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Abstract

While the output beams from laser systems are usually homogeneously polarised, the increasing
interest in recent years to shape light with a spatially varying polarisation profile, the like of
vector and Poincaré beams, has prompted developments of amplitude and phase modulators, the
likes of digital micromirror devices (DMDs), spatial light modulators (SLMs), and vector vortex
plates (VVP), offering unprecedented control and flexibility in shaping complex light fields. In
this work, we provide a detailed description of beam shaping techniques, with an emphasis on
generation methods for experimental applications, as a means to evaluate the performance of our
single-shot polarimeter utilising a set of unbiased generalised measurements for full polarisation
state reconstruction of the light field.

Our research extends to interactions of light fields with rubidium vapours, utilising coher-
ent laser diodes with several megahertz of frequency tunability, housed within external cavities, for
use in applications of atomic spectroscopy and with particular interest in polarisation spectroscopy
(polspec). This spectroscopic technique, consisting of an optically pumped and magnetically
shielded atomic medium, provides a high-resolution Doppler-free signal for use in laser frequency
stabilisation. In this work, we combine this technique with our understanding of vector beam
generation and detection to introduce a Doppler-free spectroscopic technique utilising a spatially
varying probing signal to measure the magneto-optical effects in the region near resonance. This
novel spatially resolved approach could allow for a new kind of modulation-free, perhaps one-shot
measurement of laser frequency with applications in laser stabilisation for quantum technology.
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A Letter to the Reader

It was always my objective to write this thesis in a language that a graduate or perhaps even an
undergraduate student with a fundamental understanding of various physics-based concepts could
pick up and comprehend, offering them an insight into the world of experimental optics. Whether
I managed to achieve my objective is an entirely different matter, subject to the judgement of our
dear readers. However, to aid me in my quest, I have included many figures illustrating the various
ideas and phenomena we will encounter in this thesis. Additionally, I have opted to expand as
much as possible on any calculations or descriptions I believe could be challenging for the reader
to understand. Finally, I have included many footnotes scattered throughout this work, providing
further explanations where I deem necessary, that otherwise do not fit in the main body of the thesis.

I would like to state that this document is the product of over four years of work and, at
times, might read more like a journal, where I share my knowledge and experiences with the
occasional story, offering the reader a glimpse into my time as a PhD student at the University
of Glasgow. Additionally, I would like to emphasise that despite me being the sole author of this
thesis, it is without a doubt the result of the combined effort of many of those I had the privilege
of working with and learning from throughout the years, and to acknowledge their contributions,
I write this thesis in the third person.

Before we start, I would like to briefly state that the notation used in this thesis will be
defined as we go along; however, we conform to the norm found in literature where bold letters
appearing in equations refer to vector quantities. Additionally, the majority of the schematics of
experimental setups were created using the ComponentLibrary package developed by Alexander
Franzen, which can be found in [1].
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jected along Ĥ and V̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

D.2 Experimental and theoretical intensity against polar angle for the q = 1/2 hybrid
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Introduction

Light could very well be mankind’s oldest field of study, dating back to the civilisations of the
ancient world [2, 3]. However, over the centuries, humanity’s understanding of the nature of
light rapidly developed, leading to many great scientific discoveries and the development of the
electromagnetic theory [4]. Perhaps the most notable achievement in recent years is the process
of light amplification via stimulated emission of radiation (L.A.S.E.R.), theoretically proposed by
Albert Einstein in 1916 [5] and later implemented experimentally by Theodore Maiman in 1960
[6], offering access to the first monochromatic and coherently light source in the visible spectrum.
Over the years, great strides have been made in the development of laser technologies, giving birth
to powerful and versatile systems (like the Ti:Sapphire [7]), providing extensive control over the
tuning frequency of coherent electromagnetic radiation ideal for a variety of applications ranging
from chemical analysis [8] to gas sensing [9, 10] and even more fundamental research in atomic
physics [11], utilising electromagnetic interaction detectors the likes of cameras and photodiodes to
obtain information on the behaviour of the system.

However, the majority of these devices are concerned with the spatial structure of light (i.e.
intensity and colour), perhaps as a consequence of the human eye’s ability to register information
about these parameters from its surroundings. Another property of light encoded into its spatial
structure is the phase, which has implications for coherent light sources (i.e. light sources with a
stable phase relationship between different points in space or time), leading to interference effects.
Additionally, it contributes to the spatial structure of transverse modes of propagation, such as
Gaussian beams (see Section 1.5 for more information). This spatial phase should not be confused
with the phase difference between orthogonal polarisation components, which determines the po-
larisation state of the light field. Polarisation provides an additional degree of freedom for the
light, representing the orientation of the light field oscillation, an interesting optical property that
plays a central role in our research here in the optics group at the University of Glasgow, as will
be evident in the coming chapters.

In Part I of this thesis, we heavily focus on building a solid understanding of the properties
of light, with an interest in the generation and manipulation of beams with varying polarisation
structures for experimental use. In Chapter 1, we introduce the electric field in the paraxial approx-
imation as a solution to Maxwell’s equations and develop an understanding of light polarisation
using different mathematical and graphical representations before discussing various techniques for
manipulation of polarisation structures. Finally, we conclude our introductory section on polarisa-
tion by examining experimental techniques for the detection of light polarisation utilising Stokes
tomography. In the remainder of the chapter, we introduce different transverse modes of prop-
agation, called Gaussian modes, as solutions to the Helmholtz equation. The energy content of
these Gaussian modes is bound within a finite space, making them realistic solutions to physically
realisable light fields in an experimental setting.

In Chapter 2, we focus on ideas of beam manipulation, discussing reflection of light and the
Jones matrix of mirrors, along with imaging of beam profiles and the focusing of Gaussian modes.
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We then briefly mention the concepts of birefringence and dichroism, two very important properties
for understanding the manipulation of light amplitude and polarisation profile, with a recurring
theme in later chapters of this thesis. We finally conclude the chapter by introducing digital
micromirror devices (DMD) and vector vortex plates (VVP), two methods for the generation of
vector beams we extensively use in our experiments. The DMD is a dynamic binary amplitude
modulator, utilising holograms for generation and manipulation of complex vector fields, while a
VVP offers static generation of vector beams via birefringent effects. The way they work will be
thoroughly discussed in this chapter.

Finally, we arrive at the last chapter in Part I, which details our work realising a single-shot
polarimeter with generalised measurements. In Chapter 3, we combine all the knowledge we have
accumulated so far, and working with our collaborators, we investigate an alternative method
of polarisation detection using a unique experimental configuration. In this setup, the incoming
beam is projected onto a set of unbiased projection operators, forming a positive operator value
measure (POVM), which entails a reduction in the required measurements for polarisation state
reconstruction from six with Stokes tomography down to just four. This chapter goes into extensive
detail on the background of generalised measurements and our POVM states before introducing
the experimental realisation, then discussing our results in comparison to Stokes tomography and
theory before concluding with an introduction to the subsequent work that followed, building on
our initial investigation.

In Part II of this thesis, we shift our focus to the interaction of light with matter, with a great
interest in observing and quantifying the magneto-optical effects around resonance experienced by
vector vortex beams interacting with rubidium vapour. In Chapter 4, we build our understanding
of how light interacts with matter, introducing the atomic structure of rubidium and discussing
the processes of light emission and absorption, leading to the simple two-level system of matter-
light interaction described by the Bloch equations. We then explore the conditions leading to the
Doppler broadening effects observed experimentally, before discussing various pumping schemes
of light with different polarisation structures and the conditions required to drive them. Finally,
we introduce the rate equations of multilevel systems and observe the effect of the two circular
polarisation structures on the population of the atomic states.

The quantised nature of atomic energy levels necessitates the matching of the transition energy
to the photon frequency for excitations to occur, requiring precise control over the laser frequency.
Which is why in Chapter 5 we provide a detailed description of our homemade frequency-tunable
external cavity diode lasers (ECDL), constructed from a laser diode and a grating in what is
commonly referred to as the enhanced Littrow configuration. We then introduce Doppler free
spectroscopy as the method for error signal generation for laser frequency stabilisation, followed
by exploring the use of acousto-optic modulators (AOM) as a means for laser frequency control,
before finally concluding with a brief investigation into the effects of power broadening on transition
linewidth across varying ratios of pump and probe powers in saturated absorption spectroscopy
(satspec). This investigation helped us understand the ideal power settings to generate an optimal
Doppler-free signal.

Chapter 6 marks the last chapter in this thesis, combining all the concepts encountered in
both parts to realise an experimental configuration of Doppler free spectroscopy utilising a vector
probe beam. We first introduce the necessary theoretical concepts required for the modelling of
our system, starting with the derivation of the electric susceptibility, which we use to compute the
complex refractive index and obtain an expression for the absorption and dispersion coefficients
of the light field. We then introduce a method for calculating the optical density based on the
Beer-Lambert law and use it to estimate the number of atoms that interact with our light field.
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The next section introduces the Faraday effect, a magneto-optical effect causing a rotation of the
plane of linear polarisation as a consequence of external magnetic fields, which plays an impor-
tant role in our experiment. As a starting point and to lay the groundwork for our research, we
thoroughly investigate a polarisation spectroscopy (polspec) setup, utilising an optically pumped
medium housed in a magnetically shielded cell, permitting a component of the earth’s magnetic
field to enter the vapour cell along the beam propagation direction, driving atomic transitions with
circularly polarised light σ±. The induced circular birefringence and dichroism in the medium give
rise to preferential absorption and dispersion of the light field, which are necessary for the genera-
tion of the polspec signal. In the last section of this chapter, we provide a detailed description of
all changes to the initial polspec setup to realise an experimental configuration for spatial polarisa-
tion spectroscopy (spatpolspec). In this work, we investigate the interaction of vector vortex light
with rubidium vapour at room temperature, with the intention of establishing a pattern between
variations to the spatial structure of the output beam and the frequency of the light source, in
the hopes of laying the groundwork for the development of a new method of modulation-free, per-
haps one-shot measurement of a spatially varying frequency signal for laser locking purposes. This
section provides extensive descriptions of our experimental findings and analysis techniques before
concluding with a comparison between our results and those generated with a numerical model.
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PART I

LIGHT, POLARISATION AND
POLARIMETRY
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Chapter 1

The electromagnetic wave and
polarisation

1.1 Introduction

Maxwell’s equations and the Lorentz force provide a complete picture of the classical behaviour of
electromagnetic radiation. Following the literature in [2, 12], we develop a mathematical under-
standing of the wave nature of electromagnetic radiation, starting with the electric wave solution of
Maxwell’s equations, leading to the development of a quantitative description of light polarisation
before finally introducing and examining the characteristics of transverse modes of propagation.

1.2 Light the classical wave

In their most general differential form, Maxwell’s equations in the presence of matter and charge
are given by,

∇ ·D = ρ, (1.2.1)

∇ ·B = 0, (1.2.2)

∇× E = −∂B
∂t
, (1.2.3)

∇×H = J+
∂D

∂t
, (1.2.4)

where E and H are the electric and magnetic fields, respectively, D the electric displacement, B
the magnetic flux density, ρ the charge density, J the current density, and t the time. In Cartesian
coordinates, the nabla or del operator is given by ∇ = ( ∂

∂x
êx +

∂
∂y
êy +

∂
∂z
êz), where {êx, êy, êz} are

basis vectors1. The electric displacement D (sometimes called the electric flux density) shares the
following relationship with the electric field E,

D = ε0E+P = εE, (1.2.5)

1The operations ∇ ·A and ∇×A are known as the divergence and the curl of A, arising from taking the dot (·)
and cross (×) product of A respectively. These are localised quantities, where the divergence measures the tendency
of a field to behave as a point source and the curl the infinitesimal rotation of the vector field.
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where P is the polarisation density, ε is the permittivity, a measure of the polarisability of a
medium, given by ε = εrε0, where εr is the relative permittivity unique to the medium and ε0
is the permittivity of free space. Generally, any polarisation is induced by the E-field; however,
certain dielectric materials can be manufactured with permanent polarisation, whose effects are
characterised by the P-field. In a similar fashion, the magnetic field H and the magnetic flux
density B share the following relation,

B = µ0H+M = µH, (1.2.6)

where M is the magnetisation density and µ is the permeability, a measure of the magnetisation
of a medium, given by µ = µrµ0, where µr is the relative permeability and µ0 is the permeability
of free space. Any external contribution to the B-field is accounted for by the M-field; a prime
example of such contributions are ferromagnetic materials with permanent magnetisation.

To derive an equation for the propagation of the electric field E, we assume our light field is
propagating in vacuum (εr = µr = 1) in the absence of any charges (ρ = J = 0) or external fields
(P = M = 0). These assumptions help significantly reduce the complexity of Maxwell’s equations
to the vacuum state equations,

∇ · E = 0, (1.2.7)

∇ ·B = 0, (1.2.8)

∇× E = −∂B
∂t
, (1.2.9)

∇×B = µ0ε0
∂E

∂t
. (1.2.10)

To derive an equation for the Electric field E, we take the curl of Eqn. 1.2.9,

∇× (∇× E) = −∂(∇×B)

∂t
, (1.2.11)

using the vector identity ∇ × (∇ × E) = ∇(∇ · E) − ∇2E, and substituting in Eqn. 1.2.7 and
Eqn. 1.2.10 into Eqn. 1.2.11, we end up with,

∇2E = µ0ε0
∂2E

∂t2
. (1.2.12)

The product of the permeability and susceptibility µ0ε0 are related to the speed of light c by
c = 1/

√
µ0ε0 ≈ 3.00× 108ms−1. Substituting this into Eqn. 1.2.12, we obtain the common form of

the equation found in literature,

∇2E =
1

c2
∂2E

∂t2
. (1.2.13)

The above equation is known as the wave equation of E, a second-order partial differential
equation (PDE) with a series of analytic solutions. Luckily, these solutions can be easily calculated
using the separation of variables method, where the simplest solution is given by the plane wave
solution,

E(r, t) = E0r exp
[
i(k · r− ωt+ ϕ)

]
êr, (1.2.14)
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where r = {x, y, z} and t are the spatial and temporal coordinates respectively, E0r is the amplitude,
ω is the angular frequency defined as ω = 2πν, where ν is the wave frequency and k the wave vector,
pointing in the direction of wave propagation and perpendicular to surfaces of constant phase, as
illustrated in Fig. 1.1a. Mathematically, they represent minima and maxima in the wave oscillation
profile and are locally perceived as flat planes by the propagating wave, separated by the wavelength
λ, as shown by the red and blue surfaces in Fig. 1.1b respectively. We define the magnitude of the
wave vector as |k| = 2π/λ, where λ is the wavelength. Here ϕ is the phase offset (defined as the
phase at r = t = 0), where i =

√
−1 is the imaginary number, and the basis vectors êr describe

the oscillation of the E-field in the specified direction plane.

Figure 1.1: Surfaces of constant phase corresponding to the wave minima (red) and maxima (blue).
a) An illustration of a point source producing electric fields propagating in all directions along circles
representing surfaces of constant phase. b) A close-up of the phase surfaces, where locally these
surfaces are flat planes separated by the wavelength λ. The E-wave propagates in the direction of
the k vector, highlighted by the green arrow.

It is worth mentioning that Maxwell’s equations can be solved in a similar fashion to derive
an equation for the propagation of the B-field2, however, magnetic field contributions are not
considered in the first part of this thesis3, but plays a crucial role in our experiment with matter-
light interaction, as we shall see in the later chapters of this thesis.

1.3 Polarisation

1.3.1 A quantitative description

In the previous section, we derived an expression for the propagation of the electric field from
Maxwell’s theory. The orientation (or oscillation) of the propagating wave defined by the unit
vector êr in Eqn. 1.2.14 quantifies a key property of the electric field, namely the polarisation.

2Note in some literature, the magnetic flux density B is sometimes called the magnetic field. Generally it is a
labelling choice; however, under certain conditions (i.e. M = 0), they are interchangeable.

3Since the B-field is orthogonal to the electric field, E, it is of no consequence to us; however, the two quantities
share a straightforward relationship given by the Lorentz force F = q(E+ v ×B), where q is the elemental charge
and v is the particle velocity.



