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Abstract

This thesis contributes to studying the relationship between the electrical conductivity of elas-
tomeric composites and their finite deformations. Elastomeric composites exhibit significant
shifts in the orientation of their reinforcements under large deformations, altering their elec-
trical conductivity. This piezoresistive property is exploited in applications such as wearable
technology, human-machine interfaces, energy harvesting, and soft robotics. This research em-
ploys two methodologies: a computational framework for analysing mechanical behaviour under
finite deformations and an analytical model to predict electrical conductivity.

A computational framework employing finite element methods is used to analyse mechanical
behaviour under finite deformations, employing single-field and three-field mixed formulations.
Simulations of extreme deformation numerical examples validate the developed finite element
codes. A novel procedure for incorporating the plane stress condition for general hyperelastic
models is introduced. The plane stress model is used for analysing elastomeric composites,
where admissible boundary conditions are implemented using pixel meshing techniques, as-
sessing fibre orientation impact. The analytical model, based on Eshelby’s equivalent inclusion
method, predicts electrical conductivity considering electron tunnelling and conductive network
formation. This model accounts for fibre orientation and distribution, with rigorous validation
against experimental data. By integrating computational and analytical approaches, this thesis
offers a robust foundation for analysing piezoresistivity in elastomeric composites.
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Chapter 1

Introduction

1.1 Overview of the research subject

Emerging as a modern cornerstone across various engineering fields such as mechanical, biomed-
ical, and civil engineering, advanced materials shine brightly, eclipsing traditional counterparts.
Engineered with tailored characteristics, these materials catalyse innovation across sectors rang-
ing from aerospace to renewable energy and biomedicine.

As a pivotal subset, composites and nanocomposites enhance base materials by adding rein-
forcements to conceive novel materials with unparalleled strength, lightness, and functionality.
Over the last few decades, the exploration of nanostructures –such as nanowires, nanoplates,
nanofilms, nanorods and nanotubes– has intensified due to their outstanding physical attributes,
leading to their use as reinforcing fillers in metals, polymers, ceramics and concrete.

In contrast, soft materials, ubiquitous in nature in the form of soft tissues such as leaves
and skin, exhibit facile deformation near room temperature. Certain soft materials, includ-
ing specific polymers and foams, are indispensable to applications in soft robotics and wearable
sensors. While elastomers, a type of soft material, have ancient roots in human history, contem-
porary advancements have redefined them as a rapidly expanding category of modern materials.
Elastomers are polymers with intrinsic viscoelastic properties, marked by low stiffness and high
failure strain compared to other polymers (De and White, 2001; Shaw and MacKnight, 2018).
These materials exhibit highly nonlinear, complex behaviour under significant deformations, en-
compassing both elastic and time-dependent responses. While their viscoelastic characteristics
include effects like stress relaxation and energy dissipation, their large strain elastic response is
frequently modelled using hyperelasticity, particularly useful in scenarios of rapid deformation.
Although various theories, such as the rubber elasticity concept (Bergström and Boyce, 2001;
Ogden, 1972, 1997) and the molecular theory of rubber elasticity (Flory, 1985), can predict the
nonlinear behaviour of pure elastomers, they often struggle to accurately model more complex
compositions, such as elastomeric composites (Paran et al., 2019). Elastomers often require
the addition of fillers to enhance specific physical properties, addressing inherent deficiencies
like mechanical strength. Elastomeric composites reinforced with various nanostructures, such

1
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Figure 1.1: Relevant applications of elastomers and elastomeric composites: soft robotics, energy
harvesting, wearable devices and strain sensors (Joo et al., 2022; Wehner et al., 2016; Harvard
University, 2024; Amjadi et al., 2016).

as carbon nanotubes (CNTs) and graphene nanosheets, hold immense promise as cutting-edge,
advanced materials. They have diverse practical applications across multiple industries, par-
ticularly in scenarios where piezoresistivity, flexibility, and conductivity are paramount. They
enable the development of a wide range of products, including sensors, strain gauges, wear-
able electronics, electronic skins, and smart textiles for accurate health monitoring. Moreover,
their biocompatibility and charge storage enhancement properties make them suitable for var-
ious applications, including implants and neural interfaces (Bokobza, 2023; Ariati et al., 2021;
Papageorgiou et al., 2015). Figure 1.1 showcases several of these applications.

Advancing our grasp of elastomeric composites is crucial for innovation in these applications
and beyond. Nonetheless, achieving this goal hinges on deepening our knowledge through
research into one of the most advanced categories of materials.

1.2 Motivation and research objectives

When subjected to mechanical deformation, certain elastomeric composites with conductive
fillers exhibit changes in electrical conductivity, a phenomenon known as piezoresistive behaviour
(Taya et al., 1998; Taya, 1999). This behaviour arises from the reorientation and stretching
of conductive filler networks, which disrupts or enhances pathways for electron flow within the
elastomeric matrix. Understanding this electromechanical interplay is essential for advancing
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next-generation wearable devices, structural health monitoring systems, cellular metamaterials,
and strain sensors. Theoretical studies provide key insights while offering significant cost and
time savings. As a further development of the existing knowledge, the computational and
analytical models must provide accurate predictions of electrical and mechanical behaviour.

Despite significant progress, predicting the electrical conductivity of elastomeric composites
remains challenging. While various models exist, many focus primarily on isotropic composites
despite the typical non-uniform distribution of fillers. Elastomers typically exhibit nonlinear,
nearly incompressible, and reversible behaviour under finite deformations (Ogden, 1997; Hos-
sain et al., 2015; Saxena et al., 2013). Furthermore, the stark contrast in stiffness between
the low-stiffness elastomers and high-stiffness fillers like CNTs causes these fillers to change
position and orientation during large deformations, thereby altering electron pathways (Taya,
1999; Gong and Zhu, 2014; Buroni and García-Macías, 2021). Traditional models, such as those
based on linear elasticity or small strain approximations (e.g., Voigt and Reuss models, Es-
helby’s inclusion model), often struggle to accurately represent this highly nonlinear behaviour.
Developing efficient computational methods for modelling finite deformations of solids in such
complex geometric domains and incompressible regimes is particularly challenging (Auricchio
et al., 2013).

Accurately predicting the changes in electrical conductivity of elastomeric composites under
mechanical stress remains challenging, which is critical for their functionality. Upon overviewing
current research, it becomes evident that there is a crucial need for further development of
comprehensive analytical and computational tools. This gap highlights the necessity for an
interdisciplinary approach by integrating insights from materials science, physics, continuum
mechanics, and nanotechnology. The identified gaps and challenges have led to the formulation
of the following primary research questions:

1. How can computational and numerical techniques effectively simulate the highly non-
linear behaviour of elastomeric composites under finite mechanical deformation? What
improvements are necessary in computational modelling?

2. How can we accurately track the changes in filler orientation and position during and
after deformation in elastomeric composites? What effects do different loading conditions
have on these changes?

3. How can we accurately predict the electrical conductivity of elastomeric composites,
particularly in light of conductive pathways and the non-uniform distribution of fillers?
Which parameters significantly affect the conductivity? Can we establish a framework to
describe the piezoresistive behaviour?

Motivated by these questions, this thesis aims to develop advanced mathematical and compu-
tational frameworks to gain insights into the nonlinear piezoresistive behaviour of elastomeric
composites through rigorous analyses.

Building upon the goal set forth, the principal objectives of this research are:
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1. Establish a comprehensive computational framework: Deriving continuum me-
chanics formulations for the finite deformations of elastomers and creating computer codes
to simulate the behaviour of elastomeric composites. This framework will focus on accu-
rately representing the characteristics of randomly oriented fillers within the elastomeric
matrix.

2. Develop an analytical mathematical model: Create a model to predict the electrical
conductivity of filler-reinforced composites. The model will detail the complex mecha-
nisms and parameters influencing conductivity, including the impact of the orientation
and position of fillers within the composite.

3. Lay the foundation for a piezoresistive framework: Integrate the analytical model
with the computational framework to establish a preliminary platform for investigating
the piezoresistive behaviour of elastomeric composites, paving the way for future research.

Pursuing these objectives will lay the groundwork for future stochastic investigations into the
effects of various parameters on piezoresistivity. This groundwork will enable data-driven and
machine learning simulations, facilitating deeper exploration of elastomeric composite behaviour
and fostering future innovations.

In essence, this project contributes to finding the link between the finite deformations of
elastomeric nanocomposites and their electrical conductivity by analytical and computational
modelling.

1.3 Research methodologies

This research employs a computational method to simulate finite deformations and an analytical
method to analyse electrical conductivity. Supplementary codes and data for both methods are
provided as open source.

1.3.1 Computational method

In recent decades, significant advancements in nonlinear elasticity have enabled the study of
elastomers and their composites, focusing on their ability to undergo large elastic deformations
with minimal energy dissipation. While analytical models provide initial insights, they often
fall short of accurately capturing the complex interactions between fillers in composite mate-
rials. To bridge this gap, advanced computational tools have become essential. In modern
engineering, computational engineering has risen to prominence due to advances in computers
and technology, surpassing traditional engineering methods. This interdisciplinary approach
integrates material science, continuum mechanics, mathematics, computer science, and high-
performance computing (HPC), allowing for the simulation of physical behaviours that would
otherwise be costly, time-consuming, or risky to experiment with physically.
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Various computational methods, such as the finite element method, boundary element
method, finite volume method, and variational differential quadrature method, have been widely
employed to study the mechanical response of these materials under finite deformations (Dai
and Song, 2014; Reese, 2002; Bijelonja et al., 2005; Sun et al., 2008; Yosibash and Priel, 2011;
Ansari et al., 2021b; Pagani and Carrera, 2023). The finite element method (FEM) is a widely
used tool in computational engineering, approximating solutions to boundary value problems
by subdividing a complex system into smaller, simpler components, or elements, that are easier
to analyse individually. This study prioritises hyperelasticity for its computational efficiency
in modelling large deformations, simplifying the material model by omitting time-dependent
viscoelastic effects like stress relaxation and creep. While this choice is generally suitable for
rapid loading scenarios, it is noted that viscoelastic characteristics may play a role in applica-
tions involving prolonged or cyclic loads. The finite element codes are developed using deal.II,
an open-source, object-oriented FEM library written in C++ that enables rapid development
of modern finite element (FE) codes (Bangerth et al., 2007). The deal.II library provides
advanced FE analysis capabilities with robust support for parallel computing and adaptive
mesh refinement, ensuring efficient and precise simulations. Its open-source nature promotes
reproducibility and ongoing research development.

Key aspects of the computational method include:

– Proposing a rigorous procedure for imposing the plane stress condition for general hyper-
elastic models, a topic often neglected in nonlinear elasticity.

– Using a three-field mixed formulation to address volumetric locking associated with non-
plane stress models.

– Investigating representative volume elements (RVEs) with randomly dispersed fibres.

– Examining admissible boundary conditions, including affine and periodic boundary con-
ditions, and using the pixel meshing technique.

– Integrating parallelization to optimise computational resources and speed up simulations.

– Investigating reorientation of fibres under deformation by tracking changes in their align-
ment and spacing.

1.3.2 Analytical method

Micromechanical theories provide a robust framework for understanding the behaviour of com-
posite materials at micro- and nano-scales. Among these, the equivalent inclusion method
(EIM), proposed by Eshelby (1957a), simplifies the complex problem of interactions within
heterogeneous materials by treating inclusions as equivalent phases with modified properties.
One of the main advantages of EIM is that the solution is limited to a system of algebraic
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equations and can be applied to various material behaviours, such as elastic-plastic, viscoelas-
tic, and creep (Taya, 2005). The concept of equivalent inclusion extends beyond mechanical
characteristics, having been adapted to assess other physical properties such as thermal con-
ductivity (Hiroshi and Minoru, 1986; Hatta and Taya, 1985, 1986; Chen and Wang, 1996) and
electrical conductivity (Mora et al., 2020; Feng and Jiang, 2013; Garcia-Macias et al., 2017;
Seidel and Lagoudas, 2009).

The movement of electrons between adjacent conductive fillers within a material is known
as electron hopping or electron tunnelling. This phenomenon can lead to the formation of
pathways for electron transport and thus impacts piezoresistive behaviour.

This study represents a rigorous analytical formulation based on EIM for computing effective
electrical conductivity of nanocomposites (Hatta and Taya, 1985; Seidel and Lagoudas, 2009;
Gong et al., 2013). Key aspects of the analytical method include:

– Deriving a detailed EIM formulation and providing a step-by-step explanation.

– Accounting for electron hopping and conductive networks.

– Incorporating a limit angle for filler orientation and a probability distribution function to
account for non-uniform filler distribution.

1.4 Dissertation structure

This project is organized into three main phases, spread across six chapters, including this
introductory chapter. The phases are outlined as follows:

(i) Learning and preparation: This phase entails an in-depth study of the research topic
and comprehensive reviews of the relevant published research. It includes acquiring profi-
ciency in C++ programming and gaining experience with the finite element library deal.II.
This phase commenced with the initiation of the PhD program and is an ongoing process
involving engagement with relevant books, papers, courses, conferences, and workshops.
The knowledge and skills acquired permeate throughout all chapters of the dissertation.

(ii) Computational framework: The crux of this thesis revolves around this phase, which
focuses on addressing the first two research questions. This phase entails the development
of a nonlinear elastic model incorporating finite element formulation for both compress-
ible and nearly incompressible hyperelastic materials. It encompasses code development,
simulation execution, and exploring novel computational challenges and solutions. This
central phase unfolds across three chapters: Chapter 2 describes the derivation of con-
tinuum mechanics formulations for hyperelastic solids and details their implementation in
FEM. Chapter 3 discusses FEM features, 2D configurations, coding practices, and val-
idation through challenging numerical problems. Chapter 4 explores the reorientation
of randomly distributed fibres in RVEs, considering different distribution patterns and
admissible boundary conditions.
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Figure 1.2: Visual representation of the structure and objectives of this study.

(iii) Analytical framework: Tackling the third research questions, this phase focuses on
developing an analytical method for predicting the electrical conductivity of elastomeric
composites. Then, the extracted data from computational simulations are applied to the
analytical model to estimate the electrical conductivity of the composites under finite
deformations. The methodologies and findings of this phase are presented in Chapter 5.

The dissertation concludes with Chapter 6, summarizing the significance of the research and
its findings and suggesting insights for further research. Figure 1.2 provides a concise visual
overview illustrating how this study is structured to address the overarching goal of this research.

1.4.1 Contemporary research practices

This thesis attempts to be a reflection of contemporary research paradigms, integrating in-
terdisciplinary methodologies and innovative techniques to tackle complex challenges within
its field of study. It aims to represent the culmination of a PhD journey, aligning with mod-
ern principles of scientific inquiry and emphasizing openness and accessibility. In alignment
with the University of Glasgow’s dedication to Open Research, this study embraces open sci-
ence principles to promote transparency, foster collaboration, and accelerate scientific progress.
By openly sharing all research materials –including text, codes, and publications– this thesis
promotes scholarly dialogue and collective advancement in the field. By embracing modern ap-
proaches to research and inquiry, this thesis aims to make a meaningful and lasting contribution
to advancing knowledge in its field.
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1.5 Research outputs

This research project has produced several noteworthy outputs, including the publication of
journal articles, conference presentations, and the development of open-access codes.

A significant portion of the content presented in this thesis corresponds to the material
covered in these resources. This acknowledgement is made to transparently disclose the inter-
connectedness, ensuring that any overlap is clearly recognized as intentional and not indicative
of misconduct.

The journal publications:

• Ahmadi, M., and Saxena, P. (2024), “Analytical modeling of the electrical conductivity
of CNT-filled polymer nanocomposites”, Mathematics and Mechanics of Solids. (Ahmadi
and Saxena, 2024)

• Ahmadi M., McBride A., Steinmann P., and Saxena P. (2024), “Plane stress finite element
modelling of arbitrary compressible hyperelastic materials”. (Under review)

The results from Chapter 4 were in the process of being prepared for submission to a peer-
reviewed journal at the time this thesis was written.

The open-access codes:

• Ahmadi, M. (2024) “madeal FE code collection”. Zenodo. doi: 10.5281/zenodo.11636987.
(Ahmadi, 2024)

• Ahmadi, M. and Saxena, P. (2023) “Mathematica file for article: Analytical modelling
of the electrical conductivity of CNT-filled polymer nanocomposites”. Zenodo. doi:
10.5281/zenodo.8114528. (Ahmadi and Saxena, 2023)

Conference presentations:

• Ahmadi M., Saxena P., and McBride A. (2023), “Electrical conductivity of CNT-reinforced
composites undergoing large deformation”, UK Association for Computational Mechanics
(UKACM) Conference, Coventry, UK.

• Ahmadi M., Saxena P., and McBride A. (2023), “Computational homogenization of
CNT reinforced nanocomposite undergoing large deformation considering different pe-
riodic boundary conditions”, Computational Methods in Multi-scale, Multi-uncertainty
and Multi-physics Problems (CM4P), Porto, Portugal.

• Ahmadi M., McBride A., Saxena P., and Steinmann P. (2024), “Finite element modelling
of incompressible hyperelastic materials: 2D/3D/plane-stress/plane-strain”, UK Associa-
tion for Computational Mechanics (UKACM) Conference, Durham, UK.



Chapter 2

Hyperelasticity and finite element
approximation

Continuum mechanics and FEM form a robust framework for simulating mechanical defor-
mations. This chapter details continuum mechanics formulations for hyperelastic bodies and
integrates variational principles with nonlinear FEM. It covers both classical single-field and
three-field mixed formulations. Readers are expected to have prior knowledge of linear algebra
and tensor analysis, along with familiarity with advanced calculus concepts. For detailed ex-
positions on the topic in continuum mechanics and FEM, consult standard references such as
Ogden (1997), Holzapfel (2000), Bonet and Wood (1997), and Wriggers (2008).

2.1 Mathematical notation

Consider vectors a and b, a 2nd-order tensor C, and a scalar α. Table 2.1 shows the inner
product and tensor product of the vectors in different notations. Here in this research, both
direct and index notations are adapted and switched based on convenience and significance.

Table 2.1: Different mathematical notations.

Notation Inner product Tensor product
Direct tensor α = a · b C = a⊗ b
Tensor index α = ai bi Cij = ai bj
Matrix α = aT b C = abT

In direct notation, scalars are represented by italic letters (e.g., α), vectors and 2nd-order
tensors by bold letters (e.g., a), and 4th-order tensors by blackboard letters (e.g., D). Einstein’s
summation convention is utilised for index notation, where summation over repeated indices is
implied, that is

n∑
i=1

ai bi = ai bi . (2.1.1)

Square brackets [□] are used for grouping algebraic expressions or matrix demonstration, round

9
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brackets (□) for function argument, and double vertical bars ||□|| represent the Euclidean norm
as ||a|| = [a · a]1/2. The dot accent □̇ indicates time derivatives: □̇ = ∂□

∂t
.

The double dot product between two tensors is denoted by the symbol (:), for example,
A : B = Aij Bij . The nabla operator ∇ is used for the gradient and divergence of a tensor,
represented as ∇A and ∇ ·A, respectively. The tensor products ⊗ and ⊙ for tensors A and
B are defined as [A⊗B]ijkl = AijBkl, and

[A⊙B]ijkl =
1

2
[AikBjl + AilBjk] . (2.1.2)

The above operator is useful for expressions such as

−∂A
−1

∂A
= A−1 ⊙A−1 =

1

2

[
A−1
ik A

−1
jl + A−1

il A
−1
jk

]
. (2.1.3)

With orthogonal basis vectors {e1, e2, e3}, the Kronecker delta δij = ei ·ej and the 2nd-order
identity tensor I are fundamental, with components Iij = δij . For A is a 2nd-order tensor, the
4th-order symmetric identity tensor is defined as I = Iijkl =

1
2
[δikδjl + δilδjk], where I : A = A .

Remark. Note the distinction I ̸= I ⊗ I = δijδkl . Different references may use varying
notations, but this thesis adheres to the described conventions. For example, while some may
show C = λ1⊗ 1+ 2µ I, here this expression is shown by C = λ I⊗ I+ 2µ I.

The symmetric part of a square matrix A is denoted by sym(A), calculated as

sym(A) =
1

2

[
A+AT

]
. (2.1.4)

The deviatoric operator D is defined as

D = I− 1

3
I⊗ I . (2.1.5)

Remarks:

(i) The notation used is not case-sensitive, permitting both lowercase and uppercase letters
to denote tensors of any order.

(ii) When a second or higher-order tensor is involved in a single contraction product, the dot
symbol (·) is omitted, as is common in the literature. For example, A ·B = C is written
as AB = C.

These mathematical notations and definitions are fundamental to the computational model
presented in this thesis, spanning the current chapter and the following two chapters.
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Figure 2.1: Illustration of a continuum body undergoing deformation, transitioning from its initial
state described by the Lagrangian system to a deformed state described by the Eulerian system.

2.2 Mechanics of a deformed continuum body

2.2.1 Kinematics

This section reviews kinematics, which describes the deformation of a continuum body, focusing
on geometric aspects without considering material properties or forces.

2.2.1.1 Deformation of a continuum body

A general body undergoing deformation from an initial (reference) state to a deformed (cur-
rent) state is considered, as illustrated in Figure 2.1. The motion can be described using the
Lagrangian (material) approach, based on the initial configuration, or the Eulerian (spatial)
approach, based on the current configuration. The Lagrangian description of the position of an
arbitrary point P in the initial configuration is denoted by X = XI EI ∈ ΩX with material basis
vectors EI . Upon a quasi-static deformation, the body occupies the spatial configuration Ωx,
transforming the arbitrary point to point p with position x = xi ei, with special basis vectors
ei . Hence,

X = XI EI = Ψ−1(x), (2.2.1a)

x = xi ei = Ψ(X). (2.2.1b)

The Lagrangian and Eulerian gradient of a tensor (□) are respectively represented by
∇X (□) = ∂(□)

∂XI
⊗ EI and ∇x (□) = ∂(□)

∂xi
⊗ ei . A comparable notation is applied to the diver-

gence operator. The displacement field in both descriptions U(X) = u(x), shown in Figure 2.1
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describes the movement from point P to p. The displacement relations are expressed as

u(x) = x−X(x), (2.2.2a)

U(X) = x(X)−X. (2.2.2b)

Since U and u represent the same values, this research will use u to denote the displacement
field, simplifying the notation. The context will clarify whether it refers to the displacement
field in spatial or material coordinates.

2.2.1.2 Deformation gradient

An infinitesimal vector in the reference body dX deforms to dx in the current body. This
transformation is expressed by

dx =
∂x

∂X
dX, (2.2.3)

where ∂x/∂X is defined as the deformation gradient, which can be represented as

F = ∇X x =
∂xi
∂XI

ei ⊗ EI . (2.2.4)

Using Equation (2.2.2), the above equation becomes

F = I+
∂u

∂X
= I+∇X u, (2.2.5)

where ∂u/∂X is the displacement gradient. Defining J as the determinant of deformation
gradient, J = det (F), for all materials it holds, J > 0, while for the incompressible materials,
J = 1.

2.2.1.3 Deformation of surface and volume

Infinitesimal volume element before deformation dV = dX1 · [dX2 × dX3] transforms to
dv = dx1 · [dx2 × dx3] as shown in Figure2.1. Using the definition of F, one obtains

dv = J dV . (2.2.6)

Infinitesimal areas on the boundaries of the body, with normal vector N for the reference body
and normal vector n for the current body, are expressed by

N dS = dX1 × dX2 , (2.2.7a)

n ds = dx1 × dx2 . (2.2.7b)

One can obtain
n ds = J F−T N dS , (2.2.8)
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which is known as Nanson’s formula (Truesdell, 1952).

2.2.1.4 Strain

Two commonly used strains are introduced here: Lagrangian and Eulerian.

Lagrangian strain. It uses the undeformed body as a reference for measurement. Writing

||dx||2 − ||dX||2 = dx · dx− dX · dX

= dX · FTFdX− dX · dX

= dX ·
[
FT F− I

]
dX, (2.2.9)

the term C = FT F is defined as the right Cauchy–Green deformation tensor. The Lagrangian
–also referred to as material or Green–Saint Venant– strain is defined as

E =
1

2
[C− I] . (2.2.10)

The above expression can be written in terms of displacement gradient as

E =
1

2

[
∂u

∂X
+

(
∂u

∂X

)T

+
∂u

∂X

(
∂u

∂X

)T
]
=

1

2

[
∇X u+ (∇X u)T +∇X u (∇X u)T

]
. (2.2.11)

In a infinitesimal deformations regime, the infinitesimal strain ε is defined by

ε =
1

2

[
∇Xu+ (∇X u)T

]
. (2.2.12)

Eulerian strain. It uses deformed geometry as a reference for measurement. Similarly to
Lagrangian, writing

||dx||2 − ||dX||2 = dx · dx− dX · dX

= dx · dx− dx · F−TF−1 dx

= dx ·
[
I−

[
FFT

]−1
]
dx, (2.2.13)

the term b = FFT is defined as the left Cauchy–Green deformation tensor. The Eulerian –also
referred to as spatial or Almansi– strain is defined as

e =
1

2

[
I− b−1

]
. (2.2.14)
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Figure 2.2: Inside a continuum body cut by a plane.

2.2.1.5 Polar decomposition

Given a non-singular deformation gradient F, there exists a unique orthogonal tensor Q and
unique positive-definite symmetric tensors U and v such that

F = QU = vQ , (2.2.15)

where Q represents a rigid-body rotation, and U and v denote the right and left stretch tensors,
respectively. The tensors U and v share the same eigenvalues (principal stretches) but possess
different eigenvectors (principal axes of deformation). Expressing the right Cauchy–Green
deformation tensor as C = FTF = UQTQU = U2, one finds

U2 = C⇒ U =
√
C . (2.2.16)

Similarly, one obtains v2 = b, and since det(C) = det(b) = J2, it follows that det(U) =

det(v) = J . Thus, U shares the same eigenvectors with C, and its eigenvalues are square roots
of those of C. The same relationship applies to v and b. The spectral decomposition of C and
b are given by

U2 = C =
3∑
i=1

λ2i Ni ⊗Ni , and v2 = b =
3∑
i=1

λ2i ni ⊗ ni . (2.2.17)

Here, λi denotes the principal stretches, which are the square roots of the eigenvalues of the
right and left Cauchy–Green deformation tensors.

2.2.2 Stress

By metaphorically dissecting the body to reveal internal interactions, Figure 2.2 portrays a
cross-section of the dissected body, showing its internal forces. In classical continuum mechan-
ics, torque ∆M is typically disregarded, while theories such as micropolar theory incorporate
it (Eringen and Eringen, 1999). The Cauchy traction vector at point p in the current geometry
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is expressed as

t(n) = lim
∆a→0

∆f

∆a
= σn, (2.2.18)

where σ is the Cauchy stress. Cauchy stress references both force and area to the current
geometry, thus termed the “true” stress.

Considering the same force ∆f , but with differential area ∆A and unit normal N in the
undeformed geometry,

T(N) = lim
∆A→0

∆f

∆A
= PN, (2.2.19)

where P is the Piola stress, corresponding to what is commonly called “engineering” stress. The
relationship between P and σ is given as

P = JσF−T . (2.2.20)

Unlike Cauchy stress, Piola stress P is not symmetric. Hence, the Piola–Kirchhoff stress S is
introduced as

S = F−1P = JF−1σF−T = ST or SIJ = F−1
Ii PiJ = JF−1

Ii σijF
−1
jJ = SJI , (2.2.21)

which is a symmetric tensor.
Remark. In many texts, the term “First Piola–Kirchhoff stress” is commonly used to

refer to the Piola stress, whereas the term “Second Piola–Kirchhoff stress” denotes the Piola–
Kirchhoff stress.

