CHAPTER 1. GRAVITATIONAL WAVES: PHYSICS, SOURCES & DETECTORS 9

time tr.
We perform the Fourier transform to h̄µν . The Fourier transform and its inverse are

defined as
ϕ̃(ω, x) = 1√

2π

∫
dteiωtϕ(t, x),

ϕ(t, x) = 1√
2π

∫
dωe−iωtϕ̃(ω, x),

(1.35)

and the Fourier transform of h̄µν can be calculated by constructing a Fourier transform of
the source Tµν :

˜̄hµν(ω, x) =
4G√
2π

∫
dtrd

3yeiωtreiω|x−y|Tµν (tr, y)
|x − y|

= 4G

∫
d3yeiω|x−y| T̃µν(ω, y)

|x − y| .
(1.36)

To further simplify this equation, we consider GWs from a distant isolated source and
assume the source is moving at a low speed. With the first approximation, the source
can be considered as at the distance R ≈ |x − y| and its size δR is much smaller than
R. With the second, we can conclude ωδR ≪ 1, i.e. the motion of parts of the source
is much slower than the speed of GWs (light). Putting these together, we can substitute
eiω|x−y|/|x − y| with eiωR/R, which can be extracted from the integral:

˜̄hµν(ω, x) = 4G
eiωR

R

∫
d3yT̃µν(ω, y). (1.37)

Therefore, we only need to calculate the integral of T̃µν over spatial coordinates. This can
be accomplished by integrating by parts and applying the conservation law Eq. 1.19. For
example, T̃ij : ∫

d3yT̃ ij(ω, y) =
∫
∂k

(
yiT̃ kj

)
d3y −

∫
yi
(
∂kT̃

kj
)
d3y

= iω

∫
yi
(
T̃ 0j
)
d3y

=
iω

2

∫ [
∂l

(
yiyjT̃ 0l

)
− yiyj

(
∂lT̃

0l
)]
d3y

= −ω
2

2

∫
yiyjT̃ 00d3y.

(1.38)

Here we used integral by parts twice (the first and the third lines) and abandoned the
boundary terms since the source is isolated. For the second and the fourth lines, we used
the conservation law in the frequency domain:

∂µT̃
µν = ∂0T̃

0ν + ∂iT̃
iν = iωT̃ 0ν + ∂iT̃

iν = 0. (1.39)
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Define the mass quadrupole moment tensor of the source

Qij(t) =

∫
yiyjT 00(t, y)d3y, (1.40)

the frequency domain solution can be written as

˜̄hij(ω, x) = −2Gω2 e
iωR

R
Q̃ij(ω), (1.41)

and we can convert it to the time domain

h̄ij(t, x) = − 1√
2π

2G

R

∫
dωe−iω(t−R)ω2Q̃ij(ω)

=
1√
2π

2G

R

d2

dt2

∫
dωe−iωtrQ̃ij(ω)

=
2G

R
Q̈ij (tr) ,

(1.42)

Eq. 1.42 is the quadrupole radiation formula. The time components of h̄µν are given by
the Lorenz gauge condition Eq. 1.10

˜̄h0ν = i

ω
∂i
˜̄hiν . (1.43)

Note that time components of h̄µν vanish in TT gauge. Tensors that are not under TT
gauge can be transformed to TT gauge by

h̄TT
ij = Λij,kℓh̄kℓ, (1.44)

where the lambda projector is defined as

Λij,kℓ(n̂) = PikPjℓ −
1

2
PijPkℓ, Pij(n̂) = δij − ninj, (1.45)

where ni is the direction of GW propagation. Therefore, spatial components under TT
gauge should be written as

h̄TT
ij (t, x) = 2G

R
Λ̈ij,kℓQkl (tr) =

2G

R
Q̈TT
ij (tr) . (1.46)

This tells us that, the leading term of gravitational radiation is quadrupole radiation,
which is proportional to the second derivative of the mass quadrupole momentum. Gravi-
tational radiation under GR does not contain dipole radiation as electromagnetic radiation
does. This is because changes in the dipole momentum of mass correspond to the motion
of the center of mass, and in GR we can always find a set of coordinates to remove its
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motion.
The quadrupole momentum is typically much smaller than the dipole since it is a

higher-order description of the shape of the system, and due to the weak nature of gravity,
we can infer that gravitational radiation is correspondingly very weak. We could also see
this by writing Eq. 1.46 in the International System of Units (SI): the coefficient 2G/R

will become 2G/Rc4. For a GW source at 1Ṁpc, it is a factor of 5 × 10−67! This makes
the detection of GWs extremely challenging, leading Einstein to conclude that although
GWs existed, they were unlikely to ever be detected. However, Einstein underestimated
the rapid advancement of technology and the determination of scientists. In 2015, the
Laser Interferometer Gravitational-Wave Observatory (LIGO) has made the first direct
detection of GWs from a Binary Black Hole (BBH) coalescence [7]. Further details will be
provided in subsequent sections.

We are also interested in the angular distribution of GWs, since we have to observe
GW sources from a specific angle. Let us set up the geometry as in Fig. 1.2: there is a
Cartesian coordinate (x, y, z) in the source frame, and the observer’s line of sight is along
vector n̂. The angle between n̂ and ẑ is θ. We construct another Cartesian coordinate
(x′, y′, z′) for the observer, where ẑ′ = n̂, and ẑ′’s projection on (x, y) plane forms an angle
of ϕ with respect to y. We aim to calculate hTT

+ and hTT
× for the observer, i.e., in the

observer frame, via Eq. 1.46.
The first step would be finding the mass quadrupole in the TT gauge. Notice that

when n̂ = ẑ′, the Pij in the Lambda projector Eq. 1.45 is a diagonal matrix diag(1, 1, 0),
therefore in the (x′, y′, z′) frame, the derivative of mass quadrupole Q′

ij after TT projection
can be calculated:

Q̈′TT
ij = Λij,klQ̈′

kl =


(
Q̈′

11 − Q̈′
22

)
/2 Q̈′

12 0

Q̈′
21 −

(
Q̈′

11 − Q̈′
22

)
/2 0

0 0 0


ij

. (1.47)

Then the plus and cross polarizations for observers at n̂ direction are simply

h+(t, n̂) =
G

r

(
Q̈′

11 − Q̈′
22

)
h×(t, n̂) =

2G

r
Q̈′

12,

(1.48)

Finally, from the coordinate transformation, Q′
ij is related to the source frame mass

quadrupole Qij by
Qij = RikQ

′
klRjl, (1.49)
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OO

Figure 1.2: The relation between the source frame (x, y, z) and the observer frame
(x′, y′, z′). The observer’s line of sight is along z′, and the angle between n̂ and ẑ is θ. ẑ′’s
projection on (x, y) plane has an angle of ϕ with respect to y.

where

R =

 cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1


 1 0 0

0 cos θ sin θ
0 − sin θ cos θ

 . (1.50)

To summarize, one can calculate the mass quadrupole in the source frame without con-
cerning the TT gauge, and convert it to the observer frame by Eq. 1.49, and then the GW
polarizations observed are given by Eq. 1.48.

1.1.4 Energy carried by gravitational waves

GWs carry energy, yet defining the energy of GWs poses several conceptual challenges [5].
First, the energy of gravitational fields can not be defined locally as electromagnetic fields
can. Electromagnetic fields are essentially matter that “has weight”; they curve the space-
time and leave observable signatures. This is not the case for gravitational fields. The
equivalence principle tells us that the local curvature can always be eliminated by co-
ordinate transformations. Without a gravitational field, there is no well-defined local
gravitational energy. Therefore, gravitational energy, including GWs’ energy, should al-
ways be defined on the macroscopic scale. Second, when considering GWs’ energy (i.e.
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their energy-momentum tensors), we must include it in the Einstein field equations and it
will in turn curve its background spacetime. In earlier sections, we perturbed a flat back-
ground spacetime to distinguish GWs. Now, with the background curved, it is necessary
to ensure that the wavelength λGW of the GW is much smaller than the spatial variation
of the background gravitational field LBG, i.e. λGW ≪ LBG. Only under these conditions
does it become meaningful to discuss the energy of GWs.

The Einstein field equations can be rearranged as

Rµν = 8πG

(
Tµν −

1

2
gµνT

)
, (1.51)

and we expand the Ricci tensor Rµν to O(h2):

Rµν = R̄µν +R(1)
µν +R(2)

µν + . . . , (1.52)

where R̄µν is caused by the background ḡµν only, R(1)
µν is of O(h) and R

(2)
µν is of O(h2).

Their explicit expressions are [6]

R(1)
µν =

1

2

(
∇̄α∇̄µhνα + ∇̄α∇̄νhµα − ∇̄α∇̄αhµν − ∇̄ν∇̄µh

)
, (1.53)

R(2)
µν =

1

2
ḡρσḡαβ

[
1

2
∇̄µhρα∇̄νhσβ +

(
∇̄ρhνα

) (
∇̄σhµβ − ∇̄βhµσ

)
+ hρα

(
∇̄ν∇̄µhσβ + ∇̄β∇̄σhµν − ∇̄β∇̄νhµσ − ∇̄β∇̄µhνσ

)
+

(
1

2
∇̄αhρσ − ∇̄ρhασ

)(
∇̄νhµβ + ∇̄µhνβ − ∇̄βhµν

)]
,

(1.54)

where ∇̄µ is the covariant derivative with respect to the background metric. As discussed
earlier, the background should be smooth and correspond to “low frequency” (slowly
varying) terms in the equations, so R̄µν only contains low frequency modes. Similarly,
R

(1)
µν only contains high frequency (fluctuating) modes. Interestingly, R(2)

µν should include
both low and high frequency modes since GWs with different wave vectors can destructively
interfere and result in a smooth perturbation. Separating low and high frequency modes
of R(2)

µν , we can write

R̄µν = −
[
R(2)
µν

]Low
+ 8πG

(
Tµν −

1

2
gµνT

)Low

, (1.55)

R(1)
µν = −

[
R(2)
µν

]High
+ 8πG

(
Tµν −

1

2
gµνT

)High

. (1.56)

How can we naturally divide the low and high frequency parts? Notice that the spatial
scale l̄ that is much greater than λGW but smaller than the background LBG, and if we
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perform a spatial average over scale l̄, the modes that are around λGW will be averaged
out and only low frequency modes could remain. Therefore, Eq. 1.55 can also be written
as

R̄µν = −
〈
R(2)
µν

〉
+ 8πG

〈
Tµν −

1

2
gµνT

〉
. (1.57)

where ⟨. . . ⟩ means spatial average over several λGW. We can further define the “averaged”,
low frequency part of Tµν , which is the effective energy-momentum tensor of the matter〈

Tµν −
1

2
gµνT

〉
= T̄ µν − 1

2
ḡµνT̄ , (1.58)

and we find if we let
tµν = − 1

8πG

〈
R(2)
µν − 1

2
ḡµνR

(2)

〉
, (1.59)

then Eq. 1.57 can be written as

R̄µν −
1

2
ḡµνR̄ = 8πG

(
T̄µν + tµν

)
, (1.60)

just like the background spacetime is curved by matter Tµν , and another term Eq. 1.59
which is from GWs! Eq. 1.59 therefore becomes the definition of the energy-momentum
tensor of GWs. With the definition of R̄µν , one can verify that the conservation law
∇̄µ(T̄µν + tµν) = 0, and this reduces to ∂µtµν = 0 in flat background far from the GW
source. Substituting Eq. 1.54 into Eq. 1.59, tµν will be simplified as

tµν =
1

32πG

〈
∂µhαβ∂νh

αβ
〉
, (1.61)

and we have
t00 =

1

32πG

〈
ḣTT
ij ḣ

TT
ij

〉
=

1

16πG

〈
ḣ2+ + ḣ2×

〉
(1.62)

under the TT gauge. The energy flux on area element dA of GWs takes the form

dE

dAdt
= t00 =

1

32πG

〈
ḣTT
ij ḣ

TT
ij

〉
, (1.63)

and it can also be written in terms of the solid angle dΩ = dA/r2

dE

dt
=

r2

32πG

∫
dΩ
〈
ḣTT
ij ḣ

TT
ij

〉
. (1.64)

Similarly, we can write down the momentum that GWs carry

dP k

dAdt
= t0k =

〈
ḣTT
ij ∂

khTT
ij

〉
, (1.65)
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dP k

dt
= − 1

32πG
r2
∫
dΩ
〈
ḣTT
ij ∂

khTT
ij

〉
. (1.66)

The fact that GWs carry energy implies that the source of GWs will lose energy, which
in turn affects the dynamical evolution of the source. For instance, in a binary system,
this energy loss results in a gradual decrease in orbital radius, potentially leading to the
eventual merger of the binary system, as observed in the detections by LIGO. In fact, even
before the first direct detection by LIGO in 2015, the energy carried by GWs had been
indirectly confirmed by Hulse and Taylor as early as 1974 [8]: they found the orbit decay
in a binary pulsar system follows the prediction by GR.

It is noteworthy that the averaging technique used here is essentially the renormaliza-
tion group transformation, which is important in the Quantum Field Theory (QFT). We
integrated out the small fluctuations that happen on a small length scale (λGW) to get an
effective theory on the length scale we are interested in (l̄). The difference between renor-
malization here and in QFT is that here we integrated over the coordinate space to obtain
a theory useful in a typical length scale, while in QFT we may consider the momentum
space and cut high momentums (high energy) off to obtain a low-energy effective theory.

1.1.5 Gravitational waves from binary systems

We now turn our attention to a fundamental physical model: two point masses orbiting
each other. This is one of the simplest models that has changes in mass quadrupole so
it emits GWs. As binary systems are common in the universe [9, 10], studying this basic
model will provide insights into astrophysical sources discussed in the following sections.
We will calculate the leading-term GW waveform from it and investigate how such systems
evolve.

We consider the geometry in Fig. 1.2 and assume the two objects m1,m2 and their
circular orbit are on the (x, y) plane of the source frame. We set the origin of the source
coordinates as the center of mass of the system and assume the distance between m1 and
m2 is a. When they orbit around each other at the angular velocity ωs, the mass density
of the system is

T 00(t,x) = ρ(t,x) =m1

[
δ
(
x− r1 cos(ωst+

π

2
)
)
δ
(
y − r1 sin(ωst+

π

2
)
)
δ(z)

]
+m2

[
δ
(
x+ r2 cos(ωst+

π

2
)
)
δ
(
y + r2 sin(ωst+

π

2
)
)
δ(z)

]
,

(1.67)
where

r1 =
m2

m1 +m2

a, r2 =
m1

m1 +m2

a. (1.68)

The π/2 in the phase is chosen to simplify the result in the end (it removes an annoying
minus sign). Substituting the mass density into Eq. 1.40, the non-zero mass quadrupole
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components are
Q11 = µa2

1− cos 2ωst
2

Q22 = µa2
1 + cos 2ωst

2

Q12 = −1

2
µa2 sin 2ωst,

(1.69)

where µ = m1m2/(m1 +m2) is the reduced mass. The derivatives are

Q̈11 = −Q̈22 = 2µa2ω2
s cos 2ωst,

Q̈12 = 2µa2ω2
s sin 2ωst.

(1.70)

Combining the mass quadrupole with Eq. 1.48 and Eq. 1.49, we obtain the GW waveform

h+(t; θ, ϕ) =
4Gµω2

sa
2

r

(
1 + cos2 θ

2

)
cos (2ωstret + 2ϕ)

h×(t; θ, ϕ) =
4Gµω2

sa
2

r
cos θ sin (2ωstret + 2ϕ) .

(1.71)

The frequency of the quadrupole gravitational radiation is twice the source orbit frequency.
The ϕ only contributes a phase to the waveform; it degenerates with a time translation of
the binary, i.e., one can shift the system by ∆t and replace ϕ with another angle without
changing the physics. Thus, we can use the observer time t to replace the source fame
retarded time:

2ωstret + 2ϕ→ 2πft+ ϕ0 (1.72)

An interesting observation is that the amplitude of GWs depends on θ, which in this
context represents the inclination angle ι of the source. ι describes the rotational axis of
the system and the line of sight of the observer. We always observe the plus polarization,
but when the source is “edge on” toward us (ι = π/2), the cross polarization vanishes.
When we are right above the binary plane, the “face-on” sources (ι = 0) have the largest
amplitude.

The amplitude also depends on the mass of the system. However, it is not directly
proportional to µ as shown in Eq. 1.71 because mass and orbital parameters (ωs, a) are
not independent. They are related by the physics of the Newtonian circular orbit (to the
lowest order):

ω2
s =

Gm

(a/2)3
, (1.73)

where m = m1 +m2 is the total mass. We want to remove a redundant parameter in the
amplitude - and it is better to be a here since a is physically less interesting than the other
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two. Plugging a = 3
√
ω2
s/Gm into Eq. 1.71 and using Eq. 1.72, we get

h+(t) = A
(
1 + cos2 ι

2

)
cos (2πft+ 2ϕ0)

h×(t) = A cos ι sin (2πft+ 2ϕ0) .

(1.74)

where
A =

4

r
(GM)5/3(πf)2/3, (1.75)

and
M = µ3/5m2/5 =

(m1m2)
3/5

(m1 +m2)1/5
(1.76)

is the chirp mass of the system. It is the chirp mass that directly determines the amplitude
of GWs of binary systems (in the leading order). The power of the gravitational radiation
can be calculated by integrating over the solid angle from Eq. 1.64, and it is also determined
by the chirp mass:

P =
r2

16πG

∫
dΩ
〈
ḣ2+ + ḣ2×

〉
=

32

5G
(πGMf)10/3 . (1.77)

The power of gravitational radiation brings a new problem: the binary cannot maintain
a stable circular orbit due to the loss of energy by GWs. We have to consider the back-
reaction of GWs on the system. To the Newtonian order, the energy of the system is

E = −Gm1m2

a
= −

(
π2G2M5f 2

8

)1/3

, (1.78)

note here f is the frequency of GWs. The decrease of energy will therefore cause the
shrinking of orbit size a and increase of GW frequency f (as well as the orbit frequency ωs).
Consequently, on a sufficiently long timescale, the energy loss will lead to the coalescence
of the binary. To provide a clearer picture, we assume the change in orbit is much slower
than the velocity of the system, i.e., |ȧ| ≪ ωsa. This allows us to treat the orbit as
circular but with a slowly-varying radius. We are in the quasi-circular regime as long as
this approximation holds.

We consider the loss of energy to be totally caused by GWs, then we can equate the
time derive of Eq. 1.78 with Eq. 1.77, and get a differential equation for GW frequency f :

ḟ =
96

5
π8/3(GM)5/3f 11/3, (1.79)

whose solution reads

f(τ) =
1

8π

(
5

τ

)3/8

(GM)−5/8 , (1.80)
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where τ = tc− t is the time to coalescence and tc is the time of coalescence. It is useful to
write it and its inverse in SI:

f(τ) =
1

8π

(
5

τ

)3/8(
GM
c3

)−5/8

≈ 134 Hz
(
1.21M⊙

M

)5/8(
1s

τ

)3/8

,

(1.81)

τ(f) =
5

256

(
GM
c3

)−5/3

(πf)−8/3

≈ 2.18 s
(
1.21M⊙

M

)5/3(
100 Hz
fgw

)8/3

.

(1.82)

Eq. 1.80 tells us although the GW frequency evolves, there is a clear one-to-one relationship
between the frequency and time to coalescence. Therefore, in the waveform formula, we
can change f with f(τ), and replace 2πft with a cumulative phase:

Φ(t) =

∫ t

t0

2πf(t′)dt′. (1.83)

Finally, the waveform reads

h+(t) = A(τ)

(
1 + cos2 ι

2

)
cos[Φ(τ) + ϕc]

h×(t) = A(τ) cos ι sin[Φ(τ) + ϕc]

(1.84)

where

A(τ) =
1

r
(GM)5/4

(
5

τ

)1/4

, (1.85)

Φ(τ) = −2
( τ

5GM

)5/8
. (1.86)

Here Φc is an integral constant denoting the coalescence phase. Now we have quantified
the evolution of the GW frequency and amplitude. As both of them increase and in-
crease faster with time, the resulting signal resembles a chirp, and therefore we name the
dominant parameter M as chirp mass. It’s important to note that this characterization
holds precisely for quasi-circular orbits, where the orbit remains circular and only the
radius changes. In contrast, for eccentric orbits, GW frequency spectrum is not quasi-
monochromatic and will extend to higher frequencies [6], which could render the signals
sound less “chirpy” even though the overall frequency is increasing. Eccentric binaries lose
energy faster than the quasi-circular, so their orbit evolution is faster than described in
Eq. 1.82. Their eccentricity also decreases in this process, thus the orbit will be circular-
ized during evolution. More details of eccentric binaries can be found in Ref. [5, 6], and
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we will focus on quasi-circular binaries in this work.
The GW waveform in the frequency domain can be obtained by Fourier transform and

Stationary Phase Approximation (SPA). SPA is based on the Riemann-Lebesgue lemma:
for an integrable function f(t) in [a, b], we have

lim
λ→±∞

∫ b

a

f(t)eiλtdt = 0. (1.87)

An intuitional explanation to the lemma is that eiλt contributes a fast oscillating term,
and the integral is averaged out to zero due to the oscillations. On the contrary, if eiλt

does not oscillate in some places, these places will contribute most to the integral. For
example, if the exponent λt, or a more generic form Φ(t), as a stationary point Φ̇ = 0, the
integral will be mostly contributed from the stationary point.

This is exactly the case when we calculate the Fourier transform of the time domain
waveform Eq. 1.84. Take plus polarization for example:

h̃+(f) =

∫
dtA (tret) cosΦ (tret) e

i2πft

=
1

2
ei2πfr

∫
dtretA (tret)

(
eiΦ(tret) + e−iΦ(tret)

)
ei2πftret ,

(1.88)

where we have used τ = tc − t and tret = t− r. Since ˙Φ(t) > 0, the eiΦ(tret) will be always
fast oscillating and it vanishes after integral2. The e−iΦ(tret) together with ei2πftret will
contribute a stationary point t∗ satisfying

Φ̇(t∗) = 2πf, (1.89)

so we can expand the exponential term to the second order around t∗ and approximate
the integral with the expanded phase. From a physics perspective, calculating h̃+(f) by
only taking contributions around t∗ means we only include frequencies near f(t∗), aligning
with our quasi-circular approximation. The expanded exponential term is

−2Φ(t) + 2πft = −2Φ (t∗) + 2πft∗ − 2πḟ (t∗) (t− t∗)
2 + · · · , (1.90)

and the Fourier transform becomes analytically integrable, which gives the result

h̃+(f) =
1

2
eiΨ+A (t∗)

(
2π

Φ̈ (t∗)

)1/2

(1.91)

where
Ψ+ = 2πf (t∗ + r)− Φ (t∗)− (π/4). (1.92)

2We only consider positive frequency here, and the negative frequency can be given by h̃+(−f) = h̃∗(f)
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The t∗ can be converted to f via Eq. 1.80, and the final results read

h̃+(f) = A(f)

(
1 + cos2 ι

2

)
eiΨ+(f)

h̃×(f) = A(f) cos ιeiΨ×(f)

(1.93)

where

A(f) =
1

π2/3

(
5

24

)1/2
1

r
(GM)5/6

1

f 7/6
, (1.94)

Ψ+(f) = 2πf (tc + r)− Φ0 −
π

4
+

3

4
(8πGMf)−5/3 , (1.95)

and Ψ×(f) = Ψ+(f)+π/2. Writing the amplitude in convenient units, we get an estimate
of GW magnitude for binaries:

h ∼ 1.4× 10−22

(
f

100 Hz

)2/3( M
1.22M⊙

)5/3(
10Mpc
r

)
. (1.96)

Note that A(τ) diverges when t→ tc. This is because when t approaches tc the source
has already lost the nice properties, such as components being far separated and at low
speed, weak field etc, that allow us to calculate at the Newtonian order, therefore all of
the above equations are not valid anymore. In fact, considering the Schwarzschild metric
around the binary components, no stable circular orbit is allowed when they reach the
Innermost Stable Circular Orbit (ISCO), the radius of which is given by the total mass m
of the system [6]:

rISCO = 6Gm, (1.97)

and it corresponds to the GW frequency of quasi-circular orbits

fGW
ISCO =

1

6π
√
6

1

Gm

≈ 440Hz
(
10M⊙

m

)
(in SI).

(1.98)

After the ISCO is reached, the dynamics of the binary system will be driven by strong-field
effects, ultimately leading to the merger of the two components. This will be discussed in
more detail in later sections. Example waveforms before the ISCO are shown in Fig. 1.3.
We can read the chirp characteristics from the waveforms, and how the inclination angles
influence the amplitude of two polarizations.

At the end of this section, it is important to acknowledge that we only considered GW
physics under GR. Despite GR’s remarkable success and extensive experimental valida-
tion [11], it is facing difficulties on both theory and observation sides such as quantization,
dark matter and dark energy. Many modified gravity theories have been proposed with
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Figure 1.3: Example GW waveforms in time domain from a 20M⊙+20M⊙ binary system
at 100Mpc with different inclination angles (0 and 75◦).

different motivations (e.g.,[12, 13, 14, 15, 16]), and GWs in those theories could behave
differently from GWs in GR in generation (the source property has a different relation
with GWs emitted), propagation (dispersion [17], birefringence [18], and amplitude damp-
ing [19, 20]), and polarization (up to 4 more extra polarizations of GWs [21, 22, 23, 24]).
While it’s beyond the scope of this thesis to provide an exhaustive review of these theo-
ries, it is essential to remain open to the possibility that GWs could behave differently in
alternative theories of gravity. In fact, the observation of GWs can be used as a unique
test of gravity theories [25].

1.2 Astrophysical sources of gravitational waves
GWs are extremely weak phenomena. The magnitude of GW sources can be roughly
estimated by replacing the Q̈TT

ij in Eq. 1.46 with Mv2, where M is the mass and v is the
typical velocity of the system. For a man-made source with two masses of M = 103kg
orbiting each other with v = 100m/s, the h will be around 10−37 at r = 1m, which is
far too small to be detected, not to mention the feasibility of making such a centrifuge
system. Therefore, the hope for GW detection lies in those extremely energetic sources in
the deep universe where masses can be several to billions of solar masses and velocities can
approach the speed of light. Fig. 1.3 shows that a Binary Black Hole (BBH) system could
produce h ∼ 10−21, which is much stronger than the man-made sources, suggesting the
astrophysical sources are more promising. I will give an overview of astrophysical sources
of GWs in this section.



CHAPTER 1. GRAVITATIONAL WAVES: PHYSICS, SOURCES & DETECTORS 22

1.2.1 Compact binaries

Binary systems are common in the universe, in fact, binary stars are more common than
single stars [9, 10]. During the final stages of stellar evolution, massive stars may col-
lapse into compact objects, including Black Holes (BHs), Neutron Stars (NSs), and White
Dwarfs (WDs), depending on their mass. A binary star may go through a coevolution
process and form a compact binary [9, 26, 27, 28]. Common stellar mass compact bina-
ries include Binary Black Hole (BBH), Binary Neutron Star (BNS), Neutron Star Black
Hole Binaries (NSBH), and Double White Dwarf (DWD). Besides, stellar mass compact
binaries can form through the dynamical capture of single objects in dense star clusters
or Active galactic nuclei (AGN) disks [29, 30, 31]. In rare cases, parabolic and hyperbolic
encounters of two compact objects are possible, which could produce GWs analogous to
Bremsstrahlung processes in electromagnetic radiation production [32, 33]3. These com-
pact binaries are natural massive centrifuges that generate “strong” GW signals and are
ideal sources for GW detection.

In addition to the stellar-origin BHs and NSs, theories have predicted other alternatives
that are yet to be confidently observed. For instance, primordial BH is an alternative
that can be formed in the early universe [34, 35] and their merger rate is predicted in
Ref. [36]. Exotic objects (like boson stars [37]) are also alternatives to BHs and NSs, and
are predicted to be able to form in the universe [38, 39].

Beyond the stellar mass compact binaries above, it is also expected that massive black
holes in the center of galaxies could also be sources of GWs when they interact with other
heavy objects. This contains Super-Massive Binary Black Hole (SMBBH) [40, 41] (if the
other object is also a supermassive black hole, which indicates the merger of two galaxies)
and Extreme-Mass-Ratio Inspiral (EMRI) [42, 43] (if the other one is a stellar-mass object
captured by the massive black hole).

The gravitational radiation and evolution of binary systems with quasi-circular orbits
have been discussed in Sec. 1.1.5: Binary systems lose energy in the form of GWs during
orbiting, which results in the decrease of the orbit radius and the increase of orbit fre-
quency, thereby producing “chirp-like” GW signals. This is known as the inspiral stage,
during which binary components are far separated and move at low velocities in a weak
gravitational field. These properties break down when the components get so close to each
other that the Schwarzschild metric no longer allows for stable circular orbits. After the
ISCO is reached, the dynamics will be driven by strong-field effects and the binary will
plunge into each other. This is referred to as the merger stage, during which the amplitude
of GWs reaches its peak. The merger may lead to the formation of a larger BH [7] at an
excited (perturbed) state, which will produce a damping GW signal due to Quasi-Normal

3It is not usually listed as a “compact binary” source in the literature. They are included here for
completeness but will not be discussed in detail.
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Modes (QNMs) of vibration [44]. The last stage is called ringdown. This whole inspiral-
merger-ringdown process is often referred to as Compact Binary Coalescence (CBC).

However, depending on the type, mass, initial condition, and distance of the compact
binaries, they will produce different kinds of GW signals, and not all compact objects can
go through the aforementioned inspiral-merger-ringdown process. The first observation
from Eq. 1.98 is that the frequency of GWs is inversely proportional to the mass of the
source. For stellar-mass compact binaries, the frequency band lines in O(1) ∼ O(103)Hz
near merger, while for SMBBH and EMRI the frequency band is O(10−4) ∼ O(10−1)Hz,
which implies different types of detectors may be needed to observe the coalescence stellar-
mass and supermassive binaries. On the other hand, low-frequency detectors may detect
the very early stage of stellar-mass binaries. This will be discussed in the next section
about detectors.

Second, the time to merger formula Eq. 1.82 can be rearranged to estimate the time
from formation to merger τ0

τ0 ≃ 9.8× 106yr
(
T0
1hr

)8/3(
M⊙

m

)2/3(
M⊙

µ

)
, (1.99)

where T0 is the initial orbit period. Given the galaxy’s age is estimated at 10 billion
years [45], stellar mass binaries started close enough (small T0) will merge at a timescale
that we are able to observe. They will leave transient signals in high-frequency-sensitive
detectors (which can only detect the late high-amplitude GWs), and leave long-lasting
signals in low-frequency-sensitive detectors, and will be detected if the signal is strong
enough. However, there is also a certain fraction of compact binaries that can not evolve
to the merger stage within the current age of galaxies, or, they may not be observed when
they merge because they are too distant from us. Since there are many of them, they will
contribute a Stochastic Gravitational-Wave Background (SGWB) to the detector data,
which can only be estimated at the population level statistically [46, 47].

In addition to the GW signals, some compact binaries are expected to have Electro-
magnetic (EM) counterparts as well as other counterparts like neutrinos, i.e., strong EM
signals will be generated during the orbiting or merger. For example, the merger of BNS
may be observed as a kilonova which is bright from GRB to radio band [48, 49]. A “wet”
environment around the binary could also lead to EM counterparts, especially in the ac-
cretion disk near a supermassive black hole [50, 51]. Detecting these EM counterparts is
crucial as it extends GW astronomy to multi-messenger astronomy, enabling us to gather
a wealth of physical information from different observations.

Throughout this thesis, I will focus on compact binaries, but I will also provide a brief
overview of other astrophysical sources in the following sections.
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1.2.2 Pulsars

Rotating systems are not limited to binaries. Pulsars are dense, highly magnetized, and
fast-rotating neutron stars that emit EM radiation out of their magnetic poles. Pulsars
are not perfect spheres, and they have a non-zero changing mass quadrupole due to their
irregularity and rotation, which produces GWs [52].

There are different types of irregularity of pulsars and they generate distinct GW
signals. The first type is triaxial irregularity: a neutron star may have “bumps” or
“mountains” from formation, magnetic field, stresses due to relaxation and many other
reasons [53, 54, 55]. This persistent irregularity, combined with the star’s rotation, pro-
duces long-lasting continuous GWs. Unlike the CBC chirp signals, continuous waves from
isolated pulsars decay over time because pulsars’ rotation gradually slows down (“spin-
down”) due to energy loss by gravitational radiation, and the frequency evolution is much
slower than compact binaries. Typical continuous GW magnitude from isolated rotating
pulsars is [6]

h ∼ 1.06× 10−25
( ϵ

10−6

)( Izz
1038 kg m2

)(
10kpc
r

)(
f

1kHz

)2

, (1.100)

where ε is the equatorial ellipticity of the pulsar and Izz is principle moment of inertia.
Continuous GW is weaker than GW from compact binaries (Eq. 1.96). However, the
signal accumulates with observation time faster than the noise, therefore it is possible to
detect continuous waves at some point. Indeed, even a null result is valuable as it imposes
constraints on the existing electromagnetically observed neutron stars [56]. In some cases,
the rotation induces precession, which potentially produces long or medium-term GW
emissions [6, 57].

The second type of irregularity is the vibrations of pulsars. Pulsars may go through
various vibrational modes, including f-modes (fundamental modes), the first resonant mass
quadrupolar mode, excited by glitches or nuclear explosion or other reasons, and R-modes
(Rossby waves), the mass current quadrupole in hot young or accreting neutron stars,
and many other modes [52, 58]. Some of these vibrations are short-lived (like f-modes)
and produces short burst GW emissions. Some are long-lived, like R-modes, produces
continuous waves.

All the discussions about pulsars above are also applicable to other relativistic stars like
boson stars, if they do exist. The observation of GWs is an ideal test of such exotic objects,
as they are predicted to exhibit different equatorial ellipticity ε compared to neutron stars,
which can be estimated by GW observations.
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1.2.3 Gravitational collapse

Neutron stars and black holes are produced by the gravitational collapse of massive and
old stars or the core collapse of accreting white dwarfs. If the collapse is nonspherical
and driven by strong rotation, it may generate burst GWs that carry away binding en-
ergy and angular momentum [59, 60]. Despite extensive efforts to simulate the collapse
process [59, 61, 62, 63], fully understanding such events remains challenging due to com-
plexities in hydrodynamics, neutrino physics, realistic nuclear physics, magnetic fields,
and other factors. It is therefore impossible to have a closed-form waveform equation like
in CBC (chirp signals) and continuous waves (quasi-monochromatic signals). Therefore,
detecting burst GWs from gravitational collapse requires unmodelled searches that only
make use of the coherence between different detectors.

Simulations reveal that 99% of energy in this process is carried away by neutrinos, and
most of the rest of the energy is converted to the kinetic energy of the explosion, while the
EM (this process is also accompanied by GRB [64]) and GW only get 0.01% [65]. GWs
from a typical supernova collapse might extract between approximately 10−7 and 10−5 of
the total available mass-energy, and the frequency bands might lie in 20-200Hz [66, 67].
The typical burst GW amplitude is roughly given by [60]

h ∼ 6× 10−21

(
E

10−7M⊙

)1/2(
1 ms
T

)1/2(
1kHz
f

)(
10kpc
r

)
, (1.101)

where E is the equivalent mass-energy in M⊙ and T is the duration of the burst. This
amplitude is large at 10kpc, but the event rate within 10kpc brings more uncertainties to
an early detection.

1.2.4 Stochastic background

We have discussed discrete sources in the past sections. Other than that, the universe
has a random GW background resulting from the superposition of all discrete systems
that emit GWs and from some cosmological process, in analogy to the Cosmic Microwave
Background (CMB). The inspiralling binaries we mentioned in Sec. 1.2.1 are an example of
an astrophysical stochastic background. Various phenomena in the early universe, such as
inflation [68], preheating [69], phase transitions [70], and cosmic strings [71] are predicted
to contribute to a primordial stochastic background. The stochastic background is a probe
of both galactic binaries and the early universe.

The stochastic background needs to be quantified statistically. It spans over all fre-
quency bands, ranging from nanohertz to kilohertz, so it is conventional to talk about
the energy density per unit logarithm of frequency, and after averaging over all source
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directions and all independent polarizations, the energy density is defined as [60]

dρgw

d ln f = 4π2f 3SGW(f), (1.102)

where SGW(f) is the power spectrum of the stochastic background. Its ratio over the
critical density ρc is defined as ΩGW, in analogy to Ωm and ΩΛ in cosmological models:

ΩGW(f) =
1

ρc

dρGW

d ln f =
4π2

3H2
0

f 3SGW(f), (1.103)

where H0 is the Hubble constant. The ΩGW is expected to be very small (< 10−5), as it
is otherwise in tension with the standard Big Bang model of nucleosynthesis [60].

The stochastic background is indistinguishable from noise in a short period in one
detector. In the long term, if the detector changes its orientation, it is in principle possible
to distinguish the background from the noise [6]. A more promising way of detecting the
stochastic background is using the cross-correlation between different detectors [72], as
they have different responses to the background GWs.

1.3 Gravitational wave detectors
The first attempt at GW detection can be traced back to the 1960s when Joseph Weber
built a resonant bar at the University of Maryland [73]. The resonant bar gets excited and
produces vibrations in response to GWs due to the changes in the stress tensor inside the
bar. Weber claimed the first detection of signals from the center of the Galaxy in 1969 [74],
but subsequent attempts by other research groups, achieving similar or better sensitivity,
failed to reproduce his results [75, 76, 77, 78, 79]. Weber’s detection was therefore not
recognized by the science community, and the research on resonant bar detectors gradually
waned.

An indirect detection of GWs was later made by Hulse and Taylor in 1974 [8]. They
observed an inspiralling BNS system and recorded the decay of its orbit period. The
changes in orbit period matched the prediction by GR perfectly and thus verified the
energy loss of this system was consistent with the energy carried away by gravitational
radiation. For this groundbreaking discovery of the binary pulsar and the indirect evidence
of gravitational waves, they were awarded the Nobel Prize in Physics in 1993.

Using interferometers as GW detectors was first proposed in the 1960s [80]. After
decades of collaborative efforts by an international team and several observing runs [81, 82,
83], a milestone was achieved in 2015 when the Advanced Laser Interferometer Gravitational-
Wave Observatory (aLIGO)4 directly detected GWs from the merger of a binary black hole

4aLIGO is the upgraded version of the original LIGO. I will not distinguish them in the subsequent
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system [7] with dual 4km-long interferometers. This historic event opened the window to
GW astronomy. Three leaders of LIGO, Rainer Weiss, Barry Barish, Kip Thorne have
been awarded the Nobel Physics Prize in 2017.

While ground-based detectors continue to detect new CBCs, Pulsar Timing Array
(PTA) community claimed the detection of stochastic background in 2023 at the nanohertz
band [84, 85, 86, 87], marking another breakthrough in GW astronomy.

In this section, I will introduce these GW detectors, focusing primarily on the ground-
based interferometers, including their response, noise, current status and future prospects.
I will also provide a brief overview of new types of gravitational wave detectors at the end
of this section.

1.3.1 Ground-based interferometers

Configurations of interferometers

Interferometer GW detectors are based on Michelson interferometers, as shown in Fig. 1.4.
The laser is diverted into two equal-length arms by a beam splitter and travels back to the
photon detector below. As discussed in Sec. 1.1.2, passing GWs alter the proper distance
along the arms, so the optical distance of the laser changes, leaving different interfering
patterns to the photodetector, which can be later interpreted as GW readout. The actual
LIGO setup, however, is more complex than this basic setup. Several critical components
are employed to enhance the detector’s sensitivity:

• Seismic Isolation. The hanging system of the mirror (test mass) consists of a complex
quadruple-pendulum system that could passively and actively remove the seismic
vibrations and make sure the mirror is static [88, 89, 90].

• Strong and Stable Laser. LIGO’s laser system generates high-power near-infrared
laser to improve the precision of measurement. A series of feedback mechanisms are
used to stabilize the power fluctuations of the laser before the laser is used in the
interferometer [91].

• Ultra-High Vacuum. LIGO’s optical components are in an ultra-high vacuum en-
vironment, approximately one trillionth of an atmosphere [92], minimizing laser
scattering with air molecules

• Ultra-Reflective and Stable Mirrors. The mirrors are made highly reflective to pre-
vent photon absorption and heating - it only absorbs one out of every 3.3 million
photons [93]. The mirror contains dozens of layers of optical coatings to achieve
nanometer smoothness [94]. An auxiliary system using a CO2 laser is used to pre-
cisely counteract the shape changes due to heating [89].

text.
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• Modecleaner Cavities. Modecleaner cavities are added after the laser output and
before the photodetector to filter input and output fields [88]. This helps reduce the
laser noise and improve the beam quality.

• Arm Cavities. Each arm includes a Fabry-Perot cavity which allows the laser to
move back and forth thousands of times [88]. This could increase the circulating
power and lengthen the effective arm length.

