

Alasmari, Ohud Abdullah (2024) Development and validation of an instrument
for evaluating online coding tutorial systems. PhD thesis.

https://theses.gla.ac.uk/84753/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

mailto:research-enlighten@glasgow.ac.uk

DEVELOPMENT AND VALIDATION OF AN

INSTRUMENT FOR EVALUATING ONLINE

CODING TUTORIAL SYSTEMS

OHUD ABDULLAH ALASMARI

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW

2024

© OHUD ALASMARI

Declaration

I, Ms Ohud Abdullah Alasmari, hereby declare that this PhD research, including the primary
work, was carried out by me, for the award of a PhD degree in the School of Computing
Science, University of Glasgow. It has not been accepted nor currently submitted in the
candidature for any other degree.

Dedication

To the memory of my beloved father.....

Acknowledgements

The first and foremost acknowledgement goes to my PhD supervisor, Dr. Jeremy Singer. I
would like to express my deepest gratitude to him for the invaluable guidance, unlimited
support, and continuous encouragement I received throughout my research journey. The

constant weekly meetings in person and virtually over Zoom during the COVID-19
pandemic have helped me to learn research and move forward. I am very grateful for the
opportunity to study under his supervision and for believing in me to complete my PhD

study.

I also extend my gratitude to my second supervisor, Dr Mireilla Bikanga Ada, for her
comments and aid in shaping the research and producing work with high-quality research.

My deepest thanks go to my husband, Ali, and my children, Saif and Alyaa, for their
unaccountable support and patience and for accompanying me to the United Kingdom

during my PhD study. I am forever grateful for their unwavering support and love.

I would also like to extend my grateful thanks to my family in Saudi Arabia, including my
mother, my sisters, and my brothers, for their support. This work would not have been

possible without their unlimited support and constant encouragement during tough times.

I acknowledge the Saudi Arabian Cultural Bureau in the UK for providing the financial
and logistical support that made this research possible. I am grateful for their support and

for the opportunities they have provided me. I am grateful to the School of Computing
Science at the University of Glasgow for its support. Furthermore, I would like to thank the

academic community for sharing their knowledge and supporting me.

ABSTRACT

In the computing education field, online programming learning platforms have become in-
creasingly popular. There are several reasons for the recent growth in online programming
learning systems, including the challenges of learning to code associated with face-to-face
learning approaches. However, drill-and-practice-style activities provide one solution that
can help overcome this obstacle. Hosting coding exercises, tutorials, and quizzes via online
platforms provides a scalable solution to this problem. This can be accomplished with a
variety of online programming learning platforms, such as interactive coding platforms and
massive open online courses. In this research, the focus is on online coding tutorial systems
(OCTSs). A wide variety of free and open online coding tutorial systems provide a basis for
interactive programming education at scale. The use of browser-based systems with auto-
mated feedback is popular in remote learning scenarios. In addition, these systems facilitate
the practical development of software that forms an integral part of the learning process for
programming learners. Such systems will only be effective if they address the challenges
and learning needs of novice programming learners. Therefore, the objective of this thesis
is to develop and validate an instrument for evaluating online coding tutorial systems
to support professional programming educators in evaluating and selecting the appro-
priate online coding tutorial systems for programming learning to ensure the successful
delivery of programming education, effective interactive platform use, and consequent
positive impacts on programming novice learners.

In order to achieve this research goal, a design-based research methodology was employed,
and four studies were carried out to develop an evaluation instrument that has been con-
structed through three stages and four design iterations. Within the exploration phase, three
instrument design iterations have been accomplished. During the initial design iteration,
a systematic review of literature was undertaken to recognise common challenges in pro-
gramming learning and to create the first version of the instrument by identifying a series
of features of online coding tutorial systems as items of the instrument that could facilitate
more robust and efficient programming learning experiences. In the second design iteration,
an online survey tool was utilised to gather input on interaction with online coding plat-
forms and to suggest some new items in the instrument. During the third design cycle, an
analysis was conducted on seven popular online coding tutorial systems to determine if they

included the identified features and to identify any features that might be present in these
systems but are missing as items to be considered in the proposed instrument. Following
this, a high-fidelity prototype of an online coding tutorial system was developed in the de-
velopment phase. Lastly, during the fourth design cycle and the evaluation phase, users of
the system prototype tested most of the features discussed in the developed evaluation in-
strument and suggested new system features as new items in the instrument. Following the
instrument development process, a validation study involving experts in teaching program-
ming was carried out to validate the proposed instrument. Additionally, a study to show that
programming educators are able to use the developed evaluation instrument effectively in a
realistic scenario was conducted.

To summarise, the main contribution of this research study is the development and vali-
dation of an instrument for assessing online coding tutorial systems in the field of com-
puting education. This instrument assists professional programming educators in the
evaluation and selection of effective online coding tutorial systems for teaching pro-
gramming to novice learners.

Glossary

CSS: Cascading Style Sheets

DBR: Design-Based Research

FDM: Fuzzy Delphi Method

GBL: Game-Based Learning

GMDR: Generic Model for Design Research

HTML: Hypertext Markup Language

IDE: Integrated Development Environment

LMS: Learning Management System

MOOCs: Massive Open Online Courses

OCTSs: Online Coding Tutorial Systems

PBL: Project-Based Learning

REPL: Read-Eval-Print Loop

Table of Contents

1 Introduction 1

1.1 Chapter Overview . 1

1.2 Introduction . 1

1.3 Research Motivation and Objectives . 3

1.4 Thesis Statement . 4

1.5 Thesis Contributions . 5

1.6 Publications . 5

1.7 Thesis Outline . 6

2 Background 8

2.1 Chapter Overview . 8

2.2 Programming Education . 9

2.2.1 Approaches to programming education 10

2.2.2 A view of online programming learning systems 13

2.2.3 Online coding tutorial systems . 15

2.2.4 Importance of online coding tutorial systems 18

2.2.5 Users of online coding tutorial systems 18

2.3 Instruments for Evaluating Online Programming Learning Systems 19

2.4 Research Methodologies . 20

2.5 Chapter Summary . 21

3 Research Methodologies 22

3.1 Chapter Overview . 22

3.2 Research Questions . 22

3.3 Research Methodologies– An overview 23

3.4 Design-Based Research Methodology . 24

3.4.1 A cyclic process and phases of design-based research 28

3.5 Data Collection Methods for Each Research Question 32

3.5.1 Systematic review to answer RQ1 34

3.5.2 Online questionnaire to answer RQ2, RQ4 and RQ6 36

3.5.3 Comparative study to answer RQ3 38

3.5.4 Fuzzy Delphi method to answer RQ5 39

3.6 Research Timeline . 41

3.7 Chapter Summary . 42

4 Instrument Development 43

4.1 Chapter Overview . 43

4.2 Instrument Design Cycle One . 43

4.2.1 Research question 1 . 44

4.2.2 Study method . 44

4.2.3 Systematic literature review findings 46

4.2.4 Semi-systematic literature review findings 49

4.2.5 First version of the instrument . 52

4.3 Instrument Design Cycle Two . 54

4.3.1 Research question 2 . 54

4.3.2 Study method . 55

4.3.3 Data analysis techniques . 57

4.3.4 Study finding . 57

4.3.5 The changes in version one of the instrument 65

4.3.6 Second version of the instrument 66

4.4 Instrument Design Cycle Three . 68

4.4.1 Research question 3 . 68

4.4.2 Study method . 69

4.4.3 Data analysis techniques . 70

4.4.4 Study findings . 70

4.4.5 The changes in version two of the instrument 73

4.4.6 Third version of the instrument . 74

4.5 Instrument Design Cycle Four . 76

4.5.1 Design and development of ”Python OCTS”- an online coding tuto-
rial system prototype . 76

4.5.2 System features checklist . 87

4.5.3 Python OCTS and existing online coding tutorial systems 88

4.5.4 Research question 4 . 89

4.5.5 Study method . 89

4.5.6 Data analysis techniques . 91

4.5.7 Study findings . 93

4.5.8 Log files . 98

4.5.9 The changes in version three of the instrument 103

4.5.10 Fourth version of the instrument 103

4.6 Chapter Summary . 105

5 Instrument Validation 106

5.1 Chapter Overview . 106

5.2 Research Question 5 . 106

5.3 Study Method . 106

5.3.1 Procedure . 107

5.4 Data Analysis Techniques . 118

5.4.1 Converting Likert scale to fuzzy scale 118

5.5 Study Findings . 120

5.6 The Guidelines to Use the Instrument . 122

5.7 Chapter Summary . 122

6 Programming Educators’ Experiences with the Instrument 124

6.1 Chapter Overview . 124

6.2 Research question 6 . 124

6.3 Study Method . 124

6.3.1 Participants . 125

6.3.2 Procedure . 125

6.3.3 Demographics . 126

6.4 Data Analysis Technique . 127

6.5 Study Findings . 127

6.6 Chapter Summary . 131

7 Discussion 132

7.1 Chapter Overview . 132

7.2 Summary of the Findings . 132

7.3 Discussion of the Findings . 136

7.3.1 Instrument Development . 136

7.3.2 Instrument validation . 138

7.3.3 Programming educators’ experiences on the instrument 139

7.4 Chapter Summary . 140

8 Conclusion 141

8.1 Chapter Overview . 141

8.2 Summary . 141

8.2.1 Theoretical development of the evaluation instrument 141

8.2.2 Assumption of validity of the instrument 142

8.3 Emerging Findings and Contributions to the Larger Field of Computer Sci-
ence Education Research . 143

8.4 Research Achievements . 145

8.5 Research Limitations and Future Work . 145

A Online Survey: The Learners and Educators Perspectives Study 150

A.1 The consent form: . 150

A.2 Demographic Questions . 151

A.3 User tasks . 151

A.4 Post-Testing Questions (Part 1) . 152

A.5 Post-Testing Questions (Part 2) . 154

A.6 Open-ended questions . 154

B Online Survey: Python OCTS Evaluation Study 155

B.1 The consent form: . 155

B.2 Demographic Questions . 156

B.3 Testing the content of the system porotype 156

B.3.1 First scenarios to test content-based features 156

B.3.2 Post-testing questions . 157

B.4 Testing the features in the system porotype 157

B.4.1 Second scenarios to test technical-based features 157

B.4.2 Post-testing questions . 158

B.5 Testing the technical features in the system porotype 158

B.5.1 Post-testing question . 158

B.6 Open-ended questions . 160

C Online Survey: The Experts Evaluation Study 161

C.1 The consent form: . 161

C.2 Demographic Questions . 162

C.2.1 Post-testing questions . 162

D Online Survey: The Educators User Case Study 164

D.1 The consent form: . 164

D.2 Demographic Questions . 165

D.3 Instructions . 165

D.4 The evaluation Instrument . 165

D.5 Open-ended question . 165

List of Tables

3.1 How these characteristics are specified in this research. (The DBR charac-
teristics adapted from [16]) . 28

3.2 Research methods for each research question in this thesis 33

4.1 Search summary for each database . 45

4.2 List of seven selected papers . 46

4.3 List of programming learning difficulties identified in the literature 46

4.4 Participants responses to the first open-ended question-with gray cells indi-
cating the new features participants suggested (Part 1) 62

4.5 Participants responses to the first open-ended question - with gray cells indi-
cating the new features participants suggested (Part 2) 63

4.6 Participants responses to the second open-ended question 64

4.7 Comparative analysis of inclusion of supportive features across seven tutorial
systems (grey row indicates complete absence of feature in all systems) . . 71

4.9 Comparative analysis of identified features in the third version of the instru-
ment in Section 4.4 across the system prototype features (grey row indicates
absence of feature in the system prototype) 88

4.10 Participants responses to the first open-ended question in the evaluation study 97

4.11 Participants responses to the second open-ended question in the evaluation
study . 98

5.1 Details over the participating experts. Expert’s code reflects the order of
their programming teaching experiences, where Expert-1 has more number
of years of experience, and Expert-10 has the less number of years 109

5.2 Linguistic Variables for 7 Point Scale . 119

5.3 Interpretation of the data based on the threshold value (D) 120

5.4 Result of a Consensus of the Experts . 121

6.1 Participant responses to the open-ended question 129

8.1 List of research objectives that have been achieved 145

A.1 Demographic questions . 151

A.2 A set of assessment statements (Part 1) . 153

A.3 A set of assessment statements (Part2) . 154

A.4 Open-ended questions . 154

D.1 Open-ended question . 165

List of Figures

2.1 A screenshot of W3Schools’ code editor 14

2.2 A screenshot of Scratch platform . 15

2.3 The components of an online coding tutorial system called “TryRuby” . . . 16

3.1 This cyclic process is adapted from the DBR model created by [34] and [1],
which was based on the original GMDR from Mckenney [132] 31

3.2 Validation procedures for the components and the items of the instrument for
evaluating online coding tutorial systems 40

3.3 Research timeline . 42

4.1 The initial evaluation instrument for online coding tutorial systems based on
the systematic literature review (design cycle one) 53

4.2 Word cloud visualization of responses to question one (larger size words
indicate more frequently repeated words and smaller size words indicate less
frequently repeated words found in the participants’ responses) 61

4.3 The evaluation instrument for online coding tutorial systems version two
based on initial facts finding study (design cycle two), red text indicates new
feature added . 67

4.4 A screenshot of an online coding tutorial system that provides several pro-
gramming languages . 74

4.5 The evaluation instrument for online coding tutorial systems version three
based on systems analysis-case study (design cycle three), red text indicates
new feature added . 75

4.6 Proposed Python OCTS . 78

4.7 Python OCTS architecture . 80

4.8 The home page of the system prototype 82

4.9 The registration page in the system prototype 82

4.10 The coding lessons list in the system prototype 83

4.11 The other materials page in the system prototype 83

4.12 The users feedback page . 84

4.13 The embedded code editor . 84

4.14 Quiz on the first lesson . 85

4.15 Solution of the quiz . 85

4.16 The visual map feature . 86

4.17 The reflection note box . 86

4.18 Syntax errors messages . 87

4.19 Hints . 87

4.20 The evaluation methods that have been used for evaluating Python OCTS . 90

4.21 The percentage of location of the participants 92

4.22 The percentage of coding experience . 93

4.23 Responses to Question one . 96

4.24 Frequency distribution for users . 99

4.25 Frequency distribution for duration/min 99

4.26 Frequency distribution for visit pages . 100

4.27 Frequency distribution for visit quiz . 101

4.28 Frequency distribution for view solution 101

4.29 Th evaluation instrument for online coding tutorial systems version four
based on systems prototype evaluation (design cycle four, changes in red) . 104

5.1 The nationalities of the experts involved in the validation study 108

5.2 The preliminary evaluation instrument that was created by the mentor panel 111

5.3 First results of the focus discussion group process (the red X indicates the
components agreed to be deleted by the experts) 113

5.4 Second results of the focus discussion group process (the red X indicates the
components and items were deleted by the experts) 114

5.5 The updated instrument after the experts advised to put the items next to the
appropriate components . 115

5.6 Third results of the focus discussion group process (the updated arrange-
ment of the instrument’s items according to the priority based on the experts
opinions) . 117

5.7 Formula 2 . 120

5.8 The deployable version of the evaluation instrument form that can be used
by programming educators. 123

6.1 The nationalities of the programming educators involved in the case study . 127

6.2 Online coding tutorial systems were evaluated by the programming educa-
tors. 128

1

Chapter 1

Introduction

1.1 Chapter Overview

This chapter is structured as follows: Section 1.2 offers a high-level overview of the back-
ground context of this thesis. Section 1.3 discusses the main motivation of this thesis and
the research objectives. Section 1.4 provides the thesis statement; Section 1.5 outlines the
new research contribution to the field of computing education; Section 1.6 presents the pub-
lished articles; and finally, Section 1.7 presents an overview of the remaining chapters in this
dissertation.

1.2 Introduction

In the digital-native 21st century, computer programming has become an essential skill, and
with the increasing reliance on technology in every industry sector, coding skills are in high
demand. Versatile developers are required to develop software systems, including web and
mobile applications. However, gaining programming skills is not an easy process, it seems
to be a challenging task for novice learners across the world [179]. It requires an under-
standing of logic and good problem-solving skills [150]. Therefore, some novice learners
struggle with learning coding, as the high failure rate among those taking programming
courses shows [86]. Many challenges have been faced by novice learners from diverse edu-
cational backgrounds in learning how to code [35]. For instance, some novices struggle with
understanding the syntax of programming languages [177] [115]. Other novice program-
mers struggle with testing and debugging their code [70][135]. However, according to [155],
some of the programming learning difficulties are associated specifically with face-to-face
learning modes, such as the lack of facilities for practicing programming. Therefore, the
need to provide coding exercises to let novices practice coding by using interactive tutorials

1.2. Introduction 2

has increased [155] [65]. In response to this, many university students have signed up for
extended online learning platforms to practice programming [31] [102]. In addition, during
the COVID-19 pandemic, the use of such online platforms that offer interactive practice has
increased because of the need to replace face-to-face learning with online learning [133].
This use of online platforms is not only apparent in the programming education field, but
also in other disciplines [133].

In the field of programming education, a variety of online learning platform types have been
used, such as interactive coding platforms and massive open online courses [108]. These
platforms offer a variety of courses and tutorials that cover different programming languages
and concepts. Interactive coding platforms, such as Codecademy [49] and FreeCodeCamp
[72], provide hands-on coding experience through interactive exercises and projects. In con-
trast, Massive Open Online Courses, such as Coursera [54] and edX [67], offer courses from
top universities and instructors around the world. These courses often include assignments
and quizzes to help novice learners master programming concepts. Therefore, online pro-
gramming learning platforms have become increasingly popular because they are an effective
way to learn programming anywhere and anytime [117] [155].

Kim and Ko [108] classify these platforms into five categories: interactive platforms, web
reference platforms, educational game systems, creative platforms, and massive open online
courses. In this research, the main focus is on Online Coding Tutorial Systems (OCTSs),
which adopt many of the features that have been identified in Kim and Ko’s first category of
interactive platforms, along with some aspects of their creative platforms and MOOCs [108].
In addition, these systems are defined as free and open online coding tutorial systems that
provide a basis for interactive programming education on a large scale.

The use of such web-based systems with automated feedback is popular in remote learning
scenarios, and there are several current online coding tutorial systems, such as LearnPython
[175], TryRuby [94], and TryHaskell [64]. LearnPython [175], for instance, provides a se-
ries of interactive coding tutorials that cover the basic concepts of Python programming.
The tutorials include explanations of programming concepts, examples of code, and inter-
active exercises to help novice learners practice their coding. In addition, OCTSs provide a
step-by-step approach to learning programming languages and concepts. Nevertheless, such
platforms will only be effective and helpful if they address the challenges, problems, and
learning needs of novice programmers.

To the best of our knowledge, in the literature of computing education, there is a lack of re-
search that develops and proposes instruments or tools for evaluating online coding tutorial
systems based on computing education literature and programming educators and learners
perspectives. For instance, Kim and Ko [108] propose a framework to analyse several di-
mensions of the pedagogical effectiveness of online coding tutorials only from the learning

1.3. Research Motivation and Objectives 3

sciences and education literature. Novice learners and their educators were not involved in
this system effectiveness analysis, and the instrument has not been validated.

To address this gap, the major objective of this research work is to develop and validate
an instrument for evaluating arbitrary online coding tutorial systems to support pro-
gramming educators in selecting systems that meet their needs to ensure the successful
delivery of programming learning, effective interactive platform use, and consequent
positive impacts on programming novices. To accomplish this objective, this work follows
a design-based research methodology, going through three phases and four design cycles to
develop and propose an instrument for evaluating online coding tutorial systems. In the first
phase (the analysis phase), there are three design cycles. In the first design cycle of the in-
strument, a list of programming teaching and learning challenges will be identified through
a systematic literature review to identify the main components of the instrument, and a set of
features will represent the instrument items that could help in evaluating and selecting online
coding tutorial systems with richer and more effective programming learning experiences.
In the second design cycle of the instrument, an online survey will be used to collect
feedback from programming educators and novice learners about the online coding platform
interaction by using a specific current online coding tutorial system called ’LearnPython’,
and the initial instrument will be updated. In the third design cycle of the instrument,
seven current online coding tutorial systems will be analysed to determine whether they of-
fer the identified features in the second version of the instrument. In addition, these selected
systems will be analysed to investigate any features that exist in them but are missing in the
second version of the instrument for evaluating online coding tutorial systems.

In the second phase (the design and implementation phase), the online coding tutorial system
prototype was designed and developed. Finally, in the third phase (the evaluation phase), the
fourth design cycle was done. In the fourth design cycle of the instrument, an online sur-
vey instrument will be used to measure users’ satisfaction and collect users’ feedback about
the system prototype and the elements of the third version of the instrument. Additionally,
the users’ satisfaction through analysing log data will be used to capture users’ interactions
with the system prototype. Finally, a validation study was performed to validate the pro-
posed instrument. Additionally, a user case study was conducted to evaluate the use of the
instrument as an assessment tool for such systems by the target audience.

1.3 Research Motivation and Objectives

The main motivation of this research is to help novice programming learners easily engage
with programming languages through effective online coding tutorial systems that might
meet their needs. This will be accompanied by providing professional programming ed-

1.4. Thesis Statement 4

ucators (who adopt online coding tutorial systems in teaching programming to novices)
with a validated instrument to evaluate and select effective online coding tutorial sys-
tems. and that will be achieved through a list of the following sub-objectives:

• Identifying the main components of the evaluation instrument by identifying the pro-
gramming learning challenges.

• Identifying the initial evaluation instrument’ items by identifying the possible solutions
to the identified challenges (the main components).

• Updating the initial evaluation instrument’ items by identifying new features of online
coding tutorial systems from system stakeholders’ perspectives, i.e. novice learners
and educators to be evaluated.

• Examine a set of current online coding tutorial systems to determine whether they
provide the identified features presented in the instrument and whether any features
that exist in the selected current systems are missing in the proposed instrument.

• Developing an interactive online coding tutorial system prototype that provides most
of the identified features that exist in the evaluation instrument as items.

• Evaluating the system prototype with real users, capturing their interaction with the
system prototype, and collecting their feedback and suggestions on the system to im-
prove the instrument’s items.

• Validating the proposed evaluation instrument by experts in the field of computing
education.

• Conducting a study to investigate how the target audience (programming educators)
find the use of the instrument to evaluate online coding tutorial systems.

1.4 Thesis Statement

The current work focuses on developing and validating an instrument for evaluating online
coding tutorial systems that can be used by programming educators who deal with novice
programmers to evaluate online coding tutorial systems and select the most effective systems
for novices. Thus, the statement defines the scope of the research and motivates a set of
specific research questions to guide the study.

1.5. Thesis Contributions 5

Thesis Statement: Online coding tutorial systems should be designed and deployed in
such a way that they satisfy novice learners’ needs to ensure an effective interactive plat-
form use, leading to the successful delivery of programming teaching by educators and
consequent positive impacts for novice learners. Such effectiveness can be achieved by
the adoption of a systematically constructed and validated instrument to support pro-
gramming educators in evaluating and selecting the most appropriate online coding tuto-
rial system for novices and their learning context.

1.5 Thesis Contributions

The primary contribution of this thesis is developing and validating an evaluation instru-
ment for online coding tutorial systems to be used by professional programming educators
(who adopt online coding tutorial systems to teach programming) to evaluate and select ef-
fective online coding tutorial systems to support novice learners (who use these online coding
tutorial systems to learn programming languages).

1.6 Publications

In this research work, several peer-reviewed papers have been published at international
conferences.

1. The work described in Section 4.2 and Section 4.4 has been published in ICETC
2023, in this peer-reviewed article (Alasmari et al. [11]).

Ohud Alasmari, Jeremy Singer, and Mireilla Bikanga Ada. 2023. Do Current On-
line Coding Tutorial Systems Address Novice Programmer Difficulties? In: 15th
International Conference on Education Technology and Computers (ICETC 2023),
September 26–28, 2023, Barcelona, Spain. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3629296.3629333

2. The work described in Section 4.5 has been published in EDUNINE 2024, in this
peer-reviewed article (Alasmari et al. [10]).

Alasmari, O. A. F., Singer, J. and Bikanga Ada, M. (2024) Python OCTS: Design, Im-
plementation, and Evaluation of an Online Coding Tutorial System Prototype. In: VIII
IEEE World Engineering Education Conference (EDUNINE2024), Guatemala City,
Guatemala, 10-13 March 2024 https://doi.org/10.1109/EDUNINE60625.
2024.10500548.

https://doi.org/10.1145/3629296.3629333
https://doi.org/10.1109/EDUNINE60625.2024.10500548
https://doi.org/10.1109/EDUNINE60625.2024.10500548

1.7. Thesis Outline 6

3. A research paper has been published, in COMPSAC 2024 in this peer-reviewed
article (Alasmari et al. [9])

Alasmari, Ohud; Singer, Jeremy; Ada, Mireilla Bikanga. Online Coding Tutorial
Systems: A New Category of Programming Learning Platforms. In: 2024 IEEE
48th Annual Computers, Software, and Applications Conference (COMPSAC). IEEE,
2024. p. 2222-2227, Osaka, Japan, 2-4 July 2024 https://doi.org/10.1109/
COMPSAC61105.2024.00356

4. A research paper has been published, in iSTEM-Ed 2024 in this peer-reviewed
article (Alasmari et al. [8]

Alasmari, O. A. F., Singer, J. and Bikanga Ada, M. (2024) Analysis of Research into
the Teaching and Learning of Programming: An Updated Review In: The 9th Inter-
national STEM Education Conference 2024 (iSTEM-Ed 2024), Thailand, 31 July- 2
Augest, 2024 https://doi.org/10.1109/iSTEM-Ed62750.2024.10663138

5. A research paper has been accepted in ICETC 2024.

Alasmari, O. A. F., Singer, J. and Bikanga Ada, M. (2024) New Supportive Features
for The Online Coding Tutorial Systems: The Learners and Educators Perspectives In:
The 16th International Conference on Education Technology and Computers (ICETC
2024), Porto, Portugal, 18-21 September, 2024.

1.7 Thesis Outline

This dissertation contains eight chapters, and this section provides an overview of each chap-
ter as follows:

• Chapter Two: Background This chapter will discuss the main concepts of this re-
search, which are programming education, programming learning platforms, online
coding tutorial systems, and instruments for such systems. In addition, this chapter
examines existing studies in the area of online programming education.

• Chapter Three: Research Methodology In this chapter, the five research questions
will be discussed, and the qualitative and quantitative research approaches used in
each study conducted will be discussed. Moreover, the techniques and data analysis
methods that will be implemented will be discussed, along with the analysis of the data
and the desired results in the four design cycles, validation study, and case study.

• Chapter Four: Instrument Development This chapter will present the four design
cycles that are conducted to develop the evaluation instrument in this thesis. Firstly,

https://doi.org/10.1109/COMPSAC61105.2024.00356
https://doi.org/10.1109/COMPSAC61105.2024.00356
https://doi.org/10.1109/iSTEM-Ed62750.2024.10663138

1.7. Thesis Outline 7

an initial draft of the instrument for evaluating online coding tutorial systems was
developed from the systematic literature review. Secondary, this chapter discusses
programming learners’ and educators’ feedback on the initial instrument through an
online survey instrument that will collect learner and educator feedback about online
coding platform interaction. It will also present a revised draft of the instrument (if ap-
plicable). Thirdly, this chapter will present the results of the initial fact-finding studies
(analysing current online coding systems). It will also present a revised draft of the
instrument (if applicable). Lastly, this chapter discusses the development of the Online
Coding Tutorial System prototype and the evaluation of the proposed instrument. This
chapter is also concerned with the design cycles of the proposed instrument; it will
present a revised and final version of the instrument (if applicable).

• Chapter Five: Instrument Validation This chapter will present the validation process
of the developed evaluation instrument.

• Chapter Six: Programming Educators’ Experiences on the Instrument This chap-
ter will present a case study that was carried out to investigate how the intended au-
dience found the use of the proposed instrument to evaluate online coding tutorial
systems.

• Chapter Seven: Discussions This chapter will present the findings and discussion of
the work performed in this research and the extent to which the research questions
have been answered.

• Chapter Eight: Conclusion This chapter will present the conclusions, contribution to
knowledge, limitations, and future directions.

8

Chapter 2

Background

2.1 Chapter Overview

The review in this chapter is to address specific research questions that guide this research
study, and these research questions include:

• What is the current state of programming education and the role of online pro-
gramming learning systems?

• What are the existing instruments and frameworks proposed for online coding
tutorial systems?

• Has previous research in the field of computing education proposed instruments
for evaluating online coding tutorial systems?

• What are the research methodologies suitable for investigating online coding tu-
torial systems?

• Are there any identified gaps or challenges in the research on online coding tuto-
rial systems?

To answer these research questions, this chapter is structured as follows: It begins with an
exploration of programming education concepts and online coding tutorial systems in Sec-
tion 2.2; Section 2.3 highlights the instruments and frameworks proposed for online coding
systems; Section 2.4 discusses the research methods used in computing education. Lastly,
the chapter concludes with a brief summary in Section 2.5.

2.2. Programming Education 9

2.2 Programming Education

The topic of programming education is one that is expanding quickly and has attracted a
lot of interest lately. In addition, effective programming education courses that may assist
novice learners in developing the skills and knowledge necessary to thrive in this sector
are becoming more and more necessary as the demand for qualified programmers in many
industries rises. First, to develop computational thinking skills and empower people to cre-
ate, comprehend, and manipulate computer programs, programming education is defined as
the teaching and learning of computer programming concepts, skills, and problem-solving
techniques [219]. This definition emphasises the significance of computational thinking, a
fundamental idea in programming education. Computational thinking entails decomposing
complicated problems into smaller, more manageable components and applying logic and
algorithms to solve them [218]. Nonetheless, it has been observed that learning and teaching
coding presents a number of challenges that both educators and beginners in programming
face during their coursework [22][79][89]. For example, learning to program requires strong
problem-solving abilities, and learning to code in traditional courses is difficult for those
with weak problem-solving abilities [19][155].

Nevertheless, many researchers have been investigating the difficulties novice learners face
in programming. For example, [156] identified the top programming learning challenges
such as functions, error messages, and variables. In addition, [203] reported that the most
common programming learning problems are the lack of ability to find errors, develop a
program to solve a task, and modularise code using functions and procedures. Moreover,
according to [155], functions and procedures were considered the most challenging when
learning how to program. In addition, syntax errors are considered one of the barriers for
programming novices, delaying the feedback provided to students about the logic of the
code developed [60]. According to a study by [106], teaching programming to students
through the use of interactive and visual aids increased their motivation and level of engage-
ment. Students who were a part of a community of like-minded beginners were more likely
to stick with their programming education, according to a different study [87]. Numerous
attempts have been undertaken over the years [209] to address these issues. For instance,
over the history of programming languages, a number of scholars have worked to create
programming languages whose syntax is appropriate for novices. Programming languages
such as Smalltalk, Pascal, Basic, HyperTalk, Logo, and many more are examples [163]. But
learning difficulties with programming continue to exist. Even computer languages that are
categorised as introductory languages continue to present difficulties for inexperienced pro-
grammers to learn. Most programming beginners find it difficult to understand and use many
programming principles and structures in their own programming activities, as programming
demands a specific way of thinking [118]. There are a few more significant factors that also

2.2. Programming Education 10

affect this state of affairs in programming education. For this reason, it is crucial to under-
stand why beginners in programming choose to study the language [7]. It is also vital to
determine what kind of learning style beginners in programming need to grasp particular
ideas. To find the appropriate course of action that would address the recurring issues of
programming novices, it is necessary to analyse the present ways that are used to teach them
programming.

2.2.1 Approaches to programming education

Numerous strategies have been employed to assist educators and inexperienced students in
overcoming challenges related to teaching and learning coding. One method, for example, is
Project-Based Learning (PBL), in which students of programming work on actual projects
to acquire programming ideas. Project-based learning has been found to increase student mo-
tivation and involvement in a number of studies[105] [106]. This method also places a strong
emphasis on inquiry-based, student-centred learning through the completion of a project or
series of projects. It has been demonstrated to be a successful strategy for improving student
performance in a range of subject areas, encouraging critical thinking and problem-solving
abilities in beginner learners, and [26] [112]. However, studies have indicated that this strat-
egy can be especially useful for advancing student learning in STEM (science, technology,
engineering, and mathematics) sectors [30]. Additionally, studies have demonstrated its effi-
cacy in fostering the growth of 21st-century competencies like ingenuity, inventiveness, and
self-starting [30].

It can be difficult for educators to execute this strategy, despite all of its advantages. For
inexperienced students, it necessitates continual help and direction in addition to a substantial
amount of planning and preparation [112]. Teachers also need to be ready to modify their
lesson plans to fit the needs of specific first-time students and to give continuous feedback
and evaluations all the way through the project. Project-based learning in programming
has been the subject of numerous research studies [74] [224] [114] [147]. The Code.org
curriculum [51] is one example of an online project-based learning system for programming
that is intended for K–12 pupils. Novice learners can work on a variety of projects in the
curriculum, including making games, interactive storytelling, and animations. The projects
are meant to be interesting and enjoyable, but they also give students a chance to practice
their programming abilities.

The literature has also documented the use of Peer Instruction Learning (PIL) as a tech-
nique. It involves inexperienced programmers teaching basic programming ideas to one
another. Peer instruction has been found to enhance student learning and retention in a num-
ber of studies [161] [194]. This strategy has been applied to raise student engagement and
increase learning outcomes in a variety of educational contexts, not just computer science

2.2. Programming Education 11

education [194]. One of the key advantages of this method is that it encourages active learn-
ing and teamwork by allowing inexperienced programmers to share their knowledge and
abilities with one another. Furthermore, because they can divide the effort and assist one
another in problem-solving activities, it lessens the cognitive strain on individual students
[24] [101]. But there are several drawbacks to this strategy as well. For example, it can be
challenging to make sure that each student is contributing to the coding work and is equally
interested. When there is a sizable skill or knowledge gap between the two learners, this
can be especially difficult [24]. This approach’s possible drawback is that not all students or
learning environments will benefit from it. For instance, certain students can find it difficult
to communicate or engage in social situations, or they could prefer to work alone. Despite
these difficulties, research indicates that, when done properly, pair instruction can be a use-
ful teaching strategy. The type of task, the instructor’s level of support, and the calibre of
the pairing are some of the factors that affect how effective it is [24]. Peer education in
programming was found to enhance student performance and engagement in an introductory
programming course, according to a study by Simon et al. (2010). Additionally, the study
discovered that students were more likely to stick with computer science if they took part
in peer training. According to a different study by Porter et al. (2011), peer instruction in
programming was successful in raising student learning results in a course on data structures
and algorithms. Enhancing code quality is one of pair programming’s main advantages. Pair
programming produced higher-quality code than individual programming, according to re-
search by [217], since pairs could find flaws and problems more quickly. According to a
different study by Hanks et al. (2011), pair programming improved code architecture and
design because it allowed pairings to communicate and hone their concepts more success-
fully. Furthermore, one of the main advantages of pair programming is that it can enhance
the quality of the code. Pair programming produced higher-quality code than individual pro-
gramming, according to research by [217], since pairs could find flaws and problems more
quickly. According to a different study by Hanks et al. (2011), pair programming improved
code architecture and design because it allowed pairings to communicate and hone their
concepts more successfully.

Game-Based Learning (GBL) is the third method in this section; it is a novel approach to
teaching coding skills that blends game design ideas with coding education[157]. It uses
games to teach programming topics. Its promise to boost learner motivation, engagement,
and learning outcomes has led to its increasing popularity in recent years [104] [17]. It
employs games to engage students and enrich their learning experience. According to a study
by [195], game-based learning improved information retention and skill acquisition more
than traditional education techniques. Another study by [25] discovered that students’ skill
development was significantly aided by the use of games in higher education. Furthermore, a
study by Hainey (2011) evaluated the effectiveness of game-based learning in raising student

2.2. Programming Education 12

motivation and engagement levels as well as learning results. Furthermore, a number of
studies have demonstrated how well coding game-based learning works to increase students’
interest and coding proficiency. For instance, research by [104] discovered that students
significantly improved their coding skills and demonstrated higher levels of engagement
in the learning process when they created games using Scratch [185] as opposed to using
standard coding instruction techniques. According to different research by [100], students’
motivation and interest in coding increased when they used CodeCombat [50] as a teaching
tool. Students’ coding skills and problem-solving abilities also improved. A multiplayer
game called CodeCombat [50] uses interactive challenges and puzzles to teach coding skills.
Another illustration is the visual programming language Scratch [185], which enables pupils
to make their own animations and games.

The fourth strategy, called Online Learning, teaches programming topics through the use
of online resources. Studies have indicated that teaching programming using online means
can be successful, particularly when paired with other strategies like project-based learning
[20] [24]. Utilising online platforms has grown in popularity recently, especially in the wake
of the COVID-19 pandemic [180]. The flexibility and accessibility of those online platforms
make them ideal for teaching and studying programming [180]. Students can learn at any
time and from any location as long as they have an internet connection [14]. Furthermore,
through discussion boards, chat rooms, and other online resources, online platforms can give
students greater chances for cooperation and communication [57]. However, when it comes
to teaching and learning programming, the quality of the course materials and instructional
design is crucial. Effective online learning environments frequently include a variety of as-
sessment techniques, like peer review and formative assessments, which can support students
in maintaining motivation and engagement [73]. For teaching particular programming topics,
including software design and best practices for coding, online learning can be very useful
[119]. Online learning proved to be an effective method of teaching these topics, which can
be challenging to teach in traditional classroom settings, according to a study by [61].

Numerous online learning platforms are well-known in the field of programming education.
One such platform is Codecademy [49], an interactive website that provides courses in a
number of programming languages, including Python, JavaScript, and Ruby. Moreover,
the interactive platform TryRuby [94] uses the Ruby programming language. Particularly
during the COVID-19 pandemic, the usage of these systems has risen in recent years [5]
[62]. Consequently, web-based learning systems are now more crucial than ever [117].

The majority of post-millennial students studying programming have given up on textbooks
and other conventional learning materials and rely primarily, if not entirely, on online learn-
ing platforms [170]. Furthermore, employing the traditional face-to-face learning style in
programming education is more expensive than using the virtual learning style, as per [144].
As a result, online solutions for self-learning have taken the place of in-person programming

2.2. Programming Education 13

courses at several universities [144]. Furthermore, as per [127], learners with varying ed-
ucational backgrounds and programming experience can become programmers in a shorter
amount of time and with less effort by utilising virtual coding environments, which is an-
other advantage of utilising online platforms in programming education. In addition, such
platforms support learners by facilitating the coding learning process by providing practic-
ing programming problem-solving activities such as interactive tutorials, coding exercises, or
quizzes [19][155]. According to a study by [19], for example, some struggling programmers
require more extensive practical learning resources to help them through the learning process.
These challenges are frequently surmountable through honing problem-solving techniques
in programming through simple, appropriate, and accessible online programming learning
systems that facilitate successful learning strategies, like immediate feedback or deep pro-
gramming learning motivation [19][155]. Stated differently, the availability of efficient on-
line learning platforms for programmeming that cater to the needs of learners and make it
simple and convenient for them to learn and practice programmeming is crucial for learning
to programme effectively [28] [108] [170].