CHAPTER 1. THE ELECTROMAGNETIC WAVE AND POLARISATION 8

Given that any linear superposition of plane waves is also a solution to the wave equation 1.2.13,
the electric field for a wave propagating in the z-direction is given by,

E(z, t) =
1√
2
(E0xe

i(kz−ωt+ϕx)êx + E0ye
i(kz−ωt+ϕy)êy)

=
1√
2
(E0xe

iϕx êx + E0ye
iϕy êy)e

i(kz−ωt),
(1.3.1)

where êx and êy are basis vectors indicating wave oscillations along the x and y directions, respec-
tively. In terms of the electric field, we define the beam intensity as follows,

I(z, t) =
∣∣E(z, t)∣∣2 = E(z, t)E∗(z, t), (1.3.2)

where E∗(z, t) denotes the complex conjugate of E(z, t). The superimposed electric field amplitudes,
along with the phase difference between the two, can generate an infinite number of polarisation
possibilities. However, there are special cases of the electric field orientation, as a consequence of
certain conditions obeyed by the amplitude E0x, E0y and phase components ϕx, ϕy, that generated
useful polarisation structures. The wave represented by Eqn. 1.3.1 depicts a polarisation structure
commonly known as elliptically polarised 4. Fully polarised beams are always elliptical; however,
there are two special cases of elliptical polarisation with unique and simplified structures, known
as linearly and circularly polarised. Let us consider the simplest polarisation case, assuming the
y-component of the wave does not exist (i.e. E0y = 0), we denote the E-field of a wave oscillating
in the x-direction, propagating along z by,

E(z, t) =
1√
2
E0xe

iϕxei(kz−ωt)êx ≡ Ĥ. (1.3.3)

In literature, this electric field orientation is a form of linear polarisation called horizontally
polarised (Ĥ). Now we consider another special case of linear polarisation that requires equal
amplitude and phase between the polarisation components: E0x = E0y = E0 and ϕx = ϕy = ϕ,

E(z, t) =
1√
2
E0(êx + êy)e

iϕei(kz−ωt) ≡ D̂. (1.3.4)

This type of polarisation is knowns as diagonally polarised (D̂), on account of the equal
amplitudes between the two polarisation components, ensuring the oscillation is occurring at 45°
with respect to the horizontal. In the case where the electric field amplitudes are not equal (i.e.
E0x ̸= E0y), the polarisation angle θ is given by θ = tan−1(E0y/E0x), as illustrated in Fig. 1.2a.
Pure linearly polarised light has no ellipticity, and any linear polarisation structure formed by
superimposing the two polarisation components along x and y must have a phase shift equal to a
multiple of π (i.e. ϕy − ϕx = nπ, where n ∈ Z)5. Conversely, elliptically polarised light exhibits
variations in the electric field oscillation, where the amplitude and phase of one (or both) of the
polarisation components change throughout propagation, tracing an ellipse in space as seen in
Fig. 1.2b. When discussing phase variations of the light field, we usually refer to the relative phase
between the two polarisation components and can express Eqn. 1.3.1 as,

4The name stems from the wave tracing the shape of an ellipse along the x− y plane while propagating along z.
More will be discussed in Section 1.3.3.

5Where Z is the set of all integers.
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E(z, t) =
1√
2
(E0xêx + E0ye

i∆ϕêy)e
i(kz−ωt), (1.3.5)

where we have introduced the relative phase ∆ϕ = ϕy − ϕx. In this formalism, the horizontal
phase ϕx now has a global term that we choose to ignore6. For the special case where an elliptically
polarised beam obeys the equal amplitudes condition (i.e. E0x = E0y = E0) and the two polarisation
components possess a phase difference of ∆ϕ = nπ/2 where n ∈ Z, the beam will trace out a perfect
circle in the x− y plane while propagating along z and hence is said to be circularly polarised. If
we consider a phase shift of −π/2 between the two polarisation components, the electric field is
given by,

E(z, t) =
1√
2
E0(êx − iêy)e

i(kz−ωt) ≡ R̂, (1.3.6)

where such a polarisation structure is known as right-hand circularly polarised (R̂). The
handedness of the polarisation rotation is a consequence of the phase sign.

Figure 1.2: General linear and elliptical polarisation states, both propagating along the z-direction
(into the page)7. The double-sided arrows indicate the oscillation across the plane. Blue indicates
polarisation along y, red is polarisation along x, and purple is a superposition of both. a) Linear
polarisation given by the angle θ. b) elliptical polarisation with a spatially varying vertical compo-
nent as a consequence of a complex phase i and unequal amplitudes along the x and y directions.
The curved green arrow indicates the rotation direction.

The special cases of linearly and elliptical polarisation described in Eqns. 1.3.3, 1.3.4 and 1.3.6
all possess orthogonal polarisation states called vertical (V̂ ), anti-diagonal (Â) and left-hand
circular (L̂) polarisation, respectively, creating a total of six polarisation states. The table below
provides a summary of the conditions for the relative phase ∆ϕ and amplitudes E0x, E0y that must
be obeyed to generate the special polarisation states.

6Experimentally, we measure intensities given by Eqn. 1.3.2, where any global phase terms disappear in the
absolute square value. However, the effect of global phases become important for interferometric setups (more in
Chapter 3), but generally we are forgiven for ignoring these phases in our electric field formalism.

7In literature, a circle with a dot indicates an arrow tip where the axis points out of the page, while a circle with
an “x” indicates the back of the arrow where the axis points into the page.
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Amplitude condition phase condition E(z, t) Polarisation type

E0y = 0 E0xe
iϕx êx Horizontal, Ĥ

E0x = 0 E0ye
iϕy êy Vertical, V̂

E0x = E0y = E0 ∆ϕ = 2nπ E0(êx + êy) Diagonal, D̂

E0x = E0y = E0 ∆ϕ = (2n+ 1)π E0(êx − êy) Anti-diagonal, Â

E0x = E0y = E0 ∆ϕ = (2n− 1
2
)π E0(êx − iêy) Right-hand circular, R̂

E0x = E0y = E0 ∆ϕ = (2n+ 1
2
)π E0(êx + iêy) Left-hand circular, L̂

Table 1.1: Summary of the amplitude and phase conditions to generate the six unique polarisation
structures. Here n is an integer (i.e. n ∈ Z), where Z refers to the set of all integers. Note we only
state the polarisation term of the electric field E(z, t); the propagation term ei(kz−ωt) is implied.

Note that superimposing multiple elliptical polarisation profiles can generate a linearly polarised
output beam and vice versa. Generally speaking, the sign of the diagonal or anti-diagonal and
right or left circular polarisation basis is subject to the chosen frame of reference. In this thesis,
we define the polarisation along the beam propagation. However, it is important to consider the
frame of reference when recording images using image sensors like complementary metal-oxide
semiconductors (CMOS) or charge-coupled devices (CCD), as the recorded image might not agree
with the defined coordinate frame of the polarisation states. These six orthogonal polarisation
states form what is known as the Stokes basis and are mutually unbiased in their measurement8

and are graphically represented in Fig. 1.3 below.

Figure 1.3: Electric field oscillation of the six unique polarisation structures of the Stokes basis.
From top left to bottom right, the polarisation is: horizontal, diagonal, right-left circular, vertical,
anti-diagonal, and left-hand circular. The waves are propagating with respect to the frame of
reference indicated by the green arrow.

8The idea of bias in the reconstruction of input states will be extensively explored in a later chapter of this thesis.
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1.3.2 Formalism and manipulation

So far, we have described the oscillating nature of electromagnetic waves and associated the orien-
tation of the oscillation with different polarisation states. There are some well-known mathematical
formalism that deal with polarisation descriptions and the interaction of light with optics through-
out propagation. The most common representations are Jones calculus and Mueller calculus. In
this section, we make use of the Jones formalism, taking advantage of its simplified nature to de-
scribe the manipulation of the polarisation state. Since the plane-wave solution is assumed, we
only concern ourselves with the transverse polarisation profile, mathematically characterised by a
2× 1 vector as follows,

E =

Ex

Ey

 =

E0xe
iϕx

E0ye
iϕy

 =

 E0x

E0ye
i∆ϕ

 , (1.3.7)

where in the last expression we once again consider the phase difference between the two polarisation
components ∆ϕ = ϕy − ϕx, ignoring any global phase terms. When compared with Eqn. 1.3.5, we
consider the polarisation of the beam at a fixed point in space and time (we choose the origin for
simplicity, i.e. z = t = 0). This vector is known as the Jones vector. Once again, the intensity
is given by the modulus squared of the electric field |E|2, as follows,

I = E∗E =

(
Ex Ey

)Ex

Ey

 = |Ex|2 +
∣∣Ey

∣∣2, (1.3.8)

where E∗ denotes the complex conjugate of the electric field E. Note Ex and Ey are the horizontal
and vertical components of the electric field from Eqn. 1.3.7 respectively9. In the plane wave
solution, the electric field in the direction of propagation is zero (Ez = 0)10, however, this does
not imply the longitudinal polarisation component (along the z-direction) does not exist. In fact,
longitudinal polarisation has been a subject of study in previous literature in experiments utilising
strong focusing techniques [13–15]. Nevertheless, such focusing techniques are beyond the scope of
this thesis11, and we only concern ourselves with the transverse polarisation profile (x, y directions)
of the electric field. It is important to note that Jones notation only works with fully polarised
light. To represent the polarisation basis, we require our vectors to be normalised. In order to
achieve this, we demand that the intensity in Eqn. 1.3.8 equals 1. Some Jones vectors that meet
this requirement are,

Ĥ =

1

0

 , V̂ =

0

1

 . (1.3.9)

These are the Jones vector representations of the horizontal and vertical polarisation states,
respectively. Now if we consider a superimposed state, similar to the ones in Table 1.1, by using

9Some literature prefers Eh and Ev instead; however, they both denote the same quantities.
10We easily observe this by substituting Eqn. 1.2.14 into Eqn. 1.2.7 and obtain k ·E = 0, stating the electric field

does not exist in the direction or propagation.
11The paraxial theory we developed for the electric field relies on small angles with the optical axis. However,

strong focusing involves large angles, which violates our initial assumption.
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Eqn. 1.3.9 we can construct an expression for the diagonal polarisation state, D̂ = c(1 1)T , where c
is a normalisation constant. Now we check to see if the vector D̂ is indeed normalised by substituting
it into Eqn. 1.3.8 and setting I = 1 once more. Doing so gives us a value for the normalisation
constant c = 1/

√
2. By extending this treatment to all the polarisation states in Table 1.1, we

obtain an expression for the normalised Jones vectors of the six different polarisations,

Ĥ =

1

0

 ,

D̂ =
1√
2

1

1

 ,

L̂ =
1√
2

1

i

 ,

V̂ =

0

1

 ,

Â =
1√
2

 1

−1

 ,

R̂ =
1√
2

 1

−i

 ,

(1.3.10)

where the imaginary number i indicates a phase shift of π/2. Two waves are said to be orthogonal
if their state of polarisation, represented by the complex amplitudes E1 and E2, obeys [16],

E1 · E∗
2 = 0. (1.3.11)

From Eqns. 1.3.10, it is much easier to see that any combination of horizontal/vertical,
diagonal/anti-diagonal, and left-circular/right-circular are indeed orthogonal to one another, obey-
ing the condition in Eqn. 1.3.11 Ĥ · V̂ = D̂ · Â = R̂ · L̂ = 0 and confirming their unbiased nature
in polarisation state reconstruction.

Any optical element acting on the electric field throughout propagation can be represented
by a 2 × 2 matrix called the Jones matrix, JM . These matrices are considered transformation
matrices that produce an output Jones vector Eout via the standard rules of matrix multiplication
(i.e. Eout = JMEin). Optical elements that manipulate beam polarisation are called polarisation
optics ; the most common are polarisers and phase retarders. A polariser is a dichroic element (see
Section 2.4 for more information) that works by absorbing (or reflecting) the light perpendicular
to its transmission axis, which is useful in reducing the beam intensity. Their Jones matrix is given
by [17],

J′
pol =

Tx 0

0 Ty

 , (1.3.12)

where Tx and Ty are the transmitted light along the horizontal, x and vertical, y axes, respectively.
In this notation, a 100% light transmission corresponds to Tx,y = 1, while 0% of the light being
transmitted is denoted by Tx,y = 0. In an experimental setting, one can use a rotation mount (like a
Thorlabs RSP1/M) to rotate the transmission axis of the polariser, hence affecting the transmission
coefficients from Eqn. 1.3.12. Mathematically, this rotation is given by the transformation,

Jpol = R(−θ)J′
polR(θ), (1.3.13)

where R(θ) is called the rotation matrix and given by,
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R(θ) =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 , (1.3.14)

with the angle θ made with respect to the horizontal axis. Inserting the rotation matrix and
Eqn. 1.3.12 into Eqn. 1.3.13 yields,

Jpol =

 Tx cos
2 θ + Ty sin

2 θ (Tx − Ty) sin(θ) cos(θ)

(Tx − Ty) sin(θ) cos(θ) Tx sin
2 θ + Ty cos

2 θ

 . (1.3.15)

For an ideal polariser with the transmission axis oriented flat along the x-axis, we expect
maximum transmission along the horizontal with no transmitted light in the vertical (i.e. Tx = 1
and Ty = 0). This simplifies the Jones matrix into the following,

Jpol =

 cos2 θ sin(θ) cos(θ)

sin(θ) cos(θ) sin2 θ

 , (1.3.16)

where θ is the polariser angle with respect to the horizontal axis. We see from the Jones matrix
above that we expect maximum transmission of horizontally polarised light when θ = 0, and
similarly for vertically polarised light when θ = π/2. Unfortunately, this simplified ideal matrix is
not an accurate representation of polariser behaviour in an experimental environment. In reality,
the polariser’s ability to absorb light perpendicular to its transmission axis is given in terms of an
extinction ratio.

Figure 1.4: A polarising beam splitting
cube. The cube transmits Ĥ while re-
flecting V̂ with an added phase.

This extinction ratio is determined by certain parame-
ters (e.g. the material the polariser is manufactured from)
and is defined as the ratio of maximum to minimum trans-
mission. Ideally, a very high extinction ratio is desirable
for all polarisation optics, especially for tomography pur-
poses (more in Section 1.4), and achieving it requires a
careful selection of the right materials. Most conventional
polarisers are polymer-based; the ones available for our
work at 780nm consist of a dichroic film inside N-BK7
glass and offer an extinction ratio of > 400 : 1 (Thorlabs
LPNIRE100-B). Their low extinction ratio hinders their
ability to effectively absorb unwanted polarisation struc-
tures, especially for higher-intensity beams, which is why
they are best avoided in a tomography setup. However, a
nano-particle polariser covering our wavelength of interest
can offer an extinction ratio of up to > 100, 000 : 1, suffi-
cient to behave more like the perfect polariser represented
by Eqn. 1.3.16, with much less polarisation cross-talk.

There are types of polarisation optics that work via reflection, where an incident beam is instead
split into its two orthogonal polarisation states, with one of the components being transmitted while
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the other is reflected. An example of such an optical element is a polarising beam splitter (PBS)12.
Generally, they come in the form of a thinly coated piece of glass (commonly named economy
PBS) or otherwise a cube made of two prisms bound together with cement and dielectrically
coated at the hypotenuse, introducing a birefringence (see section 2.4) in the medium, enabling the
transmission of a horizontally polarised beam while reflecting any vertically polarised light. Similar
to polarisers, PBS also have extinction ratios governing their performance. In fact, some specific
laser line PBS offer high enough extinction ratios that could replace a polariser for tomography
purposes. Mathematically, a PBS cube is described by the following Jones matrices,

JT
pbs =

1 0

0 0

 , JR
pbs =

0 0

0 i

 , (1.3.17)

where JT
pbs and JR

pbs are the transmission and reflection matrix of the PBS, respectively, and i is the
imaginary number. From the equation above, we expect horizontally polarised light to transmit
through the PBS and vertically polarised light to reflect off the PBS, picking up an additional π/2
phase, as shown in Fig. 1.4. Despite the usefulness of polarisers and PBS, they work by manipulating
the intensity or beam paths, respectively; however, the polarisation output remains fixed. Instead,
we use waveplates to manipulate the polarisation without changing the beam intensity. Waveplates,
or phase retarders, are birefringent materials that possess fast and slow axes and are usually made
of some form of crystal or polymer13. As the name suggests, a polarisation component oriented
with respect to the fast axis of the waveplate will propagate faster than its orthogonal polarisation
component, introducing a phase delay between the two and changing the polarisation of the beam.
This delay is given by [2],

∆ψ =
2πd∆n

λ0
, (1.3.18)

where d is the waveplate thickness, λ0 is the light wavelength in vacuum, and ∆n is the difference
between the refractive index of the material along the slow and fast axes, ∆n = nslow − nfast. The
angle of ∆ψ is given in radians. We can implement a similar treatment to the matrix in Eqn. 1.3.12
to derive an expression for a general linear phase retarder. For a phase plate with an angle θ along
the x-axis, where the Jones matrix is given by [17, 18],

JLPR = e
iδ
2

 cos2 θ + e−iδ sin2 θ (1− e−iδ) sin(θ) cos(θ)

(1− e−iδ) sin(θ) cos(θ) sin2 θ + e−iδ cos2 θ

 , (1.3.19)

where δ is the relative phase difference between the fast and slow axes of the retarder. Typically,
there are two different types of linear waveplates: a half-wave plate and a quarter waveplate
(sometimes abbreviated as HWP, or λ/2 and QWP, or λ/4 respectively).

A HWP works by introducing a π phase shift between the polarisation components, equivalent to

12The most common PBS are ones that split the beam into the Ĥ and V̂ components; however, they can be
manufactured to split the beam into other orthogonal components like R̂ and L̂.