• Power Recycling. A power recycling system (a mirror is added to form a resonant
cavity) is put before the beam splitter to increase the input laser power by a factor
of O(1000) [95, 96].

• Signal Recycling. A mirror is added before the photodetector to recycle the laser
back to the interferometer [97, 98]. It allows adjustment of the maximum sensitivity
band and improves the SNR.

• Light Sqeezer. Laser is injected in squeezed states to beat the standard quantum
limit [99, 100, 101], which achieves an improved sensitivity at some frequency bands,
especially at frequencies less than 150Hz.

As LIGO detectors are extremely complex and under fast development, this overview
cannot comprehensively cover all modules and techniques utilized. More details can be
found in, e.g., Refs. [88, 92, 98]. In addition to LIGO, credit must also be given to the
Virgo collaboration [102] and KAGRA collaboration [103]. They joined GW search since
O2 in 2017 and O4 in 2023, respectively.

Response to GWs

From this point onward, we will consider the simplified Michelson structure illustrated in
Fig. 1.4 and discuss its response to GWs following Whelan [104]. Assume the unit vectors
along the detector arms are ui, vi, and two arms have the same length L0. When GW
passes through, and hµν is given in TT gauge:

hµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


µν

, (1.104)

we will have the following ds2

ds2 =− c2dt2 + (1 + h+)dx
2 + (1− h+)dy

2 + 2h×dxdy + dz2, (1.105)
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Figure 1.4: The structure of a basic Michelson interferometer.

We assume h+, h× are constant over the lengthscale L0, i.e., the wavelength of GW is much
longer than the detector armlength. This is a good approximation for LIGO-like ground-
based detectors whose arm is about kilometers long. λGW ≫ 4km means fGW ≪ 75kHz,
this is a safe limit given the frequency bands of the astrophysical sources in Sec. 1.2. We
previously computed the proper distance for the plus polarization alone in Eq. 1.29, and
similar calculations can be applied to determine the proper distance here. Consider the
proper distance along arm ui = (u1, u2, u3):

ds2u = L2
0

[
(1 + h+)u

2
1 + (1− h+)u

2
2 + u23 + 2h×u1u2

]
= L2

0

(
1 + h11u

2
1 + h22u

2
2 + h12h21u1u2

)
= L2

0

(
1 + uiujhij

)
,

(1.106)

and therefore
su = L0

(
1 + uiujhij

)1/2 ≈ L0(1 +
1

2
uiujhij). (1.107)

The interferometer measures the difference in roundtrip times between the two arms, so
the measurable quantity is the strain h defined by5

h =
su − sv
L0

= hij
uiuj − vivj

2
= Dijhij, (1.108)

5In fact, what the photodetector record is the voltage v(f), and the strain data is reconstructed by
the voltage and a response function R(f) that relates the digital readout and GW strain, i.e., d(f) =
R(f)v(f) [105]. Here d is the detector data, which equals signal h plus noise n.
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where
Dij =

uiuj − vivj

2
(1.109)

is called detector tensor. That is to say, the response of an interferometer to GW is
the projection of the GW polarizations onto the detector tensor. To further simply this
equation, write hij = h+(C+)ij + h×(C×)ij, where C+ and C× are polarization tensors in
Eq. 1.27. We have

h = Dij(h+(C+)ij + h×(C×)ij) = F+h+ + F×h×, (1.110)

where
F+ = C ij

+Dij, F× = C ij
×Dij (1.111)

are antenna response functions of the interferometer. The above equation is written in the
detector frame, i.e., the x and y axes are along the detector arms. In practice, the waveform
polarizations are calculated in the source frame, so a series of coordinate transformations
are required. There are two equivalent formalisms of calculating the response: the first
one transforms all tensors into the detector coordinate [106], while the second transforms
all tensors into the fixed Earth coordinate [107]. We will adopt the second one here as it is
widely used in GW-relevant software (e.g. LALSuite [108], Bilby [109]) and is convenient
to perform parallel calculations (see, e.g., Sec. 6.4.1).

The geometry is set up in Fig. 1.5. The source frame (x, y, z) (with only the z axis
shown) and the wave frame (x′, y′, z′) correspond to the same coordinates with the same
names as in Fig. 1.2. The z′ axis points towards the Earth. The z and z′ axes are naturally
fixed6, while the freedoms of choosing (x, y) and (x′, y′) are usually fixed for convenience
in physics (waveform calculation), and an initial phase ϕ0 will be given in this process7.
The celestial coordinate is (x′′, y′′, z′′), and right ascension α and declination δ are defined
in this frame. x′′ points to the vernal equinox. The sky direction of the source in the
celestial coordinate is (α, δ). The wave frame x′ axis has an angle with the direction of
decreasing right ascension, and this angle is called polarization angle ψ. This angle defines
GW polarization tensors in the wave frame. When ι = 0, it is degenerate with ϕ0 (or
equivalently, with the coalescence phase ϕc).

Returning to Earth, there is a fixed Earth coordinate (x′′′, y′′′, z′′′) that shares the z′′

axis with the celestial frame. This is the frame in which we want to calculate response
functions. Let x′′′ point to the prime meridian and let y′′′ point to the 90◦E. We use
longitude φ and latitude λ to describe the location of the vertex of the detector.

The detector frame is denoted as (x′′′′, y′′′′, z′′′′). We use azimuth angle ψx and ψy

6We do not consider source precession here. If precession occurs, z can be chosen to be the direction
of total angular momentum instead of the orbital angular momentum.

7For eccentric orbit, the orbit eccentricity and eccentric anomaly will also be defined [110].
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Figure 1.5: Different coordinates for calculating the detector response. (x, y, z): source
frame (only z axis shown). (x′, y′, z′): wave frame. (x′′, y′′, z′′): celestial coordinate, whose
x′′ points to the vernal equinox. (x′′′, y′′′, z′′′): fixed Earth coordinate, whose x′′′ points to
the prime meridian. (x′′′′, y′′′′, z′′′′): detector frame. The detector arms are along x′′′′ and
y′′′′. More details in the text.

(measured from the local north to the east) to describe the orientation of the detector,
and we use the tilt angle ωx and ωy to describe the arms’ tilt from the horizontal. The
tilt angle is usually very small (∼ 10−5 − 10−4rad) but we exaggerated it in Fig. 1.5. We
did not label ψx and ωy for the clarity of the plot.

We first calculate the polarization tensors in the fixed Earth coordinate (x′′′, y′′′, z′′′).
Consider a standard spherical coordinates (θ, ϕ) defined in (x′′′, y′′′, z′′′), based on Fig. 1.5,
we have θ = π/2 − δ and ϕ = α − GMST. Greenwich Mean Sidereal Time (GMST)
is measured from x′′′ (prime meridian) to the vernal equinox by definition. The matrix
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transforming (x′, y′, z′) to (x′′′, y′′′, z′′′) is given by [106]

M =

 sinϕ cosψ − cosϕ sin δ sinψ − cosϕ cosψ − sinϕ sin δ sinψ cos δ sinψ
− sinϕ sinψ − cosϕ sin δ cosψ cosϕ sinψ − sinϕ sin δ cosψ cos δ cosψ

− cosϕ cos δ − sinϕ cos δ − sin δ.


(1.112)

The basis vectors in the wave frame x̂′i, ŷ′i are transformed to the fixed Earth frame by
X̂ ′′′
i = Mijx̂

′
j, Ŷ ′′′

i = Mij ŷ
′
j. Given that x̂′i = (1, 0, 0)i in the wave frame, the transformed

basis vector simply takes the first column from Mij (and similar for ŷ′i):

X ′′′
i =Mi1, Y

′′′
i =Mi2. (1.113)

The polarization tensor is then defined as

C+′′′

ij = X ′′′
i X

′′′
j − Y ′′′

i Y
′′′
j , C

×′′′

ij = X ′′′
i Y

′′′
j + Y ′′′

i X
′′′
j . (1.114)

Now we compute the detector tensor. The Cartesian coordinates of the detector in the
fixed Earth frame is [107]

r′′′i =
(
[R(φ) + h] cosφ cosλ, [R(φ) + h] cosφ sinλ, [(b2/a2)R(φ) + h] sinφ

)
i
, (1.115)

where R(φ) = a2 (a2 cosφ+ b2 sinφ)−1/2 is the local radius of the Earth, with a =

6378137m and b = 6356752.314m based on the WGS-84 Earth Model. h is the eleva-
tion of the detector site. At this position, the unit vectors pointing East, North, and Up
are

λ̂i = (− sinλ, cosλ, 0)i
φ̂i = (− sinφ cosλ, − sinφ sinλ, cosφ)i
ĥi = (cosφ cosλ, cosφ sinλ, sinφ)i ,

(1.116)

in the fixed Earth frame, and the x-arm of the detector is given by

u′′′i = cosωx cosψxλ̂i + cosωx sinψxφ̂i + sinωxĥi, (1.117)

and v′′′i have the same equation with the subscript change x→ y. The detector tensor D′′′
ij

can then be calculated:
D′′′
ij =

u′′′i u
′′′
j − v′′′i v

′′′
j

2
, (1.118)

combining Eq. 1.114, the response functions can be obtained by

F+,×(α, δ, ψ, time) = D′′′
ijC

′′′ij
+,×(α, δ, ψ, time). (1.119)

In addition to amplitude projection, a time shift must be applied if a universal time
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parameter is used to describe the GW event (rather than local times for each detector).
For example, using the time that GW arrives at the Earth center tc, the time shift is given
by

∆t = tdet − tc = r′′′i (n
′′′
)i/c, (1.120)

where c is the speed of light and

n′′′
i = (− cosϕ cos δ, − cos δ sinϕ, − sin δ)i (1.121)

is the wave vector in the fixed Earth frame describing the direction of GW propagation,
pointing from the source to the Earth. Given the Earth’s radius of 6371km, ∆t should
always be less than 22ms. The response of a detector is therefore

hdet(t) = h(t+∆t) = F+(α, δ, ψ, t)h+(t+∆t) + F×(α, δ, ψ, t)h×(t+∆t), (1.122)

and the Fourier transform goes as [111]

F [h(t+∆t)] = e−2πif∆tF [h(t)] . (1.123)

If the time duration of the signal is short, response functions can be considered unchanged
as the Earth barely rotates during the GW event, so t in the response functions can be
replaced with the geocenter time tc. The time delay from the geocenter (or equivalently,
the time delay between different detectors) is crucial to the sky localization of GW sources,
as the sky triangulation information is encoded in the time delay [112].

The detailed parameters (locations, orientations, etc) for LIGO, Virgo, and KAGRA
and many other previous or proposed detectors can be found in LALDetectors.h8 in
LALSuite [108].

1.3.2 Characterizing noises

Noise sources

GW experiment is one of the most precise experiments in the world, and understanding
and characterizing noises is crucial to successful detection. The GW data d consists of
signal h (which is calculated in the previous section) and noise n, i.e.,

d = h+ n, (1.124)

and this equation holds in both time and frequency domains. The possible noise sources
are [88]

8https://lscsoft.docs.ligo.org/lalsuite/lal/_l_a_l_detectors_8h_source.html

https://lscsoft.docs.ligo.org/lalsuite/lal/_l_a_l_detectors_8h_source.html
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• Seismic noise. Ground-based GW detectors are sensitive to all kinds of seismic
vibrations, including solid Earth tides (< 10Hz), microseismic peaks (∼ 160mHz)
generated by water waves pushing on the ocean floor, and trains and cars nearby.
Isolation systems and active noise cancellation systems are used to manage the
seismic noise.

• Quantum noise. Noise exists even in the absence of laser amplitude due to the
quantum nature of the laser. This includes shot noise, the noise from error in
photon counting, which corresponds to the uncertainty in phase measurement, and
radiation pressure noise, the back-action noise caused by the random motion of
the mirrors driven by the fluctuations in laser power, which corresponds to the
uncertainty in amplitude. The former dominates high frequencies and the latter
dominates the low. Squeezed light is used to correlate these two uncertainties and
achieve a surpass-quantum-limit sensitivity in some frequency band [100].

• Gravitational gradient noise (Newtonian noise). The gravitational interaction be-
tween moving masses and the free test mass (mirror). It can be caused by density
perturbations due to vehicles, clouds or seismic surface waves (S-waves). It is hard
to shield the test mass from gravitational gradient noise as we can not screen grav-
ity. Future detectors may go underground to reduce the effect of this noise source
to improve the low-frequency sensitivity.

• Coating Brownian noise (Test mass thermal noise I). Arising from the mechanical
dissipation in the coatings. Parts of the system close to the laser beam contribute
more to thermal noise than others, so the optical coatings play a dominating role.
This could happen at the most sensitive frequencies (∼ 100Hz) of ground-based GW
detectors.

• Coating thermal-optic noise (Test mass thermal noise II). Arising from the fluctua-
tions in the temperature of the test mass. This includes thermo-elastic noise: tem-
perature fluctuations are coupled to the test mass displacement measurement via
the coefficient of thermal expansion, i.e., local regions of the mirror can expand or
contract, changing the optical distance. This also includes thermo-refractive noise:
temperature fluctuations change the refractive index of coatings, bringing a phase
change in the laser, which looks like a displacement of the test mass.

• Substrate Brownian noise (Test mass thermal noise III). Thermal energy drives
resonant modes of suspended mirrors, and the width of the resonance is related to the
mechanical loss of the test mass substrate material (fused silica). Here mechanical
loss refers to energy dissipation by internal friction in material.
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Figure 1.6: Principal noise terms for aLIGO. Credit: Ref. [88].

• Suspension thermal noise. The thermally excited motion of the suspension fibers
that hang the mirror. This includes various vibration modes: pendulum mode,
violin mode, and Vertical bounce mode.

• Residual gas noise. The detector arm tube is not a perfect vacuum. Residual gas
in the tubes will lead to statistical variations in the column density of gas particles
in the beam path, producing fluctuations in the effective refractive index along the
path.

• Other noises during operation, such as ravens in the desert of Hanford [113].

The noise is quantified by the power spectrum density Sn(f), or PSD, defined as [114]

⟨ñ(f)ñ (f ′)⟩ = 1

2
Sn(f)δ (f − f ′) , (1.125)

where ⟨. . . ⟩ denotes ensemble average. ñ(f) is the Fourier transform of time domain noise
n(t). For negative frequencies, it should be calculated as Sn(|f |). The square root of PSD
is Amplitude spectral Density (ASD). The GW signal should at least reach a similar order
of magnitude of ASD to be detected. An illustration of the contributions of different noise
sources to the noise amplitude spectrum of aLIGO is given in Fig. 1.6. The most sensitive
band for LIGO is 20-2000Hz.
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Statistical model of the detector noise

The statistical noise model can be built upon the assumption that the noise is stationary
and Gaussian [111]. Gaussian means that the noise n(t) is sampled from a Gaussian
process with zero mean, and stationary requires the noise characteristics not to change
with time (at least for a short period). In reality, neither of these assumptions is strictly
true. There are glitches in the detector that break down the Gaussianity, and the noise level
fluctuates during operation [115]. However, the stationarity is a reasonable approximation
for current detectors as the signals are not very long due to the limit by the low-frequency
noise. Glitches are one of the primary challenges to data quality: they appear frequently in
the data and sometimes overlaps with true signals [115, 116, 117]. Significant efforts have
been made to identify and remove glitches from the data, e.g. [118, 119, 120, 121, 122, 123].

Now we construct the statistical noise model. Consider a series of noise samples {ni}
sampled at {ti} within duration T , i = 1, 2, . . . , N . We have ∆t = T/(N − 1) and
tj − tk = (j − k)∆t. Since we assume zero mean, the correlation function and covariance
function are the same:

C(ti, tj) = ⟨n(ti)n(tj)⟩ , (1.126)

and the covariance matrix can be defined as:

Cij = C(ti, tj). (1.127)

The distribution of the noise n = {ni}, i = 1, 2, . . . , N is the multivariate Gaussian:

P (n) =
e−

1
2
C−1

ij ninj

[(2π)N | detCij|]1/2
, (1.128)

where C−1
ij is the inverse of the covariance matrix, i.e., CijC−1

jk = δik. Here repeating
index represents summation and we do not distinguish between upper and lower indices.
Eq. 1.128 can be interpreted as “the probability of seeing the noise realization {ni}, i =
1, 2, . . . , N”. In principle, the statistical model is already built by Eq. 1.128, but the
correlation function in the time domain is expensive to compute in practice. We need to
find a simpler representation.

Given the noise is stationary, the correlation between ti and tj is only relevant to the
difference between ti and tj. This means that, we can use the autocorrelation function
Cn(τ) to describe the stochastic process. For τ = ti − tj, we have

Cn(τ) = C(ti, tj). (1.129)

The Wiener-Khintchine theorem (e.g., Section 28 in [124]) tells us the PSD is the Fourier
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transform of the autocorrelation function:

Sn(f) = 2

∫ ∞

−∞
Cn(τ)e

−2πifτdτ. (1.130)

The denominator in Eq. 1.128 is a normalization constant that can be factored out,
so we will focus on the numerator. In the continuum limit (∆t → 0, T → +∞), the
exponent in Eq. 1.128 can be rewritten by changing summation to integral:

C−1
jk njnk =

1

∆t2
C−1
jk njnk∆t∆t

=
1

∆t2

∫∫
C−1(tj, tk)n(tj)n(tk)dtjdtk

=
1

∆t2

∫
n(tk)dtk

∫
C−1(tj, tk)n(tj)dtj

=
1

∆t2

∫
n(tk)dtk

∫ [∫
C−1(tj, tk)e

−2πiftjdtj

]
ñ∗(f)df,

(1.131)

where C−1(tj, tk) = C−1
jk and superscript ∗ denotes complex conjugate. The integral limits

are all infinity and are omitted in the equations. From the third to the last line, we have
used the Parseval-Plancherel identity: given two functions a(t) and b(t) and their Fourier
transform ã(f) and b̃(f), we have∫ +∞

−∞
a(t)b∗(t)dt =

∫ +∞

−∞
ã(f)b̃∗(f)df. (1.132)

We then calculate the bracket in the last line of Eq. 1.131:∫
C−1(tj, tk)e

−2πiftjdtj =
2
∫
Cn(τ)e

−2πifτdτ

Sn(f)

∫
C−1(tj, tk)e

−2πiftjdtj

=
2

Sn(f)

∫
C(tl, tj)e

−2πif(tl−tj)dtl

∫
C−1(tj, tk)e

−2πiftjdtj

=
2

Sn(f)

∫∫
C(tl, tj)C

−1(tj, tk)e
−2πiftldtldtj

=
2∆t2

Sn(f)
CljC

−1
jk e

−2πiftl

=
2∆t2

Sn(f)
δlke

−2πiftl

=
2∆t2

Sn(f)
e−2πiftk .

(1.133)
From the first line to the second line, we used the fact that tj can be any value since tl
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runs from −∞ to +∞. Substituting this into Eq. 1.131, we get

C−1
jk njnk =

∫
n(tk)dtk

∫
2

Sn(f)
e−2πiftk ñ∗(f)df

=

∫
2

Sn(f)
ñ∗(f)df

∫
n(tk)e

−2πiftkdtk

= 2

∫ +∞

−∞

ñ∗(f)ñ(f)

Sn(f)
df

= 4

∫ +∞

0

ñ∗(f)ñ(f)

Sn(f)
df

= 4
∑
k

ñkñ
∗
k

TSk

=
∑
k

Re(ñk)2 + Im(ñk)
2

TSk/4
.

(1.134)

We adjusted the integral limit to f > 0 to be consistent with the definition of Sn(f)9.
To discretize the equation we used ∆f = 1/T , ñk = ñ(fk), Sk = Sn(fk). Re and Im
denote the real and imaginary parts, respectively. Eq. 1.134 implies that, in the frequency
domain, the noise’s real and imaginary components also follow the Gaussian distribution
with zero mean and variance of TSk/4:

ñk ∼ N

(
0,
TSk
4

)
+ iN

(
0,
TSk
4

)
. (1.135)

Most importantly, unlike the correlated time domain noise (i.e., non-diagonal covariance
matrix Cij), the frequency bins are independent and the covariance matrix in the frequency
domain is diag(TSk/4). This property significantly accelerates the likelihood evaluation
in the frequency domain compared to the time domain.

The normalization factor can be written as the product of normalization factors of real
and imaginary parts, which results in

∏
k
πTSk

2
. Putting the equations together, we can

finally write down the likelihood from Eq.1.128 to

P (n) =
1∏

k
πTSk

2

e
− 1

2

∑
k

4ñkñ∗
k

TSk ∝ e−
1
2
(n|n), (1.136)

where the (n|n) is the noise-weighted inner product defined as:

(a|b) = 4Re
∫ +∞

0

ã∗(f)b̃(f)

Sn(f)
df = 4Re

∑
k

ã∗kb̃k
TSk

. (1.137)

Note there are other equivalent definitions of inner product in the literature, and I may
9Since noise is real-valued in the time domain, it is symmetric in the frequency domain: ñ(f) = ñ∗(−f).

On the other hand, Sn(f) = Sn(−f), so the integral can be expressed in f > 0 regime.
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use them without specifying:

(a|b) = 4Re
∫ +∞

0

ã∗(f)b̃(f)

Sn(f)
df

= 4Re
∫ +∞

0

ã(f)b̃∗(f)

Sn(f)
df

= 2

∫ +∞

0

ã∗(f)b̃(f) + ã(f)b̃∗(f)

Sn(f)
df

=

∫ +∞

−∞

ã∗(f)b̃(f) + ã(f)b̃∗(f)

Sn(f)
df

(1.138)

1.3.3 Current detection status and future prospects

Since the first GW detection GW150914 [7], the LIGO-Virgo-KAGRA collaboration (LVK)
has been upgrading the detectors and has performed three observing runs (O1 [125],O2 [125],
and O3 [126, 127, 128]). The O4 is ongoing as of the time of writing this thesis. Two
aLIGO detectors, H1 and L1 at Hanford and Livingston, respectively, have participated
in all observing runs since the first detection. Their detection range10 are improved from
approximately 60 Mpc at the beginning of O1 [125] to approximately 160 Mpc at the
beginning of O4 [129]. Virgo detector (V1) [102] joined O2 in 2017 with a horizon of
approximately 25 Mpc [125], which was improved to 56 Mpc by the end of O3. KA-
GRA [128] (the successor of TAMA300 [130]) and GEO-600 [131] joined O3 in 2020 and
achieved horizon around 1 Mpc [132].

To date, over 100 CBC events have been detected by the LVK, including several re-
markable events. GW170817 [116] is the first BNS event and it is associated with a
strong GRB [133] and neutrinos [134]. The sky localization of GW170817 was provided
hours after the merger, based on which scientists all over the world carried out a success-
ful multi-band EM follow-up [49], marking the beginning of multi-messenger astronomy.
Properties of neutron stars and kilonova are thoroughly investigated with the help of
GW170817 and its EM follow-up [135, 136]. GW190521 [137] is the first BBH event
whose remnant black hole mass is above 100 M⊙, revealing hints of intermediate-mass
black hole formation. GW190814 [138] and GW230529 [129] have a component that lies
in the mass gap between neutron stars and black holes, indicating the existence of ex-
otic stars or a different population of known objects. Many intriguing phenomena are
reported, including higher modes of GWs [138, 139], precession [140], orbit eccentric-
ity [141, 142], overtones [143, 144, 145, 146], recoil of the remnant [147] and so on. On
the population level, these CBC signals are used to reconstruct compact binary popula-

10Range of a detector is defined as the sky and orientation averaged detection luminosity distance of
1.4 + 1.4M⊙ BNS systems. It differs from the detector horizon, the maximum detectable luminosity
distance for BNS systems, which is the distance where a face-on 1.4 + 1.4M⊙ BNS could produce a SNR
of 8 in a single detector.
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tion [148, 149, 150], estimate the Hubble constant [151, 152, 153, 154], examine gravity
theories [25, 155, 156, 157, 158], investigate dark matter [159, 160], and more. While other
target sources such as continuous waves and stochastic backgrounds have not been confi-
dently detected, null results provide constraints on relevant physical models [161, 162, 163].

Looking ahead, LIGO-India is anticipated to start observation in the latter part of
this decade [164], in the meanwhile LIGO, Virgo, and KAGRA will be approaching their
design sensitivities. These detectors, as the successors of the first generation ran in the
2000s [165], are called the Second-Generation (2G) or 2.5G detectors. Several Third-
Generation (3G) detectors are proposed to push the sensitivity to the theoretical limit
of the ground-based interferometers, including Einstein Telescope (ET) [166], a 10km-
long Europe-based triangular11 interferometer and Cosmic Explorer (CE) [168, 169], a
20/40km-long US-based L-shaped interferometer. These are expected to be operational in
the 2030s. Their ambitious design sensitivities, offering broader frequency bands and lower
noise levels, will enable the detection of a significant fraction of CBCs in the universe and
allow for precise tests of fundamental theories with unprecedented precision [170, 171].
Fig. 1.7 shows the design sensitivities of current and future ground-based detectors. The
3G detectors aim to achieve sensitivity improvements of 1-2 orders of magnitude and
extend their sensitive bands to lower frequencies. Additionally, a high-frequency detector
has been theoretically proposed with a novel interferometer configuration [172].

1.3.4 Other types of detectors

Limited by the seismic noise at low frequencies, ground-based detectors can not detect
GWs below 1Hz, even with the advanced 3G detectors. To capture GW sources at lower
frequency bands, several other types of GW detectors are proposed or constructed. I will
provide a brief overview of these detectors. I omit the discussion of resonant bars as they
are no longer actively investigated at the time of writing this thesis.

Space-based interferometers

Sending interferometers to the space is a direct way of avoiding seismic noises, and longer
arms in the space are ideal for low-frequency GW detection. Laser Interferometer Space
Antenna (LISA) [175] is the first proposed space-based GW detector. LISA consists of
three spacecraft carrying lasers and test masses orbiting around each other with separa-
tions of 2.5 × 106 km. The plane of the detectors is tilted by 60◦ to the ecliptic, and the
center of mass has an Earth-trailing heliocentric orbit and is approximately 60 million km
from the Earth. LISA is sensitive in the frequency band of 10−4−1 Hz, targeting SMBBHs,
EMRIs, stochastic GWs, and stellar mass binaries. The European Space Agency (ESA)

11The triangular shape is the initial design. Recently, there have been discussions about triangular-
shaped ET vs. two L-shaped ET at different sites, e.g. [167].
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Figure 1.7: Design sensitivity of ground-based GW detectors. Sources: LIGO and Virgo:
[173]; ET and CE: [174].

launched the experimental satellite LISA Pathfinder [176] in December 2015 to validate
the feasibility of maintaining two spacecraft’s relative position at a required precision. The
experiment was successful and ESA formally adopted the LISA mission in January 2024.
LISA is expected to be launched in the 2030s.

In addition to LISA, China has proposed two space-based detectors, TianQin [177] and
Taiji [178] operating at similar frequency bands as LISA. Both projects feature triangular
constellations. Taiji adopts a LISA-like orbit but is designed as Earth-leading, with an
armlength of 3 × 106 km. TianQin, on the other hand, follows a geocentric orbit, where
the normal of the detector plane points towards the reference source RX J0806.3+1527.
TianQin’s armlength is 1.7 × 105 km. Both of the projects are aiming to launch the
detectors in the 2030s and they have launched their experimental satellites TianQin-1 [179]
and Taiji-1[180].

Japan has proposed a deci-hertz space-based detector DECI-hertz Gravitational-wave
Observatory (DECIGO) [181] to fill the gap between ground-based detectors and LISA-
like detectors. DECIGO consists of three spacecraft in a triangular configuration on
the geocentric orbit, forming three Fabry-Perot cavities with lengths around 1000 km.
Putting these together, interferometer-based GW detectors will cover the GW spectrum
from O(10−4) Hz to O(103) Hz.
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Pulsar timing arrays

The proposal to use pulsars to detect GWs was first proposed by Sazhin [182] and De-
tweiler [183] and was later extended by Hellings and Downs [184]. Galactic-scale-long
wavelength GWs (10−9 − 10−6 Hz) could change the arrival times of radio pulses from
pulsars. For a set of galactic pulsars, the changes in their arrival times caused by GWs
will show correlations that depend on their angular separations, while that from noises
or errors will not. By analyzing the arrival times correlation, it is expected to recon-
struct the GW background on the galactic scale. The potential sources are SMBBHs and
low-frequency stochastic background.

Pulsar Timing Array (PTA) is a collection of galactic millisecond pulsars monitored
for GW detection. Millisecond pulsars are highly stable, making them ideal candidates for
pulsar timing. Achieving significant measurements typically requires observing a sufficient
number of pulsars over several years. After accumulating data for 10 years, the PTA
community, including North American Nanohertz Observatory for Gravitational Waves
(NANOGrav), International Pulsar Timing Array (IPTA), European Pulsar Timing Array
(EPTA), Chinese Pulsar Timing Array (CPTA), and Parkes Pulsar Timing Array (PPTA),
reported a confident detection of stochastic GW background in the nanohertz band [84,
85, 86, 87], opened a new window on the GW spectrum.

Other designs

In addition to the resonant bar, laser interferometer and pulsar timing, a number of
other designs of GW detectors have been proposed. For example, atom interferometry is
proposed for GW detection for the mHz to 10Hz band [185], and it was later extended to
the space atom interferometry [186] and neutron interferometry [187]. Another approach
is to use the natural objects as giant resonant bars, such as the Lunar Gravitational-wave
Antenna [188], which sends inertial sensors to the Moon to monitor the response of the
Moon to GWs at the mHz to 1Hz band. A similar approach has been applied on the
Earth [189]. Some other methods can be used to put constraints on GWs, including CMB
polarization [190], astrometry [191], and Doppler ranging of spacecraft [192].

1.4 Waveform modeling for compact binary coales-
cences

1.4.1 Parametrizing compact binaries

CBC sources are described by a set of parameters, which can be classified into two classes:
intrinsic parameters and extrinsic parameters. The former describes the intrinsic prop-
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erties of the sources and includes masses (m1,m2) and three-dimensional spins (S1, S2) of
the two components, which adds up to 8 parameters. If the binary contains neutron stars,
each neutron star component needs an additional parameter Λ for the tidal deformation
effects (which is zero for black holes) [136], which is defined as

Λ =
2k2
3

(
R

Gm

)5

, (1.139)

where k2 is the dimensionless ℓ = 2 Love number that describes how neutron stars re-
sponse to external tidal forces. R is the neutron star radius. If the orbit is eccentric, two
more parameters, orbital eccentricity and eccentric anomaly are required to parametrize
the orbit [110]. Extrinsic parameters do not change the physics of the source but could
affect our observation. For ground-based detectors, this includes the inclination angle ι,
3D sky localizations (for example, right ascension α, declination δ, and luminosity dis-
tance dL), polarization angle ψ, coalescence phase ϕc and coalescence time tc, totaling 7
parameters. The luminosity distance dL has a one-to-one relation with the redshift z given
a cosmological model, and it is worth mentioning that the observed masses (often referred
to as detector frame masses) are related to redshift z because GWs are redshifted by a
factor (1+ z) during propagation at cosmological distance [6]. Since the GW frequency is
inversely proportional to the mass of the system, the source frame mass and the detector
frame mass are also related by the factor (1 + z):

mdetector = (1 + z)msource. (1.140)

Mathematically, this can be derived by converting all redshift-related terms in the GW
waveform Eq. 1.84 to the observables in the detector frame, including the conversions
between observer clock τdetector and source frame clock τsource, and between the coordinate
distance r and the luminosity distance dL. Redshift factor can then be totally absorbed
into the chirp mass by Mdetector = (1 + z)Msource, and the amplitude of GW scales down
over the luminosity distance dL instead of the coordinate distance r. Detailed calculation
can be found in Ref. [6].

There can be multiple equivalent parametrizations for some parameters. The choice of
parametrization can significantly impact data analysis, as certain combinations may help
to avoid degeneracies, making it easier to constrain parameters effectively. For example,
instead of using component masses (m1,m2), we can use (M, q), whereM is the chirp mass
defined in Eq. 1.76 and q is the mass ratio m2/m1

12. Chirp mass dominates the inspiral
waveform and the combination (M, q) has less degeneracy than (m1,m2). Similarly, the

12We usually use m1 for the primary (heavier) component and m2 for the secondary, therefore 0 < q ≤ 1.
This is the conventional definition in data analysis as q is in a finite interval. In the waveform modeling
community, the convention is q = m1/m2 ≥ 1
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component spins are naturally parametrized by their six spatial components (often referred
to as the radiation frame), however, a better parametrization for data analysis is using
spin magnitudes and tilt angles (a1, a2, θ1, θ2, φ12, φJL) [193](often referred to as the system
frame), which are defined as follows: ai is dimensionless spin magnitude

ai =

∣∣∣∣ Si

Gm2
i

∣∣∣∣ (1.141)

which ranges from 0 to 1; the total angular momentum of the binary system J is the
combination of the orbital angular momentum L (which is perpendicular to the orbit
plane (x, y)) and the component spin angular momentum:

J = L + S1 + S2. (1.142)

An illustration of these vectors and angles is shown in Fig. 1.8. The component spins may
not be aligned with the normal of the orbit, and their tilt angles to L are defined as θ1,2.
In this case, the angle between J and L is φJL; it describes how much the total angular
momentum deviates from the orbital normal. The angle between the observer direction n̂
and J is θJN , between n̂ and L is the inclination angle ι, and only one of them is enough
to describe the geometry. Since L and J are misaligned, L will precess around J [194], it
is therefore more convenient to use θJN to replace ι in the precessing binaries. φ12 is the
azimuthal angle of Ŝ2 − Ŝ1 measured relative to L̂. The hat ( ˆ ) denotes unit vectors.
In practice, these angles evolve during the binary evolution [195], so we need to assign a
reference frequency fref to specify at which frequency are the angles defined.

The dominant spin parameters is the effective spin χeff, a mass-weighted combination
along the L direction [196, 197, 198]13:

χeff =
a1 cos θ1 + qa2 cos θ2

1 + q
. (1.143)

The effective precession spin χP leads the precession effects and it takes the form [201, 202]

χP = max
(
a1 sin θ1,

3 + 4q

4 + 3q
qa2 sin θ2

)
. (1.144)

χeff and χP are often used to quantify the spin and precession of binary systems [140, 203,
204].

Similarly, tidal parameters Λi in BNS systems are sometimes reparametrized as Λ̃ and
13Closed-form waveform formulae including spin parameters can be found in Refs. [199, 200], while the

construction and use of the χeff can be found in Refs. [196, 197, 198],
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Figure 1.8: Illustration of spin angles. J is the total angular momentum of the binary
system, L is the orbital angular momentum, and S1 and S2 are spin angular momentum.
(x, y, z) is the radiation frame in which spin components (S1x, S1y, S1z, S2x, S2y, S2z) are
defined. z′ points to the observer. Orbit phase is not shown in this figure.
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δΛ̃ [205], where

Λ̃ =
16

13

(m1 + 12m2)m
4
1Λ1 + (m2 + 12m1)m

4
2Λ2

(m1 +m2)
5 . (1.145)

δΛ̃ =
(1319m2

1 − 7996m1m2 − 11005m2
2)m

4
1Λ1 − (1319m2

2 − 7996m1m2 − 11005m2
1)m

4
2Λ2

1319(m1 +m2)6
.

(1.146)

1.4.2 Waveform modeling

We derived the inspiral waveform for compact binaries at the leading order in Sec. 1.1.5.
However, robust data analysis demands higher accuracy and more physics to be included
in the waveform models. I will briefly introduce waveform modeling for CBC sources in
this section.

Post-Newtonian inspiral waveform

When the binary is at large separation and low speed, Post-Newtonian (PN) approximation
can be used to iteratively expand the waveform to higher orders in terms of O ((v/c)n).
The study on PN started in the early days of GR and remains active today. A good
review can be found in Ref. [206]. The order of O

(
(v/c)N

)
is called the N/2-PN order.

For example, to the 3.5PN order, the GW phase of a non-spinning binary under SPA
(Eq. 1.95) is modified to [207]

ψ3.5PN(f) = 2πftc − ϕc −
π
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(1.147)

where η = m1m2/(m1+m2)
2 is the symmetric mass ratio, m = m1+m2 is the total mass,

v = (πGmf)1/3 is the characteristic velocity in the binary. vISCO is the characteristic
velocity at the Innermost Stable Circular Orbit (ISCO), and γ = 0.577216 . . . is the Euler
constant. The phase Eq. 1.95 corresponds to the first term 1(= v0) in the square brackets,
i.e., it is the 0PN order equation.

PN waveforms are analytic and therefore fast to evaluate. It also provides a clear



CHAPTER 1. GRAVITATIONAL WAVES: PHYSICS, SOURCES & DETECTORS 47

picture of the physics and brings insights to data analysis. There is no minus PN term
in Eq. 1.147 - it could be contributed from the forbidden modes in GR, for example, the
dipole radiation would appear in the -1PN order if it existed. 0.5PN naturally vanishes in
GR. The 1PN term introduces mass ratio so that we can measure both component masses
instead of only chirp mass. The leading-order spin effects (spin-orbit coupling) first appear
in the 1.5PN order as a mass-weighted average of component spins (roughly as the form of
χeff) [199, 200, 208]. This brings degeneracy between mass ratio and χeff, but introducing
higher-order spin terms could relieve the degeneracy. The perpendicular components of
the spins first contribute to the phase at the 2PN term (spin-spin coupling) [208, 209]. The
frequency dependence is canceled at the 2.5PN, which introduces some slight degeneracy
between the mass ratio and coalescence phase. The tidal parameters for BNS systems first
appear in the 5PN order, implying that the tidal effect is relatively weak. However, tidal
effects are detectable since their modifications on GW phase can accumulate.

Numerical relativity simulation

PN waveforms maintain good accuracy in the inspiral stage, but when the compact bi-
nary stars approach each other toward merger, the PN expansion loses validity and should
be taken over by Numerical Relativity (NR) simulations [206], which numerically inte-
grate the Einstein field equations, evolving the system from an initial state to a final
state [210, 211]. Due to the complex nature of the Einstein field equations (gauge free-
doms, coordinate singularities, initial conditions, boundary conditions and so forth [212])
and the limit of computational resources, NR simulation for BBH merger was not possible
until the 2000s [213, 214]. Nowadays NR simulation could provide the most accurate GW
waveforms of CBCs (including neutron stars [215, 216]), and there are several NR wave-
form catalogs available [217, 218, 219]. However, NR simulations are extremely computa-
tionally expensive, typically requiring weeks to months to generate short GW waveforms
that span from the late inspiral to the final merger stages. Despite their accuracy, NR
catalogs contain only hundreds or thousands of waveforms, which is relatively small given
the multi-dimensional parameter space. Because of these limitations, NR waveforms are
usually used to calibrate other waveform models, as a validation of other waveforms, or
as the injected signal. Direct usage of NR waveforms in data analysis is not common, but
possible, see e.g. Ref. [220].

It is worth mentioning that unlike the source momentum expansion (which leads to
the quadruple formula Eq. 1.46) or the PN expansion, the multipole expansion [221] is
often used NR simulations and many other waveform models. Discussions of matching
these expansions can be found in Refs. [6, 206, 222]. In multipole expansion, plus and
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cross polarizations are combined as a complex number and expanded:

h(t) = h+(t)− ih×(t) =
+∞∑
ℓ=2

ℓ∑
m=−ℓ

−2Yℓm (φ0, ι)hℓm(t), (1.148)

where (φ0, ι) are relevant to the phase and inclination angle that locates the observer
in the source frame. −2Yℓm is the -2-spin-weighted spherical harmonics [221, 223]. GW
waveforms are calculated by solving the hℓm(t), in which (ℓ = 2, m = ±2) are the dominant
modes of GWs and others are often referred to as higher modes or higher multipoles. This
decomposition is related to the outgoing transverse Weyl scalar Ψ4, which contains all
information about GWs [224] and is the derivative of GW strain [225]

Ψ4 = ḧ+(t)− iḧ×(t). (1.149)

Quasi-Normal Modes

Numerical relativity has shown that the remnant of a BBH merger is a perturbed Kerr
black hole, which has been systematically investigated both theoretically and numeri-
cally [44, 226]. The perturbed black hole will produce damping GWs due to Quasi-Normal
Modes (QNMs) of vibration; this stage is called ringdown. The ringdown GW can be de-
composed into spin-weighted spheroidal harmonics with angular indices (ℓ,m) [227, 228,
229], which can be further written as an expansion in spin-weighted spherical harmonics
used in NR [223, 229]. For each (ℓ,m), there exists another integer index n to characterize
the waveform: n = 0 corresponds to the longest-lived dominant mode, while n ≥ 1 modes
are the overtones [230]. Generally, the ringdown waveform in the time domain can be
written as the superposition of damped sinusoids [228, 231]

hℓm(t) =
∑
n=0

Cℓmne
−iωℓmn(t−t0) t ≥ t0, (1.150)

where t0 is the time when the system exits the non-linear merger phase and the ringdown
stage starts [232, 233, 234]. According to the no-hair theorem of black holes [235, 236], the
characteristic frequencies (spectrum) and damping durations of the ringdown are exclu-
sively determined by mass and spin of the remnant black hole14. Therefore, the complex
frequencies ωℓmn are determined by the mass and spin of the remnant black hole and can
be predicted by perturbation theory given the remnant mass and spin [226]. The complex-
valued amplitudes Cℓmn, however, depend on the binary configuration and dynamics near
the merger and need to be fitted from the whole coalescence process, where NR is supposed
to step in. The Fourier transform of Eq. 1.150 is a Lorentzian function. This analytical

14Black holes may also have electric charge, but this is expected to be negligible for astrophysical black
holes as they could quickly attract particles of the opposite charge.
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result is useful in modeling frequency domain ringdown waveforms [237].