It can be shown that the Cauchy stress is related to the Piola–Kirchhoff by

σ = J−1FSFT . (2.2.22)

The use of the determinant in stress calculations, being dependent on deformation, is inconve-
nient. Hence, another stress measure called Kirchhoff stress is introduced as

τ = Jσ = FSFT . (2.2.23)

Push-forward and pull-back operators. These operators are mathematical transforma-
tions to transform measures from Lagrangian to Eulerian descriptions (forward) and vice-versa
(backwards). The push-forward operator, χ∗ (A), transforms a tensor A defined in the refer-
ence configuration to the current configuration. The pull-back operator, χ−1

∗ (A), maps tensors
from the current configuration back to the reference configuration.

2.2.3 Hyperelastic materials

Constitutive relations describe the material behaviour, bridging the gap between kinematics and
stresses. The deformation gradient F is the primary deformation measure used in finite strain
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theory. Several models describe the elastic behaviour of solids in this context. One significant
model is the Cauchy-elastic material, where the stress σ is a function of the deformation
gradient F alone, that is,

σ = G (F) . (2.2.24)

Hyperelastic or Green-elastic materials are conservative, ideally elastic materials, where the
stress-strain relationship derives from a strain energy density function ψ. The computational
modelling in this research primarily focuses on hyperelastic materials, assuming that the elas-
tomers exhibit hyperelastic behaviour.

2.2.3.1 Compressible and nearly incompressible hyperelastics

Stress is derived from
S =

∂ψ(E)

∂E
= 2

∂ψ(C)

∂C
. (2.2.25)

Referring to the relations between S, P and σ in Section 2.2.2, and also, relations between E,
F and C in Section 2.2.1.4, one can further derive

P =
∂ψ

∂F
= F

∂ψ

∂E
= 2F

∂ψ

∂C
, (2.2.26a)

S = F−1 ∂ψ

∂F
=
∂ψ

∂E
= 2

∂ψ

∂C
, (2.2.26b)

and
σ = J−1 ∂ψ

∂F
FT = J−1F

∂ψ

∂E
FT = 2 J−1F

∂ψ

∂C
FT . (2.2.27)

Decomposition of isochoric and volumetric parts. Separating volumetric deformation
from isochoric deformation enhances the numerical modelling efficiency of both compressible
and nearly incompressible materials. The multiplicative decomposition of the deformation
gradient is suggested as (Lubliner, 1985; Lee, 1969)

F = J1/3 F̂⇒ F̂ = J−1/3F . (2.2.28)

With det(F̂) ≡ 1, the volume of a body under pure F̂ deformation is preserved. Hence, the
isochoric part of the right and left Cauchy–Green deformation tensors are derived as

Ĉ = F̂T F̂ = J−2/3FT F = J−2/3C , (2.2.29a)

b̂ = F̂ F̂T = J−2/3FFT = J−2/3 b . (2.2.29b)

Upon decomposition of the deformation, strain energy function ψ for isotropic materials is
decomposed into volumetric and isochoric parts represented by J and Ĉ by

ψ = ψ(Ĉ, J) = ψiso(Ĉ) + ψvol (J) , (2.2.30)
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Figure 2.3: Variations of J with respect to different energy functions from Equations 2.2.32.

or based on J and b̂ as
ψ = ψ(b̂, J) = ψiso(b̂) + ψvol (J) . (2.2.31)

Denoting the first and the second Lamé parameters as λ and µ, the bulk modulus, κ = λ+2/3µ

is the sole material constant that appears in the volumetric part of the energy density function,
i.e., ψvol(J) = κG(J). The function G(J) must be strictly convex and fulfil the condition
G(1) = 0. Various formulations for G (J) have been proposed. Some examples are

G (J) = 1

2
[J − 1]2 , (2.2.32a)

G (J) = 1

4

[
J2 − 1− 2 ln J

]
, (2.2.32b)

G (J) = 1

2
[ln J ]2 , (2.2.32c)

G (J) = J ln J − J + 1. (2.2.32d)

These functional expressions are visualized in Figure 2.3, illustrating how each function ap-
proaches zero as J → 1, suggesting similar performance of functions for incompressibility. For
more discussion on these volumetric strain energy functions, interested readers are referred to
(Doll and Schweizerhof, 2000; Hartmann and Neff, 2003). The decomposition of the strain
energy function allows for the corresponding decomposition of stress tensors, as elaborated in
Appendix A.1.

Isotropic hyaperelastics. The constitutive relation must be independent of the coordinate
frame selected. Thus, the strain energy density is defined using the invariants of the strain
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tensors, given by

ψ = ψC (C) = ψIC (IC , IIC , IIIC) = ψIb (Ib, IIb, IIIb) = ψb (b) . (2.2.33)

Function ψ can also be written as a function of U or v, or their invariants, since C = U2 and
b = v2, as discussed in 2.2.1.5. The invariants are calculated as

IC = Ib = tr (C) = λ21 + λ22 + λ23 , (2.2.34a)

IIC = IIb =
1

2

[
[tr (C)]2 + tr (C2)

]
= λ21 λ

2
2 + λ22 λ

2
3 + λ23 λ

2
1 , (2.2.34b)

IIIC = IIIb = det (C) = λ21 λ
2
2 λ

2
3 = J2. (2.2.34c)

Applying the chain rule, and using

∂IC
∂C

= I,
∂IIC
∂C

= IC I−C,
∂IIIC
∂C

= IIIC C−1, (2.2.35)

yields

S = 2
∂ψ (C)

∂C
= 2

[[
∂ψ

∂IC
+ IC

∂ψ

∂IIC

]
I− ∂ψ

∂IIC
C+ IIIC

∂ψ

∂IIIC
C−1

]
. (2.2.36)

Furthermore, the Cauchy stress tensor is derived as

σ = 2 J−1

[
IIIb

∂ψ

∂IIIb
I+

[
∂ψ

∂Ib
+ Ib

∂ψ

∂IIb

]
b− ∂ψ

∂IIb
b2

]
(2.2.37a)

= 2 J−1

[[
IIb

∂ψ

∂IIb
+ IIIb

∂ψ

∂IIIb

]
I+

∂ψ

∂Ib
b− IIIb

∂ψ

∂IIb
b−1

]
. (2.2.37b)

The strain-energy function described by

ψ = ψiso(IĈ , IIĈ) + ψvol(J), (2.2.38)

can be useful for modelling compressible and nearly incompressible hyperelastic materials. The
modified invariants are calculated by

IĈ = Ib̂ = tr (Ĉ) = tr (b̂) , (2.2.39a)

IIĈ = IIb̂ =
1

2

[
[tr (Ĉ)]2 + tr (Ĉ2)

]
=

1

2

[
[tr (b̂)]2 + tr (b̂2)

]
, (2.2.39b)

IIIĈ = IIIb̂ = det (Ĉ) = det (b̂) = 1 . (2.2.39c)

It can be shown that
IĈ = J−2/3 IC , IIĈ = J−4/3 IIC . (2.2.40)
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2.2.3.2 Incompressible hyperelastics

Certain hyperelastic materials, preserve their volume during deformation, i.e., J = 1, making
them favourable in various applications. For these incompressible materials, the Piola stress
tensor can be expressed as

P =
∂ψ(F)

∂F
− pF−T , (2.2.41)

and the Piola–Kirchhoff, S as

S = 2
∂ψ(C)

∂C
− pC−1 , (2.2.42)

where p can be identified as hydrostatic pressure. Numerically, a constraint, J = 1, must be
imposed, which can lead to over stiffening of elements, which will be discussed in Section 2.4.

2.2.3.3 Hyperelastic models

Various hyperelastic models with different energy density functions are designed to characterize
the elastic behaviour of different materials. For isotropic hyperelastic materials, several energy
density functions can be expressed as functions of the invariants of C (Rivlin and Saunders,
1951):

ψ (IC , IIC , IIIC) =
∞∑

m+n=1

[
Amn [IC − 3]m [IIC − 3]n

]
+ g(IIIc). (2.2.43)

Although infinite energy functions with innumerable parameters can be derived from the above
equation, practical models are usually limited to a few parameters for convenience and ex-
perimental measurement. Among these, an overview of several popular models is provided
below.

neo-Hookean.
ψ (IC , IIIC) = A10 [IC − 3] + g(IIIC). (2.2.44)

To align with linear elastic behaviour in infinitesimal deformations, A10 = µ/2 .

Mooney–Rivlin.

ψ (IC , IIC) = A10 [IC − 3] + A01 [IIC − 3] + g(IIIC). (2.2.45)

To align with linear elasticity, the shear modulus is given by µ = 2 [A10 + A01], and setting
A01 = 0 reduces this model to the neo-Hookean form as a special case.

Yeoh.
ψ (IC) = A10 [IC − 3] + A20 [IC − 3]2 + A30 [IC − 3]3 . (2.2.46)

Here, to align with linear elasticity, the shear modulus is given by µ = 2A10, and the higher
order terms account for the nonlinear elasticity of the material.
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Ogden.

ψ (λ1, λ2, λ3) =
N∑
p=1

µp
αp

[
λ
αp

1 + λ
αp

2 + λ
αp

3 − 3
]
. (2.2.47)

Here, µ is adjusted to µ = 1
2

∑N
p=1 αpµp, for infinitesimal deformations compatibility. This

model is based on stretch invariants rather than the full set of invariants of C, distinguishing
it from other models.

Remark. In the case of incompressibility, the principal stretches are not independent, that
is, λ1λ2λ3 = 1. Thus, λαp

3 can be substituted with λ−αp

1 λ
−αp

2 in the Ogden model.
Modifications of the basic models improve computational efficiency for numerical modelling

by incorporating the modified invariants of Ĉ. For instance, the neo-Hookean model can be
modified as

ψ(IĈ , J) = A10

[
IĈ − 3

]
+ ψvol(J) , (2.2.48)

or the Mooney–Rivlin model as

ψ(IĈ , IIĈ , J) = A10

[
IĈ − 3

]
+ A01

[
IIĈ − 3

]
+ ψvol(J) . (2.2.49)

These modifications aid the finite element implementation of the decoupled free energy function.
This approach is followed in this research.

2.3 Variational formulation

Variational principles are used to derive the weak form of the governing equations, transforming
them into an integral form. This is essential for FEM, as it allows for the handling of complex
boundaries and geometries.

2.3.1 Strong form

Consider a boundary value problem where the body is subject to a traction T on the Neumann
boundary and a body force B in the reference configuration. The whole boundary ΓX is
decomposed into Dirichlet ΓuX and Neumann ΓtX parts such that ΓX = ΓuX∪ΓtX and ΓuX∩ΓtX = ∅ .
The corresponding boundaries in the current configuration are denoted as Γx,Γux, and Γtx. The
aim is to find a displacement that satisfies

Lagrangian description Eulerian description

Balance of the linear momentum: ∇X ·P+B = 0, in ΩX ; ∇x · σ + b = 0, in Ωx .
Essential boundary conditions: u = u, on ΓuX ; u = u, on Γux .
Natural boundary conditions: PN = T, on ΓtX ; σ n = t, on Γtx .

which is often called the strong form.



Chapter 2. Hyperelasticity and finite element approximation 21

2.3.2 Weak form

By taking a scalar product with an arbitrary vector-valued function η (that is η = 0 on Γux)
on both sides of the Eulerian equilibrium equation from Section 2.3.1 and integrating over the
domain, ∫

Ωx

η ·
[
∇x · σ (u) + b

]
dv = 0 . (2.3.1)

Application of divergence theorem yields∫
Ωx

η ·
[
∇x · σ + b

]
dv = −

∫
Ωx

∇xη : σ dv +
∫
Γu
x∪Γt

x

η · σ n da+
∫
Ωx

η · b dv

= −
∫
Ωx

∇xη : σ dv +
∫
Γt
x

η · t da+
∫
Ωx

η · b dv = 0. (2.3.2)

Since η is arbitrary, it can be viewed as the virtual displacement, denoted by δu; thus∫
Ωx

∇x δu : σ dv −
∫
Γt
x

δu · t da−
∫
Ωx

δu · b dv = 0. (2.3.3)

Similarly, for the Lagrangian description,∫
ΩX

∇X δu : P dV −
∫
Γt
X

δu ·T dA−
∫
ΩX

δu ·B dV = 0. (2.3.4)

These two last equations are known as the weak form of the partial differential equation in
mathematics. Note that both Eulerian and Lagrangian descriptions of the weak form are
equivalent.

Principle of minimum potential energy. The system will be in equilibrium when its
potential energy is minimal, aligning internal forces generated during deformation with stored
energy,

Π = Πint +Πext, (2.3.5)

ensuring δΠ = 0, where δ denotes the variation. Representing the set of unknowns as Q, one
can write

δΠ(Q; δQ) = δΠint (Q; δQ) + δΠext (δQ) = 0. (2.3.6)

Principle of virtual work. Applying a virtual displacement field δu results in an external
virtual work that causes virtual deformation, which is stored as virtual strain energy in the
system. Representing internal stored energy and external virtual work by δWint and δWext,
internal stored energy and external virtual work are equated as

δWint = δWext . (2.3.7)

Variational principles with only one field of the unknown is called single-field variational
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principles in which displacement vector u is the only unknown field. For the single-field varia-
tional principles, δWint and δWext for Eulerian description are expressed as

δWint (u; δu) =

∫
Ωx

∇x δu : σ dv , (2.3.8)

δWext (δu) =

∫
Γt
x

δu · t da+
∫
Ωx

δu · b dv . (2.3.9)

Remarks. The principles of virtual work and minimum potential energy are proved to be
equal for single-field variation. For instance, stating the stored strain energy as

Πint =

∫
ΩX

ψ (F) dV , (2.3.10)

and the external potential energy generated as

Πext = −
∫
Γt
X

u ·T dA−
∫
ΩX

u ·B dV , (2.3.11)

which is the negative value of the work done by the applied load, one can express

δΠint (u; δu) = δWint (u; δu) =

∫
ΩX

∇X δu : P dV , (2.3.12a)

δΠext (δu) = −δWext (δu) = −
∫
Γt
X

δu ·T dA−
∫
ΩX

δu ·B dV , (2.3.12b)

for Lagrangian description. In engineering contexts, the principle of virtual work and minimum
potential energy are synonymous with the weak form.

2.3.3 Different representations of the internal virtual work

The internal virtual work, denoted as L, is represented by

L := δΠint (u; δu) =

∫
Ωx

∇x δu : σ dv. (2.3.13)

The variation of Green–Lagrange strain tensor E is given by

δE =
1

2

[(
FT ∇Xδu

)T
+ FT ∇Xδu

]
= sym

(
FT ∇Xδu

)
. (2.3.14)

Similarly for Eulerian strain tensor e, one can derive δe = sym (∇x δu). Considering the
symmetry of σ, L can be expressed by

L =

∫
Ωx

∇x δu : σ dv =

∫
Ωx

δe : σ dv. (2.3.15)
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Recalling τ = J σ and dv = J dV , one obtains

L =

∫
Ωx

∇x δu :
[
J−1 τ

]
dv =

∫
ΩX

∇x δu : τ dV . (2.3.16)

Given that P is not symmetric, by using P = FS = SFT , the internal virtual work in the
Lagrangian description is expressed by

L =

∫
ΩX

∇X δu : P dV =

∫
ΩX

δE : S dV . (2.3.17)

Recalling E = 1/2 [C− I] results in

L =

∫
ΩX

δE : S dV =

∫
ΩX

1

2
δC : S dV . (2.3.18)

In summary, L across different formulations can be expressed as

L =

∫
ΩX

∇X δu : P dV =

∫
ΩX

δE : S dV =

∫
ΩX

∇x δu : τ dV︸ ︷︷ ︸
Total Lagrangian

=

∫
Ωx

∇x δu : σ dv =

∫
Ωx

δe : σ dv︸ ︷︷ ︸
UpdatedLagrangian

. (2.3.19)

2.3.3.1 Linearization of L

The L is linearized around a state of finite deformation assuming dead loads. Denoting the
linearized form of an expression by ∆, the directional derivative is used so that

∆L =
d
dh
L (u+ h∆u)

∣∣∣∣
h=0

. (2.3.20)

Starting with total Lagrangian formulation, L =
∫
ΩX

δE : S dV , one can express

∆L =
d
dh

[∫
ΩX

δE (u+ h∆u) : S (E (u+ h∆u)) dV
] ∣∣∣∣

h=0

. (2.3.21)

By interchanging differentiation, integration and using the product rule, one can get

∆L =

∫
ΩX

[δE : ∆S+ S : ∆δE] dV . (2.3.22)

Using chain rule, for any compressible hyperelastic model, S = ∂ψ
∂E

, one can write

∆S =
∂S

∂E
: ∆E =

∂2ψ

∂E ∂E
: ∆E . (2.3.23)
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Defining incremental constitutive tensor as C = ∂2ψ
∂E ∂E

, one can write

∆S = C : ∆E , (2.3.24)

which is analogous to σ = C : ε in infinitesimal deformations. Therefore, Equation (2.3.22)
becomes

∆L =

∫
ΩX

[δE : C : ∆E+ S : ∆δE] dV . (2.3.25)

Using ∆E = sym
(
FT [∇X ∆u]

)
and ∆δE = sym

(
[∇X δu]

T ∇X ∆u
)
, and also the fact that S

is symmetric and C has minor symmetry, one can write

∆L =

∫
ΩX

[
FT [∇X δu] : C : FT [∇X ∆u] + [∇X δu : ∇X ∆u] S

]
dV . (2.3.26)

Using [∇x δu]F = ∇X δu and c = J−1 χ∗ (C) in above, for L =
∫
ΩX

∇xδu : τ dV , yields

∆L =

∫
ΩX

[∇x δu : J c : ∇x∆u+ [∇x δu : ∇x∆u] τ ] dV . (2.3.27)

Furthermore, one can simply derive the linearised form of L =
∫
Ωx
δe : σ dv as

∆L =

∫
Ωx

[∇x δu : c : ∇x∆u+ [∇x δu : ∇x∆u]σ] dv. (2.3.28)

Three different forms of linearization of L, stated by equations (2.3.26), (2.3.27) and (2.3.28)
are derived, that each can be used in FEM.

Remark. Eulerian description of the elasticity tensor is related to its Lagrangian form by

c = J−1 χ∗ (C) , cijkl = J−1 FiI FjJ FkK FlLCIJKL . (2.3.29)

Decomposition of the incremental constitutive tensor into volumetric and isochoric contri-
butions is also advantageous for numerical implementations. Refer to Appendix A.2 for details.

2.4 Finite element approximation

This section presents the discretisation of the variational formulation derived in the previous
section using the FEM. The presentation covers both the classical single-field and the three-field
mixed FE formulations. The three-field mixed formulation is especially effective for addressing
challenges related to locking associated with incompressibility (Hu, 1984; Simo and Hughes,
1986; Betsch et al., 1996).
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2.4.1 Infinitesimal deformations

Although the focus of this thesis is not on infinitesimal deformations, a brief overview is provided
for completeness, including the implementation of the corresponding FE code.

In the infinitesimal deformations regime, there is no distinction between the initial and
current configuration. Using the linearity of the gradient operator

∇ (δu) = δ (∇u) = δε , (2.4.1)

the weak form for infinitesimal deformation theory is∫
Ω

δε : σ dV =

∫
Ω

δu · b dV +

∫
Γt
X

δu · t dA . (2.4.2)

The constitutive equation, derived from the strain energy function for infinitesimal deforma-
tions, is

ψ (ε) =
1

2
ε : C : ε⇒ σ =

∂ψ

∂ε
= C : ε , (2.4.3)

with the strain-displacement relationship ε = 1
2
[∇u + (∇u)T ]. Hence, the weak form can be

expressed as∫
Ω

δε : C : ε dV −
∫
Ω

δu · b dV −
∫
Γt
X

δu · t dA = 0, ∀δu with δu (ΓuX) = 0 . (2.4.4)

Since Cijkl = Cijlk has minor symmetry, one can write C : ε = C : ∇u.
Defining the nodal variables associated with the various components of the displacement

field as uI , and introducing global vector-valued displacement shape functions NI,u, the ap-
proximations of the displacement and the associated test function using a Bubnov–Galerkin
approach follow as

u =

ndof∑
I=1

NI,u uI , δu =

ndof∑
I=1

NI,u δuI , (2.4.5)

where ndof denotes the global number of degrees of freedom. Using the arbitrariness of the
test functions, the tangent stiffness matrix K, and the right-hand side vector R, that form the
linear system of equations Ku = R, are obtained respectively as

KIJ =

∫
Ω

∇NI,u : C : ∇NJ,u dV, (2.4.6a)

RI =

∫
Ω

NI,u · b dV +

∫
Γt
X

NI,u · t dA. (2.4.6b)

For isotropic materials, the stiffness tensor C can be expressed in terms of the Lamé param-
eters as

C = λ I⊗ I+ 2µ I. (2.4.7)
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2.4.2 Finite deformations

In finite deformations, either the total Lagrangian approach, integrating over the reference
volume V , or the updated Lagrangian approach, integrating over the current volume v, are
utilised. In the following, the single-field formulation uses Equation (2.3.26), and the three-
field formulation uses Equation (2.3.27) as the basis for the linearization of the internal virtual
work L.

2.4.2.1 Single-field formulation

In this classical approach, the displacement u is the sole primary variable. Consider a spatial
discretisation of the domain into non-overlapping elements. The nodal variables associated
with the displacement are interpolated using displacement global vector-valued shape functions
NI,u . The fields across the domain are approximated as

u =

ndof∑
I=1

NI,u uI , δu =

ndof∑
I=1

NI,u δuI , ∆u =

ndof∑
I=1

NI,u∆uI , (2.4.8)

where ndof is the number of global degrees of freedom.
Approximating the function δΠ using a first-order Taylor expansion gives

δΠ
(
ut+1; δu

)
≈ δΠ

(
ut; δu

)
+∆δΠ

(
ut; δu,∆u

)
= 0 , (2.4.9)

where ut+1 = ut +∆u where the superscript t denotes the load step number. This equation is
solved iteratively within each load step using a Newton–Raphson scheme. The second term is
approximated by Equation (2.3.26), that is

∆ δΠ(u; δu,∆u) =

∫
ΩX

[
FT [∇X δu] : C : FT [∇X ∆u] + [∇Xδu : ∇X ∆u]S

]
dV . (2.4.10)

Using the arbitrariness of the test functions, the tangent stiffness matrix K, and the right-
hand side vector R, that form the linear system of equations K∆u = R, are obtained respec-
tively as

KIJ =

∫
ΩX

FT
[
∇X NI,u

]
: C : FT

[
∇X NJ,u

]
dV +

∫
ΩX

[
∇X NI,u : ∇X NJ,u

]
S dV , (2.4.11a)

RI =−
∫
ΩX

S : ∇X NI,u dV +

∫
ΩX

NI,u ·B dV +

∫
Γt
X

NI,u ·T dA . (2.4.11b)

2.4.2.2 Three-field mixed-formulation

For hyperelastic materials that almost preserve their volume during deformation, single-field
finite element formulations often suffer from volumetric locking, leading to sub-optimal per-
formance, especially in highly distorted elements (Sussman and Bathe, 1987; Wriggers, 2008).



Chapter 2. Hyperelasticity and finite element approximation 27

To address locking-related issues, various solutions have been developed, including the F-bar
method, enhanced assumed strain (EAS), selective reduced integration (SRI), mixed formula-
tions and stabilization techniques (Franca et al., 1988; Maniatty et al., 2002; Reese, 2002; Sze
et al., 2004; Ye et al., 2020). Among these, mixed formulations that incorporate additional
primary fields such as stress or strain fields, alongside displacement, have gained widespread
adoption (Simo and Armero, 1992; Weiss et al., 1996; Wriggers, 2008; Shojaei and Yavari, 2018).

Mixed formulations. These approaches improve the numerical stability of simulations by
addressing incompressibility more effectively than single-field formulations. The two-field mixed
formulation typically uses displacement and pressure fields as primary variables. A known issue
with constant pressure interpolation in two-field variational principles is the resulting pressure
oscillation. To avoid this, the three-field formulations incorporating an additional variable are
introduced (Simo and Rifai, 1990; Farhat et al., 1995; Hughes, 2012).

Three-field formulations. The three-field formulation introduces the independent pressure
p̃ and strain variable J̃ in addition to the displacement u, expanding the set of unknowns to
Q = {u, p̃, J̃}. Hence, the constraint J̃ → J (u) has to be fulfilled and the independent pressure
follows as p̃→ ∂ψvol(J̃)/∂J̃ . The Hu–Washizu variational principle modifies the strain energy
function as (Washizu, 1968)

ψ = ψiso(Ĉ (u)) + ψvol(J̃) + p̃
[
J(u)− J̃

]
. (2.4.12)

The total potential energy for the three-field method can be expressed by

Π(Q) = Πint (Q) + Πext (Q) , (2.4.13)

where

Πint (Q) =

∫
ΩX

ψ dV =

∫
ΩX

[
ψiso + ψvol + p̃

[
J − J̃

]]
dV , (2.4.14a)

Πext (Q) = −
∫
ΩX

u ·B dV −
∫
Γt
X

u ·T dA . (2.4.14b)

Using a total Lagrangian formulation, the variational formulation can be written as

δΠ(Q; δQ) = DδQ Π(Q)⇒


DδuΠ(Q) = 0 ,

Dδp̃Π(Q) = 0 ,

DδJ̃ Π(Q) = 0 ,

(2.4.15)
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where

DδuΠ(Q) =

∫
ΩX

∇x δu : τ dV −
∫
ΩX

δu ·B dV −
∫
Γt
X

δu ·T dA , (2.4.16a)

Dδp̃Π(Q) =

∫
ΩX

δp̃
[
J(u)− J̃

]
dV , (2.4.16b)

DδJ̃Π(Q) =

∫
ΩX

δJ̃

[
dψvol(J̃)

dJ̃
− p̃

]
dV . (2.4.16c)

Using the linearized form of (2.3.27), leads to

∆δΠ(Q; δQ,∆Q)⇒


D∆u δΠ(Q; δQ) =

∫
ΩX

[∇x δu : Jc +∇x δu · τ + δp̃JI : ∇x∆u] dV ,

D∆p̃ δΠ(Q; δQ) =
∫
ΩX

[
∇x δu : JI− δJ̃∆p̃

]
dV ,

D∆J̃ δΠ(Q; δQ) =
∫
ΩX

[
−δp̃+ δJ̃

d2ψvol

dJ̃ dJ̃

]
∆J̃ dV .

(2.4.17)
One can further specialise the individual contributions as follows:

∆δΠ(Q; δQ,∆Q)⇒



D∆uδΠ(Q; δQ)⇒


D∆uδΠ(Q; ∆u) = D2

∆u,∆uΠ(Q),

D∆uδΠ(Q; δp̃) = D2
∆u,δp̃Π(Q),

D∆uδΠ(Q; δJ) = D2
∆u,δJ Π(Q),

D∆p̃δΠ(Q; δQ)⇒


D∆p̃δΠ(Q; ∆u) = D2

∆p̃,∆uΠ(Q),

D∆p̃δΠ(Q; δp̃) = D2
∆p̃,δp̃Π(Q),

D∆p̃δΠ(Q; δJ) = D2
∆p̃,δJ Π(Q),

D∆JδΠ(Q; δQ)⇒


D∆JδΠ(Q; ∆u) = D2

∆J,∆uΠ(Q),

D∆JδΠ(Q; δp̃) = D2
∆J,δp̃Π(Q),

D∆JδΠ(Q; δJ) = D2
∆J,δJ Π(Q).