13An interesting consequence of the chosen waveplate material is the deviation angle to the beam path. Our
quartz waveplates (Thorlabs WPH10M) deviate the beam path by an angle of < 10 arc-seconds, 30 times smaller
than a similar polymer-based waveplate (Thorlabs WPH10E series), with a deviation angle of < 5 arc-minutes.
These angles are negligibly small in free-space beam propagation but are sufficient to misalign any beams collimated
through a pinhole or fibre.
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a rotation in the polarisation structure of 2θ, with an additional change in handedness experienced
by elliptical and circularly polarised light (i.e. right-hand circular light becomes left-hand circular
after propagating through the HWP). The Jones vector for a HWP is given by,

JHWP = e
iπ
2

cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

 . (1.3.20)

In a similar fashion, a QWP introduces a π/2 phase shift between the polarisation components.
A linearly polarised light propagating through a QWP with its axes oriented at 45° will generate a
circularly polarised output beam. The reverse is also true, as the QWP will undo any circularity
in the beam profile, turning a right or left-hand circular input into a linearly polarised output.
However, in the case where a linear input beam is not at 45° relative to the waveplate axes, the
output beam is expected to be elliptically polarised. A QWP has the following Jones matrix,

JQWP = e
iπ
4

 cos2 θ − i sin2 θ (1 + i) sin(θ) cos(θ)

(1 + i) sin(θ) cos(θ) sin2 θ − i cos2 θ

 . (1.3.21)

Incidentally, there are different kinds of phase retarders called vector vortex plates, more com-
monly known as q-plates. These q-plates can generate vector beams from linear input light, making
them ideal replacements for complicated beam-shaping methods. A beam that contains multiple
polarisation structures in its transverse profile is known as vector beams or a complex light
field. These beams are a recurring theme in this thesis, where the techniques for their generation
and manipulation will be discussed in the following sections.

1.3.3 Polarisation ellipse and the Poincaré sphere

Until now, we have primarily considered the mathematical representation of polarisation in the
context of Jones calculus. However, there is a graphical representation based on the ellipse equation
of the electric field that provides a useful visual illustration of light polarisation. Following the
theory in [2, 17], an ellipse not aligned with the horizontal axis is defined by the equation,(

Ex

E0x

)2

+

(
Ey

E0y

)2

− 2ExEy

E0xE0y

cos(∆ϕ) = sin2(∆ϕ), (1.3.22)

where ∆ϕ = ϕy − ϕx and the propagation terms all cancel out. Since this ellipse equation refers to
the behaviour of the electric field, the equation is known as the polarisation ellipse. As previously
stated, all polarisation is elliptical in nature, where linear and circular are merely special forms of
elliptically polarised light. This makes Eqn. 1.3.22 sufficient to provide a visual description of any
polarisation type we desire. We can express the polarisation ellipse in terms of two angles, namely
the ellipse orientation angle ψ and ellipticity angle χ given by,

tan(2ψ) =
2E0xE0y

E2
0x − E2

0y

cos(∆ϕ)

sin(2χ) =
2E0xE0y

E2
0x + E2

0y

sin(∆ϕ),

(1.3.23)
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where 0 ≤ ψ ≤ π and 0 ≤ χ ≤ π/2. For any polarisation type, we can estimate the shape of
the ellipse using Eqns. 1.3.23, as illustrated in Fig. 1.5a. For example, consider some polarised
beam with a diagonal element (i.e. it could be D̂ or Â), and recall from Table 1.1 that the electric
field amplitudes and the phase difference are given by E0x = E0y = E0 and ∆ϕ = nπ for n ∈ Z,
respectively14. Inserting these values into Eqns. 1.3.23 yields,

tan(2ψ) → ∞ =⇒ ∴ ψ = ±π
4

sin(2χ) = sin(nπ) =⇒ ∴ χ = 0.
(1.3.24)

Here we obtained the ellipticity and inclination angle for both diagonal and anti-diagonal ele-
ments, where the ellipticity is zero for both as expected (since linear polarisation has no ellipticity).
This is illustrated in Fig. 1.5b, by the purple diagonal ellipse (i.e. straight line) of the D̂ polarisa-
tion state. We apply the same treatment for circularly polarised light, where once again the electric
field amplitudes are equal (i.e. E0x = E0y = E0), but the phase difference is now ∆ϕ = (2n+1)π/2,
where n is once again an integer (i.e. n ∈ Z)15. By inserting these values into Eqns. 1.3.23 we have,

tan(2ψ) → ∞ =⇒ ∴ ψ = ±π
4

sin(2χ) = sin

(
(2n+ 1)π

2

)
=⇒ ∴ χ =

(2n+ 1)π

4
.

(1.3.25)

Once again, these are the orientation and ellipticity angles, where the even and odd values of
n correspond to the left and right circular polarised components, respectively, illustrated as a red
circle in Fig. 1.5b below16.

We can re-write the angles in Eqns. 1.3.23 in a pure trigonometric form by introducing the angle
tan(σ) = E0y/E0x (as seen in the inset of Fig. 1.5). By calculating the double angles of the sine
and cosine of σ, we get,

sin(2σ) =
2E0xE0y

E2
0x + E2

0y

cos(2σ) =
E2

0x − E2
0y

E2
0x + E2

0y

,

(1.3.26)

where we use Eqns. 1.3.26 to get the expression,

tan(2σ) =
sin(2σ)

cos(2σ)
=

2E0xE0y

E2
0x − E2

0y

, (1.3.27)

and finally express the orientation angle ψ and ellipticity χ in a more compact form given by,

tan(2ψ) = tan(2σ) cos(∆ϕ)

sin(2χ) = sin(2σ) sin(∆ϕ).
(1.3.28)

14The phase term is slightly different since both diagonal and anti-diagonal components are being considered.
15Once again, this is a general phase expression for both right and left circular polarised.
16The handedness is not considered here, but are opposite for the respective circular components.
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Figure 1.5: Polarisation ellipse of different polarisation states. a) A general polarisation ellipse.
b) Polarisation ellipse for a diagonal and circular state, represented by the purple line and red
circle, respectively. The inset defines the angle σ between the amplitude of the two polarisation
components E0x and E0y used to obtain a purely trigonometric expression for Eqns. 1.3.23.

Although Jones calculus is a useful mathematical tool to represent the polarisation profiles of
light propagating through optical elements or other media, it is limited to describing fully polarised
light only. In the case where a beam is partially polarised17 or unpolarised18, the Jones formalism
breaks down, failing to accurately characterise such beams. The Stokes vector offers a more
general mathematical description, useful to characterise any possible polarisation state. The Stokes
vector is defined as,

S =

(
S0 S1 S2 S3

)T

, (1.3.29)

where the T corresponds to the transpose and the quantities S0, S1, S2, S3 are known as the Stokes
parameters. Often in literature, one might find the Stoke parameters denoted by I,Q, U, V , re-
spectively; however, throughout this thesis, we use the former notation. Once again, this vector
follows the simple rules of matrix multiplication, where optical elements are denoted by 4× 4 ma-
trices known as Mueller matrices19. To populate the Stokes vector, we associate each parameter
with the intensity measurements for a set of two orthogonal polarisation bases, giving the Stokes
parameters the following values for purely polarised light,

S0 = IH + IV = ID + IA = IR + IL

S1 = IH − IV

S2 = ID − IA

S3 = IR − IL.

(1.3.30)

17A light wave with both polarised and unpolarised components.
18A wave with arbitrary polarisation at any given spacial or temporal position.
19Mueller matrices of various optical elements can be found in [2, 17, 18] and many other suitable optics textbooks.
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Figure 1.6: The Poincare sphere de-
picts the three axes associated with
the six polarisation states. The green
arrow is a vector of a pure state on
the sphere surface with a magnitude
of S0, positioned at an angle given by
the polarisation ellipse orientation ψ
and ellipticity χ. The inset is a colour
mapping of the ellipse angles to the
sphere surface.

These parameters satisfy the relation S2
0 ≥ S2

1 +S
2
2 +S

2
3 . From this description, we define S0 as

the total intensity of the beam, calculated from the sum of any two orthogonal polarisation states.
Here S1 is the degree of horizontality or verticality; S2 is the degree of diagonality present in the
beam; and S3 is the degree of circularity in the beam polarisation profile. We relate the Stokes
parameters to the amplitudes of the electric fields in the basis given by Eqn. 1.3.7 as follows,

S0 = ExE
∗
x + EyE

∗
y

S1 = ExE
∗
x − EyE

∗
y

S2 = ExE
∗
y + E∗

xEy

S3 = i(ExE
∗
y + E∗

xEy),

(1.3.31)

where i is the imaginary number and E∗
x, E

∗
y denotes the complex conjugate of Ex, Ey, respectively.

See [19] for a more in-depth description of formalism conversion between Stokes and Jones notations.
The polarisation state denoted by the Stokes parameters can be graphically represented as a vector
pointing from the centre of a unit sphere called the Poincaré sphere. From Fig. 1.6, we observe
that in this representation, all linear polarisation states occupy the sphere equator, while circular
polarised light is positioned at the poles. If we choose to normalise the Stokes parameters by
setting S0 = 1, the vector of pure polarisation states obeying the relation

√
S2
1 + S2

2 + S2
3 = 1

sits on the sphere surface, while partial polarisation states occupy the internals of the sphere (i.e.√
S2
1 + S2

2 + S2
3 < 1). Unlike a sphere in a three-dimensional real space R3, the Poincaré sphere

contains both orthogonal polarisation bases on the same axes, where a change to the orthogonal
polarisation state constitutes an orientation angle shift given by ψ = π/2. Note that one has the
freedom to orient the sphere however desired. As shown in Fig. 1.6, we can express the parameters
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of the normalised Stokes vector in terms of the ellipse orientation angle ψ and ellipticity χ,

S1 = S0 sin(2ψ) cos(2χ)

S2 = S0 cos(2ψ) cos(2χ)

S3 = S0 sin(2χ),

(1.3.32)

where, by rearranging, we derive expressions for ψ, χ in terms of the Stokes parameters,

tan(2ψ) =
S1

S2

sin(2χ) =
S3

S0

.

(1.3.33)

When generating polarisation plots for experimental data, we use a colour scheme (as seen from
the inset of Fig. 1.6) to provide a continuous mapping of the orientation angle ψ and ellipticity χ to
the sphere surface. We demonstrate our colour scheme for the polarisation plots of the six Stokes
basis in Fig. 1.7 below.

Figure 1.7: Polarisation plots of the six Stokes bases. These plots depict the polarisation ellipse in
black, with the Poincaré sphere colour scheme in the background, modulated in opacity according
to the beam intensity.
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1.4 Stokes tomography and polarisation detection

This section provides an overview of the Stokes tomography procedure used to determine light
polarisation. Tomography is the name given to a method frequently used in medical imaging that
creates a final image by combining multiple images together, using electromagnetic radiation to
capture various sections of an object or medium. In the context of Stokes tomography, we
produce six intensity images of the incoming beam projected along the six polarisation states given
by Eqns. 1.3.10 and use these to reconstruct the full polarisation state of the light field using
Eqns. 1.3.30.

It is possible to generate the polarisation information by projecting the incoming light onto
only four different polarisation states20, where a simple example of such a scheme is projecting the
beam onto the polarisation basis: Ĥ, V̂ , D̂, and L̂ (In Chapter 3, we revisit this idea to present
our work investigating a four-state tomography scheme with a unique experimental setup). These
measurements are sufficient to calculate the Stokes parameters using Eqns. 1.3.30. However, such
a scheme is considered biassed in its polarisation state reconstruction, using only a quarter of the
Poincaré sphere (as illustrated in the red outline of Fig. 1.8). In this example, we are estimating
the reconstruction of the Â and R̂ states solely based on the information gathered from projections
made on the other states, assuming an equal reconstruction probability with their orthogonal basis
states (i.e. D̂ and L̂, respectively). In reality, especially in a laboratory setting where noise and
losses are a common occurrence, such an assumption will generate errors in the reconstruction of the
polarisation profile. For this reason, Stokes tomography is done with overcomplete measurements
across all six polarisation bases.

Figure 1.8: Region of the Poincaré
sphere used when performing four-state
tomography with the polarisation basis:
Ĥ, V̂ , D̂, L̂. In this scheme, only a quar-
ter of the sphere is in use.

There are two different methods to calculate the Stokes parameters in an experiment. The
first method requires only two optical elements, namely a polariser (Pol) and a quarter wave

20Four projection measurements is the minimum number of required measurements, more will be discussed in
Chapter 3.
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plate (QWP), along with a detector. The process consists of two steps, where we perform the
measurements for the linear and circular polarisation separately. Ironically, before we can use our
tomography setup, we must first calibrate the system with a light source of a known polarisation
structure. In our experiments, we use a vertically polarised light beam for our calibration21 and
although any light polarisation can be used, this might further complicate the calibration process.
If we assume we have a light source of arbitrary polarisation structure, then a simple PBS placed
along the beam propagation direction will generate Ĥ and V̂ in the transmitted and reflected arms
of the PBS, respectively, which we can use to calibrate our waveplates22.

Polarisation QWP (ϕ) Pol (θ)

Ĥ Not placed 0°

D̂ Not placed 45°

V̂ Not placed 90°

Â Not placed 135°

R̂ 90° 45°

L̂ 90° 135°

Table 1.2: Table of transmission and fast
axis angles for the polariser (θ) and quar-
ter wave plate (ϕ), respectively, to generate
the corresponding polarisation states with
Stokes tomography.

We begin the Stokes tomography calibration by in-
serting a polariser into the beam path and adjusting
the transmission angle, once again aiming to minimise
the light incident on the camera23. This corresponds
to the polariser transmission axis (θ) aligned with the
x-axis (i.e. θ = 0). Although the QWP is not yet
needed, it is best to calibrate it at the beginning while
the vertically polarised light is still in use. The process
is the same; we insert the QWP into the beam path
before the polariser (as shown in Fig. 1.9a) and rotate
its fast axis angle (ϕ) until the beam intensity on the
camera is minimised (corresponding to ϕ = 0)24. Once
the QWP is calibrated, we remove it from the setup
for now.

The system is now ready to perform the measure-
ments. For any input polarisation state, we perform
the measurements by taking a camera image with the
polariser angle (θ) orientated according to the angles
in Table 1.2. These correspond to the measurements
for all linear polarisation states (i.e. {H,D, V,A}). The next step is inserting the QWP into the
beam path after the polariser to perform the measurements for the circular polarisation states (see
Fig. 1.9a). For the circular states, we need to adjust both the angles of the polariser (θ) and the
QWP (ϕ). These angles can once again be found in Table 1.2. Note that the choice of angles
to generate R̂ and L̂ is not unique, as there are other combinations of ϕ, θ that can perform the
same projections. Using the six polarisation state measurement images generated from the classical
method, we calculate the Stokes parameters with the help of Eqns. 1.3.30 and construct the Stokes
vector of the input polarisation beam.

21The choice to use vertical light is deeply rooted in our eyes ability to better differentiate absence of light from
changes in brightness. This is more relevant when using a CCD or CMOS than a powermeter, which was the case
for us most of the time.

22In this case, one might ask, how do we know this beam is actually vertical, given that we deduce the polarisation
of the light field based on the behaviour of the PBS? The short answer is we can’t; however, at some point you have
to trust something; otherwise, if we could generate any polarisation structure reliably, then there would be no need
to perform polarisation state tomography.

23If a PBS is used instead, the comment regarding the transmission angle can be ignored.
24If the fast and slow axis are mixed up, then R̂ will be generated when L̂ is expected and vice versa.
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Figure 1.9: Stokes polarisation mea-
surement schemes. a) A classical
polarisation tomography setup, util-
ising a polariser (Pol) and a quar-
ter wave plate (QWP). The dashed
outlines of the QWP indicate its re-
moval for parts of the measurement
process. b) A modified setup for
Stokes tomography that includes an
extra half-wave plate (HWP), where
all necessary optics are needed for
the measurement procedure.

Although classical Stokes tomography is simple to implement, for a large number of polarisation
measurements25, having to remove the QWP on a regular basis can get very tiresome and could
potentially impede the data collection process. For this reason, we use an altered Stokes tomography
method that includes an additional half-waveplate (HWP) but does not require the constant removal
of any of the optical elements to perform the measurements, as illustrated in Fig. 1.9b.

Polarisation QWP (α) HWP (β)

Ĥ 0° 0°

D̂ 22.5° 0°

V̂ 45° 0°

Â 67.5° 0°

R̂ 67.5° 45°

L̂ 22.5° 45°

Table 1.3: Table of fast axis angles for the
QWP (α) and HWP (β) to generate the six
polarisation states using the altered Stokes
measurement method.

Similar to the previous case, we calibrate the sys-
tem with a vertically polarised beam, minimising the
beam incident on the camera for all three optical ele-
ments, beginning with the polariser and working back-
wards. Once the polariser transmission axis is opti-
mised for horizontal light, it is fixed throughout the
procedure. In this scheme, we change the angle of the
QWP (α) and HWP (β) to generate the polarisation
measurements. We proceed to calibrate the HWP and
QWP in that order, respectively, as demonstrated in
Fig. 1.9b. Once calibration is complete, we perform
Stokes measurements according to the angles in Ta-
ble 1.3, where the Stokes parameters are once again
calculated using Eqns. 1.3.30. It is worth mentioning
that in the modified Stokes method, the polariser can
be replaced with a polarising beam splitter (PBS), re-
quiring no calibration26.

