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Abstract 
The understanding of the haematopoieJc development process has increased exponenJally 

over the past few decades through the advancement in technology in the field of haematology 

and immunology. By doing so, the classical two-Jer model of haematopoiesis has been 

enhanced to acknowledge the numerous developmental stages, cell subtypes, transcripJonal 

alteraJons, transcripJon factors and surface marker expression required for early lineage 

development. The result is a repertoire of immune cells with wide-ranging funcJons allowing 

for the rapid response to anJgens and maintenance of long-term immunological memory. 

Hence, immune malfuncJon can have deleterious effects, as evidenced in leukaemia. 

Development from early stem and progenitor cells to lineage-fixed effector cells has been 

studied in the context of leukaemia and has resulted in a deeper understanding of the biology 

of the disease and an improved outcome for paJents. In both Philadelphia posiJve acute 

lymphoblasJc leukaemia (Ph+ALL) and chronic myeloid leukaemia (CML), the disease driver is 

the consJtuJve acJvaJon of kinase BCR::ABL1. This kinase results from a translocaJon fusion 

event whereby the long arms of chromosomes 9 and 22 break and concurrently fuse together, 

producing the truncated Philadelphia chromosome. This event brings together the ABL gene 

on chromosome 9 and the BCR gene on chromosome 22 to form the proto-oncogene 

BCR::ABL1 which is found in the Philadelphia chromosome. This gene encodes for a protein of 

the same name which funcJons as the aforemenJoned consJtuJvely acJve tyrosine kinase. 

BCR::ABL1 interacts with cell cycle and apoptoJc pathways producing cells which rapidly and 

uncontrollably proliferate and which do not respond to pro-apoptoJc signals. In CML, this 

fusion event occurs at the apex of blood cel development in haematopoieJc stem cells (HSCs), 

resulJng in the potenJal for BCR::ABL1 acJvity to affect cells in both lymphoid and myeloid 

lineages. In Ph+ALL however, the cell of leukaemic origin is under quesJon. The orthodoxy is 

that the t(9;22) fusion event occurs in a lymphoid progenitor as BCR::ABL1 acJvity is usually 

exclusively observed in the lymphoid lineage by the overproducJon of lymphoblasts. 

However, recent observaJons by Hovorkova et al (2017) has prompted further discussion into 

the cell of BCR::ABL1 origin in Ph+ALL. 

 



 iv 

A subgroup of paediatric Ph+ALL paJents were observed by Hovorkova et al (2017) as having 

disease features similar to CML and a poor response to standard Ph+ALL therapeuJc 

strategies. These paJents were detected during invesJgaJons into minimal residual disease 

(MRD) monitoring where rearrangement of Ig/TCR genes (a hallmark of the laEer phases of B 

cell development) were compared to BCR::ABL1 gene copy number. What was observed was 

a subgroup of paJents who remained BCR::ABL1 posiJve despite being Ig/TCR negaJve, in 

essence displaying an eradicaJon of Ig/TCR posiJve lymphoid cells but with a maintenance of 

a significant number of BCR::ABL1 posiJve cells. This contrasts with the current understanding 

of Ph+ALL where lymphoid-directed therapy would eradicate both blast cells and the 

leukaemic cell of origin (lymphoid progenitor) displaying concurrent negaJvity in both MRD 

methods. These paJents also displayed mulJlineage disease involvement with large 

populaJons of myeloid cells at diagnosis, atypical in Ph+ALL where haematopoiesis is skewed 

toward producJon of lymphoid cells. The resultant theory is that this subgroup results from 

the BCR::ABL1 fusion event occurring prior to lineage commitment, either in a mulJpotent 

progenitor (MPP) or an HSC, just as in CML. Hence, this Ph+ALL subtype was designated as 

‘CML-like Ph+ALL’ by Hovorkova et al (2017). 

CML exemplifies the importance of accurately targeJng and eradicaJng BCR::ABL1+ HSCs for 

the prevenJon of disease progression or relapse. The treatment of CML includes the direct 

targeJng of BCR::ABL1 acJvity through a class of drugs called tyrosine kinase inhibitors (TKI) 

in addiJon to chemotherapy however, Ph+ HSCs in CML (leukaemic stem cells (LSC)) are able 

to evade eradicaJon by drugs through a quiescent state with liEle proliferaJve acJvity. 

Therefore, haematopoieJc stem cell transplantaJon (HSCT) may be uJlised to fully eradicate 

all immune cells and replace them with healthy donor cells, thus prevenJng disease 

progression or relapse. This mulJ-agent approach and TKI development has allowed CML 

survival rates to increase from almost certain death to survival of the vast majority of paJents. 

The findings from Hovorkova et al (2017) display that the standard Ph+ALL treatment is 

inadequate for eradicaJon of BCR::ABL1+ cells in paJents with CML-like Ph+ALL, hence 

paJents with this subtype risk relapse or disease progression similar to CML. 

To determine the leukaemic origin of CML-like Ph+ALL, we uJlised paediatric Ph+ALL bone 

marrow samples harvested at diagnosis and post-inducJon therapy (PI) and CML samples in 

the acute lymphoid blast crisis phase (CML-LBC). The current definiJon of CML-like Ph+ALL is 
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the discordance between BCR::ABL1 copy number and Ig/TCR gene rearrangement MRD 

methods, however such informaJon was not available for all samples used in this project and 

therefore, CML-like Ph+ALL samples could not be idenJfied from the outset as specified by 

Hovorkova et al (2017). However, examinaJon of Ph+ALL paJent samples by flow cytometry 

displayed a subset of samples with large myeloid populaJons at diagnosis, concordant with 

findings from Hovorkova et al (2017). AddiJonally, this subset of paJents displayed large 

numbers of HSCs and few lymphoid progenitors at diagnosis, atypical to what would be 

expected in a standard Ph+ALL sample. Sorted progenitor cells (HSCs and MPPs) with 

BCR::ABL1 fusion measured by FISH (fluorescence in situ hybridisaJon) were detected in the 

majority of samples invesJgated across the Ph+ALL cohort, suggesJng that BCR::ABL1 fusion 

in early stem and progenitor cells alone may be inadequate for establishment of the CML-like 

Ph+ALL subtype and perhaps, downstream transcripJonal modificaJons determine 

mulJlineage involvement. RNAseq was used to invesJgate gene expression in the Ph+ALL and 

CML samples with findings displaying a subgroup of Ph+ALL samples which clustered distal to 

the rest of the cohort. IdenJficaJon of differenJally expressed genes (DEGs) in these samples 

showed an upregulaJon of genes involved in myeloid leukaemia and LSC acJvity. All samples 

in this cluster had detectable Ph+ HSC/MPPs and a higher incidence of disease progression, 

relapse or death compared to the rest of the cohort, disease outcomes that support the 

findings from Hovorkova et al (2017) which display poor response to standard Ph+ALL 

treatment in the CML-like Ph+ALL subtype. 

Our findings postulate that CML-like Ph+ALL can be characterised by atypical haematopoieJc 

dynamics, t(9;22) occurrence in HSC/MPPs, expression of CML-associated genes and poor 

response to standard Ph+ALL treatment. 
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Chapter 1. Introduc1on. 
1.1 Introduc1on: Acute Lymphoblas1c Leukaemia (ALL) 
 
 

Acute lymphoblas0c leukaemia (ALL) is an aggressive type of leukaemia characterised by the 

presence of large propor0ons of immature lymphoblasts (‘blast cells’) in the peripheral blood 

or bone marrow. Such large popula0ons of leukemic blast cells are the result of malignant 

transforma0on leading to uncontrolled prolifera0on, inhibi0on of differen0a0on and reduced 

responsiveness to pro-apopto0c signals (Terwilliger & Abdul-Hay., 2017). The outcome of this 

is global dysregula0on in immune responsiveness, this is exemplified by the overproduc0on 

of dysfunc0onal immature lymphoblasts and the resultant suppression of normal func0oning 

leukocytes, platelets, and erythrocytes.  

 

In ALL, malignant transforma0on by chromosomal abnormali0es and gene0c altera0ons most 

commonly occurs in immature B cell precursors (85%) with T cell lineage ALL being observed 

less frequently (15%) (Raetz & Teachey., 2016).  The iden0fica0on of recurrent gene0c 

altera0ons has allowed for the defini0on of ALL subtypes and the observa0on of subtype-

specific treatment requirements. This, in combina0on with tradi0onal risk-stra0fica0on 

clinical factors (such as white blood cell count and chemotherapy response history) has 

advanced management of a disease which previously had a 5-year survival rate of <10% in the 

1960s to over 90% according to contemporary paediatric ALL studies today (Jeha et al., 2019 

and Inaba & Mullighan., 2020). Treatment requires a mul0-agent backbone for therapy 

including chemotherapy with the addi0on of vincris0ne, an anthracycline, cor0costeroids and, 

where appropriate, an allogeneic stem cell transplant.  Despite the successful improvement 

in overall survival rate, ALL remains a high-risk leukaemia with approximately 10-15% of 

pa0ents being refractory to treatment or relapsing following treatment (Sidhu et al., 2023).  

 

The incidence of ALL by age is observed as having a bimodal distribu0on with the highest 

number of new cases being reported in children aged 0-4 years, a low incidence between ages 

19-55 years and a secondary peak in diagnoses at 70 years (CRUK., 2021). Cancer in children 

(defined as age 0-14years) and young adults (up to age 24 years) is rare, with less than 1% of 

all new cancer cases reported in the UK being in children and young people. However, 
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haematological malignancies are the most diagnosed cancer in children, with a third (31%) of 

cases being either leukaemia, lymphoma, myeloprolifera0ve diseases or myelodysplas0c 

diseases (NCRAS., 2021). In addi0on, the incidence rate of childhood cancer has been steadily 

increasing since the 1970s; in part, due to improved diagnos0c criteria and broader 

understanding of disease pathogenesis (Smith et al., 2014). ALL is the most common cancer 

diagnosed in children, comprising approximately 25% of newly iden0fied cancer diagnoses in 

children aged 15 years and younger (DCCPS, 2022, DuVall et al., 2022).  

 

ALL is characterised by the uncontrolled prolifera0on of lymphoid progenitor cells in the bone 

marrow (BM), resul0ng in the produc0on of leukemic lymphoid ‘blast’ cells. Diagnosis of ALL 

is established based on the presence of 20% or more lymphoid blast cells in the BM or 

peripheral blood, assessed via morphology, immunophenotyping (i.e. flow cytometry) and 

cytogene0c analysis. High numbers of leukemic blasts in the BM typically presents with 

symptoms of BM failure (bone pain, anaemia, thrombocytopenia, or leukopenia) (Stelljes & 

Marks., 2019). In addi0on, accumula0on of poorly differen0ated lymphoblasts can be 

observed in extramedullary sites such as eyes (ocular), kidneys (renal), bladder, liver (hepa0c), 

central nervous system (CNS), pancreas, skin, pericardium and spleen. This accumula0on of 

malignantly transformed progenitor cells results in hepatosplenomegaly or lymphadenopathy 

in 20% of pa0ents (Jabbour et al., 2005).  Though involvement in such sites is rare at 

presenta0on, blast presence is s0ll monitored in a number of areas due to the risk of site-

specific sequestered clonal cells being a route to relapse (Shahriari et al., 2020). An example 

of this is within the CNS, where despite only 10% of pa0ents ini0ally presen0ng with CNS 

symptoms, CNS-driven relapse occurs in 30% of children (Deak et al., 2021). 
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1.2.1 Introduc1on: ALL pathophysiology – molecular gene1cs and cytogene1c 
altera1ons 
 

There are risk factors associated with developing ALL, these include environmental factors 

(such as the exposure to ionising radia0on) and gene0c syndromes (such as Trisomy 21) which 

can predispose the development of leukaemia. However, most ALL cases are observed to 

occur as a result of de novo malignant transforma0on in previously healthy individuals 

(Leuraud et al., 2015, Yokota & Kanakura., 2016).  

 

ALL comprises a heterogeneous group of high-risk lymphoid neoplasms arising from a variety 

of genomic altera0ons (Pui et al., 2004). Not only do these genomic varia0ons have an impact 

on downstream cellular ac0vity, but they have also been a useful tool in iden0fying clinically 

dis0nct subtypes, as defined through the WHO 2022 lymphoid classifica0on   (Table 1.1) 

(Schwab et al., 2022). Though the incorpora0on of whole genome sequencing and other 

gene0c approaches to the research of ALL has yielded the discovery of novel genomic lesions, 

there are several ALL subtypes with dis0nct constella0ons of soma0c structural DNA 

rearrangements and sequence muta0ons (Lacobucci and Mullighan., 2017). These well-

characterised genomic lesions perturb normal lymphoid development, expression and 

func0on of cytokine receptors, chroma0n remodelling and a number of signalling pathways 

(i.e. various kinases and Ras).  

 

Although diverse, such genomic altera0ons effect a number of mechanisms such as the 

aberrant expression of proto-oncogenes, an example being the pan-ALL upregula0on of Bmi-

1, a member of the Polycomb-group (PcG) family, involved in several biological pathways 

including cell-cycle and DNA damage response (Peng et al., 2017). Chromosomal 

transloca0ons resul0ng in fusion oncogene forma0on is common within ALL, exemplified by 

the t(12;21)(p13;q22) transloca0on event, the most commonly diagnosed chromosomal 

transloca0on in children with ALL (Montaño et al., 2020). This results in the fusion of the 

transcrip0on factors ETV6 (TEL) and RUNX1 (AML1) and the dysregula0on of the 

PI3K/Akt/mTOR (phosphoinosi0de 3-kinase/Akt/mammalian target of rapamycin) pathway 

leading to the inhibi0on of apoptosis, lymphoid differen0a0on arrest and increased cell 

survival. 
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Recurrent genomic features, and hence ALL subtypes, are detected at different frequencies 

across age groups with prognos0ca0on differing by age. KMT2A (MLL) rearrangements are 

most frequently diagnosed in infants and represents a high-risk subtype with poor clinical 

outcomes. KMT2A (MLL) rearrangements, par0cularly the t(4;11)(q21;q23) rearrangement 

results in altera0ons to the kinase-PI3K-RAS signalling pathway; this subtype has a poor 

prognosis and is less frequently observed in children and adults. In contrast, the 

t(9;22)(q34;q11.2) transloca0on event which results in the forma0on of the cons0tu0vely 

ac0ve tyrosine kinase BCR::ABL1, Ph+ALL (Philadelphia chromosome posi0ve acute 

lymphoblas0c leukaemia) is more commonly diagnosed in adults than children with 25% of 

adult cases and up to 5% of childhood cases of leukaemia being Ph+ALL.  These genomic 

altera0ons contribute to leukemic transforma0on by the dysregula0on of normal cellular 

func0ons and key regulatory processes. The result being the capacity for unlimited self-

renewal, subversion of normal prolifera0on, hal0ng of homeosta0c differen0a0on and 

promo0on of apoptosis resistance. As the name ALL denotes, the cell type most affected by 

these dysregula0ons are lymphoid cells. 

Subtype Ocurrence (%) Clinical characteristics Description

t(9;22)(BCR::ABL1) 2-3 High risk
Presence of a translocation between chromosomes 9 

and 22 [t(9;22)] which creates the Philadelphia 
chromosome and the BCR::ABL1 fusion gene

t(1;19) (E2A-PBX1) 5 Low risk
Presece of translocation between chromsomes 1 and 
19 resulting in the formation of the oncogenic E2A-

PBX1 fusion protein

t(12;21)(TEL-AML1) 16-22 Normal ALL low risk
Presence of translocation between chromosomes 12 
and 21 resulting in the formation of the oncogenic 

TEL-ABL1 fuson protein

t(4;11)(MLL) 5-8 Infant ALL high risk

Rearrangement of the histone lysine [K]-
MethylTransferase 2A gene on chromosme 11q23 

resulting in the formation of the mixed lineage 
leukaemia (MLL) gene

Hyperdiploid>50 25-35 Normal ALL low risk Presence of leukaemia cells with more than 50 
chromosomes

Hypodiploid<44 <7 Hig risk Presence of leukaemia cells with fewer than 44 
chromosomes

T-ALL 10-13 T-ALL moderate risk Resulting from the activating mutations NOTCH1 
and FBXW7

Table 1.1: ALL subtypes and characteristics. Acute lymphoblastic leukaemia subtypes with oncogenic
chromosomal aberrations or mutations, percentage frequency of overall ALL diagnoses and brief
description of the leukaemia initiating event (WHO., 2022).
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In addi0on to subtype-specific genomic altera0ons, a number of gene0c lesions, such as IKZF1 

aberra0on can be observed across subtypes and used for prognos0c markers (Stanulla et al., 

2020). IKZF1 altera0ons are present in approximately 15% of childhood ALL and when 

observed in adults, is associated with kinase-driven leukaemia such as Ph+ALL (Vairy and Tran., 

2020). IKZF1 encodes the transcrip0on factor for IKAROS, a member of the family of zinc finger 

DNA-binding proteins required for haematopoie0c lineage ontogeny and homeostasis. 

Altera0ons to IKZF1 have been found to have prognos0c significance in both Ph+ALL and Ph-

like ALL and is, therefore, u0lised as a biomarker for poor clinical outcomes.  Although, in the 

context of newer treatments, such as blinatumomab, the prognos0c significance of these 

muta0ons are unknown.  Ph-like ALL, like Ph+ALL, occurs more frequently in adolescents and 

adults than in children, with up to 27% of young adults diagnosed with ALL between the ages 

of 21 and 39 years (Tran and Loh., 2016). Pa0ents with Ph-like ALL display altera0ons in 

cytokine receptor genes and signalling pathways (commonly in the JAK-STAT and kinase 

pathways) similar to the downstream aberra0ons seen in Ph+ALL however, unlike in Ph+ALL, 

such pa0ents do not display evidence of BCR::ABL1 fusion.  

 

Similar to Ph+ALL, Ph-like ALL is a high-risk ALL subtype with a poor prognosis however, Ph-

like ALL is almost three 0mes more common than Ph+ALL and is defined by gene expression 

signatures (such as COG-TARGET-St Jude (Mullighan et al., 2009) and Den Boer et al., 2009) 

rather than the presence of chromosomal transloca0on and gene fusion. This subtype has a 

B-lineage and bears the hallmark of dele0ons or muta0ons of the lymphoid transcrip0on 

factor gene IKZF1. The subtype is also characterised by altera0ons in cytokine receptor genes 

and signalling pathways also observed in Ph+ALL, such as the JAK-STAT kinase pathways. This 

gene0cally heterogeneous disease exhibits a variety of kinase fusions which can be targeted 

therapeu0cally, in the example of ABL1/ABL2 gene fusion, with tyrosine kinase inhibitor drugs 

used to treat Ph+ leukaemia (ie ima0nib/dasa0nib) which will be discussed in depth later in 

this chapter. However, due to the variety of kinase fusions present in the Ph-like ALL cohort, a 

personalised treatment approach is taken and kinase fusions that can be exploited 

therapeu0cally are first iden0fied prior to directed therapy. JAK1/2/3 inhibitors are used when 

altera0ons to IL2RB, JAK2 or TSLP are present and TRK inhibitors when NTRK3 altera0ons are 

observed. Hence, despite their similari0es, different treatment approaches are taken between 

Ph+ALL and Ph-like ALL. Though both ALL subtypes share aberra0ons to signalling pathways 
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and cytokine interac0ons, this thesis will focus on Ph+ALL which bears the BCR::ABL1 fusion 

gene.  

 

BCR::ABL1 kinase ac0vity has been observed to induce chromosomal and gene0c instability 

by inducing an error-prone DNA repair system, cul0va0ng an intracellular environment rich in 

reac0ve oxygen species (ROS) and centrosome aberra0on (Senapa0 and Sasaki., 2022). The 

presence of IKZF1 altera0ons in both Ph+ and Ph-like ALL describes an altera0on to IKAROS 

ac0vity independent of BCR::ABL1 kinase ac0vity. The importance of iden0fying genomic 

altera0ons, is not only for defini0on of ALL subtypes which would require altered treatment 

strategies, but also as prognos0c markers across ALL subtypes. 
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1.2.2 Introduc1on: ALL pathophysiology- phenotypic cellular compartments 
 

Bone marrow failure observed in ALL exemplifies how detrimental the altera0on of normal 

lymphoid development is and hence, the importance of adequate diagnosis and appropriate 

treatment. In 75% of ALL diagnoses, the func0onally dysregulated cell lineage is B cells 

(Campos-Sanchez et al., 2011). Such malignant transforma0on disrupts normal B cell 

development, resul0ng in differen0a0on arrest, accumula0on of non-func0onal progenitor B 

cells. 

 

Early B cell development is a plas0c but highly controlled process (Fig 1.1). B cell development 

from non-commiqed self-renewing progenitors (haematopoie0c stem cells (HSC)) to mature 

func0onal plasma cells and memory B cells is dependent on both the bone marrow (BM) and 

lymphoid organs within the body, networks of cytokine and chemokine signalling and 

transcrip0on factors (Melchers., 2015). The result of this is a plas0c, yet highly conserved 

mechanism of establishing and maintaining a diverse repertoire of func0onal B cells. Ini0al 

establishment of B cell immunity occurs during early embryonic development where 

mul0potent HSCs (mHSCs) migrate to the foetal liver wherein they develop into mature B cells 

before egress to and popula0on of 0ssues such as lungs, epithelia and gut-associated 

lymphoid 0ssues. Arer these ini0al stages of development, B cells are con0nuously developed 

to maintain an appropriate level of adap0ve immunity. B cells are produced in primary 

lymphoid organs from HSCs and once mature, migrate to peripheral secondary lymphoid 

0ssues via lympha0c vessels and blood (Alberts et al., 2002). The phenotypic compartments 

implicated in B cell development are commonly associated with specific developmental 

stages, such as development from pre-B to mature B cells in the spleen.  
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Emergence of mature lymphoid cells to the periphery allows lymphoid cells to exert their 

immunoprotec0ve func0ons against specific an0genic insult. In contrast to cells such as 

dendri0c cells (DCs), macrophages, natural killer (NK) cells, eosinophils, basophils and mast 

cells, lymphocytes mount a highly selec0ve adap0ve immune response, with T and B cell 

clones being reac0ve to a specific an0gen. B cells produce an0bodies with high levels of 

an0gen specificity depending on an0body affinity and avidity (Rudnick and Adams., 2009). 

Due to some classes of an0bodies being secreted and distributed via the blood, an0bodies are 

able to exert effects over long distances. In contrast, T cells exert local effects and can be 

Figure 1.1: Surface markers of early B cell development. Early stages of b cell development. Ig=
immunoglobulin, Pax5= paired box gene 5, EBF= early B cell factor 1, OCT2= octamer transcription
factor 2, FOXO1= forkhead box protein O1. Cell surface marker and immunoglobulin expression
changes during B cell development driven by presence of stage-specific transcription factors.
(Adapted from Campos-Sanchez et al., 2011, Created with BioRender.com)
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subclassified into cytotoxic T cells and helper T cells depending on cellular func0on. Cytotoxic 

T cells directly kill cells through surface expressed or secreted cytotoxic proteins, whereas 

helper T cells have roles in ac0va0on of macrophages, B cells and cytotoxic T cells through 

secre0on of cytokines and expression of membrane-bound cos0mulatory molecules. Though 

T cells act locally, their ability to migrate systemically allows T cell-mediated cell ac0va0on and 

cytotoxic effects to be enacted throughout the body.  

 

B cell lineage commitment is a highly conserved mul0-phasic developmental process and as a 

result, a number of intermediary lymphoid progenitors have been described. As previously 

discussed, such progenitors are restricted to lymphoid development sites with the most 

primi0ve progenitors requiring BM microenvironmental factors to support appropriate early 

B cell differen0a0on. Ini0al stages which lead to lymphoid lineage commitment involve the 

differen0a0on of HSCs to lymphomyeloid-primed progenitors (LMPP) which lack 

megakaryocyte and erythrocyte poten0al (Pooter et al., 2019). LMPPs express low levels of 

lymphoid and myeloid lineage mRNAs and are therefore s0ll primed for mul0lineages with 

lymphoid lineage specifica0on occurring through gene priming mediated by transcrip0on 

factors PAX5, E2A-HEB and Lyl1. Normal B cell development requires a highly regulated 

interplay between extrinsic B cell receptor (BCR) and cytokine signalling, and intrinsic 

epigene0c and transcrip0onal programming, a mul0step process with quality control 

checkpoints to ensure acceptable func0onality (Campos-Sanchez et al., 2011). Verifica0on of 

stochas0c immunoglobulin gene rearrangement for the preven0on of BCR autoreac0vity 

allows precursor cells access to later lymphoid differen0a0on stages and prevents the 

establishment of autoimmune diseases (Übelhart and Jumaa., 2015). These checkpoints are 

mul0phasic with verifica0on of non-reac0vity in the precursor-BCR (pre-BCR) resul0ng from 

heavy chain rearrangement allowing progression into light chain immunoglobulin gene 

rearrangement, receptor edi0ng and the expression of self-tolerant BCR.  

 

Understanding this physiological process has been integral in the development of measurable 

residual disease assessment in ALL. As previously discussed, laqer stages of lymphopoiesis 

involve the development of an0gen-specific mature effector lymphocytes which can then 

undergo clonal expansion in response to an0genic insult (Adams et al., 2020). The genera0on 

of an0gen-specific immunoglobulins and T cell receptors involves the rearrangement of gene 
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segments encoding for structural elements of an0gen receptors, termed variable (V), diversity 

(D) and joining (J) regions (Bagg., 2006). VDJ gene rearrangement occurs early during 

lymphoid development, resul0ng in a wide repertoire of an0gen receptors and providing 

informa0on on cell clonality- a useful diagnos0c laboratory tool. In the context of leukaemia, 

the documenta0on of unique an0gen receptor gene rearrangements provides a molecular 

fingerprint of the neoplas0c clone which can then be used for prognos0cally relevant minimal 

residual disease assessment.  

 

Progressive lineage commitment from early lymphoid progenitor (ELP) to commiqed B cell 

can be observed phenotypically through cell surface marker expression allowing B cell 

progenitor cells to be iden0fied (Fig 1.2). Progressive loss of stem cell markers such as CD34 

marks the gradual loss of pluripotency as cells gradually gain lymphoid-specific characteris0cs 

and move toward a fixed B cell lineage.  Just as with HSCs, MPPs (mul0potent progenitor cells)  

are produced in the BM (prenatally, in the foetal liver), MPPs are then able to differen0ate 

into MLPs (mul0-potent lymphoid progenitors) upon interac0on with the appropriate 

differen0a0on signals from bone marrow stromal cells such as IL-4 and CXCR4 (Bio-Rad., 2016; 

Gomes et al., 2016). Early pro B cell development is then marked by the expression of 

recombinase ac0va0ng genes (RAG) and terminal deoxynucleo0dyl transferase (TdT) in 

addi0on to surrogate light chain (SLC) expression resul0ng from heavy chain D-J joining (Table 

1.2). Similar to early pro B cells, late pro B cells also express SLC and undergo VDJ heavy chain 

recombina0on. SLC expression and heavy chain rearrangement also occurs in large preB cells, 

however this developmental step is marked by the expression of the µ chain in the pre-BCR 

and the silencing of RAG and TdT. Light chain V-J joining commences upon the development 

of small preB cells in addi0on to the expression of the µ chain on the cell surface and the re-

expression of RAG, TdT but no SLC expression. Upon the forma0on of immature B cells, the 

heavy and light chains have been rearranged, and IgM and Igab are expressed. Immature B 

cells undergo egress from the BM and enter circula0on as transla0onal B cells found most 

commonly in blood and secondary lymphoid organs (rarely in lympha0c vessels). Mature 

effector B cells can be categorised into func0onal subsets based on cell surface marker 

phenotype, associated transcrip0on factors, cellular loca0on and broadly characterised by the 

expression of func0onal mature BCR (Naradikian et al., 2014;  

Melchers., 2015). 
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Figure 1.2: B Cell development in bone marrow to periphery. Postnatally, HSCs
originate in the bone marrow (BM) and localise in specialised BM niches where
progenitor cells are exposed to pro-lymphoid growth factors and cytokines. Small preB
cells leave the BM for development into mature cells in the spleen. Functional effector
B cells (plasma cells or memory B cells) are then active in the periphery where germinal
centres may be formed. Developmental checkpoints to prevent B cell autoreactivity
have been indicated.
(Adapted from Melchers., 2015, Created with BioRender.com)



 12 

 

Su
bs

et
Ph

en
ot

yp
e

As
so

cia
te

d 
TF

s
Ce

llu
la

r l
oc

at
io

n
Tr

an
sit

io
na

l
CD

20
+ 

CD
27

- C
D3

8h
i I

gM
+ 

CD
24

hi
 B

R3
+

Pa
x5

, E
BF

, E
2A

, O
ct

2
M

ig
ra

tio
n 

fro
m

 B
M

 to
 se

co
nd

ar
y l

ym
ph

oi
d 

or
ga

ns
Fo

llic
ul

ar
Ig

M
lo

 C
D2

3+
 C

D9
3-

 C
D1

9+
 C

D2
0+

 C
D2

1+
 C

D2
2+

Pa
x5

Sh
ut

tli
ng

 b
et

w
ee

n 
BM

 a
nd

 se
co

nd
ar

y l
ym

ph
oi

d 
or

ga
ns

M
ar

gi
na

l z
on

e
Ig

M
hi

 Ig
Dl

o 
CD

1c
+ 

CD
24

+ 
CD

19
+ 

CD
20

+ 
CD

21
+

Pa
x5

, E
BF

, E
2A

, O
ct

2
Se

co
nd

ar
y l

ym
ph

oi
d 

or
ga

n
Ge

rm
in

al
 C

en
te

r
CD

20
+ 

CD
38

+ 
BR

3+
 Ig

D-
BC

L6
, P

ax
5,

 E
BF

Se
co

nd
ar

y l
ym

ph
oi

d 
or

ga
n

Pl
as

m
a 

ce
lls

CD
20

- C
D3

8h
i C

D2
7h

i C
D1

38
+ 

TA
CI

+ 
an

d/
or

 B
CM

A+
 C

D1
26

+ 
CD

31
9+

 C
D7

8+
BL

IM
P1

, I
RF

4,
 X

BP
1

Lo
ng

 liv
ed

 p
la

sm
a 

ce
ll i

n 
BM

. S
ho

rt
 liv

ed
 p

la
sm

a 
ce

ll i
n 

se
co

nd
ar

y l
ym

ph
oi

d 
or

ga
ns

M
em

or
y B

 C
el

l
CD

20
+ 

CD
38

- C
D2

7+
 C

D8
0+

 C
D8

4+
 C

D8
6+

OB
F1

, S
PI

-B
Ci

rc
ul

at
in

g 
in

 b
ot

h 
BM

 a
nd

 ly
m

ph
oi

d 
lo

ca
tio

ns

Table 1.2: Characterisation of
peripheral B cell subsets
(human). TFs= transcription
factors, Pax5= paired box gene
5, EBF= early B cell factor 1,
OCT2= octamer transcription
factor 2, BCL6= B cell
lymphoma 6 protein, IRF4=
interferon regulatory factor 4,
XBP1= X-box binding protein 1,
TACI= transmembrane
activator and cyclophilin ligand
interactor, BCMA= B cell
maturation antigen, BR3= B
lymphocyte stimulator
receptor 3, Ig=
immunoglobulin.
(Adapted from Melchers.,
2015)
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As previously discussed, B cell development is dependent on the coordinated and highly 

controlled ac0on of transcrip0on factor regulatory networks to ac0vate B cell development 

programmes and silence alterna0ve cell fates (Somasundaram et al., 2015). In ALL, malignant 

transforma0on resul0ng from an ini0al reciprocal transloca0on event (such as the forma0on 

of BCR::ABL1) induces a sequen0al dysregula0on of such development pathways resul0ng in 

the expansion of immature non-func0onal progenitor cells (blast cells). Though the ini0al 

malignant transforma0on event varies between B-ALL subtypes as previously discussed, the 

altera0ons to essen0al B cell development programmes, cytokine signalling and transcrip0on 

factor networks such as IKZF1, TCF3, EBF1 and PAX5 resul0ng in differen0a0on arrest is 

common within B-ALL as a whole (Fig 1.3). 

 

 

  

Figure 1.3: B cell lineage commitment by PAX5. Uncommitted Pax5-/- pro-B cells
are able to differentiate into a variety of myeloid and lymphoid cells in the presence
of the indicated cytokines. Conditional Pax5 deletion results in retrodifferentiaiton of
B cells into an uncommitted progenitor cells. OPGL= osteoprotegerin ligand, ST2=
stromal ST2 cells.
(Adapted from Cobaleda et al., 2007, Created with Biorender.com)
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1.3 Introduc1on: Prognos1c factors and measurable residual disease  

 

Over the past few decades, long-term overall survival rate for paediatric ALL has greatly 

improved in excess of 90%  (Hunger et al., 2012). This is due, in part, to advances in treatment 

and improved therapeu0c strategies, however, a huge improvement has come from enhanced 

risk stra0fica0on and, importantly, the development of measurable residual disease (MRD) 

monitoring. Ini0al alloca0on of treatment schema at diagnosis differs from MRD risk analysis 

which is measured arer induc0on treatment (Table 1.3). At diagnosis pa0ents are assessed 

for determina0on of leukemic subtype in order to allocate the appropriate treatment; for 

example,  the detec0on of the t(9;22) fusion product BCR::ABL1 leading to treatment with 

tyrosine kinase inhibitors, or the use of Rituximab, a monoclonal an0body targe0ng CD20, in 

those pa0ents who are CD20 posi0ve by flow cytometry (Marks et al., 2022). In contrast, MRD 

refers to the small number of cancer cells present within the body arer treatment, with a 

posi0ve MRD score resul0ng from the detec0on of residual cancer cells and a nega0ve score 

where cancer cannot be detected. The func0on of MRD monitoring is two-fold; it allows 

clinicians to monitor the effec0veness of treatment, while also indica0ng which pa0ents are 

likely to relapse.  

 

Historically, traits detectable at diagnosis such as age, white cell count, immunophenotype, 

karyotype and addi0onal molecular altera0ons have been u0lised for risk alloca0on schemas 

however, with the development of MRD monitoring risk stra0fica0on has progressed to 

include disease-specific biological features. Detec0on of disease-related clinical features have 

also benefiqed from the development and refinement of techniques to evaluate MRD, such 

as flow cytometry, real-0me quan0ta0ve PCR (RQ-PCR) and PCR of fusion transcripts 

(Brüggemann et al., 2012).  
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Table 1.3: Post-diagnosis, pre-therapeutic factors
associated with ALL outcomes. NA= not applicable,
CRLF2= cytokine receptor-like factor 2, ERG= w-ets
erythroblastosis virus E26 oncogene homolog (avian),
BAALC= brain and acute leukaemia cytoplasmic, IKZF=
IKAROS family zinc finger, JAK= Janus kinase, TKI=
tyrosine kinase inhibitors, WBC= white blood cell
count.
(Adapted from Brüggemann et al., 2012)
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Flow cytometry allows for the rapid detec0on and quan0ta0on of aberrantly expressed 

an0gens on leukemic cells. Over the past two decades, with the advent of mul0colour flow 

cytometry and availability of the technology in many diagnos0c laboratories, standardised 

MRD criteria have been developed for ALL (Chaqerjee et al., 2016). This includes the aberrant 

expression of surface markers, such as CD34/CD19/CD20/CD21 and CD34/CD56, the 

combina0ons of which are rare in normal healthy bone marrow and hence, display the 

presence of developmentally arrested B cells resul0ng from leukemic transforma0on in B-ALL. 

This technology is dependent on the number of coloured lasers available at the diagnos0c 

tes0ng site and star0ng cell number, hence though flow cytometry MRD is largely accessible 

and informa0ve, it may not be sensi0ve enough for the detec0on of very small numbers of 

residual leukemic cells (max 10-4). Although the sensi0vity is concordant to real-0me 

quan0ta0ve polymerase chain reac0on (RQ-PCR) (10-3 - 10-5), flow cytometry-based MRD 

monitoring requires >4x106 cells for sufficient sensi0vity (Theunissen et al., 2017). Therefore, 

the effec0veness of flow cytometry MRD is dependent on a number of factors such as the 

an0body panel used, the discriminatory level of the leukaemia-associated 

immunophenotypes (LAIPs), cell number, mul0-centre standardisa0on and relevant exper0se 

for data analysis and interpreta0on (Teqero et al., 2022).  

 

PCR is a commonly used diagnos0c tool for the detec0on of target genes of low copy numbers 

and has been u0lised outside of oncology in areas such as virology. The nucleic acid target 

flexibility of PCR can be evidenced in this context in the detec0on of viral DNA used for SARS-

CoV-2/COVID-19 tes0ng and RNA detec0on for retroviruses such HIV (human 

immunodeficiency virus). This flexibility has allowed for DNA-based real 0me quan0ta0ve PCR 

and RNA-based RT-PCR MRD analysis tools to be developed and enhanced. DNA RQ-PCR in 

ALL mainly targets the rearrangement of immunoglobulin (Ig) and T cell receptor (TCR) genes, 

but also has a common use in detec0ng MLL (mixed-lineage leukaemia) gene rearrangements 

or SIL-TAL1 dele0ons. Ig/TCR gene rearrangement will be a focus in the results sec0on of this 

thesis and hence will be discussed in later sec0ons of this chapter and in further detail than 

MLL gene rearrangement associated with the t(4;11)(q21;q23) transloca0on event prevalent 

in infant ALL (Briqen et al., 2019). As previously discussed, the rearrangement of 

immunoglobulin genes is a crucial step in the B cell developmental pathway, allowing for a 

repertoire of diverse BCRs to be established. Early T cell differen0a0on similarly involves 
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germline rearrangement of V, D and J gene segments to establish a diverse pool of non-

autoreac0ve T cells. RQ-PCR analysis of junc0onal regions of rearranged Ig/TCR genes is 

broadly applicable for the majority of pa0ents (>95%) and can detect pa0ent-specific 

rearrangements with high specificity (one malignant cell in <105 normal cells (10-5)) (van der 

Velden and van Dongen., 2009). Gene rearrangement involves the random inser0on and 

dele0on of nucleo0des at the junc0onal sites of V, D and J gene segments, unique to each 

lymphocyte, crea0ng a ‘fingerprint’ which can be used as tumour-specific targets in MRD-PCR 

analysis.  

 

Addi0onal uses for PCR in MRD monitoring include RT-PCR detec0on of BCR::ABL1 fusion 

transcripts.  Quan0ta0ve co-amplifica0on of the BCR::ABL1 transcript in addi0on to an internal 

housekeeping gene (i.e. GAPDH) allows for the BCR::ABL1 copy number to be iden0fied from 

peripheral blood or BM samples. Reference standards established by WHO mul0centre 

collabora0ons define BCR::ABL1 copy number values of 10%, 1%, 0.1% and 0.01% Ph+ cells of 

normal cells obtained by dilu0on of K562 (Ph+) and HL60 (Ph-) cell lines (Cumbo et al., 2020). 

These standards allow for the fast and inexpensive detec0on of residual leukemic cells with 

high sensi0vity. A drawback of this method is uncertain quan0ta0on resul0ng from mul0ple 

BCR::ABL1 transcripts per cell, the outcome being the overes0ma0on of the number of Ph+ 

cells. 

 

MRD and diagnos0c risk stra0fica0on are, therefore, useful tools in the treatment of ALL, 

ensuring pa0ents are assigned the correct treatment regimen, verifying the success of 

treatment and allowing for early detec0on of pa0ents likely to relapse. Pa0ent-specific 

differences in cell availability or BCR::ABL1 copy number per cell displays that not all MRD 

methods are effec0ve for risk stra0fica0on of each pa0ent and therefore, the use of mul0ple 

methods are recommended for appropriate care.  
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1.4 Introduc1on:  Established and developing treatment strategies.  

 

A schema0c of the treatment of paediatric ALL is listed in Figure 1.4.  Pa0ents are entered into 

clinical trials where available, for example ALLTogether (ClinicalTrials.gov ID: NCT03911128), 

for the ongoing improvement of treatment methods.  Despite origina0ng in the BM, lymphoid 

blast cells are able to infiltrate the cerebrospinal fluid (CSF), meningeal membranes and 

hence, the CNS (Künz et al., 2022). Consequently, despite the low number of pa0ents 

presen0ng with CNS involvement at diagnosis (5-10%), it is recommended that all pa0ents 

receive prophylac0c intrathecal treatment and a diagnos0c lumbar puncture (Del Principe et 

al., 2014). Mul0ple treatment modali0es are available for prophylac0c CNS therapy including 

intrathecal therapy (IT) with cytarabine or methotrexate, systemic therapy, and historically, 

cranial radia0on therapy or a combina0on thereof (Jabbour et al., 2010). Cranial radia0on 

therapy represents the oldest method of CNS prophylaxis, however, it comes with the risk of 

severe side effects such as secondary neoplasms, endocrinopathy, neurotoxicity and 

neurocogni0ve dysfunc0ons. An essen0al factor for the success of a CNS-directed 

chemotherapeu0c agent is the ability to cross the blood brain barrier and ensure an 

appropriate concentra0on in the CSF without causing toxicity. 

 

A therapeu0c approach which has been successfully used in the refractory/relapse seyng 

with good poten0al to be used first-line treatment is an0body-based therapy.  The main 

classes of an0body-based drugs used in ALL falls into one of three categories; bi-specific T cell 

engagers (BiTE), an0body drug conjugate (ADC) and monoclonal an0body (mAb). Through the 

use of these an0bodies, cell surface markers such as CD19 (blinatumomab), CD22 

(inotuzumab ozogamicin) and CD20 (rituximab) can be targeted on lymphoid blast cells. In the 

example of blinatumomab (a-CD19), malignant cells are targeted for lysis via the recruitment 

of CD3 T cells. In order to effec0vely treat pa0ents where CD19-targe0ng therapies are no 

longer viable due to phenotypic escape, CD22 can be targeted if present at relapse. CD22 

precedes CD19 in the B cell developmental pipeline and can pose a risk of relapse if 

CD34+CD19-CD22+ remains arer CD19-targeqed treatment and the eradica0on of 

CD34+CD19+CD22- malignant cells. To best u0lise these an0body-based treatments, novel 

approaches of chemoimmunotherapy have been inves0gated whereby an0bodies are 
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administered alongside chemotherapy agents. Trea0ng with systemic chemotherapy in 

combina0on with inotuzumab oxogamicin, blinatumomab, or rituximab has been inves0gated 

for newly diagnosed B-ALL and relapsed/refractory ALL (Rubinstein & O’Brien., 2023, Assi et 

al., 2017, Levato & Molica et al., 2018).  

 

  

Figure 1.4: ALL risk stratification and treatment schema. After diagnosis, the treatment of
patients with ALL follows three main stages; induction phase, consolidation phase and
maintenance phase. Patients are stratified based on risk status with treatment regimen assigned
accordingly.
(Adapted from Künz et al., 2022 and Rudin et al., 2017, Created with Biorender.com)
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Another method of targe0ng the CD19 marker of early B cell development is chimeric an0gen 

receptor (CAR) T cell therapy. The mechanism of this therapy involves the use of gene0cally 

modified autologous cells which target CD19+ haematological malignancies (ie ALL). CAR-T 

cells can be edited to express alterna0ve co-s0mulatory molecules such as CD137 (4-1BB), 

CD3z and 19-8z CAR. These allow for the alternate ac0va0on of T cells for the destruc0on of 

malignant CD19+ lymphoid cells (Maude et al., 2018). Phase I and II clinical trials have shown 

excellent responses to CAR-T cell therapy for ALL with overall survival rates between 73-90% 

(>50% survival 18 months post-infusion (Graham et al., 2018)) but with that, a high occurrence 

of adverse events such as neurological events in 40% of pa0ents and cytokine-release 

syndrome (CRS) in 77% (Park et al., 2018). Results from such trials found it to be impera0ve 

that pa0ents must undergo lymphoid-deple0ng chemotherapy prior to CAR-T cell infusion.  

 

Haematopoie0c stem cell transplanta0on (HSCT) has been well-established for the treatment 

of ALL. HSCT involves deple0on of recipient bone marrow followed by replenishment of a 

func0onal immune system with healthy HSCs. Allogenic HSCTs occur when the pa0ent 

receives stem cells from a donor other than the recipient. Due to the risk of rejec0on, such 

donor samples are assessed for HLA (human leukocyte an0gen) matching, either coming from 

an HLA-iden0cal sibling or HLA-matched unrelated donor (MUD). HLA alleles are assessed by 

ELISA-based serology methods, sequence-specific primers (PCR-SSP), sequence-specific 

oligonucleo0de probes (PCR-SSOP), sanger sequence-based typing (SBT) or next-genera0on 

sequencing (NGS) (Spellman., 2022). This allows the compa0bility of donated samples to be 

assessed, however, if a sibling match or MUD is unavailable, umbilical cord blood (UCB), 

haploiden0cal related (haplo) or mismatched unrelated donor (MMUD) may be u0lised in 

addi0on to posqransplant cyclophosphamide-based grar vs host disease (GVHD) prophylaxis 

to prevent rejec0on or development of GVHD. Autologous HSCT (aHSCT) involves using the 

pa0ents’ own healthy HSCs for replenishment of a healthy immune system (Snowden et al., 

2018). As the donor and recipient are the same person, HLA mismatching is not an issue 

however, a number of studies have concluded that allogenic HSCT results in improved long-

term leukaemia-free outcomes for pa0ents with ALL (Giebel et al., 2019, and Sharma., 2018). 

Pa0ents are stra0fied into standard or high-risk and treated either with standard 

chemotherapy or undergo HSCT. Though conven0onal therapy is u0lised for standard-risk 

pa0ents with an MRD level below 0.01% at the end of induc0on or end of consolida0on, it has 
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been observed that pa0ents with high-risk features, but an early MRD response also 

benefiqed more from a standard chemotherapeu0c regimen than HSCT (Ribera et al., 2021).   
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1.5 Introduc1on:  Relapse/refractory disease. 

 

Though diagnosis, treatment and monitoring of ALL has greatly improved over the last few 

decades, relapse and/or refractory (R/R) disease represents a high-risk disease state with poor 

survival outcomes and treatment-associated morbidity (DuVall et al., 2022). With the survival 

rate of ALL increasing to >90% for children (under the age of 15) and 80% for adults through 

collabora0ve mul0centre trials, the major cause of death in ALL is now relapse with a median 

survival of <10-25%. The goal of R/R treatment is to therapeu0cally induce a remission (with 

undetectable MRD) and, if required, consolidate the remission with an allogenic 

haematopoie0c stem cell transplant (allo-HCT) or CAR-T approach. In addi0on, methods used 

to reach complete response (CR) arer R/R may include tradi0onal chemotherapy and a mul0-

agent approach similar to that which is used in frontline therapy.  However, these approaches 

resulted in limited success with a poor overall survival rate and high toxicity. It has been 

observed that poorer survival rates post R/R are associated with shorter remission 0mes prior 

to relapse. Pa0ents relapsing (CNS/BM) within 36 months of diagnosis or 6 months arer 

comple0on of treatment have a 5-year survival rate of 11.5%. In contrast, pa0ents with a late 

relapse (>18 months arer end of treatment) have a 5-year survival rate of nearly 80%. These 

sta0s0cs exemplify the necessity of highly sensi0ve MRD monitoring to ensure the early 

detec0on of residual leukemic cells and therefore, rapid iden0fica0on of pa0ents likely to 

relapse (Teachey and Hunger., 2013). 
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1.6 Introduc1on:  BCR::ABL1 fusion and cell of origin in Ph+ haematological 
malignancies (Ph+ALL and CML) 
 

As previously discussed, ALL can be classified into subgroups based on phenotypic, 

cytogene0c and muta0onal features. This thesis focusses on ALL that originates from the 

reciprocal transloca0on event between chromosomes 9 and 22, termed the Philadelphia 

chromosome (Ph). It consists of a truncated chromosome 22, resul0ng from a reciprocal 

transloca0on, t(9,22)(q34;q11), between the long arms of chromosome 9 and 22 (Fig 1.5) 

(Rowley, 1973). During the Philadelphia transloca0on event a 3’ segment of the Abelson 

murine leukaemia viral oncogene homolog (ABL) gene from chromosome 9q34 is added to 

the 5’ segment of the breakpoint cluster region protein (BCR) gene on chromosome 22q11 

(Fig 1.6). The result is a hybrid gene named BCR::ABL1. This fusion gene is then transcribed 

into mRNA and translated to the BCR::ABL1 protein which func0ons as a cons0tu0vely ac0ve 

tyrosine kinase. The Philadelphia transloca0on event is detectable in the majority (95+%) of 

pa0ents with chronic myeloid leukaemia (CML), in addi0on, 5% of children with ALL harbour 

the muta0on, as do 15-30% of adults with ALL, and 2% of adults with de novo AML (Crews 

and Jamieson., 2012).  

 

 

Figure 1.5: Representation of BCR::ABL1 fusion and the formation of the truncated Philadelphia
chromosome. The Philadelphia chromosome is formed by the reciprocal translocation event
between chromosome 9 and 22. The breakpoints at the ABL gene on chromosome 9 and BCR on
chromosome 22 lead to the fusion gene BCR::ABL1.
(Created with Biorender.com)
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Splicing at the different breakpoints on chromosome 22 (m, M and µ) results in differently 

sized BCR::ABL1 proteins; p190, p210 and p230, named for the different size of splice variant 

measured in kDa (kilodalton) (Fig 1.6). Each variant is associated with different types of 

leukaemia; with 70% of Ph+ALL pa0ents having the p190 fusion (30% with p210), p210 with 

90% of CML and p230 with chronic neutrophilic leukaemia (CNL)- CNL being outwith the scope 

of this project (Stancuioaica et al., 2019). As these sta0s0cs indicate, no one type of BCR::ABL1 

splice variant is exclusively associated with a specific type of leukaemia. Hence, detec0on of 

BCR::ABL1 fusion variants in acute Ph-driven leukaemia is beneficial for diagnosis and 

iden0fica0on of leukemic type, with the caveat that a small number of pa0ents may possess 

the atypical fusion variant for that leukemic subgroup.  