(2.4.18)

Approximating a function δΠ using the first-order Taylor expansion gives

δΠ
(
Qt+1; δQ

)
≈ δΠ

(
Qt; δQ

)
+∆ δΠ

(
Qt; δQ,∆Q

)
= 0 , (2.4.19)

or

DδuΠ
(
Qt+1

)
≈ DδuΠ

(
Qt

)
+D∆u δΠ

(
Qt; δQ

)
= 0 , (2.4.20a)

Dδp̃Π
(
Qt+1

)
≈ Dδp̃Π

(
Qt

)
+D∆p̃ δΠ

(
Qt; δQ

)
= 0 , (2.4.20b)

DδJ̃ Π
(
Qt+1

)
≈ DδJ̃ Π

(
Qt

)
+D∆J̃ δΠ

(
Qt; δQ

)
= 0 . (2.4.20c)

and setting Qt+1 = Qt + ∆Q, one can solve the system of equations iteratively employing a
Newton–Raphson scheme. By taking nodal variables at global node I as QI = {uI , p̃I , J̃ I} and
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utilising the element shape functions running over the degree of freedoms, the various fields are
approximated. Hence,

u =
∑
I∈Iu

NI,u uI , p̃ =
∑
I∈Ip̃

N I,p̃ p̃I , J̃ =
∑
I∈I

J̃

N I,J̃ J̃ I . (2.4.21)

The sets Iu, Ip̃ and IJ̃ contain the global degrees of freedom for the corresponding variables.
The components of δQ and ∆Q can also be approximated by

δu =
∑
I∈Iu

NI,u δuI , δp̃ =
∑
I∈Ip̃

N I,p̃ δp̃I , δĴ =
∑
I∈I

J̃

N I,J̃ δJ̃
I
,

∆u =
∑
I∈Iu

NI,u∆uI , ∆p̃ =
∑
I∈Ip̃

N I,p̃∆p̃I , ∆J̃ =
∑
I∈I

J̃

N I,Ĵ ∆J̃ I . (2.4.22)

Then the right-hand side vector R =
{
Ru,Rp̃,RJ̃

}
follows as

RI
u = −

∫
ΩX

τ : ∇xN
I,u dV +

∫
ΩX

NI,u ·B dV +

∫
Γt
X

NI,u ·T dA, ∀I ∈ Iu , (2.4.23a)

RI
p̃ = −

∫
ΩX

N I,p̃
[
J − J̃

]
dV , ∀I ∈ Ip̃ , (2.4.23b)

RI
J̃
= −

∫
ΩX

N I,J̃

[
dψvol(J̃)

dJ̃
− p̃

]
dV, ∀I ∈ IJ̃ . (2.4.23c)

This forms the linear system of equations K∆u = R, where the components of tangent stiffness
matrix associated with the degrees of freedom I, J ∈ {Iu, Ip̃, IJ̃} are extracted as

KIJ
uu =

∫
ΩX

[
∇xN

I,u : Jc : ∇xN
J,u +

[
∇xN

I,u : ∇xN
J,u

]
τ
]

dV , ∀I ∈ Iu and ∀J ∈ Iu ,

KIJ
up̃ =

∫
ΩX

∇xN
I,u : J INJ,p̃ dV, ∀I ∈ Iu and ∀J ∈ Ip̃ ,

KIJ
p̃u =

∫
ΩX

N I,p̃ J I : ∇xN
J,u
k dV , ∀I ∈ Ip̃ and∀J ∈ Iu ,

KIJ
p̃J̃

=

∫
ΩX

−N I,p̃NJ,Ĵ dV, ∀I ∈ Ip̃ and ∀J ∈ IJ̃ ,

KIJ
J̃p̃

=

∫
ΩX

−N I,ĴNJ,p̃ dV, ∀I ∈ IJ̃ and ∀J ∈ Ip̃ ,

KIJ
J̃J̃

=

∫
ΩX

N I,Ĵ

[
d2ψvol

dJ̃ dJ̃

]
NJ,Ĵ dV, ∀I ∈ IJ̃ and∀J ∈ IJ̃ ,

(2.4.24)
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while, KIJ
uJ̃

, KIJ
p̃p̃ and KIJ

p̃J̃
are equal to zero. These matrices form the tangent matrix as

K =

Kuu Kup̃ KuJ̃

Kp̃u Kp̃p̃ Kp̃J̃

KJ̃u KJ̃ p̃ KJ̃ J̃

 =

Kuu Kup̃ 0

Kp̃u 0 Kp̃J̃

0 KJ̃ p̃ KJ̃ J̃

 . (2.4.25)



Chapter 3

Finite element implementation and
verification

This chapter implements the mathematical formulations from the previous chapter into FE
codes across 3D, flatland, and planar models, focusing on the critical but often-overlooked plane
stress approximation. The reliability of the FE framework is confirmed through benchmark-
ing against established literature problems and further examined with various heterogeneous
numerical examples. The significance of the plane stress model for simulating two-dimensional
fibre-reinforced composites sets the stage for the next chapter.

3.1 Introduction

FE analysis of materials can be conducted using various 2D and 3D configurations. The pla-
nar approximations are beneficial for certain scenarios in engineering, particularly, plane stress
becomes crucial where the structure is thin, such as in membranes, thin films and other surface-
dominated structures such as two-dimensional composites. However, accurately modelling
compressible and nearly incompressible hyperelastic materials under plane stress conditions
is challenging and not well-established.

Research on FE modelling of nonlinear elasticity primarily focuses on 3D, plane strain,
and flatland approaches (Shojaei and Yavari, 2019; Angoshtari et al., 2017; Auricchio et al.,
2013; Brink and Stein, 1996; Chavan et al., 2007). Inspired by the novel by Abbott (1884),
the term “flatland” here refers to truly two-dimensional elasticity formulations. In the flatland
approach, all kinetic and kinematics quantities (stress and strain) are completely restricted
to two dimensions. The flatland approach is favoured for its computational efficiency and
simplicity. For instance, Auricchio et al. (2013) investigated different FEM formulations for
addressing finite deformations elastic problems across both nearly incompressible and fully
incompressible regimes. This analysis was conducted using 2D model problems characterized
by a simple neo-Hookean constitutive law. Angoshtari et al. (2017) introduced a novel class of
mixed FEM for flatland, leveraging the Hu–Washizu-type mixed formulation with independent

31
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unknowns, including displacement, displacement gradient, and Piola stress tensor. Viebahn
et al. (2018) introduced a novel mixed FEM for elasticity, validated numerically in both two
and three dimensions. Their proposed method, based on the Hellinger–Reissner formulation,
offered advantages such as simplicity in implementation, sparse system matrices, and efficiency
in automatic mesh generation, particularly with triangular/tetrahedral structures.

In contrast, while plane stress FE analysis is well-established in linear elasticity, research
on its application to nonlinear elasticity remains limited. Modelling finite deformations of
hyperelastic solids under plane stress conditions poses unique challenges. For fully incompress-
ible materials, out-of-plane deformation can be characterised entirely by in-plane components,
which simplifies the modelling process. This is in contrast to the case of compressible and
nearly incompressible materials, which introduces additional complexities. Nearly incompress-
ible materials typically employ a decoupled model that separates the strain energy function into
volumetric and isochoric parts (Holzapfel, 2002). In this context, the neo-Hookean model relies
on the first modified invariant, IC̃ , to account for the deformation split. While this approach
improves the accuracy of modelling nearly incompressible behaviour, its implementation under
plane stress condition remains unexplored in the literature due to its complexity. This study
addresses this gap, highlighting the need for a more intricate mathematical formulation. In
the case of compressible materials, the energy density function does not require decomposition,
allowing the use of a simpler neo-Hookean model based solely on the first invariant, IC , of the
total right Cauchy–Green tensor C. This formulation streamlines mathematical derivation for
plane stress as observed in the work of Pascon (2019).

The complexity of plane stress modelling increases further when dealing with materials
reinforced with fillers. Such reinforcements significantly enhance mechanical properties, but in-
troduce complex interactions and heterogeneous behaviour (Merodio and Ogden, 2005; Miehe,
2003; Saxena et al., 2015). Betsch et al. (1996) introduced a nonlinear finite shell element formu-
lation capable of accommodating large elastic deformations based on the three-field variational
principle. They approximated the plane stress response for vanishing thickness. Steinmann
et al. (1997) presented a simple efficient approach to apply arbitrary algorithmic constitutive
frameworks without modifications to problems under the plane stress condition. For structural
components such as thin shells, the plane stress assumption is frequently made. For example,
Liu et al. (2024) investigated the inflation and finite deformations of hyperelastic thin shells,
simplifying the three-dimensional constitutive equations to two dimensions using the plane
stress condition coupled with an incompressibility constraint. Interest in plane stress modelling
within nonlinear mechanics has experienced an uptick in recent years, albeit not to a significant
extent. In a notable work, Pascon (2019) presented an FE formulation for solving hyperelas-
tic material problems under plane stress conditions using isoparametric triangular membrane
elements. Their work involved solving nonlinear equations using an iterative algorithm to deter-
mine the out-of-plane normal strain component. Their contribution has set a sturdy foundation
for advancing research on the plane stress condition. A recent mathematical analysis of the
plane stress problem for incompressible hyperelasticity was conducted by Horgan and Murphy
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(2024) based on two formulations. The first involves prescribing a Cauchy stress field and
investigating the deducible information on the stretch tensor and the deformation. The sec-
ond involves prescribing a plane stress state using the Piola-Kirchhoff stress. Their study was
conducted for a generic incompressible isotropic hyperelastic material, with the strain-energy
density defined using two of the classical principal invariants. Nevertheless, these studies are
confined to specific approaches and element types.

To address the complexity and limitations of existing studies, this chapter introduces a gen-
eral framework for nonlinear FE analysis of compressible and nearly incompressible hyperelastic
materials under plane stress approximation. Various two-dimensional modelling approaches are
discussed, including flatland, plane strain, and plane stress models. As outlined in the previous
chapter, most hyperelastic materials preserve volume during deformation, causing volumetric
locking in FE simulations. Robust elements that perform well in bending-dominated scenarios
and accurately handle incompressibility are essential. These elements must also resist mesh
distortions common in finite deformations (Wriggers and Hueck, 1996). For non-plane stress
models, the three-field mixed formulation is adopted to mitigate volumetric locking. In contrast,
modelling under the plane stress condition offers another advantage: it can handle incompress-
ibility effectively within the classic single-field formulation by allowing volume change within
the plane. The development of FE codes incorporating novel numerical features to enhance
computational efficiency and accuracy is presented. Key advancements include adaptive mesh
refinement, and the implementation of message passing interface, which enables parallel process-
ing, significantly reducing computation time by distributing tasks across multiple processors.
These innovations are critical for handling the complex simulations required for analysing fibre-
reinforced composites and elastomeric materials under finite deformations. These features are
important for efficiently modelling RVEs, given their computationally expensive nature, due
to the extensive number of elements involved. These FE codes are developed with a focus on
accessibility and transparency, and as such, they are made open source. The FE models are
tested and verified by analysing extreme nonlinear problems and their effectiveness is confirmed
through benchmarking against established problems in the literature. Comparing various di-
mensional configurations through numerical examples, including cases involving reinforced stiff
particles and fibres, further demonstrates their performance for both compressible and nearly
incompressible materials.

The necessity of the plane stress model is underscored by its suitability for simulating fibre-
reinforced composites in two dimensions. With insights gained in this chapter, the subsequent
analysis of elastomeric composites is set for a detailed discussion in the following chapter.

3.2 Dimensional setting

This section explores the 2D and 3D configurations used in FE analysis. Selecting the appro-
priate dimensionality for simulations is crucial and depends on specific engineering needs and
the nature of the physical phenomena.
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3.2.1 Three-dimensional modelling

The most general case in FEM is 3D, which provides detailed representations of materials,
enabling precise simulations. The developed FE formulations readily adapt to existing FE
codes, facilitating straightforward implementations without additional modifications.

3.2.2 Two-dimensional modelling

In FE analysis for nonlinear elasticity, transitioning from 3D to simplified 2D representation
brings significant benefits, such as simplified geometry and decreased computational expenses.
However, the approximation error associated with this dimension reduction must be appropri-
ately accounted for. Here, the domain is considered in R2, with three deformation assumptions
applied: flatland, plane strain, and plane stress.

Flatland. The first and simplest method is the strict 2D assumption, where the real-world
complexity is condensed into a 2D representation by assuming the existence of only two dimen-
sions. One can adapt three-dimensional formulations to two dimensions, by simply reducing
the dimensions of the mathematical model. For example, the deformation gradient tensor is
simplified, where its components are given as

[F] =

[
F11 F12

F21 F22

]
, F ∈ R2 ⊗ R2. (3.2.1)

Henceforth, the overline indicates that the tensor is in R2⊗R2. The determinant of the flatland
deformation gradient is defined by J = det (F). Although this simplification may not capture
all the complexities of real-world phenomena, it is widely used in literature for its simplicity
and computational efficiency. Here, a two-dimensional neo-Hookean model for hyperelastic
modelling is given by

ψ =
µ

2

[
I
Ĉ
− 2

]
+ κG( J ) . (3.2.2)

Planar assumptions. Geometry is envisioned as having two dimensions within a plane, with
an additional out-of-plane dimension. This framework includes two main settings: plane strain
and plane stress. In plane stress setting, the out-of-plane stress is assumed to be negligible
and suitable for thin plates. Conversely, plane strain is applicable to significantly thicker plates
or those confined between rigid boundaries, assuming minimal out-of-plane strain. Although
the geometry for planar assumptions in FE analysis is 2D, these problems can be considered
quasi-3D due to the plate thickness. The planar modelling simplifies the deformation gradient
tensor, F, into

[F] =

F11 F12 0

F21 F22 0

0 0 F33

 , (3.2.3)
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which consequently simplifies the right Cauchy–Green deformation tensor as

[C] =

C11 C12 0

C12 C22 0

0 0 C33

 =

 F 2
11 + F 2

21 F11F12 + F21F22 0

F11F12 + F21F22 F 2
12 + F 2

22 0

0 0 F 2
33

 . (3.2.4)

This yields J = det(F) = F33 [F11 F22 − F12 F21]. The out-of-plane component F33 is unknown
and needs to be determined based on the underlying assumptions. The next two sections discuss
this matter.

3.2.3 Plane strain

For a plane strain case in which the deformation along the X3 coordinate is constrained, the
component F33 in (3.2.3) is given as C33 = F 2

33 = 1. Consequently, the tensor E is given in
matrix form by

[E] =

E11 E12 0

E21 E22 0

0 0 0

 . (3.2.5)

This formulation can be easily integrated into the FE code for 3D analysis, with subsequent
reduction to 2D for final computations.

3.2.4 Plane stress

Unlike the plane strain assumption, evaluating the value of F33 for the plane stress setting is
not trivial. To calculate C33 = F 2

33, one must apply the plane stress condition, which sets the
out-of-plane stress component, S33, to zero.

For ease of mathematical calculations, the right Cauchy–Green tensor C ∈ R3 ⊗ R3 is
decomposed into in-plane and out-of-plane components as

C = C∥ +C⊥, (3.2.6)

where these components are defined by

[C∥] =

[
C 0

0 0

]
, [C⊥] =

[
0 0

0 C33

]
, C,0 ∈ R2 ⊗ R2, C33 ∈ R . (3.2.7)

This decomposition separates the tensor into the reduced tensor C and the scalar C33. A similar
decomposition of S ∈ R3 ⊗ R3, gives

S = S∥ + S⊥, (3.2.8)

where

[S∥] =

[
S 0

0 0

]
, [S⊥] =

[
0 0

0 S33

]
, S ∈ R2 ⊗ R2, S33 ∈ R . (3.2.9)
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The value of C33 as a function of C needs to be calculated at every quadrature point within
each finite element. To do so, the nonlinear equation S33 = 0 is solved using a Newton–Raphson
scheme such that

S33

(
C, C33

)∣∣
C
+
∂S33

(
C, C33

)
∂C33

∣∣∣∣
C

dC33 = 0, (3.2.10)

which iteratively updates the solution as

C33 ← C33 + dC33, (3.2.11)

until convergence is achieved, resulting in the solution Ć33(C).
The next step is to update the incremental constitutive tensor to account for the plane

stress approximation. The in-plane tensor C ∈ R2 ⊗ R2 ⊗ R2 ⊗ R2, is given by

C = 2
∂S

∂C
= 2

[
∂S

∂C

∣∣∣∣
Ć33

+
∂S

∂Ć33

∣∣∣∣
C

⊗ ∂Ć33

∂C

]
. (3.2.12)

To explicitly calculate the expressions in (3.2.12) one needs to know the dependence of the
Piola–Kirchhoff stress tensor on the right Cauchy–Green deformation tensor.

Neo-Hookean model (decoupled). The expression for S is obtained from Equation (A.1.1),
which naturally depends on the choice of the strain energy density function. In the subsequent,
the following neo-Hookean strain energy density function is used for the sake of demonstration:

ψ = ψiso(IĈ) + ψvol(J) =
µ

2

[
IĈ − 3

]
+ κG(J) . (3.2.13)

The expression for S reads

S = 2
∂ψ (C)

∂C
= 2

[[µ
2
J−2/3

]
I+ J2

[
κ

[
∂ G
∂J2

]
− µ

6
IC J

−8/3

]
C−1

]
. (3.2.14)

Choosing, G = [J2 − 1− 2 ln J ] /4 , one can further specialize the expression as

S(C) = µJ−2/3 I+
[κ
2

[
J2 − 1

]
− µ

3
IC J

−2/3
]

︸ ︷︷ ︸
γ=γ(C)

C−1. (3.2.15)

Based on the decomposition in Equation (3.2.6), one obtains

S(C, C33) = µJ−2/3(C, C33) I+ γ(C, C33) C
−1(C, C33). (3.2.16)

Given that [C−1]33 = 1/C33, an application of the plane stress assumption S33 = 0 results in

S33(C, Ć33) = µJ−2/3(C, Ć33) + γ(C, Ć33)
1

Ć33

= 0, (3.2.17)
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so that by substituting γ = −µ Ć33 J
−2/3 into (3.2.15), an expression for the Piola–Kirchhoff

stress tensor specialised to plane stress is derived as

S(C, Ć33) = µJ−2/3
[
I− Ć33C

−1
]
. (3.2.18)

The in-plane stress tensor S follows as

S(C, Ć33) = µJ−2/3
[
I− Ć33C

−1
]
. (3.2.19)

Using the expression for S in Equation (3.2.19), the first two expressions in Equation (3.2.12)
are calculated as

∂S

∂C

∣∣∣∣
Ć33

= Ć33 µJ
−2/3C

−1 ⊙C
−1 − 2

3
µJ−5/3

[
I− Ć33C

−1
]
⊗ ∂J

∂C
, (3.2.20a)

∂S

∂Ć33

∣∣∣∣
C

= −µJ−2/3C
−1 − 2

3
µJ−5/3

[
I− Ć33C

−1
] ∂J

∂Ć33

, (3.2.20b)

where using J2 = Ć33 det(C) results in

∂J

∂C
=

1

2
J−1 Ć33C

−1 det(C), and
∂J

∂Ć33

=
1

2
J−1 det(C) . (3.2.21)

The third expression in Equation (3.2.12), ∂Ć33/∂C, can be calculated by ensuring that
S33(C, Ć33) remains zero for all possible displacements under consideration. Hence

dS33

dC
= µ

dJ−2/3

dC
+ Ć−1

33

d γ
dC

+ γ
dĆ−1

33

dC
= 0 (3.2.22a)

= µ

[
∂J−2/3

∂C

∣∣∣∣
Ć33

+
∂J−2/3

∂Ć33

∣∣∣∣
C

∂Ć33

∂C

]
+ Ć−1

33

[
∂ γ

∂C

∣∣∣∣
Ć33

+
∂γ

∂Ć33

∣∣∣∣
C

∂Ć33

∂C

]
+ γ

∂Ć−1
33

∂C
= 0

(3.2.22b)

= µ
∂J−2/3

∂C

∣∣∣∣
Ć33

+ Ć−1
33

∂ γ

∂C

∣∣∣∣
Ć33︸ ︷︷ ︸

β

+

[
µ
∂J−2/3

∂Ć33

∣∣∣∣
C

+ Ć−1
33

∂γ

∂Ć33

∣∣∣∣
C

− γ Ć−2
33

]
︸ ︷︷ ︸

∂S33

∣∣
C

∂Ć33

∂Ć33

∂C
= 0

(3.2.22c)

⇒ ∂Ć33

∂C
= −β

[
∂S33

∂Ć33

∣∣∣∣
C

]−1

. (3.2.22d)



Chapter 3. Finite element implementation and verification 38

where for term β,

∂J−2/3

∂C

∣∣∣∣
Ć33

=
−2
3
J−5/3 C

−1 det(C) (3.2.23a)

∂ γ

∂C

∣∣∣∣
Ć33

=
κ

2
Ć33C

−1 det(C)− µ

3

[
J−2/3 I+ IC

∂J−2/3

∂C

]
(3.2.23b)

and
∂γ

∂Ć33

=
κ

2
det(C)− µ

3

[
IC

∂J−2/3

∂Ć33

+ J−2/3

]
. (3.2.24)

By evaluating Ć33 by solving the nonlinear Equation (3.2.17) using a Newton–Raphson
approach and updating the Piola–Kirchhoff stress and incremental constitutive tensors from
equations (3.2.19) and (3.2.12), a robust approach is established to implement the plane stress
condition for the compressible and nearly incompressible case in the FE scheme. The presented
approach is general and can be easily extended to accommodate other forms of energy density
functions.

Remark. Differentiation with respect to Equation (3.2.16) yields a 4th-order incremental
elasticity tensor C ∈ R3 ⊗ R3 ⊗ R3 ⊗ R3 for plane stress, that exhibits slow convergence for
incompressible materials, deviating from the expected quadratic rate. Although this method
has been employed in some studies in the literature, the observed inconsistency suggests a
potential methodological flaw. For further details, please refer to Appendix B.

Alternative neo-Hookean model. A neo-Hookean material model that depends on the
first invariant (IC) of the total right Cauchy–Green tensor C, is briefly discussed herein. This
model requires a simpler mathematical derivation than the presented decoupled model that
depends on IĈ . The strain energy density function is given by

ψ =
µ

2
[IC − 3− 2 ln J ] +

κ

2
[J − 1]2 . (3.2.25)

The expression for S is

S(C) = 2
∂ψ (C)

∂C
= µ

[
I−C−1

]
+ κ J [J − 1]︸ ︷︷ ︸

α=α(C)

C−1. (3.2.26)

The plane stress assumption (S33 = 0) leads to a calculation of Ć33. Consequently, the Piola–
Kirchhoff stress is expressed as

S = µ
[
I− Ć33C

−1
]
, (3.2.27)

and the in-plane stress S as
S = µ

[
I− Ć33C

−1
]
. (3.2.28)
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Thus, the first two expressions in Equation (3.2.12) are calculated as

∂S

∂C

∣∣∣∣
Ć33

= Ć33 µC
−1 ⊙C

−1 and
∂S

∂Ć33

∣∣∣∣
C

= −µC−1
. (3.2.29)

Finally, the third term in Equation (3.2.12), ∂Ć33/∂C , is derived by enforcing the condition
S33(C, Ć33) remains zero for all displacement variations. This leads to

dS33

dC
= Ć−1

33

dα
dC

+ [α− µ] dĆ−1
33

dC
= 0. (3.2.30)

Applying the chain rule and simplifying, one obtains

∂Ć33

∂C
= −Ć−1

33

∂α

∂C

[
∂S33

∂Ć33

∣∣∣∣
C

]−1

, (3.2.31)

where
∂α

∂C
= κ Ć33C

−1
detC

[
1− 1

2
J−1

]
. (3.2.32)

This alternative neo-Hookean model provides a more straightforward formulation compared
to the previously presented decoupled model, which has a similar structure to that used by
Pascon (2019). However, the decoupled model is preferred for modelling nearly incompressible
materials (Holzapfel, 2000), and it is thus utilised in this study.

3.3 Finite element implementation

Customized coding for FEM offers significant benefits by granting practitioners flexibility and
control, thus enabling the optimization of designs and exploration of complex phenomena.
However, developing FE codes from scratch can be resource-intensive and time-consuming.

Open-source FEM libraries provide an efficient alternative, offering pre-built functionalities
that save considerable development time, thereby eliminating the need to develop codes from
scratch. These libraries are cost-effective and come with the advantage of community support,
where users can benefit from shared knowledge and collective troubleshooting.

3.3.1 The deal.II library

In this project, FE codes in C++ are developed based on deal.II (version 9.2) (Arndt et al.,
2020), a robust object-oriented class library designed for modern FE code development. Deal.II
supports adaptive mesh refinement, parallel computing, and integration with other libraries,
enhancing the efficiency and accuracy of tackling complex engineering challenges.

A key feature of deal.II is its ability to handle both 2D and 3D problems simultaneously,
allowing code to be written without specific concern for space dimension, run-time, or memory
consumption (Bangerth et al., 2007). The library supports parallel computations on distributed
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memory clusters, which is essential for managing large-scale simulations with extensive elements
and degrees of freedom.

3.3.1.1 Parallelization

Due to the computationally demanding nature of FE simulations of RVEs in this study, efforts
are made to optimize simulations through innovative numerical and computational methods. To
accelerate the computations, the FE codes leverage parallel computing with multiple processors
using distributed memory.

The message passing interface (MPI) is a standardized and portable message-passing stan-
dard designed to operate efficiently on parallel computing architectures (Gropp et al., 1996). It
facilitates communication and coordination among multiple processors, enabling the execution
of complex computational tasks at significantly reduced times. By utilising parallel processing,
MPI significantly speeds up computations and reduces overall simulation times. Within this
framework, not only global matrices and vectors are divided among processors, but the mesh
itself is distributed –each processor holds only a portion of the elements and degrees of freedom,
with no single processor having full knowledge of the entire mesh, matrix, or solution.

The FE codes harness the power of MPI in conjunction with two parallel linear algebra
libraries, Trilinos and PETSc, enabling sophisticated parallel computations across multiple
machines (Heroux et al., 2005; Balay et al., 2019).

3.3.1.2 Mesh adaptivity

The adaptive mesh refinement feature provided by the deal.II library is invaluable for handling
the intricate geometries inherent in RVEs. This capability allows for the adjustment of mesh
resolution in critical regions, thereby enhancing accuracy while optimizing computational re-
sources. The library efficiently manages hanging nodes, which are a common occurrence in
non-uniformly refined meshes, ensuring continuity and accuracy across the entire mesh (Šolín
et al., 2008). This adaptability is particularly efficient for handling the complexities in FE
modelling of RVEs, and facilitating large-scale simulations.

3.3.2 The madeal code collection

Leveraging the capabilities of the deal.II library, the FE codes developed for this study are
compiled into a package named “madeal ”. This package forms a comprehensive suite of open-
source codes, which is hosted on GitHub for accessibility and collaboration (Ahmadi, 2024).
The madeal package includes implementations for both single-field and three-field mixed for-
mulations, catering to various computational needs. The logo of madeal is shown in Figure 3.1.

The codes within madeal are designed to handle simulations in 3D, flatland, plane strain,
and plane stress settings. In plane stress simulations, the single-field formulation is employed
for both compressible and nearly incompressible materials. For other settings, the formulation
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choice depends on material compressibility: single-field for compressible materials and three-
field for nearly incompressible materials.

In the single-field formulation, for interpolation of the field u, Qn is used by FE_Q 1 class
in deal.II. The Qn class is a series of shape functions defined on a quadrilateral (or hexahedral
in 3D) mesh, using polynomials of degree n in each coordinate direction to interpolate field
variables. For the three-field formulation, u, p̃, and J̃ are interpolated with a combination
of Qn × DGPn−1 × DGPn−1. The DGQ, short for discontinuous Galerkin quadrature, uses
discontinuous piecewise polynomial functions to approximate field variables, which allows for
flexible mesh handling and integration over complex geometries. In deal.II, the class that
uses DGP is the FE_DGP 2. For the single-field formulation, all three linearized forms of L
in equations (2.3.26), (2.3.27) and (2.3.28) are implemented in the code, allowing for easy
switching between them.

The main features of the madeal package are listed:

– Elastic deformations: Analysis of infinitesimal and finite deformations of hyperelastic
materials.

