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Abstract

This work explores an approach for improving the robustness of Model-Based Reinforcement
Learning algorithms by transforming the observation and decision spaces with the Buckingham-
Π theorem. This theorem is part of the field of Dimensional Analysis (DA) which studies the
link between physical measurements and the units they are expressed in. The Buckingham-Π
theorem provides a dimensionality reduction technique through a power law between the vari-
ables. The transformation can be applied on inputs and outputs of statistical learning models
to increase their robustness. We extend prior work to study the impact of that procedure, called
non-dimensionalization, through its equivariance properties on stationary dynamic systems. Our
method stems from increasing the level of a priori physics knowledge within the Machine Learn-
ing models. That additional knowledge is brought implicitly by the constraints implied by the
non-dimensionalization procedure into Machine Learning models. The results in this thesis sug-
gest this approach is well suited for zero-shot transfer learning without data augmentation.

Throughout this thesis, we conduct the experiments on pendulum and cartpole environments
within numerical simulations. First, we propose a framework for applying the Buckingham the-
orem to dynamic systems. We showed that under a full-rank assumption, we can transform the
state variables as a function of the static variables. This transformation in turn yields estimators
that are resilient to perturbations of the underlying dynamics. We included comparisons between
Gaussian Process and Multi-Layer Perceptron for the regression task. The estimators are able
to make maintain good predictive performance in the presence of distribution shift. Second, we
propose a method to circumvent the need to measure all the variables for the transformation.
With a probabilistic approach, we infer the hidden variables and constrain their dimensions.We
expose two cases for this latent variables model, one that requires observations of the hidden
variables during training and one that does not. Finally, we apply the previous findings to a Re-
inforcement Learning problem. To do so, we modify the Contextual Markov Decision Process
(MDP) and non-dimensionalize the state and action spaces. Subsequently, we propose a generic
model-based policy search algorithm within the dimensionless Π-MDP and demonstrate results
with Gaussian Process dynamics models. We showed that within the evaluated environments,
the dimensionless controller is more robust than its natural counterpart.

We showed the benefits of the transformation for generalizing predictions under distribution
shift. The simplicity of the approach allows it to be applied to different domains such as regres-
sion and sequential decision-making. Our experiments suggest the Buckingham transformation
is a promising avenue for statistical modelling under distribution shift.
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Notation

We let scalar variables be written by italic lowercase letters as 𝑥 ∈ ℝ. Vectors are denoted
with bold lowercase and indexed as 𝒙 = [𝑥1,… , 𝑥𝑑]𝑇 ∈ ℝ𝑑 . Matrices are bold lowercase letters
𝑨 ∈ ℝ𝑛×𝑑 . The identity matrix with 1 on the diagonal and 0 everywhere else is writen 𝑰 .

Multivariate normal distribution with mean vector 𝒎 and covariance matrix 𝑲 is written as
 (𝒎,𝑲) The joint probability of 𝑋 and 𝑌 and conditional probability of 𝑋 given 𝑌 are 𝑝(𝑋, 𝑌 )
and 𝑝(𝑋|𝑌 ) respectively. A Gaussian Process with mean function 𝜇 and covariance function 𝑘 is
written as (𝜇(⋅), 𝑘(⋅, ⋅)). 𝐷KL is the symbol for the Kullback-Leibler divergence between two
probability distributions.

In probabilistic graphical models, we write observed random variables with white circles,
and hidden ones with grey circles as on figure 1.

𝑍𝑋

Figure 1: Graphical model
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Chapter 1.

Introduction

In science, statistic inference is often used to make predictions about the outcome of experi-
ments or the future state of a system. To do so, scientists rely on models that are built on top of
a set of hypotheses and assumptions. Such models usually support reasoning outside the scope
of observations. For instance, the laws of classical mechanics may be deduced from the falling
movement of an apple and applied to predict the movement of planets around the sun. This ca-
pacity for counterfactual induction is what makes causal models so precious for understanding
the world around us.

On the other hand, Machine Learning is the process of constructing a model from data alone.
This aspect guarantees such models to be flexible and do not require extensive a priori domain
knowledge to function. By means of minimizing a measure of empirical risk on a set of observa-
tions, ML models are able to deduce the latent mechanism that generated the data. They can then
later be used to make predictions or generate new realistic observations. However, because such
models are constructed from data alone, they can only represent the system accurately within the
limits of what they have been exposed to during training. As a consequence, such models gener-
alize poorly when the experimental conditions of the system change. This phenomenon, called
Distribution Shift denotes the capacity of a system to generate different data under different con-
ditions [Quiñonero-Candela et al., 2008]. The specificity of statistical models to represent only
their training data is well known and the reason why cross-validation is used so often in predictive
models to make sure they do not overfit. A model is called robust if it is able to maintain accurate
predictions on a system even when it is subjected to distribution shift. In other words, robustness
denotes the resilience of the model to perturbations of the systems it is deployed in. In order to
increase model robustness, augmenting the size and diversity of the training data is a popular
solution, especially in the current era where huge datasets are readily available. Acquiring such
large databases can nevertheless be expensive because of the absence of appropriate sensors to
the measures variables of interest as well as the cost of remote and local storage.

An orthogonal direction to data augmentation is the modification of the predictive model it-
self. While ML algorithms are data-driven, they are also constituted of assumptions and inductive
biases. Those task-dependent inductive biases rely on expert knowledge and are a key component
for increasing generalization [Mitchell, 1980]. For instance, Convolution Neural Networks as-
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sume translation invariance, meaning the detection of an object should not depend on where this
object is located. Such additional hypotheses allow statistical models to be more data-efficient
and less prone to overfitting. In general, the stronger the hypothesis, the better the generalization
of the model [Botev et al., 2021]. This thesis investigates how to bring together both data and
hypotheses in ML pipelines to increase their generalization capabilities while maintaining their
flexibility.

Reinforcement Learning is a paradigm for solving sequential decision-making problems by
trial-and-error. It emerged as a subfield of computer science to solve tasks with little to no prior
knowledge of the system they interact with [Richard S. Sutton, 2018]. To do so, the learning agent
interacts in a dynamic environment and receives a reward signal after each action that indicates
how close it is to the solution. Using this signal, the agent balances the exploration of potentially
high-gain actions with the exploitation of its knowledge so far. However, myopic rewards are
not sufficient because they do not carry any information about the future. One must instead
consider how the agent performs along all the duration of its deployment and offset the short-
term with long-term benefits of its decisions. During its deployment, the environment in which
the agent evolves changes continuously meaning it should be equipped with sensors in order
to perceive its current state. Overall, the learning process is slow and requires a large amount
of interaction time before converging to an optimal solution. Within Reinforcement Learning,
robustness to distribution shift is a crucial aspect for the development of such algorithms in real-
world applications [Dulac-Arnold et al., 2021a; Zhao et al., 2020]. In this work, we focus our
investigation on Model-Based algorithms.

Statistical predictions made from data usually suffer from model bias, meaning they can only
be as good as the model itself and by extension its training data. Bayesian statistics propose a
solution to approach this problem. In this framework, probabilities are interpreted as a degree of
belief about random variables. Consequently, it can be used as a principled method for measuring
the uncertainty associated with the prediction of a probabilistic model. A probabilistic model is
constructed upon the combination of initial hypotheses in the form of a prior distribution with
actual data called likelihood. Using Bayes’ rule, these two distributions form the basis of a
posterior distribution that represent the potential values of the outcome as well as their levels of
confidence. Our work follows the footsteps of the application of Bayesian inference for solving
sequential-decision problems with Reinforcement Learning [Ghavamzadeh et al., 2015, 2016].

Dimensional Analysis, while being crucial in physics and engineering, is often ignored within
the ML and statistics communities. It consists of the analysis of the relationship between the
measurement of physical quantities and their systems of units. In other words, measurements
of physical quantities are made in specific units (meters, seconds etc...) and operations between
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them must respect consistency of the units system. It would not make sense to add together a
speed with an electric voltage for instance. Moreover, two lengths expressed in feet and meters
would need to be converted into the same unit for them to appear in the terms of an equation.
Since 1914 when the Buckingham theorem was presented [Buckingham, 1914], we know that the
knowledge of units within an equation may allow rewriting that equation with a reduced number
of variables called Π-groups. This idea has been recently introduced in ML prediction tasks to
demonstrate that models acting in Π-groups generalize better that their counterparts in natural
feature spaces. This trait makes this theorem an efficient way to increase model robustness as it
only requires knowing the measurement units of a system to transform the observations accord-
ingly and obtain robust predictive models. This process of removing the units of a measurement
to build equivariant features is called non-dimensionalization, and the Π-groups are called di-
mensionless features. Throughout this thesis, we will investigate the ability of such features to
allow generalization in actuated dynamic systems.
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1.1 Outline of this thesis
The research contributions of this thesis are contained in chapters 3, 4, 5.

• Chapter 2 is a review of the literature for the concepts we are working with throughout
the thesis. We first explain why the problem of distribution shift is crucial for the deploy-
ment of Reinforcement Learning systems in the real world and how the problem can be
formulated as a specific instance of a Partially Observed Markov Decision Process. Then,
we review how the Buckingham theorem is used for dimensionality reduction in Machine
Learning. Finally, we introduce the basics of probabilistic modelling with Bayesian infer-
ence and how those principles are used within the framework of Gaussian Process Regres-
sion.

• In chapter 3, we evaluate the robustness of the Buckingham-Π transformation to uncer-
tainty. We propose a reformulation of the theorem for second-order systems with hidden
static variables and demonstrate. We demonstrated empirically the generalization proper-
ties of the dimensionless models and their ability to cope with uncertain parameters..

• In chapter 4, we relax the need to observe all the variables required for constructing the
dimensionless variables. We propose a model with dimensional latent variables where
the physical constraint is imposed by the Buckingham theorem. We test the model in a
few-shot learning setting on a simple pendulum and demonstrate its ability to adapt to new
data.

• In chapter 5, we apply the findings of the previous chapters to a Model-Based Reinforce-
ment Learning algorithm. We demonstrate empirically that controllers acting in the dimen-
sionless state space are able to generalize far outside the bounds of the training distribution
support.

• Last, we summarize our findings, discuss their limitations and the future investigation
directions they open in chapter 6.



Chapter 2.

Background

2.1 Distribution Shift in Machine Learning

2.1.1 Distribution Shift in Supervised Learning

Supervised Learning [Hastie et al., 2009] is a framework for training algorithms to map a set
of inputs 𝑥𝑖 ∈ ℝ𝑝 to outputs 𝑦𝑖. In the remainder of this thesis we will only focus on regression,
meaning the targets 𝑦 are multidimensional real-valued vectors.

Given a set of pairs (𝑥𝑖, 𝑦𝑖) samples from an unknown training distribution train, the learning
process consists in minimizing the discrepancy between the predicted and true targets. This
is commonly done by choosing a function class optimizing a loss function with respect to the
approximator parameters:

𝜽∗ = argmin
𝑥,𝑦∈train

 (𝑦̂(𝜽), 𝑦), (2.1)

where 𝑦̂(𝜃) is the prediction given by the regressor with parameters 𝜽.

The validation or test measures the quality of the optimal parameters found during training on
previously unseen samples. We call 𝑡𝑒𝑠𝑡(𝜃∗) the loss function evaluated on the test data samples
from distribution test .

If the distance between the training and testing distribution is sufficiently small, that means
the two distribution are similar. When the training is done correctly to prevent overfitting, the
algorithm will be able to make as good predictions on the test set as the train set. This is the
most classical setting, which we usually perform with cross-validation to make sure predictions
are stable.

distance generalization

𝑑(train,test) < 𝜖 easy
𝑑(train,test) > 𝜖 difficult

Table 2.1: Generalization difficulty given distance between sampling distributions.

5



2.1. Distribution Shift in Machine Learning 6

If on the other hand, the training and testing distribution do not match, making accurate
predictions on the test set is more challenging. This phenomenon is called distribution shift and is
the source of great difficulty to deploy Machine-Learning systems in the real world. [Quiñonero-
Candela et al., 2008] proposes a taxonomy of the different types of distributions shits that may
arise depending on which random variables change between training and testing environments.
The most common that they call source component shift, is caused by data generated from many
different sources. In this specific case, suppose the relationship between 𝑥 and 𝑦 is expressed
as 𝑦 = 𝑓 (𝑥, 𝑐). Source component shift happens when the hidden 𝑐 changes between samples
of (𝑥, 𝑦), the joint distribution of the variables will be impacted even though the underlying
relationship 𝑓 remains the same. The source may be a hidden variable that is not part of the
measurement process and acts as a confounder for both 𝑿 and 𝒚. We illustrate this type of drift
on figure 2.1 where a context variable 𝐶 changes between training and testing, causing a shift in
the data distribution.

𝑋

𝐶0

𝑌 𝑋

𝐶1

𝑌

Figure 2.1: Graphical model illustrating source component shift. The random variables 𝑋 and 𝑌
are both caused by a third hidden one 𝐶 . When 𝐶 changes from training (left) to testing (right)
environment, it causes a shift in the joint distribution of (𝑋, 𝑌 ).

The ability of an estimator to make good prediction in the presence of distribution shift is
called generalization [Arjovsky, 2020]. Alternatively, we may call robustness the resilience of
the estimator to drift, meaning the quality of its predictions are little impacted by a change in the
test distribution.

2.1.2 Distribution Shift in Reinforcement Learning

Markov Decision Process

Sequential decision-making problems are found in many scientific, industrial and economic
fields. All the domain-specific settings share, however, common structures that can be theo-
retically represented by a Markov Decision Process (MDP) [Richard S. Sutton, 2018]. They
represent an agent interacting with an environment that aims to solve a set of predefined tasks.

The interaction between an agent and its environment is illustrated from a high level on figure
2.2. At a given time step 𝑡 the agent perceives the state of the environment 𝑠𝑡 through its sensors
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AgentEnvironment

𝑠𝑡

𝑎𝑡

(a) Markov Decision Process.

AgentEnvironment

Context

𝑠𝑡

𝑎𝑡

(b) Contextual MDP

Figure 2.2: High level view of an agent interacting with its environment.

and sends an action (or control) signal 𝑎𝑡 as a response. The procedure by which the agent selects
actions is called a policy, a mapping we write 𝑎𝑡 ∼ 𝜋(𝑠𝑡). As a consequence of this signal, the
environment transitions into a next state according to a transition kernel 𝑠𝑡+1 ∼ 𝑓 (𝑠𝑡, 𝑎𝑡). This
transition follows the Markov Property, meaning the future state at time 𝑡+1 solely depends on the
state of the system at time 𝑡 and not the past 𝑡− 1, ..., 𝑡0 and gives its name to MDPs. In addition
to perceiving the state of the environment, the agent receives a reward signal 𝑟𝑡 ∼ (𝑠𝑡, 𝑎𝑡)
informing it of the quality of the chosen action.

We can summarize this process as a tuple

 =
( ,, 𝑓 ,, 𝜌0

)
, (2.2)

with

•  ∈ ℝ𝑑 is the state space.
•  ∈ ℝ𝑓 is the continuous action space.
• 𝑓 is the transition kernel or simply transition function.
• 𝜌0 is a distribution of initial state (ie where the agents starts).
• , the reward function that we assume to be known. It is not a strong assumption, as the

reward is often decided by the programmer or engineer and a distance between current and
desired state-action vectors.

This formulation of the sequential decision-making process defines the long-term perfor-
mance of the agent, thus turning the problem into an optimization one. We call return (2.3) the
discounted sum of rewards

𝑅(𝒔, 𝜋) = 𝔼
𝒔∼𝑓
𝒂∼𝜋

[
𝑇∑
𝑡=0

𝛾 𝑡𝑟𝑡|𝒔0 = 𝑠

]
. (2.3)

From equation 2.3 stems an ordering over policies: a policy is better than another if it yields a
higher return for all states 𝑠. An optimal policy is one that is better than any other and is given
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by
𝜋∗ = argmax

𝜋
{𝑅(𝒔, 𝜋),∀𝑠} . (2.4)

We only consider discrete time processes with finite horizon with 𝑇 < ∞.

Finding the optimal policy is a NP-hard problem [Papadimitriou and Tsitsiklis, 1987]. There-
fore, all the methods that tackle the MDP problem are merely concerned with approximating a
solution, which is enough for most use cases. Classical methods for solving the MDP were first
designed as early as the 1950s [Bellman and Kalaba, 1965] for stabilizing systems at a set of
predefined equilibrium points. The advances in this field have consistently been driven by re-
quirements for safety and robustness because of their deployment on critical systems such as
aircraft and nuclear plants. In order to satisfy this, Proportional Integral Derivative (PID), Lin-
ear Quadratic Regulator (LQR) and variations thereof, have been developed and successfully
deployed in the real-world. This type of controller rely on analytical tractability to ensure safe
deployment. It can however, only be achieved through strong assumptions such as linearity. In
more recent years, data-driven methods based on Reinforcement Learning allow the relaxation of
such hypotheses on the system, thus allowing solving complex tasks with little prior knowledge
[Arulkumaran et al., 2017; Degrave et al., 2022].

Contextual Markov Decision Processes

The evaluation of controllers trained with RL is too often done in the same environment they
have been trained on. While this consists a good test-bed for designing and comparing algo-
rithms, it tends to oversimplify what would actually happen in the real world, where dynamics
can be non-stationary [Dulac-Arnold et al., 2021a]. Physical wear-and-tear or hidden feedback
loops [Sculley et al., 2015] can cause significant distribution shift which hinders the ability of a
controller to stabilize the system at its equilibrium. Though it is not the only approach to illus-
trate this drift, we assume the dynamics of the MDP are subjected to a set of hidden variables
that impact its one-step transitions. We follow the notations from [Kirk et al., 2023] and call this
set of variables the context.

From this follows the definition of Contextual Markov Decision Process (C-MDP) [Hallak
et al., 2015; Doshi-Velez and Konidaris, 2016; Ghosh et al., 2021], characterized by the following
transition kernel

𝒔𝑡+1 ∼ 𝑓|𝒄(𝒔𝑡+1|𝒔𝑡,𝒂𝑡; 𝒄). (2.5)

This new transition kernel yields a context-specific return function, which is the expected
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sum of rewards of the policy in the specific C-MDP. We can write it as

𝑅(𝜋, 𝒔0𝑓|𝒄) = 𝔼
𝒔∼𝑓|𝒄
𝒂∼𝜋

[
𝑇∑
𝑡=0

𝛾 𝑡𝑟𝑡|𝒔0 = 𝑠

]
, (2.6)

which we will often write 𝑅(𝜋, 𝑓|𝒄) where we omit the initial state for clarity. This value is a way
to measure the quality of a policy 𝜋 from a context to another.

Remark 1
C-MDPs can alternatively be viewed ad Partially Observed MDP with an emission function that
constantly return the observed state (𝒔𝑡, 𝒄) = 𝒔. They are also in close connection with Latent
MDPs [Kwon et al., 2021] where the context is sampled at random at the beginning of each
episode.

Remark 2
What we call the context here, is a set of confounding variables that impact the dynamics of the
dynamic systems. In that sense, they are similar as the variables described on figure 2.1 since
any change in context will affect the next-state sampling distribution.