 

The effect of BCR::ABL1 kinase ac0vity can be seen in the altera0on of a variety of downstream 

signalling pathways, displaying the numerous cell func0ons that are func0onally impacted by 

BCR::ABL1. The complex signal transduc0on pathway ac0vated by BCR::ABL1 kinase ac0vity is 

also responsible for the chemotherapy resistance commonly observed in Ph+ALL and CML 

Figure 1.6: Fusion transcripts arising from p190, p210 and p230 BCR::ABL1
breakpoint regions. Alternate breakpoint regions in the BCR gene can result in at
least 8 different fusion transcript variants due to alternative splicing in the ABL
gene (splicing to exon 2 or 3) and M-bcr consisting of two intronic regions (intron
13 and 14).
(Created with Biorender.com)
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(Amarante-Mendes et al., 2022). BCR::ABL1 ac0vity is directed by the domains present in the 

fusion protein. The BCR sec0on of the protein is involved in dimeriza0on which allows the SH1 

(SRC-homology domain 1) kinase domain of ABL to phosphorylate key tyrosine residues, 

enabling signal molecules to bind via their SH2 domains (Fig 1.7). Cons0tu0ve BCR::ABL1 

ac0vity is the result of the coiled-coiled domain at the N-terminus of the BCR sec0on of the 

fusion protein, in addi0on, this domain is also responsible for oligomerisa0on. Other domains 

found within the BCR sequence includes a serine/threonine kinase (STK) domain, Ras homolog 

gene family/guanine nucleo0de exchange factor (Rho/GEF) domain and adaptor molecule-

binding domain SH2 which is able to interact with growth factor receptor-bound protein 2 

(GRB2).  

 

  

Figure 1.7: Schematic representation of BCR and ABL1 gene structures and protein domains of BCR::ABL1
fusion proteins.
(1) In ABL1, breakpoints are distributed in the intron between exons 1b and 1a, or in the intron between
exons 1a and 2. In BCR, most breakpoints in CML occur within the M-BCR region which encompasses exon
12-15. The m-BCR region is located in the 3’ half of the first BCR intron. The µ-BCR region is located further
downstream between exons 19 and 21.
(2) All three main BCR::ABL1 fusion proteins contain the common ABL1 domains, including the SRC
homology domains SH2 and SH3, tyrosine kinase domain SH1 and DNA binding domains (DBD and ABD).
The fusion proteins may contain some or all of the following BCR domains: a coiled-coil (CC) oligomerisation
domain, a serine/threonine kinase (S/T-kinase) domain, a Rho guanine nucleotide exchange factor (Rho-
GEF) domain, a pleckstrin homology (PH) domain, a calcium-depended lipid-binding domain (Cal-B), and a
truncated RAC-GAP domain, depending on the BCR breakpoints.
(Created with Biorender.com)

(1)

(2)
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The tyrosine kinase c-ABL is most commonly found in the nuclei, however, may exert ac0n 

filament binding in the cytoplasm and lamellipodial spreading at the immune synapse (Huang 

et al., 2008). C-ABL is conserved in the BCR::ABL1 complex, allowing its various domains to 

exert their func0ons such as the SRC-homology domains; SH2, SH3, ac0n transcriptome 

binding (AB) domain, DNA binding (DB) domain, a nuclear transloca0on signal (NTS) sequence, 

sites of phosphoryla0on by protein kinase C (PKC) and the highly conserved SH1 kinase 

domain which includes the cataly0c site essen0al for the ini0a0on of cellular transforma0on 

pathways, the altera0on of which results in dysregulated prolifera0on and apoptosis 

resistance (Amarante-Mendes et al., 2022).  

Figure 1.8: BCR::ABL1 signalling network.
Simplified schematic of downstream signalling pathways activated by BCR::ABL1.
BCR::ABL1 dimerization activate the kinase domain via autophosphorylation and
generate docking sites for intermediary adaptor protein (purple). BCR::ABL1-
dependednt signalling activates a number of downstream signalling pathways
resulting in enhanced survival, apoptosis inhibition and perturbation of cell migration
and adhesion.
Constituent transcription factors= blue, serine/threonine-specific kinases= green,
and apoptosis-related proteins= red. Pathways implicated in CML LSC maintenance
and BCR::ABL1-mediated disease transformation= orange.
(Adapted from O’Hare et al., 2011 Created with Biorender.com)
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The number and variety of domains contained within BCR::ABL1 displays its structural 

complexity and hence, many proteins have been found to directly interact with BCR::ABL1 (Fig 

1.8). Proteins such as GRB, SHC1, P13K and SHIP-2 have been iden0fied as members of the 

BCR::ABL1 interactome through co-immunoprecipita0on and mass spectrometry (Cutler et al., 

2020). Further complexity is added by the recruitment of intermediate and/or effector 

molecules by the foremen0oned proteins and other interactors. By this mechanism, a 

plethora of signalling pathways may be ac0vated including RAS/RAF/MAPK, P13K/AKT/mTOR 

and WNT/beta-catenin (Steelman et al., 2011). The effects of ac0va0on of these signalling 

pathways culminate in the different aspects of BCR::ABL1-induced cellular transforma0on. 

These include cell prolifera0on, differen0a0on and survival, induc0on of autocrine cytokines, 

preven0on of growth factor-induced apoptosis, ac0va0on of the mTOR pathway, cytoskeleton 

polymerisa0on, FOXO-induced leukaemogenesis, drug resistance, growth factor 

independence and preven0on of homeosta0c an0tumour ac0vi0es such as the inac0va0on 

and degrada0on of BCR::ABL1 via ubiqui0na0on by PP2A ac0va0on (Amarante-Mendes et al., 

2022).   
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1.7 Introduc1on:  Targe1ng of BCR::ABL1 by tyrosine kinase inhibitors (TKIs). 
 

In order to directly target the tyrosine kinase ac0vity of BCR::ABL1, a class of drugs able to 

directly target the cons0tu0vely ac0vated oncoprotein was developed; tyrosine kinase 

inhibitors (TKIs). The clinical u0lity of TKI drugs was first demonstrated in chronic myeloid 

leukaemia, where the use and development of first, second and third genera0on TKIs 

represent a paradigm within precision medicine. Prior to the advent of TKIs, Ph+ALL carried a 

poor prognosis with rare durable remissions (Fielding et al., 2009). At this 0me, the best long-

term survival rates resulted from allogenic HSCT, but were s0ll only 40-50%. Durable remission 

rates at the 0me for pa0ents treated with mul0agent cytotoxic chemotherapy were 0-20%, 

thus displaying the unmet clinical need that would later be answered with TKIs and novel 

combina0on therapeu0c approaches. 

 

Early trials u0lising the first-genera0on TKI Ima0nib (UKALLXII) did so with the goal of 

enhancing the long-term outcomes in Ph+ALL and increasing the number of adult pa0ents 

able to achieve successful HSCT (Fielding et al., 2014). The effect of ima0nib was assessed by 

the inclusion of the TKI in frontline chemotherapeu0c therapy and evidenced by an 

improvement in CR rates (92-82%, P=0.004) and 4-year overall survival rates (38-22%, 

P=0.0003). Subsequent trials inves0ga0ng the addi0on of second genera0on TKIs dasa0nib 

and nilo0nib to frontline chemotherapy regimens displayed improved survival rates compared 

to similar treatment regimens with chemotherapeu0c backbones (Kim et al., 2015, Ravandi et 

al., 2015 and Ravandi et al., 2016). 

 

The improvement in clinical outcomes resul0ng from the addi0on of TKIs to chemotherapeu0c 

treatment schema has also been confirmed in the paediatric cohort (Biondi et al., 2012, Biondi 

et al., 2018 & Shen et al., 2020). This phase III randomised clinical trial demonstrated an 

increased event-free survival rate resul0ng from the combina0on of second-genera0on TKI 

(dasa0nib) with chemotherapy over first-genera0on ima0nib (dasa0nib 71% : ima0nib 49% 

P=0.005). In addi0on, this trial demonstrated that intensive chemotherapy including dasa0nib 

provides excellent control of central nervous system leukaemia, sparing pa0ents from 

prophylac0c cranial irradia0on which risks toxic side effects such as secondary cancers, 

cogni0ve deficits and endocrinopathy as previously discussed (Pui et al., 2009). 
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Though the inclusion of TKI in treatment schema has become the gold standard in Ph+ALL 

treatment, tyrosine kinase inhibitors are not always a silver bullet (Leoni and Biondi., 2015).  

In addi0on to the previously discussed aberrant tyrosine kinase ac0vity, BCR::ABL1 ac0vity 

supports oxida0ve damage to DNA, impairment of gene0c surveillance and bias toward error-

prone DNA repair pathways (Senapa0 and Saaski., 2022). The outcome of this is genomic 

instability can lead to muta0ons in the BCR::ABL1 gene itself. Point muta0ons to the BCR::ABL1 

kinase domain (KD) (thus impairing TKI binding) has been iden0fied as a major mechanism of 

acquired TKI resistance and treatment failure (Pfeifer et al., 2007). Rapid onset of TKI 

resistance or refractory status from onset in TKI-naïve pa0ents suggests that such mutated 

clones can exist prior to TKI treatment, appearing to arise arer treatment due to resistant 

clones being selected for during treatment (Hofmann et al., 2003 and Shah et al., 2002). With 

improved sequencing accuracy, specific BCR::ABL1 clones have been iden0fied and can now 

be targeted by next-genera0on TKIs. An example of this is ABL1 kinase domain muta0on, 

T315I, which can now be targeted by third-genera0on pona0nib. The addi0on of pona0nib to 

the HyperCVAD backbone (hyper-frac0onated cyclophosphamide, vincris0ne, doxorubicin 

and dexamethasone) resulted in a superior event-free survival and overall survival response 

compared to treatment with dasa0nib and HyperCVAD (Saskai et al., 2016).   

  

TKI resistance can occur within Ph+ALL, but the data associated with it is oren extrapolated 

from CML.  For example, BCR::ABL1 dependent mechanisms of resistance can occur because 

of the amplifica0on of the BCR::ABL1 gene or the further development of point muta0ons. 

The outcomes of these can be the altera0on of the BCR::ABL1 kinase domain, rendering the 

TKI ineffec0ve. Over 90 point muta0ons have been iden0fied to date, however few have been 

biologically characterised (Azevedo et al, 2017; Cavelier et al, 2015; Gibbons et al, 2014; 

Khorashad et al, 2013; Shah et al, 2002; Szankasi et al, 2016). Such point muta0ons can be 

categorised into four different clusters depending on the BCR::ABL1 domain affected by the 

muta0on (Table 1.4 and Fig 1.9) (the P-loop, SH2 domain, SH3 domain or the ac0va0on loop) 

(Branford et al, 2003; Schindler et al, 2000; Soverini et al, 2011). As TKI genera0ons have 

increased the variety of domains targetable therapeu0cally, previously untreatable point 

muta0ons can now be targeted. An example of this being the T315I muta0on which is 

characterised by the replacement of threonine by isoleucine at ABL amino acid posi0on 315 

which was un-targetable un0l the development of pona0nib. With a large number and variety 
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of point muta0ons, not all muta0ons result in relapse or disease progression and therefore 

possess less clinical significance in the context of Ph+ALL and CML. 

 

Addi0onal mechanisms may also confer TKI resistance such as an increase in expression of P-

glycoprotein efflux pump resul0ng in the transport of TKIs out of the target cell. Again, this 

has been highlighted within CML, rather than Ph+ALL.  This was postulated in the CML-blast 

phase (BP) cell line K562 which demonstrated an increase in P-glycoprotein efflux pump 

expression when passaged with increasing doses of the TKI ima0nib (Mahon et al., 2000). 

However, this cell line also demonstrated an amplifica0on in BCR::ABL1 copy number to 6x 

untreated levels. Hence, no discrimina0on between P-glycoprotein overexpression and 

ima0nib resistance could be made from this inves0ga0on. 

 

A number of BCR::ABL1-independent mechanisms of TKI resistance have been described, 

displaying the importance of the altera0on of intracellular signalling, cell cycle regula0on and 

the altera0on of signalling pathways by the ac0va0on of mul0ple non-BCR::ABL1 kinases (Li 

and Li., 20017). As previously discussed, the cons0tu0vely ac0ve BCR::ABL1 protein aberrantly 

Mutation Action
T315I Consider ponatinib
T315A F317L/V/I/C Y253H Consider nilotinib or bosutinib (rather than dasatinib)
F359V/C/I Consider dasatinib or bosutinib (rather than nilotinib
V299L Consider nilotinib
E255K/V Consider dasatinib
Any other mutation Consider dasatinib, nilotinib, bosutinib, ponatinib
Figure 1.3.4: Point mutation and recommended action for TKI choice (Ai & Tiu, 2014)Table 1.4: Point mutation and recommended action for TKI choice.
(Adapted from Ai & Tu., 2014)

Figure 1.3.5: Schematic of BCR::ABL1 point mutations according to position. Schematic of point 
mutations associated with clinically relevant TKI choice. Asterisks represent amino acid substitutions 
associated with advanced disease stage.

Figure 1.9: Schematic of BCR::ABL1 point mutation according to position. Schematic of point
mutations associated with clinically relevant TKI choice. Asterisks represent amino acid
substitutions associated with advanced disease stage.
(Created with Biorender.com)
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ac0vates signalling pathways such as SRC kinase, RAS and JAK-STAT, leading to blast cell 

prolifera0on and apoptosis resistance (Cortez et al, 1997; Gallipoli et al, 2014; Pendergast et 

al, 1993). SRC family kinase ac0va0on has been demonstrated to enhance disease progression 

and poor response to TKIs. BCR::ABL1 is able to interact with SRC family kinases in a mutual 

ac0va0ng manner with a conforma0onal change to the SH2 and SH3 domains of ABL and the 

ac0va0on of SRC family kinases Hck, Lyn and Fyn, leading to enhanced cell prolifera0on, 

differen0a0on and survival (Danhauser-Riedl et al, 1996; Hu et al, 2006; Meyn et al, 2006; 

Stanglmaier et al, 2003). Despite no clinical examples of SRC-ac0va0ng muta0ons in Ph+ 

leukaemia clinical samples or TKI-resistant cell lines, the SRC pathway is part of numerous 

crosstalk pathways and likely may be ac0vated through other mechanisms (Donato et al, 2003; 

Ptasznik et al, 2004; Wu et al., 2008). 

 

Pathway ac0va0on through alterna0ve mechanisms has been demonstrated by the ac0va0on 

of RAS signalling by Grb2-mediated binding of the Y177 moiety in the BCR sequence, however, 

the specific mitogen-ac0vated kinases ac0vated by RAS in Ph+ALL and CML are yet to be fully 

elucidated (Cortez et al, 1997; Pendergast et al, 1993). Grb2 has been demonstrated to recruit 

Gab-2 and subsequently ac0vate PI3K and ERK pathways, the mechanism of this ac0va0on 

being through the ac0vity of plasma membrane transporter molecules such as the ABC family 

of transporters, ABCG2 and MDR-1 (Saqler et al., 2002). As previously discussed, the 

mechanism of TKI resistance conferred by such protein complexes is believed to be through 

the transporta0on of TKIs out of the target cell and therefore, a decrease in intracellular TKI 

concentra0on, however this mechanism is yet to be fully elucidated (Mahon et al., 2003).  

 

As discussed, mechanisms causing failure to respond or resistance to TKI therapy can be 

BCR::ABL1-dependent or independent. Mechanisms of TKI resistance and ac0va0on of 

alterna0ve signalling pathways have been an area for direct therapeu0c targe0ng however, 

the phenomenon of disease persistence remains, sugges0ng that BCR::ABL1-independent 

pro-survival mechanisms are being exploited by quiescent leukemic stem cells (LSCs) in the 

context of CML (Bha0a et al, 2003b; Chomel et al, 2011; Deininger, 2012). Within Ph+ALL, the 

LSC has yet to be fully elucidated, but remains an area of research interest. Treatment of Ph+ 

lymphoid leukaemia (chemotherapy with TKI) is directed against the lymphoid clone; 

however, relapse may arise from residual Ph+ LSC popula0ons. These LSC popula0ons appear 
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to reside in HSC or MPP popula0on (Carrol and Clair., 2018), thus it is likely that their biology 

resembles CML LSCs and may include TKI-resistant LSCs just as in CML. Although HSCT may 

eradicate LSCs, the high morbidity and mortality from this procedure mandates development 

of novel therapies. Key features of these TKI resistant CML LSC popula0ons include reliance 

on transcrip0onal hubs regula0ng p53 and c-myc ac0vity, epigene0c dysregula0on and 

upregula0on of autophagy in addi0on to a reliance on mitochondrial oxida0ve 

phosphoryla0on (Patel et al., 2018). Understanding these mechanisms will enable 

combina0onal therapies to be developed to target BCR::ABL dependent and independent 

mechanisms involved in LSC persistence  making them vulnerable to repurposed drugs from a 

variety of classes such as an0bio0cs, an0psycho0cs, NSAIDs (non-steroidal an0-inflammatory 

drugs) and an0-depressants (Holyoake and Vetrie., 2017).  
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1.8 Introduc1on: The iden1fica1on of a novel Ph+ALL subtype with CML-like 
features. 
 

As previously discussed, ALL comprises a heterogeneous group of acute lymphoid-driven 

haematological malignancies. Historically, ALL was subtyped based on cellular morphology 

arer staining and was subclassified into L1, L2 and L3 based on the presence of small-medium 

regular blast cells with a high nucleocytoplasmic ra0o, larger pleomorphic blasts with visible 

nucleoli, nuclear clers and larger cytoplasm, or blast cells with a visibly basophilic cytoplasm 

and cytoplasmic vacuoles respec0vely (Bain and Estcourt., 2013). Since then, the classifica0on 

system has been updated and modernised to align with technological advancements, the 

increasing understanding of the heterogeneity of ALL and the discovery of dis0nct leukemic 

subtypes (Table 1.1). 

 

The subtyping of ALL has allowed for a marked improvement in diagnosis and treatment of 

these haematological malignancies over the previous decades. Importantly, this has resulted 

in improved outcomes for pa0ents and an increased survival rate up to 65% across subtypes 

with differences in survival by age (the highest mortality rate being in pa0ents above age 50) 

(CRUK., 2023). However, there remains a number of pa0ents who display atypical leukemic 

phenotypes. These pa0ents may display an unpredicted response to treatment, misalignment 

in MRD monitoring outcomes or exhibit the involvement of leukocytes from a number of 

lineages in disease progression. Pa0ents who display an atypical ALL phenotype can therefore 

be difficult to treat, as the understanding of disease pathology on which treatment is based is 

unsuitable for an unknown or undefined subtype. Hence, this issue can be seen as an unmet 

clinical need and necessitates further study in order to ensure correct treatment and diagnosis 

of pa0ents.  

 

In this vein, the recent iden0fica0on of a group of paediatric Ph+ALL pa0ents with atypical 

disease features discussed in Hovorkova et al., (2017) is at the core of this project. The study 

was intended to focus on comparison of different methods of MRD monitoring, directly 

comparing the sensi0vity and accuracy of such treatment response measurements. The 

approach of this was to u0lise the genomic breakpoint between BCR and ABL1 genes for the 

DNA-based monitoring of MRD in comparison to standard MRD methods which are based on 
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immunoglobulin/T-cell receptor (Ig/TCR) gene rearrangements and IKZF1 dele0on. Broadly, 

there was good correla0on between the newer, more sensi0ve, DNA based method of MRD 

monitoring and the standard methods used clinically. However, >20% paediatric pa0ents of 

the overall Ph+ALL cohort displayed discordance between MRD methods (Fig 1.10). These 

pa0ents had significantly higher levels of BCR::ABL1 fusion than detectable Ig/TCR 

rearrangements or IKZF1 dele0on. As the methods of MRD monitoring discussed are intended 

to iden0fy the presence of lymphoblasts arer treatment, if the understanding of BCR::ABL1 

fusion occurring only in lymphoid progenitors in Ph+ALL is applicable here, such outlying 

pa0ents must therefore possess cells which contain the Philadelphia chromosome outside of 

the lymphoid progenitor frac0on and hence, do not have standard Ph+ALL.  

Figure 1.10: Monitoring
childhood ALL using BCR::ABL1
genomic breakpoints and Ig/TCR
gene rearrangement identifies a
discordant subgroup with CML-
like biology.
(1) Comparison of the MRD levels
in ALL patients measured by
Ig/TCR vs BCR::ABL1 transcript
qualification as well as vs
BCR::ABL1 genomic breakpoint
quantification in all samples and
separately in selected time points
during frontline treatment.
Samples from patients with major
BCR::ABL1 fusion variant=
triangles, and minor BCR::ABL1=
circles. Samples from patients
with concordant MRD course=
red, and samples from patients
with discordant MRD= blue. The
light grey diagonal shape
represents the area of
concordance +/- log. D= day, W=
week from start of treatment.
(2) Presence of BCR::ABL1-positive
cells in haematopoietic lineages
(A= ALL blasts, B= non-ALL B cells,
G= granulocytes, M= myeloid
cells/monocytes, T= T cells) at
diagnosis in ALL patients with
concordant (C1277) and
discordant (C1092 & C1382) MRD
courses and in CML patient
(C1437). The MRD levels are
shown for Ig/TCR (dashed line)
and BCR::ABL1 genomic
breakpoint (full line); the grey
area represents the level of
sensitivity of the Ig/TCR
quantification. NA= not available.
(Source: Hovorkova et al., 2017)

(1)

(2)
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As a result of these observa0ons, BCR::ABL1 presence was assessed in a variety of 

haematopoie0c linages. In both concordant (standard/’classical’ Ph+ALL) and discordant 

(atypical Ph+ALL) samples, ALL blasts, non-ALL B cells, granulocytes, monocytes/myeloid cells 

and T cells were assessed for BCR::ABL1 posi0vity by the aforemen0oned DNA-based method. 

It was observed that concordant pa0ents displayed the t(9;22) event in ALL blast cells only, 

aligning with the expected standard Ph+ALL phenotype. Interes0ngly, the discordant pa0ent 

cohort displayed BCR::ABL1 posi0vity in all haematopoie0c popula0ons tested. This aligns 

with the MRD discordance previously observed and displays an atypical and currently 

undefined Ph+ALL subtype. 

 

The outcome of these findings is the proposal of a novel Ph+ALL subtype, currently designated 

‘CML-like Ph+ALL’, named as such due to the presence of BCR::ABL1 in mul0ple 

haematopoie0c lineages, just as in CML. CML in blast crisis can involve a number of lineages; 

myeloid, lymphoid or mixed lineage. This poten0al for mul0 lineage involvement arises due 

to the early developmental stage of the progenitor cell in which the BCR::ABL1 fusion event 

occurs. The presence of Ph+ HSCs, a cell type at the apex of haematopoie0c development, 

ensures that proceeding developing cells also contain the fusion chromosome. BCR::ABL1 

occurring in lymphoid progenitors alone results in its tyrosine kinase ac0vity being lineage 

restricted. 

 

Figure 1.11: BCR::ABL1 fusion during early stages of haematopoiesis in three disease states. Known cell of origin of
BCR::ABL1 fusion in CML (HSC). Postulated cell of BCR::ABL1 origin in ‘standard’ Ph+ALL (ProB/PreB cell) and CML-like Ph+ALL
(HSC or MPP). HSC= haematopoietic stem cell, MPP= multipotent progenitor, MLP= mixed lymphoid progenitor, CMP=
common myeloid progenitor, MEP= megakaryocyte/erythrocyte progenitor, GMP= granulocyte-macrophage progenitor, NK=
natural killer, MDCP= monocyte-dendritic cell precursor, ETP= early T cell precursor.
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Existence of CML-like Ph+ALL has been proposed but the subtype remains undefined (Hunger., 

2017). Limited informa0on on the poten0al subtype has meant that diagnos0c criteria and 

the func0onal basis of the disease has not yet been established. However, the available 

informa0on indicates that the BCR::ABL1 fusion event, the leukemic origin, must occur in cells 

prior to lineage commitment in order for the Philadelphia chromosome to be detectable in 

both myeloid and lymphoid lineages (Fig 1.11). Applying what is understood about CML 

ini0a0on and development, the most likely cell of origin for BCR::ABL1 would either be HSCs 

or MPPs. Both popula0ons are characterised as being mul0potent and non-commiqed (Fig 

1.12) (Pietras et al., 2015). While the presence and ac0vity of LSCs has been confirmed in CML, 

it is unknown if Ph+ HSCs/MPPs in CML-like Ph+ALL would display the same phenotype as CML 

LSCs, as it would be per0nent to iden0fy the presence of the Philadelphia chromosome in 

such Ph+ALL stem and progenitor cells before their poten0al LSC ac0vity could be assessed 

(Thomas., 2012). The similari0es between CML and CML-like Ph+ALL are undefined however, 

the iden0fica0on of the same fusion event, occurring in the same cell popula0on and yet, 

resul0ng in different diseases, may provide an interes0ng example of the importance of 

downstream signalling and transcrip0onal differences for establishing different disease 

pathologies. 

 

The classical model of haematopoiesis has long held the dogma of a rigid developmental 

hierarchy with HSCs at the apex giving rise to all lineages of blood cells and possessing self-

renewal capacity (Cheng et al., 2020). Inves0ga0on into single cell ac0vity through the recent 

development of novel and highly sensi0ve technologies has challenged this model. The newer 

haematopoie0c model takes into account the phenotypic complexity of the haematopoie0c 

stem and progenitor cell (HSPC) popula0ons. Examina0on of single cell ac0vity reveals a 

heterogeneous pool of HSPCs with lineage biases. Such cells s0ll possess self-renewal 

capabili0es and despite being primed for differen0a0on into specific myeloid or lymphoid 

cells, are s0ll nega0ve for lineage markers. With this revised model in mind, BCR::ABL1 fusion 

in Ph+ALL or CML-like Ph+ALL may arise in a subset of lineage-primed HSPCs rather than 

seemingly occurring at random in a homogenous pool of HSCs. The heterogeneity of lineage 

involvement in CML-like Ph+ALL and CML-LBP(chronic myeloid leukaemia in lymphoid blast 

phase) may be the result of lineage priming, with the t(9;22) transloca0on event occurring in 

HSPC popula0ons primed for myeloid and lymphoid popula0ons. Therefore, the reason why 
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standard Ph+ALL is a lymphoid-restricted disease may be due to the forma0on of BCR::ABL1 

in HSPCs primed for lymphoid lineages only. Rather than maintaining the older view of Ph+ALL 

which surmises that BCR::ABL1 fusion in Ph+ALL occurs in lymphoid progenitors and hence, 

only the CML-like subtype would possess Ph+ HSPCs, integra0ng the new model of 

haematopoiesis would beqer explain Philadelphia chromosome posi0vity in both standard 

and CML-like Ph+ALL (Fig 1.11).  

 

 
  

Figure 1.12: Updated model of haematopoiesis at steady state. Cell fate decisions
are made during haematopoietic development and differentiation into mature cell
populations. Subgroups of MPPs display lineage-specific predetermination (MPP1,
2, 3 and 4).
(Created with Biorender.com)
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1.9.1 Introduc1on: Characterisa1on of CML-like Ph+ALL pa1ents; what is 
known currently and how it may align with current Ph+ALL risk stra1fica1on.   
 

Risk stra0fica0on is an essen0al aspect to treatment of paediatric Ph+ALL. U0lisa0on of 

disease characteris0cs allow for pa0ent response to treatment to be predicted, ensuring 

pa0ents who are likely to have a good clinical outcome are able to be treated with less 

intensive regimens and spared poten0ally toxic treatments, and pa0ents with a lower 

probability of long-term survival given a more intensive therapy to increase their chance of 

cure.  

 

In order to establish risk stra0fica0on, a number of clinical characteris0cs are collected 

including age at diagnosis, WCC at diagnosis, CNS or tes0cular involvement at diagnosis, 

occurrence of trisomy 21, sex, race and ethnicity, weight at diagnosis and during treatment. 

In addi0on, flow cytometry-based immunophenotyping can be u0lised to assess the leukocyte 

popula0on size. Such assessment tools may help to establish the disease phenotype at 

diagnosis, thus advising on the treatment protocol required for an individual pa0ent.  

 

Assessment of treatment response through MRD, molecular and cytogene0c responses 

inform on the requirement for dose escala0on, de-escala0on or the discon0nua0on of 

treatment. In Ph+ALL, the key 0mes for assessment of BM MRD is day 7 of treatment, day 14, 

the end of induc0on and the end of consolida0on. Peripheral blood response to steroid 

prophase, mul0agent induc0on therapy, MRD before the end of induc0on (day 8 and 15) and 

any presence of leukaemia at the end of induc0on (induc0on failure) is also monitored for risk 

stra0fica0on.  

 

Monitoring of treatment response allows pa0ents to be categorised by risk status and 

therefore, receive appropriate treatment. However, this mul0-factorial monitoring strategy 

also iden0fies pa0ents belonging to different disease subtypes. As the iden0fica0on of 

leukemic subtypes has been enhanced through characterisa0on of cellular pathway 

perturba0on and unan0cipated response to treatment, the need for rapid and accurate 

iden0fica0on of these pa0ents is clear (Hunger and Mullighan., 2015). Uncharacterised 

subtypes with no firm diagnos0c criteria such as CML-like Ph+ALL represent an unmet clinical 
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need as these pa0ents have been reported to respond poorly to commonly used lymphoid-

directed therapies and therefore, may require an alternate therapeu0c regimen (Hovorkova 

et al., 2017). Without specific diagnos0c criteria, these pa0ents may remain unclassified and 

hence, u0lisa0on of clinical data may be beneficial in detec0on of those with the CML-like 

subtype. It is likely that these pa0ents would have clinical characteris0cs atypical to the rest 

of the standard Ph+ALL cohort and therefore may be visible in already established disease 

monitoring methods. Therefore, the integra0on of clinical, phenotypic, and transcrip0onal 

data is essen0al for the characterisa0on of CML-like Ph+ALL. 

 

As the proposed CML-like Ph+ALL subtype is as of yet uncharacterised, an integrated research 

approach must be u0lised in order to fully inves0gate phenotypes unique to this subtype. In 

order to do this, immunophenotypic data, clinical informa0on and cytogene0c analysis of 

progenitor cells were supplemented with gene expression analysis by RNAseq (RNA 

sequencing). The use of RNAseq has been revolu0onary in researching complex or undefined 

disease states. Through the analysis of transcrip0onal differences between samples within a 

cohort, predic0ve modelling of disease for the iden0fica0on of candidate biomarkers can be 

achieved (Paul et al., 2016). The emergence of this approach supports the increased u0lisa0on 

of precision medicine, allowing clinicians and scien0sts to tailor treatment to pa0ent 

subgroups according to suscep0bility to specific diseases or outcomes and therapeu0c 

response (Wang and Wang., 2023). As broad disease traits for CML-like Ph+ALL have been 

iden0fied as discordance between MRD measurement techniques, poor response to 

tradi0onal Ph+ALL therapy and myeloid disease involvement, RNAseq provides the 

opportunity to iden0fy differen0al gene expression paqerns which lead to such complex 

disease traits (Hovorkova et al., 2017). Whole transcriptome analysis has become an 

increasingly u0lised and invaluable tool of inves0ga0ng the pathology of uncharacterised 

diseases in an unbiased manner (Costa et al., 2013). This has already been u0lised in the 

context of B-ALL where the genomic landscape where a mul0-omic (whole genome, exome 

and transcriptome) approach was u0lised to develop a transcrip0onal taxonomy and iden0fy 

muta0ons with prognos0c significance across paediatric ALL subtypes (Brady et al., 2023). 
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We hypothesise that a subtype of Ph+ALL exists with CML-like disease features and 

developmental origins arising from BCR::ABL1 fusion occurring in early stem/progenitor cells. 

We propose that these pa0ents differ from the standard Ph+ALL phenotype by features 

including (but not limited to) an enlarged myeloid popula0on compared to the standard 

Ph+ALL phenotype and will have evidence of BCR::ABL1 fusion in early stem and progenitor 

cells akin to CML and a transcrip0onal profile containing genes commonly found in both 

Ph+ALL and CML. We believe that due to this, these pa0ents will require an alterna0ve 

therapeu0c regimen to what is currently used in Ph+ALL. 

 

To elucidate these hypotheses, the following aims have been generated: 

1. Determine if haematopoie0c dynamics differ within Ph+ALL and if differences in cell 

popula0on sizes can iden0fy dis0nct subgroups. 

2. Iden0fy where during haematopoie0c development BCR::ABL1 fusion occurs. 

3. Examine the heterogeneity of transcrip0onal profiles within Ph+ALL and determine if 

subtypes can be iden0fied by differen0al gene expression. 

 

We intend to address these aims with the following objec0ves: 

1. Assess haematopoie0c progenitor popula0on size in paediatric Ph+ALL diagnos0c and 

post-induc0on bone marrow samples by FACS. 

2. Examine sorted HSCs and MPPs for BCR::ABL1 fusion using FISH. 

3. Inves0gate transcrip0onal profiles of Ph+ALL and CML bone marrow samples using 

RNAseq.  
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1.9.2 Introduc1on: Aim1: Determine if haematopoie1c dynamics differ within 
Ph+ALL and if differences in cell popula1on sizes can iden1fy dis1nct 
subgroups. 
 

As previously reported by Hovorkova et al (2017), pa0ents iden0fied as belonging to the CML-

like subtype were observed to have an enlarged myeloid popula0on compared to ‘standard’ 

Ph+ALL. Mature cell popula0ons from mul0ple lineages (non-ALL blasts, myeloid cells, 

monocytes and granulocytes) were examined for BCR::ABL1 in said study however, progenitor 

cells and cell popula0on size was not assessed. We hypothesise that progenitor popula0on 

sizes vary within the Ph+ALL cohort and samples belonging to the CML-like subtype will have 

enlarged myeloid progenitor pools compared to standard Ph+ALL. We believe this is due to 

t(9:22) occurring at the apex of haematopoiesis, resul0ng in BCR::ABL1 kinase ac0vity in 

mul0ple lineages and therefore increased prolifera0on of myeloid cells in addi0on to 

lymphoid cells. As discussed in sec0on 1.2.2, lymphoid differen0a0on arrest occurs in ALL, 

producing immature lymphoid blasts, hence inves0ga0on into popula0on dynamics of the 

proposed CML-like subtype would include myeloid progenitors. Based on the expansion of 

myeloid cells in CML-like Ph+ALL by Hovorkova et al (2017), we intend to inves0gate if CML-

like samples possess haematopoiesis dynamics atypical to standard Ph+ALL. 

 

In order to address this aim our objec0ve is to sort diagnos0c and post-induc0on Ph+ALL bone 

marrow samples into progenitor popula0ons using FACS and examine popula0on sizes across 

the cohort, determining if a clear subgroup can be iden0fied (Fig 1.13). An important feature 

of haematopoiesis that should be remembered for the examina0on of differences in cell 

popula0on size between diagnos0c and post induc0on samples throughout this thesis, is its 

plas0city. Haematopoiesis is a dynamic developmental process with the produc0on of 

different cell types varying depending on the needs of the organism. Hence, BCR::ABL1 kinase 

ac0vity in mul0ple lineages may be observed by differencing progenitor popula0on sizes. The 

purpose of sor0ng and collec0ng cell popula0ons in addi0on to measurement will be 

elaborated on in the proceeding sec0on. 
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Figure 1.13: Sorting strategy (standard Ph+ALL).
(1) Bulk diagnostic or post induction Ph+ALL samples were sorted into progenitor populations
based on cell surface marker expression. The same sorting strategy was used for Ph+ALL, CML-
LBC and healthy BM control samples.
(2) Cell surface marker expression profile for early haematopoietic progenitors-tabular.
*clinical markers, not used in this project (Chiaretti et al., 2014)
(Created with Biorender.com)

(1)

(2)
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1.9.3 Introduc1on: Aim 2: Iden1fy where during haematopoie1c development 
BCR::ABL1 fusion occurs. 
 
 

As previously discussed, findings from Hovorkova et al (2017) iden0fied BCR::ABL1 fusion in 

mature cell popula0ons from mul0ple lineages however, this did not represent a definite 

iden0fica0on of Ph+ stem/progenitor cells or where during the haematopoie0c development 

process t(9:22) occurred. With this in mind, we have developed the hypothesis that t(9:22) 

fusion occurs prior to lineage bifurca0on in the CML-like subtype. This would result in 

BCR::ABL1 kinase ac0vity in both lymphoid and myeloid lineages, as observed by Horakova et 

al (2017).  

 

To address this aim we intend to inves0gate BCR::ABL1 fusion with FISH in FACS sorted stem 

and progenitor cells. Isola0on of cells expressing HSC and MPP surface markers by FACS would 

allow for the inves0ga0on of cells at the apex of haematopoie0c development, prior to lineage 

bifurca0on. Due to standard Ph+ALL being a lymphoid lineage-restricted disease, the cell of 

t(9:22) origin is believed to be a lymphoid progenitor, hence we believe that CML-like and 

standard Ph+ALL samples could be differen0ated from each other by the presence of 

BCR::ABL1 in stem and progenitor cells in the CML-like Ph+ALL samples alone. However, HSCs 

and MPPs have not been studied previously in Ph+ALL and BCR::ABL1 may occur prior to 

lineage fixing in Ph+ALL with downstream factors (such as signalling and transcrip0onal 

altera0ons) affec0ng lineage presenta0on of BCR::ABL1 kinase ac0vity. 
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1.9.4 Introduc1on: Aim 3: Examine the heterogeneity of transcrip1onal 
profiles within Ph+ALL and determine if subtypes can be iden1fied by 
differen1al gene expression. 
 
To inves0gate how the same fusion event (the forma0on of BCR::ABL1) could occur in the 

same cell popula0on (HSCs) and yet lead to two different diseases, CML-LBC and CML-like 

Ph+ALL we have set the objec0ve to analyse transcrip0onal differences within the Ph+ALL 

cohort and compare to CML-LBC by RNAseq. With the leukemic ini0a0ng events being 

iden0cal in both disease states, it would be logical that the phenotypic differences arose from 

differen0al transcrip0onal profiles. Therefore, an aim of this project is to establish how 

Ph+ALL, CML-LBC and CML-like Ph+ALL differ in gene expression in order to beqer characterise 

the CML-like subtype. 

 

As discussed above, an unbiased whole transcriptome analysis approach allows for the overall 

gene expression profile to be inves0gated, allowing for detec0on of genes and pathways 

previously unan0cipated to play a role in disease pathology and may poten0ally be u0lised as 

biomarkers. The objec0ve is to perform a comprehensive literature search to iden0fy key 

genes involved in CML pathology, LSC ac0vity and myeloid biology (such as CYYR1, ANXA1, 

CCDC60 and ACE) and use these to interrogate publicly available datasets and pa0ent cohorts. 

Such genes were examined in the sequenced samples for Log2Fold change and sta0s0cal 

significance. U0lising genes which are important in myeloid leukaemia and LSC pathology but 

not known to play a role in Ph+ALL allows for the iden0fica0on of transcrip0onal elements 

shared between CML and the CML-like Ph+ALL subtype. Due to the known characteris0cs of 

the subtype being of a mixed clinical phenotype, it is theorised that CML-like Ph+ALL would 

display a mixed transcrip0onal phenotype, with differen0al expression of genes involved in 

both CML and Ph+ALL pathology.  

 

As there are no specific diagnos0c criteria for iden0fying CML-like Ph+ALL, RNAseq was 

performed blind on a cohort of 11 paediatric Ph+ALL pa0ents. Sample selec0on criteria 

priori0sed RNA quality but also included a range of ages, clinical outcomes and samples with 

or without detectable BCR::ABL1 in stem and progenitor cells. Without knowing which 

features align with CML-like pathology, a range of Ph+ALL samples were sequenced to create 



 45 

a varied and unbiased sample cohort. In addi0on, to establish a CML transcrip0onal profile to 

which Ph+ALL samples could be compared, 2 CML samples were sequenced. CML is 

exceedingly rare in children and adolescents therefore due to sample availability, adult CML 

BMNC samples were u0lised. To reflect the fact that Ph+ALL and CML-LBC are two dis0nct 

disease en00es despite both being acute phase leukaemia with lymphoid involvement, the 

CML samples selected were harvested from pa0ents in lymphoid blast crisis. This would also 

allow CML-like Ph+ALL to be beqer characterised and confirm that despite being an acute 

phase leukaemia with both myeloid and lymphoid disease involvement, CML-like Ph+ALL is a 

separate disease en0ty and not a misdiagnosis of CML-LBC.  

 

The detec0on of CML-like subtype-specific biomarkers would represent an important tool in 

diagnosis of the disease and, in addi0on, may highlight novel therapeu0c targets. While flow 

cytometry-based immunophenotyping is frequently used in leukaemia diagnos0c prac0ces, 

sor0ng cells for analysis of gene expression is costly in a clinical seyng. Therefore, 

iden0fica0on of clinically relevant biomarkers in a bulk BMNC popula0on would allow for such 

genes to be adopted more readily into exis0ng diagnos0c prac0ces.  
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Chapter 2. Materials and methods. 

2.1 Materials and methods: Reagents and equipment 
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2.2 Materials and methods: Solu1ons 
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2.3 Materials and methods: An1bodies 

 

  

Cell Surface 
Marker

Fluorochrome

CD45RA V450 404-448
CD90 BV510 405-510
CD10 PerCP-Cy5.5 482-695
CD123 PerCP-Cy5.5 482-695
Lin FITC 494-519
CD33 PE 496-578
CD38 PE-Cy7 564-785
CD34 APC 650-660
CD19 APC-H7 650-785

Wavelength Range (nm)

Table 2.3.2: Fluorochromes and wavelengths of antibodies used
in FACS isolation of stem and progenitor cells from primary BMNC
samples. Surface marker antibodies and fluorochromes were
carefully selected to prevent wavelength crossover. Surface marker
cocktails were selected based on previous experiments conducted
within the lab group and Horne et al., 2020.

CD3
CD14
CD16
CD19
CD20
CD56

Population Surface Marker Expression
HSC LIN- CD34+ CD38- CD90+ CD93+/-
MPP LIN- CD34+ CD38- CD90-
CMP LIN- CD34+ CD38+ CD123+ CD45RA-
GMP LIN- CD34+ CD38+ CD123+ CD45RA+
CLP LIN- CD34hi/+ CD38+ CD45RA+ CD10+ CD19- CD33-
ProB LIN+ CD34+ CD38+ CD45RA+ CD10- CD19+ CD33-
PreB LIN+ CD34+ CD38+ CD10+ CD19+ CD33-

Table 2.3.1: Cell surface marker expression for early
haematopoietic stem and progenitor cells. Cell populations
were separated by the expression of cell surface markers by
FACS.
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2.4 Materials and methods: Sta1s1cal analysis  

 

Sta0s0cal analysis of experimental FISH and FACS data was performed using GraphPad Prism 

10 sorware. Mann-Whitney unpaired t Test was used to examine correla0ons between FISH 

scores and clinical features. An unpaired experimental design was used for the t Test. Gaussian 

distribu0on was assumed (a parametric test was used) and as an unpaired t Test, both 

popula0ons were assumed to have the same standard devia0on.  

Mul0variate analysis (Mul0variate ANNOVA) analysis of the combina0on of different methods 

of risk analysis with rela0on to Ph posi0vity in HSC and MPP diagnos0c and PI samples was 

run to determine if risk can be associated with FISH score.  Mul0ple comparisons were used 

to compare cell means regardless of rows and columns and each cell mean was compared 

with every other cell mean. 

Sta0s0cal analysis of bioinforma0c data was performed using GEO2R and R Studio. In GEO2R 

a Benjamini and Hochberg false discovery rate was used with forced normalisa0on and a Log 

2 Fold threshold set as 1. Volcano plots and PCA (principle component analysis) plots were 

used to display data distribu0on. In R, Log 2 Fold values were calculated to measure change 

in gene expression and sta0s0cal significance measured by Adjusted P value. Z scores were 

calculated for changes in gene expression and applied to heatmaps.   
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2.5.1 Materials and methods: So]ware and coding (R Studio) 
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2.5.2 Materials and methods: So]ware and coding (GEO2R) 

 

GEO2R was u0lised to perform differen0al expression analysis of publicly available datasets 

on the Gene Expression Omnibus (GEO) repository. GEO2R uses GEOquery and Limma (Linear 

Models for Microarray Analysis) to perform differen0al expression analysis of microarray 

datasets. GEOquery parses GEO data into R data structures which can then be used by other 

packages, in this analysis, Limma was used. Limma allows sta0s0cal tes0ng for detec0on of 

differen0ally expressed genes and applied mul0ple-tes0ng correc0ons on P-values to help 

correct for false-posi0ve occurrences. Analysis was performed by entering the dataset ID in 

the GEO accession search bar. On the sample table, groups were defined by entering the 

specific group name and selec0ng the corresponding samples to be assigned to each group. 

To allow gene expression comparison between sample groups, at least two groups must be 

defined and compared. Once sample groups were defined, the ‘Op0ons’ tab was selected to 

define tes0ng condi0ons. Benjamini & Hochberg was selected for adjustment to the P values 

to account false for discovery rate. Log transforma0on was not automa0cally applied to 

analysis as the GEO database hosts logged and unlogged data, hence the auto-detect log 

func0on was used. Force normalisa0on was applied for quan0le normalisa0on to the 

expression data making all selected samples have iden0cal value distribu0on. The adjusted P-

value threshold was set at 0.05 and the Log 2 fold change threshold was set at 1. Volcano and 

mean-difference plot contrasts was selected to produce volcano plots which were 

automa0cally ploqed by GEO2R. Arer running the analyses (by selec0ng ‘Analyze’), plots 

could be visualised in addi0on to a table of 250 differen0ally expressed genes. This table was 

downloaded and exported to Excel where the gene names, gene func0ons, log fold changes 

and P values for each of the 250 DEGs could be observed. Genes were sorted from upregulated 

to downregulated by sor0ng log fold changes by largest to smallest values. This process results 

in a table of DEGs (differen0ally expressed genes) for use in downstream analyses such as 

gene ontology.  
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2.5.3 Materials and methods: RNAseq (RNA sequencing) bioinforma1c 
analysis 

 

Sequencing was carried out by Glasgow Polyomics using library prep approach of polyA 

selec0on for low input samples and sequencing performed at PE 2x75bp with a read depth of 

30M per sample. Arer harves0ng of RNA using the RNeasy Mini Kit (Qiagen), sample quality 

was assessed for all samples using Bioanalyzer. The polyA RNA libraries were prepared by 

Glasgow Polyomics using the TruSeq stranded mRNA kit (Illumina). Paired end sequencing was 

generated on NextSeq2000 that yields a read of 100bp to a depth of 30 million reads. Using 

FastQC and Mul0QC, the quality of raw RNAseq data was verified. The Trimmoma0c tool was 

then used to automa0cally remove adaptor sequences and poly G repeats. FastQC and 

Mul0QC was performed again followed by alignment to a reference human genome. HISAT2 

program was used to align the reads against a reference human genome (GCA_000001405.29, 

NCBI RefSeq GRCh38.p14) which created a BAM file output. Mul0QC was performed again to 

ensure the data was of a suitable quality for downstream analyses. The number of reads were 

calculated for each gene using the FeatureCount func0on. FeatureCount was used to 

determine how many pairs of reads from the paired end sequencing are mapped to specific 

genes to improve normalisa0on and ensure accuracy for downstream differen0al gene 

expression analysis. Ini0al data processing and alignment as discussed above was performed 

by Glasgow Polyomics and a raw count data file was provided as a tab-delimited text file for 

downstream analysis performed by myself with advice from Tae-Ju Park. 

 

RNAseq data was analysed on R (2022.07.1) using the libraries and packages listed in table 

2.5.2. Raw count data was imported as a matrix, the column names changed to pa0ent ID 

sample numbers, row names changed to gene IDs and genes with low read numbers (>=5) 

were filtered out. Labelling pa0ent IDs allowed pa0ent-specific gene expression profiles to be 

parsed. Labelling of gene IDs was performed to fully iden0fy differen0ally expressed genes 

(DEGs). A PCA plot was then generated to visualise all samples and condi0ons in a low 

dimensional manner to observe sample and condi0on variants.  
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The columns were reordered, and samples defined based on features such as disease type 

(CMLLBC vs Ph+ALL), disease features (ie samples with Ph+ stem and progenitor cells vs those 

without) or retrospec0vely based on sample principal component analysis (PCA) clustering (ie 

cluster 1 vs cluster 2). This allows for specific samples or sample groups to be compared for 

differen0al gene analysis. PCA plots do not discard samples or variable characteris0cs but 

instead, reduce the number of data dimensions by construc0ng principal components (PCs) 

to elucidate paqerns of expression from complex biological datasets. PCA describe varia0on 

while accoun0ng for varied influences origina0ng from sample characteris0cs (such as 

different disease type or age). PCA plots were generated on R studio as has been outlined in 

materials and methods.  