– Incompressibility: Handles nearly incompressible materials using mixed three-field for-
mulations when necessary.

– Plane stress approximation: Facilitates nonlinear FEM under plane stress conditions.

– Canonical boundary conditions: Implements both affine and periodic boundary con-
ditions. 2D RVE generation: utilises pixel meshing technique to generate 2D RVEs.

– Benchmarking: Includes several examples to validate and benchmark the models.

– Advanced solver options: Support for various solvers and preconditioners, including
iterative solvers and direct solvers.

– Easy usage: Modifying the input files allows users to easily change boundary conditions,
material properties, and other simulation parameters.

Brief instructions for installing, using, and testing madeal package are detailed in Ap-
pendix C. This includes step-by-step guidance on setup, execution, and troubleshooting.

3.4 Numerical examples

Numerical examples are presented in this section to evaluate the performance of the developed
formulations and codes. This includes a comparative analysis of different 2D and 3D con-
figurations to assess their respective advantages and limitations. The evaluation encompasses

1https://www.dealii.org/9.2.0/doxygen/deal.II/classFE__Q.html
2https://www.dealii.org/9.2.0/doxygen/deal.II/classFE__DGP.html

https://www.dealii.org/9.2.0/doxygen/deal.II/classFE__Q.html
https://www.dealii.org/9.2.0/doxygen/deal.II/classFE__DGP.html
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Figure 3.1: The logo of madeal code collection, version 1.0.

various examples using single-field and three-field formulations for both compressible and nearly
incompressible materials.

For all examples, the neo-Hookean material model with the decoupled free energy function
(3.2.13) and (2.2.32b) is selected. The number of load increments is set to 10, unless otherwise
stated. Quadrilateral elements are utilised for meshing 2D geometries, while hexahedral ele-
ments are employed for meshing 3D geometries. The stress values depicted in contour plots are
averaged element stresses. The effective von Mises stress σeff in these contour plots, is given by

σeff =

√
3

2
σdev : σdev , where, σdev = σ − 1

dim
tr(σ) I, (3.4.1)

where dim is the dimension of the problem which is 3 for 3D and planar assumptions and
2 for flatland. For the sake of brevity, the flatland model is henceforth referred to as 2D in
the various figures presented in this section. Since it is more convenient to represent material
incompressibility using the Poisson’s ratio ν, the material properties are expressed in terms of
ν and the shear modulus µ, where the Poisson’s ratio can be obtained as ν = 3κ−2µ

2[3κ+µ]
.

3.4.1 Model verification

To verify the accuracy of the developed models, three benchmark problems from the literature
are examined: Cook’s cantilever, the inhomogeneous compression problem, and a curved beam.
The results are compared with prior studies to verify the accuracy of the present models.

3.4.1.1 Cook’s cantilever

The first example is a well-known problem in nonlinear elasticity, the bending of a tapered beam
known as the Cook’s cantilever (Cook, 1977). Despite the dominance of bending, there is a
significant amount of shear deformation. Figure 3.2 depicts the geometry of a Cook’s cantilever
under a traction f at the right boundary from a 2D perspective. The thickness of the cantilever
is t = 1mm. The properties of the material for the neo-Hookean model (3.2.13) are a shear
modulus of µ = 80.1938MPa, and Poisson’s ratio of ν = 0.4999 , chosen in accordance with
(Simo and Armero, 1992; Betsch et al., 1996; Wriggers and Hueck, 1996; Reese, 2002; Sze et al.,
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Figure 3.2: The Cook’s cantilever under loading f .

Table 3.1: Vertical displacements u2 (mm) of the right top point of Cook’s cantilever.

Applied f Mesh size 2D plane strain plane stress 3D*
(N/mm2) po = 1 po = 2 po = 1 po = 2 po = 1 po = 2 po = 1 po = 2

24 2× 2 13.91 18.45 13.77 18.29 14.42 19.26 15.47 19.85
4× 4 16.69 18.20 16.65 18.17 17.85 19.75 18.40 19.89
8× 8 17.70 18.20 17.68 18.18 19.24 19.88 19.47 19.93
16× 16 18.00 18.20 17.99 18.19 19.71 19.93 19.79 19.95
32× 32 18.11 18.21 18.10 18.20 19.87 19.95 19.89 19.96
64× 64 18.15 18.22 18.15 18.21 19.93 19.97 19.93 19.96

40 2× 2 19.56 24.27 19.67 24.16 21.23 25.17 21.73 25.78
4× 4 22.40 24.20 22.46 24.17 24.18 25.78 24.42 26.01
8× 8 23.54 24.23 23.55 24.22 25.29 25.98 25.50 26.10
16× 16 23.93 24.25 23.93 24.25 25.75 26.07 25.88 26.15
32× 32 24.08 24.28 24.10 24.27 25.96 26.13 26.02 26.17
64× 64 24.16 24.31 24.16 24.30 26.06 26.16 26.09 26.18

*The mesh size for 3D models incorporates one element thickness in the x3 direction.

2004; Angoshtari et al., 2017; Pascon, 2019). The value of ν ≈ 0.5 indicates that the material
is nearly incompressible. The geometry is uniformly meshed into a grid of size n× n, where n
takes values from the set {2, 4, 8, 16, 32, 64} representing the number of elements per edge. The
3D models are meshed with the same mesh size with one element thickness, and in this case,
the mesh size is denoted as n× n× 1 .

The vertical displacements u2 of the cantilever tip (located at the top right corner point)
calculated for the traction values f = 24N/mm2 and f = 40N/mm2 is given in Table 3.1. This
table compares different FE models with linear (po = 1) and quadratic (po = 2) elements, as
well as different mesh sizes. The results indicate that the 2D and plane strain models are nearly
identical when the mesh is refined. These two models are verified when compared to the results
found in (Reese, 2002; Angoshtari et al., 2017; Dhas et al., 2022). The vertical displacements of
the tip of the Cook’s cantilever for f = 24N/mm2 is reported u2 = 18.05mm by Reese (2002),
u2 = 18.2mm by Angoshtari et al. (2017) and u2 = 18.1mm by Dhas et al. (2022) for the finest
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Figure 3.3: Vertical displacements of the tip of Cook’s cantilever versus applying traction f .

mesh used in their works. They utilised either the plane strain or the 2D approach. The results
exhibit good agreement compared to the 2D and plane strain models for the finest mesh.

Pascon (2019) uses a plane stress approximation with identical material properties and the
traction force of f = 40N/mm2 . They obtained displacements at the tip as u1 = −28.12mm
and u2 = 26.22mm for their finest mesh. In the present work finest mesh, with a grid size of
64 × 64 and po = 2, yields displacements of the tip (u1 = −28.04mm and u2 = 26.16mm),
showing good agreement with a difference of less than 0.3% compared to their results. The
results from the plane stress and 3D models align closely affirming that the plane stress as-
sumption provides a more realistic approximation for thin structures like Cook’s cantilever.
Vertical displacements for the plane stress and 3D cases are notably higher than those for the
plane strain and 2D models, with a percentage difference of approximately 8% at the maximum
load. Furthermore, results for higher-order elements converge more rapidly, with this effect
being more pronounced than that of mesh size.

Remark. It should be noted that the 3D model is unconstrained in the x3 direction,
allowing free movement. However, if the displacement of the cantilever is fixed in the x3

direction so that it is trapped between two walls, the results will align more closely with the 2D
and plane strain cases. For instance, when the above Cook’s cantilever is constrained in the x3
direction, using the most refined mesh (64× 64× 1) with po = 2, the vertical displacements of
the tip for the 3D model when applying f = 24N/mm2 is calculated as u2 = 18.21mm, which
is closer to the plane strain case than the plane stress one.

To further demonstrate the verification of the present results, the vertical displacements of
the tip of the cantilever versus the applied traction f is depicted in Figure 3.3. It is noted that
the results from other research articles correspond to the finest mesh used in those studies.
This graph highlights the nonlinear relationship between the applied load and the displacement
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2D plane strain plane stress 3D

Figure 3.4: The deformed Cook’s cantilever with 32 × 32 mesh size, po = 2 for different models
under f = 40N/mm2.

of the tip.
Remark. It is noted that some of the references that the present results were compared

against used a slightly different version of the volumetric energy density function, such as the
ones shown in Equations (2.2.32). However, despite this variation, the differences observed in
the results are negligible since the material is nearly incompressible (ν = 0.4999).

Figure 3.4 shows the deformed Cook’s cantilever with 32 × 32 mesh size, po = 2 and f =

40N/mm2 for different configurations. The first element from the top left corner is critical in
this problem since it undergoes a significant distortion. As seen from the contours, this element
is more distorted in 2D, plane strain and 3D models than in the plane stress model.

Figure 3.5 illustrates the impact of the thickness (t) of the cantilever on the vertical dis-
placements of the structure tip for f = [24 t]N/mm2. As the thickness increases, the results
from the 3D models diverge further from the plane stress bound and approach those of the
2D/plane strain models, as anticipated. This highlights the importance of careful selection of
modelling approaches, considering the nature of the problem under analysis.

Table 3.2: Normalised runtimes for different FE simulations with linear and quadratic elements.

Mesh size 2D plane strain plane stress 3D
po = 1 po = 2 po = 1 po = 2 po = 1 po = 2 po = 1 po = 2

4× 4 1× 10−4 3× 10−4 1× 10−4 4× 10−4 1× 10−4 3× 10−4 6× 10−4 0.01
8× 8 2× 10−4 1× 10−3 2× 10−4 2× 10−3 2× 10−4 1× 10−3 2× 10−3 0.05
16× 16 8× 10−4 6× 10−3 9× 10−4 7× 10−3 7× 10−4 4× 10−3 0.01 0.2
32× 32 4× 10−3 0.03 5× 10−3 0.03 3× 10−3 0.02 0.06 1

Table 3.2 presents the computational runtimes for different models. The values are nor-
malised with respect to the runtime of the 3D model with a mesh size of 32 × 32 and po = 2.
The number of elements for the finest mesh, 32 × 32, is 1024 for all four models, while the
number of nodes are 14594, 14594, 8450, and 46217, and the total number of degrees of free-
dom are 7297, 7297, 4225, and 15405, for the 2D, plane strain, plane stress, and 3D models
with po = 2, respectively. To provide a clearer demonstration, the computational cost of the
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Figure 3.5: The effect of the thickness of the Cook’s cantilever on the vertical displacements of
the tip.
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Figure 3.6: Normalised computational cost of the different FE models.
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different models with different mesh sizes is illustrated in Figure 3.6. The following trend is
observed:

t3D ≫ tplane strain > t2D > tplane stress . (3.4.2)

Although the classic single-field model for plane stress requires additional Newton–Raphson
iterations to determine C33, its computational time is lower than that of the plane strain and
2D mixed-formulation models due to fewer degrees of freedom. The planar and 2D models
exhibit considerably lower runtimes compared to the 3D model. For instance, with the finest
mesh and po = 2, the runtime for the 3D model is approximately 50 times longer than that of
the plane stress model. Given the close results between the 3D and plane stress models and
the significant difference in runtime, using a 2D model is preferable when applicable.

3.4.1.2 Inhomogeneously compressed block

The second example explores the problem of a nonlinear elastic block undergoing inhomoge-
neous compression, also known as the “punch problem”. Figure 3.7 illustrates the geometry,
loading, and boundary conditions. The bottom surface is fixed in the x2 direction but can
freely move in the x1 direction. It is also noted that the top surface of the block is constrained
in the x1 direction. For the 3D model, the back and front surfaces are constrained in the x3
direction, simulating a scenario where the block is confined between two rigid walls. The mate-
rial properties are the same as those of the previous example. To leverage problem symmetry,
the FE analysis only considers half of the geometry by dividing the block into two halves, each
measuring 10mm× 10mm× 10mm. 

 

x1 

x2 

x3 

10 mm 

10 mm 

10 mm 

5 mm 5 mm 

f 

Figure 3.7: The block under inhomogeneous compression; the top surface is constrained in x1
direction.

The geometries are uniformly meshed, that is, n × n (n × n × n for 3D), where n is the
number of elements per each edge and n ∈ {2, 4, 8, 16, 32}. Defining the maximum compression
of the block as the percentage of the maximum vertical displacements of a node relative to
its maximum achievable displacement, Figure 3.8 illustrates the maximum compression across
different models, considering various mesh sizes and polynomial degrees of the elements. The



Chapter 3. Finite element implementation and verification 48

60

65

70

75

80

85

90

95

100

2 4 8 16 32

2D, po = 1
2D, po = 2

plane strain, po = 1
plane strain, po = 2
plane stress, po = 1
plane stress, po = 2

3D, po = 1
3D, po = 2

M
ax

im
um

co
m

pr
es

si
on

(%
)

Number of elements per edge

Figure 3.8: Maximum compression of the block for different mesh sizes and applied traction of
f = 6000N/mm2.

centre of the block naturally experiences the maximum compression, a trivial observation in
such symmetrical deformations. It is evident that increasing the number of elements leads to
convergence in results for all models. By n = 16, the results appear to be converged across
all different models. Moreover, models utilising quadratic elements exhibit faster convergence
than those with linear elements; even a model with n = 2 and quadratic elements demonstrates
high accuracy. Given that the block is confined between two walls, restricting movement in
the x3 direction, the 3D model is expected to converge to the plane strain model, which indeed
occurs. Interestingly, the block under plane stress condition experiences approximately ∼ 20%

higher compression than other models.
Figure 3.9 depicts the maximum compression of the block versus the applied traction f .

The compression demonstrates nonlinear behaviour across the range of applied traction. The
recurring trend persists; the plane stress model demonstrates higher compression relative to all
other models, a distinction notably apparent even at lower loads. This graph also validates the
3D, 2D, and plane strain models by comparing our results against those from previous studies
(Angoshtari et al., 2017; Reese, 2002; Dhas et al., 2022), demonstrating good agreement. These
studies utilised either a 2D model or a plane strain model.

To validate the results of the plane stress model, a traction of f = 12000N/mm2 is ap-
plied, following the study by Pascon (2019). The maximum compression under this traction is
measured as 86.7%, closely matching the approximately 87% compression reported by Pascon
(2019) at the centre. The compressed block with n = 16 and po = 2 is illustrated in Figure 3.10,
demonstrating the capability of the formulation to model extreme deformations.

Given the near-identical results between the 2D and plane strain models in these examples,
it is opted to present only the plane strain model in subsequent analyses. This similarity is
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Figure 3.9: Maximum compression of the block versus applying traction f .

plane strain plane stress

Figure 3.10: Compressed block with applied traction of f = 12000N/mm2 under planar condi-
tions.

expected for simpler hyperelastic models, like the neo-Hookean model, where strain energy pri-
marily depends on the first invariant, IĈ , effectively capturing in-plane deformations in both
cases. However, it is important to note that this congruence may not hold for more complex
hyperelastic models, such as the Yeoh or Fung formulations (Chagnon et al., 2015; Fung, 2013).
These models include higher-order terms and additional strain invariants that introduce de-
pendencies on out-of-plane components. For these models, plane strain typically provides a
more accurate representation than 2D formulations, particularly in scenarios involving large
deformations or multiaxial stresses.
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Figure 3.11: A curved beam under traction f .

3.4.1.3 Curved beam

The first two examples were performed on nearly incompressible materials. This example
verifies the validity of FE codes for compressible hyperelastic materials.

Consider a curved beam of thickness t = 1mm subjected to boundary conditions and
traction f as depicted in Figure 3.11. The material is compressible, characterized by a shear
modulus µ = 80.1938MPa, and Poisson’s ratio ν = 0.2271 , chosen in accordance with Nguyen
et al. (2021). This problem utilises a 9 × 127 mesh and 25 load steps. Figure 3.12 illustrates
the nonlinear relationship between the traction f and displacement magnitude ||u|| at the top
corner point of the right edge. It compares the present results with those in Nguyen et al. (2021),
where a 2D model was utilised. The analysis considers plane strain and plane stress conditions
for both compressible and nearly incompressible materials. For the nearly incompressible case,
the same shear modulus but Poisson’s ratio of ν = 0.4999 is considered. The present model for
compressible materials with plane strain condition shows good agreement with the referenced
work. Furthermore, it is observed that while there is little difference between plane strain
and plane stress results for compressible materials, a significant distinction exists in nearly
incompressible models, indicating pronounced sensitivity to incompressibility. This difference
is further highlighted by the deformed shapes depicted in Figure 3.12. These contours are
plotted for f = {0, 2, 3, 5}N/mm2.

3.4.2 Inhomogeneous problems

After the verification of the FE models, further examples featuring inhomogeneities are intro-
duced to assess the performance of the FE framework in simulating extreme nonlinear behaviour
of inhomogeneous structures. Both compressible and nearly incompressible materials are anal-
ysed for the subsequent examples. The volumetric average stress in these examples is calculated
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Figure 3.12: Displacement magnitude of the top right point of the curved beam versus applying
traction f . The result by Nguyen et al. (2021) is for compressible material in 2D.

as
σ̃ =

1

v

∫
Ωx

σ dv, (3.4.3)

for each stress component. Sufficiently refined meshes are utilised to discretise the geometry,
ensuring the convergence of results.

3.4.2.1 Plate with a hole

In this example, the stretching of a square plate with a central hole is explored, a scenario
frequently encountered in structural mechanics and engineering. Figure 3.14 schematically
illustrates the geometry, loading, and boundary conditions for this example. The hole occupies
40% of the area of the plate in the reference configuration. The left end is fixed and the right
end is displaced to a length twice that of the plate. The shear modulus remains consistent with
those used in previous examples, while the value of Poisson’s ratio is adjusted to ν = 0.3 for
the compressible case.

Figure 3.15 illustrates the stretched plate with a central hole, showcasing results obtained
under plane strain and plane stress conditions for the nearly incompressible material (a) and
the compressible material (b). While the deformed plates appear similar, subtle differences
highlight distinctions between the two models. Specifically, plane stress cases exhibit a larger
in-plane area, indicating the presence of out-of-plane displacement. These discrepancies are
more conspicuous in the compressible material. Notably, the in-plane area remains unchanged
for the nearly incompressible model under plane strain conditions.

Figure 3.16 plots the volumetric average Cauchy stresses for both nearly incompressible and
compressible materials under plane strain and plane stress conditions. The graph includes the
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compressible, plane strain compressible, plane stress

nearly incompressible, plane strain nearly incompressible, plane stress

Figure 3.13: The deformed curved beams for f = {0, 2, 3, 5}N/mm2. The shaded beams represent
the corresponding configurations for each force value. 
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Figure 3.14: A plate with a central hole under stretching.
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nearly incompressible (ν = 0.4999) compressible (ν = 0.3)

Figure 3.15: The stretched plate with a hole for plane strain (dark colour) and plane stress (bright
colour) assumptions.
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Figure 3.16: Comparison of volumetric average stress of plate with a hole between plane strain
and plane stress models for stretch λ = 2.

three normal components and the effective von Mises stress at the maximum stretch, λ = 2. The
average stress component along the loading direction, σ̃11, shows similar values for both plane
strain and plane stress models in compressible materials. However, for nearly incompressible
materials, σ̃11 is noticeably higher in the plane strain model compared to the plane stress
model. The σ̃22 component is significantly smaller than σ̃11 across all models. In compressible
materials, σ̃22 of the plane strain model surpasses that of the plane stress model. For nearly
incompressible materials, σ̃22 remains positive in the plane strain model, while it becomes
negative in the plane stress model. As expected, the σ̃33 component is zero for the plane
stress models. However, for nearly incompressible materials in the plane strain model, σ̃33
exceeds more than twice the value observed in the compressible case. The effective von Mises
stress, σ̃eff, shows remarkable consistency between the plane strain and plane stress models for
nearly incompressible materials, with both values surpassing their compressible counterparts.
In compressible materials, the plane stress model slightly outpaces the plane strain model in
terms of σ̃eff . Overall, stress levels in nearly incompressible materials are notably higher than in
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compressible materials. This difference arises due to the constraint on volume change in nearly
incompressible materials, leading to a greater resistance to deformation. Consequently, the
stresses required to achieve the same level of deformation are considerably higher in structures
made of nearly incompressible materials compared to their compressible counterparts.

In order to analyse the difference in deformation under plane stress and plane strain condi-
tions, the normalised displacement difference, ζ is defined as

ζ =
1

nnod

nnod∑
i=1

||uis − uin|| , (3.4.4)

where uis and uin represent the displacement vectors of the ith node in the plane stress and
plane strain models, respectively. The variation of ζ for compressible and nearly incompressible
materials is compared in Figure 3.17. Looking at the trends, it is observed that the ζ values
for the compressible material are consistently higher compared to the nearly incompressible
material across all stretch values. While for the compressible material, ζ exhibits a relatively
linear increase with stretch, the trend for the nearly incompressible material appears nonlinear.
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Figure 3.17: Variation of the normalised displacement difference, ζ for a plate with a central hole
under stretching.

3.4.2.2 Plate with several particles

Moving on to the next example, the stretching of a square plate containing several circular
particles schematically shown in Figure 3.18 is investigated. The left end is fixed, and the right
end is displaced to a length twice that of the plate. Ten particles that are stiffer than the matrix
are randomly positioned within the matrix material. The particles possess a shear modulus
of µp = 50MPa and a Poisson’s ratio of νp = 0.3 . The matrix material is characterized
by a shear modulus of µm = 1MPa and a Poisson’s ratio of νm = 0.4999 for the nearly



Chapter 3. Finite element implementation and verification 55

 

 

 

x1 
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Figure 3.18: Loading and boundary conditions of the plate reinforced with particles.

incompressible case or νm = 0.3 for the compressible case. The volume fraction of the particles
is fixed at 25% of the total volume of the plate in the reference configuration. Figure 3.19
visualizes the deformed plates reinforced by circular particles under plane strain and plane stress
conditions for compressible and nearly incompressible materials. The contour bars illustrate
the distribution of von Mises stress values. The results indicate that compressible plates exhibit
less deformation perpendicular to the stretch direction compared to the nearly incompressible
ones. This discrepancy arises due to the compressible nature of the material, which allows for
more volumetric changes. Additionally, the circular particles mostly remain undeformed due
to their higher stiffness than the matrix material. For both materials, plane stress deformation
perpendicular to the stretch direction is less pronounced, primarily because the plane strain
assumption restricts out-of-plane deformation, leading to more constrained behaviour in this
direction. Moreover, the plots underscore that the positions of the particles alter differently in
plane strain and plane stress models post-deformation.

nearly incompressible, plane strain nearly incompressible, plane stress

compressible, plane strain compressible, plane stress

Figure 3.19: The compressible (ν = 0.3) and nearly incompressible (ν = 0.4999) stretched plate
with several particles for plane strain and plane stress models.
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Figure 3.20 illustrates the volumetric average Cauchy stress versus stretch. The plot show-
cases the three normal stress components along with the effective von Mises stress. Figure 3.21
illustrates the volumetric average Cauchy stress variation within the plate containing multiple
particles under both plane strain and plane stress conditions. Analysing the graphs, it is ob-
served that the nearly incompressible plates visibly experience higher stresses compared to the
compressible plates, reflecting the influence of material compressibility on stress distribution.
This disparity is particularly notable in the σ22 and σ33 components. Moreover, the stress
components in the plane stress model are generally lower compared to the plane strain model.
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Figure 3.20: Comparison of volumetric average stress of plate with several particles for σ̃11, σ̃22,
σ̃33, and σ̃eff.
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Figure 3.21: Comparison of volumetric average stress of a plate with several particles between
plane strain and plane stress models for stretch λ = 2.

3.4.2.3 Plate with short fibres

In the final example, the stretching of a square plate containing short fibres, a scenario com-
monly encountered in composite materials and reinforced structures (Ahmadi et al., 2017; Gao
et al., 2019), is investigated. A total of 25 rectangular fibres are distributed throughout a plate,
with the volume fraction of the fibres set at 3%. The fibres are randomly dispersed in terms
of both position and angle within the plate. The aspect ratio of the fibres, defined as the ratio
of length to diameter, is chosen as (l/d) = 10, where l represents the length and d denotes
the diameter of the fibres. The matrix material properties remain consistent with the previous
example: µm = 1MPa and ν = 0.4999 for the nearly incompressible case, or νm = 0.3 for
the compressible case. The fibres have a shear modulus of µf = 50MPa and a Poisson’s ratio
of νf = 0.3 . Applying consistent boundary conditions and stretching procedures as employed
in two prior examples, the deformed plates under plane strain and plane stress conditions for
both compressible and nearly incompressible materials are analysed. Figure 3.22 depicts the
volumetric average Cauchy stress components and effective von Mises stress under both plane
strain and plane stress conditions. Upon analysis, trends similar to those observed in the previ-
ous example become apparent, with the stress components in the plane stress model generally
exhibiting lower values compared to the plane strain model.

Furthermore, Figure 3.23 presents contour plots illustrating the von Mises stress distribution
within the plate, where the presence of embedded fibres profoundly influences stress patterns.
The contour plots convey insights similar to those in the previous example, yet with a notable
distinction. Unlike the circular particles, the fibres undergo considerable bending and twisting,
deviating from their initial shapes. This behaviour arises from the elongated shape of fibres,
contrasting with the uniform shape of circles despite both having equivalent stiffness. The
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Figure 3.22: Comparison of volumetric average stress of a plate with short fibres between plane
strain and plane stress models for stretch λ = 2.

bending and twisting of fibres are more pronounced in the case of incompressible materials,
primarily due to the matrix undergoing significantly more necking. This emphasizes the critical
importance of such discrepancies between plane stress and plane strain models in applications
where precise particle positioning significantly influences overall performance. Moreover, it can
be seen that the fibres aligned with the loading direction exhibit higher stress levels compared
to those not aligned with the loading direction.
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nearly incompressible, plane strain

nearly incompressible, plane stress

compressible, plane strain

compressible, plane stress

Figure 3.23: The compressible (ν = 0.3) and nearly incompressible (ν = 0.4999) stretched plate
with short fibres for plane strain and plane stress models.



Chapter 4

Computational modelling of
microstructural deformation

Under finite deformations, elastomeric composite properties change due to fibre repositioning
and reorientation. In this chapter, the finite element framework established in the previous
chapters is further developed to investigate the finite deformations of fibre-reinforced composites
with periodic microstructures. To this end, 2D RVEs are generated by randomly dispersing
fibres in a polymer matrix. Two types of admissible boundary conditions are examined. Pixel
meshing techniques are introduced which facilitate FE modelling of RVEs with the admissible
boundary conditions.

A comprehensive numerical analysis assesses the impact of various parameters, such as
loading condition, distribution patterns and number of dispersed fibres, on the mechanical be-
haviour of the composites. Choosing an appropriate RVE configuration along with imposing
proper boundary conditions to analyse RVEs under finite deformations, while considering ac-
curacy, efficiency, and convenience, is a key challenge addressed in this chapter. This analysis
underpins subsequent further investigation into piezoresistive behaviour.

4.1 Fibre-reinforced RVEs

Composite materials exhibit distinct microstructures at certain length scales, significantly influ-
encing their macroscopic behaviour. Computational micromechanics adopts a state-of-the-art
method that focuses on a small yet comprehensive structural region known as an RVE. The RVE
can be defined as the smallest unit of a material that encapsulates all critical microstructural
features. Initially, models typically included a single particle within an RVE (Joshi et al., 2012;
Ahmadi et al., 2019c; Liu and Chen, 2003; Chen and Liu, 2004). However, to more accurately
represent the complex interactions between particles and to enhance the fidelity of simulations,
recent research has shifted towards multi-particle RVEs. These multi-particle models feature
several inclusions arranged in various distribution patterns, such as aligned or random, thereby
providing a more comprehensive understanding of composite material behaviour under different

60
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(a) (b) (a) (b)

Figure 4.1: 2D RVEs of fibre-reinforced composites: (a) whole fibres embedded within the RVE,
and (b) fibres cutting boundaries, creating periodic patterns.

conditions (Duong et al., 2008; Zhang and Yi, 2008; Pal and Kumar, 2016; Ahmadi et al., 2017,
2019b; Javid and Biglari, 2020; Matos et al., 2019). An ideal RVE is large enough to encom-
pass essential microstructural information but remains considerably smaller than the overall
structure, minimally affecting macroscopic gradients (Bargmann et al., 2018).