Because we assume that the context is slowly evolving, we assume in all the following anal-
ysis that it is sampled from an unknown distribution 𝑝(𝑐) at the beginning of an episode and
remains static along its duration. The control objective in this setting can then be extended as

max
𝜋

{
𝔼

𝒄∼𝑝(𝒄)

[
𝑅(𝜋, 𝑓|𝒄)]} . (2.7)

Similarly, as in supervised learning, we can define the Generalization Gap [Kirk et al., 2023]
as the discrepancy between returns obtained in the training environment and the testing one,

GenGap
(
𝜋, 𝒄𝑡𝑟𝑎𝑖𝑛, 𝒄𝑡𝑒𝑠𝑡

)
= 𝑅

(
𝜋, 𝑓|𝒄𝑡𝑟𝑎𝑖𝑛) − 𝑅

(
𝜋, 𝑓|𝒄𝑡𝑒𝑠𝑡) . (2.8)

This metric returns a scalar value, which is lower if a controller generalizes well. It can take
negative values, in the case where the policy is not optimal in the training environment, but it
is in the testing one. A robust controller will be able to achieve a low generalization gap for a
wide set of testing context. This may, however, come at the cost of being overly conservative,
meaning the controller will not be optimal even on the training environment. Trading-off optimal
performance and robustness is at the core of robust RL research, as we will see in the next section.
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2.1.3 Robust Reinforcement Learning Litterature

Robustness can be achieved by optimizing a pessimistic objective. This is often referred to as
the Robust Markov Decision Process (MDP) framework [Wiesemann et al., 2013; Eysenbach and
Levine, 2021], which can be solved by approximate dynamics programming [Mankowitz et al.,
2018; Tamar et al., 2014] or within Maximum a Posteriori Policy Optimization [Mankowitz et al.,
2019]. Such methods go as back to 2005 [Morimoto and Doya, 2005] where the authors apply
an actor-critic where the controller attempts to correct for disturbances generated by an internal
agent. More recently [Pinto et al., 2017] apply a similar method with neural networks. In essence,
these methods solve a minimax optimization problem to account for worst-case scenarios. [Der-
man et al., 2020] defines an Uncertainty-Robust Bellman Equation and derive a robust TD error
from it. This general framework was empirically verified in both discrete and high-dimensional
continuous domains. Other types of methods inject noise in the policy or the model in order to
prevent overfitting [Charvet et al., 2021; Igl et al., 2019]. These optimization procedures tend
to yield controllers that are overly conservative, they generalize quite well at the cost of loosing
optimality even on IID data.

Some other meta learning approaches rely on domain randomization. These consist in train-
ing from multiple version of the environment (ie several contexts) so as to disentangle local
and global properties of the task [Sæmundsson et al., 2018; Kupcsik et al., 2013; Akkaya et al.,
2019]. All of these approaches however require access to a white-box simulator, on which we
can intervene to change its properties.

On the other hand, augmenting the set of initial hypotheses may increase the model and policy
ability to learn and generalize with no additional data [van der Pol et al., 2021; Muglich et al.,
2022]. Successes on zero-shot transfer have been increased with causal models [Kansky et al.,
2017; Huang et al., 2023]. There are also recent works that studied the generalization problem
but in the visual domains [Yang et al., 2023; Zhu et al., 2023]

The issue of distribution shift is also a concern for Offline RL [Levine et al., 2020]. In that
specific setting however, it is not caused by non-stationarity but by the lack of training data
in regions the offline-optimal policy visits. Several model-based methods propose to bypass it
by means of regularization. MOReL and variants [Kidambi et al., 2020; Kim and Oh, 2023]
construct a pessimistic MDP and uses a mechanism to detect unknown state-actions in order
to split the space between regions of low and high uncertainty. MOPO [Yu et al., 2020] also
optimize the policy in a surrogate MDP, where the reward in penalized by the model error. Both
maximize a lower bound of the true objective. While both method are conceptually similar
MOPO resorts to a softer penalty than MOReL. Other methods rely on Importance-Sampling
schemes such as [Yuan et al., 2023; Hishinuma and Senda, 2021; Hong et al., 2023]
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Like [Derman et al., 2020], we believe Bayesian models are well-fitted for the generalization
task in RL. In the domain of classical methods, Dual Control [Unbehauen, 2000] maintains a
probabilistic estimation of the plant parameters to derive robust adaptive controllers. This is due
to the way Bayesian can reason about an infinite number of models with means of a distribution
and integrate over all the possibilities weighted by how likely they are. In opposition, worst-case
approaches only consider a subset of models that include the most pessimistic realizations.

2.2 Statistical Invariance

2.2.1 Invariance in Decision-Making

Group Theory

In order to provide a consistent definition of invariance, we recall some definitions from group
theory.

Definition 2.2.1 (Group)
A group is an algebric structure (𝐺,⋆) consisting of a set 𝐺 and operation ⋆ that satisfy the
following properties,

• (Closure) ∀𝑔, ℎ ∈ 𝐺2, 𝑔 ⋆ ℎ ∈ 𝐺
• (Associativity) ∀𝑔, ℎ, 𝑘 ∈ 𝐺3, 𝑔 ⋆ (ℎ ⋆ 𝑘) = (𝑔 ⋆ ℎ) ⋆ 𝑘
• (Identity) ∃𝑒 ∈ 𝐺, ∀𝑔 ∈ 𝐺, 𝑒 ⋆ 𝑔 = 𝑔 ⋆ 𝑒 = 𝑔, 𝑒 is called the identify of the group 𝐺.
• (Inverse) ∀𝑔 ∈ 𝐺 ∃ℎ, 𝑔 ⋆ ℎ = ℎ ⋆ 𝑔 = 𝑒, the element that satisfies this property is called

the inverse of 𝑔.

Example 2.2.1 (Common groups)
We here give two examples of groups to highlight they are strucure that depend on both a set and
binary operation.

1. The set of integers ℤ equipped with the addition is a group with identity 𝑒 = 0 and where
any integer’s inverse is its opposite value (∀𝑧 ∈ ℤ, 𝑧 − 𝑧 = 0). However, (ℤ,×) is not a
group because the inverse element of an integer 1∕𝑧 ∉ ℤ

2. The set of real numbers ℝ is a group for both additive and multiplivative operations.

We follow the definitions of invariance and equivariance from [Villar et al., 2021].

Definition 2.2.2 (Equivariance and Invariance)
Suppose a function 𝑓 ∶  →  and a group 𝐺 acting on  and  as ⋆. 𝑓 is:



2.2. Statistical Invariance 12

Description Symbol Unit (International System)

Time t second
Length L meter
Mass M kilogram

Electric Current I Ampere
Temperature T Kelvin

Mole (quantity of matter) n mol
Candela (light intensity) 𝐼𝑣 cd

Table 2.2: Elementary physical dimensions and their respective units.

• G-invariant if 𝑓 (𝑔 ⋆ 𝑥) = 𝑓 (𝑥), ∀(𝑔, 𝑥) ∈ 𝐺 × 
• G-equivariant if 𝑓 (𝑔 ⋆ 𝑥) = 𝑔 ⋆ 𝑓 (𝑥), ∀(𝑔, 𝑥) ∈ 𝐺 × 
Equivariance is a property of physical laws that means any transformation of the input in-

curred by a group action 𝑔 will affect the output in the same way. On the other hand, an invariant
function will not be affected by a transformation of the input. Recent years have seen a growing
literature on invariance in machine-learning. With means of inductive biases such as convolution
layers in neural network, we are able to enforce translation and scale rotation invariance [Mitton,
2023; Villar et al., 2023]. Such symmetries are also a key component of graph neural networks
to express invariance with respect to permutation transformation on graphs.

2.2.2 Dimensional Analysis

Units and Equation Homogeneity

Before jumping into the details of the main theorem, we need to explain what a physical
measurement is and what a dimension is. The measure of a physical quantity comprises both a
magnitude and a dimension as

𝑋 = {𝑋} [𝑋] . (2.9)

The measure of a distance for example will have the dimension of a length [𝐿], and accel-
eration a length per time squared

[
𝐿𝑇 −2

]
. Any physical variable can be expressed as a product

of integer exponents of the 7 elementary units written in table 2.2. The dimension is the actual
object that is measured and that is not impacted by a change of units.

Among the quantities listed in table 2.2, the first three are most important to our subsequent
work as they suffice to express all quantities present in mechanical systems. Before going further,
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it is worth keeping in mind that units and dimensions are not the same thing. Any system of units
is an affine transformation of the other [Lee et al., 2021] and unit homogeneity is crucial to ensure
correct analysis.

Operations on Dimensioned Quantities

Following the bracket notation from [Sonin, 2001], [𝑋] denotes the dimension of variable
𝑋.

• Two quantities 𝑋 and 𝑌 can be added provided [𝑋] = [𝑌 ] and the resulting quantity has
magnitude {𝑋 + 𝑌 } = {𝑋} + {𝑌 } and dimension [𝑋 + 𝑌 ] = [𝑋] = [𝑌 ].

• Two quantities can be multiplied whatever their dimensions and {𝑋 × 𝑌 } = {𝑋} × {𝑌 },
[𝑋 × 𝑌 ] = [𝑋] × [𝑌 ].

• A quantity can be raised to the power of a rational fraction 𝛾 ∈ ℚ with 𝑋𝛾 = {𝑋}𝛾[𝑋]𝛾 .

It is worth noting that for these operations to be properly defined, the quantities must be ex-
pressed in a consistent set of units [Villar et al., 2023; Shen, 2015]. In 1999, the Mars Climate
Orbiter crashed because a software module designed to compute trajectories was returning Im-
perial rather than metric units [Board, 1999].

Dimension Homogeneity in Machine Learning Models

These remarks shed a new light unto the interpretation of machine learning models. Let us
take the example of a linear regression problem

𝑦𝑖 = 𝛽 × 𝑥𝑖 + 𝜖𝑖,with 𝜖𝑖 ∼  (0, 𝜎2), 𝑦𝑖 ∈ ℝ, 𝑥𝑖 ∈ ℝ𝑑 , (2.10)

where the outputs 𝑦𝑖 are noisy realizations of a linear process and 𝛽 is a vector of free parameters
of size 𝑑. From a physicist point of view, this equation only makes sense if

∀𝑗 = 1… 𝑑, [𝛽𝑗] = [𝑦]∕[𝑥𝑗]. (2.11)

Because this estimator is built on simple algebraic operations, this does not pose any major the-
oretical problem. One can simply assume equation 2.11 is verified and use the model as is.

What about kernel-based methods? There is debate among mathematicians about whether
applying the exponential function to a dimensioned quantity makes sense. As we know, the
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exponential function can be written as the infinite sum

𝑒𝑥 =
∞∑
𝑘=0

𝑥𝑘

𝑘!
. (2.12)

In general, the Taylor expansion (2.12) would be composed of heterogenous terms because 𝑖 ≠
𝑗 ⇐⇒ [𝑥]𝑖 ≠ [𝑥]𝑗 . As we saw previously, adding quantities only makes sense if they share
the same dimension, which occurs if and only if 𝑥 is dimensionless ([𝑥] = 𝟎). The question of
applying transcendental functions to dimensional quantities is still an open question [Lee et al.,
2021; Villar et al., 2023], so we here give the reader an intuition of where the problem is coming
from, and why it might be ignored all together.

Let us take the simple case of the Squared Exponential kernel from equation 2.13.

𝑘𝑆𝐸(𝒙,𝒙′) = 𝜎2𝑒−(𝒙−𝒙′)𝐿−2(𝒙−𝒙′), (2.13)

As we stated, the term (𝒙 − 𝒙′)𝐿−2(𝒙 − 𝒙′) should be dimensionless to be passed into the expo-
nential function. In the particular Automatic Relevance Detection case, we may assume

∀𝑗 = 1… 𝑑, [𝐿𝑗] = [𝑥𝑗]. (2.14)

The equation (2.14) ensures the distance term is dimensionless and can be exponentiated. If the
lengthscale is shared across all input dimensions, however, one might advocate it does not make
mathematical sense since it computes heterogenous quantities. If the elements 𝒙 are already
dimensionless, the homogeneity is respected.

As the exponential function, its inverse the logarithm may be subjected to homogeneity issues
[Molyneux, 1991]. The Taylor expansion for the logarithm can be written as,

ln(𝑥) =
∞∑
𝑘=1

(−1)𝑘+1 (𝑥 − 1)𝑘

𝑘
. (2.15)

Once again, each term in the sum will have a different dimension ([𝑥]𝑘) unless 𝑥 is dimensionless.
This argument can however be countered since logarithms are usually applied to ratio of physical
quantities. In such cases, ln(𝑢∕𝑣) = ln(𝑢) − ln(𝑣) where [𝑢] = [𝑣] and so the operation is
legitimate. We point out the absence of scientific consensus on this matter to this day and refer the
reader to [Lee et al., 2021] for additional discussion on homogeneity in transcendental functions.

Historically, this homogeneity problem has not appeared when GP models where used for
kriging. Because the input 𝑥 had the dimension of a length, dividing by the lengthscale naturally
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gave rise to a dimensionless exponent. One strength of considering the homogeneity of ML
models is the increase in interpretability as was showed in [Kumar et al., 2018; Chandra et al.].
While we do not advocate for the theoretical invalidity of using dimensioned quantities with
commonly used kernels, we believe the non-dimensionalization technique described in the next
section gives a more theoretically sound application of the model.

Units-Equivariant Functions

Definition 2.2.3 (Units-typed space [Villar et al., 2023])
Random variables that are expressed as a magnitude and unit as in equation (2.9) take values in
a units-typed space:

 =
𝑑∏
𝑖=1

[𝑥𝑖]. (2.16)

Formally we write an element of a units-typed space 𝒙 = (𝒙, 𝒙̄) for making explicit its magnitude
and dimension.

A variable is called dimensionless if the vector 𝒙̄ is 𝟎.

Example 2.2.2 (Unit-typed spaces in mechanics)
Suppose a mechanical equation is expressed in the based units kg, m, s the SI units for mass,
length and time. Measurement can be expressed in those units by means of a vector 𝒙̄𝑖:

• a mass of 𝑚1 = 2 𝑘𝑔 can be expressed as 𝑚1 = 2 [1, 0, 0],
• an acceleration of 𝑎1 = 10 𝑚.𝑠−2 expressed as 𝑎 = 10 [0, 1,−2].

Definition 2.2.4 (Rescaling Group [Villar et al., 2023])
Let us consider a unit-typed space  of dimension 𝑑 with 𝑘 base units. Those units impose a
rescaling group 𝐺 = (ℝ𝑘

+,×) of which an element (𝑔1,… , 𝑔𝑘) rescales the units of each element
of  pointwise.

𝒈 ⋅ 𝒙 =

(
𝑘∏

𝑗=1
𝒈−𝒙̄𝑗𝑗

)
⋅ 𝒙 (2.17)

Example 2.2.3 (Rescaling Unit)
In the second example above, should we wish to change the the acceleration in 𝑘𝑚.ℎ−2, we can
rescale the measurement with the element 𝑔 = (1, 1000, 3600). The new acceleration will thus
be 𝑎1 = 1 × (1000)−1 × (3600)2 × 10 = 129600 𝑘𝑚.ℎ−2

Definition 2.2.5 (Units-typed function [Villar et al., 2023])
A function 𝑓 ∶ [𝑥] → [𝑦] is called a units-typed function if both spaces [𝑥] and [𝑦] are
unit-typed spaces.
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Definition 2.2.6 (Units-equivariant function [Villar et al., 2023])
A units-typed function is called units-equivariant if it satisfies the following property,

∀𝑔 ∈ 𝐺,∀𝑥 ∈ 𝑥[] 𝑓 (𝑔 ⋅ 𝑥) = 𝑔 ⋅ 𝑓 (𝑥). (2.18)

In other words, that definition states that a units-equivariant function preserves the coherence
of the equation by scaling its inputs and outputs appropriately.

Theorem 2.2.1 (Buckingham)
Assuming a physical system is described as a function of 𝑑 independent variables as

𝑓 (𝑥1 … 𝑥𝑑) = 0. (2.19)

If 𝑘 elementary dimensions suffice to describe the system i.e.:

∀𝑖 ∈ {1… 𝑑}, 𝑥̄𝑖 =
𝑘∏

𝑗=1
𝑑𝑗

𝛾𝑖,𝑗 . (2.20)

Then, the system can be equivalently described by 𝑘−𝑟 dimensionless variables, calledΠ groups:

∀𝑗 ∈ {1,… , (𝑘 − 𝑟)} Π𝑗 =
𝑑∏
𝑖=1

𝑥𝑧𝑖,𝑗
𝑖 , 𝑧𝑖,𝑗 ∈ ℤ. (2.21)

The Π groups satisfy the equation

𝑓Π(Π1,… ,Π𝑑−𝑘) = 0. (2.22)

It is worth noting that the Π-groups are not unique and will condition the form of 𝑓Π. The
point of this theorem is to create a feature space that will be independent of the choice of units.
This theorem had been developed to reduce the number of variables to control for collecting
experimental data. It was instrumental in the discovery of instrumental quantities such as the
Reynolds number in fluid dynamics [Lee et al., 2021]. More importantly, [Shen and Lin, 2019,
2018] demonstrate that dimensionless variables are maximal invariant statistics to scale transfor-
mation in fundamental dimensions.

Application of the Theorem

Now that we considered the theoretical aspects and benefit of the dimensionless variables
with respect to statistical invariance, we present how to find the dimensionless variables. As it
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Variable Dimension

Diameter of the cylinder (𝐷) 𝐿
Density of the fluid (𝜌) 𝑀𝐿−3

Velocity (𝑣) 𝐿𝑇 −1

Viscosity (𝜇) 𝑀𝐿−1𝑇 −1

Drag (𝐹 ) 𝑀𝐿𝑇 −2

Table 2.3: Physical variables and their dimensions for a fluid going through a cylinder.

turns out, that problem can be reduced to that of solving a system of linear diophantine equations.
The equation 2.21 is called a power law and constitutes the basis for removing the dimension of
the variables. To ensure that, the coefficients 𝑧𝑖,𝑗 must satisfy the constraints

𝑑∑
𝑖=1

𝑧𝑖,𝑗𝑥𝑗 = 0 (2.23)

for each of the 𝑘− 𝑟 Π-groups. In other words, that equation renders the variables dimensionless
through the power law. A detailed example for solving such a system on a pendulum is available
in Appendix A.1.2 The direct consequence is the non-uniqueness of the Π-groups which may
follow if the rank of the system is not full.

Example 2.2.4 (Reynolds Number)
Fluid mechanics is the study of the behaviour of fluids under different environmental conditions.
The Buckingham theorem has been used to construct 𝑃 𝑖-groups to reduce the number of vari-
ables during experiments. Let us consider the problem of predicting the pressure in a cylinder.
The relevant variables and their dimensions are summarized in table 2.3 As we can see, all the
variables can be described by the 3 dimensions of mass, length and time. The system can there-
fore be described by 5 − 3 = 2 dimensionless variables. The dimensional matrix for this system
writes down as

𝑿̄ =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 1
1 −3 0
0 1 −1
1 −1 −1
1 1 −2

⎤⎥⎥⎥⎥⎥⎥⎦
. (2.24)

Each column represent the dimensions (𝑀,𝐿, 𝑇 ) in that order and each row is a variable. The
Reynolds number is generally defined [Lee et al., 2021] as

Π1 = 𝑅𝑒 =
𝜌𝑣𝐷
𝜇

. (2.25)
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, It can be found numerically by solving , which yields the second Π-group Π2 =
𝐹

𝜌𝐷2𝑉 2
.

General Consequences

Training machine learning models in dimensionless spaces presents multiple advantages.
The first is an improvement in prediction performance. [Villar et al., 2023; Oppenheimer et al.,
2023] demonstrated that estimators trained in that space are able to make accurate predictions on
test data with out-of-distribution properties. This is partly due to the dimensionality reduction
property of the transformation and the deletion of colinearities between the features. Moreover,
the constraints induced by the physics prior enforce appropriate scaling relationships between
the inputs and outputs. Additionally, the normalization induced by the nondimensionalization
procedure imposes a better conditionning of data which will improve the stability of models
trained on them.