2.2.2 A view of online programming learning systems

According to Kim and Ko [108], online systems in the programming education field can be
divided into several categories. The first category is Interactive Learning Platforms; these
platforms provide learners with interactive coding environments where they can practice
coding and receive instant feedback. In addition, they are designed to make learning to code
more engaging and interactive. One of the most popular interactive learning platforms for
programming is Codecademy [49]. In addition, FreeCodeCamp [72] is a non-profit organisa-
tion that offers interactive coding challenges and projects to help learners build their coding
skills. The platform offers courses in various programming languages, including HTML,
CSS, and JavaScript. Moreover, Khan Academy [107] is another example of this category.
It is an online learning platform that offers courses in various subjects, including computer
programming.

The second category is Web Reference Programming Learning Platforms, these plat-
forms are online platforms that provide learners with access to a wide range of programming
resources, including tutorials, documentation, and code examples. The most popular web
reference programming learning platform is W3Schools [211].

2.2. Programming Education 14

Figure 2.1: A screenshot of W3Schools’ code editor

As shown in Figure 2.1, W3Schools is a web reference programming learning platform that
provides learners with access to tutorials, documentation, and code examples for a wide
range of web development technologies, including HTML, CSS, JavaScript, and SQL. The
platform is free to use and is widely regarded as one of the best resources for learning web
development. Several studies have investigated the effectiveness of W3Schools as a learning
platform.

The third category is Programming Educational Games Systems; these systems are de-
signed to teach programming concepts and skills through interactive games. They are be-
coming increasingly popular as they provide a fun and engaging way for learners to de-
velop their programming skills [152]. There are several types of these systems; for instance,
Puzzle-Based Games. This type requires learners to solve programming puzzles by writing
code to complete a task. Examples of puzzle-based games include Lightbot, Code.org [51],
and Blockly. In addition, Role-Playing Games are another type that allow learners to play a
role in a virtual world where they must use programming skills to complete tasks and solve
problems, such as CodeCombat [50].

2.2. Programming Education 15

The fourth category is Programming Creative Platforms, which are tools that allow users
to create interactive and dynamic digital content using programming languages. These plat-
forms are designed to make programming more accessible and engaging for users with dif-
ferent levels of programming experience. One of the most common programming creative
platforms is Scratch [185], a visual programming language and online community developed
by the MIT Media Lab.

Figure 2.2: A screenshot of Scratch platform

As shown in Figure 2.2, it allows users to create interactive stories, games, and animations
using drag-and-drop blocks [176]. In addition, Processing [162] is an open-source program-
ming language and development environment designed for artists and designers. It allows
users to create interactive graphics, animations, and visualisations using Java-based syntax.

The last category is Massive Open Online Courses, which are designed to be accessible
to anyone with an internet connection. They are typically free or low-cost and offer a wide
range of courses, including programming courses. One of the most common MOOCs for
programming learning is edX [67].

2.2.3 Online coding tutorial systems

As discussed in the previous section, several online programming learning platforms were
developed to facilitate learning and teaching programming. In this research study, the main
focus is Online Coding Tutorial Systems, which adopt many of the features that have been
identified in Kim and Ko’s first category of interactive platforms, along with some aspects of
their creative platforms and MOOCs [108].

2.2. Programming Education 16

Figure 2.3: The components of an online coding tutorial system called “TryRuby”

There are several current online coding tutorial systems, such as LearnPython[175], Try-
Haskell [64], TryJavaScript [159], and TryRuby [94]. As shown in Figure 2.3, such systems
incorporate a set of online interactive services that provide learners with tools to support
their programming learning journey.

An online interactive programming learning system teaches programming through a series
of coding tutorials, and generally provides an interactive shell known as a Read-Eval-Print
loop (REPL), where learners engage by typing fragments of source code into the text editor,
running them, evaluating them, seeing the output, and compiling errors when appropriate
[95]. These interactive systems provide a useful learning approach that allows learners to
gain familiarity with a programming language very quickly [222]. A typical instance of the
online interactive programming learning system concept is “TryRuby”. Figure 2.3 shows
the interface of this system, which incorporates many of the characteristic features of online
interactive programming learning systems, including:

• Live code editing: It is a text box for direct source code entry with syntax highlighting
support. In addition, a toolbar with a ‘Run’ button facilitates the immediate execution
of input source code.

2.2. Programming Education 17

• Contextual instructions: They are scaffolded, hyperlinked tutorials or reference guides
visible on the main screen.

• Lesson sequence: It is a series of coding tutorials.

• Web browser-based: It is a web-based system that can be used through web browsers.

• Interactive feedback: It is an output box for interactive result display.

To define Online Coding Tutorial Systems (OCTSs), some features were adopted that have
been identified in Kim and Ko’s first category of interactive platforms [108], and some as-
pects of the fourth category creative platforms and the fifth category MOOC were integrated.
Accordingly, online coding tutorial systems are defined as systems that teach programming
through a series of structured coding tutorials as well as provide a useful programming learn-
ing approach [222]. Similar to the components of TryRuby shown in Figure 2.3, the most
significant feature that an online coding tutorial system should provide is an interactive in-
terpreter shell known as a Read-Eval-Print loop (REPL). Learners can practice coding by
typing fragments of source code into the text editor, running them, evaluating them, seeing
output, and getting errors when appropriate [95].

To summarise:

• Learning systems that provide novice learners with interactive feedback-driven tools
to support their programming learning journey, provide a useful learning approach
that allows learners to gain familiarity with a programming language quickly [222].
Therefore, we consider the pedagogical dimension in developing OCTS’ evaluation
instruments since these systems are considered learning systems.

• Web-based systems that must teach programming through a series of structured cod-
ing tutorials. Therefore, we consider the technical dimension in developing OCTS’
evaluation instruments since these systems are considered web-based platforms.

• Web-based programming evaluation instrument that gives learners around the world
that have different cultural backgrounds, the opportunity to take advantage of free, ef-
fective, and accessible programming education opportunities. Therefore, we consider
cultural dimension in developing OCTS’ evaluation instruments since these systems
provide open programming educational resources and tools in the virtual world that
enable learners to learn and practice programming easily and conveniently anywhere
[28].

• Programming learning environments that should be analysed from a cognitive per-
spective rather than traditional aspects that are not sufficient to analyse programming
learning environments [81].

2.2. Programming Education 18

2.2.4 Importance of online coding tutorial systems

The importance of these systems has increased in recent years, as they provide a convenient
and easily accessible means for individuals at all skill levels to acquire coding proficiency.
They offer learners a diverse range of resources, such as interactive tutorials, practice exer-
cises, and discussion forums. In addition, interactive programming platforms have gained
popularity as they provide hands-on coding experiences and immediate feedback to learn-
ers. Several studies have been conducted to investigate the effectiveness, user experiences,
and learning outcomes of interactive programming platforms. For example, [151] examines
the usability of interactive programming systems and identifies key design considerations
for supporting novice programmers. Another study explores the impact of an interactive
programming platform on student learning outcomes, engagement, and the effectiveness of
automated assessment and immediate feedback in programming courses [154].

A growing body of research suggests that online coding tutorial systems can effectively fa-
cilitate programming learning. For instance, [15] conducted a study that demonstrated that
due to the progress in cognitive psychology, artificial intelligence, and computer technology,
it has become feasible to design computer systems that are comparable in effectiveness to
human tutors. In addition, these systems bring numerous potential benefits for learners, in-
cluding flexibility, affordability, personalisation, and collaboration. Most of these systems
provide interactive features such as coding editors, instant feedback, and debugging tools.
These features allow learners to practice coding in real-time, receive immediate feedback
on their code, and debug errors. The interactive nature of these systems enhances learner
engagement, reinforces understanding, and helps bridge the gap between theory and prac-
tical application [131]. Moreover, such systems offer a wide range of learning resources,
including tutorials, videos, code examples, and documentation. Learners can access diverse
learning materials that suit their preferred learning styles and needs. This variety of resources
provides learners with multiple perspectives, explanations, and approaches to programming
concepts, enhancing their understanding and learning outcomes [41]. Moreover, such sys-
tems support learners with different learning styles, they offer a variety of instructional ma-
terials, such as text-based tutorials, video lectures, interactive coding exercises, and visual
demonstrations [178]. To summarise, online coding tutorial systems play a crucial role in fa-
cilitating programming learning and have the potential to have a significant impact on novice
learners.

2.2.5 Users of online coding tutorial systems

Online coding tutorial systems have been used by novice programmers, students in program-
ming courses, and learners seeking to learn coding independently. Firstly, novice program-

2.3. Instruments for Evaluating Online Programming Learning Systems 19

mers refer to learners who have limited or no prior experience in coding. They may be
beginners who are exploring programming for the first time or learners transitioning from
other domains [106]. These systems were designed for them since they emphasise founda-
tional programming concepts, basic syntax, and problem-solving skills. Additionally, these
online coding tutorials typically provide step-by-step guidance and interactive exercises to
support learners in their initial coding journey. In addition, these systems are tailored for
students enrolled in programming courses, both at the school and university levels. They
provide them with additional resources, practice exercises, and opportunities for self-paced
learning. On the other hand, these systems are also popular among learners who learn cod-
ing for professional development, these self-learners seek flexible learning resources that
allow them to acquire coding skills at their own pace and convenience [106].

2.3 Instruments for Evaluating Online Programming

Learning Systems

In terms of online programming learning systems, some studies have been conducted to
analyse the design, features, and characteristics of such systems. For instance, Zinovieva et
al. [230] published an article that discusses a comparative analysis of different online pro-
gramming learning platforms for teaching programming according to specific criteria. How-
ever, they analysed different types of programming systems, not particularly online coding
tutorial platforms or interactive coding systems. Moreover, Sim et al.[193] reviewed research
on supporting novice programming, focusing on the implementation of programming envi-
ronments that might be solutions for programming learning problems. Their study specif-
ically focused on tools that support block programming and intelligent tutoring systems.
However, their analysis of the systems was general; no systems’ features were discussed.

In addition, [85], focusses on the Online Python Tutor, a web-based program visualisation
tool for Python. This research explores the popularity of Python as a language for teaching
introductory computer science courses. The tool enables users to write Python programs
directly in a web browser and provides features for step-by-step execution visualisation and
sharing program visualisations online. Addressing sociological barriers to programming is
the primary objective of [106], which identifies the lack of a social context and compelling
learning contexts as challenges in programming education. The study proposes solutions to
address these barriers and highlights the importance of creating engaging environments for
learning programming.

In [128], authors evaluate an instructional design for teaching Python and Java within the
context of mobile application development. The study sheds light on effective pedagogical
strategies that can be incorporated into online coding tutorial systems, providing valuable

2.4. Research Methodologies 20

insights for improving the instructional design of such systems. Although not directly fo-
cused on online coding tutorial systems,[4] investigates the patterns of debugging among
novice computer science students. Debugging is a critical skill in programming and is often
integrated into online coding tutorial systems. This study offers insights into how novices
debug their code, which can inform the development of effective debugging features in on-
line coding tutorial systems. Moreover, a study conducted by [108] and the current research
on ”Online Coding Tutorial System” differ not only in their methodologies but also in their
specific areas of focus and objectives. [108]’s research primarily aimed to evaluate online
coding tutorials using an analytical approach. Their focus was on analysing the content and
instructional methods employed in these tutorials, assessing how they aligned with curricu-
lum design dimensions. By taking this approach, they were able to comprehensively assess
a wide range of tutorials and delve into aspects that may not be easily quantifiable.

Overall, while all the above studies contribute to the field of online coding education, they
differ in their research objectives, methodologies, and areas of emphasis. However, to the
best of our knowledge, no specific instrument or framework for evaluating online coding tu-
torial systems has been developed and validated in the literature of the computing education
field. Therefore, it is significant to propose an evaluation instrument that could support pro-
fessional programming educators in evaluating and selecting effective online coding tutorial
systems for novices in this thesis.

2.4 Research Methodologies

Selecting research methodologies depends on the research questions, objectives, and nature
of the study. Common research methodologies used in the computing education field include
qualitative, quantitative, and mixed-methods approaches. For instance, qualitative research
methodologies are frequently used in computing education to explore subjective experiences,
perceptions, and social contexts. They involve collecting and analysing non-numerical data
to gain in-depth insights into phenomena. For example, a qualitative study conducted by
[213] explored students’ experiences with pair programming in an introductory computer
science course by conducting interviews and observations to understand the benefits, chal-
lenges, and impact of pair programming on student learning.

Another methodology has been used in the computing education field, which is a quanti-
tative research methodology. In using this method, statistical and numerical analyses are
employed to gather and analyse data in computing education. These approaches involve col-
lecting structured data through surveys, tests, or experiments, allowing for statistical analysis
to uncover patterns, relationships, and generalizability. For instance, a quantitative study
conducted by [115] evaluated different approaches to teaching introductory programming.

2.5. Chapter Summary 21

In addition, mixed-methods research is another methodology that combines qualitative and
quantitative approaches to provide a comprehensive understanding of research questions in
computing education. It involves integrating data collection and analysis techniques from
both qualitative and quantitative methodologies to address research objectives and provide a
more complete picture. For example, a study was conducted by [228] to evaluate program-
ming tools and measure the performance of the users. Another methodology that has been
frequently used in the computing education field is design-based research [1] which is the
research methodology that has been adapted in this research to develop the instrument for
evaluating online coding tutorial systems. This research methodology involves iterative cy-
cles of design, implementation, and evaluation of any learning interventions or technologies
[16]. It emphasises the development of practical solutions while simultaneously generating
theoretical insights.

2.5 Chapter Summary

This chapter has covered the introduction of the research, including the problem background
and important concepts. Moreover, an investigation has been done to define those terms that
have been mentioned above.

22

Chapter 3

Research Methodologies

3.1 Chapter Overview

The purpose of this chapter is to identify and justify the research methods that will be used in
this research study to develop and validate the evaluation instrument for online coding tuto-
rial systems. This chapter is structured as follows: Section 3.2 outlines the research questions
addressed in this thesis. Section 3.3 presents the definitions of the research methodology;
Section 3.4 discusses the design-based research methodology and why it has been used in
this thesis; Section 3.5 discusses all the research methodologies that have been used and why
they were used in this thesis to develop the instrument. Section 3.6 presents the timeline of
this research project, concluding with a brief summary in Section 3.7.

3.2 Research Questions

In this thesis, several research questions will be answered to address the main claim, which is
developing and validating an instrument to evaluate online coding tutorial systems that is for-
mulated into one main research question What instrument(s) are appropriate to evaluate
any online coding tutorial systems?

Firstly, in terms of an evaluation instrument development, four research questions are
addressed in Chapter 4:

• RQ1: What are common programming learning difficulties for novices? And which
supportive features are potential solutions for these identified difficulties?

• RQ2: What are appropriate supportive features in online coding tutorial systems from
learner and educator perspectives?

3.3. Research Methodologies– An overview 23

• RQ3: What are the supportive features that exist in current deployed online coding tu-
torial systems but are absent from the instrument? Do the identified supportive features
in the evaluation instrument exist in these systems?

• RQ4: Building on our research findings, what would an online coding tutorial system
look like? Based on a prototype implementation, to what extent are typical learners
satisfied with the features of such an online coding tutorial system?

Secondly, in terms of instrument validation, one research question is addressed in Chap-
ter 5

• RQ5: To what extent is it applicable for programming educators to use the proposed
instrument for evaluating online coding tutorial systems?

Thirdly, in terms of the use of the instrument, one research question is addressed in
Chapter 6

• RQ6: What are the attitudes of programming educators toward using the instrument
to evaluate online coding tutorial systems?

3.3 Research Methodologies– An overview

Research methodologies are the methodical approaches and strategies that scientists can use
to gather, examine, and evaluate data in order to address a research question or go further into
a certain topic [82]. A methodology provides an organised framework for the execution of
research findings and ensures their validity, applicability, and reliability [82]. It also contains
a variety of components, such as research design, data gathering tactics, data analysis tech-
niques, and ethical issues [192]. First, the term ”research design” refers to the approach or
blueprint that guides the entire research process [82]. It outlines the steps that must be taken
to address the research question and accomplish the goals. It may employ mixed, quanti-
tative, or qualitative approaches, depending on the nature of the research topic and the data
required [164]. Second, in terms of data collection methods, these involve gathering infor-
mation or data from relevant sources; examples of such methods are surveys, observations,
interviews, experiments, and document analysis [21]. The choice of data collection strategy
is influenced by the research question, the type of data needed, and the resources available
[33]. Data analysis, which entails arranging, coding, and interpreting the data using suit-
able statistical or qualitative analytic techniques, can be used to examine the data after it has
been acquired in order to derive meaningful conclusions [82]. Finally, ethical considerations
that guarantee the secrecy, privacy, and protection of participant rights are also incorporated

3.4. Design-Based Research Methodology 24

into the research process [33]. Participants must give their informed consent before research
begins, confidentiality must be maintained, and ethical standards established by pertinent
organisations or bodies must be followed [116] [33].

3.4 Design-Based Research Methodology

The current thesis develops and suggests the intended evaluation instrument for online cod-
ing tutorial systems using a design-based research (DBR) methodology. Design-based re-
search is defined as a methodology that integrates theory development and iterative design
procedures to address any complex educational challenge [23] [172]. This methodology is
especially prevalent in the education sciences since it is challenging to supervise educational
interventions in real-world settings [172]. Additionally, these methods often demonstrate
five key characteristics that characterise their approach to research and development in edu-
cational settings [16] [172]:

• Firstly, it focuses on real-world problems within authentic learning environments. In
addition, it emphasises the relevance and applicability of research findings to the ac-
tual challenges faced by educators, students, and other stakeholders in the educational
context [16] [172] [212].

• Secondly, it follows an iterative design process, which involves multiple cycles of
design, implementation, and evaluation. Each iteration in the cycle allows for the
refinement and improvement of the educational intervention based on feedback, data
analysis, and insights gained from previous iterations [16] [172] [39].

• Thirdly, it emphasises collaboration between researchers and practitioners, such as
teachers, instructional designers, or administrators. This collaboration ensures that the
research is informed by practical expertise and that the developed interventions are
relevant and feasible in real-world educational settings [16] [172].

• Fourthly, it contributes to the development and refinement of theoretical frameworks
or models that explain the relationship between the designed interventions and their
impact on teaching and learning. It combines theory development with practical ap-
plication to create evidence-based solutions that can be implemented and tested in
educational contexts [16] [172].

• Lastly, it employs a mixed methods approach, combining qualitative and quantita-
tive data collection and analysis techniques. This allows for a comprehensive under-
standing of the educational intervention’s effects, the underlying processes, and the

3.4. Design-Based Research Methodology 25

contextual factors influencing outcomes [158]. Therefore, this approach has been in-
creasingly adopted and refined over the past few decades [16] [158].

In the field of computing education, this approach has been extensively utilised to develop
either systems, frameworks, instruments, or models that might help in enhancing program-
ming learning. For example, in terms of developing programming educational systems,
Sengupta et al. [186] have used a design-based research approach to integrate computational
thinking into middle school science curricula through the use of agent-based modelling tools.
The authors in this study iteratively designed and refined both the software tools and the in-
structional strategies. Sengupta et al. [186] reported enhanced student engagement and
improved understanding of complex scientific concepts. The findings show that the students
were able to relate computational models to real-world phenomena, indicating a deep inte-
gration of computational thinking into their learning processes. While the work of Sengupta
et al. [186] demonstrated significant benefits of using this approach to design educational
tools, one limitation of the design-based research approach was the heavy reliance on re-
searcher involvement in the classroom, which may affect the scalability and sustainability
of the intervention. The context-specific nature of the findings also poses challenges for
generalising the results to other settings without similar iterative refinements.

Additionally, this method was used in a different study by Kolling et al. [113] to create
BlueJ, an integrated development environment (IDE) made especially to help inexperienced
programmers. In order to improve the system, this study’s iterative design method incorpo-
rated input from teachers and students. According to the authors, BlueJ improved students’
motivation and involvement in learning programming by assisting them in comprehending
object-orientated programming ideas more thoroughly. Although the system was highly ac-
cepted, the repeated cycles of the study were mostly carried out in controlled educational
environments, which might have limited the findings’ wider applicability. Additionally, the
needs of students studying more sophisticated programming may not be immediately met by
the tool’s customisation for beginning learners.

Another study by Kelleher et al. [106] covered the application of design-based research
methodology to create ”Alice,” a novel programming environment that uses drag-and-drop
3D graphics programming to make programming more approachable and entertaining for
beginners. This method was used to build and improve the environment iteratively in re-
sponse to user input and learning objectives. It was discovered that Alice greatly reduces
the initial obstacles that new programmers face. The platform made it possible for new stu-
dents to make games and animations, which gave them an engaging introduction to logic and
programming ideas. Nevertheless, while Alice proved effective in engaging beginners and
helping them understand basic programming constructs, its deviation from standard textual
programming might not prepare students for more traditional programming environments

3.4. Design-Based Research Methodology 26

used in later educational stages or professional settings. The study also faced challenges in
measuring long-term learning outcomes.

Using a design-based research methodology, Weintrop et al. [215] concentrated on creating
and improving Blockly, an online visual programming editor, through iterative refinement.
The tool created for this study used drag-and-drop coding blocks to visually depict pro-
gramming ideas, making it easier for inexperienced programmers to learn. According to
the study’s findings, Blockly greatly decreased the syntax errors that are frequently made in
traditional text-based programming, freeing up students’ time to concentrate more on under-
standing logic and concepts. The tool was particularly effective for younger students and
those new to programming. Nevertheless, despite Blockly helping to reduce the cognitive
load associated with learning programming syntax, there are concerns about its long-term
benefits. The simplified environment may hinder the transition to text-based programming,
potentially limiting learners’ preparedness for more complex programming tasks. Addition-
ally, the study’s focus was limited to initial learning phases, with less attention given to how
skills transfer to more traditional programming environments.

On the other hand, several studies have used design-based research to develop educa-
tional frameworks and instruments in programming education literature. For instance,
Brennan and Resnick [38] have employed a design-based approach to create a comprehen-
sive framework for understanding and assessing computational thinking (CT) in educational
settings. The study involved multiple iterations of designing educational activities using the
Scratch programming environment, evaluating student work, and refining the activities based
on observations and student feedback. The framework outlined dimensions of computational
thinking, including concepts, practices, and perspectives, and provided a structured approach
to assessing students’ CT skills. This framework has been instrumental in guiding curricu-
lum development and assessment strategies in programming education. In spite of providing
a robust model for embedding CT into programming education, its reliance on the Scratch
environment may limit its applicability to other programming languages and environments.
Additionally, the framework’s focus on younger learners may not directly transfer to older
or more advanced students.

In addition, Guzdial’s work [88] uses this approach to explore methods for making com-
puting education accessible to a broader audience, focussing on integrative approaches that
combine computing with other disciplines. The research involved developing educational in-
terventions that were iteratively tested and refined in diverse classroom settings. The findings
of this study demonstrated that integrative approaches could significantly enhance student
engagement and learning in computing, particularly for students not primarily focused on
STEM fields. It also provided a framework for curriculum design that supports a wide range
of educational goals and student backgrounds. While promising, the framework’s broad
applicability might dilute the depth of computing knowledge conveyed, potentially under-

3.4. Design-Based Research Methodology 27

preparing students for specialised roles in computing. The broad scope of the interventions
also makes them more challenging to implement consistently across different educational
settings.

To conclude, design-based research has been proven valuable in developing innovative edu-
cational tools, instruments, and frameworks in computing education literature, particularly in
programming learning, where there is a high cognitive load associated with mastering com-
plex concepts. The reviewed studies above highlight some challenges, such as ensuring the
transferability of skills to more traditional environments, maintaining the balance between
simplification and real-world applicability, and the resource intensity of developing sophis-
ticated adaptive systems. However, they highlight the effectiveness of using this approach
in creating educational interventions that are responsive to learner needs and educational
contexts. In addition, the reviewed studies show that involving close collaboration between
researchers and practitioners, such as educators, programming learners, or instructional de-
signers, ensures that the research is grounded in real-world contexts, addresses practical
challenges, and creates, implements, and refines educational interventions in authentic set-
tings. [23] [212]. Therefore, in this research, this approach is appropriate to develop an
evaluation instrument for online coding tutorial systems in several aspects:

• Integration of theory and practice in programming education

This approach ensures that the instrument for evaluating online coding tutorial systems
is rooted in established programming educational theories and best programming prac-
tices. By incorporating theoretical foundations, the instrument can effectively address
novice programming learning needs and challenges [16] [23]. This helps in creating a
more robust instrument that not only evaluates online coding tutorial systems but also
enhances programming educational outcomes.

• Iterative development and refinement of the instrument

This approach involves a cyclical process of design, implementation, analysis, and
redesign. This iterative nature allows for the continual refinement of designs based on
empirical evidence collected from actual use scenarios [23]. In the context of online
coding tutorial systems, this means that an evaluation instrument can be continually
adjusted to better address the specific challenges and needs of programming novices
and educators encountered during the instructional design and delivery process [16].
For example, the initial instrument might be tested and found lacking in supporting
certain types of interactive exercises, leading to design revisions that better incorporate
these vital elements [52] [23].

• Collaboration with programming educators and novices

3.4. Design-Based Research Methodology 28

This approach allows collaboration with novice programming learners themselves [212].
This collaboration ensures that the instrument developed is not only academically ro-
bust but also practically viable and relevant to the needs of those who will implement
and use it (educators and novices). For example, insights from educators who have ex-
tensive experience in teaching programming can be invaluable in identifying the key
components that make online tutorial systems effective [212].

• Addressing several programming learning problems

This approach allows to consider multiple dimensions simultaneously, such as techni-
cal and content dimensions [47]. Moreover, a model developed through this approach
can thus effectively address complex programming educational problems by consider-
ing all relevant factors, including technological interfaces, instructional strategies, and
learner feedback mechanisms [47] [212].

The five DBR characteristics by [16] In this current research

1- Real educational context Two case studies were conducted in a real
educational context. Learners and educa-
tors involved

2- Involving iterative design process There were four design cycles in this re-
search. .

3- Involving a collaborative partnership
between researchers and practitioners

The system prototype also went through
cycles of iterations where users were
asked to provide feedback.

4- Design and Testing of an Intervention Design and evaluate a system prototype

5- Using mixed methods A systematic literature review, survey,
case studies were used.

Table 3.1: How these characteristics are specified in this research. (The DBR characteristics
adapted from [16])

In addition, as shown in Table 3.1, the five characteristics of design-based research that were
identified by [16] work together to create a research approach that is collaborative, contex-
tually grounded, and focused on producing practical solutions to educational challenges in
this thesis.

3.4.1 A cyclic process and phases of design-based research

According to [132], design-based research follows a cyclic process containing cycles of
analysis, design, evaluation, and revision. Some authors discussed these phases, for instance,

3.4. Design-Based Research Methodology 29

[171] discussed four main phases. The first phase is concerned with the analysis of practical
problems; the second phase involves the development of solutions; and the third phase is
about the iterative cycle of implementing and evaluating the interventions. The last phase is
about reflection. However, in this thesis, the model of Bikanga [34] and [1] that was based
on the original model identified by Mckenney [132] is adopted. They have created a new
model that contains only three main phases instead of four, which are: analysis and explo-
ration, design and construction, and evaluation and reflection. Below, these three phases are
discussed, and how they are presented in this thesis is explained:

• Analysis and Exploration Phase This phase needs context analysis, a review of
literature, and the development of a conceptual or theoretical framework for the study
[132]. In addition, it is when the researcher uses results from both quantitative and
qualitative data analysis to understand a specific phenomenon and validate one set
of findings with the other. This is presented in the first three cycles of this thesis
(Section 4.2, Section 4.3 and Section 4.4). For instance, in the first study in Section
4.2, the computing education literature was reviewed in order to develop the initial
instrument. In Section 4.3, the initial instrument was developed by exploring and
analysing learners and educators feedback. Lastly, in Section 4.4, the instrument has
been updated based on the findings of the analysis of a list of selected current systems.

• Design and Construction Phase This phase is when researchers develop the interven-
tion to evaluate and validate one set of findings with the other. This is presented in the
system prototype development phase of this thesis in Section 4.5.

• Evaluation and Reflection Phase) This phase is where the summative evaluation is
done to conclude whether the solution or intervention meets the predetermined spec-
ifications. As this phase often results in recommendations for improvement of the
intervention, this phase is called semi-summative. It is when the researcher evaluates
the findings with others. This is presented in the system prototype evaluation study in
this thesis in Section 4.5.

Throughout these design-based research phases, there is an emphasis on reflection and crit-
ical analysis, and researchers and practitioners reflect on the data collected, refine the inter-
vention, and make informed decisions for subsequent iterations [158]. The following Figure
3.1 highlights the design cycles in this study and how the study positions itself within the
design-based research phases of GMDR [132]. In addition, the following four versions of
the evaluation instrument for OCTSs are shown:

• The first version of the evaluation instrument emerges from the literature review.

3.4. Design-Based Research Methodology 30

• The second version of the evaluation instrument emerges from the initial (explorative)
fact-finding study.

• The third version of the evaluation instrument emerges from a competitive analysis
study (case study).

• The fourth version of the evaluation instrument comes from the development of the
system prototype, which corresponds to the design and construction of the GMDR [1]
[132]. Also, version four of the evaluation instrument comes from design cycle four,
which corresponds to the evaluation and reflection phases of the GMDR. In this design
cycle, an evaluation study was conducted to evaluate the system prototype.

3.4. Design-Based Research Methodology 31

Analysis/ Exploration

Development/ Construction

Evaluation & Reflection

System Prototype

Development

Literature

Review
Users Evaluation Fact Finding

Study
Case

Study

Design

Cycle 1
Design

Cycle 2

Design

Cycle 3

Design

Cycle 4

Research Design Cycles

Figure 3.1: This cyclic process is adapted from the DBR model created by [34] and [1],
which was based on the original GMDR from Mckenney [132]

3.5. Data Collection Methods for Each Research Question 32

3.5 Data Collection Methods for Each Research Ques-

tion

In this research work on adapting the design-based research methodology, mixed methods
were used during the four design cycles of developing the evaluation instrument for online
coding tutorial systems. As shown in Figure 3.1, in the analysis, development, and evaluation
phases, various methods were used, such as Systematic review for RQ1, online question-
naire for RQ2, RQ4 and RQ6, case study for RQ3, fuzzy Delphi method for RQ5, as
shown in Table 3.2. In the below sections, each research method for each research question
in this thesis is discussed, and the reasons why they have been selected are demonstrated:

3.5. Data Collection Methods for Each Research Question 33

Thesis Contribu-
tions

Research Questions Research Methods Chapters /Sections
No

Instrument devel-
opment

RQ1: What are common programming
learning difficulties for novices? And
which supportive features are potential
solutions for these identified difficul-
ties?

Systematic review Chapter 4 - Section
4.2

Instrument devel-
opment

RQ2: What are appropriate support-
ive features in online coding tutorial
systems from learner and educator per-
spectives?

Online question-
naire

Chapter 4 - Section
4.3

Instrument devel-
opment

RQ3: What are the supportive features
that exist in current deployed online
coding tutorial systems and absent in
the instrument ? Do the identified sup-
portive features in the evaluation in-
strument exists in these systems?

Comparative study Chapter 4 - Section
4.4

Instrument devel-
opment

RQ4: Building on our research find-
ings, what would an online coding tu-
torial system look like? Based on a
prototype implementation, to what ex-
tent are typical learners satisfied with
the features of such an online coding
tutorial system?

Online question-
naire

Chapter 4 - Section
4.5

Instrument vali-
dation

RQ5: To what extent is it applica-
ble to use the proposed instrument for
OCTSs as an tool to evaluate any on-
line coding tutorial systems?

Fuzzy Delphi
method

Chapter 5

Instrument use in
practice

RQ6: What are the attitudes of pro-
gramming educators toward using the
instrument to evaluate online coding
tutorial systems?

Online question-
naire

Chapter 6

Table 3.2: Research methods for each research question in this thesis

3.5. Data Collection Methods for Each Research Question 34

3.5.1 Systematic review to answer RQ1

In this thesis, the research method used to answer the first research question is: What are

common programming learning difficulties for novices? Which supportive features are po-

tential solutions for these identified difficulties? is a systematic literature review process
that was used to explore common programming learning challenges and possible solutions
[199] in Chapter 4 in Section 4.2. This method is a structured approach to identifying, eval-
uating, and synthesising existing research studies on a specific research question or topic
[109]. It aims to provide a comprehensive summary of the available evidence and identify
any gaps or inconsistencies in the literature [42]. In addition, it follows a predetermined pro-
tocol and employs rigorous methods to minimise bias and ensure transparency [109]. This
predefined protocol specifies the criteria for including and excluding studies, minimises se-
lection and publication biases, and offers a more objective assessment of the evidence than
traditional literature reviews [109]. It can reveal areas where the evidence is conflicting or
lacking, thus highlighting the need for further research. This is particularly valuable in com-
puting education, where rapid technological advancements outpace the ability of individual
studies to provide conclusive evidence [42]. However, this approach may quickly become
outdated, as new studies could significantly alter the understanding of effective educational
practices [110]

In the field of computing education, systematic literature reviews serve as a pivotal method-
ology for synthesising existing research findings, identifying gaps in the knowledge base, and
determining prevalent challenges in programming education [42]. For instance, in terms of
identifying programming learning challenges, Pears et al. [153] used systematic review
to analyse research studies related to the teaching of introductory programming. This review
aimed to consolidate understanding of pedagogical challenges and effective practices in this
area. The methodology involved selecting studies based on predefined criteria, focussing
on peer-reviewed articles and conference papers that discussed introductory programming
courses. The review highlighted several key challenges, such as high failure rates, diffi-
culties in learning programming concepts, and the significant cognitive load imposed by the
syntax and semantics of programming languages. It also identified various effective teaching
approaches, including problem-based learning and the use of visual programming environ-
ments. However, the study’s scope was limited to introductory programming, potentially
overlooking challenges experienced by intermediate or advanced learners. Additionally, as
the field evolves, some of the findings might need updating to reflect new programming
languages and evolving educational technologies.

In addition, Lister et al. [123] employed a systematic literature review coupled with empirical
research. This study examined the reading and tracing skills of novice programmers across
multiple countries. The review targeted studies that explicitly assessed these skills through

3.5. Data Collection Methods for Each Research Question 35

tracing exercises and code comprehension tests. The results revealed widespread difficulties
among novices in understanding basic programming constructs and following logical flow in
code. It also underscored the importance of teaching code-tracing skills early in the educa-
tion process to improve overall programming competence. This review was valuable for its
international perspective and empirical approach. However, its focus on early programming
skills may not capture the full spectrum of educational challenges, particularly those related
to more complex programming tasks or advanced concepts.

Moreover, Luxton-Reilly et al. [124] provided a comprehensive systematic literature review
focused on the challenges of teaching and learning programming in higher education. The
methodology involved detailed protocols for article selection, data extraction, and synthesis,
ensuring a thorough examination of current challenges and teaching practices. The review
identified consistent themes such as the struggle with abstract programming concepts, dif-
ficulty in debugging, and issues with motivation and confidence among learners. It also
emphasised the variability in success rates across different educational and cultural contexts,
suggesting the need for more personalised approaches to programming education. Although
this systematic literature review provides an extensive overview of current issues in program-
ming education, the variability in study designs and contexts across the included articles may
impact the generalisability of the findings. The focus on introductory courses also leaves out
challenges pertinent to higher-level programming education. Another study by Ahmad et
al. [3] also published a review of literature focussing on programming teaching and learn-
ing by addressing issues and challenges in the context of introductory programming at the
tertiary level. The main objective of this article was to propose the categorisation of pro-
gramming challenges and highlight the key issues in programming teaching and learning in
higher education for further research and improvement.

To conclude, despite this approach’ challenges, these systematic literature reviews are instru-
mental in collating widespread evidence on the challenges faced by learners and educators
in the field of programming. Each review brings valuable insights into specific aspects of
programming education, but they are often constrained by their focus on certain educational
levels or skills. Future reviews could benefit from incorporating a broader range of studies,
including those that address recent developments in programming languages, educational
technologies, and hybrid teaching modalities, to provide a more comprehensive picture of
the current educational landscape in computing [111].

Therefore, in this research, this approach is appropriate to identify programming learning
difficulties and possible solutions to develop the initial evaluation instrument for several
reasons [103]:

• Firstly, in this study, systematic review helps in providing a comprehensive synthe-
sis of existing research in the programming education field. It helps in structuring the

3.5. Data Collection Methods for Each Research Question 36

initial base of the instrument by identifying programming learning challenges and pos-
sible solutions. In other words, it helps gather data from a wide array of programming
education studies to offer a complete picture of the current knowledge base in the field.
This is crucial in fields like programming education, where diverse factors, including
cognitive, pedagogical, and technological, impact learning outcomes [111].

• Secondary, by using this approach, the specific programming learning challenges that
novice learners face can be captured. It addresses novice learners’ challenges by syn-
thesising research on learners’ difficulties with programming and by using specific
key-terms [103].

• Thirdly, using this approach helps in identifying what works and what does not, which
allows for a more strategic design of online coding tutorial systems, integrating peda-
gogical tools and approaches that have been empirically validated in the programming
education field [103].

3.5.2 Online questionnaire to answer RQ2, RQ4 and RQ6

The research method used to answer both the second research question and the fourth re-
search question is:

RQ2: What are appropriate supportive features in online coding tutorial systems from learner

and educator perspectives?,

RQ4: To what extent are typical learners satisfied with the features of such an online coding

tutorial system?,

RQ6: What are the attitudes of programming educators toward using the instrument to eval-

uate online coding tutorial systems? is an online questionnaire.

For RQ2 in Chapter 4 Section 4.3, it was used to gather quantitative and qualitative data
from a sample of individuals (programming novice learners and educators) through struc-
tured questionnaires to improve the first version of the instrument. Moreover, for RQ4 in
Chapter 4 Section 4.5, it was conducted to test the online coding tutorial system prototype
(PythonOCTS [165]) and to collect quantitative and qualitative data from a sample of indi-
vidual users. In addition, in this study [10], the fourth version of the evaluation instrument
is introduced. Both of those studies aim to evaluate educational technologies used by real
users to capture their thoughts and measure their satisfaction.

In addition, for RQ6 in Chapter 6, it was used to gather quantitative and qualitative data from
the target audience of the instrument (programming educators) through structured question-
naires to investigate their attitudes toward the use of the instrument to evaluate online coding
tutorial systems.