One advantage of not having to remove any of the
optics in the altered Stokes tomography is the ability to automate the measurement process, where
the waveplate rotation is done sequentially. The waveplate is placed in a 3D-printed rotation mount
controlled by a 12V stepping motor. The stepping motor is connected to a commercial stepping
motor control board, controlled by an Arduino27 linked to our experimental computer. This system
can generate the six measurement images in under 10 seconds; however, the time between each
captured image can be slightly sped up or slowed down within reason28. By observing the rotation

25An example is calculating the Mueller matrix of optical elements. See [19] for more information.
26Generally, it is best to use the polariser or PBS available with the largest extinction ratio for a more accurate

polarisation measurement.
27More information on the Arduino pin configuration can be found in [20].
28Sufficient time should be given for the programme to capture an image before instructing the plates to rotate,

which is a minimum of a few seconds. Therefore, there is a limitation for how short the time between image captures
can be, but no limitations for extending the length of time in between.
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mount, we deduce that the stepping motor produced around 508 steps for a full 2π rotation,
resulting in a ratio of approximately 1.41 steps per degree. The rotation mount was designed by
Ermes Toninelli back when he was at the University of Glasgow, and the individual components
are shown in Fig. 1.10.

Figure 1.10: The five 3D-printed components of the waveplate automated rotation mount. A 1-
inch-mounted optic is screwed into the optics holder (green), mounted on a large cog (cyan). The
ring teeth on the large cog are connected to the small cog (yellow) operated by the stepping motor
(grey). A ring bearing (grey) is placed in the central region of the large cog, securing it in place to
the back plate (purple). Finally, a post mount (light grey) is screwed into the back plate, where a
standard Thorlabs 1/2-inch post is attached via an M6 grub screw. The different parts are secured
together with M3 screws, as illustrated by the dashed black lines. Image taken from [20].

There is no doubt the rotating waveplate from Fig. 1.10 is an amazing tool for Stokes tomog-
raphy, especially when a large number of measurements are required. However, there are some
features that could definitely be improved upon. The design itself is too bulky and, at times, could
prove challenging to some of the motors we used in the past. Additionally, the optics holder (green
from Fig. 1.10) is screwed in place to the large cog (cyan from Fig. 1.10) from the cog’s side and
secured by washers placed in the three holes of the optics holder. At times, the screw head can
obstruct the motion of the small cog (yellow from Fig. 1.10), causing the rotating mechanism to
jam and ruin the waveplate calibration. One way of potentially solving this problem is by adjusting
the height of the small cog without sacrificing too much of the contact between the gears. Addi-
tionally, there are far too many teeth in both gear structures, which forces them to be very fine
in construction. What essentially determines the rotation steps is the gear ratio (GR), given by
GR = Nlarge/Nsmall [21], where Nlarge is the number of teeth in the large gear and Nsmall is the
number of teeth in the small gear. By adjusting the number of teeth, one can maintain the number
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of steps for a full rotation while enlarging the teeth, providing better gear traction and ease of 3D
printing29. Finally, the code to operate the rotating waveplates shifts the direction of motion of the
gear rotation for the different Stokes measurements. The teeth on the gears are typically smaller
than the root clearance (space between the teeth) to prevent the gears from becoming stuck. When
the gears stop rotating, their teeth are in contact. However, if the gears were to rotate in the
other direction, the gap between the teeth and clearance would result in a lost motion, known as
gear backlash. Over time, the accumulation of gear backlash misaligns the rotating waveplates,
where recalibration is required. Unfortunately, these changes could not be implemented due to
time constraints.

1.5 Gaussian modes

1.5.1 The Helmholtz equation

Gaussian modes are a family of solutions to the time-independent wave equation with unique
properties appealing for experimental use. The transverse amplitude distribution of many lasers,
some propagation modes of optical fibres, and even Fabry–Pérot cavities with spherical mirrors
possess a Gaussian amplitude distribution [22]30. Additionally, they play a key role in our light
shaping techniques to generate vector vortex and Poincaré beams. In this section, we explore
different families of Gaussian modes, their mathematical form, physical properties, and spatial
structures. In literature, the time-independent wave equation is commonly known as the Helmholtz
equation. To derive the Helmholtz equation, consider the wave equation of the electric field given
by Eqn. 1.2.13, (

∇2 − 1

c2
∂2

∂t2

)
E(r, t) = 0, (1.5.1)

where recall that r = {x, y, z} and t are the spatial and temporal coordinates, respectively. We can
decompose E(r, t) into two functions of its two variables as,

E(r, t) = E(r)T (t). (1.5.2)

This technique, commonly known as separation of variables, is a simple method of solving
partial differential equations (PDE) that possesses a series of analytic solutions31. By substituting
Eqn. 1.5.2 into the wave equation above we are left with,(

∇2 − 1

c2
∂2

∂t2

)
E(r)T (t) = 0

∇2E(r)

E(r)
=

1

c2
d2T (t)

dt2
1

T (t)
.

(1.5.3)

Since the function T (t) depends only on time, the derivative transforms from a partial into a

29Note 3D printing of fine structures requires a printer with a higher resolution. Testing the printer’s capabilities
with a resolution test piece is recommended before committing to a print job.

30Its worth mentioning that many diode lasers do not have a Gaussian intensity distribution.
31Not every PDE has analytic solutions. However, some of the most well-known with analytic solutions are the

wave equation, the heat equation, and Laplace’s equation.
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total derivative. Observe how the left-hand side of Eqn. 1.5.3 above depends solely on r, while
the right-hand side only depends on t. When two equations that depend on two entirely different
variables are equal, there is only one possible solution; they must both be constant. By that logic,

∇2E(r)

E(r)
=

1

c2
d2T (t)

dt2
1

T (t)
= −k2, (1.5.4)

where −k2 is a constant32, leaving us with two equations,(
∇2 + k2

)
E(r) = 0 (1.5.5)

d2T (t)

dt2
− ω2T (t) = 0, (1.5.6)

that are functions of the spatial and temporal coordinates of the propagating wave, respectively.
Here, ω = ck is the angular frequency, and k is now the wave number. We are interested in the
spatial properties of the wave as given by Eqn. 1.5.5, which is a scalar form of the wave equation,
known as the Helmholtz equation. For a monochromatic wave propagating along the z-direction,
assuming the paraxial wave approximation (i.e. the wave angle θ with respect to the optical axis
is very small, such that sin(θ) ≈ θ), the electric field has the form [23][24]33,

E(r) = u(r)e−ikz, (1.5.7)

where u(r) is the complex amplitude and i the imaginary unit. By substituting Eqn. 1.5.7 into
Eqn. 1.5.5 we have, (

∇2 + k2
)
u(r)e−ikz = 0(

∇⊥2 +
∂2

∂z2

)[
u(r)e−ikz

]
+ k2u(r)e−ikz = 0

∇2
⊥u(r)e

−ikz +
∂2u(r)

∂z2
+ 2ik

∂u(r)

∂z
e−ikz = 0,

(1.5.8)

where ∇⊥ is the transverse del operator given by ∇⊥ = (∂2/∂x2 + ∂2/∂y2). In the parax-
ial approximation, the wave is assumed to have slow variations in the propagation direction(
i.e.

∣∣∣∂2u(r)
∂z2

∣∣∣≪ ∣∣∣k ∂u(r)
∂z

∣∣∣) [23, 25]. Incorporating this condition into Eqn. 1.5.8 above, we derive an

expression for the paraxial Helmholtz equation,

∇⊥2u(r)− 2ik
∂u(r)

∂z
= 0. (1.5.9)

Once again, this equation has analytic solutions, some of which will be discussed in the following
sections.

32The constant −k2 is a choice of convenience.
33Note that in order to solve such a second-order PDE correctly, you must first determine whether the differential

equations possess a solution for the three cases where k is positive, zero, or negative. A procedure that a lecturer
in my undergraduate days at the University of Hertfordshire likened to “death by a thousand cuts.” In spite of the
remark, the calculation is not difficult, merely tedious.
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1.5.2 Finite energy solution

The problem with the plane wave solution of the E-field wave equation given by Eqn. 1.2.14 is the
lack of physical restrictions on the wave. This solution states the wave still maintains a transverse
oscillation, even if the transverse space extends to infinity, making it a highly unrealistic solution.
In a physical sense, the energy content of the wave has to be bound within a finite space, and tends
to zero as the space extends to infinity (i.e. E0r → 0 as x, y → ±∞). The most common solution
that satisfies this condition is the Gaussian beam [22, 26],

u(r) =
w0

w(z)
exp

[
−(x2 + y2)

w(z)2

]
︸ ︷︷ ︸

wave amplitude

exp

[
−ik (x

2 + y2)

2R(z)

]
︸ ︷︷ ︸

paraxial term

exp
[
iϕ(z)

]
︸ ︷︷ ︸

phase

, (1.5.10)

where, 

w(z) = w0

√
1 +

(
z

zR

)2

, beam radius (1.5.11)

zR =
πw2

0

λ
, Rayleigh range (1.5.12)

R(z) = z

[
1 +

(
zR
z

)2
]
, radius of curvature (1.5.13)

ϕ(z) = arctan

(
z

zR

)
. Gouy phase (1.5.14)

Here w(z) is the beam width in the transverse profile (or beam spot size), describing the
distance where the field amplitude falls to 1/e (i.e. ∼ 36.8%) of its maximum value. Additionally,
the dependence of the beam radius on the distance along the z-direction, is a clear indication that
the beam size varies throughout propagation. At z = 0, the beam radius reduces to the waist w0, a
point where a Gaussian beam converges to or diverges from as a consequence of diffraction effects
(or focusing) and when the beam radius has reached its minimum. The Rayleigh range describes
the distance when the beam cross-sectional area doubles in size, occurring when the beam radius
w(z) is

√
2 the beam waist w0

34. The Gouy phase accounts for variations in the phase profile of
the wave at the beam waist (see Section 1.5.4 for more information).

The bound nature of the Gaussian wave gives rise to curved surfaces of constant phase. The
wavefront of a Gaussian beam approaches the behaviour of the plane wave solution illustrated in
Fig. 1.1 at the beam waist; however, they are generally parabolic surfaces influenced by the radius of
curvature R(z). From Eqn. 1.5.13, we observe the dependence of the curvature on the beam waist,
suggesting curvier wave fronts are expected for smaller waists and the absence of any curvature at
zero and infinity (as R(z) → ∞). To obtain the expression for the propagating Gaussian wave,
we substitute Eqn. 1.5.10 into Eqn. 1.5.7 to recover an expression of the Gaussian electric field in
radial coordinates, propagating along the z-direction,

E(r, z) =
w0

w(z)
exp

[
− r2

w(z)2

]
exp

−ik( r2

2R(z)
+ z

) exp
[
iϕ(z)

]
, (1.5.15)

34Incidentally, it is also the distance beyond which the beam divergence becomes linear.
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where r = {x, y, z} = {r, z} and r is the radial coordinate35. The beauty of the Gaussian wave is
that the beam profile remains a Gaussian distribution (also called normal distribution) throughout
propagation through transparent optical elements in the absence of aberrations (i.e. polariser, PBS,
lenses, waveplates, etc.), where the beam radius w(z) is the only quantity expected to vary as the
wave travels. We obtain an expression for the intensity profile of the Gaussian wave by inserting
Eqn. 1.5.15 into Eqn. 1.3.2,

I(r, z) =

(
w0

w(z)

)2

exp

[
− 2r2

w(z)2

]
. (1.5.16)

The intensity profile of a Gaussian beam is expected to peak at the beam centre (as shown in
Fig. 1.11); however, the beam radius w(z) now describes the distance where the intensity falls to
1/e2 or 13.5% its highest value.

Figure 1.11: Gaussian beam intensity profile in free space (left image) and as a function of the
radial position (right graph). The dotted line highlights the beam radius at the Rayleigh range zR.

1.5.3 Higher order modes

The proposed solution to the paraxial Helmholtz in Eqn. 1.5.9 was motivated by our desire to find
a realistic solution with finite energy content along the transverse profile. The outcome shown in
Eqn. 1.5.10 pertains to the lowest order among a set of solutions that comply with this constraint.
However, there are other solutions to the paraxial Helmholtz equation that yield sets of complete
transverse higher-order propagation modes with unique spatial structures that are easy to calculate
and use to express any light field as a linear combination of their respective modes. In this section,
we introduce some of these higher-order modes and explore their key properties. The two most
common families of higher-order modes are the Hermite-Gaussian (HG) and Laguerre-Gaussian
(LG) modes. The electric field amplitudes of the HG and LG modes are respectively given below,

35For interested readers, a full derivation of the Gaussian beam profile can be found in [23].
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HGnm(x, y, z) =
w0

w(z)
exp

[
−(x2 + y2)

w(z)2

]
Hn

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)

× exp

−ik((x2 + y2))

2R(z)
+ z

) exp
[
i(1 +N)ϕ(z)

]
,

(1.5.17)

LGl
p(r, ψ, z) = K l

p

w0

w(z)

(
r
√
2

w(z)

)|l|

exp

[
− r2

w(z)2

]
L|l|
p

(
2r2

w(z)2

)
exp [−ilψ]

× exp

−ik( r2

2R(z)
+ z

) exp
[
i(1 +N)ϕ(z)

]
,

(1.5.18)

where n and m are the horizontal and vertical mode indices of HG beams, while l and p are the
azimuthal and radial mode numbers of LG modes, where {n,m, p} ∈ Z+ and l is an integer (i.e.

l ∈ Z)36. Hi(x) are the Hermite polynomials, L
|l|
p (x) are the generalised Lauguerre polynomials,

and N is the mode number. It is worth mentioning that these HG and LG modes are orthonormal
in nature, and therefore we expect the inner product of any two high-order modes with different
indices in the same set to equal zero. The exp [−ilψ] term from Eqn. 1.5.18 denotes the azimuthal
phase of LG mode, which corresponds to the number of full (0 → 2π) phases found in the beam
profile as a multiple of l. Here K l

p is a normalisation constant in cylindrical coordinates given by
[27]37,

K l
p =

√
(2p)!

π(p+ |l|)!

→
∫
dψ

∫
rdr
∣∣∣LGl

p(r, ϕ, z)
∣∣∣2 = 1,

(1.5.19)

where x! denotes the factorial of x. In both HG and LG mode equations, we introduce the variable
N . This quantity is known as the mode number, given by N = n+m for HG modes and N = |l|+2p
for LG modes, and plays an important role in variation to the beam profile as a consequence of the
Gouy phase. All other quantities in Eqn. 1.5.17 and Eqn. 1.5.18 remain the same as before. We
can calculate the intensities of the higher-order modes using Eqn. 1.3.2, to obtain,

IHGnm(x, y, z) =

 w0

w(z)
Hn

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)2

exp

[
−2(x2 + y2)

w(z)2

]
, (1.5.20)

ILGl
p
(r, ψ, z) =

K l
p

w0

w(z)

(
r
√
2

w(z)

)|l|

L|l|
p

(
2r2

w(z)2

)2

exp

[
− 2r2

w(z)2

]
. (1.5.21)

The underlying cubic symmetry in the intensity profile of the HG modes (as seen in Fig. 1.12,
makes the Cartesian coordinate system a suitable choice to represent HG modes. Similarly, LG
modes are expressed in cylindrical coordinates since they possess cylindrical symmetry, as seen in

36Here Z is the set of all integers, and Z+ is the set of positive integers.
37The general form of the normalisation integral is,

∫
dψ
∫
rdrLGl1

p1
(r, ϕ, z)LGl2

p2
(r, ϕ, z) = δp1,p2

δl1l2 , where δ is
the Kronecker delta.
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Fig. 1.13. We note that regions of zero intensity correspond to sharp changes in the phase profile, as
seen in almost all HG modes (except HG00) in Fig. 1.12 and all LG modes with p > 0 in Fig. 1.13.

Figure 1.12: Spatial intensity structure and phase profile of Hermite-Gaussian modes with different
index values.

Figure 1.13: Spatial intensity structure and phase profile of Laguerre-Gaussian modes with different
index values. For LG modes with l < 0, the phase is inverted when compared to modes with l > 0.
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We have previously stated that HG and LG modes form what is known as a complete set
of transverse modes. The implications are that they can be used to generate any desired beam
shape by superimposing multiple different modes from within the specific HG or LG set in the
paraxial approximation. When comparing their equations to Eqn. 1.5.15, we observe changes to
the amplitude and phase (for LG modes) structures; however, the paraxial and propagation terms
are identical, suggesting that higher-order modes remain transverse modes of propagation and
only amplitude variations are expected throughout propagation. Interestingly, for the cases where
n = m = p = l = 0, both HG and LG modes reduce to the lowest-order finite energy solution given
by the Gaussian electric field of Eqn. 1.5.15.

Although the azimuthal index of the LG solution is an intrinsic property of the wave, its
phase-dominated nature makes it challenging to determine without a specialised experimental con-
figuration. The majority of classical experimental work relies on intensity measurements, where
the azimuthal index l affects the Laguerre polynomial of the wave amplitude as seen in Eqn. 1.5.21.
Unfortunately the emerging spatial pattern does not possess any distinct structures to differentiate
the different values of the azimuthal index by eye, as demonstrated in Fig. 1.14 below38.