Waveform approximants

Different methods are applied to the insprial, merger, and ringdown phases of CBC wave-
form modeling. However, we want the waveform model to encompass all these processes
for data analysis. A number of waveform approximants are built for this purpose. I will
go through the commonly used waveform models in this section.

The Effective-One-Body (EOB) approach [238, 239, 240] maps the relativistic two-
body problem onto a test particle moving in an effective external metric. The map can be
built with the help of the PN expanded equations of motion of compact binaries, which are
decided by the binary properties (mass, spin, tidal deformability etc). While PN expansion
loses validity near the merger, the EOB approach is able to model the insprial-merger-
ringdown process in a single process [241]: it assumes that the merger is short in time and
broad in frequency, and builds the merger-ringdown signal by attaching the plunge signal
(representing the merger) to a superposition of QNMs (representing the ringdown). This
process can be calibrated against NR simulations. To date, the EOB waveform family
has evolved to the fifth generation [242, 243] from its preceders [244, 245, 246, 247, 248,
249] and has been extensively used in GW data analysis [126, 127, 150]. However, since
a differential equation needs to be numerically solved during waveform evaluation, the
calculation time of EOB waveforms could be much longer than other analytical models.

Inspiral-Merger-Ringdown phenomenological (IMRPhenom) waveforms are another
major waveform family [237, 250, 251, 252, 253, 254, 255, 256]. Instead of physically
solving the system, IMRPhenom uses analytical piecewise functions to represent the three
stages of CBC waveforms and hybridize them by minimizing the difference in a hybridiza-
tion region. It is usually built in the frequency domain. Motivated by the PN expansion
and QNMs, the phenomenological amplitude takes the form of a linear summation of pow-
ers of frequency for inspiral and merger stage, and the Lorentzian function for the ringdown
stage. The phenomenological phase can also be expanded in powers of frequency [237, 251].
The phenomenological coefficients are then calibrated against NR simulations. Being an-
alytical brings IMRPhenom waveforms great flexibility and evaluation speed, making it
the most widely used waveform model in GW astronomy.

Surrogate modeling is also widely used in GW waveform modeling. Surrogate mod-
eling aims to use fast-to-evaluate functions such as polynomials, splines, or even neural
networks to approximate the waveform functions. For example, Reduced-Order Modeling
(ROM) [257, 258] is a powerful algorithm to build surrogate models for slow waveforms. It
first constructs a set of linear bases (principal components) for the waveform space using
Singular Value Decomposition (SVD) or greedy algorithms to choose the representative
physical parameters, and then uses empirical interpolation to determine a reduced array
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of time or frequency to evaluate the waveform, and uses surrogate functions (polynomi-
als etc) to approximate waveforms at those selected times or frequencies. Finally, these
approximations can be extended to the entire parameter space at all times/frequencies
with a controllable error. ROM has been applied to EOB families to build fast frequency
domain EOB waveforms [258, 259, 260]. It is also applied to NR simulations to build
Numerical Relativity Surrogate (NRSur) family [261, 262, 263, 264], which is the most
accurate waveform family since it is directly built on NR. Nevertheless, NRSur waveforms
are shorter in time and are only available in the limited region in parameter space due to
the same limitations of NR. It should be noted that ROM suffers from the curse of dimen-
sionality, therefore ROM models are often limited to non-precessing waveforms or reduced
parameter ranges. Several attempts have been made to develop novel surrogate modeling
methods. To name a few, Ref. [265] employed neural networks to replace traditional ana-
lytical surrogate functions and enabled surrogate modeling for precessing EOB waveforms.
Refs. [266, 267, 268, 269] use Gaussian progress regression to build BBH models that can
give the waveform uncertainty while evaluating the waveform.

1.4.3 Waveform benchmarks

From the angle of data analysis, there are several qualities of waveform models we need to
particularly pay attention to, as they are the key to successful (correct and feasible) data
analysis.

Accuracy

First, all waveform models are approximate solutions to the Einstein field equations, so
their accuracy needs to be carefully assessed. Mismatch compared to the true waveform is
the widely-used measurement of the accuracy for waveform approximants. The mismatch
between two waveforms h1 and h2 is defined as

MM = 1−max
t,ϕ

(h1|h2)√
(h1|h1)(h2|h2)

, (1.151)

where (. . . | . . . ) is the inner product Eq. 1.137. The mismatch ranges from 0 to 1, and
0 indicates that the two waveforms are identical (or differ by a constant factor). How-
ever, due to the different parameter conventions, h1 and h2 may differ from each other
by unphysical time and phase shift. Therefore, it is often necessary to apply a time
shift and a phase shift to h2 for mismatch calculation, i.e., h2 → h2e

−2πifδt−iδϕ15, and
search the (δt, δϕ) that minimizes the mismatch. The search can be performed with an
inverse Fourier transform instead of a grid-based search [270]. We want to minimize

15From now on, I will omit the tilde for frequency domain waveforms hi.
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(h1 − h2e
−2πifδt−iδϕ|h1 − h2e

−2πifδt−iδϕ):

(h1 − h2e
−2πifδt−iδϕ|h1 − h2e

−2πifδt−iδϕ)

= 2

∫ +∞

−∞

(h∗1 − h∗2e
2πifδt+iδϕ)(h1 − h2e

−2πifδt−iδϕ)

Sn(f)
df

= 2

∫ +∞

−∞

h∗1h1 + h∗2h2 − h1h
∗
2e

2πifδt+iδϕ − h∗1h2e
−2πifδt−iδϕ

Sn(f)
df

= ||h1||2 + ||h2||2 − 4Re
[∫ +∞

−∞

h1h
∗
2e

2πifδteiδϕ

Sn(f)
df

]
= ||h1||2 + ||h2||2 − 4Re

[
eiδϕ

∫ +∞

−∞

h1(f)h
∗
2(f)

Sn(f)
e2πifδtdf

]
,

(1.152)

where
||hi||2 = (hi|hi) (1.153)

is the norm of a strain. Now the problem is converted to maximizing

Re
[
eiδϕ

∫ +∞

−∞

h1(f)h
∗
2(f)

Sn(f)
e2πifδtdf

]
(1.154)

Note the integral is essentially an inverse Fourier transform. Let

X̃(f) =
h1(f)h

∗
2(f)

Sn(f)
(1.155)

X(δt) = F−1(X̃(f)) = (h∗1(f) | h∗2(f)e2πifδt) (1.156)

Where F denotes the Fourier transform. We need to maximize

Re
[
eiδϕX(δt)

]
(1.157)

X̃(f) is easy to calculate, then we can perform the inverse Fourier transform to X̃(f),
and find the point where |X(δt)| reaches its maximum. The corresponding time δt̂ is
the optimal δt we want. Next, to maximize the real part of eiδϕX(δt̂), δϕ should be
δϕ̂ = − argX(δt̂), where arg denotes the argument of a complex number. This shows δϕ̂
and δt̂ have different tasks: δt̂ is in charge of maximizing the module of X(t), while δϕ̂ is
used to rotating X(t) to the real axis so that ReX(t) = |X(t)|.

The true waveform is unknown in practice, so waveform approximants are usually
compared with NR waveforms. Depending on the complexity of the binary system, the
latest IMRPhenom waveform IMRPhenomXPHM [254] and EOB waveform SEOBNRv5PHM [242]
could achieve mismatch of 10−5 − 10−1 and a median around 10−3 − 10−2. It is reported
that SEOBNRv5PHM is more accurate than IMRPhenomXPHM [242] but it is slower to compute.
ROMs can usually achieve < 10−3 mismatch against the original waveform they are built
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upon. The latest NRSur model NRSur7dq4 [262] outperforms IMRPhenom and EOB in
accuracy, with mismatch of 10−6−10−2 and a median around 10−4−10−3. We should note
that even NR simulations have an estimated mismatch above 10−7 and up to 10−1 [271].

Waveform models are accurate enough when they do not cause systematic errors in
data analysis and louder signals need more accurate waveforms. This will be discussed in
the next chapters, and I will show that the current waveforms are marginally enough for
current GW detections and the mismatch should be improved by 3−4 orders of magnitude
for the 3G detectors.

Speed

Waveform approximants may be precomputed before data analysis (e.g. for template
bank [272]) and may also be calculated during data analysis (e.g. for parameter esti-
mation [273]). It is clear that the latter is more demanding on the speed of waveform
generation.

A typical Bayesian parameter estimation needs millions of waveform evaluations [274],
thus a fast waveform is crucial. The generation time depends on the length of the wave-
form - it gets slower if we set a lower minimum frequency or lower masses. It also depends
on the complexity of the system. For stellar-mass CBC waveforms from 20Hz, analytical
waveforms (PN, IMRPhenom, ROM) can usually be generated within 100ms. EOB wave-
forms need to solve an ordinary differential equation during waveform generation, so their
generation time is much longer, typically at O(1)s, although the latest EOB waveform has
reported the improvements of time cost to O(100)ms [242]. In addition to the traditional
waveform generation platforms which are on CPU and based on C, GPU acceleration of
waveform computation has been proposed and achieved O(10) times speed improvement
on large GPUs [275].

Higher-order effects

Compact objects naturally have spin. When the spin angular momentum is not aligned
with the orbital angular momentum, the binary system will precess. If the binary is assem-
bled dynamically, it may have an eccentric orbit instead of a quasi-circular one, although
the orbit would gradually circularize due to the energy loss. Additionally, if the binary
is edge-on to us and has unequal masses, we may observe the subdominant multipoles.
Fig. 1.9 shows comparisons between waveforms with precession, eccentricity, higher modes
and “vanilla” aligned-spin waveforms. All of them induce amplitude modulations, but at
different magnitudes and time scales [276]. These modulations are hard to distinguish if
the signal is not long or loud enough [277].

These phenomena are intriguing but hard to model, and missing them may lead to a
biased data analysis [278, 279]. Therefore, they have received considerable attention in
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Figure 1.9: Illustrations of different higher-order effects of GWs for 50 + 10M⊙ binaries.
The plus polarization is plotted. The aligned spin waveform model is IMRPhenomD, the
precessing model is IMRPhenomPv2, the higher modes model is SEOBNRv4HM, and the ec-
centric model is SEOBNRE. The choice of waveform models and inclination angles, spins,
and eccentricity parameters ensure that the effects are visible and only the target effect is
visible.
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the waveform modeling community. With progresses in NR simulations [280, 281], wave-
form approximants with higher modes for precessing systems (e.g. IMRPhenomXPHM [254],
SEOBNRv5PHM [242] and NRSur7dq4 [262]) and for eccentric systems (e.g. SEOBNRv4EHM [249],
SEOBNREHM [282], NRSur2dq1Ecc [264]) have been developed. However, as NR simulations
are sparse in the spin and eccentricity space, these models are not optimally calibrated
and become less accurate when precession or eccentricity effects are strong. Moreover,
it is challenging to include both precession and eccentricity effects in a single waveform
model, so the aforementioned waveform approximants typically incorporate only one of
these effects. A recent attempt at including both can be found in Ref. [283].

1.5 Summary
Focusing on CBCs and the ground-based detectors, I introduced the theoretical back-
ground of GW astronomy in this chapter. I started with GR and linearized gravity and
demonstrated the polarization of GWs and the quadruple formula of GW generation, and
then derived the chirp waveform of inspiralling binaries in Sec. 1.1. The CBC waveform is
further discussed in Sec.1.4. On the observation side, I introduced various types of astro-
physical sources of GWs in Sec. 1.2 and described the configurations, response, and noise
characteristics of GW detectors in Sec. 1.3. These materials aim to provide a context for
the research projects in this thesis.



Chapter 2

Data analysis for compact binary
coalescences

Data analysis is the bridge connecting physical theories and GW observations. After
formulating sophisticated physical theories and designing advanced GW detectors, the
collected data must be accurately and efficiently interpreted. This allows us to identify
signals within noisy data and analyze the properties of their sources. In this chapter, I
will introduce the detection and parameter estimation of GWs, including both traditional
statistical methods in Sec. 2.1 and 2.2 and novel machine learning methods in Sec. 2.3.
Additionally, I will address the challenges in current and future GW data analysis in
Sec. 2.4. A summary of this chapter and the goal of this thesis are given in Sec. 2.5.

55
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2.1 Detecting signals from noisy data
The GW data d consists of signal and noise, and detecting the signal in the noisy data is
the first step of all subsequent physics-related analyses. In this section, I will introduce
the basic matched filtering search used in LVK detection and briefly introduce current
detection pipelines.

2.1.1 Matched filtering

Following Brown [284], we show why and how we use matched filtering for searching GW
signals.

Why matched filter: a probabilistic view

Identifying possible signals present in the data can be viewed as a statistical hypothesis
test problem. The null hypothesis is H0: There is no signal present in the data, i.e.,

d = n. (2.1)

The alternative hypothesis is H1: There is a signal h present in the data, i.e.,

d = h+ n. (2.2)

When choosing between these two hypotheses, we may encounter two types of errors. The
first type is missed detection, where H1 is true but we mistakenly choose H0. The second
is false alarm, where H1 is false but we incorrectly choose it. The latter error is more
detrimental, and we typically aim to avoid it in hypothesis testing.

The Neyman-Pearson lemma [285] shows that the likelihood ratio test is the optimal
test for binary hypothesis since it minimizes the false dismissal probability for a given false
alarm probability. From the noise likelihood Eq. 1.136, the likelihood ratio between H1

and H0 can be written as

L =
p(d|H1)

p(d|H0)
=
e−

1
2
(d−h|d−h)

e−
1
2
(d|d)

= e(d|h)e−
1
2
(h|h). (2.3)

The (h|h) is a constant given a waveform h and PSD. This means that, from the perspective
of the likelihood ratio test, (d|h) is the only relevant term to decide whether h is present in
d and the likelihood ratio increases monotonically with this term. This implies that (d|h)
is relevant to the optimal detection statistic: if it exceeds a certain threshold, we may
reject H0 and assert the detection of a signal. The inner product term (d|h) is commonly
referred to as the matched filter, as it effectively represents a cross-correlation between the



CHAPTER 2. DATA ANALYSIS FOR COMPACT BINARY COALESCENCES 57

expected signal and the data, quantifying their similarity.

Signal-to-noise ratio: a signal processing view

We have demonstrated that matched filtering serves as the optimal detection statistic that
minimizes false alarms from a probabilistic perspective. Alternatively, we can think from
the angle of signal processing. In fact, the matched filter is the filter that maximizes the
Signal-to-Noise Ratio (SNR), a widely used quantity in astronomy. Let K denote the filter
function that yields the filter output (cross-correlation) z:

z =

∫ ∞

−∞
d(t)K∗(t)dt =

∫ ∞

−∞
d̃(f)K̃∗(f)df

=

∫ ∞

−∞
h̃(f)K̃∗(f)df +

∫ ∞

−∞
ñ(f)K̃∗(f)df

= H +N.

(2.4)

where H is fixed for a fixed waveform and measures the strength of the signal, while N
is a random variable with zero mean and measures the strength of the noise. ⟨N2⟩ is the
ensemble average and can be calculated:

⟨N2⟩ =
∫ ∞

−∞

∫ ∞

−∞
K̃∗(f)K̃∗ (f ′) ⟨ñ(f)ñ (f ′)⟩dfdf ′

=

∫ ∞

−∞

∫ ∞

−∞
K̃∗(f)K̃∗ (f ′)

1

2
Sn(|f |)δ (f − f ′) dfdf ′

=
1

2

∫ ∞

−∞
|K̃(f)|2Sn(|f |)df,

(2.5)

We want the filter K to maximize H2/⟨N2⟩ so that the signal stands out, and the ratio is
given by

H2

⟨N2⟩
=

2
∣∣∣∫∞

−∞ h̃(f)K̃∗(f)df
∣∣∣2∫∞

−∞ |K̃(f)|2Sn(|f |)df

=
2
∣∣∣∫∞

−∞

[
h̃(f)/

√
Sn(| f |)

] [
K̃∗(f)

√
Sn(| f |)

]
df
∣∣∣2∫∞

−∞ |K̃(f)|2Sn(|f |)df

≤ 2

∫ ∞

−∞

|h̃(f)|2

Sn(| f |)
df,

(2.6)

where in the last line we have used the Cauchy-Schwarz inequality∣∣∣∣∫ ∞

−∞
A(f)B(f)df

∣∣∣∣2 ≤ ∫ ∞

−∞
|A(f)|2df

∫ ∞

−∞
|B(f)|2df, (2.7)
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where A(f) = h̃(f)/
√
Sn(| f |) and B(f) = K̃∗(f)

√
Sn(| f |). The two sides are equal if

and only if A(f) = C · B(f), and here C can be any non-zero constant. Let C = 2, we
have

K̃∗(f) = 2
h̃∗(f)

Sn(f)
. (2.8)

Substituting K̃(f) into the filter output z, we get 1

z = 2

∫ ∞

−∞

d̃(f)h̃∗(f)

Sn(f)
df = (d|h), (2.9)

which coincides with the optimal detection statistic constructed by the likelihood ratio
test. The noise level ⟨N2⟩ becomes

⟨N2⟩ = 1

2

∫ ∞

−∞
4
|h̃(f)|2

Sn(|f |)
df = (h|h). (2.10)

When the data contains no signal, the matched filtering output z = N = (n|h), which is
a Gaussian with zero mean because the inner product is essentially a linear summation
of Gaussian noise n that has zero mean. The variance of this distribution is (h|h). The
matched filtering SNR is defined as

ρ =
(d|h)√
(h|h)

. (2.11)

By this definition, ρ follows the standard Gaussian distribution when the data is pure
noise. The optimal SNR is the SNR when there is no noise, i.e.

ρopt =
√

(h|h). (2.12)

On the ensemble level, ρ will be a Gaussian distribution centered at ρopt with the variance
of 1 when a signal is present.

Search over unknown parameters

The matched filter output depends on the waveform h, which further depends on source
parameters θ. From the probabilistic view, the likelihood ratio should be marginalized
over θ with a prior distribution of p(θ) [286]:

L =

∫
L(θ)p(θ)dθ. (2.13)

1This integral gives a complex number, however, its imaginary part is typically negligible because the
filter (viewed from the time domain) is a cross-correlation between the real signal and a real template
which results in a real number. Hence, we disregard the imaginary part and write it in the inner product
form.
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Some parameters can be marginalized or maximized analytically, while some can not. For
those parameters that cannot be marginalized, dense samples are drawn in the parame-
ter space to construct waveform templates (referred to as a template bank) and perform
matched filtering for all of them [272]. The template with the highest SNR and surpassing
the threshold is selected as the preferred template, and its parameters are considered to
be those of the source. Current LVK detections use aligned-spin templates, which con-
tain 4 intrinsic parameters to be searched within the template bank (two masses and two
spin magnitudes). The template bank should be dense enough such that any aligned-spin
signal can find a template with a mismatch of less than 0.03. This requirement results
in hundreds of thousands to millions of templates in the search bank [287]. However, the
aligned-spin search is less sensitive to eccentric and precessing signals, and novel methods
have been proposed for these sources, e.g. [220, 288].

There are 7 extrinsic parameters to be searched: coalescence time tc and phase ϕc, sky
location (α, δ), polarization angle ψ, luminosity distance dL and inclination angle ι. For
the coalescence time, we can straightforwardly shift the matched filtering template and
calculate SNR at each time step, resulting in an SNR timeseries [270]:

h̃(f) =

∫
h(t)e−2πiftdt

=

[∫
h̃(t)e−2πif(t+tc)dt

]
e2πiftc

= F [h (t− tc)] · e2πiftc ,

(2.14)

where F denotes Fourier transform. The matched filtering timeseries is

z (tc) = 2

∫ ∞

−∞

d̃(f)h̃∗(f)

Sn(|f |)
e2πiftcdf. (2.15)

The tc that maximizes the matched filtering output is considered as the arrival time.
For the other parameters, we begin by decomposing the waveform given in Eq. 1.84 into
separate components hc and hs, which represent the cosine and sine parts at a unit distance:

h+(t) =
1+cos2 ι

2dL
Ā(t) cos(Φ(t) + ϕc)

h×(t) =
cos ι
dL

Ā(t) sin(Φ(t) + ϕc),

hc(t) = Ā(t) cos(Φ(t))
hs(t) = Ā(t) sin(Φ(t))

(2.16)

where Ā(t) = A(t, dL = 1Mpc). Define σ2 = (hc|hc), we can verify that

(hc|hc) = (hs|hs) = σ2, (2.17)
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and
(hc|hs) = 0 (2.18)

The detector response is then

h = F+h+ + F×h×

= F+
1 + cos2 ι

2dL
Ā(t) cos(Φ(t)) + F×

cos ι
dL

Ā(t) sin(Φ(t))

=
(1 Mpc)
deff

Ā(t) cos (Φ(t)− ϕ0)

=
(1 Mpc)
deff

[hc(t) cosϕ0 + hs(t) sinϕ0] ,

(2.19)

where
deff =

dL√
F 2
+ (1 + cos2 ι)2 /4 + F 2

×(cos ι)2
(2.20)

is the effective distance and

ϕ0 = arctan
(

F× · (2 cos ι)
F+ · (1 + cos2 ι)

)
− ϕc (2.21)

is an unknown phase. The six remaining extrinsic parameters are simplified to the effective
distance deff and an unknown phase ϕ0. To determine ϕ0, we perform matched filtering
for hc and hs respectively and construct a complex output [270]:

(d|hc) + i(d|hs), (2.22)

and the ϕ0 should maximize its modulus. In essence, we use (d|hc), (d|hs) as two bases on
a complex plane and determine the optimal ϕ0 that best fits these bases. The deff acts
solely as an amplitude factor - it has no impact on the SNR because SNR is computed by
normalized templates by definition. The deff that maximizes the likelihood ratio can be
obtained analytically by taking the derivative of the log likelihood ratio (log Eq. 2.3) with
respect to deff , which yields

1

deff
=

(d|hc(t) cosϕ0 + hs(t) sinϕ0)

σ2
. (2.23)

and the maximized log likelihood ratio is 1
2
ρ2. Putting these together, the matched filtering

SNR is a complex timeseries in practical detection scenarios:

ρ(tc) =
1

σ
[(d|hc(t− tc)) + i (d|hs(t− tc))] , (2.24)

and its modulus is the SNR typically referenced. hc, hs depend on intrinsic parameters
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and are searched across a template bank. The optimal arrival time should maximize |ρ(tc)|
and the optimal phase is determined by real and imaginary parts of the maximum of ρ(tc).
The remaining extrinsic parameters are packed into deff . Although their optimal values
cannot be directly obtained through matched filtering, the combined parameter deff can
be derived using Eq. 2.23.

For a detector network that consists of multiple detectors, we define the inner product
between matrices whose elements are time (or frequency) series:

C = (D|B) ⇒ Cjk = (Djp | Bpk) , (2.25)

the matrix inner product produces a new matrix whose elements are calculated in analogy
to matrix multiplication rules. The SNR matrix is a vector of length of N , where N is the
number of detectors:

ρ = (Hc | d) + i(Hs | d), (2.26)

where
Hc,s = diag

(
hc,s
σ(1)

,
hc,s
σ(2)

, . . . ,
hc,s
σ(N)

)
. (2.27)

Each element corresponds to the SNR timeseries of a detector. SNRs in different detectors
should be combined to measure the strength of a signal. We define the network SNR as

ρnet =

√
ρTρ∗, (2.28)

i.e., the square root of the quadratic sum of all single detector SNRs. Network SNR being
higher than 8 is typically the primary criterion for detection, with additional criteria
discussed in subsequent sections.

In the end, it is necessary to mention that this formalism requires aligned-spin quasi-
circular orbit, i.e., h+ and h× only have a phase difference of π/2 and satisfy (h+|h×) = 0,
so that the six extrinsic parameters can be absorbed into deff and ϕ0. However, this
assumption does not hold for eccentric or precessing sources. Detecting eccentric and
precessing signals using aligned-spin templates will result in a loss of SNR.

2.1.2 Detection pipelines

In real detection pipelines, numerous additional considerations arise. Matched filtering
across millions of templates is computationally intensive, therefore SVD is often applied
to reduce the template bank size [289]. Non-Gaussian artifacts in detector data, known as
glitches, occasionally resemble real signals and can interfere with detection. χ2 veto is used
to discriminate the noise artifacts against real signal [270], as glitches and signals typically
yield SNR timeseries with different distributions [290]. Furthermore, a coincidence test
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between detectors is performed based on the idea that the signal should arrive at different
detector sites within a narrow time window [291, 292, 293]. In some pipelines, this is
done by a coherent search, which searches coalescence time together with other source pa-
rameters [290]. Subsequently, a ranking statistic is computed for all triggered templates,
where a higher value indicates higher preference [292, 294]. False Alarm Rates (FARs) are
then assigned to each trigger, showing the chance of such a coincidence between detectors
being caused by noise [290, 293]. Additionally, the probability of astrophysical origin,
pastro, for each trigger is calculated for CBC searches [295, 296]. Following the work-
flow, several matched-filtering-based search pipelines are currently operational for LVK
detections: GstLAL [292, 297], PyCBC Live [298, 299], MBTA [291], and SPIIR [300].
An overview of these pipelines and the thresholds of detection statistics can be found
in Ref. [301]. There are several third-party search pipelines on LVK data as well, e.g.
the OGC [302, 303, 304, 305] and the IAS catalog [306, 307, 308, 309]. These pipelines
are based on different software and template banks and have different methods for FAR
and pastro. Cross-validation among these independent pipelines ensures robust scientific
outcomes.

In addition to matched-filter-based searches, there are search pipelines that assume no
prior knowledge of the waveform and only make use of the coherence between detectors.
They are able to detect unmodelled signals and CBCs that are not well represented in the
template banks. This was actually the case in the first detection GW150914 [7, 310], when
lighter black holes were initially expected. However, the unmodelled searches are mainly
sensitive to short-duration signals, and they are generally less sensitive to CBCs than
matched filtering methods because of the lack of knowledge of waveforms [310], although
it is possible to approximately reconstruct the waveform by wavelets [311, 312]. Current
unmodelled search pipelines include cWB [313, 314] and oLIB [315]. They target all kinds
of short-duration signals, including high-mass CBCs.

Machine learning detection has been employed since O4. I will discuss machine learn-
ing’s applications in GW astronomy in Sec. 2.3.

2.2 Inferring properties of gravitational wave sources

As discussed in Sec. 1.4.1, compact binaries are described by a set of parameters. Inferring
their properties is therefore a problem of estimating these parameters. In this section, I
will introduce Bayesian inference, the current “standard” method of CBC PE.
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2.2.1 Bayes theorem

Matched filtering can give an initial estimate of some source parameters based on the
best-fit template, akin to a maximum likelihood estimate, albeit over a reduced parameter
space. The Bayesian framework suits this problem better [273, 316]. We want to estimate
parameter θ based on the observation d, denoted as p(θ | d). According to Bayes’ theorem,
this can be computed from the likelihood p(d | θ) and a prior distribution p(θ):

p(θ | d,H)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p(d | θ,H)

Prior︷ ︸︸ ︷
p(θ | H)

p(d | H)︸ ︷︷ ︸
Evidence

, (2.29)

where we have insertedH, the model that describes the data, for example, a CBC waveform
model. p(d | H) is the evidence (or marginalized likelihood), showing the probability of
observing the data given the model H. It is a constant that can be omitted in parameter
estimation, but plays an important role in model comparison. The prior distribution
reflects our initial knowledge about the source parameters before making observations. In
the absence of specific prior information for a parameter, priors can be chosen based on the
nature of the parameter itself (e.g. isotropic priors for sky locations) or simply assigned as
uniform. Priors based on astrophysical models could also be used. The likelihood is the
probability of observing the data given the parameters and the model. It is constructed
based on the noise likelihood Eq. 1.136: after subtracting the waveform from the data, the
remaining residuals are assumed to be noise and should adhere to the noise model [111].
Thus,

p(d | θ,H) ∝ e−
1
2
(dT−hT(θ)|d−h(θ)) = e−

1
2

∑N
i=1(di−hi(θ)|di−hi(θ)), (2.30)

where we have omitted the normalization factor in likelihood. N denotes the number of
detectors and i denotes the ith detector. h is the waveform model in the model H.

2.2.2 Stochastic sampling

By combining prior and likelihood and dropping the normalization constants, we can
calculate the posterior probability given any parameter θ. However, due to the high
dimensionality of the parameter space, it is difficult to find the optimal estimation by
the analytical posterior. In practice, we employ stochastic sampling algorithms to draw
samples from the posterior distribution, and the posterior samples effectively characterize
the posterior distribution itself [273]. The two primary families of sampling algorithms
used are Markov Chain Monte Carlo (MCMC) and nested sampling.
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Markov Chain Monte Carlo

MCMC draws samples with a Markov Chain in the parameter space. For example, in the
Metropolis-Hastings MCMC algorithm [317, 318], we sample θ from the prior, and this
sample “walks” in the parameter space. The next step θ′ is proposed near θ according to
a conditional probability q(θ′ | θ), and the new step will be accepted with the probability

r (θ,θ′) = min
{
p (θ′ | d)
p(θ | d)

q (θ | θ′)

q (θ′ | θ)
, 1

}
. (2.31)

If the step is accepted, the walker should proceed from θ′ and repeat this process, otherwise
the walker continues from θ. The trace of the walker will eventually converge to the target
distribution, and posterior samples are obtained by removing the initial unconverged steps
and correlated points on the chain until a sufficient number of independent samples are
collected. However, the evidence Z is inaccessible in this process. It is possible to obtain
the evidence Z by tempering mechanisms [273, 319]: introducing a temperature T , and
sampling the following distributions for different T :

p(θ | d, β) ∝ p(θ)p(d | θ)β, (2.32)

where β = 1/T . The log evidence can be estimated by integrating out β:

lnZ =

∫ 1

0

⟨ln p(d | θ)⟩βdβ, (2.33)

where ⟨ln p(d | θ)⟩β is the expectation value of the log likelihood for the chain with
temperature T = 1/β.

MCMC becomes much slower for high dimensional parameter spaces and narrow target
distributions, as the walker may struggle to efficiently navigate to the correct next step.
There are many other more advanced variants of MCMC algorithms with different step
proposals (e.g. Hamiltonian Monte Carlo [320]). A review of applications of MCMC
algorithms can be found in Ref. [321].

Nested sampling

The nested sampling algorithm was first proposed by Skilling [322] primarily for calculating
the evidence, with sampling as a by-product. The likelihood can be written as a function
(L) of the prior volume X, where dX = p(θ)dθ. Here X = 1 represents the whole prior
space, and smaller X represents a smaller volume in the prior space and therefore a higher
likelihood. We have

Z =

∫
p(θ|d)p(θ)dθ =

∫ 1

0

L(X)dX. (2.34)
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Nested sampling starts with a set of live points drawn from the prior space, initializing at
X = X0 = 1. The point with the lowest likelihood L0 will be removed, and a new point will
be sampled from the shrunk prior volume expended by the remaining live points (a MCMC
or another sampling method is required to do this). X reaches a smaller value X1 < 1

in this process, and the numerical integral of Z accumulates contributions numerically
as (X0 −X1)L0. Through this iterative process, the prior space progressively shrinks, X
steps to lower values, and the Z gains more contributions. The termination criterion occurs
when further iterations contribute negligibly to Z, indicating that little new information
is gained (for example, d logZ < 0.1). At this point, the prior volume has contracted
to approximate the posterior distribution and Z has accumulated to its estimated value.
Nested sampling suffers from high dimensionality and complex likelihood space too. There
are also many variants of nested sampling algorithms (e.g. dynesty [323]) and a review
of physical applications of nested sampling can be found in Ref. [324].

Diagnosis of posterior distributions

Stochastic sampling methods are designed to converge to the true posterior, but they may
struggle to find the truth and may terminate before reaching convergence. In practical ap-
plications where the true distribution is often unknown, but results from different samplers
can be compared. Consistency among these results indicates convergence of the samplers.
The difference between probability distributions can be quantified by Kullback-Leibler
Divergence (KLD) (relative entropy) or Jensen-Shannon Divergence (JSD).

Consider a random variable P with probability distribution p(x), its Shannon infor-
mation is defined as

h(x) = − logb(p(x)), (2.35)

here b is the base of the logarithm. Base 2 results in units of bits, and base e (natural
logarithm) gives nats. By this definition, h(x) is higher in low-probability regions because
we can infer more information with the occurrence of unlikely events. The entropy is
defined as the expectation of information

H(P ) =

∫
p(x)h(x)dx = −

∫
p(x) logb(p(x))dx. (2.36)

Now consider another random variable Q ∼ q(x). The KLD characterizes the relative
information content between P and Q. The relative entropy (KLD) from Q to P is defined
as

DKL(P∥Q) =
∫
p(x) logb

p(x)

q(x)
dx, (2.37)

KLD ranges from 0 to +∞; 0 means two distributions are identical. KLD is not symmetric,
i.e., DKL(P∥Q) ̸= DKL(Q∥P ), so it is not a metric. JSD is defined based on KLD and is
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constructed to be symmetric and finite:

DJS(P∥Q) =
1

2
DKL(p∥m) +

1

2
DKL(q∥m), (2.38)

where M = (P +Q)/2 ∼ m is the mixture of the two distributions. We have DJS(P∥Q) =
DJS(Q∥P ) and

0 ≤ DJS(P∥Q) ≤ logb(2). (2.39)

JSD is often used to quantify the difference between probability distributions.
Another method to measure the difference between probability distributions is the

Kolmogorov-Smirnov Test (KS Test), which measures the maximum difference between
the cumulative distribution of two random variables. However, in the context of GW
astronomy, KS Test is often used for another diagnostic purpose: the self-consistency
test, also known as the P-P test. For a set of simulations in which true parameters are
known, the percentiles of the injected parameters in the estimated posterior distributions,
denoted as psearch, ideally should follow a uniform distribution U(0, 1). Deviations from this
uniform distribution suggest that the estimator is shifted or that the estimated posterior
distribution is either too narrow or too wide. KS Test can be performed between a
collection of psearch and U(0, 1), which will produce a p-value describing the probability of
seeing such an extreme case. If the p-value< 0.05, we should reject the null hypothesis
that psearch is drawn from U(0, 1)2 and the estimator fails the KS Test.

The self-consistency test is often visualized by the P-P plot. Given a search confidence
level p, the fraction of events whose real parameters being searched within p from the
estimated posteriors is p′. When plotting the relationship between p and p′ – effectively
the cumulative distribution of the psearch – the line should closely follow the diagonal line
between (0, 0) and (1, 1). The statistical deviation from the diagonal line can be estimated
by a binomial distribution B(k;N, p), where N is the number of events and k is the
number of events that are searched within probability p. k follows the binomial distribution
B(k;N, p), whose continuous equivalence is the Beta distribution Beta(p, k+1, N−k+1).
In theory, p′ should be drawn from Beta(p, k + 1, N − k + 1). Under a specific confidence
level, say, 90%, the uncertainty width of p′ is given by

∆p′ = Beta(0.95, k + 1, N − k + 1)− Beta(0.05, k + 1, N − k + 1), (2.40)

and ∆p′ is the uncertainty width of the cumulative distribution line in the P-P plot.
2With 95% confidence, so it is not a hard rule.
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2.2.3 Fisher matrix

Obtaining the full posterior can be time-consuming. In some cases, the focus is solely on
understanding how well GW observations can constrain certain parameters, necessitating
only the error bars from the posterior distribution. The Fisher matrix formalism provides a
straightforward approach for this purpose [111]. Consider a maximum likelihood estimator,
which is equivalent to the Bayesian posterior with a flat prior, and it gives an estimate θ̄,
where the derivatives of the log likelihood vanish:

∂i ln p(θ|d) |θ=θ̄= (∂ih|d− h) |θ=θ̄= 0, (2.41)

where ∂i denotes the derivative with respect to the ith parameter. θ̄ may differ from the
true parameter θ by an error ∆θi for the ith parameter. Assume ∆θi is sufficiently small,
Eq. 2.41 can be written as

0 = (∂ih(θ̄)|d− h(θ̄)) = (∂ih(θ̄)|d− h(θ) + h(θ)− h(θ̄))

= (∂ih(θ̄)|n− ∂j∆θ
jh(θ̄))

= (∂ih(θ̄)|n)− (∂ih(θ̄)|∂jh(θ̄))∆θj.

(2.42)

We have used d = h + n and expaned h(θ) − h(θ̄) to the linear order. Define the Fisher
matrix3

Fij = (∂ih|∂jh), (2.43)

then we have
∆θj = (F−1)ij(∂ih(θ̄)|n). (2.44)

Eq. 2.44 quantifies the statistical error of the maximum likelihood estimator, and reveals
that the statistical error is caused by random noise. ∆θj follows a multivariate Gaussian
distribution since it is a superposition of Gaussian noises. Using the same trick in Eq. 2.5,
we can verify that the expectation over noise

⟨∆θj⟩ = 0, (2.45)

which means the maximum likelihood estimator is unbiased and

⟨∆θi∆θj⟩ = (F−1)ij, (2.46)
3This definition aligns with the definition of the Fisher information matrix in statistics, which is the

variance of the score, where the score is the derivative of the log likelihood with respect to parameters.
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which gives the covariance matrix of the statistical error. Eq. 2.46 can be used to predict
the statistical uncertainty of the measurement of a parameter:

⟨(∆θi)2⟩ = (F−1)ii. (2.47)

If there are multiple detectors, their likelihoods should be multiplied, which results in a
summation of their Fisher matrices.

We should note that the Fisher matrix formalism relies on Gaussian and high-SNR
approximation, as we expanded h(θ)−h(θ̄) only to the first order. Fisher matrix formalism
is not valid if SNR is low or the posterior is not Gaussian (e.g. in the case of bimodal
distributions), although it might have already been abused by the community [325]. Some
efforts have been made to extend the Fisher matrix to higher orders to model non-Gaussian
posterior, see e.g. [326]. Despite the limitations, the Fisher matrix’s prediction is proved
to be a lower bound of the statistical uncertainty, known as the Cramér-Rao bound [327].

2.3 Machine learning methods
We have discussed statistical methods for GW detection and parameter estimation, which
rely on intensive matched filtering or waveform evaluation and can be computationally
expensive. Machine learning methods in GW data analysis have received considerable
interest in recent years. In this section, I will briefly introduce the basic idea of machine
learning and its applications in GW astronomy.

2.3.1 Introduction to machine learning

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that focuses on algo-
rithms and statistical models that enable computers to perform specific tasks without
explicit instructions. Machine learning systems are trained to recognize patterns in data
and make decisions or generate outputs based on that data. This ability to learn and im-
prove from experience is what makes machine learning a powerful tool in various domains,
including image and audio recognition and generation [328, 329, 330], natural language
processing [331, 332] etc, and for our purpose, GW data analysis.

To build ML model to solve a specific problem, we usually need to collect a large
amount of data from the problem with which the machine uses to learn. This data can
be in the form of text, images, numbers, or any other type of information pertinent to
the problem at hand. For example, if the goal is to predict stock prices, the data should
at least contain the historical stock price time series data. Additionally, auxiliary data
such as company financial statistics or industry trends might also be collected to provide
context and enable the machine to learn the underlying relationships within the data.
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Moreover, it is often required to clean and transform the data into a format suitable for
analysis so that the machine can learn better. This might involve removing noise, handling
missing values, and normalizing the data. Data collection and pre-processing are crucial
to ML models, as they have direct impacts on the applicability and performance of the
model.

We should also identify which type of task we want the model to do. Common tasks
include

• Regression: predict continuous numerical values (labels).

• Classification: predict categorical labels, where labels are specified in the training
data.

• Clustering: without labels in the training data, group similar data points into clus-
ters.

• Dimensionality Reduction: reduce the size of the data.

• Anomaly Detection: identify unusual patterns that do not conform to expected
behavior.

• Generation: generate outputs that resemble the training dataset.