 

Differen0al gene expression analysis was performed by crea0ng a column data frame for the 

count matrix and condi0ons (sample features as discussed above) using DESeq2 

(Bioconductor). Log2foldchange shrinkage was performed to generate more accurate 

log2foldchange es0mates. This output was used to generate volcano plots to display overall 

differen0al gene expression between defined condi0ons. Cut-off criteria for DEGs was defined 

as P-value <0.05 and log2foldchange below -0.5 or above 0.5. Significant DEGs were exported 

as a table including log2foldchange and p value using the func0on write.table, saving the data 

as a ab delimited file which can be viewed as a .txt file or in an Excel spreadsheet. 

 

Heatmaps were generated by selec0ng significant genes of interest and conver0ng 

normalising and scaling raw gene counts into a normalised z-score which was used to plot the 

heatmap using the heatmap func0on in R.  

 

Gene set enrichment analysis (GSEA) of DEGs was performed using the GSEA MSigDB 

(molecular signatures database) (UC San Diego, Broad Ins0tute) sorware. This was done by 

ranking the DEGs in descending order of log2foldchange, saved as a .rnk file and uploaded to 

the GSEA sorware (version 4.2.3). Hallmark pathways were selected from the MSig data base 

(Gene sets database), number of permuta0ons set to 1000 and the GSEA ran as a pre-ranked 
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gene list. GSEA data was exported as an .html where individual plots could then be examined. 

GSEA provides sta0s0cal informa0on for examina0on of gene set enrichment results, in this 

thesis the normalised enrichment score (NES) has been u0lised. GSEA u0lises the enrichment 

score (ES), which reflects the degree to which a gene set is overexpressed at the top or boqom 

of a ranked gene list, and compares ES to the mean of the ESs against all permuta0ons of the 

dataset. NES accounts for differences in gene set size and correla0ons between MSigDB gene 

sets and the expression dataset, allowing comparison of analysis results across gene sets. 

 

Further analysis was performed using online gene ontology (GO) tools such as ShinyGO 

(Version 0.80/0.741, South Dakota State University) and GOrilla (Eden et al., 2009), and 

func0onal protein associa0on networks generated using STRING (Version 12.0, STRING 

Consor0um 2023©). A ranked list of sta0s0cally significant DEGs were pasted into the 

appropriate gene/protein name box as a single ranked list of genes, appropriate organism 

selected (Homo Sapiens) and the desired ontology selected.  
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2.6.1 Materials and methods: Primary pa1ent sample ethical considera1ons 

 

Under exis0ng COREC approval, primary pa0ent samples were u0lised throughout this project 

and were sourced via the CCLG (Children’s Cancer and Leukaemia Group) CellBank (CCLGA 

2019 03/304680), and the Paul O’Gorman Leukaemia Research Centre bio bank (20-WS-0066).  

Primary samples used for this project included paediatric Ph+ALL cryopreserved bone marrow 

aspirates (age 2-19 years), ‘normal’ healthy bone marrow trephines shipped in EDTA from 

adult pa0ents undergoing hip replacement opera0ons at the Queen Elizabeth University 

Hospital Glasgow (QEUH), adult CML cryopreserved bone marrow aspirates and fresh bone 

marrow aspirates harvested from an anonymised paediatric pa0ent undergoing Ph+ALL 

treatment at the QEUH. 

In accordance with health and safety standards, researchers received a Hepa00s B vaccine 

prior to working with untested paediatric bone marrow samples. Health and safety standards 

were maintained to the appropriate level for a biosafety category 2 laboratory (in accordance 

with the UK government hqps://www.hse.gov.uk/biosafety/informa0on.htm).  
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2.6.2 Materials and methods: Primary bone marrow mononuclear cell 
isola1on and culture - healthy pa1ent trephine controls 

 

On aqainment of bone marrow trephine samples, the trephine core was removed from the 

EDTA sample tube and emp0ed into a mortar. The sample was crushed, without grinding, in 

10mL sterile PBS using a pestle. 10mL sterile PBS was pipeqed into the EDTA tube to rinse out 

any residual cells. Cells in PBS were filtered through a 40µM Easy Strainer into a 50mL Falcon 

tube, and the crushed trephine core disposed of. Filtered cells were then centrifuged for 5 

minutes at 400xG, supernatant aspirated and the precipitate resuspended in 6mL sterile PBS. 

To 8mL room temperature Histopaque (Sigma), 6mL of cells was added carefully to prevent 

mixing and centrifuged for 30 minutes at 400xG with the breaks off (Fig 2.6.1). Density 

centrifuga0on resulted in a dis0nct white layer of leukocyte which was collected with a 

Pasteur pipeqe and centrifuged in 10mL sterile PBS for 5 minutes at 400xG twice. Cells were 

then counted overnight in serum-free media (SFM) supplemented with physiological growth 

factor +IL-7 (PGF(+IL-7)) at 37oC 5% CO2.  
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2.6.3 Materials and methods: Primary bone marrow mononuclear cell 
isola1on and culture - paediatric Ph+ALL bone marrow aspirate 

 

Fluid bone marrow aspirate was decanted into a 50mL Falcon tube. 10mL sterile PBS was 

pipeqed into the EDTA tube to rinse out any residual cells. Cells in PBS were filtered through 

a 40µM Easy Strainer into a 50mL Falcon tube, and the crushed trephine core disposed of. 

Filtered cells were then centrifuged for 5 minutes at 400xG, supernatant aspirated and the 

precipitate resuspended in 6mL sterile PBS. To 8mL room temperature Histopaque, 6mL of 

cells was added carefully to prevent mixing and centrifuged for 30 minutes at 400xG with the 

breaks off (Fig 2.6.1). Density centrifuga0on resulted in a dis0nct white layer of leukocyte 

which was collected with a Pasteur pipeqe and centrifuged in 10mL sterile PBS for 5 minutes 

at 400xG twice. Cells were then counted overnight in serum-free media (SFM) supplemented 

with physiological growth factor +IL-7 (PGF(+IL-7)) at 37oC 5% CO2.  
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2.6.4 Materials and methods: Primary BMNC thawing (Ph+ALL & CML pa1ent 
samples) 

 

Ph+ALL and CML bone marrow leukapheresis samples were briefly stored on dry ice arer 

removal from long-term storage in liquid nitrogen and subsequently thawed in a 37°C water 

bath over 3-5 minutes. 1mL of room temperature filtered DAMP (Table 2.2.7) was added to a 

50mL Falcon tube, swirled to coat the inside of the tube and decanted. BMNCs were then 

carefully transferred to the DAMP coated Falcon tube using a Pasteur pipeqe. 2mL DAMP was 

added to the cryotube to wash out excess cells and added to the Falcon tube in a dropwise 

manner over 3 minutes. To the cells, an addi0onal 8mL DAMP was added in a dropwise 

manner over 3 minutes and then centrifuged for 10 minutes at 250xG. Resultant supernatant 

was then transferred to a fresh 50mL Falcon tube and the pellet resuspended in 10mL DAMP. 

Both Falcon tubes were then centrifuged for 10 minutes at 250xG and pellets combines 

through resuspension in 10mL SFM+PGF(+IL-7). Cells were counted using a haemocytometer 

(Fig 2.6.2) and cultured overnight at 37oC. 
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2.6.5 Materials and methods: Cell coun1ng 

 

Cell counts were performed using an Improved Neubauer haemocytometer. Cells were 

pelleted by centrifuging for 5 minutes at 300xG and resuspending in 10mL SFM supplemented 

with PGF +IL-7. 50µL of the cell suspension was diluted 1:2 in filtered trypan blue viability dye 

and incubated at room temperature for 2 minutes. 10uL of the cell/trypan blue solu0on was 

pipeqed onto the coun0ng chamber of the haemocytometer and a glass coverslip affixed 

using liquid surface tension. Cells were then counted in the four 10-4 corner squares of the 

haemocytometer using an inverted light microscope (Fig 2.6.2).  Viable cells were 

dis0nguished from non-viable cells using the trypan blue exclusion methos (dead cells= blue). 

Cell numbers were mul0plied by 10,000 and then by the dilu0on factor (1:2, therefore dilu0on 

factor is 2) to calculate the number of cells per millilitre and mul0plied by the total volume 

(10mL). The percentage of viable cells were calculated by dividing the number of viable cells 

over the number of non-viable and then mul0plying by 100. 
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2.7 Materials and methods: FACS (fluorescence-assisted cell sor1ng) 
isola1on of haematopoie1c progenitor cells from bone marrow samples (CML, 
Ph+ALL and healthy controls) 

 

Prior to cell sor0ng, cells were counted using a haemocytometer and then centrifuged for 10 

minutes at 250xG. The supernatant was decanted, discarded and the cells resuspended in PBS 

supplemented with 2% FBS. Cells were centrifuged at 250xG for 10 minutes and again washed 

with 2% FBS PBS, this was repeated one more 0me and the cells resuspended in 1*106 cells/ml 

in 2%FBS PBS. During wash steps, an0body cocktails were prepared by adding the appropriate 

volume of an0bodies (~3µL) to the appropriate labelled tube and adding 2%FBS PBS up to the 

volume of 100µL. An0body cocktails were vortexed thoroughly and kept in the dark un0l 

required (Table 2.3.1). From the cell suspension, 100µL was removed for the unstained 

control. 

 

  

Figure 2.7.1: Fluorescence-
assisted cell sorting (FACS).
Mixed bone marrow
mononuclear cell (BMNC)
population was incubated with
a fluorescently tagged antibody
cocktail specific for surface
markers expressed by
haematopoietic progenitor
cells. Cells were encapsulated
into liquid droplets and tagged
antibodies excited by the laser
to emit light at a lower energy
and longer wavelength.
Forward scatter (FSC) emitted
light assesses cell size and side
scatter (SSC) detects
fluorescence and granularity of
cells. A voltage pulse applied to
the liquid droplet allows the
cells of interest to be deflected
in an electric field between two
deflection plates for collection.
(Created with Biorender.com)
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An0bodies for the cell surface marker cocktails were selected to ensure fluorophore 

compa0bility (ie the peak excita0on and emission spectra was different between each 

an0body) (Table 2.3.2). An0body panels were designed to iden0fy haematopoie0c cell 

progenitor popula0ons based on surface marker expression. Flow markers were selected 

based on previous FACS experiments conducted in our lab, published protocols (Vadakke-

Madathil et al., 2019) and clinical guidelines (Li., 2022).  

 

 An0body cocktails were added to pelleted cells and the cells incubated in the dark at room 

temperature for 30 minutes. During this incuba0on step, flow cytometry beads were vortexed 

thoroughly and 1 drop added to a clean FACS tube for each single stain control and volume 

made up to 100µL with 2%FBS PBS. 1µL of each an0body was added to each single stain 

control tube and vortexed thoroughly. An0body cocktail was washed off cells by centrifuging 

at 250xG for 10 minutes and resuspending in 300µL 2%FBS PBS. Collec0on tubes (1.5mL 

Eppendorf tube) were prepared with the addi0on of 2%FBS PBS. Cells were then sorted 

making a note of the number of cells sorted into each popula0on (Fig 2.7.1).  
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2.8 Materials and methods: FISH (fluorescence in situ hybridisa1on) 

 

Prior to prepara0on of cells for fixing, fresh reagents were prepared including FISH fix (Table 

2.2.1 and 2.2.2) and 0.075M KCl (Table 2.2.3). Cells were collected by FACS and centrifuged at 

1000RPM for 10 minutes. Supernatant was removed by pipeyng, carefully so as not to disturb 

the cell pellet, and then cells mixed by vortex. Cells were resuspended in 200µL 0.075M KCl, 

incubated at 37oC for 15 minutes then centrifuged for 5 minutes at 1500RPM. Three washes 

were performed by supernatant aspira0on, the addi0on of 1mL FISH fix, incuba0on at room 

temperature for 2 minutes and centrifuga0on for 2 minutes at 12000RPM, lastly, 1mL FISH fix 

was added and fixed cells stored at -20oC.  

 

Upon setup of the FISH slides, cells were removed from the -20oC freezer, centrifuged for 

12000RPM and then resuspended in a small volume of FISH fix. 3µL of cells were pipeqed 

onto each spot of a Shandon Mul0spot slide and allowed to air dry. Cells were aged by 

incuba0on at 65oC for 10 minutes before applica0on of 1:10 FISH probe and hybridisa0on 

buffer mix prepared on the day of setup. A glass coverslip was applied to the slide and sealed 

using clear nail polish. The BCR::ABL1 probe was then hybridised (Fig 2.8.1) by placing the 

slide on a 72oC hot block for 5 minutes before overnight incuba0on in a humid 37oC 

environment.  
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A Coplin jar containing Wash 1 (Table 2.2.5) was placed was placed in a 75oC water bath while 

the Coplin jar containing Wash 2 (Table 2.2.6) was kept at room temperature on the bench. 

The cells were removed from the humid environment and clear nail polish sealant carefully 

peeled off without removing the coverslip. The glass coverslip was removed by submerging 

the slide in Wash 2 for 10-20 seconds un0l the coverslip could be easily slid off. The slide was 

submerged in Wash 1 then Wash 2 for 2 minutes each before moun0ng a glass coverslip ono 

the slide using 20µL DAPI (VectaShield) moun0ng media. BCR::ABL1 fusion events were then 

visualised using a fluorescence microscope (Zeiss Axio Imager M1) (Fig 2.8.1). 
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2.9.1 Materials and methods: Preserva1on of RNA using RNAproect (Qiagen) 

 

Bulk and sorted BMNCs were stored in RNAprotect (Qiagen) by centrifuga0on at 300xG for 5 

minutes and resuspending the pellet in RNAprotect at a 10:1 ra0o (10x RNAprotect to 1x cell 

volume). Cell mixture was then stored at -80oC un0l RNA extracted. 

RNA was extracted from a number of samples at the same 0me in contrast to extrac0ng from 

one sample at a 0me to prevent inter-sample variability resul0ng from RNA extrac0on 

performed on different days. Such variability can result in batch effects and may result in 

inaccurate repor0ng of transcrip0onal data during RNAseq. 
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2.9.2 Materials and methods: RNA extrac1on from primary BMNC samples 

 

RNA was extracted from bulk and sorted BMNC cells using the RNeasy Mini kit (Qiagen). Cells 

preserved in RNAprotect (Qiagen) were thawed on ice and fresh cells were directly pelleted 

by centrifuging for 5 minutes at 300xG and supernatant fully aspirated. The cell pellet was 

loosened by flicking he tube and further disrupted by adding 350µL Buffer RLT and thoroughly 

vortexing. 350µL 70% ethanol was added to the homogenised lysate and mixed well by 

pipeyng. 700µL of the sample was then transferred to a RNeasy spin column placed in a 2mL 

collec0on tube and centrifuged for 15 seconds at 8000xG. The flow-through was discarded, 

700µL Buffer RW1 added to the RNeasy spin column and centrifuged at 8000xG for 15 seconds 

to wash the spin column. Arer discarding the flow-though, 500µL Buffer RPE was added to 

the spin column and centrifuged at 8000xG for 15 seconds and the flow-through discarded. 

500uL Buffer RPE was again added to the spin column and centrifuged at 8000xG for 2 

minutes. The RNeasy spin column was placed in a new 1.5mL collec0on tube and 30-50µL 

RNase-free water pipeqed directly onto the spin column membrane. The sample was then 

centrifuged at 8000xG for 1 minute to elute the RNA. RNA was then snap frozen and stored at 

-80oC. 
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2.10 Materials and methods: Sequencing of B cell receptor VDJ gene 
segments 

 

ClonoSEQ® MRD monitoring by Adap0ve Biotechnologies® was u0lised for sequencing of B 

cell receptor (BCR) gene segments in both early stem/progenitor cell popula0ons and 

Pro/PreB/lymphoid cells isolated from Ph+ALL primary pa0ent samples. ClonoSEQ® is 

available as an FDA-cleared in vitro diagnos0c (IVD) test service provided by Adap0ve 

Biotechnologies to detect minimal residual disease in bone marrow from pa0ents with 

mul0ple myeloma or B cell acute lymphoblas0c leukaemia (B-ALL) and blood or bone marrow 

from pa0ents with chronic lymphocy0c leukaemia (CLL). ClonoSEQ® is also available for use in 

other lymphoid cancers and specimen types as a CLIA-validated laboratory developed test 

(LDT).  

 

Popula0ons of progenitor and lymphoid cells were isolated and collected by FACS as 

previously described (Materials and methods 2.5). Cells were sorted into 1.5mL Eppendorf 

tubes containing 300µL 2% FBS PBS (Table 2.8). As DNA extrac0on is performed in-house by 

Adap0ve Biotechnologies®, cells were immediately snap frozen upon collec0on and stored at 

-80oC un0l shipped on dry ice to the Adap0ve Biotechnologies® laboratory (Seaqle, US-WA). 

Arer gDNA extrac0on, quality is assessed and rearranged immune receptors are amplified 

using a mul0plex PCR. Reac0on-specific index barcode sequences for sample ID are added to 

the amplified receptor sequences by PCR. Sequencing libraries are prepared from barcoded 

amplified DNA, which are then sequenced by PCR. Sequencing libraries are prepared from 

barcoded amplified DNA, then sequenced by synthesis using NGS (Illumina NextSeq 500/550). 

Raw sequence data, once uploaded to the Adap0ve analysis pipeline, are analysed by 

iden0fying the sample’s sequence data using sample index sequences, processed using a 

proprietary Adap0ve Biotechnologies® algorithm with in-line controls to remove amplifica0on 

bias. Once ID assessment is concluded, the immune repertoire of the sample is checked for 

the presence of DNA sequences specific to a dominant clone consistent with the presence of 

a lymphoid malignancy. These sequences are compared against a B cell repertoire database 

and assigned a uniqueness value that, together with its abundance rela0ve to the other 
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sequences, is used to assign the sequence to a sensi0vity bin which is then used in the 

es0ma0on of the reported limit of detec0on and limit of quan0ta0on, required for ongoing 

MRD detec0on. 

Results are delivered via a clonality ID report published on the ClonoSEQ® clinician web portal. 

This report provides an overview of the dominant DNA sequences iden0fied in a pa0ent 

sample, the dominant sequences typically being associated with malignancy and used as the 

basis for further MRD detec0on (no further MRD monitoring was done as part of this project).  
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Chapter 3. Results I.  Utilisation of publicly available datasets to 
investigate the presence of Ph+ALL subtypes 
 
3.1.1 Introduction: Analysis of gene expression for the identification of novel 
Ph+ALL subtypes using publicly available datasets. 
 

CML-like Ph+ALL was initially highlighted as being a potential novel subtype through clinical 

observations of Ph+ALL patient responses to treatment and the observation of persistent 

BCR::ABL1 MRD despite loss of IgTCR MRD within this population (Hovorkova et al., 2017). 

This was further outlined in retrospective analysis where the prognostic significance of this 

sub population was highlighted, with more cases of early relapses detected in those with 

presumed CML-like disease (Zuna et al., 2022).  Early diagnosis of this sub population is 

essential to enable more intensive treatment approaches with allogeneic stem cell 

transplantation within paediatric and adolescent patients upfront to aid better response 

outcomes.  
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Figure 3.1: MRD score at TP1 in the CML-like and typical Ph+ALL subgroups. BCR::ABL1 and
IG/TCR MRD assessment at TP1 compared in two clinically different PH+ALL subtype groups.
(BCR::ABL1 P < 0.0001 and IG/TCR P = 0.0006). Adapted from Hovorkova et al., 2017.
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The original study highlighted that at diagnosis, CML-like Ph+ALL patients could not be 

differentiated through standard diagnostic testing. They exhibited similar WCC at diagnosis, 

had similar FISH results and did not exhibit a propensity to express one fusion variant over 

another. These CML-like patients did not fall into a pattern of age or sex and only displayed 

themselves as outliers through MRD assessment (Fig 3.1).  

 

There is paucity of data surrounding CML-like Ph+ALL, but it can be hypothesised that the cell 

of origin is key in the pathogenesis.  This is in view that within previous work, BCR::ABL1 could 

be identified in myeloid and lymphoid cells within patient samples identified as being CML-

like Ph+ALL (Hovorkova et al., 2017). This is in contrast to the existing Ph+ALL paradigm in 

which BCR::ABL1 is only found in lymphoid cells due to the initial fusion event occurring in a 

lymphoid progenitor. Hence, the reciprocal translocation event which gives rise to BCR::ABL1 

occurring in a progenitor cell with non-fixed lineage gives rise to a mixed-lineage disease 

phenotype and supports the status of CML-like Ph+ALL being a phenotypically distinct 

subtype.  

 

In order to investigate the transcriptomic landscape of this population, we first utilised 

publicly available datasets.  This was, in part, because some of the major caveats when 

approaching yet undefined subtypes include how to isolate affected patients from the wider 

population, shared phenotypic hallmarks between types of leukaemias and sample size. 

Ph+ALL accounts for approximately 5% of all paediatric and adolescent cases of ALL.  Of these, 

Hovorkova et al estimates that 30% of the overall cohort will be CML-like Ph+ALL.  Therefore, 

the likelihood of demonstrating a transcriptomic pattern in random patient sample selection 

is small. Hence, utilisation of publicly available datasets allowed examination of a larger 

Ph+ALL cohort where subtype-specific differential expression may be identified. In addition, 

the datasets utilised in this chapter included CML and healthy control samples. The purpose 

of including samples allowed for the identification of Ph+ALL specific leukaemia genes, CML 

genes that may share expression patterns between CML and the proposed CML-like Ph+ALL 

subtype and, importantly, identify genes required for leukaemia disease pathology. As the 

CML-like Ph+ALL subtype is, as of yet, undefined, there exists no transcriptional profile or 

gene set which may be used to identify patients belonging to this Ph+ALL subtype. Hence, in 

order to identify such patients, and eventually compile an identifying gene expression 
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signature, the transcriptional spectrum between CML and Ph+ALL must first be established in 

order to identify which genes are similarly expressed between CML-like Ph+ALL, CML and 

standard Ph+ALL. 

 

The approach taken toward the investigation of the transcriptomic landscape of Ph+ALL 

heterogeneity was to examine publicly available datasets for the expression of phenotypically 

relevant genes using R packages Limma, EdgeR, Dplyr, Tidyverse and Rmarkdown. A list of 

genes were compiled through literature search (Table 3.1). Publications consulted included 

topics of Ph+ALL, CML (lymphoid blast phase), Ph+ leukaemic stem cells, HSC biology and bone 

marrow alteration in CML (papers used are referenced in Table 3.1 legend). Additionally, to 

investigate overall gene expression in the datasets, global gene expression was analysed using 

the GEO2R tool (NCBI). Utilising both methods allowed for genes of interest to be examined 

in addition to assembling a global transcriptional image. 
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Gene Basic function
ADAM17 Self renewal & NOTCH signalling
AKT Contains SH2 domains, anti-apoptotic
AMPK Regulates energy metabolism and cell cycle in HSC
ATF4 Expansion and maintenance of HSCs in FL
BPTF Maintenance of adult haematopoiesis, activates stemness gene expression
CCL8 Maintenance of quiescent HSC
CCND1 Cell cylce, maintenance of adult HSCs
CD79A B lineage
CEBPA Master regulator
CJUN Self renewal, proliferation, differentiation and apoptosis
C-KIT Proto-oncogene, enhances growth of myeloid and erythropoietic progenitor cells
CLCA1 Regulate stroma dependent in vitro haematopoiesis
CNR2 Regulates embryonic HSC development via PGE2
CREBBP Tumour suppressor gene, maintainance of normal haematopoiesis
CSF1R Essential for macrohage differentiation
CTLA2A Required for erythropoiesis
DLL1 Self renewal pathway_2 
EBF1 Early haematopoiesis endothelial-to-haematopoietic transition
EBF2 Determines osteoblastic niche required for HSC maintenance via Wnt signalling
ERG Oncogene, required for definitive haematopoiesis and adult HSC function
ETV6 Required for megakaryocyte development
ETS1 Blocks erythroid and promotes megakaryocytic differentiation 
ETS2 Proto-oncogene, erythroid to megakaryocytic phenotype switch
EZH2 Regulates normal HSC self-renewal and differentiation
FLI1 Maintenance of normal HSC homeostasis and function
FLT3 Required for normal development of HSCs, acts synergistically with leukaemia oncogenes to confer a more aggressive phenotype
FZD6 Regulates HSPC expansion and survival 
GATA 1 Self renewal, erythroid gene expression and regulator of erythroid and haematopoietic cell development
GATA2 Critical regulator of normal and LSCs.
GATA3 Controls expression of key lineage determining factors and cell cycle genes
GFI1B Required for multilineage development
GLUT6 Glucose uptake and utilisation, B lymphoid development
HBA1 Foetal haemoglobin subunit, erythropoiesis
HHEX Essential regulator of embryogenesis and haematopoietic progenitor development
HIPK1 Inhibits mim-1 expression, key regulator of haematopoiesis
HK2 Expressed in myeloid progenitors
HOXA10 Maintenance of quiescent HSC, erythroid and megakaryocyte development
HOXA5 Expressed in HSCs and MPPs, erythropoiesis
HOXA9 Regulate normal haematopoiesis
HOXB4 Enhance HSC self-renewal and expansion
IGF2 Regulation of interaction between HSC and their niche, maintains balance between SC self-renewal and differentiation
IKAROS Required during early haematopoiesis for differentiation into the three major lineages
IL-15 Associated with myeloid lineage development
ISR Active in HSCs and facilitates their persistance 
LCK Ragulator of lymphoid development 
LCP1 Myeloid-specific gene
LDB1 Cofactor for haematopoietic TFs
LEF1 Multi-lineage blood reconstitution 
LMO2 Active in T cell luekaemias, crucial for haematopoietic development
LYL1 Required for adult haematopoietic cell survival
MAFB Inducer of monocyte differentiation
MAML Maintenance and expansion of HSCs
MEK3 Proliferation, differentiation, migration and apoptosis
MCM7 Expressed in quescent and cycling old HSCs
MCM9 Expressed in quescent and cycling old HSCs
MEIS1 Required for HSC maintenance, erythropoiesis, magakaryopoiesis and HSC expansion
MPL Promotes haematopoietic commitment in ESCs and establishment of definitive haematopoiesis
MPO Selectively expressed in cells committed to granulomonocytic differentiation
MS4A4D Haematopoietic support capacity of stroma
MYB Oncogene, required for lymphocyte development 
MYC Oncogene, regulate HSC proliferation and differentiation
NFE2 Regulates HSC self-renewal and T cell differentiation
NOTCH1 Influences the generation of both definitive myeloid cells and lymphoid cells
NOTCH2 Early haematopoietic reconstitution 
NR3C1 Regulation of LSC programmes and G1/S transition via E2F
ORC2 Transcriptional regulator that controls erythroid lineage
P13K Mediator of cytokine signalling required for haematopoiesis regulation, overexpression associated with poor leukaemic outcome
P38 Regulation of gene and protein expression of essential haematopoietic cytokines in primaty BM stromal cells 
PAX5 Required for B cell develoment
PBX1 Maintenance of quiescent HSC
POSTN Regulates HSC proliferation
PRDM16 Critical for HSC maintenance, supports B cell development 
RAG2 Supports T cell development
RUNX1 Required for the generation of the first definitive HSCs (embryo)
SCA-1 Identifies quiescent HSCs
TAL1 Maintenance of HSC multipotency and quiescence (stage G0)
SEC23B Involved in erythroid lineage development
SFRP2 Regeneration and maintenance of HSC pool
SMAD2 TGF-beta signalling and enhancement of erythroid differentiation
SMAD3 TGF-beta signalling and enhancement of erythroid differentiation
SMAD4 Protect HSCs against leukaemic transformation, self-renewal
SMAD5 Required for erythropoiesis
SPI1 Epressed in the monocytic and B lymphocytic lineages, proto-oncogene
SPON1 Maintenance of HSCs in quiescent state, self-renewal and cell fate decisions
STIL Occurs in T cell leukaemias
TAL1 Regulates adult haematopoiesis
TCF3 Multi-lineage blood reconstitution 
TCF7 HSC self renewal
TEK Proliferation of primitive haematopoietic cells
TGFB1 Regulation of proliferation, quiesence and differentiation of HSCs
TLE3 Transcriptional repressor expressed in HSCs and megakaryocytes
TXNIP Highly expressed in early HSCs and expression decreases ad HSCs differentiate
YY1 Lineage differentiation and cell proliferation 

Table 3.1: Gene target list. Genes of
interest identified by literature search
with brief description of gene function.

Publications consulted: Bernt et al.,
2014; Bibi et al.,2014; Fielding et al.,
2010; Giles et al., 2004; Grootens et al.,
2019; Hussen et al., 2017; Kang et al.,
2016; Notta et al., 2016; Olsson et al.,
2015; Pane et al., 2002; Will et al., 2010;
Ye et al., 2006; Ye et al., 2017 and Zhang
et al., 2018.
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3.1.2 Aims. 

In view of the above, the aims of this chapter were to: 

 

1. Identify transcriptomic similarities between proposed CML-like Ph+ALL and lymphoid 

blast phase CML and differences between standard Ph+ALL and CML 

2. Identify transcriptomic differences between Ph+ driven cell activity in immature cells 

and Ph- immature cells 

3. Identify transcriptomic differences between normal and Ph+ driven HSCs 

4. Identify transcriptomic differences between good and poor responders 

5. Identify possible defining genes of interest to elucidate the CML-like Ph+ALL subtype 

at diagnosis 
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3.2 Results I: BCR::ABL1 promotes aberrant expression of oncogenic 
genes, in addition to Ph+ALL-specific metabolic activity and lymphoid 
differentiation arrest 
 

As has been previously discussed, the Ph chromosome is a common hallmark of both CML 

and Ph+ALL. However, despite sharing this fusion event, both diseases are phenotypically and 

clinically different. We first investigated the gene expression profiles of Ph+ cell lines to 

determine transcriptomic differences between the 2 disease types.  This was to identify 

differences in the gene expression of BCR::ABL1 occurring within different cells of origin; in 

an immature and mature progenitor (CML and Ph+ALL respectively).  

 

 

In order to better understand the mechanisms of how these diseases differ, we first 

investigated gene expression in Ph+ cell lines within dataset GDS4175; this included both CML 

and Ph+ALL cell lines (Table 3.2.1), as well cell lines with paediatric and adult origin (Duy et 

al., 2011). Expression patterns observed were carried into analysis of other datasets in order 

to confirm observations and determine their use as potential diagnostic biomarkers. The 

cellular functions of relevant genes were investigated to determine functionality and how 

these two differing disease states may arise. Determining which genes can be attributed to 

age and diagnosis allows for the elucidation of the role of the Ph chromosome in cell activity 

and differential expression of genes between both disease states is essential for disease-

specific activity. Genes with unchanged expression between disease states are deemed as 

being unrelated to disease-specific functions and would not be used for a biomarker panel. 

GDS4175 analysed 4 Ph+ cell lines, namely BV-173, NALM-1, SUP-B15, and TOM1 before and 

after treatment with Imatinib (Table 3.2.1).  As TKI treatment and resistance is not a main 

focus of this project, treated samples were omitted from analysis and only untreated samples 

were analysed.  

Cell line name Disease BCR-ABL fusion variant Age (years) Sex Additional information
BV-173 CML (BCP) p210 45 (adult) Male Blast crisis

NALM-1 CML (BCP) p210 3 (paediatric) Female Blast crisis
SUP-B15 ALL (BCP) p210 9 (paediatric) Male Second relapse

TOM1 ALL (BCP) p190 54 (adult) Female Refractory Ph+ALL

Table 3.2.1: Ph+ cell line background information, dataset GDS4175. Disease type, BCR-
ABL fusion variant, age and sex of patient, disease stage and relapse status for cell lines
investigated in GDS4175 (BV-173, NALM-1, SUP-B15 and TOM1).
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Gene expression in GDS4175 was profiled by array (Affymetric human genome U133A 2.0 

Array) and the resultant count data uploaded to GEO (Duy et al., 2011). GDS4175 expression 

data was loaded into R from GEO (gene expression omnibus) and analysed using the GEO2R 

pla�orm. GEO2R uses GEOquery and Limma (Linear Models for Microarray Analysis) to 

perform differential expression analysis of microarray datasets. GEOquery parses GEO 

datasets into R data structures which can then be used by other packages, in this analysis, 

Limma was used. Limma allows statistical testing for detection of differentially expressed 

genes and applied multiple-testing corrections on P-values to help correct for false-positive 

occurrences. Analysis was performed by entering the dataset ID in the GEO accession search 

bar. In the sample table, groups were defined by entering the specific group name and 

selecting the corresponding samples to be assigned to each group. To allow gene expression 

comparison between sample groups, at least two groups must be defined and compared. 

Once sample groups were defined, the ‘Options’ tab was selected to define testing conditions. 

Benjamini & Hochberg was selected for adjustment to the P values to account for false 

discovery rate. Log transformation was not automatically applied to analysis as the GEO 

database hosts logged and unlogged data, hence the auto-detect log function was used. Force 

normalisation was applied for quantile normalisation to the expression data making all 

selected samples have identical value distribution. The adjusted P-value threshold was set at 

0.05 and the Log 2 fold change threshold was set at 1. After running the analyses (by selecting 

‘Analyze’), differential expression analysis of all DEGs (differentially expressed genes) was 

visualised as a PCA (principle component analysis) and volcano plot, heatmap and a table of 

250 DEGs (Fig 3.2.1, Table 3.2.2 & 3.2.3).  

 

We first demonstrated heterogeneity between cell lines (TOM-1, BV173, NALM-1 and SUP-

B15) in GDS4175 through PCA plot (Fig 3.2.1.1).  In view of the significant heterogeneity, we 

next utilised the previously selected gene list (Table 3.1) to generate gene expression 

variation within a heatmap (Fig 3.2.1.2). Heatmaps were generated in R by selec4ng 

significant genes of interest and conver4ng normalised and scaling raw gene counts 

into a normalised z-score as previously described.  
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From the PCA plot, it could be observed that both CML cell lines (BV173 and NALM1) clustered 

closer (top ler) than the Ph+ALL cell lines (TOM-1 and SUP-B15) (Fig 3.2.1.2). SUP-B15, in 

contrast, was located in the boqom right area of the PCA, sugges0ng an overall transcrip0onal 

difference in this cell line compared to the rest of the Ph+ cell lines in GDS4175. This displayed 

that despite TOM-1 and SUP-B15 being isolated from the same disease (Ph+ALL), overall gene 

expression between both cell lines differed. The PCA plot also displayed that BV173 and TOM-

1, despite origina0ng from two different diseases, both adult cell lines were transcrip0onally 

similar, perhaps indica0ng age-related gene expression paqerns shared across different 

diseases however more samples would need examined to verify this.   
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Gene Gene function logFC P.Value
TMEM5 transmembrane protein 5 -1.256 0.0029747

GPI glucose-6-phosphate isomerase -1.274 0.0010632
STEAP3 STEAP3 metalloreductase -1.285 0.0091157

AHR aryl hydrocarbon receptor -1.311 0.0108041
CDC42BPA CDC42 binding protein kinase alpha -1.315 0.0023827

SEMA4C semaphorin 4C -1.325 0.0038846
TUBG1 tubulin gamma 1 -1.349 0.0095849
SDHAF3 succinate dehydrogenase complex assembly factor 3 -1.353 0.0071196
ARID3B AT-rich interaction domain 3B -1.377 0.005474
NAMPT nicotinamide phosphoribosyltransferase -1.418 0.0022315

FECH ferrochelatase -1.476 0.0037464
RNFT2 ring finger protein, transmembrane 2 -1.51 0.003654

DENND1C DENN domain containing 1C -1.52 0.0095463
TRIP10 thyroid hormone receptor interactor 10 -1.524 0.0044948
RGS16 regulator of G-protein signaling 16 -1.535 0.0039398
KLHL2 kelch like family member 2 -1.537 0.0014956
COX17 cytochrome c oxidase copper chaperone -1.563 0.0049066
ZFP36 ZFP36 ring finger protein -1.563 0.0053141
DDB2 damage specific DNA binding protein 2 -1.599 0.0014516
ERI2 ERI1 exoribonuclease family member 2 -1.636 0.0044983

DHRS7 dehydrogenase/reductase 7 -1.645 0.0023392
RGS16 regulator of G-protein signaling 16 -1.663 0.0016457
MYO1F myosin IF -1.696 0.0015761
ITPR3 inositol 1,4,5-trisphosphate receptor type 3 -1.697 0.0107703
YES1 YES proto-oncogene 1, Src family tyrosine kinase -1.706 0.0010467

RAB29 RAB29, member RAS oncogene family -1.738 0.0109265
AGL amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase -1.752 0.0004258

BTG1 BTG anti-proliferation factor 1 -1.819 0.0026969
BMP2 bone morphogenetic protein 2 -1.856 0.0007326
ARFIP1 ADP ribosylation factor interacting protein 1 -1.894 0.0092012
TRAF5 TNF receptor associated factor 5 -1.918 0.0069357
ZMAT3 zinc finger matrin-type 3 -1.939 0.0115969
TNNT1 troponin T1, slow skeletal type -2.023 0.0066296
RAD50 RAD50 double strand break repair protein -2.029 0.0024441
RAB29 RAB29, member RAS oncogene family -2.03 0.0040453

TNF tumor necrosis factor -2.065 0.0064056
BTG1 BTG anti-proliferation factor 1 -2.071 0.0011251
KLF11 Kruppel like factor 11 -2.622 0.0001343
YES1 YES proto-oncogene 1, Src family tyrosine kinase -2.8 0.0014643
CHFR checkpoint with forkhead and ring finger domains, E3 ubiquitin protein ligase -2.82 0.0004544
CD44 CD44 molecule (Indian blood group) -3.353 0.0001639

CDC42BPA CDC42 binding protein kinase alpha -3.414 0.0009458
BHLHE40 basic helix-loop-helix family member e40 -3.656 0.005619

APOBEC3B apolipoprotein B mRNA editing enzyme catalytic subunit 3B -3.659 0.0003022
CD44 CD44 molecule (Indian blood group) -4.108 0.0003259
IGK immunoglobulin kappa locus -4.443 0.0092992

IGKC immunoglobulin kappa constant -4.529 0.0079181
MIR8071-2 microRNA 8071-2 -5.109 0.0095928

RGS1 regulator of G-protein signaling 1 -5.145 0.0116062

PRPS2 phosphoribosyl pyrophosphate synthetase 2 -5.418 0.0000511

Table 3.2.3: Bottom 50 downregulated DEGs in Ph+ cell lines (SUP-B15 and TOM1) vs
CML cell lines (BV173 and NALM-1), dataset GDS4175 (GSE23743). DEGs identified using
Limma via GEO2R. Benjamini & Hochberg (false discovery rate) P-value adjustment. LogFC= log
fold change.
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From the gene of interest list generated by literature search, MPL was found to be 

upregulated in Ph+ALL cell lines (SUP-B15 and TOM-1) compared to blast phase cell lines (Fig 

3.2.1.2 & 3.2.2). The MPL gene encodes for the thrombopoietin receptor protein which 

promotes cell proliferation and maintenance of HSCs. In a disease context, the upregulation 

of this gene may be explained by the high proliferation rate of Ph+ALL blast cells in 

comparison to lymphoid blast crisis CML and may suggest the maintenance of LSCs in addition 

to HSCs, though this is yet to be elucidated in Ph+ALL. Mutations in MPL have been observed 

in Ph- myeloproliferative neoplasms, suggesting that MPL activity may be required within Ph+ 

leukaemia (Eldweny et al., 2019). 

HIPK1 (homeodomain-interacting protein kinase 1) is ubiquitously expressed in bone marrow 

however, its role in ALL has been observed through its antagonism of the master regulator of 

B cell development, PAX5 (Nebral et al., 2009). PAX5 is required for the development of B 

cells from Pro-B cells to committed B cell precursors, the loss of PAX5 activity causing the 

arrest of B cell development. B-ALL blast cells exemplify this differentiation arrest by 

expression of pro- and pre-B cell surface marker expression. Upregulation of HIPK1 expression 

in Ph+ALL cell lines indicates B cell developmental arrest, a feature of blast cell activity and an 

area to explore further.  

Figure 3.2.2: Functional enrichment analysis of genes differentially regulated in Ph+ALL cell lines (SUP-B15 and TOM1),
dataset GDS4175. Genes of interest were selected through a literature search and the most relevant compiled in list form.
The changes in the expression level for these genes were analysed in Ph+ cell lines from dataset GDS4175, the results of
which visually displayed in a heatmap. From the heatmap produced, genes observed to be differentially regulated in
Ph+ALL cell lines were selected, and a STRING gene-gene interaction network produced to display the functional relevance
of gene expression changes in Ph+ALL cell lines. (1) Genes upregulated in Ph+ALL cell lines SUP-B15 and TOM1. (2) Genes
downregulated in Ph+ALL cell lines SUP-B15 and TOM1. (3) Genes upregulated in Ph+ cell lines isolated from paediatric
patients (NALM-1 and SUP-B15). (4) Genes downregulated in Ph+ cell lines isolated from paediatric patients (NALM-1 and
SUP-B15). (5) Genes upregulated in a Ph+ cell line containing the p190 BCR::ABL1 fusion variant (TOM1).

(3) (4) (5)

(6) (7)

(1) (2) (3)

(4) (5)
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The Ets-related gene (ERG) was observed to be upregulated in Ph+ALL cell lines compared to 

blast phase cells. Its role in the promotion and maintenance of leukaemia has previously been 

observed in paediatric acute megakaryocytic leukaemia and is associated with poor prognosis 

in adult T-cell ALL (Tsuzuki et al., 2011). The importance of ERG transcription factor activity in 

both myeloid and lymphoid leukaemia evidences similarities in functional activities between 

leukaemias of different lineages and suggests that Ph+ALL and CML may have shared 

leukaemic origins. Though the cell of BCR::ABL1 fusion origin in CML has been identified as 

the HSC, the cell of origin in Ph+ALL remains elusive. Despite this, the reciprocal translocation 

event which results in BCR::ABL1 fusion is, indeed, a shared leukaemic initiating event 

between CML and Ph+ALL. 

 

Cyclin D1 (CCND1) was found to be upregulated in the Ph+ALL cell lines compared to blast 

phase; this observation aligns with primary ALL bone marrow expression patterns (Fernandes 

et al., 2018). The protein which CCND1 encodes is essential for the transition from the G1 to 

the S phase of the cell cycle and hence, the dysregulation of CCDN1 has oncogenic potential. 

It was found to be upregulated in ALL patients, with highest expression in the presence of 

BCR::ABL1 and older age. High CCND1 levels are associated with poorer clinical outcomes and 

is understood to play a role in the malignant phenotype of ALL.  

 

Increased expression of SPON1 is associated with poorer overall survival rate in AML and was 

upregulated in both Ph+ALL cell lines in GDS4175 compared to blast phase cell lines (Wang et 

al., 2020). Its expression in solid organ tumours (such as ovarian high grade serous carcinoma) 

brings about enhanced cell growth and decreased apoptosis (Nagasawa et al., 2022). The 

involvement of SPON1 in lymphoid, myeloid and ovarian cancers suggests that its expression 

is likely common in acute cancers and not associated to a specific cell lineage.  

 

FLI1 (friend leukaemia virus integration 1), an Ets transcription factor family member, was 

upregulated in Ph+ALL cell lines SUPB15 and TOM1. The role of FLI1 in AML outcomes has 

been well reported and increased expression levels are associated with proliferation and 

stromal interaction, and high FLI1 levels are observed to be prognostically adverse (Kornblau 

et al., 2011). Due to its normal role in stem cell regulation and haematopoiesis, FLI1 being 



 86 

expressed similarly in acute myeloid and lymphoid leukaemia may indicate aberrant 

expression occurring at an early stage of haematopoiesis prior to lineage bifurcation.  

 

MYB was upregulated in SUPB15 and TOM1. MYB is aberrantly expressed in leukaemia and is 

critical for the development of myeloid leukaemia (Nguyen et al., 2016). MYB encodes a 

transcription factor essential for the control of early haematopoiesis and hence, aberrant 

expression occurs prior to lineage bifurcation, resulting in its overexpression in both AML and 

ALL. 

 

Genes found to be downregulated in the Ph+ALL cell lines SUPB15 and TOM1 include NOTCH1, 

the gene encoding the NOTCH1 signalling protein associated with cell fate specification and 

differentiation, the histone acetyltransferase YY1, MCM7 which initiates genome replication 

by being a key component in the pre-replication complex and GFI1B which plays a role in the 

development and maturation of erythrocytes and megakaryocytes (Fig 3.2.1.2). The 

downregulation of GFI1B in a lymphoid leukaemia aligns with the lineage commitment of ALL 

cells, as does the downregulation of PRDM16, a gene which plays an important role in the 

pathogenesis of AML, a myeloid leukaemia.  

 

HK2 was observed to be downregulated in Ph+ALL cell lines, its role in glucose metabolism 

aligning with the overall picture altered metabolomic homeostasis characteristic of Ph+ALL 

pathology. Hexokinases phosphorylate glucose to produce glucose-6-phosphate, the first step 

in the glucose metabolism pathway. CNS (central nervous system) involvement in ALL is a 

well-established clinical outcome and has prompted a large amount of research into the 

metabolic and transcriptomic alterations made by blasts in order to survive the low nutrient 

CNS microenvironment (Lenk et al., 2020). Previous studies have observed an upregulation in 

HK2 expression in CNS-derived leukaemic cells which had adapted to oxygen-poor hypoxic 

conditions (Kato et al., 2017). The observations in GDS4175 seemingly contradict the 

literature however, both SUPB15 and TOM1 are both bone marrow derived cell lines, 

suggesting that ALL blasts are able to adapt to their microenvironment. 

 

To further explore the phenotypic similarities between Ph+ALL and CML cell lines isolated 

from paediatric patients, the gene expression in paediatric Ph+ cell lines NALM-1 and SUP-
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B15 were compared to adult cell lines BV173 (CML) and TOM1 (Ph+ALL). Both cell lines 

originate from paediatric patients whose ages fall into the range of ages of the BMNC samples 

(CellBank) utilised throughout the rest of this project (CellBank cohort range= 2- 19 years; 

NALM-1= 3 years; SUP-B15= 9 years). While other childhood ALL datasets are available (ie Roy 

et al., 2021 and Ottersbach et al., 2021), the focus of such datasets are on foetal and infant 

MLL-AF4 ALL, ages and disease types outwith the scope of this project. In addition, GDS4175 

provided an opportunity to compare gene expression in adult and paediatric Ph+-driven 

leukaemia. As will be discussed in later chapters, adult CML samples were utilised in RNAseq 

transcriptional analysis due to the rarity of CML in the paediatric cohort. GDS4175 therefore 

contains gene expression data from similar samples to those used for RNAseq analyses in this 

project. 

 

Significant genes found to be upregulated in paediatric cell lines compared to adult broadly 

fell into three functional categories: haematopoiesis and vascular function (ETV6, TAL1 and 

LYL1, a paralog of TAL1), B cell receptor recombination and function (RAG2 and CD79A) and 

granulocyte monocyte function (MPO) (Fig 3.2.1). However, as only one example was 

available for each category (adult vs paediatric and CML vs Ph+ALL), attribution of gene 

expression to age could not be made as other factors such as sex and secondary genetic 

abnormalities may contribute to gene expression. 

 

The normal function of ETV6 is that of haematopoietic maintenance and vasculogenesis, 

however, ETV6 plays an important role in malignant transformation.  The association between 

ETV6 and ALL has been described within the context of ETV6 forming a fusion gene with 

RUNX1, resulting in leukaemogenic kinase activity (Hock and Shimamura, 2017). As well as 

forming an oncogenic fusion protein with RUNX1, ETV6 (also known as TEL) has been 

observed to inappropriately activate kinases through fusion with ABL, forming TEL-ABL (Voss 

et al., 2000). Kinases TEL-ABL and BCR::ABL1 are able to similarly utilise signalling pathways 

(namely MAPK/Erk kinase and Akt/PKB) to negatively regulate apoptosis however, both 

fusion proteins have differing preferences for synthetic substrate peptides. In addition to TEL-

ABL being observed in B-ALL and T-ALL, it has also been detected in Ph-negative CML (termed 

‘CML-like myeloproliferative disease’) and AML (Auger et al., 2012). With similarities in kinase 

activity and signal transduction pathways shared between BCR::ABL1 and TEL-ABL and the 
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capacity to initiate disease with CML-like properties, it displays the potential for development 

of myeloid-driven disease by ETV6 activity.  

 

Haematopoiesis and vasculogenesis related genes upregulated in paediatric cell lines (ETV6, 

TAL1 and LYL1) may be due to the period of growth and development underway in the 

paediatric patients the cell lines originally arose from. The upregulation of genes associated 

with B cell development and receptor rearrangement (RAG2 and CD79A) is notable 

considering the inclusion of a CML cell line. These findings display an increased level of B cell 

receptor rearrangement in paediatric cell lines and is supported by the observation of the 

highest number of plasma and memory B cells in ages 17 years and younger (Blanco et al., 

2018). Pathology may also play a role in these gene expression patterns, with 89% of B cell 

precursor ALL displaying IGH V-D-J rearrangements (Brumpt et al., 2000).  

 
  

Figure 3.2.3: Gene ontology enrichment analysis for top 50 upregulated DEGs in Ph+ cell lines
(SUP-B15 and TOM1) vs CML cell lines (BV173 and NALM-1), dataset GDS4175 (GSE23743).
DEGs identified using Limma via GEO2R. Benjamini & Hochberg (false discovery rate) P-value
adjustment. LogFC= log fold change. ShinyGO v0.741.
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3.3 Results I: Profiling of CML and healthy Lin- progenitor cells displayed 
a CML-specific transcriptional signature, and highlighted leukaemic-associated 
genes expressed similarly in CML and Ph+ALL.  
 