3.5. Data Collection Methods for Each Research Question 37

The online survey method has become a prevalent tool in several disciplines, offering a
convenient and efficient means for data collection across diverse populations [37]. This
method employs digital questionnaires distributed through the internet, allowing researchers
to gather data on a wide range of topics from large groups of people [37]. It has been used
to collect both qualitative and quantitative data [208]. The data collection and processing are
significantly faster as responses are gathered and analysed digitally [53]. They can reach a
geographically dispersed audience more easily than traditional methods [220]. In addition,
respondents can complete surveys at their convenience, which can potentially lead to higher
response rates [63].

However, using this approach has some challenges; for example, the proliferation of online
surveys can lead to survey fatigue, resulting in lower response rates compared to other meth-
ods [68]. Moreover, the absence of the researchers in the process of filling out the online
survey might lead to misinterpretation of questions or disengaged responses [80].

In the field of computing education, the use of online surveys within a mixed-methods
instrument can provide nuanced insights into the programming of educational technologies,
programming pedagogical approaches, and programming learner behaviours [63]. By com-
bining quantitative and qualitative data, researchers can gain a comprehensive understanding
of the multifaceted issues within this field. Studies using mixed methods, including online
surveys, allow for a more holistic view. For instance, Venkatesh, Brown, and Bala [56]
highlight the ability to triangulate data, enhancing the validity of the findings by correlating
quantitative statistical results with qualitative insights. In computing education, where the
impact of technologies often varies significantly by context, this can elucidate how specific
tools support or hinder learning. Online surveys facilitate large-scale data collection across
diverse geographical locations and demographics, which is essential in computing education,
which often involves diverse international audiences such as programming learners. A study
by Dillman et al. [63] exemplifies this by efficiently collecting data from a broad spectrum
of participants, highlighting differing educational needs and responses to the programming
education technology.

However, one major critique is that the anonymity of online surveys can lead to issues with
response quality. According to Gosling et al. [80], participants might provide superficial
answers or exhibit social desirability bias in their responses. In computing education, where
technical subjects are discussed, this might lead to oversimplified answers that lack depth or
critical technical insights. For example, [34] conducted evaluation studies and used an online
questionnaire in the process of developing a mobile application for assessment feedback
to enhance student motivation, engagement in tertiary education. Moreover, a study was
conducted to investigate novice learners’ and educators’ attitudes towards mobile learning in
higher education using an online survey [6]. This study shows the effectiveness of using this
approach to collect both quantitative and qualitative data [6].

3.5. Data Collection Methods for Each Research Question 38

On the other hand, online surveys, especially when unsolicited, suffer from low response
rates, as noted by Sheehan [189]. In the context of computing education, where educators
and students are often bombarded with digital communications, engagement with surveys
can be particularly challenging. This may lead to response biases, where only certain types
of individuals—perhaps those with strong opinions or more time—choose to respond [189].

In this research, for both RQ2 and RQ4, this method is appropriate to be used to improve the
development process of the evaluation instrument because it helps in gathering quantitative
and qualitative data on a large scale, efficiently capturing the perspectives and preferences of
a diverse range of stakeholders, such as programming learners and programming educators
[63]. By using this research approach, quantitative data can be collected from structured
questionnaire responses, and qualitative data from open-ended responses that provide in-
depth insights into appropriate supportive features in an online coding tutorial system from
real users (learners and educators) [225].

3.5.3 Comparative study to answer RQ3

The research method used to answer the third research question: What are the supportive

features that exist in current deployed online coding tutorial systems and are absent in the

instrument? Do the identified supportive features in the instrument exist in these systems?

is a comparative study that was conducted to do a comparative analysis across the features
in the second version of the instrument and seven selected current online coding tutorial
systems. This study has been published and presented in this paper [11].

Comparative studies are typically used across various disciplines to explore the similarities
and differences between groups, conditions, or time periods [83]. This approach can be
particularly powerful for identifying the impacts of different interventions or understanding
variations across different contexts [83].

In the field of computing education, comparative studies are instrumental in understanding
different educational interventions, tools, and pedagogical approaches. By directly com-
paring two or more methods or groups, these studies aim to identify which factors most
effectively promote learning in computer science education. They often provide clear ev-
idence about the effectiveness of different teaching methods or tools by measuring their
impact on student learning outcomes directly against each other. For instance, Al-Zoubi et
al. [91] demonstrated the effectiveness of using gamification compared to traditional teach-
ing methods in enhancing students’ programming skills. Moreover, when properly designed,
comparative studies that include diverse educational settings, tools, and demographics can
offer findings with high external validity, allowing for broader generalizations. For example,
Beaubouef and Mason [27] explored gender differences in computer programming courses
across different institutions.

3.5. Data Collection Methods for Each Research Question 39

One significant limitation of using this approach in computing education is that ensuring
that learning experiences are equivalent across different study conditions can be challenging.
Differences in how instructors interpret and implement interventions may lead to inconsis-
tencies. This issue was highlighted by Lahtinen et al. [118], who noted variability in teaching
approaches when comparing pedagogical techniques in computer science education.

In this research, this approach has been found appropriate to compare online coding tutorial
systems in order to improve the development of the evaluation instrument for online coding
tutorial systems and to identify new features because this research method involves in-depth
examination of a particular case [71]. In the context of online coding tutorial systems, this
approach helps examine current systems to identify new features. It allows to systematically
examine multiple existing systems, draw out key insights, and identify best practices and
areas for improvement [71]. In addition, it helps to identify which features are common
across various successful online coding tutorial systems, as well as those that are unique to
specific systems. This can shed light on essential elements that should be included in any
online coding tutorial and those that can be tailored to specific educational goals or target
audiences.

3.5.4 Fuzzy Delphi method to answer RQ5

The research method used to answer the fifth research question: To what extent is it applica-

ble to use the instrument for OCTSs to evaluate any online coding tutorial systems? that is
answered in Chapter 5 is: fuzzy delphi method. The main aim of this study is to gather qual-
itative data in order to validate the proposed instrument that has been developed in Chapter
4 to evaluate online coding tutorial systems by experts. The Fuzzy Delphi Method (FDM) is
a refined version of the traditional Delphi method, incorporating principles of fuzzy logic to
handle uncertainties and subjective judgements in the decision-making process [99].

This study followed a number of the steps in the Fuzzy Delphi Method, as shown in Figure
3.2. First, gather a team of subject-matter experts, convert their opinions into imprecise
numerical values, and draft a questionnaire outlining the primary issues or elements that need
to be assessed. This usually means using verbal variables, like ”very important,” ”important,”
and ”less important,” that are converted into imprecise numerical scales. Then group the
vague opinions from all the experts together. This can be done by merging fuzzy numbers
and applying a range of mathematical approaches to arrive at a consensus value. Finally,
convert the combined fuzzy findings back into a crisp number to make them understandable
and practical [99].

3.5. Data Collection Methods for Each Research Question 40

Figure 3.2: Validation procedures for the components and the items of the instrument for
evaluating online coding tutorial systems

In computing education, fuzzy Delphi method was used to obtain expert consensus on the
topics and skills that ought to be covered in the most relevant computing curricula. For
instance, as technology advances, there is a continuing need to update educational materi-
als. Experts can provide guidance on emerging trends and essential skills, and fuzzy Delphi
method helps integrate these recommendations to produce a coherent curriculum. Chang,
Hsu, and Chang [221] used fuzzy Delphi method to identify important competences for infor-
mation technology workers in order to keep training programs in line with market demands.
Moreover, the dynamic character of the field poses challenges in developing assessment
techniques that precisely gauge students’ proficiency in computer-related learning. Fuzzy

3.6. Research Timeline 41

Delphi method can help with the development and validation of assessment instruments by
including professional opinions on different assessment processes and their effectiveness. In
a study by [98], evaluation criteria for e-learning systems were created using fuzzy Delphi
method, ensuring comprehensive and relevant assessments.

In this research, this approach has been found appropriate to validate the instrument through
a consultation process to get the final outcome must be interpreted as a statement of expert
consensus. Consequently, the fuzzy Delphi technique is considered a reliable and effec-
tive tool [99]. The Delphi method is a widely acknowledged and employed methodology
with various applications in several disciplines, including education [46]. Furthermore, em-
ploying the fuzzy Delphi approach can help prevent misrepresentation or the loss of crucial
data that could happen when utilising the Delphi approach [130]. Fuzzy Delphi approach
can provide precise and timely input, but it has several drawbacks as well. In addition to
interacting with eager research subjects, researchers need to have background information
relevant to the study’s context, which can be found in the literature review. Other research
that calls for consensus and expert assessment can also use the fuzzy Delphi method. The
study and assessment phase resulted in the development of models, modules, frameworks,
and products. In particular, the fuzzy Delphi method has recently been adopted in the con-
text of computing education as a valuable tool to develop a computing curriculum [120],
to integrate technology into teacher education [97], or to validate elements of computational
thinking for solving problems in programming [227], or to create learning-orientated rubrics
for Computer Science Principles teachers using the Beauty and Joy of Computing curriculum
[169]. Furthermore, the fuzzy Delphi approach can prevent misrepresentation or the loss of
crucial data that can happen when applying the Delphi approach [130]. Even though fuzzy
Delphi method can provide prompt and accurate feedback, there are certain drawbacks. In
addition to interacting with study specialists who are eager to take part in the research, re-
searchers also need to possess prior knowledge relevant to the study’s environment, which
can be found in the literature review.

3.6 Research Timeline

The four design cycles in this research work were conducted over three years, from 2020 to
2023. As shown in Figure 3.3, this research has gone through several phases and iterations
during the last three years to propose the evaluation instrument for online coding tutorial
systems, which is the main objective of this work.

3.7. Chapter Summary 42

Figure 3.3: Research timeline

3.7 Chapter Summary

This chapter proposes the research design and methodologies used in this research work.
Each research question and each study have been clarified, and the method that has been
used for each study has been discussed.

43

Chapter 4

Instrument Development

4.1 Chapter Overview

This chapter describes the process of creating the evaluation instrument for online coding
tutorial systems: iteration. It comprises four design cycles, the purpose of which is to mod-
ify the instrument in accordance with empirical data, the opinion of experts, and rational
analysis. The chapter is structured as follows: Section 4.2 describes the first design cycle
which covered the development of the instrument as described in this paper; Section 4.3
deals with the second design cycle in which the input of educators and learners was incor-
porated; Section 4.4 outlines the third design cycle, which is the analysis of current online
coding systems; Section 4.5 describes the last cycle of the design process, which entails
the assessment and the finalisation of the instrument and concluding with a brief chapter
summary in Section 4.6.

4.2 Instrument Design Cycle One

This section presents the first design cycle in the analysis/exploration phase, which com-
prises a literature review study. Moreover, it proposes the first version of the instrument
for evaluating online coding tutorial systems. The first design cycle in this research aims
to identify common programming learning challenges by conducting a systematic literature
review to propose the main components for the instrument and a set of features as solutions
to develop the first version of the instrument’s items (draft one).

4.2. Instrument Design Cycle One 44

4.2.1 Research question 1

In this study to develop an initial instrument for evaluating online coding tutorial systems,
a systematic literature review and semi-systematic review were conducted to address RQ1:
What are common programming learning difficulties for novices? Which supportive
features are potential solutions for these identified difficulties? This study contributes
to the knowledge by proposing an initial instrument for evaluating online coding tutorial
systems. In addition, it contributes to knowledge by focusing on understanding the com-
mon difficulties related to programming learning, particularly for novice programmers (i.e.
those with little or no prior coding experience). From personal observation, knowledge about
programming learning difficulties is scattered across the literature, and there is little explo-
ration of possible solutions for these problems. We observed that the majority of relevant
research predominantly relied on quantitative, questionnaire-based methodology. Although
such work has uncovered novice learner difficulties, an in-depth understanding of the sup-
portive system features that can overcome these challenges is limited.

4.2.2 Study method

In this research work, the novice problems in learning programming and possible solutions
need to be investigated in order to develop a instrument for evaluating online coding tuto-
rial systems based on novice learners’ and educators’ needs. Therefore, firstly, this section
presents the programming learning difficulties that are identified from programming educa-
tion literature.

4.2.2.1 Novices’ problems

A systematic literature review of programming education has been performed to identify
programming learning difficulties for novices. This systematic review process was done
to gather data [111, 199] to explore common programming learning challenges. An initial
search of articles published between 1980 and 2023 was carried out. Searches were done in
the ACM and IEEE.

• Search databases: The databases searched are mainly from the Association for Com-
puting Machinery (ACM) and the Institute of Electrical and Electronics Engineers
(IEEE). The reason for focusing only on these two databases is that most research
related to computing education can be found in the ACM and IEEE databases, where
most of the well-known computing education conference proceedings and journals can
be found. For instance, Koli Calling, ICER, UKICER, and SIGCSE.

4.2. Instrument Design Cycle One 45

• Search terms: A narrow search was done in order to select and review the papers that
only focused on identifying programming learning problems. In addition, the strategy
that has been used is to search the papers only with the titles of programming, teach-
ing, or learning problems. Therefore, the keywords used were boolean combinators,
as follows:: ”Programming” OR ”Coding” OR ”Computer Programming” AND
”Learning” AND ”Difficulties” OR ”Issues” OR ”Challenges” OR ”Problems”.

• Search process: The search process was done by selecting the ”Title” option in both
databases in the advanced search. Therefore, the number of returned papers seems to
be small.

• Publication date: The initial search was for articles published between 1980 and
2023. This selected period of time has been chosen in order to include most of the
published studies in the programming education field.

Source # Studies Found # Candidates # Selected

IEEE 36 15 5

ACM 16 10 2

Total 52 25 7

Table 4.1: Search summary for each database

• Inclusion and exclusion criteria:As shown in Table 4.1, 52 relevant articles were
found. Then, an initial inclusion screening was done based on title and abstract to
get a subset of candidate studies that only focus on programming learning challenges,
and the article numbers were filtered to 25 after removing duplicates and out-of-focus
papers. From these 25 remaining articles, further screening was performed by consid-
ering full-text content, excluding articles that did not discuss programming learning
difficulties, and removing duplicate and non-English articles. The final number of
selected articles was 7.

4.2. Instrument Design Cycle One 46

Reference Paper Title

[138] Difficulties in learning and teaching programming—views of stu-
dents and tutors

[35] Why is programming so difficult to learn? Patterns of Difficulties
Related to Programming Learning Mid-Stage

[167] Using data to under- stand difficulties of learning to program: A
study with Chinese middle school students

[155] Learning computer program- ming: study of difficulties in learn-
ing programming

[78] A teacher’s view about introductory programming teaching and
learning: Difficulties, strategies and motivations

[92] Difficulties in Learning Structured Programming: A Case Study
in UTP

[203] Learning difficulties in programming courses: undergraduates’
perspective and perception

Table 4.2: List of seven selected papers

From these 25 remaining articles, further screening was performed by considering full-text
content, excluding articles that did not discuss programming learning difficulties, removing
duplicate articles and non-English articles. The final number of the selected articles was 7
(see Table 4.3).

Programming Learning Difficulties [138] [35] [167] [155] [78] [92] [203]

Syntax of programming languages ✓ ✓ ✓ ✓ ✓ ✓

Structure of code ✓ ✓ ✓ ✓ ✓ ✓

Understanding basic concepts ✓ ✓ ✓ ✓ ✓

Debugging ✓ ✓ ✓ ✓

Dividing functionality into procedures ✓ ✓ ✓

Transferring algorithm to concrete implementa-
tion

✓ ✓

Table 4.3: List of programming learning difficulties identified in the literature

4.2.3 Systematic literature review findings

The finding of this systematic review is shown in Table 4.3 that presents a list of program-
ming learning difficulties identified from the programming education literature. The rows are

4.2. Instrument Design Cycle One 47

ordered from the highest number of papers mentioning a problem to the lowest number, with
the requirement that at least two papers must corroborate a difficulty before we include it in
our list. Three problems were observed (syntax, structure and basic concept understanding)
that are inherent in reading and understanding code. The remaining three problems (debug-
ging, proceduralization and algorithm implementation) involve writing and executing code
activities.

In this section, each programming learning problem identified from the literature is defined
and discussed.

• Syntax of programming languages: Syntax refers to the specific rules and structure
that define how programming languages are written [148] . Novices may struggle with
understanding and applying these syntax rules correctly. For example, they might have
difficulty using the proper syntax for declaring variables, defining functions, or writing
conditional statements. Syntax errors can lead to programs that fail to compile or run
correctly. To overcome this challenge, novices need to familiarize themselves with the
syntax of the programming language they are learning and practice writing code to
reinforce their understanding [196] [35][167] [155] [78][92] [203].

• Structure of code: The structure of code refers to how different parts of a program
are organized and interconnected. Novices may find it challenging to design code with
a clear and logical structure [216]. Novice learners may struggle with concepts like
breaking down a problem into smaller components, deciding when to use functions or
classes, or understanding how different sections of code interact. Developing a good
understanding of program organization and modular design principles can help novices
create code that is easier to read, maintain, and debug [138][35][167][155][92][203].

• Understanding basic concepts: Novices often encounter difficulties in grasping the
fundamental concepts of programming. These concepts include variables, loops, con-
ditionals, and data types [190] . For example, understanding how variables store and
manipulate data, or how loops allow for repeated execution of code, can be challenging
for beginners. It is crucial for novices to invest time in studying and practicing these
basic concepts to build a solid foundation in programming [138][167][155][92][203].

• Debugging: Debugging is the process of identifying and fixing errors or bugs in a pro-
gram [13]. Novices may struggle with finding and resolving errors due to their limited
experience. Debugging requires skills such as reading and understanding error mes-
sages, analyzing code logic, and systematically testing different parts of the program.
Novices can improve their debugging skills by using debugging tools provided by in-
tegrated development environments (IDEs), studying error messages, and employing
systematic approaches to locate and fix issues in their code [35] [155] [92] [203] .

4.2. Instrument Design Cycle One 48

• Dividing functionality into procedures: Novices may find it challenging to break
down a complex problem into smaller tasks or procedures. This skill, known as pro-
cedural decomposition, involves identifying the different functionalities required to
solve a problem and dividing them into separate, manageable procedures or functions.
Novices may struggle with determining the appropriate level of granularity for these
procedures or understanding how to pass data between them. Developing a problem-
solving mindset and practicing algorithmic thinking can help novices improve their
ability to divide functionality effectively.

• Transferring algorithm to concrete implementation: Translating an algorithm or
problem-solving approach into actual code can be daunting for novices. They may
struggle with understanding how to represent their ideas and logical steps using the
syntax and constructs of a programming language. This challenge requires both an
understanding of the problem-solving process and a solid grasp of programming con-
cepts. Novices can improve this skill by breaking down problems into smaller steps,
pseudocode or diagramming their algorithmic approach, and gradually translating those
steps into code [118].

4.2.3.1 Potential solutions

After identifying some of programming learning problems from programming education
literature in previous section, a further, semi-systematic review was conducted in order to
investigate possible solutions for these problems. These possible solutions are supportive
features that might be worthwhile to have in online coding tutorial systems to help students
to learn coding more effectively. Therefore, this section presents the identified supportive
features for the identified difficulties in previous section to form an initial instrument for
evaluating online coding tutorial systems which is the main purpose of this research work.
The search strategy used in this study to discover possible solutions for the set of common
programming learning difficulties identified in the previous Section was a semi-systematic
review [199]. Usually the aim of a semi-systematic review approach is to review every single
article that could be relevant to the research topic. Therefore, we use this approach to cover
different types of studies from programming education literature to identify support features
that are helpful to overcome programming novice learners’ difficulties.

The research strategy employed is as follows: First, we looked at the possible solutions
described in the selected articles in the previous section. Some supportive features were
identified to assist novices based on these articles. In addition, the specific difficulties were
used as keywords for further research. Searches were done in the ACM and IEEE databases.

4.2. Instrument Design Cycle One 49

4.2.4 Semi-systematic literature review findings

This section presents the initial list of supportive features that were identified from the pro-
gramming education literature. This initial list of features form the initial instrument for
evaluating online coding tutorial systems. In this section, the list of features were grouped
according to the problems that were identified in the above section. Note this section only
discusses the supportive features that could be incorporated in a software-based program-
ming environment since this research focus on online coding tutorial systems.

Syntax of programming languages

According to [115], syntax difficulties are the overhead of learning the syntax and semantics
of a language at the same time. In addition, [177] mentioned that understanding syntax
problem is simply the challenges that are faced not only by novices but also by learners who
have adequate problem-solving skills and manage to phrase a solution to a programming
problem in terms of informal code, but find it difficult to turn such code into a syntactically
correct computer program. Moreover, according to [177], syntax understanding is not the
main difficulty. Novice learners may know the syntax and semantics of individual statements,
but they do not know how to combine those elements in order to produce valid programs
[200]. However, three helpful supportive features have been discussed in previous studies,
these features are; syntax error messages, underlining syntax errors, and syntax source code
highlighting or coloring.

• Syntax error messages: Reporting syntax errors in a programming environment helps
novice learners reduce mistakes in spelling, punctuation and order of keywords in
their programs [59, 96]. For instance, SyntaxTrain parses a student’s source code
and, if it detects a syntax error, displays an error message and a diagram illustrating
the required syntax [143]. Moreover, [96] mentions that syntax error messages do not
necessarily point the learners in the right direction needed to fix the code but providing
this technique in programming environments help learners to understand syntax and
semantic errors in their code. Providing comprehensible syntax error messages is often
motivated by the need to better serve novice programmers [182].

• Underlining syntax errors: Source code errors in modern integrated development
environments are highlighted interactively with red underlines below problematic lines
of code [29]. This is often accompanied by hints or error message pop-ups.

• Syntax highlighting: Highlighting helps novice learners to identify keywords and
become familiar with language-specific concrete syntax. Researchers have examined
the influence of syntax highlighting on novice comprehension of source code [90, 166].
For instance, [90] conducted a controlled experiment with 390 undergraduate students

4.2. Instrument Design Cycle One 50

in an introductory Java programming course, and the authors examined how syntax
highlighting improves novices’ ability to comprehend source code by measured the
correctness with which they solved small coding tasks.

Structure of code Novice learner earners may struggle to understand how to build blocks
of the code and syntax constructs and commands that perform actions [135]. However, a
supportive feature has been identified, this feature is the visual map.

• Visual map: Natural visual learners are recommended to begin by learning a graphi-
cal programming language, which provides a visual map as a bridge to learning textual
programming languages [197]. In general, program visualization systems are devel-
oped to help beginners understand fundamental programming concepts, structure and
execution [201].

Understanding basic concepts

According to [155] [92], most novice programmers have problems with understanding basic
concepts, which are encountered at the beginning of their learning journey—for instance,
variables, arrays and loops. However, four supportive features have been identified as helpful
to understand basic concepts of programming languages. These features are lesson content,
reference materials, worked solutions and quizzes.

• Lesson content: Programming learning environments can provide contextually rele-
vant, structured lesson content that teaches different concepts [55].

• Reference materials: These authoritative resources can promote understanding of
programming concepts since learners can browse and request these materials at any
time. Such reference information might be organised as a digital textbook [55].

• Worked solutions: The availability of complete example programs and worked solu-
tions was used in some programming learning environments to demonstrate program-
ming concepts [55].

• Quizzes: Basic assessment activities and quizzes allow learners to test their under-
standing. In addition, providing questions along with interactive exercises can help to
reinforce concepts and measure novice learner achievement [55].

Debugging

Novice programmers need to know how to test and analyze their code to identify and correct
problems, and this is called debugging [70]. In addition, novice learners face some difficul-
ties in understanding the problem domain, finding the bugs and errors and resolving bugs

4.2. Instrument Design Cycle One 51

[135] [203] [70]. To help novice learners overcome this difficulty, three supportive features
have been identified. These features are detailed error messages, identifying errors locations
and customized hints.

• Detailed error messages: Raw error messages are often uninformative and sometimes
misleading for novices [166]. Researchers have created tools to provide enhanced
error messages. For instance, CS1 students who saw detailed error messages made
significantly fewer errors than those who only saw raw Java error messages; more
detailed error messages helped students debug their programs [28].

• Identifying error locations: Novice programmers get frustrated by errors, and they
try to debug their code in the hope that they discover the location of the error to make
debugging easier [40, 182]. Therefore, novices persistently seek assistance for prob-
lems with basic syntactic details; identifying errors locations can help novice learners
debug their code [40].

• Customized hints: Providing specific hints based on novice learner errors is a bene-
ficial addition to any teaching programming platform [18][129]. When a novice types
a segment of code and the editor shows an error, the interactive hints feature should
provide some guidance to help the developer find and fix the bug [18, 166].

Dividing functionality into procedures

• Auto-completion: The code editor should predict whatever the programmer wants
to type. In addition, auto-completion is considered a helpful feature for supporting
users in making procedure calls and developing additional procedures that can be used
exactly the same way as the built-in library functions [223]. Moreover, this technique
saves programmer time by helping them to complete keywords rather than typing every
character.

Transferring algorithm to concrete implementation

• Syntax-directed editor: To help novice programmers to use a programming language
to implement an algorithm for solving a specific problem without concern for syntactic
detail, some programming learning tools support templates and menus with syntacti-
cally correct choices for every incomplete part of a program [223]. Such templates can
be based on textual representations or graphical representations.

4.2. Instrument Design Cycle One 52

4.2.5 First version of the instrument

The list of identified supportive features that was discussed in the previous section is synthe-
sized to create the initial instrument for evaluating online coding tutorial systems. The aim of
developing and validating this instrument to provide educators with systems that might help
them in teaching and learning programming in more effective ways since this instrument is
developed based on a systematic approach. In this chapter, the first design cycle of the eval-
uation instrument for OCTSs is presented. The main aim of this design cycle is to identify
answers from the available literature and to develop an initial solution to the problems, and
this initial instrument focuses on the identification of the supportive features to help novice
learners to overcome programming learning difficulties.

4.2. Instrument Design Cycle One 53

Components Items

Syntax of programming languages Syntax error messages

Underlining syntax errors

Syntax highlighting

Structure of code Visual map

Understanding basic concepts Lesson content

Reference materials

Worked solutions

Quizzes

Debugging Detailed error messages

Identifying error locations

Customized hints

Dividing functionality into procedures Auto-completion

Transferring algorithm to concrete
implementation

Syntax-directed editor

Figure 4.1: The initial evaluation instrument for online coding tutorial systems based on the
systematic literature review (design cycle one)

4.3. Instrument Design Cycle Two 54

As shown in Figure 4.1, based on the identified programming learning challenges found in
the literature [167] [155] [78] [92], this first draft for the evaluation instrument for online
coding tutorial systems has shown a number of pragmatic suggestions from the literature for
learner-assistive features that can be provided by coding environments.

4.3 Instrument Design Cycle Two

The online coding tutorial systems offer learners a flexible and accessible platform to acquire
coding skills, while educators benefit from the ability to monitor progress, provide personal-
ized feedback, and facilitate effective instruction at scale. However, to develop truly effective
and engaging online coding tutorial systems, it is crucial to understand the dual perspectives
of both learners and educators. In the previous Section (Section4.2), a comprehensive explo-
ration of existing literature on programming education was conducted. The findings revealed
valuable insights on a list of supportive features that had were used to synthesize the first ver-
sion of the evaluation instrument of OCTSs in Section 4.1.

However, this section presents the second version of the instrument which was developed in
the second design cycle in the analysis/exploration phase [1]. The objective of this second
design cycle is to improve the initial instrument based on the perspectives of both learners
and educators. Therefore, in this study, an online survey was distributed among learners and
educators to investigate their needs and to collect their feedback and suggestions on a current
online coding tutorial system called LearnPython [175].

Conducting this fact-finding study is significant because involving learners and educators
in developing the evaluation instrument for online coding tutorial systems will fill the gap
of lacking of educational needs in the instrument. This goal was achieved by investigating
whether the features in the first version of the evaluation instrument of online coding tutorial
systems that proposed in Section 4.2.5 found helpful by learners and educators. Moreover,
learners and educators were suggesting some new features that were added to the proposed
instrument. Evantually, this chapter proposes the second version of the evaluation instrument
for Online Coding Tutorial Systems (DFOCT) in Section 4.3.6 and presents design cycle
two stage of the research study to explore educators’ and learners’views on the features and
characteristics of a selected online coding tutorial system called (LearnPython [175]).

4.3.1 Research question 2

In this study to improve the first version of the evaluation instrument a second design cycle
was done. In this second design cycle, an online survey instrument was designed in Appendix

4.3. Instrument Design Cycle Two 55

A and distributed to address RQ2: What are the appropriate supportive features in online
coding tutorial systems from learner and educator perspectives?

This study contributes to the knowledge area by improving the development of the evalu-
ation instrument for online coding tutorial systems that is the main purpose of this research
work. This development of the instrument was done through identifying more supportive
features for online coding tutorial systems from learners and educators by using an online
survey instrument. In addition, this online survey aims to measure the satisfaction of the
learners and educators toward the initial instrument and also update the first draft of the
evaluation instrument and produce the second version.

4.3.2 Study method

Th data collection method used in this study to collect the programming educators and learn-
ers’ feedback on the proposed features and characteristics of the first version of evaluation
instrument for online coding tutorials systems and update the instrument in Section 4.2.5
was an online survey as presented in Appendix A. This online survey was distributed among
participants for 2 months from March 2021 to May 2021 after receiving the ethical ap-
proval from the College of Science and Engineering and the number of the application is
300200206.

4.3.2.1 Procedure

This online questionnaire was distributed randomly to fellow educators and learners partici-
pants are asked to fill in a questionnaire on their opinions with the list of system features in
the selected online coding tutorial system called LearnPython [175]. This online survey was
distributed among programming learners and educators by sending an invitation email to the
School of Computing Science mailing list in University of Glasgow. In addition, this online
survey was designed based on the initial instrument elements discussed in Section 4.2, and
it contains four sections as presented in Appendix A, and below is a list of sections of the
online questionnaire.

• The first section is a consent form.

• The second section contains pre-testing questions (demographics questions).

• The third section contains a set of testing instructions.

• The last section contains post-testing questions, i.e. a list of statements about the fea-
tures of online coding tutorial system. This list is designed totally based on the features
in the first version of the evaluation instrument (Section 4.1. These questions gave a

4.3. Instrument Design Cycle Two 56

scale of scores between Strongly Disagree and Strongly Agree while some statements
ask whether the learners and educators are satisfied with the proposed features in the
initial version of the evaluation instrument of OCTSs proposed in Section 4.2.5.this
section contains three parts; Part 1 contains questions about features and characteris-
tics that tested system has. Part 2 contains questions about features and characteristics
that tested system does not has, and Part 3 contains two open ended questions to col-
lect suggestions about other important features of online coding tutorials systems from
participants.

4.3.2.2 Pilot study

Before distributing this online survey, a pilot study was conducted in order to test the clarity
and the validity of the content of the survey. The pilot study was performed between January
and February 2021. Three PhD researchers from Computing Science School in University
of Glasgow participated in this study, and the small number was because, most of the PhD
researchers in the school were busy on their studies. Nevertheless, the information gathered
was enough to enhance the clarity of the questions of the online survey. Some changes
had been made to update the online survey questions based on the participants’ feedback
collected in this pilot study.

4.3.2.3 Participants

The target participants in this study were novice, intermediate, and expert programmers
(learners and educators). By distributing the online survey through various platforms such
as WhatsApp and email, the main aim was to attract participants with diverse programming
backgrounds. Initially, the target sample size was set at around 200 participants to gather
a wide range of feedback and suggestions. However, the actual sample size for this study
turned out to be only 37 participants. The smaller than expected number of participants
could be attributed to several factors. Firstly, it is possible that some of the participants who
received the survey were not interested in the subject matter or did not find it relevant to their
current activities or research focus. As a result, they might have chosen not to participate in
the survey, leading to a lower response rate.

Additionally, the timing of the survey distribution could have influenced the participation
rate. If the survey was sent during a period when potential participants were preoccupied
with other academic or personal commitments, it might have impacted their willingness or
ability to complete the questionnaire. Although the sample size of 37 participants is relatively
small, it is important to note that the study still managed to collect valuable insights and
feedback from learners and educators.

4.3. Instrument Design Cycle Two 57

4.3.2.4 Demographic

After distributing the online survey, the data collected from the second section, as shown
in Appendix A, covers participant demographic information. This characterizes the pro-
gramming learners and educators that were included in the data collection process. The
demographic data revealed that participants were from Saudi Arabia and the UK, that the
total sample was n=37, out of this sample the learner sample was n = 24 and the educator
sample was n = 13. Therefore, in this study, the feedback reflects mostly the feedback given
by learners. Moreover, participants ranged in age from 18 to 60, and the coding experience
data showed that 37% (n = 14) have been coding for three years or more, 31% (n = 11) par-
ticipants have been coding for two to three years, and also 32% (n = 12) participants have no
long-term experience of coding (less than one year of coding).

4.3.3 Data analysis techniques

In this study, to improve the first version of the design instrument for OCTSs quantitative
and qualitative data were collected through the online survey. As presented in Appendix A,
each participant went through three scenarios and subsequently, they completed the ques-
tionnaire items related to both categories of features identified in Section 4.2. The responses
to these Likert scale questions were analyzed using a descriptive statistical technique [69].
For the quantitative data analysis in this part of the study, Excel was utilized as the chosen
analysis tool [145]. The results of these quantitative questions were presented in the form of
histogram graphs, which depicted the frequency distribution of each response option.

For the qualitative data, a thematic analysis of participant responses to the two open-ended
survey questions [205]. Several phases had been followed as described by [36]; gaining
familiarity with data, generating initial codes or labels, searching for themes or main ideas,
reviewing themes or main ideas, defining and naming themes or main ideas, and producing
the report. For this study, the coding was implemented by hand. The codes chosen aimed
to identify the elements that participants noted as important to them in their responses. Out
of 37 participants, only 27 answered the first open-ended question, ‘What other helpful and
usable features or characteristics of online coding tutorial systems would you suggest?
and 10 participants responded to the second open-ended question Any other suggestions?

4.3.4 Study finding

4.3.4.1 Quantitative findings

After each participant went through three scenarios described in Appendix A, each partici-
pants had filled the set of items in the questionnaire related to the features that was identified

4.3. Instrument Design Cycle Two 58

in Section 4.2. In this section, data analysis is processed using quantitative data analysis
techniques. In the implementation of this research using the type or form of descriptive re-
search that is carried out through data collection in the field. The data analysis technique
used in this part of the study for quantitative data analysis is Excel. Below is a list of the
quantitative findings for each features discussed in the online survey:

As presented in Appendix A, the online survey contains a list of questions about each feature
identify in the design cycle one 4.1. In this section, the responses of the survey participants
are presented:

• List of coding lessons The responses to this feature show that 83.7% of the participants
felt that offering coding lessons and tutorials in online coding tutorials systems could
enhance the understanding of the coding topics. It is believed that starting with basic
concepts of programming language in learning coding would be easier for learners
to understand the concepts particularly for learners which are classified as visualize
learners.

• Reference materials The responses to this feature indicate 17.2% of learners and edu-
cators disagree on offering other coding learning material rather than coding tutorials,
they found this feature unhelpful feature in their learning journey. However, most of
the participants (71.4%) of learners and educators agree on offering other coding learn-
ing material such as providing other books and finding extra learning materials might
enhance of learning programming.

• Worked solutions The responses to this feature show 85.7% majority of the learners
and educators felt that providing solutions for quizzes questions allows the learner to
evaluate his/her skills at the end of each section is an importance feature of online
coding tutorials systems.

• Quizzes The responses to this feature show 86.1% majority of the learners and educa-
tors felt that the assessment activity such as quizzes that allows the learner to evaluate
his/her skills at the end of each section is an importance feature of online coding tuto-
rials systems. This is because, the aim of the assessment activity is to evaluate learners
coding skills at the end of each section, and this eventually enhance the thinking and
problem solving skill because they need to quickly think for the answer and solutions
for the given problems. Only 2.8% of participants disagree

On the other hand, the survey contains a list of questions about the system features. In this
section, the responses of the survey participants to the features will be presented:

• Syntax error message The responses to this feature show 83% of the participants felt
that providing a REPL interpreters that print the result as message that indicates errors

4.3. Instrument Design Cycle Two 59

that might code has could enhance learners in understanding of the coding exercises.
It is believed that with the error messages that REPL print would be easier for learners
to understand the error reason particularly for learners which are classified as practical
learners.

• Underlining syntax error The responses to this feature show 57.2% of the learners
and educators felt that providing a REPL interpreters that underlining syntax error
might code has could enhance learners in understanding of the coding exercises. In
addition, only 14.3% of the participants felt that providing this feature has no affect on
their learning programming.

• Syntax highlighting The responses to this feature show 85.9% of of the learners and
educators felt that providing a REPL interpreter that would highlight syntax could
assist learners in understanding of the coding exercises.

• Detailed error message All the participants felt that offering detailed error message
would help learners to avoid careless mistakes.This means providing detailed error
messages found helpful in learning coding.

• Identifying error locations All the learners and educators that participated in this
study agree that all online coding tutorials systems must have a code editor that offer
identifying error locations.

• Customized hints The responses to this feature show 82.8% of the learners and ed-
ucators agree that Customized hints should be applied in all online coding tutorials
systems.

• Visual map The responses to this feature show 71.4% of the participants felt that
having visualizing code editor will help them to learn coding.

• Auto-completion 100% of the participants agree that having coding editor that offers
auto-completion that allow learners to write code more quickly and precisely.

• Syntax-detailed editor The responses to this feature show 57.1% majority of the
learners and educators felt that providing code editor with syntax detailed editor in
online coding tutorials system would enhance the learning journey. Only 14.3% of the
participants felt no.

To summarize, the findings from the Likert scale items revealed that a significant majority
of participants recognized the value of incorporating coding lessons and tutorials into these
systems, as it was believed to enhance learners’ understanding of coding concepts. This
finding was particularly relevant for visual learners, who found it easier to grasp the basics

4.3. Instrument Design Cycle Two 60

of programming language through this approach. Furthermore, the participants expressed
mixed opinions regarding the inclusion of additional coding learning materials. While the
majority agreed that offering supplementary resources such as books and extra learning ma-
terials would enhance their learning experience, a notable portion disagreed, considering this
feature unhelpful in their educational journey. This discrepancy suggests the importance of
considering individual preferences and needs when designing online coding tutorial systems.

The findings also highlighted the significance of assessment activities and quizzes. A large
majority of participants viewed them as valuable tools for evaluating their coding skills
and promoting critical thinking and problem-solving abilities. The ability to assess one’s
progress and knowledge through quizzes was seen as beneficial for self-evaluation and growth.
Regarding the features of the code editor, participants expressed a strong preference for error
messages and syntax highlighting. They believed that error messages generated by REPL
interpreters, specifically those indicating syntax errors, facilitated a better understanding of
coding exercises. Syntax highlighting in code editors was also recognized as a useful feature,
aiding learners in identifying and differentiating coding elements more effectively. Further-
more, participants unanimously agreed on the importance of providing detailed error mes-
sages in the online coding tutorial systems. These messages were seen as valuable in helping
learners avoid careless mistakes and fostering a deeper understanding of coding principles.
Other features, such as identifying error locations in code editors, customized hints, visual
maps, and syntax-detailed editors, received varying degrees of support from participants.
The majority expressed their preference for these features, emphasizing their potential to
enhance the learning journey and improve overall comprehension of coding concepts.