In this study, the RVE serves as a conceptual tool for analysing fibre reorientation and
spacing changes under deformation. The approach employs a generalised 2D structure with
randomly dispersed fibres in various orientations within a polymer matrix, without consider-
ation of specific length scales. Equal thickness is assumed for both fibres and matrix; while
this differs from real-world applications, accurately capturing these variations would require
either 3D modelling or approximating it as 2D plane stress with varying thickness that ignores
the wrap-around matrix. The fibres are modelled as rectangular shapes to approximate the
geometry of fillers such as CNTs and short carbon fibres. While these fillers are cylindrical in
nature, the rectangular approximation is reasonable for a 2D geometry and simplifies the mod-
elling process. This abstraction, free from specific physical dimensions or thickness variations,
provides useful insights into fibre reorientation within the composite.

4.1.1 Fibre distribution

Two types of RVE configurations are considered: fully embedded and cut-fibre, as schemat-
ically illustrated in Figure 4.1. The first RVE embeds each fibre entirely within the matrix,
avoiding any intersection with the boundaries. The second type allows fibres to intersect a
boundary, with the remainder of the fibre re-entering from the opposite side, forming a peri-
odic pattern. This periodic arrangement enables the simulation of inhomogeneous materials,
effectively modelling them as if they were infinitely extended (Michel et al., 1999).

Both configurations are widely used in the literature and produce repetitive RVE patterns
(Watanabe, 2002; Sukiman et al., 2017; Ahmadi et al., 2019a,d). Cut-fibre configuration, while
representing more realistic microstructures, introduces complexities in meshing due to the need
for matched nodes on opposite faces to enforce periodic boundary conditions.
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4.1.1.1 Algorithm for generating RVE

An algorithm has been developed to distribute fibres within a square-shaped matrix by random
position and direction, ensuring that the fibres do not overlap. For the cut-fibre configuration,
fibres extending beyond the matrix are truncated and translated to maintain a cut-fibre RVE
across the matrix boundaries. The flowchart in Figure 4.2 depicts a simplified form of this
algorithm.
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Figure 4.2: The flowchart of the algorithm used to generate randomly dispersed fibre-reinforced
RVEs.

The algorithm requires as input aspect ratio AR = lf/D, volume fraction ϕ, number of
dispersed fibres Nf , and fibre diameter D, where lf denotes the length of the fibres. Using
these parameters, the algorithm evaluates the matrix and fibre lengths. Fibres are created
sequentially with a random position and angle. If a fibre overlaps with others, it is regenerated.
For cut-fibre configuration, duplicates are added on the opposite side to preserve periodic
boundary conditions for fibres crossing the matrix boundary. Once the desired number of
fibres is reached, the algorithm discards the parts of the fibres outside the matrix. For fully
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embedded configuration, generating RVEs with all fibres inside becomes more challenging and
time-consuming, particularly as the volume fraction and aspect ratio increase.

4.2 Computational homogenization

Computational homogenization has been developed to study the overall macroscopic behaviour
of complex materials (Geers et al., 2010; Terada et al., 2000; Saeb et al., 2016; Le et al.,
2015). The primary objective of computational homogenization is to translate microscopic
heterogeneities into effective macroscopic properties by averaging microscopic heterogeneities
to predict the effective behaviour of the material at a larger scale. This method considers a
homogenized macro-continuum, which integrates a representative microstructure characterizing
an RVE of a composite, in this case. It is assumed that all details of the microstructure can be
described, possibly statistically. The macroscopic response of the material is then derived from
the averaged microscopic properties. In computational homogenization, the known macroscopic
deformation gradient F̃ is applied to the microstructure, and its response computed. The tilde
indicates the averaged quantity over the volume.

Based on the average strain and stress theorems, the macroscopic deformation gradient and
the macroscopic Piola stress are defined as the volume averages of their microscopic counterparts
–for more details, see (Saeb et al., 2016)– as

F̃ =
1

V

∫
ΩX

F dV =
1

V

∫
ΓX

Ψ⊗N dA , (4.2.1)

P̃ =
1

V

∫
ΩX

P dV =
1

V

∫
ΓX

T⊗X dA , (4.2.2)

as shown in Figure 4.3, where the mapping Ψ and traction T were defined in Chapter 2. The
deformation of this microstructure is linked to the local deformation at a specific point of the
macro-continuum.

Hill–Mandel condition. The Hill–Mandel condition, also known as the macro-homogeneity
condition, asserts that the virtual work done by a macroscopic stress on a macroscopic virtual
deformation gradient is equal to the average virtual work done by a microscopic stress on a
microscopic virtual deformation gradient (Hill, 1963). This condition establishes relationships
between microscopic and macroscopic quantities, facilitating a transition from the micro to the
macro scale. The Hill–Mandel condition is expressed mathematically as

P̃ : δF̃− 1

V

∫
ΩX

P : δF dV = 0 . (4.2.3)

To satisfy the Hill–Mandel condition and therefore to accurately model the mechanical response
of RVEs, appropriate boundary conditions must be applied. With the application of Hill’s
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Figure 4.3: Loaded macrostructure with pointwise microstructure.

lemma, the Hill–Mandel condition is transformed into a surface integral by

P̃ : δF̃− 1

V

∫
ΩX

P : δF dV =

∫
Γ̃X

[
δΨ− δF̃X

]
·
[
T− P̃N

]
dA . (4.2.4)

4.2.1 Admissible boundary conditions

Several boundary conditions can be applied to satisfy the Hill–Mandel condition. In this study,
two admissible boundary conditions are discussed: affine and periodic boundary conditions.
Figure 4.4 schematically illustrates an RVE with both boundary conditions applied.

Affine boundary conditions (ABCs). ABCs, also known as kinematically uniform BCs or
linear displacement BCs, impose a linearly varying displacement field on the RVE boundaries.
This type of boundary condition is particularly useful for simulating uniform strain states within
the RVE. The displacement at any boundary point X on ΓX is given by

u =
[
F̃− I

]
X, ∀X ∈ ΓX . (4.2.5)

Periodic boundary conditions (PBCs). PBCs ensure that deformation and stress states
are consistent across the RVE boundaries as if the RVE were part of an infinite periodic array.
The boundary ΓX is divided into matching parts ΓX = Γ+

X ∪ Γ−
X , with corresponding material

points X+ and X−, where “positive” and “negative” denote the paired nodes on opposite sides
of the RVE. The PBCs are applied as follows

u
(
X+

)
− u

(
X−) = [

F̃− I
] [

X+ −X−] . (4.2.6)

Remark. Another widely used admissible BCs in the literature is the constant traction
BCs. The solution of the associated microscopic boundary-value problem often encounters
issues with singularity, which are thoroughly discussed by Javili et al. (2017).
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Figure 4.4: Affine and periodic boundary conditions.

4.2.2 Pixel meshing technique

As discussed in Section 4.1.1, this study examines two RVE configuration approaches: one
where fibres intersect the boundaries and another where fibres are fully embedded within the
matrix. To effectively apply PBCs requiring paired nodes, RVEs in 2D must be meshed such
that nodes on opposite sides share the same x2 coordinate on the left and right, and the same
x1 coordinate on the top and bottom. Meshing RVEs with boundary-crossing fibres presents
challenges. A solution to these challenges is the pixel meshing technique –or voxel meshing in
3D. Due to their inherently regular and repetitive structure, pixel meshes naturally exhibit a
periodic mesh topology (Bendsøe and Kikuchi, 1988). The regularity and predictability of pixel
meshes ensure that the boundaries on opposite sides of the mesh can be matched and connected
without complications, facilitating the implementation of PBCs (Kanit et al., 2003; Schneider
et al., 2017; Watanabe and Yamanaka, 2019). Alternatives like approximate periodic boundary
conditions along with kinematic uniform stress vectors or displacement boundary conditions
are also discussed in the literature (Xia et al., 2003; Schneider et al., 2017).

The pixel technique starts with the entire geometry and incrementally refines the RVE
with the aid of hanging nodes until the mesh is sufficiently refined. The refinement rules are
straightforward: a cell is refined if it contains any part of a fibre or is at the boundary. Figure 4.5
illustrates a single-fibre RVE, used for demonstration purposes, that has been meshed using
this technique. The green “X” marks indicate elements that require additional refinement. The
meshing for this example is shown for three steps of refinement, n = 3, where n stands for the
number of refinement steps.

The fibre distribution algorithm discussed in Section 4.1.1.1, integrated with the pixel mesh-
ing technique, is implemented in C++ to efficiently generate 2D RVEs for use with the deal.II
codes. The code for generating RVEs using the pixel meshing technique is encapsulated in a
namespace called “RVE” within the madeal code package (Ahmadi, 2024), making it easy to
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Figure 4.5: Refinement of an RVE with single fibre in three steps.

use. The code also incorporates admissible boundary conditions to ensure compatibility with
various computational setups. Please refer to Appendix C.2 for a detailed implementation
guide.

Volume fraction error. Each element in the FE model corresponds to either a fibre or
matrix material property. In the pixel meshing technique, the refinement process continues
until a distinct separation between these materials at the fibre boundaries is achieved. When
the pixels are not sufficiently small, the real volume fraction ϕr can deviate from the desired
volume fraction ϕ. A practical refinement criterion involves ensuring that the difference between
the real volume fraction of fibres ϕr and the nominal volume fraction ϕ calculated by the pixel
technique falls below a predefined threshold. The error metric used to quantify this difference
is defined as

eϕ =
|ϕ− ϕr|

ϕ
. (4.2.7)

Figure 4.6 illustrates an RVE generated with ϕ = 2% and 10 fibres with AR = 10 dispersed
in a matrix for different refinement levels n and the corresponding real volume fraction ϕr

and volume fraction error eϕ. It visually depicts how the refinement process enhances the mesh
resolution, thereby improving the accuracy of representing the fibre boundaries within the RVE.

n = 6 n = 7 n = 8 n = 9

ϕr = 4.98% ϕr = 3.31% ϕr = 2.65% ϕr = 2.31%
eϕ = 1.49 eϕ = 0.66 eϕ = 0.32 eϕ = 0.16

Figure 4.6: RVEs generated for different refinement levels n.

The impact of increasing the number of refinement steps n on the error metric is now anal-
ysed for varying aspect ratios, volume fractions, and numbers of dispersed fibres. Figures 4.7,
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Figure 4.7: Effect of increasing n on the error for different aspect ratios AR.

4.8, and 4.9 demonstrate these effects while keeping other parameters constant (e.g., AR = 50,
ϕ = 1%, Nf = 50). Figure 4.7 indicates that higher aspect ratios require more refinement
steps to achieve a sufficiently small error. Figure 4.8 demonstrates that RVEs with lower fibre
content require more refinement for accurate representation. Figure 4.9 demonstrates that a
higher number of dispersed fibres, which increases the randomness within the RVE, also re-
quires additional refinement steps to minimize errors related to the volume fraction. These
findings underscore the necessity of sufficient mesh refinement to ensure the accuracy of pixe-
lated RVEs. However, it is important to note that increasing refinement rapidly increases the
number of elements and nodes, consequently impacting computation time.

4.3 Numerical setting

The numerical analysis of RVEs is conducted to investigate how various parameters influence
the mechanical behaviour of fibre-reinforced composites. Specifically, the study focuses on the
change in the orientation and spacing of fibres and the effect of different BCs on the mechanical
response. For the simulations, the fibres are assumed to have properties similar to those of
CNTs, with Young’s modulus of Ef = 1TPa and Poisson’s ratio of ν = 0.28 based on typical
reported values (Salvetat et al., 1999; Miyagawa et al., 2005; Ansari et al., 2021a; Kashyap and
Patil, 2008). Elastomers such as Polyurethane (PU), Nitrile Butadiene Rubber (NBR), Styrene-
Butadiene Rubber (SBR), Thermoplastic Elastomers (TPE) and Silicone Rubber (PDMS -
Polydimethylsiloxane) typically exhibit a wide range of Young’s moduli, depending on their
specific formulation and processing conditions. While Young’s moduli can vary, values are often
found within the range of ∼ 1 − 10MPa for many common elastomeric materials (Ginzburg
et al., 2007; Girun et al., 2007; Wisse et al., 2006; Lötters et al., 1997). For the purposes of
this study, a representative value of Em = 5MPa is chosen for the simulations. Considering
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Figure 4.8: Effect of increasing n on the error considering different volume fractions ϕ.
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Figure 4.9: Effect of increasing n on the error considering the number of dispersed fibres Nf .
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their nearly incompressible behaviour, the Poisson’s ratio of the matrix materials is assumed
to be ν = 0.4999. Since 2D RVEs represent a cross-section of the composite, the plane stress
assumption is utilised instead of plane strain. This choice is appropriate for modelling fibre-
reinforced materials in 2D scenarios. Hence, to represent general uniaxial or biaxial stretching
scenarios, the macroscopic applied deformation gradient in the plane is specified as

[
F̃
]
=

[
λ1 0

0 λ2

]
. (4.3.1)

The component F̃33 does not need to be explicitly defined; it is computed automatically based
on the plane stress assumption.

Given the complexity and number of parameters, default values are set for certain parame-
ters while others are varied. These default properties are ϕ = 1%, AR = 50 and n = 12. The
aspect ratio of CNTs can vary widely depending on their specific type (single-walled or multi-
walled), length, and diameter. Typical aspect ratios range from about 10 to several thousand.
It is important to note that the precise aspect ratio chosen for simulations may affect the overall
mechanical response of the composite. For this study, an aspect ratio of AR = 50 is chosen as
a balance between accuracy and feasibility, considering the limitations of the modelling.

4.3.1 Model verification

This section focuses on identifying an efficient distribution pattern with a sufficient number of
fibres and the appropriate combination of RVE configuration and BCs. The aim is to determine
the most suitable conditions for simulating RVEs.

4.3.1.1 Distribution pattern

This study suggests a uniform orientation pattern for the dispersion of fibres. Unlike the
commonly used random angle distribution, fibres are assumed to be uniformly oriented by their
angles. This pattern facilitates tracking the position and alignment of fibres, which is crucial
since the composite properties can change with fibre alignment. Instead of using a random
angle, the uniform orientation pattern uses a uniform distribution of angles. Distributing Nf

fibres in the range of {−π/2, π/2}, the angle of the i-th fibre is calculated as

θi = θ0 +
[i− 1]π

Nf

− π

2
, for i = {1 : Nf} , (4.3.2)

where θ0 ∈ {0, π/Nf} is a random angle generated for each sample to maintain distribution
randomness. Applying λ1 = 1.25 and λ2 = 1/λ1, Figure 4.10 shows a boxplot (whisker plot),
illustrating the volumetric average of von Mises stress for different numbers of fibres with
random and uniform orientation patterns. For each number of fibres and distribution pattern,
10 random samples are analysed. The plot is based on a five-number summary: minimum, first
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Figure 4.10: The volumetric average of von Mises stress for different numbers of fibres considering
random and uniform orientation patterns.

quartile (Q1), median, third quartile (Q3), and maximum. It provides a visual representation
of the central tendency, dispersion, and skewness of the data. The rectangular box spans from
Q1 to Q3, representing the interquartile range (IQR), with a line inside indicating the median
(Q2). Whiskers extend from the box to the smallest and largest values within 1.5 times the
IQR from the quartiles, while values beyond the whiskers are plotted individually as outliers.
The minimum and maximum values within the whiskers are also indicated.

As the number of distributed fibres increases, the boxes for σ̃eff become narrower, indicating
more consistent results. While the random orientation pattern requires more fibres to converge,
the uniform orientation pattern converges faster. Even with a small number of fibres, the
uniform orientation pattern provides more consistent results. This suggests that the uniform
orientation pattern may offer acceptable results with less number of samples compared to the
random orientation pattern. Therefore, the uniform orientation pattern will be used for the
remainder of the study. The number of fibres is set to 25, which is considered as a reasonable
trade-off between accuracy and computational cost.

4.3.1.2 BCs and RVE configuration

Selecting the most appropriate BCs and RVE configuration can be challenging. The study
evaluates four combinations of BCs and configurations to consider: ABCs with cut-fibre, ABCs
with fully embedded, PBCs with cut-fibre, and PBCs with fully embedded. Figure 4.11 dis-
plays the deformed RVEs at λ1 = 1.5 and λ2 = 1/λ1 for different combinations of BCs and
configurations for a random sample.

Figure 4.12 shows the volumetric average of various stress components and the von Mises
stress for different combinations of BCs and configurations. These results are based on the
average values calculated from 5 samples for each combination. The results indicate that ABCs
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Figure 4.11: The deformed RVEs at λ1 = 1.5 for different combinations of BCs and configurations.
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Figure 4.12: The volumetric average of various stress components and the von Mises stress for
different combinations of BCs and RVE configurations.



Chapter 4. Computational modelling of microstructural deformation 72

with cut-fibre deviate significantly from other combinations. This deviation occurs because
ABCs impose stricter constraints on the boundaries where the fibres are cut. Therefore, ABCs
are not suitable for cut-fibre configuration where fibres intersect the boundaries. Conversely,
PBCs are less constrained at the boundaries, making them more suitable for cut-fibre config-
uration. Given the more realistic nature of cut-fibre configuration, PBCs with cut-fibre RVE
are selected for the remainder of this study.
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Figure 4.13: Orientation changes of fibres for different values of λ1 under LI (applying λ1 while
λ2 = 1/λ1) and LII (applying λ1 while λ2 = 1) for a randomly selected sample.
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4.4 Orientation and spacing

This section examines the reorientation of fibres under deformation by tracking changes in their
alignment and spacing. These characteristics are essential for understanding how deformation
influences the behaviour of composite materials, providing key inputs for the analysis in the
next chapter, where their impact on electrical conductivity is explored. Two different loading
conditions are considered: the first (LI) applies λ1 while constraining λ2 = 1/λ1, and the second
(LII) changes λ1 while fixing λ2 = 1.

4.4.1 Orientation change

This section investigates how the orientation of fibres changes when the composite undergoes
finite deformations. Python scripts were developed to obtain the coordinates of the endpoints
of each fibre and calculate the angle the fibre makes with respect to the x1 axis. The an-
gles are calculated within the range of [−π/2, π/2]. Special care was taken to ensure accurate
angle calculation for each fibre, considering the periodic cut-fibre configuration. For simplic-
ity and better demonstration of tracking orientation changes, the initial angle θ0 for uniform
distribution is set to zero.

Figure 4.13 illustrates the angles of each fibre for different values of applied λ1 for a randomly
selected sample under LI and LII loading conditions. For a better demonstration, corresponding
circular representations of fibres for different values of applied λ1 are also illustrated. As λ1
increases, the angles of the fibres tend to align more towards the x1 direction. Interestingly,
fibres initially perpendicular to the x1 axis tend to retain their orientation. The change in fibre
orientation is nonlinear and depends on both the position and initial orientation of the fibres.
More pronounced changes in fibre angles are observed under LI loading compared to LII .

The orientation of fibres is confined to a smaller range as the applied λ1 increases, except
for a few fibres that are perpendicular or nearly perpendicular to the x1 axis. Therefore, by
neglecting the outliers it can be assumed that the fibres are distributed within a range of
[−α, α], where α is a function of applied λ1. For example, for λ1 = 1.5 in these samples, α ≈ 60

degrees.

4.4.1.1 Limit angle

One of the scalar parameters that can be used to measure the alignment of fibres is the limit
angle α. Defined as the maximum fibre orientation angle θ within the range |θ| < α and
α ∈ [0, π/2], it provides a measure of the degree of alignment under applied deformation.
Figure 4.14 depicts the variation of the maximum angle α with increasing λ1 for five randomly
selected samples under both LI and LII loading conditions. The calculation of α for the current
computational model follows these steps:

(i) Compute the mean of the absolute angle values.
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Figure 4.14: The maximum angle α for 5 randomly selected samples under LI (λ1 while λ2 = 1/λ1)
and LII (λ1 while λ2 = 1).

(ii) Filter angles that are less than a threshold of π/4 from the mean value.

(iii) Identify the maximum value from the filtered angles as α.

The results indicate a more pronounced decrease in α for LI compared to LII . Linear
interpolation of the mean values of 10 samples for each loading condition yields the following
estimations:

α = −49.19λ1 + 137.7 for LI , α = −12.96λ1 + 99.59 for LII . (4.4.1)

Here, α is measured in degrees. These relationships are utilised in the subsequent chapter to
determine the piezoresistivity of the composites.

4.4.1.2 Order parameter

Another metric that can be used to quantify the orientation of fibres is the order parameter
S, which measures the degree of alignment in fibre orientations (De Gennes and Prost, 1993).
The order parameter ranges from -1 (perfect alignment in x2 direction) to 1 (perfect alignment
in x1 direction), with 0 indicating random orientation, and is defined by

S =
1

Nf

Nf∑
i=1

[
2 cos2(θi)− 1

]
. (4.4.2)

Figure 4.15 illustrates the variation in S with applied λ1 for five randomly selected samples
under both LI and LII loading conditions. It is observed that S increases from 0 for the fully
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Figure 4.15: The order parameter S for 5 randomly selected samples under LI (λ1 while λ2 =
1/λ1) and LII (λ1 while λ2 = 1).

uniform distribution at the initial state as the deformation is applied.
The results show that S exhibits a nearly linear trend under LI , while displaying a nonlinear

trend under LII . Additionally, the changes in orientation, as indicated by S, are more significant
for LI than for LII .

4.4.1.3 Probability density function

Further insights into fibre orientation are obtained by analysing the probability density func-
tion of fibre angles using kernel density estimation (KDE). KDE is a non-parametric technique
to estimate the probability density function of a random variable, providing a smooth approx-
imation of the data distribution (Chen, 2017). Unlike histograms, KDE offers a continuous,
smoothed density estimate that is useful for visualizing the distribution of fibre orientations.

The KDE in this study employs a Gaussian kernel function, with the bandwidth parameter
determining the level of smoothing applied to the density estimate. A smaller bandwidth yields
a more detailed, jagged KDE, whereas a larger bandwidth results in a smoother KDE. Scott’s
rule (Scott, 2009) is used to select an appropriate bandwidth, balancing bias and variance.
Scott’s rule calculates the bandwidth as h = 1.06σm−1/5, where σ is the standard deviation
of the data and m is the number of data points. This rule helps achieve an optimal balance
between capturing detail and minimizing noise in the KDE, leading to a more accurate and
visually interpretable density estimate.

Normalisation of the KDE ensures that the area under the density curve over the interval
[0, π/2] equals π/2, facilitating direct comparison with the theoretical distribution function
ξ = π/a exp(−b θ2), used in the next chapter, where a and b are constants. The normalisation
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Figure 4.16: KDE for the angles of fibres for a random sample under LI (λ1 while λ2 = 1/λ1)
and LII (λ1 while λ2 = 1).

constant is computed by integrating the KDE over the specified interval and adjusting the KDE
values accordingly.

Figure 4.16 presents the KDE plots for fibre angles at various λ1 values for a representative
sample. Each line represents the density function of fibre angles at a specific λ1, smoothed
using the Gaussian kernel. This visualization reveals how the distribution of fibre orientations
evolves with deformation. As λ1 increases, the KDE becomes more concentrated around the
x1 axis, indicating that fibres align increasingly with the direction of deformation. The plot
demonstrates a shift and spread in fibre angles due to the applied mechanical forces.

Additionally, the theoretical distribution function ξ = π/a exp(−b θ2) is superimposed on
the KDE plots to assess the alignment of the model with empirical data. Parameters a and
b are obtained by fitting the normalised KDE for each λ1, and these parameters are recorded
and analysed to understand changes in fibre orientation distributions under deformation. The
close fit between the KDE and the theoretical model suggests the latter accurately captures
the underlying changes in fibre orientations due to deformation.

Average values of a and b for 10 samples at each λ1 are computed for both loadings. Linear
interpolation provides the following relations:

a = −1.543λ1 + 4.137, b = 1.201λ1 − 1.010 for LI (4.4.3)

a = −0.560λ1 + 3.134, b = 0.383λ1 − 0.146 for LII (4.4.4)

These relationships are utilised with the exponential probability density function in the subse-
quent chapter to determine the piezoresistivity of composites.

Overall, the analysis reveals that fibre orientation becomes more aligned along the x1 axis
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under applied deformation, with more pronounced effects under LI loading. These insights into
fibre reorientation are crucial for understanding the mechanical behaviour and piezoresistive
properties of the composites.

4.4.2 Average minimum distance

The minimum distance between fibres is a critical parameter that will be utilised in the next
chapter to demonstrate its impact on electrical conductivity. To calculate the minimum distance
between two fibres in a 2D plane during deformation, the positions of the fibre endpoints are
extracted using a custom Python script. The calculation considers both the direct distances
between fibre endpoints and the perpendicular distances from each endpoint to the line segment
defined by the opposite fibre.

The algorithm is as follows. First, the Euclidean distances between all pairs of endpoints
across the fibres are computed. Next, the perpendicular distances from each endpoint of one
fibre to the infinite line defined by the other fibre are calculated. If the projection of the point
onto the line segment falls within the bounds of the fibre, this distance is considered; otherwise,
the distance from the point to the nearest endpoint of the fibre is used. The smallest of these
values is considered the minimum distance between the two fibres. To account for the periodic
nature of RVEs, the minimum distance between randomly oriented fibres must consider the
wrapping of the space. This involves calculating distances not only in the original domain but
also in its periodic images. For each fibre, periodic images are created by shifting its positions
by the domain size in all directions. For each pair of fibres, the minimum distance is computed
by considering all periodic images.

The average minimum distance, dm, for each load step is computed. Figure 4.17 shows the
normalised average minimum distances between fibres, dm, over deformation for both LI and
LII loading conditions, considering five random samples. The value of dm is normalised based on
the initial value before deformation. It is observed that dm for LI does not exhibit a consistent
trend with deformation; in some samples, it increases, while in others, it decreases. Averaging
these samples suggests no significant change in the average minimum distance. However, for
LII , dm increases with deformation. By linear interpolation, the relationship for LII is given
by:

dm = 0.619λ1 + 0.409 . (4.4.5)

4.4.3 Analytical calculation for fully affine deformation

In order to provide a comparative baseline for the computational model, an analytical solu-
tion for fully affine deformation is presented. This approach calculates the evolution of fibre
orientation and spacing under idealised conditions, where the entire 2D composite undergoes
affine deformation, assuming no distinction in material properties between fibres and matrix,
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Figure 4.17: Normalised average minimum distances between fibres dm over deformation for (a)
LI and (b) LII .
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resulting in isotropic deformation. The deformation mapping is expressed as

u =
[
F̃− I

]
X, ∀X ∈ ΩX . (4.4.6)

In this framework, both the fibres and the matrix deform identically, following the same kine-
matic pathways without material mismatch. This simplified model provides a reference for
understanding the more complex behaviours observed in the computational model, specifically
in comparison to the results obtained using PBCs with the cut-fibre RVE.

4.4.3.1 Orientation calculation

To investigate changes in fibre orientation under fully affine deformation, the initial fibre orien-
tation is represented by the unit vector d0 = cos θ0 e1 + sin θ0 e2 . Upon deformation, the fibre
orientation vector transforms as d = F̃ d0 . The post-deformation fibre orientation angle θ is
then calculated by

θ = tan−1

(
λ2 sin θ0
λ1 cos θ0

)
. (4.4.7)

This calculation is carried out for a uniformly distributed set of 1000 initial fibre orientations
to capture a broad spectrum of possible configurations. Figure 4.18 compares the computed
limit angle α and order parameter S between the analytical affine deformation solution and
the computational model for loading conditions LI and LII . For the computational model,
the limit angle α is derived through linear interpolation using Equation (4.4.1), and the order
parameter S is averaged over 10 random samples.