We next aimed to investigate transcriptomic differences between Ph+ immature progenitor 

cells and progenitors with no BCR::ABL1 fusion. To investigate this, gene expression patterns 

in diagnostic CML samples (Lin-CD34-, Lin-CD34+, Lin+CD34+) were compared to healthy 

controls using GSE11675 (Lemoli et al., 2009). Since gene expression profiles of CML-like 

Ph+ALL have yet to be established, it was felt imperative to understand the gene expression 

profiles of BCR::ABL1 positive stem cells at different stages of maturity to allow comparison 

with Ph+ALL disease which typically is thought to arise in a lymphoid progenitor population 

(Fig 3.3.1).  As CML-like Ph+ALL has been observed to possess phenotypic similarities with 

CML and Ph+ALL by the presence of myeloid disease involvement, gene expression profiling 

of this subtype may reflect a mixed transcriptional signature, exhibiting a genotype with 

features of both diseases. The caveat to this is that GSE11675 utilised chronic phase CML 

samples. There were no datasets that utilised blast phase HSCs in adequate numbers.  

Figure 3.3.1: Haematopoietic population surface marker expression
for FACS. Surface marker expression profile used for cell sorting based
off those used clinically.
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Broadly, genes related to CML-specific cellular functions were expected to be expressed 

similarly in primary CML patient samples belonging to dataset GSE11675 and CML cell lines in 

dataset GDS4175. Comparison is made with immortalised cell lines and primary progenitor 

cell samples. Unlike cell lines, primary samples are more heterogenous transcriptomically and 

proteomically.  

 

 Gene expression was profiled by array and expression data was loaded into R from GEO (gene 

expression omnibus) and analysed using the GEO2R pla�orm as outlined in sec0on 3.2. Of the 

genes of interest (Table 3.1), the following were upregulated in CML Lin-CD34+ compared to 

healthy Lin-CD34+ cells. These genes may be relevant in the investigation of heterogeneity of 

Ph+ALL. As LSCs have not been identified in Ph+ALL but may play a role in CML-like Ph+ALL 

pathology, comparison of a stem cells from patients disease with known LSC activity to 

healthy stem cells may highlight genes helpful for discriminating samples with LSC from 

samples without stem cell activity. Though identification of LSC activity would require stem 

cell activity assays, these genes could be used to provide an indication of LSC presence 

transcriptionally.    

 

ATF4 was downregulated in CML stem cells. Its downregulation allows cancer cells to survive 

under amino acid deprivation, allowing leukaemic cells to evade cell death (Mesclon, 2017).  

CLCA1 was downregulated in CML stem cells. It has a suggested role in pro-inflammatory 

response and lymphocyte-mediated lymphangiogenesis (Jordan-Williams et al., 2016). 

Lymphangiogenesis is the developmental process responsible for the formation of new 

lymphatic vessels. Under homeostatic conditions, lymphangiogenesis occurs during 

embryonic development and healing in response to injury or pathological injury however, this 

process can be dysregulated in a variety of cancers. In solid tumours, the formation of new 

blood vessels from pre-existing lymphatics can induce metastasis, in lymphoma this 

developmental process can be subverted to allow malignant cells to invade lymph nodes and 

lymphatic tissues through lymphatic vessels (Kadowaki et al., 2005; Stacker et al., 2014). 

Downregulation of genes associated with lymphocyte-mediated lymph vessel development 

and inflammation in CML progenitor cells demonstrates the quiescent nature of CML LSC 

biology, a mechanism that allows evasion of LSCs from targeting by TKI treatment. CNR2 is 
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expressed predominantly on differentiated B cells, the downregulation of which may be 

indicative of the stem cell driven nature of disease (Gruber et al., 2021).  

 

  

Figure 3.3.2: Gene expression PCA plot (1) and heatmap (2) for CML
and healthy control cells (Lin+CD34+, Lin-CD34+, Lin-CD34-), dataset
GSE11675. (3) DEG volcano plot CML vs control cell populations.
Genes of interest were selected through a literature search and the
most relevant compiled in list form. The changes in the expression level
for these genes were analysed in primary CML and healthy control
Lin+CD34+, Lin-CD34+ and Lin-CD34- cells from dataset GSE11675, the
results of which visually displayed in a heatmap. PCA plot P-value
adjustment Benjamini & Hochberg (False discovery rate). ). Volcano
plot generated using Limma via GEO2R. Benjamini & Hochberg (false
discovery rate) P-value adjustment.
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Gene Gene function logFC P.Value
IGFBP2 insul in l ike growth factor binding protein 2 5.48 0.0006587

HNRNPU heterogeneous  nuclear ribonucleoprotein U 4.25 0.00000481
HBG2 hemoglobin subunit gamma 2 4.19 0.00406875

HBBP1 hemoglobin subunit beta  pseudogene 1 4.04 0.0000466
RHAG Rh-associated glycoprotein 4.01 0.00110429
PLK1 polo l ike kinase 1 3.95 0.0000578

GATAD1 GATA zinc finger domain conta ining 1 3.74 0.00015419
ZBTB7A zinc finger and BTB domain conta ining 7A 3.52 0.00173108
TGM2 transglutaminase 2 3.43 0.00075995
EPB41 erythrocyte membrane protein band 4.1 3.42 0.00015611

PTPN11 protein tyros ine phosphatase, non-receptor type 11 3.42 0.00135812
CYP7B1 cytochrome P450 fami ly 7 subfami ly B member 1 3.25 0.00115089
IL1RAP interleukin 1 receptor accessory protein 3.22 0.00418749
RASAL2 RAS protein activator l ike 2 3.2 0.00110425

SNORD65 smal l  nucleolar RNA, C/D box 65 3.17 0.00259754
FAM13C fami ly with sequence s imi lari ty 13 member C 3.12 0.00060397
SPC25 SPC25, NDC80 kinetochore complex component 3 0.00386192
SAP30 Sin3A associated protein 30 2.99 0.0021199

EPX eos inophi l  peroxidase 2.85 0.0047076
RAB6B RAB6B, member RAS oncogene fami ly 2.84 0.0002203
DICER1 dicer 1, ribonuclease II I 2.83 0.00490218

SELENBP1 selenium binding protein 1 2.82 0.00148835
NFATC4 nuclear factor of activated T-cel l s  4 2.81 0.00032916

HBD hemoglobin subunit del ta 2.81 0.00606344
ITPKA inos i tol -tri sphosphate 3-kinase A 2.79 0.00040871

SLC7A1 solute carrier fami ly 7 member 1 2.79 0.00368028
STAR steroidogenic acute regulatory protein 2.75 0.00084281

SLC26A2 solute carrier fami ly 26 member 2 2.74 0.00018331
HBB hemoglobin subunit beta 2.74 0.00585362

EMILIN1 elastin microfibri l  interfacer 1 2.7 0.00267898
MAP3K9 mitogen-activated protein kinase kinase kinase 9 2.69 0.00189069

TMPRSS11D transmembrane protease, serine 11D 2.68 0.00049461
KIF14 kines in fami ly member 14 2.68 0.00326557
KIF11 kines in fami ly member 11 2.65 0.00314987

CCDC144A coi led-coi l  domain conta ining 144A 2.63 0.00072856
NUP50 nucleoporin 50 2.62 0.00101789
TFRC transferrin receptor 2.62 0.00231183

ZNF148 zinc finger protein 148 2.61 0.00031017
ATXN7 ataxin 7 2.61 0.00140922

HNRNPDL heterogeneous  nuclear ribonucleoprotein D l ike 2.59 0.00127421
PRG2 proteoglycan 2, pro eos inophi l  major bas ic protein 2.59 0.00207897
EAPP E2F associated phosphoprotein 2.57 0.00582722
TFRC transferrin receptor 2.55 0.00050006

TEAD4 TEA domain transcription factor 4 2.55 0.00583976
ARID1A AT-rich interaction domain 1A 2.53 0.00597062
TOP2B topoisomerase (DNA) II  beta 2.52 0.00337619

C18orf25 chromosome 18 open reading frame 25 2.51 0.00322123
LGR5 leucine rich repeat conta ining G protein-coupled receptor 5 2.5 0.00297784
TTK TTK protein kinase 2.49 0.00583316

TMX4 thioredoxin related transmembrane protein 4 2.46 0.00038178

Table 3.3.1: Top 50 upregulated DEGs in CML vs healthy control cells
(Lin+CD34+, Lin-CD34+, Lin-CD34-), dataset GSE11675. DEGs identified
using Limma via GEO2R. Benjamini & Hochberg (false discovery rate) P-value
adjustment. LogFC= log fold change.
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Gene Gene function logFC P.Value
DST dystonin -2.34 0.00478222

HIST2H2AA4 histone cluster 2, H2aa4 -2.37 0.00091069
ELN elastin -2.37 0.00143788

HIST1H2BK histone cluster 1, H2bk -2.41 0.00414575
COBL cordon-bleu WH2 repeat protein -2.41 0.00565469

LAMA4 laminin subunit alpha 4 -2.42 0.00339214
HIST1H2BC histone cluster 1, H2bc -2.43 0.00028484

IL23A interleukin 23 subunit alpha -2.43 0.00133685
HIST1H2BL histone cluster 1, H2bl -2.48 0.00023658
RUNX1T1 RUNX1 translocation partner 1 -2.48 0.00107822

KCND1 potassium voltage-gated channel subfamily D member 1 -2.5 0.00152965
TAP2 transporter 2, ATP binding cassette subfamily B member -2.51 0.00215183

KHDRBS2 KH RNA binding domain containing, signal transduction associated 2 -2.52 0.00334245
CD79A CD79a molecule -2.53 0.00625381
TCF20 transcription factor 20 -2.55 0.00137284

HIST1H2AE histone cluster 1, H2ae -2.58 0.00258009
BMX BMX non-receptor tyrosine kinase -2.58 0.00465029

ZNF174 zinc finger protein 174 -2.59 0.00049203
NR2F1 nuclear receptor subfamily 2 group F member 1 -2.59 0.00093826
CD53 CD53 molecule -2.65 0.00058521
KLF4 Kruppel like factor 4 -2.68 0.00444966

ZNF165 zinc finger protein 165 -2.71 0.00524467
CYP2C8 cytochrome P450 family 2 subfamily C member 8 -2.75 0.00016154

HIST3H2BB histone cluster 3, H2bb -2.79 0.00038216
TRPA1 transient receptor potential cation channel subfamily A member 1 -2.82 0.00152271

ID1 inhibitor of DNA binding 1, HLH protein -2.86 0.0048625
HCG26 HLA complex group 26 (non-protein coding) -2.91 0.00079747
TPM2 tropomyosin 2 (beta) -2.93 0.00279588
EMP1 epithelial membrane protein 1 -2.94 0.00089281

PPP3CA protein phosphatase 3 catalytic subunit alpha -2.94 0.00540462
HIST2H2BE histone cluster 2, H2be -2.97 0.00010966

GSTM3 glutathione S-transferase mu 3 -2.97 0.00319124
IGHM immunoglobulin heavy constant mu -3 0.00006974
PBX2 PBX homeobox 2 -3 0.00263057
IGHM immunoglobulin heavy constant mu -3.04 0.00067978
DNTT DNA nucleotidylexotransferase -3.07 0.00270039

HIST1H2AC histone cluster 1, H2ac -3.1 0.00029822
GRM5 glutamate metabotropic receptor 5 -3.23 0.00044648

AXL AXL receptor tyrosine kinase -3.4 0.00016792
SMARCD3 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 3 -3.41 0.0032856
LIMCH1 LIM and calponin homology domains 1 -3.54 0.00011192

HIST1H1C histone cluster 1, H1c -3.54 0.00051918
FOLH1B folate hydrolase 1B -3.55 0.00016288

TMEM268 transmembrane protein 268 -3.6 0.0017453
CRTAM cytotoxic and regulatory T-cell molecule -3.68 0.00013734

SKIL SKI-like proto-oncogene -3.74 0.00002213
NPTX2 neuronal pentraxin 2 -4.81 0.0002687
MIR22 microRNA 22 -4.91 0.00409585
BLNK B-cell linker -5.16 0.00321616
MAPT microtubule associated protein tau -5.42 0.0000038

SETBP1 SET binding protein 1 -5.68 0.00012689

Table 3.3.2: Bottom 50 downregulated DEGs in CML vs healthy control cells (Lin+CD34+, Lin-
CD34+, Lin-CD34-), dataset GSE11675. DEGs identified using Limma via GEO2R. Benjamini &
Hochberg (false discovery rate) P-value adjustment. LogFC= log fold change.



 94 

A high expression of ETS2 is associated with poor prognosis in AML and is upregulated in acute 

leukaemia with poor outcomes, therefore a high expression in Ph+ALL would be anticipated 

(Fu et al., 2017). ETS2 encodes a transcription factor which regulates apoptosis and cell 

development genes. In addition to this, the encoded protein has been evidenced to regulate 

the function of telomerase and due to this pro-survival gene function, is considered a 

protooncogene. The observation of the downregulation of ETS1 is in contrast to what is found 

in the literature where ETS1 is significantly upregulated in CML patients via action of 

BCR::ABL1 (Desterke et al., 2018).  

 

CEBPA was downregulated in CML Lin-CD34+ cells, the cell population most likely to contain 

CML LSCs. CEBPA normally functions as a myeloid transcription factor though the induction 

of the granulocytic differentiation of myeloid progenitors by activation of myeloid-specific 
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genes. Downregulation of CEBPA in CML leads to the progression toward and development 

of blast crisis (Agatheeswaran and Chakraborty, 2016). This gene would be informative to 

follow up in Ph+ALL as it may represent the shift to acute leukaemia phenotype, and due to 

its involvement in myeloid disease, would be informative to investigate in myeloid-like Ph+ALL 

cases.  

 

Similar to CEBPA, GATA3 is involved with lymphoid and myeloid lineage commitment 

decisions (respectively) and is not expressed in CML CD34+ cells suggesting that such cells 

have a greater propensity for self-renewal than development and differentiation as in healthy 

HSC cells (Kronenwett et al., 2005). Overexpression of ERG is associated with poor outcomes 

in AML and T-ALL and is associated with drug resistance mechanisms. Hence, downregulation 

of ERG may reflect the chronic phenotype of CML and its upregulation associated with acute 

leukaemia, as is evidenced by the mesenchymal-like phenotype induced by ERG expression 

(Mochmann et al., 2013). SPON1 is highly expressed in AML with poor overall survival rates, 

similar to ETS2 stated above, may be linked to acute leukaemias, hence its downregulation in 

CML could be related to the early chronic disease stage at which samples were taken (Wang 

et al., 2020). The normal function of FLT3 is in the regulation of haematopoiesis, with 

mutations in FLT3 resulting in AML and ALL development. FLT3 is not observed in CML (Lin et 

al., 2006). Lower expression of MPL, thrombopoietin (THPO) receptor, is associated with 

reduced leukaemogenic capacity and an increased sensitivity to BCR::ABL1 targeting TKIs 

(Zhang et al., 2014). Hence, the observation of MPL and THPO downregulation was in keeping 

with the reduced leukaemogenic activity of CML cells in chronic phase.  

 

The overexpression of HOXA10 induces progress of CML to blast crisis therefore, 

downregulation of HOXA10 in these cells indicates the earlier CML stage of these sample cells 

and the chronic nature of cell activity (Negi et al., 2017). The downregulation of HOXA5 

suggests increased sensitivity to TKIs, indicating reliance on BCR::ABL1 kinase activity (Hikmah 

Elias et al., 2018). Low expression of MEIS1 may reduce CML cell proliferation as would be 

observed in non-acute phases of CML (Zhao et al., 2020). FLI1 expression is associated with 

poor prognosis in AML therefore supporting low proliferation rate and high survivability of 

chronic phase CML (Kornblau et al., 2011). The normal role of HHEX in haematopoietic 

differentiation and repression of genes in the VEGF signalling pathway is to inhibit myeloid 
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cell survival therefore, the downregulation of HHEX in a myeloid-mediated disease would 

support myeloblast proliferation and survival (Noy et al., 2012). TLE3 gene expression is 

associated with myeloid disease progression to blast crisis and is associated with poor 

response to TKIs, thus downregulation may also be indicative of early chronic stages of CML 

where cells may be more sensitive to TKI treatment (Horne et al., 2017).  

 

The lymphoid related function of HIPK1 gene has been discussed earlier and the 

downregulation of HIPK1 supports the myeloid phenotype of CML cells samples for this 

dataset. Many of the genes observed to be downregulated in Lin-CD34+ CML cells are 

(1)

Figure 3.3.4: Gene ontology enrichment analysis for (1) top 50 upregulated and (2) bottom 50
downregulated DEGs in CML vs healthy control cells (Lin+CD34+, Lin-CD34+, Lin-CD34-),
dataset GSE11675. DEGs identified using Limma via GEO2R. Benjamini & Hochberg (false
discovery rate) P-value adjustment. LogFC= log fold change. ShinyGO v0.741.

(2)
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involved in acute leukaemia and cell proliferation, supporting the reduced proliferation rate 

associated with chronic phase CML.  

 

A number of genes were found to be upregulated in Ph+ (CML and Ph+ALL) cell lines in dataset 

GDS4175 and Lin-CD34+ CML LSCs in dataset GSE11675. Such genes include EZH2, MCM9 and 

PAX5, their shared upregulation status in both disease types supporting involvement of such 

genes in BCR::ABL1-induced activity (Fig 3.3.1 and 3.3.2). 

 

CCND1 and MYB were upregulated in Ph+ALL cell lines (Fig 3.3.1 and 3.3.2) and CML Lin- 

CD34+ cells and therefore do not suggest a disease type-specific role. In addition, primitive 

Lin- CD34- CML stem cells share upregulation of FLI1, HIPK1 and MYB with Ph+ALL cell lines 

(Fig 3.3.2 and 3.3.3), genes associated with early, primitive stages of haematopoiesis. Putative 

Lin-CD34- CML stem cells display gene expression patterns distinct from traditionally defined 

Lin-CD34+ LSCs and display leukaemia initiating properties (Benton et al., 2015). This was 

demonstrated in GSE1675 by shared expression patterns of stem cell-associated early 

development genes such as MCM7/9, MYB, PAX5, SMAD2, SMAD4 and STIL, and later effector 

functions such as ATF4 and CNR2. 
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3.4 Results I: HSCs in CML-CP displayed some hallmarks of normal stem 
cell development, shared CML-specific transcriptional patterns with Lin- CML 
samples from previous datasets and displayed expectable intra-sample 
variation  
 

Determining the cell of origin where the BCR::ABL1 fusion event occurs during 

haematopoiesis is required for predicting the cell of origin.  In addition, the cell types 

expressed during leukaemic-haematopoiesis often correlate with cell of origin or disease 

state. For example, and as would be expected in CML, CMPs and MEPs are expressed at a 

higher proportion than in healthy bone marrow. GSE11889 utilises gene expression profiles 

of CML HSCs vs normal HSCs controls. This dataset also contained expression data for other 

haematopoietic cell populations (CMP, GMP and MEP) for each CML patient and healthy 

control examined. HSC samples were selected in order to investigate differences in gene 

expression in healthy control HSCs and CML Ph+ HSCs, providing an opportunity to identify 

any CML-specific DEGs which may be beneficial in isolating CML-like samples from a wider 

Ph+ALL cohort in future experiments. This would then allow us to apply results from more 

primitive cell types to Ph+ALL cells in order to establish if there is a CML-like HSC gene 

expression phenotype within CML-like Ph+ALL.  

 

The CML-like Ph+ALL subtype has been clinically observed to have a myeloid-like phenotype, 

with higher numbers of myeloid progenitors in this samples (observed clinically). However, it 

is unknown the extent to which myeloid-driven pathology affects ‘classical’ Ph+ALL or if 

myeloid involvement is common to all Ph+ALL to varying degrees (Hovorkova et al., 2019). As 

discussed previously, chronic phase CML has a different transcriptomic profile to blast phase 

disease; however Chronic phase CML HSCs were used to understand of BCR::ABL1-driven 

HSCs as the HSC within this population is better understood.  The leukaemic stem cell in blast 

phase is not well established, particularly between myeloid and lymphoid blast phase 

(Copland., 2022). This may be due, in part, to the relative rarity of CML-BP in the post-TKI era 

however, an understanding of BP-specific transcriptional differences may benefit other acute 

Ph+ driven leukaemia such as Ph+ALL. 
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To understand the transcriptomic differences between Ph+ HSCs and normal HSCs, we first 

generated a PCA plot to visualise all samples in a low dimensional manner. This demonstrated 

a broadly heterogeneous gene expression phenotype with observable sample-specific gene 

expression profiles (Fig 3.4.1).  

 

Figure 3.4.1: Gene expression PCA plot
(1) and heatmap (2) for CML and healthy control HSC cells, dataset
GSE11889. (3) DEG volcano plot CML HSC vs control HSC. Genes of
interest were selected through a literature search and the most
relevant compiled in list form. The changes in the expression level for
these genes were analysed in primary CML and healthy control HSC
cells from dataset GSE11889, the results of which visually displayed in
a heatmap. PCA plot P-value adjustment Benjamini & Hochberg (False
discovery rate). Volcano plot generated using Limma via GEO2R.
Benjamini & Hochberg (false discovery rate) P-value adjustment.
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Gene expression was profiled by array and expression data was loaded into R from GEO (gene 

expression omnibus) and analysed using the GEO2R pla�orm as outlined in sec0on 3.2. We 

next generated heatmaps using the previously described sig genes of interest (Fig 3.4.1.2).  

The method is as previously described.  CP is characterised by regulated proliferation of 

myeloid cells, the appearance of normal stem cell maturation and, comparative to acute blast 

crisis, the normal response of HSCs to growth factor regulators G-CSF and CM-CSF 

(Houshmand et al., 2019). Hence, many precursor homeostasis and cell cycle genes remain 

similarly regulated between CML and control samples such as GFI1B, CCND1, LCK and LDB1.A 

number of genes shared gene expression patterns with Lin-CD34+ CML HSCs in GSE11675 

(RAG2, TEK, CEBPA, ERG, ETS1, FLI1, FLT3, HHEX, HOXA10 and MPL) displaying a reliable CML 

phenotype to which Ph+ALL samples may be compared in order to elucidate a CML-like gene 

expression signature (Fig 3.4.1 and 3.4.2). 
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Gene Gene function logFC P.Value
GAS2 growth arrest speci fic 2 4.1 0.00003334

HLA-DRB4 major his tocompatibi l i ty complex, class  I I , DR beta  4 3.42 0.00592338
TAF6L TATA-box binding protein associated factor 6 l ike 3.34 0.00022242
CLCA2 chloride channel  accessory 2 3.32 0.00008125

PLA2G6 phosphol ipase A2 group VI 3.3 0.00009299
PDE4DIP phosphodiesterase 4D interacting protein 3.19 0.00209
PPIAL4C peptidylprolyl  i somerase A l ike 4C 3.15 0.00358853
ISG20L2 interferon s timulated exonuclease gene 20 l ike 2 3.05 0.00071822
EGFL6 EGF l ike domain multiple 6 3.02 0.00906447

CACNA1D calcium voltage-gated channel  subunit a lpha1 D 3 0.00121982
HHIPL2 HHIP l ike 2 2.99 0.00041363
PIEZO2 piezo type mechanosens i tive ion channel  component 2 2.97 0.00243667

DCX doublecortin 2.94 0.00053581
KLHL22 kelch l ike fami ly member 22 2.93 0.00274324
VCAN vers ican 2.91 0.0002965

TNFRSF11B TNF receptor superfami ly member 11b 2.88 0.00999111
SENP7 SUMO1/sentrin speci fic peptidase 7 2.86 0.00211604

ANP32D acidic nuclear phosphoprotein 32 fami ly member D 2.85 0.00020523
LOC441666 zinc finger protein 91 pseudogene 2.84 0.00097856

RUNX1 runt related transcription factor 1 2.83 0.00188326
IDS iduronate 2-sul fatase 2.83 0.00923649

CYP3A43 cytochrome P450 fami ly 3 subfami ly A member 43 2.82 0.00158036
USP49 ubiquitin speci fic peptidase 49 2.8 0.0021864
KLK8 kal l ikrein related peptidase 8 2.8 0.00920545

SYCP1 synaptonemal  complex protein 1 2.8 0.00941623
GRHL2 gra inyhead l ike transcription factor 2 2.78 0.00170405

TSNAX-DISC1 TSNAX-DISC1 readthrough (NMD candidate) 2.75 0.00384378
SMAD5 SMAD fami ly member 5 2.73 0.00029465

EZR ezrin 2.7 0.00150552
SFRP4 secreted fri zzled related protein 4 2.69 0.00056043
GRK1 G protein-coupled receptor kinase 1 2.68 0.00100681

LOC441601 septin 7 pseudogene 2.68 0.0015853
NAV2 neuron navigator 2 2.66 0.00314396
DEDD death effector domain conta ining 2.66 0.00942232

CYP4F11 cytochrome P450 fami ly 4 subfami ly F member 11 2.62 0.0012297
STAG3L4 stromal  antigen 3-l ike 4 (pseudogene) 2.62 0.00202637
GTF2H4 genera l  transcription factor IIH subunit 4 2.62 0.00281203
TAF6L TATA-box binding protein associated factor 6 l ike 2.62 0.00919735

PSMD3 proteasome 26S subunit, non-ATPase 3 2.61 0.00291063
VCX2 variable charge, X-l inked 2 2.59 0.0018844
FCN2 ficol in 2 2.59 0.00250369

PCDH7 protocadherin 7 2.58 0.00509129
RPL5 ribosomal  protein L5 2.57 0.00596476

IL22RA1 interleukin 22 receptor subunit a lpha 1 2.54 0.00973701
ITPR2 inos i tol  1,4,5-tri sphosphate receptor type 2 2.52 0.00084664
TBL1X transducin (beta)-l ike 1X-l inked 2.52 0.00113492
MAST4 microtubule associated serine/threonine kinase fami ly member 4 2.52 0.00921354

HRASLS2 HRAS l ike suppressor 2 2.51 0.0114665
MARCKS myris toylated a lanine rich protein kinase C substrate 2.5 0.00105227
BARX1 BARX homeobox 1 2.5 0.00170548

Table 3.4.1: Top 50 upregulated DEGs in CML HSCs vs healthy control HSCs,
dataset GSE11889. DEGs identified using Limma via GEO2R. Benjamini &
Hochberg (false discovery rate) P-value adjustment. LogFC= log fold change.
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Gene Gene function logFC P.Value
LTBP3 latent transforming growth factor beta binding protein 3 -2.39 0.00467912
CXCR4 C-X-C motif chemokine receptor 4 -2.41 0.00388435
SP100 SP100 nuclear antigen -2.42 0.01163197

KBTBD11 kelch repeat and BTB domain containing 11 -2.44 0.00130438
NCOA1 nuclear receptor coactivator 1 -2.44 0.003036
PROM1 prominin 1 -2.44 0.00557933
SETD2 SET domain containing 2 -2.44 0.00643814
ULK2 unc-51 like autophagy activating kinase 2 -2.45 0.00328545
ILF3 interleukin enhancer binding factor 3 -2.46 0.00707005

DDIT4 DNA damage inducible transcript 4 -2.47 0.00703999
RRP12 ribosomal RNA processing 12 homolog -2.47 0.00957743
ARL17B ADP ribosylation factor like GTPase 17B -2.48 0.00672298
SNTB1 syntrophin beta 1 -2.48 0.00687402
JOSD1 Josephin domain containing 1 -2.5 0.00188113
HCG4 HLA complex group 4 (non-protein coding) -2.51 0.00518326

GADD45B growth arrest and DNA damage inducible beta -2.56 0.00065078
RHOBTB3 Rho related BTB domain containing 3 -2.56 0.00298388

KLF10 Kruppel like factor 10 -2.56 0.00429375
MYOM2 myomesin 2 -2.56 0.00798478

H1F0 H1 histone family member 0 -2.62 0.0083898
ADAM7 ADAM metallopeptidase domain 7 -2.63 0.00026263
PGK1 phosphoglycerate kinase 1 -2.63 0.00259048

MEPCE methylphosphate capping enzyme -2.63 0.00443598
PTGER4 prostaglandin E receptor 4 -2.64 0.00496366

POU2AF1 POU class 2 associating factor 1 -2.64 0.00830878
MALT1 MALT1 paracaspase -2.67 0.00734646
KDM5D lysine demethylase 5D -2.68 0.01104284

SLC38A10 solute carrier family 38 member 10 -2.7 0.00264055
TCF4 transcription factor 4 -2.74 0.00719284

DYNC1LI2 dynein cytoplasmic 1 light intermediate chain 2 -2.76 0.00229278
CXCR4 C-X-C motif chemokine receptor 4 -2.77 0.00215692
CYP3A5 cytochrome P450 family 3 subfamily A member 5 -2.82 0.00170734

LOC730101 uncharacterized LOC730101 -2.82 0.00223232
MPO myeloperoxidase -2.82 0.00698265
CDH2 cadherin 2 -2.89 0.00740414
SPON1 spondin 1 -2.95 0.0056781

CLC Charcot-Leyden crystal galectin -2.96 0.00831187
NR4A2 nuclear receptor subfamily 4 group A member 2 -2.99 0.00130517
DNTT DNA nucleotidylexotransferase -3.04 0.00241742

FAM105A family with sequence similarity 105 member A -3.12 0.0001289
ASPH aspartate beta-hydroxylase -3.14 0.00452852
PLAG1 PLAG1 zinc finger -3.16 0.01119889
OXR1 oxidation resistance 1 -3.19 0.00186732
MPO myeloperoxidase -3.34 0.00027805
EMP1 epithelial membrane protein 1 -3.35 0.00206245
AREG amphiregulin -3.43 0.00138362
PDE4B phosphodiesterase 4B -3.55 0.00039963

ZMYND11 zinc finger MYND-type containing 11 -3.61 0.00126024
BPGM bisphosphoglycerate mutase -3.63 0.00040744
TCFL5 transcription factor like 5 -3.77 0.00000861
NR4A3 nuclear receptor subfamily 4 group A member 3 -3.78 0.00027404

Table 3.4.2: Bottom 50 downregulated DEGs in CML HSCs vs healthy
control HSCs, dataset GSE11889. DEGs identified using Limma via GEO2R.
Benjamini & Hochberg (false discovery rate) P-value adjustment. LogFC= log
fold change.
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Figure 3.4.2: Functional enrichment analysis of genes downregulated in CML HSCs,
dataset GSE11889. Genes of interest were selected through a literature search and the
most relevant compiled in list form. The changes in the expression level for these genes
were analysed in primary CML HSC cells from dataset GSE11889, the results of which
visually displayed in a heatmap. From the heatmap produced, genes observed to be
differentially regulated were selected and a STRING gene-gene interaction network
produced to display the functional relevance of gene expression changes.
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(1)

Figure 3.4.3: Gene ontology enrichment analysis for (1) top 50 upregulated and (2) bottom 50
downregulated DEGs in CML HSCs vs healthy control HSCs, dataset GSE11889. DEGs identified using
Limma via GEO2R. Benjamini & Hochberg (false discovery rate) P-value adjustment. LogFC= log fold
change. ShinyGO v0.741.

(2)
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3.5 Results I: Paediatric Ph+ALL patients designated as being ‘good risk’ 
based on blast cell count were transcriptionally similar to CML samples from 
previous datasets  
 

We next questioned which genes are BCR::ABL1-driven and, therefore, shared in Ph+ALL and 

CML pathology. This would allow us to then demonstrate a ‘BCR::ABL1-leukaemic 

transcription profile’.  Dataset GSE39335 was utilised to identify gene expression profiles in 

Ph+ALL in response to glucocorticoid (GC) treatment. As has been previously discussed, the 

scope of this project is not focused on the treatment of Ph+ALL and CML, therefore, the 

inclusion of untreated (0h) samples in this dataset has been used to identify gene expression 

patterns in Ph+ALL. GC treatments at timepoints 6h and 24h were omitted.  

 

The data set used 10 paediatric patients diagnosed with Ph+ALL. These 10 samples represent 

all patients examined by Chen et al (2012) by microarray however, only 6 samples (Patients 

184, 193, 277, 341, 205 and 241) were available as publicly available data. Patients were 

treated uniformly with Dexamethasone and one dose each of anthracycline, vincristine and 

L-Asparginase, according to the EsphALL protocol. Samples were then analysed at day 17 and 

compared to the untreated (day 0) samples. As previously discussed, evaluation of treatment 

protocols is outwith the scope of this project, hence day 0 untreated samples were selected. 

Patients were designated as ‘good risk’ or ‘poor risk’ based on clinical observation of blast cell 

proportion in the bone marrow (<25% blasts after 8 days treatment = ‘good risk’, >25% blasts 

after 8 days treatment = ‘poor risk’). Poor risk samples were patient samples 205 and 241; 

good risk were patient samples 184, 193, 277, and 341.  Retrospective designation of patients’ 

risk classification allows for Day 0 diagnostic samples to be investigated with the additional 

information of clinical outcomes, allowing for potential risk indicators to be observed at 

diagnosis.   

 

 

 

 

 

  



 106 

 

  

Figure 3.5.1: Gene expression PCA plot (1) and heatmap (2) for
untreated (Day 0) primary Ph+ALL samples, ‘good’ and ‘poor’ clinical
outcomes shown, dataset GSE39335. (3) DEG volcano plot Day 0
Ph+ALL good risk vs poor risk. Genes of interest were selected
through a literature search and the most relevant compiled in list
form. The changes in the expression level for these genes were
analysed in primary Ph+ALL samples with ’good’ or ‘poor’ clinical
outcomes from dataset GSE39335, the results of which visually
displayed in a heatmap. PCA plot P-value adjustment Benjamini &
Hochberg (False discovery rate). Volcano plot generated using Limma
via GEO2R. Benjamini & Hochberg (false discovery rate) P-value
adjustment.
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Gene expression was profiled by array and expression data was loaded into R from GEO (gene 

expression omnibus) and analysed using the GEO2R pla�orm as outlined in sec0on 3.2. We 

next assessed DEG between poor and good responders (Fig 3.6.1.3).  The variation in gene 

expression profiles between ‘poor’ and ‘good’ risk Ph+ALL is important when investigating 

other Ph+ALL datasets which present patient data without categorising based on disease 

outcome, as a number of genes display differential regulation between ‘good’ and ‘poor’ 

samples such as ATF4, CNR2, LYL1 and SMAD5. The variation between patient subclasses 

means that attempting to assign a broad Ph+ALL gene expression pattern would result in 

subclass intricacies being neglected. This indicates that subclass gene expression phenotypes 

would be more adequate for capturing functional variation within Ph+ALL. With the predicted 

proportion of CML-like Ph+ALL patients being approximately 30% of the overall Ph+ALL 

cohort, it may be more pertinent to acknowledge the phenotypically different subtypes and 

create a number of subtype classifications (Hovorkova et al., 2017). Using selected genes, as 

described above, a heatmap was generated. This demonstrated that we were unable to 

cluster poor responders from these selected genes. This suggests that there is a heterogeneity 

between poor responders.  We next compared the outlying poor responder to the good and 

poor responder cluster (Fig 3.5.1.1). This demonstrated that within our selected genes, key 

gene changes included upregulation in ERG1, GZMA, SPON1, CCL8 and GNLY, and 

downregulated in LEF1, CD79A, POCIB, SLC44A1 and SLCC2A7 (Fig 3.5.1.2, Table 3.5.1 and 

3.5.2). 
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Gene Gene function logFC P.Value
EGR1 early growth response 1 4.532 0.0003009
GZMA granzyme A 3.282 0.0034185
GNLY granulys in 3.116 0.0039002
COCH cochl in 3.102 0.0059368
EGR1 early growth response 1 3.034 0.0046072
GNLY granulys in 3.031 0.0029896
ARL4C ADP ribosylation factor l ike GTPase 4C 2.945 0.0000255

ZBTB38 zinc finger and BTB domain conta ining 38 2.685 0.001777
BCL11B B-cel l  CLL/lymphoma 11B 2.489 0.0025402

LCK LCK proto-oncogene, Src fami ly tyros ine kinase 2.452 0.0009901
LCK LCK proto-oncogene, Src fami ly tyros ine kinase 2.347 0.0004196

CD3D CD3d molecule 2.34 0.0045862
TRDV3 T cel l  receptor del ta  variable 3 2.29 0.0042494

RASGRP1 RAS guanyl  releas ing protein 1 2.236 0.0026121
LY9 lymphocyte antigen 9 2.18 0.0001552

TRAT1 T cel l  receptor associated transmembrane adaptor 1 2.152 0.0058321
YME1L1 YME1 l ike 1 ATPase 2.147 0.004687
BCL11B B-cel l  CLL/lymphoma 11B 2.084 0.0017032
ARL4C ADP ribosylation factor l ike GTPase 4C 2.068 0.0019209

ITK IL2 inducible T-cel l  kinase 2.038 0.0058232
GBP5 guanylate binding protein 5 2.025 0.0005527
FCRL3 Fc receptor l ike 3 2.017 0.0007855
SGPP1 sphingos ine-1-phosphate phosphatase 1 2.015 0.0000302
NEXN nexi l in F-actin binding protein 1.824 0.0003902
TBCD tubul in folding cofactor D 1.811 0.0026889
SP140 SP140 nuclear body protein 1.797 0.0000841
IL2RB interleukin 2 receptor subunit beta 1.73 0.00189
KLRK1 ki l ler cel l  lectin l ike receptor K1 1.723 0.0008149

ZBTB24 zinc finger and BTB domain conta ining 24 1.653 0.0032611
P2RY10 purinergic receptor P2Y10 1.557 0.0029127
SGPP1 sphingos ine-1-phosphate phosphatase 1 1.545 0.0009371
BTG2 BTG anti -prol i feration factor 2 1.528 0.0005768

SAMHD1 SAM and HD domain conta ining deoxynucleos ide triphosphate triphosphohydrolase 1 1.516 0.0060858
P2RY10 purinergic receptor P2Y10 1.458 0.0005277
TBCD tubul in folding cofactor D 1.447 0.0002265
IL21R interleukin 21 receptor 1.4 0.0030886
NEXN nexi l in F-actin binding protein 1.333 0.0002361
RLIM ring finger protein, LIM domain interacting 1.332 0.0057436

DDX28 DEAD-box hel icase 28 1.321 0.0035872
SDF2L1 stromal  cel l  derived factor 2 l ike 1 1.301 0.0057865
ZBTB24 zinc finger and BTB domain conta ining 24 1.271 0.0049388

TRAPPC2 trafficking protein particle complex 2 1.171 0.0066324
LY9 lymphocyte antigen 9 1.132 0.0007205

PCTP phosphatidylchol ine transfer protein 1.127 0.004352
CDKAL1 CDK5 regulatory subunit associated protein 1 l ike 1 1.107 0.0064818
ZFP36L2 ZFP36 ring finger protein l ike 2 1.08 0.0063383
BIRC3 baculovira l  IAP repeat conta ining 3 1.07 0.0042676
EIF3H eukaryotic trans lation ini tiation factor 3 subunit H 1.058 0.0035908
MAF MAF bZIP transcription factor 1.045 0.0043219

IKZF3 IKAROS fami ly zinc finger 3 1.036 0.0041986
SEL1L SEL1L ERAD E3 l igase adaptor subunit 1.021 0.0036866

Table 3.5.1: Top 50 upregulated DEGs in Day 0 Ph+ALL good risk vs poor risk, dataset
GSE39335. DEGs identified using Limma via GEO2R. Benjamini & Hochberg (false discovery
rate) P-value adjustment. LogFC= log fold change.
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Gene Gene function logFC P.Value
SLC22A7 solute carrier family 22 member 7 -0.861 0.0046643
SLC44A1 solute carrier family 44 member 1 -0.862 0.0050637
POC1B POC1 centriolar protein B -0.884 0.0020588

GPATCH2 G-patch domain containing 2 -0.903 0.0039367
CLCN7 chloride voltage-gated channel 7 -0.91 0.0036265

MAN2A2 mannosidase alpha class 2A member 2 -0.934 0.0050096
CALN1 calneuron 1 -0.961 0.0021206
TSTD1 thiosulfate sulfurtransferase like domain containing 1 -0.968 0.0036923
SMA4 glucuronidase beta pseudogene -0.977 0.0009403
APLP2 amyloid beta precursor like protein 2 -0.988 0.003904

MGC12916 uncharacterized protein MGC12916 -0.998 0.0036823
HRES1 HTLV-1 related endogenous sequence -1.001 0.0017741
YOD1 YOD1 deubiquitinase -1.026 0.0019086
FNIP2 folliculin interacting protein 2 -1.044 0.000808
MIIP migration and invasion inhibitory protein -1.052 0.0040356
VAV3 vav guanine nucleotide exchange factor 3 -1.078 0.0042424

CFAP73 cilia and flagella associated protein 73 -1.094 0.0013208
ALDH8A1 aldehyde dehydrogenase 8 family member A1 -1.099 0.0022213

FCHO2 FCH domain only 2 -1.142 0.0037998
MCTP2 multiple C2 and transmembrane domain containing 2 -1.143 0.00076
RAB2A RAB2A, member RAS oncogene family -1.154 0.0028389
MCTP2 multiple C2 and transmembrane domain containing 2 -1.191 0.0020303
ZNF117 zinc finger protein 117 -1.263 0.0001427
SLC44A3 solute carrier family 44 member 3 -1.32 0.0003307
ZNF117 zinc finger protein 117 -1.332 0.0023041
GUSBP3 glucuronidase, beta pseudogene 3 -1.359 0.0027215

TLE4 transducin like enhancer of split 4 -1.387 0.0019718
SBF2 SET binding factor 2 -1.418 0.0008641

OSBPL5 oxysterol binding protein like 5 -1.428 0.0057435
TLE4 transducin like enhancer of split 4 -1.433 0.0019501
SBF2 SET binding factor 2 -1.441 0.000195
IKZF1 IKAROS family zinc finger 1 -1.447 0.0062447
CPEB2 cytoplasmic polyadenylation element binding protein 2 -1.483 0.003093
TAPT1 transmembrane anterior posterior transformation 1 -1.513 0.0029894
TAPT1 transmembrane anterior posterior transformation 1 -1.599 0.0006473
NAIP NLR family apoptosis inhibitory protein -1.702 0.0027007

NPCDR1 nasopharyngeal carcinoma, down-regulated 1 -1.793 0.0047311
ZNF117 zinc finger protein 117 -1.798 0.0000276
PDE4DIP phosphodiesterase 4D interacting protein -1.829 0.0021399

YBX3 Y-box binding protein 3 -1.878 0.0046295
MMRN1 multimerin 1 -1.958 0.0046575
MYEF2 myelin expression factor 2 -2.086 0.0020277
MYEF2 myelin expression factor 2 -2.111 0.0019467
MCTP2 multiple C2 and transmembrane domain containing 2 -2.174 0.0022613

CDC42EP3 CDC42 effector protein 3 -2.211 0.0021932
BAALC brain and acute leukemia, cytoplasmic -2.436 0.0034802
BAALC brain and acute leukemia, cytoplasmic -2.552 0.0047406

ADGRF1 adhesion G protein-coupled receptor F1 -2.759 0.0028982
ADGRF1 adhesion G protein-coupled receptor F1 -3.497 0.0005542

PTPRD protein tyrosine phosphatase, receptor type D -3.623 0.0052492

Table 3.5.2: Bottom 50 downregulated DEGs in Day 0 Ph+ALL good risk vs
poor risk, dataset GSE39335. DEGs identified using Limma via GEO2R.
Benjamini & Hochberg (false discovery rate) P-value adjustment. LogFC= log fold
change.
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Comparison of genes expressed in ‘poor’ Ph+ALL to CML samples from previous sections 

displayed no similarities (Fig 3.2- 3.5). Notably, GSE39335 only contained two samples 

designated as ‘poor’ outcomes and hence, these observations should only be used as 

indicators to display that negative Ph+ALL prognosis and CML are genetically distinct.  

 

Conversely, samples designated by blast cell clearance as having a good clinical outcome 

displayed similar gene expression paqerns to CML cells from datasets GSE11675 and 

GSE11889 (Fig 3.4 and 3.5). Clinically ‘good’ Ph+ALL samples (n=4) and CML samples displayed 

an upregula0on in FLI1, FLT3, SMAD2 and SMAD4 and a downregula0on of CCL8, ETV6, LYL1, 

MPL, MPO, MYC, ATF4, CNR2 and SPON1. CML and ‘good’ Ph+ALL samples both similarly 

downregulated LYL1, a gene associated with ALL (McCormack et al., 2013). FLT3 is associated 

with normal haematopoiesis, and similar upregula0on between CML and ‘good’ Ph+ALL 

samples may indicate func0onal similarity of HSCs in these diseases. With the importance of 

(2) (3)(2)(1)

(3)

Figure 3.5.2: Functional enrichment analysis of genes differentially regulated in untreated primary
Ph+ALL samples with good or poor clinical outcomes, dataset GSE39335. Genes of interest were
selected through a literature search and the most relevant compiled in list form. The changes in the
expression level for these genes were analysed in untreated primary Ph+ALL cells from patients with
good or poor clinical outcomes from dataset GSE39335, the results of which visually displayed in a
heatmap. From the heatmap produced, genes observed to be differentially were selected and a
STRING gene-gene interaction network produced to display the functional relevance of gene
expression changes. (1) Genes upregulated in untreated primary Ph+ALL samples with good clinical
outcomes. (2) Genes downregulated in untreated primary Ph+ALL samples with good clinical
outcomes. (3) Genes upregulated in untreated primary Ph+ALL samples with poor clinical outcomes.
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HSCs/LSCs in CML being previously discussed, this could indicate that such Ph+ALL samples 

share a CML-like gene expression and hence, may display a CML-like Ph+ALL gene0c 

signature. This indicates that samples which may belong to the CML-like subgroup were 

iden0fied as having good clinical outcomes by the single metric of blast cell clearance over 8 

days with no inves0ga0on of long-term outcomes or incidence of relapse. The discordance 

between these results and those presented by Hovorkova et al (2017) will be elaborated in 

the discussion sec0on of this chapter.   

Figure 3.5.3: Gene ontology enrichment analysis for top 50 upregulated DEGs in
Day 0 Ph+ALL good risk vs poor risk, dataset GSE39335. DEGs identified using
Limma via GEO2R. Benjamini & Hochberg (false discovery rate) P-value adjustment. LogFC= log
fold change. ShinyGO v0.741.
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3.6 Results I: Ph+ALL patient with hyperdiploidy shared gene expression 
profiles with CML and ‘good risk’ Ph+ALL samples from previous datasets, 
suggesting a consistent outlying transcriptional phenotype within the Ph+ALL 
cohort 
 

Aligning with the analysis of dataset GSE39335, we next aimed to further elucidate shared 

gene expression patterns between CML and Ph+ALL by comparison of genes expressed in 

primary paediatric Ph+ALL bone marrow (GSE13425) to those observed in previous datasets 

(den Boer et al., 2009).  GSE13425 allows assessment of gene expression patterns in a number 

of genetic and morphological subtypes of ALL.  T-ALL, TEL-AML1, hyperdiploid, E2A-

rearranged (EP), BCR::ABL1, MLL and Pre-B ALL paediatric bone marrow and peripheral blood 

were analysed for gene expression using micro-array.  Ph+ALL samples were selected for 

further analysis.  A notable inclusion in the BCR::ABL1+ samples analysed was ‘Patient 142’ 

who contained a hyperdiploidy along with a detectable Philadelphia chromosome. This 

provided a novel opportunity to investigate how Ph+ALL gene expression may be impacted 

from the gain of additional chromosomes and represents a sample which has cytogenetic 

features common to other ALL subtypes such as B-ALL (Chen, 2019). In contrast to the high-

risk Ph+ALL, hyperdiploidy is associated with a favourable clinical outcome with a lower 

incidence of disease relapse post treatment (Tauro, 2003). Hence, this dataset allowed for the 

identification of high-risk Ph+ALL associated genes which can be detected in ‘Ph+ only’ and 

‘Ph+ and hyperdiploid’ samples. Genes differentially regulated in ‘Patient 142’ represent 

hyperdiploidy associated disease phenotype, with genes which share an expression pattern 

across all of the samples being involved in BCR::ABL1-driven pathology. 
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Figure 3.6.1: Gene expression PCA plot (1) and heatmap (2) for paediatric
Ph+ALL bone marrow, dataset GSE13425. (3) DEG volcano plot standard
Ph+ALL vs Ph+ALL with hyperdiploidy (Patient 142). Genes of interest
were selected through a literature search and the most relevant compiled
in list form. The changes in the expression level for these genes were
analysed in primary paediatric Ph+ALL bone marrow samples from dataset
GSE13425, the results of which visually displayed in a heatmap. PCA plot P-
value adjustment Benjamini & Hochberg (False discovery rate). ). Volcano
plot generated using Limma via GEO2R. Benjamini & Hochberg (false
discovery rate) P-value adjustment.

Pat 139

Pat 140

Pat 142 + hyperdiploidyPat 138

Pat 141

GSE13425

PC1
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GSE13425: Ph+ALL vs Ph+ALL hyperdiploidy (pat 142)(3)
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Gene expression was profiled by array and expression data was loaded into R from GEO (gene 

expression omnibus) and analysed using the GEO2R pla�orm as outlined in sec0on 3.2. We 

first demonstrated heterogeneity between Ph+ALL samples in GSE13425 through PCA plot.  

In view of the significant heterogeneity, we next utilised the previously selected gene list to 

generate gene expression variation within a heatmap (Fig 3.10). Heatmaps were generated 

by selec0ng significant genes of interest and conver0ng normalised and scaling raw gene 

counts into a normalised z-score as previously described (Fig 3.6.1.2).  A notable but expected 

outlier was ‘Pat_142’ who displayed a vastly different gene expression pattern from the rest 

of the samples in the cohort and shared some gene expression with CML samples from 

datasets GSE11675 and GSE11889 (downregulation of ATF4 and LYL1).  