To conclude, the responses from educators’ and learners’ surveys were analysed. Findings
showed that the vast majority of educators and learners were satisfied with the features pre-
sented in the first version of the evaluation instrument. On a more positive note, only few
negative responses received showed that of the participants are not satisfied with some of the
proposed features. For example, Quizzes, References materials, syntax-detailed editor and
underlining error messages.

4.3.4.2 Qualitative findings

After testing the given system (LearnPython [175]), two follow-up open-ended questions
were asked as shown in Appendix A to capture learners and educators thoughts about ap-
propriate features to be in online coding tutorial systems. These questions are; the first
open-ended question, ‘What other helpful and usable features or characteristics of online
coding tutorial systems would you suggest? and 10 participants responded to the second
open-ended question Any other suggestions? This section presents a qualitative data gath-
ered from these two open-ended questions which involved some interesting features from

4.3. Instrument Design Cycle Two 61

participants. This qualitative data give in-depth understanding of the learners and educators
needs in online coding tutorial systems.

Figure 4.2: Word cloud visualization of responses to question one (larger size words indicate
more frequently repeated words and smaller size words indicate less frequently repeated
words found in the participants’ responses)

4.3.4.3 Identified themes from Q1

As shown in Figure 4.2, 27 responses had been received from the first open-ended question
in the online survey. However , as presented in Table 4.4 and Table 4.5, only 24 responses
were suggesting some suggestions, and they had been analysed based on themes and codes.

Theme1: Extra content lessons Adding more advance coding lessons was the main theme
found from the participants’ responses. For instance, one participant mentioned ”providing

more ‘optional’ exercises so the learner can code different problems. The systems tested

only provide one exercise for each section”. This response indicated the need more cod-
ing problems to be provided to the learners who are using online coding systems. Another
participant also suggested the same feature , he/she said ”additional practise exercises with

several difficulty levels”. This response indicates the need for additional coding exercises to
the current coding exercises in LearnPython [175].

Theme2: Reflection notes Another supportive feature has been suggested from the partic-
ipants in this study is providing reflection note as one participant describes reflecting on
learning as: ” I think providing reflection box to write learning achievements might be a very

helpful feature”. Not only one participant suggested this feature, also another participant
responded to the first open ended question and said ”reflection box-learning notes”. These
responses indicate the importance of providing reflection note box in online coding tutorial
systems where the learners can record their learning reflection thoughts.

Theme3: Content organization Another suggestions has been noted from the participants
responses is providing an organized coding lessons. As one participant mentioned ”Organiz-

ing content lessons”. This response to the first open-ended question was short but it seems
that this participant prefer to have an online coding tutorial system that has an organized
coding lessons list that is organized from basic to advanced coding topics.

4.3. Instrument Design Cycle Two 62

Participant responses Codes highlighting par-
ticipant ideas: Signifi-
cant ideas

Themes: Main idea

” providing more ’optional’ exer-
cises so the learner can code differ-
ent problems. The systems tested
only provide one exercise for each
section”

Adding more coding
exercises

Extra content lessons

”provide links to other websites so
the learner can have easy access
to other related content instead of
searching the web again (e.g., links
to GitHub, stackoverflow, geeks for
geeks).”

Adding other similar
websites

Extra resources

” provide other materials such as
video or written steps about how to
code a specific problem”

Adding other materials Extra resources

” May be provide/highlight sub-
sections, so the learner can see that
there are different techniques under
the section. For example, in loop
section the subsection could be (for,
while, etc).”

Adding more sub-
sections

Extra content lessons

” Might be interesting to have a
system that’s capable of exploring
mistakes/misunderstandings /with/
a user - allow the user to reflect on
their misconceptions.”

Ability to reflect on
their understanding

Reflection note

” I believe that most of features you
discussed in this survey are interest-
ing.”

All of the Features All of the Features

” You have covered all, thanks” All of the Features All of the Features

” additional practise exercises with
several difficulty levels ”

Adding more exercises Extra content lessons

”Providing the solution of each cod-
ing exercise.”

Providing solutions Worked solutions

Table 4.4: Participants responses to the first open-ended question-with gray cells indicating
the new features participants suggested (Part 1)

4.3. Instrument Design Cycle Two 63

Participant responses Codes highlighting par-
ticipant ideas: Signifi-
cant ideas

Themes: Main idea

All usable features have already
been mentioned

All of the Features All of the Features

”you have covered most of impor-
tant features”

All of the Features All of the Features

” I think covering basic concept of
programming is an important char-
acteristic to help beginners”

Basic concept Extra content lessons

”The features mentioned are inter-
esting”

All of the Features All of the Features

” Provide many solutions for each
problem, so that the learner could
know multiple ways to solve a prob-
lem or even use specific line code
for other problems”

Adding more exercises Extra content lessons

” I think what mentioned is already
a perfect way . Thank you ”.

All of the Features All of the Features

”You have covered most of the
helpful features”

All of the Features All of the Features

”Providing solution for each coding
exercise”

Providing solutions Worked solutions

”Reflection box” Ability to reflect on
their understanding

Reflection note

” I think providing reflection box to
write learning achievements might
be a very helpful feature”

Ability to reflect on
their understanding

Reflection note

” All the features provided are use-
ful ”

All of the Features All of the Features

”Organizing content lessons” Organizing the content content lessons organi-
zation

”reflection box-learning notes” Ability to reflect on
their understanding

Reflection note

”Content organization- extra
lessons”

Organizing the content Content organization

”more content” Adding more lessons Extra content lessons

Table 4.5: Participants responses to the first open-ended question - with gray cells indicating
the new features participants suggested (Part 2)

4.3. Instrument Design Cycle Two 64

4.3.4.4 Identified themes from Q2

From the second open-ended question only 10 responses had been received. However, as
presented in Table 4.6, only three responses were shown some feedback that had been anal-
ysed based on themes and codes. However, there is no new supportive features can be added
to the initial instrument from this question.

Participant responses Codes highlighting par-
ticipant ideas: Signifi-
cant ideas

Themes: Main idea

”Improve the content itself.” Improving content Content lessons

”you have mentioned interesting
features, good luck”

All of the Features All of the Features

”Interesting study ” All of the Features All of the Features

Table 4.6: Participants responses to the second open-ended question

The main aim of providing the two open-ended questions in this online survey is to identify
new supportive features from learner and educator perspectives that can be added to the
first version of the evaluation instrument for online coding tutorial systems. The qualitative
findings from this online survey are consistent with the earlier literature survey in Section 4.2,
they strongly imply that the learners and educators are satisfied with the features proposed in
Section 4.1. In addition, it is interesting to note that some the responses to both open-ended
questions indicate satisfaction with most of the features.

Interestingly, three new features have been identified from the responses to the two open-
ended questions. These are providing reflection notes, organizing content lessons, and adding
extra content lessons. The main findings from the learner and educator perspectives in the
study emphasize the importance of incorporating user perspectives in the design of the evalu-
ation instrument for online coding tutorial systems. Participants from both groups suggested
several enhancements for these systems, including the addition of a ”Reflection note” fea-
ture, improved content organization, and more coding lessons. These suggestions highlight
the need to cater to learners’ individual needs, enhance their learning experience, and pro-
vide comprehensive and user-friendly resources. The incorporation of user perspectives in
the design process is crucial as it ensures that the resulting tutorial systems align with the
expectations and requirements of the target audience. By involving learners and educators in
the decision-making process, the systems can be tailored to address their specific challenges
and preferences, leading to more effective and engaging learning experiences.

These findings contribute to the overall research goals and objectives by providing valuable
insights into the needs and expectations of learners and educators in the context of online

4.3. Instrument Design Cycle Two 65

coding tutorials. By understanding their perspectives and incorporating their suggestions,
researchers can develop more user-centered and effective educational tools. The study high-
lights the significance of user feedback in guiding the design and improvement of online
coding tutorial systems, ultimately aiming to enhance the learning outcomes and experiences
of programming learners.

4.3.5 The changes in version one of the instrument

In this study, the learners and educators suggested some suggestions and recommendations
for improving online coding tutorial systems. Based on these recommendations, the initial
instrument presented in Section 4.2 has been updated, with the updates in both categories
discussed below.

• Reflection notes

The responses revealed that some of the participants felt the need for reflecting on
their learning journey. This could be achieved based on providing a reflection note
feature. Reflection notes might help to enhance the learning experience and promote
deeper understanding of the learning material. It provides an opportunity for learners
to review their progress, assess their understanding, and think critically about their
learning journey. Both educators and learners emphasized the importance of adding a
”Reflection note” feature to online coding tutorial systems. This feature would provide
a space for learners to write about their learning achievements, reflect on their progress,
and document their understanding of coding concepts. This suggestion indicates a
desire for self-reflection and metacognitive learning, allowing learners to consolidate
their knowledge and track their growth. The inclusion of a reflection note feature
aligns with the broader educational research that highlights the benefits of reflection in
promoting deeper learning and self-awareness.

• Extra list of lessons

Another feature has been mentioned in the participant responses: adding more lists of
coding lessons. Providing this feature might help learners to understand in depth pro-
gramming concepts. Both educators and learners expressed the desire for an increased
number of coding lessons within the online tutorial systems. They emphasized the im-
portance of having a variety of coding exercises, scenarios, and practice opportunities.
By offering a broader range of coding lessons, learners can gain exposure to different
programming concepts, improve their problem-solving skills, and enhance their over-
all coding proficiency. This recommendation reflects the recognition that hands-on
practice and ample coding exercises are essential for effective programming learning.

4.3. Instrument Design Cycle Two 66

• Content organization

Moreover, another feature has been mentioned in the participant responses: organiz-
ing coding lessons. This might help learners to understand programming concepts
from the basic to more advanced concepts. Both educators and learners would like
improved content organization within online coding tutorial systems. Participants ex-
pressed the desire for clear and structured lesson plans or modules, highlighting the
importance of organizing coding lessons in a logical and coherent manner. By pro-
viding a well-structured instrument, learners can navigate through the content more
easily and educators can ensure a comprehensive coverage of coding topics. This sug-
gestion emphasizes the significance of effective instructional design and curriculum
development in online coding education.

4.3.6 Second version of the instrument

As shown in Figure 4.3, the second version of the evaluation instrument for Coding Tutorial
Systems is proposed. Conducting an exploration study by using fact-finding study (online
survey) helped to improve the evaluation instrument in this research work. It also enabled
adding new supportive features for online coding tutorial systems.

4.3. Instrument Design Cycle Two 67

Components Items

Syntax of programming languages Syntax error messages

Underlining syntax errors

Syntax highlighting

Structure of code Visual map

Understanding basic concepts Lesson content

Reference materials

Worked solutions

Quizzes

Extra content lessons

Content organization

Debugging Detailed error messages

Identifying error locations

Customized hints

Dividing functionality into procedures Auto-completion

Transferring algorithm to concrete
implementation

Syntax-directed editor

Improving learning experiences Reflection notes

Figure 4.3: The evaluation instrument for online coding tutorial systems version two based
on initial facts finding study (design cycle two), red text indicates new feature added

4.4. Instrument Design Cycle Three 68

This study fits in the analysis/exploration phase of the Design-Based Research approach
used to structure this research project [1] [34]. It contributed to a better understanding of
the supportive features for OCTSs that were identified in the review of the literature. This
study presented the results of the online survey and a detailed exploration of participants’
experiences (learners’ and educators’ experiences and feedback) on the identified features in
the initial instrument presented in Section 4.1.

In addition, this section concludes the second design cycle of developing the evaluation in-
strument in this research. Nevertheless, there are still concerns about whether these identified
features already exist in current online coding tutorials systems. Therefore, in the next chap-
ter an analysis study will be conducted on selected OCTSs.

4.4 Instrument Design Cycle Three

This chapter presents the last study of the analysis/exploration phase in the design-based
research approach [1] [34] that has been followed in this research work. The purpose of this
study is to gain a comprehensive understanding of existing online coding tutorial systems and
identify their strengths and weaknesses by examining the current state of these platforms.
This section presents the third design cycle in this research, which is a second fact finding
study (comparative study). The main purpose of this comparative study is to assess current
online coding tutorials systems for the presence or absence of the supportive features that
were identified in the version two of the instrument of online coding tutorial systems (as
presented in previous chapter, Section 4.3).

This is an important study because looking at the existing online coding tutorial systems
will give this research work more reliability regarding the needs of proposing evaluation
instrument for online coding tutorial systems. Moreover, the importance of this comparative
study lays behind checking whither there are features that current systems have and are not
exist in the instrument and based on the finding from this comparative study the instrument
will be updated. Lastly, this chapter proposes the third version (draft three) of the evaluation
instrument for Online Coding Tutorial Systems.

4.4.1 Research question 3

This third study in the analysis/exploration phase addresses RQ3: What are the supportive
features that exist in current deployed online coding tutorial systems and absent in
the instrument? Do the identified supportive features in the instrument exist in these
system? The aim is to improve the evaluation instrument for OCTSs based on a comparative
analysis among the second instrument in Section 4.3 and seven selected current online coding

4.4. Instrument Design Cycle Three 69

tutorial systems. In addition, from this comparative analysis new supportive features for
online coding tutorial systems might be identified.

This study contributes to the knowledge area by investigating whether the features in the
instrument version two presented in Section 4.3 exist or missing in current online coding
tutorial systems, also whether they provide any of supportive features that are not mentioned
in the instrument.

4.4.2 Study method

The approach used to improve the second version of the evaluation instrument for OCTSs
was conducting a comparative analysis study [23]. Using this method, seven current online
coding tutorial systems were selected and analyzed.

4.4.2.1 Procedure

The criteria for selecting these systems were drawn up on a systematic basis. Firstly, to
ensure a representative sample of online coding tutorial systems, the selection process in-
volved looking at the top ten programming languages by popularity on GitHub. These lan-
guages were identified as Python, JavaScript, Java, TypeScript, Go, C++, Ruby, PHP, C#,
and C. Compiler-based toolchains were excluded from consideration as they are not particu-
larly suitable for deployment in online coding environments. From the remaining high-level
interpretive/scripting languages, namely Python, JavaScript, Java, TypeScript, Go, Ruby,
and PHP, online coding tutorial systems were identified through a Google search using the
query ”interactive tutorial X,” where X represented each programming language. The highest
ranked links on Google that led to online coding tutorial systems were followed for further
analysis.

Based on this method, the following online coding tutorial systems were selected for the
software survey:

• LearnPython [175]

• TryJavaScript [159]

• LearnJava [173]

• Codecademy LearnTypeScript [48]

• Tour of Go [75]

• RubyMonk [160]

4.4. Instrument Design Cycle Three 70

• LearnPHP [174]

These systems were chosen as representative examples within their respective programming
languages and were deemed appropriate for novice programmers. By analyzing these se-
lected online coding tutorial systems, new supportive features for OCTSs might be identi-
fied.

4.4.3 Data analysis techniques

The process of data analysis employed to evaluate and analyze the current online coding
tutorial systems involved the selection of several systems, followed by an assessment of the
presence or absence of identified supportive features. The evaluation criteria utilized in as-
sessing the seven selected systems were based on a comparison between the list of features
identified in the second version of the evaluation instrument and the features offered by each
system. Each system underwent an examination in which it was reviewed and checked for
the provision of each feature outlined in the list. Furthermore, in addition to evaluating the
presence of the identified features, each system was also checked to determine if it offered
any features that were not initially included in the proposed evaluation instrument. This
comprehensive analysis aimed to identify both the adherence of the selected systems to the
existing instrument and any potential additional features that could enhance the overall de-
sign of online coding tutorial systems.

By conducting this evaluation and analysis, the study sought to gain insights into how well
the current systems align with the identified features and determine if there are any no-
table variations or innovative features not previously considered. This approach allows for
a thorough understanding of the strengths and weaknesses of the existing systems and pro-
vides valuable information to inform the design of improved online coding tutorial systems.
Through this rigorous evaluation process, the study aimed to contribute to the ongoing im-
provement and advancement of online coding tutorial systems by identifying the features that
effectively support novice learners and uncovering potential areas for further enhancement.
By incorporating these findings into the design of future systems, developers and educators
can create more effective and comprehensive platforms that cater to the evolving needs of
novice learners in the coding community.

4.4.4 Study findings

4.4.4.1 Assessment of deployed online coding tutorial systems

Features that are not exist in the deployed systems

4.4. Instrument Design Cycle Three 71

Supportive Features Le
ar

nP
yt

ho
n

Tr
yJ

av
aS

cr
ip

t

Le
ar

nJ
av

a
Le

ar
n-

Ty
pe

Sc
rip

t

To
ur

of
G

o
R

ub
yM

on
k

Le
ar

nP
H

P

Syntax error messages ✓ ✓ ✓ ✓ ✓ ✓
Underlining syntax errors

Syntax highlighting ✓ ✓ ✓ ✓ ✓
Visual map

Lesson content ✓ ✓ ✓ ✓ ✓ ✓ ✓
Reference materials ✓ ✓ ✓ ✓ ✓
Worked solutions ✓ ✓ ✓

Quizzes ✓
Detailed error messages ✓ ✓ ✓ ✓ ✓ ✓ ✓

Identifying error locations ✓ ✓ ✓ ✓
Customized hints ✓
Auto-completion

Syntax-directed editor ✓ ✓ ✓ ✓ ✓ ✓ ✓
Reflection notes

Extra lesson content ✓ ✓ ✓ ✓ ✓ ✓ ✓
Content organization ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 4.7: Comparative analysis of inclusion of supportive features across seven tutorial
systems (grey row indicates complete absence of feature in all systems)

As shown in Table 4.7, seven systems were analysed across 16 supportive features have been
identified in the second version of the evaluation instrument for OCTSs that is presented in
Section 4.3. It is obvious that most of the identified features exist in some systems. For in-
stance, all seven selected systems provide a syntax-directed editor that helps novice learners
be guided when to use a particular syntax by providing templates. In addition, we find that
five of the selected systems have parsers that help novice learners to detect syntax errors by
highlighting errors in the REPL. For example, LearnPython [175], LearnJava [173], Learn-
TypeScript [48], RubyMonk [160] and LearnPHP [174] provide syntax highlighting as the
user enters text. Moreover, we find that TryJavaScript runs a custom parser that provides
extended, beginner-friendly feedback when errors occur.

However, highlighted rows in Table 4.7 indicate four supportive features that are not pro-
vided by any of the studied systems. For example, underlining syntax error, reflection notes,
visual map and auto-completion. In addition, we also note that two features, quizzes and
customized hints are only provided by a single system under study. In summary, as shown
in Table 4.7, the findings of this analysis provide supporting evidence that the current online
coding tutorial systems do not fully address novice programming difficulties. These findings

4.4. Instrument Design Cycle Three 72

represent the first direct demonstration that online coding tutorial systems are not ideal for
novice learners since they lack significant supportive features that have proved to be helpful
for novice programmers to overcome specific programming learning difficulties. or not. One
interpretation of these findings is that current online coding tutorial systems missing some
features For instance, to help novice learners to understand how to divide functionality into
Procedures and support them to develop additional functions/procedures that can be used to
call in exactly the same way as the built-in functions/procedures[223]. In addition, accord-
ing to [55], to help novice learners to understand programming concept, basics assessment
activities and quizzes are useful technique to let novice learners test their understanding. In
addition, providing questions along with interactive exercises can help to reinforce concepts
and measure the novice learner’understanding. Moreover, providing customized hints based
on specific learner errors can help learners to repairing bugs found in their programs [166].
In other words, when a novice programmer types a segment of code and the editor shows an
error, the hints feature will provide some hints to help the learner to find and fix the bug in
the code[166]. According to [197], these graphs make learning programming languages are
easy to understand and allowed novices to learn the structure of code without making syntax
errors. In addition, [214] mentioned that using graphical representation can help novices to
understand the code structure by visualizing how the code structured. According to [166],
visualization tools that illustrate code structure and program execution have been helpful
for novice programmers to develop their understandings of how computer programs func-
tion and the notional machine. While visualization tools are helpful to make the notional
machine and code execution visible, they may also increase learners’ cognitive load and so
make things more complex [166]. Regarding to underlining syntax errors, this feature has
been proved as an important feature for novice learners to show them error messages to avoid
any syntax errors [29].

One implication of these findings is the urgent need for enhanced support for novice pro-
grammers through a more considerate design process for online coding tutorial systems.
Therefore, in this research, an evaluation instrument will be developed based on novice learn-
ers perspectives. In a follow-up phase, we contacted developers of the five selected systems
and explained our research findings, including the identification of ‘must-have’ features to
support novice learners. We asked each developer directly why they did not incorporate such
supportive features into their platforms.

Our study reinforces an important point. Malmi et al. [126] identify three sets of stakehold-
ers for programming learning tools, namely learners, educators and developers. Problems for
learners occur due to communication difficulties and priority mismatches between educators
and developers. It appears that many online coding tutorial systems are created by program-
ming language developers (whether original language designers or enthusiastic advocates)
with minimal input from computing education experts. Anecdotally, this is the case with the

4.4. Instrument Design Cycle Three 73

TryHaskell platform.

Features that are not present in the second version of the instrument

The seven selected online coding tutorial systems were assessed with regard to the support-
ive features in the second version of the evaluation instrument. These seven systems were
analysed and checked in order to identify any feature in these systems that is not provided in
the second version of the evaluation instrument. As result of this analysis study, one support-
ive feature was identified that is present in two of the current systems and is not covered in
the second version of the instrument (see Section 4.3.6). This new feature is offering several
options of programming learning systems. For example, the candidate online coding tuto-
rial system called LearnPython [175] gives the option for the novice learner to choose from
several options of programming languages such as Java, Ruby and JavaScript.

4.4.5 The changes in version two of the instrument

After conducting this comparative analysis study, only one supportive feature has been ex-
plored in this section. In this section, the update on the version two of the instrument pre-
sented in Section 4.3.6 will be discussed. The findings from this second fact finding study
in the analysis/exploration phase enabled the identification of new feature in the instrument.
This new feature is as follow:

• Offering several programming languages

As shown in Figure 4.4, LearnPython [175] provide several options of other program-
ming languages. It is important to provide a diverse range of options to cater to differ-
ent novice learner preferences. This supportive feature might be helpful for learners
to have effective programming learning journey since there are several options of pro-
gramming languages.

4.4. Instrument Design Cycle Three 74

Figure 4.4: A screenshot of an online coding tutorial system that provides several program-
ming languages

4.4.6 Third version of the instrument

As a result of the case study in this section, the second version of the evaluation instrument
of online coding tutorial systems that is presented in Section 4.3 has been updated. Figure
4.5 presents the third version of the evaluation instrument for online coding tutorial systems
that is the main aim of this research work.

4.4. Instrument Design Cycle Three 75

Components Items

Syntax of programming languages Syntax error messages

Underlining syntax errors

Syntax highlighting

Structure of code Visual map

Understanding basic concepts Lesson content

Reference materials

Worked solutions

Quizzes

Extra content lessons

Content organization

Debugging Detailed error messages

Identifying error locations

Customized hints

Dividing functionality into procedures Auto-completion

Transferring algorithm to concrete
implementation

Syntax-directed editor

Improving learning experiences Reflection notes

Offering several programming
languages

Offering several programming languages

Figure 4.5: The evaluation instrument for online coding tutorial systems version three based
on systems analysis-case study (design cycle three), red text indicates new feature added

4.5. Instrument Design Cycle Four 76

This study reported in this chapter fits in the analysis/exploration phase of the Design-Based
Research approach [1][34]. It contributed to investigate the conformance of the current sys-
tems to the identified requirements. A comparative study presented the results of analysing
the current systems. The comparative study results contributed to the second draft of the
evaluation instrument for Online Coding Tutorial System in Section 4.3 by updating the
instrument and adding one new feature. This section concludes design cycle three of the
research. It also concludes Phase three: Analysis and Exploration of GMDR [1][34]. To
address this gap, the research aims to develop an evaluation instrument based on novice
learners’ perspectives. Additionally, the chapter discussed the intention to contact the devel-
opers of the selected systems to share the research findings and discuss the reasons behind
the absence of these supportive features.

4.5 Instrument Design Cycle Four

In this research work, the approach followed is the design-based research model that is cre-
ated by [1] and [34] that is originally adopted by [125]. This design-based approach has three
phases, analysis/exploration phase, design and implementation, evaluation/revision phases.
This section presents the design and the implementation phase for developing an Online
Coding Tutorial System Prototype called Python OCTS [165]. The system prototype devel-
opment is totally based on the third version of the evaluation instrument that presented in
Section 4.4 and that was produced in the third design cycle. Developing an online coding
tutorial system prototype that contains most of the identified features contributed to the third
draft of the evaluation instrument, enabling the understanding of real users needs and subse-
quently generating the features specifications for designing Online Coding tutorials Systems.
It is important to develop a system prototype and to conduct an evaluation study. This be-
cause in design-based research, a design must be implemented to achieve a goal. Providing
a prototype for an invention can answer questions about whether the goal of the research has
been achieved [66]. Therefore, conducting this study contributes to the the objective of this
research work by providing a higher fidelity implementation to test if the goal of developing
efficient educational intervention in this work has been achieved or not.

4.5.1 Design and development of ”Python OCTS”- an online cod-
ing tutorial system prototype

The purpose of this research is to investigate the supportive features that can online coding
tutorial systems provide in order to support programming novices in their learning journey.
Firstly, in this research work a systematic literature review of supportive features was carried

4.5. Instrument Design Cycle Four 77

out to help to identify the initial list of features and to develop the first version of the evalua-
tion instrument that is presented in Section 4.2. In addition to that, user research techniques
were applied throughout this research life cycle to better understand learners’ and educators’
needs because the focus should be on them to understand whether users are satisfied with the
identified features of online coding tutorial systems. An initial fact-finding survey for both
learners and educators was distributed (see Section 4.3) and both educators and learners were
given the opportunity to input through this survey. This data gathering of relevant informa-
tion enabled a clear understanding the supportive features for the Python OCTS prototype.
Additionally, the qualitative data collected from this survey contributes to the development
of the evaluation instrument in this research work.

Moreover, the analysis of the seven current online coding tutorial systems also enabled the
identification of the issues with existing systems and how is developing Python OCTS [165]
prototype could help overcome these limitations and offers a prototype for the missing fea-
tures in current systems. For instance, Learnpython [175], does not incorporate a feature
that enables novice learners to leave their learning notes while they learning through the
coding lessons. TryRuby [94] is one popular Online Coding Tutorial System that is widely
used. Although this case study contributed to the development of the evaluation instrument
of OCTSs by adding new features.

This section presents the list of features necessary to design Python OCTS (system proto-
type). Following the design process approach in this research, the result of the initial system-
atic review of the literature (Section 4.2), the results of the fact-finding study (Section 4.3),
and the results of the comparative study (Section 4.4) and the third draft of the evaluation
instrument for online coding tutorial systems were used in order to design and develop the
system prototype. Therefore, the list of features used in this section to design and develop
the online coding tutorial system prototype is the third version of the instrument presented
in Section 4.4.

4.5.1.1 Defining Python OCTS

The computing education literature previously highlighted the importance of providing novice
learners with interactive coding platforms that help them in learning programming (Chapter
2), it is necessary to look at how ensure the effectiveness of such systems. In this research
work, a set of features have been identified to be in online coding tutorial systems to have
effective systems that support novice learners in their programming learning journey. This
design and implementation phase in the instrument design cycle aims to develop system
called Python Online Coding Tutorial System (Python OCTS) to evaluate after that the fea-
tures provided in this system prototype. Python OCTS [165] consists most of the features
that have been identified during the design process of the instrument in this work. These

4.5. Instrument Design Cycle Four 78

include content and technical-based features. The proposed online coding tutorial system
contains all the above-mentioned features is illustrated as in Figure 4.6.

Figure 4.6: Proposed Python OCTS

4.5.1.2 Python OCTS architecture

The underlying objective was to develop a high -fidelity online coding tutorial system. This
section explains the Python OCTS architecture that enables linking the basic structure of
the components that the system comprise and the communications between these compo-
nents, and describing the different features that comprise it. According to [183], system
architecture is a description of how a software system is organised. To access the system
URL via the internet using their browser in order to log in to the system (https://python-
octs.herokuapp.com/). Each time a user logs into the web interface of the Python OCTS, the
user is authenticated with the server. The system itself is hosted by a cloud platform called
Heroku [93]. This section only provides a brief overview of the system prototype. It is de-
signed to test the third version of the evaluation instrument in Section 4.4. It is also designed
to gives real users the possibility to try most features proposed in this research work. Fig-

4.5. Instrument Design Cycle Four 79

ure 4.7 illustrates the general architecture of the Python OCTS that shows the data transfer
between the users and the system.

4.5. Instrument Design Cycle Four 80

Heroku Flask App

PostgreSQL

Database

Heroku Connect

Add-on

Mapping Table

gunicorn

Pyscopg2

Heroku

APIs
Internet

Learner

Request

Response

Figure 4.7: Python OCTS architecture

4.5. Instrument Design Cycle Four 81

4.5.1.3 User interface design

The tool used to design and develop the Online Coding Tutorial System prototype’ user in-
terface [165] is Visual Studio Code (VS Code) [210] . Visual Studio Code platform is a
free and open-source source code editor developed by Microsoft [136]. It is widely used by
developers for various programming languages and platforms, however, in this system de-
velopment Python programming language was used. Additionally, VS Code [210] provides
a lightweight coding environment with powerful features and a customizable user interface.
Additionally, it is a popular code editor that is widely used for web-based system develop-
ment, and it offers a range of features and extensions that make it easy to write, debug, and
deploy code for web applications. The reasons why this tool was chosen in this research
work to develop the system prototype, is because it has very helpful features for intermedi-
ate developers. For instance, the code editor in this platform offers several helpful features
such as syntax highlighting, code completion, and intelligent suggestions, making it eas-
ier for developers to write code efficiently and with fewer errors. In addition, it supports a
wide range of extensions, which are add-ons that enhance its functionality. For instance, de-
bugging capabilities for multiple programming languages. Developers can set breakpoints,
inspect variables, step through code, and analyze run time behavior to identify and fix issues
in their code. Therefore, VS Code was a great choice for developing this web-based system
prototype (Python-OCTS [165]) with using Python programming language.

4.5.1.4 Hosting technology

The hosting technology used in this research work to host the online coding tutorial system
(PythonOCTS [165]) is Heroku [93]. It is a cloud platform that offers hosting and deploy-
ment services for web-based systems. It provides a platform as a service (PaaS) model,
which means that it abstracts away the underlying infrastructure and allows developers to
focus on building and deploying their applications without worrying about server manage-
ment or configuration. This hosting platform was selected because it provides a scalable and
reliable infrastructure to ensure that the system prototype is accessible to users in the eval-
uation study that will be discussed in this section. In addition, it simplifies the deployment
process by providing easy-to-use tools and integrations. In addition, the database used in
this work to store the users interactions with the system prototype is Heroku Postgres that
Heroku [93] provides. It is an open source database as a trusted, secure, and scalable service
that is optimized for developers. Developers can build engaging, data-driven apps while rely-
ing on Heroku’s expertise and fully managed platform to build, operate, secure, and validate
compliance for their data stack.

4.5. Instrument Design Cycle Four 82

4.5.1.5 Development of the Python OCTS

After designing the system prototype and selecting the appropriate development platforms
and technologies, the system prototype was developed based on the supportive features pre-
sented in the third version of instrument. This section only provides a summary and graphical
representation of the supportive features in Python OCTS. Figure 4.8 shows the homepage of
the system prototype that acts as a starting point for new and returning users/novice learners,
providing an overview of everything it offers. On the left side, the pink bottom moves the
user to the registration page.

Figure 4.8: The home page of the system prototype

In the registration page or the sign-up page users can request themselves and login anytime
without need to start from scratch as shown in Figure 4.9.

Figure 4.9: The registration page in the system prototype

4.5. Instrument Design Cycle Four 83

After the user login the list of lessons of coding will be shown as shown in Figure 4.10. In
this system prototype, only four coding lessons were added to the system to give the users
the ability to know how the online coding tutorial system should look like. In addition, as
shown in the top of the page there are four button that allow users to moves to other pages.

Figure 4.10: The coding lessons list in the system prototype

After clicking on ”Other Materials” button, this page will be shown as shown in Figure 4.11.
It contains a list of helpful resources such as books and other learning materials.

Figure 4.11: The other materials page in the system prototype

The other button goes to a page containing the user feedback survey as shown in Figure 4.12.
This survey related to the evaluation study that was conducted to test the satisfaction of the
users toward the system prototype .

4.5. Instrument Design Cycle Four 84

Figure 4.12: The users feedback page

As shown in Figure 4.13, the first lesson page contains the first programming learning lesson
where the learners learn how to develop the first program in Python called “Hello, World!”.
In addition, as shown in Figure 4.13, the main feature that is developed to provide other
features is the built-in source code editor. In this system prototype, the trinket code editor
was embedded in order to give the system prototype users the ability to test the other features
such as syntax highlighting, syntax error message and underlining syntax errors.

Figure 4.13: The embedded code editor

As shown in Figure 4.14, the system offers quiz feature at the end of each coding lesson to
test the user coding skill.

4.5. Instrument Design Cycle Four 85

Figure 4.14: Quiz on the first lesson

After that as shown in Figure 4.15, the system offers solution feature at the end of each
coding lesson below the quizzes to help users to understand each quizzes gaven.

Figure 4.15: Solution of the quiz

In addition, as shown Figure 4.16 the Python OCTS provides a visual map feature that might
help the users to see how the program code fits together without reading through files and
lines of code. With these visual maps, the organization and relationships in the code, includ-
ing its structure and its dependencies will be shown.

4.5. Instrument Design Cycle Four 86

Figure 4.16: The visual map feature

As shown in Figure 4.17, in the end of each coding lesson page there is a reflective learning
box. In this box, each learner can write down their reflections on their coding learning
journey.

Figure 4.17: The reflection note box

In the Python OCTS, a code editor has been embedded to allow the users the ability to
practice coding. This code editor provides several supportive features, such as shown in
Figure 4.18, the syntax errors will be shown when the user type a wrong syntax.

4.5. Instrument Design Cycle Four 87

Figure 4.18: Syntax errors messages

In addition, another feature the embedded code editor provides which is ”Hints”. It displays
when some segment of code is missing as shown in Figure 4.19.

Figure 4.19: Hints

4.5.2 System features checklist

After developing Python OCTS, a comparative study (see checklist in Table 4.9 has been
done in order to check if Python OCTS has been containing at least most of the identified
features in the third version of the evaluation instrument that have been presented in Section
4.4. As presented in Table 4.9), three features from the third version of the evaluation in-
strument were not provided in Python OCTS; several programming languages, underlining
syntax error and auto completion. The reasons of the absence of these supportive features
are; underlining syntax error and auto-completion were not possible to be provided by the
code editor that was embedded in the system prototype. In terms of providing other pro-
gramming languages, it was considered to just develop a system prototype with few pages
that can real users try.

4.5. Instrument Design Cycle Four 88

Identified features in Section 4.4.6 Does the system prototype contains the feature?

Lesson content ✓

Extra list of lessons ✓

Reference materials ✓

Worked solutions ✓

Quizzes ✓

Reflection notes ✓

Several programming languages

Content organization ✓

Syntax error messages ✓

Underlining syntax errors

Syntax highlighting ✓

Visual map ✓

Customized hints ✓

Auto-completion

Detailed error messages ✓

Identifying error locations ✓

Syntax-detailed editor ✓

Table 4.9: Comparative analysis of identified features in the third version of the instrument
in Section 4.4 across the system prototype features (grey row indicates absence of feature in
the system prototype)

4.5.3 Python OCTS and existing online coding tutorial systems

To summarise, the online coding tutorial system prototype developed in this section contains
most of the features identified in this work while the current online coding tutorial systems
such as TryRuby [94] and LearnPython [175] are missing some of the features in the third
version of the evaluation instrument. For instance, Python OCTS [165] provides several
supportive features that are found helpful such as reflection notes and visual map. These
two features are not provided by LearnPython [175], TryRuby [94] and all the systems se-
lected and analysed in Section 4.4. In addition, other features provided by Python OCTS are
missing in most of the selected current systems such as customized hints, quiz and solutions.

The import of this system prototyping development is that a realistic environment for users
to test most of the features identified in the evaluation instrument for online coding tutorial
systems can be provided. This contributes the main aim of this research by improving the
instrument based on real feedback on most of the features that are missing in current online
coding tutorial systems.

4.5. Instrument Design Cycle Four 89

This section presents the evaluation phase in design-based research approach that is followed
in this work [1] [34]. In addition, this phase covers the fourth design cycle for developing
the evaluation instrument for OCTSs which is the main aim of this research work. The
main purpose of this section is to improve the evaluation instrument of online coding tutorial
systems based on a real users’ feedback from evaluation system prototype that provides
most of the features in the instrument. In this section, the third version of the evaluation
instrument of online coding tutorial systems proposed in the previous Section 4.4 will be
updated in Section 4.5.10 which is version four of the instrument.

4.5.4 Research question 4

This evaluation study was conducted in order to improve the evaluation instrument for OCTSs
based on evaluating Python OCTS [165]. In addition, this study addresses RQ4: Building
on our research findings, what would an online coding tutorial system look like? Based
on a prototype implementation, to what extent are typical learners satisfied with the
features of such an online coding tutorial system?

This study contributes to the knowledge area by improving the development of the evalua-
tion instrument based on the evaluation of real users that use an online coding tutorial system
that provides most of the features in the instrument proposed in (Section 4.4.6). In addition,
this study contributes by proposing the last version of the evaluation instrument.

4.5.5 Study method

In Design-based research, the evaluation phase capture the users satisfaction toward pro-
duced inventions [16]. In this evaluation study, firstly, an analysis study has been conducted
in order to select the appropriate methods and data analysis techniques to evaluate the sys-
tem prototype in programming learning and teaching domain. As presented in Appendix B,
a study was reproduced exactly as the analysis study produced by Sheard et al. [187]. The
aim of this analysis study is to investigate what is the most effective data collection method
and data analysis techniques used in the programming education literature.

As results of the analysis study presented in Appendix B, in this evaluation study, two differ-
ent data collection methods were used. As shown in Figure 4.20, mixed methods have been
used to evaluate Python OCTS. Firstly, using an online survey data and secondly using log
file data. The following sections describe in detail the methods used for this evaluation study.
This study provides an opportunity to test the elements of the third version of the evaluation
instrument for the online coding tutorial systems that has been offered in Section 4.4.

4.5. Instrument Design Cycle Four 90

The methods used in this evaluation study are illustrated in Figure 4.20. Firstly, an online
questionnaire was used as the primary tool for quantitative and qualitative data collection.
The online questionnaire contains of several sections as presented in Appendix B. For in-
stance, consent form, pre-testing questions, and testing questions. Before distributing the
online survey, a pilot study was conducted in order to test the clarity of this online survey
evaluation questions. Additionally, after the participants went through Python OCTS [165]
and completed the online survey questions. The users interactions with Python OCTS were
recorded in the database provided by Herkuo [93]. This log file data collection aims to give
some insights how the users interacted with the system prototype’ features.