The slight mismatch at λ = 1 arises because the analytical solution assumes an ideal initial
configuration, while the computational model uses a discrete distribution of 25 fibres, leading
to minor deviations. The results demonstrate that, under loading condition LI , the analytical
model and computational model exhibit good agreement for the order parameter S, indicating
similar alignment trends. However, discrepancies arise in other cases, particularly with the
limit angle α. These differences can primarily be attributed to the absence of fibre-matrix
interaction effects in the analytical solution. In the computational approach, fibre stiffness
prevents significant length changes, which introduces a stabilising effect not present in the
analytical model.

4.4.3.2 Average distance calculation

To further compare the computational and analytical approaches, the average normalised fibre
separation is calculated under the assumption of fully affine deformation. Consider two arbi-
trary points initially separated by a distance d0 with an initial vector d0, forming an angle θ
with the x1 axis. After affine deformation, the length of the deformed vector d becomes

∥d∥ = d0

√
λ21 cos2 θ + λ22 sin2 θ. (4.4.8)
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Figure 4.18: Comparing the limit angle α and order parameter S between the computational
model and the analytical calculation for LI and LII loading conditions.
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Figure 4.19: Comparing the normalised average distances between fibres dm from the computa-
tional model and the analytical calculation for LI and LII .

The normalised change in separation dm = ∥d∥/d0, representing the relative change in fibre
separation, is computed as

dm =
√
λ21 cos2 θ + λ22 sin2 θ. (4.4.9)

The average normalised distance, dm, is obtained by integrating over all directions θ from 0 to
2π and normalising by the angle interval, yielding

dm =
1

2π

∫ 2π

0

√
λ21 cos

2 θ + λ22 sin
2 θ dθ. (4.4.10)

Figure 4.19 compares the average normalised distance between fibres, dm, predicted by the affine
deformation analytical model with that from the computational model under both loading con-
ditions. For the LI case, the computational model assumes no change in distance between
fibres, whereas for LII , the normalised distance is based on the linear interpolation from Equa-
tion (4.4.5). The results show differences between the two approaches. In the computational
model, fibres, being considerably stiffer than the surrounding matrix, exhibit minimal elonga-
tion, maintaining their original length under deformation. In contrast, the analytical model,
assuming fully affine deformation, does not account for these material stiffness contrasts, lead-
ing to differences in deformation behaviour between the two approaches. Additionally, the
computational model uses plane stress conditions, whereas the analytical model is a simpli-
fied 2D representation. These comparisons highlight the necessity of computational modelling
for accurately capturing the behaviour of elastomeric composites, while the affine deformation
model provides useful preliminary insights.

In the next chapter, the relationships derived by the computational model in Sections 4.4.1
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and 4.4.2 are used to analyse the piezoresistive behaviour of composites under finite deforma-
tions. By understanding the changes in fibre orientation, limit angles, and minimum distances,
one can predict the evolution of the electrical properties of composite with deformation.



Chapter 5

Analytical modelling of electrical
conductivity

After establishing a computational framework for mechanical deformation, this chapter focuses
on developing a rigorous mathematical model to estimate electrical conductivity. The founda-
tion of this analysis is based on Eshelby’s classical equivalent inclusion method (EIM), initially
presented to evaluate intrinsic conductivity. The alignment of inclusions within the composites
is described using both the limit angle of inclusion orientation and the probability distribution
function, which together provide a cohesive measure of orientation. This model is extended to
incorporate electron hopping and conductive networks of inclusions. These are critical mecha-
nisms for electron transport in CNT/polymer composites, chosen as a representative example.
The accuracy of the model is verified by comparing its predictions to several experimental
results. Finally, the analytical model is integrated with the computational model to demon-
strate how the developed framework can be employed to study the piezoresistive behaviour of
elastomeric composites.

5.1 Introduction

Since their discovery in 1991, CNTs have significantly impacted material science due to their
superior mechanical, thermal, and electrical properties. These properties drive the develop-
ment of CNT-reinforced composites, promising advanced lightweight materials with diverse
applications. The analytical micromechanics theories such as the rule of mixture (Liu, 1997;
Dong, 2008; Fakirov, 2007), Eshelby’s equivalent inclusion method (Withers et al., 1989; Es-
helby, 1957b,a), Halpin–Tsai (Halpin, 1969; Affdl and Kardos, 1976; Kalaitzidou et al., 2007;
Goyal et al., 2008), Lewis–Nielsen (Kostagiannakopoulou et al., 2016; Molnár et al., 2000) and
Mori–Tanaka (Mori and Tanaka, 1973; Tan et al., 2005; Ferrari, 1991) have been widely used in
many studies to evaluate the overall physical properties of composite materials with reasonable
accuracy.

Developed by Eshelby (1957a), one of the most popular theories is the EIM. This theory

83
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shows that the elastic fields inside an ellipsoidal inhomogeneity can be assumed to be uniform
if the ellipsoidal inclusion is perfectly bonded to an infinitely extended matrix with a uniform
load applied at infinity. One of the main advantages of EIM is that the solution is limited to
a system of algebraic equations and it can be applied to the different behaviour of materials
such as elastic-plastic, viscoelastic, and creep (Taya, 2005). The EIM was extended by Dunn
and Taya (1993) for the problems with the coupled electro-elastic behaviour of piezoelectric
composites based on the rigorous electro-elastic solution of an ellipsoidal inclusion in an infinite
piezoelectric medium. The method in steady-state heat conduction was extended further for
the randomly oriented particle composites with uncoupled thermal and electromagnetic be-
haviour by Hatta and Taya (1985, 1986). Chen and Wang (1996) proposed an analytical model
based on the Mori–Tanaka mean field theory and the EIM to evaluate the thermal conduc-
tivity of the composite materials. They developed a new distribution function called Kacir’s
single-parameter exponential function to model the inclusion orientation. Seidel and Lagoudas
(2006) used Mori–Tanaka, self-consistent, and composite cylinders micromechanical models
in conjunction with the Eshelby method to analyse the elastic behaviour of nanocomposites
reinforced by CNTs. They also considered the effects of interphase regions.

The electrical conductivity of most polymeric insulators can be drastically enhanced by
adding a small volume fraction (∼ 1%) of conductive nanostructures. Several analytical models
were developed to analyse the electrical conductivity of CNT-reinforced composites. In another
work by Seidel and Lagoudas (2009), a micromechanical model based on the Mori–Tanaka ap-
proach and EIM was proposed to investigate the effects of electron hopping by considering
conductive interphase layers around particles. Their results showed that the thickness of the
electrical tunnelling interphase layer relative to the CNT radius gives a distinct percolation
concentration in which the well-dispersed CNTs are in close vicinity and electrical tunnelling
easily happens. A simple analytical model was presented by Deng and Zheng (2008) to predict
the electrical conductivity of CNT-reinforced composites considering the effects of the perco-
lation, conductive networks, conductivity anisotropy and waviness of CNT inclusions. Their
results revealed that the waviness of CNTs has an important influence in evaluating electrical
conductivity. Feng and Jiang (2013) developed a hybrid analytical model to evaluate the elec-
trical properties of CNT-reinforced polymers by incorporating electron hopping and conductive
networks. An interphase layer surrounding the CNT was used to capture the nanoscale effect
of electrical tunnelling based on the electron hopping theory. They illustrated that electron
hopping and conductive networks contribute to the electrical conductivity, while the conduc-
tive networks effect is dominant above the percolation threshold. Garcia-Macias et al. (2017)
developed a micromechanics model which can take into account the non-straightness by a he-
lical waviness model and non-uniform dispersion of CNTs by a two-parameter agglomeration
approach for evaluating the effective electrical conductivity of cement-based composites. A
micromechanical model based on the Eshelby–Mori–Tanaka approach was conducted by Mora
et al. (2020) to evaluate the electrical conductivity of polymer nanocomposites with agglomer-
ation and segregation of CNT particles. Their model is able to predict the effect of segregation



Chapter 5. Analytical modelling of electrical conductivity 85

on the electrical conductivity of nanocomposites. Tang et al. (2021) presented a simple analyt-
ical model to estimate the percolation threshold and electrical conductivity of CNT-reinforced
composites by considering the effects of waviness, dispersion, volume fraction and size of par-
ticles.

Although the EIM was a popular choice in recent years in the literature to predict the elec-
trical conductivity of composites, a lack of detailed derivation of the formulation is sensible.
Therefore, the need for deriving EIM formulation and providing a detailed step-by-step expla-
nation is felt. Moreover, these analytical models are heavily sensitive to their input parameters
and the literature has generally shown a tendency to overlook in-depth discussions regarding
this issue, with only a few articles addressing the sensitivity of analytical models to these pa-
rameters. Furthermore, in the realm of inclusion-based materials, non-uniform distributions
of inclusions are often encountered, influenced by factors such as the manufacturing process
or deformation due to large strain. Additionally, specific applications may call for deliberate
manipulation of inclusion distribution to enhance material performance and achieve optimal
designs using fewer resources. Goh et al. (2019) emphasized the benefits of directed alignment
techniques in achieving enhanced device functionality. The impact of non-uniform distributions
on electrical conductivity has not been extensively discussed in the literature.

Addressing these gaps, this chapter presents a rigorous analytical formulation to investigate
the overall electrical conductivity of polymer composites to unravel the underlying mathemat-
ical principles governing electrical conductivity.

5.2 Equivalent inclusion method

This section summarises the equivalent inclusion method for calculating the effective electrical
or thermal conductivity of two-phase composites (Eshelby, 1957a; Lai, 1977; Takao et al.,
1982; Hatta and Taya, 1985, 1986). No electron hopping between inclusions is assumed in this
section. The inclusions can be modelled with or without an interphase coating with a different
conductivity (Yan et al., 2007; Feng and Jiang, 2013). First, the method is applied to a matrix
with a single ellipsoidal inclusion and then extended to a matrix with numerous randomly
distributed inclusions.

5.2.1 Overall electrical conductivity of two-phase composites

In general, the overall electrical conductivity of any two-phase composite, Kij , can be estimated
by volumetric average electric current density J̃i , and electric field of composite Ẽi , using Ohm’s
law as

J̃i = Kij Ẽj , (5.2.1)

where the tilde denotes the volumetric average of the respective quantities. The whole domain
of composite represented by Ω, can be divided by the domain of matrix Ωm and the domain of
particles Ωp such that Ωm ∪Ωp = Ω, and Ωm ∩Ωp = ∅. By decomposing the average quantities
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J̃i and Ẽi into a matrix phase and a particle phase, they can be written as

J̃i =
1

V

[∫
Ωm

Ji dV +

∫
Ωp

Ji dV

]
, (5.2.2a)

Ẽi =
1

V

[∫
Ωm

Ei dV +

∫
Ωp

Ei dV
]
. (5.2.2b)

Ohm’s law in each phase is given as

Ji = Km δij Ej in Ωm, Ji = Kp
ij Ej in Ωp, (5.2.3)

where Kp
ij = diag (Kp

11, K
p
22, K

p
33) is the anisotropic electrical conductivity of particle, Km is

the electrical conductivity of the isotropic matrix. Equation (5.2.3) can be integrated over the
respective domains to give ∫

Ωm

Ji dV = Km δij

∫
Ωm

Ej dV, (5.2.4a)∫
Ωp

Ji dV = Kp
ij

∫
Ωp

Ej dV. (5.2.4b)

By calculating J̃i from equations (5.2.2a), (5.2.4a) and (5.2.4b), Equation (5.2.1) yields

Kij Ẽj =
1

V

[
Km

∫
Ωm

Ei dV +Kp
ij

∫
Ωp

Ej dV
]
. (5.2.5)

By substituting
∫
Ωm Ei dV from (5.2.2b), the above equation gives the overall electrical con-

ductivity as

Kij Ẽj = Km Ẽi +
1

V

[
Kp
ij −Km δij

] ∫
Ωp

Ej dV. (5.2.6)

Hence, in order to estimate Kij, one needs to evaluate Ẽi and
∫
Ωp Ei dV in (5.2.6).

5.2.2 Matrix with a single ellipsoidal inclusion

Consider a single ellipsoidal inclusion embedded in an infinite matrix while the constant electric
current density J0

i is applied at the far field as shown in Figure 5.1(a). By decomposing the
electric field in the composite as Ei = E0

i + Ed
i , Ohm’s law inside the inclusion domain holds

Ji = Kp
ij Ej = Kp

ij [E
0
j + Ed

j ] in Ωp, (5.2.7)

where Ed
i is the disturbed electric field due to the existence of inhomogeneity Ωp, and E0

i is the
uniform electric field due to the current density J0

i in the absence of the inclusion, that is,

J0
i = KmE0

i in Ω. (5.2.8)
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Figure 5.1: (a) A single ellipsoidal inclusion embedded in an infinite matrix, and (b) the equivalent
inclusion inducing transformation electric field.

As shown in Figure 5.1(b), consider an imaginary subdomain Ωp called an inclusion which
undergoes transformation electric field but its electrical conductivity is equal to the electrical
conductivity of the matrix. It can be shown that the EIM captures the disturbance of the
applied electric current density by an eigenflux field generated by inclusion with a proper
transformation electric field (Lai, 1977; Hatta and Taya, 1986). Based on this method, the
disturbed current density inside the matrix and inclusion domains are expressed as

Ji − J0
i = KmEd

i in Ωm, (5.2.9a)

Ji − J0
i = Km

[
Ed
i − E∗

i

]
in Ωp. (5.2.9b)

Here, E∗
i represents the transformation electric field due to the uniformly distributed electric

field. The resultant electric current density in the inclusion is given by the sum of equa-
tions (5.2.8) and (5.2.9b) as

Ji = Km
[
E0
i + Ed

i − E∗
i

]
in Ωp. (5.2.10)

Upon comparing equations (5.2.7) and (5.2.10), one obtains

Km
[
E0
i + Ed

i − E∗
i

]
= Kp

ij

[
E0
j + Ed

j

]
in Ωp. (5.2.11)

The above equation expresses a relation between the real composite and the equivalent inclusion.
The 2nd-order tensor Sij, analogous to the Eshelby tensor, relates Ed

i , and E∗
i inside the

inclusion domain as
Ed
i = Sij E

∗
j in Ωp. (5.2.12)

This tensor depends solely on the geometry of the ellipsoidal inclusion.
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Components of Sij for different geometries. For an ellipsoidal inclusion with principal
radii of a11, a22 and a33, the domain is bounded by[

x1
a11

]2
+

[
x2
a22

]2
+

[
x3
a33

]2
= 1. (5.2.13)

Defining the partial differentiation operator ∂i□ = ∂□/∂xi, the tensor Sij for this inclusion can
be determined as (Hatta and Taya, 1985)

Sij =
[a11 a22 a33

4

]
∂i

(
∂j

(∫ ∞

0

[
x21

a211 + s
+

x22
a222 + s

+
x23

a233 + s

]
1

∆(s)
ds

))
, (5.2.14)

where ∆(s) =
√
[a211 + s][a222 + s][a233 + s]. Differentiating from the above equation one obtains

Sii =
[a11 a22 a33

2

] ∫ ∞

0

[
ds

[a211 + s] ∆(s)
+

ds
[a222 + s] ∆(s)

+
ds

[a233 + s] ∆(s)

]
. (5.2.15)

In the following, the components of tensor Sij are listed for some specific geometries.

• Sphere: a11 = a22 = a33

S11 = S22 = S33 = 1/3. (5.2.16)

• Prolate ellipsoid: a11 = a22 < a33

S11 = S22 =
a211 a33

2
√

[a233 − a211]3

[
(a33/a11)

√
a233/a

2
11 − 1− cosh−1 (a33/a11)

]
,

S33 = 1− 2S11. (5.2.17)

• Oblate ellipsoid: a11 = a22 > a33

S11 = S22 =
a211 a33

2
√

[a211 − a233]3

[
cos−1 (a33/a11)− (a33/a11)

√
1− a233/a211

]
,

S33 = 1− 2S11. (5.2.18)

• Penny-shaped: a11 = a22 ≫ a33

S11 = S22 =
πa33
4a11

, S33 = 1− πa33
2a11

. (5.2.19)

• Elliptic cylinder: a11, a22 ≪ a33 →∞

S11 =
a22

a11 + a22
, S22 =

a11
a11 + a22

, S33 = 0. (5.2.20)
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Figure 5.2: Numerous ellipsoidal inclusions embedded in an infinite matrix.

5.2.3 Matrix with numerous ellipsoidal inclusions

The approach presented in Section 5.2.2 for a single ellipsoidal inclusion can be extended for an
infinite matrix with numerous ellipsoidal inclusions, as shown in Figure 5.2. In this case, the
interactions between the inclusions should also be taken into account. Here, the total electric
field Ei is decomposed into three parts as

Ei = E0
i + Ed

i + En
i in Ω, (5.2.21)

where En
i is the disturbance of the electric field in the matrix due to conductive networks of

inclusions and is defined as
En
i =

1

VΩm

∫
Ωm

[
Ei − E0

i

]
dV. (5.2.22)

With a similar approach to the EIM for a single ellipsoid presented in the previous section, equa-
tions (5.2.9b) and (5.2.11) can be rewritten for composites with numerous ellipsoidal inclusions
as

Ji − J0
i = Km

[
Ed
i + En

i − E∗
i

]
in Ωp, (5.2.23)

and
Km

[
E0
i + Ed

i + En
i − E∗

i

]
= Kp

ij

[
E0
j + Ed

j + En
j

]
in Ωp. (5.2.24)

By defining |□| that specify the outer boundary of □, and integrating over the entire domain
Ω, the electric current density Ji− J0

i vanishes using Gauss’ divergence theorem as (Hatta and
Taya, 1986):∫

Ω

[Ji − J0
i ] dV =

∫
Ω

[Jj − J0
j ] δij dV =

∫
Ω

[Jj − J0
j ] ∂jxi dV

=

∫
|Ω|
[Jj − J0

j ]nj xi dV −
∫
Ω

∂j[Jj − J0
j ]xi dV = 0,

(5.2.25)
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since (Jj − J0
j )nj = 0 on |Ω| and ∂j(Jj − J0

j ) = 0 in Ω. Hence, by integrating over the entire
domain of the composite, Equation (5.2.23) becomes∫

Ω

En
i dV =

∫
Ω

[
E∗
i − Ed

i

]
dV, (5.2.26)

that results in
En
i =

1

V

∫
Ωp

[
E∗
i − Ed

i

]
dV. (5.2.27)

Thus, recalling Equation (5.2.21), the volumetric average of the total electric field is given as

Ẽi =
1

V

∫
Ω

Ei dV = E0
i +

1

V

∫
Ω

[En
i + Ed

i ] dV. (5.2.28)

Making use of equations (5.2.23) and (5.2.25), one obtains

Ẽi =
1

V

∫
Ω

Ei dV = E0
i +

1

V

∫
Ω

[En
i + Ed

i − E∗
i ] dV +

1

V

∫
Ωp

E∗
i dV, (5.2.29)

in which
∫
Ω
E∗
i dV was added and subtracted. The second term on the right-hand side of

Equation (5.2.29) is the disturbance of the electric current density Ji−J0
i when integrated over

the entire domain Ω, which is equal to zero. Hence,

Ẽi = E0
i +

1

V

∫
Ωp

E∗
i dV. (5.2.30)

The electric field when integrated over the inclusions can be written as∫
Ωp

Ei dV = Km
[
Km δij −Kp

ij

]−1
∫
Ωp

E∗
j dV . (5.2.31)

Hence, using Ẽi from Equation (5.2.30) and
∫
Ωp Ei dV from Equation (5.2.31), the non-zero

components of overall electrical conductivity Kij in (5.2.6) can be estimated as

K11 = K22 = Km

[
1−

∫
Ωp E

∗
1 dV

V E0
1 +

∫
Ωp E

∗
1 dV

]
, (5.2.32a)

K33 = Km

[
1−

∫
Ωp E

∗
3 dV

V E0
3 +

∫
Ωp E

∗
3 dV

]
. (5.2.32b)

Next, one needs to determine
∫
Ωp E

∗
i dV in the above expression based on the distribution

of inclusions.

5.2.4 Composites with randomly distributed inclusions

In order to evaluate the overall electrical conductivity of a composite reinforced by randomly
distributed inclusions, one needs to determine

∫
Ωp E

∗
i dV . The model used by Takao et al.

(1982) for the composite reinforced by randomly distributed inclusions is used in this study.
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The orientation of every inclusion is described by Euler angles θ and ψ as shown in Figure 5.2.
Using the local coordinates {x̂1, x̂2, x̂3}, where the x̂3 axis is set to coincide with the inclusion
axis, the EIM from Equation (5.2.24) for a representative inclusion yields

Km
[
Ê0
i + Êd

i + Ên
i − Ê∗

i

]
= Kp

ij

[
Ê0
j + Êd

j + Ên
j

]
in Ωp (5.2.33)

and
Êd
i = Sij Ê

∗
j in Ωp, (5.2.34)

where the hat accent refers to the local coordinate system on representative inclusion. Equa-
tions (5.2.33) and (5.2.34) can be held for every inclusion distributed in the matrix. From
equations (5.2.33) and (5.2.34), one can obtain

[Km δij −Kp
ij] [Ê

0
j + Ên

j ] = [Kp
ij −Km δij]Sjk Ê

∗
k +Km Ê∗

i in Ωp . (5.2.35)

Upon introduction of 2nd-order tensors Aij and Bij,

Aij = [Kp
ik −K

mδik]Skj +Km δij , (5.2.36a)

Bij = A−1
ik [Kmδkj −Kp

kj] , (5.2.36b)

the value of Ê∗
i in Equation (5.2.35) can be stated in a more compact way as

Ê∗
i = Bij [Ê

0
j + Ên

j ] . (5.2.37)

From equations (5.2.34) and (5.2.37), one can eliminate Ê∗
i and obtain

Êd
i = Sij Bjk [Ê

0
k + Ên

k ] . (5.2.38)

The rotation tensor Qij defined as ai = Qij âj links the local coordinate system of the particle
and the global coordinate system in the matrix. This 2nd-order tensor can be written in a
matrix form as

[Qij] =

cosψ cos θ − sinψ cosψ sin θ

cos θ sinψ cosψ sinψ sin θ

− sin θ 0 cos θ

 . (5.2.39)

Using this tensor, one can transform the conductivity tensor into the global coordinate system.
So, by transforming equations (5.2.37) and (5.2.38) one obtains

E∗
i = Qij BjkQ

−1
kl [E

0
l + En

l ], (5.2.40a)

Ed
i = Qij Sjk BklQ

−1
lo [E0

o + En
o ]. (5.2.40b)
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Now, consider a unit sphere where the orientation of inclusion is indicated by Euler angles θ
and ψ. The integration of quantity of E∗

i over particle domain Ωp is stated as

∫
Ωp

E∗
i dV =

∫ ∫
E∗
i ξ(θ, ψ) ds =

2π∫
ψ=0

α∫
θ=0

E∗
i ξ(θ, ψ) sin θ dθ dψ, (5.2.41)

where α is the limit of the inclusion orientation angle θ as defined in Section 4.4.1.1. The
probability density function ξ(θ, ψ) is defined as the number of particles (ρ) intersecting a unit
area of the unit sphere multiplied by the volume of a single particle Vsp, that is, ξ(θ, ψ) = ρVsp.
The function ξ is identity for a uniform random distribution but can take more general forms
as shown in further sections. This function was introduced earlier in Section 4.4.1.3.

Similarly, the integration of the quantity of disturbed electric field over the particle domain
is computed as ∫

Ωp

Ed
i dV =

∫ 2π

0

∫ α

0

Ed
i ξ(θ, ψ) sin θ dθ dψ . (5.2.42)

The volume fraction of inclusions, ϕ, is evaluated as

ϕ =
1

V

∫
Ωp

ξ(θ, ψ) ds =
1

V

∫ 2π

0

∫ α

0

ξ(θ, ψ) sin θ dθ dψ . (5.2.43)

Inserting E∗
i in Equation (5.2.40a) into Equation (5.2.41), and inserting the expression for Ed

i

from Equation (5.2.40b) into Equation (5.2.42), derives∫
Ωp

E∗
i dV =

[∫ 2π

0

∫ α

0

ξ
[
Qik BklQ

−1
lj

]
sin θ dθ dψ

]
[E0

j + En
j ] , (5.2.44a)∫

Ωp

Ed
i dV =

[∫ 2π

0

∫ α

0

ξ
[
Qik SklBlmQ

−1
mj

]
sin θ dθ dψ

]
[E0

j + En
j ] . (5.2.44b)

Substituting V from Equation (5.2.43) into Equation (5.2.27) and introducing tensors Cij and
Dij as

Cij =

∫ 2π

0

∫ α
0
ξ
[
Qik BklQ

−1
lj

]
sin θ dθ dψ∫ 2π

0

∫ α
0
ξ sin θ dθ dψ

, (5.2.45a)

Dij =

∫ 2π

0

∫ α
0
ξ
[
Qik SklBlmQ

−1
mj

]
sin θ dθ dψ∫ 2π

0

∫ α
0
ξ sin θ dθ dψ

, (5.2.45b)

to compact the formulation further, Equation (5.2.27) yields

En
i = ϕ [Cij −Dij] [E

0
j + En

j ] . (5.2.46)

Considering the fact that Cij and Dij are diagonal matrices due to Kp
ij, Km δij and Sij

being diagonal, the components of En
i can be explicitly expressed in terms of the components
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of vector E0
i as

En
1 = En

2 =
ϕ [C11 −D11]E

0
1

1− ϕ [C11 −D11]
, (5.2.47a)

En
3 =

ϕ [C33 −D33]E
0
3

1− ϕ [C33 −D33]
, (5.2.47b)

so that the components of
∫
Ωp E

∗
i dV in Equation (5.2.44a) are written as∫

Ωp

E∗
1 dV =

∫
Ωp

E∗
2 dV =

ϕV C11E
0
1

1− ϕ [C11 −D11]
, (5.2.48a)∫

Ωp

E∗
3 dV =

ϕV C33E
0
3

1− ϕ [C33 −D33]
. (5.2.48b)

Finally, the non-zero components of the overall electrical conductivity Kij of the composite
in (5.2.32) can be estimated as

K11 = K22 = Km

[
1− ϕC11

1 + ϕD11

]
, (5.2.49a)

K33 = Km

[
1− ϕC33

1 + ϕD33

]
. (5.2.49b)

The established EIM for estimating the overall electrical conductivity of randomly distributed
inclusions inside a matrix in Equations (5.2.49) is only valid when there is no electron hopping
between particles and thus no conductive networks of particles are formed in the composite.

5.2.5 Particles with interphase coatings

To take into account the effects of electron tunnelling and conductive networks, the EIM ex-
pressed in Section 5.2.4 for randomly distributed particles is extended for particles with inter-
phase layers by replacing every regular particle with an equivalent particle. For this purpose, it
is assumed that every particle is surrounded by an interphase layer of thickness t and isotropic
electrical conductivity of K int as shown in Figure 5.3. Here the particles are chosen to be
cylinders. The effective conductivity of an equivalent cylinder with a length of l and diameter
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Figure 5.3: An equivalent cylinder particle with its interphase layer surrounding it.
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of D along x̂1, x̂2 and x̂3 is derived by

Ḱp
11 = Ḱp

22 =
K int

l + 2t

[
2t+

l Kp
11D

2/2 + l
[
Kp

11 +K int
]
[t2 +Dt]

D2K int/2 + [Kp
11 +K int] [t2 +Dt]

]
, (5.2.50a)

Ḱp
33 =

K int [l + 2t]
[
Kp

33D
2/4 +K int [Dt+ t2]

]
tKp

33D
2/2 + 2 tK int [Dt+ t2] + l K int [D/2 + t]2

, (5.2.50b)

where the electrical conductivity tensor in the local coordinate system of the equivalent cylinder
is given as diag(Ḱp

11, Ḱ
p
11, Ḱ

p
33). The detailed derivation of these formulas is provided in Ap-

pendix D. Based on these effective cylinders, the effective volume fraction ϕ́ can be calculated
from the ratio of the volume of one equivalent particle V ep to the volume of one particle V p

multiplied by the volume fraction of original particles as

ϕ́ =
V ep

V p
ϕ =

π[D/2 + t]2 [l + 2t]

π[D/2]2 l
ϕ =

4ϕ [D/2 + t]2 [l + 2t]

l D2
. (5.2.51)

Therefore, the EIM described in Section 5.2.4 to estimate the overall electrical conductivity
of randomly distributed inclusion composites can be extended for composites with interphase
layer by replacing the inclusions with equivalent particles. That is replacing ϕ in (5.2.49) by ϕ́
in (5.2.51) and replacing Kp

ij in (5.2.36) by Ḱp
ij in (5.2.50).