 

Volcano plots were generated to visualise differen0al gene regula0on between the sample 

types examined in this dataset (Ph+ALL samples Pat_138-141 vs Ph+ALL hyperdiploidy 

Pat_142) (Fig 3.6.1.2). Differen0al gene expression analysis of all genes was done using Limma 

via GEO2R and LogFold change es0mates. This DEG table was downloaded and exported to 

Excel where the gene names, gene functions, log fold changes and P values for each of the 

250 DEGs could be observed (Table 3.6.1 and 3.6.2). Genes were sorted from upregulated to 

downregulated by sorting log fold changes by largest to smallest values. This process results 

in a table of DEGs for use in downstream analyses such as gene ontology and STRING mapping  

(Fig 3.6.2 & 3.6.3). Arer ranlong, differen0ally expressed genes were loaded into GSEA 

(MSigDB) for pathway analysis of all DEGs (significant and non-significant genes by adjusted 

P value). Genes of interest were determined as described previously. 

 

‘Pat_142’ displayed a very different gene expression pattern from the rest of the Ph+ALL 

cohort (Fig 3.6.1).  This sample also displayed a similar gene expression pattern to CML cells 

from GSE11675 and GSE11889. Such upregulated genes included CCND1, FLT3, FZD6, LCP1, 

MPO, MYC and PRDM6 and downregulated genes include CCL8, CREBBP, HIPK1, LDB1, MYB 

and TGFB1. This evidence suggested that the outlier patient 142 may have a CML-like Ph+ALL 

disease phenotype and shares a similar gene expression pattern to CML progenitor cells 

(GSE11675 and GSE11889). Pat_142 also shared some gene expression similarities to Ph+ALL 

patients designated as ‘good risk’ in dataset GSE39335. Previously mentioned (and will be 

expanded in the discussion section of this chapter) is that the status of these samples as 



 115 

having ‘good’ clinical outcomes is incongruous to what is currently understood about CML-

like Ph+ALL. However, these patients were designated good risk based on blast cell clearance 

after 8 days of treatment with no long-term outcomes being assessed. It is unknown, 

therefore, if any of these patients had incidence of relapse or disease resurgence.   
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Gene Gene function logFC P.Value
DDX3X DEAD-box hel icase 3, X-l inked 4.97 0.00000522
IGHM immunoglobul in heavy constant mu 4.71 0.00029446
IGHM immunoglobul in heavy constant mu 4.27 0.00027876
DDX3X DEAD-box hel icase 3, X-l inked 3.89 0.00003593
KLHL21 kelch l ike fami ly member 21 3.8 0.00048394
PELI1 pel l ino E3 ubiquitin protein l igase 1 3.72 0.00137634

USP9X ubiquitin speci fic peptidase 9, X-l inked 3.68 0.00005632
HIPK1 homeodomain interacting protein kinase 1 3.62 0.00006527
TCF7L2 transcription factor 7 l ike 2 3.4 0.00005833

HNRNPL heterogeneous  nuclear ribonucleoprotein L 3.13 0.00019963
ZNF335 zinc finger protein 335 3.1 0.00085356
ITPKB inos i tol -tri sphosphate 3-kinase B 3.07 0.00018649

TRIM33 triparti te moti f conta ining 33 3.01 0.00025524
RARA retinoic acid receptor a lpha 2.97 0.00057883

ZBTB43 zinc finger and BTB domain conta ining 43 2.95 0.00028651
MCL1 BCL2 fami ly apoptos is  regulator 2.95 0.0004811
HIP1R huntingtin interacting protein 1 related 2.94 0.00212109
SPHK1 sphingos ine kinase 1 2.89 0.00356725
ACSL1 acyl -CoA synthetase long-chain fami ly member 1 2.88 0.00268491
NR4A3 nuclear receptor subfami ly 4 group A member 3 2.87 0.00233234
DDX3X DEAD-box hel icase 3, X-l inked 2.85 0.00053128
ENC1 ectodermal-neura l  cortex 1 2.8 0.00272152

IGHG1 immunoglobul in heavy constant gamma 1 (G1m marker) 2.79 0.00164679
PRRC2C prol ine rich coi led-coi l  2C 2.68 0.00081185

TCF4 transcription factor 4 2.65 0.00150918
KAT5 lys ine acetyl transferase 5 2.64 0.00031309

DDX3X DEAD-box hel icase 3, X-l inked 2.62 0.00071189
ERAP1 endoplasmic reticulum aminopeptidase 1 2.62 0.0014256
PRKD3 protein kinase D3 2.6 0.00124792
USP9X ubiquitin speci fic peptidase 9, X-l inked 2.58 0.00034862
RND1 Rho fami ly GTPase 1 2.56 0.00258714

SRSF11 serine and arginine rich spl icing factor 11 2.56 0.00426654
PDE4D phosphodiesterase 4D 2.54 0.0022324
TRIB2 tribbles  pseudokinase 2 2.54 0.00300397

PLEKHM2 pleckstrin homology and RUN domain conta ining M2 2.53 0.0006318
PEG10 paternal ly expressed 10 2.47 0.00226955
APLP2 amyloid beta  precursor l ike protein 2 2.46 0.00075816
BANP BTG3 associated nuclear protein 2.45 0.00719024

RASL10A RAS l ike fami ly 10 member A 2.42 0.00486528
ATP6V0C ATPase H+ transporting V0 subunit c 2.41 0.0007145

PPP4C protein phosphatase 4 cata lytic subunit 2.41 0.00147974
CCNJ cycl in J 2.39 0.00163478
LRP5L LDL receptor related protein 5 l ike 2.36 0.00286077

SIGLEC6 s ia l ic acid binding Ig l ike lectin 6 2.35 0.00442568
CDK11A/ cycl in dependent kinase 11A 2.31 0.00067581

MLXIP MLX interacting protein 2.31 0.00407532
SETD1B SET domain conta ining 1B 2.3 0.00322777
SUPT6H SPT6 homolog, his tone chaperone 2.29 0.00216426
PANK4 pantothenate kinase 4 2.28 0.00119334

ANXA11 annexin A11 2.28 0.0039065

Table 3.6.1: Top 50 DEGs upregulated in standard Ph+ALL vs Ph+ALL
with hyperdiploidy (Patient 142), dataset GSE13455. DEGs identified
using Limma via GEO2R. Benjamini & Hochberg (false discovery rate) P-value
adjustment. LogFC= log fold change.
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Gene Gene function logFC P.Value
NEMP1 nuclear envelope integral membrane protein 1 -1.74 0.00678704

LCAT lecithin-cholesterol acyltransferase -1.75 0.0042695
GCG glucagon -1.76 0.00429699

FERMT1 fermitin family member 1 -1.77 0.0031039
IGLV1-44 immunoglobulin lambda variable 1-44 -1.77 0.00349097

H2AFX H2A histone family member X -1.77 0.00355473
EZH1 enhancer of zeste 1 polycomb repressive complex 2 subunit -1.79 0.00444893

RAP1GAP2 RAP1 GTPase activating protein 2 -1.79 0.00628625
PLXND1 plexin D1 -1.79 0.00776081

GAS8 growth arrest specific 8 -1.8 0.0045203
EBAG9 estrogen receptor binding site associated, antigen, 9 -1.81 0.00418332
TRADD TNFRSF1A associated via death domain -1.81 0.00450196
RHBG Rh family B glycoprotein (gene/pseudogene) -1.82 0.00404596

MS4A4A membrane spanning 4-domains A4A -1.84 0.00742724
NMUR1 neuromedin U receptor 1 -1.85 0.00250671
MSR1 macrophage scavenger receptor 1 -1.89 0.0029489
SEL1L3 SEL1L family member 3 -1.9 0.00373341
HIBCH 3-hydroxyisobutyryl-CoA hydrolase -1.9 0.00608658

HIST1H2BD histone cluster 1, H2bd -1.91 0.00393366
RAD51C RAD51 paralog C -1.91 0.00554041

HIST1H2BO histone cluster 1, H2bo -1.92 0.0022405
ZNF133 zinc finger protein 133 -1.92 0.0061625
OCRL OCRL, inositol polyphosphate-5-phosphatase -1.94 0.00342294

C2orf68 chromosome 2 open reading frame 68 -1.96 0.00210118
MXD3 MAX dimerization protein 3 -1.96 0.00583803
MATK megakaryocyte-associated tyrosine kinase -1.97 0.00721314

TOPORS-AS1 TOPORS antisense RNA 1 -1.98 0.00376637
MAGI2 membrane associated guanylate kinase, WW and PDZ domain containing 2 -1.99 0.00161632
EXOG endo/exonuclease (5'-3'), endonuclease G-like -2 0.00270322

RCBTB2 RCC1 and BTB domain containing protein 2 -2.03 0.00347712
AK2 adenylate kinase 2 -2.05 0.0057816

SERHL2 serine hydrolase-like 2 -2.17 0.00363141
TDP1 tyrosyl-DNA phosphodiesterase 1 -2.17 0.0046004
NAIP NLR family apoptosis inhibitory protein -2.22 0.00403845
SIL1 SIL1 nucleotide exchange factor -2.24 0.00693112

CCL3L3 C-C motif chemokine ligand 3 like 3 -2.26 0.00263222
IL1B interleukin 1 beta -2.27 0.00215894
NGFR nerve growth factor receptor -2.3 0.00298696
HGF hepatocyte growth factor -2.32 0.00302818

SLC16A2 solute carrier family 16 member 2 -2.47 0.00333286
HIST1H1E histone cluster 1, H1e -2.51 0.00601028

NRXN3 neurexin 3 -2.52 0.00254509
TCL1A T-cell leukemia/lymphoma 1A -2.54 0.00614483

HIST1H2AE histone cluster 1, H2ae -2.59 0.00144775
KIR3DL2 killer cell immunoglobulin like receptor, three Ig domains and long cytoplasmic tail 2 -2.68 0.00306132

HIST1H2BJ histone cluster 1, H2bj -2.7 0.0003591
HIST1H2BG histone cluster 1, H2bg -2.83 0.00082021

PLVAP plasmalemma vesicle associated protein -3.12 0.00633722
IL1B interleukin 1 beta -3.28 0.00174765

HSPA6 heat shock protein family A (Hsp70) member 6 -3.74 0.00016991

Table 3.6.2: Bottom 50 DEGs downregulated in standard Ph+ALL vs Ph+ALL with
hyperdiploidy (Patient 142), dataset GSE13425. DEGs identified using Limma via GEO2R.
Benjamini & Hochberg (false discovery rate) P-value adjustment. LogFC= log fold change.
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Figure 3.6.2: Functional enrichment analysis of genes upregulated in primary paediatric Ph+ALL bone
marrow samples, dataset GSE13425. Genes of interest were selected through a literature search and the most
relevant compiled in list form. The changes in the expression level for these genes were analysed in paediatric
primary Ph+ALL bone marrow samples from dataset GSE13425, the results of which visually displayed in a
heatmap. From the heatmap produced, genes observed to be upregulated were selected and a STRING gene-
gene interaction network produced to display the functional relevance of gene expression changes. (1) Genes
upregulated in primary paediatric Ph+ALL bone marrow samples. (2) Genes downregulated in primary
paediatric Ph+ALL bone marrow samples. (3) Genes upregulated in hyperdiploidy patient (Patient 142)
compared to Ph+ALL patients from the same paediatric cohort. (4) Genes downregulated in hyperdiploidy
patient (Patient 142) compared to Ph+ALL patients from the same paediatric cohort.
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(1)

Figure 3.6.3: Gene ontology enrichment analysis for op 50 DEGs upregulated and (2) bottom 50
downregulated in standard Ph+ALL vs Ph+ALL with hyperdiploidy (Patient 142), dataset
GSE13425. DEGs identified using Limma via GEO2R. Benjamini & Hochberg (false discovery rate) P-value
adjustment. LogFC= log fold change. ShinyGo v0.741

(2)
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3.7 Discussion 

 

The overall aim of this chapter was to investigate, through publicly available datasets, gene 

expression patterns in CML, Ph+ALL and normal sample with the goal to characterise potential 

gene signatures in the proposed CML-like Ph+ALL subtype.  We did this through sequential 

analysis of samples to understand: 

- Differences between Ph+ALL and lymphoid blast phase CML 

- Differences within cell maturity of normal and Ph+-driven cells 

- Differences between normal HSCs and Ph+-driven HSCs (CML) 

- Differences between ‘good’ and ‘poor’ responders  

 

Five publicly available datasets were utilised to investigate this: GDS4175, GSE11675, 

GSE11889, GSE39335 and GSE13425. These selected datasets encompassed gene expression 

in primary paediatric Ph+ALL bone marrow samples, healthy bone marrow controls, CML 

progenitors and chronic phase bone marrow samples, and a cell line dataset was selected to 

allow direct comparison of age, disease status and BCR::ABL1 fusion variant. A clear 

heterogeneity was seen between primary patient samples, as well as within different cell lines 

through analysis of DEG and pathway analysis. This included (but was not limited to) genes 

involved in cell survival, cancer progression, stemness and regulation of haematopoietic cell 

development such as CCND1, FLT3, FZD6, LCP1, MPO, MYC and PRDM6, CCL8, CREBBP, HIPK1, 

LDB1, MYB and TGFB1. Relevant genes involved in haematopoiesis homeostasis and 

leukaemia initiation and development were selected based on literature searches and 

compiled as a list (‘genes of interest’).   

 

In alignment with clinical phenotype, early progenitor (Lin- CD34+ and Lin- CD34-) CML cells 

and chronic phase CML HSCs (GSE11675 and GSE11889 respectively) displayed a less acute 

phenotype than Ph+ALL samples with a downregulation of acute leukaemia-associated genes 

such as ERG, LYL1, SPON1 and MPL. This is likely due to the maintenance of quiescent 

leukaemic stem cells in CML chronic phase, prior to a switch toward an acute phenotype, 

increase in proliferation and disease progression. With the leukaemic cell of origin in CML 
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being HSCs (LSCs), this switch in cell activity is observed by an upregulation of acute leukaemic 

genes as listed above and downregulation of genes necessary for quiescence. 

 

Comparison of ‘good’ and ‘poor’ clinical outcome Ph+ALL samples (GSE39335) displayed 

similarity between early progenitor and chronic phase CML samples (GSE11675 and 

GSE11889), and Ph+ALL samples designated as having good clinical outcomes. A non-

exhaustive list of genes similarly upregulated in ‘good’ Ph+ALL and progenitor CML include 

FLI1, FLT3, YY1, CCL8, LYL1, ATF4 and MPL. This contrasts with current understandings of CML-

like Ph+ALL which predict a poor clinical outcome for patients belonging to this subtype. 

However, the classification of ‘good’ or ‘poor’ risk patients in GSE39335 was based on blast 

cell reduction over 8 days from commencement of treatment. Such basic metrices do not 

include whether patients relapsed, died, received transplants or length of survival time and 

does not reflect long-term response to lymphoid-directed treatment, a criterion suggested by 

Hovorkova et al (2017) to be important in differentiating between Ph+ALL subtypes. As 

lymphoid cells are sensitive to glucocorticoids, an initial reduction in lymphoblasts would be 

expected in either Ph+ALL subtype and would not reflect abnormal myeloid populations that 

may exist in CML-like Ph+ALL (Smith and Cidlowski., 2016). Hence, without longer-term 

clinical information, the overall clinical outcomes could not be defined as ‘good’ or ‘poor’ and 

though a potential CML-like transcriptional profile may have been observed in the samples 

designated ‘good’, this does not disprove the theory brought about in Hovorkova et al (2017) 

that patients belonging to this subtype are more likely to relapse or respond poorly long-term 

to lymphoid-directed treatment.    

 

Such contrasting results to those presented by Hovorkova et al (2017) also highlight the 

difficulties in investigating an (as of yet) undefined disease subtype using publicly available 

datasets. Current CML-like Ph+ALL designation relies on discordance of Ig/TCR rearrangement 

and BCR::ABL1 transcript MRD methods in ALL and non-ALL cells. With the variety of MRD 

methods available, low likelihood of multiple MRD methods being used concurrently in the 

clinic and scant clinical information provided in GEO dataset, samples utilised for 

bioinformatic analyses therefore cannot be defined as being ‘standard’ or ‘CML-like’ from the 

outset of analysis. Hence, it is unknown how many (if any) samples in these datasets belong 

to the CML-like subtype. In addition, the transcriptional profile of CML-like Ph+ALL is 
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unknown, meaning that CML-like samples cannot be distinguished by interrogating datasets 

for specific differentially expressed genes. Despite these caveats, exploratory investigation 

into paediatric Ph+ALL gene expression datasets with the scope to identify any patient subsets 

expressing CML-related genes was conducted.   

 
Taking such caveats into consideration, Ph+ALL samples with similar gene expression profiles 

as CML samples were compared to the Ph+ALL cohort in GSE13425. Patient 142 was initially 

highlighted due to the presence of a hyperdiploidy cytogenetic abnormality in addition to 

BCR::ABL1 fusion. Upon construction of a gene expression heatmap, Patient 142 could be 

clearly seen to have a different gene expression pattern in comparison to the rest of the 

cohort. When comparing gene expression of Patient 142 to ‘good’ Ph+ALL samples and CML 

samples, similar patterns could be observed such as the upregulation of CCND1, FLT3, FZD6, 

LCP1, MPO, MYC and PRODM6, and the downregulation of CCL8, CREBBP, HIPK1, LDB1, MYB 

and TGFB1. This congruence between outlying Ph+ALL and CML samples allowed for a list of 

Table 3.7: Proposed CML-like gene expression pattern. Differentially
expressed genes identified in CML and potential CML-like Ph+ALL samples
from publicly available GEO datasets.

Gene name Function
ATF4 activating transctipion factor 4

CCL8 C-C motif chemokine ligand 8

CCND1 cyclin D1

FLI1 Fli-1 proto-oncogene, ETS transcription factor

FLT3 fms related tyrosine kinase 3

FZD6 frizzled class receptor 6

LCP1 lymphocyte cytosolic protein 1

LYL1 basic helix-loop-helic family member

MPL MPL proto-oncogene, thrombopoietin receptor

MPO myeloperoxidase

MYC v-myc avian myelocytomatosis viral oncogene homolog
YY1 YY1 transcription factor 1

CREBBP CREB binding protein 

HIPK1 homeodomain interacting protein kinase

LDB1 LIM domain binding

MYB MYB proto-oncogene, transcription factor
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genes similarly expressed across such samples to be assembled (Table 3.7). These genes have 

been tentatively dubbed a ‘CML-like’ gene expression pattern which would be beneficial to 

examine in larger datasets and datasets which contain both CML and Ph+ALL samples which 

would prevent batch effects between samples. 

 

Further follow up would be essential to confirm these findings and may be achieved by 

interrogating additional CML and Ph+ALL datasets and utilising clinical outcome notes to 

confirm if patients with CML-like Ph+ALL share a similar gene expression pattern which may 

be used for detection of these patients in a diagnostic setting by generation of a biomarker 

panel. In order to explore this further, gene expression in Ph+ALL and CML-lymphoid blast 

phase samples will be examined by RNAseq (Chapter 5). As a caveat of this chapter was that 

datasets containing a direct comparison of gene expression in CML and Ph+ALL was 

unavailable, comparison of a number of datasets with relevant leukaemic samples was 

utilised. Limitations also included the scarcity of datasets which included primary sample data 

which directly compared CML and Ph+ALL, hence in this chapter the closest dataset to this 

was one which investigated cell lines. Though helpful, cell lines represent immortalised cells 

to allow long term growth and may differ in metabolic and pro-survival genes from primary 

cells. Additionally, only one sample from each category was available (paediatric, adult, CML 

or Ph+ALL), meaning that more samples would be required to confer significance. Cell lines 

are useful models of disease but may not fully reflect the transcriptional picture of disease 

within patients. Additionally, publicly available datasets were sourced from different labs and 

projects, meaning that not only did the technology used to detect gene expression differ (ie 

microarray vs RNAseq) but these also represent separate experiments which cannot be 

directly compared due to batch effects which through technical/non-biological factors, affect 

variation in resultant data. Due to these datasets originating from different experiments, 

some data came from sorted samples (ie Lin- progenitors) and some from bulk samples, 

making the data too different for direct statistical comparison. Work continuing within this 

project aimed to follow these findings up through the utilisation of RNAseq analysis of both 

Ph+ALL and CML samples. This allowed for the observation of any CML-like gene expression 

patterns and, where available, was followed up using information on clinical outcome.  
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Chapter 4. Results II. Unravelling Ph+ALL heterogeneity with FACS and 
FISH. 
 
4.1.1  Introduction: The cell of origin in Ph+ALL remains elusive  

 

When investigating haematological malignancies, the dynamic process of haematopoiesis is 

an important concept to consider. Applying the understanding of early blood cell 

development to the initiation and maintenance of leukaemia has allowed for the molecular 

basis of diseases to be understood. A good example of this is CML, where the identification 

of BCR::ABL1 fusion during early haematopoiesis has not only allowed for a deeper 

understanding of leukaemia biology and the stem cell nature of the disease, but improved 

treatment by exploitation.  
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As previously discussed, haematopoiesis is the process through which mature blood cells are 

produced (Rodriguez-Fraticelli et al., 2018). This requires maintenance of multi- or pluripotent 

progenitor cells balanced with the differentiation and proliferation of mature lineage-

committed cells.  Previous models of haematopoiesis have displayed this process in a 

stepwise manner, with definitive stages of differentiation and clear groups of progenitors. 

However, with increasing understanding of haematological development through single cell 

tracking and transplantation studies, this model has been revised (Notta et al., 2016 and Sun 

et al., 2014). Newer understandings of haematopoiesis depict a continuous differentiation 

process with lineage predetermination in multilineage progenitors, such as multipotent 

progenitors (MPPs), but which maintain the ability to differentiate into different cell types 

based on organismal needs and signalling networks provided (Fig 4.1.1).    

  

An important feature of haematopoiesis that should be remembered when examining 

differences in cell population size between diagnostic and post induction samples throughout 

this chapter, is its plasticity. Within lineage subsets, cellular needs are met by variation of 

granulopoiesis, erythropoiesis and lymphopoiesis (Zaretsky et al., 2015) (Fig 4.1.2). Not only 
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does haematopoiesis naturally change as the organism ages (ie from embryonic to adult) but 

also in response to infections, malignancy and different therapeutic agents (Belyavsky et al., 

2021).   

 

As discussed previously, within CML, the BCR::ABL1 fusion originates within the stem cell 

compartment, namely HSC or MPP (Holyoake and Vetrie., 2016). BCR::ABL1 fusion in cells 

prior to lineage bifurcation results in observable BCR::ABL1 activity in cells of a number of 

lineages and further explains why the acute blast crisis phase of CML can be characterised by 

the presence of lymphoid or myeloid (or both) differentiation-arrested blast cells (Calabretta 

and Perrotti, 2004).  Until recently, there was an orthodoxy that Ph+ALL was a distinct disease 

entity, with the mutation felt to arise from a progenitor B cell and believed not to occur 

outside of the lymphoid lineage compartment. However, recent data has challenged this 

binary separation (Nishiwaki et al., 2020). Expression of BCR::ABL1 in non-lymphoid lineages 

such as in MPO-myeloid cells indicated that the leukaemia-driving fusion event occurred in a 

differentiation stage prior to lymphoid lineage development (Fig 4.1.3). This was further 

expanded during the investigation into MRD (minimal residual disease) monitoring in 

paediatric Ph+ALL where a subgroup of patients were identified as harbouring BCR::ABL1 in 

non-ALL lymphocytes and myeloid cells (Hovorkova et al., 2017). These patients, defined as 

CML-like Ph+ALL, were identified as having discordant MRD due to the presence of BCR::ABL1 

and absence of Ig/TcR clonal rearrangements in the non-ALL blast Ph+ cells.  This data raised 

questions about the transcriptomic and clinical relevance of this population within Ph+ALL.    
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Evidence that expression of BCR::ABL1 in multi-lineages can be associated with improved 

prognosis (Nishiwaki et al., 2020) contrasted with the finding that patients classified CML-like 

Ph+ALL benefitted from stem cell transplants (SCT) more than standard Ph+ALL treatment of 

chemotherapy alone (Hovorkova et al., 2017). These conflicting results display that the clinical 

outcomes of CML-like Ph+ALL is unknown and therefore alteration to standard treatment 

protocols may be beneficial. Bioinformatic analysis of publicly available Ph+ALL and CML 

datasets in the previous results chapter highlighted a potential gene expression profile that 

could delineate these disease populations. However, questions remain over the cell of origin 

for this population and if it truly represents a new disease entity within Ph+ALL. To date, this 

population remains poorly defined.  
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4.1.2 Aims 

The aims of this chapter were, therefore, to:   

1. Assess the heterogeneity or homogeneity of haematopoietic cell populations 

within paediatric and adolescent Ph+ALL samples;   

2. To identify where the BCR::ABL1 fusion occurs within stem and progenitor 

populations of Ph+ALL samples to potentially determine the ‘CML-like’ patient 

samples; 

3. To correlate outcomes with clinical characteristics.  
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4.2.1 Results II: Fluorescence-assisted cell sor1ng revealed a poten1al 
subgroup of Ph+ALL pa1ents with atypical haematopoie1c dynamics 
 

Primary samples were sorted into stem and progenitor populations by cell surface marker 

expression to enable to identification of BCR::ABL1 fusion events during early haematopoiesis 

(Fig 4.1.2, 4.1.3 & 4.2.1). Cells were strained following antibody staining to prevent clumping.  

Live cells were gated, and doublets removed before cells were sorted according to table 4.2.1. 

FMO controls were used within each sample to ensure true representation of cell populations. 

Within the first few samples, an aliquot of the sorted cells was run again on flow cytometry 

to ensure cell surface expression was comparable to the populations selected.  Because of 
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this, the purity of the sort produced populations that were 95-99% pure for the desired cells.  

An example sort, with FMO controls, is depicted in figure 4.2.2.    
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23 diagnostic Ph+ALL (aged 2-19 years) and 16 post induction (PI) Ph+ bone marrow 

mononuclear cells (BMNC) samples were sorted into HSC, MPP, CMP GMP, and CLP 

populations. PI samples used in this chapter were matched to diagnostic samples and 

harvested at a range of timepoints (average day 70), where patients were at different 

treatment stages (Fig 4.2.3).  

 

We next assessed the heterogeneity through calculation of the proportion compared to live 

cells. In brief, this is calculated as the number of sorted cells for each progenitor population 

divided by the number of live cells measured during the sort (Fig 4.2.4). This is then expressed 

as a percentage. As these are human samples, live cells were felt to be an appropriate 

denominator. The cell populations for diagnostic and PI samples are shown in Fig 4.2.5.1 and 

4.2.5.2. Upon performing FACS to isolate stem and progenitor samples, the presence of blast 

cells may convolute detection of lymphoid progenitors due to similarities in surface marker 

expression profiles (Fig 4.1.2 & 4.2.1).   This data is also displayed with matched samples, 

displaying diagnostic and PI samples for the same patient as indicated by the colour key on 

the right side of the graph. Analysis of cell populations demonstrated significant interpatient 

heterogeneity between samples at diagnosis and post induction. At diagnosis, a Ph+ALL bone 

marrow sample would be expected to have large populations of CLPs and small populations 

of HSCs/MPPs and myeloid precursors. This is due to the skewing of haematopoiesis toward 
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the overproduction of lymphoid blasts, a hallmark of Ph+ALL. Hence, the expected population 

sizes at PI timepoints (after patients have received lymphoid-directed treatment) would 

include smaller populations of lymphoid progenitors such as CLPs, more similar to levels 

during normal haematopoiesis. Additionally, myeloid progenitors and HSPCs are expected to 

be larger in PI than in diagnostic samples, with the restoration of normal haematopoiesis 

being restored and the overproduction of lymphoblasts halted. Steroid treatment can also 

alter cell number, exemplified by leucocytosis/granulocytosis post glucocorticoid (ie 

dexamethasone) treatment (Nagakawa et al., 1998). As previously mentioned, PI samples 

were harvested at different timepoints during treatment (average day 70) and hence, cell 

numbers may vary depending on the treatment phase of PI samples. Interestingly, 

interpatient heterogeneity atypical of expected haematopoietic development patterns was 

observed in diagnostic and PI samples for a small number of patients. This will be discussed 

in-depth by population in later sections of this results chapter. 
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Figure 4.2.5.1: Proportion of progenitor cells (HSC, MPP, CMP, GMP and CLP) in diagnostic Ph+ALL 
samples. Proportion for each progenitor population was generated by normalising the percentage of live 
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4.2.2 Results II: HSC and MPP populations can be identified using FACS   

 

As blood cell development in Ph+ALL is skewed toward lymphopoiesis, the HSC population 

size is expected to be small. The scarcity of these cells is also illustrated in healthy bone 

marrow in which, HSCs and MPPs represent rare populations with low frequency (0.01%) 

(Rossi et al., 2011). Of the approximately 10,000 HSCs in healthy BM, 1000 are predicted to 

contribute to haematopoiesis to maintain and restore blood cell production (Catlin et al., 

2011) (Anthony and Link, 2015). In leukaemic bone marrow, wherein normal leukocyte 

production is corrupted, HSC homeostasis is altered resulting in the potential for a lower 

frequency of HSCs than in healthy bone marrow.   

 

With a goal of this chapter being to collect HSCs for analysis of BCR::ABL1 fusion by FISH, the 

prospect of having too few cells to perform this analysis was a realistic concern.  

HSCs and MPPs were sorted according to the sorting strategy in figure 4.1.2, 4.2.1 & 4.2.2 

from bulk BMNC samples from Ph+ALL patients at diagnosis and post-induction therapy. As 

anticipated, the population size of HSCs was small in both diagnostic and PI samples (Fig 

4.2.6). Paired diagnostic and PI samples were indicated by colour and connecting lines, any 

sample which could not be matched (either PI was not available or sequential samples were 

sourced from the Glasgow 8y/o male patient, previously discussed, where diagnostic sample 

was not available). Unmatched samples were included to display the overall variation in 

haematopoietic population size across the Ph+ALL cohort used in this thesis. All FACS data 

was reported where available, however, due to variations in starting cell number and poor 

recovery rate post cryopreservation, a small number of samples were too poor to identify 

haematopoietic progenitor populations as outlined in the sorting strategy discussed 

previously (n= 13 (6 diagnostic & 7PI)). 

 

As discussed previously, the frequency of HSCs in homeostatic bone marrow is low, however 

with the addition of a dysregulation of the bone marrow toward the production of blast cells 

in Ph+ALL, this frequency is likely to be even lower. As a result, in diagnostic bone marrow the 

average population size of HSCs was 0.995% of total live cells and in PI samples 0.54% (Fig 

4.2.6). Through PI treatment, blast cells are eradicated and hence, a smaller average 
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population size of HSCs than in diagnostic samples is not due to skewing of haematopoiesis 

to the production of lymphoblasts but is instead as a result of the treatment itself (ie 

steroids).    

Figure 4.2.6: HSC population size in matched Ph+ALL diagnostic
and PI samples . (1) Cell count normalised (expressed as a
percentage of total number of cells counted during the sort) to
allow for variably sized samples to be displayed on the same graph.
Black dots represent samples with no matched samples available
(no PI provided or post-treatment only). (2) Representative FACS
plots displaying HSC population size in total sample (CD90/CD38).
Patient samples displayed; (clockwise from top left) PALL10M,
PALL19M, PALL3F & PALL2.7.
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Examining specific patient samples in Fig 4.2.6 displays the variability in HSC sample size in 

the Ph+ALL patient cohort. For example, PALL19M (pink) displays few to no HSCs in either 

diagnostic or post induction sample. This may be due to issues with the cryopreservation and 

culture process itself which lead to the loss of HSCs or may display a naturally low number of 

early stem cells in this patient.   

  

Additionally, there were patients which had very small HSC populations at diagnosis which 

expanded after PI. An example of this being patient PALL10M (light blue) who had 0.074% 

HSCs at diagnosis but 5.272% after PI. Five of the 12 patients in Fig 4.2.6 displayed an increase 

in HSC population size post-induction, however with 70 times increase in population size, 

PALL10M displays the largest expansion during treatment.   
 

Another interesting sample is PALL2M (red) which displays the largest decrease (from 11-

0.031%) in HSC population size during treatment (Fig 4.2.6). Though these numbers are small, 

proportionally this decrease in stem cell number is interesting and may display either a 

substantial response to PI therapy at day 98 post treatment (date of sample collection) or the 

potential for a large active population of HSCs existing at diagnosis.    

 

A number of samples displayed little change to HSC population size over the course of 

treatment. An example of this being PALL2.7 (yellow) (sex of patient unavailable) which 

maintained a large HSC population and PALL10M(2) (turquoise) which maintained a small HSC 

population during treatment.   

  

Another sample which maintained a large population of HSCs during treatment, but which 

was highlighted as an outlier was PALL2M (red). At diagnosis, PALL2M displayed that 11.309% 

of live cells captured were HSC (Fig 4.2.6). This is significantly larger than the rest of the cohort 

and skewed the calculation of the average population size at diagnosis. Not only is this large 

population unexpected for a patient at Ph+ALL diagnosis where blast cells would be expected 

to predominate in the sample, but also that this HSC population would be unexpectedly high 

for a healthy patient sample. This data suggests that there was an expansion of cells with HSC 

surface markers in PALL2M at diagnosis which was maintained during lymphoid-directed 

treatment (day 119 when sample was harvested). Without investigation of HSC activity by 
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functional stem cell assays, a definite cause of this unusual population size cannot be made 

however, it is suggestive of a different disease physiology to the rest of the Ph+ALL cohort. A 

possible explanation is that these are leukaemic cells which express HSC markers and are 

BCR::ABL1 positive by FISH, or true Ph+ HSCs, therefore this patient may have the CML-like 

Ph+ALL subtype. 

  

MPPs represent a non-homogenous population of early progenitor cells composed of subsets 

which give rise to more differentiated progenitors. Despite being early haematopoietic 

progenitor cells, MPPs are functionally distinct from HSCs with different cell surface marker 

expression patterns and intracellular signalling dynamics (Wang et al., 2021). HSCs produce a 

series of increasingly abundant lineage-committed cells, starting with MPPs. Observation of 

predetermination of cell fate decisions in subgroups of MPPs has led to the definition of 

lineage biased MPPs (Pietras et al., 2015). Such MPPs are able to work in tandem to adapt 

blood production to requirements such as homeostasis or tissue regeneration. Cell tracing 

has enabled detection of lineage-primed MPP subsets; MPP2 and MPP3 which are myeloid-

biased, MPP4 which are lymphoid-primed and MPP1 which behave as a more metabolically 

active subset of HSCs (Fig 4.1.1).  MPP subsets have not been further explored in this chapter 

as total MPP populations were collected based on cell surface marker expression. However, 

it is important to acknowledge that the MPPs collected by FACS are heterogeneous in lineage-

biases.  
 

As MPPs and HSCs are at the apex of the haematopoietic hierarchy and exist as non-

committed progenitor cells, both populations have similar cell surface marker expression 

profiles (Fig 4.1.2 & 4.2.1).  The marker therefore used in this chapter to distinguish such cell 

types and collect pure populations of HSCs and MPPs was CD90. CD90 is expressed on HSCs 

and has been used clinically for the accurate identification of HSCs for use in applications such 

as allo-HSCT. Hence, the expression profile Lin-CD34+CD38-CD90- was used to isolate pure 

populations of MPPs for further analysis of BCR::ABL1 fusion during early haematopoiesis. 

MPP population size was expectedly small in both diagnostic and PI samples. While most 

patients maintained a similar  MPP population size during treatment, incongruent to the rest 

of the cohort, a number of PI samples displayed a large increase in MPP population size (such 

as PALL3F, PALL2M(2), PALL2.7 and PALL10M) (Fig 4.2.7). However, as with the HSC samples, 
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a number of patients had significant changes in MPP population size during treatment.  An 

example of this being PALL10M(4) (mid blue) which had an atypically large number of MPPs 

at diagnosis (6.889% of live cells captured) which decreased to 1.226% during treatment. This 

near 6-fold decrease in popula0on size mirrors that seen in the HSC sample for this pa0ent 

where the number of HSCs at diagnosis were 7 0mes larger than at PI (Fig 4.2.6). While many 

samples (6/12) maintained similar MPP numbers during treatment, samples such as 

PALL10M(4) (mid blue) and PALL2M (red) exhibited a large decrease in popula0on size (6-fold 

and 10-fold respec0vely). Interes0ngly, these were samples which exhibited HSC popula0on 

sizes atypical to the rest of the Ph+ALL cohort (Fig 4.2.6).  

 

In addition to samples which exhibited a large decrease in MPP sample size during treatment, 

a number of samples displayed the converse, a large increase in MPP cells (Fig 4.2.7). Samples 

such as PALL3F (lime green) and PALL2M(2) (orange) had some of the smallest numbers of 

MPPs at diagnosis (0.027 and 0.014% of live cells captured respectively) but had an observed 

expansion in cell number at PI (18.72 and 12.79% respectively). This expansion highlights 

samples going from the lowest number of MPPs at diagnosis to the highest at PI. Other 

samples also had increases in MPP population size (PALL10M(2) (light blue) and PALL2.7 

(yellow)), however with fold changes of 693 and 913 respectively, PALL3F and PALL2M(2) 

displayed the largest overall change in the cohort.   
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Figure 4.2.7: MPP population size in matched Ph+ALL diagnostic
and PI samples . (1) Cell count normalised (expressed as a
percentage of total number of cells counted during the sort) to
allow for variably sized samples to be displayed on the same graph.
Black dots represent samples with no matched samples available
(no PI provided or post-treatment only). (2) Representative FACS
plots displaying MPP population size in total sample (CD90/CD38).
Patient samples displayed; (clockwise from top left) PALL10M,
PALL19M, PALL3F & PALL2.7.
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4.2.3 Results II: Two Ph+ALL pa1ents had unexpectedly large CMP 
popula1ons at diagnosis 
 
Common myeloid progenitors (CMP) result from HSC progressive commitment and are able 

to differentiate into either MEPs (megakaryocyte-erythrocyte progenitors) or granulocyte-

monocyte progenitor (GMP) cells. CMPs represent early phase myeloid commitment during 

haematopoiesis (Fig 4.1.2). Monocyte commitment is a highly regulated process with 

transcription factors such as c-myb being an essential mediator for granulocyte/monocyte 

lineage decision making (Lieu and Reddy, 2012). While also functioning as progenitor cells, 

CMPs may play a direct role in immunosurveillance and the population kinetics of GMPs,   

deriving from CMPs, have been found to vary within oncogenic contexts (Pu et al., 2016). It is 

therefore of interest to investigate the population dynamics of myeloid progenitors in a 

Ph+ALL context to elucidate if the CML-like subtype displays different myeloid cell behaviour 

detectable at the population level by flow cytometry.  

 

With Ph+ALL being a lymphoproliferative disease characterised by large numbers of 

lymphoblast cells, the size of myeloid populations at diagnosis is expected to be small. 

However, two samples exhibited a larger CMP population at diagnosis compared to the rest 

of the cohort. This was unexpected in view of the pathogenesis of classical Ph+ALL with a 

lymphoblast proliferation phenotype, therefore these samples may reflect CML-like 

Ph+ALL. As the proportion of CML-like patients in the Ph+ALL cohort was predicted to be 30% 

in the 2017 Hovorkova (et al) study, the small number of patients with larger than expected 

CMP populations at diagnosis align with these predictions.  

 

PALL5F (green) and PALL19M (pink) can be observed as having atypical CMP population 

dynamics, with 4.47 and 1.382% of live cells captured being identified as CMPs respectively 

(Fig 4.2.8). PALL5F and PALL19M have CMP populations well above average for the rest of the 

cohort (average 0.023%). Not only is this atypical for the cohort studied in this chapter but 

also unexpected for diagnostic samples of a standard lymphoblastic leukaemia. These 

outlying samples suggest a different phenotype to the rest of the Ph+ALL cohort, with an 

unusual myeloid development programme (Fig 4.2.8). These samples may represent those 

discussed in Hovorkova et al, where samples designated as CML-like Ph+ALL displayed a 
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higher level of myeloid involvement at diagnosis, differing from the standard Ph+ALL 

phenotype.   
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Figure 4.2.8: CMP population size in matched Ph+ALL diagnostic
and PI samples . (1) Cell count normalised (expressed as a
percentage of total number of cells counted during the sort) to
allow for variably sized samples to be displayed on the same
graph. Black dots represent samples with no matched samples
available (no PI provided or post-treatment only). (2)
Representative FACS plots displaying CMP population size in total
sample (CD45RA/CD123). Patient samples displayed; (clockwise
from top left) PALL10M, PALL19M, PALL3F & PALL2.7.
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4.2.4 Results II: Two patients had unexpectedly large GMP populations at 
diagnosis 
 

Similarly, Granulocyte-monocyte progenitor (GMP) cells give rise to unipotent precursor cells 

from which derive terminally differentiated monocytes or granulocytes (Lieu and Reddy, 

2012). As previously discussed, this is a highly regulated process dependant on the activity of 

transcription factors (TFs) such as c-Myb, the dysregulation of which, is associated with 

myeloid leukaemias such as AML and CML.   

 
GMPs are the precursor to mast cells, granulocytes and monocytes (including macrophages 

and monocyte-derived dendritic cells), essential components for the adequate function of the 

innate immune response (Zebisch et al., 2019). Additionally, GMPs are capable of inhibiting 

polyclonal stimuli- and alloantigen-induced T cell proliferation, displaying their importance in 

the modulation of various aspects of the immune response (Pu et al, 2016). Though not 

terminally differentiated, GMPs being at a later stage of lineage commitment than cell types 

discussed in previous sections of this chapter enables them to play an active role in the 

modulation of immune responses and therefore, can be distinguished from CMPs by the 

presence of the terminal differentiation marker CD45RA (Fig 4.1.2 & 4.2.1).  

 

As with CMP cells, the number of GMPs present at diagnosis in Ph+ALL is expected to be low 

due to the haematopoiesis dynamic skewing toward lymphoid proliferation. It could be 

observed that 5 of the 12 samples had little to no GMP cells detectable in their diagnostic 

samples, with the other samples displaying a wide range of population sizes up to 7.94% of 

live cells captured being GMPs (Fig 4.2.9). Of the samples which had GMP populations over 

1% of live cells captured, all have previously been highlighted as having outlying population 

dynamics in previously discussed cell types (HSC, MPP and CMP). The sample observed to 

have the largest GMP population of the cohort was PALL5F (green) with 7.94% of live cells 

captured expressing GMP surface markers. This observation is in line with results from the 

other myeloid population investigated where PALL5F also had the highest number of CMP 

cells (Fig 4.2.8). This supports the theory that some samples in the cohort represent Ph+ALL 

with a myeloid-skewed phenotype, similar to that first observed by Hovorkova et al and which 

had been designated as CML-like Ph+ALL (Fig 4.2.8 and 4.2.9).  
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Figure 4.2.9: GMP population size in matched Ph+ALL diagnostic
and PI samples . (1) Cell count normalised (expressed as a
percentage of total number of cells counted during the sort) to
allow for variably sized samples to be displayed on the same
graph. Black dots represent samples with no matched samples
available (no PI provided or post-treatment only). (2)
Representative FACS plots displaying GMP population size in total
sample (CD45RA/CD123). Patient samples displayed; (clockwise
from top left) PALL10M, PALL19M, PALL3F & PALL2.7.
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4.2.5 Results II: Three patients had atypically small CLP populations at 
diagnosis 
 

Common lymphoid progenitors (CLPs) represent the earliest phase of lymphoid commitment 

during haematopoietic development. Older models of haematopoiesis classify CLPs as being 

at the initial lineage bifurcation step where MPPs differentiate and specialise either into a 

CMP or CLP (Cheng et al., 2019). Though models of haematopoiesis are constantly being 

revised and enhanced, this demonstrates how early in lymphoid lineage commitment CLPs 

reside. CLPs are able to give rise to T cells, B cells, dendritic cells (DCs) and natural killer (NK) 

cells, a developmental process carefully controlled by TFs and cytokines such as IL-7, SCF and 

TPO (Karsunky et al., 2008).  

 

Identification and isolation of CLPs used cell markers as previously discussed, namely Lin-

CD34+CD38+CD45RA+CD10+CD19-CD33- (Fig 4.1.2 & 4.2.1). As previously discussed, CLPs 

represent the earliest step in lymphoid lineage commitment, as treatment is aimed at 

eradica0on of lymphoid blasts, therefore, popula0on size of lymphoid progenitors in PI 

samples is expected to be small.5 of the 12 matched samples displayed a decrease in CLP 

number over treatment and 3 samples maintained similar CLP counts. As the majority (2/3) 

of samples had a small starting population size, the small PI sample size may still reflect a 

standard phenotype. Interestingly, 4 samples displayed an increase in CLP population size 

over the course of lymphoid directed therapy, a feature which may reflect immune 

reconstitution.  
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Figure 4.2.10: CLP population size in matched Ph+ALL
diagnostic and PI samples . (1) Cell count normalised (expressed
as a percentage of total number of cells counted during the
sort) to allow for variably sized samples to be displayed on the
same graph. Black dots represent samples with no matched
samples available (no PI provided or post-treatment only). (2)
Representative FACS plots displaying CLP population size in total
sample (CD19/CD33). Patient samples displayed; (clockwise
from top left) PALL19M, PALL8M(2), PALL9F & PALL12F.
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4.2.6 Results II: Atypical haematopoietic population sizes were observed in 
a number of diagnostic and PI Ph+ALL samples 
 
 
As discussed throughout section 4.2, a number of patients were observed to have 

haematopoietic progenitor population sizes atypical to the rest of the Ph+ALL cohort. The size 

of these populations were atypical to the standard Ph+ALL phenotype where the bone 

marrow is skewed toward lymphopoiesis, resulting in small populations of early 

haematopoietic and myeloid progenitors, and large numbers of lymphoid progenitors.  Such 

phenotypic differences aligned with observations in Hovorkova et al (2017), where an 

enlarged myeloid progenitor pool was present in CML-like samples.  

 

Matched diagnostic and PI sample data is displayed in Table 4.2.1 analysed as previously 

outlined in section 4.2.1. Haematopoietic progenitor population sizes are expressed as a 

percentage of live cells recorded for each sort, normalising the data and allowing for 

differences in the proportion of cell groups to be observed. 11 of the 17 diagnostic samples 

had small populations of HSCs and MPPs, a trait expected to be observable in standard Ph+ALL 

diagnostic samples where haematopoiesis is skewed toward lymphoid development. 4 of the 

17 diagnostic samples had much larger HSC/MPP populations, suggesting that these samples 

do not represent the standard Ph+ALL phenotype. This may be due to a higher level of stem 

cell activity in such samples or may display an enhanced robustness of HSC/MPPs, allowing 

the cells to better survive the cryopreservation, culture and sorting process. Methods to 

assess stem cell activity will be discussed further at the end of this chapter. 5 of the 12 

matched diag/PI samples displayed an increase in HSC proportions over treatment, suggesting 

a restoration of normal haematopoiesis due to the therapy received. 

 

In addition to the increased HSC/MPP population size, an enlarged pool of myeloid 

progenitors was observed in 2 of the 17 diagnostic samples. Typical Ph+ALL presentation 

would include small CMP populations due to the aforementioned drive toward 

lymphopoiesis. The observation of an increased myeloid progenitor pool in these patients is 

in line with data from Hovorkova et al (2017) where larger myeloid populations were 

observed in the samples described as being ‘CML-like’. GMP populations had a greater range 

than CMP (GMP range= 7.94, CMP range= 4.471) however one patient had very large 
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proportions of both CMP and GMP cells (PALL5F) which may represent an enhanced myeloid 

activity and possible ‘CML-like’ status. 8 of the 12 matched samples had an observable 

increase in CMPs over treatment, likely representing the establishment of normal 

haematopoiesis.  

 

Due to the enhanced lymphoid proliferation characteristic of ALL, CLPs are expected to be 

present in large numbers in the diagnostic samples however, 8 samples displayed CLP 

populations of <1% of live cells measured. As all the patients in this cohort were diagnosed 

and treated as having Ph+ALL, these observations are likely not representative of low 

lymphoid activity. 2 of the 9 patients displayed an increase in population size >1% after 

treatment, suggesting a development normal lymphoid function or a move toward re-

establishing normal haematopoiesis.  

Sample ID Timepoint HSC MPP CMP GMP CLP
Diag 11.309 2.532 0 0.001 1.72

PI 0.52 0.321 0.005 0.136 0.16
Diag 0.006 0.027 0.002 0.117 0

PI 0.076 12.786 0.019 0.104 0.83
Diag 0.21 0.026 0.077 2.926 0

PI 0.255 3.588 0.547 0.846 0
Diag 0.005 0.014 0.001 0.008 1.2

PI 0.093 18.722 0.093 0.07 0
Diag 0.024 0.65 4.472 7.941 3.45

PI 0.071 0.033 0.003 0.259 3.38
Diag 0 0.299 0.014 0.157 0.136

PI 5.272 0.719 0.926 0.619 1.6
Diag 0.098 1.606 0.018 6.293 4.9

PI 0.033 5.644 0.265 1.72 0.15
Diag 0.222 6.889 0.024 3.543 1.78

PI 0.031 1.266 1.058 0.828 0.15
Diag 0.157 0.192 0.01 0.015 0.06

PI 0.057 0.408 0.869 0.952 0.1
Diag 0.028 0.213 0.006 2.044 0.01

PI 0.088 0.263 0.438 0.642 0.5
Diag 0.074 0.062 0.079 0.872 0.23

PI 0.007 0.142 1.052 0.141 1.51
Diag 0.007 0.987 1.382 1.654 0.387

PI 0.001 0.1 0.216 0.126 0

Percentage sorted progenitor population of live cells (%)

PALL2M

PALL2M(2)

PALL2.7

PALL3F

PALL14F

PALL19M

PALL5F

PALL10M

PALL10M(2)

PALL10M(4)

PALL12M(2)

PALL13M

Table 4.2.1: Sorted progenitor population size (percentage of live cells) in diagnostic
and PI samples. Haematopoietic progenitor populations were sorted by FACS as
previously described) and expressed as a percentage of live cells measured for each
sort.
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4.3.1 Results II: BCR::ABL1 fusion was detectable by FISH in a subgroup of 
Ph+ALL stem and progenitor cells.  
  