4.5.5.1 Participants

The target participants in this evaluation study were users with different programming back-
grounds. By distributing the online survey through various platforms such as WhatsApp,
email and Teams to attract participants with diverse programming backgrounds. Initially, the
target sample size was set at around 200 participants to gather a wide range of feedback and
suggestions from real users on the Python OCTS [165]. Nevertheless, the actual sample size
for this evaluation study turned out to be only 103 participants.

The sample size was smaller than expected number of participants and that might because
of several factors. Firstly, it is possible that some of the individuals who received the online
survey were not interested in trying Python OCTS out and to fill the sections of the online
survey. Moreover, the timing of distributing the online survey could have influenced the
participation rate because this evaluation study was conducted at the end of 2022. If the
survey was sent during a period when potential participants were preoccupied with other
academic commitments, it might have impacted their ability to complete the questionnaire.

Figure 4.20: The evaluation methods that have been used for evaluating Python OCTS

4.5. Instrument Design Cycle Four 91

4.5.5.2 Online survey

During the evaluation study, the researchers conducted an online survey to gather feedback
from programming novice learners and educators. This survey aimed to collect valuable in-
sights and feedback regarding Python OCTS [165]. The study was conducted over a duration
of three months, specifically from November 2022 to January 2023 after receiving an Ethical
approval from the College of Science and Engineering and the number of the application is
(300210254). This online questionnaire was distributed randomly by using different plat-
forms such as Teams and What’s up. Participants were requested to provide their feedback
based on their experiences and interactions with the system prototype (Python OCTS). The
online questionnaire was carefully designed and structured based on the features provided in
the third version of the evaluation instrument presented in Section 4.4. The online question-
naire contains four sections as presented in Appendix B:

• The first section is a consent form.

• The second section contains pre-testing questions (demographics questions).

• The third and the fourth sections contain a set of testing instructions and pro-testing
questions to test the system’ features.

4.5.5.3 Pilot study

Before distributing the online survey, a pilot study was conducted in order to test the clarity
of the survey evaluation questions. The pilot study was performed between September and
October 2022. Five PhD students from the School of Computing Science participated in
this study, and the information gathered was enough to enhance the questions of the online
survey.

4.5.6 Data analysis techniques

The current evaluation study used two methods to investigate user interaction with the system
and measure user satisfaction. The first method, users’ behaviors were observed and recorded
in various aspects, including frequency distribution for users, duration of visits, pages visited,
code editor usage, quiz visits, solution views, and other materials accessed. This phase
utilized log data to capture user actions and interactions.

The second method, users were testing the system and providing their feedback through a
questionnaire. The responses from the questionnaire were then analyzed and compared with
the results obtained from the log data in the first phase. The researcher aimed to identify any
similarities or differences between the two sets of results.

4.5. Instrument Design Cycle Four 92

By combining both quantitative and qualitative data from the observation of user interac-
tions and the analysis of questionnaire responses, a comprehensive understanding of user
behavior and satisfaction with the system can be gained. This approach allows for a deeper
evaluation of the system’s effectiveness and provides insights for potential improvements or
modifications to enhance the user experience.

In analysing qualitative data, a thematic analysis was used on participants’ responses to the
two open-ended survey questions [205]. In this study, several phases had been followed as
described by [36]; gaining familiarity with data, generating initial codes or labels, searching
for themes or main ideas, reviewing themes or main ideas, defining and naming themes or
main ideas, and producing the report. For this study, the coding was implemented by hand.
The codes chosen aimed to identify the elements that participants noted as important to them
in their responses. Out of 103 participants, only 35 answered the first open-ended question,
’What did you like best about the experience?’ and 11 participants responded to the second
open-ended question ‘What did you dislike about the experience?’.

4.5.6.1 Demographic

In the second section of the online survey as shown in Appendix B, several questions on
demographic data were given. The information gathered from this section indicate the pro-
gramming novice learners and educators were included in the data collection process and the
sample comprises a total of 102 participants.

Figure 4.21: The percentage of location of the participants

In addition, the demographic data revealed that participants were from Saudi Arabia and the
UK, As shown in Figure 4.21, the most popular country was Saudi Arabia, then the UK, with
12 participants from other countries. Moreover, participants ranged in age, the ages of the

4.5. Instrument Design Cycle Four 93

study sample ranged from 19-50 years, the age group from 19 - 25 years was 33%, the age
group from 26 - 35 years was 49%, the age group from 36 - 50 years was 18.6%.

Figure 4.22: The percentage of coding experience

Additionally, as shown in Figure 4.22, the participant experience forms a neat bell-shaped
curve, with representation of participants from a range of different coding experience levels.

4.5.7 Study findings

4.5.7.1 Quantitative findings

In this section, the quantitative findings from the participants’ responses will be presented,
as absolute values and percentages. In the third evaluation instrument presented in Section
4.4, there is a list of the system features. In this evaluation study, the online survey contains
five Likert items about five supportive features provided in Python OCTS [165]. Below are
discussed the responses to these items.

• List of coding lessons The number of respondents on (Strongly Disagree) is equal to
0 by 0 %, (Disagree) is equal to 1 by 1 %, (Neither Disagree nor Agree) is equal to 1
by 1 %, (Agree) is equal to 73 by 71.6 %, (Strongly Agree) is equal to 27 by 26.5 %.

• Quiz The number of respondents on (Strongly Disagree) is equal to 1 by 1 %, (Dis-
agree) is equal to 1 by 1 %, (Neither Disagree nor Agree) is equal to 6 by 5.9 %,
(Agree) is equal to 53 by 52 %, (Strongly Agree) is equal to 41 by 40.2 %.

• Complete example The number of respondents on (Strongly Disagree) is equal to 0
by 0 %, (Disagree) is equal to 1 by 1 %, (Neither Disagree nor Agree) is equal to 2 by
2 %, (Agree) is equal to 63 by 61.8 %, (Strongly Agree) is equal to 36 by 35.3 %.

4.5. Instrument Design Cycle Four 94

• Other materials The number of respondents on (Strongly Disagree) is equal to 0 by
0 %, (Disagree) is equal to 1 by 1 %, (Neither Disagree nor Agree) is equal to 19 by
18.6 %, (Agree) is equal to 53 by 52 %, (Strongly Agree) is equal to 29 by 28.4 %.

• Reflection notes The number of respondents on (Strongly Disagree) is equal to (0) by
(0 %), (Disagree) is equal to 1 by 1 %, (Neither Disagree nor Agree) is equal to 5 by
4.9 %, (Agree) is equal to 78 by 76.5 %, (Strongly Agree) is equal to 18 by 17.6 %.

In addition, in the third evaluation instrument presented in previous Section 4.4, there is
a list of the system features. In this evaluation study, the online survey contains 11 Likert
items about 11 technical supportive features provided in Python OCTS [165] or not provided.
Below are discussed the responses to these items.

• Syntax error messages The number of respondents on (Strongly Disagree) is equal to
1 by 1 %, (Disagree) is equal to 0 by 0 %, (Neither Disagree nor Agree) is equal to 1
by 1 %, (Agree) is equal to 76 by 74.5 %, (Strongly Agree) is equal to 24 by 23.5 %.

• Underlining syntax errors The number of respondents on (Strongly Disagree) is
equal to 1 by 1 %, (Disagree) is equal to 0 by 0 %, (Neither Disagree nor Agree)
is equal to 3 by 2.9 %, (Agree) is equal to 68 by 66.7 %, (Strongly Agree) is equal to
30 by 29.4 %.

• Syntax highlighting The number of respondents on (Strongly Disagree) is equal to 1
by 1 %, (Disagree) is equal to 0 by 0 %, (Neither Disagree nor Agree) is equal to 2 by
2 %, (Agree) is equal to 47 by 46.1 %, (Strongly Agree) is equal to 52 by 51 %.

• Visual map The number of respondents on (Strongly Disagree) is equal to 0 by 0 %,
(Disagree) is equal to 1 by 1 %, (Neither Disagree nor Agree) is equal to 35 by 34.3
%, (Agree) is equal to 46 by 45.1 %, (Strongly Agree) is equal to 20 by 19.6 %.

• Code templates The number of respondents on (Strongly Disagree) is equal to 0 by
0 %, (Disagree) is equal to 0 by 0 %, (Neither Disagree nor Agree) is equal to 29 by
28.4 %, (Agree) is equal to 51 by 50 %, (Strongly Agree) is equal to 22 by 21.6 %.

• Identifying errors locations The number of respondents on (Strongly Disagree) is
equal to 1 by 1 %, (Disagree) is equal to 0 by 0 %, (Neither Disagree nor Agree) is
equal to 2 by 2 %, (Agree) is equal to 79 by 77.5 %, (Strongly Agree) is equal to 20
by 19.5 %.

• Customized hints The number of respondents on (Strongly Disagree) is equal to 0 by
0 %, (Disagree) is equal to 0 by 0 %, (Neither Disagree nor Agree) is equal to 6 by 5.9
%, (Agree) is equal to 83 by 81.4 %, (Strongly Agree) is equal to 13 by 12.7 %.

4.5. Instrument Design Cycle Four 95

• Detailed error message The number of respondents on (Strongly Disagree) is equal
to 0 by 0 %, (Disagree) is equal to 0 by 0 %, (Neither Disagree nor Agree) is equal to
6 by 5.9 %, (Agree) is equal to 81 by 79.4 %, (Strongly Agree) is equal to 15 by 14.7
%.

• Auto-completion The number of respondents on (Strongly Disagree) is equal to (0)
by 0 %, (Disagree) is equal to 0 by 0 %, (Neither Disagree nor Agree) is equal to 14
by 13.7 %, (Agree) is equal to 81 by 94 %, (Strongly Agree) is equal to 7 by 6.9 %.

• Several programming languages The number of respondents on (Strongly Disagree)
is equal to 0 by 0 %, (Disagree) is equal to 1 by 1 %, (Neither Disagree nor Agree) is
equal to 19 by 18.6 %, (Agree) is equal to 53 by 52 %, (Strongly Agree) is equal to 29
by 28.4 %.

• Content organization The number of respondents on (Strongly Disagree) is equal to
1 by 1 %, (Disagree) is equal to 1 by 1 %, (Neither Disagree nor Agree) is equal to 6
by 5.9 %, (Agree) is equal to 53 by 52 %, (Strongly Agree) is equal to 41 by 40.2 %.

4.5.7.2 Qualitative findings

After testing Python OCTS [165], two follow-up open-ended questions were asked as pre-
sented in Appendix B to capture participants’ thoughts about other appropriate features to
support novice learners that not provided in the third version of the evaluation instrument.
The aim of these two questions is to improve the development of the evaluation instrument
based on real users evaluations.

This section presents a qualitative data gathered from the two open-ended questions which
involved some interesting features from participants. The participants were asked two open-
ended questions to collect qualitative data. In this section the results from the participants
view will be presented.

4.5.7.3 Identified themes from Q1

The first open-ended question was: What did you like best about the experience?

4.5. Instrument Design Cycle Four 96

Figure 4.23: Responses to Question one

As shown in Figure 4.23, 35 responses had been received from the first open-ended question
in the online survey. However , as presented in Table 4.10, only 25 responses were suggesting
changes. In Table 4.10, 25 responses had been analysed based on themes and codes.

Theme 1: Personalization Personalizing the coding lessons or the coding tutorials was the
main theme found from the participants’ responses. For instance, one participant mentioned
”personalizing the exercises based on my performance”. This response indicated the need
personalizing the learning material in programming context. Another participant also sug-
gested the same feature, he/she said ”personalization”

Theme 2: Other languages Offering the coding lessons or the content of the online coding
tutorial systems with different spoken languages was the main theme found from the partic-
ipants’ responses. For instance, one participant mentioned ”It would be nice tool if it offers

different languages such as Arabic and Spanish”. This response indicated the need to pro-
vide the learning materials with different languages the learning material in programming
context.

4.5. Instrument Design Cycle Four 97

Participants responses Codes highlighting par-
ticipant ideas: Signifi-
cant ideas

Themes: Main idea

”Using the platform was so easy ” Using the tools Tool

”It was very interesting tool to learn
programming”

All of the Features All of the Features

” Personalization” Personalizing the learn-
ing

Personalization

”It would be nice tool if it offers dif-
ferent languages such as Arabic and
Spanish”

Offering other lan-
guages

Providing other lan-
guages

”Nice system with useful features” All of the Features All of the Features

” I think it would be nice if the
system provides different languages
such as Arabic”

Offering other lan-
guages

Providing other lan-
guages

”This online system helps a lot in
understanding basics in Python”

List of coding lessons Content organization

”This online tool looks helpful for
beginners.”

All of the Features All of the Features

” Personalizing the exercises based
on my performance”

Personalizing the learn-
ing

Personalization

”It was interesting experience. ” All of the Features All of the Features

”Detailed explanations and offering
Arabic language”

Offering other lan-
guages

Providing other lan-
guages

”Good platform” All of the Features All of the Features

”Helpful platform” All of the Features All of the Features

”Good experience” All of the Features All of the Features

”Great coding tool” All of the Features All of the Features

”Several useful features ” All of the Features All of the Features

”useful platform” All of the Features All of the Features

”Several useful features ” All of the Features All of the Features

”useful platform” All of the Features All of the Features

”I like the interactive shell” Code editor Code editor

”The organization of the content” List of coding lessons Content organization

”useful platform” All of the Features All of the Features

”Interesting code editor” Code editor Code editor

”Interesting tool” All of the Features All of the Features

”I like the organization of the cod-
ing lessons”

List of coding lessons Content organization

Table 4.10: Participants responses to the first open-ended question in the evaluation study

4.5. Instrument Design Cycle Four 98

4.5.7.4 Identified themes from Q2

The first open-ended question was: What did you dislike about the experience? 11 re-
sponses had been received from the first open-ended question in the online survey. However,
As presented in Table 4.10, only 6 responses were suggesting suggestions. In Table 4.11, 6
responses had been analysed based on themes and codes.

Theme 1: Learning videos Offering learning videos that teach programming in the online
coding tutorial systems was the main theme found from the participants’ responses to the
second open-ended question. For instance, one participant mentioned ”It was interesting

experience, I think having more learning materials for example videos”.

Participants responses Codes highlighting par-
ticipant ideas: Signifi-
cant ideas

Themes: Main idea

”Few coding tutorials ” List of coding lessons Extra content lessons

”Personalizing the coding tutorials
based on users performance”

Personalizing the learn-
ing

Personalization

”I would like to see more Python
topics”

List of coding lessons Extra content lessons

”Needs for more advanced Python
topics”

List of coding lessons Extra content lessons

”the problem with the tool is has
limited lessons”

List of coding lessons Extra content lessons

”It was interesting experience, I
think having more learning materi-
als for example videos ”

Adding videos Learning videos

Table 4.11: Participants responses to the second open-ended question in the evaluation study

4.5.8 Log files

4.5.8.1 Number of visits

From the results in Figure 4.24 it is clear that the total number of visits of users is 456 times,
noting that there are 3 users (ID:2, ID:5,ID:10) did not interact with the site. It is also noted
that the number of times and the rate of using the site differed from one user to another.
For instance, the number of visits to the site ranged from only one 0.2% for user (ID:6) and
reached 64 times for user (ID:4) with a rate of 14%.

4.5. Instrument Design Cycle Four 99

Figure 4.24: Frequency distribution for users

4.5.8.2 Time spent

The results shown in Figure 4.25 indicate that the time taken to visit the site differed from
one user to another, and the least time spent (less than one minute) was for 219 visits of
different users with a rate of 48.1%, and the largest time spent (more than 30 minutes) for a
number of 4 visits of different users with a rate of 0.9%.

Figure 4.25: Frequency distribution for duration/min

4.5. Instrument Design Cycle Four 100

4.5.8.3 Visited pages

The results shown in Figure 4.26 indicate that the visiting pages differed from one user to
another, and the least visited page was (other matter) 3 timesat a rate of 0.7% and the largest
visit was for (Lesson 1) 184 times, At a rate of 40.4%, followed by (Lesson 2) 110 times at
a rate of 24.16%, then (Lesson 3) 52 times at a rate of 11.4%, then (Lesson 4) 28 times at a
rate of 6.1%. The number of visits to (Quiz1) was 34 times, at a rate of 7.5%, then (Quiz2)
24 times, at a rate of 5.2%, then (Quiz3) 15 times, at a rate of 3.3%, and finally (Quiz4) 6
times by 1.4%.

Figure 4.26: Frequency distribution for visit pages

4.5.8.4 Visiting quiz

It is clear from the results shown in Figure 4.27 that the total number of visits of the users
that was not to view quiz was 430 times, at a rate of 68.4%, However the total number of
visits of the users that was to view quiz was only 26 times, at a rate of 31.6%.

4.5. Instrument Design Cycle Four 101

Figure 4.27: Frequency distribution for visit quiz

4.5.8.5 Viewing solution

It is clear from the results shown in Figure 4.28 that the total number of visits of the users that
was not to solutions was 460 times of visits, at a rate of 94.3%. However, the total number
of visits of the users that was to 26 times, at a rate of 5.7%.

Figure 4.28: Frequency distribution for view solution

4.5. Instrument Design Cycle Four 102

4.5.8.6 Viewing other materials

The results indicate that from the total visits of the users that was not to view other materials
was 447 times, at a rate of 98%, However the total number of visits of the users to view other
materials was only 9 times, at a rate of 2%.

This section fits in the design and the implementation phase of the design-based research
approach [125]. It contributed to the main aim of this research work by developing an online
coding tutorial system prototype that contains most of the features in the third version of
the evaluation instrument in order to give users the ability to evaluate the evaluation instru-
ment and refine it. After the responses from the online survey that were analysed. Findings
showed that the vast majority of users were satisfied with the features presented in the sys-
tem prototype. In this section, we discuss all the identified correlations between analysed
data collected from log file that show interactions of users with our online coding tutorial
systems discussed in this Section 4.5.8 and between analysed data collected from online
instrument that distributed among users to measure their satisfaction toward our system pro-
totype that are discussed in Section 4.5.5.2 . In the first phase of the current study, users and
their interaction with the system were observed in terms of (Frequency distribution for users,
Frequency distribution for duration/min, Frequency distribution for visit pages, Frequency
distribution for use code editor, Frequency distribution for visit quiz, Frequency distribution
for view solution, Frequency distribution for view other materials). In the second phase of
the current study, the users tested the system and then measured their satisfaction with the
system through a questionnaire. In this section, the researcher analyzes the users’ responses
and searches for the extent of similarity or difference between the results of the first stage
(Log data) and the results of the second stage (Questionnaire). The following was noted:

• 60 % of users took less than 1 minute, 20 % 1-2 minutes, 80 % less than 2 minutes, 90
% less than 5 minutes. The researcher believes that this period is short to deal with the
program and see all its content.

• Providing quiz 47 % of users, visit quiz, and we note that 92 % of their responses were
agree to strongly agree about (Providing a quiz after each lesson allows me to test my
understanding of basic concepts of Python programming language). This means that
there is an actual benefit, but there may be an exaggeration (overstatement).

• Providing solution 4 % of users show solution, However, 97 % stated that Offering
complete example programs and worked solutions helps me to understand basic con-
cepts of Python programming language. This means that there is an actual benefit, but
there may be an exaggeration (overstatement).

• View other materials 4 % of users view other materials, However, 80 % stated that
Offering extra learning materials as other learning sources helps me to understand

4.5. Instrument Design Cycle Four 103

basic Python concepts. This means that there is an actual benefit, but there may be an
exaggeration (overstatement).

4.5.9 The changes in version three of the instrument

In this section, the updates on the version three of the instrument presented in Section 4.4.6
will be discussed. Below the updates in both categories discussed: Findings from the third
fact finding study enabled the identification of new features in the instrument. These new
features are as follows:

• Learning videos

• Offering several languages

Findings from the third fact finding study enabled the identification of new feature in the
instrument. The new feature is as follows:

• Personalization

4.5.10 Fourth version of the instrument

As shown in Figure 4.29, the fourth version of the evaluation instrument for online cod-
ing tutorial systems is proposed. This evaluation study helped to develop and improve the
evaluation instrument by adding new items.

4.5. Instrument Design Cycle Four 104

Components Items

Syntax of programming languages Syntax error messages

Underlining syntax errors

Syntax highlighting

Structure of code Visual map

Understanding basic concepts Lesson content

Worked solutions

Quizzes

Extra content lessons

Content organization

Debugging Detailed error messages

Identifying error locations

Customized hints

Dividing functionality into procedures Auto-completion

Transferring algorithm to concrete
implementation

Syntax-directed editor

Improving learning experiences Reflection notes

Personalisation

Offering several programming
languages

Several programming languages

Supporting programming learning
resources

Learning Videos

Reference materials

Understanding lesson content Offering several languages

Figure 4.29: Th evaluation instrument for online coding tutorial systems version four based
on systems prototype evaluation (design cycle four, changes in red)

4.6. Chapter Summary 105

4.6 Chapter Summary

This chapter presents the process of developing the evaluation instrument for online coding
tutorial systems in this thesis by using design-based methodology. The four design cycles of
designing the instrument have been presented and discussed in detail in this chapter.

106

Chapter 5

Instrument Validation

5.1 Chapter Overview

This chapter presents the study conducted to validate the proposed instrument for evaluating
online coding tutorial systems that was developed and presented in Chapter 4. This chapter
is laid out as follows: Section 5.2 presents the research question that will be answered in
this validation study, followed by Section 5.3 discusses the method used to validate the in-
strument, Section 5.4 discusses the data analysis techniques used in this study, Section 5.5
presents and discusses the findings of this validation study, Section 5.6 presents and dis-
cusses the proposed evaluation instrument in this thesis that could be used by programming
educators, and finally Section 5.7 concludes this validation study.

5.2 Research Question 5

This study addresses the fifth research question in this thesis: RQ5: To what extent is it
applicable to use the proposed instrument for OCTSs as a tool to evaluate any online
coding tutorial systems? This study contributes to the knowledge area by checking the
validity of each component and each item presented in the evaluation instrument of online
coding tutorial systems in Chapter 4. The validation is based on a consultation with a group
of selected experts in the programming education field. The validation process, which uses
the fuzzy Delphi method [99] is reported in detail in this chapter.

5.3 Study Method

In this study, the fuzzy Delphi method (FDM) was used to validate the online coding tutorial
systems assessment instrument, which was developed in Chapter 4. This method is a more

5.3. Study Method 107

sophisticated form of the Delphi approach [122]. It uses fuzzy logic to handle uncertainties
and subjective judgements inherent in the consensus of the experts [99] [181]. This method
is most useful in research design that seeks to get experts opinions on some issues or on
specific products, such as the evaluation of educational tools, where the process of reach-
ing consensus must be systematic, progressive process [100]. This is in accordance with
several other studies that have used the fuzzy Delphi method in various analyses. For in-
stance, in Morales et al.[141]’s study, a technological tool called “MUETBot” has been used
to enhance the reading skills of the Malaysian University English Test. Its procedures in-
volved the construction of a checklist of questionnaires, invitations to leaders of professional
panels, data collection and analysis, and cycles of feedback and improvement till important
consensus was achieved among the experts concerning certain functions. The analysis of
this study also demonstrates the fuzzy Delphi method’s ability to map extensive consensus
of knowledge by the FDM with the core attributes of educational tools, strengthening the
appropriateness of applying the tool to this research [141].

Further, the fuzzy Delphi method has been successfully applied; for example, Mostafa et
al. [142] conducted a study to assess the concession period of BOT projects. With regards
to uncertainties, their research summarised the opinions of experts on different uncertain
inputs to provide a better assessment of the concession period. The case study performed
proved the FDM’s potential to operate under conditions of high uncertainty and complexity,
which proved the suitability of the online coding tutorial systems assessment instrument.
In this thesis, the fuzzy Delphi method was used to ensure that the evaluation instrument
developed is not only academically valid and reliable but can also be used in various contexts
of education. The incorporation of fuzzy logic to the Delphi process of the FDM allowed
the tool to identify and validate components and items as results of the process portrayed the
total body of knowledge of the panel. Since the method was repetitive, it was possible to
receive constant feedback, which was crucial in creating a reliable instrument for evaluating
online coding tutorial systems.

5.3.1 Procedure

The procedure that has been used in this study has been discussed earlier in Chapter 3, cf.
Figure 3.2. The process entails selecting and consulting with experts in the programming
education domain, getting their input on the instrument’s components and items, translating
their views into numerical values, and presenting the instrument after identifying the main
problems, components/items that require evaluation, or components/items that have been re-
moved. Lastly, using verbal and linguistic variables, such as ”extremely agree,” ”strongly
agree,” ”agree,” ”moderately agree,” ”disagree,” ”strongly disagree,” and ”extremely dis-
agree,” that are translated into imprecise numerical scales is typically required when the

5.3. Study Method 108

same experts evaluate the instrument’s final version [227] [99] [141].

5.3.1.1 Expert selection

Finding the experts in the programming education field is the first step in the instrument’s
validation process. Several factors can be considered while estimating the number of experts.
Ten to fifty experts are recommended by the Delphi approach, according to [32]. Moreover,
according to [2], due to their uniformity and sufficiency, only ten experts in the field of
teaching programming were selected for this investigation. According to [32], after five to
ten years of employment, instructors can be considered experts. Therefore, in this study,
each of the chosen experts has taught computer science and programming courses for ten
years and more than ten years.

Figure 5.1: The nationalities of the experts involved in the validation study

The 10 experts were university professors from various countries, including Saudi Ara-
bia, the UK, Japan, China, and others, as shown in Figure 5.1. The 48th IEEE Interna-
tional Conference on Computers, Software, and Applications (COMPSAC 2024) (https:
//ieeecompsac.computer.org/2024/), which took place in Osaka, Japan, was
where the participants were chosen. The author of this thesis was present and took part
in the conference. During the conference break, these programming educators were invited
to contribute individually by providing the resources and noting their information. Two days
following the conference, emails were sent to fourteen educators; only ten of them replied,

https://ieeecompsac.computer.org/2024/
https://ieeecompsac.computer.org/2024/

5.3. Study Method 109

and four did not reply at all. As presented in Table 5.1, two Saudi educators, three educa-
tors from Britain, three educators from Japan, one educator from China, and one educator of
another nationality—an ”Indian”—all responded.

One senior lecturer from a Chinese university, three senior lecturers from Japanese universi-
ties, two lecturers from two Saudi universities specialising in computing education research,
three senior lecturers from British universities specialising in programming learning systems
research, and one senior lecturer from an Indian university comprised this expert panel. They
were able to commit themselves to this study and were appointed freely.

Code Gender Country Teaching experi-
ence

Programming languages
thought

Expert-1 Male Saudi Arabia 20 years Scratch, HTML, Python,
PHP, SQL, JavaScript, C++,
C

Expert-2 Male India 18 years Scratch, HTML, Python,
PHP, SQL

Expert-3 Female Japan 18 years Scratch, HTML/CSS, SQL,
VB, JavaScript, PHP

Expert-4 Male Saudi Arabia 16 years HTML, Scratch, JavaScript,
SQL, VB, JavaScript, PHP

Expert-5 Male United Kingdom 15 years Java, Arduino, Web (PHP),
Python

Expert-6 Male United Kingdom 14 years HTML, JavaScript, PHP,
Python

Expert-7 Male Japan 17 years Blocky, Scratch, Python,
HTML/CSS, SQL, VB,
JavaScript, PHP

Expert-8 Male Japan 14 years Scratch, HTML/CSS, SQL,
VB, JavaScript, PHP

Expert-9 Female China 12 years Scratch, Python, C++, Java,

Expert-10 Male United Kingdom 10 years HTML, JavaScript, PHP,
Python

Table 5.1: Details over the participating experts. Expert’s code reflects the order of their
programming teaching experiences, where Expert-1 has more number of years of experience,
and Expert-10 has the less number of years

5.3. Study Method 110

5.3.1.2 Development of the instrument’ statements

Based on the findings of studies reported in Chapter 4, the mentor panel, which consists of
this thesis author and the two academic supervisors, created an initial list of twenty clear
statements from the twenty items as indicated in Figure 5.2 in order to give the ten experts
that were selected an appropriate form of the instrument to be validated.

5.3. Study Method 111

Components Items
No

Items

Syntax of programming languages 1 Providing a code editor that prints the result as a
message that indicates errors that the code might
have.

2 Providing a code editor that underlines syntax errors
to indicate errors that the code might have.

3 Providing a code editor that provides syntax
highlighting.

Structure of code 4 Providing a visual map feature might help learners
understand
the execution process of the code

Understanding basic concepts 5 Providing a list of coding exercises that cover most
basic and complex coding concepts.

6 Offering practical examples that demonstrate how
programming concepts and techniques can be
applied in real world scenarios.

7 Offering quizzes to test novice learners’
comprehension and solidify their
understanding of programming concepts.

8 Providing enough coding exercises that cover most
of the basic and complex coding concepts.

9 Providing an organised list of coding exercises that
cover most of the basic and complex coding
concepts.

Debugging 10 Providing a code editor that prints the result as a
detailed message that indicates errors that the code
might have.

11 Identifying errors’ locations in the output shell to
debug the code.

12 Providing an interactive shell that supports the
“Hints feature” to avoid careless mistakes.

Dividing functionality into
procedures

13 Providing a code editor that predictively completes
whatever I want to type.

Transferring algorithm to concrete
implementation

14 Providing code templates in the script shell.

Improving learning experiences 15 Providing a reflection note box serves as a personal
space where learners can document their thoughts
and reflections as they progress through their
learning journey.

16 Offering tailored learning materials,
recommendations, and feedback based on
individual needs and preferences.

Offering several programming
languages

17 Offering several options for programming languages.

Supporting programming learning
resources

18 Offering programming learning videos.

19 Offering extra material other than the course
tutorials, such as textbooks.

Understanding lesson content 20 Offering several languages.

Figure 5.2: The preliminary evaluation instrument that was created by the mentor panel

5.3. Study Method 112

5.3.1.3 The validation process of components and items using the fuzzy Del-
phi method

The experts were invited to participate in a Zoom meeting for an interview, following emails
that were sent to the expert panel attaching the instrument shown in Figure 5.2. In order
to give the ten experts reasonable time to comprehend the study’s context and a chance to
come up with ideas for improving the instrument, the developed instrument’s components
and items were sent to them via email one week prior to the discussion via a Zoom meeting.
The purpose of this semi-structured interview was to gain a deeper comprehension of the
objectives and real goals of local context-based programming education [132]. In addition,
to conduct the focus discussion group with the experts to get in the validation process.

Furthermore, as demonstrated previously in Chapter 3 (Figure 3.2), the validation process
comprises several stages: first, agreement on the primary instrument components; second,
item arrangement based on expert opinions and consensus; third, experts assess the com-
ponents and items independently; and, last, data collection and analysis utilising the fuzzy
Delphi technique. An explanation of each step in the process is provided below:

1. First step: expert consensus regarding the main components

In the Zoom meeting, the focus discussion group aims to keep the characteristics of
the fuzzy Delphi method, such as the research time frame compared to the traditional
Delphi method, while also addressing the shortcoming of the iterative process seen
while utilising the Delphi method [181]. Throughout the focus discussion group in the
Zoom meeting, each expert gave their views and claims.

In the first step, each expert was given a refresher on the details of the programming
learning challenges (the instrument’s components). In the meeting, two worksheets in
a Microsoft Excel document were utilised. For the debate, the experts were divided
into two groups of five people each and given worksheets with numbers one and two.
Moreover, there were two phases involved in the instrument’s component verification
procedure; in the first phase, the components were assessed and verified by the experts
in each group using the definitions that were provided before the meeting.

All the expert opinions were suitably updated in the Microsoft Excel document, and
the facilitator then moved the consensus from each group to the second worksheet,
adhering to the group column. A consensus was reached to assess and validate the
components in accordance with the recommendations made by each group throughout
the second stage of the instrument’s component verification process. The second
column was completed with the final consensus. As shown in Figure 5.3, the experts
agreed to take out five of the main components that present common programming
learning challenges in the proposed instrument.

5.3. Study Method 113

Figure 5.3: First results of the focus discussion group process (the red X indicates the com-
ponents agreed to be deleted by the experts)

2. Second step: expert consensus on the arrangement of items

After the expert panel validated the instrument’s components, the experts assessed the
list of items. As shown in Figure 5.4, four items were agreed to be deleted because
they shared the same meaning as the other items in the instrument. Then, as shown in
Figure 5.5, the experts confirmed to put the items next to the appropriate components.
The item that the experts had confirmed was shown next to the component list. As part
of the validation process, experts discussed how to improve the suggested items. The
language structure was refined to be clear and consistent with the abilities’ definition
and the study’s setting; it also avoided redundant, incorrect, or unnecessary items and
proposed new ones where necessary to solve the problem’s definition.

5.3. Study Method 114

Components Items

Syntax of programming languages Providing a code editor that prints the result as a
message that indicates errors that the code might
have.
Providing a code editor that underlines syntax errors
to indicate errors that the code might have.
Providing a code editor that provides syntax
highlighting.

Structure of code Providing a visual map feature might help learners
understand
the execution process of the code

Understanding basic concepts Providing a list of coding exercises that cover most
basic and complex coding concepts.

Offering practical examples that demonstrate how
programming concepts and techniques can be
applied in real world scenarios.

Offering quizzes to test novice learners’
comprehension and solidify their
understanding of programming concepts.
Providing enough coding exercises that cover most
of the basic and complex coding concepts.
Providing an organised list of coding exercises that
cover most of the basic and complex coding
concepts.

Debugging Providing a code editor that prints the result as a
detailed message that indicates errors that the code
might have.
Identifying errors’ locations in the output shell to
debug the code.

Providing an interactive shell that supports the
“Hints feature” to avoid careless mistakes.

Dividing functionality into
procedures

Providing a code editor that predictively completes
whatever I want to type.

Transferring algorithm to concrete
implementation

Providing code templates in the script shell.

Improving learning experiences Providing a reflection note box serves as a personal
space where learners can document their thoughts
and reflections as they progress through their
learning journey.
Offering tailored learning materials,
recommendations, and feedback based on
individual needs and preferences.

Offering several programming
languages

Offering several options for programming languages.

Supporting programming learning
resources

Offering programming learning videos.

Offering extra material other than the course
tutorials, such as textbooks.

Understanding lesson content Offering several languages.

Figure 5.4: Second results of the focus discussion group process (the red X indicates the
components and items were deleted by the experts)

5.3. Study Method 115

Components Items

Syntax of programming languages The code editor that the system offers prints the
outcome as a message indicating any potential
mistakes in the code.

The system provides a code editor that provides
syntax highlighting.

Structure of code The system has a visual map function that could aid
students in comprehending how the code is
executed.

Understanding basic concepts The system provides a list of code exercises covering
the majority of fundamental and advanced coding
principles.

The system provides practical examples that
demonstrate how programming concepts and
techniques can be applied in real-world scenarios.

The system provides quizzes to test novice learners’
comprehension and solidify their understanding of
programming concepts.

Debugging

The system provides an output shell that shows
errors’ locations to debug the code.

The system provides a code editor that predictively
completes whatever I want to type.

Improving learning experiences

The system provides a reflection note box that
serves as a personal space where learners can
document their thoughts and reflections as they
progress through their learning journey.

The system provides tailored learning materials,
recommendations, and feedback based on
individual needs and preferences.

The system offers several options for programming
languages.
The system offers programming learning videos.

The system offers extra material other than the
course tutorials, such as textbooks.
The system offers several languages.

The system provides an interactive shell that
supports the “Hints feature” to avoid careless
mistakes.

Figure 5.5: The updated instrument after the experts advised to put the items next to the
appropriate components

5.3. Study Method 116

3. Third step: expert consensus on the arrangement of items according to priority
After verifying and updating the components and the items of the instrument, the ex-
perts evaluated and validated the suggested items for every component as shown in
Figure 5.6. the items for each component had been arranged according to the priority
based on the experts experiences. For instance, the items come under the understand-
ing basic concepts are more important than the items come under syntax of program-
ming languages.

5.3. Study Method 117

Components Items
no

Items

Understanding basic concepts 1 The system provides a list of code exercises covering the
majority of fundamental and advanced coding principles.

2 The system provides practical examples that
demonstrate how programming concepts and techniques
can be applied in real-world scenarios.

3 The system provides quizzes to test novice learners’
comprehension and solidify their understanding of
programming concepts.

Structure of code 4 The system has a visual map function that could aid
students in comprehending how the code is executed.

Syntax of programming
languages

5 The code editor that the system offers prints the outcome
as a message indicating any potential mistakes in the
code.

6 The system provides a code editor that provides syntax
highlighting.

Debugging

7 The system provides an output shell that shows errors’
locations to debug the code.

8 The system provides a code editor that predictively
completes whatever I want to type.

Improving learning
experiences

9 The system provides a reflection note box that serves as a
personal space where learners can document their
thoughts and reflections as they progress through their
learning journey.

10 The system provides tailored learning materials,
recommendations, and feedback based on individual
needs and preferences.

11 The system offers several options for programming
languages.

12 The system offers programming learning videos.

13 The system offers extra material other than the course
tutorials, such as textbooks.

14 The system offers several languages.

15 The system provides an interactive shell that supports the
“Hints feature” to avoid careless mistakes.

Figure 5.6: Third results of the focus discussion group process (the updated arrangement of
the instrument’s items according to the priority based on the experts opinions)

5.4. Data Analysis Techniques 118

4. Fourth step: expert evaluation individually

In the last step, the components and items of the instrument were moved into Microsoft
Forms for the purpose of obtaining expert evaluations from each of them individually,
as presented in Appendix C. Data analysis was made easier, and data transmission to
Microsoft Excel was made possible by the use of Microsoft Forms. The Microsoft
Form URL was then used to send the questionnaire to experts via email after the meet-
ing, as presented in Appendix C. The experts then completed each questionnaire sepa-
rately, selecting an option on a 7-point Likert scale that ranges from strongly disagree
to strongly agree. This allowed them to assess the instrument items. All of the ex-
perts completed the questionnaire using Microsoft Forms, and their responses were
immediately saved in a Microsoft Excel document to be analysed easily.

5.4 Data Analysis Techniques

The data collected from the expert evaluation step, as discussed in the previous section, was
analysed using specific data analysis techniques that were selected to interrupt the experts
responses to the Likert scale survey.

5.4.1 Converting Likert scale to fuzzy scale

There are two mains in FDM which is Triangular Fuzzy Number and Defuzzification Process
[229]. Triangular Fuzzy Number is m is made up of the value of the m1, m2, and m3 where
m1 represents the value of the minimum (smallest value), representing the most reasonable
value m2 (most plausible value) and m3 is referring to the maximum value (but there is
value) [168].