We choose the appropriate type of model for the task. Common types of ML include
supervised learning, unsupervised learning, semi-supervised learning, and reinforcement
learning. Supervised learning is the most common paradigm in ML, where the model is
trained on labeled data - each training example is paired with an output label. In the stock
price example, the label is the price. The goal is to learn a mapping from inputs to outputs
that can be used to predict the labels of new, unseen data. Unsupervised learning deals
with data that has no labels. The goal is to model the underlying structure or distribution
in the data for further application. This can involve clustering data into groups with similar
characteristics or reducing the dimensionality of the data. Semi-supervised learning falls
between supervised and unsupervised learning. Trained on both labeled and unlabeled
data, it aims to combine the advantages of both approaches. Reinforcement learning
uses an agent to learn and make decisions by performing actions in an environment to
maximize cumulative reward. Unlike supervised learning, where the model learns from
a fixed dataset, reinforcement learning learns from the consequences of actions through
trials and errors.

We can then assemble the model. In this thesis, I will focus on Neural Networks
(NNs), a specific subset of ML models inspired by the structure and function of the
human brain. NNs consist of interconnected layers of nodes (neurons) that work together
to process input data and produce output predictions. In other words, we build the
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model by connecting a series of manipulations to the input data which finally leads to
the output we need. The manipulations include arithmetical and matrix calculations,
analytical functions, convolution and so forth. Here I give some examples of common NN
structures:

• Multi-Layer Perceptron (MLP). This is the most basic type of NN, also known as
the fully connected, feed-forward or dense network. It consists of an input layer,
one or more hidden layers, and an output layer. Given the input as an array,
each layer performs a linear transformation (which could change the dimension)
and an activation function. The activation function needs to be non-linear, easy
to compute and differentiable, such as Rectified Linear Unit (ReLU), tanh, and
sigmoid function. MLP is suitable for any array-like input but is inefficient for high-
dimensional datasets. It is often used as the basic building block in many complex
networks.

• Convolutional Neural Network (CNN). It applies a filter (kernel) to local regions of
the input, extracting the local structures (feature maps). The usual follow-ups are
pooling (taking maximum or average) to reduce the dimensions of the feature maps
and a MLP to reshape the output. CNN is designed for processing grid-like data
such as images but is also suitable for 1D input.

• Residual Network (ResNet) [333]. It is a modification to the overall architecture of
a standard neural network, such as MLPs and CNNs. In addition to processing the
data with a common network, the input data is then directly added (sometimes a
linear reshape is required) to the processed data. These residual connections enable
the network to learn residual functions with respect to the input, which makes it
easier to train very deep networks.

• Transformer [334]. Transformers are a class of deep learning models known for
their ability to capture long-range dependencies in sequential data through the self-
attention mechanism. Unlike traditional neural networks that process inputs se-
quentially or in fixed local contexts, transformers allow each element of the input to
interact with every other element directly. This is achieved by computing attention
scores, which determine the relevance of one part of the input to another, enabling
the model to build rich contextual representations. The transformer encoder consists
of stacked layers of self-attention and feed-forward neural networks. This architec-
ture is particularly powerful for handling complex patterns and dependencies in the
data.

The possibilities for building NNs are endless and it is impossible to give a comprehensive
overview for all NNs. In Chapter 6, I will further introduce normalizing flows, a generative
model that can generate posterior samples for parameter estimation.
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After setting the model structure, the model needs to be trained and validated before
use. The collected data should be split into at least two subsets, one for training and
one for validation. The model will be trained only on the training set, and we assess the
model’s performance using the validation set to ensure it generalizes well to new data.
We should assign a loss function to quantify the performance. For example, if the model
learns to fit a continuous function, the loss can be a mean square error of the prediction; if
the model learns to generate a distribution, the loss function can be the Kullback-Leibler
Divergence (KLD) or cross-entropy.

The training is essentially optimizing the parameters within the network, such as the
linear transformation matrices in the MLP and the kernel weights in CNN. After initiating
the parameters, we take a batch of data which will be running in parallel, pass the data
through the network and generate the outputs and the mean loss of the batch. We then
calculate the gradients of the loss with respect to the network’s parameters using back
propagation, i.e., applying the chain rule of derivatives to propagate the error backward
through the network. All parameters will be updated using an optimization algorithm
such as SGD and Adam [335]. The optimizer adjusts the weights to minimize the loss
based on the calculated gradients: ϕi+1 = ϕi + η∇L (ϕi)

4, where ϕi is the parameters
of the network and η is usually known as the learning rate. We repeat this process so
that the model is iteratively optimized, until the loss function stops to decrease, which
indicates convergence. Training data will be reused in this process: an entire loop over
all data once is referred to as an epoch. By following these steps, the machine learning
model is trained to perform effectively on the task at hand. The effectiveness is gauged
by its performance on the validation set, and once satisfactory performance is achieved,
the model can be deployed for real-world applications.

2.3.2 Applications in gravitational wave astronomy

Machine learning has been applied to a wide range of problems in GW astronomy and
has shown great potential compared to traditional methods [336]. In this section, I will
give a brief overview of applications of ML in GW astronomy, with a specific focus on
ground-based detectors.

Waveform modeling

NNs excel in modeling highly complex functions, which makes them good candidates
when a surrogate function is needed in GW waveform modeling. Additionally, leveraging
GPU acceleration enhances the efficiency of waveform generation, contrasting with tradi-
tional CPU-based platforms. Ref. [337] exemplified the application of NN in constructing

4This is the simplest form of gradient descent. It could take more complex forms inside optimizers.
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reduced-order models of GW waveforms, achieving decent accuracy and speed. Extending
this capability to precessing systems, Ref. [265] demonstrated simple MLPs perform ex-
ceptionally well in the high dimensional parameter space where traditional spline methods
could struggle. Ref. [275] made use of the auto-differentiation algorithm JAX [338] and
enabled the direct calculation of the derivatives of the waveform, which could bring sig-
nificant speed-up in data analysis [339]. ML methods also have the potential to improve
the robustness of waveforms: Refs. [266, 267, 268, 269] used Gaussian progress regression
to build BBH models that provide waveform uncertainty while evaluating the waveform.
Beyond CBC source, Generative Adversarial Networks (GAN) has been applied to model
burst signals [340].

Detector noise

GW data often includes numerous glitches that can significantly impact data analysis.
The identification and removal of these glitches are critical in ensuring the reliability of
GW data analysis, and classifying glitches could bring a better understanding of the noise
sources. GravitySpy [118] uses NNs to identify and classify glitches directly from GW
data. iDQ [341], on the other hand, detects noise artifacts in GW detectors based on
auxiliary channels that are insensitive to GWs. Additionally, GAN is used to simulate
transient noise bursts [342].

Detection

Instead of using matched filtering to detect GWs, considerable efforts have been directed
towards ML-based detection of GWs, including CBC signals [343, 344, 345, 346, 347],
burst signals [348, 349, 350], continuous waves [351, 352], and stochastic background [46].
It is reported that ML-based detection is faster than statistical methods without much loss
of sensitivity. Notably, the MLy [346] pipeline, an ML-based unmodelled search pipeline
participated in O4 detection of LVK.

GW detections can be further processed by ML algorithms. For example, NNs are
able to reconstruct the GW signal from the data (known as denoising) [347, 353, 354]
and achieved comparable performance as wavelet reconstruction. Ref. [355] developed a
real-time framework to distinguish between astrophysical events and instrumental artifacts
using public real-time detection data, which is helpful to the decisions on EM follow-ups.

Parameter estimation and astrophysical inference

Parameter estimation is the most computationally expensive part of CBC data analysis.
ML-based full parameter estimation of the source parameters has been achieved with gen-
erative models. Ref. [356] took time domain GW data and used GAN to generate posterior
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samples, and showed that ML models can perform correct Bayesian analysis in CBC pa-
rameter estimation. However, GAN is not optimized with the exact likelihood, which poses
challenges for achieving optimal convergence. Ref. [357] proposed DINGO based on nor-
malizing flow instead of GAN, which can be trained on the exact likelihood. DINGO takes
frequency domain data alongside the noise so it can adapt to the noise variations in the
real detector. With importance sampling [358], DINGO achieved negligible difference with
full Bayesian parameter estimation on real GW events. Recently, DINGO framework has
been extended to eccentric sources [142], enabling full parameter estimation with compu-
tationally expensive EOB eccentric waveforms, which is prohibitively slow for traditional
methods. A similar network structure has been applied to overlapping signals in the 3G
detectors and performed 30-dimension parameter estimation [359].

Other than the end-to-end parameter estimation, NNs could help accelerate the stochas-
tic samplers used in parameter estimation. Nessai [274] is a nested sampling algorithm
that uses normalizing flow to sample the proposal distribution and achieves faster perfor-
mance compared to traditional methods. FlowMC [339] also makes use of normalizing flows,
enabling full Bayesian inference within minutes combined with differentiable waveforms
and relative binning.

NNs are also used in astrophysical inference. Ref. [360] proposed a localization al-
gorithm that takes the matched filtering SNR timeseries as input and is able to localize
the GW source in real-time detection. Ref. [361] demonstrated the ability to constrain
the equation of state of neutron stars using normalizing flows within one second. On the
population level, NN could speed up the inference for astrophysical population models and
cosmological models [362, 363, 364]. Moreover, non-parametric methods are used to ex-
plore the population properties beyond parametrized astrophysical models [365, 366, 367].

2.4 Challenges in data analysis
With the improvement of detector sensitivity, we are entering the era of high-precision
GW astronomy. This means more events will be detected and the high-SNR “golden”
events will be more frequent. While this is exciting from a physics perspective, these
detections will bring challenges to data analysis, potentially complicating the process and
leading to erroneous conclusions. In this section, I will discuss the main challenges in
parameter estimation of CBC signals in ground-based GW detectors: systematic errors
and computational cost.

2.4.1 Systematic errors

We construct the likelihood for GW parameter inference with the Gaussian noise assump-
tion, i.e., we assume the data is Gaussian noise after removing the waveform. This leads
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to the statistical error Eq. 2.44, which states that the maximum likelihood point could
deviate from the true value due to the noise but the estimator is unbiased on the ensemble
level. However, it is not possible to perfectly remove the signal from data. The waveform
models used in data analysis are approximations of the true solution and could miss some
physics such as the orbital eccentricity, resulting in residual strains after signal subtrac-
tion. In fact, the residual strains are not limited to waveform residuals. Glitches can also
contribute, though they can often be identified and removed. For the 3G detectors, it
is expected to detect multiple signals in a narrow time window, leading to overlapping
signals that may leave residual strains impacting each other.

The residual strains could cause systematic errors in parameter estimation. The generic
formalism for estimating systematic errors in PE was first proposed in [368] and widely
used (e.g. [369, 370]), and was generalized and validated against full PE by [371]. Math-
ematically, the maximum likelihood estimate θ̄ differs from the real parameter θreal, and
the waveform model hm differs from the true waveform h. We have Eq. 2.41

∂i ln p(θ|d) |θ=θ̄= (∂ih|d− h) |θ=θ̄= 0. (2.48)

The data d is known, but real parameter θreal and the GW signal in the detector h(θreal)

is unknown. In practice, they are replaced by a waveform model hm(θ̄). By doing this,
errors are introduced to d− h:

d− hm(θ̄)

= d− h(θreal) + h(θreal)− hm(θreal) + hm(θreal)− hm(θ̄)

= n+ δH +∆θj∂jhm.

The first term n is what d−h is supposed to be: the noise in the detector. The second term
δH = h(θreal)− hm(θreal) is the excess strain which represents the difference between real
signal(s) in the data and the model used to subtract signals. The third term comes from
the imperfect measurement of signal parameters due to statistical noise, and is given by
the linear expansion of hm(θreal)−hm(θ̄), where ∆θj is the error of the j’th parameter from
the maximum likelihood estimator. Substituting Eq. 2.49 into Eq. 2.48 and approximate
all derivatives at θ̄, and we get

∆θi ≈ (F−1)ij(∂jhm|n+ δH) = ∆θistat +∆θisys, (2.49)

where ∆θistat is the statistical error Eq. 2.44, and

∆θisys = (F−1)ij(∂jhm|δH) (2.50)

is the systematic error for a maximum likelihood estimator because ⟨∆θisys⟩ ̸= 0. Any effect
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that contributes to δH could be a source of systematic bias in parameter estimation.
The SNR ρ is proportional to waveform amplitude h, and we have (F−1)ij ∝ 1/ρ2.

Therefore,
∆θistat ∝

1

ρ
, (2.51)

which means the statistical uncertainties shrink with the increase of SNR, in other words,
parameters can be constrained better in high-SNR events. However, δH may also be
proportional to the waveform amplitude h (for instance, the waveform residuals), which
leads to

∆θisys ∝ 1, (2.52)

i.e., the systematic is a constant! This means that while high-SNR improves the precision
of the measurement, it is the residual strain that ensures the accuracy. Systematic errors
could dominate the parameter estimation in high-SNR scenarios if the residual strain
is not well controlled, leading to a precise but inaccurate parameter estimation. This
could lead to some incorrect scientific conclusions as it rules out the true value. It is
therefore necessary to develop analysis methods that are robust against systematic errors,
or carefully assess the potential systematic errors in the analysis, especially in the high-
SNR scenarios.

2.4.2 Computational cost

The large number of events and high SNRs present challenges not only in terms of robust-
ness but also in terms of computational burden. It is estimated that 3G detectors are able
to detect > 105 CBC events per year [171]. With current methods used in analyzing LVK
catalogs, parameter estimation of these events could take tens of millions of CPU hours.
This estimate might be conservative because many of the events are long BNS signals and
high SNR signals that are particularly slow to analyze – some even prohibitively so for cur-
rent sampling methods. While machine learning methods seem promising in relieving the
computational burden, substantial work remains to adapt these algorithms for real-world
applications.

2.5 Summary and the goal of this thesis
In this chapter, I reviewed the basic data analysis methods of CBC sources for the ground-
based detectors. On the detection side, I explained how matched filtering is constructed
and how complex SNR timeseries is calculated, and gave a brief overview of detection
pipelines. For the parameter estimation, I introduced the standard Bayesian inference
framework and Fisher matrix framework. I also briefly introduced machine learning al-
gorithms and their applications in GW astronomy. In the end, I mentioned two main
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challenges in data analysis: systematic errors and computational burden.
The goal of this thesis is to address these two challenges for current and future GW

observations. In the first half of the thesis (Chapter 3 and 4), I will evaluate the seriousness
of systematic errors in current and future observations. Using testing GR as an example, I
will first show the consequences of systematic errors, including waveform systematics and
overlapping signals for the 3G detectors in Chapter 3. Next, in Chapter 4, I will propose
a method to assess GW waveform accuracy and apply it to LVK open data to evaluate
the systematics that already exist in current data analysis, and predict the accuracy
improvements required for the 3G detectors.

In the second half (Chapter 5 and 6), I will develop efficient data analysis algorithms
to alleviate the computation burden in the 3G era. More specifically, I will present a
semi-analytical localization method in Chapter 5, and a ML-based parameter estimation
method in Chapter 6, to analyze long BNS signals in the 3G detectors. The former aims
to provide prompt sky directions in real-time and early-warning detection for capturing
EM counterparts, while the latter aims to generate full parameter estimation for long BNS
signals on a catalog level with minimal computational cost.



Chapter 3

Accumulating errors in tests of
general relativity

Observations of Gravitational Waves (GWs) from Compact Binary Coalescences (CBCs)
provide powerful tests of General Relativity (GR), but systematic errors in data analysis
could lead to incorrect scientific conclusions. This issue is especially serious in the third-
generation GW detectors in which the Signal-to-Noise Ratio (SNR) is high and the number
of detections is large. In this chapter, we investigate the impacts of overlapping signals
and inaccurate waveform models on tests of GR. We simulate mock catalogs for Einstein
Telescope and Cosmic Explorer and perform parametric tests of GR using waveform models
with different levels of inaccuracy. We find the systematic error in non-GR parameter
estimates could accumulate toward a false deviation from GR when combining results from
multiple events, although a Bayesian model selection analysis may not favour a deviation.
Waveform inaccuracies contribute most to systematic errors, but multiple overlapping
signals could magnify the effects of systematics due to the incorrect removal of signals. We
also point out that testing GR using selected “golden binaries” with high SNR is even more
vulnerable to false deviations from GR. The problem of error accumulation is universal;
we emphasize that it must be addressed to fully exploit the data from third-generation
GW detectors, and that further investigations, particularly in waveform accuracy, will be
essential.

This chapter is organized as follows. We will introduce the systematic errors in testing
GR in Sec. 3.1, including the Parametrized Post-Newtonian (PPN) formalism, the method
of predicting systematic errors, and an example event. In Sec. 3.2 we will simulate mock
catalogs for the 3G detectors and investigate how errors accumulate when combining
multiple events. A summary and discussions will be given in Sec. 3.3.

77
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3.1 Systematic errors in testing GR

3.1.1 Status and prospects of testing GR with GWs

The observation of GWs from CBCs provides an ideal means of testing of GR in the
strong-field regime [25, 155, 156, 157, 158, 372, 373]. The latest GW event catalogs
contain nearly 100 CBC events [127, 128], based on which various tests of GR have been
performed [25, 158]. No concrete evidence of a deviation from GR has been found yet, but
unprecedented constraints have been placed on possible violations of the theory. In the
coming decades, the third-generation (3G) ground-based GW detectors (i.e. the Einstein
Telescope [166]) and Cosmic Explorer [168] are expected to detect O(105) CBC events per
year, with SNR up to thousands [374, 375, 376, 377, 378]. Since the statistical uncertainty
of parameter estimates shrinks when the SNR increases, and when a catalog of events are
combined, observations from 3G GW detectors are expected to be able to obtain much
tighter constraints on gravity theories.

However, this inspiring prospect of an enlarged detection catalog and higher SNRs
brings with it many difficulties in data analysis. For the purpose of testing GR (and
any other theories), one needs to ensure that the systematic errors are small, so that
the analysis will not favor the wrong theory and cause a false alarm (or false dismissal).
Parameterized tests of GR [379] suffer from the same problems as Parameter Estimation
(PE) in general, which has been investigated in many works, (e.g. [368, 371]. For in-
stance, inaccurate waveform models may have already caused some tensions in current
GW observations [2, 380] and are expected to be more important in future high SNR de-
tections [368, 381, 382]. Additionally, the 3G detectors with their improved low-frequency
sensitivity are able to observe multiple signals at the same time. Detected overlapping
signals can not be perfectly removed from the data due to uncertainties in parameter
estimation, and could have non-negligible impacts on PE when the merger times of over-
lapping signals are close [371, 375, 376, 377, 383, 384]. The undetected overlapping signals,
i.e., the signals that are too faint to be detected may also contribute to the systematic er-
ror [371, 385]. These errors are inevitable in 3G detectors, and repeated biased estimations
for each event might lead to a wrong conclusion in the catalog-level analysis [386, 387].

The aforementioned works mainly focus on case studies for single events, or include
only one type of systematic error. In this chapter, we aim to perform a more comprehen-
sive investigation of systematic errors at the catalog level, including interactions between
different types of systematics, namely, waveform inaccuracies and overlapping signals.
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3.1.2 Estimating systematic errors

We have introduced the method of estimating systematic errors in PE in Sec. 2.4, and
argued that they are caused by the residual strain δH via Eq. 2.50. Inaccurate waveforms
and overlapping signals can both contribute to this term. The excess strain from inaccurate
waveforms can be simply written as

δHWF = hm(θreal)− h(θreal) ≈ hm(θ̄)− h(θ̄) (3.1)

where θreal is the real source parameter and θ̄ is the maximum likelihood parameter. The
approximation comes from the fact that the error would be a higher-order term. The
waveform systematic is given by

∆θiWF = (F−1)ij(∂jhm|δHWF), (3.2)

where (F−1)ij is the inverse of the Fisher matrix Eq. 2.46.
The estimates for overlapping signal residual strains are more complex. Overlapping

signals can be classified into two types: detected signals and undetected signals (confusion
signals). The former is strong enough to be detected and should be subtracted from data
in the analysis for other signals (or, the “main” signal)1. The latter, however, is too faint
to be recognized by the detection pipeline and may have an unnoticed impact on PE.
In this work, the network SNR threshold for detection is set to 8, under which GWs are
assumed to be undetected. Moreover, it is known that the correlation between signals is
not strong unless the merger times are very close (typically < 1s); in this work, we regard
two signals as “overlapping” only if the merger time difference |∆t| < 4s, which captures
the most influential neighbours of a signal.

If a signal is detected, it will still contribute to excess strain since we cannot perfectly
remove it from the data. The excess strain after imperfect removal is

δHDO = h′(θ′
real)− h′m(θ̄) ≈ ∆θ′i∂ih

′
m + δH ′

WF, (3.3)

where ′ denotes variables of the detected overlapping signal. The first term arises from
the inaccurate estimation of parameters for the overlapping signal, which is random since
the error is partly caused by the random noise, although other factors, such as waveform
inaccuracies and overlapping signals also contribute to it. As a conservative estimation
and following [371], we ignore waveform systematic errors in ∆θ′i (i.e., assuming ∆θ′i is
merely caused by noise, which tends to underestimate it), and adopt the lowest order
approximation for its correlation with the main signal. Substituting it into Eq. 2.49, one

1It is also possible to do a joint parameter estimation for all existing signals, see [384].
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obtains the covariance of the first term in the systematic error Eq. 3.3

< ∆θiDO1∆θ
j
DO1 >=

(
F−1FmixF

′−1(Fmix)
T(F−1)T

)ij
, (3.4)

where (Fmix)ij = (∂ih|∂jh′) encodes the correlation between two signals and F ′
ij = (∂ih

′|∂jh′)
is the Fisher matrix of the overlapping signal. The second term in Eq. 3.3 represents the
inaccurate waveform model we use to subtract signals, and can be calculated the same
way as the waveform systematic, yielding

∆θiDO2 = (F−1)ij(∂jhm|δH ′
WF) (3.5)

In this work, the systematic error from detected overlapping signals is calculated as ∆θiDO2

plus a random sample drawn from a multivariate Gaussian distribution with covariance
matrix Eq. 3.4 and zero mean, i.e.,

∆θDO1 ∼ N(0,F−1FmixF
′−1(Fmix)

T(F−1)T), (3.6)

and
∆θDO = ∆θDO1 +∆θDO2. (3.7)

We do not simply take the expectation for ∆θDO1 because it may have a different sign with
other systematic errors and cancel with them. For more than one detected overlapping
signals, Eq. 3.3 can be extended by defining h′ as the summation of all GWs in the
data [371], which enlarges the dimension of Fmix and F

′ .
The undetected overlapping signal simply contributes to systematic error by

δHUO =
∑

undetected
h′′(θ′′

real), (3.8)

∆θiUO = (F−1)ij(∂jhm|δHUO), (3.9)

which is accessible in our simulation but unknown in real data analysis. Here ′′ denotes
the variables of the undetected overlapping signal.

3.1.3 Parameterized post-Newtonian formalism

Testing GR

The test of parameterized post-Newtonian coefficients is a generic formalism for finding
deviations from GR, initially proposed by [388] and further developed for application with
Bayesian inference [389], and later applied to catalogs of real GW observations, most re-
cently in [25]. We use the waveform model IMRPhenomPv2 [237, 251], whose phase is char-
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acterized by a set of parameters {pi}, including inspiral phase parameters {ϕ0, . . . , ϕ7}
and {ϕ5l, ϕ6l}, phenomenological coefficients {β0, . . . , β3}, and merger-ringdown parame-
ters {α0, . . . , α5}. Deviations pi → (1 + δp̂i)pi are introduced as the violations of GR;
δp̂i = 0 reproduces GR. In this framework, testing GR is reduced to estimating the test-
ing parameters δp̂i. Although a specific modified gravity theory could bring deviations in
more than one testing parameter, previous works have shown that including one testing
parameter at once is enough to detect violations. In fact, it can be more efficient to find
violations from GR this way because it avoids the correlations between testing parameters
and GR parameters [379, 390]. In this work, we choose δϕ̂0, the perturbation on the 0PN
phase, as the example testing parameter. We assume GR is the correct theory and focus
on whether the PPN test falsely indicates deviations of GR.

We restrict our Fisher matrix analysis to a subset of the full signal parameters, to avoid
computational issues. Parametrized deviations of the type we consider have a direct effect
on the phasing of the signal, so in addition to δϕ̂ we must include the other parameters
that do the same: chirp mass M and mass ratio q, as well as the time of coalescence tc.
The full 6-dimensional space of spin configurations is known to bring ill-conditioned Fisher
matrices [171] due to correlations between parameters, and because of the prior bounds
on angular parameters, results can be misleading even when they can be computed. We
therefore use only the effective spin χeff to capture the dominant effect of (aligned) spin on
the waveforms. We include this by forcing the two aligned spin components to contribute
equally to χeff, which allows us to treat it as a single parameter. We neglect to include
extrinsic parameters in the Fisher matrix, effectively assuming they are measured precisely.
Since these do not have a frequency-dependent effect on the phase, we do not expect them
to be highly correlated with the intrinsic parameters. Our choice captures the parameters
that appear in the leading PN term and the corresponding PPN modifications, as well
as the decisive parameter in the analysis of overlapping signals, tc. Other parameters
are randomly generated but are treated as perfectly known. Setting parameters to their
injection values excludes their contributions to both statistical and systematic errors in PE.
For instance, if we removed the effective spin from our calculation, we would obtain tighter
statistical and systematic errors, because its correlation with other parameters is removed
in that case [391]. Considering realistic PE in the future in which all parameters are
included, the correlation between parameters may make posteriors wider and systematic
bias larger. However, due to the linear expression in Eq. 2.49, we expect the two changes to
be proportional and our conclusion will not change significantly under this simplification.

Mimicking waveform inaccuracies

The PPN formalism is also used to mimic waveform systematics. We induce a non-zero
δβ̂2 to represent inaccurate waveform models based on the following considerations. To
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Figure 3.1: The absolute value of real part of plus polarization from a non-spinning BBH
with Mc = 30.69 M⊙, q = 0.88, in the frequency domain. Waveforms with different δβ̂2
are shown in different colors and linestyles. The intermediate region of this system starts
around 50Hz, which is consistent with where waveform difference appears in the plot.

reduce potential correlations with δϕ̂0, we exclude testing parameters for the inspiral stage.
Correlation between the testing parameter and the waveform systematic parameter may
undermine the generality of the illustration. To make sure the testing parameter has
enough influence on the waveform, we do not choose parameters for the merger-ringdown
stage which only includes the last few cycles. Therefore, we look for parameters in the
intermediate region which is described by δβ̂i [251]. δβ̂0 and δβ̂1 bring global phase shift
and time shift in this region respectively, so δβ̂2 is the dominant testing parameter that
encodes physical (frequency-dependent) modifications.

We assume δβ̂2 = 0 is our model waveform, while the “real” waveform could have
δβ̂2 = 0, 5×10−2, or 5×10−4. The first case means our model waveform is perfect, and all
systematic errors will come from overlapping signals. The second case generates waveform
mismatches around 10−4−10−3, which corresponds to the current waveform accuracy [392,
393]. The last case produces mismatches around 10−7 − 10−6 and corresponds to the
expectations for future waveform accuracy [2, 382]. A comparison of the three types of
waveforms is shown in Fig. 3.1. We show an example of a non-spinning BBH merger
with Mc = 30.69 M⊙ (in the detector frame), and q = 0.88 whose intermediate region
starts around 50Hz. The mismatches are 3 × 10−7 and 2 × 10−3 between δβ̂2 = 0 and
δβ̂2 = 5× 10−4, 5× 10−2, respectively.
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False deviations: a case study

We will use σi =
√
(F−1)ii as the statistical uncertainty. The systematic error is given by

the combinations of Eqs. 3.2, 3.7, and 3.9. We define the error ratio between systematic
and statistical errors as

R(θi) = |∆θi, sys/σi|. (3.10)

We consider that the PPN test coefficient is subject to false deviations from GR when
R(δϕ̂0) > 1, i.e., the systematic error dominates the parameter estimation.

Here we present an example event to investigate the effect of a detected or undetected
overlapping signal. The main signal is from a BBH with Mc = 32M⊙ (in the detector
frame), q = 0.9, χeff = 0.2 and network SNR of 27. The overlapping signal is an equal
mass BBH with Mc = 20M⊙ and χeff = 0.1. We scale its SNR from ∼ 26 down to ≲ 8

to make it detectable or undetectable. We vary the merger time difference (by 0.01 s per
step) and calculate the total systematic error with different waveform models. Note that,
throughout this section, the “systematic error” refers to that of the testing parameter δϕ̂0,
and is denoted as ∆θsys.

The error ratio for this example event is shown in Fig. 3.2, including an illustration of
the waveforms. The error from the overlapping signal oscillates when ∆t changes due to
the repeating alignments and misalignments of phases of the two GWs. The overlap error is
not symmetric around ∆t = 0 because the two waveforms are not symmetric, but the peak
is always located in the region |∆t| ≤ 1s, meaning the overlapping signal only produces
a large influence when two mergers are very close. Waveforms in the last row show how
the main signal is modulated by overlapping signals. Around ∆t ∼ 0, the confusion signal
has a larger impact than waveform systematics, so it dominates the systematic error. The
detected signal changes the signal significantly, but it is then subtracted from the data and
therefore produces fewer residual strains. When |∆t| is large, it is waveform inaccuracy
that dominates the systematic error. These characteristics are consistent with previous
works [371, 375, 376, 377].

It is possible for undetected signals to produce significant systematic errors in our
simulation, especially when the merger time is close. However, when the waveform is
not accurate, the detected overlapping signal produces a more stable systematic error
regardless of the merger time difference because the waveform systematic is always involved
in signal subtraction. This will be discussed in more detail on the catalog level in the next
section.
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Figure 3.2: Uppermost and middle rows: The error ratio of δϕ̂0 varies with merger time
difference. The main signal has (detector frame) Mc = 32M⊙, q = 0.9, χeff = 0.2 and
SNR of 27. The overlapping signal is an equal mass BBH with Mc = 20M⊙ and χeff = 0.1.
The SNR of the overlapping signal is adjusted by changing its luminosity distance: the
detected overlap is shown in the upper panel, and the undetected in the lower one. We use
three kinds of waveforms explained in Sec. 3.1.3: perfect waveform (solid line), “current”
waveform (dashed line), and “future waveform” (faint dotted-dashed line).
Bottom row: waveforms of the main and overlapping signals and their superposition.
Merger times of overlapping signals are chosen to maximize their influences, as marked by
grey stars in the first two rows. Inaccurate waveform in the δβ̂2 = 5 × 10−2 case is also
plotted for comparison.
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3.2 Catalog simulations and results

3.2.1 Mock catalogs

We are interested in error accumulation effects on the catalog level, so we need a mock
catalog of CBC events. We consider BBH and BNS sources, and assume their rate distri-
bution in redshift z follows the analytical approximation [378]

RGW(z) =
a1e

a2z

ea3z + a4
Gpc−3yr−1, (3.11)

which is then converted to observable event rate by multiplying a factor 1
1+z

dVc
dz

. Here Vc

is the comoving volume and we employ Planck15 cosmology [394]. Note that “observable”
GWs need to achieve an network SNR of 8 to be “detectable”. a{1,2,3,4} are model param-
eters. We set a2 = 1.6, a3 = 2.1, a4 = 30 to mimic a peak at z ∼ 2. a1 is scaled based on
local merger rate given by [149] (RBNS = 320+490

−240 and RBBH = 23.9+14.3
−8.6 Gpc−3yr−1) such

that RGW(z = 0) = RBNS/BBH. We choose three values for a1 which corresponds to lower,
median, and higher estimation of local merger rate, respectively.

The masses of BBHs are generated by the PowerLaw + Peak model in [149], while
all BNS systems are set to be same: 1.45 + 1.4M⊙, Λ1 = Λ2 = 425. The effective spin
follows the Gaussian distribution in [149], with mean of 0.06 and standard deviation of
0.12. IMRPhenomPv2_NRTidal [256] is used to generate BNS waveforms with the same
δβ̂2 as BBH. We will perform tests of GR with all BBH events and use BNS events as
a background: BNS events are only involved in the calculation as overlapping signals.
We assume isotropically distributed inclination and source sky direction; and uniformly
distributed coalescence time, phase, and polarization angle.

A summary of low, median, and high merger rates catalogs is shown in Tab. 3.1.
It shows that most BBH events will not have an overlapping signal near their merger
time, which implies overlapping signals contribute to systematic errors less frequently
than waveform systematics. With our ET+CE configuration, the numbers of the two
kinds of overlaps are close. However, if the number of detectors is less than assumed, or
detector sensitivities are lower than designed, some of the detected overlaps would become
undetected, and vice versa. The unnoticeable confusion background has drawn attention
in recent works [385, 395] and needs further investigation. Compact binaries formed by
Pop III stars (which we have ignored) could also contribute to the confusion background.
However, according to the model in [378], the numbers of observable Pop III binaries of
B17 and K16 models per year are roughly 40000 and 180000 respectively, which is much
lower than the BNS background.

Several simplifications have been adopted in our mock catalog: we regard BNS as
a background and use only BBH as the test source; we ignore neutron star-black hole
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# of observable binaries Detected overlaps on BBH events Undetected overlaps on BBH events
BBH BNS # of overlaps # (fraction) of events # of overlaps # (fraction) of events

Low 56526 286088

0 53118 (95%) 0 54067 (96%)
1 2847 (5.1%) 1 1936 (3.5%)
2 74 (0.13%) 2 37 (0.066%)
3 2 (0.0040%) 3 1 (0.0018%)

Median 88300 1144354

0 73200 (84%) 0 76270 (87%)
1 13125 (15%) 1 10461 (12%)
2 1093 (1.2%) 2 721 (0.82%)
3 67 (0.077%) 3 35 (0.040%)
4 2 (0.0023%)

High 143349 2896647

0 92692 (65%) 0 100862 (71%)
1 39450 (28%) 1 34519 (24%)
2 8559 (6.0%) 2 5940 (4.2%)
3 1208 (0.85%) 3 673 (0.47%)
4 131 (0.092%) 4 58 (0.041%)
5 20 (0.014%) 5 7 (0.0049%)

6 1 (0.00070%)

Table 3.1: A summary of three mock catalogs. From left to right, it shows catalog
type, observable BBH and BNS per year (note this is not detectable), and distributions
of numbers of overlapping signals among BBH events. For example, in median merger
rate catalog, there are 13125 detected BBH events (15% of all detected BBH events)
coming with 1 detected overlapping GW signal, and 10461 detected BBHs coming with 1
undetected overlapping GW signal. The overlapping signal can be BBH or BNS, and two
signals are defined as overlapped if their merger time difference ∆t < 4s.

(NSBH) mergers and other possible types of sources; we use an analytical merger rate
that peaks at z ∼ 2, ignoring compact binaries from Pop III stars. Our catalogs aim to
generate an appropriate merger rate for the study of systematic error accumulation, rather
than accurately modeling the astrophysical population. To achieve this, we also adjust
the merger rate to different levels, expecting that the real situation will lie somewhere
between our lowest and highest estimates.

Signals are injected into the 3rd generation GW detector Einstein Telescope with
ET-D PSD [166] located at the Cascina site of the current Virgo detector, and Cosmic
Explorer located at the LIGO Hanford site with the sensitivity curve proposed by [174].
The frequency band used for the analysis is 5–2048Hz.

3.2.2 Combining multiple events

There are several ways of combining results from multiple events [396, 397]. We employ
two straightforward methods: multiplying likelihoods (equivalently, multiplying posteriors
if priors are flat) and multiplying Bayes factors. The former assumes the modification
parameter is the same for all events, while the latter allows the modification parameter to
vary across events.

We assume a flat prior distribution, and that the posterior follows a multivariate
Gaussian distribution with covariance matrix Γ−1 and mean µ equal to injection values
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θinj plus systematic errors �θsys. The statistical uncertainty of a parameter is σi =
√
(Γ−1)ii.

The error ratio is then defined by Eq. 3.10.
In order to combine results from multiple events, one would multiply the posterior

distributions of the testing parameter for each. Multiplication of Gaussian distributions
results in another Gaussian distribution whose mean (systematic error) is a linear combi-
nation of the original means. From the first event in a catalog, we multiply the posterior
of new events one by one and calculate the error ratio. Considering the arbitrary sequence
of events, we permute the sequence 200 times and extract the ensemble average and 68%
confidence interval.

Treating GR as a sub-model of the non-GR theory, Bayes factor can be calculated
analytically with the Gaussian posterior [387]. Denote systematic error of δϕ̂0 as ∆θsys,
we have

LGR(θGR) = LnonGR(θnonGR) |δϕ̂0=∆θsys
. (3.12)

The Bayes factor is then calculated as

BnonGR
GR ∼ ZnonGR

ZGR
=

∫
dθnonGRLnonGR∫

dθGRLGR

=
√
2πe

1
2
(Γδϕ̂0δϕ̂0

−vT(ΓGR)−1v)∆θ2sys

√
detΓGR

detΓnonGR
,

(3.13)

where ΓnonGR is the Fisher matrix including the testing parameter, while ΓGR only includes
GR parameters. vi = (∂h/∂θi|∂h/∂δϕ̂0) represents the correlation between GR and non-
GR parameters. Γδϕ̂0δϕ̂0 = (∂h/∂δϕ̂0|∂h/∂δϕ̂0). The exponential term in the Bayes factor
accounts for the deviation of GR, while the determinant ratio term usually favors GR
since modified theories introduce extra parameters to explain the data. We also note that
the correlation term vT(ΓGR)

−1v mitigates the deviation of GR. Ignoring this term may
overestimate the Bayes factor (e.g., [387]). When combining events, Bayes factors are
numerically multiplied, with the same permutation used in multiplying likelihood. We
consider a false deviation from GR to be achieved when lnBnonGR

GR > 8. We reemphasize
that Bayes factors are first computed for each event and then combined across the catalog,
rather than calculated after different posteriors are multiplied. This analysis should be
interpreted as not assuming that the testing parameter is the same for all events. In this
sense it is less sensitive to violations of GR when there is a common underlying deviation
parameter, so we would expect it to be less vulnerable to simulated false violations. While
error ratio accumulation is decided by errors from each event, Bayes factor accumulation
is more sensitive to the fraction of correct analyses in the catalog. The two methods of
combining results are independent and do not necessarily lead to the same conclusion.
More details are given in the next section.
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3.2.3 Results

Overview of systematic errors in the catalog

We calculate the error ratio and Bayes factor for each BBH event in our mock catalog. In
Fig. 3.3, we show the relation between SNR with the absolute error, error ratio and Bayes
factor of the testing parameter δϕ̂0.

The results are consistent with the speculation that systematic error may dominate
the high-SNR scenario. It is shown that the statistical error scales as 1/SNR, while
the systematic errors roughly remain constant. The error ratio could exceed one for the
“current” waveform, and this happens more often when SNR> 30 despite the fact that
high SNR events are rarer. Error ratios for the “future” waveform simulations are usually
below one, but a certain amount of exceptions exist. For the Bayes factor analysis we find
a similar situation, although there is a smaller fraction of more extreme values. There are
roughly 0.8% and 18% events producing R(δϕ̂0) > 1 for δβ̂2 = 5×10−4 and 5×10−2 cases,
respectively, while for lnBnonGR

GR > 8 the fractions are 0.02% and 3%.

Error accumulation in a catalog

As pointed out by Moore et al. [387], false deviations could be achieved even though
estimations for individual events are generally accurate. Here we combine all BBH events
by multiplying likelihoods or Bayes factors and the results are shown Fig. 3.4. Let Nevent

be the number of events. When multiplying likelihoods, the statistical uncertainty shrinks
as 1/

√
Nevent. The absolute error of the testing parameter also decreases, but at a slower

pace due to the perturbations from newly accumulating systematic errors. It also follows
1/
√
Nevent if there were no systematic errors - we observe that the test with the perfect

waveform in a low merger rate catalog is approximately doing so. In most simulations, it
is the waveform inaccuracy that keeps contributing to the systematic errors. The slower
decay of systematic error results in a climbing error ratio as the number of events increases.
At some point (typically ∼ 103 events, considering error bars) it leads to a false deviation
of GR for the “current” waveform. For the better waveform, the error ratio climbs as well,
but it keeps below the statistical level until 105 − 106 events.