An interesting property of LG modes closely associated with the azimuthal index is their ability
to carry orbital angular momentum [28–30], as a consequence of the helical geometry of their phase
fronts, introduced by the exp [−ilψ] term from Eqn. 1.5.18. This quantity is usually conserved as
the beam interacts with different mediums and does not depend on the beam polarisation (unlike
spin angular momentum (SAM), which is a polarisation effect found in elliptical or circular polarised
light). Note that the number of helical wave fronts and their handedness depend on the magnitude
and sign of l. The interest in understanding the OAM structure of LG modes is responsible for
the development of experimental techniques to accurately determine the azimuthal profile of LG
modes [31–33].

Figure 1.14: Intensity profile of LG modes with varying azimuthal profile.

There are other higher-order modes besides the two discussed in this section. The Ince-Gaussian
(IG) beams [34, 35] represent another set of full higher-order modes, with an elliptical symmetry
and a slightly more complex spatial and phase structure. The mathematical expression describing
their complex amplitude contains the Ince polynomials, similar to the other higher-order modes;
however, these polynomials assume different forms for even and odd modes.

1.5.4 Propagation of Gaussian modes

We have stated that Gaussian modes undergo variations in both the beam diameter and the phase
profile throughout propagating, as observed from Eqn. 1.5.11 and Eqn. 1.5.13. These changes are

38Here it is easy to see there is a difference between the beams, however without the information labelling the
beam type, determining the value of l is a guess at best.



CHAPTER 1. THE ELECTROMAGNETIC WAVE AND POLARISATION 31

observed in the spatial intensity and phase profiles respectively of the light field when considering
different modes of propagation across varying distances. In this section, we will take a quick look at
these changes to the beam properties to improve our understanding of Gaussian mode behaviour.

To understand Gaussian mode propagation, we must first understand the Gouy phase. This
effect was first observed by Louis Georges Gouy in 1890, where the curved structure of the Gaussian
wave fronts constitutes a reduction in the phase shift of the Gaussian beam in comparison to a plane
wave. This reduction corresponds to a larger distance between the wave fronts (i.e. an increase
in the wavelength), and hence an increase in the local phase velocity at a constant frequency. An
alternative explanation proposed by [36] states the bound nature of the Gaussian modes to the
transverse spatial profile through the focus, introduces a distribution in the transverse momentum
profile as a consequence of the Heisenberg uncertainty principle. This distribution results in an
additional change to the longitudinal wave vector, where the net sum of all wave vector contributions
is the Gouy phase. We investigate changes to the beam radius and phase structure for different
test beams in both HG and LG modes, illustrated in Fig. 1.15 and Fig. 1.16, respectively.

Figure 1.15: Intensity and phase patterns of the three HG test modes, HG10, HG32 and the
superposition mode HG20 +HG02 as a function of propagation distance.
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Figure 1.16: Intensity and phase patterns of the three LG test modes, LG1
0, LG

2
1 and the superpo-

sition mode LG3
1 + LG2

1 as a function of propagation distance.

As expected from Gaussian modes, the beam intensity profiles are identical at the Rayleigh
ranges, z = −zR, zR, and continue to increase in size with increasing distance. However, at the
point where z = 0 (i.e. when the beam radius reduces to the beam waist), the Gaussian modes
behave like plane waves, where the intensity profile is the smallest in size.

For the Gouy phase, we observe that the clockwise and anti-clockwise nature of the rotation
pattern depends on the propagation direction39, where the central phase pattern is also seen to
expand with longer propagation distances. Note that the last row of Fig. 1.15 and Fig. 1.16
are examples of the superposition of multiple higher-order modes with identical mode numbers,
implying a similar Gouy phase rotation between the two.

1.6 Summary

In this chapter, we introduced the paraxial solution of the electric field wave equation derived from
Maxwell’s equations. We discussed the concept of polarisation, introducing a formalism in terms of

39Not to be confused with the −l modes of LG beams from Fig. 1.13, where the handedness of the phase map has
reversed (i.e. clockwise: red for l, while blue for −l when viewed from the −x-axis).
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Jones, Stokes, and the polarisation ellipse, and explored techniques for polarisation measurements
using Stokes tomography. We introduced the Gaussian mode as the lowest-order realistic solution
to the time-independent wave equation, otherwise known as the Helmholtz equation, in the parax-
ial approximation and briefly discussed its properties. Finally, we introduced some higher-order
transverse propagation modes, saw examples of their spatial and phase profiles, and discussed their
unique properties throughout propagation.
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Chapter 2

Manipulating light fields

2.1 Introduction

By now, we have developed a good understanding of propagating light fields, first in terms of a plane
wave solution of Maxwell’s equations and then as finite energy transverse modes of propagation of
the Helmholtz equation. Not only do Gaussian modes provide a realistic representation of electric
field oscillations, they are also the fundamental modes (i.e. lowest order modes) of optical resonators
[37, 38]. Since light amplification via stimulated emission of radiation (LASER) involves a pumped
medium sandwiched between a highly reflective back facet and an output coupler, forming an optical
cavity, it is no surprise that output beams from most laser sources possess a Gaussian intensity
distribution profile. However, experiments that involve the generation and use of vector light fields
require some form of preparation and a great deal of beam manipulation. These can range from
simple redirection and magnification of the light field to slightly more complex procedures involving
diffraction of the beam with dynamic devices.

2.2 Reflection

Reflection is perhaps the most commonly observed property of light, experienced on a daily basis
with the widespread use of mirrors, which are abundantly found in a laboratory setting, proving to
be an extremely useful tool for beam redirection and are key components of experimental techniques
such as interferometers and spectroscopy configurations. We aim to develop an understanding of
their effects on the propagating beam for efficient experimental use.

Light reflecting off a mirror obeys the law of reflection. This law simply states that the angle
of the beam at the plane of incidence (ϕ) with respect to the mirror normal (n̂) is equal to the
beam angle at the reflection plane (θ) leaving the mirror surface (i.e. ϕ = θ). An interesting
consequence of beam reflection is the introduction of a phase shift between the two polarisation
components of the electric field. Since the tilt of the surface mirror can affect either the horizontal
or vertical component of the light polarisation, the polarisation is usually considered with respect
to the orientation of the incident plane. For an incoming beam with an electric field oscillation
perpendicular to the normal of the incident plane, the polarisation is said to be s-polarised1, and
when parallel to the normal, the polarisation is p-polarised2, as illustrated by the blue arrows in
Fig. 2.1. However, one can select a coordinate system that maps the s and p polarisations to the

1Which comes from the German word senkrecht, meaning perpendicular.
2Which again comes from the German word parallel (which also happens to be the same word in English).
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horizontal and vertical polarisation structures and vice versa, where in our example, s maps to the
horizontal (s 7→ x) and p maps to the vertical (p 7→ y)3.

Figure 2.1: Reflection off a mirror
surface, showing a propagating beam
with s and p polarisation structures,
incident on the mirror surface with
an angle ϕ, reflected at an angle θ rel-
ative to the mirror normal n̂. When
mapping the s and p polarisations to
the Cartesian coordinate system, the
horizontal polarisation experiences a
phase shift of π when viewed from
the reference frame (R.F.) indicated
by the green arrows.

When considering a beam propagating along the reference frame (R.F.) given by the green
arrows in Fig. 2.1, we notice the p-polarised light maintains its orientation; however, the s-polarised
light picks up an additional phase shift of π, which, when mapped to the horizontal polarisation
structure, is equivalent to the transformation given by x −→ −x. In addition to this phase shift,
the reflected wave will experience variations in the electric field amplitude of the two polarisation
components, the magnitude of which depends on some parameters. These are the refractive index
of the medium surrounding the mirror4, the tilt angle of the mirror surface, the orientation angle
of the incident beam, and even the refractive index of the reflector itself5. Following the formalism
described in [39, 40], the Jones matrix of a general reflector is given by,

JR =

ρs 0

0 ρp

 , (2.2.1)

3Note that in this example we are considering a fully polarised light field with both horizontal and vertical
components incident on the mirror surface.

4Which is only relevant if the mirror is submerged in a fluid.
5Which is only significant when dealing with partially reflective mirrors.
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where the entries of the matrix are given by ρs = (pR−pM)/(pR+pM) and ρp = (qR−qM)/(qR+qM),
for p = ν cos(ϕ) and q = ν−1 cos(ϕ). Here ϕ is the light propagation angle (see Fig. 2.1) and
ν =

√
ε/µ, where ε and µ are the electric permittivity and magnetic permeability, respectively6.

The subscripts R andM refer to the reflector and medium it is currently embedded in, respectively.
Consider a simple example of a planar mirror, with a beam incident on the normal of the mirror
surface (i.e. ϕ = θ = 0 from Fig. 2.1), we calculate ρs and ρp to be,

ρs =
1− σ

1 + σ

ρp =
σ − 1

σ + 1
,

(2.2.2)

where σ = νM/νR. Substituting Eqns. 2.2.2 into Eqn. 2.2.1, we obtain the expression,

JR =
σ − 1

σ + 1

−1 0

0 1

 . (2.2.3)

Since the absolute refractive index n is related to the permittivity and permeability by n =√
εµ =

√
εrε0µrµ0 [2], we obtain an expression of σ in terms of the refractive index given by

σ = εMnR/εRnM , where εM and εR are the relative permittivity for the reflector and medium,
respectively. For a mirror sitting in air or vacuum7 (i.e. εM = nM = 1), we re-write Eqn. 2.2.3 as,

JR =
nR − εR
nR + εR

−1 0

0 1

 . (2.2.4)

The refractive index gives a measure of the degree of light refraction through a medium;
however, no light should be transmitted through a reflective surface8. Assuming a perfect mir-
ror, the refractive index should be infinite. From this analysis, we see that if nR → ∞, then
(nR − εR)/(nR + εR) → 1, which gives the final Jones matrix for a perfect mirror,

JR =

−1 0

0 1

 . (2.2.5)

We opted to derive the Jones matrix for the simplest case of a planar mirror; however, Eqn. 2.2.1
can be used to calculate a matrix expression for any type of reflector placed within any medium
at any desired orientation angle (of both reflector and medium). From Eqn. 2.2.5, we observe that
the beam reflected off the mirror surface picks up a π phase shift in the horizontal polarisation
components (i.e. {x, y, z} → {−x, y, z}). If we consider the example of a right-hand circular beam,
R̂ reflecting off a mirror, we get,

6Recall from Section 1.2 that ε = εrε0, while µ = µrµ0.
7Note that air has a slightly larger refractive index than vacuum, but can be approximated to 1.
8This is only true for a perfect reflector, which does not physically exist.
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JRR̂ =

−1 0

0 1


 1

−1j

 = −

 1

1j

 , (2.2.6)

Figure 2.2: A two mirror sys-
tem. The tilt angles αx and
αy of the first mirror con-
trol the beam position and
height, respectively. How-
ever, the tilt angles of the sec-
ond mirror βx and βy con-
trol the beam angle in the far
field, along the horizontal and
vertical, respectively.

where the minus sign in the equation above corresponds to the rota-
tion of the polarisation plane, constituting a change in handedness
of the propagating wave polarisation. In this case, the right-hand
circular polarisation turns into a left-hand circular polarisation.
This concept extends to the diagonal or anti-diagonal polarisation
states; however, we note that the use of another mirror will undo
the change in handedness, reverting the polarisation structure to its
initial state. Note that a similar formalism to Eqn. 2.2.1 in terms
of the Muller matrix can be found in [41].

In some experimental situations, there is a need for greater con-
trol over the beam’s spatial position. One example is the alignment
through a pinhole or an optical fibre, where a deviation of a few
micrometres can completely block the beam path. By implement-
ing a two-mirror system, we are able to effectively control the beam
position and deviation angle for precision alignment.

By adjusting the tilt angles of the first mirror αx, αy as seen
in Fig. 2.2, we are able to control the beam position in the near
field along the x − y plane, while changes in the tilt angles of the
second mirror βx, βy correspond to angular deviation in the far field
along the horizontal and vertical, respectively. It is generally rec-
ommended to define a fixed beam path before employing the two-
mirror system for fine-tune alignment. This is simply done by first
adjusting the beam height and horizontal position, and then the
deviation angle. Once the beam maintains a constant position in
the x− y plane, the system is aligned. The desired optical element
(i.e. pinhole or fibre) is then introduced to the beam path, where
both mirror angles are scanned in order to maximise the beam’s
output power, indicating optimal alignment.

We note that most of our mirrors are made from glass with a dielectric coating for the desired
wavelength. These mirrors are optimised for beams incident on the mirror surface at angles of
45° and 0°, where purely polarised states experience little change to their polarisation structure.
However, in cases where such incident angles are not possible due to a lack of sufficient space on
the optical bench, the use of metal-coated mirrors like gold or silver will minimise the aberrations
on the beam polarisation profile.

2.3 Focusing and imaging

When one thinks of imaging, the concept of optical planes is what normally comes to mind. Lenses
are refractive elements whose behaviour is usually visualised with ray diagrams, a convenient graph-
ical tool depicting beam propagation during the imaging process. An example of such a diagram
can be found in Fig. 2.3. In the simplest case, a lens transfers the optical field from the object
to the image plane (see Fig. 2.3a). Mathematically, the focusing behaviour of a lens is akin to
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taking the Fourier transform of the object plane at a distance do before the lens to the focal point
f after the lens, which is mathematically similar to considering the light propagating to infinity9.
This transformation obeys the Gaussian form of the lens equation 1/do + 1/di = 1/f , where di is
the image distance from the lens centre. Note that the beam size and position at the image plane
after focusing effects vary depending on a few parameters, such as lens type, beam size, lens focal
length, and beam position on the lens surface. Although variations in these parameters produce
different results, the lens preserves the intensity value of the light field, at the cost of the spatial
beam structure. An appropriate application for a single-lens system is focusing into a photodiode
(PD) for a better spectroscopy signal (As will be seen in our polspec experiment in Section 6.5)10.

If we introduce a second lens positioned where the focal lengths of the two lenses coincide,
as shown in Fig. 2.3b, we create what is commonly known as a telescope system. In terms of
the Fourier transform, the second lens will undo the effects of the first lens, introducing another
Fourier transform and restoring the spatial intensity profile of the beam up to a magnification
factor11. This magnification is derived from the Gaussian lens equation and is given by the ratio
of the focal lengths of the two lenses, M = f ′/f .

Figure 2.3: Lens ray-tracing diagrams. a) Single lens focusing of a beam from the object to the
image planes, where do and di are the object and image distances from the lens centre. b) A
telescope system focusing light parallel to the optical axis, utilising two lenses with focal lengths f
and f ′.

In the most common lens types, aberrations are quite noticeable and observed in the curved
spherical surface of the lens, resulting in beam focusing either before or after the lens focal point.
The issue is that a spherical surface is not the correct geometry for a lens, but it provides a relatively
decent approximation in the centre, close to the optical axis. However, incident light rays further
away from the optical axis are refracted at a greater angle off the lens surface and experience greater
aberrations as a consequence of tighter focusing. By centralising the lens along the beam path, we
can significantly reduce aberration effects experienced by the beam; however, replacing spherical
lenses with aspherical lenses eliminates these aberrations.

Although the rays in Fig. 2.3 provide a useful tool for understanding imaging, in reality, light
fields obey a slightly different focusing geometry. In the case of Gaussian modes, the beam is not
focused on a single point as seen in Fig. 2.3, but instead follows a hyperbolic shape, where the

9Up to a scaling factor.
10Photodiodes work by converting incident photons into electric current and do not care about the spatial structure

of the beam. On occasions where the PD chip is smaller than the beam size, focusing the beam can boost the detected
signal.

11This second Fourier transform introduces a global phase, however since experimentally we are concerned with
intensity measurements, outside of interferometric setups this phase can be ignored.
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beam at the lens focus is known as the Gaussian beam waist w0 (see Fig. 2.4a), and the divergence
angle, ϕ in the far field approximation conforms to the expression [42],

ϕ =
λ

πw0

, (2.3.1)

where λ is the wavelength. Although one must consider the type and focal length of the lens when
imaging, the size of the beam waist from focusing is determined by the diameter and wavelength
of the transverse mode of propagation. Larger transverse modes of propagation will yield a smaller
beam waist w0 for the same focusing lens, compared to modes with a smaller spatial structure. This
can be explained since the Fourier transform of a Gaussian function is also a Gaussian function
up to a scaling factor proportional to the inverse of the beam radius (i.e. ∝ 1/w(z)). This nets
a tighter focusing for a beam with a large radius, however a beam with a small spatial structure
(i.e. w(z) > 1) passing through a lens experiences a magnification in the beam profile throughout
propagation. Incidentally, we observe from Eqn. 2.3.1 that Gaussian modes with a smaller beam
waist w0 produce a larger divergence angle, while larger beam waists produce a more collimated
beam throughout propagation.

Figure 2.4: Imaging of Gaussian modes. a) Effect of a telescope system with identical lenses on
Gaussian modes. b) A telescope system with lenses of varying focal length. In the three cases, the
blue beam is magnified (f < f ′), the green beam is demagnified (f > f ′), and the red beam is left
unchanged (f = f ′). c) Focusing of a Gaussian mode with an iris placed between the lens foci for
beam shape adjustment.