All of these three values is in the range of 0 to 1 and it coincided with fuzzy numbers [168].
As shown in Table 5.2, the corresponding fuzzy scale for each Likert scale are presented. In
addition, by using Microsoft Excel’s VLOOKUP tool, the Likert scale data collected from
the experts were transformed into fuzzy numbers so that the fuzzy Delphi method could be
used to study them [121].

5.4. Data Analysis Techniques 119

Linguistic variables Likert scale Fuzzy scale
(m1)

(m2) (m3)

Extremely agree 7 0.9 1 1

Strongly agree 6 0.7 0.9 1

Agree 5 0.5 0.7 0.9

Moderately agree 4 0.3 0.5 0.7

Disagree 3 0.1 0.3 0.5

Strongly disagree 2 0 0.1 0.3

Extremely disagree 1 0 0 0.1

Table 5.2: Linguistic Variables for 7 Point Scale

5.4.1.1 Data analysis using the fuzzy Delphi method

As mentioned in the previous section, the triangular fuzzy number and the defuzzification
procedure are the primary factors taken into account when employing the fuzzy Delphi tech-
nique [229] [168]. These procedures were used to check if each item was accepted or re-
jected according to the opinion of experts. Firstly, the triangular fuzzy number’s lowest (m1),
reasonable (m2), and maximum (m3) for each expert’s responses. Secondary, the defuzzifi-
cation process was used, and the instrument’s item acceptance was calculated by using the
threshold (d) and the percentage of consensus, and creating a fuzzy score (A) [229].

1. Triangular fuzzy number: average of fuzzy number (m1, m2, m3)

A triangle graph is displayed against triangle values in Formula1: m =
Σn

i=1mi

n
. Every

value (m1, m2, m3) falls between 0 and 1, which is known as the fuzzy number (0,1).
A fuzzy number’s average value was calculated by using the formula 1 where the
number of experts is denoted by (n).

2. Triangular fuzzy number: threshold (d) value To determine the degree of expert
consensus for each questionnaire item, the threshold value (d) was computed [206].
The threshold value (d) for the fuzzy numbers m (m1, m2, m3) and n = (n1, n2, n3)
can be found using the following Formula 2, as seen in Figure 5.7, based on the fuzzy
numbering (0,1).

According to Cheng et al. [43], all experts are deemed to have reached an agreement
if the difference between the mean value and the expert evaluation data is less than
or equal to the threshold value (d) ⩽ 0.2. The analysis of the data according to the
threshold value (d) is presented in Table 5.3.

5.5. Study Findings 120

Figure 5.7: Formula 2

The expert consensus’s percentage value must equal or exceed 75% in order for each
item to satisfy the acceptance criteria set forth by the experts. An additional round
is held against the non-consenting expert, or the item must be deleted if the expert’s
consensus percentage is less than 75%.

Threshold (d)
value

Descriptions Interpretation

d ⩽ 0.2 The threshold (d) value is less than
or equal to 0.2

Accepted

d ⩾ 0.2 The threshold (d) value is greater
than 0.2

Rejected OR conduct the second
cycle, which involved only experts
who disagreed.

Table 5.3: Interpretation of the data based on the threshold value (D)

5.4.1.2 Defuzzification: the fuzzy score

The fuzzy score (A) that is obtained through the defuzzification technique indicates whether
or not an item is acceptable depending on the consensus of experts. The element is deemed
acceptable when the fuzzy score (A) is at least as high as the median (α - cut) value of 0.5
[44].

Furthermore, the fuzzy score value (A) can be used to determine the ranking and order of the
instrument items. Since the study focuses on the problem-solving technique in programming,
the experts’ debate defined the arrangement of each component’s contents. Results may
deviate from the programming approach to problem solving if the defuzzification process
establishes the element’s priority. The expert will reevaluate the importance and order of the
items if any analysis results in the rejection of any part of the instrument.

5.5 Study Findings

The focus group discussion with experts via the Zoom meeting was held as part of this study
to validate the components and items of the instrument proposed in this thesis to evaluate

5.5. Study Findings 121

online coding tutorial systems. Then, as presented in Appendix C, every item in the instru-
ment that the experts verified was approved. Components and items revealed average scores
between 6 and 7 on a 7-point Likert scale for every item, indicating strong and extreme
agreement. Then, the Likert scale scores were converted to fuzzy scales for analysis. Fur-
thermore, as shown in Table 5.4 the validation study’s findings demonstrated that, according
to the consensus of ten experts, each instrument’s item has been verified and accepted by the
experts, which was threshold (d) ≤ 0.2. Regarding the second prerequisite, for the validated
15 items, a 91.7% to 100% percent consensus was reached. To assess the acceptance of the
evaluation instrument items for online coding tutorial systems, the third need was to receive
a fuzzy score (A). The instrument item is allowed if the fuzzy score (A) is more than 0.5.
For each item that was assessed, a fuzzy score (A) between 0.772 and 0.900 was created as
shown in Table 5.4. Programming educators can use the instrument to assess online cod-
ing tutorial systems because they validated that each item of the evaluation instrument was
approved.

No.
Item

The threshold
value, d

Percentage
of Consensus
Expert Group,%

m1 m2 m3 Score
Fuzzy (A)

The Consensus of
Experts

1 0.174 100.0% 0.633 0.800 0.933 0.789 ACCEPT

2 0.220 91.67% 0.767 0.892 0.942 0.867 ACCEPT

3 0.174 100.0% 0.767 0.900 0.967 0.878 ACCEPT

4 0.147 100.0% 0.800 0.925 0.975 0.900 ACCEPT

5 0.191 91.67% 0.617 0.783 0.917 0.772 ACCEPT

6 0.191 91.67% 0.617 0.783 0.917 0.772 ACCEPT

7 0.196 100.0% 0.700 0.850 0.950 0.833 ACCEPT

8 0.206 91.67% 0.750 0.883 0.950 0.861 ACCEPT

9 0.211 91.67% 0.650 0.808 0.925 0.794 ACCEPT

10 0.220 91.67% 0.683 0.833 0.933 0.817 ACCEPT

11 0.219 91.67% 0.717 0.858 0.942 0.839 ACCEPT

12 0.234 91.7% 0.633 0.792 0.908 0.778 ACCEPT

13 0.206 91.67% 0.750 0.883 0.950 0.861 ACCEPT

14 0.220 91.67% 0.683 0.833 0.933 0.817 ACCEPT

15 0.211 91.67% 0.650 0.808 0.925 0.794 ACCEPT

Table 5.4: Result of a Consensus of the Experts

5.6. The Guidelines to Use the Instrument 122

5.6 The Guidelines to Use the Instrument

Firstly, the targeted audience of the proposed evaluation instrument created within this thesis
is professional programming educators. These individuals maintain miniature oversight of
the several processes that novices go through while learning how to code [45]. Their ex-
perience in the ability to analyse different programming ideas and algorithms into bite-sized
portions that are easy to comprehend is relevant since novices face the abstract kind of learn-
ing [45]. Professional programming educators can easily understand the difficulties of the
programmer novices and can adjust their teaching methodology to fit these difficulties [140].
Through the proposed evaluation instrument in this thesis, educators can measure the extent
to which the online coding tutorial systems are helpful to novices.

As shown in Figure 5.8, the evaluation instrument presented in this thesis uses a checklist
format to be used by programming educators, and the reason for using this format is because
the checklist format has many advantages [202], for instance, the minimal likelihood level
of leaving out any aspect of evaluating such systems while using such a format [204] [202].
Moreover, checklists are also flexible in nature, it means that the educators implementing the
checklists can apply them to any educational setting and any learning situation [12]. There-
fore, it is convenient for professional programming educators to use the instrument as a
checklist, as shown in Figure 5.8.

5.7 Chapter Summary

This chapter presents a study that aims to validate the components and items of the pro-
posed instrument in Chapter 4 as an evaluation instrument for online coding tutorial sys-
tems by obtaining expert consensus using the fuzzy Delphi method. The analysis’s findings
demonstrated that, according to expert consensus, all parts and components were approved.
Therefore, these aspects and components may be employed in programming instruction and
learning as well as serving as an assessment tool for use by professional programming edu-
cators.

5.7. Chapter Summary 123

Evaluation Instrument to Programming Educators

The aim of this instrument is to assess online coding tutorial systems to gain a better understanding
of whether they support novices to overcome programming’ difficulties currently faced by them.

Educator’ name:
School:
Province:
Programming language teach:
Number of years teaching IT 0-5 years 6-10 years More than 10 years

Components Items
no

Items Yes No

Understanding
basic concepts

1 Does the system provide a list of code exercises
covering most fundamental and advanced coding
principles?

2 Does the system provide practical examples that
demonstrate how programming concepts and
techniques can be applied in real-world scenarios?

3 Does the system provide quizzes to test novice
learners’ comprehension and solidify their
understanding of programming concepts?

Structure of code 4 Does the system have a visual map function that could
aid learners in comprehending how the code is
executed?

Syntax of
programming
languages

5 Does the system offer a code editor that prints the
outcome as a message indicating any potential
mistakes in the code?

6 Does the system provide a code editor that provides
syntax highlighting?

Debugging

7 Does the system provide an output shell that shows
the errors' locations to debug the code?

8 Does the system provide a code editor that predictively
completes whatever I want to type?

Improving learning
experiences

9 Does the system provide a reflection note box that
serves as a personal space where learners can
document their thoughts and reflections as they
progress through their learning journey?

10 Does the system provide tailored learning materials,
recommendations, and feedback based on individual
needs and preferences?

11 Does the system offer several options for programming
languages?

12 Does the system offer programming learning videos?

13 Does the system offer extra material other than the
course tutorials, such as textbooks?

14 Does the system offer several languages?

15 Does the system offer an interactive shell that
supports the “Hints feature” to avoid careless
mistakes?

Figure 5.8: The deployable version of the evaluation instrument form that can be used by
programming educators.

124

Chapter 6

Programming Educators’
Experiences with the Instrument

6.1 Chapter Overview

This chapter presents a case study conducted to investigate the programming educators ex-
periences with the use of the proposed evaluation instrument presented in Chapter 5. This
chapter is laid out as follows: Section 6.2 presents the research question; Section 6.3 presents
the method used for this case study: Section 6.4 discusses the data analysis techniques used;
Section 6.5 presents the results of this study; and Section 6.6 concludes this chapter.

6.2 Research question 6

In this study to explore the programming educators’ experience on using the instrument, an
online survey instrument was designed, cf. Appendix D, and distributed to address RQ6:
What are the attitudes of programming educators toward using the instrument to
evaluate online coding tutorial systems?

This study contributes to the knowledge area by exploring the experience of the program-
ming educators on the use of the instrument to evaluate and select the effective online coding
tutorial systems for novices, which is the main purpose of this thesis.

6.3 Study Method

To investigate how the targeted audience of the instrument developed and validated in this
thesis finds the use of the instrument to evaluate online coding tutorial systems, an online sur-

6.3. Study Method 125

vey as presented in Appendix D was distributed via two Whatsapp academic groups that have
multi-national academic computer science educators. The WhatsApp groups were selected
as a channel to have more participants for this case study because of their quick approach
to finding the targeted participants. In recent research studies, it has been noted that there is
significant usage of WhatsApp for academic reasons because of factors such as the real-time
nature of the application and the convenience that comes along with it, and also the general
use of the application in almost all regions of the world where the study is to be conducted
with the aim of carrying out surveys and other related communications in study processes
[207]. The two WhatsApp groups are: one is the official group for female lecturers in the
computer science school at the Saudi Electronic University. In addition, the other group
was the information technology research group. As presented in Appendix D, in the online
survey, participants have been given a controlled scenario in order to use and evaluate the
selected online coding tutorial systems by using the evaluation instrument developed and
validated in this thesis. Moreover, to capture their feedback on their experience using the
instrument, one open-ended question was asked.

6.3.1 Participants

The 24 invited participants came from a range of backgrounds; they were all computer sci-
ence educators from both higher education and the classroom, and they had all previously
used websites with coding tutorials. Educators with different experiences in programming
education may work together to build a more widely recognised and usable tool that better
fits the needs of all novice programmers [146]. The main reason for using WhatsApp to
distribute the online poll was to attract teachers with varying levels of programming experi-
ence. About 35 people were initially thought to be the ideal sample size in order to gather
a range of comments and viewpoints. However, it turned out that there were actually just
24 participants in the sample size for this study. There could be a number of reasons for
the lower-than-expected participation rate. One of the reasons is that the case study was con-
ducted in the summer semester of higher education in Saudi Arabia and the United Kingdom.

6.3.2 Procedure

This case study was conducted over a period of two weeks, from the end of July 2024 to
the middle of August 2024. The procedure was followed in conducting this case study; a
specific scenario was demonstrated to the participants in order to prepare them to evaluate
the selected online coding tutorial systems after accepting the consent form in the first place
in the online survey. Then, they were asked to complete the online coding tutorial systems’
evaluation instrument form that was proposed earlier in Chapter 5. In addition, the main

6.3. Study Method 126

contribution of this case study is to capture the programming educators’ feedback about their
experiences after evaluating such systems by using the instrument developed and validated
in this thesis. Below, the online survey sections are described briefly, as shown in Appendix
D, which contains four sections:

1. First section: In this section, the consent form has been introduced to the participants.

2. Second section: In this section, list pre-testing questions (demographics questions)
are presented.

3. Third section: In this section, a list of instructions (the scenario) has been presented.
Firstly, the online coding tutorial systems have been defined and introduced to the
participants. Secondary, the participants were given some examples of online coding
tutorial systems in order to give them a clear picture of what these systems look like.
Thirdly, they were asked to select one online coding tutorial system. Fourthly, they
were requested to write the selected systems’ names.

4. Fourth section: In this section, the evaluation instrument’s items that have been pre-
sented in the previous Chapter 5 in Figure 5.8 were provided in order to be used by the
participants. The suggested assessment tool was shown to the participants, who were
then instructed to go through each item one by one. This technique was employed to
evaluate the instrument’s usage progress. In computer science research, it is a useful
approach [77].

5. Fifth section: This section is the core of this study because the programming edu-
cators have been asked one open-ended question, which is ”How did you find the
instrument in evaluating online coding tutorial systems?”. The aim of asking this
question is to investigate the feedback of the programming educators on their experi-
ences of using the instrument to evaluate online coding tutorial systems.

6.3.3 Demographics

Following the online survey’s distribution, participant demographic data from the second
section was gathered. The programming educators that participated in the data collection
process fit this description. The participants’ ages ranged from 25 to 60 years old, and the
demographic data revealed, as shown in Figure 6.1, that they were from Saudi Arabia, the
United Kingdom, and others. In addition, in terms of programming teaching experience, the
data showed that 8% of the sample (n = 2) had less than five years of experience teaching,
38% (n = 9) had five to ten years of experience, and 54% of the sample (n = 13) had more
than ten years of experience.

6.4. Data Analysis Technique 127

Figure 6.1: The nationalities of the programming educators involved in the case study

6.4 Data Analysis Technique

As discussed earlier in this chapter, the main purpose of this study is to investigate how pro-
gramming educators (the targeted audience of the proposed instrument in this thesis) find
the use of the instrument in a practical setting. Therefore, only the qualitative data that
was collected from the open-ended question was analysed in order to present and analyse
the programming educators experiences. The data analysis technique used to analyse the
programming educators’ answers to the open-ended question is a thematic analysis [205].
According to [36], to perform the thematic analysis, a number of phases had been com-
pleted: becoming acquainted with the data, creating preliminary codes or labels, looking for
themes or primary ideas, evaluating themes or primary ideas, defining and labelling themes
or primary ideas, and creating the report. The coding for this study was done by hand. The
selection of codes was done with the intention of highlighting the aspects that respondents
indicated were significant to them. From the twenty-four programming educators who had
used the evaluation instrument, only 18 educators had responded to the open-ended question.

6.5 Study Findings

After the demographic questions, the participants were given a list of instructions that had
been discussed in the previous section. Then, each programming educator had selected one

6.5. Study Findings 128

online coding system. For instance, as shown in Figure 6.2 most of the participants evalu-
ated Replit. Moreover, some of the educators evaluated W3school, Learnpython, Learnjava,
Tryruby, and Tryjavascript. In the following section, each educator evaluated the selected on-
line coding tutorial system by using the instrument presented in the previous chapter (Figure
5.8).

Figure 6.2: Online coding tutorial systems were evaluated by the programming educators.

After evaluating the selected online coding tutorial systems by educators by using the in-
strument, the programming educators shared their thoughts about their experiences in using
the proposed evaluation instrument to evaluate online coding tutorial systems, as discussed
earlier in this chapter. The qualitative data gives an in-depth understanding of programming
educators feedback about the instrument developed in this thesis. The responses to the open-
ended question were short; however, these responses show very positive sights; most of the
respondents had positive experiences using the provided assessment instrument to evaluate
any online coding tutorial systems. For instance, one participant said, ”The instrument is
a comprehensive tool to evaluate such a system.” Moreover, another participant said, ”Im-
portant aspects have been covered in this assessment tool.” All the responses are coded into
main themes as shown in Table 6.1.

6.5. Study Findings 129

Code Participant responses Codes highlighting partici-
pant ideas: Significant ideas

Themes: Main idea

E1 ”This instrument is helpful to eval-
uate online coding systems”

The use of the instrument Easy to use

E2 ”The instrument is a comprehensive
tool to evaluate such a system.”

The content Comprehensiveness

E3 ”Important aspects have been cov-
ered in this assessment tool.”

The aspect covered Comprehensiveness

E4 ”Using this tool can support us to
select good system for novices”

Supporting the learners Effectiveness of the in-
strument

E5 ”It is an instrument that can help us
to evaluate systems”

The quality of the instrument Effectiveness of the in-
strument

E6 ”Good instrument” The quality of the instrument Effectiveness of the in-
strument

E7 ”By using this assessment tool, the
systems can be evaluated easily”

The use of the instrument Easy to use

E8 ”This instrument can be used for
evaluating any online coding sys-
tems”

The flexibility of the instru-
ment

System-specific evalua-
tion

E9 ”This instrument can be used eas-
ily”

The use of the instrument Easy to use

E10 ”This instrument is applicable for
online coding systems”

The applicability of the in-
strument

System-specific evalua-
tion

E11 ”This instrument items are interest-
ing and it covers all important as-
pects”

The content of the instrument Comprehensiveness

E12 ”This items are enough for such
systems”

The content of the instrument Comprehensiveness

E13 ”This instrument contains specific
features of online coding tutorial
systems”

The applicability of the in-
strument

System-specific evalua-
tion

E14 ”My experience of evaluating the
system was perfect”

The use of the instrument Easy to use

E15 ”This tool is efficient to evaluate the
selected system”

The applicability of the in-
strument

Effectiveness of the in-
strument

E16 ”This instrument can be used easily
to test the systems”

The use of the instrument Easy to use

E17 ”The form has all important points
to be considered”

The content of the instrument Comprehensiveness

E18 ”This instrument can be used for
evaluating and selecting the best
systems for novices”

The effectiveness of the in-
strument

Effectiveness of the in-
strument

Table 6.1: Participant responses to the open-ended question

6.5. Study Findings 130

Findings from the open-ended question, are data relating to the 18 programming educators’
views and experiences about the use of the evaluation instrument in this thesis are presented
in this section. As shown in Table 6.1, the identified themes will be presented in the follow-
ing points; these points are shown in the following order; effectiveness of the instrument,
instrument comprehensiveness, ease of use and applicability of the instrument, and finally,
system-specific evaluation instrument. In addition, as shown in Table 6.1, the following
themes were identified:

1. Theme 1: Effectiveness of the instrument: Terms such as “effectiveness” and “qual-
ity” dwelt on the usefulness of the instrument in evaluating the tutorials on coding
offered online. The primary benefit of using the tool was distinguished by educators
who noted that the instrument gives definite and practical judgements on the quality
of educational platforms. Five educators expressed that the instrument supports them
in evaluating systems. For example, E18 said that ”This instrument can be used for
evaluating and selecting the best systems for novices” and E4 states that ””Using this
tool can support us to select good system for novices”

2. Theme 2: Instrument comprehensiveness: Terms like ‘comprehensive’ ‘other im-
portant aspects’ were used to capture the overall picture of the important criteria the
instrument explored to assess coding tutorials adequately. Five programming educa-
tors revealed that the instrument covers the most important aspect. For instance, E3
said ”Important aspects have been covered in this assessment tool.” and E12 states
”This items are enough for such systems”.

3. Theme 3: Easy to use: Educators found the instrument easy to use and valuable
across different learning environments as said by one user, ‘’It was quite easy to fill
and very useful in different education settings.” This makes the tool friendly to the
educators so that anyone no matter his or her level of experience using the tool can
easily use it. For instance, E9 states ”This instrument can be used easily” and E16
says ”This instrument can be used easily to test the systems”.

4. Theme 4: System-specific evaluation instrument: Some of the terms include spe-
cific system and interactive system showed that educators appreciated the flexibility
of the instrument that allowed for different online coding software to be used in ed-
ucation settings. For instance, E13 states ”This instrument contains specific features
of online coding tutorial system” and E10 ”This instrument is applicable for online
coding systems”

The findings of this study show the stasfaction of the programming educators toward the
use of the proposed instrument to evaluate the selected online coding tutorial systems. The

6.6. Chapter Summary 131

programming educators’s feedback and responses to the open-ended question show that the
instrument meets their satisfaction. They emphasised the applicability, simplicity, and use-
fulness of the instrument, especially to evaluate online coding tutorial systems. This tool
can be used across different such systems, as highlighted by the educators, which means
that it can be adapted to fit the needs of programming educators internationally in different
education contexts to support novices by selecting the effective system.

6.6 Chapter Summary

This chapter presents a detailed discussion of the application and the use of the proposed
instrument to evaluate online coding tutorial systems by the programming educators. The
results of the qualitative data analysis show that the programming educators found the in-
strument helpful and efficient for them to assess such systems. The programming educators
agreed that the instrument provides a set of criteria for the analysis of online coding tuto-
rial systems that can support them in selecting the effective system for novices. This study
proves that the instrument stays valid and could positively contribute to improving novices’
programming learning.

132

Chapter 7

Discussion

7.1 Chapter Overview

This thesis aims to propose an evaluation instrument for online coding tutorial systems to be
used by programming educators to support novices in their programming learning journey.
Therefore, this chapter presents a summary of the findings of the four design cycles for de-
veloping the proposed instrument, and it discusses how this thesis is evidence of the claimed
primary contribution of this thesis. Moreover, the key findings, together with relevant litera-
ture, will be used to discuss these findings. This chapter discusses the research findings from
the investigations done in the previous chapters (Chapter 4, Chapter 5, and Chapter 6). This
chapter is structured as follows: Section 7.2 presents the findings of this thesis; Section 7.3
discusses this thesis findings; and Section 7.4 concludes this chapter.

7.2 Summary of the Findings

On the basis of the data gathered and presented in previous chapters (Chapter 4, Chapter 5
and Chapter 6, the following are the significant findings:

• Identifying a list of common programming learning challenges that novice learners
need to overcome as the evaluation instrument’s main components.

• Identifying an initial list of items of the evaluation instrument for online coding tutorial
systems based on exploring a list of possible solutions for the programming learning
problems that have been identified from the literature.

• Learners and educators found that most of the features in the current online coding
tutorial systems and those proposed in the initial evaluation instrument are helpful.

7.2. Summary of the Findings 133

• Learners and educators suggested some other interesting items to be added to the in-
strument, such as reflection notes, and based on their suggestions, the initial instrument
had been updated.

• Current online coding tutorial systems have been found to miss some of the features
in the proposed evaluation instrument, such as auto completion.

• It was noticed that the proposed instrument is missing one feature that was found in
two current systems, and based on these findings, the evaluation instrument has been
updated.

• Users are satisfied with the proposed features in the third version of the evaluation
instrument based on the evaluation of the system prototype.

• Users suggested some other interesting features after they tested the system prototype,
and based on that, the evaluation instrument had been updated.

• The final version of the evaluation instrument for online coding tutorial systems has
been developed based on the four design cycles in this research.

• The proposed evaluation instrument for online coding tutorial systems has been vali-
dated by ten experts in the programming education field.

• It was noticed that the educators agreed that the proposed instrument is suitable to
evaluate any online coding tutorial systems.

To develop the instrument, a DBR model was followed (like [1], [34]) which was based
on McKenney’s original generic model for design research (GMDR) [132]. Design-based
research follows a cyclic process containing cycles of analysis, design, evaluation, and re-
vision [132]. In the instrument development studies, the design process is divided into four
design cycles and produces five versions of the evaluation instrument for online coding tu-
torial systems. The first version of the instrument emerges from the literature review. The
second version (revision of versions 2 and 3) emerges from the initial (explorative) fact-
finding studies. The fourth version of the instrument comes from the development of the
system prototype, which corresponds to the design and construction of the GMDR [132].
Also, version four of the instrument comes from design cycle four, which corresponds to
the evaluation and reflection phases of the GMDR. In design cycle four, the instrument goes
through iterative evaluation, reflection, and revision cycles of the individual case study.

The main aim of this thesis was to develop and validate an evaluation instrument for online
coding tutorial systems to be used by specialised programming educators. This research
is framed by five questions. The first question is ”RQ1: What are common programming
learning difficulties for novices? Which supportive features are potential solutions for these

7.2. Summary of the Findings 134

identified difficulties?” To address this, a systematic literature review has been conducted,
which is discussed in Chapter 4 Section 4.2. Section 4.2 presents the first design cycle in
this research that aims to identify common programming learning challenges by conducting
a systematic literature review and a set of features as solutions to develop the first version
(draft one) of the evaluation instrument for online coding tutorial systems.

In the systematic literature review of research conducted between 1980 and 2023, relevant
articles were found. Then, we performed an initial inclusion screening based on title and
abstract to get a subset of candidate studies that only focus on programming learning chal-
lenges, and we filtered the article set to 52 after removing duplicates and out-of-focus papers.
From these 52 remaining articles, further screening was performed by considering full-text
content, excluding articles that did not discuss programming learning difficulties, and re-
moving duplicate articles and non-English articles. The final number of the selected articles
was 7, which were [138],[35],[167],[155],[92],[203],[78]. From these articles, six major
challenges for a novice programmer were filtered out: syntax of programming languages,
structure of code, debugging, dividing functionality into procedures, and transferring algo-
rithms to concrete implementation.

A semi-systematic review has been done to discover possible solutions for the set of com-
mon programming learning difficulties identified in the previous section. These identified
challenges and solutions presented components and items of the instrument. In the analysis
phase, in the second design cycle that is presented in Chapter 4 Section 4.3, an online sur-
vey was distributed among novice learners and educators to investigate their needs and their
feedback on the tested online coding tutorial system (LearnPython) [175]. In this study, an
online survey instrument was designed to address RQ2: What are the appropriate supportive
features in online coding tutorial systems from learner and educator perspectives? This study
was conducted for 2 months, from March 2021 to May 2021, after receiving ethical approval
from the College of Science and Engineering. The questionnaire was distributed randomly to
fellow educators and learners, and participants were asked to fill in a questionnaire on their
opinions with the list of system features in the selected online coding tutorial system called
LearnPython [175]. The target participants in this study encompassed novice, intermediate,
and expert programmers. By distributing the online survey through various platforms, such
as WhatsApp and email, the researchers aimed to attract participants with diverse program-
ming backgrounds. Initially, the target sample size was set at around 200 participants to
gather a wide range of feedback and suggestions from various individuals. However, the
actual sample size for this study turned out to be only 37 participants.

The quantitative findings from the research shed light on the participants’ perspectives re-
garding various features of online coding tutorial systems. The results revealed that a sig-
nificant majority of participants recognised the value of incorporating coding lessons and
tutorials into these systems, as it was believed to enhance novice learners’ understanding of

7.2. Summary of the Findings 135

coding concepts. This finding was particularly relevant for visual learners, who found it eas-
ier to grasp the basics of programming languages through this approach. Furthermore, the
participants expressed mixed opinions regarding the inclusion of additional coding learning
materials. While the majority agreed that offering supplementary resources such as books
and extra learning materials would enhance their learning experience, a notable portion dis-
agreed, considering this feature unhelpful in their educational journey. This discrepancy
suggests the importance of considering individual preferences and needs when designing
online coding tutorial systems.

In the qualitative findings, the participants were asked two open-ended questions to collect
qualitative data. The first open-ended question was: ”What other helpful and usable features
or characteristics of online coding tutorial systems would you suggest?” The learner and
educator perspectives in the qualitative research study identified several suggestions and rec-
ommendations for improving online coding tutorial systems. From these suggestions, four
features were filtered out: reflection note, content organisation, more coding lessons, and
changes and updates to the instrument.

Moving forward, the third phase of the research presents the third design cycle in Section 4.4.
Additionally, a comparative study is conducted to assess current online coding tutorial sys-
tems for the presence or absence of the identified supportive features. This study addresses
RQ3: What are the supportive features that exist in current deployed online coding tutorial
systems but are absent from the instrument? It involves looking at the top ten languages
by popularity on GitHub, and seven systems were selected for analysis: LearnPython [175],
TryJavaScript [159], LearnJava [173], Codecademy [49], LearnTypeScript [48], Tour of Go
[75], RubyMonk [160], and LearnPHP [174]. From the analysis, 16 supportive features have
been identified, and it is observed that most of the identified features exist in some systems.
However, four supportive features are not provided by any of the studied systems, such as
underlining syntax errors, reflection notes, visual maps, and auto-completion. Additionally,
two features, quizzes and customised hints, are only provided by the single system under
study. These findings emphasise the urgent need for enhanced support for novice program-
mers through a more considerate design process for online coding tutorial systems. Thus, the
research aims to develop an evaluation instrument based on novice learners’ perspectives.

Then, in the fourth design cycle, after developing a system prototype as presented in Chap-
ter 4 Section 4.5, this prototype was evaluated to answer RQ4: ”Building on our research
findings, what would an online coding tutorial system look like? Based on a prototype im-
plementation, to what extent are typical learners satisfied with the features of such an online
coding tutorial system?”, An online survey was distributed, and responses from the survey
were analysed. Findings showed that the vast majority of users were satisfied with the fea-
tures in Section 4.5.

7.3. Discussion of the Findings 136

After the instrument development process, the final version of the instrument has been val-
idated by experts in Chapter 5 to answer RQ5. Then, a case study has been conducted to
answer RQ6 in Chapter 6 to investigate the attitude of the target audience toward the in-
strument. The results revealed that the proposed instrument can be used by programming
educators as an evaluation instrument to evaluate or select any online coding tutorial sys-
tems. The programming educators expressed the benefits and challenges they experienced
when using the proposed evaluation instrument for online coding tutorial systems in Chapter
6.

7.3 Discussion of the Findings

The previous section presents the findings that have been found in this thesis. This section
presents the discussions of these findings as reflections of the research questions answered
in Chapter 4, Chapter 5 and Chapter 6.

7.3.1 Instrument Development

7.3.1.1 RQ1: What are common programming learning difficulties for novices?
And which supportive features are potential solutions for these iden-
tified difficulties? (Design cycle one)

This question has been answered in Section 4.2. The findings show that novice learners are
struggling with learning programming. Six programming learning problems were found,
and a list of supportive features was identified from the literature. In addition, these features
were grouped based on the six identified difficulties. Similar to other studies that discussed
programming learning difficulties [203], this study finds that novices are struggling to un-
derstand the syntax and semantics of individual statements in the programming languages
[177] [177]. In addition, this study identifies understanding functions and procedures as a
real problem faced by novices [155].

The work of Kader et al. [103] lists difficulties in teaching and learning programming to im-
prove the educators teaching approaches for basic programming courses, enhance students’
interest, and increase students’ performance in programming subjects. In this study, the pro-
gramming learning problems were identified to propose and discuss possible solutions in
online systems. Therefore, in this section, 13 supportive features were identified. For in-
stance, in order to understand syntax, reporting syntax errors in a programming environment
might help novice learners reduce mistakes in spelling, punctuation, and the order of key-
words in their programs[59, 96]. Moreover, to assist in understanding the code structure,

7.3. Discussion of the Findings 137

visual maps are included to help beginners understand fundamental programming concepts,
structure, and execution [201].

7.3.1.2 RQ2: What are appropriate supportive features in online coding tuto-
rial systems from learner and educator perspectives? (Design cycle
two)

Results from the first fact-finding study (Section 4.3) highlighted what educators and learn-
ers thought and measured satisfaction regarding the online coding tutorial system’ features.
Findings were compared and contrasted with the literature. The fact-finding study (open-
ended questions in the online survey) offered a more detailed overview of learners’ and
educators’ thoughts and any new supportive features suggested. This section, summarises
the findings from the case study. First of all, a summary of the learners’ and educators’
feedback, then a summary of the new supportive features added to the initial instrument.

• (Educators and learners) satisfied with all the features.

Summary of new features from Chapter 4 and Section 4.3:

• Content organisation

The open-ended questions’ answers showed that some participants found organising
the coding lessons in terms of basic coding concepts to advanced coding concepts
might help them learn programming languages more easily.

• Extra content lessons

In addition, the answers to the open-ended questions showed that some participants
found that providing more coding lessons with more coding topics might help them in
their learning journey.

• Reflection note

Some participants think that reflecting on their programming learning might help them
in their learning.

7.3.1.3 RQ3: What are the supportive features that exist in current deployed
online coding tutorial systems but are absent from the instrument?
Do the identified supportive features in the evaluation instrument ex-
ist in these systems? (Design cycle three)

Despite the limited number of systems analysed in this case study (Section 4.4), the result
of the analysis showed that the current online coding tutorial systems have missed some

7.3. Discussion of the Findings 138

supportive features such as auto completion, underlining errors, reflection notes, and visual
maps. However, this result is considered a motivation to propose an evaluation instrument
for online coding tutorial systems in this research. Another main result from this study is
identifying one new feature added to the instrument that was found in current online coding
systems but is missing in the instrument. This feature has multi-language support.

• Several programming languages

The results of this comparative analysis study showed that some current online coding
tutorial systems are offering content with several options for different programming
languages. For instance, the LearnPython platform [175] provides several program-
ming languages, such as C++ and Java.

7.3.1.4 RQ4: Building on our research findings, what would a usable online
coding tutorial system look like? Based on a prototype implementa-
tion, to what extent are typical novice learners satisfied with the fea-
tures of such an online coding tutorial system? (Design cycle four)

The results of this evaluation study in Section 4.5 showed that most of the online coding tu-
torial system prototype users are satisfied with the features provided in the system prototype.
In addition, one of the main suggestions highlighted by users in this evaluation study is the
responses to the two open-ended questions. The users suggested some interesting features
that might be helpful in improving programming learning.

• Several languages

The open-ended questions showed that some users found that offering the content of
the lessons in different languages, such as ”Arabic,” might help them learn program-
ming languages more easily.

• Learning videos

Moreover, the open-ended questions’ answers showed that some users found that offer-
ing educational videos that teach coding concepts might help them learn programming
languages more easily.

7.3.2 Instrument validation

7.3.2.1 RQ5: To what extent is it applicable to use the proposed evaluation
instrument for OCTSs to evaluate any online coding tutorial systems?

As presented in Chapter 5, the validation study conducted on the final version of the design
instrument for online coding tutorial systems revealed several key insights into its efficacy

7.3. Discussion of the Findings 139

and applicability for programming educators. The participants in the study provided feed-
back on various aspects of the instrument, highlighting its comprehensibility, specialisation,
and the need for clarification. Firstly, educators found the evaluation instrument to be com-
prehensible, indicating that it was easy to understand and apply in the evaluation process.
This aspect is crucial, as a complex or convoluted instrument could hinder its practical util-
ity in assessing OCTSs effectively. The ability for educators to grasp the instrument easily
enhances its usability and encourages its adoption within educational settings. Secondly, the
specialization of the evaluation instrument for OCTSs was recognised by participants as a
valuable attribute. This specificity ensures that the instrument addresses the unique features
and requirements of online coding tutorial systems, rather than offering a generic evaluation
approach. By tailoring the instrument to the specific needs of OCTSs, educators can conduct
more accurate and insightful assessments, leading to better-informed decisions regarding the
selection and implementation of such systems in programming education. However, despite
its strengths, the validation study identified areas where the evaluation instrument could be
improved. One notable finding was the absence of performance-related metrics within the
instrument. Participants highlighted the importance of evaluating the performance of OCTSs
based on technical and psychological factors, suggesting that the inclusion of performance
items would enhance the instrument’s comprehensiveness and utility.

In conclusion, the findings of the validation study support the claim that the proposed eval-
uation instrument for OCTSs is suitable for evaluating online coding tutorial systems. Edu-
cators described it as a comprehensive tool with specific features tailored to the assessment
of OCTSs. Nevertheless, the study also underscored the need for ongoing refinement and
enhancement of the instrument, particularly in areas such as performance evaluation. By
addressing these areas of improvement, the evaluation instrument can continue to serve as a
valuable resource for programming educators seeking to evaluate and improve online coding
tutorial systems.

7.3.3 Programming educators’ experiences on the instrument

7.3.3.1 RQ6: What are the attitudes of programming educators toward using
the instrument to evaluate online coding tutorial systems?

As presented in Chapter 6, the use of the proposed instrument by programming educators
to evaluate online coding tutorial systems and to investigate their experiences of using the
instrument. The findings of the qualitative data analysis demonstrate that the tool was useful
and effective for programming educators in assessing such systems. The educators concurred
that the tool offers a set of standards for evaluating online coding tutorial programs, which
can support them choose the effective online coding tutorial systems for novices.

7.4. Chapter Summary 140

7.4 Chapter Summary

The claim of this thesis is twofold, as reflected in the thesis statement. The first claim is
that Online coding tutorial systems should be designed and deployed in such a way that

they satisfy novice learners’ needs to ensure effective interactive platform use, leading to the

successful delivery of programming teaching by educators and consequent positive impacts

for novice learners. The second claim of the thesis statement proposes that Such effectiveness

can be achieved by the adoption of a systematically constructed instrument of features to

support programming educators to evaluate and select the most appropriate online coding

tutorial system for their learning context. This thesis explores this claim by developing an
evaluation instrument that can be used by programming educators to evaluate and select
effective online coding tutorial systems. This work is the first that proposes an instrument
for evaluating online coding tutorial systems. Through validating the proposed instrument
by experienced programming educators, the thesis concludes that the proposed instrument is
applicable to be used as an evaluation instrument.

141

Chapter 8

Conclusion

8.1 Chapter Overview

This chapter demonstrates that the objectives of the research highlighted in Chapter 1 have
been fully or partially met, indicating the strengths and limitations of the study. This chapter
is structured as follows: Section 8.2 presents the summary of this research work; Section 8.3
discusses the contributions to computer science education; Section 8.4 outlines the research
achievements; and finally, Section 8.5 presents the research limitations.

8.2 Summary

In order to achieve the aim of this thesis, an evaluation instrument for online coding tutorial
systems was developed and validated in order to support programming educators in evaluat-
ing online coding tutorial systems. The empirical evidence in this research suggests that the
proposed evaluation instrument for OCTSs can enhance a programming learning journey.
Furthermore, based on the data analysis carried out from the study in Chapter 6, it can be
stated that this research achieved that objective. Using design cycles as required in design-
based research, an evaluation instrument for online coding tutorial systems was developed.
Moreover, the fuzzy Delphi method has been used to validate the instrument.