Multiplying Bayes factors is a direct addition of lnBnonGR
GR . “Correct analyses” can

effectively decrease the combined Bayes factor so that a correct-analyses-dominated cat-
alog leads to correct conclusions. Since there are only 3% of events with lnBnonGR

GR > 8

(furthermore, only 7% of events with lnBnonGR
GR > 0) for the current waveform, the sum of

all Bayes factors is negative, thus false deviation is not achieved in this case. In contrast,
multiplying likelihoods linearly adds systematic errors: for Gaussian distributions f and
g, the mean of their product is µfg =

µfσ
2
g+µgσ

2
f

σ2
f+σ

2
g

. Correct analysis and different signs of
errors could diminish systematic error a bit, but it is never guaranteed for the error to be
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Figure 3.3: Relation between SNR and absolute error (first column), error ratio (second
column) of δϕ̂0 and Bayes factor (third column) for low (uppermost row), median (median
row), and high (bottom row) merger rate catalogs. Each point represents a BBH event.
Blue points are for the “perfect waveform” case, where all systematic errors come from
overlapping signals; red points stand for the “current waveform” case and yellow points for
the “future waveform” case. Grey points in the first column are statistical errors. Dashed
lines in the second and third columns are the threshold above which GR is mistakenly
disfavoured. This plot shows R(δϕ̂0) > 1 and lnBnonGR

GR > 8 are mostly from “current
waveform” and high SNR events.
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Figure 3.4: Systematic error accumulates with the increase of the number of events.
The first column shows the absolute error of δϕ̂0 and the second column shows the error
ratio. The third column is the Bayes factor. Solid red lines are the ensemble average
for “current waveform”, dashed red lines are for “future waveform”, and blue lines stand
for the perfect waveform. The shadow along lines is the 68% confidence interval. The
first, second, and third rows are for low, median, and high catalogs, respectively. The
black dotted-dashed line is the threshold above which a false deviation of GR is claimed.
False deviations can be achieved with the increase in the number of events by multiplying
posteriors, but multiplying Bayes factors does not give wrong conclusions in these correct-
analyses-dominated catalogs.
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Figure 3.5: Similar to Fig. 3.4, the error ratio and Bayes factor accumulation. The left
two columns show results from SNR>50 events, the right two columns are for SNR>200
events. Compared with Fig. 3.4, it shows that tests with high SNR events are more likely
to make a false deviation from GR.

held around 0. Moreover, statistical uncertainty also shrinks during event stacking, so the
error ratio shows a clear increase.

Golden events

We have combined all the detected BBH events in the above subsection. It is also in-
teresting to test GR with only the “golden events”, i.e., the GW events with high SNR
and clean data that contribute to most of the information in the whole catalog test. This
idea is widely used in many works, such as recent GWTC-3 tests of GR [25] and cos-
mology [152]. Since the noise is stationary and Gaussian in our simulation, we select the
golden events with only two criteria: SNR above a chosen threshold (50 or 200) and there
are no detected overlapping signals.

Results for the error ratio and Bayes factor are shown in Fig. 3.5: high SNR events are
more vulnerable to systematic errors. Fewer events are needed to create a false deviation
for the “current” waveform model, and the “future” waveform is closer to false deviation in
all three catalogs. Moreover, the golden events catalog consists of more incorrect analyses
(R(δϕ̂0) > 1 or lnBnonGR

GR > 8), and it causes the Bayes factor of current waveform to
incorrectly favor the non-GR theory.

The statistical uncertainty decreases as 1/SNR while systematics do not as long as
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the waveform is imperfect. The false deviation for golden events is not surprising from
this angle, but it does need more attention and an appropriate solution for future data
analysis.

Stacking residuals

Different types of systematic errors are correlated and could be a magnifying factor for
each other, as expected from Eq. 3.3. With our mock catalog, we are able to investigate
the effects of stacking residuals due to incorrect signal removals. In the high merger rate
catalog, we calculate systematic errors for each BBH event, and show the distributions of
systematic errors and Bayes factors caused by different numbers of overlapping signals in
Fig. 3.6. It is shown that, with the increase in the number of overlapping signals, detected
overlaps tend to produce larger errors, while errors from confusion background signals
make smaller incremental changes. This verifies that overlapping signals could magnify
the effects of waveform systematics, emphasizing the importance of waveform accuracy in
the overlapping signal analysis.

3.3 Summary and discussions
We have investigated how systematic errors in testing GR accumulate under the influence
of overlapping signals and inaccurate waveforms. We have considered different levels of
waveform inaccuracies and event rates, and employed two approaches to combining the
results.

We confirm that systematic errors could accumulate when combining multiple events,
and could lead to incorrectly disfavoring GR in some cases. Since overlapping signals do
not always occur, it is waveform inaccuracies that keep contributing to the systematic
error in the catalog tests. An accurate waveform model is effective at preventing false
deviations in most cases, while a worse one could lead to biased conclusions. We addi-
tionally find that overlapping signals can enlarge the effect of waveform systematics. By
increasing the number of overlaps, we tend to achieve a greater systematic error and a
Bayes factor that leans more toward the non-GR model. One can avoid this correlated er-
ror by selecting events with no detected overlapping signals, and, if one prefers, with high
SNR as well. However, we have shown these events produce biases much faster because
waveform systematics dominate in high SNR scenarios.

We should point out that GR is assumed to be the true theory to describe the data in
this work, which is not necessarily correct. The inverse problem, namely, what happens to
detection and PE when we use GR waveform for data analysis but GR is wrong (stealth
bias), is investigated in previous works [369, 370, 398]. The core idea of our work and
stealth bias is the same: using an incorrect model in data analysis can lead to biased
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Figure 3.6: PPN test results for events with different overlapping signals. We show
distributions of systematic errors and Bayes factors in the high merger rate catalog with
δβ̂2 = 5 × 10−2 waveform, classified by number and type of overlapping signals. Bars
denote the mean value. The number of overlapping signals is cut at 4 because of the
insufficient number of events coming with > 4 overlapping signals. The difference in the
increase of mean values shows that the detected overlapping signals could magnify the
effects of inaccurate waveform models.
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results. Stealth bias emphasizes the importance of assuming the correct theory, while
our work points out that even if the assumed fundamental theory is correct, waveform
modeling and overlapping signals are still able to corrupt the results.

We re-emphasize that systematic errors can accumulate when combining multiple
events and lead to incorrect scientific conclusions. This problem is universal: in addi-
tion to tests of GR, any analysis based on a GW catalog is faced with this issue, such
as constraints on cosmological models, neutron star models [386], and astrophysical pop-
ulation inference. Furthermore, there are more sources of systematic errors than those
investigated in this work: instrumental calibration [399, 400], glitches [401, 402], missing
physical effects [278, 279] and so forth. A recent review [403] summarized the potential
causes of false deviations from GR. A full analysis of these contributions, and their rel-
ative importance, will be essential in designing analysis strategies for 3G detectors. An
obvious solution to these issues is continuing improvements to waveform model accuracy
and instrumental stability, but we believe more efforts are needed from the angle of data
analysis. A proper estimate of confusion background may be necessary [385], and new
techniques might be needed, such as accounting for waveform systematic errors during
PE [266], performing specific analysis of residual strain [404], and so forth.

We focus on the catalog level in this chapter, combining multiple events in which some
show deviations from GR while some do not. However, we will pay attention to every
single event that shows deviations when analyzing real data, which requires a careful
assessment of systematic errors in each event. As waveform inaccuracies contribute most
to systematic errors, in the next chapter, I will introduce a method of assessing waveform
accuracy for parameter estimation and its potential applications.



Chapter 4

Assessing the accuracy of waveform
models

As we have seen in Chapter 3, with the improvement in the sensitivity of GW detectors and
the increasing diversity of GW sources, there is a strong need for accurate GW waveform
models for data analysis. While the current model accuracy assessments require waveforms
generated by Numerical Relativity (NR) simulations as the “true waveforms”, in this
chapter we propose an assessment approach that does not require NR simulations, which
enables us to probe into model accuracy everywhere in the parameter space. By measuring
the difference between two waveform models, we derive a necessary condition for a pair
of waveform models to both be accurate, for a particular set of parameters. We then
apply this method to the parameter estimation samples of the GWTC-2.1 and GWTC-3,
and find that the waveform accuracy for high signal-to-noise ratio events in some cases
fails our assessment criterion. Based on the analysis of real events’ posterior samples, we
discuss the correlation between our quantified accuracy assessments and systematic errors
in parameter estimation. We find waveform models that perform worse in our assessment
are more likely to give inconsistent estimations. We also investigate waveform accuracy
in different parameter regions, and find the accuracy degrades as the spin effects go up,
the mass ratio deviates from one, or the orbital plane is near-aligned to the line of sight.
Furthermore, we make predictions of waveform accuracy requirements for future detectors
and find the accuracy of current waveform models should be improved by at least 3 orders
of magnitude, which is consistent with previous works.

This chapter is organized as follows. We introduce the methods of assessing waveform
accuracy in Sec. 4.1 and apply them on BBH waveforms in Sec. 4.2 and BNS and NSBH
waveforms in Sec. 4.3. A summary and discussions about future applications of this
method will be given in Sec. 4.4.

95
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4.1 Methods of assessing waveform accuracy

4.1.1 Assessing waveform accuracy with NR simulations

We have shown that an accurate waveform is crucial to correct data analysis, especially
in high-SNR scenarios. Ideally, the waveform model accuracy should be estimated when
it is used to analyze a GW event. Waveform models are usually calibrated and validated
against accurate NR simulations, and the mismatch (Eq. 1.151) is used to quantify the
accuracy. However, the mismatch is not relevant to the SNR because it is normalized by
the norms of waveforms. Here the norm of a waveform is defined as

∥h∥ =
√

(h|h), (4.1)

and can be understood as the “length” of strains in the noise-weighted inner product
space. We want to quantify whether a waveform model is accurate enough for the analysis,
therefore the SNR needs to be accounted for.

A model waveform can be thought as “accurate enough” when the detector can not
distinguish it from the real one. Ref. [405] constructs a waveform family H to quantify the
detector’s ability to measure the difference between the model and the real waveform: Let
h0 be the true waveform, h1 be the waveform given model, and δh1 = h1 − h0 represents
their difference. We construct the following waveform family of the model

H1(λ) = (1− λ)h0 + λh1 = h0 + λδh1, 0 < λ < 1, (4.2)

where λ is a parameter which interpolates between the two models. If the measurement
error on λ is greater than the length of its domain of definition (i.e. the parametric distance
between real and model waveforms), we can claim the detector is not able to distinguish
the waveforms, thus the model is accurate enough. The error σλ is given by the Fisher
matrix formalism

σ−2
λ =

(
∂H1

∂λ

∣∣∣∣∂H1

∂λ

)
= (δh1 | δh1). (4.3)

Therefore, the accuracy standard for a waveform model is

∥δh1∥2 = (δh1 | δh1) < 1. (4.4)

Eq. 4.4 implies the waveform difference should lie within a unit sphere in the inner product
space, any violation of which means the model is not accurate enough. Since ⟨n|n⟩ = 1,
another way to understand Eq. 4.4 is that if the distance to the real waveform is longer
than the length of detector noise, the detector will be able to tell the error of the model.
From this angle, the waveform we are considering here should be the detector response,
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i.e.,
h0 = F+h

+
0 + F×h

×
0

h1 = F+h
+
1 + F×h

×
1 ,

(4.5)

where F+, F× are antenna response functions. Let ρ = ∥h0∥ ≈ ∥h1∥ be the SNR of the
signal, and MM be the mismatch between h0 and h1 defined by Eq. 1.151, Eq. 4.4 can be
written as

ρ <

√
1

2MM , (4.6)

which gives the SNR threshold for assessing waveform accuracy. Given a waveform model
and its mismatch with the true waveform, there could be potential systematic errors
if it is used to analyze signals that are above the SNR threshold. We note that some
works [405, 406, 407] propose a less stringent criterion than Eq. 4.4 by changing the upper
limit to 2ϵρ2, where ρ is SNR and ϵ is the maximum tolerated fractional loss in SNR
which needs to be appropriately chosen for detection. In this chapter, we focus more
on the waveform systematics in measurement rather than in detection, so we keep using
Eq. 4.4, i.e., the strict distinguishability criterion.

However, to compute ∥δh1∥, the true waveform h0 is needed, which is usually replaced
by the computationally expensive NR simulations that can not span all over the parameter
space. It is therefore impractical to apply Eq. 4.4 directly in data analysis, and the wave-
form uncertainties are unknown if the source parameters are out of the model’s calibration
range. This may cause some unknown systematic errors in data analysis. An example is
GW191219_163120 [128], of which mass ratio is estimated to be out of the waveform cal-
ibration region (≤ 0.041) so that there are potential uncertainties in its pastro. We need a
NR-free waveform accuracy criteria that can be performed in the entire parameter space.

4.1.2 NR-free waveform accuracy criteria

Assessment of the detector response

It is easy to verify that the Cauchy-Schwarz inequality and the triangle inequality hold
for the noise-weighted inner product space:

∥a∥2∥b∥2 ≥ |(a|b)|2 (4.7)

∥a∥+ ∥b∥ ≥ ∥a± b∥ ≥| ∥a∥ − ∥b∥ | . (4.8)

Therefore, instead of using one waveform model and the true waveform, we can introduce
another waveform model h2 to be paired with h1. Although δh1 and δh2 are unknown,
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their difference δh1 − δh2 can be easily calculated:

∆ = δh1 − δh2

= (h1 − h0)− (h2 − h0)

= h1 − h2.

(4.9)

Assuming both of two waveforms are accurate, i.e., they both satisfy Eq. 4.4, we can
obtain an upper limit of ∥∆∥ using the triangle inequality:

∥∆∥ ≤ ∥δh1∥+ ∥δh2∥ < 2. (4.10)

Eq. 4.10 is a necessary condition if h1 and h2 are both accurate. Note that the threshold
of 2 is built on the threshold of 1 for each waveform model, corresponding to the 1-sigma
error. However, due to the magnification of the triangle inequality, the threshold of 2
should have a confidence level greater than 1-sigma. That is to say, if Eq. 4.10 is violated,
at least one of the waveform models does not satisfy Eq. 4.4 with confidence level greater
than 1-sigma.

We illustrate possible cases for the ∥∆∥ in Eq. 4.10 in the vector plots Fig. 4.1, in
which waveforms are treated as vectors in the noise-weighted inner product space. The
black circle denotes the sphere of radius 2. Vectors δh1 and δh2 denote the difference
between the real waveform h0 and the models h1, h2, respectively, and different line styles
denote different possibilities. δhi lies in the circle means the ith model is accurate and
satisfies Eq. 4.4. If the length of ∆ is greater than the upper limit 2 (the diameter of the
black circle), as shown in case I, at least one of the waveform model errors can not be put
inside the circle, i.e., it does not meet the accuracy standard. However, ∥∆∥ < 2 does not
mean both of the waveforms are accurate, as shown in Case II. Small ∥∆∥ only implies the
two models give similar predictions of the waveform but can not guarantee their accuracy.
The key idea of this method is: if two waveforms have significant differences, they can not
both be correct.

Eq. 4.10 is not a strong criterion; it can not tell which waveform causes the violation
(case I), and may miss some waveform errors (case II). Despite this, we suppose it still
gives certain information about the correctness of waveform modeling. If ∥∆∥ > 2, the
waveform pair should become less reliable; if ∥∆∥ ≫ 2, the systematic errors in waveform
models should not be neglected as it is highly possible that either of the waveforms is
accurate, or one of them has seriously deviated. If ∥∆∥ < 2, no evidence of waveform
inaccuracy is found by this approach, although we could not exclude the possibility that
two waveforms have large but similar errors. The advantage of this method is that it can
be performed everywhere in the parameter space, as long as waveform models work in
that region.
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Figure 4.1: Vector plots to illustrate all cases of ∆. Blue vectors are the difference
between waveform models and the real waveform, and black circles represent the sphere
of radius 2, the upper limit of length of δhi if hi is accurate (i = 1, 2). Red vectors are
∆, the difference between two waveform models (defined in Eq. 4.9). Different line styles
denote different possibilities. In Case I, ∥∆∥ exceeds the upper limit given by Eq. 4.10,
so at least one in h1, h2 is not accurate enough. In Case II, ∥∆∥ satisfies Eq. 4.10, there
may be 0, 1, 2 inaccurate waveforms, corresponding to solid line, dotted-dashed line and
dashed line, respectively. We can not determine the accuracy of a waveform pair in Case
II.
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Eq. 4.10 can be extended to a detector network by defining the inner product between
matrices by Eq. 2.25. The signal of the network can be denoted as a column vector
h = (h(1), h(2), . . . , h(Nd))T, where superscript (k) denotes the k-th detector and Nd is the
number of detectors in the network. We can also subtract two waveform models, and
define h1 − h2 = ∆net. The norm of ∆net can be calculated

∥∆net∥2 = (δhT|δh) =
∑
k

(δh(k)|δh(k))

=
∑
k

(
∆(k)

)2
< 4Nd,

(4.11)

where F (k)
+ , F

(k)
× are the antenna response functions of the k-th detector. In practice, we

can weight the ∆ by the number of detectors:

∆′
net =

∆net√
Nd
, (4.12)

so that the ∆′
net will have an upper limit of 2 if the waveforms are both accurate enough.

At last, we should note that the inner product in the calculation of waveform difference
∆ should be minimized over an arbitrary phase ϕ0 and time shift t0 as described in
Sec. 1.4.3 in order to eliminate the kinematical difference between models.

Assessment of the detector response

The two accuracy standards we proposed, Eq. 4.10 and Eq. 4.12, are related to the SNR,
as the length of ∆ is proportional to the amplitude of GWs. It is reasonable that the
higher the SNR is, the easier it is for detectors to distinguish different waveforms, and
the more important systematic errors will be in data analysis. However, SNR depends on
not only intrinsic parameters, but also extrinsic parameters that trivially modulate the
amplitude. It is the phase evolution that is critical to reveal the physical properties of the
source, and is the intrinsic characteristic of a GW waveform [408]. We therefore normalize
the ∆ with SNR to eliminate the impacts from amplitudes. The optimal SNR is defined
as ρ =

√
(h|h), which is also proportional to the amplitude of GWs like ∆. Thus we have

∆ ∝ ρ. In fact, we have two waveforms to calculate ∆. The normalization factor is chosen
as the geometric mean of SNRs from two waveforms, i.e., ρ0 =

√
ρ1ρ2. Take Eq. 4.10 as

an example, the normalized ∆ is

∥∆SNR=1∥2 =
(δh1 − δh2|δh1 − δh2)√

(h1|h1)(h2|h2)

=
(h1 − h2|h1 − h2)√

(h1|h1)(h2|h2)
,

(4.13)
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and we simply have
∥∆SNR=ρ0∥ = ρ0∥∆SNR=1∥. (4.14)

Eq. 4.14 can be used to evaluate waveform accuracy at a fixed SNR. Note the threshold
of ∥∆SNR=ρ0∥ is always 2. The normalized ∥∆∥ can be related to the mismatch by

∥∆SNR=1∥2 ≈ 2MM, (4.15)

if we assume ρ1 ≈ ρ2. However, we found ρ1 and ρ2 could have considerable differences in
some parameter regions when comparing IMRPhenomXPHM and SEOBNRv4PHM, and this will
be discussed in Sec. 4.2.

In the next two sections, we will apply the accuracy standard Eq. 4.12 and Eq. 4.14 to
GW waveforms from 3 types of compact binary coalescence: BBH, NSBH, and BNS. We
employ the assessment on the GWTC parameter estimation samples and parameter grids
we generate; the former aims to investigate whether faulty waveforms were used in GW
data analysis and possible systematic error caused by waveform errors, while the latter
explores waveforms’ performances in different regions of the parameter space. Through-
out this chapter, we ignore the calibration error, which can cause our waveforms to be
slightly different from those used in GWTC-3 and GWTC-2.1 parameter estimation. The
calibration error is typically < 4 degrees in phase and < 7% in amplitude [399], and it
acts on both waveform models, so ignoring it will not have large impacts on our results.

4.2 Applications on BBH waveforms
BBH mergers are the most frequent GW events at this stage: Among all 91 GW candidates
(36 in GWTC-3 [128], 44 in GWTC-2.1 [127] and 11 in GWTC-1 [125]), over 80 of them are
confirmed to be BBH events. In the latest data release from LVK collaboration, waveform
models IMRPhenomXPHM and SEOBNRv4PHM are used for analysis of all the BBH events,
including re-analysis of GWTC-1 events published in GWTC-2.1. Due to the low SNR
of current NSBH events, the resolution of tidal deformability is poor and no strong sign
of matter effects is revealed in data analysis. Besides, higher modes and spin precession
effects are more important than matter effects for waveform modeling of NSBHs [409], so
IMRPhenomXPHM and SEOBNRv4PHM are also employed on NSBH events to extract physical
information.

For all the 89 BBH and NSBH events, we use the cosmologically reweighted param-
eter estimation posterior samples from GWTC-3 and GWTC-2.1 data release and cal-
culate ∥∆′

net∥ (Eq. 4.12 ) of the waveform models mentioned above. We use the mix-
ture of IMRPhenomXPHM and SEOBNRv4PHM samples in most events, but in some events
SEOBNRv4PHM samples are not provided [127], so we use IMRPhenomXPHM samples to calcu-
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late ∥∆′
net∥ between IMRPhenomXPHM and SEOBNRv4PHM. Samples we use are the same as

GWTC-3 [128] and GWTC-2.1 [127]. For each sample, we generate the waveform (includ-
ing the detector response) for both models, then apply a time and phase shift on one of
them to minimize Eq. 4.12. The minimized ∥∆′

net∥ is the waveform difference we refer to
in the following discussion.

When ∥∆′
net∥ is greater than 2 at a sampling point, it implies the difference between

IMRPhenomXPHM and SEOBNRv4PHM is so large at this point that they could not both be
accurate enough. Furthermore, the difference in waveform will induce a difference in like-
lihood, and therefore has the potential to affect the results of a parameter estimation
algorithm. This yields a systematic difference in parameter estimates, and so the re-
sults from different waveform models may not coincide. Therefore, in addition to ∥∆′

net∥,
we also calculate Jensen-Shannon (J-S) divergence between IMRPhenomXPHM samples and
SEOBNRv4PHM samples (if available). The J-S divergence is a measurement of the similarity
between two probability distributions and is used in GWTC-2 [126]. The greater it is, the
greater the difference between the two distributions and there may be potential systematic
errors in the data analysis. Since the J-S divergence for samples from a distribution is
easiest to evaluate in one dimension, we choose the greatest J-S divergence among samples
for the following parameters: mass ratio q, chirp mass M, effective spin χeff and effective
precession spin χp as a measurement of inconsistency of posterior samples, for they are
the major physical parameters to be studied. We use gaussian_kde in SciPy to estimate
probability density functions. The base of J-S divergence is chosen to be 2, so that the
divergence ranges between 0 and 1.

The full results of the 89 BBH and NSBH events are shown in Tab. 4.1 and Tab. 4.2
for reference. We list the basic information of each event, including some source param-
eters and network SNR, and statistics we construct, including the mean value of ∥∆′

net∥,
normalized ∥∆′

net∥ (which equals to ∥∆′
net∥/SNR), the fraction of ∥∆′

net∥ < 2 samples, and
the J-S divergence. We highlight some points in the rest of this subsection.

4.2.1 Overall accuracy

We show the relations between the waveform difference ∥∆′
net∥ of different events and SNR

in Fig. 4.2, in which each point represents a GW event. We find every event has samples
that can not meet the ∥∆′

net∥ < 2 requirement (left panel), but most events have mean
∥∆′

net∥ around 2 (right panel). This means some waveform pairs used in data analysis
can pass (and are near the edge of) our accuracy standard, but violations exist. We could
not identify whether one or both waveform models is inaccurate. Later in Sec. 4.2.3 we
will show it is the samples with large spin or small mass ratio or edge-on inclination that
contribute to ∥∆′

net∥ < 2 fraction. Overall, considering that the violations are generally
not strong, we conclude that the current waveform accuracy is around the edge of our
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Event name m1 m2 χeff χp θJN SNR Mean MeanNorm Fraction Max J-S Div.
GW150914_095045 37.99+5.11

−2.89 32.96+3.18
−5.03 −0.04+0.12

−0.14 0.51+0.35
−0.38 2.70+0.32

−0.71 24.4 2.0 0.08 0.59 0.069
GW151012_095443 29.62+17.08

−6.87 16.30+5.73
−6.02 0.12+0.28

−0.21 0.36+0.43
−0.27 1.70+1.13

−1.40 10 1.33 0.13 0.81 0.023
GW151226_033853 15.50+12.19

−4.00 8.18+2.62
−3.02 0.20+0.23

−0.08 0.52+0.36
−0.35 0.88+2.00

−0.66 13.1 2.39 0.18 0.54 N/A
GW170104_101158 34.78+7.73

−4.85 25.25+4.43
−5.60 −0.04+0.15

−0.19 0.40+0.40
−0.31 1.10+1.79

−0.86 13 1.28 0.1 0.88 0.01
GW170608_020116 11.41+4.36

−1.49 8.38+1.21
−2.06 0.05+0.13

−0.05 0.32+0.41
−0.24 2.37+0.58

−2.06 14.9 1.43 0.1 0.86 0.051
GW170729_185629 77.88+17.89

−14.48 44.13+18.11
−17.46 0.29+0.25

−0.33 0.39+0.40
−0.29 1.35+1.44

−1.03 10.8 2.08 0.19 0.54 0.037
GW170809_082821 41.19+9.63

−6.27 29.25+5.63
−6.46 0.07+0.17

−0.17 0.39+0.44
−0.30 2.61+0.39

−0.59 12.4 1.14 0.09 0.91 0.037
GW170814_103043 34.70+6.01

−3.52 28.03+3.22
−4.59 0.08+0.13

−0.12 0.48+0.38
−0.37 0.69+1.92

−0.48 15.9 1.31 0.08 0.88 0.062
GW170818_022509 42.14+7.99

−5.04 33.42+5.07
−6.14 −0.06+0.19

−0.22 0.56+0.34
−0.41 2.46+0.47

−0.50 11.3 1.06 0.09 0.96 0.015
GW170823_131358 51.67+11.92

−7.85 39.42+8.11
−11.03 0.05+0.21

−0.22 0.47+0.41
−0.35 1.73+1.16

−1.48 11.5 1.83 0.16 0.64 0.019
GW190408_181802 31.70+6.96

−3.88 23.83+3.56
−5.01 −0.03+0.13

−0.17 0.37+0.41
−0.29 1.01+1.85

−0.79 14.4 1.05 0.07 0.94 0.006
GW190412_053044 31.76+6.81

−6.60 10.34+2.19
−1.55 0.21+0.12

−0.13 0.19+0.22
−0.12 0.92+1.69

−0.40 18.2 2.86 0.16 0.25 0.45
GW190413_052954 52.79+15.00

−10.02 37.90+9.95
−11.57 −0.04+0.27

−0.32 0.44+0.42
−0.33 0.79+2.01

−0.58 8.5 1.13 0.13 0.88 N/A
GW190413_134308 83.12+19.30

−15.64 50.15+19.47
−23.80 −0.01+0.28

−0.38 0.55+0.36
−0.41 1.85+1.01

−1.52 10.3 1.57 0.15 0.71 N/A
GW190421_213856 60.79+13.06

−8.71 46.94+9.04
−14.55 −0.10+0.21

−0.27 0.45+0.41
−0.34 2.03+0.85

−1.70 9.7 1.59 0.16 0.73 N/A
GW190503_185404 53.32+12.17

−10.28 36.45+10.17
−12.62 −0.05+0.23

−0.30 0.43+0.40
−0.33 2.50+0.46

−0.62 12.2 1.55 0.13 0.74 0.013
GW190512_180714 29.34+6.90

−6.72 15.83+4.64
−2.97 0.02+0.13

−0.14 0.26+0.41
−0.20 1.79+1.07

−1.50 12.2 1.3 0.11 0.85 0.036
GW190513_205428 49.99+14.75

−12.78 25.60+10.88
−6.98 0.16+0.29

−0.22 0.35+0.43
−0.26 0.79+2.01

−0.58 12.3 1.64 0.13 0.7 0.048
GW190514_065416 66.96+21.39

−12.57 47.33+12.11
−18.23 −0.08+0.29

−0.35 0.45+0.42
−0.33 1.47+1.38

−1.20 8.3 1.44 0.17 0.78 0.013
GW190517_055101 52.92+14.76

−9.99 32.75+9.55
−12.25 0.49+0.21

−0.28 0.55+0.31
−0.32 2.12+0.70

−1.18 10.8 2.04 0.19 0.61 0.141
GW190519_153544 94.80+15.84

−12.40 59.88+16.88
−18.85 0.33+0.20

−0.24 0.45+0.36
−0.28 1.61+0.95

−1.02 12.4 2.81 0.23 0.24 0.066
GW190521_030229 152.36+31.65

−17.62 89.65+48.96
−52.17 −0.14+0.50

−0.45 0.49+0.33
−0.35 1.38+1.40

−1.07 13.3 3.24 0.24 0.35 N/A
GW190521_074359 52.19+7.65

−5.39 40.36+5.87
−7.16 0.10+0.13

−0.13 0.39+0.37
−0.30 1.48+1.27

−1.10 24.4 3.6 0.15 0.13 0.153
GW190527_092055 51.05+29.88

−9.27 32.36+11.95
−13.36 0.10+0.22

−0.22 0.36+0.47
−0.28 1.15+1.65

−0.87 8.7 1.29 0.15 0.85 0.161
GW190602_175927 106.81+24.90

−17.99 67.63+23.03
−31.56 0.12+0.25

−0.28 0.45+0.43
−0.34 2.13+0.79

−1.87 12.3 1.95 0.16 0.6 N/A
GW190620_030421 87.13+23.93

−17.28 53.35+17.64
−24.30 0.34+0.22

−0.29 0.48+0.38
−0.32 2.07+0.82

−1.74 10.9 2.1 0.19 0.52 0.049
GW190630_185205 41.40+8.12

−6.50 28.24+5.79
−5.63 0.10+0.14

−0.13 0.33+0.36
−0.24 1.41+1.43

−1.16 15.2 1.55 0.1 0.76 0.032
GW190701_203306 74.56+15.98

−10.85 56.08+12.08
−17.93 −0.08+0.23

−0.31 0.44+0.41
−0.33 0.58+0.55

−0.42 11.7 0.95 0.08 0.95 0.007
GW190706_222641 117.53+22.57

−18.55 63.74+27.20
−27.42 0.28+0.25

−0.31 0.47+0.38
−0.33 1.86+0.96

−1.50 12.5 3.06 0.24 0.26 0.093
GW190707_093326 14.07+3.01

−2.33 9.28+1.69
−1.48 −0.04+0.10

−0.09 0.28+0.39
−0.22 2.12+0.81

−1.89 13.2 1.23 0.09 0.93 0.219
GW190708_232457 23.41+4.97

−5.07 13.70+3.57
−2.17 0.05+0.10

−0.10 0.26+0.44
−0.20 1.39+1.54

−1.18 13.1 1.14 0.09 0.94 0.424
GW190719_215514 58.83+75.12

−16.34 32.78+14.38
−16.38 0.25+0.33

−0.32 0.45+0.39
−0.32 1.61+1.26

−1.33 8 1.41 0.18 0.79 N/A
GW190720_000836 16.57+6.36

−3.94 8.76+2.44
−2.10 0.19+0.14

−0.11 0.29+0.39
−0.20 2.59+0.41

−1.99 11.5 0.86 0.08 0.97 0.14
GW190727_060333 58.87+13.07

−8.01 46.18+8.22
−13.24 0.09+0.25

−0.27 0.50+0.38
−0.37 1.54+1.35

−1.27 12.1 1.37 0.11 0.82 0.017
GW190728_064510 14.56+8.19

−2.60 9.39+1.92
−2.91 0.13+0.19

−0.07 0.29+0.39
−0.20 1.11+1.77

−0.90 13.4 1.16 0.09 0.89 0.048
GW190731_140936 64.91+15.63

−10.80 46.27+12.67
−17.54 0.07+0.28

−0.25 0.41+0.43
−0.32 1.23+1.63

−0.98 8.5 1.13 0.13 0.89 0.031
GW190803_022701 57.71+13.23

−8.92 42.96+9.20
−13.81 −0.01+0.23

−0.28 0.44+0.42
−0.34 0.91+1.93

−0.70 9.1 0.87 0.1 0.96 N/A
GW190814_211039 24.48+1.55

−1.43 2.72+0.11
−0.11 0.00+0.07

−0.07 0.04+0.04
−0.03 0.90+1.40

−0.24 22.2 2.54 0.11 0.49 N/A
GW190828_063405 43.27+7.36

−4.65 35.40+4.69
−6.98 0.15+0.15

−0.16 0.43+0.41
−0.32 2.38+0.57

−2.02 16.3 1.31 0.08 0.86 N/A
GW190828_065509 30.42+8.31

−8.29 13.44+4.82
−2.71 0.05+0.16

−0.17 0.26+0.42
−0.20 1.86+0.96

−1.52 11.1 1.69 0.15 0.68 N/A
GW190910_112807 56.54+8.69

−6.47 44.50+7.47
−9.24 −0.00+0.17

−0.20 0.38+0.43
−0.30 1.62+1.16

−1.25 13.4 2.25 0.17 0.47 0.011
GW190915_235702 43.05+11.11

−6.00 32.50+5.62
−7.95 −0.03+0.19

−0.24 0.56+0.34
−0.40 1.84+0.99

−1.48 13 1.63 0.13 0.69 0.01
GW190924_021846 9.78+4.83

−2.00 5.67+1.35
−1.61 0.03+0.20

−0.08 0.25+0.41
−0.19 0.84+1.95

−0.64 13 1.13 0.09 0.92 0.152
GW190929_012149 101.70+25.99

−18.32 41.64+25.15
−18.10 −0.03+0.23

−0.28 0.31+0.51
−0.25 1.45+1.18

−0.97 10.1 2.22 0.22 0.47 N/A
GW190930_133541 16.36+9.27

−4.57 7.98+2.78
−2.34 0.19+0.22

−0.16 0.30+0.42
−0.21 0.72+2.06

−0.55 10.1 1.2 0.12 0.87 0.377

Table 4.1: The first half of the BBH analysis results, including 10 GWTC-1 events and
35 GWTC-2.1 events that are included in GWTC-2. First seven columns are basic in-
formation of the events: event names in YYMMDD_HHMMSS form, component masses
m1,2 in detector frame (which have a difference of factor 1 + z from Ref. [127, 128], z is
the cosmological redshift), effective spin χeff, effective precession spin χp, inclination angle
θJN and network SNR. The parameters are shown by 50% percentile and 90% confidence
error bar, but note θJN usually has a bimodal distribution, the 50% percentile might be
misleading. Last four columns are statistics we construct: mean value and the
normalized mean value of ∥∆′

net∥ among all the samples (the latter one is simply the mean
value divided by network SNR), fraction of ∥∆′

net∥ < 2 samples, and the maximum J-S
divergence between samples of q, M, χeff and χp. It is labeled as “N/A” if the parameter
estimation result from one of the waveforms is not included in GWTC-2.1 data release.
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Event name m1 m2 χeff χp θJN SNR Mean MeanNorm Fraction Max J-S Div.
GW190403_051519 185.98+37.48

−58.13 44.64+61.34
−24.08 0.68+0.16

−0.43 0.32+0.38
−0.22 1.84+1.12

−1.66 8 1.62 0.2 0.72 0.052
GW190426_190642 178.48+87.83

−31.54 132.65+32.32
−63.94 0.23+0.42

−0.41 0.51+0.37
−0.36 2.08+0.80

−1.72 9.6 1.55 0.16 0.74 N/A
GW190725_174728 14.23+12.21

−3.62 7.59+2.40
−3.00 −0.04+0.36

−0.16 0.37+0.46
−0.28 1.00+1.79

−0.74 9.1 1.04 0.11 0.92 N/A
GW190805_211137 87.19+24.88

−15.28 59.60+16.40
−23.31 0.37+0.29

−0.39 0.50+0.34
−0.32 1.00+1.75

−0.74 8.3 1.3 0.16 0.84 0.014
GW190916_200658 78.32+32.30

−21.54 42.37+24.07
−21.18 0.20+0.33

−0.31 0.37+0.43
−0.28 1.61+1.27

−1.35 8.2 1.14 0.14 0.89 0.004
GW190917_114630 11.15+3.72

−4.48 2.35+1.21
−0.48 −0.08+0.21

−0.43 0.17+0.42
−0.13 1.35+1.60

−1.16 9.5 1.06 0.11 0.93 N/A
GW190925_232845 24.69+7.70

−3.17 18.46+2.68
−4.16 0.09+0.16

−0.15 0.39+0.43
−0.30 0.77+2.07

−0.58 9.9 1.09 0.11 0.91 0.008
GW190926_050336 63.55+31.78

−14.11 31.96+21.57
−14.17 −0.02+0.25

−0.33 0.37+0.48
−0.29 1.67+1.03

−1.19 9 1.49 0.17 0.74 N/A
GW191103_012549 14.03+7.42

−2.34 9.42+1.79
−2.85 0.21+0.16

−0.10 0.40+0.41
−0.26 1.38+1.52

−1.14 8.9 1.01 0.11 0.92 0.012
GW191105_143521 13.00+4.54

−1.78 9.36+1.45
−2.19 −0.02+0.13

−0.09 0.30+0.45
−0.24 1.07+1.82

−0.85 9.7 0.77 0.08 0.99 0.02
GW191109_010717 81.16+12.89

−8.89 59.72+15.58
−17.43 −0.29+0.42

−0.31 0.63+0.29
−0.37 1.91+0.87

−1.18 17.3 5.8 0.34 0.1 0.086
GW191113_071753 36.10+14.71

−16.18 7.31+6.49
−1.57 0.00+0.37

−0.29 0.20+0.54
−0.16 1.70+1.08

−1.32 7.9 1.68 0.21 0.67 0.048
GW191126_115259 15.71+7.24

−2.51 10.75+1.94
−2.98 0.21+0.15

−0.11 0.39+0.40
−0.26 1.71+1.20

−1.48 8.3 1.14 0.14 0.89 0.01
GW191127_050227 86.41+60.12

−37.31 38.45+31.09
−25.26 0.18+0.34

−0.36 0.52+0.41
−0.41 1.46+1.40

−1.16 9.2 1.9 0.21 0.6 0.089
GW191129_134029 12.29+4.87

−2.26 7.80+1.67
−1.94 0.06+0.16

−0.08 0.26+0.36
−0.19 1.73+1.16

−1.46 13.1 1.34 0.1 0.87 0.033
GW191204_110529 36.20+15.49

−5.66 26.21+5.17
−7.54 0.05+0.26

−0.27 0.52+0.38
−0.39 1.57+1.24

−1.24 8.8 1.59 0.18 0.72 0.027
GW191204_171526 13.44+3.77

−1.98 9.29+1.54
−1.84 0.16+0.08

−0.05 0.39+0.35
−0.26 2.26+0.66

−2.00 17.5 1.67 0.1 0.73 0.045
GW191215_223052 33.48+9.29

−4.68 24.46+4.07
−5.17 −0.04+0.17

−0.21 0.50+0.37
−0.38 1.20+1.50

−0.85 11.2 1.06 0.09 0.95 0.01
GW191216_213338 12.95+4.92

−2.38 8.23+1.73
−1.99 0.11+0.13

−0.06 0.23+0.35
−0.16 2.50+0.44

−0.81 18.6 1.93 0.1 0.62 0.06
GW191219_163120 34.73+2.27

−2.68 1.30+0.08
−0.05 −0.00+0.07

−0.09 0.09+0.07
−0.07 1.76+1.13

−1.49 9.1 2.51 0.28 0.34 0.13
GW191222_033537 67.15+14.73

−9.54 52.41+10.67
−15.40 −0.04+0.20

−0.25 0.41+0.41
−0.32 1.62+1.24

−1.33 12.5 2.02 0.16 0.57 0.017
GW191230_180458 82.70+19.46

−13.10 62.85+13.88
−21.42 −0.05+0.26

−0.31 0.52+0.38
−0.39 2.03+0.85

−1.67 10.4 1.17 0.11 0.88 0.011
GW200105_162426 9.57+1.85

−1.82 2.02+0.35
−0.25 0.00+0.13

−0.18 0.09+0.17
−0.07 1.54+1.28

−1.22 13.7 1.47 0.11 0.79 0.162
GW200112_155838 44.01+8.22

−5.16 35.18+5.11
−7.42 0.06+0.15

−0.15 0.39+0.39
−0.30 0.88+2.04

−0.68 19.8 1.63 0.08 0.73 0.061
GW200115_042309 6.30+2.15

−2.69 1.53+0.91
−0.30 −0.15+0.24

−0.42 0.20+0.34
−0.16 0.62+1.94

−0.43 11.3 1.35 0.12 0.81 0.096
GW200128_022011 65.05+15.99

−9.41 51.16+10.32
−13.35 0.12+0.24

−0.25 0.57+0.34
−0.40 1.38+1.46

−1.06 10.6 2.12 0.2 0.55 0.09
GW200129_065458 40.25+12.23

−3.33 34.06+3.32
−10.82 0.11+0.11

−0.16 0.52+0.42
−0.37 0.66+0.59

−0.41 26.8 2.33 0.09 0.47 0.425
GW200202_154313 11.02+3.83

−1.51 7.99+1.21
−1.85 0.04+0.13

−0.06 0.28+0.40
−0.22 2.57+0.42

−0.59 10.8 0.74 0.07 0.99 0.025
GW200208_130117 52.95+12.23

−8.40 38.51+8.64
−11.18 −0.07+0.22

−0.27 0.38+0.41
−0.29 2.53+0.44

−0.58 10.8 1.19 0.11 0.87 0.017
GW200208_222617 83.38+171.77

−48.68 21.91+13.04
−11.81 0.45+0.43

−0.44 0.41+0.37
−0.30 1.54+1.30

−1.22 7.4 1.91 0.26 0.6 0.171
GW200209_085452 55.70+14.96

−9.88 42.95+11.00
−13.60 −0.12+0.24

−0.30 0.51+0.39
−0.37 1.74+1.12

−1.44 9.6 1.29 0.13 0.83 0.014
GW200210_092254 28.68+8.45

−5.24 3.38+0.52
−0.52 0.02+0.22

−0.21 0.15+0.22
−0.12 2.31+0.60

−1.97 8.4 1.2 0.14 0.88 0.06
GW200216_220804 84.36+28.39

−21.07 50.74+22.50
−30.85 0.10+0.34

−0.36 0.45+0.42
−0.35 0.89+1.87

−0.69 8.1 1.32 0.16 0.82 0.006
GW200219_094415 58.57+13.46

−8.95 44.41+9.26
−14.14 −0.08+0.23

−0.29 0.48+0.40
−0.35 1.19+1.59

−0.92 10.7 1.61 0.15 0.71 0.017
GW200220_061928 165.56+62.24

−27.93 120.51+29.47
−55.27 0.06+0.40

−0.38 0.50+0.37
−0.37 1.24+1.55

−0.96 7.2 1.2 0.17 0.87 0.022
GW200220_124850 64.13+16.51

−10.34 46.89+11.54
−16.61 −0.07+0.27

−0.33 0.49+0.39
−0.37 1.66+1.17

−1.34 8.5 1.72 0.2 0.68 0.007
GW200224_222234 52.30+9.08

−5.37 42.82+5.83
−9.89 0.10+0.15

−0.15 0.49+0.37
−0.36 0.62+0.55

−0.45 20 2.26 0.11 0.52 0.022
GW200225_060421 23.58+5.65

−3.25 17.20+3.05
−4.55 −0.12+0.17

−0.28 0.53+0.34
−0.38 1.31+1.47

−1.00 12.5 1.43 0.11 0.8 0.015
GW200302_015811 48.45+10.33

−9.58 25.50+12.02
−7.63 0.01+0.25

−0.26 0.37+0.45
−0.28 1.34+1.43

−1.01 10.8 2.13 0.2 0.51 0.054
GW200306_093714 39.52+21.47

−10.80 20.98+8.86
−9.91 0.32+0.28

−0.46 0.43+0.39
−0.31 1.12+1.74

−0.87 7.8 1.33 0.17 0.82 0.013
GW200308_173609 143.98+299.28

−85.60 52.82+83.32
−33.18 0.16+0.58

−0.49 0.41+0.42
−0.30 1.55+1.19

−1.27 7.1 1.1 0.15 0.89 0.054
GW200311_115853 41.83+8.21

−4.59 34.00+4.68
−7.26 −0.02+0.16

−0.20 0.45+0.40
−0.35 0.55+0.52

−0.40 17.8 1.27 0.07 0.87 0.026
GW200316_215756 15.98+12.23

−3.33 9.52+2.32
−3.49 0.13+0.27

−0.10 0.29+0.38
−0.20 2.32+0.58

−1.85 10.3 1.08 0.1 0.9 0.082
GW200322_091133 105.87+392.13

−84.00 26.23+58.87
−18.59 0.08+0.51

−0.47 0.50+0.36
−0.41 1.66+1.04

−1.12 6 0.87 0.14 0.94 0.059

Table 4.2: The second half of the BBH analysis results, including 8 new events in GWTC-
2.1 (compared to GWTC-2) and 36 events in GWTC-3. Columns have the same meaning
as Tab. 4.1.
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Figure 4.2: The left panel shows the relation between fraction of samples that meet our
accuracy standard (∥∆′

net∥ < 2) and network SNR, and the right panel shows mean value
of all samples’ ∥∆′

net∥ and network SNR. We highlight the events whose ∥∆′
net∥ < 2 sample

fraction is less than 0.4 and whose maximum J-S divergence is greater than 0.1. These
two plots show waveforms of higher SNR events are more likely to violate our waveform
accuracy standard, and given the current detector sensitivity, we are already observing
some events that violate our assessment criterion. Note the normalized ∥∆′

net∥ can also be
read out from the right panel: it is the slope of the line that connects the origin and each
point. We can compare the waveform difference of these events when they have the same
SNR by comparing the slope. The numerical values are given in the 7th-10th columns of
Tab. 4.1 and 4.2.

assessment standard for the current detector sensitivity which makes detections of SNRs
ranging from 8 to ∼ 30.