Although a telescope is recognised for magnification, a two-lens system can be used to demagnify
the beam, as shown in Fig. 2.4b. In this example, the beam incident (black) enters the lens of focal
length f , converging the beam at the beam waist w0 before diverging towards the second lens with
focal length f ′ for collimation. In the case where f < f ′ the beam is magnified (blue); if f = f ′,
the beam experiences no changes in size from the two lenses (red)12 and if f > f ′ we are left with

12Although Gaussian modes will experience changes in size throughout propagation since the diameter w(z) is a
function of distance (see Section 1.5.2).
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a demagnified output beam (green).
Occasionally, one might find themselves using a laser system whose beam output possesses a

distorted spatial structure. In the past, I have used external cavity diode lasers (ECDL)13 with a
hole in the central region of the Gaussian profile, which made experiments difficult to perform. A
convenient method of cleaning the beam profile in favour of a more uniformly distributed beam
output is using an iris or pinhole placed within the telescope system at the focus of the two lenses
(i.e. at the beam waist w0), as illustrated in Fig. 2.4c. Unfortunately, we are trading optical power
for a better beam shape since the pinhole will block about 50%− 80% of the incident beam14. In
this configuration, the magnification is no longer calculated via the ratio of the lens foci and is
instead determined by the iris aperture and the collimation lens, whereas the first lens determines
the portion of the discarded light via focusing at the waist.

A final comment regarding imaging is that elliptically shaped beam profiles propagating through
a lens will experience astigmatism. By definition, astigmatism refers to the focusing of the trans-
verse profiles of two orthogonal intensities onto different focusing planes. Unfortunately, ordinary
lenses cannot compensate for this effect, but a cylindrical lens focusing only on a single plane of
the light field can restore the Gaussian beam shape of the propagating wave15.

2.4 Light interaction concepts: Birefringence and dichro-

ism

In experiments utilising complex light fields, a variety of optical elements with dichroic or birefren-
gent properties are employed, enabling the manipulation of the amplitude and polarisation profiles
of the light field. These properties even play a key role in our experiments with matter-light inter-
action and will be extensively discussed in Chapter 6. In line with the literature in [2], our goal is
to gain a thorough understanding of these ideas and their application in experiments.

A polariser is considered the most basic static optical element that operates via dichroism,
defined as the selective absorption of certain polarisation states subject to the transmission axis
of the polariser. The simplest model describing this behaviour is the wire grid polariser. Consider
a simple wire grid polariser, where the grid is made of parallel conducting wires as shown in
Fig. 2.5. The polarisation components of the incident electromagnetic wave can be decomposed
into their orthogonal states (Ex and Ey), where we choose the grid orientation to be parallel to
Ey but perpendicular to Ex. A common misperception regarding the wire grid image is that the
horizontal component Ex of the electric field is absorbed entirely, while the vertical component Ey

propagates through the wire’s gaps. In reality, the energy from Ey is transferred to the electrons in
the wire, exciting them and generating a current flow. These electrons then de-excite and re-radiate
the energy in the form of waves proapgating in both directions of the polariser. The incident wave
interacts with the reradiated wave in the forward direction, destructively interfering and preventing
the transmission of Ey. The light re-radiated in the backward direction appears as a back reflection
from the polariser surface. Since the electrons are not free to move in the perpendicular direction,
the polarisation component Ex in this direction remains unattenuated as it propagates through.
Note that even though the majority of polarisers used in experiments nowadays are based on
polymers or nanoparticles, they behave similarly to a wire grid polariser.

13We will discuss ECDLs in more depth in Section 5.2.
14Generally, the size of the pinhole determines the number of modes allowed through. A larger pinhole allows

more modes to propagate through, which is not ideal for a beam with a very distorted spatial structure.
15Whether the x or y axes are to be focused is subject to the beam’s initial shape (i.e. rotating the cylindrical

lens will alternate between focusing the intensity profiles of the x and y components).
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Polarisation anisotropy is a natural characteristic of many materials with dichroic properties;
in the polariser’s case, it corresponds to the preferential absorption of one of the orthogonal polar-
isation components over the other. This anisotropy can be induced by stress (for example, in glass
cavities) or external magnetic fields (i.e. polarisation spectroscopy (polspec)) and even applies to
materials with birefringent properties. Birefringence is the optical property where a material
possesses two different refractive indices for the orthogonal polarisation components, resulting in
different propagation velocities through the material and introducing a phase shift between the
two. Wave retarders are a good example of optics utilising birefringent materials with a polymer or
crystalline structure (like quartz), carefully manufactured with the right thickness to introduce in
the most common cases a half or quarter wavelength phase shift (π and π/2, respectively), which
translates to a change in the polarisation structure of the light field (Revisit Section 1.3 for more
information).

Figure 2.5: EM wave propagating through a wire polariser orientated parallel to Ey and perpen-
dicular to Ex.

2.5 Generating structured beams

The concept of a beam with a spatially variant polarisation structure dates back to the early
1970s [43]; however, throughout the years, there has been an increasing interest in exploring the
properties and applications of vector beams in both the classical and quantum domains [44–47].
The majority of our experiments at the University of Glasgow’s optics group make use of complex
vector structures generated using several different methods, classified as either passive or active
generation. In the passive approach, static optical elements are used to create predetermined sets
of vector vortex modes, utilising the birefringent and dichroic properties of their material, the likes
of vector vortex plates [48–50], and metasurface materials [51–53]. In other static methods, the
generation of vector beams is a result of geometric effects, an example of which is given by the glass
cone [54–56]. Meanwhile, active generation methods make use of complex beam-shaping holograms
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to alter the polarisation structure of the light field via amplitude and phase modulation. Usually,
these methods involve using a spatial light modulator (SLM) [57–60] or a digital micromirror device
(DMD) [61–66]. These devices are not limited to any particular finite-order spatial mode and are
very useful tools for the generation of arbitrary vector beams. In this section, we focus primarily
on the construction of a vector beam using a DMD and vector vortex plates; however, we will very
briefly touch on SLM beam generation.

2.5.1 Digital Micromirror Devices (DMD)

Figure 2.6: An example of a numerically generated
multiplexed hologram projected on the DMD chip.
The inset highlights the region of the hologram re-
sponsible for individual shaping the horizontal (red)
and vertical (blue) polarisation components in the
desired reflection order.

A digital micromirror device (DMD) consists
of tiny, micrometre-sized diamond-shaped
mirrors individually mounted and arranged
on a 2D array, capable of tilted movement
across the x − y plane. This mirror array
creates a mask, modulating the amplitude
of the incident wave, where the tilts of the
individual mirrors act like a binary switch.
When the switch is ON, the mirror reflects
the beam along the desired path, and when
the switch is OFF, the light is deflected away
from the path. These devices utilise digital
light processing (DLP), a technology devel-
oped by Texas Instruments capable of pro-
ducing a high-resolution video output, util-
ising the fast modulation rate (up to 25kHz)
for use in overhead projectors.

The amplitude modulation characteristic
of DMDs allows the simultaneous manipu-
lation of light beams with different polari-
sation structures by superimposing two or-
thogonal polarisation states. Unfortunately,
the limited size of the DMD chip makes adja-
cent hologram placement difficult; however,
the solution comes in the form of hologram
multiplexing. This technique loads two over-
lapped numerically generated holograms, of
the desired transverse propagation modes,
occupying different regions on the DMD mir-
ror array (see Fig. 2.6 for an example), which
independently shapes the two polarisation
profiles of the incident light field, diffracting
them into many different mode orders. For
example, the region of the hologram high-
lighted in red in the inset of Fig. 2.6 is used to shape the spatial structure of the horizontally
polarised light, while the blue region of the hologram will shape the vertical beam. The first-order
modes generated from the DMD output are then superimposed using the DMD steering controls
to produce the desired vector beams. The role of the steering control is to shift the position of the
first-order (or any desired-order) beams reflected off the DMD chip, which is achieved by adjusting
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the tilt angle of the pixels in the mirror array for the section of the hologram corresponding to each
polarisation structure (e.g. to shift the diffraction pattern of the horizontally polarised beam, the
tilt angle of the pixels in the red region of the inset in Fig. 2.6 will have to be adjusted accordingly).

The experimental configuration is quite simple and illustrated in Fig. 2.7. We first prepare
the laser beam by diagonalising the polarisation using a HWP and passing it through a Wollaston
beam splitter (WBS)16. The prism separates the polarisation structure of the incoming beam into
the horizontal and vertical components, with a slight angle between the two depending on the cube
material. A telescope system (L1 and L2 in Fig. 2.7) is employed to focus the two polarisation
components onto the DMD chip (being able to magnify or demagnify the beam is an added bonus)
to apply the hologram transformation to the light field17. Interestingly, the ability to modify the
beam magnification could be used to overfill the DMD chip to generate an output beam with a
more uniform intensity distribution. Alternatively, the beam size could be demagnified to fit the
hologram size to increase the output light intensity. Once the desired spatial structure is generated
with the appropriate hologram, the beam is projected onto the image plane located at the iris with
a lens L3, where the first-order diffraction modes are overlapped, as illustrated in Fig. 2.8. The
unwanted modes are blocked by the iris, and the beam is then collimated with a second lens L4.
For more information on the preparation and generation of vector light using a DMD, see [20, 61].

Figure 2.7: Experimental configuration used to generate a vector beam with a DMD.

Note that since the DMD is a binary modulator affecting the light amplitude, the majority
of the beam intensity is lost in the diffraction process, leaving us with around 10% of the initial
beam power. This makes DMDs very inefficient and unsuitable for applications requiring high
optical powers. Additionally, many of the generated modes are often deflected at large angles, even
beyond the confines of the optical table, posing a potential laser safety hazard if not appropriately
contained.

16Which is also called a Wollaston prism.
17The main idea is to have both beams incident on the region of the DMD chip where the hologram is being

projected. There could be other ways to experimentally implement this (e.g. orthogonal beams entering a PBS or
maybe a birefringent microscope slide); however, using a WBS and a telescope system provides an elegant solution
to focusing the beam components with the bonus of being able to adjust the beam size.
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Figure 2.8: The DMD diffracts the Ĥ (red) and V̂ (blue) polarisation components of the incident
beam to generate diffraction modes according to the hologram profile. The first-order modes are
overlapped (i.e. in this example, the horizontal b1 mode, along with the vertical a2 mode for
the first order and the horizontal e1 mode, along with the vertical d2 mode for the minus first
order) using the DMD steering control to generate the vector beam output (purple). Note that we
generally use the superimposed 1st order modes; however, the −1st can be used, accounting for the
phase shift.

A final comment on vector beam generation with a DMD. Since both polarisation components
are incident on the hologram chip as illustrated in Fig. 2.7, changing the DMD settings responsible
for generating the transverse propagation mode for one of the polarisation components will also
affect some of the output mode orders of the other polarisation state reflected off the DMD chip.
However, the two regions of the hologram previously state to individually shape the polarisation
components (from the inset of Fig. 2.6) of the desired reflected orders (first orders in our case) do
work as advertised, since the two beams are spatially separated by the WBS even when focused
onto the DMD with the L2 lens18. This means that their reflected modes will remain spatially
separated, becoming increasingly noticeable with the propagation distance of the beams. However,
by diverging the beams using a lens (i.e. L3 from Fig. 2.7), we can further resolve the position of

18If the two polarisation components were perfectly overlapped, their reflected modes would also be perfectly
overlapped (i.e. the modes with the same letters in Fig. 2.8), making generation of vector beams impossible.
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the mode orders, projecting the beams onto the far field, which allows for an easier selection of
the mode orders. This enables us to manually overlap the desired output modes to generate our
structured beams, as illustrated in Fig. 2.8. Therefore, the two regions of the hologram indicated
in the inset of Fig. 2.6 do indeed shape the two polarisation components individually, but only in
the far field after selecting the desired reflected modes.

2.5.2 Vector Vortex plates (q-plates)

A vortex retarder is a static birefringent optical element made from liquid crystal polymer with a
unique and interesting fast axis geometry. From Section 1.3.2, we established that a HWP works
by introducing a π shift to the polarisation component aligned with the fast axis of the retarder,
where a waveplate rotation of θ corresponds to a polarisation change of 2θ. In this case, the fast
axis points in the same direction, affecting all regions of the incident beam uniformly. In a general
sense, we can think of a q-plate having varying localised fast axis orientations, analogous to an
array of half-waveplates set at different rotation angles. This effect introduces different phase shifts
across the beam polarisation profile. Additionally, the q-plate works by introducing an orbital
angular momentum ±l to the right and left circular polarisation components, respectively, similar
to LG modes. In terms of the Jones matrix, a vortex plate is given by [48, 67],

Jqp =

cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

 , (2.5.1)

where θ = qϕ + δ, here ϕ is the azimuthal angle19 and δ is the orientation of the q-plate fast axis
when ϕ = 0. These retarders are generally characterised by an order q, related to the LG mode
number by l = 2q, and represent how many (0 → 2π) phase shifts appear within the q-plate profile
(i.e. for a q = 1 plate, we have l = 2 and expect the phase structure (0 → 2π) to appear twice
in the retarder profile)20. Since any polarisation state can be expressed as a superposition of two
orthogonal polarisation bases, a horizontally polarised state in the circular basis is given by,

Ĥ =
1√
2
(σ̂− + σ̂+) , (2.5.2)

where σ̂± are the left and right circular components, respectively21. Under the action of the q-plate,
the electric field in Eqn. 2.5.2 experiences a phase change given by,

JqpĤ =
1√
2

(
eilϕσ̂− + e−ilϕσ̂+

)
. (2.5.3)

Although the individual circular components of the equation above possess some orbital angular
momentum, the net OAM of the whole beam is zero, which is always true for a linearly polarised
input beam. In the case of a circular input beam propagating through a q-plate, Jqpσ̂± = e∓ilϕσ̂±,
we maintain the polarisation structure but introduce OAM to the light field. Depending on the

19The azimuthal angle describes the position on the equator of the Poincaré sphere, extending from 0 to 2π,
identical to the orientation angle ψ described in Section 1.3.3.

20Do not confuse this with the number of the same polarisation states appearing within a (0 → 2π) cycle. Since
polarisation is π/2 cyclic with respect to θ, we expect to see 4 of the same polarisation structures in a (0 → 2π)
cycle for a q = 1 waveplate.

21Here we adopted an atom optics notation for circular polarised light.
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fast axis orientation of the q-plate, different polarisation structures can be generated from the
same polarisation input, so Eqn. 2.5.3 can describe a radial or azimuthal polarisation structure (see
Fig. 2.9 for reference).

Figure 2.9: Polarisation profiles of a horizontally polarised input beam through a q = 1/2 and q = 1
vortex retarder (top rows), incident on a QWP at 45° (bottom rows). The beams in red indicate a
q-plate fast axis aligned parallel with the horizontal input state, while the beams in blue indicate
a fast axis at 45° to the horizontal.

Unlike active vector beam generation methods that require extensive preparation, q-plates only
require simple alignment of the vortex to the beam centre (see Fig. 2.10). Additionally, they do
not suffer from excessive intensity loss (like DMDs do), are incredibly efficient (> 97%)22 and
relatively cheap, making them ideal for structured light generation, even for applications requiring
high optical intensities (they can handle intensities up to 5W/cm)23. The downside is they can
only generate a very limited number of transverse propagation modes; however, the generation of
hybrid polarisation structures is possible with additional polarisation optics, as illustrated in the
bottom row of Fig. 2.9.

22Value taken from [68].
23These values are calculated at 810nm and taken from [68].
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Figure 2.10: Alignment of
a q-plate vortex to the
beam profile. Usually these
plates are housed in an
XY mount (like the Thor-
labs LM1XY/M) for ease of
alignment.

2.5.3 A brief overview of Spatial Light Modulators (SLM)

Working in a lab where the construction of structured light is essential for our research has the
benefit of exposing us to alternative techniques for complex light field generation used by other
members of the group. With the exception of Ryan Hawley’s experiment generating vector beams
with a Fresnel cone [55]24, the most common methods of vector beam generation in our labs utilise
DMDs, q-plates, and SLMs. For completeness, we provide a brief overview of SLMs.

Spatial light modulators (SLMs), which are active generation elements akin to DMDs, are
composed of numerous tiny birefringent liquid crystals arranged in pixel format in between the
SLM front glass panel and a reflective surface. By applying a voltage, the orientation of the liquid
crystals can be controlled. Unlike DMDs, the spatial modulation of the light field is done via
phase-based holograms instead of binary amplitude holograms, offering a significant increase in the
efficiency of the shaped beam since only desired spatial modes are produced (for more information
on experimental implementations of SLM for vector beam generation, see [20, 69, 70]).

Despite the control and flexibility offered by SLMs, there are several factors that should be
considered prior to investing in or experimentally integrating an SLM. In most reflective SLMs, the
back mirror is usually wavelength-coated, which restricts the kind of lasers that can be used with
them. Actually, I seem to recall that Amy McWilliam, a member of our group, was investigating
Zernike mode generation with an SLM using a 633nm He-Ne laser; however, the SLM mirror was
coated for 780nm near-infrared (NIR) light. The experiment became challenging to conduct as
a result of destructive interference in the beam pattern, which was resolved when a 795nm laser
source was introduced to the setup.