8.2.1 Theoretical development of the evaluation instrument

The main contribution of this thesis was the evaluation instrument based on the design-based
research process. This approach ensured that the refinement of the instrument was done
systematically over several cycles thus ensuring that the instrument measures various param-

8.2. Summary 142

eters of the online coding tutorial system including usability, pedagogy, learner engagement
level, adaptability and feedback mechanisms.

1. Iterative Design Process:

The process of design following the developmental-cycle approach, where the design
was developed in cycles, was instrumental in making the instrument both substantive
and feasible. Thus, the approach used was the design-based research, which was based
on the review of the previous literature and established that there is a significant lack of
the evaluation tool that would respond to the needs of programming education [137].
Thus, every cycle had input from experts and educators, which enabled the develop-
ment of the instrument and its adaptation to meet the needs of novice programmers,
and thus can be applied across different educational settings.

2. Integration of multiple perspectives:

The fact that both academic and front-line educators being involved in the development
of the instrument was a strength in the process. This diversity of the authors guaranteed
that the instrument did not only reflect the state-of-practice in educational technology,
but also the realities of educators involved in programming education. It also enabled
progressive development, since feedback was received from each cycle to improve and
optimise the aspect of the instrument [137].

3. Prevalence of online coding tutorial systems:

The development of this instrument is particularly important, given the codes for online
coding tutorial systems. That is, as these systems emerge, educators face numerous
possibilities, which can significantly vary in quality and efficacy. The instrument offers
a way to assess these systems systematically and grounded on available research, so
educators can arrive at the best course of action that will support their instructional
philosophy and their learners. As such, the instrument aims at the criteria of usability
and pedagogical benefits to ensure that only efficient and effective systems that are
also educationally beneficial are selected [137] [134].

8.2.2 Assumption of validity of the instrument

The validation of the instrument was done using the Fuzzy Delphi Method (FDM), a system-
atic approach that uses the Delphi technique of consensus among experts, involving the fuzzy
logic technique that deals with the imprecision and uncertainty inherent in human judgement
[226]. This was done out of the belief that the FDM is more effective in integrating expert
opinions, making the validation more accurate.

8.3. Emerging Findings and Contributions to the Larger Field of Computer Science
Education Research 143

1. Expert consensus and fuzzy logic:

The FDM enabled researchers to gather the opinion of experts on the essential sections
of the instrument and make a consensus. This is especially useful in educational re-
search, as it involves expert judgement in the validation of tools used in sophisticated,
context-specific use [226]. To this end, the FDM made sure the instrument used was
valid, reliable, and transportable across different contexts in education, thereby adding
to the value of using the instrument in programming educators.

2. Ensuring applicability across contexts:

The validation process revealed that educators can well employ the instrument to as-
sess and choose the most suitable online coding tutorial systems that would fit their
teaching-learning context. This is especially important in programming education,
where the effectiveness of a learning system can greatly affect the student learning and
retention of the content, as noted by [191]. During the FDM process, several experts
participated in the development of the instrument, and thus the developed instrument
is more likely to be valid in diverse educational settings [226].

3. Reflecting emerging trends: The application of the FDM also helped identify other
related trends and best practices in the application of educational technology. The
process of programming education is constantly developing, and it is important to
incorporate new ideas and approaches to assessment into the instrument [226] [184].
This approach helps in ensuring that the instrument is most current, in as much as
improvements in educational technology and instructional methods.

8.3 Emerging Findings and Contributions to the Larger

Field of Computer Science Education Research

This section discusses the implications of these investigations for the field of computer sci-
ence education research. It is concerned with its educational, theoretical and methodological
significance. This section builds on the prior contributions by locating the findings within the
existing literature in computer science education. It focuses on how they respond to some of
the issues that are relevant in the field. This section provides a detailed analysis of the find-
ings across all chapters with detailed exploration. It highlights how the research enhances
understanding of the evaluation of online coding tutorial systems, the experience of novice
programmers, and the practical application of instructional design principles.

1. Integration of pedagogical principles:

8.3. Emerging Findings and Contributions to the Larger Field of Computer Science
Education Research 144

This study also offers the following main research contributions; the assessment of
technological resources has incorporated instructional design principles as the focal
point. Many of the current available assessment tools focus primarily on the technical
aspects of the goods and services, such as the usability and performance. However,
this research points to the fact that the systems enhance learning, and this is a critical
feature of programming education. Such components as the pedagogical effectiveness
and the learners’ engagement when incorporated in the instrument provide a better
evaluation of programming education as intended by the objectives of the program-
ming education [137] [198].

2. Support for online and hybrid learning:

Especially with the shift of the world system towards online learning, there is a need for
tools that help educators identify available technologies for their use. This instrument
developed in the current study will be useful, where educators can select systems that
are technically efficient, but also educationally efficient [137] [134]. This contribution
is especially relevant now, as the tendencies towards using the online and blended
learning environments remain high and rising in many educational contexts [134].

3. Theoretical and methodological contributions:

Apart from the practical impact, this research provides important theoretical findings
into the assessment of educational technologies. Using the theories of usability, in-
structional design effectiveness, learner interaction, flexibility, and feedback for the
development of this instrument, this research offers a framework that can be used in
future research in the evaluation of online learning systems [191] [134]. The instru-
ment’s validation process also has a methodological contribution, showing how the
Fuzzy Delphi Method can be applied in the development and validation of educational
instruments [226] [149] [139].

4. Implications for future research:

This dissertation offers the practical solution for educators, but also opens further de-
velopment in the context of educational technology research. Reflections on the itera-
tive design and validation can help create new evaluation instruments and approaches,
especially in the fields that combine technology and education [191] [184]. Further
studies could extend this research by assessing the effect of the instrument on edu-
cation results in the long term, or by applying the instrument in another educational
context, rather than programming education.

8.4. Research Achievements 145

8.4 Research Achievements

In this thesis, a list of objectives has been achieved, as presented in Table 8.1, that have
led to the development and validation of an instrument for evaluating online coding tutorial
systems.

Research Objectives Achieved?

Identifying the main components of the evaluation instrument by identifying
the programming learning challenges.

✓

Identifying the initial evaluation instrument’ items by identifying the possible
solutions to the identified challenges (the main components)

✓

Updating the initial evaluation instrument’ items by identifying new features
of online coding tutorial systems from system stakeholders’ perspectives, i.e.
novice learners and educators to be evaluated.

✓

Examine a set of current online coding tutorial systems to determine whether
they provide the identified features presented in the instrument and whether
any features that exist in the selected current systems are missing in the pro-
posed instrument

✓

Developing an interactive online coding tutorial system prototype that pro-
vides most of the identified features that exist in the evaluation instrument as
items.

✓

Evaluating the system prototype with real users, capturing their interaction
with the system prototype, and collecting their feedback and suggestions on
the system to improve date the instrument’ items.

✓

Validating the proposed evaluation instrument with experts in the field of com-
puting education.

✓

Conducting a study to investigate how the target audience (programming ed-
ucators) find the evaluation instrument to evaluate online coding tutorial sys-
tems.

✓

Table 8.1: List of research objectives that have been achieved

8.5 Research Limitations and Future Work

• Instrument development

Literature review study (Chapter 4 -Section 4.2)

8.5. Research Limitations and Future Work 146

While considerable effort was devoted to conducting a systematic literature review, it is
essential to acknowledge the possibility of bias influencing the selection of articles and
supportive features. Despite employing rigorous methods, the inclusion or exclusion
of certain papers may have been inadvertently influenced by subjective judgement,
personal preferences, or unconscious biases. Such biases can introduce limitations in
the representativeness and comprehensiveness of the selected research papers [58]. To
mitigate this limitation in future research, it is recommended that clear and objective
criteria be established for the article selection process. These criteria should be prede-
fined and based on the research objectives and questions. By defining and adhering to
transparent and objective criteria, the potential for bias can be minimised, ensuring a
more impartial selection of research papers.

The generalisability of the study’s results may be constrained due to the specific databases
searched and the exclusion of other potential sources. In this study, the search was pri-
marily focused on three databases: ACM, IEEE, and Google Scholar. While these
databases are widely recognised and frequently used in academic research, they may
not provide a comprehensive representation of the entire body of knowledge in the field
of programming education [76]. To enhance the generalisability of future research, it
is recommended to broaden the scope of the search by including a wider range of
databases. In addition to the aforementioned databases, relevant journals, conferences,
and books in the field of programming education should also be considered. Expand-
ing the search to include diverse sources can help capture a more extensive and diverse
range of studies, thereby enhancing the generalisability of the findings [76].

Another potential limitation of this study relates to the time constraints imposed during
the literature review process. The search and analysis were conducted within a specific
timeframe, which may have inadvertently excluded relevant papers published after the
search cutoff date. This time restriction could result in a potential lack of inclusion
of recent research and emerging trends in the field. To address this limitation, future
research should consider extending the literature search period to encompass a more
current and up-to-date range of publications. By expanding the timeframe, researchers
can ensure the inclusion of the most recent studies, thus enhancing the relevance and
currency of the findings. The language bias is an inherent limitation in this study, as
the search was restricted to articles published in English. By excluding papers pub-
lished in other languages, valuable research contributions from non-English-speaking
regions may have been overlooked. This limitation may introduce a potential bias in
the findings and limit the cross-cultural generalisability of the study.

To overcome this limitation, future research should strive to include relevant literature
published in languages other than English. Employing language translation services
or collaborating with researchers fluent in different languages can help overcome lan-

8.5. Research Limitations and Future Work 147

guage barriers and ensure a more comprehensive and inclusive analysis [84].

Current systems evaluation study (Chapter 4 -Section 4.3)

Initially, a sample size of approximately 200 participants was targeted to gather feed-
back and suggestions from a wide range of individuals. However, the actual sample
size for this study was only 37 participants, which is significantly smaller than ex-
pected. The smaller number of participants could be attributed to various factors,
indicating potential biases in the sample. Firstly, it is possible that individuals who
received the survey were not interested in the subject matter or did not perceive it
as relevant to their current activities or research focus. Consequently, they may have
chosen not to participate, resulting in a lower response rate.

The timing of the survey distribution could also have influenced participation. If the
survey was conducted during a period when potential participants were occupied with
other academic or personal commitments, their willingness or ability to complete the
questionnaire might have been affected [188]. While the study managed to collect
valuable insights and feedback from the 37 participants, it is important to recognise
the limitations imposed by the small sample size. Generalising the findings should be
done with caution due to the reduced representativeness of the sample. The extent to
which the results can be applied to a broader population of programming educators
and learners may be limited [188]. Future research endeavours should aim to increase
the sample size by implementing additional recruitment strategies or targeting specific
programming communities or platforms known for their engagement in educational
discussions. Expanding the participant pool would provide a more comprehensive
and representative set of feedback, enhancing the validity and generalisability of the
study’s findings. It would help mitigate the biases associated with the small sample
size and improve the overall quality of the research.

Comparative study (Chapter 4 -Section 4.4)

Some limitations should be taken into account when interpreting the results of this
current systems analysis study. Firstly, the case study was conducted on only seven
online coding tutorial systems, and therefore the results may not be generalised to all
current online coding tutorial systems. Comparative studies comparing the program-
ming learning platform with other similar platforms or educational methods would
help identify its unique strengths and weaknesses. Incorporating qualitative research
methods, such as interviews or focus groups, would provide deeper insights into par-
ticipants’ experiences, perceptions, and suggestions. Additionally, ongoing user feed-
back and iterative design processes can lead to continuous improvement of the pro-
gramming learning platform, ensuring that it meets the needs and preferences of its
users.

8.5. Research Limitations and Future Work 148

Evaluation study (Chapter 4 -Section 4.5)

The study has several potential biases and limitations that should be considered when
interpreting the findings. Firstly, the sample used in the study primarily consisted of
participants from Saudi Arabia and the UK, which may limit the generalisability of
the results to a broader population. It would be beneficial to include participants from
a more diverse range of countries and cultural backgrounds in future studies to obtain
a more comprehensive understanding. Another potential bias is self-selection bias, as
participants voluntarily chose to participate in the study. This could introduce bias
if those who were more motivated or had a particular interest in programming were
more likely to participate. Consequently, the sample may not fully represent the wider
population of programming novice learners.

Social desirability bias is another consideration, as participants’ responses in the sur-
vey may be influenced by their desire to provide socially acceptable answers or appear
favorably. This bias could affect the accuracy and reliability of the reported satisfaction
levels and other self-reported data. Additionally, recall bias could impact the accuracy
of the data collected, as participants may struggle to accurately recall their interac-
tions with the programming learning platform or their satisfaction levels. Memory
limitations or selective recall could introduce inaccuracies in the reported data. De-
spite these limitations, there are several future opportunities for research in this area.
Firstly, diversifying the sample to include participants from various regions, cultures,
and educational backgrounds would provide a more comprehensive understanding of
the effectiveness and usability of the programming learning platform. Longitudinal
studies tracking participants’ progress and performance over an extended period would
offer insights into the long-term impact of the platform on their skill development and
career outcomes.

• Instrument validation

Instrument validation study (Chapter 5)

The study has some limitations that should be considered when interpreting the find-
ings. Firstly, the sample used in the study, which primarily consisted of participants,
was a small sample of experts. It would be beneficial to include more experts in future
studies to obtain a more comprehensive understanding.

• Using the instrument in practice

Programming educators’ experiences with the instrument (Chapter 6)

The study has some limitations that should be considered when interpreting the find-
ings. Firstly, the sample used in the study primarily consisted of participants from

8.5. Research Limitations and Future Work 149

Saudi Arabia and the United Kingdom, which may limit the generalisability of the re-
sults to a broader population. It would be beneficial to include participants from a more
diverse range of cultural backgrounds in future studies to obtain a more comprehensive
understanding.

150

Appendix A

Online Survey: The Learners and
Educators Perspectives Study

A.1 The consent form:

You are invited to participate in this online survey on evaluating the features and character-
istics of online coding tutorials systems from learners and educators’ perspectives. This is a
research study being conducted by a PhD student at the University of Glasgow. This study
should take (45-60) minutes of your time approximately to complete.

• ABOUT THE STUDY

This survey aims to evaluate the features and characteristics of Online Coding Tutori-
als Systems (OCTSs) from learners and educators’ perspectives, the data that will be
collected from this study will indicates if learners and educators find the features and
characteristics of OCTSs helpful.

• WHY ME?

You are being asked to participate in this study because you are a learner or an educator.

• PARTICIPATION

Please understand that your participation in this survey is voluntary and you may,
anytime, refuse to take part in this research. In case you do wish to withdraw, you can
freely decline in answering questions that may feel uncomfortable to you.

• PRIVACY

Anonymity and confidentiality being preserved. All data will be dealt with in accor-
dance with the University’s GDPR guidelines.

A.2. Demographic Questions 151

• CONTACT

Thank you for taking the time to complete this survey” For further inquiries about this
re-search study please feel free to contact me via email:

o.alasmari.1@research.gla.ac.uk

• CONSENT

By accepting this form, I agree and affirm that:

1. I have read and understood the purpose of the information stated above.

2. I am over 18 years of age or older.

3. I am submitting this form and participating in this research study voluntarily.

A.2 Demographic Questions

As shown in Table A.1, four demographic questions were asked.

Demographic Questions Answers

1- What is your age? ———-

2- How long have you been
coding?

0 – One year , Two years- Three years, More than three years

3- How do you identify your
primary role?

An educator, A learner

4- Where are you located? England, Scotland, Saudi Arabia, Others

Table A.1: Demographic questions

A.3 User tasks

• SCENARIOS 1:

– Click here to open the online coding tutorials systems. https://www.learnpython.org/

– Go through the introduction page.

– Read the content topics list (Learn the Basics-Data Science Tutorials-Advanced
Tutorials)

• SCENARIOS 2:

A.4. Post-Testing Questions (Part 1) 152

– Click on any section in the content topics list.

– Go through the exercise instructions.

– Look at the code segment in the left shell (script shell).

– Press the “Run” button.

– Look at the output that will be shown to you in the other shell.

• SCENARIOS 3:

– Repeat the same steps in Scenarios 2 but write a wrong code segment.

– Press the “Run” button.

– Look at the output that will be shown to you in the other shell and be aware of if
any syntax error is highlighted.

A.4 Post-Testing Questions (Part 1)

This part contains a set of assessment statements as shown in Table A.2; the following state-
ments are about the tested online coding tutorials system’ features and characteristics. We
are asking whether you found these features and characteristics helpful. Please rate the extent
to which you agree/disagree with the following statements.

A.4. Post-Testing Questions (Part 1) 153

Questions Answers

1- Providing a list of coding exercises that cover
most of basic and complex coding concepts.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

2- Providing a REPL (interactive shell) that al-
lows learners to actively practice coding, and
type code snippets that executed incrementally.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

3- Providing a REPL (Interactive shell that sup-
ports “Hints feature” that help learners to be
guided when to use a particular function and
help to avoid careless mistakes.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

4- Providing a REPL interpreters that print
the result as message that indicates errors that
might code has.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

5- Offering extra material other than the course
tutorials such as video.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

6- Providing a REPL interpreters that provide
syntax highlighting.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

7- Providing a REPL interpreters that under-
line syntax error that indicates errors that might
code has.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

8- Providing a REPL interpreters that print the
result as detailed message that indicates errors
that might code has.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

9- Providing code templates in the script shell
helps me to use a programming language to
implement an algorithm for solving a specific
problem.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

10- Identifying errors locations in the output
shell to debug the code.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

11- Offering complete example programs and
worked solutions helps to understand basic con-
cepts the programming language.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

Table A.2: A set of assessment statements (Part 1)

A.5. Post-Testing Questions (Part 2) 154

A.5 Post-Testing Questions (Part 2)

Please rate the extent to which you agree/disagree with the following statements (As shown
in TableA.3. In terms of features and characteristics, the tested online coding tutorials system
SHOULD also be .

Questions Answers

1- Providing an assessment activity that allows
learners to evaluate his/her skills at the end of
each section.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

2- Providing a visual map feature to understand
the execution process of the code.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

3- Providing a code editor that predictively
completes whatever I want to type might helps
to produce good code.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

Table A.3: A set of assessment statements (Part2)

A.6 Open-ended questions

As presented in TableA.4, two open-ended questions were asked.

Questions Answers

What other helpful features or characteristics of Online Coding
Tutorials Systems would you suggest?

———-

Any other comments? ————-

Table A.4: Open-ended questions

155

Appendix B

Online Survey: Python OCTS
Evaluation Study

B.1 The consent form:

You are invited to participate in this online survey on evaluating the features of Python OCTS
prototype from learners’ perspectives. This is a research study being conducted by a PhD
student at the University of Glasgow. This study should take (20-30) minutes of your time
approximately to complete. be

• ABOUT THE STUDY

This survey aims to measure the participants’ satisfaction levels for the features pro-
vided in our system prototype. The data that will be collected from this study will
indicates if learners find the features of our system prototype usable and helpful.

• WHY ME?

You are being asked to participate in this study because you are a programming learner.

• PARTICIPATION

Please understand that your participation in this survey is voluntary and you may,
anytime, refuse to take part in this research. In case you do wish to withdraw, you can
freely decline in answering questions that may feel uncomfortable to you.

• PRIVACY

Anonymity and confidentiality being preserved. All data will be dealt with in accor-
dance with the University’s GDPR guidelines.

B.2. Demographic Questions 156

• CONTACT

Thank you for taking the time to complete this survey” For further inquiries about this
re-search study please feel free to contact me via email: o.alasmari.1@research.gla.ac.uk

• CONSENT

By accepting this form, I agree and affirm that: 1. I have read and understood the
purpose of the information stated above. 2. I am over 18 years of age or older. 3. I am
submitting this form and participating in this research study voluntarily.

B.2 Demographic Questions

Demographic Questions Answers
1- What is your age? ———-
2- How would you describe your coding expe-
rience?

No prior experience , Beginner, Interme-
diate, Advanced

3- Where are you located? Saudi Arabia, United Kingdom, Other

B.3 Testing the content of the system porotype

This section is a set of instructions that you should go through to test our the content-based
features of the system porotype. In addition, this section contains a set of assessment state-
ments to measure whether you found these content-based features helpful.

B.3.1 First scenarios to test content-based features

• Click here to open our Python OCTS prototype. python-octs.herokuapp.com

• Click on Try Coding button.

• Enter your personal details to register. Read the content topics list (lessons list; Lesson
1”Hello world”...etc).

• Select any lesson and click on it.

• Try the code editor.

• Reflect at the end of the lesson in the Reflection Note box.

• Click on Quiz button.

B.4. Testing the features in the system porotype 157

• Click on Solution button (available after one minute).

• Click on “Other materials “button on the top of the menu bar.

B.3.2 Post-testing questions

Please rate the extent to which you agree/disagree with the following statements.

Questions Answers
1- Providing a list of coding lessons and exer-
cises helps me to understand basic Python con-
cepts.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

2- Providing a quiz after each lesson allows me
to test my understanding of basic concepts of
Python programming language.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

3- Offering complete example programs and
worked solutions helps me to understand basic
concepts of Python programming language.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

4- Offering extra learning materials as other
learning sources helps me to understand basic
Python concepts.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

5- Providing a list of coding lessons that orga-
nized from basic to advance helps me to under-
stand basic Python concepts.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

6- Providing a reflection note in each coding
lesson helps me to reflect on each coding les-
son.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

B.4 Testing the features in the system porotype

This section is a set of instructions that you should go through to test the technical-based fea-
tures of the system porotype. In addition, this section contains a set of assessment statements
to measure whether you found these features helpful.

B.4.1 Second scenarios to test technical-based features

• Click here to open our Python OCTS prototype. python-octs.herokuapp.com

• Click on Try Coding button.

• Enter your personal details to register.

B.5. Testing the technical features in the system porotype 158

• Read the content lessons list (lessons list; Lesson 1”Hello world”...etc).

• Select one lesson and click on it.

• Look at the code segment in the left shell (script shell) and be aware of syntax high-
lighting.

• Type a wrong code statement such as ”print[word] ”in the script shell and press the
“Run” button. Be aware of syntax error message and error locations that will be shown
to you in the other shell.

• Repeat the previous step and be aware of the yellow highlight shown on the problem-
atic code segment and the hints that will pop up.

• Go to Lesson 4, then click on Next button on the left side of the page and see how the
code is visualized.

• Go to Lesson 2, and look at the attached image below the code editor that shows how
the code editor could predictively complete whatever you want to type.

B.4.2 Post-testing questions

Please rate the extent to which you agree/disagree with the following statements.

Notes:

• Syntax is the set of rules that define what the various combinations of symbols mean.

• Visual map is a way to take a programming concept and transform it into a visual aid
for better understanding.

• Scripts shell is the left part in the code editor where we can type code segments.

B.5 Testing the technical features in the system porotype

B.5.1 Post-testing question

Please rate the extent to which you agree/disagree with the following statement. In terms of
features, the tested online coding tutorials system prototype SHOULD also has the feature
shown in this image.

B.5. Testing the technical features in the system porotype 159

Questions Answers
1- Reporting syntax error messages in the
output shell helps me to reduce mistakes in
spelling, punctuation and order of keywords in
my code and to understand syntax of Python
programming language.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

2- Providing syntax highlighting helps me to
identify keywords and become familiar with
Python programming language syntax.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

3- The visual map given by Python OCTS helps
me understand the execution process of the
code.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

4- Providing code templates in the script shell
helps me to use a programming language to
implement an algorithm for solving a specific
problem.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

5- Identifying errors locations in the output
shell helps me to debug my code.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

6- Providing some guidance through the hints
helps me to find and fix the bug.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

7- Providing detailed error messages helps me
to solve the error effectively.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

Questions Answers

1- Providing a code editor that predictively
completes whatever I want to type might helps
me to produce good code. (As shown in the im-
age)

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

2- Providing several programming languages
might helps me to produce good code.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

3- Providing a REPL interpreters that under-
line syntax error that indicates errors that might
code has might helps me to produce good code.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

B.6. Open-ended questions 160

B.6 Open-ended questions

Questions Answers

What did you like best about the experience? ———-

What did you dislike about the experience? ————-

161

Appendix C

Online Survey: The Experts
Evaluation Study

C.1 The consent form:

You are invited to participate in this online survey on evaluating the evaluation instrument’
items. This is a research study being conducted by a PhD student at the University of Glas-
gow. This study should take (20-30) minutes of your time approximately to complete.

• ABOUT THE STUDY

This survey aims to measure the participants’ satisfaction levels for the evaluation
instrument’ items. The data that will be collected from this study will indicates if
experts find the items of the instrument are valid.

• WHY ME?

You are being asked to participate in this study because you are an expert in computing
education field.

• PARTICIPATION

Please understand that your participation in this survey is voluntary and you may,
anytime, refuse to take part in this research. In case you do wish to withdraw, you can
freely decline in answering questions that may feel uncomfortable to you.

• PRIVACY

Anonymity and confidentiality being preserved. All data will be dealt with in accor-
dance with the University’s GDPR guidelines.

C.2. Demographic Questions 162

• CONTACT

Thank you for taking the time to complete this survey” For further inquiries about this
re-search study please feel free to contact me via email: o.alasmari.1@research.gla.ac.uk

• CONSENT

By accepting this form, I agree and affirm that: 1. I have read and understood the
purpose of the information stated above. 3. I am submitting this form and participating
in this research study voluntarily.

C.2 Demographic Questions

Demographic Questions Answers

1- What is your age? ———-

2- How long have you been instructing in
programming?

0 – Five years , Five years- Ten years,
More than ten years

3- How do you identify your primary
role?

An university professor, A school pro-
gramming instructor

4- Where are you located? Saudi Arabia, United Kingdom, Japan,
China, Others

C.2.1 Post-testing questions

Please rate the extent to which you agree/disagree with the following statements.

C.2. Demographic Questions 163

Questions Answers

Understanding basic concepts: 1- The system provides a list
of code exercises covering the majority of fundamental and
advanced coding principles.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

Understanding basic concepts: 2- The system provides practi-
cal examples that demonstrate how programming concepts and
techniques can be applied in real-world scenarios.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

Understanding basic concepts: 3- The system provides quizzes
to test novice learners’ comprehension and solidify their under-
standing of programming concepts.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

Structure of code: 4- The system has a visual map function that
could aid students in comprehending how the code is executed.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

Syntax of programming languages: 5- The code editor that the
system offers prints the outcome as a message indicating any
potential mistakes in the code.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

Syntax of programming languages: 6- The system provides a
code editor that provides syntax highlighting.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

Debugging: 7- The system provides an output shell that shows
errors’ locations to debug the code.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

Debugging: 8- The system provides a code editor that predic-
tively completes whatever I want to type.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

Improving learning experiences: 9- The system provides a re-
flection note box that serves as a personal space where learners
can document their thoughts and reflections as they progress
through their learning journey.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

Improving learning experiences: 10- The system provides
tailored learning materials, recommendations, and feedback
based on individual needs and preferences.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

Improving learning experiences: 11- The system offers several
options for programming languages.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

Improving learning experiences: 12- The system offers pro-
gramming learning videos.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

Improving learning experiences: 13- The system offers extra
material other than the course tutorials, such as textbooks.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

Improving learning experiences: 14- The system offers several
languages.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

Improving learning experiences: 15- The system provides an
interactive shell that supports the “Hints feature” to avoid care-
less mistakes.

Strongly Disagree, Disagree, Neither,
Agree, Strongly Agree

164

Appendix D

Online Survey: The Educators User
Case Study

D.1 The consent form:

You are invited to participate in this online survey on using the provided instrument to eval-
uate any online coding tutorial systems. This is a research study being conducted by a PhD
student at the University of Glasgow. This study should take (20-30) minutes of your time
approximately to complete.

• ABOUT THE STUDY

This survey aims to capture the programming educators’ attitude toward using the
provided instrument to evaluate any online coding tutorial systems. The data that will
be collected from this study will indicates if the targeted audience find the evaluation
instrument applicable to be used for such systems.

• WHY ME?

You are being asked to participate in this study because you are a programming edu-
cator.

• PARTICIPATION

Please understand that your participation in this survey is voluntary and you may,
anytime, refuse to take part in this research. In case you do wish to withdraw, you can
freely decline in answering questions that may feel uncomfortable to you.

• PRIVACY

Anonymity and confidentiality being preserved. All data will be dealt with in accor-
dance with the University’s GDPR guidelines.

D.2. Demographic Questions 165

• CONTACT

Thank you for taking the time to complete this survey” For further inquiries about this
re-search study please feel free to contact me via email: o.alasmari.1@research.gla.ac.uk

• CONSENT

By accepting this form, I agree and affirm that: 1. I have read and understood the
purpose of the information stated above. 2. I am over 18 years of age or older. 3. I am
submitting this form and participating in this research study voluntarily.

D.2 Demographic Questions

Demographic Questions Answers
1- What is your age? ———-
2- How long have you been instructing in pro-
gramming?

0 – Five years , Five years- Ten years,
More than ten years

3- How do you identify your primary role? An university professor, A school pro-
gramming instructor

4- Where are you located? Saudi Arabia, United Kingdom, Others

D.3 Instructions

• Select one online coding tutorial system

• evaluate it by using the below list of items, and leave below the name of the system

D.4 The evaluation Instrument

D.5 Open-ended question

One open-ended question was asked.

Question Answer

How did you find the instrument in evaluating online coding tuto-
rial systems?

———-

Table D.1: Open-ended question

D.5. Open-ended question 166

Questions Yes ✓ No ✓
Understanding basic concepts: 1- Does the sys-
tem provide a list of code exercises covering
most fundamental and advanced coding princi-
ples?

Yes No

Understanding basic concepts: 2- Does the sys-
tem provide practical examples that demon-
strate how programming concepts and tech-
niques can be applied in real-world scenarios?

Yes No

Understanding basic concepts: 3- Does the sys-
tem provide quizzes to test novice learners’
comprehension and solidify their understanding
of programming concepts?

Yes No

Structure of code: 4- Does the system have a
visual map function that could aid learners in
comprehending how the code is executed?

Yes No

Syntax of programming languages: 5- Does the
system offer a code editor that prints the out-
come as a message indicating any potential mis-
takes in the code?

Yes No

Syntax of programming languages: 6- Does the
system provide a code editor that provides syn-
tax highlighting?

Yes No

Debugging: 7- Does the system provide an out-
put shell that shows the errors’ locations to de-
bug the code?

Yes No

Debugging: 8- Does the system provide a code
editor that predictively completes whatever I
want to type?

Yes No

Improving learning experiences: 9- Does the
system provide a reflection note box that serves
as a personal space where learners can doc-
ument their thoughts and reflections as they
progress through their learning journey?

Yes No

Improving learning experiences: 10- Does the
system provide tailored learning materials, rec-
ommendations, and feedback based on individ-
ual needs and preferences?

Yes No

Improving learning experiences: 11- Does the
system offer several options for programming
languages?

Yes No

Improving learning experiences: 12- Does the
system offer programming learning videos?

Yes No

Improving learning experiences: 13- Does the
system offer extra material other than the course
tutorials, such as textbooks?

Yes No

Improving learning experiences: 14- Does the
system offer several languages?

Yes No

Improving learning experiences: 15- Does the
system offer an interactive shell that supports
the “Hints feature” to avoid careless mistakes?

Yes No

BIBLIOGRAPHY 167

Bibliography

[1] Mireilla Bikanga Ada. Using a mobile web application for assessment feedback to
enhance student motivation, engagement and communication in tertiary education.
PhD thesis, University of the West of Scotland, 2017.

[2] Michael Adler and Erio Ziglio. Gazing into the oracle: The Delphi method and its
application to social policy and public health. Jessica Kingsley Publishers, 1996.

[3] S Ahmad and Juzlinda Ghazali. Programming teaching and learning: Issues and chal-
lenges. Fstm. Kuis. Edu. My, 16(1):724–398, 2020.

[4] Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. An analysis of patterns
of debugging among novice computer science students. In Proceedings of the
10th annual SIGCSE conference on Innovation and technology in computer science
education, pages 84–88, 2005.

[5] Ayat Al Ahmad and Randa Obeidallah. Studying the effectiveness of a proposed
methodology for teaching programming labs online and students” perspectives toward
it during covid-19: A case study of hashemite university. iJIM, 16(05):53, 2022.

[6] Mostafa Al-Emran and Khaled Shaalan. Learners and educators attitudes towards
mobile learning in higher education: State of the art. In 2015 International Conference
on Advances in Computing, Communications and Informatics (ICACCI), pages 907–
913. IEEE, 2015.

[7] Satu Alaoutinen and Kari Smolander. Student self-assessment in a programming
course using bloom’s revised taxonomy. In Proceedings of the fifteenth annual
conference on Innovation and technology in computer science education, pages 155–
159, 2010.

[8] Ohud Alasmari, Jeremy Singer, and Mireilla Bikanga Ada. Analysis of research
into the teaching and learning of programming: An updated review. In 2024 9th
International STEM Education Conference (iSTEM-Ed), pages 1–6. IEEE, 2024.

Bibliography 168

[9] Ohud Alasmari, Jeremy Singer, and Mireilla Bikanga Ada. Online coding tutorial sys-
tems: A new category of programming learning platforms. In 2024 IEEE 48th Annual
Computers, Software, and Applications Conference (COMPSAC), pages 2222–2227.
IEEE, 2024.

[10] Ohud Alasmari, Jeremy Singer, and Mireilla Bikanga Ada. Python octs: Design,
implementation, and evaluation of an online coding tutorial system prototype. In
2024 IEEE World Engineering Education Conference (EDUNINE), pages 1–6. IEEE,
2024.

[11] Ohud Abdullah Alasmari, Jeremy Singer, and Mireilla Bikanga Ada. Do current on-
line coding tutorial systems address novice programmer difficulties? In Proceedings
of the 15th International Conference on Education Technology and Computers, pages
242–248, 2023.

[12] Myrtede Alfred, Laura H Barg-Walkow, Joseph R Keebler, and Alex Chaparro.
Checking all the boxes: a checklist for when and how to use checklists effectively.
BMJ Quality & Safety, 2024.

[13] B. Alizadeh. A formal approach to debug polynomial datapath designs. 17th Asia and
South Pacific Design Automation Conference, 2012.

[14] I Elaine Allen and Jeff Seaman. Digital compass learning: Distance education enroll-
ment report 2017. Babson survey research group, 2017.

[15] John R Anderson, C Franklin Boyle, and Brian J Reiser. Intelligent tutoring systems.
Science, 228(4698):456–462, 1985.

[16] Terry Anderson and Julie Shattuck. Design-based research: A decade of progress in
education research? Educational researcher, 41(1):16–25, 2012.

[17] Leonard A Annetta, James Minogue, Shawn Y Holmes, and Meng-Tzu Cheng. Inves-
tigating the impact of video games on high school students’ engagement and learning
about genetics. Computers & Education, 53(1):74–85, 2009.

[18] Paolo Antonucci, Christian Estler, Durica Nikolić, Marco Piccioni, and Bertrand
Meyer. An incremental hint system for automated programming assignments.
In Proceedings of the 2015 ACM Conference on Innovation and Technology in
Computer Science Education, pages 320–325, 2015.

[19] Michal Armoni, Orni Meerbaum-Salant, and Mordechai Ben-Ari. From scratch to
“real” programming. ACM Transactions on Computing Education, 14(4):1–15, 2015.

Bibliography 169

[20] Anthony R Artino Jr. Online learning: Are subjective perceptions of instructional con-
text related to academic success? The Internet and Higher Education, 12(3-4):117–
125, 2009.

[21] William G Axinn and Lisa D Pearce. Mixed method data collection strategies. Cam-
bridge University Press, 2006.

[22] Lynne P Baldwin and Jasna Kuljis. Learning programming using program visualiza-
tion techniques. In Proceedings of the 34th Annual Hawaii International Conference
on System Sciences, pages 8–pp. IEEE, 2001.

[23] Sasha Barab and Kurt Squire. Design-based research: Putting a stake in the ground.
The journal of the learning sciences, 13(1):1–14, 2004.

[24] Elizabeth F Barkley, K Patricia Cross, and Claire H Major. Collaborative learning
techniques: A handbook for college faculty. John Wiley & Sons, 2014.

[25] Matthew Barr. Student attitudes to games-based skills development: Learning from
video games in higher education. Computers in human behavior, 80:283–294, 2018.

[26] Brigid Barron and Linda Darling-Hammond. Teaching for meaningful learning: A
review of research on inquiry-based and cooperative learning. book excerpt. George
Lucas Educational Foundation, 2008.

[27] Theresa Beaubouef and John Mason. Why the high attrition rate for computer science
students: some thoughts and observations. ACM SIGCSE Bulletin, 37(2):103–106,
2005.

[28] Brett A Becker. An effective approach to enhancing compiler error messages.
In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education, pages 126–131, 2016.

[29] Brett A Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael Os-
era, et al. Compiler error messages considered unhelpful: The landscape of text-based
programming error message research. In Proceedings of the Working Group Reports
on Innovation and Technology in Computer Science Education, pages 177–210. 2019.

[30] Randy L Bell, Lara Smetana, and Ian Binns. Simplifying inquiry instruction. The
science teacher, 72(7):30–33, 2005.

[31] Jens Bennedsen and Michael E Caspersen. Failure rates in introductory programming.
AcM SIGcSE Bulletin, 39(2):32–36, 2007.

Bibliography 170

[32] David C Berliner. The near impossibility of testing for teacher quality. Journal of
teacher education, 56(3):205–213, 2005.

[33] H Russell Bernard and Harvey Russell Bernard. Social research methods: Qualitative
and quantitative approaches. Sage, 2013.

[34] Mireilla Bikanga Ada. Using design-based research to develop a mobile learning
framework for assessment feedback. Research and Practice in Technology Enhanced
Learning, 13(1):3, 2018.

[35] Yorah Bosse and Marco Aurélio Gerosa. Why is programming so difficult to learn?
patterns of difficulties related to programming learning mid-stage. ACM SIGSOFT
Software Engineering Notes, 41(6):1–6, 2017.

[36] Virginia Braun and Victoria Clarke. Using thematic analysis in psychology.
Qualitative Research in Psychology, 3(2):77–101, 2006.

[37] Virginia Braun, Victoria Clarke, Elicia Boulton, Louise Davey, and Charlotte McEvoy.
The online survey as a qualitative research tool. International journal of social research
methodology, 24(6):641–654, 2021.

[38] Karen Brennan and Mitchel Resnick. New frameworks for studying and assess-
ing the development of computational thinking. In Proceedings of the 2012 annual
meeting of the American educational research association, Vancouver, Canada, vol-
ume 1, page 25, 2012.

[39] Ann L Brown. Design experiments: Theoretical and methodological challenges in
creating complex interventions in classroom settings. The journal of the learning
sciences, 2(2):141–178, 1992.