Although the properties of GW sources differ, there is a tendency that large SNR events
are more likely to have greater waveform difference (as expected by Eq. 4.14), and have
fewer samples that meet the ∥∆′

net∥ < 2 requirement. This emphasizes the importance of
waveform modeling for future GW detections, in which the SNR can reach hundreds to
thousands. We can also make a rough estimation of waveform accuracy requirements for
future detectors. The mismatch M with the “true” waveform is widely-used to assess the
waveform accuracy, and the relation between ∥∆∥ and M can be derived with Eqs. 4.14
and 4.15:

MM(h1, h2) ≈
1

2ρ20
∥∆SNR=ρ0(h1, h2)∥2 (4.16)

Eq. 4.16 gives the mismatch between two waveform models, but limited by the trian-
gle inequality, the mismatch between models M(h1, h2) should be at the same order of
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magnitude as the mismatch between a model and the real waveform M(h1, h0), under
the assumption that both models are well-calibrated by high precision waveforms like NR
simulation. From our previous discussion, we know the ∥∆∥ is around the edge of its
upper limit under the current detector sensitivity. If we assume ∥∆∥ is of the same range
for future detectors, and SNR is roughly 30-100 times higher, we can determine that the
mismatch should decrease 3-4 orders of magnitude. This is consistent with the results
reported in Ref. [382].

4.2.2 Impacts on parameter estimation

From previous discussions, the waveforms generated by posterior samples of GWTC-3 and
GTWC-2.1 are mostly within the waveform difference bound, yet there are some excep-
tions. Seven GW events have more than 60% posterior samples violating the standard,
which means the difference of two waveform models might be too large to ensure their
accuracies. The difference of waveforms may result in difference in parameter estimation,
indicating systematic errors [368, 382, 410].

We show the relation between waveform difference and posterior sample consistency
(maximum J-S divergence) in Fig. 4.3, where we can see a weak tendency that events with
large waveform difference are more likely to have large J-S divergence, i.e., the difference in
waveform models may lead to inconsistency in parameter estimation. Particularly, when
the fraction of ∥∆′

net∥ < 2 samples is below 40%, the maximum J-S divergence would be
greater than the majority of the GW events. This coincides with our expectations.

However, the inverse statement is not necessarily true. When most posterior samples
meet our accuracy standard, it is also possible that two waveform models give inconsistent
results. In fact, the waveform error is not the only factor that causes two sets of posterior
samples to differ. The behavior of samplers or packages (bilby [109] vs RIFT [411]) and
the prior choice (such as high-spin and low-spin prior for neutron stars [136]) can both
influence the consistency between the two posterior samples, although the latter one is not
involved in our analysis. Even if we exclude these factors in a full Bayesian analysis, the-
oretically, it is the combination of waveform gradients, covariance matrices and waveform
difference that contributes to systematic errors in parameter estimation [368], not just
waveform difference. Besides, we use the maximum J-S divergence as the measurement
of posterior difference, which might be influenced when the parameter estimation does not
work efficiently on some specific parameters. The last row in Fig. 4.3 shows such cases.
This makes the correlation between posterior sample consistency and waveform difference
more statistically dispersed.

In the last three rows of Fig. 4.3, we give some examples of inconsistent posterior
samples. GW200129_065458 has the largest J-S divergence among GWTC-3 events, and
GW190412_053044 has the largest J-S divergence among GWTC-2.1 events. The pos-
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Figure 4.3: First row: We visualize the fraction of samples that meet our accuracy stan-
dard and maximum J-S divergence in {q,M, χeff, χp} of the two samples (10th and 11th
columns of Tab. 4.1 and 4.2). We highlight the events whose fraction of ∥∆′

net∥ < 2
samples is less than 40%, and the events whose maximum J-S divergence is greater than
0.1. Some GWTC-2.1 events have nearly flat IMRPhenomXPHM posteriors for mass ratio
(as showed in the undermost row), which caused large J-S divergence despite the small
waveform difference. We use red circles to label these events.
Bottom three rows: We show some examples of inconsistent posterior samples; the pa-
rameter name and event name are shown in the plots.
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terior sample inconsistencies of the two events are also reported in GWTC-3 [128] and
GWTC-2.1 [127]. In both events, the result with IMRPhenomXPHM suggests the possibility
of a low mass ratio binary, while that with SEOBNRv4PHM does not. GW191219_163120 is
the lowest mass ratio detection to date. Its estimated mass ratio is out of the calibration
range of waveform models, so potential systematic error may lie in its data analysis [128].
In our analysis, GW191219_163120 does have fewer posterior samples that pass our as-
sessment than most other events, but it is not the worst one. Besides, its high SNR (26.8)
also contributes to waveform difference: its waveform difference becomes small after nor-
malization. This might be caused by the small spins indicated by parameter estimation.
Therefore, we suppose the waveform modeling is not that problematic in the low mass
ratio and small spin region, but its high SNR reduces model waveform accuracy. We
show its estimation of effective precession spin in Fig. 4.3, in which we see the result of
IMRPhenomXPHM supports high precession effects in this binary system, while the result
of SEOBNRv4PHM prefers lower precession effects. GW191109_010717 produces the largest
waveform difference in our analysis. In a later section 4.2.3 we will illustrate it might be
caused by its special spin effects and higher modes. We show its estimation of effective
spin in Fig. 4.3: results from two waveform models show different multimodality. We
also give examples that do not significantly violate our accuracy standard but have in-
consistent posterior samples: GW190930_133541 and GW190708_232457. Their results
from IMRPhenomXPHM seem unable to find the most probable mass ratio. There are six
events having this behaviour in GWTC-2.1, as labeled by red circles in Fig. 4.3. Further
investigation is needed, but this is beyond the scope of this work.

Since most posterior samples in this analysis satisfy or just slightly violate our accuracy
standard, and samples from two waveform models, generated by different samplers and
packages, are mixed as the final results to counterbalance systematic errors, we suppose
the waveform modeling error will not induce significant systematic error in data analysis
for current detector sensitivity at the population level, while some special events still need
further investigation.

4.2.3 Waveform difference in different parameter regions

In Sec 4.2.1, from the angle of data analysis, we discussed SNR’s impact on waveform
accuracy. What is more physically interesting is how the waveform accuracy varies with the
intrinsic properties of the GW source. It is plausible that model accuracy decreases when
the system includes some complex processes, such as a highly asymmetric mass ratio, high
spin effects, high eccentricity and so forth. Accuracy may also drop when the contributions
from higher modes increase, which usually happens to edge-on binaries [412, 413, 414].

We plot posterior samples of selected events and highlight the samples whose wave-
form difference is greater than 2 in Fig. 4.4. In the nearly equal mass region and small
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spin region, IMRPhenomXPHM and SEOBNRv4PHM agree with each other and have waveform
differences less than 2. However, when the mass ratio deviates from 1, or when spin pa-
rameters deviate from 0, the waveform difference grows and the waveform pair fails to pass
the accuracy standard. For extrinsic parameters, we find that the waveform difference is
largest when inclination angle θJN for precessing systems is close to π/2. We attribute this
to two causes: the contribution of higher modes increases when the source is edge-on, and
the amplitude modulations caused by precession become increasingly visible, magnifying
differences in the way precession is modelled [288, 412, 413, 414, 415, 416]. This is the
reason why events like GW191109_010717 have a small fraction of posterior samples that
pass the accuracy standard: estimations of their parameters mainly lead to low mass ratio,
high spin regions or edge-on regions.

We then perform simulations of BBH events on the design sensitivity of Advanced
LIGO [417]. We set the primary mass at 30M⊙, and mass ratio at 1, 0.8, 0.5 and 0.2. The
spin of each component is randomly generated: spin magnitude is uniformly distributed
between 0 and 1, and the spin direction is isotropic. Inclination angle is isotropic as well.
We neglect detector response functions and only include plus polarization here, which will
not change our qualitative conclusions. For each mass ratio we simulate 6000 BBH events
and calculate the waveform difference between IMRPhenomXPHM and SEOBNRv4PHM. Since
waveform difference ∥∆∥ is proportional to SNR, we introduce an SNR threshold above
which ∥∆∥ will be greater than 2. In Fig. 4.5, we plot the distributions of simulation
parameters in the style of corner plot for different mass ratios, and the corresponding
SNR thresholds in colors. We find the SNR threshold can reach 30 in the low spin and
face-on region, but gradually drops below 10 as the spin parameters increase or θJN tends
to π/2. The change in mass ratio has the same effect, ∥∆∥ can reach 2 at a smaller spin
if the mass ratio is low. However, we find the q = 0.2 simulations can achieve a high SNR
threshold for low-spin face-on sources, while high-spin or edge-on simulations are more
likely to produce low SNR thresholds regardless of the mass ratio. Therefore, for current
waveform modeling, spin effects and higher modes may need more improvements than low
mass ratio cases. This coincides with our calculation on the asymmetric mass ratio but
small spin event GW191219_163120. The disagreement in high-spin CBC waveforms and
its impact on parameter estimation is also reported in Ref. [410].

Our simulation is consistent with the calculation for real events. Given GW events with
SNRs ranging from 8 to 30 (for current detector sensitivity), those generated by nearly
equal mass systems or low spin systems would have more ∥∆′

net∥ < 2 samples, while the
other events’ posterior samples mostly fail our test, like GW191109_010717. Using the
same method in Sec. 4.2.1 and comparing the current SNR threshold with the expected
SNR of 3rd generation GW detectors, we can also conclude that, in general, the waveform
accuracy should be improved for 3 to 4 orders of magnitude. However, for high spin and
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Figure 4.4: Posterior scatter of selected events. Yellow points represents samples with
∥∆′

net∥ > 2, purple points are samples with ∥∆′
net∥ < 2. We show three representative

events with in two-dimension parameter plane (M, q), (χp, χeff) and (χp, θJN), respectively.
It shows the inaccuracies mainly come from the high spin region, low mass ratio region,
and edge-on region.

low mass ratio regions, as well as higher modes, the current waveform models may need
more improvements. To calibrate waveform models, these regions might be where NR
simulations are most needed for future waveform modeling.

4.3 Applications on BNS and NSBH waveforms

4.3.1 Real events

NSBH and BNS events are much less frequent than BBH events - only three events are gen-
erally considered as NSBH candidates in GWTC-2.1 and GWTC-3: GW191219_163120,
GW200105_162426, and GW200115_042309, and two are considered as BNS events:
GW170817 and GW190425_081805. Due to the complexity of these systems (e.g., highly
asymmetric mass ratio, eccentricity for NSBH binaries, and matter effects for both types),
some physical effects are yet to be included in their waveform models. Current NSBH
waveform models of IMRPhenom and SEOBNR familes, IMRPhenomNSBH and SEOBNRv4_ROM
-NRTidalv2_NSBH [418], are calibrated by non-spinning neutron star simulations and only
allow aligned spins. For current BNS models, IMRPhenomPv2_NRTidalv2 supports precess-
ing spins while SEOBNRv4T_surrogate only supports aligned spins. Recent works have
made TEOBResumS able to generate waveforms for precessing BNS systems with higher
modes [419] , as well as waveforms for eccentric BNS systems [420], but they have not
been applied to the GWTC-2.1 and GWTC-3.

For the three NSBH events, we calculate the ∥∆′
net∥ of their posterior samples gener-

ated by IMRPhenomNSBH and SEOBNRv4_ROM_NRTidalv2_NSBH. The fraction of ∥∆′
net∥ < 2

samples are 99.4%, 99.6% and 100% for GW191219_163120, GW200105_162426, and
GW200115_042309, respectively. Low SNR of these three events may contribute to the
small waveform differences, but compared with the BBH events, lacking of precession
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Figure 4.5: Simulations of BBH waveforms with random spin and inclination under LIGO
design sensitivity. The primary mass is fixed at 30M⊙ and the mass ratio varies from 1 to
0.2, as shown in the top right corner of each figure. We calculate waveform difference ∥∆∥
between IMRPhenomXPHM and SEOBNRv4PHM for each simulation and the SNR when ∥∆∥
reaches 2. The SNR threshold is shown in different colors. Face-on events with smaller
spins and equal masses tend to have a higher SNR threshold.
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Figure 4.6: Left panel: Simulations of NSBH binaries in the mass ratio q - tidal de-
formability Λ2 plane. The mass of the neutron star is fixed at 1.4 M⊙, and we assume
both components have zero spin. The colors in the plane represent the SNR threshold for
the waveform difference between IMRPhenomNSBH and SEOBNRv4_ROM_NRTidalv2_NSBH,
defined in the same way as before.
Right panel: Simulations of BNS binaries in the tidal deformability Λ - effective spin χeff
plane. We assume both neutron stars are 1.4 M⊙ and they have the same spin and tidal
deformability parameter. Colors represent SNR threshold for IMRPhenomPv2_NRTidalv2
and SEOBNRv4T_surrogate.

effects and higher modes should be the decisive factors that make the waveform pair co-
incide, and it does not necessarily mean these models can describe general NSBH systems
with high accuracy. As for BNS events, IMRPhenomPv2_NRTidalv2 is the only model used
in GWTC-2.1 and GWTC-3 that includes precession effects, it is not feasible to com-
pare waveform difference of its posterior samples with others. Hence we do not include
calculation of BNS waveforms for real events in this work.

4.3.2 Simulations

We perform simulations for NSBH and BNS systems respectively. For NSBH waveform
models, we assume zero spin and secondary mass of 1.4 M⊙. We change mass ratio
between 0.02 and 0.25, and tidal deformability parameter between 0 and 2000. For BNS,
we assume the two neutron stars are exactly the same: same mass 1.4 M⊙, same tidal
deformability parameter and spin. Then we change spin magnitude between −0.2 and 0.2,
and tidal deformability parameter between 0 and 2000. We assume zero inclination for
both systems. The results are shown in Fig. 4.6.

We find the main disagreement for NSBH waveform models lies in mass ratio, as
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Fig. 4.6 shows the waveform difference drops with q but is insensitive to the tidal de-
formability parameter Λ2 of the neutron star. The latter is because both approximants
use the NRTidalv2 [421] phase description to model the matter effects. SNR threshold
can drop below 5 when q is small, but all the three NSBH candidates have SNRs lower
than the thresholds indicated in the corresponding regions in Fig. 4.6. Note we assume
zero spin in this simulation, but non-zero spin samples exist in the three NSBH candidates
and would make extra contributions to waveform difference. Therefore, they still have a
small fraction of ∥∆′

net∥ > 2 samples. Given the SNR threshold in this simulation, NSBH
waveform model accuracies (in terms of the mismatch from real waveform) also need an
improvement of 3-4 orders of magnitude for future detection, leaving aside the unincluded
physical effects.

As for BNS waveforms IMRPhenomPv2_NRTidalv2 and SEOBNRv4T_surrogate, we change
values of Λ and spin magnitude. We assume both components have the same aligned spin
and mass, so the individual spin magnitude is equal to the effective spin. We find two
waveform models agree with each other quite well in the Λ < 500, χeff < 0.05 region, with
SNR thresholds up to 100. This is the region that coincides with our current understand-
ing of neutron stars. However, when spin increases, the SNR threshold can drop below
20. This also implies accuracy of future waveform models should be improved by several
orders of magnitude.

It should be noted that we might be underestimating the SNR threshold by not nor-
malizing over the amplitude of waveform models. A slight constant amplitude difference
in waveform models can lead to a different measurement of distance, but does not have
large impacts on the intrinsic parameters. An alternative way of assessing waveform dif-
ference is mismatch, which is normalized by the waveform amplitudes. However, since the
amplitude difference between waveform models is not significant, our conclusion of future
accuracy requirements are consistent with previous works using mismatch [382].

We do not discuss further about NSBH and BNS waveform models, for we suppose the
number of real events is not enough for us to perform analysis on the population level,
and further work on precession, higher modes, and even eccentricity should be done for
more NSBH and BNS waveform models.

4.4 Summary and discussions
In this chapter, we developed a diagnostic test for the presence of waveform mismodeling.
This extends the work of Ref. [405] to realistic analyses. While Ref. [405] suggests a
waveform model should have an error (as a vector) shorter than 1 to be accurate enough,
we introduce two waveform models and find their difference should be shorter than 2 if
they are both accurate enough. This method frees accuracy evaluation from the unknown



CHAPTER 4. ASSESSING THE ACCURACY OF WAVEFORM MODELS 114

true waveform, and it enables the evaluation to be performed in larger, continuous regions
in the parameter space: the regions where waveform models can work, rather than where
NR simulations are done. We should note that our method can only tell the existence of
inaccurate waveform models. It can not tell which one (or both) is (are) inaccurate if the
pair fails, or guarantee any accuracy when the pair do not fail. The key idea is: If two
models have significant differences, they can not be both accurate enough, but when the
difference is small, we can not rule out the possibility that two models are making similar
mistakes.

For BBH waveform models, we choose the state-of-the-art models from IMRPhenom and
SEOBNR family, IMRPhenomXPHM and SEOBNRv4PHM for illustration. We have applied our
test to existing parameter estimates from the GWTC-3 and GWTC-2.1 (which used the
waveform models mentioned above), and found differences in the results of data analysis
from different waveform models. The samples that fail our test are mostly located in the
low mass ratio, high spin or egde-on regions in the parameter space, which means waveform
models become less reliable in these regions. Our simulations agree with this: the waveform
difference between IMRPhenomXPHM and SEOBNRv4PHM can reach the threshold 2 when SNR
is less than 10 in high spin regions and edge-on regions; waveform difference increases in
low mass ratio region the as well. We also note that spin effects and inclinations (higher
modes) are more problematic for waveform modeling than mass ratio. This points out
where NR simulations are needed most for future waveform calibration.

We have investigated the correlation between the waveform difference and inconsis-
tency of parameter estimation samples given by different waveform models. The latter
is measured by the J-S divergence. For the GWTC-3 and GWTC-2.1 posterior samples,
we find when the fraction of ∆ < 2 samples is less than 40%, it is more likely to obtain
a J-S divergence larger than most other events, which is a sign of underlying systematic
errors caused by waveform error. We also note that the inverse is not necessarily true, as
the waveform model is not the only factor that can influence the generation of posterior
samples, but nonetheless it is always helpful to have one of the factors checked. Since
multi-waveform analysis is becoming a standard way of reducing systematic errors in pa-
rameter estimation of GW sources, we suggest that waveform difference analysis can be
used as a real-time quantitative check in the parameter estimation workflow.

For NSBH waveforms, we select IMRPhenomNSBH and SEOBNRv4_ROM_NRTidalv2_NSBH,
the two models used in GWTC-3 and GWTC-2.1 parameter estimation. The posterior
samples of the 3 NSBH candidates have small NSBH waveform differences compared to
BBH waveforms. We credit this to the fact that these waveform models do not include
non-aligned spins or higher modes as BBH waveforms. As expected, we find waveform
difference increases when the mass ratio decreases in our simulation. The SNR threshold
drops below 10 when the mass ratio is less than 0.05, indicating that more calibrations
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are needed for this region, leaving aside the lack of some other physical effects.
For BNS waveforms, we have not applied our test on real events samples, for only

IMRPhenomPv2_NRTidalv2 is used in GWTC-2.1 and -3 data analysis, and we could not
find another comparable model to be paired with it. We simulate aligned spin BNSs for
IMRPhenomPv2_NRTidalv2 and SEOBNRv4T_surrogate instead. We find the systematic
differences between the approximants we examined are small in the region where Λ < 500,
and |χeff| < 0.05, which should be the case for our current understanding of neutron stars.
However, there are some differences when Λ < 50 where the waveforms appear to diverge
again. In the high spin regions, the SNR threshold drops below 20, which can not meet
future high SNR detections.

The waveform difference is related to the widely used overlap (or mismatch) through
Eqs. 4.15 and 4.16. If we assume two models are well-calibrated and have comparable
errors, we can give a rough estimate of future waveform accuracy requirements. This
complements previous works on waveform accuracy [382]. Looking at the SNR thresholds
for the three types of waveforms, we know the current waveform accuracy is not enough
for future high SNR detections where SNR can reach up to 1000. The mismatch from the
real waveform needed to be reduced by at least 3 orders of magnitude. This is consistent
with previous work.

This method can be extended to more complex GW waveform models for future GW
detection, such as waveforms including eccentricity. We can perform this analysis as long
as there are at least two waveform models with similar accuracy and which include the
same physical parameters. Our method can work beyond the NR calibration range, thus
it can be an efficient way to study the waveform models’ extrapolation performance. This
may also be a guide to where NR simulations are most needed in the parameter space.

Finally, this waveform accuracy assessment method has been coded up in the pack-
age WaveCheck 1 and applied on O4 online parameter estimations. WaveCheck regularly
downloads the latest parameter estimation result files and analyzes the waveform difference
between the start-of-the-art waveforms (which, in O4, are IMRPhenomXPHM, SEOBNRv5PHM,
and NRSur7dq4), and generates a report page2 including ∆, mismatch, and figures similar
to Fig. 4.4. The results are not public at the time of writing this thesis since O4 is still
ongoing, but they will eventually be.

1https://git.ligo.org/qian.hu/wavecheck_o4
2https://ligo.gravity.cf.ac.uk/~qian.hu/wavecheck/

https://git.ligo.org/qian.hu/wavecheck_o4
https://ligo.gravity.cf.ac.uk/~qian.hu/wavecheck/


Chapter 5

Rapid pre-merger localization of
BNS in the 3G era

Pre-merger localization of Binary Neutron Star (BNS) is one of the most important sci-
entific goals for the Third-Generation (3G) Gravitational Wave (GW) detectors. It will
enable the electromagnetic observation of the whole process of BNS coalescence, especially
for the pre-merger and merger phases which have not been observed yet, opening a window
for a deeper understanding of compact objects. To reach this goal, we describe a novel
combination of multi-band matched filtering and semi-analytical localization algorithms to
achieve early-warning localization of long BNS signals in 3G detectors. Using our method
we are able to efficiently simulate one month of observations with a three-detector 3G
network, and show that it is possible to provide accurate sky localizations more than
30 minutes before the merger. Our simulation shows that there could be ∼ 10 (∼ 100)
BNS events localized within 100 deg2, 20 (6) minutes before the merger, per month of
observation.

We will discuss the necessity of fast localization in Sec. 5.1, and introduce the fast
localization algorithm SealGW in Sec. 5.2. In Sec. 5.3, we will build a multi-banding
scheme and extend the localization algorithm to pre-merger early warning for long GW
signals. Tests and diagnoses, including localization statistics, will be given in Sec. 5.4. We
summarize the results in Sec. 5.5.

116
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5.1 The importance of fast localization
Since the first direct Gravitational Wave (GW) detection of the coalescence of Binary
Neutron Star (BNS) GW170817 [116] and its Electromagnetic (EM) counterparts [49],
multi-messenger observation of coalescing compact binaries has become an important tool
for astrophysics. Joint GW-EM observations can provide a comprehensive understand-
ing of the formation and evolution of BNS, and shed light on physics around compact
objects [135, 136, 422, 423, 424, 425, 426, 427, 428, 429, 430].

Rapid GW detection and accurate localization is key to joint GW-EM observations,
as most EM facilities need direction from the GW observation. In addition to capturing
the afterglow of BNS coalescences, early EM observations could offer unique insights into
phenomena in BNS that happen prior to or near the merger (e.g. tidal disruptions, mag-
netosphere interactions, r-process nucleosynthesis) and help build a picture of the entire
evolution of kilonova in multiple frequency bands [48, 425, 431, 432, 433, 434]. Early de-
tection and localization of BNS are therefore of great importance in GW astronomy. It has
previously been demonstrated that there is a non-zero probability of detecting and local-
izing pre-merger BNS events with current [435, 436] and near-future [437, 438, 439, 440]
GW observatories, typically within seconds to one minute before merger. [301] has re-
cently investigated early warning for the fourth observing run of LIGO-Virgo-KAGRA
collaboration (LVK) collaboration, with multiple detection pipelines already equipped for
early warning searches [300, 441, 442, 443]. Machine learning based methods for early
warning detection are also making rapid progresses [444, 445, 446, 447]

Being limited by low sensitivities below 20Hz, the BNS signal is only detectable for few
minutes in current GW detectors. Given the communication time delay between multi-
messenger community and the ∼ 10−100 seconds slew time of modern telescopes [440], it is
basically impossible to capture pre-merger or near-merger transients from BNS coalescence
without fore-warning. Several Third-Generation (3G) GW detectors have been proposed,
including Einstein Telescope (ET) [166] and Cosmic Explorer (CE) [168, 169], with low-
frequency sensitivities significantly improved. These would allow us to detect BNS signals
more than 30 minutes before the merger, rendering precise early warning localization
possible [167, 171, 448, 449, 450, 451].

However, data analysis of BNS in 3G detectors can be challenging. The long signal
makes matched filtering extremely expensive to perform, and it is modulated by changes
in the antenna response functions due to the Earth’s rotation. Besides, the large number
of signals (see, e.g., Tab. 3.1) requires an efficient localization algorithm to rapidly localize
the source with minimal computational resources. In this chapter, we will present a multi-
banding scheme and an efficient localization algorithm SealGW to achieve the pre-merger
localization for the 3G detectors.
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5.2 Semi-analytical localization algorithm for GWs
In this section, we introduce the localization algorithm Semi-Analytical localization for
Gravitational Waves (SealGW) [4]. Fast localization aims to obtain the posterior distri-
bution p(α, δ|d), where α and δ are the right ascension and declination, respectively. The
sky location posterior is actually the marginalized posterior

p(α, δ|d) =
∫
p(θ)p(d|θ)dθnui, (5.1)

where θnui are the nuisance parameters and θ = {α, δ, θnui}. In principle, θnui should
include intrinsic parameters, but intrinsic parameters are initially estimated by matched
filtering searches and their errors are semi-independent with errors in sky localization [112,
452, 453, 454], so they are treated as perfectly known in online fast localization. Therefore,
the nuisance parameters are the five remaining extrinsic parameters: θnui = {dL, ι, ψ, ϕc, tc}.

Bayestar [452], the current standard fast localization algorithm used by LVK, performs
a five-fold numerical marginalization over the nuisance extrinsic parameters to obtain the
sky location. SealGW aims to do this “as analytically as possible” so that it can be
faster and less demanding on hardware. I will briefly introduce how SealGW works in this
section.

5.2.1 Rearranging likelihood and parameters

To perform analytical marginalization for Eq. 5.1, we should rearrange the form of the
likelihood. Define amplitude modulation functions G(i)

+,×:

G
(i)
+,×(α, δ, tc) = F

(i)
+,×(α, δ, ψ = 0, tc), (5.2)

it is related to the antenna response functions by [106]

F+(t) = sin ζ [G+(t) cos 2ψ +G×(t) sin 2ψ]
F×(t) = sin ζ [G×(t) cos 2ψ −G+(t) sin 2ψ] ,

(5.3)

where ζ is the angle between two arms of the interferometer. This relation is from the
fact that the polarization angle ψ simply rotates the wave frame. With the waveform
decomposition Eq. 2.16, a detector’s response to GWs Eq. 1.110 can be written as

h(i) = (G
(i)
+ , G

(i)
× )Achc + (G

(i)
+ , G

(i)
× )Ashs, (5.4)
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where (i) denotes the i’th detector and

A =
(

Ac As

)
=

(
A11 A12

A21 A22

)

=
1Mpc
r

(
cos 2ψ sin 2ψ
− sin 2ψ cos 2ψ

)(
1+cos2 ι

2

cos ι

)(
cosϕc sinϕc
− sinϕc cosϕc.

) (5.5)

The likelihood function for one detector can be written as:

p(d(i) | θ) ∝ e−(d(i)−h(i)|d(i)−h(i))/2

∝ e(d
(i)|h(i))− 1

2
(h(i)|h(i)),

(5.6)

and for a network,
p(d | θ) ∝ e(d

T|h)− 1
2
(hT|h) (5.7)

where

d =


d(1)(t+ τ (1))

d(2)(t+ τ (2))
...

d(N)(t+ τ (N))

 , h =


h(1)(t+ τ (1))

h(2)(t+ τ (2))
...

h(N)(t+ τ (N))

 , (5.8)

where τ (i) is to take into account different arrival times of the signal. Extending Eq. 5.7
with Eq. 5.4 and split the matrix A into Ac = (A11, A21)

T and As = (A12, A22)
T, we have

the network likelihood function:

p(d | θ) ∝
∏

x={c,s}

e(dT|GAxhx)− 1
2(AT

x GThx|GAxhx). (5.9)

Define σ as the template norm:

(hc|hs) = 0

σ(i) ≡
√
(hc|hc) |r=1Mpc =

√
(hs|hs) |r=1Mpc

(5.10)

then the likelihood becomes

p(d | θ) ∝
∏

x={c,s}

e(dT|Hx)GσAx− 1
2

AT
x GT

σGσAx . (5.11)

where Gσ is

Gσ =


G

(1)
+ σ(1) G

(1)
× σ(1)

G
(2)
+ σ(2) G

(2)
× σ(2)

... ...
G

(N)
+ σ(N) G

(N)
× σ(N)

 . (5.12)
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and Hc,s is the normalized template given as:

Hc,s = diag
(
hc,s
σ(1)

,
hc,s
σ(2)

, . . . ,
hc,s
σ(N)

)
, (5.13)

where diag denotes diagonal matrix. Hc,s is also used to compute the matched filtering
SNR, as we have derived in Eq. 2.26

ρ = (Hc | d) + i(Hs | d). (5.14)

The i’th element of ρ is the SNR time series of the i’th detector. It is a complex time
series and we use its modulus as the SNR. The network SNR is defined as

√
ρTρ∗.

Eq. 5.11 tells us the likelihood can be computed by the match filtering SNR, and can
be written as a Gaussian function of the matrix A. The former helps the fast online local-
ization as the SNR timeseries is available in real-time and it contains an initial estimate
of intrinsic parameters which we have ignored in marginalization. In other words, the
likelihood computed with SNR timeseries is conditioned by the template’s intrinsic pa-
rameters. The Gaussianity encourages us to use the following parameter conversion since
A is dependent on extrinsic parameters {dL, ι, ψ, ϕc}:

(tc, α, δ, ι, ϕc, dL, ψ) → (tc, α, sin δ, A11, A21, A12, A22). (5.15)

In fact, a number of works have employed the transformation to A, especially in the area
of pulsar searches [455, 456, 457]. From Eq. 5.5, we have

A11 =
1

dL

(
1 + cos2 ι

2
cos 2ψ cosϕc − cos ι sin 2ψ sinϕc

)
,

A21 = − 1

dL

(
1 + cos2 ι

2
sin 2ψ cosϕc + cos ι cos 2ψ sinϕc

)
,

A12 =
1

dL

(
1 + cos2 ι

2
cos 2ψ sinϕc + cos ι sin 2ψ cosϕc

)
,

A22 = − 1

dL

(
1 + cos2 ι

2
sin 2ψ sinϕc − cos ι sin 2ψ cosϕc

)
.

(5.16)

Now we need to marginalize over four elements of A and time tc. Thanks to the Gaus-
sianity, the integral over A can be performed analytically.

5.2.2 Prior setting

We should assign the prior distributions for A, tc, and (α, δ). The prior of tc is assigned as
uniform distribution ±10ms around the trigger time, and (α, δ) is chosen to be isotropic,
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i.e,
p(α) ∝ 1,

p(sin δ) ∝ 1,

p(tc) ∝ 1,

(5.17)

which means they can be treated as constants in the posterior probability density.
The prior distribution of Aij is determined by Monte Carlo simulations. For example,

we simulate 50000 events in an LHV detector network with the O2 sensitivity, and calculate
Aij. The result is shown in Fig. 5.1. We find the following characteristics of the distribution
of Aij:

• Each Aij follows the similar distribution.

• When SNR is high (> 8), Aij follows bimodal distribution, and the location of the
peak depends on SNR.

• The diagonal and off-diagonal elements, (A11, A22) and (A21, A12), are correlated,
while other elements are entirely uncorrelated with each other.

Based on the first point, we assume all Aijs follow the same distribution. Since a GW
signal with network SNR < 8 is usually not considered as a successful detection, we ignore
the low-SNR cases and focus on the bimodal distribution of Aij. We adopt a symmetric
bimodal prior distribution for Aij with a superposition of two Gaussian functions:

p(Aij) ∝ e−
(Aij−µ)2

2σ2 + e−
(Aij+µ)2

2σ2 , (5.18)

where µ and σ will be derived numerically for a given astrophysical model of the extrinsic
parameters for different ranges of SNR. For distributions of Aij in each SNR bin with the
length of 2, we use the least square method to obtain the best-fit µ and σ. Comparing
the best-fit values in different SNR bins, we find µ and σ have a linear relation with the
network SNR:

µ = 0.0004860 SNR− 0.0007827,

σ = 0.0002733 SNR+ 0.00005376,
(5.19)

as shown in Fig. 5.2.
Fig. 5.3 shows the comparison between the distribution of Aij in different SNR bins

and the bimodal prior distribution calculated using Eq. 5.19 at the central value of the
SNR bin. The bimodal distribution with empirical relation is sufficient to reconstruct Aijs’
distribution.

The bimodal distribution of Aij originates from the selection effect of high SNR GW
events. The amplitude of the GW increases monotonically with | cos ι| and 1/dL, therefore,
when we select GW events in a higher SNR range, sources with larger | cos ι| values and
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0<SNR<8 8<SNR<12

12<SNR<20 SNR>20

Figure 5.1: Corner plot of elements of A generated from 50000 simulations in O2 sensi-
tivity. We categorized Aij samples according to the HLV network SNR and plotted them
in 4 subfigures.
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Figure 5.2: Linear relation between the best-fit µ, σ and SNR. Points of the best-fit values
are plotted at the center of their corresponding SNR bin.
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Figure 5.3: Comparison between Aij’s simulated distribution and empirical approxi-
mation. Blue bars are Aij’s distribution in our simulation; four subplots represent four
different SNR ranges. Red lines are empirical distributions with SNRs equal to the center
value of SNR bins.
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smaller dL are more likely to be selected. This also implies that cos ι tends to have a
symmetric bimodal distribution [106], which results in the bimodal distribution of Aij
(Eq. 5.16). Physically, the bimodality of cos ι originates from the opposite handedness of
the binary orbit, which corresponds to two different inclination angles: ι and π − ι. On
the other hand, small distance dL corresponds to larger values of Aij, hence the peaks in
Aij’s distribution move outside (towards +x and −x directions from the center). This is
why Aij follows bimodal distribution and is dependent on SNR.

The correlation between Aijs can be explained as follows. As discussed above, for
high SNR events we have | cos ι| → 1. According to Eq. 5.16, when cos ι → 1, A11 →
A22, A12 → −A21; when cos ι → −1, A11 → −A22, A12 → A21. Plus cos ι has the same
probability to be 1 or −1, as a result, two symmetric crosses are shown in each corner plot
of Fig. 5.1.

As most Aij samples in Fig. 5.1 are positioned at the diagonal cross, we further assume
that A22 has half a chance to be A11 and another half to be −A11 for detectable GW events
whose SNRs are usually high, i.e.,

p(A22|A11) =
δ(A22 − A11) + δ(A22 + A11)

2
, (5.20)

where δ() is the δ function: δ(0) = 1 and δ(x) = 0 otherwise. For the same reason,

p(A12|A21) =
δ(A21 − A12) + δ(A21 + A12)

2
. (5.21)

This approximation is also adopted in previous work on fast GW source localization [458],
in which the authors show the probability distribution of cos ι of detectable GW events has
strong peaks for cos ι = ±1. Note the correlation only exists in diagonal and off-diagonal
elements of A, we have

p(A) = p(A11, A12, A21, A22)

= p(A11, A22)p(A21, A12)

= p(A11)p(A22|A11)p(A21)p(A12|A21),

(5.22)

where p(A11) and p(A21) are given in Eq. 5.18 while p(A22|A11) and p(A12|A21) are given
in Eq. 5.20 and 5.21. However, we should point out that Eq. 5.20 is an approximation
for detectors that are not very sensitive, like the O2 sensitivity. For the 3G detectors, the
above arguments are not valid anymore and we assume Aijs are independent for simplicity,
i.e.,

p(A) = p(A11, A12, A21, A22)

= p(A11)p(A22)p(A21)p(A12).
(5.23)

Since this chapter focuses on the application on 3G detectors, we will ignore the correlation
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between Aijs and go with the prior Eq. 5.23. The results and equations of correlated Aij
can be found in Ref. [4].