The proportion of Ph+ALL patients with a mixed lineage phenotype is unknown, as is the 

impact of BCR::ABL1 presence in early stem and progenitor cells on disease pathology. In 

order to investigate this, HSC and MPP cell populations were isolated by FACS from diagnostic 

and PI Ph+ALL samples and BCR::ABL1 expression assessed by FISH (Fig 4.3.1).  This allows for 

an accurate identification of BCR::ABL1 fusion during the early stages of haematopoiesis in 

Ph+ALL.   

 In order to verify the cell of BCR::ABL1 fusion in Ph+ALL, pure populations of haematopoietic 

progenitors were isolated by FACS as previously described. Applying the haematopoietic 

development model, where HSCs are at the apex of the hierarchy and lineage commitment 

increases during development, the earliest progenitors were prioritised for examination. This 

resulted in prioritisation of HSCs and MPPs for FISH scoring. The term ‘scoring’ when applied 

to FISH refers to the process of designating cells as Ph+ (detectable BCR::ABL1) or Ph- 

(BCR::ABL1 not detected) (Chase et al., 1997). This relies on the visual identification of the 
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fusion gene, a yellow fluorescence signal resulting from the spatial proximity of the orange 

ABL signal and the green BCR signal (Fig 4.3.2.1). In a healthy (Ph- cell), separate orange and 

green signals should be observable (Fig 4.3.2.2). The Abbott probes used in this chapter 

allowed detection of BCR and ABL genes by detection of a 671kb length of DNA on 

chromosome 9 (from a point centromeric of the arginosuccinate synthase gene (ASS1) to 

telomeric of the of the ABL1 gene) and a 1.5Mb section of DNA on chromosome 22 (beginning 

with the variable segments of the IGL locus and ending 900kb telomeric to the BCR gene) 

(Abbott, 2023). These probes are designated SpectrumOrange ABL and SpectrumGreen BCR. 

Both probes are able to span the t(9;22) chromosomal breakpoints (p190, p210, and p230) 

for both genes and allow for the visualisation of BCR::ABL1.   

 

K562 CML Ph+ cell lines were used to validate the Abbott FISH probes used (Fig 4.3.2.1). It 

could be observed that the nuclei size of cell lines and sorted primary patient haematopoietic 

cells varied, with primary cell nuclei being smaller (approx. 10 microns) (Fig 4.3.2.2).   Utilising 

the current understanding of BCR::ABL1 presence during haematopoietic development in 

CML, it was theorised that BCR::ABL1 might be detectable in HSCs in CML-like Ph+ALL 

(Houshmand et al., 2019) (Fig 4.3.3). Hence, HSCs, MPPs and Lin-CD34+ cells were prioritised 

for FISH scoring in all samples with BCR::ABL1 presence in later, more committed progenitors 

being verified in a smaller number of patients. This was to investigate if BCR::ABL1 detected 

by FISH in early progenitors is maintained throughout haematopoietic development and 

increasing lineage commitment.  
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Cells were fixed and lysed as per Materials and Methods Section 2.8. Following incubation 

with Abbott FISH probes and washing, cells were visualised using a Zeiss Axio Imager M1 

fluorescence microscope.  In order to calculate the percentage of Ph+ cells, 100 cells were 

counted (or the maximum number of cells available) and BCR::ABL1 positive cells were 

calculated as a percentage of the total number of cells. Of the 34 samples analysed (diagnostic 

and PI), 14 failed to be reported (Fig 4.3.3). Failure of FISH analyses was due to small number 

of cells collected or nuclear lysis. A proposed reason for this is that samples which failed may 

have originated from standard Ph+ALL samples without large HSC populations. Without 

functional stem cell assays, it could not be determined with certainty if the HSCs isolated from 

the proposed CML-like samples had an increased survival advantage over the standard 

(1)

(2)

Figure 4.3.2: Representative FISH nuclei for Ph+ leukaemias (1) Nuclei of
K562 CML cell line, stained for FISH. BCR-ABL indicated by white arrows. (2)
HSCs isolated from a 5 year old male Ph+ALL patient at diagnosis, White
arrow indicates BCR::ABL1, absence of white arrow to indicate no fusion
event detected.



 154 

Ph+ALL HSCs in terms of survivability during the harvesting, cryopreservation, culture and 

sorting process. As an example, sample PALL2M had the largest HSC population of the cohort 

(11.309% of live cells were detected as HSCs) and was able to be scored by FISH. This could 

mean that the cohort of samples able to be analysed using FISH may unintentionally be 

enriched for samples with a large or robust stem cell population. If features of CML-like 

Ph+ALL are an enhanced HSC pool and BCR::ABL1 presence in stem cells, the FISH data 

presented may over-represent samples with Ph+ stem cells. Of the total samples analysed 

11/12 samples had detectable BCR::ABL1 within the HSC population and 17/23 within the 

MPP population.  

 

 As CML-like Ph+ALL is currently undefined, the presence of BCR::ABL1 at stem cell level alone 

is inadequate for the designation to this subtype. In order to determine if Ph+ HSC/MPPs are 

maintained during Ph+ALL treatment without LSC targeting, similar to CML, we assessed 

BCR::ABL1 in Ph+ALL diagnostic and PI samples by FISH (Fig 4.3.3). These results display the 

heterogeneity within the Ph+ALL cohort and additionally, the maintenance of Ph+ HSC/MPPs 

during treatment(Fig 4.3.3). A known mechanism of relapse in CML is the persistence of Ph+ 

HSC/LSCs  (Mojtahedi et al., 2021). This persistence of Ph+ stem and progenitor cells post-

Figure 4.3.3: BCR::ABL1 positivity in haematopoietic
populations (FISH), percentage of Ph+ progenitor cells.
Proportion of Ph+ cells calculated by counting total number of
cells in each sample, counting the number of BCR::ABL1+ cells,
and expressing Ph+ cells as a percentage of total cells. (closed
circle= diagnostic, open circle= PI).
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induction treatment could confer treatment resistance and, as a result, put such patients at 

risk of relapse.  Further research investigating stem cell functionality would be required to 

determine if such Ph+ HSCs are, in fact, LSCs. However, the maintenance of BCR::ABL1+ stem 

and progenitor cells during and after PI treatment describes a potential mechanism for 

relapse and posits the requirement for adaption of therapeutic approaches to one similar to 

that used successfully in CML.   

To verify that BCR::ABL1 was discoverable in cells at later haematopoietic differentiation 

stages than HSCs or MPPs, FISH was performed on myeloid, lymphoid and mixed Lin+ 

progenitors sorted from 3 samples (Fig 4.3.4). FISH was carried out as outlined above. Of the 

scorable populations, BCR::ABL1 was detectable in all progenitors. This supports the concerns 

that, like in CML, t(9;22) fusion at the apex of the haematopoietic hierarchy can result in 

BCR::ABL1 activity in multiple lineages, resulting in a mixed-lineage phenotype (as seen in 

CML-LBP, mixed- lineage CML-BP and CML-like Ph+ALL). 

  

Figure 4.3.4: BCR::ABL1 presence in early and late haematopoietic
populations. Percentage of Ph+ cells of total cells counted, three
samples presented (PALL5M, PALL19M & PALL2M). Cell populations
include; HSC, MPP, CMP, GMP, CLP, MLP, ProB, PreB and mixed Lin+
cells.
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4.4.1 Results II: Patients with atypical haematopoiesis dynamics and 
BCR::ABL1 fusion in stem and progenitor cells had poor clinical outcomes.  
 
We next used clinical informa0on to ascertain prognos0c significance of BCR::ABL1 within 

stem and progenitor popula0ons at both diagnosis and PI detectable by FISH. Clinical 

informa0on was provided by CellBank and CCLG (Children’s Cancer and Leukaemia Group). 

This provided an insight into clinical features at ini0al diagnosis (i.e. white blood cell count 

(WCC), blast percentage and immunophenotype), during treatment (i.e. end of induc0on 

Ig/TCR minimal residual disease (MRD) level and MRD group), date of PI sample harvest and 

addi0onal important clinical features such as incidence of relapse/disease progression/death, 

transplant status/type, site of relapse and overall/event free survival (Tables 4.4.1- 4.4.5).  

 

All clinical data received from CellBank and CCLG has been reported in tables 4.4.2- 4.4.5, 

however informa0on was unavailable for a number of pa0ents, hence the number of 

pa0ents varies between tables. BCR::ABL1 transcript levels are not currently used for MRD 

monitoring within paediatric UK protocols and therefore this informa0on was not available 

MRD Cyto abnormalities WCC Relapse/death
PALL2M X

PALL2M(2)
PALL2.7 X
PALL3F X
PALL4M X
PALL5M X
PALL5F X X X

PALL5F(2) X X
PALL7F X
PALL8M X X
PALL9F

PALL10M X X
PALL10M(2) X X
PALL10M(4) X

PALL12F X
PALL12M X X

PALL12M(2)
PALL13M
PALL14F
PALL15M
PALL16M
PALL19M X

Risk status

MRDCyto abnormalitiesWCCRelapse/death
PALL2MX

PALL2M(2)
PALL2.7X
PALL3FX
PALL4MX
PALL5MX
PALL5FXXX

PALL5F(2)XX
PALL7FX
PALL8MXX
PALL9F

PALL10MXX
PALL10M(2)XX
PALL10M(4)X

PALL12FX
PALL12MXX

PALL12M(2)
PALL13M
PALL14F
PALL15M
PALL16M
PALL19MX

Risk status

Poor risk
Good risk
No data available

MRDCyto abnormalitiesWCCRelapse/death
PALL2MX

PALL2M(2)
PALL2.7X
PALL3FX
PALL4MX
PALL5MX
PALL5FXXX

PALL5F(2)XX
PALL7FX
PALL8MXX
PALL9F

PALL10MXX
PALL10M(2)XX
PALL10M(4)X

PALL12FX
PALL12MXX

PALL12M(2)
PALL13M
PALL14F
PALL15M
PALL16M
PALL19MX

Risk status
MRDCyto abnormalitiesWCCRelapse/death

PALL2MX
PALL2M(2)

PALL2.7X
PALL3FX
PALL4MX
PALL5MX
PALL5FXXX

PALL5F(2)XX
PALL7FX
PALL8MXX
PALL9F

PALL10MXX
PALL10M(2)XX
PALL10M(4)X

PALL12FX
PALL12MXX

PALL12M(2)
PALL13M
PALL14F
PALL15M
PALL16M
PALL19MX

Risk status

Table 4.4.1: Patient risk status based on clinical information provided by CellBank. High/poor risk indicated by ‘X’=
orange, good risk= green and no data available= grey. High risk MRD was defined as having a positive EOI MRD score
>0.01%. high risk cytogenetic abnormalities were defined as gene rearrangement, deletion, gain of chromosome(s),
loss of chromosome(s) and ‘other abnormalities’ in addition to t(9;22). High risk white cell counts (WCC) at diagnosis
were defined as >117.06 (the average WCC for the CellBank cohort). Occurrences where no data was available are
indicated. High risk relapse/death was defined by the reported occurrence of relapse or death.
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for this comparison.  The informa0on provided allowed ‘high-risk’ pa0ents to be iden0fied 

and categorised (Table 4.4.1). ‘High-risk’ was defined using clinical informa0on provided by 

CellBank, these were comprised of the presence of cytogene0c abnormali0es, posi0ve MRD 

score (EOI MRD>0.01%), higher WCC at diagnosis than average for the cohort and reported 

incidence of relapse or death. Samples displayed in tables 4.4.2- 4.4.5 represent those with 

available clinical data from CellBank and FISH data generated during this project. Using these 

metrics, 3 pa0ents were described as high risk by MRD, 10 by cytogene0c abnormali0es, 8 

by high white cell counts at diagnosis and 8 by the reported occurrence of relapse or death. 

As this pa0ent cohort is populated by paediatric Ph+ALL pa0ents who were recruited from 

hospital sites across the UK to either ALL2003, EsPhALL, or UKALL2011 clinical trials between 

2005- 2012, some clinical data was unavailable to CellBank and was therefore noted on the 

pa0ent informa0on tables.  

ID Sex Age EOI MRD level MRD Group
PALL12M M 12 0.00016 0.01-0.1%
PALL8M M 8 0.338 >5%

PALL13M M 13 0.0031 0.1-1.0% VH1 VH3
PALL2M M 2 NA NA
PALL5F F 5 0.011 1-5% VH1 VH4

PALL10M M 10 0.0011 0.1-1.0% VH4 DD2-DD3
PALL5M M 5 0.00021 0.01-0.1%
PALL3F F 3 0 0% VH1 Vd2-Ja29

PALL2M(2) M 2 9.60E-06 0-0.005% VH3 DH4
PALL5F(2) F 5 0.000111 0.01-0.1% VH2 VgII-Jg1.3
PALL15M M 15 0.000012 0-0.005% VH3 VKIII
PALL7F F 7 NA NA

PALL10M(2) M 10 0.00053 0.01-0.1% VH3 VH5
PALL19M M 19 No resultsBCP ALL L2 morphology Ph+ with monosomy

MRD markers

No results

No results

Ineligible at diagnosis

Vd2-Ja29
VH1

Table 4.4.2: Patients with high-risk MRD. Minimal residual disease level including markers where available (data sourced
from CellBank)
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Closed symbol= diagnostic
Open symbol= PI
Black= Negative MRD
Turquoise= Positive MRD

Figure 4.4.1: BCR::ABL1 positivity in patients with high-risk MRD. Patients
highlighted (blue) with MRD higher than the average for the cohort (0.03 EOI MRD
level).
Unpaired t Test with Gaussian distribution ‘MRD Negative vs MRD Positive’; HSC P value= 0.9035
(ns), MPP P value= 0.8383 (ns).
ns= not significant.
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Pa0ents with minimal residual disease higher than 0.01 (posi0ve MRD in the context of IgTCR) 

were highlighted in the FISH data for BCR::ABL1 presence in HSC and MPPs (Table 4.4.2 and 

Fig 4.4.1). The FISH scores were highlighted for such high risk pa0ents to determine if high risk 

MRD status aligned with BCR::ABL1 posi0vity in HSC and MPPs in diagnos0c and post 

induc0on samples (Fig 4.4.1). Addi0onally, there is some evidence that MRD>0.1 is associated 

with a higher risk of relapse, of which only one pa0ent had an MRD score >0.1 and displayed 

a FISH score of 30% (Gökbuget et al., 2021). All pa0ents with posi0ve MRD by IgTCR displayed 

Ph+ within the stem and progenitor cells. Due to small star0ng numbers of cells collected by 

FACS, the propor0on of Ph+ cells in each sample may be subject to change if a larger number 

of cells were available.  The data displayed here shows that BCR::ABL1 fusion was detectable 

in all samples with posi0ve MRD but also that the majority of samples with Ph+ HSC/MPPs 

originated from pa0ents with nega0ve MRD. Hence, from this dataset, a direct link between 

MRD status by IgTCR and BCR::ABL1 posi0vity in stem cells cannot be made. 

 

As all pa0ents in the cohort had been diagnosed with Ph+ALL, the cytogene0c abnormality 

t(9;22) was present. However, pa0ents with atypical karyotype features and cytogene0c 

abnormali0es were highlighted by CellBank. Table 4.4.3 depicts the addi0onal cytogene0c 

abnormali0es present within the samples.  Cytogene0c data was available for 21 pa0ents 

total, of these pa0ents, 9 had addi0onal cytogene0c abnormali0es other than BCR::ABL1 

fusion. Such abnormali0es broadly fell into the categories of gene rearrangement, gain of 

chromosomes, loss of chromosomes, gene gain and dele0on, and ‘other abnormal’. These 

were categorised by probes as altera0ons to CDKN2A, CRLF2, E2A, CEP2/6/7/X/Y, IGH DC/MAF, 

ETV6-RUNX1, TEL/AML1 and MLL (Table 4.4.3). Of these 9 samples, 7 had BCR::ABL1 FISH data 

available for sorted haematopoie0c progenitors. Comparison of BCR::ABL1 presence in HSCs 

and MPPs (diagnos0c and PI) samples harvested from pa0ents with and without cytogene0c 

altera0ons in addi0on to t(9;22) displayed no sta0s0cal differences (Fig 4.4.2). This indicates 

that the presence of addi0onal cytogene0c abnormali0es is not a requirement for the 

occurrence of BCR::ABL1 fusion in early haematopoie0c stem and progenitor cells.   
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 ID Probe name Manufacturer Interpretation Patterns overview
BCR/ABL1 DC DF Vysis Gene rearrangement 1R 1G 2F [86%], 2R 2G 0F [14%]
p16 (CDKN2A/B) (9p21)(so)/ CEP9(sg) Vysis Deletion 1R 2G 0F [92%], 2R 2G 0F [8%]

PALL8M BCR/ABL1 DC DF Vysis Gene rearrangement 1R 1G 2F [85%], 2R 2G 0F [15%]
PALL13M BCR/ABL1 DC DF Vysis Gene rearrangement 1R 1G 2F [88%]

BCR/ABL1 DC DF Vysis Gene rearrangement Undefined
CRLF2 (Xp22/Yp11) DC BAR LRCG Other abnormal 0R 0G 1F [10%], 0R 0G 2F [90%]

PALL5F BCR/ABL1 DC DF Vysis Gene rearrangement 2R 1G 1F [78%], 1R 1G 1F [11%], 2R 2G 0F [9%]
PALL10M BCR/ABL1 DC DF Vysis Gene rearrangement 1R 1G 2F [98%], 2R 2G 0F [2%]
PALL5M BCR/ABL1 DC DF Vysis Gene rearrangement 1R 1G 2F [92%], 2R 2G 0F [8%]
PALL3F BCR/ABL1 DC DF Vysis Gene rearrangement 1R 1G 2F [50%], 2R 2G 0F [50%]

PALL2M(2) BCR/ABL1 DC DF Cytocell Gene rearrangement 1R 1G 2F [59%], 2R 2G 0F [40%]
BCR/ABL1 DC DF Vysis Gene rearrangement 1R 1G 3F [38%], 2R 2G 0F [37%]
TCF3 (E2A) DC BA Cytocell Gain of chromosome(s) 0R 0G 3F [24%], 0R 0G 2F [75%]
CEP6 Cytocell Gain 3R 0G 0F [49%], 2R 0G 0F [50%]
CEP2 (SG) Cytocell Gain of chromosome(s) 0R 3G 0F [59%], 0R 2G 0F [41%]
CEP 2(G) + 6(R) Cytocell Gain of chromosome(s) 3R 3G 0F [50%], 2R 3G 0F [9%], 3R 2G 0F [6%], 2R 2G 0F [35%]

PALL15M BCR/ABL1 DC DF Vysis Gene rearrangement 1R 1G 2F [66%]
BCR/ABL1 DC DF Vysis Gene rearrangement 1R 1G 2F [49%], 2R 1G 2F [14%], 2R 2G 0F [36%]
IGH DC BAR Vysis Other abnormal 0R 0G 4F [6%], 0R 0G 3F [2%], 1R 0G 1F [1%], 1R 1G 1F [1%], 0R 0G 2F [86%]
TCF3 (E2A) DC BA Cytocell Other abnormal 0R 0G 4F [8%], 0R 0G 3F [3%], 0R 0G 2F [84%]

PALL10M(2) BCR/ABL1 DF+ASS Vysis Gene rearrangement Undefined
BCR/ABL1 DC DF Vysis Gene rearrangement 1R 1G 2F [66%], 1R 1G 1F [30%]
TEL/AML1 (ETV6-RUNX1) DC DF Vysis Gain of chromosome(s) 2R 3G 0F [85%]
CEPX and CEPY Vysis Gain of chromosome(s) 0R 4G 0F [92%], 1R 1G 0F [8%]
TEL/AML1 (ETV6/RUNX1) DC DF Cytocell Gain 2R 4G 0F [100%]
BCR/ABL1 DC DF Vysis Gene rearrangement 1R 1G 3F [100%]
BCR/ABL1 DC DF Cytocell Gene rearrangement 1R 1G 3F [72%], 1R 1G 2F [17%], 2R 2G 0F [11%]
MLL Cytocell Deletion 0R 0G 1F [70%], 0R 0G 2F [30%]

PALL9F BCR/ABL1 DF+ASS Cytocell Gene rearrangement 1R 1G 2F [90%], 2R 2G 0F [4%]
TEL/AML1 (ETV6/RUNX1) ES Vysis Gain 3R 2G 0F [71%], 2R 2G 0F [28%]
BCR/ABL1 DC DF Vysis Gene rearrangement 1R 1G 3F [100%]
IGH/MAF DC DF Vysis Gain 2R 3G 0F [88%], 2R 2G 0F [11%]

PALL12M(2) BCR/ABL1 DC DF Cytocell Gene rearrangement 1R 1G 2F [53%], 1R 1G 3F [35%], 2R 2G 0F [10%]
BCR/ABL1 DF+ASS Cytocell Gene rearrangement 1R 1G 1F 0S [93%], 2R 2G 0F 2S [7%]
D7S486(7q31)(so)/ CEP7(sg) Vysis Loss of chromosome(s) 1R 1G 0F [87%], 2R 2G 0F [13%]

PALL16M BCR/ABL1 DC DF Vysis Gene rearrangement 1R 1G 2F [60%], 1R 1G 3F [20%], 2R 2G 0F [20%]

PALL10M(4)

PALL4M

PALL14F

PALL12M

PALL2M

PALL5F(2)

PALL7F

PALL2.7

PALL12F

Table 4.4.3: Patients with cytogenetic abnormalities in addition to t(9;22). Cytogenetic abnormality interpretations including
probe name. Data reported where available from CellBank..

Figure 4.4.2: BCR::ABL1 positivity in patients with cytogenetic abnormalities in
addition to t(9;22). Percentage of Ph+ HSC/MPP cells expressed as a percentage of
total cells counted for each individual sample. Patients highlighted (orange) with
cytogenetic abnormalities as reported by CellBank and CCLG. Unpaired t Test with
Gaussian distribution ‘BCR::ABL1 only vs additional cytogenetic alterations’; HSC P
value= 0.9310 (ns), HSC PI P value= 0.1392 (ns), MPP P value= 0.7397 (ns) and MPP PI P
value= 0.4899 (ns).
+ cyto= additional cytogenetic alterations
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White blood cell count at diagnosis is a standard prognostic factor used in Ph+ALL. High WCC 

at diagnosis is a strong prognostic indicator for an increased risk of haematological relapse 

(Akahoshi et al., 2021) (Table 4.4.4 and Fig 4.4.3). Statistical significance was not detected 

between high white cell counts (above the cohort average of 108.7) and FISH score (Mann-

Whitney unpaired t Test (Fig 4.4.3)). This suggests that high white cell count at diagnosis if 

not indicative of proportion of Ph+ stem and progenitor cells. 

 

Utilising WCC in addition to MRD ensures that high risk patients are detected within the 

cohort, even when alternate measurement methods are utilised. Comparison of WCC and 

MRD methods by multivariate ANOVA displayed no statistical significance and P values for 

each cell group were as follows; HSC MRD vs WCC P= 0.3069, MPP P= 0.2062 and MPP PI P= 

0.7729. Comparing MRD and WCC in Ph positive and negative HSC PI samples resulted in a P 

value of <0.0001 however, 1+ pairwise comparisons were invalid. As previously mentioned, 

limited sample size may hinder the ability to detect statistical significance however, multiple 

methods of MRD analysis is beneficial clinically to ensure that high risk patients can be 

detected should another method prove inconclusive, as evidenced by the comparison of MRD 

methods IKZF1 deletion and BCR::ABL1 transcript level in Hovorkova et al (2017). From this 

dataset, MRD and WCC alone are not able to predict Ph positivity in HSC/MPPs however, a 

combination of risk factors may be more beneficial for predicting t(9;22) occurrence in stem 

and progenitor cells. 

 

ID Sex Age WCC
PALL12M M 12 21.8
PALL8M M 8 31.3
PALL13M M 13 6.8
PALL2M M 2 8.8
PALL5F F 5 283
PALL10M M 10 224.7
PALL5M M 5 132
PALL3F F 3 121

PALL2M(2) M 2 15.3
PALL5F(2) F 5 70.1
PALL15M M 15 64.9
PALL7F F 7 1.1

PALL10M(2) M 10 541
PALL19M M 19 U/K

Table 4.4.4: Patients with high white cell
counts at diagnosis. Patient WCC at diagnosis
(healthy range 4-11). Data reported where
available from CellBank.
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FISH scores were then investigated in patients who had reported relapse or incidence of death 

(Fig 4.4.4). Of the patient samples highlighted, 7 out of the total 8 samples with incidence of 

relapse/death had previously been highlighted in the high risk MRD or WCC groups. This 

supports the efficacy of utilising MRD and WCC as indicators for clinical outcomes, as 

evidenced by the congruity of patients highlighted in figure 4.4.1- 4.4.4. All patients with 

reported incidences of relapse or death had detectable BCR::ABL1 in early haematopoietic 

stem and progenitor cells at diagnosis and post induction therapy. However, a number of 

patients had Ph+ HSC/MPPs and no incidence of death/relapse,  suggesting that the presence 

of BCR::ABL1 in stem cells alone is inadequate for predicting death/relapse occurrence and 

highlighting that this is still a very heterogeneous population.  Statistical analysis of FISH score 

in relation to likelihood of death/relapse showed no significance (Mann-Whitney unpaired t 

Test (Fig 4.4.4)) despite all patients with reported death occurrence having positive BCR::ABL1 

FISH scores. As previously discussed, these results may be related to low sample size however, 

it could be surmised from this data that percentage of Ph+ HSC and MPPs is not indicative of 

relapse/death occurrence. These results suggest that additional factors other than BCR::ABL1 

presence in haematopoietic stem and progenitor cells are causative of poor patient 

outcomes.   

Table 4.4.5: Patients with reported incidences of relapse or death. (1) Available survival data provided by CellBank. COD= cause of death, OS= overall
survival (days), RFS= relapse-free survival (days), TP type= transplant type, MUD= matched unrelated donor, MRD= matched related donor, GVHD= graft
versus host disease, U/K= unknown, rel= relapse, sib allo in CR2= sibling allogenic in complete remission

ID Sex Age Relapse site COD OS RFS Transplant TP type
PALL12M M 12 N/A Infection 228 228 Y MUD
PALL8M M 8 N/A Other 532 532 Y MUD

PALL13M M 13 N/A N/A 243 243 Y MRD
PALL2M M 2 N/A N/A 4227 4227 N N/A
PALL5F F 5 BM Progressive ALL 445 333 N N/A

PALL10M M 10 BM Progressive disease 3416 913 N N/A
PALL5M M 5 N/A N/A 295 295 N N/A
PALL3F F 3 N/A N/A 3328 3328 N N/A

PALL2M(2) M 2 N/A N/A 3175 3175 N N/A
PALL5F(2) F 5 N/A Infection 405 405 N N/A
PALL15M M 15 N/A N/A 2755 2755 N N/A
PALL7F F 7 N/A N/A 2785 2785 N N/A

PALL10M(2) M 10 CNS Relapse 517 384 N N/A
PALL19M M 19 BM Relapse GVHD U/K rel 28/02/2017 21/10/2015 sib allo in CR2
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Figure 4.4.4: BCR::ABL1 positivity in patients with reported incidences of relapse
or death. Patients highlighted (blue) with incidences of relapse/death as reported
by CellBank and CCLG. Unpaired t Test with Gaussian distribution ‘Alive vs Dead’;
HSC P value= 0.4445 (ns), MPP P value= 0.7972 (ns) and MPP PI P value= 0.8725
(ns).
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Clinical and molecular features used to identify high-risk patients in figures 4.4.1- 4.4.4 were 

those reported at diagnosis.  We next sought to utilise the atypical cell populations (i.e. (large 

popula0ons of myeloid progenitors and small popula0ons of lymphoid progenitors at 

diagnosis) presented above to assess if these samples could be identified through BCR::ABL1 

identification by FISH within the HSC and MPP population (Fig 4.4.5). HSC and MPP FISH scores 

for samples with aberrant haematopoietic population sizes at diagnosis were compared to 

samples with normal FACS population sizes. ‘Aberrant’ was defined as above mean of the 

collected population and ‘Normal’ was defined as below mean of the population (Fig 4.46). 

While no significance was detected, it was noted that all of the aberrant samples had positive 

FISH scores. This would be an interesting observation to follow up in a cohort with a larger 

sample pool to verify if the lack of significance is due to small sample size or if FISH scores in 

stem and progenitor cells are truly unrelated to samples with unusual cell population sizes.  

 

Mul0variate analysis (Mul0variate ANNOVA) analysis of the combina0on of different methods 

of risk analysis with rela0on to Ph posi0vity in HSC and MPP diagnos0c and PI samples was 

run to determine if risk can be associated with FISH score.  Risk features compared were the 

presence of cytogene0c abnormali0es in addi0on to BCR::ABL1, high WCC at diagnosis, MRD 

HSC HSC PI MPP

Closed symbol= diagnostic
Open symbol= PI
Black= Normal FACS pop
Pink= Abnormal FACS pop

Figure 4.4.6: BCR::ABL1 positivity in patients with aberrant haematopoietic
diagnostic populations measured by FACS. Mean of FACS populations were
calculated for HSC & MPP diagnostic (diag) and PI. ‘Normal’= below mean,
‘Aberrant’= above mean.
HSC diag mean= 1.112%
HSC PI mean= 0.3878%
MPP diag mean= 1.29%
MPP PI mean= 3.283%
‘Normal vs Aberrant’ HSC diag P value= 0.9586 (ns) and MPP diag P value= 0.3955
(ns).
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posi0vity, reported incidence of death/relapse and aberrant haematopoie0c popula0on sizes 

in diagnos0c samples analysed by FACS (Figs 4.41- 4.4.5). No sta0s0cal significance was 

detected in the mul0variate FISH analyses of diagnos0c HSC samples (P value= 0.2108 (ns)) 

however, in the HSC PI samples and MPP diagnos0c and PI samples, significance was found 

(HSC PI P <0.0001 (****), MPP diagnos0c P= 0.0002 (***) and MPP PI P <0.0001 (****)) (Table 

4.4.6). This suggested a significant associa0on between high risk BCR::ABL1 FISH scores and 

clinical features men0oned above. As has been discussed throughout this chapter, a major 

limi0ng factor is the small sample size and failures of FISH analyses, hence, in order to bolster 

these findings, larger pa0ent cohorts should be u0lised. 

Source of Variation % of total variation P value P value summary
    Row Factor 20.3 0.2109 ns
    Column Factor 0.2275 0.9991 ns

ANOVA table SS (Type III) DF MS F (DFn, DFd) P value
    Row Factor 3115 5 623.1 F (5, 30) = 1.528 P=0.2109
    Column Factor 34.91 4 8.727 F (4, 30) = 0.02140 P=0.9991
    Residual 12232 30 407.7

    Number of columns (Column Factor)
    Number of rows (Row Factor)
    Number of values

Source of Variation % of total variation P value P value summary
    Row Factor 89.18 <0.0001 ****
    Column Factor 2.404 0.6272 ns

ANOVA table SS (Type III) DF MS F (DFn, DFd) P value
    Row Factor 2973 3 991 F (3, 12) = 32.97 P<0.0001
    Column Factor 80.15 4 20.04 F (4, 12) = 0.6667 P=0.6272
    Residual 360.7 12 30.06

    Number of columns (Column Factor)
    Number of rows (Row Factor)
    Number of values

Source of Variation % of total variation P value P value summary
    Row Factor 43.04 0.0002 ***
    Column Factor 0.1751 0.9939 ns

ANOVA table SS (Type III) DF MS F (DFn, DFd) P value
    Row Factor 17202 17 1012 F (17, 74) = 3.289 P=0.0002
    Column Factor 69.97 4 17.49 F (4, 74) = 0.05685 P=0.9939
    Residual 22767 74 307.7

    Number of columns (Column Factor)
    Number of rows (Row Factor)
    Number of values

Source of Variation % of total variation P value P value summary
    Row Factor 87.24 <0.0001 ****
    Column Factor 1.266 0.8738 ns

ANOVA table SS (Type III) DF MS F (DFn, DFd) P value
    Row Factor 3219 3 1073 F (3, 12) = 27.35 P<0.0001
    Column Factor 46.73 4 11.68 F (4, 12) = 0.2978 P=0.8738
    Residual 470.8 12 39.23

    Number of columns (Column Factor)
    Number of rows (Row Factor)
    Number of values

Yes

20
4
5

No
Yes

Yes

20
4
5

96
18
5

No

Data summary

Significant?

No
No

40
6
5

HSC PI

MPP

MPP PI

Data summary

Significant?

Data summary

Significant?

Data summary

Significant?

No

HSC

Table 4.4.6: 2way ANOVA of FISH scores for overall multivariate high risk vs low risk clinical
factors. Ordinary Two-way ANOVA, Alpha 0.05. HSC= multivariate high risk vs low risk FISH
scores in HSC diagnostic samples, HSC PI= multivariate high risk vs low risk FISH scores in HSC PI
samples, MPP= multivariate high risk vs low risk FISH scores in MPP diagnostic samples, MPP
PI= multivariate high risk vs low risk FISH scores in MPP PI samples.
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 4.5 Discussion. 

 

Although the treatment of Ph+ALL has improved exponentially, the cell of origin remains 

undefined (Nishiwaki et al., 2020 and Wieduwilt., 2022). The importance of identifying the 

cell type in which the Philadelphia chromosome arises is essential for understanding which 

cells are likely to be intrinsically affected by the constitutively activated tyrosine kinase 

encoded by said fusion chromosome. This has been exemplified in CML where the 

identification and targeting of Ph+ LSCs have resulted in a clinical success story (Holyoake & 

Vetrie., 2017).   

  

Despite being driven by the same fusion event, CML and classical Ph+ALL differ by which cell 

type predominates in disease pathology. CML is a myeloid-driven leukaemia but in the 

terminal blast crisis, it can be seen to have involvement by myeloid, lymphoid and mixed 

lineage cells, owing to its stem cell origin. In contrast, the majority of Ph+ALL cases display 

unchecked proliferation in lymphoid lineage cells only. Emerging reports discuss the existence 

of a Ph+ALL subgroup with significant myeloid disease involvement, named CML-like Ph+ALL 

(Hovorkova et al., 2017).  

  

The higher frequency and reporting of mixed-lineage disease involvement in CML than in 

Ph+ALL is an important factor in why the cell of BCR::ABL1 origin is known in CML but remains 

unidentified in Ph+ALL. Referring to older models of haematopoiesis, it can be said that in 

order to affect cells from multiple lineages, the fusion event must occur prior to lineage 

bifurcation during early haematopoiesis. In newer models, this may be viewed as the fusion 

event occurring during the very early stages of lineage commitment, possibly in stem and 

progenitor cells primed for multiple lineages. Whichever model is used, it is clear that in order 

to understand such leukaemic initiation events, cells in the earliest stages of haematopoiesis 

must be examined.   

 

As the cell of  origin in Ph+ALL remains elusive, we hypothesised that the fusion event varied 

amongst patients and that there would be some patients where the BCR::ABL1 fusion could 

be identified out with a CD19+ blast population. Because of the observation by Horokova et 
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al in 2017, that a subpopulation of patients, termed CML-like Ph+ALL, remained BCR::ABL1 

positive by MRD analysis whilst being IgTCR negative, we hypothesised that the fusion even 

would arise within a stem cell compartment, namely HSCs or MPPs (Hovorkova et al., 2017). 

Inevitably, this would mean that Ph+ALL is heterogeneous, not solely with interpatient 

variability, but with the disease driver.   It was therefore initially believed that that only 

patients with the CML-like disease would have Ph+ HSCs and MPPs, with the rest of the cohort 

having detectable BCR::ABL1 fusion in lymphocyte progenitors, in line with the current 

understanding of ‘classical’ Ph+ALL. These predictions aligned with the current dogma that 

CML contains Ph+ stem and progenitor cells and Ph+ALL does not, with this being the reason 

why CML has the capacity to be a mixed lineage disease and Ph+ALL is restricted to 

lymphocytes.   

 

We first approached this hypothesis by utilising a flow cytometry-based approach to identify 

haematopoietic stem and progenitor cells by surface marker expression and collection of such 

cells. Utilising the wealth of research knowledge on haematopoietic stem and progenitor cell 

surface marker profile, identification of HSCs, MPPs, CMPs, GMPs, CLPs, Pro and PreB cells 

has been reliably performed by FACS. This allowed for the isolation of rare populations of 

HSCs in Ph+ALL diagnostic samples with high accuracy. Though heterogeneity in population 

sizes was expected between samples (as cells were isolated from primary patient samples), 

broad trends in progenitor cell numbers were anticipated such as small HSC fractions, few 

myeloid progenitors and large lymphoid progenitors in diagnostic samples. Heterogeneity 

was indeed observed however, a small number of patients displayed progenitor population 

sizes contradictory to Ph+ALL cellular phenotypes and in line with results from Hovorkova et 

al (2017), namely, enlarged myeloid populations. Additionally, a small number of samples had 

large HSC populations, a surprising trait, and one which may display an enhanced survival 

advantage or increased drive toward the production and maintenance of HSCs or the 

presence of de-differentiated blast cells. 

 

We next analysed sorted cell populations by FISH to identify those with BCR::ABL1.  By utilising 

a number of cell surface markers, straining to prevent clumping, FMO controls, and validation 

of cell surface markers post sort, the purity of the sort was confirmed. As discussed, a number 

of samples failed FISH analysis due to small starting cell number or nuclear lysis. Of the 
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scorable samples, a high proportion of Ph+ HSCs and MPPs were detected. Initial predictions 

(based on the proposed CML-like Ph+ALL incidence of ~30%) were that approximately one 

third of samples would have BCR::ABL1 fusion in early stem and progenitor cells, based on 

the assumption that only CML-like samples would contain Ph+ HSC/MPPs. Therefore the high 

incidence of FISH positive cells was not anticipated and thus it was proposed that Ph+ALL is a 

highly heterogeneous disease and t(9;22) alone is inadequate for the establishment of the 

CML-like subtype. In addition, HSC populations were not directly investigated by Hovorkova 

et al (2017) and their findings displayed MRD discordance between methods, hence, 

unexpectedly large Ph+ HSC observations may be reflective of the differences between 

populations investigated and methods used. These observations may also be influenced by 

an unintended artificial enrichment of scorable cells with ‘fit’ HSCs better able to survive the 

cryopreservation process. The reason why the majority of scorable cells display t(9;22) may 

be that BCR::ABL1 confers a survival advantage, allowing such cells to be more robust post 

cryopreservation and less likely to undergo nuclear lysis than Ph negative HSC/MPPs. Hence, 

the FISH dataset may be enriched with fit Ph+ cells. The large number of samples with Ph+ 

HSC/MPPs may still reflect a heterogeneity within the Ph+ALL cohort in addition to BCR::ABL1-

driven survival advantage. 

  

Although this approach can ensure the purity of cell populations collected, there were a 

number of caveats that arose. Firstly, the cell populations, particularly HSCs and MPPs, 

collected were extremely small (often <100 cells). In samples such as Ph+ALL diagnostic BM 

aspirate samples, the predicted number of HSCs is low, hence collection of few HSCs in these 

samples were unsurprising. Additionally, washing procedures post collection and during the 

preparation of FISH slides can often result in the loss of cells and therefore, the number of 

cells available for analysis by FISH was frequently much lower than what had been in the 

original sample. While FISH analysis procedures used in the clinical setting aim to count 100 

cells minimum in order to calculate the percentage of Ph+ cells, due to the conditions 

discussed above, this was often impossible to do. Hence, in very small samples, as many cells 

as possible were counted however this was not to clinical standards. 

 

Furthermore, the use of cell surface markers alone for identification and isolation of 

haematopoietic cell populations has limitations. Although flow cytometry is a well-
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established practice used in both research and clinical laboratories, its use in Ph+ALL can incur 

some issues. The foremost issue is that of blast cell de-differentiation whereby lymphoblasts 

aberrantly express cell surface markers more commonly associated with stem cells. This 

surface marker promiscuity can lead to the misidentification of blast cells as HSCs. Blast cell 

de-differentiation may result in a population of cells which may appear to be HSCs when 

phenotyped using cell surface markers however, lymphoblasts (regardless of aberrant surface 

marker expression) would still bear the hallmarks of having gone through latter stages of 

lymphocyte development, namely Ig/TCR gene rearrangement. This process ensures an 

adequately diverse immune repertoire of B and T lymphocytes and is a feature of lymphoid 

lineage fixed cells, hence, true HSCs will not display these gene rearrangements due to being 

uncommitted to a specific lineage. In the context of the findings from the 2017 Hovorkova et 

al paper, identification of BCR::ABL1 positive cells with no Ig/TCR gene rearrangement may 

be reflective of Ph+ HSCs discussed in this chapter which would not display hallmarks of 

lymphoid development. Additionally, expression of CD10 is not normally observed to be 

aberrantly expressed, hence the chosen cell surface markers were deemed appropriate to 

differentiate HSCs from lymphoblasts. Utilising phenotypic and functional assays (ie FACS and 

stem cell long term culture long-term culture-initiating cell (LTCIC) assays/clonogenic assays) 

in combination would help ensure that the cells isolated are correctly being identified as 

haematopoietic stem cells.  This is planned within a further project within the Horne lab.  

Another method of verification is the use of sequencing rearranged Ig/TcR genes. This caveat 

was not discussed in Hovorkova et al as Ig/TCR rearrangement was not assessed in HSC 

populations.  The goal of the Hovorkova 2017 paper was to assess discordance between MRD 

methodologies (Ig/TCR gene recombination and BCR::ABL1 transcript quantification). The 

resultant discordancy observed between methods in CML-like patients who were measured 

as MRD negative by Ig/TCR gene rearrangement but maintained BCR::ABL1 transcripts is, at 

present, the only definition available for CML-like status. As previously mentioned, clinical 

data was not available for all patients in this cohort, hence available MRD data and methods 

have been reported. Available MRD data provided by CellBank was generated by Ig/TCR 

rearrangement and did not include BCR::ABL1 transcript data. While utilising this MRD 

concordance method would be beneficial for definition of CML-like cases just as in Hovorkova 

et al, the available data in the CellBank cohort is variable. These limitations include (but are 

not limited to) the use of historical samples which pre-date MRD standardisation, multiple 
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and ongoing development of MRD methods and the likelihood of multiple MRD methods 

being used clinically. Hence, it is outwith the capabilities of this project to utilise the diagnostic 

method established by Hovorkova et al, which necessitates utilisation of alternative 

informative methods discussed in this chapter. 

 

As there are no current diagnostic criteria for CML-like Ph+ALL, clinical information in addition 

to flow cytometry and FISH data were used holistically with the goal of identifying Ph+ALL 

subtypes with CML-like features. This revealed a larger than expected population of patients 

with Ph+ early stem and progenitor cells. Based off the data reported in Hovorkova et al 

(2017), it was postulated that only ‘CML-like’ patients would exhibit BCR::ABL1 fusion events 

in HSC/MPP populations. However, the data discussed in this chapter displayed a proportion 

of samples with early t(9;22) fusion, larger than the estimated 1/3 patients in the Hovorkova 

cohort designated ‘CML-like’. Further investigation into these patients revealed that 

BCR::ABL1 fusion in HSC/MPPs alone, is not enough to establish a high-risk disease state, 

suggesting that downstream events hold more importance in CML-like Ph+ALL. Hence, Ph 

presence in HSC/MPPs should not be the sole diagnostic criteria for identifying CML-like 

patients and the large number of samples with Ph+ HSC/MPPs observed during this project, 

may still be congruent with the findings from Hovorkova et al (2017). In addition, Hovorkova 

et al assessed BCR::ABL1 presence in ALL blasts, non-ALL B cells, myeloid cells/monocytes and 

T cells, as BCR::ABL1 transcript levels were not investigated in HSCs, it is unknown whether 

similar proportions of Ph+ HSC/MPPs could be identified in both the Hovorkova and the 

CellBank cohort. 

  

With such caveats in mind, promising results were generated during this investigation. It was 

found that the majority of Ph+ALL samples had BCR::ABL1 fusion detectable in 

haematopoietic stem and progenitor cells. Due to issues with sample size as previously 

discussed, a correlation between percentage of Ph+ cells and disease outcome could not be 

established. However, an interesting observation was made in that patients with high risk 

clinical features such as high WCC, MRD or the occurrence of relapse/death were not the only 

patients with BCR::ABL1 in their HSC and MPPs. Patients without such high-risk features were 

found to have BCR::ABL1 expression in their early haematopoietic cells, an unexpected 

outcome. However, all patients with above average high risk clinical features all had 
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BCR::ABL1 fusion at the early stem and progenitor developmental level. This suggests that 

BCR::ABL1 fusion alone is inadequate for establishing a high risk phenotype but its presence 

may be required in order for a high risk status to occur. It may also be posited that samples in 

which BCR::ABL1 can be detected in HSC and MPP, may have a survival advantage over those 

with Ph- stem and progenitor cells. It is well understood that BCR::ABL1 fusion (and resultant 

tyrosine kinase activity) can negatively affect downstream signalling pathways such as 

JAK/STAT and ERK. Hence, some of these metabolic alterations may result in a survival 

advantage when applied to the cryopreservation, culture and sorting process. Therefore, due 

to biological differences between samples, the cohort may be artificially enriched for samples 

containing Ph+ HSC and MPPs.   

 

To continue investigation into the CML-like subtype, RNAseq will be used to investigate 

transcriptional heterogeneity within the Ph+ALL cohort (discussed in the next chapter). As 

there are currently no diagnostic genes for the CML-like subtype, patient samples cannot be 

isolated from the RNAseq data prior to data analysis. Therefore, identification of differentially 

expressed genes may not only highlight transcriptional differences between the proposed 

Ph+ALL subtypes, bringing light to mechanisms which cause these differing phenotypes, but 

also allow CML-like samples to be identified due to an altered transcriptional profile 

compared to the rest of the Ph+ALL cohort. 

 

Despite having access to a relatively small cohort of Ph+ALL samples, and examining a rare 

population of cells, the investigations of this chapter has allowed for the accurate 

identification of BCR::ABL1 fusion in Ph+ALL HSCs. This not only represents the first 

observation of its kind, but also a major input in the field of Ph+ALL research.   
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Chapter 5.  Results III. Transcriptional investigation of a heterogenous 
Ph+ALL cohort. 
5.1.1  Introduction: Background and clinical relevance. 

 

As previously discussed, BCR::ABL1 in haematopoietic progenitor cells is believed to be an 

important aspect of the CML-like Ph+ALL subtype. Within chapter 4, we revealed a higher-

than-expected proportion of Ph+ HSC/MPPs in the Ph+ALL cohort, suggesting that Ph+ALL is 

likely more heterogeneous than previously described. To determine if heterogeneity existed 

at a transcriptional level, we next sought to assess the gene expression of patient samples 

used in previous analysis in Chapter 4. RNAseq was used to assess transcriptional variation 

between the proposed Ph+ALL subtypes. RNAseq is a highly sensitive method of gene 

expression analysis used for high-throughput transcriptome profiling for the understanding 

of functional processes which underpin disease pathology (Marco-Puche et al., 2019). 

Utilising RNAseq to reveal the entire transcriptome of leukaemic patient samples allows for 

an enhanced understanding of disease pathogenesis and subtype-specific gene regulation. 

The clinical benefits of such investigations include the identification of new diagnostic panels 

(including biomarkers of disease), identification of novel therapeutic targets and increased 

understanding of disease mechanisms. 

 

One aim of this chapter was to investigate the potential for transcriptional heterogeneity 

within the paediatric Ph+ALL cohort. Previous investigations have described the existence of 

CML-like Ph+ALL, represented by a group of Ph+ALL patients where BCR::ABL1 persisted 

despite clearance of IgTCR MRD following induction chemotherapy (Hovorkova et al., 2017). 

However, disease aetiology is known.  Previous data from Chapter 4 suggested that BCR::ABL1 

was able to persist after commencement of induction treatment, evidenced by the 

maintenance of Ph+ HSPCs in PI samples (Fig 4.4.1.2- 4.4.1.6). This data supports what is 

currently understood about the CML-like subtype however, gene expression features unique 

to this subtype are still to be elucidated. To explore this further, transcriptional profiles of 

Ph+ALL BMNC samples from paediatric patients used in previous experiments were examined 

by RNAseq. Examining overall transcriptional profiles of all samples in a cohort is an approach 

to identify heterogeneity in gene expression which could be used to identify disease 

subgroups. Primary samples will naturally display a level of transcriptional variation arising 
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from patient-specific differences (ie age, previous disease status and treatment history). A 

non-homogenous cohort of primary samples will be transcriptionally heterogeneous 

however, patients belonging to a distinct subgroup would predictably have a notable 

difference in gene expression while maintaining some transcriptional similarities with the rest 

of the cohort. 