An issue raised by this method is caused by the method used for finding appropriateΠ-groups.
They come from solving the system (2.23) which, in general, admits non-unique solutions. In
fact, the set of solutions forms a lattice of the space which may be infinite. As a consequence, the
one solution used for transforming the space should be carefully considered. It will necesarily
require domain-specific knowledge to ensure the physical validity and coherence of that specific
Π-group. This may be increasingly difficult as the dimension of the systems at hand grow. When,
several masses and lengths are available to non-dimensionalize a velocity to instance, one should
make sure that the variables present a causal link. Otherwise the transformation will not allow
meaningful equivariance properties. This raises a question of trade-off between preserving the
flexibility of a statistical learning method and modeling from first principles. The more prior
knowledge is needed, the less benefit we pull from data-driven approaches.

Finally the main drawback of this approach is the strict requirement for dimensional measure-
ments. Text or image data for instance do not present this property as these modalities do not take
values in units-types spaces. The theorem could in theory be extended to other scientific fields
such as economics. The step for doing so is adapting the dimensions of governing equations such
as monetary value, volatility, man-hours and so forth [Barnett, 2004; Texocotitla et al., 2020].
However, we emphasize that in economics sciences the dimensions are not as well-defined as in
physics. Therefore, applying the principles of DA to other fields should be made with careful
attention.
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2.3 Probabilistic Modeling

2.3.1 Bayesian Inference

Bayesian statistics are a mathematical paradigm that interpret probabilities as a measure of
uncertainty. Inference in this view is done by combining a priori knowledge with actual data.
This process is enlightened by Bayes’ rule of conditional probabilities

posterior =
likelihood × prior

evidence
. (2.26)

These methods are used in machine-learning to train classifiers and regressors that are aware
of their own uncertainty. On figure 2.3, we illustrate this principle on a linear model. A distri-
bution is associated with both weights of the model and additive noise. This trait is particularly
appealing to remove the model bias caused by lack of training data and for designing exploration
strategies in Bayesian Optimization or dynamic systems [Barto, 2013; Shahriari et al., 2016].
Bayesian inference however suffers from the need computing the evidence, an integral that is

Figure 2.3: Bayesian linear regression. On the left is the distribution of the latent linear function
and the right the predictive likelihood.

intractable except with strong limiting assumptions on the family distributions of the prior and
likelihood. The application of this framework therefore consists chiefly in finding good approx-
imations of the posterior distribution.

For decades, the major algorithm used for approximating posteriors has been Monte Carlo
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methods and their variants [Neal, 1993; Homan and Gelman, 2014]. It consists chiefly of ap-
proximating an integral as the expected value of its density using the law of Large Numbers
(2.27),

1
𝑁

𝑁∑
𝑖=1

𝑓 (𝑥𝑖), 𝑥𝑖 ∼ 𝑝(𝑥𝑖) →
𝑁→∞

𝔼𝑝 [𝑓 (𝑋)] . (2.27)

In order to reduce the sample complexity of the algorithm, it draws samples that are not in-
dependent but from a Markov Chain which stationary distribution is that of the posterior, thus
gave the name Markov Chain Monte Carlo (MCMC). Provided an infinite number of samples is
drawn, this algorithm will converge to the exact posterior. This comes at the cost of the sampling
time, which can be prohibitively expensive. Moreover, this family of algorithms suffers from the
curse of dimensionality which states that distances increase exponentially with space dimension
[Bellman, 1962] and causes data sparsity.

The last 15 years have in turn, seen the advent of a new family of posterior approximations
methods allowed by progress in both parallel hardware architectures and stochastic optimization
software. This approach, called Variational Inference (VI) provides a consistent framework for
the posterior approximation problem [Hoffman et al., 2013; Blei et al., 2017]. Rather than ap-
proximating the integral directly as MCMC does, VI maximizes a parametric lower bound of it.
By doing so, the problem of computing an intractable integral is converted into an continuous op-
timization one. As such, the practitioner can resort to the modern stochastic optimization toolkit
with gradient descent on huge datasets using Graphical Computing Units (GPU). In the next sec-
tion, we explain on a concrete example of Gaussian Process Regression how these schemes work
and what their respective strength and weaknesses are.

2.3.2 Gaussian Process Regression

Gaussian Processes are distribution over functions with multivariate normal finite-dimensional
distribution [Rasmussen and Williams, 2005]. Gaussian processes are uniquely defined by their
mean and covariance function, the class of which conditions the characteristics of their samples
paths. Because many stochastic processes are Gaussian, using them as priors for Bayesian in-
ference allows for estimating a wide variety of functions. For instance, any smooth real-valued
function can be viewed as the realization of a GP with squared-exponential kernel. In the fol-
lowing, we derive the most common approximation used for GP regression, namely the type-II
Marginal Likelihood Estimation. We focus here on the derivation using the squared exponential
covariance function

𝑘𝑆𝐸(𝒙,𝒙′) = 𝜎2𝑒−(𝒙−𝒙′)𝐿−2(𝒙−𝒙′), (2.28)
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with 𝝀 = (𝜎, 𝐿) the set of hyperparameters. 𝜎 is the signal variance and 𝐿 = (𝑙1,… , 𝑙𝑑) are the
lengthscales.

In the case of regression with white noise, we write the relation between inputs and observa-
tions as

𝒚 = 𝒇 + 𝝐, 𝜖 ∼  (𝟎, 𝜎2
𝑜𝑏𝑠𝑰). (2.29)

⎧⎪⎨⎪⎩
𝑝(𝒚|𝑓 ) =  (𝒚|𝒇 ,Σ𝑦)

𝑝(𝒚|𝑋) =  (𝒚, 𝟎,𝑲 + Σ𝑦)
(2.30)

A Gaussian likelihood is conjugate to the prior, therefore the posterior distribution is also a
multivariate Gaussian.

𝑝(𝒇 |𝒚,𝑿) =  (
𝒇 |𝑲 (

𝑲 + Σ𝑦
)−1 𝒚,𝑲 (

𝑲 + Σ𝑦
)−1 Σ𝑦

)
(2.31)

For prediction at a new test point 𝒙∗,

𝑝(𝒇 ∗, 𝒚|𝑥∗,𝑿) = 
([

𝒇 ∗

𝒚

] |𝟎,[𝒌∗∗ 𝒌𝑇
∗

𝒌∗ 𝑲 + Σ𝑦

])
(2.32)

Conditional posterior over 𝒇 ∗,

𝑝(𝒇 ∗|𝒙∗, 𝒚,𝑿) =  (
𝒇 ∗|𝒌𝑇

∗

(
𝑲 + Σ𝑦

)−1 𝒚,𝒌∗∗ − 𝒌𝑇
∗

(
𝑲 + Σ𝑦

)−1 𝒌∗

)
(2.33)

Model selection is done by optimizing 𝑝(𝒚|𝑿,𝝀)with respect to 𝝀with gradient-based or Newton
methods,

log (𝑝(𝒚|𝑿,𝝀)) = −1
2
𝒚𝑇 (𝑲 + Σ𝑦)−1𝒚 − 1

2
log |||𝑲 + Σ𝑦

||| − 𝑁
2
log 2𝜋. (2.34)

The derivations above rely on estimating the hyperparameters pointwise hence removing any
uncertainty associated with them.

2.3.3 The Fully Bayesian GP Model

In this section, we consider the full probabilistic model for Gaussian Process Regression.
Inference in such a model follows the graphical model described in 2.4.
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𝑓

𝜆

𝑋 𝑦

Figure 2.4: Graphical Model for Gaussian Process regression. The node 𝜆 represents the free
parameters and 𝑓 the latent hidden function.

Figure 2.5: Comparison of MAP (left), MCMC (center) and VI (right) inference for a Gaussian
Process regression on toy data.

Prior over Hyperparameters 𝝀𝜎𝑛 ∼ 𝑝(𝝀)

Prior over parameters 𝒇 |𝑿, 𝜆 ∼  (
0, 𝐾𝝀

)
Data Likelihood 𝒚|𝒇 ∼  (

𝒇 , 𝜎2
𝑛𝐼
)
.

(2.35)

The drawback of deriving the full posterior over the model and hyperparameters is that it renders
its computation, as well as that of the marginal likelihood, intractable. Therefore, inference in
that model relies on sampling or variational approximations as was studied in [Lalchand et al.,
2022; Lalchand and Rasmussen, 2020; Rossi et al., 2021; Yu et al., 2019]. The prior on the
kernel hyperparameters was demonstrated to have only little influence on the end results [Chen
and Wang, 2018] and can be leveraged to estimate non-stationary kernels [Burnaev et al., 2016].

On figure 2.5, we plot the posterior distributions of the 3 inference schemes on a simple
dataset. The toy data is generated as noisy samples of a one-dimensional damped harmonic os-
cillator. On the leftmost plot, a single mean function is plotted since it is a deterministic function
given in equation (2.33). On the center and right plots however, the means are conditioned by
the hyperparameter samples and therefore non-deterministic. This is why several means in blue
are showed on the graph.
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2.3.4 Sparse Gaussian Process

The main impediment for scaling GP models to large dataset is the requirement for inverting
the covariance matrix, which is a cubic operation in the number of samples. To circumvent this
issue, various methods have been developed to relax that dependency on the training points.
Early works such as [Lawrence et al., 2003; Csató and Opper, 2002] proposed to condition the
posterior only on a subset of observations. This however led to the combinatorial problem of
identifying the most significant of these subsets to represent all the data.

An orthogonal approach by [Snelson and Ghahramani, 2005] then paved the way to the Sparse
Gaussian Process, which instead conditions the posterior on a set of pseudo-points that are not
part of the dataset but instead aim to summarize the observations. The number of pseudo-points
𝑀 is chosen such that𝑀 ≪ 𝑁 such that the posterior and likelihood computations are less heavy
than on the actual data. Much of the work in sparse approximation hence consist in finding
good low-rank approximations of the covariance matrix. The variational sparse GP [Titsias,
2009; Hensman et al., 2013] then allowed optimization with stochastic variational inference,
making such models applicable to large datasets up to millions of samples in both regression and
classification tasks [Hensman et al., 2015]. This approach does not modify does not modify the
GP prior and leaves the generative model unchanged and augment it with the inducing points 𝒁
and their evaluations 𝒖,

𝑝(𝒚,𝒇 , 𝒖|𝑿,𝒁) = 𝑝(𝒚|𝒇 )𝑝(𝒇 , 𝒖|𝑿,𝒁). (2.36)

We introduce a proposal distribution over the latent variables 𝑞(𝒇 , 𝒖) that will approximate
the true posterior 𝑝(𝒇 , 𝒖|𝒚,𝑿,𝒁) with

𝑞(𝒇 , 𝒖) = 𝑝(𝒇 |𝒖,𝑿,𝒁)𝑞(𝒖|𝒁), (2.37)

Where the distribution 𝑝(𝒇 |𝒖,𝑿,𝒁) =  (𝒇 |𝑲𝑁𝑀𝑲−1
𝑀𝑀𝒖,𝑲𝑁𝑁 −𝑲𝑁𝑀𝑲−1

𝑀𝑀𝑲𝑀𝑁 ) is the con-
ditional for 𝒇 in the standard sparse approximation [Snelson and Ghahramani, 2005].

This gives us the following ELBO (using Jensen inequality),

log 𝑝(𝒚|𝑿) = log∫ 𝑞(𝒇 , 𝒖)
𝑞(𝒇 , 𝒖)

𝑝(𝒚|𝒇 )𝑝(𝒇 , 𝒖|𝑿,𝒁)𝑑[𝒇 , 𝒖] (2.38)

≥ ∫ 𝑞(𝒇 , 𝒖) log
𝑝(𝒚|𝒇 )𝑝(𝒇 , 𝒖|𝑿,𝒁)

𝑞(𝒇 , 𝒖)
𝑑[𝒇 , 𝒖] (2.39)

= ∫ 𝑞(𝒇 , 𝒖) log
𝑝(𝒚|𝒇 )(((((((𝑝(𝒇 |𝒖,𝑿,𝒁)𝑝(𝒖|𝒁)

(((((((𝑝(𝒇 |𝒖,𝑿,𝒁)𝑞(𝒖|𝒁)
𝑑[𝒇 , 𝒖] (2.40)
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= 𝔼𝑞(𝒇 |𝑿,𝒁)
[
log 𝑝(𝒚|𝒇 )] −𝐷KL [𝑞(𝒖|𝒁)||𝑝(𝒖|𝒁)] (2.41)

where
𝑞(𝒇 |𝑿,𝒁) = ∫ 𝑝(𝒇 |𝒖,𝑿,𝒁)𝑞(𝒖|𝒁)𝑑𝒖. (2.42)

The latest expression is analytically tractable when the distribution 𝑞(𝒖|𝑿).

Finally in order to apply that framework to large datasets, [Hensman et al., 2015] introduced
the distribution 𝑞(𝒖|𝑿) =  (𝒖|𝒎,𝑺) where 𝒎,𝑺 are variational parameters. This allows the
decomposition of the expectation of the likelihood in equation (2.41) across batches of data to
apply stochastic optimization routines.

Gaussian Process regression is the gold-standard method for Bayesian non-parametric infer-
ence, it is both sample efficient and able to return well calibrated uncertainty estimates. In this
section, it served us to explain how to do inference in a probabilistic model with MAP, MCMC
or VI. The key component of probabilistic modelling that matter for the goal of robustness is
the ability to consider an infinity of realizations with the means of a probability distribution and
integrate them.



Chapter 3.

Dimensional Analysis and Context Drift

In this chapter, we study a transformation of the feature space based on the Buckingham-Pi
theorem introduced to determine the number of dimensional groups required to describe a
physical phenomenon. We evaluate the invariance properties of the transformation in the
context of regression on second-order systems, specifically applied to the actuated pendu-
lum. We demonstrate that estimators trained on this state space are able to make accurate
predictions outside of the training distribution support and that this transformation is robust
to uncertainty about the system variables.

Dimensional Analysis is the study of the interplay between the measure of physical quan-
tities and the units they are defined in. It allows reasoning about equation homogeneity and is
ubiquitous in physical sciences. As taught in undergraduate physics and engineering courses one
can add quantities if and only if they are expressed in the same unit, thus the same dimension.
For example, it does not make sense to add a length quantity to a speed, as one does not compare
apples and oranges.

In the statistical learning world however, things are a bit different [Lee et al., 2021]. Depen-
dent variables or features are assumed to take values in Euclidean space that ignore their units.
This flaw is highlighted by Cox in [Blitzstein, 2023] when asked about the stability of statistical
models. He states that statistical analysis should not be disconnected from the relevant scientific
field such that representations should satisfy the constraints it imposes.

While this does not pose problem from a practical standpoint, the knowledge of the dimension
in which measurements are expressed can be leveraged to reduce the dimension of the problem
with the Buckingham-Pi theorem [Buckingham, 1914]. This theorem exploits the symmetries
of a dimensioned physical equation to reduce the number of variables required to express it.
Moreover, the embedding transforms the natural space into equivariant features that lead to bet-
ter out-of-distribution generalization. While this transformation requires additional knowledge
compared to state-space view, it is resilient to uncertain measurements of the variables required
for non-dimensionalization. Our study focuses on dynamic systems, whose transition function
are conditioned on static variables.

25
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This chapter comprises three main sections. First, we introduce how statistical shift pre-
vents identification of real-world dynamic systems. In the second part, we explain how dimen-
sional analysis and the Buckingham-Pi theorem are used to build invariant predictors. Last, we
demonstrate empirically on a second order system how that dimensionality reduction technique
improves the generalization capabilities of statistical estimators.

3.1 Motivation: Context Drift in Dynamic Systems
In the Machine-Learning literature, distribution shift [Quiñonero-Candela et al., 2008] is the

phenomenon that occurs when the data-generating distribution of an observable changes between
experiments. For our study, we focus on shifts that occur in second-order dynamic systems. In
the general settings, let us assume observations of the position 𝑥 at any time take value in a space
 . The evolution of the system is characterized by its second-order derivatives with respect to
time,

𝒙̈𝑡 = 𝑓 (𝒙𝑡, 𝒙̇𝑡). (3.1)

Ordinary Differential Equations (ODE) such as (3.1) are found in most scientific areas from
biology to economics. They are a generic tool to describe the evolution of continuous variables
with respect to time. Consequently, they can be used for predicting the future state of the system
at any given point in time given an initial condition 𝒙0, 𝒙̇0. This is called an Initial Value Problem,
and can be solved in two ways. If the equation has an analytic solution, we can directly write
the value of the system state for any time provided the initial values or boundary condition can
constrain the solution. Analytic solutions are, in general, difficult to find or non-existent if the
equation is not linear. In such cases, scientists and practitioners resort to numerical integration.
That second approach involves integrating the equation step by step until the desired time is
reached.

The aforementioned methods however, require sufficient domain knowledge for writing the
equation (3.1) in the first place. This is often done from first principles, which are not necessarily
available given the complexity of dimensionality of the system. The alternative then, is to infer
the equation from observational data instead. This approach is grounded in supervised learning,
as it aims to learn a mapping from measurements 𝒙𝑡, 𝒙̇𝑡 to 𝑦𝑡 = 𝑓 (𝒙𝑡, 𝒙̇𝑡)+𝜖. Where 𝜖 is a standard
Gaussian noise. From an estimation 𝑓 trained on trajectories of the system, we can then predict
the future from any initial value 𝒙0, 𝒙̇0 with a stepwise integrator. If the discrepancy between
the model 𝑓 and the true dynamics 𝑓 is small, the predicted trajectories will simulate the true
system accurately up to that difference.

In practice, however, external perturbations or hidden feedback loops can cause the system
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dynamics to change after repeated experiments. If the new dynamics 𝑓𝑠ℎ𝑖𝑓𝑡 differ too much from
the initial ones, then the model 𝑓 will no longer be able to simulate the system accurately. Such
change will cause a shift in the distribution of observed trajectories. This modification of the
dynamics does not however come from nowhere and is a matter of perspective. While we wrote
the dynamics as a function of the state, they in fact also depend on additional context variables.
This context is not included in equation 3.1 as it remains static and does not depend on time. More
precisely, it depends on time but moves on a slower timescale than the state variables and is thus
omitted. Assuming full observation of the dynamic and static system variables, the evolution of
the system is entirely described as

𝒙̈𝑡 = 𝑓𝒄(𝒙𝑡, 𝒙̇𝑡) = 𝑓 (𝒙𝑡, 𝒙̇𝑡, 𝒄). (3.2)

In a pendulum for instance, the state variables are the angle position and velocities while the
context includes its mass and length.

Given that perspective, it is clear that changing from a context 𝒄0 to 𝒄∗ will modify the dynam-
ics of the system. The function governing the dynamics does not change itself, but the parameters
on which it depends do. A robust model of the system is one that is able to reduce the prediction
error on a range of context 𝑡𝑒𝑠𝑡 as

𝑓 ∗ = argmin
𝑓 ∫𝒄∈𝑡𝑒𝑠𝑡

‖𝑓𝒄 − 𝑓‖, (3.3)

for a given functional norm ‖.‖.

We tackle this problem from the standpoint of zero-shot transfer learning. In that specific
case, one aims to estimate a model given training data from an atomic context 𝒄0 =

{
𝒄0
}

to a
compact sub-ensemble 𝑡𝑒𝑠𝑡. In the next section, we describe how this can be achieved using the
Buckingham-Pi transformation.

3.2 Dimensionality Reduction with Buckingham Pi Theorem

3.2.1 Buckingham-Pi Theorem for Dynamic Systems

Context-Dependent Non-Dimensionalization

The Buckingham theorem can be applied in machine learning tasks as a dimensionality re-
duction technique. More importantly than that, the dimensionless features lead to equivariant
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features [Villar et al., 2023]. For simplicity, we rewrite the equation (3.2) more generally as

𝑓 (𝒙; 𝒄) = 𝒚, (3.4)

with the dimensions of 𝒙, 𝒄 and 𝒚 are 𝑑, 𝑟 and 𝑝 respectively. In that formulation, 𝒙 includes all
the time-dependent variables of the system and 𝒚 is the dependent observable of the system.