5.2.3 Semi-analytical marginalization

The posterior for sky location is

p(α, δ|d) =
∫
dtc

∫
d4Ap(α, δ, tc,A | d), (5.24)

where d4A = dA11dA12dA21dA22. For simplicity, we define{
M = GT

σGσ

JT
x =

(
dT | Hx

)
Gσ

(5.25)

where x = {c, s}. M is a positive-definite 2×2 matrix, and Jx is a column vector of length
of two, with two components Jx1, Jx2. The posterior can be written as

p (α, δ | d) ∝
∫ tc+T

tc−T
dtc

∫
d4A exp

 ∑
x={c,s}

−1

2
AT

x MAx + JT
x Ax


×

∏
x={c,s}

(
e−

(Ax1−µ)2

2σ2 + e−
(Ax1+µ)2

2σ2

)(
e−

(Ax2−µ)2

2σ2 + e−
(Ax2+µ)2

2σ2

)

∝
∫ tc+T

tc−T
dtc

∏
x={c,s}

∫
dAx

4∑
i=1

exp
{
−1

2
AT

x

(
M +

1

σ2
I
)

Ax + J(i)T
xAx

}

∝
∫ tc+T

tc−T
dtc

(2π)2

det
(
M + 1

σ2 I
) ∏
x={c,s}

4∑
i=1

exp
{
1

2
J(i)T

x

(
M +

1

σ2
I
)−1

J(i)
x

}
,

(5.26)
where µ, σ are the parameters in the prior, I is the unitary matrix, and

J(i)
x = Jx +α(i), i = 1, 2, 3, 4. (5.27)

α(k)is given by

α(1) =

(
µ/σ2

µ/σ2

)
,α(2) =

(
µ/σ2

−µ/σ2

)
,

α(3) =

(
−µ/σ2

µ/σ2

)
,α(4) =

(
−µ/σ2

−µ/σ2

)
.

(5.28)

In summary, the analytical integral over A can be performed for each element in
the SNR timeseries (corresponds to J vectors in the equations) and for each (α, δ), and
produces a time series I(tc, α, δ). The posterior of (α, δ) needs one more numerical integral
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over tc:

p (α, δ | d) ∝
∫ tc+T

tc−T
I(tc, α, δ)dtc. (5.29)

5.2.4 Sky pixelation and confidence areas

In practice, we pixelate the sky and calculate the posterior probability density on each
pixel. We adopt the adaptive HEALPix scheme [452, 459] to accelerate the calculation.
We first divide the sky into Npix,0 = 3072 pixels and calculate the posterior probability of
each pixel through Eq. 5.29 and we assume the posterior probability is constant within a
pixel, thus the probability for each pixel is equal to the calculated posterior probability
multiplied by the area. The top Npix/4 most probable pixels are further divided into Npix

daughter pixels, and posterior probability is calculated again for those pixels. Repeating
this, the finest resolution increases exponentially while the computational complexity is
linear to the number of iterations.

After calculating posterior to the desired resolution, we define the confidence areas as
follows. We rank the probability of all pixels in descending order and search from the
first pixel. The probability of searched pixels is accumulating during the search, until the
cumulative sum equals the given credible levels, e.g., 0.9 or 0.5. The area in that credible
level is given by the sum of the area of searched pixels.

We also define a searched area. The searched area is computed by searching from the
first pixel defined above until the true sky location is included. The searched area is the
smallest of such constructed area that contains the true sky direction of the source. It
measures the accuracy of the localization, while the confidence areas measure the precision.

5.2.5 Tests and implementation on current detectors

SealGW has been tested on the LHV network under O2 sensitivity and the design sensi-
tivity. The area statistics, p-p plot, and comparisons with LALInference can be found in
Ref. [4]. Note that in Ref. [4] SealGW uses a correlated prior for A, while in this chapter
we adopt the uncorrelated one.

SealGW has been written into a Python package1 and uploaded to the Python Package
Index (PyPI)2. It can be installed by

pip install sealgw

and an example-based tutorial is provided along with the package.
SealGW has been implemented into the detection pipeline SPIIR [300] and has been

tested on O3 mock data along with SPIIR pipeline, and showed good consistency with
1https://github.com/marinerq/sealgw
2https://pypi.org/project/sealgw/

https://github.com/marinerq/sealgw
https://pypi.org/project/sealgw/
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Bayestar in BNS and NSBH sources, although the skymaps for BBH were biased. A
possible reason for the poor performance on BBH systems is that the prior of A requires
a good fitting of a specific astrophysical model, which, in the sense of the range of chirp
mass, is simple for BNS and NSBH sources, but becomes more difficult for BBH systems.

By implementing SealGW into a real pipeline, we do not aim to replace the current
localization algorithm Bayestar, but want to provide an alternative method that requires
fewer computation resources and brings a potential speed-up. For example, during O4,
Bayestar has priority access to a large number of CPUs and it automatically downloads
the detected events and analyzes them, during which Bayestar will use more than one
hundred threads to achieve a subsecond performance. By contrast, SealGW can achieve
subsecond performance with only 4 threads (details in Sec. 5.4). In a detection pipeline, it
is possible to calculate and include the skymap at the initial submission of triggers since
SealGW does not take up too much computational resources and can run on the detection
node. Therefore, it saves the time cost of data transfer and Bayestar calculation, which
brings a potential speed-up for the EM follow-up. However, this feature requires the
Python3 version of the SPIIR pipeline, which is still under development or review at the
time of writing this thesis.

5.3 Extending SealGW to long signals

5.3.1 Effects of the Earth rotation

The antenna response functions are functions of time due to the Earth’s rotation. They
are regarded as constants in CBC data analysis for current detectors because the signal
durations are typically short, during which the Earth moves little. However, for long
signals in the 3G detectors, the Earth rotation will induce modulations to the signal,
as shown in Fig. 5.4. Converting GW frequency to time to the merger by Eq. 1.81, we
find that the Earth rotation effects are visible when the signal duration is longer than 10
minutes.

The Earth’s rotation needs to be taken into consideration in data analysis because
it encodes more informative triangulation information by extending the baseline of the
detector network [112, 460, 461]. Neglecting the Earth’s rotation may have little impact
on detection, as the SNR is mostly contributed by the last stages of the signal (see Fig. 5.5).
However, ignoring it causes a loss of information and could lead to biases or inefficiency
in parameter estimation, especially for sky location parameters.

The non-constant antenna response functions would result in a non-constant effective
distance (Eq. 2.20), so the effective distance cannot be factored out, in other words, the
matched filtering formalism we introduced in Sec. 2.1.1 does not hold anymore. In addition,
direct matched filtering to long signals could be extremely computationally expensive. We
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Figure 5.4: Illustration of the Earth rotation effects with a 1.44M⊙+1.37M⊙ (detector
frame mass) binary system. Upper panel: the frequency domain detector response
calculated with (green) and without (orange) the Earth rotation. The small oscillations
are due to spin precession. Lower panel: the time to the merger as a function of GW
frequency.

need new methods for long signal detection.

5.3.2 Multi-banding

In this work, we demonstrate that multi-band analysis [289, 291, 443] is an effective way
of solving the aforementioned issues, and fast localization algorithms can be built upon
multi-band detection statistics.

Multi-band analysis is based on the fact that orbital evolution of the quasi-circular BNS
inspiral stage is well modeled. Observable BNSs are not likely to have large spins [136, 462]
or precession, and the frequency evolves as Eq. 1.82 to the Newtonian order. The mono-
tonic evolution of GW frequency ensures a one-to-one correspondence between time seg-
ments and frequency bands, i.e., chopping the GW waveform into multiple time segments,
[tn, tn−1), [tn−1, tn−2), . . . , [t1, t0), results in a corresponding sequence of frequency bands
[fn, fn−1), [fn−1, fn−2), . . . , [f1, f0) defined via Eq. 1.82. One can choose the length of time
intervals such that within each interval the Earth’s rotation can be ignored, i.e. the de-
tectors’ antenna response functions can be assumed constant and the current matched
filtering techniques can be directly employed. One can also down-sample the data in each
frequency band according to its highest frequency to reduce computational cost. Results
from each time segment can be combined in succession as new data comes in.

Fig. 5.5 shows the multi-band scheme in this work. We consider the negative latency
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Figure 5.5: Multi-banding scheme for this work. Left axis: An illustration of a chopped
GW waveform that is alternately colored for different waveform bins and sampling frequen-
cies. We use two-minute segments with 256Hz sampling frequency for waveforms from 60
minutes before the merger to two minutes before the merger, and one-minute segments for
the last two minutes with 1024Hz and 4096Hz sampling frequencies, respectively. Right
axis: The cumulative SNR of the signal, showing the contribution of SNR from each time
segment.

up to 60min, and choose 2min segments and 256Hz sampling frequency until the final
two minutes. In the last two minutes, the SNR grows rapidly, and the GW reaches
high frequencies, therefore a finer time resolution is used to improve the detection and
localization. In addition to the limit from Nyquist-Shannon sampling theorem, in practice,
we find that a sampling rate that is higher than Nyquist frequency could be helpful in
localizing high SNR events. As a demonstration, we equally divide the last two minutes,
and employ sampling frequencies of 1024Hz and 4096Hz, respectively. A more elaborate
segmentation is also sensible e.g. [463], but we leave a comprehensive investigation of the
multi-band scheme to future works.

Filtering each timeseries in the multi-band scheme produces a separate complex SNR
timeseries that must be coherently combined to achieve a precise localization [452, 464].
The gain in precision for long signals comes not only from the accumulation of absolute
SNR, but also from phase drifts and amplitude modulations of the SNR timeseries due to
the Earth’s rotation. A direct combination (linear addition) of multiple SNR timeseries is
feasible for short signals, as it only requires a set of combination parameters to align the
template bands in time and phase [291]. However, for long signals, the direct combination
scheme is no longer coherent because of the phase drifts due to the Earth’s rotation.
Including the phase drifts in combination parameters can lead to a coherent addition,
but it loses information contained in the changing time delays between detectors which
depends on the sky location. Therefore, instead of directly adding SNR, we multiply
likelihoods from every band before marginalization over nuisance extrinsic parameters.
Since there is little overlap between bands (contributed by noise correlation and template
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overlaps which are windowed out), they can be treated as independent measurements, as
if there are different detectors at different frequency bands.

For each band, we simulate signals and fit the prior coefficients for SealGW. We con-
sider a three-detector network with one triangle ET at the Virgo site and two L-shaped
CEs at the H1 and L1 sites, respectively. The fitting coefficients are given in Table 5.1.
If multiple bands are combined, the coefficients of the latest band will be employed as it
contains the highest SNR and should be more accurate.

Having the prior assigned and likelihood combined, we can perform multi-banding
analysis for the long signals and update the skymap as new data come in. Thanks to the
efficiency of SealGW, adding more bands does not bring too much computational burden,
and the results are given in the next section.

5.4 Tests on mock catalog

5.4.1 Catalog simulation

To assess the performance of the above localization scheme, we simulate a mock BNS
catalog with the same population model used in Chapter 3 for BNS (Eq. 3.11). We set
Robs(z = 0) = 320Gpc−3yr−1, i.e., the medium merger rate catalog used in Chapter 3.
We simulate 68000 BNS sources within z = 3, corresponding to roughly one month of
observations. We assume neutron star mass is uniformly distributed in [1.1M⊙, 2M⊙] in
the source frame and isotropic sky distribution and inclination. Note that the location and
configuration of detector networks are not settled yet and subject to change, and the BNS
mass distribution and the current merger rate density estimate have large uncertainties
due to the as yet small number of BNS detections.

Signals are injected into Gaussian noise realizations and analyzed individually, i.e., we
do not consider them to be overlapping with each other. Overlapping signals could cause
dominant biases in parameter estimation, but mainly in the case when the merger times
are very close [1, 375, 376, 377, 465, 466]. Among the 68000 BNS events evenly distributed
in one month, roughly 1.3% of them have another event ending < 0.5 s afterwards. Many
of the signals are not actually detectable, further reducing the chance of significant bias.
Even though the number of overlapping signals could be large given the large number of
events expected to be detected with 3G detectors, our simulation will still apply to the
vast majority of non-interfering signals.

We use the waveform model TaylorF2 [207, 467, 468] to generate GW signals and map
frequency to time before merger via the stationary phase approximation with Eq. 1.81.
The 3.5 post-Newtonian waveform is a reasonable choice for analyzing quasi-circular in-
spiralling compact binaries [469]. Several works suggest some non-quasi-circular binaries,
like precessing and eccentric systems, or systems with strong higher order emission, can



CHAPTER 5. RAPID PRE-MERGER LOCALIZATION OF BNS IN THE 3G ERA132

a b c d
60 to 58 min 1.461E-04 4.154E-04 9.775E-05 1.983E-04
58 to 56 min 1.422E-04 3.058E-04 6.771E-05 6.294E-04
56 to 54 min 1.255E-04 4.906E-04 1.059E-04 -1.055E-04
54 to 52 min 1.245E-04 4.195E-04 8.435E-05 2.100E-04
52 to 50 min 1.229E-04 3.204E-04 7.251E-05 3.448E-04
50 to 48 min 1.144E-04 3.293E-04 5.848E-05 4.842E-04
48 to 46 min 1.104E-04 2.823E-04 7.745E-05 8.656E-05
46 to 44 min 1.090E-04 2.290E-04 7.410E-05 9.308E-05
44 to 42 min 1.035E-04 2.354E-04 5.456E-05 3.028E-04
42 to 40 min 1.168E-04 -2.682E-04 5.740E-05 3.593E-04
40 to 38 min 8.510E-05 3.364E-04 5.744E-05 1.452E-04
38 to 36 min 8.702E-05 2.223E-04 5.182E-05 2.044E-04
36 to 34 min 8.659E-05 1.585E-04 4.910E-05 1.666E-04
34 to 32 min 8.490E-05 9.356E-05 4.102E-05 2.373E-04
32 to 30 min 8.114E-05 6.739E-05 3.843E-05 2.354E-04
30 to 28 min 7.627E-05 6.933E-05 4.238E-05 1.044E-04
28 to 26 min 6.951E-05 1.009E-04 4.521E-05 2.268E-05
26 to 24 min 6.952E-05 1.159E-05 3.532E-05 1.395E-04
24 to 22 min 6.336E-05 3.479E-05 2.678E-05 2.099E-04
22 to 20 min 5.454E-05 8.247E-05 3.584E-05 6.971E-06
20 to 18 min 5.162E-05 5.141E-05 2.508E-05 1.447E-04
18 to 16 min 4.474E-05 7.013E-05 2.915E-05 1.150E-05
16 to 14 min 3.921E-05 5.999E-05 2.052E-05 1.032E-04
14 to 12 min 3.377E-05 5.805E-05 1.929E-05 6.461E-05
12 to 10 min 2.776E-05 4.991E-05 1.445E-05 8.852E-05
10 to 8 min 2.193E-05 4.649E-05 1.041E-05 9.040E-05
8 to 6 min 1.584E-05 5.093E-05 9.336E-06 5.358E-05
6 to 4 min 4.452E-06 1.543E-04 1.335E-05 -6.609E-05
4 to 2 min 7.450E-06 3.545E-05 4.067E-06 4.058E-05
2 to 1 min 7.450E-06 3.545E-05 4.067E-06 4.058E-05
1 to 0 min 3.820E-06 1.897E-05 2.376E-06 1.728E-05

Table 5.1: Prior coefficients for the SealGW multi-banding analysis. The prior coefficient
µ and σ follows µ = aSNR + b and σ = cSNR + d, and a, b, c, d are given in the table.
Since the relation is fit with detectable events, the sources that are detectable at very
early time are expected to have small luminosity distance (and therefore larger Aij). This
expectation is consistent with the tendency in the table that earlier bands have larger a
(a determines the mean value of Aij).
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be better localized [470, 471, 472, 473, 474]. However, that would require novel search
algorithms (e.g. [288]) upon which new fast localization methods would have to be built,
because current localization methods, including Bayestar and SealGW , are based on
aligned-spinning waveform templates in which plus and cross polarizations of GWs only
have a phase difference.

We perform matched filtering assuming a perfect knowledge of intrinsic parameters
and set total SNR>12 as the detection criterion, where total SNR is converted from the
multi-band matched filtering outputs by the analytical expression of SNR at Newtonian
order [289]. Matched filtering with known injection parameters is the ideal case, while in
a realistic scenario, one should build a template bank that achieves a reasonable match
(e.g. >97%) everywhere in the parameter space. The purpose of this work is to assess the
performance of the multi-band localization scheme. We leave a dedicated long signal early
warning pipeline and simulations with more realistic mock data for future work.

5.4.2 Localization statistics

For each simulation, we perform multi-band matched filtering from 60 minutes before the
merger with low frequency cutoff at 5Hz. Fig. 5.6 shows the cumulative number of events
for different negative latencies. ∼ 10 events can be localized within 100 deg2 20 minutes
before the merger, and 6 minutes before the merger the number of events increases to
∼ 100. Also, ∼ 1 − 10 events can be localized within 10 deg2 up to 6 minutes before
merger.

Extreme early warnings are possible. Several events in our simulation are detected
and preliminarily localized 40-50 minutes before the merger and this number could be
underestimated since our analysis has hard cutoffs at 5Hz and one-hour negative latency.
ET would be able to collect sensible data down to ∼ 3Hz and trigger even earlier de-
tections [167, 171]. However, BNS with high negative latencies is not likely to be well
localized until more data comes in, bringing higher SNRs, wider frequency bands and a
longer equivalent network baseline. Multi-band analysis helps update detection statistics
and skymaps on the fly. Fig. 5.7 shows the evolution of skymaps and localization areas in
our simulation. The area evolution agrees with the theoretical prediction that the local-
ization area is inversely proportional to the SNR and effective frequency bandwidth [454].
The example skymap is from a 1.4+ 1.4M⊙ BNS at 1000Mpc detected 30 minutes before
the merger. It presents nested contours with new bands combined in succession and is
finally pinpointed within 0.2 deg2, but is already well localized ∼10 minutes before the
merger. The localization area traces in the lower panel show the decreasing rate of local-
ization areas: those localized within 100 deg2 ∼ 20 minutes before the merger in Fig. 5.6
are generally detected 40-50 minutes before the merger.
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Figure 5.6: Cumulative number of detections and 90% confidence sky localization areas
for the 68000 BNS simulations (roughly one month of observation). The corresponding
detection efficiency is labeled in the right y axis. Note that here detection efficiency of
100% means detecting all sources within z < 3. We choose 10 different negative latencies
(from 50 minutes to post-merger) and the curves show the cumulative distribution of 90%
areas of events that are detected at those times.
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Figure 5.7: Skymap evolution. Upper panel: An example skymap for a 1.4 + 1.4M⊙
BNS at 1000 Mpc detected 30 minutes before merger with a network SNR of 12. The
SNR increases to 17 at 20 minutes before the merger, 31 at 10 minutes, 95 at one minute
and 130 after the merger. We show the 90% localization contours at different negative
latencies. The injection sky location is marked with a cross. Lower panel: Evolution of
90% confidence localization areas of early warning events in our simulation. The example
in the upper panel is plotted in red line. The localization is performed when the source is
detected and the detection is updated every two minutes except for the last two minutes.
Therefore, sets of lines show up every two minutes.
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5.4.3 Diagnoses

P-P plot

Fig. 5.8 is the P-P plot of our localization simulation, showing x% confidence region (x-
axis) is able to include y% of total events (y-axis, scaled). The diagonal shapes show the
multi-band localization scheme is reasonably self-consistent. The lines for 30+ minutes
before the merger have larger statistical fluctuations due to the insufficient number of
samples.

Time cost

We tested the time cost of SealGW and Bayestar calculation with the same data (full-
bandwidth ET+2CE network) and skymap resolution (nside = 2048, finest pixel = 0.0008
deg2), as shown in Fig. 5.9. Tests are performed on a 2.44 GHz processor with OpenMP
multithreading. Thanks to the semi-analytical property, SealGW can achieve ∼ 26 times
faster speed than Bayestar with fewer threads, and the speed-up factor goes down to
∼ 4 when more threads come in as the non-parallelizable calculation begins to dominate
SealGW run time. It only takes SealGW ∼ 3s with 1 thread and ∼ 0.5s with 8 threads,
which means SealGW is able to perform real-time localization with a low hardware re-
quirement. Note that the time cost can be further reduced with narrower bandwidth or
coarser skymap resultions, e.g., the time cost of SealGW can be halved when the finest
resolution is 0.013deg2. The efficiency and cheapness are suitable for the 3G detector
scenario in which the number of detections can be huge. Nevertheless, a thorough esti-
mate of early warning latency would require a comprehensive design of detection pipeline
structure, and there would be a wall time of ∼ 0.1s to read and preprocess the data from
pipeline outputs.

5.5 Summary and discussions
We provide an exploratory demonstration of early warning localization of long signals for
3G GW detector networks. We simulate a mock catalog for one month of observation
with an ET+2CE network, and perform multi-band analysis with the fast localization
algorithm SealGW . We show that this is an efficient scheme for pre-merger localization.

Multi-band analysis allows us to detect BNS in an early stage and update the results
regularly with incoming data. There are tens of BNS detected more than 30 minutes before
the merger in our simulations, and localized within 100 deg2 at ∼ 10 minutes before the
merger. 10 deg2 can be achieved ∼ 6 minutes before merger. Since wide-field optical
transient facilities usually have a field of view of 1-10 deg2 (see summaries in [437, 449]),
the precise pre-merger localization of BNS would be extremely helpful to finding EM
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Figure 5.8: P-P plot of localizations in our simulation at different bands. For 50min (light
blue, sample size = 8), 40min (brown, sample size = 18), and 30min (orange, sample size
= 53), error bars are plotted individually with their own colors. For other bands, we
randomly select 150 events and plot their error bar in black. The error bar is calculated
from a binomial distribution, and we note that it only converges to (0%, 0) and (100%, 1)
when the sample size is sufficiently large.
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Figure 5.9: Time cost of running SealGW and Bayestar for ET+2CE network on a
2.44 GHz processor with different number of threads, excluding the time costs of matched
filtering and data conditioning. The two algorithms are tested with the same data, and
skymaps are calculated to the same level of resolution (nside = 2048, finest pixel = 0.0008
deg2). The matched filtering speed (detection latency) depends on the efficiency of the
detection pipeline, and data conditioning usually takes ∼ 0.1s to read and pre-process the
data from pipeline outputs.
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counterparts before the merger and observing the entire process of BNS coalescence.
Our work here presents a solution for the crucial step of performing real-time localiza-

tion in the context of online searches in 3G detectors, that effectively reduces the latency
and computational burden arising from pre-merger localization. However, there remains
the larger issue of developing the surrounding infrastructure to search for pre-merger sig-
nals and disseminating sky-maps in low latency to observatories before detection. As an
exploratory demonstration, we have made several simplifications to the problem, such as
ignoring overlapping signals, assuming perfect matched filtering, and a relatively naive
waveform segmentation. The merger rate estimation of BNS is also uncertain to date,
therefore the absolute detection numbers should be interpreted as an order-of-magnitude
estimation. We plan to explore the multi-band analysis on a real detection pipeline and
use a more accurate astrophysical population (which should be available in years with new
observations) in our future work.

The skymap fits files for 30, 20, 10, 6 and 1 minutes early warning and post-merger
triggers are openly available in zenodo [475].



Chapter 6

Rapid full parameter estimation of
BNS in the 3G era

Having demonstrated the fast sky localization of long BNS signals, we now advance to
a more challenging problem: the full parameter estimation of long BNS signals for the
3G detectors. Traditional stochastic sampling methods have struggled with this task due
to the signal length, Earth’s rotation effects, and high SNR, making them prohibitively
slow. In this chapter, we present a solution using neural density estimation combined
with a series of data pre-processing techniques. More specifically, we develop an efficient
multi-banding scheme that significantly compress the length of data, use heterodyning
to reduce the complexity of data, and employ singular value decomposition and a deep
neural network to further compress the data, which is used to condition a normalizing
flow to produce density estimation. By comparing our models with Fisher matrix fore-
casts and SealGW, we demonstrate that our approach can precisely estimate the BNS
parameters while maintaining decent accuracy and self-consistency within a reasonable
parameter space. Our neural density estimator can draw 5000 posterior samples within
0.3s, showcasing its potential for application to a large number of events in next-generation
detectors.

This chapter is organized as follows. Sec. 6.1 introduces the generic idea and network
structure of neural density estimation and Sec. 6.2 introduces normalizing flows, the gener-
ative model we use for neural density estimation. We describe how the data is compressed
in Sec. 6.3 and how the model is built and trained in Sec. 6.4. We show the results in
Sec. 6.5 and summarize and discuss the results in Sec. 6.6.

140
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6.1 Neural networks for parameter estimation
Full parameter estimation with stochastic sampling is computationally intensive, with time
costs increasing significantly as the SNR and signal length grow. In the 3G era, the GW
event rate will rise sharply due to improved detector sensitivity, and in Sec. 2.4 we have
conservatively estimated that it could take tens of millions of CPU hours to analyze events
in one-year observation if we use the traditional stochastic sampling methods, placing
a substantial burden on researchers, funding agencies, and even contributing to global
warming. On top of that, some analyses for high SNR or long signals, or with slow
waveforms, are beyond the reach of traditional methods.

Neural density estimation aims to train a neural network to produce a probability den-
sity conditioned on the data q(θ|d) to approximate the true posterior distribution p(θ|d).
Once trained, these models could produce accurate posterior samples within seconds, as
demonstrated in Vitamin [356] and DINGO [357]. The samples can be further refined by
importance sampling [358] in minutes. The speed of neural density estimation offers sig-
nificant advantages in processing large datasets and handling complex analyses, especially
in the context of the 3G era of GW detection. For example, a recent work [142] system-
atically explored eccentricity in CBC systems on the population level using DINGO, which
would be prohibitively slow using traditional methods due to the computational demands
of eccentric waveform models.

Neural density estimation relies on generative models, a class of machine learning
models that could learn the underlying distribution of data. Various generative models
have been applied to GW parameter estimation, including variational autoencoders [356]
and normalizing flows [357]. Normalizing flows have emerged as the preferred choice
because it directly learns and optimizes the likelihood function, which is essential for
accurate parameter estimation. In contrast, likelihood is often intractable and must be
approximated in other generative models.

Although neural network structures are flexible, flow-based density estimators have
two key modules that all models should have: an embedding layer and a conditioned
normalizing flow. The former compresses the data to a more compact form to reduce the
size of the model and the latter takes the compressed data for inference. The general
structure is shown in Fig. 6.1 and detailed explanations will be given in the next two
sections.
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Embedding layer

Data collection (Strain, PSD, …)
Preprocessing

Normalizing flowGaussian distribution Posterior distribution

Original data

Conditions (compressed data)

Figure 6.1: General structure of flow-based neural posterior estimators. It consists of an
embedding layer that compresses the data on which a normalizing flow is conditioned. The
normalizing flow will learn transforms between the Gaussian distribution and the target
posterior distribution.

6.2 Normalizing flows

6.2.1 Basic principles

Normalizing flow is a type of generative machine learning model that learns the distribution
pX (x) of data space X [476, 477]. A normalizing flow is composed of a series of learnable
and invertible transformations fi that maps the data space X to a latent space Z (i.e.,
transforming x to z), in which variable z follows a simple distribution such as Gaussian.
The transformations need to be invertible so that it allows us to sample z in the latent
space easily and transform it to x to approximate the complex probability density in the
data space. An illustration of this process is shown in Fig. 6.2.

The mathematical foundation of normalizing flows is the rule of change of variables
in probability theory. Let f = fk ◦ fk−1 ◦ . . . f1 where fi are the transformations shown
in Fig. 6.2, and assume f is parametrized by the trainable parameters ϕ, we have x =

f(z0;ϕ). We further require the transforms to be bijective and differentiable. Let g = f−1

and gi = f−1
i , we have

pX (x) = pZ(g(x;ϕ))

∣∣∣∣det(∂g(x;ϕ)∂x

)∣∣∣∣ , (6.1)
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z0 z1
f1(z0)

zi zi+1

fi+1(zi)
. . .

fi(zi−1)
zk. . .

fk(zk−1)
= x

z0 ∼ p0(z0) zi ∼ pi(zi) zk ∼ pk(zk)

Figure 6.2: Illustration of normalizing flows. z0 follows the Gaussian distribution, and
after a series of transformations fi, it becomes zk whose distribution approximates the
target distribution of data x. Image credit: Awesome Normalizing Flows.

where ∣∣∣∣det(∂g(x;ϕ)∂x

)∣∣∣∣ =
∣∣∣∣∣∣∣∣

∂g1
∂x1

· · · ∂g1
∂xn... . . . ...

∂gm
∂x1

· · · ∂gm
∂xn

∣∣∣∣∣∣∣∣ (6.2)

is the absolute value of the Jacobian determinant of the transformation g, which we always
have access to because g is differentiable. We can also calculate pZ(g(x;ϕ)) because z
is constructed to be a trivial distribution. Therefore, we have an analytical expression
of the data distribution pX (x) in normalizing flows. This contrasts with other generative
algorithms, in which the probability distribution is not explicitly known.

6.2.2 Constructing transformations

To construct a normalizing flow, the mapping f must be invertible and its Jacobian must
be tractable. There are a number of methods for constructing normalizing flows that
satisfy these two requirements. As an example, I introduce coupling flows [478] in this
chapter, including some common variants of coupling flows.

Coupling flows split D-dimensional input data x ∈ RD into two subspaces x =

(xa,xb) ∈ Rd×RD−d. For each transformation, xa is transformed by an identity mapping,
while xb is mapped by a function G(·;ϑ) parametrized by ϑ, which further depends on xa

ϑ = Θ(xa). (6.3)

In summary, the transformation can be written as

f(x) = y =

{
ya = xa

yb = G (xb; Θ (xa))
(6.4)

The two subspaces are coupled via the conditioner Θ(xa). Θ can be parametrized by pa-

https://github.com/janosh/awesome-normalizing-flows
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rameters ϕ, which need to be optimized during the training. The coupling transformation
is easily invertible as long as G is invertible:

f−1(y) = x =

xa = ya

xb = G−1 (yb; Θ (xa)) .
(6.5)

Most coupling functions are chosen to be element-wise: the i’th element in yb only depends
on the i’th element in xb and the parameters ϑi = Θi(xa), i.e.,

yb = (G1(xb1;ϑ1), . . . ,GD−d(xbD−d;ϑD−d))

= (G1(xb1; Θ1(xa)), . . . ,GD−d(xbD−d; ΘD−d(xa))) .
(6.6)

By enforcing this, the Jacobian becomes a lower triangular matrix:

J =

[
1d×d 0d×(D−d)
∂yb

∂xa

∂yb

∂xb
,

]
(6.7)

where ∂yb

∂xb
is a diagonal matrix of shape (D − d)× (D − d). The determinant is

det J = det ∂yb

∂xb

=
D∏
i=d

∂yi
∂xi

=
D−d∏
i=1

∂Gi(xbi; Θi(xa))

∂xbi

. (6.8)

The time complexity of calculating the determinant is O(N3), but by constructing the
lower diagonal Jacobian, the complexity is reduced to O(N). One coupling transform
only changes one subspace of the data. Therefore, it is common to stack multiple coupling
transforms which divide the data x differently to build a normalizing flow. For example,
one can equally divide x into two subspaces and transform them alternately.

Gi and the conditioner are the key parts of a coupling flow. The conditioners can be
any complex but well-behaved functions because their derivatives and inverses are not
required. In practice, they are often represented by neural networks such as MLP and
ResNet. The choice of Gi needs to satisfy the requirements of the flow. A simple choice is
the affine transformation:

G(xi) = λixi + µi, λi > 0, (6.9)

where λi, µi are outputs of the conditioner. In this case, the Jacobian determinant reduces
to the product of all λi which avoids calculating the derivatives. This type of transforma-
tion is known as Real Non-Volume Preserving (RealNVP).

To improve the expressivity of the flow, more complex Gi are proposed, including
polynomial splines [479], cubic splines [480], and neural splines [481] and so forth. Among
these, the Neural Spline Flow (NSF) [481] has achieved the state-of-the-art thanks to its
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flexibility and expressivity. The NSF is built upon monotonic rational-quadratic splines,
which take the form of a quotient of two quadratic polynomials. The splines can be defined
by the values and the derivatives of the spline at the knots. The spline values and the
derivatives are outputs of neural networks (conditioners) and the number and the range
of the knots are customizable. The overall function is very complex since it contains a
number of neural networks, but is easily differentiable and analytically invertible in the
meantime. In this chapter, we will use NSF for our purpose. NSF is implemented in the
Python package glasflow [482], which is based on nflows [483].

6.2.3 Conditional normalizing flows

For GW parameter inference, we want to approximate a conditional probability distri-
bution p(θ|d) because the posterior is conditioned on the data. The normalizing flow
framework can be extended to conditional normalizing flows for this purpose. Let c ∈ C
be the conditions, conditional normalizing flows learn

pX|C(x | c) = pZ(g(x;ϕ, c))

∣∣∣∣det(∂g(x;ϕ, c)∂x

)∣∣∣∣ . (6.10)

Implementing the conditions is trivial. For coupling flows, the conditions are imple-
mented by including them in the conditioner, i.e., the conditioner will be a function of
both xa and c:

f(x) = y =

{
ya = xa

yb = G (xb; Θ (xa, c))
(6.11)

For instance, if the unconditioned flow has an MLP conditioner that takes as input of
xa, the conditioner of the corresponding conditioned flow simply takes as input of the
concatenate vector (xa, c). Since c is not transformed, all calculations of conditioned
flows can be performed just as unconditioned flows, except that the conditioners take an
extra input c.

6.2.4 Loss functions

Let ϕ be the trainable parameters of a normalizing flow, training the flow involves min-
imizing a loss function L(ϕ). It is common to use the forward KLD between the target
distribution p∗(x) and the the approximate distribution pX (x | ϕ) as the loss function:

L(ϕ) = DKL (p
∗(x)∥pX (x | ϕ)) ,

= Ep∗(x) [ln p∗(x)]− Ep∗(x) [ln pX (x | ϕ)] ,

= Ep∗(x) [ln p∗(x)]− Ep∗(x)
[
ln pZ(g(x;ϕ)) + ln

∣∣∣∣det ∂g(x;ϕ)∂x

∣∣∣∣] ,
(6.12)
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The first term should be a constant for a fixed set of samples and thus can be ignored.
The second term is the likelihood of the data; it can be evaluated stochastically by Monte
Carlo method: drawing samples from p∗(x), which is the training data supposed to be,
and computing the mean. Optimizing over the forward KLD is therefore equivalent to
maximizing the likelihood. It is useful when the target distribution is not explicitly known
but can be sampled from, which is the case in GW parameter estimation. The reverse
KLD DKL (pX (x | ϕ)∥p∗(x)) can be used when the target distribution can be explicitly
evaluated, such as in variational inference [484].

6.3 Data compression
The normalizing flow for parameter estimation should be conditioned on GW data. How-
ever, the raw data is too large to be directly processed by neural networks due to the
limited GPU memory, and the information is diffuse, necessitating compression into a
more compact form. This includes a dense neural network that reduces the dimension of
data and some necessary preprocessing of data.

6.3.1 Embedding layers

Singular value decomposition

For 8-second time domain data sampled at 2048Hz, each time series will consist of 16384
data points, which could be a large input for neural networks, even for the embedding
network. For example, if we attempt to reduce the data points by half, mapping the
16384 points to 8192, this would require a 16384× 8192 matrix, containing approximately
130 million learnable parameters. Allocating such extensive resources to a single linear
layer is impractical.

To overcome this problem, Singular Value Decomposition (SVD) is often applied to
extract the principal components of the signal. Consider a large number (m) of waveforms
hi, i = 1, 2, . . . ,m in the rows of am×n matrix H, where n is the length of each waveform,
we can always perform SVD to H:

H = USV∗, (6.13)

where U and V∗ are complex unitary matrix of shape m×m and n×n, respectively. The
∗ denotes conjugate transpose. S is a m×n rectangular diagonal matrix with non-negative
real numbers on the diagonal, which are referred to as singular values. Assuming H has a
rank of r, then the first r columns of V are a set of bases of the row space of H. In other
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words, the columns of V, denoted as vi, can be used as linear bases of waveforms:

hi = αi1v1 + αi2v2 + . . . , (6.14)

where the coefficients satisfy
αik = hi · vk (6.15)

because {vk} are unitary and orthogonal. If we truncate {vk} to the first l bases (ranked
by the corresponding singular values), and use the truncated bases to reconstruct H, the
error is [258]

∥H − Hreconstructed∥ =

√√√√ r∑
i=l+1

(si)
2, (6.16)

where si is the i’th singular value and the ∥ . . . ∥ is the Frobenius norm

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

|Aij|2. (6.17)

This allows us to select {vk} that corresponds to larger singular values and project the
waveform onto the selected bases, and use the projections {αik}, k = 1, . . . , l to reconstruct
the original data hi with a controllable loss of information. Ref. [357] shows that 100
complex bases are enough to reconstruct 8-second BBH signals in the frequency domain,
making the input data suitable for machine learning models.

The SVD projection is linear: it naturally fits the GW data where signals and noises are
added linearly. The projections of real data onto SVD bases consist of the projections of
signal (Eq. 6.15) and the projections of the noise. For Gaussian noise, its projections, which
are linear combinations of Gaussian variables, remain the same Gaussian distribution
because the bases are unitary and orthogonal. This nice property is important for efficient
data simulation in the training stage, which will be discussed in Sec. 6.4.

Neural dense network

Given that there are multiple sets of projections for a detector network, further data
compression is necessary. The SVD projections can be input into a neural network for this
purpose. Typically, the embedding network first maps the SVD projections to a higher-
dimensional space, from which it extracts features, and then compresses these features
into a lower-dimensional space. For example, DINGO uses a deep residual MLP as the
embedding layer with the first linear transformation initialized as the matrix V, while
Ref. [359] introduces an extra CNN. Other viable options, such as transformers[334, 485],
are also worth exploring.
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The compressed features, usually at the order of hundreds, will serve as the condition
for the inference. In this work, we will explore two types of embedding networks: deep
residual MLP and Vision Transformer (ViT) [485]. ViT is an extension of the transformer
architecture to image processing, but can also be applied to one-dimensional sequence
data processing. ViT divides the input data into fixed-size patches. Data is processed by
residual MLPs within each patch, and different patches are then embedded into vectors
and processed by the transformer encoder. ViT takes advantage of the transformer’s
ability to capture global relationships inside data and is more memory efficient as data is
divided into patches.

6.3.2 Preprocessing extra-long data

For frequency domain complex BBH waveforms, Ref. [357] shows that 100 SVD bases are
sufficient to recover the full signal. However, linear SVD bases are less effective for much
longer BNS signals due to the highly oscillatory nature of the real and imaginary com-
ponents compared to BBH waveforms. Besides, the large number of data points makes
it challenging to compress the signal into a shorter array. Fig. 6.3 shows the frequency-
domain BBH and BNS waveforms from 50Hz and the accuracy of SVD-reconstructed
waveforms with different number of bases. While BBH waveform is smooth and can be
accurately represented by 32 bases, the BNS waveforms are more complex and require more
than 500 bases to accurately reconstruct. As the oscillations get denser at low frequencies
(Eq. 1.95), achieving accurate and efficient SVD reconstruction for full-bandwidth wave-
forms from as low as 20 Hz or 5 Hz becomes impractical. Consequently, the extra-long
BNS data in the 3G detectors need to be preprocessed to a reduced size before being put
into any neural network. Following Dax et al. [486], we will employ multi-banding and
heterodyne prior to generating the SVD bases.

Multi-banding

Multi-banding leverages the observation that CBC signals exhibit low frequencies in the
early stages and higher frequencies as they approach the merger, with the signal frequency
increasing monotonically over time (assuming quasi-circular orbits). Therefore, coarser
frequency resolutions (shorter time durations) can be employed in high-frequency regions
to reduce the number of data points.

We have demonstrated a simple multi-banding scheme in Fig. 5.5 in Chapter 5 for
rapid pre-merger localization of long BNS signals. More elaborate multi-banding schemes
are proposed for parameter estimation in Morisaki [463], Vinciguerra et al. [487]. Specifi-
cally, Dax et al. [486] follows Vinciguerra et al. [487], reducing the frequency resolution by
a factor of 2 from its neighboring preceder band to achieve a lower frequency resolution
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Figure 6.3: Comparisons between frequency-domain waveforms and SVD reconstruction
accuracy of BBH and BNS waveforms from 50Hz. Upper panel: Real parts of frequency-
domain waveforms from 50Hz. Lower panel: mismatch of reconstructed waveforms with
different number of SVD bases. The SVD bases are calculated with 30000 waveforms
generated by IMRPhenomD model from 50Hz, assuming zero spin. Black hole mass range
is uniformly sampled in 8M⊙ and 60M⊙, and neutron star mass is between 1M⊙ and
2M⊙. The BBH waveform contains ∼8000 complex data points while the BNS waveform
contains ∼ 30000.
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in higher frequency regions. However, this method does not fully exploit the frequency
evolution of CBC signals as the factor of 2 is a choice for convenience rather than opti-
mization. In this work, we propose a novel multi-banding scheme that adaptively selects
frequency nodes and resolutions, ensuring that each band’s resolution is precisely tuned
to the needs of BNS signals. Detailed implementation of this method is provided below.