 

As genes associated with the CML-like subtype are yet to be elucidated, target genes which 

could be used to identify CML-like samples from a Ph+ALL population are not available. Hence, 

CML-like samples cannot be identified from the outset of analysis. In order to identify 

potential CML-like samples we propose a method of integrating the gene signature (Table 

5.1.1) developed in chapter 3 with the transcriptional data generated in this chapter. We then 

plan to validate this with the overall RNAseq transcriptional signature of the samples and 

correlate findings with clinical features available for the patient samples. Finally, gene 

ontology tools and DEGs will be examined for any subgroups identified to determine if CML-

disease specific gene expression patterns exist within the proposed CML-like samples. 

 

Our hypothesis being that CML-like Ph+ALL is likely a heterogeneous group which shares CML 

disease features such as the retention of BCR::ABL1 expression post treatment (in CML by the 

maintenance of LSCs), we believe that patients belonging to this subtype would have a 

transcriptional signature different to the standard Ph+ALL cohort, and that the gene signature 

could be used for diagnosis. As previously discussed in Chapter 4, HSC population size in 

standard Ph+ALL diagnostic samples are likely to be very small hence, HSC transcriptional 

signatures would be unlikely to be found in such bulk samples. Findings from Chapter 4 

displayed atypically large HSC populations in a small number of samples which may represent 

the CML-like subtype. Upregulation of HSC/stem-related genes in CML-like Ph+ALL samples 

when compared to ‘standard’ Ph+ALL or similar regulation of such genes when compared to 

CML-LBC samples may suggest an increased stem cell or LSC activity, similar to disease 

pathology seen in CML.  
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Table 5.1.1: Proposed CML-like gene expression pattern. Differentially
expressed genes identified in CML and potential CML-like Ph+ALL samples
from publicly available GEO datasets.

Gene name Function
ATF4 activating transctipion factor 4

CCL8 C-C motif chemokine ligand 8

CCND1 cyclin D1

FLI1 Fli-1 proto-oncogene, ETS transcription factor

FLT3 fms related tyrosine kinase 3

FZD6 frizzled class receptor 6

LCP1 lymphocyte cytosolic protein 1

LYL1 basic helix-loop-helic family member

MPL MPL proto-oncogene, thrombopoietin receptor

MPO myeloperoxidase

MYC v-myc avian myelocytomatosis viral oncogene homolog
YY1 YY1 transcription factor 1

CREBBP CREB binding protein 

HIPK1 homeodomain interacting protein kinase

LDB1 LIM domain binding

MYB MYB proto-oncogene, transcription factor
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5.1.2  Aims. 

 

The aims of this chapter were: 

1. To establish heterogeneity within the Ph+ALL population by investigating overall 

transcriptional profiles and detection of any transcriptomic subtypes that may arise; 

2. To investigate genes differentially regulated between CML-LBC and Ph+ALL; 

3. To correlate differentially expressed genes with clinical outcomes;  

4. To determine if BCR::ABL1 presence in HSCs or MPPs (detected by FISH) results in a 

specific transcriptional profile;  

5. To validate chapter 3 gene signature generated from publicly available datasets within 

primary samples. 
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5.1.3  Sample selection for RNAseq.  

 

11 diagnostic Ph+ALL samples from previous experiments were selected for use in the RNAseq 

study. Lymphoid blast phase samples were used as a control, where cell of origin is known to 

be within a stem cell (or cell that has acquired stem cell properties); these samples were not 

age matched.  As previously discussed, CML in children is exceedingly rare, hence paediatric 

CML LBC samples were unavailable for sequencing. RNA quality and quantity for each of the 

Ph+ALL and CML LBC samples sequenced is listed in table 5.1.2 with samples summarised by 

Glasgow Polyomics as ‘Good’, ‘Weak but probably OK’, ‘Probably OK’ or ‘Slight degradation’. 

Clinical features associated with samples selected is presented in Table 5.1.3. Samples which 

had large amounts of RNA degradation, salt contamination or very low RNA concentrations 

(below 0.5ng/µL) were omitted based on the recommendations of Glasgow Polyomics so as 

not to waste money and resources running samples unlikely to yield data. Samples were 

processed as specified in materials and methods. Briefly, bulk samples (unsorted cells) were 

harvested from BMNC overnight culture (with physiological growth factor) and preserved in 

RNAprotect (QIAGEN) with RNA extraction being performed on multiple samples at once to 

reduce intra-sample variation resulting from the extraction process.  Once RNA was extracted, 

samples were assessed by Glasgow Polyomics for RNA quality (RIN - RNA integrity number) 

and quantity (concentration in ng/µL) using a Bioanalyzer.  

 

Table 5.1.2: RNAseq sample quality information. RNA sample quality control outputs including RNA
concentration, biological concentration, RNA integrity number (RIN) and quality summary provided by
Glasgow Polyomics.

Sample ID Concentration (ng/µL) RIN Comments
PALL2M 1.01 7.1 Good

PALL2M(2) 0.566 5.4 Weak but probably OK
PALL3F 0.6 6.7 Weak but probably OK
PALL4M 0.78 6.3 Probably OK

PALL5F(2) 0.874 7 Weak, slightly degraded but probably OK
PALL8M 0.722 8 Good

PALL10M 3.02 9.1 Good 
PALL10M(4) 0.923 5.9 Weak but probably OK

PALL12M 0.962 7.9 Good
PALL15M 3.2 9.6 Good 
PALL19M 0.654 7 Probably OK

CML-LBC1 0.633 7.1 Weak but probably OK
CML-LBC2 1.03 7.3 Slight degradation but probably OK
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Bulk RNA was harvested as samples were thawed for sorting, due to natural heterogeneity 

between samples, RNA quality varied. Samples with the highest RIN and large quantities of 

RNA were therefore selected for sequencing and as a result, 11 Ph+ALL and 2 CML-LBC 

samples were selected (Table 5.1.2 & 5.1.3).  

 

 
 

Table 5.1.3: RNAseq sample patient clinical information. Clinical outcomes and diagnostic features were
provided for each Ph+ALL sample by CellBank. Ph%= percentage of BCR::ABL1 positive cells in stem and
progenitor cells (calculated by FISH as part of this project (cell populations indicated)). N/A= information not
available. U/K= information not known.

Sample ID PALL2M PALL2M(2) PALL3F PALL4M PALL5F(2) PALL8M PALL10M PALL10M(4) PALL12M PALL15M PALL19M

Trial ALL2003 ALL2003 ALL2003 UKALL2011 ALL2003 ALL2003 ALL2003 UKALL2011 ALL2003 ALL2003 EsPhALL

Sex M M F M F M M M M M M

Age 2 2 3 4 5 8 10 10 12 15 19

Ph+% 50 (HSC) 0 0 0 18 (HSC) 30 (HSC) 19 (HSC)    
50 (MPP) 0 17 (MPP) 0 5 (MPP)

MRD Group N/A 0-0.005% 0% U/K 0.01-0.1% >5% 0.1-1.0% U/K 0.01-0.1% 0-0.005%

BCP ALL L2 
morphology 

Ph+ with 
monosomy

Cause of 
death N/A N/A N/A U/K Infection Other Progressive 

disease U/K Infection N/A Relapse 
GVHD

Relapse site N/A N/A N/A U/K N/A N/A ISO BM U/K N/A N/A ISO BM

Relapse 
free 

survival 
(days)

4227 3175 3328 U/K 405 532 913 U/K 228 2755 rel 
28/02/2017

Transplant N/A N/A N/A U/K N/A Y N/A U/K Y N/A 21/10/2015

Transplant 
type N/A N/A N/A U/K N/A MUD N/A U/K MUD N/A sib allo in 

CR2
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5.2.1 Results III: CML-LBC vs Ph+ALL principal component analysis (PCA) 
identifies transcriptionally and clinically distinct Ph+ALL subgroups. 
 

In order to elucidate the differences in gene expression between the samples sequenced, 

differential expression analysis was performed. Using R Studio, datasets were imported and 

converted to a matrix to allow the count data to be marked as columns and desired samples 

for analysis to be selected. Genes with low numbers of reads (<=5 reads) were then filtered 

out. Removal of low count genes was performed as genes not expressed at a biologically 

meaningful level offer little insight into disease function (Bourgon et al., 2010), additionally 

removal of low count differentially expressed genes (DEGs) may improve sensitivity, precision 

and allow the mean-variance relationship in the data to be estimated with greater reliability 

(Law et al., 2016).   

After removal of low count DEGs, the conditions of the samples were defined, in this case 

“CMLLBC” and “PhALL”. A ‘coldata’ data frame was then created for the count matrix and 

conditions specified using the DESeq and dds functions. The PCA (principal component 

analysis) plot was then created using the DESeq2 and ggrepel package to conveniently plot 

each sample by means of variance. 

 

To first identify global differences in gene expression between samples, PCA was used (Fig 

5.2.1).  Three distinct populations were identified (Fig 5.2.1). Of the 11 total Ph+ALL samples 

sequenced, 8 formed a tight Cluster displaying significant transcriptional similarity between 

these samples, termed Cluster 2. The transcriptional similarity is suggestive of a similar 

transcriptional pathology and may infer similar disease pathogenesis. The total PCA plot 

displayed 3 Ph+ALL samples which were distal to the rest of the cohort in Cluster 2. These 

samples were designated Cluster 3. As expected, CML-LBC samples were distinct to both 

Ph+ALL Clusters on the PCA plot and were labelled Cluster 1.   

 

The identification of Cluster 3 confirms transcriptional heterogeneity within the Ph+ALL 

cohort. The presence of a separate Ph+ALL Cluster indicates that these samples have a 

differing disease phenotype and biological mechanism to Cluster 2 and may represent the 

CML-like Ph+ALL subtype. 
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We next sought to determine if samples from Cluster 3 could be identified through clinical 

prognostic details and outcomes. Inspection of the clinical information available for samples 

in Cluster 3 displayed that these patients had the poorest clinical outcomes, including a higher 

incidence of relapse and death, and higher WCC and MRD than the rest of the cohort (Table 

5.1.3). Prior to exploring DEGs within these samples, PCA analysis has displayed that the three 

outlying samples represent transcriptionally distinct Ph+ALL subgroup and follow up with 

patient data shows a clinical difference between samples. Samples previously identified as 

potential CML-like Ph+ALL included PALL10M, PALL19M, PALL8M, PALL2M, PALL5F(2) and 

PALL12M. these were highlighted due to presence of BCR::ABL1 in HSCs by FISH (PALL10M, 

PALL19M, PALL8M, PALL2M, PALL5F(2) and PALL12M), atypical haematopoietic progenitor 

population size by FACS (PALL2M, PALL10M and PALL19M) or high MRD levels (PALL8M) 

(Table 5.1.3). 

  

Figure 5.2.1: Principal component analysis (PCA) plot, CML-LBC vs Ph+ALL. CML-LBC (n=2) and
Ph+ALL (n=11). Cluster 1 (red)= CML-LBC samples (n=2), Cluster 2 (blue)= Ph+ALL samples (n=8) and
Cluster 3 (yellow)= subset of Ph+ALL samples (n=3).

1 2

3

Figure 1.3: Principal component analysis plot, CML-LBC (N=2) vs Ph+ALL (N=11), clusters 
annotated. Cluster 1 (red)= CML-LBC samples (n=2), Cluster 2 (blue)= Ph+ALL samples (n=8) and 
Cluster 3 (yellow)= subset of Ph+ALL samples (n=3)
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A Kaplan Meier curve was plotted to demonstrate mortality rate of Ph+ALL patients of Cluster 

2 and 3 over time in weeks (week 0= diagnosis) (Fig 5.2.2). This displayed that patients 

belonging to Cluster 3 had lower probability of survival overall. A caveat of the Ph+ALL dataset 

was that clinical data was not available for all samples in the dataset. Survival data was 

avaialble for 14 of the 23 Ph+ALL patients in the total cohort of samples provided by CellBank. 

Of these 14 samples, 8 had appropriate sample quality for RNA sequencing, hence survival 

data was not available for samples PALL10M(4) and PALL4M (both belonging to cluster 2) 

(Table 5.1.2). 
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Sample ID Weeks in trial Cluster 2 Cluster 3
PALL3F 475 0
PALL2M 603 0

PALL2M(2) 453 0
PALL15M 394 0
PALL5F(2) 58 1
PALL12M 32 1
PALL8M 76 1
PALL10M 130 1
PALL19M 71 1

Figure 5.2.2: Kaplan Meier survival
analysis (Ph+ALL). Incidence of death over
time (weeks). Plot represents available data
for patients in Cluster 2 (blue) & Cluster 3
(yellow) (clinical data provided by
CCLG/CellBank). Samples with available
information displayed in table (no available
survival data for samples PALL10M(4) &
PALL4M).
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5.2.2 Results III: Gene expression profiling differentiates between bulk CML-
LBC and Ph+ALL. 
 

After exploring the overall transcriptional differences between CML-LBC and Ph+ALL samples 

in section 5.2.1, differential gene expression was interrogated (Fig 5.2.3). By comparing DEGs 

within the 2 populations, it was hypothesised that within a stem cell-driven leukaemia (I.e. 

CML-LBC), DEGs identified would be more associated with stem cell function, such as CD74 

and MEF2A.  Whereas, within Ph+ALL, where the mutation is presumed to occur in a mature 

progenitor, DEGs would involve lymphoid function.   

Additionally, with LSCs being a well described disease feature in CML and (as of yet) 

undetected in ALL, leukaemic stem cell activity-associated genes such as HIF1A would 

predictably be upregulated in CML (Soverini et al., 2021).   

 

 

  

Figure 5.2.3: Differential expression volcano plot CML-LBC vs Ph+ALL. P-value cutoff of 0.05. Log2 fold
changes in adjusted P values for genes differentially regulated in CML-LBC vs Ph+ALL samples. Genes with
minimal change (up or downregulated) are designated as non-significant, represented in grey and
eliminated from further examination. Expression values for DEGs are displayed on the X axis by Log2Fold
change.

Upregulated in CMLDownregulated in CML
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5.2.3 Results III: Processing DEGs from CML-LBC vs Ph+ALL comparison for gene 
set enrichment analysis (GSEA). 
 

To further investigate this, gene set enrichment analysis (GSEA) was utilised. RNAseq and 

differential gene expression analysis yields many DEGs, however, to put this in a functional 

biological context, comparison of input gene set to each of the terms in gene ontology can be 

conducted using GSEA software. Data was prepared for GSEA by extracting statistically 

significant (Padj<0.05) genes and ordering DEGs by expression value (Log2Fold), from highly 

upregulated to downregulated. This input gene set (dataset) was saved as a .rnk file for 

uploading to the GSEA software. Gene ontology analysis was performed by selecting terms 

(bins) in the gene ontology programme. Bins relevant to disease profile were selected from 

the Molecular Signatures Database (MSigDB), including ‘immunologic signature gene sets 

(C7)’, ‘regulatory target gene sets (C3)’, ontology gene sets (C5), oncogenic signature gene 

sets (C6) and cell type signature gene sets (C8) with a brief overview on gene set coverage 

and usage provided by MSigDB. Gene sets were selected based on disease relevance.  

 

The regulatory target gene set (C3) collection was composed of 3725 individual gene sets and 

was selected to identify potential targets of regulation by transcription factors or microRNAs. 

The datasets within this collection were grouped by elements shared in non-protein encoding 

regions known or likely to contain regulatory elements in promoters or 3’-UTRs. 

 

The gene ontology gene set collection (C5) was comprised of 15703 gene sets encompassing 

genes annotated by the same ontology term. The collection is categorised by gene sets 

associated with biological process, cellular component, molecular function and human 

phenotype ontology. This broad range of gene functions allow for a global investigation of 

genes highlighted through differential expression analysis.  

 

Oncogenic signature gene sets (C6) were selected due to disease relevance in investigation of 

the haematological cancers in this project. This collection was comprised of 189 gene sets 

which represent signatures of cellular pathways commonly dysregulated in cancer and 

sourced from NCBI GEO and MSigDB internal profiling. 
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Finally, immunologic signature gene sets (C7) were selected due to the relevance of leukaemia 

to the function of leukocytes and control of immune system responses. As a collection of 5219 

gene sets, this contained ImmuneSigDB studies of chemical and genetic immune system 

perturbations in human and mouse and VAX (vaccine response gene sets) curated by the 

Human Immunology Project Consortium (HIPC) detailing immunologic response to 

vaccinations in humans.  

 

 Expression values for DEGs were related to their phenotypic function and utilising GSEA 

deconvolutes large datasets by grouping functionally related genes. The analytical process 

required for GSEA has three steps: 

1. Calculation of the enrichment score (ES). The ES represents the extent to which genes 

are over- or under-represented in the gene set; 

2. Estimation of ES clinical significance. Statistical significance is calculated by a 

phenotypic-based permutation test to generate a null distribution for the ES. This null 

distribution is compared to generate the P value. This verifies the dependence of the 

gene set on the biologic phenotypic labels. Genes with a non-significant P value may 

also be included in GSEA; 

3. Adjust for multiple hypothesis testing. Required when investigating a large number of 

genes, the enrichment scores are normalised, and a false discovery rate calculated. 

 

Alternative methods of gene set enrichment analysis are available such as Simpler Enrichment 

Analysis (SEA) which assumes gene independence and uses a simpler mathematical approach 

to calculate t-test. However, this method may be too simple for larger RNAseq datasets 

wherein gene correlation has occurred, therefore the GSEA method outlined above was 

utilised.  
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5.2.4 Results III: GSEA highlighted disease-specific gene ontology terms for 
DEGs identified in the CML-LBC vs Ph+ALL comparison. 
 

GSEA results were separated by contribution to enrichment results (genes with a ‘yes’ core 

enrichment value) and expression status (up or downregulated) (Fig 5.2.4). For genes 

positively regulated (upregulated with a positive Log2Fold score), 8/15 gene sets were 

upregulated. The classifications were as follows; circulatory system development, cell 

adhesion, tissue development, anchoring junction, defence response, proteolysis, 

TATAAA_TATA and AACTTT_unknown.  
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5.2.5 Results III: Genes involved in circulatory system development and 
maintenance were differentially regulated between CML-LBC and Ph+ALL 
samples. 
 

The circulatory system gene set encompasses genes involved in the progression of the 

circulatory system over time, from formation to maintenance of mature structure (GOC, 

2022). Elucidating microenvironment alterations which impact on the movement of 

leukocytes may be of benefit to the understanding of disease function. With this, cell 

adhesion gene sets were investigated (Fig 5.2.5). Genes within this group have roles in 

attachment of cells to other cells or extracellular matrix by adhesion molecules. This allows 

for the investigation of cell-cell interaction and when combined with information in the 

circulatory system gene set, provides information on the trafficking and movement of 

leukocytes. Highlighted in both Ph+ALL and CML datasets, ANXA1 (Annexin A1) is known to 

function as an anti-inflammatory phospholipid binding membrane-localised protein. The 

downregulation of ANAX1 in the CML-LBC vs Ph+ALL dataset displays a loss of control of T cell 

activation signalling cascades, glucocorticoid-mediated innate immune responses, 

rearrangement of the actin cytoskeleton, cell polarisation and migration (Arcone et al., 1993, 

D’Acquisto et al., 2006, Ernst et al., 2004). Functionally this describes dysregulation of 

lymphocytes and improper response to external stimuli, a phenotype fitting in a disease 

model where lymphoblast formation and leukocyte function dysregulation can be observed.  
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NAME SYMBOL RANK IN GENE LIST RANK METRIC SCORE RUNNING ES CORE ENRICHMENT
row_0 ZFPM2 3 8.510199547 0.06527402 Yes
row_1 SORBS2 16 6.860509872 0.012603053 Yes
row_2 SNAI2 20 6.719389915 0.057204112 Yes
row_3 FZD4 23 6.418227196 0.109317586 Yes
row_4 CHI3L1 31 6.008688927 0.10175832 Yes
row_5 LOX 34 5.939679146 0.14834747 Yes
row_6 CDH2 45 5.402530193 0.10082373 Yes
row_7 PTPRM 49 5.271524906 0.12871075 Yes
row_8 FGF6 56 5.050828934 0.121083036 Yes
row_9 ACE 57 4.991694927 0.17870677 Yes
row_10 MCAM 72 3.907584906 0.069969445 No
row_11 GATA2 73 3.46874404 0.110012345 No
row_12 ANXA1 79 2.218467951 0.08067711 No
row_13 PRICKLE1 86 -4.032265186 0.06129118 No
row_14 THSD7A 103 -11.82535553 0.021977954 No

Figure 5.2.5: Differentially expressed genes
associated with circulatory system development
with accompanying GSEA enrichment plot. DEGs
identified through differential expression analysis
of CML-LBC vs Ph+ALL. NES= 0.6753.
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5.2.6 Results III: Tissue development genes were differentially regulated 
between CML-LBC and Ph+ALL samples. 
 

Following from investigation into circulatory and cell adhesion, genes associated with tissue 

development were highlighted by GSEA (Fig 5.2.6). Such genes had involvement in tissue 

generation from formation to mature structure (GOC, 2022). Genes which contributed most 

to enrichment results (genes with a ‘yes’ core enrichment value) were of disease relevance 

with ZFPM2 as a haematopoietic transcription factor, KRT8 as a member of the type II keratin 

family and responsible for maintenance of cellular structural integrity, signal transduction and 

cellular differentiation, the non-receptor protein kinase SORBS2 (a member of the Abelson 

family) aiding in formation of the actin cytoskeleton, matrix metalloproteinase MMP8 

involved in tissue remodelling, metastasis and maintenance of inflammatory arthritis disease 

processes and SNAI2, a zinc finger transcription factor, involved in epithelial-mesenchymal 

transitions, displaying antiapoptotic functions and repressing E-cadherin in breast carcinoma. 

Taken together, these genes not only have a role in tissue remodelling and maintenance, but 

also in stem cell functions such as ZFPM2 which maintains the undifferentiated state of 

embryonic and adult stem cells (Conta and Breitbart, 2010) and SNAI2 which confers 

antiapoptotic functions and maintains stem-like features in normal and malignant cells via 

modulation of beta-catenin (Liu et al., 2023). The aberrant expression of SNAI2 and ZFPM2 

are illustrative of LSC activity in CML. Additionally, MMP8 was identified as contributing to 

enrichment results. MMP8 has been identified as a marker for differential diagnosis between 

CML and leukaemoid reaction (LR). MMP8 functions as a proteolytic enzyme secreted by 

neutrophils which plays a role in the destruction of the extracellular matrix, under pathologic 

CML conditions, such cells have both proliferative and functional impairment (Lin et al., 2004). 

Additionally, the role of MMP8 in metastasis and inflammatory diseases such as arthritis is 

illustrative of leukocyte dysregulation, a hallmark of CML (Hsieh et al., 2021). 

 

Further genes which enable cell-cell and cell-extracellular matrix interaction include COL6A3 

which encodes alpha 3 chain of type VI collagen (Jin et al., 2021), the breast cancer biomarker 

and actin filament bundle assembly gene AIF1L (Liu et al., 2018) and MCAM, encoding an 

adhesion molecule of the same name with observed roles in infiltration, apoptosis regulation 

and spread of ovarian cancer cells, leading to its use as a metastasis marker (Wu et al., 2012). 
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Figure 5.2.6: GSEA enrichment plots representing
tissue development gene sets for DEGs
upregulated in CML-LBC. DEGs identified through
differential expression analysis of CML-LBC vs
Ph+ALL. GOBP tissue development NES= 0.7607.
GOBP cell adhesion NES= 0.7336. GOCC anchoring
junction NES=1.1876.
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5.2.7 Results III: Inflammatory immune response genes were upregulated in 
CML-LBC vs Ph+ALL bulk samples. 
 

Dysregulation of leukocyte activity results in altered defence response, another area 

highlighted by GSEA (Fig 5.2.7). Genes contributing to enrichment results in this group have 

functions in serine protease enzyme inhibition with SLPI encoding a secreted inhibitor of 

neutrophil elastase (NE) by epithelial cells to prevent endogenous proteolysis (Sullivan et al., 

2008) and SERPINB4 which is highly expressed by tumour cells and inactivates granzyme M, a 

serine protease which increases tumour cell chemoresistance, colony-formation, cytokine 

secretion and invasiveness (Wang et al., 2015). In addition to a pro-tumorigenic function, 

SERPINB4 also has a role in establishing and maintaining chronic autoinflammatory diseases 

such as psoriasis through the expression of the SERPINB4-derived autoantigen Pso p27 

(Iverson et al., 2017). BPI was also indicated by GSEA, with its role in inflammatory immune 

response protection against gram-negative bacteria, the alterations to inflammation and 

tumour cell defence are clear in the genes represented in this dataset (The Human Protein 

Atlas, 2023).  

 

As with altered defence response, genes which contribute to proteolysis were highlighted, 

again conveying dysregulation of immune response in the CML-LBC vs Ph+ALL comparison. 

ST18, a marker for poor outcomes in AML (Skou et al., 2021), modulates cytokine secretion 

by acting as a transcription factor regulating proapoptotic and proinflammatory gene 

expression in fibroblasts (Yang et al., 2008). With involvement in similar inflammatory 

diseases such as asthma, TPSB2 (and TPSD1) encodes a mast cell tryptase resistant to all 

known endogenous protease inhibitors and has been identified in AML (Lamba et al., 2018). 

The HP gene encodes for haptoglobin, a plasma protein inducible by inflammation that aids 

in haemoglobin degradation, host antimicrobial defence response and, if mutated, can lead 

to the development of ahaptoglobulinaemia or hyphohaptoglobulinaemia (Wang et al., 

2001). Genes identified with circulation system-localised host defence functions (Wang et al., 

2021) and homeostasis were TFPI and ACE, of which TFPI encodes a Kunitz-type protease 

inhibitor that regulates the formation of fibrin clots via regulation of the tissue factor 

dependent pathway of blood coagulation, and ACE in maintaining blood pressure regulation 

and electrolyte balance via angiotensin converting enzyme. ACE acts to increase blood 
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pressure via vasodilator bradykinin however, dysregulation of ACE can lead to cardiovascular 

disease or chronic inflammatory conditions such as psoriasis (Issa., 2022). An additional gene 

with immune response function highlighted by GSEA is SPSB4 which enables ubiquitin ligase-

substrate adaptor activity, regulates cell repulsive responses and its overexpression has been 

identified in human malignancies such as colorectal cancer (Okumura et al., 2017). 

 

 

 

 

 

  

Figure 5.2.7: GSEA enrichment plots representing inflammatory immune gene sets for DEGs upregulated in
CML-LBC. DEGs identified through differential expression analysis of CML-LBC vs Ph+ALL. GOBP proteolysis
NES= 0.9059. GOBP defense response NES= 0.8839.
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5.2.8 Results III: Regulation of mRNA encoding and gene targeting genes were 
upregulated in CML-LBC vs Ph+ALL bulk samples. 
 

The TATAAA_TATA gene set contains genes which correspond to common regulatory motifs 

in promotors and 3’ untranslated regions (3’UTRs). Genes are aligned with this gene set due 

to having at least one occurrence of the highly conserved motif M51 TATAAA in the regions 

spanning 4kb centred on their transcription starting sites (+/- 2kb) (Fig 5.2.8).  Such genes 

likely have motifs which function as transcription factor binding sites, involvement in post-

transcriptional regulation, microRNA (miRNA) encoding genes or likely miRNA binding sites. 

Current predictions are that at least 20% of the human genome is regulated by miRNAs, hence 

evolving knowledge on gene transcription regulation in disease context is of great importance 

to better understand gene expression and potential for therapeutic exploitation or diagnostic 

purposes (Xie et al., 2005).  

Similarly, the AACTTT_unknown gene set represents genes which have at least one 

occurrence of the highly conserved motif M17 AACTTT in the regions spanning 4kb centred 

on their transcription starting sites (+/-2kb). Though highly conserved, this motif is not 

associated with any known transcription factor binding site (Xie et al., 2005). Similarly to the 

TATAAA_TATA gene set, genes classified under AACTTT_unknown are believed to have 

involvement in transcription factor binding sites, post-translational regulation, miRNA 

encoding and miRNA target genes. 

Figure 5.2.8: GSEA enrichment plots representing mRNA encoding and gene targeting gene sets for DEGs
upregulated in CML-LBC. DEGs identified through differential expression analysis of CML-LBC vs Ph+ALL.
TATAAA TATA 01 NES= 1.5985. AACTTT unknown NES= 1.0675.
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5.2.9 Results III: Differential gene expression analysis displayed disease-
specific transcriptional profiles in CML-LBC and Ph+ALL samples. 
 

DEGs between CML-LBC (Cluster 1) and the entire Ph+ALL cohort (Cluster 2 and 3) were 

identified and used for gene set enrichment analysis to identify functionally relevant gene 

groupings and relations to known disease phenotypes (Fig 5.2.2, 5.2.8 & 5.2.9). DEGs were 

selected for GSEA based on statistical significance (p<0.05) with the resultant gene list 

containing 106 genes differentially regulated between CML-LBC and Ph+ALL. Categories of 

gene functions highlighted by GSEA included circulatory system development, cell adhesion, 

tissue development, anchoring junction, defence response, proteolysis, TATAAA_TATA and 

AACTTT_unknown, with the latter two groups containing genes thought to play a role in 

mediation of mRNA encoding and gene targeting. Broadly, the functions of these DEGs were 

related to immune response, inflammation, cancer cell growth and maintenance, interactions 

between cells and the microenvironment and interactions between cells. The immune cell 

contexture has been well investigated in CML, as has the interaction between CML LSCs and 

the bone marrow microenvironment (BMM). CML LSCs are known to form a reciprocal 

relationship with components of the BMM whereby LSCs may be maintained and 

leukemogenesis boosted by the BMM and additionally, the LSCs are able to alter the BMM 

toward their requirements and away from homeostatic maintenance of normal healthy stem 

and progenitor cells (Houchmand et al., 2019). Thus, the interactions between leukaemic cells 

and the bone marrow microenvironment are important for establishing and maintaining CML 

and in order to do so, alternate transcriptional profiles must be established, as has been 

evidenced above. A number of genes had similar functions and could therefore be grouped 

into multiple ontology groups, such as those which have a role in both tissue development 

and maintenance, cell adhesion, anchoring junctions and defence response (Fig 5.2.5 & 5.2.6). 

This further emphasises the difference of cell-cell and cell-microenvironment interactions 

between CML-LBC and Ph+ALL samples. 
 

A number of DEGs identified had functions in maintenance of LSCs, a known CML disease 

feature (Holyoake and Vetrie., 2017). Genes such as ZFPM2 and SNAI2 both have roles in 

maintenance of the undifferentiated state of LSCs, thereby conferring stem cell qualities to 

these transformed progenitors (Conta and Breitbart, 2010 and Liu et al., 20203). Previous 
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investigations have explored the potential role of LSCs in Ph+ALL with respect to improving 

outcomes from TKI treatment and prevention of treatment resistance, ALL progression or 

relapse (Thomas, 2012). It has been evidenced that TKIs exert an anti-proliferative but not a 

cytotoxic or anti-apoptotic effect on very early stem and progenitor cells in Ph+ALL, 

representing a mechanism of relapse if these cells were to carry the BCR::ABL1 fusion protein, 

similar to that in CML (Mojtahedi et al., 2021). With ALL representing a group of 

heterogeneous leukaemia with a predominating lymphocytic phenotype, early stem and 

progenitor (CD34+CD38-) samples have been observed clinically (Thomas, 2005). Despite this, 

the evidence for LSC-driven disease in Ph+ALL remains scant. This observation is supported 

by the weighting of samples in the RNAseq experiment where the transcriptional profiles of 

2 CML-LBC BMNC samples are compared to 11 Ph+ALL BMNC samples, displaying that even 

with a small number of samples, the CML LSC gene expression signature is still detectable. 

This therefore suggests either a lack of LSC activity in Ph+ALL or LSC activity being less integral 

to disease phenotype in Ph+ALL compared to CML-LBC. 
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5.3.1 Results III: Ph+ALL samples with detectable BCR::ABL1 in stem and 
progenitor cells had a different transcriptional profiles to Ph+ALL samples with 
no BCR::ABL1 at the stem and progenitor level. 
 

The existence of leukaemic stem cell activity in Ph+ALL has previously been posited, however 

with little in-depth investigation, the Ph+ALL LSC remains elusive (Thomas, 2012). However, 

as previously outlines, the presence of a CML-like population confers an alternative cell of 

BCR::ABL1 origin outside of the lymphoid progenitor with the fusion event likely occurring 

closer to the apex of haematopoiesis in an MPP or HSC population. As previously outlined in 

Chapter 4, stem and progenitor cells were isolated from Ph+ALL bulk BMNC samples at 

diagnosis and during post induction treatment and the presence of BCR::ABL1 assessed using 

FISH (Fig 5.3.1). BCR::ABL1 was detected in stem and progenitor cells (HSC and MPP) of 16/21 

diagnostic and 9/16 PI Ph+ALL samples. These findings support the existing hypothesis that 

ALL is a heterogeneous leukaemic type and confirms that this heterogeneity extends to within 

the Ph+ALL subtype (Thomas, 2005). Additionally, findings suggest that BCR::ABL1 presence 

in early haematopoietic stem and progenitor cells alone is inadequate for establishment of 

the CML-like Ph+ALL subtype and downstream transcriptional differences are likely the origin 

of the novel subtype with myeloid involvement.  
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In order to investigate this heterogeneity further, the transcriptional profiles of Ph+ALL 

samples with and without detectable BCR::ABL1 in stem and progenitor cells were compared 

with the goal of uncovering genes differentially regulated between both groups and the 

potential for LSC transcriptional signature detection in the Ph+ progenitor group.  
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5.3.2 Results III: Transcriptional heterogeneity exists between Ph+ALL samples 
with detectable BCR::ABL1 at the stem and progenitor level and Ph+ALL 
samples without. 
 

Again, overall transcriptional profiles of Ph+ALL samples were visualised by PCA. Investigation 

of Clusters 1-3 in figure 5.2.1 with the addition of BCR::ABL1 presence in Ph+ALL stem and 

progenitor cells displays that all samples in Cluster 3 had BCR::ABL1 identified by FISH within 

an HSC or MPP population. Furthermore, 3 samples in Cluster 2 had BCR::ABL1 identified by 

FISH within immature progenitor populations (ranging from 17-50% (Table 5.1.3)).  These 

findings suggest there is a heterogeneity as defined by DEGs within samples that have 

BCR::ABL1 in the HSC and MPP populations. (Fig 5.3.2).  

 
In order to further examine transcriptional similarities between the FISH positive and negative 

groups, a PCA plot containing Ph+ALL samples alone was generated (Fig 5.3.3). Of 11 Ph+ALL 

BMNC bulk samples total, 6 had detectable BCR::ABL1 in stem and progenitor cells and 5 

samples had a zero FISH score (Table 5.1.3). As seen in figure 5.3.2, the overall transcriptional 

profile of Ph+ALL samples were heterogeneous, with tight clusters signifying transcriptional 

similarity not observed. However, a separation between Ph+ and Ph- samples can be seen 

with BCR::ABL1 negative sample locations predominating the left side of the graph and the 
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Ph positive samples predominating middle-right graph areas. This suggests that, despite 

absence of compact clusters, overall transcriptional expression differs between both groups.  

 

In order to further identify transcriptional differences between Ph+ALL samples with 

observable BCR::ABL1 in stem and progenitor cells and those without, differential gene 

expression analysis was performed (Fig 5.3.4). Utilising statistical cut off (P<0.05), the 

expression values for DEGs were expressed in Log2Fold changes. 
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Figure 5.3.3: Principal component analysis plot, BCRABLneg (N=5) vs BCRABLpos (N=6), clusters
annotated. Ph+ALL samples with detectable BCR::ABL in stem and progenitor cells coloured in blue,
samples with no detectable BCR::ABL in HSC or MPP cells coloured in red.
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HSC/MPP

HSC/MPP
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To allow for biological and disease contextualisation, DEGs were ranked based on Log2Fold 

expression value (from most upregulated to most downregulated) and gene ontology 

analysed using GSEA as outlined previously. Broad gene sets differentially regulated between 

BCR::ABL1 positive vs negative Ph+ALL stem and progenitor cells were as follows; regulation 

of multicellular organismal development, locomotion, generation of neurons, neurogenesis, 

TGGAAA NFAT Q4 01, cell projection organisation, CTTTGA LEF1 Q2, cell adhesion, tissue 

development, AACTTT unknown and cell motility (Fig 5.3.5).  

  

Figure 5.3.4: Differential expression volcano plot, BCRABLneg (N=5) vs BCRABLpos (N=6), clusters
annotated. Log2 fold changes in adjusted P values for genes differentially regulated in BCRABLpos vs
BCRABLneg samples.

Upregulated in BCR::ABL1 posDownreg in BCR::ABL1 pos
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5.3.3 Results III: CNS developmental and functional genes were upregulated in 
Ph+ALL samples with detectable BCR::ABL1 at the stem and progenitor level. 
 

Broad biological processes highlighted included the development and maintenance of 

neurons, cell trafficking and early developmental processes. Central nervous system (CNS) 

involvement in Ph+ALL progression and relapse has long been studied and amendments to 

treatment strategies made as a result of this research (Lazarus et al., 2006) (Fig 5.3.6). CNS 

infiltration by leukaemic cells represents oft observed route for ALL relapse but one which 

mechanisms remain elusive (Lenk et al., 2020). Observations of this relapse route has resulted 

in alterations to treatment, such as prophylactic intrathecal chemotherapy as a preventative 

measure rather than treating established ALL in CNS relapse (Brown, 2023). As a result, 

identification of genes related to CNS development and maintenance in the context of Ph+ALL 

and potential subtypes, is potentially of benefit for further elucidation of mechanisms of CNS-

induced ALL relapse. While CNS relapse was reported for one sample (PAL10M(2)), a larger 

cohort of patients would allow for a better determination of CNS development related with 

regards to CNS relapse. DEGs associated with CNS in Ph+ALL samples with positive FISH scores 

were heavily involved in neuronal and nervous system development, such as PO4F3, FSTL4 

and FEZ1. In addition, a number of genes identified were integral to global early development 

in addition to CNS development such as PRPH2, PPP1R9A, HEY1, DPYSL3 and BMPR1B, with 

BMPR1B activity being implicated in the persistence of LSCs in CML via Jak2 signalling 

(Jeanpierre et al., 2021). 

Figure 5.3.6: GSEA enrichment plots representing CNS developmental and functional gene sets for DEGs
upregulated in BCRABLpos Ph+ALL. DEGs identified through differential expression analysis of BCRABLpos vs
BCRABLneg Ph+ALL. GOBP neurogenesis NES= 1.2521. GOBP generation of neurons NES= 1.2546.
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5.3.4 Results III: An LSC-like gene expression profile was detected in Ph+ALL 
samples with Ph+ stem and progenitor cells. 
 

Alterations to the bone marrow microenvironment are essential for the maintenance of LSC 

activity and therefore, understanding how cells may interact with other cells or with the bone 

marrow niche itself, is beneficial to identifying or understanding how BCR::ABL1 presence in 

stem and progenitor cells may impact on disease activity.  Genes associated with interactions 

with extracellular matrix proteins were identified, such as SNAI2, a transcription factor 

involved in generation and migration of neural crest cells and believed to repress E-cadherin 

transcription in breast carcinoma, and LOX which functions in the crosslinking of collagens 

and elastin (Fig 5.3.7 & 5.3.8). Genes enabling microenvironmental cellular interactions were 

also identified such as CH25H which encodes a membrane protein with functions in lipid and 

cholesterol metabolism via hydroxylation of hydrophobic substrates. Cell trafficking an 

locomotion genes were identified as DEGs in Ph+ALL samples with detectable BCR::ABL1in 

stem and progenitor cells. Genes such as CCL20 and DOCK1 have functions in cytokinesis, 

immunoregulatory and inflammatory processes, with CCL20 being implicated in enhancing 

tumour cell migration, proliferation and tumour microenvironment remodelling and DOCK1 

as a marker for poor outcome in AML (Kadomoto et al., 2020 and Lee et al., 2017). 

Contextualisation of malignancy-related functions was further supported with the 

identification of HOXB9, a transcription factor involved in cell proliferation and differentiation 

which has been identified as being aberrantly expressed in AML blast cells resulting in 

maintenance of proliferation (Heinrichs et al., 2005).  

 

With LSC presence and activity being, as of yet, unverified in Ph+ALL, investigation of DEGs 

between samples with detectable BCR::ABL1 in stem and progenitor cells and those without, 

may elucidate stem cell-related genes which may be indicative of LSC activity. Gene set 

enrichment analysis highlighted DEGs with roles in early development such as BMPR1B, 

EFNA5, KL, PTPRD and SOX11.  
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SOX11 encodes a member of the SOX (SRY-related HMG-box) family of transcription factors 

with roles in embryonic development regulation and cell fate determination. SOX11 activity 

has been implicated in diseases such as neurodevelopmental disorders, osteoarthritis and a 

variety of cancers, with importance in embryogenesis and being largely absent in adult tissue 

(Tsang et al., 2020). Of note, aberrant SOX11 activity has been investigated in haematological 

malignancies such as adult de novo AML and mantle cell lymphoma (MCL). Overexpression of 

SOX11 has been observed in adult AML, with the extent to which SOX11 is overexpressed 

being highlighted as a potential AML prognostic marker (Tosic et al., 2018). Additionally, 

SOX11 overexpression can be observed in cancer stem cells (CSCs) (including MCL) and is 

associated with aggressive behaviour in MCL (Sureda-Gómez et al., 2022). Independent to 

other high-risk features, SOX11 overexpression has been evidenced to be associated with 

poor overall survival via the reduction in apoptosis-related genes and normal stem cell 

features. Such MCL CSCs displayed increased growth, survival, aberrant stemness and 

chemoresistance, therefore presenting itself as a potential target in MCL and displaying a 

critical role in CSC activity. 

Figure 5.3.7: GSEA enrichment plots representing LSC-related gene sets for DEGs upregulated in BCRABLpos Ph+ALL. DEGs identified
through differential expression analysis of BCRABLpos vs BCRABLneg Ph+ALL. GOBP regulation of multicellular organismal development
NES= 1.3843. GOBP cell motility NES= 0.8727. GOBP tissue development NES= 0.9675. GOBP locomotion NES= 1.3285. GOBP cell adhesion
NES= 0.9817. GOBP cell protection organisation NES= 1.0248.
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The BMPR1 gene encodes for a member of the bone morphogenic protein (BMP) receptor 

family of transmembrane serine/threonine kinases, the ligands of which, are members of the 

TGF-beta superfamily and which are involved in bone formation and embryogenesis. BMPR1 

has previously been identified as being upregulated in leukaemic stem cells in CML with 

treatment insensitive LSCs relying on the BMP pathway for survival via the BMP4 autocrine 

loop (Jeanpierre et al., 2021). The effect of this was evidenced by BMPR1B+ LSCs displaying a 

co-activated Smad1/5/8 and Stat3 pathway and a maintenance of proliferation status during 

TKI treatment. In support of previous observations of the importance of cell adhesion-related 

genes in samples with Ph+ stem and progenitor cells, BMPR1B+ cells adhering to stromal cells 

were the only LSCs observed to have a quiescent status, a feature of LSC activity and known 

mechanism for treatment evasion and disease relapse (Van Gils et al., 2021).  
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Ephrin-A5, encoded by EFNA5, is a member of the ephrin gene family, the largest subfamily 

of receptor protein-tyrosine kinases and have been implicated in regulating migration and 

positioning during early developmental events. Ephrin signalling features have been 

implicated in the remodelling of the LSC niche with EphA3, a member of the Eph receptor 

tyrosine kinase family, being selectively expressed on LSCs but not healthy HSCs (Slape, 2014). 

The importance of the bone marrow niche on maintenance of the LSC population has been 

demonstrated, with a bi-directional effect of LSCs remodelling the bone marrow 

microenvironment to support growth (Houshmand et al., 2019). This displays the importance 

of Eph signalling on maintenance of a leukaemic stem cell population in the bone marrow 

niche. 

 

The KL gene encodes for a protein called Klotho, a type-1 membrane protein, related to beta-

glucosidases with roles in the process of antiaging and prevention of bone loss via 

antioxidation, antisenescence, anti-autophagy and signalling pathways such as insulin-like 

growth factor and Wnt (Bian et al., 2015). While much of the research into Klotho activity 

relates to aging-associated diseases, dysregulation of Klotho signalling has been implicated in 

the loss of senescence and stem cell maintenance, both features of LSC activity.  

 

PTPRD encodes for a member of the protein tyrosine phosphatase (PTP) family, a group of 

signalling molecules known to regulate cell growth, differentiation, mitotic cycle and 

oncogenic transformation, with PTPRD representing a receptor-type PTP. PTPRD has 

previously been investigated in paediatric AML, a leukaemic type with high relapse rates (30-

40%) and well-documented LSC activity (Thomas and Majeti, 2017). Previous investigations 

of PTPRD in paediatric AML described a significant downregulation of PTPRD in AML LSCs 

compared to healthy HSC controls, with the dysregulation of inflammatory and immune 

networks in LSCs believed to be resultant from this perturbation (Depeter et al., 2020). 
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5.4.1 Results III: GSEA displayed the differential regulation of few GO terms 
between Cluster 1 and Cluster 3. 
 

In order to investigate the differences between Ph+ALL Cluster 3 and CML Cluster 1, 

differential gene expression analysis was performed as described previously (Fig 5.4.1 & 

5.4.2). Genes differentially expressed between Cluster 1 and Cluster 3 were analysed using 

gene set enrichment analysis to identify GO terms defining the transcriptional differences 

between the CML samples and the Ph+ALL sub cluster. Only 3 GO terms were identified 

representing genes differentially regulated between both Clusters: locomotion, TGGAAA 

NFAT and AACTTT unknown. Alteration in locomotion, cell trafficking and genes involved in 

cellular interaction with the microenvironment such as CCL20, MCAM, DOCK1, EFNA5 and 

POU4F3 indicate a difference in both cell-cell and cell-microenvironment interaction. As 

previously discussed, LSC-induced alterations to the bone marrow microenvironment are bi-

directional with LSCs altering the BM niche to further support the maintenance of leukaemic 

stem cells. The differential expression of the above genes may signify a disease-specific 

alteration to the bone marrow between CML and the Ph+ALL subgroup. 
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Figure 5.4.2: Differential expression volcano plot, Cluster 3 (N=3) vs Cluster 1 (N=2), clusters annotated.
Log2 fold changes in adjusted P values for genes differentially regulated in cluster 3 vs cluster 1.

Upregulated in Cluster 3Downregulated in Cluster 3
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5.4.2 Results III: Cluster 1 and Cluster 3 shared transcriptional similarity but 
displayed differential regulation in microenvironmental response genes. 
 

The presence of differentially expressed genes is expected when comparing samples from 

two different leukaemic types, however the identification of a small number of GO terms is 

indicative of transcriptional similarity between Cluster 1 and Cluster 3 (Fig 5.4.3). This displays 

that relatively few genes are differentially regulated at a statistically significant level between 

these CML and Ph+ALL samples. These results indicate that this transcriptional similarity 

between Cluster 1 and 3 may be due to shared disease phenotypes, as would be predicted 

when comparing CML-LBC samples with samples designated as CML-like Ph+ALL. Proportions 

of Ph+ HSPCs in Cluster 2 and Cluster 3 were similar (average 28.3% and 26% respectively; 

range 17- 50% and 5- 50% respectively), further supporting the proposed theory that 

BCR::ABL1 fusion in HSPCs alone is inadequate for establishing the CML-like subtype and 

transcriptional variation may be an essential factor. 

Figure 5.4.3: GSEA enrichment plots representing
microenvironmental gene sets for DEGs
upregulated in Cluster 3. DEGs identified through
differential expression analysis of Cluster 3 vs
Cluster 1. AACTT unknown NES= 1.2387. TGAAA
NFAT Q4 01 NES= 1.3675. GOBP locomotion NES=
1.6024.
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5.5.1 Results III: Cluster 2 and Cluster 3 displayed markedly different overall 
transcriptional profiles. 
 

Identification of Cluster 3 during visualisation of overall transcriptional profiles illuminated a 

transcriptionally separate subgroup of Ph+ALL (Fig 5.2.1). Upon inspection of clinical 

outcomes, it was observed that these patients had poorer clinical outcomes than the rest of 

the Ph+ALL cohort with a higher incidence of ALL progression, relapse and death (Table 5.1.3 

& Fig 5.2.2).  Patients belonging to Cluster 3 also had distinctly different clinical features such 

as higher MRD, white cell count at diagnosis and BCR::ABL1 detectable in stem and progenitor 

cells by FISH. These patients therefore represented a subgroup of Ph+ALL samples with 

distinct overall transcriptional differences and clinical features.  

In order to define DEGs which underpin transcriptional differences between the standard 

Ph+ALL samples and the newly observed subgroup, Cluster 3 and Cluster 2 were compared 

(Fig 5.5.1).  

The resultant PCA plot generated to visualise overall transcriptional differences between 

Cluster 2 and Cluster 3 supported the initial observation of transcriptional disparity seen in 

Fig 5.2.1. It was observed that samples belonging to Cluster 2 highlighted in red (Fig 5.5.1) 

clustered tightly in the upper right quadrant of the PCA plot with 2 samples from Cluster 3 
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occupying the upper left quadrant. Sample PALL8M was distal to all other samples which 

indicated a differential overall transcriptional profile from the rest of the Ph+ALL cohort 

despite being designated as belonging to Cluster 3. 