Although SLMs are excellent beam shaping tools, they are much slower than DMDs (only 60Hz
frame rate) and very expensive when compared to other beam shaping equipment (the cheapest
SLM is easily >£10000, while the cheapest DMD is a few £100). Additionally, the crystal geometry
only works with a single type of polarisation input, usually horizontal or vertical, making the
experimental configuration for vector beam generation slightly more complicated.

2.6 Summary

This chapter covered the fundamental experimental ideas of light manipulation using mirror reflec-
tions and lens imaging, emphasising their effects on the light wave. We briefly discussed the ideas
of birefringence and dichoism in relation to polarisation optics. Lastly, we explored a few methods
for complex vector beam generation, examining their characteristics and limitations.

24Sadly I didn’t have much overlap with Ryan, as he was finishing when I was just starting.
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Chapter 3

A Single-shot polarimeter with
generalised measurements

3.1 Outline

This chapter reports the work published in [71], involving members of the University of Glasgow’s
optics and quantum theory groups and Sebastião Pádua, a visiting researcher from the Universidade
Federal de Minas Gerais (Brazil), who spent over two years with us here at the University of Glasgow
before departing. In this work, C.M. Cisowski and myself optimised the experimental configuration,
took and analysed the data, H. Jimbrown was involved in the data gathering and analysis during
the early days of the project, S. Pádua built the initial setup and, together with S. Crooke, overseen
the theoretical analysis, and S. Franke-Arnold conceived and led the work.

3.2 Introduction

In Section 1.3, we introduced the concept of light polarisation, a key property of optical beams
that has an effect on the propagation and refraction of light fields, providing an additional degree
of freedom (alongside the spatial and path degrees of freedom) useful for classical and quantum
communications alike. While output beams from laser systems are usually homogeneously polarised
(typically linearly polarised), there has been an increasing interest in recent years to shape light
with spatially varying polarisation profiles, like vector vortex beams [72–76], Poincaré beams [77–
81] and even special Poincaré beams called skyrmion beams [82–84]. An interesting feature of
these vector beams is their non-separable relation between the spatial degree of freedom and the
polarisation [85, 86], a quantity that can be inferred from the concurrence [61, 87, 88] and has
interesting applications in quantum communication [89–91] memories [92], cryptography [93] and
other quantum inspired concepts [94–99].

Additionally, polarisation plays a key role in a variety of metrological applications, including but
not limited to material stress analysis [100, 101], biological microscopy and the pharmaceuticals
[102, 103], and ellipsometry [71, 104, 105]. In those areas, the optical activity [105–109] is the
quantity of interest, where a beam of well-known polarisation experiences a modification in the
polarisation structure after propagating through a medium, providing a quantitative description
of the sample’s response to different polarisation profiles. This makes an accurate determination
of the spatially dependent polarisation structure a vital task in both classical and quantum optics
[110, 111].
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One can represent the polarisation degree of freedom with a two-dimensional Hilbert space,
ideal for a quantum bit (qubit) realisation1. A state on the Hilbert space of dimension d demands
d2 number of measurements for state reconstruction [112]. The tomography of the local polar-
isation structure, occupying the Hilbert space of dimension d = 2, requires a minimum of four
measurements, which can be associated with the four parameters of the Stokes vector [113–117].
Most commonly, these parameters are determined from overcomplete measurements via projection
on a set of mutually unbiased and orthogonal basis states2, where the beam intensity is recorded
for the horizontal, vertical, diagonal, anti-diagonal, right and left hand circular polarisation states
(see Section 1.4 for more information).

Alternatively, one can use generalised measurements [118–120] with a different set of projec-
tion operators to perform full tomography of quantum states with a minimum number of required
measurements [121–125]. These operators can be chosen to form what is called a minimum in-
formationally complete positive operator value measure (MIC-POVM)3 [126–128], which results
in a reduction from the overcomplete six measurements used in Stokes tomography into a set of
four unbiased measurements spanning the entirety of the Hilbert space, advantageous for polari-
sation tomography. The key benefits are a reduction in required time when performing sequential
measurements or an increase in efficiency when performing simultaneous measurements, ideal for
applications of low-intensity beams or even single photon emission. In previous literature, ex-
periments utilising MIC-POVMs for quantum state tomography have only been implemented for
homogeneously polarised light so far [129].

In this chapter, we explore our work published in [71], where we demonstrate an experimental
setup of spatially resolved MIC-POVMs for vector beam reconstruction. Throughout this section,
we introduce the relevant theory and explore an experimental configuration utilising an interfer-
ometer, coupling the polarisation degree of freedom to the path (or linear momentum) degree of
freedom via a series of polarising beam splitters, and performing a unitary operation in the extended
state space of the path and polarisation degrees of freedom. We associate the POVM elements with
four different outputs of our interferometer, used to obtain the spatially resolved polarisation in-
formation using generalised measurements with the desired POVM states. We test our setup with
a number of vector beams generated using a digital micromirror device (DMD) [61, 66, 130, 131],
drawing a comparison between our system’s performance and spatially resolved measurements from
conventional Stokes tomography [61, 87, 132, 133]. We conclude by introducing the subsequent
work inspired by our initial experiment and exploring potential applications for such a one-shot
polarimeter for any beam characterisation.

3.3 The photon state

Recall from Section 1.3.3, we classify the polarisation of a classical light beam (or a photon’s
quantum state) using a vector with four parameters called the Stokes vector,

1The Hilbert space is a vector space equipped with an inner product, used to represent the state of a quantum
system.

2A set of projection measurements is considered unbias if they cover the entire Hilbert space. The idea of unbias
measurements will be a recurring theme throughout this chapter.

3We define these operators when discussing generalised measurements in Section 3.4.
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S =



S0

S1

S2

S3


=



IH + IV

IH − IV

ID − IA

IR − IL


, (3.3.1)

where Ii, for i ∈ {H,V,D,A,R, L} are the intensity measurements projected onto the six different
polarisation basis occupying the Poincaré sphere (found in Section 1.3.3). We define a normalised
Stokes vector with respect to the total intensity S0 as follows,

SN =
1

S0



S0

S1

S2

S3


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S1/S0

S2/S0

S3/S0
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=
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1

SN
1

SN
2

SN
3


, (3.3.2)

where SN
1 , S

N
2 , S

N
3 form the reduced Stokes vectors. A single Stokes vector is sufficient to describe

the polarisation of a homogeneous beam; however, vector beams with changing polarisation struc-
tures, like vector vortex or Poincaré beams, are represented by a varying Stokes vector as a function
of the transverse position of the beam S(r⊥), where ⊥= (x, y), due to their non-homogeneity. By
adopting a quantum language, we defining the light beam in the paraxial approximation (or the
photon wavefunction) as,

|ψ⟩ = |uH⟩|H⟩+ eiϕ|uV ⟩|V ⟩, (3.3.3)

where |H⟩ and |V ⟩ are the orthonormal horizontal and vertical polarisation states, respectively,
and ϕ is the relative phase between the two states4. Here |uH⟩ and |uV ⟩ constitute the associated
horizontal and vertical transverse spatial states, respectively5. By projecting the transverse position
(r⊥) on the light beam state from Eqn. 3.3.3, we can obtain an expression of the beam’s local
polarisation profile as follows,

|ψ(r⊥)⟩ = ⟨r⊥|ψ⟩ = uH(r⊥)|H⟩+ eiϕuV (r⊥)|V ⟩, (3.3.4)

where uj(r⊥) = ⟨r⊥|uj⟩ for j ∈ {H,V } are the complex amplitudes of the light transverse profile
|uj⟩. We use this quantum language to draw the connection between the experimental realisation
of the single-shot four-state polarimeter and quantum tomography, describing the polarisation
measurements of our system as elements of a POVM set.

4This notation is known as Dirac’s bra-ket notation and will be explained at the beginning of the next section.
5Note that there are no restrictions or requirements that force these two spatial states to be orthogonal or

normalised. In fact, if one desires to shape a beam while maintaining a homogeneous polarisation output, these
spatial modes could end up being identical.
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3.4 Generalised measurements

Understanding the concept of a generalised measurement is a vital step to understanding the
theoretical model of our experiment. Any observable of a quantum system can be associated with a
Hermitian operator, where extracting any information requires the performance of a measurement.
By following the literature in [118–120, 134], we develop a mathematical understanding of the
nature of generalised measurements and their usefulness. Consider a Hermitian operator Â with a
complete set of eigenstates |An⟩ and eigenvalues an,

Â|An⟩ = an|An⟩. (3.4.1)

By definition, a Hermitian operator is an operator that is its own Hermitian conjugate (i.e.
conjugate transpose). These operators denote a physical quantity measurable from the quantum
system, an example being position, momentum, energy, etc. In this chapter, we adopt Dirac’s
quantum bra-ket notation, where the ket |An⟩, denotes a state in a quantum system; however,
mathematically, it represents a simple vector, obeying the axioms of vector space (see chapter 3
of [135] or any suitable linear algebra textbook). In a similar manner, the bra ⟨Am|, represents
the Hermitian conjugate of |Am⟩, such that ⟨Am|An⟩ = δmn is analogous to the inner (or dot)
product, where δmn is the Kronecker delta. The Kronecker delta has the property that δmn = 1 if
m = n; otherwise, δmn = 0. The von Neumann definition states that performing a measurement of
Â will give one of the eigenvalues an as the output, where the probability of finding any of these
eigenvalues is given by,

P (an) =
∣∣⟨An|ψ⟩

∣∣2, (3.4.2)

where |ψ⟩ is the state of the system prior to performing the measurement. So far, we have considered
only pure states (i.e. a state given by a vector (or ket)); however, one might come across mixed
states, defined as a collection of pure states in a quantum system. These mixed states are useful
in representing states that are difficult to untangle (an example is the two-level atomic transition
system, more in Section 4.3), usually denoted in terms of a density operator ρ̂. We define the
density operator as,

ρ̂ =
∑
m

wm|Am⟩⟨Am|, (3.4.3)

where wm is the probability of occupying the state. Note that Eqn. 3.4.3 reduces to ρ̂ = |Am⟩⟨Am|
for pure states6, since the probability of the measurement equates to unity. From Eqn. 3.4.2 and

recalling that
∣∣⟨An|ψ⟩

∣∣2 = ⟨An|ψ⟩⟨An|ψ⟩†, we obtain an expression of the measurement probability
in terms of the density operator,

P (an) = ⟨An|ρ̂|An⟩ = Tr
(
ρ̂|An⟩⟨An|

)
, (3.4.4)

where the second expression above is a consequence of using the identity operator I =
∑

n |An⟩⟨An|
and the trace identity of operators Tr(B̂) =

∑
i ⟨ϕi|B̂|ϕi⟩. The system is left in the eigenstate

|An⟩ after the measurement, provided the outcome of the measurement is the eigenvalue an. This
remains true if the measurement is repeated in quick successions7. It is useful to introduce the

6Note in this formalism |Am⟩⟨Am| is akin to the outer product of the two vectors |Am⟩ and ⟨Am|, the result of
which is a matrix.

7Since the state is being collapsed sufficiently quickly before the system had time to evolve.
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projectors P̂n = |An⟩⟨An| so that Eqn. 3.4.4 becomes,

P (an) = ⟨P̂n⟩ = Tr
(
ρ̂P̂n

)
, (3.4.5)

where ⟨P̂n⟩ is known as the expectation value of the operator P̂n. By now, we have established that
the probability of measuring a specific outcome in the von Neumann model is given by Eqn. 3.4.5,
where we project onto a single or multiple orthonormal states. The properties of these projectors
are summarised in the table below,

1) They are Hermitian operators P̂n = P̂ †
n

2) They are positive P̂n ≥ 0

3) They sum to unity (i.e. are complete)
∑

n P̂n = Î

4) They are orthonormal P̂nP̂m = P̂mδmn

Table 3.1: Properties of projection operators.

Here Î is the identity operator. The first three conditions in the list above denote physical
restrictions imposed on the projector. The projectors represent observables; therefore, naturally,
they are Hermitian by construction. They are probability measurements that require them to
be positive and must sum to unity for all possible measurements since they form a complete set.
However, the fourth condition is not strictly necessary for a measurement, and the formalism
for generalised measurement in fact drops this constriction. Interestingly, the Stokes polarisation
measurements discussed in Section 1.4 could be considered multiple von Neumann measurements
carried out sequentially across different sets of orthogonal polarisation bases. Since the wave is
complex by nature8 the projection of the transverse electric field profile onto a set of two orthogonal
bases states (e.g. Ĥ and V̂ ) by themselves is insufficient to reconstruct the polarisation state of
the beam as the projections failed to recover the phase information of the light field. Therefore,
additional projections onto a set of different orthogonal bases states (i.e. D̂ and Â along with R̂
and L̂) are required for full polarisation state reconstruction.

In a noisy world where ideal experimental measurements are difficult to achieve, designing a
measurement system that includes any effects of ambient noise is desirable. Consider a device
that determines whether the polarisation of a single photon is horizontal or vertical. In the ideal
measurement system, the projectors are given by,

P̂H = |H⟩⟨H|

P̂V = |V ⟩⟨V |.
(3.4.6)

We define the probability of measuring the two polarisation states as,

P (H) = (1− p) Tr
(
ρ̂P̂H

)
+ pTr

(
ρ̂P̂V

)
P (V ) = (1− p) Tr

(
ρ̂P̂V

)
+ pTr

(
ρ̂P̂H

)
,

(3.4.7)

8With a real amplitude and a complex phase term.
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where we incorporate the error or noise in the system as the probability of measuring the wrong
state denoted by p. To break it down, we established that the projectors are given by Eqn. 3.4.5,
so for a prepared state |H⟩, the ideal measurement probability should be 1; however, the detector
now also has the probability of incorrectly measuring the state |V ⟩, given by p, therefore our new
probability of measuring |H⟩ is now (1− p), in order to satisfy the unity condition. We can rewrite
these probability operators in a form similar to 3.4.5,

P (H) = Tr(ρ̂π̂H)

P (V ) = Tr(ρ̂π̂V ),
(3.4.8)

where we introduce a new set of probability operators given by,

π̂H = (1− p)P̂H + pP̂V

π̂V = (1− p)P̂V + pP̂H .
(3.4.9)

These new projectors are not orthonormal and only satisfy the following conditions,

1) They are Hermitian operators π̂n = π̂†
n

2) They are positive π̂n ≥ 0

3) They sum to unity (i.e. are complete)
∑

u π̂n = Î

Table 3.2: Properties of probability operators.

By dropping the fourth condition, we are able to generalise our measurement system with a set
of operators {π̂m}, expressing the measurement probability of a system with respect to the density
operator ρ̂ as follows,

P (m) = Tr(ρ̂π̂m). (3.4.10)

It follows that the product of such two such operators is calculated as,

π̂mπ̂n = [(1− p)P̂m + pP̂n][(1− p)P̂n + pP̂m]

= (1− p)2|Am⟩⟨An|δmn + p2|Am⟩⟨An|δmn

+ p(1− p)(|Am⟩⟨Am|+ |An⟩⟨An|)

∴ π̂mπ̂n =


Î if m = n

p(1− p)Î if m ̸= n

 ,

(3.4.11)

where δmn is the Kronecker delta. Calculating the outcome of any generalised measurement requires
a set of operators that describe the measurements, ideally a single operator for each measurement.
These operators are named probability operator measures, usually abbreviated as POM, or alter-
natively, positive operator valued measures, or POVM for short. In the context of polarisation
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state tomography, the benefit of dropping the orthonormality condition is to minimise the number
of required measurements to fully describe the polarisation state of the light field. For example,
Stokes tomography requires a total of 36 projection measurements for unbiased state reconstruc-
tion; however, employing the POVM operators constitutes a reduction down to 16 measurements
instead9.

Additionally, by dropping the orthonormality condition, the number of probability operators
can exceed the dimension of the state space, while the orthogonal nature of projectors prevents
them from ever exceeding the state space dimension10. Any set of POVM elements that satisfy
the conditions in Table 3.2 are potential measurements, and the outcome of any measurement
can be expressed as an element of the POVM set [118, 136]. A consequence of these conditions
is the existence of an optimal, informationally complete set of measurement operators capable of
describing any quantum state. By finding these operators, we know that a physical realisation of
them exists and aim to experimentally implement them in the laboratory to construct an optimal
polarisation state tomography polarimeter.