Assumption 1 (Full-rank context)
We assume the rank of unit-typed set matrix [𝒄𝑖]𝑖=1,…,𝑟 is full. This means the span of the context
contains all the 𝑘 elementary dimensions in which the ODE is expressed

This assumption implies that the position and velocity variables can be made dimensionless
by multiplying each with a product of the context ones. A rescaling group that non-dimensionalize
the state variables is expressed as

∀𝑖 = 1,… , 𝑑 ∶ 𝑔𝑖 =
𝑘∏

𝑗=1
𝑐𝛼𝑖,𝑗𝑗 , 𝑠.𝑡.

𝑑∑
𝑗=1

𝛼𝑖,𝑗𝑥𝑖𝑗 = 0, (3.5)

where 𝛼𝑖,𝑗 ∈ ℤ∀𝑖, 𝑗. We call the action of a group that satisfies (3.5) a Π-group in reference to
the Buckingham theorem.

Finding the elements of that group therefore consists in finding the coefficients 𝛼𝑖,𝑗 , which
comes down to solving a linear system of equations. Under the full rank hypothesis 1, a unique
solution exists. That solution is unique if 𝑑 > 𝑘 and non-unique if 𝑑 ≤ 𝑘 In section 3.2.2, we
demonstrate on an example how to solve the system for a simple pendulum.

Regression in Dimensionless State-Space

Let us assume we have found the coefficients 𝜶 that satisfy equation (3.5), we write the
corresponding group action as

𝐺Π𝒙
(𝒄) =

(
𝑔1,… , 𝑔𝑑

)
(3.6)

𝐺Π𝒚
(𝒄) =

(
ℎ1,… , ℎ𝑝

)
. (3.7)

We emphasize here that the group actions are dependant of the context vector. Equation (3.4)
can then be rewritten as follows:

𝑓 (𝐺Π𝒙
(𝒄) ⋅ 𝒙) = 𝐺Π𝒚

(𝒄) ⋅ 𝑓 (𝒙). (3.8)
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The resulting equation (3.8) is a direct application of the Buckingham theorem with the appropri-
ateΠ-groups and their equivariant property 2.18. Suppose we have trained a model on a singleton
nominal context 𝒄0. Any perturbation on it can be written as 𝒄 = 𝜿𝒄0 with 𝜿 composed of strictly
positive elements. Finally, using the fact that 𝐺Π𝒙

(𝜿𝒄0) = 𝐺Π𝒙
(𝜿)𝐺Π𝒙

(𝒄0) We can then rewrite
equation (3.8) as

𝑓 (𝐺Π𝒙
(𝜿)𝐺Π𝒙

(𝒄0) ⋅ 𝒙) = 𝐺Π𝒚
(𝜿)𝐺Π𝒙

(𝒄0) ⋅ 𝑓 (𝒙). (3.9)

This definition for the model corresponds to the form of an equivariant function 2.2.2. The
consequence of equation (3.9) is that we can estimate a single model for the latent function 𝑓 that
will be valid across a range of domains through the rescaling of its inputs and outputs. Because
of the equivariance of the transformation, that means a singleton context {𝒄0} should in theory
be enough to construct a model that can generalize to any 𝒄 ∈ .

3.2.2 Application to Actuated Pendulum

In all the following, we call ΦΠ the context-dependent mapping from state variables into
dimensionless variables,

ΦΠ ∶ (𝒙, 𝒚) ∈ ℝ𝑑 ×ℝ𝑝 →
(
𝐺Π𝒙

⋅ 𝒙, 𝐺Π𝒚
⋅ 𝑦

)
. (3.10)

We now apply the theorem to the case of an actuated frictionless pendulum to discover di-
mensionless state-space features of the dynamic system. The physical variables that describe
this system are summarized in table 3.1. The output variable, angular acceleration is linked to
the input variables with an unknown ODE as

𝜃̈ = 𝑓
(
𝑀,𝑔, 𝐿, 𝑐; 𝑢, 𝜃, 𝜃̇

)
. (3.11)

The system is entirely described by 8 variables and the 3 elementary dimensions of mass, length
and time. Therefore, according to Buckingham-Pi theorem, it can be reduced to 4 dimensionless
variables. Following the derivation described in appendix A.1.2, we can describe the frictionless

1Dimension is actually [𝐿]0 as an angle is a ratio of lengths, what matters to the analysis here is that they are
dimensionless. [Lee et al., 2021]
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Variable Dimension

mass 𝑚 [𝑀]
Earth gravitational constant 𝑔 [𝐿][𝑡]−2

length 𝑙 [𝐿]
friction coefficient [M][t]−1

torque 𝑢 [𝑀][𝐿]2[𝑡]−2
angle 1 𝜃 1

angular velocity 𝜃̇ [𝑡]−1
angular acceleration 𝜃̈ [𝑡]−2

Table 3.1: Physical variables of the frictionless pendulum and their dimensions. The first 4 are
static variables, while the last 4 depend on time.

pendulum exactly with the Π-groups in equation (3.12).

Π𝑢 =
𝑢

𝑀𝑔𝐿
Πcos(𝜃) = cos(𝜃)

Πsin(𝜃) = sin(𝜃)

Π𝜃̇ = 𝜃̇
√

𝐿
𝑔

Π𝜃̈ =
𝐿𝜃̈
𝑔

(3.12)

Note that we additionally transform the raw angle 𝜃 into (cos(𝜃), sin(𝜃)). The quantity 𝐿
𝑔

is well
known by physicists and often written 𝜔2

0. It is proportional to the period of isochronous free
oscillations in the small-angle approximation. These transformations are not affected by non-
dimensionalization because angles, and their sine and cosine are all dimensionless quantities.

Let us note the dimensionless variable for 𝜃̇ is not exactly a power law. The variable we found

analytically in A.1.2 is Π′
𝜃̈
= 𝜃̈

𝜔0

2

. However, this transformation looses the information of the

sign of the angular speed. To circumvent that problem, we consider the square root instead for
the group in 3.12. We write the mapping from natural to dimensionless space as

𝜙Π(𝑥, 𝑦) = (Π𝑢,Πcos(𝜃),Πsin(𝜃),Π𝜃̇,Π𝜃̈). (3.13)
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𝑢 𝜃 𝜃̇
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Figure 3.1: Regression task on angular velocity for the pendulum.

Pendulum Equations

The equations of motion of the damped pendulum writes down as

𝜃̈ + 𝑐
𝑀

𝜃̇ −
𝑔
𝐿
sin(𝜃) − 1

𝑀𝐿2
𝑢 = 0. (3.14)

We multiply by 𝐿
𝑔

to obtain the corresponding Π-groups.

Π𝜃̈ +
𝑐
𝑀

√
(𝐿
𝑔
)Π𝜃̇ − Πsin(𝜃) − Π𝑢 = 0 (3.15)

The equation (3.15) is hence much more simple than (3.14). In the absence of friction if 𝑐 ≪
1, is is invariant all the parameters. However in the case where friction is not negligible, the
trajectories in dimensionless space will be sensitive to changes in parameters. In the following
experimental section, we aim to demonstrate empirically that the discovered Π-groups lead to an
invariant predictor across perturbations of the context, as per definition 2.2.2.

3.3 Application to Robust System Identification
In this section, we study the ability of Buckingham-Pi theorem to generate an invariant feature

space that can be used for robust statistical estimation. Specifically, how well does an estimator
trained on features from the dimensionless space make predictions out of its training distribution.
Secondly, we study the impact of uncertainty associated with the physical static variables used
for non-dimensionalizing the state-space features. The experiments aim to answer the following
questions:

• Is adding context information to natural space enough for increasing robustness?
• How much does non-dimensionalization increase generalization?
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Data Generation and Models

In the reminder of this section, we illustrate the application of the Buckingham-Pi theorem
on the frictionless pendulum, as an example of second-order dynamic system. We generate data
by sampling trajectories with random initial states and integrate the equations of motion with
Runge-Kutta scheme of order 5 given by Scipy package [Virtanen et al., 2020]. At each time
step, the system is excited with a signal sampled uniformly over the permissible action space
between [−1,+1]𝑁𝑚. For each version of the environment, we use 10000 samples for training
and testing. For each dataset, we train and evaluate three different models:

• Multi-Layer Perceptron
• Variationally Sparse Gaussian Proces with Type-II MLE
• VSGP with fully Bayesian inference, using mean-field stochastic variational inference

[Ranganath et al., 2016].

MLP are universal function approximators and Gaussian Process can be viewed as infinitely
wide single-layer Bayesian networks [Neal, 1994; MacKay, 1991]. These models are ubiquitous
in Machine-Learning hence it makes sense to compare them for evaluating the impact of a trans-
formation of feature spaces for probabilistic and non-probabilistic models. The hyperparameters
used for training the models are detailed in section 3.3.2.

The graph in figure 3.1 illustrates the regression procedure in the natural state-space view
and on the dimensionless equivalent.

The metric we used is Symmetric Mean Absolute Percentage Error (sMAPE) equation 3.16.
It has often been used for problems of time series forecasting [Chen and Yang, 2004] as an
alternative to Mean Absolute Percentage Error (MAPE) which values may diverge to infinity
if target values are too close to 0. The reason we turn to this metric rather than mean squared
error is that it is insensitive to multiplicative factors, meaning we do not have to transform the
dimensionless target before computing it. In other words, the error is the same in both natural
and dimensionless spaces.

𝑠𝑀𝐴𝑃𝐸 = 100
𝑁

𝑁∑
𝑖=1

|𝑦𝑖 − 𝑦𝑖||𝑦𝑖| + |𝑦𝑖| . (3.16)

3.3.1 Generalization in Dimensionless Space

We generate 3 regression datasets by sampling 𝑥 = (𝑀,𝑔, 𝐿; 𝑢, 𝜃, 𝜃̇) according to the values
in table 3.2 and the target 𝑦 = 𝜃̈ according to the system ODE conditioned by the values of 𝑥. The
first dataset is used for training while the remaining two are for testing. Each of these datasets is
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Parameter Training Test 1 Test 2

𝑀 1 . .
𝑔 9.81 . .
𝐿 1  (0.75, 1.25)  (0.5, 1.5)
𝑢  (−1, 1) . .
𝜃  (0, 𝜋) . .
𝜃̇  (−2, 2) . .

Table 3.2: Sampling distributions of the input variables for generating the training and test dis-
tributions.

then non-dimensionalized according to equation (3.12).

Figure 3.2: Distribution of the target variable in natural space (left) and dimensionless space
(right) for the training and test distributions. In the dimensionless space, the transformation
causes a normalization of the supports whereas they do not overlap in the natural space.

Firstly, we analyse the distribution of the target variable, as shown in figure 3.2. Of interest
to is the support of distribution, and how it varies when the pole length shifts. As we can see
on the left-hand side, the absolute value of 𝜃̈ increases as the sampling support of 𝐿 widens.
On the other hand, the support of the target variable in dimensionless space remain similar.
This causes the generalization problem to be turned from extrapolation to interpolation as was
observed in [Oppenheimer et al., 2023]. We summarize the link between the width of the pole
length support and the maximum value of angular acceleration in table 3.3. Figure 3.3 shows the
pairwise distribution of the dimensionless variables.

What we observe here, is that the dimensionless target variable support is only marginally
impacted by the pole length shift. A consequence of the collapse of supports highlighted in
[Oppenheimer et al., 2023] is that models do not need to extrapolate beyond training data.

We now study the impact of distribution shift on our 3 regression models. Each of them is
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Pole length support |𝜃̈|𝑚𝑎𝑥 |Π𝜃̈|𝑚𝑎𝑥
𝐿 = 1𝑚 11.3 1.2

𝐿 ∈ [0.75, 1.25]𝑚 14.8 1.2
𝐿 ∈ [0.5, 1.5]𝑚 22.1 1.2

Table 3.3: Relation between pole length support and magnitude of angular acceleration in natural
space (middle column) and dimensionless one (right column).

Figure 3.3: Pairplot of state variables dimensionless space
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Figure 3.4: sMAPE score of the different models on training and testing datasets. The first 3 bars
represent the models trained on the natural space features and the last 3 on the dimensionless
space. A lower sMAPE indicates a lower prediction error.

trained on the same training dataset with a nominal pole length of 1. The training performance,
measured with sMAPE (3.16) is displayed on the left plot of figure 3.4. While the Bayesian GP
model shows slightly worse training performance, the MLP and MAP-GP are able to fit the data
as well on both natural and dimensionless space.

However, when the pole length distribution shifts (middle and right plot on figure 3.16), the
performance drops significantly more for the models trained in the natural space. This trend is
also confirmed when we plot the model predictions against their true values on figure 3.5. This
graph also shows that the models are not able to predict values outside the training target support,
causing an underestimation of the large absolute values of 𝜃̈.

Figure 3.5: Predictions against true values for models trained using natural features. The 𝑦-axis
is for predictions and the 𝑥-axis for true values. Perfect predictions would yield points exactly on
the identity line plotted in black. We can see that all models stuggle to make predicitons outside
of the training support.
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On the other hand, the models trained with dimensionless features are able to predict targets
much more accurately in the presence of distribution shift. We can see on figure 3.6 that the
predictions in middle and right plot do not suffer from the same bias as on figure 3.5. Looking at
the middle and right plots on figure 3.6, we observe that the predictions have more variance than
on the left. Nevertheless, the predictions do not seem to suffer from the same bias at the extreme
values of the domain of 𝜃̈. This suggests that the benefits of non-dimensionalization can not be
explained only through the lens of the reduction of target distribution support. Rather, that the
transformation leads to an invariant predictor across pole length changes.

Figure 3.6: Predictions against true values for models trained in dimensionless space. While the
test predictions (middle and right plot) get slightly worse than in the nominal context (left), they
remain close to accurate within all the support of the points.

In addition, we also plot the generalization gap (2.8) on figure 3.7 for models on both natural
and dimensionless spaces. This metric measures the performance drop between training and
testing distributions. It confirms the findings from above that non-dimensionalization improves
generalization for all 3 tested models. We note that the Bayesian GP model’s better generalization
is partly due to its worse nominal performance, meaning it is a more conservative estimator than
the other two.

While we only consider a shift in the pole length, we saw it is enough to incur a significant
modification of the latent dynamics. That shift is enough to decrease the performance of the
models trained on the dimensional space.

3.3.2 Influence of Uncertainty on Context Variables

In the previous section, we assumed perfect knowledge of the physical variables. Here, we
study the impact of uncertainty in those variables. Namely, how much it affects model training
and weather dimensionless models trained under high uncertainty are still more robust than the
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Figure 3.7: Generalization gap for the natural and dimensionless models on the pendulum. In
both cases the models trained on features given by the Π groups show better generalization per-
formance by a factor of 4 to 5.

natural ones. Because the feature map (3.13) depends on those variables, we expect the in-
distribution performance of the models trained on them to drop. This decreased performance
however, may not be so significant that it prevents the models to be robust to context drift.

Questions:

• How much does noise in context variables affect model predictions?
• Can models trained on noisy dimensionless data still generalize to new contexts?

Figure 3.8: Plot of noisy against noise-free dimensionless variables. The rightmost plot corre-
sponds to the target Π𝜃̈. The top plot corresponds to 𝜎 = 0.01, the bottom plot 𝜎 = 0.1. Because
of the power-law transformation, the uncertainty is not homogeneous across the samples.
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As a preliminary step, we aim to visualize the impact of uncertainty on the dimensionless
variables compared to if we had exact knowledge of them. We plot the impact of uncertainty on
dimensionless features in figure 3.8. Because 𝜃 is already dimensionless, it is not impacted by
uncertainty in 𝑀,𝑔, 𝐿 hence we see a straight line. On the other dimensionless variables though,
because of compounding effect of uncertainty, they appear as if corrupted by heteroskedastic
noise. Therefore, without any further prior assumption on the model and with noisy observations
of the physical variables, we expect the dimensionless models to perform worse than their natural
counterparts.

Figure 3.9: Training metric on the natural and dimensionless spaces for increasing uncertainty.
The models in natural space are not affected by uncertainty associated with the state and velocity
variables.

Here, we repeat the experiments from the previous section where we corrupt the measure-
ments of 𝑀,𝑔, 𝐿 with Gaussian noise. Figure 3.10 and 3.9 show the impact of uncertainty on
training performance with increasing standard deviations. We display the score for the MLP
and GP trained in natural space for comparison (solid lines), but since they do not observe the
noisy static variables, the variation in performance is only due to variability of the optimization
and data-generation procedures. The dashed lines represent the models trained in dimension-
less space. We can see that their performance does not suffer up to standard deviations of 0.01.
Above this level, the model fit becomes increasingly bad. That being said, we are still interested
in measuring the robustness of dimensionless models with uncertain physical variables.

Figure 3.11 summarizes the findings of this chapter. The leftmost bar plots show the train-
ing performance, with increasing uncertainty going from top to bottom. The middle and right
columns report the test performance for increasing pole length shifts. Interestingly, while the
in-sample performance of dimensionless models for 𝜎 = 0.05 and 𝜎 = 0.1 is significantly worse
than their natural equivalents, they are still more robust to a shift in the pole length distribution.
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Figure 3.10: Training metric on the natural and dimensionless spaces for increasing values of
uncertainty on the pendulum. Shaded areas represent 95% confidence intervals over 5 random
seeds. High uncertainty levels above 0.05 cause higher prediction errors on dimensionless mod-
els.

This finding is even more striking looking at the corresponding generalization gaps on fig-
ure 3.12. We can see the dimensionless models generalize much better even when the physical
parameters are uncertain.

Hyperparameter Value (pendulum)

Number of hidden layers 2
Units per layer 32

Activation ReLU
Optimization Adam
Learning Rate 0.01

Batch Size 500
Training Epochs 200

Table 3.4: Hyperparameters for Multi-Layer Perceptron.

Model Hyperparameters for the experiments

Hyperparameters for training MLP are summarized in table 3.4 and GP in table 3.5.
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Figure 3.11: sMAPE metric with noise and context shift. From left to right the pole length is
shifting. From top to bottom the uncertainty of pole length measurement increases. In the most
extreme context shift (right column), even the models trained and evaluated with uncertainty
predict better than their natural counterparts.
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Figure 3.12: Generalization gap with noise and context shift. From left to right the pole length is
shifting. From top to bottom the uncertainty of pole length measurement increases. In all cases,
the dimensionless models’ generalization error is lower than natural ones.
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3.4 Conclusion
The Buckingham-Pi theorem is more than a century old and has only been recently applied

to machine learning algorithms. From the theorem follows a method for non-dimensionalizing
physical state variables. More than a dimensionality reduction technique, it allows building an
equivariant feature map by exploiting knowledge from the variables dimensions without knowl-
edge of the exact equation governing the system. The invariance of the feature map allows models
to generalize beyond the support of the training data.

Going further than previous work, we investigated the sensitivity of that transformation to un-
certainty associated with the state variables. We demonstrated the benefits of non-dimensionalization
on the actuated pendulum dynamics with MultiLayer Perceptron and Gaussian Process models
on simulated data. The first benefit of the transformation is the reduction of the size of the test
distribution support (figure 3.2, table 3.3). The second one is the invariance of the target pre-
diction with respect to the context change. When we use it to make predictions, the models in
dimensionless space generalize better than those trained on natural features (figure 3.4). The
presence of noise in those measurements has a negative impact on the models training accuracy
as shown on figure 3.10. It does not prevent the models from generalizing better than the same
models trained in the natural space, meaning the presence of uncertainty associated with the
context does not impede good model generalization (figure 3.11, 3.12). However, compared to
state-space models, it requires additional measurement of the static parameters of the dynamic
system. In the next chapter, we address this shortcoming and study how to alleviate the need for
observing the static variables.