Data is evenly sampled within each band, with the number of data points per band set
to a customizable constant N . If the parameters of a BNS system are perfectly known,
we know the exact frequency evolution of this system and N can be set to a very small
value such that the frequency resolution continuously varies between bands, and the data
is sampled perfectly aligned to the τ(f) relation (Eq. 1.82) [487]. However, since we aim
for the multi-banding scheme to handle a range of sources with varying masses and spins,
and we never perfectly know the source parameters in real detection, N should be set to
a larger value. In this work, we choose N = 64 to accommodate the unknown source
parameters. While a larger N provides more flexibility and robustness, it compromises
the efficiency of data compression, and vice versa.

Having N set, we search from the highest frequency cut-off f0, to a lower frequency f1
such that

αsafety(f0 − f1) [τ(f1)− τ(f0)] = N, (6.18)

where τ(f) is the time-to-merger function. Eq. 1.82 gives the relation to the Newtonian
order, but in this chapter, we employ the τ(f) relation to the 3.5PN order for higher
accuracy

τ3.5PN(f) = tc −
1

2π

dψ3.5PN(f)

df
(6.19)

where ψ3.5PN(f) is given by Eq. 1.147. The αsafety > 1 is a safety factor that enlarges
the effective band duration, ensuring that the frequency resolution is high enough to cope
with the potential errors in τ3.5PN(f) and the source parameters. We set αsafety = 2 in this
work. The frequency resolution in the band (f1, f0] is given by

∆f0 =
1

αsafety [τ(f1)− τ(f0)]
, (6.20)

which corresponds to T0 = αsafety [τ(f1)− τ(f0)] data in the time domain. In practice, we
should take time-domain data of duration T0 to generate the frequency-domain data, and
make sure the segment contains signals from f1 to f0, which is feasible thanks to the safety
factor.

This process can be repeated to obtain f2, f3, . . . and the corresponding ∆fi, until the
lower frequency bound reaches the lower frequency cut-off (5Hz). With this scheme and
the aforementioned setup, we can compress the original frequency-domain GW waveform,
which spans 12 million data points (from 5 Hz to 1024 Hz over a 12000-second duration),
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Figure 6.4: BNS frequency-domain waveforms before (blue) and after (orange) hetero-
dyning. Waveforms are truncated at 100Hz for better illustration. Black dots denote the
frequency nodes of the multibanding scheme: the bands are defined between nodes.

down to 6000 data points, achieving a compression ratio of 2000. The full-bandwidth
GW waveform can be accurately reconstructed by interpolating the amplitude and phase.
An illustration of the multibanding frequency nodes is shown in Fig. 6.4. The bands
are defined between nodes and data is sampled with frequency resolution in analogy to
Eq. 6.20 in each band.

Heterodyning

The multi-band GW waveform is still highly oscillatory. The oscillations in the frequency
domain are described by eiψ(f), where ψ(f) is given by Eq. 1.147 to the 3.5PN, the leading
order (0PN) of which is determined by the chirp mass of the system (Eq. 1.95), while the
higher orders require the mass ratio. In practice, the chirp mass is the most precisely
constrained parameter for BNS systems, typically with relative errors at the sub-percent
level or even lower. It can be estimated before performing full parameter estimation, for
instance, through matched filtering or a flow-based estimation of the narrow-band data,
where a direct SVD is feasible. The pre-estimated chirp mass can be used to simplify the
signal by multiplying it with a factor:

h0(f,M) = ei
3

128
(πGMf

c3
)−5/3

, (6.21)

which cancels the dominant oscillatory term in the GW waveform, resulting in a slowly
varying signal. This technique is essentially heterodyning and has been used in the lazy
likelihood [488] and relative binning [489, 490]. Fig. 6.4 shows the BNS waveform before
and after heterodyning.

As the heterodyning removes some information about the source chirp mass M, the
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chirp mass used in heterodyning M̃ should be provided to the normalizing flow as an
extra condition. Given that the pre-estimated M̃ is not perfectly accurate, the model
should be able to deal with a certain level of uncertainty in M̃. In other words, the model
should be trained with M̃ ∈ [M− δM,M+ δM], where δM is a hyperparameter of the
model and should be greater than the statistical error bar ∆M. During inference, one can
divide the entire chirp mass space into many intervals [Mi− δM,Mi+ δM], and perform
heterodyning and conditioning with different Mi, then choose the Mi that results in the
highest likelihood in the inference. This technique is referred to as prior-conditioning and
is described in Ref. [486].

In principle, waveforms can be further smoothened by introducing higher order het-
erodyning phase terms. However, according to Eq. 1.147, the mass ratio, which is not
always well constrained in parameter estimation, is required to compute phases of higher
PN orders. Moreover, introducing the mass ratio would result in a search in the two-
dimensional space (M̃, q̃), bringing additional computation burden. We therefore do not
include higher PN orders in heterodyning.

Finally, we note that the heterodyning term h0(f,M̃) does not change the statistical
property of Gaussian noise as it only induces a phase change, while frequency-domain
Gaussian noise has a uniform distribution in phase.

SVD after preprocessing

With multibanding and heterodyning, the 12M (12 million) data points and highly os-
cillatory GW waveforms are simplified to relatively smooth signals of 6000 data points,
on which SVD can be performed. We use the random SVD algorithm [491] implemented
in the scikit-learn package. For the parameter space 1M⊙ ≤ m1,2 ≤ 3M⊙ (detector
frame), isotropic spin direction with 0 ≤ a1,2 ≤ 0.05, 0 < Λ1,2 ≤ 5000 and isotropic θJN ,
SVD can reconstruct the waveform with ∼ 300 bases, as shown in Fig. 6.5. Further con-
straining the mass to 2M⊙ ≤ M ≤ 2.1M⊙, 0.5 ≤ q ≤ 1 and the tidal parameter Λ̃ < 1600,
less than 80 bases would be enough. This means we can effectively compress the extra-long
BNS data in the 3G detectors into a manageable size for machine learning models with a
combination of multibanding, heterodyning, and SVD techniques.

Note that the SVDs shown in this section are for waveforms only and do not contain
extrinsic parameters (luminosity distance is fixed at 1Mpc). Including variations of extrin-
sic parameters means performing SVD for signals in the detector. This is still manageable
but requires ∼ 20% more bases for accurate reconstruction. In this work, we build two
sets of SVD bases: one is for waveforms only and is used to compress and decompress the
waveforms, and the other is detector-specific and contains variations of (α, δ, ψ, tc) but not
dL, and is used to compress the GW signals.
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Figure 6.5: Similar to Fig. 6.3, but for the full-bandwidth BNS waveform SVD recon-
struction with heterodyning and multibanding. Different colors represent two different
mass priors. The narrower mass range needs fewer bases to reconstruct.

6.4 Building the neural network
In this section, I describe the technical details of building the flow-based neural density
estimator, including the method of dealing with large amounts of data and training the
model.

6.4.1 Dataset

We should provide the model with enough examples of GW data and the corresponding
source parameters so that the model can learn data-conditioned transformations that
convert the source parameter to the standard Gaussian distribution in the latent space.
Given the high dimensionality of GW parameter space, a huge amount of samples are
required to cover the entire parameter space and avoid overfitting. Following DINGO, we
split parameter space into intrinsic and extrinsic parameters and we simulate new data
with random extrinsic parameters during training. Details are given below.

Intrinsic parameters

The intrinsic parameters here are defined in the sense that they cannot be easily factored
out in the signal, i.e., changing an intrinsic parameter to a new value would induce a
non-trivial change in the signal. There are 12 intrinsic parameters in total for BNS sys-
tems: component masses (M, q), six spins (in the system frame, see Sec. 1.4.1), two tidal
parameters (Λ̃, δΛ̃), inclination θJN and phase ϕc. Here we include the spin precession and
tidal effects, but ignore other effects like orbital eccentricity and higher modes.

Since generating a large amount of waveforms is time-consuming even with the aid of
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multibanding, computing waveforms on-the-fly is impractical. Instead, we draw samples in
the intrinsic parameter space and calculate (heterodyned) waveforms in advance, and store
the waveforms’ projections onto SVD bases to disk. During real-time data simulation,
these waveforms can be read from disk and reconstructed by SVD bases, which is fast
because SVD reconstruction is a matrix multiplication that can be easily parallelized.

The sampled parameter space is the prior distribution for the neural density estimator,
as the estimator only encounters parameters from those regions. The posterior distribu-
tion can be seen as the prior-weighted likelihood. Since the prior plays the role of weight,
it can be factored into a separate weight (another prior distribution) by applying im-
portance sampling to the samples from the neural density estimator. The shape of the
prior distribution is not important in this sense so it can be chosen for the convenience of
training the model, but the width of the prior (the size of parameter space) could make a
difference. In this chapter, we employ two types of prior:

• Prior 1: A large, exploratory prior. m1,m2 ∼ U(1M⊙, 3M⊙) in the detector frame.
Λ1,Λ2 ∼ U(0, 5000). a1, a2 ∼ U(0, 0.05) as BNS are expected to have low spins. Here
U(a, b) denotes uniform distribution between a and b. Angles are sampled based on
their nature (uniform or isotropic). Masses are converted to M and q and tidal
parameters are converted to Λ̃ and δΛ̃ during training and inference.

• Prior 2: A finer prior. M ∼ U(2M⊙, 2.1M⊙) in the detector frame. q ∼ U(0.5, 1).
Λ̃ ∼ U(0, 1600) and δΛ̃ is sampled uniformly in the allowed range (conditioned on
m1,m2, Λ̃ and satisfies Λ1,2 > 0). Spins and angles are the same as prior 1.

The prior 1 serves as an exploratory trial to assess the capability of the current network
structure. For this, we draw 16 million intrinsic parameter samples for training. However,
we discovered that the prior might be too broad to be effectively represented with a
manageable number of training samples (see Sec. 6.5), so we proposed prior 2, which is
much narrower and we upscale the sample size to 64 million to avoid overfitting. The SVD
bases for these two prior distributions are constructed and shown in Sec. 6.3.2.

Extrinsic parameters

There are 5 extrinsic parameters: right ascension α, declination δ, polarization angle
ψ, luminosity distance dL, and coalescence time at geocenter tc. Once the waveforms
are reconstructed, we can readily rescale and project them according to these extrinsic pa-
rameters. Therefore, the extrinsic parameters can be generated randomly during training„
effectively allowing for an infinite number of samples in these dimensions.

The prior for (α, δ) is chosen to be isotropic on the sky, and ψ ∼ U(0, π). The
distance prior needs to be constrained with a certain range to control the SNR, as PE
models for high SNR events are particularly challenging to train [486]. However, directly
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sampling the luminosity distance can lead to significant variability in observed SNR due
to random inclination angles and sky positions, potentially introducing extreme cases
such as subthreshold or high-SNR outliers in the training set, which can affect training
efficiency. Furthermore, a very large distance prior would require training multiple models
to cover the entire detector horizon, complicating inference since the distance is unknown
beforehand. Therefore, we do not directly sample the luminosity distance in this work,
instead, we set a range for the network SNR and sample the SNR uniformly. With other
parameters sampled, the luminosity distance is then rescaled to a value such that the signal
would produce the desired network SNR. This controls the signal loudness that the model
encounters during training, making the model better adapt to its training domain. The
network SNR range is set to be [20, 50] in this work. The majority of relatively informative
BNS events will fall into this SNR range, and we leave the high SNR challenge to future
works.

The coalescence time is represented by GPS time, which ranges over several billion
seconds and varies by 86400 seconds per day, is too large to be directly managed by a
single neural network. Following Ref. [492, 493], we make use of geometric symmetry to
simplify the problem. The sky location (α, δ) of an astronomical source is considered fixed
in the celestial frame, and variations in coalescence time are essentially the rotation of the
Earth. Since the detector response functions depend only on the relative position between
the detector and the source, the geometry can be equivalently described by fixing the
Earth and rotating the source around it. The trace of the source is parallel to the celestial
equator, so changes in coalescence time can be mapped to changes in the right ascension
of the source. One can select a reference coalescence time and assume the Earth is fixed
there, and rotate the right ascension of the source to mimic the changes in time. This is
illustrated in Fig. 6.6: the response of the detector at tref to the source at (αref, δ) is the
same as the detector at tc responses to the source at (α, δ). Mathematically:

F+,×(α, δ, ψ, tc) = F+,×(αref, δ, ψ, tref), (6.22)

and the difference in time is compensated by changes in right ascension:

α− αref = GAST(tc)−GAST(tref), (6.23)

where GAST is the Greenwich Apparent Sidereal Time (GAST), obtained by adding a
nutation correction in right ascension to the GMST [494].

For our model, we choose tref = 0 and time prior of U(tref − 10ms, tref + 10ms). The
model will infer the coalescence time within the prior and obtain the corresponding αref,
which can be further converted to tc and real source right ascension α by Eq. 6.23.
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Figure 6.6: Illustrations of reference time. The signal of the detector at tref seeing the
source at (αref, δ) is the same as the detector at tc seeing the source at (α, δ).

Fast data simulation

We calculate waveforms on the intrinsic parameter grids and save their SVD projections
to disk. The GW data can then be rapidly simulated during training. We consider the
same detector network as Chapter 5, i.e., 1ET+2CE. The process is described as follows.

The GW data d consists of signal h and noise n:

d(f) = h(f) + n(f), (6.24)

The signal can be calculated by reconstructing the waveform and applying time shifts and
detector response. Denote the heterodyned waveform SVD projections as α+,×, i.e.,

α+,× = h+,×(f, d = 1Mpc)h0(f,M) · Vwf. (6.25)

where h0(f,M) is the heterodyning waveform Eq. 6.21 and Vwf is the SVD bases matrix
for waveforms which does not contain variations of extrinsic parameters. We also have
detector-specific Vdet for signals in detectors and they are trained with varying extrinsic
parameters (α, δ, ψ, tc). dL is always fixed at 1Mpc for obtaining these SVD bases. The
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signal can be simulated by

h(f) = [F+(α, δ, tc, ψ)h+(f) + F×(α, δ, tc, ψ)h×(f)] e
−2πif [tc+∆t(α,δ,τ3.5PN(f))]

=
1

dL

[
F+α+ · V ∗

wf h
−1
0 + F×α× · V ∗

wf h
−1
0

]
e−2πif [tc+∆t],

(6.26)

where (α, δ, ψ, tc, dL) are randomly sampled during training1. ∆t is the time delay from
geocenter introduced in Eq. 1.120. It is a function of the source sky direction and arrival
time, but the latter should be written as a function of frequency τ(f) due to the long
signal duration. The time-frequency relation is given in Eq. 6.19.

We then heterodyne, whiten and project the data. Response functions and time delays
are calculated using the scheme described in Sec. 1.3.1. For multi-band strain, whitening
should take different noise variances in each band into consideration:

hwhiten(fi) =
h(fi)√
Ti
4
Sn(fi)

, (6.27)

where fi is the i’th frequency step and Ti is the corresponding duration of the band fi

belongs to. The heterodyned and whitened signal can then be projected to SVD bases via
Vdet:

hSVD = (hwhitenh0(M̃)) · Vdet, (6.28)

where M̃ is the chirp mass used for heterodyning. We keep the first 400 (128) projections
for prior 1 (2), i.e., hSVD is an array of length of 400 (128). The whitened noise nwhiten

simply follows a standard Gaussian distribution:

nwhiten(f) ∼ N(0, 1) + iN(0, 1), (6.29)

and the distribution does not change after heterodyning and SVD projection. Therefore,
we can directly simulate standard Gaussian noise on the SVD bases:

nSVD = (nwhitenh0(M̃)) · Vdet ∼ N(0, 1) + iN(0, 1). (6.30)

The heterodyned, whitened, and SVD-projected data can then be assembled:

dSVD = hSVD + nSVD. (6.31)

The dSVD from different detectors are concatenated and sent to the embedding network.
Almost all calculations involved above are array and matrix manipulations, which

are well-suited for parallelization over a batch of events. The only exceptions are the
1In fact, we first sample the target SNR and the first 4 parameters and calculate the SNR for source

at 1Mpc. Then the signal can be rescaled by dL = SNR1Mpc/SNRtarget.
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calculation of response functions and time delays. They include the conversion between
GPS time and the GMST, which relies on a fundamental C library that cannot be easily
parallelized. One option is to use multiple CPUs for the conversion, but here we used
a linear fit to approximate the conversion, which allows to perform the computation on
GPU. We parallelized all the calculations on GPU and managed to simulate 2048 events
(including 5 dSVD streams for a 1ET+2CE network) in O(0.1)s. This enables us to deal
with large datasets that contain over 10 million events.

6.4.2 Hyperparameters

The properties of neural networks are determined by specifying hyperparameters, which
include the size (depth, width) of models, learning rate, batch size, regularization param-
eters during training and so forth. The choice of hyperparameters can affect not only the
accuracy of the model but also its speed, generalizability, and robustness to new data.
Ideally, hyperparameters should be fine-tuned to achieve optimal performance. However,
training flow models for full parameter estimation is highly computationally demanding
and time-consuming, and we lack the computing resources to experiment with too many
configurations. In this section, we describe the setups of models that have completed train-
ing and performed well in tests. These models may still benefit from further improvement
through additional hyperparameter fine-tuning.

Model settings

The detailed model settings and hyperparameters are shown in Table 6.1. As mentioned
in Sec. 6.2, we use coupling spline flows for all models. The flow model, CouplingNSF, is
parametrized by the number of transformations performed n_transforms, the length of the
condition n_conditional_inputs (contains M̃ and (n_conditional_inputs-1) elements
from the embedding layer outputs), and other parameters that specify the complexity of
the rational-quadratic splines: the knots and derivatives defined at nodes of num_bins
bins in [−tail_bound, tail_bound] and are determined by MLPResNets with n_neurons
dimensions and nblocks_per_transform blocks. We marginalize the coalescence phase
by ignoring it during the inference, i.e., the normalizing flow learns the marginalized
distribution of the n_input = 16 remaining parameters.

We keep the first Nbasis SVD projections and the reconstruction accuracy can be
read out from Fig. 6.5. We try two types of embedding layers: MLPResNet and ViT,
as introduced in Sec. 6.3.1. MLPResNet contains Nblock MLP blocks, and each block
includes depth_per_block MLPs connected with ResNet structure. Dimensions of MLP
layers are given by middle_features. The ViT split the input into patches of size of
patch_size, and each patch is embedded as a vector of length dim and goes through
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depth transformer blocks. The transformer block consists of a multi-head self-attention
layer with heads dim_head-dimensional attention heads and a mlp_dim-dimensional MLP.
Empirically, the embedding model should be of a similar size to the normalizing flow in
terms of trainable parameters.

For prior 1, we trained a small model Prior1-MLPResNet (35.8 million trainable pa-
rameters) and a larger model Prior1-ViT (129.3 million trainable parameters). We use
M̃ = M + δM̃ to heterodyne the data and condition the normalizing flow, where
δM̃ ∼ U(−δM, δM). As an exploratory experiment, we set δM = 0 for these two
models, assuming the chirp mass is perfectly known before inference. Based on the tests
results (see the next section), we proposed prior 2 and adjusted the hyperparameters ac-
cordingly, resulting in two larger models. We set δM = 0.0005M⊙ for prior 2 models and
used a larger training set.

Training

We use the Adam optimizer [495] for training and employ L2 regularization. The L2
regularization adds a quadratic term (sum of squares of all trainable parameters) to the loss
function to penalize a large number of trainable parameters and large values of trainable
parameters, which helps to mitigate overfitting. The learning rate is set to 0.0001 initially
and is reduced during training using cosine annealing. We also manually turn down the
learning rate by a factor of 0.7 if the validation loss has not decreased for 4 epochs. With
these settings, it takes approximately 4 hours to complete one epoch (i.e. process 63M
simulated-on-the-fly events) on an NVIDIA A100 GPU (80GB RAM) for prior 2 models.
The models were trained for 2-3 weeks2.

6.5 Model performance
We assess the model performance in this section. We will start with prior 1 models and
identify the problems, and explain the motivations of the changes in prior 2. We will first
check and compare the posterior samples obtained from MLPResNet-embedded and ViT-
embedded models, then compare the precision of our parameter estimation with Fisher
matrix and SealGW to examine if the model has achieved the optimal state. We perform
the P-P test to check model self-consistency. Finally, we will provide statistics on the
computational time required for the prior 2 models.

Ideally, the flow models should be validated against full Bayesian parameter estima-
tion, but to date, the stochastic sampling is prohibitively slow for the 3-hour-long BNS

2For efficiency, when experimenting with new hyperparameters, we initialize part of the model (either
the embedding or the flow) using pre-trained components with the same structures. Thus, the 2-3 weeks
is an estimated value for this hierarchical training.
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Model Prior1-
MLPResNet

Prior1-ViT Prior2-
MLPResNet

Prior2-ViT

Embedding
model

MLP ResNet ViT MLP ResNet ViT

Embedding
layer setup

Nbasis=400,
Noutput=127,
Nblock=16,
depth per
block=2,

middle_features
= [1024]*4 +

[512]*4 + [256]*4
+ [128]*4

Nbasis=352,
Noutput=127,

patch_size=32,
dim=1024,
depth=12,
heads=10,

mlp_dim=2048,
dim_head=64

Nbasis=128,
Noutput=127,
Nblock=30,
depth per
block=2,

middle_features
= [2048]*6 +
[1024]*6 + …+

[128]*6

Nbasis=128,
Noutput=127,

patch_size=32,
dim=1024,
depth=10,
heads=8,

mlp_dim=2048,
dim_head=64

Embedding
trainable
parameters

16.4M 82.3M 72.4M 63.4M

Flow
model

CouplingNSF

Flow setup n_input=16,
n_transforms=18,
n conditional
inputs=128,

n_neurons=256,
nblocks per
transform=5,
num_bins=8,

tail_bound=1

n_input=16,
n_transforms=15,
n conditional
inputs=128,

n_neurons=512,
nblocks per
transform=5,
num_bins=8,

tail_bound=1

n_input=16,
n_transforms=15,
n conditional
inputs=128,

n_neurons=750,
nblocks per
transform=5,
num_bins=8,

tail_bound=1

n_input=16,
n_transforms=15,
n conditional
inputs=128,

n_neurons=750,
nblocks per
transform=5,
num_bins=8,

tail_bound=1
Flow

trainable
parameters

19.4M 47.0M 95.6M 95.6M

Total
trainable
parameters

35.8M 129.3M 168.0M 159.0M

δM 0 0.0005M⊙
Initial
learning
rate

0.0001

Batch size 8192 16384
Training
set size
(intrinsic
parame-
ters)

16M 63M

Validation
set size

131k

Annealing CosineAnnealingLR(T_max=200)
Optimizer Adam optimizer with L2 regulation (weight_decay=0.7)

Table 6.1: Hyperparameters of trained models.
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signals, and therefore we have to use the Fisher matrix and SealGW as alternative bench-
marks. The 17-dimensional Fisher matrix is known to suffer from numerical instabil-
ity, often predicting error bars that exceed the prior range for some parameters, such as
spins [171, 325]. As a result, we limit our comparison to the parameters for which the
Fisher matrix provides physically meaningful result, which leads to the following 7 param-
eters: {M, Λ̃, dL, θJN , tc, α, δ}. The Fisher matrix forecast may not be accurate for the
17-dimensional problem as we will observe that the flow model can have a more precise
chirp mass estimation, but it provides a measure of the model performance to a certain
extent.

6.5.1 Prior 1

Fig. 6.7 shows an example corner plot of two prior 1 models. The source is a 1.6M⊙+1.5M⊙

BNS system located at 3000Mpc, producing a network SNR of 32. The two models
are consistent on most parameters. Both of them are able to put constraints on the
masses, spin tilt angles, tidal parameters, and sky locations, and they successfully capture
some correlations such as the distance-inclination degeneracy. However, these posterior
distributions exhibit several problems.

First, the Prior1-MLPResNet model showed a wider statistical error on the chirp mass,
indicating the estimation is not sufficiently precise. The Prior1-ViT model, being larger,
performs better in estimating the chirp mass but still falls short of optimal performance.
This issue extends to other parameters as well. We simulate 100 events and compare
the statistical uncertainties of posteriors given by the flow models with Fisher matrix
prediction on {M, Λ̃, dL, θJN , tc, α, δ}, and compare the skymaps with SealGW. The results
are shown in Fig. 6.8. The flow models have larger statistical uncertainties than the
predicted values and SealGW calculation. Increasing the model size helps alleviate some
of these issues as we notice that the lager model Prior1-ViT gives more precise estimation.
However, we find further increases in model size led to overfitting, despite the training set
containing 16 million samples with different intrinsic parameters.

Second, both models tend to constrain Λ̃ to the interval [1000, 2000], despite the actual
value in this example being Λ̃ = 512. This is because the prior distribution of Λ̃ peaks
around 2000, and the non-optimal models will lean to the prior distribution because they
are not “smart” enough to fully exploit the data (condition) to construct the likelihood.

Third, we assumed δM = 0 in prior 1 models, i.e., the data is heterodyned with,
and the flow is conditioned on the perfectly known chirp mass. This is not a practical
assumption in real detection. In addition, it makes the model heavily rely on the given
chirp mass M̃ and ignore the data, which causes bias in the self-consistency test. We
show the P-P plots of two models in Fig. 6.9, and we find the estimation on the chirp
mass is typically biased. For Prior1-MLPResNet, the P-P line is steep around 0.5 C.I.,
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Figure 6.7: An example corner plot of prior 1 models. The blue region is the posterior
distribution generated by Prior1-MLPResNet and the red is from Prior1-ViT. The source
is a 1.6M⊙+1.5M⊙ BNS system located at 3000Mpc with a network SNR of 32. Dashed
lines show the 5% and 95% percentiles. The chirp mass shown is in the detector frame.
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Figure 6.8: Comparing prior 1 models with Fisher matrix and SealGW. The first seven
columns display the ratios of the statistical uncertainties in the posterior distributions of
the parameters {M, Λ̃, dL, θJN , tc, α, δ} provided by the flow models relative to the Fisher
matrix predictions. The last two columns compare the skymaps from the flow models with
those from SealGW, showing the ratios of the 90% confidence area and searched area (as
defined in Sec. 5.2.4). Prior1-MLPResNet is represented in blue, and Prior2-ViT is shown
in red. A black dashed line indicates where the flow models’ results match those of the
Fisher matrix or SealGW. Note that ∆Λ̃ refers to the uncertainty of Λ̃, not the source
parameter delta lambda tilde (δΛ̃).

which means the true chirp mass tend to lie in the center of the posterior distribution,
suggesting that the model is predominantly reflecting the given chirp mass rather than
effectively interpreting the data. Prior1-ViT also shows a systematic bias in its chirp mass
estimates.

6.5.2 Prior 2

Based on the observations of prior 1 results, we conclude that 1), we need to enlarge the
training set to avoid overfitting and 2), we need to increase the complexity of models
or reduce the complexity of training parameter space to fully exploit the data. These
insights led to the adjustments made in prior 2, including using narrower chirp mass and
tidal parameters ranges, non zero δM, larger training set and larger models. Since the
chirp mass can be pre-estimated, we could train different models for various chirp mass
ranges and apply them based on the pre-estimation. The tidal parameters range is chosen
to satisfy the most equations of state of BNS Λ̃ < 1600 [136], so it is safe as long as the
binaries do not show exotic properties.

Example corner plots for the same event from prior 2 models are shown in Fig. 6.10.
The two models demonstrate good agreement on this event except for a slight shift in chirp
mass distribution. Comparison with Fisher matrix and SealGW is given in Fig. 6.11, which
shows a significant improvement on precision of the flow-based models: the logarithm of
ratios of statistical uncertainties mostly peak at 0, meaning the flow models give identical
results as prediction. Precision on chirp mass surpass the Fisher matrix prediction, im-
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(a) Prior1-MLPResNet (b) Prior1-ViT

Figure 6.9: P-P plots of prior 1 models. x-axis is the credible interval and y-axis the
fraction of events included in the corresponding credible interval. Digits in the brackets
are the p-values and the confidence regions are of 68%, 95%, 99.7% confidence levels. The
p-value and confidence region for P-P test are introduced in Sec. 2.2.2.

plying the latter may not be accurate for this 17-dimensional problem. The coalescence
time is not optimally constrained. However, the localization is consistent with SealGW,
indicating the timing precision is not significantly off. From the corner plot, we notice
that it is anti-correlated with tidal parameter Λ̃, which is reasonable because systems with
a larger tidal parameter will deform and stop the chirp GW emission earlier, leading to an
earlier coalescence time. This degeneracy may hinder the model’s ability to precisely con-
strain the coalescence time. Additionally, the flow model produces smaller searched area
than SealGW , which means it provides more accurate sky localization for BNS systems.
The P-P plot is given in Fig. 6.12. The chirp mass issue is resolved after introducing a
non-zero δM.

We test the sampling time of the prior 2 models on an NVIDIA RTX 3080 GPU. It takes
≲ 0.3s to sample 5000 samples, as illustrated in Fig. 6.13. This is a significant improvement
over traditional stochastic sampling methods which are still prohibitively slow on long BNS
signals to date. The rapid inference capability of these models enables the processing of
large volumes of detections in the 3G era with minimal hardware requirements.

The MLPResNet-embedded model and ViT-embedded model exhibit negligible differ-
ence in our tests. This is likely due to the fact that the input to the embedding model
consists of SVD projections, where the positions of the elements are not crucial. Conse-
quently, the transformer’s strength in exploring correlations within a sequence becomes
less relevant to this particular problem. However, due to computational constraints, we
did not conduct a comprehensive investigation into hyperparameter fine-tuning. The ViT
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Figure 6.10: Same as Fig. 6.7, but for prior 2 models. The event is the same as Fig. 6.7,
but data is heterodyned with δM = 0.00028M⊙ instead of δM = 0.
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Figure 6.11: Same as Fig. 6.8, but for prior 2 models. The consistency is significantly
improved compared with prior 1 models. Most parameters are consistent with theoretical
predictions except for chirp mass and coalescence time. Given the models pass the P-P
test, we can conclude that the Fisher matrix is not accurate for the high-dimensional
problem.
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Figure 6.12: Same as Fig. 6.9, but for prior 2 models. Prior 2 models have significantly
improved self-consistency.
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Figure 6.13: Time costs of sampling 5000 samples of prior 2 models. Tests are run on an
NVIDIA RTX 3080 GPU.

might demonstrate better performance with larger model sizes, given its architectural ad-
vantages. It is also worth noting that the ViT requires significantly more memory and is
slower to train compared to MLPResNet.

6.6 Summary and discussions
In this chapter, we demonstrated an exploratory formalism of full parameter estimation
of extra-long BNS signals in the 3G detector network (1ET+2CE) using neural density
estimation. We utilized the generic network structure that consists of an embedding layer
and a normalizing flow for this purpose, and employed multiple techniques to pre-process
the long data, including multi-banding with a greedy banding scheme, heterodyning with
prior conditioning, and singular value decomposition. We experimented on two types of
embedding network (MLPResNet and ViT), but we did not manage to tell the difference
in performance between them due to the limited computing resources and the lack of
experiments thereof.

We built models for parameter space at different scales: the full parameter space
(prior 1) and a constrained parameter space (prior 2) that only spans a small interval of
chirp mass. We find an extremely large dataset (exceeding 6 × 107 intrinsic parameters)
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is required to prevent overfitting and rapid data simulation is crucial to training the
model in a manageable time. Based on our experiments, we concluded that models with
current network structure struggle with learning the entire parameter space (prior 1) but
they performed well in the constrained one (prior 2), in the sense of agreement with
Fisher matrix prediction and SealGW calculation, self-consistency, and sampling time.
Specifically, our machine learning models are able to generate 5000 posterior samples
within 0.3s. This sheds light on the full parameter estimation problem of extra-long signals
in the future detectors, which is exceedingly slow using traditional stochastic sampling
methods. By processing large amount of BNS data rapidly, our method has the potential to
build catalog-level analysis pipelines for the next generation detectors, and to incorporate
with other physics-related analyses, such as constraining the equation of state of neutron
stars [361]. In the short term, the method can be applied to the ET and CE Mock Data
Challenges and help the design study of 3G detectors.

As an exploratory work, there are several issues that need to be addressed. First, we are
not able to compare with the flow-generated posterior with the ground truth generated by
stochastic sampling because of the latter’s prohibitive computational cost. We made use
of approximate alternatives, Fisher matrix and SealGW instead. While these comparisons
suggest that our models achieve good precision and retain accuracy, we cannot confirm if
they reach the optimal performance or quantify the distance to the ground truth. Sampling
methods are actively evolving, and we anticipate that future developments will enable
comparisons with long signals in the coming years. This will allow us to better assess and
refine our models.

Second, we trained our model in a constrained parameter space: the detector frame
chirp mass is within 2 and 2.1 solar masses, and the network SNR is constrained with
20 and 50. As these two quantities are known before parameter estimation, we can, in
principle, train multiple networks for different signals. However, the prior range could be
further optimized to reduce the total number of required models. In addition, parameter
estimation for high SNR events presents additional challenges [486], which will require
further investigation. We plan to address these issues in our future work.

Lastly, practical implementation requires addressing additional complexities, such as
overlapping signals and noise variations over extended signal durations. We need to inves-
tigate how the current model performs under these conditions and whether its structure
can effectively handle these challenges. These aspects will be explored in our future work.

The python implementation of the methods described in this chapter can be found in
the GitHub repository river3.

3https://github.com/MarinerQ/river

https://github.com/MarinerQ/river


Chapter 7

Summary and outlook

In this thesis, I explored robustness and efficiency challenges in the CBC data analysis
in the context of high-precision GW astronomy, which is characterized by high SNR and
elevated detection rates. My work attempts to address some specific questions within this
broad framework. Chapters 1-2 provide an overview of key concepts in GW astrophysics
and data analysis and Chapters 3-6 present four distinct projects that contribute to the
overall theme. Although each chapter includes its own summary and discussion, I would
like to emphasize the most important takeaways from each project here.

Chapters 3 and 4 focus on the systematic errors in GW data analysis. Chapter 3
investigates the false deviation of GR due to inaccurate waveform models and overlapping
signals. Our findings are:

• Error accumulation: False deviation from GR can occur when results from mul-
tiple events are combined (Fig. 3.4).

• Waveform matters: Waveform inaccuracy is the primary contributor to systematic
errors in the catalog. However, in rare cases where the coalescence times of signals
are very close, overlapping signals can also become the dominant source of error
(Fig. 3.2, Fig. 3.3).

• Frequency of signal overlapping: Signal overlapping rate is estimated (Tab. 3.1),
suggesting most signals are not significantly influenced by other overlapping signals.
A high overlapping rate would exacerbate the waveform systematics due to incorrect
signal subtractions (Fig. 3.6).

• Golden events: High-SNR events are particularly susceptible to systematic errors
(Fig. 3.3, Fig. 3.5) because the statistical error decreases with increasing SNR while
systematics keep constant (Eq. 2.51, Eq. 2.52).

Identifying the importance of waveform accuracy, Chapter 4 introduces a waveform accu-
racy assessment approach that does not require NR simulations and can be performed in

169
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the entire parameter space. Key ideas and conclusions are:

• Cross check: The accuracy of waveform models can be evaluated by comparing
different waveform models. A significant difference between models indicates that
at least one of the models lacks sufficient accuracy (Fig. 4.1).

• Current status: Applying this method to the parameter estimation results of the
GWTC-2.1 and GWTC-3 catalogs, we find that the current waveforms could fail
our accuracy assessment criterion in certain cases (Fig. 4.2, Fig. 4.4). This method
is also being used in O4 results.

• Impacts on PE: We found a correlation between our quantified accuracy assess-
ments and systematic errors in parameter estimation (Fig. 4.3).

• Problematic parameter regions: Binary systems that exhibit high spin, pre-
cession, strong higher modes, and unequal masses are poorly modeled (Fig. 4.4,
Fig. 4.5). BNS and NSBH waveforms examined do not show these issues due to the
limited inclusion of these complex effects in their waveform modeling.

• Future requirements: To meet the demands of future high-precision GW obser-
vations, waveform models need to be improved by at least three orders of magnitude
in accuracy (Fig. 4.5).

These two chapters emphasize the importance of managing the error budget in the high-
precision era of GW astronomy, and showcase the consequences when the errors are not
properly controlled. This issue extends beyond tests of GR and affects all aspects where
parameter estimation is required. The waveform accuracy assessment method acts as a
post-PE check, flagging potential inaccuracies in waveforms based on the result. Although
it does not directly solve the waveform issue during PE, it provides a valuable, quantified
indication of potential waveform systematics before scientific conclusions are drawn.

In the long term, building highly accurate waveform models would be paramount to
controlling systematic errors. Other than that, statistical methods, such as including
the uncertainties in waveforms during PE and multi-waveform analysis, would also help
mitigate the waveform systematics. Other sources of systematic errors must be carefully
managed as well, and a comprehensive review of these challenges is available in Ref. [403].

Chapters 5 and 6 focus on building efficient data analysis methods for long BNS signals.
Chapter 5 leverages the SealGW algorithm and a multibanding scheme to achieve pre-
merger source localization. The key points from this chapter are:

• Rotating antenna: The Earth rotation effects need to be accounted for when
analyzing long-duration GW signals (Fig. 5.4).
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• Multibanding and multiplying: To mitigate issues in matched filtering caused
by Earth rotation, we perform matched filtering in multiple bands, within which the
Earth rotation can be neglected. Likelihoods derived from the SNR timeseries of
each band are then multiplied to improve localization accuracy (Fig. 5.5).

• Localization statistics: The event rate and area evolution of early warning lo-
calization are estimated for the 1ET+2CE network (Fig. 5.6, Fig. 5.7). Notably,
it is possible to provide accurate sky localizations more than 30 minutes before the
merger.

• Fast and cheap: Our localization algorithm SealGW offers a faster and more
resource-efficient approach to processing large numbers of events, making it well-
suited for the high event rates expected in future GW observations (Fig. 5.9).

In Chapter 6, we advance to the full parameter estimation for long BNS signals, an ex-
tremely computationally expensive task for traditional stochastic sampling methods. We
make use of machine learning algorithms to achieve this goal:

• General structure: Our model consists of an embedding layer that compresses the
data and a normalizing flow that serves as the neural density estimator, sampling
from the target distributions (Fig. 6.1).

• Data pre-processing: An elaborate multi-banding scheme, heterodyning, and
SVD are employed to reduce the size of the data (Fig. 6.4, Fig. 6.5).

• Big data: An exceptionally large dataset is required to avoid overfitting and under-
fitting, necessitating a fast data simulation scheme and the use of high-performance
GPU resources.

• Performance metrics: Within a constrained parameter space, our trained models
are able to generate precise (Fig. 6.11) and accurate (Fig. 6.10, Fig. 6.12) parameter
estimates within O(0.1)s (Fig. 6.13).

These works demonstrate the feasibility of analyzing complex data with minimal time
and hardware requirements, significantly outperforming traditional methods in terms of
efficiency while maintaining a satisfactory level of accuracy. As we approach the 3G era,
where we anticipate a large number of detections and high SNRs, efficiency will become
increasingly critical in the development of analysis algorithms.

The emergence of novel “non-standard” data analysis methods, which leverage the
unique properties of chirp-like signals, (semi-)analytical marginalization, Gaussian ap-
proximations, and machine learning algorithms, represents an active area of research in
GW astronomy. These methods, offering significant advantages in speed and resource
efficiency, have the potential to redefine what is considered “standard” in the future.
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However, the “standard” parameter estimation methods, which are the most robust
approaches, remain essential. These traditional methods are continually being refined to
improve speed and reduce hardware demands. They serve as the benchmark for testing
new algorithms and are indispensable for tasks where robustness is paramount, such as in
the tests of GR.

Looking ahead, while achieving faster computational speeds is crucial, there is also a
pressing need to adapt these algorithms to more realistic scenarios expected in the 3G
detectors. This includes addressing challenges like overlapping signals and variations in
noise, ensuring that the analysis methods remain robust and reliable under all conditions.

Overall, in this thesis, we addressed the difficulties in the data analysis in high-precision
GW astronomy and proposed a range of solutions. As this field is rapidly evolving, we hope
that these works provide valuable insights for the ongoing development of data analysis
techniques and offer a general picture of key qualities that data analysis methods should
possess in the high-precision era.
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