 

Genes identified as differentially regulated between Cluster 2 and Cluster 3 were visualised 

as a volcano plot (Fig 5.5.2). Of note, the gene XIST appears to be significantly downregulated 

in Cluster 3, however, this this is likely due to sex differences between patients as XIST is the 

master regulator of X-chromosome inactivation and therefore would be highly upregulated 

in female patients and downregulated in males (GeneCards.org, Weizmann Institute of 

Science., 2024). This allowed for GSEA to be performed by isolation of statistically significant 

genes and ranking by Log2Fold gene expression value. Gene ontology functions highlighted 

from differentially expressed genes in Cluster 3 vs Cluster 2 included anchoring junction, cell 

adhesion, proteolysis, response, tissue development, circulatory system development, 

TATAAA TATA and AACTTT unknown. The number of GO terms highlighted by GSEA displays 

a noteworthy difference in transcriptional expression between the Ph+ALL clusters.  

  

Figure 5.5.2: Differential expression volcano plot, Cluster 3 (N=3) vs Cluster 2 (N=8), clusters annotated.
Log2 fold changes in adjusted P values for genes differentially regulated in cluster 3 vs cluster 1.

Upreg in Cluster 3Downregulated in Cluster 3
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5.5.2 Results III: Cell adhesion genes were differentially regulated between 
Ph+ALL Clusters 2 and 3. 
 

As previously discussed, alteration in expression of genes associated with cell adhesion 

displays an alteration to mechanisms of cell-cell and cell-microenvironment interactions (Fig 

5.5.3). Highlighted genes further supported the heterogeneity of the proposed CML-like 

Ph+ALL subtype that may be represented in Cluster 3. CADM1, the cell adhesion molecule 

originally identified as a tumour suppressor in lung cancer, has been highlighted as a marker 

for primary adult T-cell leukaemia and exerts an effect by increasing cell-cell adhesion, 

allowing for increased T-ALL organ infiltration (Nakahata and Morishita, 2012). Genes 

implicated in other acute leukaemia include RIMS2 and PVR which have been identified as 

being differentially regulated in AML. RIMS2 encodes a presynaptic protein which, upon 

interaction with RAB3, promotes normal neurotransmitter release and has been identified as 

a somatic variant in AML (Kakadia et al., 2018). PVR encodes a transmembrane glycoprotein 

belonging to the immunoglobulin superfamily, recently identified as a novel immune 

checkpoint which is found to be upregulated in AML and associated with poor outcomes, 

treatment-induced antibody blockade of PVR exerts anti-leukaemic effects and may be a 

promising treatment option in AML (Stamm et al., 2018).  

 

In addition to differential regulation of AML-associated genes, PTPRM was also highlighted by 

GSEA and has roles in CML pathology. The protein encoded by PTP is a member of the protein 

tyrosine phosphatase family, a group of signalling molecules which regulate cell growth, 

differentiation, mitotic cycle and have been implicated in oncogenic transformation. PTP has 

been investigated in the context of CML due to the rise of tyrosine kinase inhibitor targeting 

of the tyrosine kinase BCR::ABL. PTP has been observed to antagonise tyrosine kinase activity 

and impact on TKI sensitivity. Hence, PTP presence in CML cells are important for the response 

to TKI therapy (Drube et al., 2018).  
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Figure 5.5.3: GSEA enrichment plots representing cell adhesion gene sets for DEGs upregulated in Cluster 3.
DEGs identified through differential expression analysis of Cluster 3 vs Cluster 2. GOCC anchoring junction
NES= 1.1272. GOBP cell adhesion NES= 0.6836.
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5.5.3 Results III: Immune response genes were differentially regulated 
between Cluster 2 and Cluster 3. 
 

Additional GO classifications identified by GSEA in Cluster 3 compared to Cluster 2 were those 

of immune-mediated defence response (Fig 5.5.4). Genes associated with regulation of 

inflammatory responses, both adaptive and inducible, were differentially regulated such as 

SLPI, TPSB2, SPSB4, HP, TPSD1, COL6A3, ACE and TFPI. Additionally, SLPI, SPON1 and COL6A3 

demonstrate the role of extracellular matrix adaption to mediation or and epithelial 

protection from inflammatory responses. Other immune response genes previously 

implicated in multi-tissue cancer, and haematological malignancies were also identified such 

as SERPINB4, ST18, MMP8 and BPI. This displays the importance of alterations to the immune 

response in both mediating inflammation and establishment of malignancy. 

 

 

 

  

Figure 5.5.4: GSEA enrichment plots representing immune response gene sets for DEGs upregulated in
Cluster 3. DEGs identified through differential expression analysis of Cluster 3 vs Cluster 2. GOBP proteolysis
NES= 0.9493. GOBP defense response NES= 0.8989.
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5.5.4 Results III: Cluster 2 and Cluster 3 displayed difference in the regulation 
of early developmental genes. 

 

Another group of GO terms with great relevance to leukaemia initiated by early stem and 

progenitor cells are early development genes (Fig 5.5.5). The presence of genes commonly 

associated with maintenance of embryonic stem cell programmes (such as CDH2, PRDM, LOX 

and FZD4) were identified as differently regulated between Cluster 2 and 3 (Leszcyński et al., 

2020). The upregulation of such genes in non-embryonic samples suggests an increased stem 

cell presence in Cluster 3.  

Figure 5.5.5: GSEA enrichment plots representing early developmental gene sets for DEGs upregulated in
Cluster 3. DEGs identified through differential expression analysis of Cluster 3 vs Cluster 2. AACTTT unknown
NES= 1.1376. TATAAA TATA 01 NES= 1.7117. GOBP tissue development NES= 0.7553. GOBP circulatory system
development NES= 0.6698.
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5.6 Results III: RNAseq analysis of CML-LBC and Ph+ALL samples identified a 
transcriptionally and clinically distinct subgroup of Ph+ALL samples. 
 

Overall transcriptional profiles of the CML-LBC and Ph+ALL samples investigated by RNAseq 

displayed an expected difference between CML and Ph+ALL. However, transcriptional 

profiling also revealed a smaller subgroup of Ph+ALL patients (termed ‘Cluster 3’) which 

differed transcriptionally from the rest of the cohort. Additionally, across the entire Ph+ALL 

cohort (Cluster 2 and Cluster 3), transcriptional heterogeneity was observed between samples 

which contained BCR::ABL1 positive HSCs and MPPs (measured by FISH- Chapter 4), and 

samples with no detectable t(9:22). DEGs and clinical considerations in samples belonging to 

Cluster 3 (ie incidence of death/relapse and detection of Ph+ HSC/MPPs) highlighted that 

these patients may represent the CML-like subtype. As previously discussed, without data 

from multiple MRD modalities (Ig/TCR gene rearrangement and BCR::ABL1 copy number), 

CML-like Ph+ALL status cannot be confirmed using the methods presented by Hovorkova et 

al (2017). Hence, as there is no definitive gene panel for the CML-like subtype, patients could 

not be identified as CML-like from analysis outset using gene expression.  

 

However, a prospective list of genes for identification of CML-like Ph+ALL was proposed in 

Chapter 3 (Table 5.1.1). Such genes were selected based on expression in aberrant Ph+ALL 

samples, Ph+ALL samples with poor outcomes and pathology related to CML (ie LSC-

associated and myeloid genes). As there are no public datasets available with clearly defined 

Gene L2F padj L2F padj L2F padj L2F padj
ATF4 -0.5206624 0.8224058 -0.1093936 0.9534023 0.580515 0.997753 0.7535991 0.567676
CCL8 2.262895 0.7205731 5.553026 0.3921323 4.012181 0.6660106

CCND1 1.29047 0.8663087 1.255203 0.7053086 -1.547379 0.8033373
FLI1 0.3295827 0.9129607 -0.1433694 0.9388738 -0.6292324 0.9978805 -0.1539163 0.9642365
FLT3 2.588767 0.3368496 2.31354 0.07699777 -0.3817334 0.9997413 -1.464443 0.671268
FZD6 1.435038 0.7892429 2.559063 0.05908473 1.956531 0.8185425 1.967634 0.5523988
LCP1 0.7876063 0.4922049 0.58318888 0.5595369 -0.2961024 0.9997413 -0.27333095 0.904039
LYL1 -1.68966 0.2942497 -1.964279 0.203308 -0.3661521 0.9997413 0.7640199 0.7585103
MPL -3.2891345 0.2040375 -2.8018583 0.01848699 0.7274934 0.9997413 -0.49350351 0.9939747
MPO -3.7959253 0.1044504 -3.5508527 0.03682876 -0.7904974 0.9997413 -1.85624938 0.6266575
MYC -1.26652126 0.4410453 -0.8118683 0.6387137 0.6483242 0.99974129 -0.003688694 0.9997997
YY1 0.44978787 0.7421003 0.4069389 0.6512013 -0.0785527 0.9997413 -0.05051148 0.9839762

CREBBP 0.3918586 0.8768832 0.3712743 0.7939281 -0.04682011 0.9997143 -0.1427875 0.9641316
HIPK1 0.1425744 0.9617077 0.553601 0.674537 0.5854488 0.9544713 0.2716963 0.9167558
LDB1 -1.0802818 0.6764357 -1.140708 0.2501488 -0.08666976 0.9997413 -0.06524431 0.9912882
MYB 0.9784309 0.7743725 0.4601143 0.718795746 -0.68658085 0.9997413 -0.2465742 0.9613585

BCRABLPOS vs BCRABLNEGPh+ALLvsCML Cluster3vsCluster1 Cluster3vsCluster2

Up
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g
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Table 5.6.1: Expression of proposed CML-like gene expression pattern in RNAseq comparisons. L2F= Log2Fold,
padj= adjusted P value. Ph+ALL vs CML (PALL3F/10M(4)/4M/2M/2M(2)/15M/5M(2)/12M/10M/8M/19M
compared to CMLLBC1/2), Cluster 3 vs Cluster 1 (PALL10M/8M/19M compared to CMLLBC1/2), Cluster 3 vs
Cluster 2 (PALL10M/8M/19M compared to PALL3F/10M(4)/4M/2M/2M(2)/15M/5M(2)/12M) and BCRABLPOS vs
BCRABLNEG (PALL2M/12M/5F(2)/8M/10M/19M compared to PALL3F/10M(4)/4M/2M(2)/15M)
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CML-like Ph+ALL samples, this list was never intended to be a definitive diagnostic gene panel, 

instead proposing genes of interest that may be differentially regulated in a Ph+ALL with some 

cell involvement similar to CML and with poor clinical outcomes- two features of CML-like 

Ph+ALL posited by Hovorkova et al (2017). 

 

Expression of these genes were analysed in the context of the sample comparisons discussed 

throughout this chapter (Table 5.6.1). Broadly, there was little statistical significance of gene 

expression throughout the comparisons tested (two genes identified with adjusted P value 

<0.05). Interestingly, two of the genes found to be highly upregulated and with near-

significant adjusted P value were found in the Cluster 3 vs Cluster 1 analysis: FLT3 and FZD6 

(L2F 2.31 and 2.56 respectively, padj 0.077 and 0.06 respectively). While FZD6 activity is 

associated with Wnt signalling and inhibition of oncogenic transformation (including cell 

proliferation and inhibition of apoptosis), FLT3 is associated with regulation of 

haematopoiesis including the proliferation and differentiation of haematopoietic cells in bone 

marrow. FLT3 mutations are associated with poor-prognosis AML, highlighting a potential 

transcriptomic similarity between an acute myeloid leukaemia (AML) and an acute leukaemia 

with myeloid and lymphoid involvement (CML-like Ph+ALL).  

 

The gene encoding chemokine CCL8 was similarly upregulated in Cluster 3 vs Cluster 1, Cluster 

3 vs Cluster 2 and BCRABLPOS vs BCRABLNEG samples (L2F 2.26, 5.55 and 4.01 respectively). 

The CCL8 protein functions as a chemoattractant for both lymphoid and myeloid cells, often 

in an inflammatory context. CCL8 has also been identified in driving breast cancer metastasis, 

with additional roles in diffuse large B-cell lymphoma and chemoattraction of M1 

macrophages in cutaneous melanoma (Farmaki et al., 2016; Lou et al., 2022 and Yang et al., 

2021). Hence, chemokine signalling may be of interest for further exploration in CML-like 

Ph+ALL. 
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5.7 Conclusion: RNAseq analysis of CML-LBC and Ph+ALL samples identified a 
transcriptionally and clinically distinct subgroup of Ph+ALL samples. 
 

Overall transcriptional profiles of the CML-LBC and Ph+ALL samples investigated by RNAseq 

displayed an expected difference between CML and Ph+ALL. However, transcriptional 

profiling also revealed a subgroup of Ph+ALL samples which clustered distal to the rest of the 

Ph+ALL cohort. Upon investigation of clinical information provided for Ph+ALL samples, it was 

observed that this sub-group of Ph+ALL samples had a distinct clinical phenotype in 

comparison to the rest of the cohort. These samples (designated Cluster 3) had poor clinical 

outcomes, observed by a higher incidence of ALL progression, relapse and death (Table 5.1.3, 

Figure 5.2.1 & 5.2.2). These patients also had a high MRD level, higher WCC at diagnosis and 

all samples in Cluster 3 had detectable BCR::ABL 1by FISH. This signified that Cluster 3 

represents a transcriptionally and clinically distinct subgroup of Ph+ALL patients in this 

RNAseq investigation.  

 

DEGs highlighted by GSEA in Ph+ALL samples with detectable BCR::ABL1 by FISH displayed 

phenotypes associated with cell trafficking, interaction with the microenvironment and early 

developmental processes. These DEGs displayed a phenotype related to LSC activity 

previously observed in CML, AML and MCL. These findings suggest an altered stem cell 

phenotype in Ph+ALL samples which have positive BCR::ABL1 FISH scores and represent a 

transcriptional alteration driven by the BCR::ABL1 translocation event in early stem and 

progenitor cells.  

 

A number of DEGs uniquely upregulated in Cluster 2 throughout analyses had similar 

functions to genes identified in Chapter 3 from GEO datasets (Table 5.1.1). These included 

chemokines with pro-inflammatory functions such as CCL8 and CCL20, and FZD4/6 which is a 

member of the Wnt signalling pathway and plays a role in maintaining stemness. These 

associations display the utility of the GEO datasets investigated in Chapter 3 and indicates 

alterations to immune response and increased maintenance of stem cells compared to the 

rest of the (standard) Ph+ALL cohort. The use of such genes as biomarkers could be beneficial 

as high serum CCL20 is already associated with tumour progression in penile cancer, hence 

sensitive testing for this chemokine is already available (Mo et al., 2020). Other genes related 
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to stem cell maintenance in CML found to be upregulated in Cluster 2 include ACE, SERPINB4, 

VCAN and MCAM. The utility of these genes for use as a biomarker include detection of the 

surface marker CD146 (encoded by MCAM) by flow cytometry and measurement of ACE 

serum levels, as is currently used for sarcoidosis monitoring. The roles of such DEGs in the 

alteration of the bone marrow microenvironment to support LSC maintenance suggests that 

similar to CML, the BME of outlying/CML-like Ph+ALL patients may undergo structural 

alterations. Further exploration into useful biomarkers may therefore include genes with 

roles microenvironmental alteration.  

 

Utilising FISH data generated within this project, samples with BCR::ABL1 positive stem and 

progenitor cells were compared to samples where this fusion event could not be detected in 

early haematopoiesis. Further supporting the heterogeneity of Ph+ALL, 3 samples from 

Cluster 2 had positive FISH scores despite being distinct from Cluster 3 transcriptionally and 

phenotypically. Investigation into differentially expressed genes between the BCR::ABL1 

positive and negative progenitor groups revealed a number of genes associated with LSC 

function in CML, AML and MCL in samples with positive FISH scores in HSCs and MPPs. These 

results indicate the presence of more LSC-like activity in FISH positive samples. While this is 

not a confirmation of LSC presence in Ph+ALL or in CML-like Ph+ALL, these results display a 

marked difference in the transcriptional profile of early stem and progenitor cells between 

both sample groups.  

 

Cluster 3 was of great interest due to its transcriptional and clinical differences from the main 

Ph+ALL cohort. As a result, Cluster 3 was compared to the CML Cluster 1 and Ph+ALL Cluster 

2 and functions of differentially expressed genes assessed by gene set enrichment analysis. 

GSEA revealed few GO terms of difference between Cluster 1 and Cluster 3. These findings 

indicated transcriptional similarity between the CML samples and this Ph+ALL subgroup. DEGs 

highlighted had roles in cell interaction with the microenvironment which may indicate a 

disease-specific bone marrow microenvironment or cellular response. Cluster 3 was also 

compared to the Ph+ALL Cluster 2, with GSEA terms depicting a large number of cellular 

processes that were differently regulated between both Ph+ALL clusters. Biological processes 

which differed between Cluster 2 and 3 included immune response, cellular interaction with 

the microenvironment and early development genes. Not only did this display a difference in 
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cell activity between both Ph+ALL clusters but, importantly, genes previously implicated in 

CML and AML LSC activity were detected. The implications from these results are that there 

may be LSC activity in Cluster 3 but little in Cluster 2. As LSCs have previously been associated 

with CML, not Ph+ALL, this may indicate that Cluster 3 shares a mixed phenotype with the 

initial clinical diagnosis being Ph+ALL but with CML transcriptional signatures. Hence Cluster 

3 may be representative of samples which would be designated as CML-like Ph+ALL. 

 

In this chapter, bulk BMNC samples were used for RNAseq. Our first aim was to identify 

aberrances of gene expression within the heterogeneous Ph+ALL population for the 

identification of outlying samples with myeloid gene expression patterns with the goal of 

identifying CML-like Ph+ ALL samples. Bulk samples were examined instead of sorted 

progenitor cell groups for the potential use of subtype-specific differentially expressed genes 

as diagnostic biomarkers. Primary samples are examined clinically for biomarker gene 

expression without flow cytometry-assisted cell sorting due to sample size, financial and 

reagent restraints hence, biomarkers that can be identified in bulk bone marrow or peripheral 

blood samples are clinically relevant. Though beneficial for clinical application, there were a 

number of caveats to this approach. In Ph+ALL at diagnosis the proportion of bone marrow 

made up of lymphoblasts must be above 20% in order to be defined as leukaemic (Chiaretti 

et al., 2014). As a result, bulk diagnostic Ph+ALL samples contain a large number of blast cells 

which may skew transcription data toward a lymphoid phenotype, preventing adequate 

interrogation of gene expression in smaller cell populations. This issue is more relevant if 

examining population-specific gene expression patterns however, as discussed, the choice to 

examine bulk samples is more compatible with current clinical procedures. A method of 

preventing this transcriptional bias would be to sort samples into progenitor groups and 

investigate individual populations. Investigating transcriptional heterogeneity between HSC 

populations in Ph+ALL samples would be of interest for furthering the understanding of the 

effects or early stem and progenitor cell activity on the development of leukaemic subsets. 

With further research being conducted on HSC heterogeneity and predetermination, single 

cell RNAseq of Ph+ALL HSCs may be a fruitful progression of this investigation (Schroeder, 

2010). This may be applied to elucidate how predetermined HSCs may lead to the 

development of distinct leukaemic subtypes, identification of pre-leukaemic HSCs and the 

importance of BCR::ABL1 fusion in HSCs predetermined for specific lineages. As the data from 



 217 

Chapter 4 as shown, not all HSCs in a sample contain BCR::ABL1 and not all samples with Ph+ 

stem and progenitor cells can be categorised as CML-like. Therefore, the presence of 

BCR::ABL1 alone is inadequate for the establishment of CML-like Ph+ALL, with subtype-

specific phenotypic differences likely arising from transcriptional differences. Hence, 

elucidating gene expression changes between classical and CML-like Ph+ALL would require 

investigation of HSC transcriptional profiles from both subgroups. Additionally, LSCs are yet 

to be identified in CML-like Ph+ALL, identification of LSC-associated genes (such as those used 

in AML (Bill et al., 2020)) would further aid understanding of this subtype and inform on best 

treatment strategies for such patients. Examination of aberrant gene expression and subtype-

specific BCR::ABL1 point mutations has been successful in targeting previously difficult to 

treat BP-CML with next generation TKIs (Hughes et al, 2006; Jabbour et al, 2006; Nicolini et 

al, 2006). A goal of this is to utilise gene expression data in the heterogeneous ALL to identify 

patients belonging to disease subtypes and alter treatment appropriately. 

 

CML-LBC samples were selected for sequencing to establish a CML transcriptional profile 

which Ph+ALL samples were compared to. This is a fairly innovative investigation, with few 

publicly available datasets available which directly compare transcriptional profiles of CML-

LBC to Ph+ALL. While there is a multitude of datasets which include sequencing data on both 

leukaemic types separately, accurate and significant conclusions are unable to be reached by 

comparing samples from separate datasets. Hence, creating this unique RNAseq dataset is 

not only of importance for this project, but also of great relevance to other researchers in this 

field. Samples of CML in lymphoid blast crisis represent a myeloid leukaemia in an acute phase 

with lymphoblast involvement (Ilaria, 2005). CML-like Ph+ALL shares phenotypic traits with 

both CML and Ph+ALL, those being an acute lymphocytic leukaemia with significant myeloid 

involvement (Hovorkova et al., 2017). Identifying the genes necessary for distinguishing CML-

like Ph+ALL from CML-LBC would also confirm this novel subtype as being distinct from CML 

presenting at lymphoid blast crisis with no clinical history of chronic phase, a hypothesis which 

has been previously raised in this field (Hunger, 2017). 

 

The number of GO terms and variety of gene functions highlighted as being differentially 

regulated between Ph+ALL Cluster 2 and Ph+ALL Cluster 3 displays a notable transcriptional 

difference between both Clusters. Alterations to cellular interaction with the 
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microenvironment, immune response and early developmental gene supports the hypothesis 

that Cluster 3 is representative of a distinct subset of Ph+ALL with a distinct transcriptional 

profile and clinical outcomes. 
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5.7.2 Caveats and limitations. 

 

Caveats that arose from this sample selection include lack of BCR::ABL1 MRD clinical data, 

preventing CML-like patients from being identified through the same methods as used in the 

Hovorkova paper (2017). Additionally, there may have been unintentional bias in the samples 

sequenced as RNA quality could be related to CML-like status as discussed in Chapter 4 

regarding CML-like samples possibly being better able to survive the cryopreservation, culture 

and FACS process. Finally, age difference between patients. All Ph+ALL samples sequenced 

were isolated from paediatric patients ranging from ages 2-19 years. However, CML-LBC 

samples were harvested from two adult patients aged 33 and 41 years. One reason behind 

the choice of these samples was the lack of availability of paediatric CML-LBC samples. 

Paediatric CML is rare and accounts for 2-3% of newly diagnosed leukaemia in children, the 

age group with the highest incidence of CML diagnosis being between 45-55 years (Pushpam 

and Bakhshi, 2019).  Patients diagnosed with CML in lymphoid blast crisis are treated with an 

ALL-like induction method, highlighting the pathologic similarity between CML-LBC and ALL 

and clinical relevance of selecting such samples for RNAseq alongside Ph+ALL (Ilaria, 2005). 

Age-related transcriptional differences is a caveat to be noted, with differences to the 

immunologic population of bone marrow and a decline in the number of ‘fit’ mesenchymal 

stem cells (MSCs) in the bone marrow niche with age being well noted in the literature 

(Ganguly et al., 2017). Hence, differences in the transcriptional profile of BMNCs harvested 

from paediatric and adult patients may be detectable, disease relevance is satisfied by this 

sample selection. Future work in this area including age matched Ph+ALL and CML-LBC 

samples would be adequate for removing such age-related issues, however, this is outwith 

the scope of this project. The BMNC samples used in these transcriptional experiments were 

selected in order to investigate the gene expression profiles of BCR::ABL-driven leukaemia in 

an acute phase with distinct lymphoid cell involvement. As a result, the relation of age to 

disease phenotype was not explored, despite the age differences between samples (adult 

CML samples and paediatric Ph+ALL samples).  
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Chapter 6. Concluding discussion. 

 

In order to fully examine the undefined CML-like Ph+ALL subgroup, primary paediatric Ph+ALL 

bone marrow samples were u0lised. Samples were harvested from pa0ents at hospital sites 

across the UK (for pa0ent confiden0ality, the individual loca0on were not provided). Of a total 

of 24 samples, 23 were provided by CellBank via CCLG (Children’s Cancer and Leukaemia 

Group) and one sample was sourced from the Queen Elizabeth University Hospital (Glasgow). 

Samples were harvested from pa0ents ranging from age 2-19 years, with the mean age being 

8.94 years. Sex was not equally weighted with 16/24 pa0ents being male, 7/24 samples being 

female and one sample being unknown due to data being unavailable to CellBank. With a 

cohort size of 24 pa0ents, a perfectly balanced distribu0on of sex is unlikely however, males 

are 30% more likely to be diagnosed with ALL than females which is somewhat represented 

by the sex distribu0on in the cohort (CLRUK., 2021). 

 

All CellBank pa0ents had diagnos0c bone marrow samples available, allowing for analysis of 

bone marrow mononuclear cells prior to treatment. In addi0on to these, post induc0on 

follow-up samples were available for 16 of the 23 CellBank samples, harvested from day 28 to 

day 140 (average day 70) post-induc0on therapy commencement. The pa0ents based in 

Glasgow had no diagnos0c samples available however, sequen0al samples were available 

harvested during the first 3 months of treatment. In order to establish which disease elements 

CML-like Ph+ALL samples share with both classical Ph+ALL and CML, two control CML-LBC 

samples were u0lised. These samples were sourced from adult CML pa0ents (age 33 and 41 

years) in lymphoid blast crisis. Adult samples were selected due to the rarity and therefore 

unavailability of paediatric CML samples (in LBC). To allow for accurate comparison of Ph+ALL 

and CML-LBC samples used in this thesis, all samples were processed in the same manner as 

outlined in the materials and methods sec0on (Chapter 2). 

 

Bulk bone marrow samples were thawed according to the protocol discussed in materials and 

methods (Chapter 2.6.1- 2.6.5). samples were cultured overnight in serum-free media 

supplemented with cytokines and growth factors at a physiological concentra0on (Table 
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2.2.9). The inten0on of this culture method was to allow the cells to recover from the 

cryopreserva0on process without being s0mulated to proliferate or differen0ate, allowing 

cells to be as similar to the 0me of harves0ng as possible. Arer culturing overnight, cells were 

washed in PBS +2% FBS then incubated with the appropriate an0body cocktails (Table 2.3.1 & 

2.3.2) for 1 hour to allow for Lin- haematopoie0c progenitor cells to be sorted and collected 

by FACS. Cell popula0ons were sorted into PBS +2% FBS to allow for cells to be used for further 

experiments. These experiments included fixing for FISH analysis of BCR::ABL1 fusion in sorted 

progenitor cells, extrac0on of DNA for Ig/TCR gene rearrangement analysis (to be discussed 

further in Chapter 7) and RNAseq analysis of bulk BMNCs. 

 

As previously discussed, the recently postulated leukaemic subtype CML-like Ph+ALL has been 

highlighted as an unmet clinical need which remains poorly characterised. The original study 

by Hovorkova et al (2017) highlighted this subgroup of Ph+ALL pa0ents with apparent myeloid 

disease involvement and first designated them as ‘CML-like’ Ph+ALL. However, the discussions 

around the biological similari0es between CML-LBC and Ph+ALL are not new. With clinical 

characteris0cs of CML-LBC resembling that of Ph+ALL, there has long been concern that 

pa0ents with newly diagnosed an acute Ph+ leukaemia with lymphoid involvement could be 

either CML-LBC or Ph+ALL, this misdiagnosis leading to the employment of therapeu0cs 

incorrect for the disease type (Kolenova et al., 2016). The outcomes of this have the poten0al 

to be dire as paediatric Ph+ALL pa0ents are treated with TKIs in combina0on with 

chemotherapy while an allogenic stem cell transplant is the recommended therapeu0c 

strategy for pa0ents with CML-LBC. Due to the ac0vity of the cons0tu0vely ac0ve tyrosine 

kinase BCR::ABL1 in both diseases and therefore similar disease mechanisms, there is some 

crossover in treatment strategy between CML and Ph+ALL in the use of tyrosine kinase 

inhibitors in combina0on with chemotherapeu0c agents. However, with the advent of 

personalised medicine and par0cularly in acute phase leukaemias, it is impera0ve that 

diagnosis is accurate, and treatment is suitable. Hence, the presence of an uncharacterised 

Ph+ALL subtype represents and unmet clinical need. 
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The group of pa0ents highlighted by Hovorkova et al were shown to respond poorly to 

commonly used Ph+ALL lymphoid-directed treatment in addi0on to discordance in MRD 

monitoring techniques. Hence, not only did these pa0ents receive unsuitable treatment, they 

were also difficult to measure for risk stra0fica0on. As previously discussed, to elucidate 

subtype-specific characteris0cs of CML-like Ph+ALL, standard Ph+ALL and CML-LBC samples 

were u0lised. Using samples which share a common pathogenic lesion but different 

phenotypes allows for characteris0cs of Ph+ALL or CML to be iden0fied in the mixed subtype. 

 

The use of primary paediatric Ph+ALL bone marrow samples allowed for analysis of 

phenotypic and transcrip0onal differences among the Ph+ALL cohort. With the CML-like 

subtype being undefined at the 0me of wri0ng, there were no guidelines available to allow 

for categorisa0on of these pa0ents. Hence, it was predicted that the Ph+ALL cohort used in 

this thesis displayed the heterogeneity observed clinically by Hovorkova et al (2017). Prior to 

laboratory processing of samples, this sample variability could be observed in the clinical 

informa0on provided with the cryopreserved samples from CellBank (Table 4.4.2- 4.4.5). This 

data displayed a variety of responses to treatment, with some pa0ents relapsing, some 

reaching remission and a range of MRD scores, white cell counts at diagnosis and bone 

marrow blast percentages. As previously men0oned, es0mates of incidence of CML-like 

pa0ents within the larger Ph+ALL cohort worldwide was 20-30% (Hovorkova et al., 2017). A 

small sample cohort of 24 may not be representa0ve of this however, outlying features which 

would align with a CML-like disease pathology was detected in a small number of pa0ents. 

 

Heterogeneity within the paediatric Ph+ALL cohort was evidenced throughout this thesis and 

was ini0ally detected through flow cytometry-based cell sor0ng of haematopoie0c stem and 

progenitor cell popula0ons (Fig 4.2.5.1 & 4.2.5.2). Within a diagnos0c Ph+ALL sample, 

lymphoid blast cells are expected to predominate and a low frequency of HSCs and MPPs 

should be present. The majority of the samples analysed showed large popula0ons of ProB 

and PreB cells, two lymphoid progenitor groups likely to display contamina0on with 

lymphoblasts due to similarity in cell surface markers. However, a small number of pa0ents 

displayed unexpectedly large popula0ons of HSCs and MPPs and few lymphoid precursor cells. 
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These samples displayed an atypical haematopoie0c dynamic for a Ph+ALL diagnos0c sample 

and suggested and alterna0ve disease mechanism where the main leukaemic driver may not 

be lymphoid cells. 

 

One of the main aims of this thesis and ques0on arising from Hovorkova et al (2017) was the 

iden0ty of the cell of BCR::ABL1 origin in CML-like Ph+ALL. To inves0gate this, sorted stem and 

progenitor cells were analysed for BCR::ABL1 fusion by FISH as previously described in 

Chapters 2 and 4. It was ini0ally predicted that only CML-like Ph+ALL samples would contain 

the t(9;22) fusion event due to being the proposed Ph+ALL subtype with myeloid involvement 

and CML-like disease features. Our inves0ga0ons revealed that BCR::ABL1 could be detected 

in HSCs and MPPs in a number of Ph+ALL samples (Fig 4.3.3). Due to the small popula0on sizes 

collected by FACS, the percentage of BCR::ABL1 posi0vity could not be reliably used as a 

predictor for disease severity, outcome or the likelihood of the sample being CML-like Ph+ALL. 

What was observed, however, was the majority of Ph+ALL samples having evidence of Ph+ 

HSCs and MPPs. Whether these cells have func0ons similar to CML LSCs is unknown and 

outwith the scope of this project, however, this represents the first iden0fica0on of Ph+ HSCs 

in Ph+ALL to date. 

 

As the ini0al theory regarding the leukaemic origins in CML-like Ph+ALL were that only 

samples belonging to the newly-proposed CML-like subtype would contain Ph+ HSCs, the 

observa0on of BCR::ABL1 posi0ve stem and progenitor cells across the cohort and in samples 

with a variety of clinical features and haematopoie0c dynamics supported the understanding 

that Ph+ALL is an extremely heterogeneous leukaemic subtype. Such findings display that the 

sample t(9;22) fusion event could occur in the same cell type (HSC) but result in three different 

disease states; CML, standard Ph+ALL and CML-like Ph+ALL. Therefore, the phenotypic 

differences between these diseases must be further downstream than the ini0al fusion event 

and likely due to transcrip0onal differences arising from differen0al gene expression. To 

inves0gate this, 11 Ph+ALL and 2 CML-LBC samples were analysed by RNAseq, the inclusion 

of CML samples to determine a transcrip0onal profile of CML in lymphoid blast crisis and 

confirm that the CML-like Ph+ALL subtype is not a misdiagnosis of CML-LBC. An unbiased PCA 
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depic0on of overall transcrip0onal profiles displayed three dis0nct clusters (named ‘Cluster 1-

2’) (Fig 5.2.1). As an0cipated, the CML-LBC samples were distal to the majority of Ph+ALL 

samples, owing to the fact that both are different disease states. However, a separate cluster 

of Ph+ALL samples (Cluster 3) could be observed outside of the CML-LBC and larger Ph+ALL 

cluster. Upon inves0ga0on of differen0al gene expression between Cluster 2 (Ph+ALL) and 

Cluster 3 (outlying Ph+ALL), it could be observed that the outlying Ph+ALL group displayed 

upregula0on of genes involved in CML, AML and leukaemic stem cell biology such as RIMS2, 

PVR, ACE, PTPRM, PTP, FZD4 and LOX. 

 

Transcrip0onal analysis of Clusters 2 and 3 displayed that Cluster 3 had an upregula0on of 

genes associated with immunity, early development and, crucially, genes involved in myeloid 

leukaemia disease biology. Retrospec0ve analysis of the samples that cons0tutes Cluster 3 

displayed poor clinical outcomes such as relapse and death. This supports the understanding 

that CML-like Ph+ALL pa0ents may benefit from haematopoie0c stem cell transplant as a first-

line therapy, just as in CML. Addi0onally, these samples had unusual popula0on dynamics 

detected by flow cytometry with large popula0ons of myeloid progenitors, fewer lymphoid 

progenitors and a high frequency of HSCs. Finally, all samples of Cluster 3 had BCR::ABL1 

posi0ve HSCs detected by FISH (Fig 5.3.2). Interes0ngly, two samples in Cluster 2 also had Ph+ 

HSCs/MPPs detected by FISH but did not display the transcrip0onal, clinical or haematopoie0c 

dynamics associated with the samples in Cluster 3. This supports the understanding that 

occurrence of the BCR::ABL1 fusion event in HSCs alone is not adequate for establishing the 

CML-like subtype and that the origins of the disease likely arise from downstream 

transcrip0onal differences. The findings of this thesis demonstrate the heterogeneity of 

Ph+ALL and evidences CML-like Ph+ALL as being a leukaemic subtype with dis0nct clinical 

features, haematopoie0c dynamics, BCR::ABL1 fusion in primi0ve stem cells and a myeloid-

like transcrip0onal profile. 
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Chapter 7: Future Direc1ons 

 

The Philadelphia chromosome (Ph+) results in the BCR::ABL1 fusion oncoprotein with 

enhanced tyrosine kinase ac0vity. It is a high-risk cytogene0c abnormality found in 

approximately 5% of childhood and 25-30% of adult acute lymphoblas0c leukaemia (ALL) and 

all pa0ents with chronic myeloid leukaemia (CML). Recent data suggests that Ph+ALL can be 

further sub-divided into a true lymphoid leukaemia with acquisi0on of the BCR::ABL1 

oncogene in a commiqed B-cell progenitor (standard Ph+ALL) and a CML-like Ph+ALL with 

mul0lineage BCR::ABL1 ac0vity. CML-like Ph+ALL is currently defined by MRD (minimal 

residual disease) discrepancy between Ig/TCR and BCR::ABL1 expression (Hovorkova et al., 

2017).  Relapse risk in pa0ents with undetectable Ig/TCR MRD is higher in Ph+ALL than other 

ALL subtypes, suppor0ng that some pa0ents have biologically different disease. Therefore, 

understanding the CML-like Ph+ALL popula0on is impera0ve to deciphering beqer and more 

effec0ve therapeu0c strategies and is a cri0cal area of unmet clinical need; par0cularly 

iden0fying these pa0ents at an early 0me point from diagnosis. 

 

The results presented within this thesis have demonstrated that Ph+ALL is likely even more 

heterogenous than previously an0cipated. These include the iden0fica0on of transcrip0onal 

heterogeneity within Ph+ALL publicly available datasets, a subgroup of pa0ents with 

haematopoiesis dynamics atypical to standard Ph+ALL, the detec0on of BCR::ABL1 in HSPCs 

by FISH in a larger number of samples than ini0ally an0cipated and finally, a small number of 

outlying Ph+ALL pa0ents which share DEGs (differen0ally expressed genes) with CML-LBC in 

addi0on to having a high incidence of relapse compared to the rest of the Ph+ALL cohort. 

Hence, it is hypothesised that Ph+ALL represents a spectrum of disease rather than a single 

en0ty, owing to the heterogeneity seen both transcrip0onally and clinically in disease 

response to treatment. Furthermore, BCR::ABL1-expressing HSC (haematopoie0c stem cell) 

and MPP (mul0potent progenitor) cells may represent the elusive leukemic stem cell (LSC) of 

Ph+ALL in view of treatment resistance seen within this popula0on. Reports have 

demonstrated an LSC clone within leukaemia, par0cularly in CML and acute myeloid 

leukaemia, but to date, there remains limited data surrounding an LSC within ALL, with some 
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contradictory findings (Castor et al., 2005). Within Ph+ALL, the expression of p190 or p210 

BCR::ABL1 is sufficient to cause leukaemia in transgenic mice, with B and T cell acute 

leukaemia more common than myeloid (Voncken et al., 1995). Some func0onal studies 

conclude that the Ph+ALL LSC is a primi0ve cell that is lymphoid-restricted, although the 

studies differ on the characterisa0on of what this LSC is (Cobaleda et al., 2000). The primi0ve 

CD34+CD38-CD19- cell compartment has been shown to be involved in pa0ents with p210 

BCR::ABL1 ALL but not in those with p190 BCR::ABL1 ALL (Castor et al., 2005). The p210 

BCR::ABL1 transcript could also be iden0fied in more mature CD34+CD33+ and CD34-CD33+ 

myeloid precursors, which was not the case for the p190 transcript. However, CD34+CD38-

CD19- p210 BCR::ABL1 posi0ve cells did not induce leukaemia in NOD/SCID mice. This 

contrasts with other results showing NOD/SCID engraring leukemic cells only in the 

CD34+CD38- subfrac0on and not with CD34+CD38+ cells. If an LSC does exist, its persistence 

could represent a mechanism of TKI resistance and poorer outcomes, as seen with CML. 

Within Ph+ALL, resistance to treatment has been described. For example, Nagel et al 

described Ph+ALL with stem cell involvement as a mechanism of resistance to Blinatumomab. 

Further to this, earlier need for HSCT (haematopoie0c stem cell transplant) in the CML-like 

Ph+ALL popula0on has been hypothesised in view of poorer survival outcomes (Hovorkova et 

al., 2017). 

 

The detec0on of BCR::ABL1 in HSCs and MPPs by FISH previously reported in this thesis 

supports the theory that LSC ac0vity may be present in Ph+ALL pa0ents who responded poorly 

(relapse or disease resurgence) to standard Ph+ALL treatment as this reflects LSC ac0vity in 

CML where BCR::ABL1 can be detected in the stem cell frac0on and where LSC-mediated 

treatment resistance has been reported (as discussed above). However, in addi0on to samples 

that responded poorly to treatment, Ph+ HSPCs (haematopoie0c stem and progenitor cells) 

were also detected in pa0ents who aligned with ‘standard’ Ph+ALL clinical outcomes, 

displayed expected haematopoiesis dynamics (by FACS) and displayed an expectedly 

lymphoid-biased gene expression paqern. Hence, these findings suggest that BCR::ABL1 

presence in HSCPCs alone is inadequate for establishing a CML-like subtype. This brings into 

ques0on the importance of BCR::ABL1 fusion in the establishment of disease state and 

whether downstream altera0ons are required to ini0ate a standard or CML-like Ph+ALL 
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phenotype. These findings may be explained, in part, by the fact that HSCs and MPPs were 

isolated by surface marker phenotype, not by stem cell func0onal assays. Surfaceome 

heterogeneity within tumour popula0ons have been iden0fied in AML and mul0ple myeloma, 

evidencing aberrant expression of surface markers within blast cell popula0ons (Bordelau et 

al., 2024 and Ferguson et al., 2022). Though not yet characterised in Ph+ALL, blast cell 

aberrant surface marker expression may result in the misiden0fica0on of cell types by flow 

cytometry. Hence, HSC and MPP popula0ons isolated by FACS in this thesis may be 

contaminated with blast cells aberrantly expressing stem-like surface markers, without 

func0onal assays, the true iden0ty of these cells would be undetermined.  

 

As previously discussed in chapter 4 of this thesis, HSC popula0on sizes in diagnos0c Ph+ALL 

popula0ons are likely to be extremely small or completely diminished due to a skew toward 

lymphopoiesis. Hence, samples with an overall ‘standard’ Ph+ALL phenotype with detectable 

Ph+HSPCs may s0ll have a typically small/diminished HSC popula0on and may be displaying 

BCR::ABL1 posi0ve blast cells which aberrantly express HSC-like surface markers. In addi0on, 

outlier (‘CML-like’) Ph+ALL samples iden0fied by RNAseq, FACS and clinical data may have an 

elevated popula0on of true HSCs which express BCR::ABL1. This theory would be more in line 

with our general understanding of BCR::ABL1 ac0vity where a downstream altera0on is not 

required for disease establishment and the point during haematopoie0c development when 

t(9;22) arises impacts on the cell types involved in pathogenesis. 

 

This could be elaborated by analysis of blast cell development markers in HSC and bulk cell 

popula0ons in standard and ‘CML-like’ Ph+ALL samples where Ph+HSPCs have been detected. 

A feature of lymphoid blast cells which would not be present in HSCs is Ig/TCR gene 

rearrangement, a hallmark of lymphoid development (Fig 7.1). As HSCs have not yet 

undergone lineage fixing, this gene rearrangement will not have occurred and therefore 

iden0fica0on of Ig/TCR recombina0on would confirm which cells are true HSCs, and which are 

blast cells with aberrant HSC-like surface marker expression. Analysis of Ig/TCR gene 

rearrangement is a minimal residual disease method used for evalua0on of treatment 

effec0veness in pa0ents with Ph+ALL (van der Velden & van Dongen., 2009).  
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During early lymphoid development, the germline V, D and J gene segments of the 

immunoglobulin (Ig) and T cell receptor (TCR) genes rearrange. The outcome of this is the 

establishment of an expansive immune repertoire by a specific combina0on of V, D and J 

segments encoding Ig and TCR variable domains (Fig 7.1). Such variable regions have 

(1)

(2) (3)

Figure 7.1: Schematic overview of the organisation and rearrangement of Ig and TCR genes.
(1) Different germline gene segments coding for the variable Ig heavy and light chains are joined by 
somatic V(D)J gene rearrangement, Addition or removal of nucleotides during recombination at the 
junctions and somatic hypermutation in the complimentary-determining regions of the VL and VH genes 
results in high diversity of the Ig repertoire. (2) T cell receptor gene rearrangement. Variable (V), joining 
(J) and constant regions constitute the TCR-alpha chain. VJC regions constitute the TCR-beta chain with an 
additional diversity (D) region. Segments from each region are recombined, with additional nucleotide 
additions to generate each rearranged TCR to generate T cell diversity. (3) Haematopoietic diagram 
indicating the stages of leukocyte development where Ig/TCR gene rearrangement occurs (orange 
background colour). Chromosome rearrangement t(9;22) presence in progenitor cells as hypothesised in 
the CML-like Ph+ALL subtype.
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‘fingerprint’-like sequences, unique to each lymphocyte from the ac0on of the random 

inser0on and dele0on of nucleo0des at the junc0on sites of the V, D and J segments. Hence, 

this unique gene arrangement is also seen in lymphoid malignancies and allow junc0onal 

regions to be used as tumour-specific targets for MRD monitoring tracked using RT-QPCR (real-

0me quan0ta0ve polymerase chain reac0on). 

 

To inves0gate Ig/TCR gene rearrangement in the Ph+ cells sorted by HSC markers in this thesis, 

the ClonoSEQ® Ig/TCR MRD monitoring pla�orm (Adap0ve Biotech) could be u0lised. DNA 

was isolated from sorted cell popula0ons for most of the samples in this thesis (missing DNA 

resulted from small star0ng cell number and where RNA extrac0on or fixing for FISH was 

priori0sed). Therefore, HSCs and bulk (unsorted) cells from Ph+ALL samples with a standard 

phenotype and detectable BCR::ABL1 in HSCs, Ph+ALL samples with a CML-like phenotype (as 

previously discussed) and standard Ph+ALL samples with no detectable BCR::ABL1 in HSPCs 

could be assessed for Ig/TCR gene rearrangement. This would enable verifica0on of HSCs as 

being cells which are too primi0ve to have undergone Ig/TCR rearrangement and confirm if 

Ph+ HSCs from standard Ph+ALL samples are actually lymphoblast cells aberrantly expressing 

HSC surface markers. 

 

Further to this, we need to determine if BCR::ABL1 posi0ve cells are driving an LSC phenotype 

func0onally using stem cell assays well established in the Horne lab. These include colony 

forming cell (CFC) assays and long-term culture ini0a0ng cell assays (LTC-IC), both of which 

assess the differen0a0on capacity of HSCs. As discussed above, characterisa0on of HSCs 

should include func0onal assays to assess the ability of HSCs to proliferate and differen0ate 

into colonies in response to the appropriate cytokine s0mula0on. Verifica0on of HSC 

func0onality would then allow further inves0ga0on to determine if such Ph+ HSCs display LSC-

like features such as drug resistance.   

 

From the data discussed in this thesis, Ph+ALL is likely a heterogeneous disease, in order to 

heighten our understanding of this and determine if this can be observed at the single cell 
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level, single cell transcriptomic analysis could be an insigh�ul approach. Cellular Indexing of 

Transcriptomes and Epitopes by Sequencing (CITEseq) technology can assess transcrip0onal 

altera0on through RNA sequencing in addi0on to informa0on (both qualita0ve and 

quan0ta0ve) on surface proteins using an0bodies. This method allows a highly sensi0ve 

assessment of gene expression and proteomic analysis, with resolu0on of low abundance 

proteins (few proteins per cell) and small star0ng cell numbers required (as low as 500) (10x 

Genomics., 2018). This would allow for specific cell types to be iden0fied by surface marker 

and any transcrip0onal heterogeneity assessed. Further explora0on into transcrip0onal 

heterogeneity within the Ph+ALL cohort could be performed using long-read RNAseq. This 

sequencing method generates longer libraries with more accurate sequences and transcripts 

than libraries with greater read depth as would be yielded from the short-read methods 

(Pardo-Palacois et al., 2024). Though short-read RNAseq with greater read depth yields 

improved quan0ta0on accuracy, long-read RNAseq allows for the detec0on of complex 

structural variants such as inversions, dele0ons or transloca0ons which may not be detected 

with short-reads. This could also yield improved iden0fica0on of novel isoforms and highly 

polymorphic regions. As previously discussed in chapter 1, BCR::ABL1 ac0vity has the 

downstream effect of genomic instability and therefore long-read RNAseq may be beneficial 

for iden0fying structural variants and complex rearrangements between Ph+ALL subtypes that 

may be beneficial for diagnosis or therapeu0c targe0ng.   

 

Another method of iden0fying intra-sample and intra-tumoral heterogeneity within the 

Ph+ALL cohort could be TARGET-seq. This single cell RNAseq technique genotypes soma0c 

muta0ons while capturing whole transcriptomes within tumour cells. Applied to the CML-like 

and standard Ph+ALL cohorts, this could be u0lised to iden0fy associa0ons between soma0c 

muta0ons within lymphoblast and Ph+ HSPC cells and subsequent transcrip0onal phenotypes 

(Rodriguez-Meira et al., 2020). Concurrent single cell muta0onal analysis and RNA sequencing 

would allow for the transcrip0onal differences between the Ph+ALL subgroups observed in 

chapter 5 of this thesis to be linked to poten0al BCR::ABL1 point muta0ons observed 

previously in CML (Table 1.4). As has been evidenced in CML, such muta0ons can be targeted 

by new genera0on TKIs such as pona0nib or dasa0nib, thus preven0ng disease progression or 

relapse by focused treatment. Such BCR::ABL1 muta0ons have yet to be fully explored in 
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Ph+ALL, hence, not only may this reveal a novel mechanism for disease progression but also 

generate new directed treatment schema by u0lising already available drugs used in CML. 

 

Transla0on of these outcomes may improve outcomes for pa0ents with CML-like Ph+ALL, both 

in terms of diagnos0c approaches and treatment approaches, as CML-like Ph+ALL may require 

stem cell- directed therapy, e.g., allogeneic stem cell transplant for cure. Further, these 

pa0ents may benefit from more intensive follow-up approaches and evalua0on of possible 

biomarkers to predict outcome and likelihood of relapse. This is impera0ve to ensure early 

recogni0on of treatment failure and ini0a0on of new treatments to ensure beqer pa0ent 

outcomes. 
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