Hyperparameter MAP-GP Value (pendulum) Bayesian GP (pendulum)

Inducing Points 100 100
Kernel RBF RBF

Optimization Adam Adam
Learning Rate 5.10−3 5.10−3

Lengthscale Prior LogNormal(0, 1) LogNormal(0, 1)
Variance Prior LogNormal(0, 1) LogNormal(0, 1)

Noise Prior LogNormal(−1, 1) LogNormal(−1, 1)
Batch Size 1000 1000

Training Epochs 400 500

Table 3.5: Hyperparameters for Gaussian Processeses.



Chapter 4.

Dimensionless Latent Variable Inference

Dimensionless feature spaces produced with Buckingham-Pi theory lead to robust estima-
tors, but require access to observation of additional variables. Any change in these variables
will incur a shift in the system dynamics to which the dimensionless space will be invariant.
On the other hand, if such context variables are hidden one can not know when the distribu-
tion shift occurs neither how to transform the space to reflect those changes. In this chapter,
we propose to tackle the problem of partial observations with the aim of building robust es-
timators. We train a model with data generated from a single environment and then evaluate
the ability of the model to detect a shift so as to quickly adapt to best fit a new one. We pro-
pose to tackle that problem by augmenting the model with latent variables that are assigned
the physical dimensions of the unobserved parameters. When the variables are observed
during training,the model is able to re-estimate them accurately after they have changed. If
they are hidden during training as well, we found that the learned latent variables correlate
strongly with the true parameters and can be used to make accurate predictions with little
retraining.

4.1 Motivation
In the course of their deployment, dynamic systems may be subjected to perturbations that

will modify their intrinsic properties and thus their observable behaviour. Such perturbations
may be slow and gradual in the case of erosion or sudden and brutal because of discrete events.
Because the models of such systems are designed and trained on a specific context or set of
contexts, they are likely to enter modes of failures after such perturbations. Provided perfect
knowledge of the parameters subjected to these changes, dimensionless embeddings provide es-
timators that are robust to these perturbations, even if they have not been encountered during
training.

Let us consider the case of an autonomous driving vehicle. A model of how the vehicle reacts
to steering, acceleration and brakes is trained from realistic simulations and then fine-tuned on
real data. This model could be built upon features that account for the car’s physical parameters
like friction between the road and the tires. This specific parameter is likely to decrease after
prolonged usage, as the tires become more and more smooth. Such change is even more abrupt

43
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and dramatic when climate conditions change, if there is heavy rain for instance. The difficulty
lies in that measuring this exact coefficient requires precise interventional experiments, which
are not feasible while the vehicle is driving. As such, it is crucial to be able to detect when such
parameters shift occur and estimate their values such that the model of the system best fits its
new environmental configuration.

Usual approaches to tackle that problem rely on meta learning. They require training a model
a several different versions of the environment to allow the model to separate local and global
task properties. When access to a simulator is available, generating training data from various
contexts can easily be done. This however is not possible if the context variables are fixed and can
not be intervened upon. For training a robotic arm for instance, one can not change the length of
each component or the friction between joints because they are physically fixed by construction.
In such cases, all the training data is conditioned on a single nominal context, given by the robot
properties. If that context is known, meaning we can measure the physical variables on which
it depends, then we can leverage that information in a semi-supervised approach we describe in
section 4.2.2. If, however, we have no knowledge of the context at all, we propose a latent variable
model that can estimate it in section 4.2.3. Our work develops a similar model as [Sæmundsson
et al., 2018] but with a key difference. While we also train a Gaussian Process model with latent
variables, we constrain them to a specific dimension imposed with the Buckingham theorem.
Because that transformation is equivariant, we do not need several versions of the environment
for training.

Figure 4.1: Phase plane of the pendulum for different 𝐿 values. The initial and final point of the
trajectories are represented by black and red crosses respectively
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Figure 4.2: Phase plane of the pendulum for different values of 𝑔.

4.2 Methods and Inference

4.2.1 Formulation of the problem

Let us consider a general second-order dynamic system

𝒙̈ = 𝑓 (𝒙; 𝒄), (4.1)

where

• 𝒙 ∈ ℝ𝑑 are the positions and velocities of the state variables,
• 𝒄 ∈ ℝ𝑘 are static context variables.

In the subsequent pendulum example, 𝒙 is the angle position and velocity and 𝒄 comprises
the pendulum length, mass and gravity field magnitude. The context variables are hidden in usual
state-space models and model parameters are inferred only from the dynamic ones. However,
when the context variables change they can significantly impact the shape of the dynamics and
produce a shift in the trajectories sampling distribution as is illustrated on figures 4.1 and 4.2.

As we saw in the previous chapter, we can create a dimensionless feature mapping of the
dynamic variables with the Π-groups 2.22, so that a model of equation 4.1 is invariant to the
context. Considering some of the context variables are not observed, we propose to estimate
their distribution which we will then use for transforming the feature space.

Formally, we assume an emission function 𝑜 that hides some elements of the context as

𝑜(𝒄) = 𝒄𝑜 ∈ ℝ𝑘−ℎ, (4.2)

where ℎ is the number of hidden dimensions of the context. Conversely, we write 𝒄ℎ ∈ ℝℎ the



4.2. Methods and Inference 46

missing hidden variables that are discarded by the emission function. We augment the generative
model with a set of latent variables 𝐻 ∈ ℝℎ, each element of which is assigned the dimension
of a missing physical parameter such that,

∀𝑗 ∈ 1…ℎ,
[
ℎ𝑗
]
=
[
𝑐𝑘−𝑗

]
. (4.3)

Assigning a dimension to the latent variable now allows us to use the Buckingham-Pi theorem
again to transform the state variables into dimensionless ones using

Π = 𝜙Π(𝒙̈,𝒙, 𝒄𝑜,𝒉), (4.4)

where 𝜙Π is the dimensionless feature map, this time applied to the concatenation of observables
and latent variables.

Comparison with Meta-Learning

Before we go into the details of inference in that model, we point out the main difference of
that approach compared to other meta-learning approaches. Because we are creating an invariant
model of the observed context and latent, we do not need to observe several versions of the en-
vironment with domain randomization procedures. This would be redundant to our model since
the model is by construction, invariant with respect to the domain context. As a consequence,
the latent variables will naturally allow the model to separate the global from the local properties
of the task at hand.

4.2.2 Semi-Supervised Approach

We first place ourselves in the setting where the full state of the system can be observed during
the initial training phase. This corresponds, for example, to a case where one has access to a
simulator. This means we are able to use all the dependent variables to construct a dimensionless
feature space. We can therefore train a model in this space, that will be invariant to the context
variables that are susceptible to change in the course of the system deployment. Once a shift
as occurred, we can then use Monte Carlo sampling to infer the posterior distribution over the
context.
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Training Model on Fully Observed Data

The training data consists in 𝑁 samples from trajectories generated by the system from equa-
tion 4.1. The observations 𝑦 may be corrupted by Gaussian noise, hence the data we have is

𝑦𝑖 = 𝑓 (𝒙; 𝒄) + 𝜖, 𝑖 = 1…𝑁, 𝜖 ∼  (0, 𝜎𝑛). (4.5)

Using the Buckingham theorem, we perform the regression task in the dimensionless space
using the feature map 𝜙Π,

Π𝑦𝑖 = 𝑓Π(𝜙Π(𝒙, 𝒄) + 𝜖, 𝑖 = 1…𝑁. (4.6)

We place a Gaussian Process prior on the latent 𝑓Π and train it with maximum likelihood esti-
mation.

Adaptation

So far, we have remained in the same training setting as in the previous chapter. We now
aim to use that model, to make predictions when some of the context is only partially observed
as per equation 4.2. Because we use a probabilistic model (Gaussian Process), we can detect
when a distribution shift occurs using newly observed trajectories. Suppose we observe one or
several new trajectories 𝜏 = {𝑋𝑡𝑒𝑠𝑡, 𝑦𝑡𝑒𝑠𝑡}, their likelihood under the model will indicate whether
substantial changes have occurred in the hidden variables. If

log 𝑝(𝑦𝑡𝑒𝑠𝑡|𝑓,𝑋𝑡𝑒𝑠𝑡) < 𝛼 log 𝑝(𝑦𝑡𝑟𝑎𝑖𝑛|𝑓,𝑋𝑡𝑟𝑎𝑖𝑛), (4.7)

for a given threshold 𝛼 (say 0.95 for instance), then we can start the adaptation procedure. It
consists in placing a prior on the latent variables 𝑝(𝐻) and assign a physical dimension to each
of its elements following equation 4.3. We then use Monte Carlo sampling for estimating the
posterior of the latent given the model and new data as

𝑝(𝐻|𝑓, 𝜏) ∼ 𝑝(𝜏|𝑓,𝐻)𝑝(𝐻). (4.8)

The posterior can then be used to make accurate probabilistic predictions about the new data by
computing

𝑝(𝑦𝑡𝑒𝑠𝑡|𝑓,𝑋𝑡𝑒𝑠𝑡,𝐻) ∼ 𝑓
(
.|𝜙Π(𝑋𝑡𝑒𝑠𝑡,𝐻)

)
. (4.9)
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Figure 4.3: Latent Variable model during training (left) and adaptation (right). The blue nodes
indicate the free parameters.

4.2.3 Latent Variable Model

Invariant Meta-Learning Model

The approach we present here is a form of meta-learning. This form of learning consists
of learning a hierarchical model to disentangle the local and global properties of the learning
task. It usually functions by exposing the learning model to data coming from various different
versions of the same environment. A standard supervised learning model will have difficulty to
learn a single model for all of them.

For simplicity, let us write the full observations 𝒙̄ ∈ ℝ𝑑+𝑘−ℎ. We augment the observations
with a vector of latent variables 𝒉 ∈ ℝℎ. Each dimension of the latent vector will represent a
physical variable that has been lost by the emission function following equation 4.3. Therefore,
we can use the Buckingham-Pi transformation to create an invariant embedding, combining the
observed and latent variables. The new features will be 𝒙Π = 𝑓Π(𝒙̃), where 𝒙̃ represents the
concatenation of 𝒙̄ and 𝒉, and 𝜙Π is from equation 3.13.

We place a Gaussian Process prior on the new features for estimating the latent function f,

𝒇 ∼ (𝜙Π(𝒙̄)). (4.10)

We assume Gaussian noise, so the likelihood given functionals 𝒇 writes as

𝒚 ∼  (𝒚|𝒇 (𝜙Π(𝒙̄),𝚺)), (4.11)

and prior on latent variable is a standard multivariate normal prior 𝒉 ∼  (𝟎, 𝑰).
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The joint distribution of the model is

𝑝(𝒚,𝒇 ,𝒉) = 𝑝
(
𝒚|𝒇 (𝜙Π(𝒙̄

)
,𝚺)𝑝(𝒇 )𝑝(𝒉). (4.12)

This generative model closely resembles that of [Sæmundsson et al., 2018], except we add an-
other step for transforming the physical variables into dimensionless ones.

Inference

Because Gaussian Processes do not scale well with the number of samples, we use the vari-
ational sparse variant described in section 2.3.4. In order to include the estimation of the latent
𝐻 into the inference procedure with a single optimization objective, we place a variational dis-
tribution on them. For simplicity, we assume a Gaussian distribution

𝑞(𝐻) =  (𝝁,𝚺𝐻 ), (4.13)

where 𝝓 = (𝝁,𝚺𝐻 ) are the variational parameters. In practice, we found that a diagonal covari-
ance was enough to approximate the posterior of the latent variables, which corresponds to the
mean-field approximation.

The set of parameters 𝜽 = (Λ,𝝓,Σ) includes the GP, likelihood and latent variational param-
eters. They are optimized using the Evidence Lower Bound (ELBO),

𝐸𝐿𝐵𝑂(𝜽) = 𝔼𝑞(𝒇 |𝜙Π(𝒙̄)
[
log 𝑝(𝒚|𝒇 )] −𝐷KL(𝑞(𝒉)||𝑝(𝒉)) −𝐷KL(𝑞(𝑈 )||𝑝(𝑈 )). (4.14)

It is worth noting at this point, the difference of this approach in comparison to other meta-
learning approaches. We learn a single variational posterior of 𝐻 , since we are focused on
the zero-shot transfer. During evaluation, when facing a new task the variational parameters of
the latent will be relearned whilst retaining the model parameters (Λ,Σ) to a fixed value. The
pseudo-code for training this model is depicted in algorithm 1.
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Algorithm 1 Dimensionless Latent Variable Regression

1: Input model 𝑓 =  , observations 𝑋̄, output 𝑦, prior 𝑝(𝑍), variational family 𝑞𝜙(𝑍)
2: for 𝑖 = 1,… , 𝑛𝑒𝑝𝑜𝑐ℎ𝑠 do
3: 𝒉 ∼ 𝑞𝜙(𝒉)
4: 𝑿 = [𝒙̄,𝒉] ⊳ concatenate latent and observations
5: 𝑿Π = 𝜙Π(𝑿) ⊳ Buckingham-Pi transform
6: 𝒚̂Π ∼ 𝑓 (𝑿Π)
7: 𝒚̂ = 𝜙−1

Π (𝒚̂Π) ⊳ Transform dimensionless prediction into natural space
8: compute 𝐸𝐿𝐵𝑂(𝜽)
9: 𝜽 ← 𝜽 − 𝜂 × ∇𝜽(𝐸𝐿𝐵𝑂) ⊳ Gradient step

return 𝒇 , 𝑞𝝓

We now highlight an important point for computing the ELBO (4.14) on algorithm 1[line
8]. It is essential that the likelihood is computed with the true targets and so the dimensionless
predictions 𝑦̂Π must be transformed back into natural space. If this step is ignored, it could be
possible to compare the the predictions in dimensionless space, but in that case the gradients of
the cost are no longer unbiased estimates of the ELBO. Therefore, the condition for stochastic
gradient descent to converge is no longer met and the algorithm will not be able to converge and
find suitable parameters. In practice, we use a different set of learning rates for the model and
the latent variables.

When the model is exposed to a new task, the procedure is repeated, but we only optimize
the parameters 𝝓 of the latent variable variational distribution. We summarize the inference
procedure for training and adaptation on the graphics of figure 4.3.

4.3 Experiments
In the following, we aim to give empirical answers for the following questions:

1. Are the models augmented with latent variables able to make accurate predictions when
confronted to data from a different context?

2. Are the latent variables physically meaningful?

The first question aims to answer about the few-shot transfer abilities of the models. Meaning
adapting the model with little data such that predictions on a new task are accurate. The second
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Figure 4.4: Evaluation of the model on several datasets assuming 𝐿 = 1. The high NLL values
indicate that a shift in the underlying dynamics has occured.

one aims to bring up whether the information carried by the latent space can be used to estimate
what the true hidden parameters are, given they are observed during training or not.

The experiments are performed on the simple actuated pendulum and the model we use for
predictions is a Gaussian Process with type-II marginal likelihood inference. For all these exper-
iments we used Pyro [Bingham et al., 2019], a high-level probabilistic language built on top of
Pytorch which benefits from GPU acceleration.

4.3.1 Semi-Supervised

This section relates experiments with the model that is trained on full observation of both dy-
namic and static variables. We collect 5000 training samples that are generated by 2s trajectories
with random initial points, Gaussian actions and 10Hz sampling frequency. The nominal pole
length is 𝐿 = 1m. The control signal is a random walk, where each step is sampled from a zero-
mean Gaussian with 0.25 standard deviation. We used this control strategy instead of Gaussian
or uniform sampling at each step. The latter approaches made identification of the parameters
more difficult because the average control signal on each trajectory was zero.

After training a model 𝑓 on complete observations, we evaluate it in the case where the
pole length is hidden.We place a prior 𝑝(𝐻𝐿) and can sample from it to estimate the posterior
distribution of the true hidden pole length.
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On figure 4.4, we demonstrate how the model is used to detect that a change in context has
occurred. We evaluate the negative log-likelihood of the model on each dataset assuming the pole
length is 1. As a consequence, the model fit is very bad for the trajectories that were collected
with different values. Facing with such a significant drop, we now show how to estimate what
the actual value is.

On figure 4.5, we see the result of predicting a trajectory given several samples of the latent
variable. Each of these samples will correspond to specific dynamics. Therefore, are looking to
infer the posterior distribution over that variable that best fit to new trajectory data.

Figure 4.5: This shows the output of the model given different samples of pole length. The left
plot shows a phase plane of the different models, with the black line representing true data, with
𝐿 = 1𝑚. The right plot displays Negative log-likelihood for each sample.

If we repeat this procedure on datasets conditioned by different pole length values, we can
understand better how we may be able to estimate the ground truth. On figure 4.6, we collect 10
trajectories from 5 different pole length values. We then place a standard log-normal prior on
𝐻𝐿 and compute the likelihood of the data under the model and each prior sample. We can see
the regions highest likelihoods (lowest negative log-likelihood on the graph), are located close
to where the true parameter is.

We use Monte Carlo simulation do estimate the posterior distribution of the latent variable
because having trained the model already, the dimensionality of the inferred is ℎ or in this case
1 because only the pole length is hidden. Specifically, we ran the No U-Turn Sampler (NUTS)
[Homan and Gelman, 2014], a variant of Hamiltonian Monte Carlo method that requires fewer
user-defined hyperparameters. We found that letter the algorithm sample 1600 draws (and as
many tuning steps) over 4 chains was sufficient to obtain good posterior distributions of the
variable.

On figure 4.7, we plot the posterior of the latent variable estimated with Monte Carlo sam-
pling against the ground truth. Even with as little as 5 trajectories (100 samples), we are able to
recover a good estimate of the true value of 𝐿. On figure 4.8, we plot the posterior distributions
for different values 𝐿 given increasing number of observed trajectories. Surprisingly, it shows
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Figure 4.6: For each trajectory, we sample values from a uniform prior in [0.1, 3]𝑚 interval and
evaluate the likelihood of each sample under the model. Lower value means a better model fit.

the quality of the posterior does not depend on the number of observed trajectories. It seems
instead, the initial position of the trajectories as well as the control sequence has an important
impact on identification. As we mentioned before, uniform and Gaussian actions tend to cancel
each other between successive steps, thus preventing the model to identify the hidden variable
correctly.

As we can see, the model is able to quickly adapt even when the number of samples available
is small. We repeated this approach with missing parameters 𝑔 and 𝑀 to validate the approach
and showed the identification of the value was successful as well.

4.3.2 Latent Variable Model

In this section, we evaluate the model described in section 4.2.3. Contrary to the previous
section, the context is not observed during training at all. As a consequence, we aim to learn both
the model and latent variable during training. For testing a new environment, we will estimate a
new distribution over 𝐻 while retaining the rest of the model.

We train the following hierarchical model

𝑓 ∼ (𝟎, 𝑘𝑅𝐵𝐹 (., .)) (4.15)

log(𝑍) ∼  (0, 1) (4.16)
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Figure 4.7: Plot of the posterior latent 𝐿 against the true value which generated the data. Each
test dataset consist of 5 trajectories. The orange dashed-line represents a perfect fit of the pole
length value. The uncertainty associated with the prediction of the latent is low on the whole
range of tested trajectories.

Figure 4.8: Posterior of the latent 𝐿 against the ground truth (horizontal line) as a function
of number of observed trajectories. The shaded area represents the standard deviation around
the mean. We observe that the number of trajectories required for collapsing the uncertainty is
dependent on the true value. The farther we are from the nominal of 𝐿 = 1𝑚, the more data is
required.
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Figure 4.9: Posterior distribution of inferred 𝑀 (top) and 𝑔 (bottom). The blue line and shaded
area represent the mean and standard deviation of the posterior. The red dashed line is the true
value. We can see that predictions are over confident and the standard deviation of the posterior
does not recover the truth in most cases.
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with Variational Inference.