Remark. The established EIM in Section 5.2 for estimating the overall electrical conduc-
tivity of randomly distributed inclusions inside a matrix with or without the interphase layer
is equivalent to EIM for estimating the thermal conductivity of composite with or without the
interphase layer. In the thermal context, electrical conductivity coefficients Kij are substituted
with thermal conductivity coefficients κij, the electric field Ei with the temperature gradient
∂iT , and the electric current density Ji with heat flux qi. This analogy extends similarly to
elastic properties.

5.3 Electron tunnelling and conductive networks

From this section onwards, the focus is on CNT/polymer nanocomposites, and the inclusions
are chosen to be CNTs. When the distance between two CNTs is less than a threshold value,
electrons can transport from one CNT to another as shown in Figure 5.4. This phenomenon is
called electron tunnelling or electron hopping (Ounaies et al., 2003; Du et al., 2004; Zhang et al.,
2007; Hu et al., 2008). In this section, the EIM developed for composites with interphase layers
around inclusions in Section 5.2 is specialised by considering the interphase layer around CNTs
as a model for electron hopping (Seidel and Lagoudas, 2009). For this purpose, the extended
EIM for randomly distributed inclusions composites with interphase layers around inclusions
in Section 5.2.5 is used by assuming the conductive interphase layer around CNTs letting the
electrons hop.



Chapter 5. Analytical modelling of electrical conductivity 95

 

e 

d 

Figure 5.4: Electron tunnelling between two close CNTs.

5.3.1 Electron tunnelling

Simmons (1963) derived a generalized method to calculate the tunnelling current between
electrodes when there is an insulating film separating them. By assuming a uniform thickness
of the insulating film in the conduction region and neglecting any variations in barrier height
along its thickness, one can apply the formula designed for a rectangular potential barrier.
Relying on that, one can adopt a generalized framework where the fillers are treated as three-
dimensional continuum objects. This approach is widely used in the literature to model the
conductivity due to electron tunnelling for CNT-based composites (Mora et al., 2020; Feng and
Jiang, 2013; Garcia-Macias et al., 2017; Quinteros et al., 2023; Wang et al., 2021; Chanda et al.,
2021; Buroni and García-Macías, 2021).

Based on the Simmons model, these research studies used the following formula to estimate
the tunnelling resistance Rt at a junction between two CNTs:

Rt =
h2d

At e2
√
2m∆E

exp

(
4πd

h

√
2m∆E

)
, (5.3.1)

where h is Planck’s constant, d is the distance between two adjacent CNTs, At is the area
available for tunnelling, e is the charge of an electron, m is the mass of an electron, and ∆E is
the energy barrier which is equal to the work required for an electron to tunnel. The universal
constants h, e and m have their values listed in Table 5.1.

The above model assumes that the contact surfaces of the CNTs are large, flat, and highly
conductive. Bao et al. (2012) argued that this assumption does not hold for CNTs at the
nanoscale, where the contact region is composed of only a few atoms. Hence, an alternative
approach was proposed based on the assumption that electrons are in a ballistic transport
state and confined to one-dimensional channels (Bao et al., 2012; Gong et al., 2013; Li et al.,
2005; Bao et al., 2011). This approach is detailed and compared with the Simmons model
in Appendix E. Upon comparison, the Simmons model is preferred for this study due to its
widespread use and reasonable accuracy.

The distance d between CNTs is chosen to be different for the electron hopping mechanism
in comparison to the mechanism based on conductive networks. In order to capture the effect
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Table 5.1: Model parameters with constant values

Parameter Value Units
h 6.62607× 10−34 m2 kg/s
e −1.60218× 10−19 C
m 9.10938× 10−31 kg

of electron tunnelling, the thickness of the interphase layer is considered as t = dc/2, where
dc represents the cut-off tunnelling junction gap. The conductivity of the layer is described
as K int = dc/(AtRt). In the next section, the value of the gap distance between CNTs d, is
determined for conductive networks of CNTs.

5.3.2 Conductive networks

In order to consider the effect of the conductive networks of CNTs, the average junction distance
between CNTs da is introduced so that the thickness of the interphase layer is assumed as
t = da/2, while the conductivity of the layer is given by K int = da/(AtRt). The distance da is
estimated by a power-law as (Feng and Jiang, 2013; Allaoui et al., 2008)

da =
[ϕc
ϕ

]1/3
dc, (5.3.2)

where ϕc is the percolation threshold, the critical volume fraction at which continuous con-
ductive networks begin to form. At this point, the composite shifts from an insulating to a
conductive state as filler particles establish pathways for electron transport.

Eventually, the overall electrical conductivity of CNT-reinforced polymer nanocomposite
can be estimated based on a simple rule of mixture considering the effect of electron hopping
and conductive networks of CNTs. Estimating the fraction of CNTs taking part in forming
conductive networks after percolation threshold as (Deng and Zheng, 2008)

ζ =
ϕ1/3 − ϕ1/3

c

1− ϕ1/3
c

; (ϕc ≤ ϕ < 1) , (5.3.3)

while the rest contribute to the electron tunnelling mechanism, the overall electrical conduc-
tivity of the composite is

K = (1− ζ)KT + ζKN. (5.3.4)

Here KT is the contribution to the electrical conductivity from the tunnelling effect which is
evaluated by the extended EIM derived in Section 5.2 by substituting the thickness t = dc/2

and conductivity K int = dc/(AtRt) of interphase in Equation (5.2.50). KN is the contribution
to the electrical conductivity from conductive networks and is evaluated by the extended EIM
derived in Section 5.2 by substituting the thickness t = da/2 and conductivity K int = da/(AtRt)

of interphase in Equation (5.2.50) under the assumption L→∞ in Equation (5.2.12).
The primary assumptions of the presented mathematical model are:
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(i) CNTs are modelled as straight, ignoring their natural curvatures which influence their
properties.

(ii) A uniform size for all CNTs is assumed, contrary to their actual varied dimensions.

(iii) The impact of CNT agglomeration and segregation is overlooked.

(iv) The EIM is based on ellipsoidal particles, while in electron hopping it is assumed that
inclusions are cylinders.

For discussions on the impacts of CNT waviness, agglomeration, segregation, and variability
in dimensions, refer to studies such as (Chanda et al., 2021; Garcia-Macias et al., 2017; Mora
et al., 2020; Wang et al., 2021).

5.4 Numerical results

In this section, the accuracy of the model developed in Section 5.3 is verified using experimental
data. Then, the validated model is used to study the influence of CNT dimensions, volume
fraction, orientation, and distribution on the overall conductivity of the nanocomposite. The
Mathematica file used to perform these calculations is made open source, refer to Ahmadi and
Saxena (2023).

Due to their high aspect ratio (l/D ≫ 1), CNTs in this study are assumed to be isotropic
Kp

11 = Kp
33(Seidel and Lagoudas, 2009; Garcia-Macias et al., 2017). A value of dc = 1.8 nm is

used for the cut-off distance between CNTs to allow for electron-hopping as has been reported in
several papers (Feng and Jiang, 2013; Li et al., 2007; Mora et al., 2018). However, choosing other
parameters needs more care since different types of CNTs and polymer matrices with various
manufacturing processes for a wide range of applications have been reported. Accordingly, in
Section 5.4.1 some experimental studies on different CNT/polymer composites are chosen to
investigate the analytical model and estimate the parameters based on. The length l, diameter
D, and the percolation threshold ϕc of CNTs are directly chosen from the measured or reported
values in those works.

Remark. In some research papers, an expression is introduced to predict the value of ϕc.
One of the most common ones is (Gao and Li, 2003; Deng and Zheng, 2008)

ϕc(H) =
9H[1−H]

2 + 15H − 9H2
, (5.4.1)

where H(γ) = 1
γ2−1

[ γ√
γ2−1

ln(γ +
√
γ2 − 1)− 1] and γ is the aspect ratio of the CNTs defined

as γ = l/D. However, investigating further indicates that the above expression does not give
an accurate estimation for every case study and as denoted in some papers in the literature,
the value of ϕc depends on the characteristics of polymer and CNTs and is hard to predict by
an analytical expression for all types of polymer composites.
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Table 5.2: Parameters used for comparison with experimental data in Section 5.4.1.

Parameter Units PS/CNT TPU/CNT Epoxy/CNT UHMWPE/CNT
l µm 3 30 30 10
D nm 15 10 15 16
ϕc % 0.46 0.0723 0.02 0.05
Km S/m 10−11 10−11 10−11 10−13

Reference Wang et al. (2021) Mora et al. (2020) Kim et al. (2005) Lisunova et al. (2007)

Nevertheless, the values of electrical conductivity of CNT nanoparticles Kp
11 and the energy

barrier ∆E of various polymers are reported in a very wide range and the effective conduc-
tivity is very sensitive to these values. These parameters are determined separately for each
experiment in Section 5.4.1 by a least squares minimisation technique. It is worth noting that
this issue has been rather avoided to be discussed in-deep in the literature and the sensitivity
of analytical models to these parameters is neglected in most cases except for a few articles.
After model validation, the study case from Wang et al. (2021), i.e., polystyrene reinforced by
multi-walled CNT (MWCNT) is chosen for the parametric study in Section 5.4.2.

5.4.1 Comparison with experimental data

To verify the accuracy of the presented model, the analytical results are compared with some
experimental studies herein. The case studies are chosen from four different nanocomposites:
CNT/Polystyrene (PS) from Wang et al. (2021), CNT/Thermoplastic polyurethane (TPU) from
Mora et al. (2020), CNT/Epoxy from Kim et al. (2005), and CNT/Thermoplastic ultrahigh
molecular weight polyethylene (UHMWPE) from Lisunova et al. (2007). The values of length
and diameter of CNTs, percolation volume fraction, and intrinsic electrical conductivity of
matrices for all four examples are listed in Table 5.2.

The unspecified parameters are the intrinsic electrical conductivity of CNTs Kp
11 and the

energy barrier ∆E. These parameter are determined based on the given ranges of Kp
11 = [10−

106] S/m (Ebbesen et al., 1996; Ando et al., 1999; Feng and Jiang, 2013), and ∆E = [0.1−5.0] eV
(Shiraishi and Ata, 2001; Garcia-Macias et al., 2017; Allaoui et al., 2008), in comparison to the
experimental results. Thus, the following function, which expresses the least square logarithmic
difference between the analytical value and the experimental data, is introduced

f(Kp
11,∆E) =

m∑
n=1

[log10(K11(K
p
11,∆E, ϕi))− log10(K

exp
11 (ϕi))]

2 . (5.4.2)

In Equation (5.4.2), m is the number of points in the experimental data for different volume
fractions ϕi and Kexp

11 is the electrical conductivity measured in the experiments. The goal is to
minimize this function to reduce the difference between the analytical model and experiments
and thereby determine optimized values of Kp

11 and ∆E. Optimization using Equation (5.4.2)
results in a value of Kp

11 = 1000 S/m ±10% for all the four cases. To illustrate the procedure
in a simplified manner, Kp

11 = 1000 S/m is fixed, which is the most commonly used value in
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the literature for all the cases, and only analyse the influence of the value of ∆E.
The computation results in the value of ∆E as 0.7, 1.2, 2.7 and 1.1 eV for CNT/PS, CN-

T/TPU, CNT/Epoxy, and CNT/UHMWPE, respectively. In comparison, Wang et al. (2021)
used Kp

11 = 104 S/m and ∆E = 2.5 eV to model the experiments on CNT/PS polymer. These
parameter values differ significantly from the optimized range and were not experimentally
measured but taken from prior modelling data on CNT nanocomposites. On the other hand,
Mora et al. (2020) calculated Kp

11 as 987 S/m and used a prior published value of ∆E = 1.5 eV
for modelling the experiments on CNT/TPU. These parameter values are very close to the
optimized range obtained herein.

Figure 5.5 illustrates the electrical conductivity of PS/CNT, TPU/CNT, Epoxy/CNT and
UHMWPE/CNT nanocomposites predicted by the current model versus those given by exper-
iments for different volume fractions of CNT. The graphs are plotted for 0.1, 2.5, and 5.0 eV,
and the optimized value of ∆E for each case study. All graphs demonstrate a good agreement
between the model and experimental results, with the predictions closely matching the ob-
served data across various CNT-reinforced polymer composites. This suggests that the model
accurately captures the key trends and behaviour of the system under study, although some
deviations may exist due to the inherent assumptions made in the modelling process or limita-
tions in the experimental setup. In Figure 5.5 (a), it can be observed that for energy barriers
higher or lower than 0.7, the results are far from the experimentally obtained values. The same
trend can be observed for other cases which indicates that determining the energy barrier plays
an important role in predicting the electrical conductivity by the present model. Besides, as
expected, increasing the value of the energy barrier drastically decreases the electrical conduc-
tivity after percolation. This effect is more pronounced for lower volume fractions of CNTs.
Moreover, graphs with a higher energy barrier have a softer jump after percolation, while graphs
with a lower energy barrier show a sharp change after percolation. It should be noted again
that since the distribution of CNTs is uniform in all the cases considered here, the composites
are isotropic, that is, K11 = K22 = K33.

5.4.2 Effect of orientation and dimensions

Now that the results of the present model are compared to the experimental data, the effect
of different aspects of the reinforcements, i.e., CNT alignment, distribution, and dimensions,
on the transverse and longitudinal effective electrical conductivity of the nanocomposites are
investigated. For this parametric study, PS/CNT composite material from Wang et al. (2021)
is selected. The values of the parameters for PS/CNT composite are listed in Table 5.2. Fur-
thermore, the value of the energy barrier for this composite is obtained as ∆E = 0.7 eV in
the previous section. These values are used for all calculations in this section unless otherwise
stated.
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Figure 5.5: Comparing present model to experiments for (a) PS/CNT by Wang et al. (2021), (b)
TPU/CNT by Mora et al. (2020), (c) Epoxy/CNT by Kim et al. (2005) and (d) UHMWPE/CNT
by Lisunova et al. (2007). The black curves with the label ∆E(o) show the conductivity for
optimized values of the energy barrier.
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Figure 5.6: The effect of different α angles on the (a) transverse and (b) longitudinal electrical
conductivity of the composite.

5.4.2.1 Limit angle

One of the parameters that control the alignment of CNT particles is the limit angle α. Fig-
ure 5.6 shows the influence of volume percentage of CNT ϕ on the transverse and longitudinal
electrical conductivity of composites with limit angles α = {π/64, π/32, π/16, π/8, π/4, π/2}.
It is reminded that α is the limit angle of θ which is the angle made between a CNT and x3

direction as it was shown in Figure 5.2. Decreasing the limit angle highly affects the transverse
electrical conductivity, while it has less effect on the longitudinal electrical conductivity on a
logarithmic scale. The effect is still significant and is easily demonstrated on a linear scale as
shown in Figure 5.7. This graph depicts the limit angle α versus the transverse and longitu-
dinal conductivity for ϕ = {1%, 1.5%, 2%} volume fraction of CNTs. Figure 5.7 confirms that
decreasing the angle from 90◦ which represents the full random distribution states to near 0◦

which is for the fully aligned CNTs along x3 axis, results in a drastic decrease in K11 so that in
α → 0 limit it goes to the matrix conductivity K11 → Km. However, the increase of K33 by a
decrease of α is more evident here in the linear scale. For every volume fraction, K33 increases
about three times by a drop of α from 90◦ to 0◦. This suggests that the effect of the limit angle
on the conductivity has a weak correlation with the volume fraction of CNT for small volume
fractions. Besides, as expected for fully random distribution α = π/2, the values of transverse
and longitudinal conductivity are equal K11 = K33.
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Figure 5.7: The effect of different α angles on the transverse (solid lines) and longitudinal (dashed
lines) electrical conductivity of the composite.

5.4.2.2 Distribution function

Unlike the angle α that acts as a sharp cut-off threshold and is hard to measure experimentally,
the distribution function provides a smooth transition for the probability of the presence of
CNTs along a particular direction and is, therefore, more amenable to modelling approaches.
Using a distribution function, on the other hand, is more feasible to account for the variability
in inclusion alignment, thereby providing a more realistic and flexible framework for controlling
the alignment of inclusions.

In the preceding analysis, a uniform distribution (ξ = 1), was used. In this section, the
effect of using different distribution functions including a linear function, ξ = 2−4θ/π, a cosine
function, ξ = π/2 cos(θ), and an exponential function, ξ = π/1.25 exp(−2θ2) is studied. The
probability distribution function is normalised as∫ π/2

0

ξ(θ) dθ =
π

2
, (5.4.3)

and is demonstrated in Figure 5.8 for the uniform, linear, cosine, and exponential distributions.
As shown, the exponential function gives the most aligned inclusions in one direction while in
uniform distribution which is an ideal case, there are no alignments of inclusions.

Remark. Another approach to defining the probability distribution function is that it can
be expressed somehow so that it smoothly reaches zero at α degree. For example the cosine
distribution function ξ = π/2 cos(θ) can be expressed as ξ = cos(θπ/2α).

Figure 5.9 shows the effect of the four different distribution functions on the transverse and
longitudinal electrical conductivity of composite for different volume fractions. As expected, a
notable trend is observed; transitioning from a uniform distribution function to a non-uniform
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Figure 5.8: The uniform, linear, cosine and exponential distribution functions if α is marked as
60◦ degree (solid lines) or α = 90◦ degree (solid and dashed lines).
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Figure 5.10: The transverse and longitudinal electrical conductivity of composite with ϕ = 1%
for different distribution functions.

function exerts a pronounced effect on electrical conductivity. Specifically, such a shift results
in higher longitudinal conductivity and lower transverse conductivity. This disparity becomes
particularly evident and significant as the volume fraction of CNTs is increased. This finding
underscores the critical role played by the distribution function in shaping the electrical prop-
erties of CNT-based composites, highlighting its significance as a key parameter in the design
and optimization of such materials.

For a clearer comparison, Figure 5.10 presents the values of transverse and longitudinal elec-
trical conductivity of the composite with ϕ = 1% for different distribution functions. The figure
highlights the variations observed across different distribution functions, enabling a clearer un-
derstanding of the distinct conductivity characteristics associated with each distribution. As
shown, the non-uniform distribution functions promote better alignment of CNTs in the x3 di-
rection, thereby creating more efficient pathways for electron transport and resulting in higher
longitudinal conductivity and lower transverse conductivity.

5.4.2.3 CNT dimensions

Different single-walled and multi-walled CNTs with various architectures such as armchair,
chiral and zigzag can be found in various diameters and lengths, offering a versatile selection
of composite fillers (Soni et al., 2020; Kausar et al., 2016). Here, the effect of the size of CNT
length and diameter on the electrical conductivity is investigated. The analysis of how varying
the size of CNTs impacts electrical conductivity contributes to a deeper understanding of the
relationship between CNT dimensions and conductivity, guiding the selection of appropriate
CNTs for various applications. Figure 5.11 demonstrates the effect of the size of CNT particles
with different volume fractions on the electrical conductivity of the composite with uniform
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Figure 5.11: The effect of the (a) length and the (b) diameter of CNTs on the electrical conduc-
tivity of composite with uniform distribution for ϕ = {1%, 1.5%, 2%}.

distribution. It can be observed that longer CNTs demonstrate higher electrical conductivity
compared to shorter ones. This can be attributed to the increased number of conductive
pathways formed by longer CNTs, allowing for more electrons to pass through the material.
Conversely, shorter CNTs exhibit lower conductivity due to the reduced number of conductive
sites available. Moreover, keeping the volume fraction constant, composites made with CNTs of
smaller diameters tend to exhibit higher effective electrical conductivity compared to composites
made with CNTs of larger diameters. This is because of the higher surface area to volume
ratio of CNTs with smaller diameters, which enables a greater number of conductive paths for
electrons passing through the composite. Upon increasing the length or decreasing the diameter
of the CNT beyond a certain threshold, no significant changes in the conductivity are observed.
At this point, the conductivity reaches a plateau as the dominant factors affecting conductivity,
such as intrinsic material properties and the distribution of the CNTs, become more influential.

Figure 5.12 shows the impact of the size of CNT particles with different distribution func-
tions on the electrical conductivity behaviour of the composite material. The effect of different
distribution functions on the electrical conductivity of the composite with different lengths
and diameters of CNTs is notable. In particular, non-uniform distribution functions demon-
strate a higher degree of sensitivity of longitudinal electrical conductivity to the changes in the
dimension of the CNTs compared to the uniform function.

These results highlight the complex interplay between CNT length, diameter, distribution,
and volume fraction in determining electrical conductivity.
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Figure 5.12: The effect of (a) the length and (b) the diameter of CNTs on the transverse (solid
lines) and longitudinal (dashed lines) electrical conductivity of composite with different distribu-
tion functions. Note that (a) shares the same legends as (b).

5.5 Insights into piezoresistivity

This research study was motivated by the objective of linking changes in the position and
alignment of reinforcements to the piezoresistive behaviour of the composite material under
deformation. The analytical model developed in this chapter is used in conjunction with the
computational model from chapters 2, 3 and 4 to demonstrate how these models can collectively
predict piezoresistivity. This integration involves significant assumptions and disregards certain
effects. So, while not tailored to specific composites or CNT-reinforced composites, it serves to
illustrate the potential of combining the developed models.

To quantify piezoresistivity, the change in resistivity (the inverse of electrical conductivity)
is plotted against the applied deformation. The change in electrical resistance is represented as

∆R

R0

=
R−R0

R0

, (5.5.1)

where R represents the resistance under deformation, and R0 is the initial resistance.
The power-law relationship in (5.3.2) is modified by incorporating the average normalised

minimum distance between fibres dm from Chapter 4 as

da = dm

[ϕc
ϕ

]1/3
dc . (5.5.2)

In Section 4.4.2 of the previous chapter, it was concluded that under the LI loading condition
(where λ2 = 1/λ1), the average minimum fibre distance, dm, remains unchanged. In this
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Figure 5.13: Piezoresistive behaviour of polymer with ϕ = 1% reinforcement under loading con-
dition LI : (a) using α and (b) using exponential ξ.

scenario, the piezoresistive response is predominantly influenced by changes in fibre orientation,
as the LI loading maintains consistent inter-fibre spacing. Consequently, only the orientation
changes are considered, represented using either the limit angle α or the exponential distribution
function ξ. Figures 5.13(a) and (b) illustrate the piezoresistive response of a polymer reinforced
with 1% CNTs under LI loading condition, using α and ξ respectively.

The piezoresistive behaviour in this scenario is primarily anisotropic, influenced solely by
alignment effects. Orientation changes induce systematic fibre realignment, progressively align-
ing them with the tensile strain direction. As the fibres align more closely along the tensile
direction, conductive pathways for electron transport form, enhancing conductivity and lower-
ing resistivity along the x1 direction. Conversely, resistivity in the x2 direction rises as fibres
become less optimally aligned in that axis. Both α and ξ effectively capture this trend, showing
that under LI loading, fibre rotation primarily dictates the conductive pathways and connec-
tivity within the composite.

Under the LII loading condition, however, both fibre orientation and spacing vary. Fig-
ures 5.14(a) and (b) illustrate the piezoresistive response of a polymer reinforced with 1%

CNTs under LII loading condition, where orientation effects are captured by α in (a) and by
ξ in (b). Here, resistivity increases along both x1 and x2 directions, emphasizing that spacing
adjustments outweigh reorientation effects under this loading condition. As fibre spacing in-
creases, the conductive networks become more fragmented, resulting in a logarithmic increase
in resistivity across both directions. This behaviour highlights the dominant role of spacing
between fibres in electrical conductivity.

This analysis demonstrates that the piezoresistive response is highly dependent on the load-
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Figure 5.14: Piezoresistive behaviour of polymer with ϕ = 1% reinforcement under loading con-
dition LII : (a) using α and (b) using exponential ξ.

ing type and corresponding changes in fibre orientation and spacing. Under LI loading, orien-
tation changes are the main drivers of resistivity variation. In contrast, LII loading produces a
more complex response due to simultaneous changes in orientation and spacing, with increased
fibre spacing diminishing the connectivity of the conductive network, significantly impacting
overall resistivity. The significant difference in resistivity levels between Figures 5.13 and 5.14
underscores the critical influence of fibre spacing on the conductive pathways within the com-
posite. This comparison illustrates that while reorientation affects conductivity directionally,
spacing has a broader impact on the overall piezoresistive response, establishing it as a more
dominant factor in resistivity changes. Moreover, the findings imply that for materials where
spacing changes cannot be controlled, resistivity predictions may be less reliable without ac-
counting for spacing effects. In practical applications, such as in stretchable sensors or wearable
electronics, understanding these dependencies becomes essential, as they affect the ability of
sensors to provide accurate readings under different mechanical loading conditions. These find-
ings underscore the potential of combining analytical and computational models to provide a
comprehensive understanding of piezoresistive phenomena in elastomeric composites.
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Conclusions and outlook

This research has developed a modelling framework that uniquely integrates analytical and
computational methods to investigate the piezoresistive behaviour of elastomeric composites
under finite deformations. This dual approach provides a comprehensive understanding that
bridges mechanical and electrical properties, offering insights that facilitate the design of mul-
tifunctional materials with integrated sensing capabilities.

6.1 Summary and conclusions

The computational model utilises the FEM to analyse the reorientation of short fibres in elas-
tomeric composites under finite deformations. Key aspects of hyperelastic material formulations
and variational principles have been revisited. The derived variational formulation has been
cast into the fully-discrete form, using a single-field finite element formulation where the dis-
placement is the only primary variable. The finite element model considers various dimensional
configurations, including 3D, plane stress, plane strain, and 2D flatland, with a particular focus
on the underexplored plane stress condition in nonlinear elasticity. Modelling the finite defor-
mation of hyperelastic solids under plane stress conditions for compressible materials presents
significant challenges. Unlike full incompressibility, where the out-of-plane deformation can
be entirely characterised by the in-plane components, enforcing the plane stress condition re-
quires solving an extra nonlinear equation for the out-of-plane deformation component, adding
a nested Newton–Raphson scheme.

Computational modelling of nearly incompressible hyperelastic materials poses a signifi-
cant challenge due to volumetric locking. This concern has been addressed through various
solutions, such as mixed formulations. The classical one-field formulation remains effective for
modelling under the plane stress condition despite its susceptibility to volumetric locking in
other configurations. A three-field mixed formulation incorporating independent pressure and
strain variables is introduced to counteract volumetric locking due to incompressibility for 3D,
plane strain, and 2D flatland models.

Finite element codes have been developed and are publicly available through the madeal
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collection (Ahmadi, 2024). These codes have been validated against benchmark problems, and
results for different dimensional configurations compared to prior studies. The resulting numer-
ical implementation is robust, demonstrating quadratic convergence for challenging problems.
Average stress components and the effective von Mises stress are compared for different cases.