[40] Joshua Charles Campbell, Abram Hindle, and José Nelson Amaral. Syntax errors just
aren’t natural: Improving error reporting with language models. In Proceedings of the
11th Working Conference on Mining Software Repositories, pages 252–261, 2014.

[41] Saul Carliner. An overview of online learning. 2004.

[42] Iain Chalmers, Douglas G Altman, et al. Systematic reviews. BMJ Publishing Lon-
don, 1995.

[43] Lijia Chen, Pingping Chen, and Zhijian Lin. Artificial intelligence in education: A
review. Ieee Access, 8:75264–75278, 2020.

[44] Ching-Hsue Cheng and Yin Lin. Evaluating the best main battle tank using fuzzy
decision theory with linguistic criteria evaluation. European journal of operational
research, 142(1):174–186, 2002.

Bibliography 171

[45] Edith Cherry. Programming for design: From theory to practice. John Wiley & Sons,
1998.

[46] A Ciptono, S Setiyono, F Nurhidayati, and R Vikaliana. Fuzzy delphi method in
education: A mapping. In Journal of Physics: Conference Series, volume 1360, page
012029. IOP Publishing, 2019.

[47] Paul Cobb, Jere Confrey, Andrea DiSessa, Richard Lehrer, and Leona Schauble. De-
sign experiments in educational research. Educational researcher, 32(1):9–13, 2003.

[48] Codecademy. LearnTypeScript, 2022. https://www.codecademy.com/

learn/learn-typescript.

[49] Codecademy. Codecademy, 2023. https://www.codecademy.com.

[50] Codecombat. Codecombat, 2023. https://codecombat.com/.

[51] Code.org. Code.org, 2023. https://code.org/educate/curriculum.

[52] Design-Based Research Collective. Design-based research: An emerging paradigm
for educational inquiry. Educational researcher, 32(1):5–8, 2003.

[53] Mick P Couper. Web surveys: A review of issues and approaches. The public opinion
quarterly, 64(4):464–494, 2000.

[54] Coursera. Coursera, 2023. https://www.coursera.org/.

[55] Tyne Crow, Andrew Luxton-Reilly, and Burkhard Wuensche. Intelligent tutoring sys-
tems for programming education: a systematic review. In Proceedings of the 20th
Australasian Computing Education Conference, pages 53–62, 2018.

[56] Leslie A Curry, Ingrid M Nembhard, and Elizabeth H Bradley. Qualitative and
mixed methods provide unique contributions to outcomes research. Circulation,
119(10):1442–1452, 2009.

[57] Nada Dabbagh and Anastasia Kitsantas. Personal learning environments, social me-
dia, and self-regulated learning: A natural formula for connecting formal and informal
learning. The Internet and higher education, 15(1):3–8, 2012.

[58] Roxana Daneshjou, Mary P Smith, Mary D Sun, Veronica Rotemberg, and James
Zou. Lack of transparency and potential bias in artificial intelligence data sets and
algorithms: a scoping review. JAMA dermatology, 157(11):1362–1369, 2021.

[59] Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. All syntax errors are not
equal. In Proceedings of the 17th ACM Annual Conference on Innovation and
Technology in Computer Science Education, pages 75–80, 2012.

https://www.codecademy.com/learn/learn-typescript
https://www.codecademy.com/learn/learn-typescript
https://www.codecademy.com
https://codecombat.com/
https://code.org/educate/curriculum
https://www.coursera.org/

Bibliography 172

[60] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. Under-
standing the syntax barrier for novices. In Proceedings of the 16th annual joint
conference on Innovation and technology in computer science education, pages 208–
212, 2011.

[61] Omer Deperlioglu and Utku Kose. The effectiveness and experiences of blended
learning approaches to computer programming education. Computer Applications
in Engineering Education, 21(2):328–342, 2013.

[62] Shivangi Dhawan. Online learning: A panacea in the time of covid-19 crisis. Journal
of educational technology systems, 49(1):5–22, 2020.

[63] Don A Dillman, Jolene D Smyth, and Leah Melani Christian. Internet, phone, mail,
and mixed-mode surveys: The tailored design method. John Wiley & Sons, 2014.

[64] Chris Done. TryHaskell, 2022. https://tryhaskell.org.

[65] Christopher Douce, David Livingstone, and James Orwell. Automatic test-based as-
sessment of programming: A review. Journal on Educational Resources in Computing
(JERIC), 5(3):4–es, 2005.

[66] Matthew W Easterday, Daniel Rees Lewis, and Elizabeth M Gerber. Design-based
research process: Problems, phases, and applications. Boulder, CO: International
Society of the Learning Sciences, 2014.

[67] edx. edx, 2023. https://www.edx.org/.

[68] Weimiao Fan and Zheng Yan. Factors affecting response rates of the web survey: A
systematic review. Computers in human behavior, 26(2):132–139, 2010.

[69] Murray J Fisher and Andrea P Marshall. Understanding descriptive statistics.
Australian critical care, 22(2):93–97, 2009.

[70] Sue Fitzgerald, Renée McCauley, Brian Hanks, Laurie Murphy, Beth Simon, and
Carol Zander. Debugging from the student perspective. IEEE Transactions on
Education, 53(3):390–396, 2009.

[71] Bent Flyvbjerg. Case study. The Sage handbook of qualitative research, 4:301–316,
2011.

[72] freecodecamp. freecodecamp, 2023. https://www.freecodecamp.org/.

[73] D Randy Garrison and Heather Kanuka. Blended learning: Uncovering its transfor-
mative potential in higher education. The internet and higher education, 7(2):95–105,
2004.

https://tryhaskell.org
https://www.edx.org/
https://www.freecodecamp.org/

Bibliography 173

[74] Kevin Gary. Project-based learning. Computer, 48(9):98–100, 2015.

[75] Andrew Gerrand et al. A Tour of Go, 2022. https://go.dev/tour.

[76] Adrian Gheorghe, Tracy E Roberts, Jonathan C Ives, Benjamin R Fletcher, and
Melanie Calvert. Centre selection for clinical trials and the generalisability of results:
a mixed methods study. PLoS One, 8(2):e56560, 2013.

[77] Paul Gill, Kate Stewart, Elizabeth Treasure, and Barbara Chadwick. Methods of data
collection in qualitative research: interviews and focus groups. British dental journal,
204(6):291–295, 2008.

[78] Anabela Gomes and Antonio Mendes. A teacher’s view about introductory program-
ming teaching and learning: Difficulties, strategies and motivations. In Proceedings
of the IEEE Frontiers in Education Conference, pages 1–8, 2014.

[79] Anabela Gomes and António José Mendes. An environment to improve programming
education. In Proceedings of the 2007 international conference on Computer systems
and technologies, pages 1–6, 2007.

[80] Samuel D Gosling, Simine Vazire, Sanjay Srivastava, and Oliver P John. Should we
trust web-based studies? a comparative analysis of six preconceptions about internet
questionnaires. American psychologist, 59(2):93, 2004.

[81] TR Green. G & m. ptre (1996) usability analysis of visual programming environments:
A’cognitive dimensions’ framework. Journal of Visual Languages and Computing, 7.

[82] Jan Gregar. Research design (qualitative, quantitative and mixed methods ap-
proaches). Book published by SAGE Publications, 228, 1994.

[83] Jiancheng Guan and Nan Ma. A comparative study of research performance in com-
puter science. Scientometrics, 61:339–359, 2004.

[84] Louise Guillouet, Amit K Khandelwal, Rocco Macchiavello, Madhav Malhotra, and
Matthieu Teachout. Language barriers in multinationals and knowledge transfers.
Review of Economics and Statistics, pages 1–56, 2024.

[85] Philip J Guo. Online python tutor: embeddable web-based program visualization for
cs education. In Proceeding of the 44th ACM technical symposium on Computer
science education, pages 579–584, 2013.

[86] Mark Guzdial. Education teaching computing to everyone. Communications of the
ACM, 52(5):31–33, 2009.

https://go.dev/tour

Bibliography 174

[87] Mark Guzdial. Exploring hypotheses about media computation. In Proceedings of
the ninth annual international ACM conference on International computing education
research, pages 19–26, 2013.

[88] Mark Guzdial. Learner-centered design of computing education: Research on
computing for everyone. Morgan & Claypool Publishers, 2015.

[89] Brian Hanks, Charlie McDowell, David Draper, and Milovan Krnjajic. Program
quality with pair programming in cs1. In Proceedings of the 9th annual SIGCSE
conference on Innovation and technology in computer science education, pages 176–
180, 2004.

[90] Christoph Hannebauer, Marc Hesenius, and Volker Gruhn. Does syntax highlight-
ing help programming novices? Empirical Software Engineering, 23(5):2795–2828,
2018.

[91] I Harb. The effectiveness of a blended learning program on developing and reten-
tion of palestinian tenth graders’ english writing skills. Unpublished Master Thesis,
Islamic University, Gaza, Palestine, 2013.

[92] Ahmad Sobri Hashim, Rohiza Ahmad, and Muhammad Shafiq Shahrul Amar. Dif-
ficulties in learning structured programming: A case study in utp. In 7th World
Engineering Education Forum, pages 210–215, 2017.

[93] heroku. heroku, 2023. https://www.heroku.com/.

[94] Ivo Herweijer. TryRuby, 2022. https://try.ruby-lang.org.

[95] Anthony JG Hey, Tony Hey, and Gyuri Pápay. The computing universe: a journey
through a revolution. Cambridge University Press, 2014.

[96] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. Identifying and
correcting java programming errors for introductory computer science students. ACM
SIGCSE Bulletin, 35(1):153–156, 2003.

[97] Tsun-Yu Huang, Wen-Kuo Chen, Venkateswarlu Nalluri, and Thao-Trang Huynh-
Cam. Evaluating e-teaching adoption criteria for indian educational organizations
using fuzzy delphi-topsis approach. Mathematics, 10(13):2175, 2022.

[98] Gwo-Jen Hwang, Pei-Shan Tsai, Chin-Chung Tsai, and Judy CR Tseng. A
novel approach for assisting teachers in analyzing student web-searching behaviors.
Computers & Education, 51(2):926–938, 2008.

https://www.heroku.com/
https://try.ruby-lang.org

Bibliography 175

[99] Akira Ishikawa, Michio Amagasa, Tetsuo Shiga, Giichi Tomizawa, Rumi Tatsuta,
and Hiroshi Mieno. The max-min delphi method and fuzzy delphi method via fuzzy
integration. Fuzzy sets and systems, 55(3):241–253, 1993.

[100] Galina Ivanova, Vasil Kozov, and Pavel Zlatarov. Gamification in software en-
gineering education. In 2019 42nd International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), pages
1445–1450. IEEE, 2019.

[101] David W Johnson, Roger T Johnson, and Karl A Smith. Cooperative learning: Im-
proving university instruction by basing practice on validated theory. Journal on
Excellence in University Teaching, 25(4):1–26, 2014.

[102] Insung Jung and Colin Latchem. A model for e-education: Extended teaching spaces
and extended learning spaces. British Journal of Educational Technology, 42(1):6–18,
2011.

[103] Rozita Kadar, Naemah Abdul Wahab, Jamal Othman, Maisurah Shamsuddin, and
Siti Balqis Mahlan. A study of difficulties in teaching and learning program-
ming: a systematic literature review. International Journal of Academic Research
in Progressive Education and Development, 10(3):591–605, 2021.

[104] Yasmin B Kafai and Quinn Burke. Constructionist gaming: Understanding the bene-
fits of making games for learning. Educational psychologist, 50(4):313–334, 2015.

[105] Yasmin B Kafai and Mitchel Resnick. Constructionism in practice: Designing,
thinking, and learning in a digital world. Routledge, 1996.

[106] Caitlin Kelleher and Randy Pausch. Lowering the barriers to programming: A tax-
onomy of programming environments and languages for novice programmers. ACM
computing surveys (CSUR), 37(2):83–137, 2005.

[107] Khanacademy. Khanacademy, 2023. https://www.khanacademy.org/

computing/computer-programming.

[108] Ada S Kim and Amy J Ko. A pedagogical analysis of online coding tutorials. In
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education, pages 321–326, 2017.

[109] Barbara Kitchenham. Procedures for performing systematic reviews. Keele, UK,
Keele University, 33(2004):1–26, 2004.

[110] Barbara Kitchenham and Stuart Charters. Guidelines for performing systematic liter-
ature reviews in software engineering. 2007.

https://www.khanacademy.org/computing/computer-programming
https://www.khanacademy.org/computing/computer-programming

Bibliography 176

[111] Barbara Kitchenham et al. Guidelines for performing systematic literature reviews in
software engineering. Technical Report EBSE-2007-01, Software Engineering Group,
School of Computer Science and Mathematics, Keele University, 2007.

[112] Dimitra Kokotsaki, Victoria Menzies, and Andy Wiggins. Project-based learning: A
review of the literature. Improving schools, 19(3):267–277, 2016.

[113] Michael Kölling, Bruce Quig, Andrew Patterson, and John Rosenberg. The bluej
system and its pedagogy. Computer Science Education, 13(4):249–268, 2003.

[114] Utku Köse. A web based system for project-based learning activities in “web de-
sign and programming” course. Procedia-Social and Behavioral Sciences, 2(2):1174–
1184, 2010.

[115] Theodora Koulouri, Stanislao Lauria, and Robert D Macredie. Teaching introductory
programming: A quantitative evaluation of different approaches. ACM Transactions
on Computing Education (TOCE), 14(4):1–28, 2014.

[116] Ranjit Kumar. Research methodology: A step-by-step guide for beginners. Sage,
2018.

[117] Kartikadyota Kusumaningtyas, Eko Dwi Nugroho, and Adri Priadana. Online inte-
grated development environment (ide) in supporting computer programming learn-
ing process during covid-19 pandemic: A comparative analysis. IJID (International
Journal on Informatics for Development), 9(2):66–71, 2020.

[118] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. A study of the difficulties
of novice programmers. Acm sigcse bulletin, 37(3):14–18, 2005.

[119] Kris MY Law, Victor CS Lee, and Yuen-Tak Yu. Learning motivation in e-learning
facilitated computer programming courses. Computers & Education, 55(1):218–228,
2010.

[120] Jaeho Lee, Wonsung Sohn, Kyeong Hur, Sunghun Ahn, Inhwan Yoo, Youngkwon
Bae, Dukhoi Koo, and Seungki Shin. A delphi study for the direction to design
the curriculum of computer education in elementary school. Journal of The Korean
Association of Information Education, 25(1):1–11, 2021.

[121] Qing Li. A novel likert scale based on fuzzy sets theory. Expert Systems with
Applications, 40(5):1609–1618, 2013.

[122] Harold A Linstone, Murray Turoff, et al. The delphi method. Addison-Wesley Read-
ing, MA, 1975.

Bibliography 177

[123] Raymond Lister, Elizabeth S Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto Seppälä,
et al. A multi-national study of reading and tracing skills in novice programmers.
ACM SIGCSE Bulletin, 36(4):119–150, 2004.

[124] Andrew Luxton-Reilly, Ibrahim Albluwi, Brett A Becker, Michail Giannakos, Am-
ruth N Kumar, Linda Ott, James Paterson, Michael James Scott, Judy Sheard, and
Claudia Szabo. Introductory programming: a systematic literature review. In
Proceedings Companion of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education, pages 55–106, 2018.

[125] Marjorie M MacKinnon. Core elements of student motivation in problem-based learn-
ing. New directions for teaching and learning, 1999(78):49–58, 1999.

[126] Lauri Malmi, Ian Utting, and Amy J. Ko. Tools and Environments, pages 639–662.
Cambridge University Press, 2019.

[127] John H Maloney, Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie
Rusk. Programming by choice: urban youth learning programming with scratch.
In Proceedings of the 39th SIGCSE technical symposium on Computer science
education, pages 367–371, 2008.

[128] Lauren E Margulieux, Mark Guzdial, and Richard Catrambone. Subgoal-labeled in-
structional material improves performance and transfer in learning to develop mo-
bile applications. In Proceedings of the ninth annual international conference on
International computing education research, pages 71–78, 2012.

[129] Samiha Marwan, Joseph Jay Williams, and Thomas Price. An evaluation of the impact
of automated programming hints on performance and learning. In Proceedings of the
2019 ACM Conference on International Computing Education Research, pages 61–
70, 2019.

[130] Renee McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. Debugging: a review of the literature from an
educational perspective. Computer Science Education, 18(2):67–92, 2008.

[131] Sean McDirmid. Usable live programming. In Proceedings of the 2013
ACM international symposium on New ideas, new paradigms, and reflections on
programming & software, pages 53–62, 2013.

[132] Susan McKenney and Thomas C Reeves. Conducting educational design research.
Routledge, 2018.

Bibliography 178

[133] Ruth McQuirter. Lessons on change: Shifting to online learning during covid-19.
Brock Education: A Journal of Educational Research and Practice, 29(2):47–51, 2020.

[134] Giansalvatore Mecca, Donatello Santoro, Nazzareno Sileno, and Enzo Veltri.
Diogene-ct: tools and methodologies for teaching and learning coding. International
Journal of Educational Technology in Higher Education, 18(1):12, 2021.

[135] Rodrigo Pessoa Medeiros, Geber Lisboa Ramalho, and Taciana Pontual Falcão. A
systematic literature review on teaching and learning introductory programming in
higher education. IEEE Transactions on Education, 62(2):77–90, 2018.

[136] Microsoft. Microsoft, 2023. https://visualstudio.microsoft.com/

downloads/.

[137] Kathy A Mills, Jen Cope, Laura Scholes, and Luke Rowe. Coding and computa-
tional thinking across the curriculum: A review of educational outcomes. Review of
Educational Research, page 00346543241241327, 2024.

[138] Iain Milne and Glenn Rowe. Difficulties in learning and teaching program-
ming—views of students and tutors. Education and Information technologies,
7(1):55–66, 2002.

[139] Vincent W Mitchell. The delphi technique: An exposition and application.
Technology Analysis & Strategic Management, 3(4):333–358, 1991.

[140] Shuhaida Mohamed Shuhidan, Margaret Hamilton, and Daryl D’Souza. Understand-
ing novice programmer difficulties via guided learning. In Proceedings of the 16th
annual joint conference on Innovation and technology in computer science education,
pages 213–217, 2011.

[141] Jeovani Morales, Rosana Montes, Noe Zermeno, Jeronimo Duran, and Francisco
Herrera. The use of fuzzy linguistic information and fuzzy delphi method to
validate by consensus a questionnaire in a blended-learning environment. In
International conference on information processing and Management of Uncertainty
in knowledge-based systems, pages 137–149. Springer, 2018.

[142] Khanzadi Mostafa, Nasirzadeh Farnad, and Alipour Majid. Using fuzzy-delphi
technique to determine the concession period in bot projects. In 2010 2nd IEEE
International Conference on Information and Financial Engineering, pages 442–446.
IEEE, 2010.

[143] Andreas Leon Aagaard Moth, Joergen Villadsen, and Mordechai Ben-Ari. Syntax-
train: relieving the pain of learning syntax. In Proceedings of the 16th Annual Joint

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

Bibliography 179

Conference on Innovation and Technology in Computer Science Education, pages
387–387, 2011.

[144] Peter Mozelius and Marie Olsson. Putting the programming hut online; self learning
for the net-generation. In ECEL 2015, European Conference on e-Learning, page 417,
2015.

[145] Peter M Nardi. Doing survey research: A guide to quantitative methods. Routledge,
2018.

[146] Joshua Noble. Programming interactivity. ” O’Reilly Media, Inc.”, 2012.

[147] Zhanat Nurbekova, Talant Tolganbaiuly, Bahyt Nurbekov, Ainur Sagimbayeva, and
Zhadira Kazhiakparova. Project-based learning technology: An example in program-
ming microcontrollers. International Journal of Emerging Technologies in Learning
(iJET), 15(11):218–227, 2020.

[148] A. Okhotin. Describing the syntax of programming languages using conjunctive and
boolean grammars. ArXiv, 2020.

[149] Chitu Okoli and Suzanne D Pawlowski. The delphi method as a research tool: an ex-
ample, design considerations and applications. Information & management, 42(1):15–
29, 2004.

[150] David B Palumbo. Programming language/problem-solving research: A review of
relevant issues. Review of educational research, 60(1):65–89, 1990.

[151] John F Pane and Brad A Myers. Usability issues in the design of novice programming
systems. 1996.

[152] Marina Papastergiou. Digital game-based learning in high school computer science
education: Impact on educational effectiveness and student motivation. Computers &
education, 52(1):1–12, 2009.

[153] Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams, Jens
Bennedsen, Marie Devlin, and James Paterson. A survey of literature on the teaching
of introductory programming. Working group reports on ITiCSE on Innovation and
technology in computer science education, pages 204–223, 2007.

[154] Raymond Scott Pettit, John D Homer, Kayla Michelle McMurry, Nevan Simone, and
Susan A Mengel. Are automated assessment tools helpful in programming courses?
In 2015 ASEE Annual Conference & Exposition, pages 26–230, 2015.

Bibliography 180

[155] Martinha Piteira and Carlos Costa. Learning computer programming: study of diffi-
culties in learning programming. In Proceedings of the 2013 International Conference
on Information Systems and Design of Communication, pages 75–80, 2013.

[156] Paul Piwek and Simon Savage. Challenges with learning to program and problem
solve: an analysis of student online discussions. In Proceedings of the 51st ACM
Technical Symposium on Computer Science Education, pages 494–499, 2020.

[157] Jan L Plass, Bruce D Homer, and Charles K Kinzer. Foundations of game-based
learning. Educational psychologist, 50(4):258–283, 2015.

[158] Tjeerd Plomp and Nienke Martien Nieveen. An introduction to educational design
research: Proceedings of the seminar conducted at the East China Normal University,
Shanghai (PR China), November 23-26, 2007. Stichting Leerplan Ontwikkeling
(SLO), 2010.

[159] PluralSight. TryJavaScript, 2022. https://www.javascript.com/try.

[160] Sidu Ponnappa and Jasim A Basheer. Ruby Monk, 2022. http://rubymonk.

com.

[161] Leo Porter, Cynthia Bailey Lee, Beth Simon, and Daniel Zingaro. Peer instruction:
Do students really learn from peer discussion in computing? In Proceedings of the
seventh international workshop on Computing education research, pages 45–52, 2011.

[162] processing. processing, 2023. https://processing.org/.

[163] Mikhail Semenovich Prokopiev, Elena Zotikovna Vlasova, Tatiana N Tretiakova,
Maxim Anatolyevich Sorochinsky, and Rimma Alekseevna Soloveva. Development
of a programming course for students of a teacher training higher education institu-
tion using the programming language python. Propositos y representaciones, 8(3):33,
2020.

[164] Keith F Punch. Introduction to social research: Quantitative and qualitative
approaches. sage, 2013.

[165] Python-OCTS. Python-OCTS, 2023. https://python-octs.herokuapp.

com/.

[166] Yizhou Qian and James Lehman. Students’ misconceptions and other difficulties in
introductory programming: A literature review. ACM Transactions on Computing
Education, 18(1):1–24, 2017.

https://www.javascript.com/try
http://rubymonk.com
http://rubymonk.com
https://processing.org/
https://python-octs.herokuapp.com/
https://python-octs.herokuapp.com/

Bibliography 181

[167] Yizhou Qian, Peilin Yan, and Mingke Zhou. Using data to understand difficulties of
learning to program: A study with chinese middle school students. In Proceedings of
the ACM Conference on Global Computing Education, pages 185–191, 2019.

[168] Charles C Ragin. Qualitative comparative analysis using fuzzy sets (fsqca).
Configurational comparative methods: Qualitative comparative analysis (QCA) and
related techniques, pages 87–122, 2009.

[169] MOGANADASS RAMALINGAM, SITI HAJAR HALILI, and SAEDAH SIRAJ.
Experts’ agreement of the personalized m-learning curriculum model based on fuzzy
delphi method. Indonesian Research Journal in Education— IRJE—, pages 407–420,
2019.

[170] Tathagata Ray, Aruna Malapati, and NL Bhanu Murthy. Teaching computer program-
ming using moocs in multiple campuses: Challenges and solutions. In 2016 IEEE
Eighth International Conference on Technology for Education (T4E), pages 160–163.
IEEE, 2016.

[171] Thomas Reeves. Design research from a technology perspective. In Educational
design research, pages 64–78. Routledge, 2006.

[172] Peter Reimann. Design-based research. In Methodological choice and design:
Scholarship, policy and practice in social and educational research, pages 37–50.
Springer, 2010.

[173] Ron Reiter. LearnJava, 2022. https://www.learnjavaonline.org/.

[174] Ron Reiter. LearnPHP, 2022. https://www.learn-php.org/.

[175] Ron Reiter. LearnPython, 2022. https://www.learnpython.org.

[176] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian Silver-
man, et al. Scratch: programming for all. Communications of the ACM, 52(11):60–
67, 2009.

[177] Robert S Rist. Teaching eiffel as a first language. Journal of object-oriented
programming, 9(1):30–41, 1996.

[178] Eric Roberts. An interactive tutorial system for java. ACM SIGCSE Bulletin,
38(1):334–338, 2006.

[179] Anthony Robins, Janet Rountree, and Nathan Rountree. Learning and teaching pro-
gramming: A review and discussion. Computer science education, 13(2):137–172,
2003.

https://www.learnjavaonline.org/
https://www.learn-php.org/
https://www.learnpython.org

Bibliography 182

[180] Shanna Russ and Foad Hamidi. Online learning accessibility during the covid-19
pandemic. In Proceedings of the 18th International Web for All Conference, pages
1–7, 2021.

[181] N Amira M Saffie, Khairul A Rasmani, et al. Fuzzy delphi method: Issues and
challenges. In 2016 International Conference on Logistics, Informatics and Service
Sciences (LISS), pages 1–7. IEEE, 2016.

[182] Eddie Antonio Santos, Joshua Charles Campbell, Dhvani Patel, Abram Hindle, and
José Nelson Amaral. Syntax and sensibility: Using language models to detect and
correct syntax errors. In Proceedings of the IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering, pages 311–322, 2018.

[183] Stephen R Schach. Software engineering. Aksen associates, 1990.

[184] Carsten Schulte, Johannes Magenheim, Kathrin Müller, and Lea Budde. The design
and exploration cycle as research and development framework in computing educa-
tion. In 2017 IEEE Global Engineering Education Conference (EDUCON), pages
867–876. IEEE, 2017.

[185] scratch. scratch, 2023. https://scratch.mit.edu/.

[186] Pratim Sengupta, John S Kinnebrew, Satabdi Basu, Gautam Biswas, and Dou-
glas Clark. Integrating computational thinking with k-12 science education using
agent-based computation: A theoretical framework. Education and Information
Technologies, 18:351–380, 2013.

[187] Judy Sheard, S Simon, Margaret Hamilton, and Jan Lönnberg. Analysis of re-
search into the teaching and learning of programming. In Proceedings of the fifth
international workshop on Computing education research workshop, pages 93–104,
2009.

[188] Paul B Sheatsley. Questionnaire construction and item writing. Handbook of survey
research, 4(1):195–230, 1983.

[189] Kim Bartel Sheehan. E-mail survey response rates: A review. Journal of
computer-mediated communication, 6(2):JCMC621, 2001.

[190] Shuhaida Shuhidan, Margaret Hamilton, and Daryl D’souza. A taxonomic study
of novice programming summative assessment. In Proceedings of the Eleventh
Australasian Conference on Computing Education-Volume 95, pages 147–156. Cite-
seer, 2009.

https://scratch.mit.edu/

Bibliography 183

[191] Valerie J Shute, Chen Sun, and Jodi Asbell-Clarke. Demystifying computational
thinking. Educational research review, 22:142–158, 2017.

[192] Kassu Jilcha Sileyew. Research design and methodology. IntechOpen Rijeka, 2019.

[193] Tze Ying Sim and Sian Lun Lau. Online tools to support novice programming: A
systematic review. In 2018 IEEE Conference on e-Learning, e-Management and
e-Services (IC3e), pages 91–96. IEEE, 2018.

[194] Beth Simon, Michael Kohanfars, Jeff Lee, Karen Tamayo, and Quintin Cutts. Expe-
rience report: peer instruction in introductory computing. In Proceedings of the 41st
ACM technical symposium on Computer science education, pages 341–345, 2010.

[195] Traci Sitzmann, Kurt Kraiger, David Stewart, and Robert Wisher. The comparative
effectiveness of web-based and classroom instruction: A meta-analysis. Personnel
psychology, 59(3):623–664, 2006.

[196] Kenneth Slonneger and Barry L Kurtz. Formal syntax and semantics of programming
languages, volume 340. Addison-Wesley Reading, 1995.

[197] Bryan J Smith. Conceptual graphs as a visual programming language for teaching
programming. In Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing, pages 258–259, 2009.

[198] C Estelle Smith, Kylee Shiekh, Hayden Cooreman, Sharfi Rahman, Yifei Zhu,
Md Kamrul Siam, Michael Ivanitskiy, Ahmed M Ahmed, Michael Hallinan, Alexan-
der Grisak, et al. Early adoption of generative artificial intelligence in computing
education: Emergent student use cases and perspectives in 2023. In Proceedings of
the 2024 on Innovation and Technology in Computer Science Education V. 1, pages
3–9. 2024.

[199] Hannah Snyder. Literature review as a research methodology: An overview and guide-
lines. Journal of Business Research, 104:333–339, 2019.

[200] Elliot Soloway and James C Spohrer. Studying the novice programmer. Psychology
Press, 2013.

[201] Juha Sorva, Ville Karavirta, and Lauri Malmi. A review of generic program visu-
alization systems for introductory programming education. ACM Transactions on
Computing Education, 13(4):1–64, 2013.

[202] Daniel L Stufflebeam. Evaluation checklists: Practical tools for guiding and judging
evaluations. American Journal of Evaluation, 22(1):71–79, 2001.

Bibliography 184

[203] Phit-Huan Tan, Choo-Yee Ting, and Siew-Woei Ling. Learning difficulties in pro-
gramming courses: undergraduates’ perspective and perception. In Proceedings of
the International Conference on Computer Technology and Development, pages 42–
46, 2009.

[204] Sigmar-Olaf Tergan. Checklists for the evaluation of educational software: Critical
review and prospects. Innovations in education and training international, 35(1):9–20,
1998.

[205] Gareth Terry, Nikki Hayfield, Victoria Clarke, Virginia Braun, et al. Thematic
analysis. The SAGE handbook of qualitative research in psychology, 2(17-37):25,
2017.

[206] Nikolaos S Thomaidis, Nikitas Nikitakos, and Georgios D Dounias. The evaluation
of information technology projects: A fuzzy multicriteria decision-making approach.
International Journal of Information Technology & Decision Making, 5(01):89–122,
2006.

[207] Martin Mabeifam Ujakpa, Delene Heukelman, Victoria Kaleinasho Lazarus, Petsy
Neiss, and GD Rukanda. Using whatsapp to support communication in teaching and
learning. In 2018 IST-Africa Week Conference (IST-Africa), pages Page–1. IEEE,
2018.

[208] Martine Van Selm and Nicholas W Jankowski. Conducting online surveys. Quality
and quantity, 40:435–456, 2006.

[209] Arto Vihavainen, Jonne Airaksinen, and Christopher Watson. A systematic review
of approaches for teaching introductory programming and their influence on success.
In Proceedings of the tenth annual conference on International computing education
research, pages 19–26, 2014.

[210] VS Code. VS Code, 2023. https://code.visualstudio.com/.

[211] w3schools. w3schools, 2023. https://www.w3schools.com/.

[212] Feng Wang and Michael J Hannafin. Design-based research and technology-enhanced
learning environments. Educational technology research and development, 53(4):5–
23, 2005.

[213] Xuefeng Wei, Lin Lin, Nanxi Meng, Wei Tan, Siu-Cheung Kong, et al. The effec-
tiveness of partial pair programming on elementary school students’ computational
thinking skills and self-efficacy. Computers & education, 160:104023, 2021.

https://code.visualstudio.com/
https://www.w3schools.com/

Bibliography 185

[214] David Weintrop. Block-based programming in computer science education.
Communications of the ACM, 62(8):22–25, 2019.

[215] David Weintrop and Uri Wilensky. To block or not to block, that is the question:
students’ perceptions of blocks-based programming. In Proceedings of the 14th
international conference on interaction design and children, pages 199–208, 2015.

[216] Jacqueline Whalley, Raymond Lister, Errol Thompson, Tony Clear, Phil Robbins,
PK Ajith Kumar, and Christine Prasad. An australasian study of reading and compre-
hension skills in novice programmers, using the bloom and solo taxonomies. 2006.

[217] Laurie Williams, Robert R Kessler, Ward Cunningham, and Ron Jeffries. Strengthen-
ing the case for pair programming. IEEE software, 17(4):19–25, 2000.

[218] Jeannette M Wing. Computational thinking. Communications of the ACM, 49(3):33–
35, 2006.

[219] Jeannette M Wing. Computational thinking and thinking about computing.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 366(1881):3717–3725, 2008.

[220] Kevin B Wright. Researching internet-based populations: Advantages and disad-
vantages of online survey research, online questionnaire authoring software pack-
ages, and web survey services. Journal of computer-mediated communication,
10(3):JCMC1034, 2005.

[221] Chih-Hung Wu and Wen-Chang Fang. Combining the fuzzy analytic hierarchy pro-
cess and the fuzzy delphi method for developing critical competences of electronic
commerce professional managers. Quality & Quantity, 45:751–768, 2011.

[222] Nick Wu. Trylinks: an interactive online platform to learn the links programming
language. Technical report, University of Edinburgh, 2018. Honours project report.

[223] Stelios Xinogalos. Using flowchart-based programming environments for simplifying
programming and software engineering processes. In Proceedings of the IEEE Global
Engineering Education Conference, pages 1313–1322, 2013.

[224] Awad A Younis, Rajshekhar Sunderraman, Mike Metzler, and Anu G Bourgeois. De-
veloping parallel programming and soft skills: A project based learning approach.
Journal of Parallel and Distributed Computing, 158:151–163, 2021.

[225] Sen-Chi Yu. Comparison of internet-based and paper-based questionnaires in taiwan
using multisample invariance approach. Cyberpsychology & behavior : the impact of
the Internet, multimedia and virtual reality on behavior and society, 2007.

Bibliography 186

[226] Norhanisha Yusof, Nor Laily Hashim, and Azham Hussain. A review of fuzzy del-
phi method application in human-computer interaction studies. In AIP Conference
Proceedings, volume 2472. AIP Publishing, 2022.

[227] Karimah Mohd Yusoff, Noraidah Sahari Ashaari, Tengku Siti Meriam Tengku Wook,
and Noorazean Mohd Ali. Validation of the components and elements of computa-
tional thinking for teaching and learning programming using the fuzzy delphi method.
International Journal of Advanced Computer Science and Applications, 12(1), 2021.

[228] Shuofei Zhu, Ziyi Zhang, Boqin Qin, Aiping Xiong, and Linhai Song. Learning and
programming challenges of rust: A mixed-methods study. In Proceedings of the 44th
International Conference on Software Engineering, pages 1269–1281, 2022.

[229] Hans-Jürgen Zimmermann. Fuzzy set theory—and its applications. Springer Science
& Business Media, 2011.

[230] IS Zinovieva, VO Artemchuk, Anna V Iatsyshyn, OO Popov, VO Kovach, Andrii V
Iatsyshyn, YO Romanenko, and OV Radchenko. The use of online coding plat-
forms as additional distance tools in programming education. In Journal of physics:
Conference series, volume 1840, page 012029. IOP Publishing, 2021.

	Thesis cover sheet
	2024alasmariphd
	Introduction
	Chapter Overview
	Introduction
	Research Motivation and Objectives
	Thesis Statement
	Thesis Contributions
	Publications
	Thesis Outline

	Background
	Chapter Overview
	Programming Education
	Approaches to programming education
	A view of online programming learning systems
	Online coding tutorial systems
	Importance of online coding tutorial systems
	Users of online coding tutorial systems

	Instruments for Evaluating Online Programming Learning Systems
	Research Methodologies
	Chapter Summary

	Research Methodologies
	 Chapter Overview
	Research Questions
	Research Methodologies– An overview
	Design-Based Research Methodology
	 A cyclic process and phases of design-based research

	Data Collection Methods for Each Research Question
	Systematic review to answer RQ1
	Online questionnaire to answer RQ2, RQ4 and RQ6
	Comparative study to answer RQ3
	Fuzzy Delphi method to answer RQ5

	Research Timeline
	Chapter Summary

	Instrument Development
	Chapter Overview
	Instrument Design Cycle One
	Research question 1
	Study method
	Systematic literature review findings
	Semi-systematic literature review findings
	First version of the instrument

	Instrument Design Cycle Two
	Research question 2
	Study method
	Data analysis techniques
	Study finding
	The changes in version one of the instrument
	Second version of the instrument

	Instrument Design Cycle Three
	Research question 3
	Study method
	Data analysis techniques
	Study findings
	The changes in version two of the instrument
	Third version of the instrument

	Instrument Design Cycle Four
	Design and development of "Python OCTS"- an online coding tutorial system prototype
	System features checklist
	Python OCTS and existing online coding tutorial systems
	Research question 4
	Study method
	Data analysis techniques
	Study findings
	Log files
	The changes in version three of the instrument
	Fourth version of the instrument

	Chapter Summary

	Instrument Validation
	Chapter Overview
	Research Question 5
	Study Method
	Procedure

	Data Analysis Techniques
	Converting Likert scale to fuzzy scale

	Study Findings
	The Guidelines to Use the Instrument
	Chapter Summary

	Programming Educators' Experiences with the Instrument
	Chapter Overview
	Research question 6
	Study Method
	Participants
	Procedure
	Demographics

	Data Analysis Technique
	Study Findings
	Chapter Summary

	Discussion
	Chapter Overview
	Summary of the Findings
	Discussion of the Findings
	Instrument Development
	Instrument validation
	Programming educators' experiences on the instrument

	Chapter Summary

	Conclusion
	Chapter Overview
	Summary
	Theoretical development of the evaluation instrument
	Assumption of validity of the instrument

	Emerging Findings and Contributions to the Larger Field of Computer Science Education Research
	Research Achievements
	Research Limitations and Future Work

	Online Survey: The Learners and Educators Perspectives Study
	The consent form:
	Demographic Questions
	User tasks
	Post-Testing Questions (Part 1)
	Post-Testing Questions (Part 2)
	Open-ended questions

	Online Survey: Python OCTS Evaluation Study
	The consent form:
	Demographic Questions
	Testing the content of the system porotype
	First scenarios to test content-based features
	Post-testing questions

	Testing the features in the system porotype
	Second scenarios to test technical-based features
	Post-testing questions

	Testing the technical features in the system porotype
	Post-testing question

	Open-ended questions

	Online Survey: The Experts Evaluation Study
	The consent form:
	Demographic Questions
	Post-testing questions

	Online Survey: The Educators User Case Study
	The consent form:
	Demographic Questions
	Instructions
	The evaluation Instrument
	Open-ended question