1D Latent Variable Model

Figure 4.10: Prior and posterior distribution of the latent variable. The true value of the pole
length is indicated by the black dashed line. We can see that the posterior is very narrow and
does not coincide with the true parameter.

In this first section, we evaluate the setting where the pole length is hidden. The learned
latent variable ℎ ∈ ℝ will here be used for transforming the variables Π𝜃̇ and Π𝜃̈ according to
equation 4.17.

Π𝑢 =
𝑢

𝑀𝑔𝐿
Πcos(𝜃) = cos(𝜃)

Πsin(𝜃) = sin(𝜃)

Π𝜃̇ = 𝜃̇
√

𝐿
𝑔

Π𝜃̈ =
𝐿𝜃̈
𝑔

. (4.17)

In figure 4.10, we display the prior and posterior distributions over the latent pole length as well
as the actual value. We can see that the posterior is very peaked and that its support does not
coincide with the true value. However, the model still fits well to its training data (figure 4.12,
top-middle plot). In this specific case, the collapse of the uncertainty associated with the posterior
does not prevent the model from making good predictions. It could however cause problems for
identifying new parameters, especially in higher dimension spaces. The quality of the prediction
however, decreases significantly when we move away from the training context. If we adapt the
latent space whilst keeping the rest of the model fixed, we are able to make good predictions as
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Figure 4.11: Prediction of the regression on different contexts. On the top plot, we show the
predictions after training the model. On the bottom plot, we display the results after inferring
the latent variables on new data. In the latter case, the model predictions are much closer to the
true values.

can be seen on the bottom plot of figure 4.12.

We can verify the quality of predictions by comparing the mean predictions of the outputs 𝑦
against their ground truth (figure 4.11). We can see that the predictions vary significantly when
the context changes. However, when the latent variables are inferred on the new data, the model
is able to make good predictions.

Now that we saw the model is able to fit the data wall in terms of prediction performance, we
turn to the ability of the learned latent space to carry meaningful information about the hidden
physical parameter it aims to model. To do so, we collect 50 datasets with different pole lengths
equally spaced between 0.5 and 4 meters. We relearn the posterior over 𝐻 for each of them, and
compare samples from the posterior with the truth. We show the plot of the posterior against true
value on figure 4.13. If the fit were perfect, we would see the points aligned at 𝑦 = 𝑥 which is not
the case: the inferred values are overestimated. However, that trend is monotonous and linear, as
confirmed by the statistical tests shown on table 4.1. While that inferred value may not be used to
estimate the true parameter, it could however be used to obtain some information about the new
context. Because 𝒄 = 𝜅𝒄0, a decrease in the estimate of 𝐻𝑐 would imply that the scaling factor
𝜅 is smaller than 1 provided the relationship between latent and true variable is monotonously
increasing. In practice however, there is no way to verify that as long as the context is hidden.

This demonstrated that the latent space we have learned carries the dimensions of a distance,
but it is not expressed in the unit of meters. Indeed, as we stated previously and mentioned in
[Lee et al., 2021], two units of a physical dimension are equivalent up to a linear transformation.
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Figure 4.12: The top plot shows the test predictions of the model just after training. The errors
on data close to the nominal of 𝐿 = 1𝑚 are lower than those further. On the bottom, we show
the sMAPE score after inferring 𝐻𝐿 on the new data, thus yielding better predictions.



4.3. Experiments 59

Figure 4.13: Regression Plot of inferred and true pole length in few-shot learning setting. As
we can see, the values are not correctly estimated, but they increase monotonously with the true
value.

Test R p-value

Pearson 0.9590 0.0
Spearman 0.9986 0.0

Table 4.1: Pearson and Spearman statistical test for correlation between inferred latent variable
and true value of pole length. These tests suggest the estimation yields strongly correlated vari-
ables.

The benefit of this method is the ability to quickly adapt to a shift in distribution. After
detecting a distribution shift, we can infer a new set of latent variables representing the local
properties of the task, while retaining the model and the global properties.

2D Latent Variable Model

In this section, we take one step further and consider both pole length and mass are unob-
served, as showed on figure 4.14. Following the methodology from the previous subsection, we
infer a 2D latent variable, with each dimension representing the mass and length respectively,
and use them to transform the data.

On figure 4.15, we show the prediction error of the model right after it has been trained on
the nominal context, situated in the middle of the plot. We can see that as we draw context values
farther from the training value, the predictions become increasingly worse. This can be fixed,
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Figure 4.14: Regression task with hidden pole length and mass on angular velocity for the pen-
dulum. In this case, both pole length 𝐿 and mass 𝑀 are hidden.

Figure 4.15: Influence of mass and length on model performance measured by sMAPE 3.16.
The nominal training context is in the middle square with 𝑀 = 1.375𝑘𝑔 and 𝐿 = 1.375𝑚. Dark
purple color indicate better predictions. We can see that the model is more sensitive to a shift in
mass than length and that the quality of predictions decrease significantly for large shifts.
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Figure 4.16: sMAPE score on the different context pairs after reinferring the latent variables. It
shows that the model is able to adapt to the new context to yield good predictions.

Parameter Test R p-value

𝐿 Pearson 0.9798 0.0
𝐿 Spearman 0.9876 0.0

𝑀 Pearson 0.5825 0.0
𝑀 Spearman 0.5596 0.0

Table 4.2: Pearson and Spearman statistical test for correlation between inferred latent variable
and true value for pole length 𝐿 and mass 𝑀 .

however, by learning a new set of latent variables for each of these context pairs with the same
predictive model.

For context adaptation, we collect ... trajectories on each new context and train the distribu-
tion of latent variables for 100 epochs. The prediction errors on figure 4.16 show the model has
been able to adapt quickly. The leftmost values, corresponding to the lowest pole length are the
ones with worse estimation, though still below 10% for all but the top-left one.

These results demonstrate a strong correlation between the inferred latent variables and their
corresponding true values. We now aim to measure how the error is distributed, if we estimated
the values of the variable given samples from the latent space. To do so, we first train a linear
model

𝑐 = 𝒘𝑍𝑐 + 𝛽, (4.18)
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Figure 4.17: Here, we plot the inferred (𝑍𝐿, 𝑍𝑀 ) pairs of variables for the different context
values. The predictions are associated with higher uncertainty in the mass (vertical axis) than
for the length (horizontal axis).

Figure 4.18: Comparison of latent inferred variable against their true value. Left plot is the pole
length, right plot is the mass. The dots represent the means of the predictions and the line is an
Ordinary Least Square estimator of the inferred against true context values.
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Figure 4.19: Plot of relative errors (equation 4.19) for different (𝐿, 𝑀) values and corresponding
posterior sample estimates. Perfect predictions would be located at the point with coordinates
(1, 1).

where 𝒄 is an estimate of the ground truth. We can then plot the relative mismatch between the
true values and their estimates using

RelErr = 𝒄
𝒄
. (4.19)

We plot this function for different values of 𝑀 and 𝐿 on figure 4.19.

We now investigate the quality of the estimation of the parameter compared to its true values.
The question we ask is whether the learned latent variables estimate the ground truth correctly.
We plot the marginals of each of them on figure 4.18 as well the linear regression line between
true and inferred variable. The linear correlation between the latent and true parameters suggest
the model is able to estimate variables with correct physical dimensions but not with the cor-
rect measurements units. The tests for correlation on table 4.2 confirm this hypothesis. It also
suggests that knowing the correct context for 2 different environments would allow estimating a
third one using the linear relation between the variables. The plot of relative error on figure 4.19
suggests the deviation is consistent across test environments. This means the error in estimation
in 𝑀 is consistently compensated by 𝐿.

Overall, we demonstrated on the pendulum how this latent variable model can be used to
quickly transfer knowledge from a training environment to a perturbed version of it to make
accurate predictions. If one is interested in estimating the value of the context, there is no way
around measuring ground truth values for at least two of them.
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4.4 Conclusion
In this chapter, we studied the feasibility of using a dimensionless feature space using the

Buckingham-Pi theorem when the variables used for the transformation are unobserved. To do
so, we augmented the probabilistic model with a set of latent variables that take values in a
unit-typed space.

We made a first study under the hypothesis that all the variables are known during training,
but then are hidden during deployment. We demonstrated empirically that a probabilistic model
of the system yields the ability of detecting any change in the unobserved states (figure 4.4). This
can be used to trigger the estimation of a latent variable that is assigned the physical dimensions
of the hidden ones. We also showed that even in low-data regime, these latent variables represent
a good estimate of the true hidden values (figures 4.7 and 4.8).

Second, we relaxed the assumption of full observation of the context variables during train-
ing. In that case, we need to learn the latent space concurrently as the global model itself. This
model can then quickly adapt to a shift in the context space by re-learning the context-specific la-
tent variables. We empirically showed such adaptation yields very good prediction performance
on a wide range of test contexts (figures 4.12 and 4.16). Compared to the case where all states
variables are available during training, the learned latent variables do not estimate accurately
the ground truth. Nevertheless, statistical tests proved a strong correlation between them (tables
4.1 and 4.2). This result suggests that the latent space do represent correct physical dimensions
albeit not in the correct units.

We showed in this chapter how the Buckingham-Pi theorem can be used for zero-shot transfer
learning problems. The invariance induced by non-dimensionalization relaxes the need for do-
main randomization for learning a hierarchical model that disentangles the local from the global
task properties. We demonstrated the effectiveness of the approach on an actuated pendulum
with 1D and 2D hidden variables. The extension of our approach to higher-dimensional systems
remains to be proven, and we leave it for future work.



Chapter 5.

Robust Model-Based Reinforcement
Learning in Dimensionless State-Action

Spaces

Controllers trained with Reinforcement Learning tend to be very specialized and are thus not
able to generalize well outside their training environments. We propose a Model-Based approach
where both the policy and the world model are trained in a dimensionless state-action space. To
do so, we introduce the notionΠ-MDP which is an extension of Contextual-MDPs where the state
and action spaces are non-dimensionalized with the Buckingham-Π theorem. We then provide a
generic model-based policy search algorithm in the Π-MDP and apply it with probabilistic state
estimation using Gaussian Process models. This allows the controller to generalize well to new
contexts in the zero-shot transfer setting, meaning no retraining is required. We demonstrate the
usefulness of this approach on the actuated pendulum and cartpole environments.

5.1 Motivation for Robust Controllers
One of the main obstacles for deploying controllers trained with Reinforcement Learning

in the real world is their lack of resilience to perturbations and noise that are absent during
training. This problem of distribution shift, that we already described in chapter 3, has mostly
been investigated in the supervised and unsupervised learning settings. Though the question can
be phrased similarly in sequential decision-making, solving it remains difficult because of the
dynamic nature of RL. Firstly, because errors and approximations accumulate during planning
and rollout, secondly because the closed-loop nature of the learning process incurs a loss of
identifiability [Ljung, 1989]. The issue is even more prevalent in Offline RL because of the lack
of training data in some regions of the state-action space and the impossibility to collect more.

In this chapter, we focus our work on perturbations that affect the environment dynamics
only, not the reward function which we assume to be known. The perturbations of the underlying
transition kernel cause non-stationarity in the dynamics. These can be caused by hardware wear-
and-tear, feedback loops or external perturbations and is admitted to be one of the main challenges

65
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Figure 5.1: PILCO returns on the cartpole for varying pole length

to be solved for deploying RL agents in the real world [Dulac-Arnold et al., 2021a].

While a range of different approaches exist for approaching controller robustness (see section
2.1 for a review), many of them require several version of an environment during training. This
does not pose a problem when a parameterized simulation is available as it allows the practi-
tionner to randomize those parameters that will later change during testing. Our work instead
focused on an approach that relaxes the domain randomization assumption required for policy
transfer.

There are three main categories of approaches for improving controller robustness [Kirk et al.,
2023]:

• Adapting the optimization objective with worst case estimators of the return
• Improving data collection
• Changing the model

The methods we propose fall into the latter category. We leverage prior knowledge given by the
physics of the system such that by construction, the control policy will be agnostic to perturba-
tions.
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Figure 5.2: Simulation with world model 𝑓 . The parametric policy 𝜋𝜽 interacts with the actual
environment but is trained with simulated transitions (grey box).

5.1.1 Model-Based RL

Model-Based Reinforcement Learning (MBRL) is a class of RL algorithms in which the
policy is trained on data generated by a world model. For this reason, such algorithms are often
called indirect methods as opposed to model-free approaches that optimize their decisions using
data directly collected in the environment. We illustrate this concept on figure 5.2 where we can
see the environment on the right and a simulation of it in the grey box. In principle, any model-
free algorithm can be ported to a model-free counterpart simply by applying it within a model
rather than actual interaction. In practice however, they require specific adaptation to counteract
the modelling error.

The first requirement for such MBRL algorithms is the dynamics model. It is an estimator
that mimics the behaviour of the MDP transition kernel,

𝑓 ∶ (𝒔𝑡,𝒂𝑡) → 𝒔̂𝑡+1. (5.1)

This model is subsequently trained to predict one-step transitions using the batches of data col-
lected so far. It is therefore a multidimensional regression problem where the inputs are the state-
action vectors 𝒙̃ = (𝒔,𝒂) ∈ ℝ𝑑+𝑓 and the targets are the successor states 𝒚 = (𝒔𝑡+1 − 𝒔𝑡) ∈ ℝ𝑑 .
Because the target 𝒚 are vectors, MBRL methods are more sample-efficient than model-free
methods since they learn from scalar reward signals instead. The procedure of inferring the
dynamics of the environment is called System Identification The model can then be queried to
generate one-step transitions or whole trajectories with a parametric policy 𝜋𝜽. We write the
closed-loop dynamics as

𝑓𝜽 ∶ 𝑠 → 𝑓 (𝒔′|𝒔, 𝜋𝜽(𝑠)). (5.2)

Its estimate counterpart 𝑓𝜽 is able to generate whole trajectories by functional composition in
order to predict the future state of a system under the current policy. To do so, we start from an
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initial state 𝒔0 and iterate the predictions until desired time.

𝑠𝑡 = 𝑓𝜽◦⋯◦𝑓𝜽(𝒔0)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝑡 times

. (5.3)

This ability to query the model to predict long-term states of the system is what makes this
type of methods useful. It can generate trajectories 𝜏 = (𝒔0,⋯ , 𝒔𝑡) of arbitrary size. Assuming
we know the reward function 𝑟, we can compute the simulated expected sum of rewards from the
future state predictions. The policy search objective therefore writes down as,

𝑅̂(𝜽) = 𝔼̂
𝑓𝜽

[
𝑇∑
𝑡=0

𝑟(𝒔𝑡)|𝑠0] . (5.4)

This quantity serves as a proxy for the return that would be obtained by rolling out in the envi-
ronment. The objective (5.4) is very similar to (2.3) but with the expectation measured by the
approximate dynamics. A controller is optimal for the model if it maximizes that quantity (5.4),
however there is no guarantee that argmax𝜽𝑅̂ = argmax𝜽 𝑅 because of model bias. Because
during training the policy is only exposed to data generated by the model, any discrepency with
the true dynamics will reflect on the quality of the policy. Moreover, because of compounding
errors in 5.3 estimating the future states is a difficult task. One solution is to use the model on
short rollouts only [Janner et al., 2019].

Alternatively, a probabilistic model is able to eliminate most of the bias associated with pre-
dictions. Given a state-action input, a probabilistic model will predict a distribution over plau-
sible future states. Hence, rolling it out with 5.3 yields a distribution of trajectories 𝑝(𝜏). If the
model is wrong, the trajectories will be associated with high levels of uncertainty that will prop-
agate to the estimation of (5.4). On the other hand, a non-probabilistic model would not have
that capacity and weigh equally all trajectories for gradient estimation however unlikely they are.

To optimize the parameters of the policy, different algorithms use different gradient of return
estimation schemes like reparameterization trick [Kingma and Welling, 2014; Xu et al., 2019] or
likelihood ratio [Williams, 1992] to backpropagate derivates through sampling the model [Mo-
hamed et al., 2020]. Suppose ∇̂𝜽𝑅̂(𝜽) is a unbiased estimation of the gradient, we can optimize
the policy with stochastic steps in the ascending direction

𝜽 ← 𝜽 + 𝜂∇̂𝜽𝑅̂(𝜽), (5.5)

with 𝜂 the learning rate. Between each episode, the policy is optimized with the current dynamic
model until the expected return stall. Then the policy collects a new episode of data which is fed
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into training the model. The model will improve using the new data, and so until some measure
of convergence is reached.

For generalization, however, the objective is different as the transition kernel depends on a
context that is different from the training one. Let us consider the distribution 𝑝(𝒄) from which
context is sampled at the beginning of each episode at testing time. Then the expected return of
a policy within that C-MDP is,

𝑅(𝜽,) = 𝔼
𝑐∼𝑝(𝑐)

[
𝑅(𝜋𝜽, 𝑐)

]
. (5.6)

While the equation (5.6) provides a good illustration for the generalization problem, we do not
use that metric in practice. To evaluate the robustness of our policies, we instead sample the
contexts 𝒄 uniformly on a domain and compute the returns for each.

We extend the subclass of model-based policy gradient methods with Gaussian Process pri-
ors [Deisenroth and Rasmussen, 2011; Parmas et al., 2018; Amadio et al., 2022; Cowen-Rivers
et al., 2022] because their ability to estimate uncertainty eliminates most of the bias. This ability
to plan with uncertainty has allows model-based algorithms to compete with their model-free
alternatives [Schrittwieser et al., 2020; Chua et al., 2018; Janner et al., 2019]. Instead of opti-
mizing the controller in the natural state-space view, we do it in its dimensionless counterpart.
This transformation essentially renders the controller invariant to small context changes and so
is able to generalize outside its training support. We believe model-based RL constitutes a good
method for the problem of generalization since their ability to simulate a system from empirical
data allows counterfactual queries allows reasoning without environment interaction, which is a
key component of cognition [Hamrick, 2019]. Moreover, inference based on model simulation
will become an important aspect of applied sciences in the coming years [Lavin et al., 2021].

Link to Previous Work

The method we propose sheds a new light on a generalization method based on Augmented
World Models [Ball et al., 2021]. In this work, the authors propose to increase the zero-shot gen-
eralization of a control policy learned offline from a single environment. To do so, they rescale
the observations by a factor inferred from data. Our work proposes a similar transformation that
is instead inferred from the physics of the system at hand. The Buckingham-Π theorem has also
been applied to transfer learning problems for system identification [Therrien et al., 2024] and
control [Girard, 2024] in robotics.
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5.2 Equivariant Model-Based Reinforcement Learning

5.2.1 Control in Dimensionless Observation Spaces

We consider a Contextual Markov Decision Process (C-MDP) defined as

𝒄 =
( ,,, 𝑓𝒄

)
. (5.7)

The only difference from an MDP is the transition kernel which depends on a context 𝒄 ∈ ℝ𝑘.
In all the following, we assume the context always remains fixed in the duration of an episode.
Robust RL maximizes the expected sum of rewards for large context set .

In order to reason about control policies within a dimensionless state-space, we introduce a
new concept we call the Π-MDP. The Π-MDP is a generalization of the C-MDP, it is equipped
with a dimensionless invertible feature mapping that transforms the state and actions spaces
depending on the context vector 𝒄.

Definition 5.2.1 (Π-MDP)
The dimensionless Markov Decision Process or Π-MDP is a MDP in which the state and action
spaces are dimensionless. They can be written

Π =
(Π,Π,, 𝑓Π

)
, (5.8)

where is the reward function and 𝑓Π the transition kernel that takes values in the dimensionless
sate-action space. The dimensionless transition kernel is defined as,

𝑓Π = 𝑓◦ΦΠ (5.9)

where ◦ denotes the functional composition and ΦΠ is the non-dimensionalization transforma-
tion.