This framework is applied to plane stress representative volume elements (RVEs) of elas-
tomeric composites reinforced with short fibres. A detailed analysis of how fibre orientations
change under deformation in elastomeric composites has been conducted. Randomly positioned
and oriented fibres within the RVEs are generated via Python scripts, considering both fully en-
closed fibres and those crossing boundaries to form periodic patterns. Two admissible boundary
conditions are explored, including affine boundary conditions and periodic displacement with
antiperiodic tractions. To effectively apply periodic boundary conditions, 2D RVEs must be
meshed so that nodes on opposite sides share the same x2 coordinate on the left and right, and
the same x1 coordinate on the top and bottom. Meshing RVEs with boundary-crossing fibres
presents challenges, which have been addressed using the pixel meshing technique facilitated by
a hanging nodes strategy. Numerical examples are conducted to explore the effects of various
parameters, tracking fibre position and orientation changes. A uniform orientation pattern is
suggested for the dispersion of fibres to facilitate tracking of fibre position and alignment. By
examining the orientation changes, limit angles, order parameters, and minimum distances, a
comprehensive understanding of the microstructural behaviour of these composites has been
developed.

The proposed computational model has notable limitations. One significant challenge is
that due to the high aspect ratio of CNTs, size effects pose significant challenges for classi-
cal continuum formulations, including first-order computational homogenization (Choi et al.,
2016; Malagù et al., 2017). Accurately capturing size effects requires extended formulations of
continuum mechanics, such as gradient or micromorphic theories, surface elasticity (McBride
et al., 2020; Asmanoglo and Menzel, 2017; Javili et al., 2015). Moreover, including fibre bend-
ing stiffness necessitates accounting for deformation and fibre direction gradients, requiring
non-symmetric stress and couple stress (Spencer and Soldatos, 2007). While the present model
considers fibres analogous to CNTs, it is important to recognize the differences stemming from
size effects, waviness, and the exceptionally high aspect ratio of CNTs, which require more
sophisticated modelling approaches to fully capture their unique behaviour.

Based on Eshelby’s EIM, the analytical model that has been presented here evaluates the
overall electrical conductivity of composites reinforced with inclusions. The derivation of the
classic EIM has been presented, deriving mathematical relationships through a rigorous step-
by-step process. The model is extended to account for electron tunnelling and conductive
networks, treating the interphase layer around inclusions as a quantum tunnelling region. The
validity of the model is confirmed by comparing its results with experimental data from four
different CNT-reinforced polymer matrices. The values of the energy barrier are determined
for each case study based on a comparison to the experimental data, and it was observed that
the energy barrier plays a crucial role in predicting electrical conductivity. Furthermore, a
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parametric study was conducted to investigate the influence of volume fraction, orientation,
distribution, and dimensions on the transverse and longitudinal electrical properties.

The numerical results demonstrate a high sensitivity of the results on the input parameters
such as energy barrier for electron hopping, intrinsic inclusion conductivity, and percolation
threshold. Often, the exact values of these parameters are not reported in experiments, and
care must be taken to use appropriate values. The effects of fibre orientation and distribution
patterns on the electrical conductivity, highlighting how the alignment of fibres influences overall
properties, have been investigated. Two measurements, namely, the limit angle of inclusion
orientation and probability distribution function, are used to control the orientation. The
limit angle of inclusion orientation is varied, and it is found that decreasing the angle from
a uniformly random distribution to a fully aligned state results in a drastic decrease in the
transverse electrical conductivity. However, the longitudinal electrical conductivity shows less
sensitivity to the angle variation. Moreover, it is revealed that distributing CNTs with non-
uniform probability distribution functions has a noticeable impact on electrical conductivity.
In particular, this shift leads to an increase in longitudinal conductivity and a decrease in
transverse conductivity. This difference becomes more prominent when the volume fraction of
CNTs is raised.

Additionally, the effects of particle dimensions are examined. It is observed that compos-
ites with shorter CNTs demonstrate lower electrical conductivity compared to composites with
longer CNTs. This is due to the reduced number of conductive pathways available in shorter
CNTs. CNTs with smaller diameters exhibit higher electrical conductivity of composite com-
pared to those with larger diameters of CNTs. However, beyond a certain threshold, further
modification of the length or the diameter of CNTs has minimal impact on conductivity, as
other factors become more influential. In summary, the presented analytical model provides a
valuable framework for predicting the electrical conductivity of CNT-reinforced composites.

To demonstrate the integration between the computational and analytical models, the
framework has been used to conduct a preliminary investigation of the piezoresistivity of elas-
tomeric composites. This integration relies on certain assumptions and omits specific material
variations and interactions. Two main loading conditions are considered, which affect orienta-
tion and space between fibres. The changes in these parameters are input into the analytical
model to assess their impact on electrical conductivity. This approach highlights the potential
for future research to refine and extend the model for more specific and practical applications
in elastomeric composites, aiming for improved accuracy and relevance in real-world scenar-
ios. The waviness, agglomeration, segregation, and variability in dimensions of fillers are not
considered in the analytical model (Chanda et al., 2021; Garcia-Macias et al., 2017).

In conclusion, the study provides a novel and original contribution towards advancing the
modelling of piezoresistive behaviour in elastomeric composites under finite deformations, laying
a robust foundation for further exploration in this field.
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6.2 Future directions

Although the current model offers valuable insights, it also has limitations, as acknowledged
in the previous section. This research has identified several key areas where further study is
crucial for further efforts to explore this field:

• Multiscale modelling: Integrating multiscale modelling techniques to bridge microscale
and macroscale behaviours. Advancing to the micromechanical scale will enable simula-
tions of nanocomposites, such as CNTs, accounting for size effects.

• Material models: Developing more complex material models that incorporate viscoelas-
tic and viscoplastic behaviours to better simulate real-world conditions.

• Geometry of RVEs: Generating and analysing 3D RVEs to capture more detailed
material behaviours. Better representation of filler geometry, like the waviness of fibres
and varying length and diameter.

• Model expansion: Extending the model to incorporate additional factors, such as wavi-
ness and clustering of fillers, to improve accuracy and applicability.

• Machine learning integration: Leveraging machine learning techniques to predict
material behaviour and optimise model parameters, thus improving simulation efficiency
and accuracy. Explore data-driven simulations in stochastic modelling to further refine
predictive capabilities.

Addressing these areas will build on the findings of this thesis, contributing to the develop-
ment of advanced materials with enhanced functionalities and broader applications. This has
the potential to advance the creation of more responsive and versatile strain sensors, improving
the real-time detection and monitoring of mechanical stimuli and enhancing the efficiency of
robotic systems and wearable technologies.



Appendix A

Isochoric-volumetric decomposition

A.1 Decomposition of the stress

The Piola–Kirchhoff stress, S can be articulated through its isotropic and volumetric compo-
nents as

S = 2
∂ψ(Ĉ, J)

∂C
= 2

[
∂ψiso(Ĉ)

∂C
+
∂ψvol (J)

∂C

]
= Siso + Svol . (A.1.1)

Using the chain rule on the first term above yields

∂ψiso

∂C
=
∂ψiso

∂Ĉ
:
∂Ĉ

∂C
, (A.1.2)

where

∂Ĉ

∂C
=
∂
(
J−2/3C

)
∂C

=
∂J−2/3

∂C
⊗C+ J−2/3 ∂C

∂C
= J−2/3

[
I− 1

3
C−1 ⊗C

]
︸ ︷︷ ︸

P

. (A.1.3)

Applying the chain rule to the second term of Equation (A.1.1), yields

∂ψvol

∂C
=
∂ψvol

∂J

∂J

∂C
, (A.1.4)

in which p = ∂ψvol(J)/∂J is recognised as the hydrostatic pressure and ∂J/∂C = 1
2
JC−1.

Defining Ŝ = 2 ∂ψiso/∂Ĉ, one obtains

S = J−2/3 P : Ŝ+ pJ C−1 = Siso + Svol . (A.1.5)

Transforming to the current configuration, the Kirchhoff stress can be written as

τ = FSFT = D : τ̂ + pJ I = τiso + τvol , (A.1.6)
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where D represents the deviatoric operator which was defined in Equation (2.1.5), and τ̂ is
stated as follows:

τ̂ = F̂ Ŝ F̂T = 2b̂
∂ψiso(b̂)

∂b̂
. (A.1.7)

A.2 Decomposition of incremental constitutive tensor

The 4th-order incremental constitutive tensor in the Lagrangian description can be decomposed
as

C = Ciso + Cvol . (A.2.1)

Recalling the definition of the tensor P in (A.1.3), one obtains

Ciso = 2
∂Siso

∂C
= P : Ĉ : PT +

2

3
tr(J−2/3 Ŝ) P̃− 2

3

[
C−1 ⊗ Siso + Siso ⊗C−1

]
, (A.2.2)

and
Cvol = 2

∂Svol

∂C
= J

[
p+ J

dp
dJ

]
C−1 ⊗C−1 − 2JpC−1 ⊙C−1, (A.2.3)

where P̃ and the so-called Lagrangian fictitious elasticity tensor Ĉ are given as

P̃ = C−1 ⊙C−1 − 1

3
C−1 ⊗C−1 and Ĉ = 2 J−4/3 ∂Ŝ

∂Ĉ
= 4 J−4/3 ∂

2Ψiso(Ĉ)

∂Ĉ ∂Ĉ
. (A.2.4)

By push-forward, the incremental constitutive tensor in Eulerian description is derived by

c = J−1χ∗ (C) = 4b J−1 ∂2ψ

∂b ∂b
b , (A.2.5)

and decomposed into its isochoric and volumetric parts as

c = ciso + cvol , (A.2.6)

where
cvol = 4b J−1 ∂

2ψvol

∂b ∂b
b =

[
p+ J

dp
dJ

]
I⊗ I− 2p I , (A.2.7)

and
J ciso = 4b

∂2ψiso

∂b ∂b
b = D : ĉ : D +

2

3
tr(τ̂ )D− 2

3
[I⊗ τiso + τiso ⊗ I] . (A.2.8)

The Eulerian fictitious elasticity tensor ĉ is defined as

ĉ = 4b̂
∂2ψiso

∂b̂ ∂b̂
b̂ . (A.2.9)
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Alternative incremental constitutive
tensor for plane stress

An alternative formulation for the incremental constitutive tensor under plane stress conditions
is derived. From Equation (3.2.15), and considering

∂J−2/3

∂C
= −1

3
J−2/3C−1, (B.1)

and recalling the definition in Equation (2.1.3), one derives the 4th-order incremental consti-
tutive tensor C ∈ R3 ⊗ R3 ⊗ R3 ⊗ R3 as

C = 2
∂S

∂C
= 2µJ−2/3

[
1

3
C−1 ⊗

[
C33C

−1 − I
]
− ∂C33

∂C
⊗C−1 + C33C

−1 ⊙C−1

]
. (B.2)

Using this incremental constitutive tensor, results consistently converge to the correct so-
lution with a descending residual. Although volumetric locking is avoided, it is important to
note that the convergence rate is notably affected as the Poisson’s ratio ν → 0.5 . While the
proposed formulation in Section 3.2.4 exhibits quadratic convergence, convergence for the above
formulation, which can be found in the literature, is not quadratic. This discrepancy suggests
that the alternative formulation may be less efficient for highly incompressible materials. Fig-
ure B.1 illustrates the influence of the Poisson’s ratio of material on convergence. Due to the
proximity of the values, the horizontal axis is represented as −Ln(0.5 − ν) instead of ν. As
ν approaches 0.5, the average number of iterations required for convergence increases signifi-
cantly, indicating slower convergence for highly incompressible materials. Indeed, despite the
impact of increasing incompressibility on the rate of convergence, it is reassuring to note that
convergence is always achieved.
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Figure B.1: Effect of material incompressibility on the average Newton–Raphson iterations needed
for convergence of the plane stress model using constitutive tensor B.1 (blue labels show the value
of ν).

This analysis underscores the importance of having a robust formulation to ensure efficient
and accurate simulations, particularly for nearly incompressible materials where convergence
rates can be significantly impacted.



Appendix C

Instructions for using madeal

Detailed instruction for using the madeal package is provided. The guide is based on madeal
version 1.0, which is the latest version available at the time of writing this thesis.

C.1 Package overview

Installation. First, ensure the system has a C++ compiler (e.g., GCC, Clang) and CMake
installed. To install madeal, follow these steps:

1. Install deal.II: The deal.II library must be pre-installed on the system. Follow the
installation guide available at deal.II official website 1.

2. Clone the repository: Clone the madeal repository into the deal.II directory by run-
ning:

git clone https://github.com/Masoud16ahm/madeal.git

Templates. Templates for various problem scenarios are provided. Each template is tailored
for specific types of deformation and formulations. For example, to solve an infinitesimal
deformation elastic problem, use “template1”; for solving a finite deformation problem in the
single-field formulation, use “template2” and in the three-field formulation, use “template3”.
Modify these templates and input files according to your specific problem requirements. These
templates provide a starting point for setting up different types of simulations.

Examples. Navigate to the “examples” folder to view and run examples demonstrating madeal
capabilities. Various examples are provided for benchmarking and providing practical examples.
Each example is designed to highlight different features and applications of the madeal package.
To compile and run an example, enter:

1https://www.dealii.org/
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cmake .

make run

License. madeal is distributed under the “MIT License”, which grants users specific rights
to use, modify, and distribute the package both in original and modified form under certain
conditions:

• Usage: Users are allowed to use the package for any purpose, including commercial and
academic.

• Modification: Users may modify the source code, ensuring that modifications are doc-
umented.

• Distribution: Redistribution of the original or modified software is permitted as long as
the copies retain the original license terms and a notice of any modifications.

• Attribution: Users must credit the original authors in any publications or software
distributions that utilise madeal.

The license aims to promote the sharing and usage of the software while protecting the
intellectual property of the developers. See the LICENSE file in the repository for full details.

Testing. Testing is implemented using “Google Test”. Run the provided test suites to ensure
the installation and build function as expected. To run the tests, enter:

cmake .

make

./gtest

Support and contributions. For support, issues, or contributions, refer to the GitHub
repository. Contributions are welcome, and users are encouraged to fork the repository, make
modifications, and submit pull requests. For any specific issues or questions, use the GitHub
issues section.

C.2 Step-by-step guide

To solve your problem using madeal, follow these steps to set up, modify, and run the finite
element analysis.
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Step 1: modify main file. The “main.cc” file is the main driver for the FE analysis. It
sets up the problem, defines the mesh, specifies boundary conditions, and runs the analysis.
You can modify this file based on your specific problem by commenting, uncommenting, and
modifying the code within the template. Ensure that the necessary headers are included at the
beginning of the file. Set the problem dimension and polynomial degree of the finite element in
use. Specify the input file and initialise the FEM object. Modify the output name and other
parameters manually if needed. You can define the mesh using one of the following methods
provided: predefined mesh in deal.II, imported mesh, or using madeal RVE generator. Specify
the boundary conditions using the “LoadAndBCs” namespace. You can apply different types
of loading and boundary conditions, including Dirichlet, Neumann, body force, point force,
periodic, or affine. You need to specify the type, the position, and the value of the boundary
conditions. For example, to apply a Dirichlet boundary condition on the left boundary of the
domain, use the following code:

1 LoadAndBCs ::BC bc1;
2 bc1.type = LoadAndBCs ::dbc;
3 bc1.position = LoadAndBCs ::left;
4 bc1.value = {0.0, 0.0, 0.0};
5 problem1.BCs.push_back(bc1);

Listing C.1: Applying a Dirichlet boundary condition on the left boundary of the domain.

Various meshing options and boundary conditions are commented in the templates so that they
can be easily used.
Example main.cc:

1 /*%-%-%-%-%-%-%-%-%-%-%-%-%-%-%-%-%-%-%-%-%-
2 % ma deal %
3 % Template for Compressible Hyperelastic %
4 %-%-%-%-%-%-%-%-%-%-%-%-%-%-%-%-%-%-%-%-%-*/
5

6 // Include the "large_classic" header for sibgle -field large deformations
7 #include <large_classic.h>
8

9 // Include madeal RVE generator
10 #include <rve.h>
11

12 // Use madeal name space
13 using namespace madeal;
14

15 // Main function
16 int main(){
17

18 deallog.depth_console (0);
19

20 // (1) Enter Dimension , Problem dimension and polynomial degree
21 const int dim = 2;
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22 const int p_dim = 3;
23 const int p_deg = 1;
24

25 // (2) Define FEM object and Enter input file
26 Elastic :: Large_classic <dim , p_dim > problem1("inputfile.prm", p_deg);
27

28 // (3) Enforce any input manually
29 problem1.output_name = "out"; //The output name
30 problem1.s_typ = 2; // Solution type (1 plane -stress; 2 plane -strain)
31

32 // (4) Define the mesh
33 // (i) From deal.II
34 problem1.L_m = 1.0;
35 problem1.W_m = 1.0;
36 Point <dim > p1(0, 0), p2(problem1.L_m , problem1.W_m);
37 vector <unsigned int > subd ={10 ,10};
38 GridGenerator :: subdivided_hyper_rectangle(problem1.mesh , subd , p1 , p2);
39

40 // (ii) Import the mesh
41 // GridIn <dim > grid_in;
42 // grid_in.attach_triangulation(problem1.mesh);
43 // std:: ifstream input_mesh ("mesh.inp");
44 // grid_in.read_abaqus(input_mesh);
45 // problem1.L_m = 1.0;
46 // problem1.W_m = 1.0;
47

48 // (iii) Generate randomly distributed RVE
49 // const int inputnr = 7; // Number of refinement steps
50 // RVE::fibre <dim > myrve1 (" inputrve.prm", inputnr);
51 // myrve1.generate_rve(false); //
52 // problem1.mesh.copy_triangulation(myrve1.mesh);
53 // problem1.L_m = myrve1.L_m;
54 // problem1.W_m = myrve1.L_m;
55

56 // (5) Specify Loads and BCs
57 // (i) dbc=Dirichlet
58 LoadAndBCs ::BC bc1;
59 bc1.type = LoadAndBCs ::dbc;
60 bc1.position = LoadAndBCs ::left;
61 bc1.value = {0.0, 0.0};
62 problem1.BCs.push_back(bc1);
63 // (ii) nbc=Neumann
64 LoadAndBCs ::BC bc2;
65 bc2.type = LoadAndBCs ::nbc;
66 bc2.position = LoadAndBCs ::right;
67 bc2.value = {1.0e4, 1.0e4};
68 problem1.BCs.push_back(bc2);
69 // (iii) ldb=Linear Displacement (Affine)
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70 // LoadAndBCs ::BC bc3;
71 // bc3.type = LoadAndBCs ::ldb;
72 // bc3.value = {1.5, 1.0, 0.0, 0.0}; // F = [F11 , F22 , F12 , F21]
73 // problem1.BCs.push_back(bc3);
74 // (iv) pbc=Periodic
75 // LoadAndBCs ::BC bc4;
76 // bc4.type = LoadAndBCs ::pbc;
77 // bc4.value = {1.5, 1.0, 0.0, 0.0}; // F = [F11 , F22 , F12 , F21]
78 // problem1.BCs.push_back(bc4);
79

80 // (6) Run the FE Analysis
81 problem1.run();
82

83 return 0;
84

85 }

Listing C.2: Example of “main.cc” file used for single-field formulation.

Step 2: modify input file. The “inputfile.prm” file is used to set material properties and
solver settings. Specify the shear modulus, Poisson’s ratio (or bulk modulus), and other material
properties. You can define properties for as many materials as are referenced by the material
IDs used in your mesh. Define the number of meshing refine cycles, solution type and plate
thickness (if planar), time increment steps, and Newton solver settings.
Example inputfile.prm:

1 # List of input variables
2 # ---------------------
3

4 # Number of meshing refine cycle
5 set Number of meshing refine cycle = 1
6

7 # Shear Modulus
8 set Shear Modulus 1 = 80.1938 e6
9 set Shear Modulus 2 = 200.0 e6

10

11 # Poisson ’s Ratio
12 set Poisson ’s Ratio 1 = 0.3
13 set Poisson ’s Ratio 2 = 0.33
14

15 # Bulk Modulus
16 # set Bulk Modulus 1 = 400890 e6
17 # set Bulk Modulus 2 = 400890 e6
18

19 # Solution type (1 plane -stress; 2 plane -strain)
20 set Solution type (1 plane -stress; 2 plane -strain) = 2
21
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22 # Plate thickness
23 set Plate thickness = 1.0e-3
24

25 # Time settings
26 set Number of time increment steps = 10
27 set Save result = 1
28

29 # Newton solver
30 set Newton iteration tolerance = 1.0e-6
31 set Maximum Newton iteration = 25

Listing C.3: Example of “inputfile.prm” input file used.

Step 3: modify RVE input file (if using RVE generator). The “inputrve.prm” file is used
to set parameters for madeal RVE generator. Define the number of fibres, aspect ratio, volume
fraction, and diameter of fibres. The RVE generator automatically assigns material IDs: “1”
for the matrix and “2” for the fibres. Select the distribution pattern: “1” for random, and “2”
for uniform.
Example inputrve.prm:

1 # Inputs for generating RVE
2 # ---------------------
3

4 # Number of Fibres
5 set Number of Fibres = 25
6

7 # Aspect Ratio of Fibres
8 set Aspect Ratio of Fibres = 10.0
9

10 # Volume Fraction of Fibres
11 set Volume Fraction of Fibres = 0.10
12

13 # Diameter of Fibres
14 set Diameter of Fibres = 1.0
15

16 # Distribution patterns (rnd=1, unf=2)
17 set Distribution pattern = 2

Listing C.4: Example of “inputrve.prm” file used.

Step4: output files. The results will be saved with the specified output name (e.g., out).
Review the output files to analyse the results of the FE simulation using visualization tools like
ParaView 2 or Tecplot 3.

2https://www.paraview.org/
3https://tecplot.com/

https://www.paraview.org/
https://tecplot.com/
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Effective conductivity of an equivalent
cylinder

The effective conductivity of the equivalent cylinder can be derived using Maxwell’s equations
and the rule of mixture (Yan et al., 2007; Feng and Jiang, 2013). To do so, the equivalent
cylinder is divided into three parts, including two isotropic interphase-only parts (parts I and
III) and one transversely isotropic part of CNT/Interphase (part II) as shown in Figure 5.3.
The overall electrical conductivity of part II along x̂3 is denoted by KII

33 and can be evaluated
from the rule of mixture as

KII
33 =

Kp
33D

2 +K int[4Dt+ 4t2]

[D + 2t]2
. (D.1)

The overall electrical conductivity of part II along x̂1 is denoted as KII
11 . It is evaluated

by applying a test electric field Et on the equivalent cylinder along the radial axis. Maxwell’s
equations require the electric scalar potential U to satisfy Poisson’s equation that is given in
the cylindrical coordinate system {r, θ, z} as

∇2U =
1

r

∂

∂r
(r
∂U

∂r
) +
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∂2U

∂θ2
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The boundary conditions are prescribed as
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∣∣
r→∞ = −∂U

m

∂r

∣∣
r→∞ = Et, (D.3)
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The above set of equations for U results in

Up = 2 γ K intEtr cos θ, 0 ≤ r ≤ D/2, (D.6)

U int = γ

[
K int +Kp
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[
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]2
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11]

]
Etr cos θ, D/2 < r < D/2 + t, (D.7)
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where
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The transverse electric field of the interphase and CNT parts of the equivalent cylinder can
be evaluated as

Ep
1 = −∂U

p

∂x̂1
= −∂U

p

∂r

∂r

∂x̂1
= − 1
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, (D.10)
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with

Jp1 = Kp
11E

p
1 , and J int

1 = K intEint
1 . (D.12)

Using the volumetric average, we can obtain

1

V

∫
V

J1 dV = KII
11

1

V

∫
V

E1 dV. (D.13)

Therefore, using equations (D.12) and (D.13), we can write

KII
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D2Kp
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11][t
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Alternative electron tunneling approach

In this approach, the current for the electron tunnelling can be evaluated by Landauer–Büttiker
formula (Büttiker et al., 1985; Buldum and Lu, 2001) which relates the electrical conductivity
of a system to the transmission probability of electrons. Assuming conduction in a 1D system
as a transmission problem, the current I is expressed as

I =
gse

h

∫ ∞

0

τ(E)M(E) [f(E − eV )− f(E)] dE, (E.1)

where E is the total energy of an electron, τ(E) is the transmission probability of the electron
to tunnel through the matrix, M(E) is the total number of conduction channels and f is the
Fermi–Dirac distribution function given by

f(ε) =

[
exp

(
ε− µ
κBT

)
+ 1

]−1

, (E.2)

where µ is the total chemical potential of a CNT, κB is Boltzmann constant, and T is the
temperature. Upon substituting this back to (E.1) one obtains (Bao et al., 2012)

I =
gse

h

∫ ∞

0

τ(E)M(E)

[[
exp

(
E − eV − µ

κB T

)
+ 1

]−1

−
[
exp

(
E − µ
κB T

)
+ 1

]−1
]

dE. (E.3)

Furthermore, gs = 2, which indicates spin degeneracy. Using Taylor’s series expansion up to
the first order for τ(E)M(E), and assuming τ(E)M(E) = 0 for E < 0, Equation (E.3) is
approximated as

I ≈ 2e

h

[∫ µ+eV

µ

τ(E)M(E) dE +
[π κB T ]

2

6

d[τ(E)M(E)]

dE

∣∣∣∣µ+eV
µ

]
. (E.4)

Under a low bias voltage, it can be assumed that∫ µ+eV

µ

τ(E)M(E) dE ≈ eV τM, and
d[τ(E)M(E)]

dE
∣∣µ+eV
µ

≈ eVM
d2τ

dE2

∣∣
µ
. (E.5)
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Therefore, the tunnelling resistance Rt at a junction between two CNTs can be expressed by
Ohm’s Law as

Rt =
V

I
=

h

2Me2

[
τ +

[π κB T ]
2

6

d2τ

dE2

∣∣
µ

]−1

. (E.6)

At room temperatures, it is assumed that κBT/∆E ≈ 0. In this case, Equation (E.6) is
simplified to

Rt =
h

2Me2 τ
. (E.7)

Schrodinger’s equation with rectangular potential barrier can be employed to determine the
transmission probability of electron hopping τ as (Bao et al., 2012)

τ =

 exp
(
−dv
dt

)
0 ≤ dm ≤ D + dv ;

exp
(
−dm−D

dt

)
D + dv < dm ≤ D + dc ,

(E.8)

where dv is the van der Waals separation distance, D is the diameter of the CNT, dm is the
minimum distance between two axes of close CNTs, and dc is the cut-off distance beyond
which electron hopping does not occur. The tunnelling characteristic length is given by dt =

ℏ/
√
8m∆E where ℏ = h/2π is the reduced Planck’s constant. The distance between two CNT

is assumed to be no less than the van der Waals separation distance. For a distance d between
two CNTs, the probability function in Equation (E.8) is approximated as τ = exp(−d/dt).
Upon substituting the probability function in Equation (E.7), one obtains

Rt =
h

2Me2
exp

(
4πd

h

√
2m∆E

)
. (E.9)
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Figure E.1: Variation of parameter M with ∆E and d.
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Comparing the two approaches, replacing parameter M in Equation (E.9) by 1
2hd

At
√
2m∆E

yields Equation (5.3.1). It is noted that while the number of conductive channels M is constant,
1

2hd
At
√
2m∆E varies with distance d. Given the conductivity of the interphase layer by

K int = d/(AtRt), the parameter At cancels out in the Simmons model, while in the alternative
model, the value of At needs to be determined. Chanda et al. (2021) considered four different
possible cases for the area available for electron tunnelling between CNTs. For the most common
case, the area available for tunnelling is given by At = D2.

To contrast these two methods, M = 1
2hd

At
√
2m∆E is plotted for different values of ∆E

and d in Figure E.1. The tunnelling area is considered as At = D2 with the diameter chosen
to be D = 10 nm. The graph demonstrates the high sensitivity of these parameters, indicating
that careful consideration is necessary when using the methods.
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