The graph on figure 5.3, illustrates how an autonomous agent interacts within such a system.
At each time step, the state observation is non-dimensionalized with the current value of the
context and passed on to the input of the control policy. The policy then sends out a dimensionless
control signal which is dimensionalized using the same context value to ensure homogeneity of
the environment transition kernel.
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Figure 5.3: Interaction within a Π-MDP

Construction of a Π-MDP

Our goal is to design a model-based policy search algorithm within the dimensionless space
so that the policy is robust to environmental perturbations.

𝜋Π(𝑠,𝜽) = 𝜋Π(ΦΠ(𝑠);𝜽) (5.10)

We show the interaction in such a system on figure 5.3. It is important to notice how the context
affects the dynamics 𝑓 and transformation ΦΠ. It means if we have knowledge of it, then we can
also use it directly to apply the non-dimensionalization operation 𝜙Π and its inverse.

5.2.2 Model-Based Reinforcement Learning in Π-MDP

Now that we framed the generalization problem within a dimensionless state-space, we de-
scribe how to integrate it within a Model-Based policy search algorithm. We introduce a new
algorithm Π-PILCO: Dimensionless Probabilistic Inference for Learning COntrol, a variation
of the data efficient PILCO algorithm that performs policy search within a dimensionless state
space. Let us not that the methodology can in principle, be applied to any MBRL algorithm pro-
vided the state and action space can be non-dimensionalized with the Buckingham-Π theorem.

In essence, the algorithm is not very different from the one in natural space. The difference
here is that both dynamics model and policy have dimensionless inputs and outputs. When the
policy is interacting with the MDP, it non-dimensionalizes the observations, returns a dimen-
sionless control, which is then projected back in natural space before being sent to environment.
The procedure is described in extensive details in algorithm 2.
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Algorithm 2 Interaction in a Π-MDP
1: Input policy 𝜋Π, dimensionless feature map Φ, initial state 𝑠0
2: 𝑠𝑡 ← 𝑠0
3: for 𝑡 = 1,… , 𝑇 do ⊳ number of steps of an episode
4: 𝑠Π,𝑡 = Φ𝑠𝑡 ⊳ non-dimensionalize observation
5: 𝑎Π,𝑡 = 𝜋Π(𝑠Π,𝑡) ⊳ choose dimensionless action
6: 𝑎𝑡 = Φ−1(𝑎Π,𝑡) ⊳ dimensionalize action
7: 𝑠𝑡 ← 𝑓 (𝑠𝑡, 𝑎𝑡) ⊳ 1-step Markov transition
8: 𝑟𝑡 = 𝑅(𝑠𝑡)

return
∑

𝑟𝑡 ⊳ Cumulative Rewards

The policy search resembles also closely to that in the natural spaces. The optimization
objective is the same as previously described in equation 5.4, the difference lies in the way tra-
jectories are computed. In equation 5.3, the closed-loop dynamics iterate one-step predictions
on the natural state-action spaces. So at each time step, the policy selects a dimensionless ac-
tion based on dimensionless observations and the model predicts the next state (or distribution
thereof). Additionally, we compute the reward at each step by applying the inverse Buckingham
transformation to the dimensionless state. We repeat the procedure until a horizon 𝐻 is reached
and the local rewards are summed to estimate the gradient of the return. For ease of exposition,
algorithm 3 details the policy search methodology based on the Reparameterization Trick as in
[Parmas et al., 2018].

Algorithm 3 Dimensionless Policy Search - Π-PILCO

1: Input policy 𝜋Π,𝜽, dimensionless feature map Φ, dimensionless model 𝑓Π

2: for 𝑖 = 1,… , 𝑃 do ⊳ number of epochs
3: 𝑠𝑡 ∼ 𝜌0 ⊳ sample initial state
4: 𝑠Π,𝑡 = Φ𝑠𝑡
5: 𝑅 = 0
6: for 𝑡 = 1,… ,𝐻 do ⊳ prediction horizon
7: 𝑎Π,𝑡 = 𝜋Π(𝑠Π,𝑡;𝜽)
8: 𝑠Π,𝑡 ← 𝑓Π(𝑠Π,𝑡, 𝑎Π,𝑡)
9: 𝑅 ← 𝑅 + 𝑅Π(𝑠𝑡)

10: 𝜽 ← 𝜽 + ∇𝜽𝑅 ⊳ gradient step
return 𝜋Π,𝜽
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5.3 Experiments
Questions

• Can we learn an invariant controller from a single training environment
• Can we use model for few-shot adaptation?
• Are safety constraints respected?
• Can we infer the context during deployment?
• how to measure invariance of a decision? ie characterise the ’region of invariance’

Assumptions:

• the context variables are fully observables during training, meaning Φ is known
• the reward function is known a priori.

We will evaluate our algorithm on two second-order the systems, the first is the pendulum
that we have already studied in depth in the previous chapters The cartpole, is a slightly more
complicated one where a pendulum is attached to a cart on a horizontal axis that can move left
and right. Initially, the pendulum is positioned downright and the control problem consists in
learning a policy that can swing the pendulum up and stabilize it vertically at the middle of the
cart. The nominal context values for each are summarized on table 5.1.

These two systems possess the appealing properties of having smooth dynamics and low di-
mensions. As such, they are well suited for studying dimensional analysis in RL. We used our
own model-based RL code1 for training the policies in the different environments. The con-
trol policy is parameterized as a single-layer Radial Basis Function network. We use Moment
Matching [Girard et al., 2002] for trajecory predictions as in the original PILCO paper. For the
cartpole, we used the benchmark for distribution shift from [Dulac-Arnold et al., 2021b] and
adapted some of the code for our needs. For the pendulum, we used Gymnasium [Towers et al.,
2023] on which context variables can be changed with no code modification.

Environment 𝐿[𝑚] 𝑀[𝑘𝑔] 𝑔[𝑚.𝑠−2]

Pendulum 1 1 10
Cartpole 1 0.1 9.81

Table 5.1: Nominal context value for the cartpole and pendulum environments

The movement of the cartpole is described by the variables (𝑥, cos(𝜃), sin(𝜃), 𝑥̇, 𝜃̇), 𝑢. Due to
the similar structure between the two environments, the dimensionless groups for the cartpole

1https://git.dcs.gla.ac.uk/ValentinCharvet/pilco-torch

https://git.dcs.gla.ac.uk/ValentinCharvet/pilco-torch
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are very similar as those of the pendulum.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Π𝑥 =
𝑥
𝐿

Πcos 𝜃 = cos(𝜃)

Πsin 𝜃 = sin(𝜃)

Π𝑥̇ =
𝑥√
𝐿𝑔

Π𝜃̈ = 𝜃̈
𝑔
𝐿

Π𝑢 =
𝑢

𝑀𝑔

(5.11)

The derivations of the Π-groups in equation 5.11 are detailed in appendix A.1.2. As we did on
the angular speed on the pendulum, we adapt the variable Π𝑥̇ to avoid losing its sign.

5.3.1 Generalization Performance

We use two different metrics to evaluate the generalization capabilities of our algorithm. The
return (2.3) is the most commonly used metric used in Markov Decision Processes. It measures
the long-term performance of a controller given an initial state distribution and is computed by
a discounted sum of rewards. The reward for our environments are inversely proportional to a
distance from the current state and target as written in equation 5.12

𝑟𝑡 ∝ −𝑑(𝑠𝑡, 𝑠∗), (5.12)

where 𝑑 is a distance function in  . For our specific problems, we only consider finite-time
MDPs and thus consider a discount rate 𝛾 = 1, which weighs identically the rewards from the
beginning to end of each episode.

However, during the experiments we realized this metric was not sufficient to characterise the
ability of the controller to stabilize the systems. The return translates the ability of the agent to
stabilize a system at a target position as quickly as possible, which yields ignores two components
of our tasks. The first is that is two controllers are able to solve the task but one requires more
steps to do so, it will be penalized with a lower return since it spends less time in the optimal-
rewards regions. The second inconvenience is that is the controller is able to push the system
into a closed-loop equilibrium that deviates from the target, it will not receive an optimal return.
In the next section, we will illustrate these two points for each of the environment we studied.

In order to alleviate the bias of the return metric, we had to find a metric that would translate
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Figure 5.4: Return on the pendulum environment for different values of 𝑀 (top) and 𝑔 (bottom),
with respective nominal values of 1𝑚 and 10𝑚.𝑠−2.
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the ability of the controller to reach a closed-loop equilibrium. Therefore, we include a binary
metric that measures whether in the last step of the episode, the velocity variables of the obser-
vations are equal to 0. We call such an episode successful, which allows us to measure the rate of
successes for each controller across many different initializations. Our measure of success rate
can be written as

𝜌 = 1
𝑁

𝑁∑
𝑖=1

𝟙
{

̇𝑠𝑇 ≤ 𝜖
}
, (5.13)

where 𝑁 is the number of evaluation episodes and 𝜖 a threshold. For our experiments, we used
the values 𝑁 = 100 and 𝜖 = 0.05.

Return

We start with experiments to measure the return of the natural and dimensionless controllers
in both pendulum and cartpole environment. The return is maximal when the pole is positioned
vertically up (pendulum and cartpole) and the cart at the centre of the rail (cartpole).

The figure 5.4 shows the returns obtained on the pendulum when the pole mass𝑀 and gravity
field 𝑔 vary individually. The first observation is that the mass has less negative impact on the
performance drop than the gravity. At 25% in increase of the nominal value, the performance
of the natural controller has already significantly decreased for the latter. However, it is more
obvious for the gravity case that the Buckingham controller obtains higher returns when the
context drifts away from the nominal value, both in augmentation and reduction of the context.

A legitimate interrogation is if the Buckingham controller is maximally invariant with respect
to the context. To verify this, we evaluate the returns of the controllers on the pendulum that are
trained each on different pole length values. On figure 5.5 (left), we see the result for a training
value of 𝐿 = 1. We note that the performance degrades right after the nominal value in both case,
but the drop is less significant on the Buckingham controller. However, when trained on a pole
length 𝐿 = 1.5, the Buckingham controller is able to maintain higher performance for longer
than the natural one. This result suggests that the Buckingham controllers are more robust than
their natural counterpart but they are not maximally equivariant either. If they were, the return
would be the same whichever pole length they are trained on.

On figure 5.6, we repeat the same experiment on the cartpole environment. Again, we can see
how the Buckingham controller is able to generalize and obtain high return when the context is
scaled higher or lower than the nominal values. We can see on the right plot that the Buckingham
returns tend to oscillate. This is caused by the fact that in this range, the controller is not able to
maintain the pole up whilst the cart is at the centre of the rail.
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(a) Training pole length is 1m

(b) Training pole length is 1.5m.

Figure 5.5: Return on the pendulum environment for different training values of 𝐿. We plot the
mean and standard deviation for 50 episodes.
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Figure 5.6: Return on the cartpole environment for different values of 𝑀 (top) and 𝐿 (bottom).
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Success Rates

Figure 5.7: Success rates for different pole length values on the pendulum. We can see that
beyond 1.2𝑚, both controllers struggle to swing the mass up, even though the dimensionless
controller succeeds in some cases.

We now look into the same experiments where we instead plot the success rates as given by
equation 5.13. The figure 5.7 completes 5.5 as it shows the average lower cumulative rewards
for high pole lengths is caused by the inability of the Buckingham controller to stabilize the
system more than 20% of the episodes. This observation is confirmed by plotting specific reward
trajectory given different initial states on figure 5.8. We can see on the left that the rewards
associated with the Buckingham controller have much more variance when 𝐿 = 1.2𝑚 than for
lower values.

We now turn to the cartpole problem to see if the return oscillation on high 𝐿 is due to failure
to solve the controller problem. We can see on figure 5.9 that in most for most of the evaluation
context range, the episodes are counted as successful. This confirms our hypothesis that the
controllers is still able to stabilize the system upright, albeit not at the target cart horizontal
position. We can confirm this by plotting the reward trajectory of both controllers for 𝐿 = 2.1𝑚
on figure 5.10

Discrepancy between success rates and returns is due to reward relates to swinging up at
centre of the cart whereas we count success as long as pole ends up vertically up. Additionally,
for certain values of𝐿, the controller is able to hack the environment and use the extra momentum
given by hitting the wall at the extremity of the rail. We will see in more details in section 5.3.3
how the optimal performance of a controller are related to such constraints and the consequences
of relaxing them. On figure 5.11, we show the cartpole environment at several time steps 𝑡 =
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Figure 5.8: Cumulative rewards on the pendulum with 𝐿 = 0.4𝑚 (top) and 𝐿 = 1.2𝑚 (bottom).
We observe that both mean and variance of cumulative rewards monotonously increase in the
Buckingham case.

Figure 5.9: Success rates on the cartpole environment for different values of 𝐿. Below 𝐿 = 1.2𝑚,
the natural controller is no longer able to swing the pendulum upright anymore.
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Figure 5.10: Cumulative reward on cartpole with 𝐿 = 2.1.

(0, 2, 4, 6, 8, 10)𝑠.

Figure 5.11: Evolution of the cartpole environment with a pole length 𝐿 = 1𝑚 in Mujoco. The
leftmost frame is taken at 𝑡 = 0 and the following frames are each spaced by 2 seconds. The
pendulum starts with the pendulum initially vertically downright. The top row are the images
for the natural controller and the bottom row for the dimensionless one.

Return 2D Perturbation

So far, we have only evaluated the generalization capabilities of the controllers with a shift in
an atomic subset of the context. We now turn to the case where two parameters are perturbed at
once. The context is therefore a 2-dimensional vector 𝒄 ∈ ℝ2. For the pendulum on figure 5.12,
both mass 𝑀 and length 𝐿 are perturbed around their nominal values. Bright colours indicate
higher return meaning good generalization of the controller whereas dark ones indicate failure
to stabilize the system. The same experiment for the cartpole is presented on figure 5.13.

The first thing we notice is that even in the natural case, the policy for the pendulum is already
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Figure 5.12: Pendulum success rates on the pole length when both 𝑀 and 𝐿 are varying for the
natural (left) and dimensionless (right) controllers. Brighter values indicate higher rates.

able to generalize to a significant range of values. We hypothesize this is due to the probabilistic
nature of the policy search which presents naturally robust capabilities [Charvet et al., 2021].
Nevertheless, the Buckingham transformation is able to enlarge this region, allowing large values
of 𝐿 when is small (below 0.5). It also allows larger 𝑀 values, up to 2.4 when 𝐿 is smaller than
0.9.

Figure 5.13: Cartpole success rates when both parameters 𝐿 and 𝑀 change simultaneously. We
can see how the dimensionless controller (right) can solve the task on a much wider set of context
pairs.

On the cart-pole however, the natural controller is very sensitive to small perturbation around
the nominal value. As we see on the right plot of figure 5.13, only a very small region in the
top left is demonstrating high returns. When using the Buckingham-Π features, this region is
significantly widened. These results show that when two parameters are perturbed at once, the
Buckingham transformation yields significant generalization performance.
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5.3.2 Controllable Area

(a) Pole length

(b) Pole mass

Figure 5.14: Control area for pole length and mass. Higher values on the x-axis indicate better
generalization.

Following the idea of complementing the return metric, we propose another metric that is
specific to the problem of generalization and robustness. We call controllable area the surface
in parameter space on which the performance of the controller drops by a given percentage 𝜏 ∈
[0, 1]. The area can be mathematically described as follows,

𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝜏) =
{
𝒄 ∈ , 𝑅𝜋(𝒄) ≥ 𝜏𝑅∗(𝜋)

}
. (5.14)
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This definition allows us to measure the region in context space in which the controller works
close to its optimal regime. We can compute that value with means of an integral over the rate
of episodes that have returns greater than the threshold for each infinitesimal context as,

𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝜏) = ∫
𝟙[𝑅𝜋(𝒄) ≥ 𝜏𝑅∗(𝜋)]𝑑𝒄. (5.15)

We plot this area as a function of the performance dropoff 𝜏 on figure 5.14 for the pole mass
and length. This figure confirms the findings from above as we can see the area of optimality
of the controllers is much larger for the one in dimensionless space. This is confirmed by figure
5.15, on which both length and mass are perturbed. The resulting surface has the unit of 𝑘𝑔 ×𝑚
(a mass times a length).

Figure 5.15: Area of control as a function of performance drop for 2D perturbations

Note that depending on the system at hand, the controllable region may not be compact set
of the context space. It is a similar phenomenon that we observe on figure 5.13.

5.3.3 Optimal Performance and Constraints

It is worth noting at this point that what we call the optimal performance of a controller is
conditioned by the constraints of the environment. In the specific case of the cartpole, these
constraints take the form of a wall that the cart may hit at positions 𝑥 = ±2𝑚. The consequence
is a discontinuity of the dynamics incurred by hitting the wall, which the model is not aware
of when training on the nominal environment. That is because the permissible range of the
cart allows naturally to swing the pendulum upright in that configuration. However, when the
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context takes extreme values the controller is physically denied the possibility to gather enough
momentum to push the pendulum. This phenomenon is highlighted on figure 5.16. It shows that
in the Buckingham case (left), the controller pushes the cartpole up to the wall when the context
drifts too far from the nominal value. The problem is that upon contact, the dynamics change
and cause an unexpected interaction between some variables.

Figure 5.16: We plot the extreme horizontal |𝑥| positions on the cartpole along 10 episodes. The
brightest values indicate that the wall is hit. We can see that the Buckingham controller (right)
often reaches the constraint at |𝑥| = 2 when the context is far from the nominal (𝑀 = 0.1𝑘𝑔, 𝐿 =
1𝑚).

On figure 5.17, we see what happens when those constraints are removed. We can see then
that the dimensionless controller is able to solve the task more easily for large values of 𝐿.

We now illustrate the equivariance property of the dimensionless policy using data from the
cartpole environment. The policy initially takes values in ℝ, it is then squashed into the domain
 to allow the control signal to be passes into the environment.

𝜋𝜽(𝑠) = max()𝜎
( ̃𝜋(𝑠)

)
, (5.16)

where in our case 𝜎(𝑥) = 1
8
(9 sin(𝑥) + sin(3𝑥)). In this formulation of the actions, the initial

policy 𝜋̃ outputs dimensionless vectors that then take the dimension given by the bound of the
action set max.

As a first experiment, we collect one trajectory with a natural and dimensionless controller
on four different versions of the cartpole. Figure 5.18 highlights the influence of the context
on the actions scaling. As the environment undergoes a scaling transformation of the context,
the dimensionless control actions are also scaled accordingly. On the other hand, the natural
controller is agnostic to the context change and thus not able to stabilize the cartpole and solve
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Figure 5.17: Plot of the return for the dimensionless controller when constraints are relaxed. The
Buckingham controller is able to maintain good performance on most of the evalution context.
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Figure 5.18: Comparing raw actions with their squashed equivalent for different context pairs
(the nominal is on the top-left corner). The figure illustrates how the Buckingham transformation
allows the policy to take extreme actions to adapt to the context-specific dynamics.

the task. This phenomenon is further highlighted on figure 5.19. Here we plot the natural against
dimensionless controllers actions on the same sample of state data, but for different context. To
do so, we sample a subset of 100 one-step transition from the data collected during training. We
then plot the controller actions with the input state going through the Buckingham power-law
transformation with appropriate context. As we can see, the Buckingham actions are rescaled to
reflect the change in pole length. This ability to transform the controller input further explains
how zero-shot generalization can be improved with no additional training data.

5.3.4 Parameter Identifiability

In the previous sections, we assumed the context was observed in order to transform the
state-action space into a dimensionless one. This hypothesis might be constraining for many
real-world problems, where accurate measures of some variables are not possible. We evaluate
the possibility on inferring these variables in order to transform the input space. We note that this
is not a trivial problem, since the data we record is recorded by a specific controller in closed-
loop, which is known to prevent parameter identification [Ljung, 1989].

Similarly as in chapter 4, we roll out the trained controllers on a perturbed version of the
environment to collect sample trajectories. We then sample parameters from a uniform prior
and plot the likelihood of the hidden parameter under the Gaussian Process model. For the
cartpole on figure 5.20, the log-likelihood surfaces for each observable (𝑥Π, 𝑥̇Π, cos(𝜃), sin(𝜃), 𝜃̇Π)
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Figure 5.19: We plot the actions by the nominal controller (𝑥-axis) against the perturbed ones (𝑦-
axis) for different pole lengths. All the controllers share the same natural input, but is transformed
by the context-dependent Π-groups.

are not minimized where the true values are. One explanation is that whichever the context is,
the optimal trajectories in phase planes are little impacted. As a consequence, the model is not
able to accurately distinguish the correct parameters from the wrong ones.

5.4 Discussion
In this chapter, we investigated the problem of controller generalization when a dynamic

system is subjected to environmental perturbations. We introduced the dimensionless Markov
Decision Process in section 5.2.1, that allows an autonomous agent to take actions in a dimen-
sionless observation space. The Π-MDP is a rescaling of a C-MDP state and actions spaces
such that each variable becomes dimensionless. The resulting state-action space stems from ad-
ditional assumptions about the units of the system and the observation of perturbing variables.
The equivariance properties of the transformation allow zero-shot transfer from one context to
the other.

From the Π-MDP formulation, we derived a generic framework for model-based policy
search that we applied with a Gaussian Process dynamics model (algorithms 2 and 3). The
new algorithm we proposed, is built on top of PILCO maintains its data-efficency and improves
greatly its generalization capabilities with no further data collection.

We demonstrated empirically that this approach yields controllers that are invariant with
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Figure 5.20: Negative Log-Likelihood for different samples of 𝐿 (top) and 𝑀 (bottom) on the
cartpole. Each horizontal plot correspond to the NLL for each variable of the state space. As we
can see, the model is not able to identify correctly the parameter that generated the trajectory.

respect to the context, provided it can be observed or measured. Our experiments focused on
two different environments, an underactuated pendulum (figure 5.12) and a cartpole (figure 5.13).
Our results show strong generalization properties of the controller when the physical properties
of the system such as pole length and mass drift from their initial training value. While these
are simple systems, because of their second-order dynamics and low dimension, the consistency
of the results suggest the methodology could be successfully applied to more complex systems,
which we leave to future work.

Conceptually, our approach comes within the scope of instilling physics prior in Machine
Learning pipelines to increase model robustness [Botev et al., 2021]. The main weakness of
this approach is the requirement for measuring what the perturbation variables are at any point
in the deployment of the controller. Relaxing this assumption proved to be difficult because of
the closed-loop nature of the problem, which is known to prevent identifiability of the param-
eters [Ljung, 1989], as we can see on figure 5.20. We believe identification of the parameters
could be achieved with different control policies that aim to actively infer those values based
on exploratory trajectories, and leave this direction for future work. The second limitation of
this approach is the requirement for knowing the measurements dimensions which can be pro-
hibitively expensive on high-dimensional systems. To alleviate this, one could either use physical
priors to determine which transformation if most suited to type of perturbation that might be later
encountered.



Chapter 6.

Conclusion

In this thesis, we examined the problem of distribution shift in dynamic systems through
the lens of confounding variables acting on inputs and outputs. We call them context and it
includes all the static variables that are present in the Ordinary Differential Equation that drives
the system’s temporal evolution. In the course of the deployment of an agent, this context may
be subjected to modifications caused by external perturbations or hardware wear-and-tear. We
considered the case where any of these perturbations are slow compared to the temporal evolution
of the system such that within an episode, the system can be considered stationary. When the
context is modified, the data generated in the environment will suffer a distribution shift. The
problem of modelling accurately such systems in the presence of these perturbations is therefore
one of generalization. It poses the question of making accurate predictions or taking optimal
decisions outside the training domain. Conversely, a model is called robust when it is resilient
to those perturbations. Data-driven approaches to solving this issue involve gathering additional
data in the training phase to reflect the diversity of geometries incurred by the confounders. Data
augmentation then allows either creating a general model that can interpolate between domains
or a meta-learning model that can separate the local and global system properties. This type of
approach has encountered great success, but comes with higher training and data storage cost as
well. Furthermore, these methods lie on the ability to intervene on the context during training to
gather data from several variants of the environment. This can only be achieved if a simulator is
available because in general interventions on real systems can not be done at the risk of damaging
the system. Throughout this thesis, we assumed that during training we only have access to a
single version of the environment. Thus, any method based on the augmentation of training data
is not permitted.

Alternatively, generalization may be improved by augmenting the set of assumptions on the
training and testing distribution depending on the task. In the same way inductive biases are
used to augment capacity without increase in complexity, domain-specific knowledge can be
included in the modelling procedure to increase robustness. This thesis explores the ability of
a variable transformation given by the Buckingham-Π theorem to create equivariant estimators.
That is, estimators that can appropriately rescale their predictions or decisions on the basis of
a transformation of its inputs. The theorem stems from the field of Dimensional Analysis and
derives a dimensionality reduction by exploiting the symmetries incurred by the system of units.
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This transformation requires the knowledge of the dimension of each measurement in order to
make them invariant to a change in unit through a power law. By combining this approach with
probabilistic Machine Learning models we are able to increase the robustness of estimators with
respect to context perturbations.

In chapter 3, we adapt the Buckingham-Π theorem to second-order dynamic systems that are
conditioned by a set of static physical variables. We showed that under the full-rank assump-
tion of the context vector on the basis of the elementary physical dimensions we can project the
dynamic variables into a dimensionless space. By construction, the models in that space are
equivariant with respect to rescaling of the context. This transformation allows statistical esti-
mators to make accurate predictions outside the training data support even when the context is
poorly measured. The strength of the approach lies in the ability of models to generalize even
when the training context is atomic (ie a single vector 𝒄0) and uncertain. Additionally, the trans-
formation is oblivious to the estimator, so we have been able to apply it to a Neural Network as
well as Gaussian Process models with Maximum A Posteriori and Variational Inference. While
it requires the additional knowledge of the context, the transformation is beneficial since a nat-
ural model with the same access to all the variables is not able to generalize as well because of
the form of the nominal context. However, the results of this chapter should be not be overstated
since they have been obtained in simulation on a fairly simple environment, an actuated pen-
dulum. We believe they should be confirmed on higher dimensional systems and other domains
such as thermodynamics and electricity where mass, length and time do not constitute a sufficient
basis of dimensions. Moreover, the Π-groups used for the transformation of the state space are
not unique. The ones we used were found by trial-and-error and informed by physics intuition.
We believe that understanding which Π-groups are optimal for a given system is an important
step for extending this work to more complex and critical systems.

In chapter 4, we propose a solution for one of the main weaknesses of the Buckingham trans-
formation, namely the requirement of observing the context variables to construct the appropriate
transformation. Our contribution is a dimensional latent variable model, where the inferred vari-
ables are constrained to take values in a units-typed space. We approach that problem in two
different ways. In the first, we build a predictive model on the Π-groups assuming the whole
context is observed. In the second, the context is hidden, so the model is trained as we infer the
hidden variables. Then, when facing a perturbed version of the system, we re-infer the latent
variables whilst retaining the predictive model. In opposition with other latent variable models,
we impose a dimension (in the sense of units) to each latent variable through the Buckingham
transformation. This preserves the equivariant property of the predictive model and allows it to
generalize to new context. At the same time, the learned latent dimensional variables can be
used to estimate the true value of the hidden parameter. Doing so however requires at least one
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observation of the context during training. If it is not the case, we can however use the model
to predict if the elements of new context are scaled-up or scaled-down versions of the nominal.
Constraining latent variables to a specific dimension constitutes a promising research direction
for making this type of model more explainable and transparent. For instance, some areas of re-
search, such as medicine require model transparency [Winter and Carusi, 2023; Rubinger et al.,
2023], may be reluctant to use architectures like Variational AutoEncoders due to the opacity of
their latent space. Enforcing dimensional constraints with the Buckingham theorem could be a
partial solution to that problem. We also believe an interesting question for future investigations
is the number of training contexts required to infer the dimensional latent variables correctly.
Because of the equivariance property of the dimensionless estimators, a single context should be
enough in principles. In practice we have focused our work on atomic contexts and found it in-
sufficient to learn latent space with more than two dimensions. Moreover, it will be important in
the future to understand what causes the variance collapse in the latent variable posteriors. While
it does not prevent the models to make accurate predictions, it might constitute an obstacle for
few-shot transfer in higher dimensional spaces.

In chapter 5, we apply our previous findings for improving the robustness of model-based
controllers to distribution shift. We introduce the concept of dimensionless Markov Decision
Processes (Π-MDP), in which the state and action spaces are non-dimensionalized using appro-
priate Π-groups. A Π-MDP can be seen as the reparametrization of a Contextual-MDP through
the power law given by the Buckingham theorem. We adapted the PILCO model-based Rein-
forcement Learning routine for iterating the policy search within that Π space. Our empirical
results demonstrate that control policies trained in that way are able to generalize to a large range
of testing contexts even when they are trained on a single nominal environment. The strength
of our approach to Robust Reinforcement Learning is its conceptual simplicity. While we have
only tested the Π-MDP with PILCO, we believe it can be extended to other model-based and
model-free algorithms as long as the Π-groups exist. Demonstrating this extension on other al-
gorithms should constitute a straightforward future research direction, and we made our code
publicly available to help in that regard. Nevertheless, we have not been able to apply the dimen-
sional latent variable models from chapter 4 to construct a Π-MDP when the context is hidden.
We hypothesize it may be alleviated by training the model and controllers on several contexts
instead of one. Alternatively, active exploration routines could be put in place with the specific
objective to estimate the latent variables at test time [Memmel et al., 2024; Colas et al., 2019; AS-
MUTH, 2009; Liu et al., 2023]. Finally, we think that training Offline Reinforcement Learning
algorithms in a Π-MDP could greatly increase their performances.

The overall directing contribution of this work is an approach to zero-shot transfer learning,
that we achieved by means of building equivariant feature spaces for the estimator. As we could
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see, this methodology benefits from the conceptual simplicity to instil a physics-driven induc-
tive bias that is agnostic to the choice of machine-learning model. As such, our approach could
qualify as "grey-box" As we could see, this methodology benefits from the conceptual simplicity
to instil a physics-driven inductive bias that is agnostic to the choice of machine-learning model.
As such, our approach could be qualified of "gray-box" [Liu et al., 2021]. It means a mixing of
data-driven and physics based models to benefit from flexibility and scalability on the one hand
and generality on the other. While the need for measuring the context variables could be seen
as a weakness compared to fully data-driven approaches, we believe it is a small price to pay
with respect to the gains associated with model complexity and computing costs. The solution
we propose in chapter 4 to relax this observability assumption constitutes a promising first result
but needs to be evaluated within more complex environments. On the pendulum and cartpole,
Dimensional Analysis brings enough constraints to make the modelling significantly easier. The
scalability of this approach in terms of the number of dependant variables is an open question that
we leave for future work. For more complex systems, additional issues may arise. The first comes
from the non-uniqueness of the Π-groups: as the number of variables increases so does the num-
ber of homogeneously acceptable transformations. It follows that higher dimensional systems
require additional expert knowledge and trial-and-error to find the optimal solution. The direct
consequence is that the procedure may become more model-driven than data-driven and lose
its benefits as a statistical learning method. Numerical approaches to non-dimensionalization
such as [Bakarji et al., 2022] may constitute a natural way to maintain a data-centric approach.
Second, the Buckingham theorem relies on the knowledge of all the dimensional variables that
appear in the graphical model of the system. While we proposed a solution to deal with hidden
variables in chapter 4, we have not studied the impact of the absence (or presence) of variables
in the Π that should in fact be present (or absent). The validity of the selected variables is only
given by first principles and expert knowledge. Therefore, the development of automated rou-
tines for selecting and validating the variables and their Π-groups will be an essential milestone
for the deployment of such tools into more critical environments.
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Appendix A.

Supplementary Material

A.1 Buckingham-Pi Theorem and Application to Pendulum

A.1.1 Pendulum

Dynamic variables ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢 ∶
[
1 2 −2

]
𝜃 ∶

[
0 0 0

]
𝜃̇ ∶

[
0 0 −1

]
𝜃̈ ∶

[
0 0 −2

] (A.1)

Context ⎧⎪⎪⎨⎪⎪⎩
𝑀 ∶

[
1 0 0

]
𝑔 ∶

[
0 1 −2

]
𝐿 ∶

[
0 1 0

] (A.2)

The context matrix

𝑪 =

⎡⎢⎢⎢⎣
1 0 0
0 1 −2
0 1 0

⎤⎥⎥⎥⎦ (A.3)

is full rank and thus the variables (𝑀,𝑔, 𝐿) can be used for non-dimensionalizing the other ones.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
𝑢𝛼𝑢 ⋅𝑀𝛽𝑢 ⋅ 𝑔𝛿𝑢 ⋅ 𝐿𝛾𝑢

]
= 0[

𝜃𝛼𝜃 ⋅𝑀𝛽𝜃 ⋅ 𝑔𝛿𝜃 ⋅ 𝐿𝛾𝜃
]
= 0[

𝜃̇𝛼𝜃̇ ⋅𝑀𝛽𝜃̇ ⋅ 𝑔𝛿𝜃̇ ⋅ 𝐿𝛾𝜃̇
]
= 0[

𝜃̈𝛼𝜃̈ ⋅𝑀𝛽𝜃̈ ⋅ 𝑔𝛿𝜃̈ ⋅ 𝐿𝛾𝜃̈
]
= 0

(A.4)

Where the bracket signs [𝑥] represent the dimension of variable 𝑥 and each power law within
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equation A.4 will be the Π-groups.

Because we know the dimension of the variables 𝑢, 𝜃, 𝜃̇, 𝜃̈ and because [𝑥 × 𝑦] = [𝑥] × [𝑦]
the system can be rewritten as

⎧⎪⎪⎨⎪⎪⎩
𝑀𝛽𝑢 ⋅ 𝐿𝛼𝑢+𝛿𝑢+𝛾𝑢 ⋅ 𝑡−2𝛿𝑢+𝛼𝑢 = 1

𝑀𝛽𝜃̇ ⋅ 𝐿𝛿𝜃̇+𝛾𝜃̇ ⋅ 𝑡−2𝛿𝜃̇−1 = 1

𝑀𝛽𝜃̈ ⋅ 𝐿𝛿𝜃̈+𝛾𝜃̈ ⋅ 𝑡−2𝛿𝜃̇−2 = 1

(A.5)

We removed the equation for 𝜃 because as an angle, this variable is naturally dimensionless. The
coefficients are found by solving one system for each variable.

Torque 𝑢

Π𝑢 = 𝑢𝛼 ⋅𝑀𝛽 ⋅𝑔𝛿 ⋅𝐿𝛾 Using the first term from A.5 and replacing the terms by their dimension
we obtain,

𝑀𝛼+𝛽 .𝐿𝛼+𝛿+𝛾 𝑡−2𝛼−2𝛿 = 1. (A.6)

All exponents must be 0 to ensure the homogeneity which yields

⎧⎪⎪⎨⎪⎪⎩
𝛼 + 𝛽 = 0

𝛼 + 𝛿 + 𝛾 = 0

𝛼 − 2𝛿 = 0

(A.7)

The last equation implies 𝛼 + 𝛿 = 0, which we substract to the first equation to obtain

⎧⎪⎪⎨⎪⎪⎩
𝛽 = 𝛿

𝛼 + 𝛽 = 0

𝛼 + 𝛿 + 𝛾 = 0

(A.8)
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and then using 𝛼 + 𝛿 = 0 ⎧⎪⎨⎪⎩
𝛽 = 𝛿𝛾 = 0

𝛼 + 𝛽 = 0
(A.9)

Because the solution is not unique, we choose 𝑎𝑙𝑝ℎ𝑎 = 1 which gives the dimensionless torque

Π𝑢 =
𝑢

𝑀𝑔
(A.10)

Angular speed 𝜃̇

Π𝜃̇ = 𝜃̇𝛼 ⋅𝑀𝛽 ⋅ 𝑔𝛿 ⋅ 𝐿𝛾 We replace the variables with their dimensions to obtain

𝑀𝛽 .𝐿𝛿+𝛾 .𝑡−𝛼−2𝛿 = 1, (A.11)

which we can solve with the systems

⎧⎪⎪⎨⎪⎪⎩
𝛽 = 0

𝛿 + 𝛾 = 0

𝛼 + 2𝛿 = 0

(A.12)

By substracting twice the second equation to the third we obtain

⎧⎪⎪⎨⎪⎪⎩
𝛽 = 0

𝛼 = 2𝛿

𝛿 + 𝛾 = 0

(A.13)

We choose 𝛿 = 1 yielding
Π𝜃̇ = 𝜃̇2

𝑔
𝐿

(A.14)

Angular acceleration 𝜃̈

We the same process we obtain,

𝑀𝛽 .𝐿𝛿+𝛾 .𝑡−𝛼−2𝛿 = 1 (A.15)



A.1. Buckingham-Pi Theorem and Application to Pendulum 110

𝛽 = 0 so we have the systems ⎧⎪⎨⎪⎩
𝛿 + 𝛾 = 0

𝛼 = 𝛽
(A.16)

This yields
Π𝜃̈ = 𝜃̈

𝑔
𝐿

(A.17)

A.1.2 Cartpole

The movement of the cartpole depends on the variables (𝑥, cos(𝜃), sin(𝜃), 𝑥̇, 𝜃̇), 𝑢. A trivial
Π-group for the cart position is Π𝑥 = 𝑥

𝐿
, where 𝐿 is the pole length. For the angular speed, we

use the same transformation as the pendulum. Therefore, we need to compute the dimensionless
variables for 𝑥̇ and 𝑢

Cart speed 𝑥̇

With Π𝑥̇ = 𝑥̇𝛼 ⋅𝑀𝛽 ⋅ 𝑔𝛿 ⋅ 𝐿𝛾 , we obtain with [𝑥̇] = 𝐿.𝑡−1,

𝑀𝛽 .𝐿𝛼+𝛿+𝛾 .𝑡−𝛼−2𝛿 (A.18)

which yields 𝛽 = 0. We then substract on equation with the other to obtain,

⎧⎪⎨⎪⎩
𝛿 − 𝛾 = 0

𝛼 + 2𝛿 = 0
(A.19)

which is solved with 𝛿 = 𝛾 = −1.

Therefore the dimensionless variable for the cart is

Π𝑥̇ =
𝑥̇2

𝐿𝑔
. (A.20)
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Force 𝑢

Π𝑢 = 𝑢𝛼 ⋅𝑀𝛽 ⋅ 𝑔𝛿 ⋅𝐿𝛾 The dimension of the control force is [𝑢] = 𝑀.𝐿.𝑡−2. Using that value
yields the system ⎧⎪⎪⎨⎪⎪⎩

𝛼 + 𝛽 = 0

𝛼 + 𝛿 = 0

𝛼 + 𝛿 + 𝛾 = 0

(A.21)

and by substracting the first two equations we obtain

⎧⎪⎪⎨⎪⎪⎩
𝛾 = 0

𝛽 = 𝛿

𝛼 + 𝛿 = 0

(A.22)

With 𝛼 = 1, we obtain the resulting
Π𝑢 =

𝑢
𝑀𝑔𝐿

(A.23)
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