3.5 The POVM elements and instrumentation matrix

A specific form of generalised measurements of interest is the symmetric informationally complete
POVM, abbreviated as SIC-POVM [126]. These POVM are deemed informationally complete
due to their ability to completely determine the quantum state of an object from the carried out
measurement [137–140] and their symmetric nature comes from their equal pairwise overlap be-
tween the different POVM elements11. Maximising the efficiency in determining the input quantum
state requires the POVM elements to be positive multiples of projectors onto pure states, where
each element of the POVM is a unique vector in the complex space Cd, where d denotes the di-
mensions of the space. Such a set of POVM has d2 elements of the form π̂i =

1
d
|ϕi⟩⟨ϕi| and satisfy

the following, ∣∣⟨ϕi|ϕj⟩
∣∣2 = dδij

d+ 1
, (3.5.1)

where δij is the Kronecker delta. In the space of the Poincaré or Bloch sphere (i.e. d = 2), the
POVM set {|ϕi⟩} forms the vertices of a tetrahedron, as demonstrated in Fig. 3.1. These states are
equidistant and symmetric in their distribution, negating any bias in the reconstruction of quantum
states and therefore providing the same reconstruction fidelity for any input state [119]. In our
work, we chose the POVM set introduced by [121],

|ϕ1⟩ = a|H⟩+ b|V ⟩,

|ϕ3⟩ = b|H⟩+ ia|V ⟩,

|ϕ2⟩ = a|H⟩ − b|V ⟩,

|ϕ4⟩ = b|H⟩ − ia|V ⟩,
(3.5.2)

where a =
√

1
2
+ 1

2
√
3
and b =

√
1
2
− 1

2
√
3
. An extensive derivation of the POVM state coefficients

a and b can be found in Appendix A of [121].

9In fact, the incorporation of ambient noise into the measurement system is an added advantage, and the reduction
in the number of required measurements to map the polarisation state of a beam is the fundamental reason to use
POVM for polarisation state tomography.

10Ironically, this is the opposite of what we want.
11Which means the pairwise inner product of any two SIC-POVM elements in the same set will always be equal.
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Figure 3.1: The tetrahedron
formed from the POVM states
|ϕ1⟩, |ϕ2⟩, |ϕ3⟩, |ϕ4⟩ in the Poincaré
sphere. The polarisation ellipse is
plotted in black, while the back-
ground colour, modulated in opacity
relative to the beam intensity, maps
the orientation ψ and ellipticity χ of
the polarisation ellipse to the surface
of the Poincaré sphere for all pixels
or super-pixels, as shown in the inset.
Figure taken from [71].

To perform a measurement on a set of non-orthogonal POVM states, we enlarge the Hilbert
space of the input state by introducing an ancilla12, forming a Naimark extension of the mea-
surement [118][120]. By choosing the path degree of freedom in common with previous literature
[119][121][129], we consider the photon described by Eqn. 3.3.3 having the choice of propagating
along two directions, determined by the photon’s linear momentum |kµ⟩ along the paths µ = α, β,
such that the extended basis of the photon state is given by {|H⟩⊗|kµ⟩, |V ⟩⊗|kµ⟩}. We implement
the desired POVM states by performing a projection measurement P , after applying the relevant
unitary operation U to the extended state, as illustrated in Fig. 3.2. See Appendix A for the
derivation of the Naimark extension of the POVM states, following the example in [121].

Figure 3.2: Schematic of the POVM measurement scheme. The input polarisation state |ψ⟩ enters
through path α, where the realisation of the additionally path β allows extension to the state space
for the implementation of a four outcome measurement system. The unitary operation acts on
both the path and polarisation degrees of freedom before the final projection P in the extended
space constructs the POVM elements |ϕ⟩i.

Experimentally we measure the intensity profile of the spatially resolved beam, in the form of
a normalised intensity vector, with each entry corresponding to the intensity profile incident on a
specific detector given by,

IN =
1

It

(
I1 I2 I3 I4

)T

, (3.5.3)

12Which is an auxiliary state.
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where Ij, for j ∈ {1, 2, 3, 4}, is the intensity measurement at the interferometer13 output corre-
sponding to the respective POVM state {|ϕ1⟩, |ϕ2⟩, |ϕ3⟩, |ϕ4⟩} and It =

∑4
j=1 Ij is the total inten-

sity across all four detectors. These four intensity measurements are just enough to reconstruct the
polarisation structure of any input beam. Similar to Eqn. 3.4.2, we define the expectation value
our POVM states as,

Pj = ⟨ψ|π̂j|ψ⟩, (3.5.4)

where we can re-write the measurement probability as seen in Eqn. 3.4.4 in terms of the density
operator and relate it to the normalised detector intensity INj as,

Pj = Tr
(
π̂j ρ̂
)
= INj . (3.5.5)

Note that the intensity at each detector is normalised by the total intensity calculated from the
sum of all intensities across all four detectors (i.e. INj = Ij/

∑
j Ij). We can express the density

operator in terms of the Stokes vector as follows [113],

ρ̂ =
1

2

3∑
i=0

Siσ̂i, (3.5.6)

where σ̂0 = I, is the 2×2 identity operator and σ̂j, for j ∈ {1, 2, 3} are the Pauli matrices given by,

σ̂1 =

0 1

1 0

 , σ̂2 =

0 −i

i 0

 , σ̂3 =

1 0

0 −1

 , (3.5.7)

where i =
√
−1 is the imaginary number. Combining Eqn. 3.3.2 and the Pauli matrices from

Eqn. 3.5.7 into Eqn. 3.5.6, we derive an expression for the density operator in terms of the nor-
malised Stokes vectors,

ρ̂ =
1

2

 1 + SN
3 SN

1 − iSN
2

SN
1 + iSN

2 1− SN
3 ,

 , (3.5.8)

and finally obtain the matrix relationship,

IN = Π · SN , (3.5.9)

where Π is a 4 × 4 matrix known as the instrumetation matrix [121][141]. By taking the
inverse of the instrumentation matrix, we obtain an expression for the normalised Stokes vector
SN = Π−1 · IN , to calculate a spatially dependent Stokes value for every transverse position along
the azimuthal profile r⊥, from the spatially dependent intensity images of the four POVM elements
taken from our detector measurements. An example of an ideal instrumentation matrix for a
loss-less polarimeter setup is,

13By definition, an interferometer is a technique of superimposing multiple beams into a single output, usually
utilising a birefringent optical element. Interferometry is a core concept in this project and will be explored further
in the next section when we discuss the experimental implementation of the POVM setup.
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
, (3.5.10)

where the row entries of the instrumentation matrix represent the Stokes vector of the individual
POVM elements |ϕi⟩. In the next section, we demonstrate a possible experimental setup to re-
alise this instrumentation matrix using a configuration of conventional optics and a Mach-Zehnder
interferometer.

3.6 Experimental realisation

In this section, we demonstrate a possible experimental configuration for a spatially dependent
POVM measurement system, as outlined in Fig. 3.3. The POVM measurements correspond to
the homogeneous polarisation states in [121]; however, we introduce beams with spatially varying
polarisation profiles as an input to our polarimeter.

Using the technique in [61], we generate different vector beams of the form given by Eqn. 3.3.3,
using a digital micromirror device (DMD). A beam from a Helium-Neon laser (HeNe) is incident
on a half-waveplate (HWP), diagonalising the beam polarisation, which is separated into the hor-
izontal and vertical components with equal intensities via a Wollaston beam splitter (WBS). A
telescope system (formed by L1 and L2) is then constructed to focus the two polarisation compo-
nents onto the DMD chip, where a multiplexed hologram is loaded to generate the desired beam
(see Section 2.5.1 for more information), independently shaping their phase and amplitude profiles.
The DMD diffracts the incoming beam into different spatial modes, where the two spatially shaped
polarisation components are superimposed in their first diffraction order and spatially selected via
an iris. The iris is positioned in between another telescope system (formed by L3 and L4) that
ensures the output beam leaving the DMD is both collimated and magnified accordingly (see panel
with green border in Fig. 3.3). In the setup, we introduce a flip mirror (FM), which directs the
beam into either our POVM tomography setup or a conventional Stokes polarimetry configura-
tion, as indicated by the panel with the blue and red borders in Fig. 3.3, respectively. Note that
throughout the experiment, we make use of gold-plated mirrors instead of coated dielectric mir-
rors to minimise any unwanted polarisation changes after reflection. Following the description in
[116], we perform full Stokes tomography via a sequence of intensity measurements of the beam’s
azimuthal profile Ii(r⊥), where i ∈ {H,V,D,A,R, L}, using a rotating quarter waveplate (QWP)
and half waveplate (HWP) and a static Polariser14 (Pol) and recording the beam image with a
CMOS camera (Thorlabs DCC1645C). More information on Stokes tomography can be found in
Section 1.4. The purpose of the Stokes measurements is to provide a measure of the performance
of our POVM setup.

14A polarising beam splitter can also be used instead.
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Figure 3.3: The experimental setup for our spatially dependent POVM tomography. The beam
colours indicate different polarisations, where Ĥ is red, V̂ is blue, and purple is some mixed state of
the two. We denote the interferometer arms between PBS1 and PBS3 by the dashed and solid lines
indicating the paths α and β, respectively. The setups consist of half waveplates (HWP), quarter
waveplates (QWP), quartz plates (QP), a polariser (Pol), lenses (L), polarising beam splitters
(PBS), a Wollaston beam splitter (WBS), mirrors (M), and a flip mirror (FM). The inset is the
displayed camera image with the four quadrants of the POVM measurements. We note the camera
incident angle of states |ϕ1⟩ and |ϕ4⟩ is exaggerated for clarity and is around 0.1 radians in reality.

Recall that the state entering our POVM measuring scheme, given by Eqn. 3.3.3 is entering our
polarimeter through the path labelled α as illustrated in Fig. 3.2, giving the following extension
state,

|ψ⟩ ⊗ |kα⟩ = (|uH⟩|H⟩+ eiϕ|uV ⟩|V ⟩)⊗ |kα⟩. (3.6.1)

Here we will summarise how we experimentally implement the ideal instrumentation ma-
trix denoted by Eqn. 3.5.10. The first polarising beam splitter (PBS1 from Fig. 3.3) sends the
horizontally or vertically polarised light along the path α or β, correlating the transverse spa-
tial and polarisation degrees of freedom to the degree of freedom along the longitudinal path,
|uH⟩ ⊗ |H⟩ ⊗ |kα⟩+ eiϕ|uV ⟩ ⊗ |V ⟩ ⊗ |kβ⟩, emphasising the implementation of the required Naimark
extension. Note that the current state has the form of a Greenberger-Horne-Zeilinger (GHZ) state
[142], where our classical state is correlated across the three degrees of freedom, namely polarisation,
spatial (phase and intensity), and path. The beam then propagates through a Mach-Zehnder inter-
ferometer, containing the half waveplates HWP1 and HWP2, in the two arms, followed by PBS2.
These waveplates control the polarisation ratio of Ĥ : V̂ in both arms, forming what is known
as a partially polarising beam splitter (PPBS) [121][143] (see Fig. 3.4a). A PPBS is an unusual
optical element that Sebastião Pádua jokingly described as a bad PBS; however, when compared
to commercially available optics, he is not entirely wrong. A PPBS works by transmitting a spe-
cific percentage of the incident horizontally polarised light TH while reflecting the remainder of the
horizontal beam RH . The same is also true for a vertically polarised beam, where we describe the
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transmission and reflection ratios by TV and RV , respectively (see Fig. 3.4b). Generally, there is
an underlying symmetry given by TH = RV and RH = TV . In our system, these ratios are given
by a and b from Eqns. 3.5.2. The state transformation induced by the waveplates (HWP1, HWP2,
HWP3, and the QWP) in the extended basis system {|H⟩ ⊗ |kµ⟩, |V ⟩ ⊗ |kµ⟩}, for µ = α, β, can be
expressed as,

|H⟩ ⊗ |kα⟩ −→
[
− ia√

2
(|H⟩+ |V ⟩)⊗ |kα⟩ −

ib√
2
(|H⟩ − i|V ⟩)⊗ |kβ⟩

]
eiϕα

|V ⟩ ⊗ |kα⟩ −→
[
ib√
2
(|H⟩ − |V ⟩)⊗ |kα⟩ −

a√
2
(|H⟩+ i|V ⟩)⊗ |kβ⟩

]
eiϕβ

|H⟩ ⊗ |kβ⟩ −→
[
a√
2
(|H⟩ − |V ⟩)⊗ |kα⟩+

b√
2
(−i|H⟩+ |V ⟩)⊗ |kβ⟩

]
eiϕβ

|V ⟩ ⊗ |kβ⟩ −→
[
− b√

2
(|H⟩+ |V ⟩)⊗ |kα⟩+

a√
2
(|H⟩ − i|V ⟩)⊗ |kβ⟩

]
eiϕα ,

(3.6.2)

Figure 3.4: Partially polarising beam split-
ters (PPBS). a) Our experimental imple-
mentation of a PPBS. b) A PPBS intensity
splitting ratio, depicted by the line thick-
ness. Here Tj and Rj for j ∈ {H, V } are
the transmission and reflection ratios for
the horizontal (red) and vertical (blue) po-
larisation structures. Note that purple rep-
resents a superposition of the two.

where the rotation angles θj of HWPj for (j = 1, 2) are
set such that a = sin 2θ1 = 2 cos 2θ2 and b = sin 2θ2 =
2 cos 2θ1, where a and b are the same coefficients in
Eqn. 3.5.2. Effectively, the ratio of the two polarisation
component amplitudes Ĥ : V̂ becomes a : b along the
path α and along the path β they take the form b :
a, which is experimentally confirmed via power metre
measurements of the beam intensity ratios.

Prior to the beam leaving PBS3, a change in the
polarisation components is experienced to generate the
POVM states via rotation of the set optics15. The fast
axis of HWP3 along path α is rotated by 67.5° with
respect to the polarisation direction along the horizon-
tal, preparing the states |ϕ1⟩ and |ϕ2⟩. Meanwhile, the
fast axis of the QWP in path β is set to 45°, prepar-
ing the |ϕ3⟩ and |ϕ4⟩ states. The phase terms ϕµ, for
(µ = α, β) expressed in Eqn. 3.6.2, are a consequence of
the optical path length experiences by the beam from
the two arms of the Mach-Zehnder interferometer. We
use a set of quartz plates, QP1 and QP2, tilted along
their vertical axis to independently cancel the phase
difference experienced by the beam. These plates play
a key role in calibrating our system and will be further
discussed next.

Once the beams reach PBS3, the projection mea-
surement is performed, as indicated in Fig. 3.2 by P ,
separating the states |ϕ1⟩ and |ϕ2⟩ from path α and |ϕ3⟩
and |ϕ4⟩ coming from path β. We use an additional
mirror to redirect the states emerging from PBS3 (as
shown in Fig. 3.3) to obtain a single-shot image of the

15Note that PBS3 does not act as the closure of another interferometer but is used for convenience to split both
components along the α and β paths independently into their Ĥ and V̂ components.
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intensity profile of the POVM elements in different quadrants of the CMOS camera, as demon-
strated in the inset of Fig. 3.3. We confirm that Eqns. 3.6.2 experience the unitary transformation
identical to the required unitary transformation matrix U expressed in Fig. 3.2, where further detail
is given in Appendix A.

To obtain a quantitative assessment of our POVM tomograpy, we compare the ideal instrumen-
tation matrix from Eqn. 3.5.10 with an experimental instrumentation matrix calculated from our
system. Recall that the instrumentation matrix links the normalised intensities IN measured by
our detector with the normalised Stokes vector SN of the input beam, as shown in Eqn. 3.5.9. By
inverting this equation, we obtain an expression of the instrumentation matrix Π, which we can
use to determine the behaviour of our POVM system16. The simplest way to do so, is to record the
intensities IN of the generated POVM elements as the input states, passing through our POVM
measurement system17, as illustrated in the top row of Fig. 3.5. Any changes experienced by the
input beam as it propagates through our setup will be reflected as minor deviations in the value
of the experimental instrumentation matrix Πexp, in comparison to the ideal matrix presented by
Eqn. 3.5.10. One such matrix is given by,

Πexp =
1

4



1.05 0.77
√
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1.06 −1.24
√

1
3
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−0.03 0.89
√

2
3
,


. (3.6.3)

Here we implement a notation highlighting the deviation of the experimental values from the
values of the ideal instrument matrix. The blue shading represents values expected to be 1, while
the red shading represents values that should be 0 when compared to the ideal case of the instru-
ment matrix Π from Eqn. 3.5.10. Note that as long as the instrument matrix allows an invertible
mapping from the POVM elements to the parameterised states via the Stokes vectors, then tomog-
raphy can be performed. We attribute the deviations recorded from the experimental instrument
matrix as consequences of the system calibration, where a well-calibrated system is expected to
produce a more ideal instrument matrix. Below we discuss a method to optimise our experimental
configuration.

3.6.1 Polarimeter calibration

A crucial step prior to running the experiment is to calibrate the interferometer. This important
step helps eliminate any unwanted phase shifts with the use of the quartz plates, QP1 and QP2.
We follow the same technique demonstrated in [121], where a number of homogenously polarised
beams are utilised for the calibration. However, unlike vector beams, homogenously polarised
beams are smaller by construction. Therefore, to achieve a stable interferometric configuration,
phase shift cancellation across the extended beam profile is required, which significantly increases

16Calculating the experimental instrumentation matrix requires 16 entries. A minimum of four input beams are
needed, where we represent their Stokes vectors as columns in a 4 × 4 Stokes matrix. Similarly, the intensities
measured from our POVM polarimeter are also written in terms of a 4× 4 intensity matrix. These two matrices are
used to calculate the experimental instrument matrix.

17Note these intensity measurements are derived from global values, averaged over the intensity across the whole
camera. However given the homogeneity of the beam profiles, a photodiode could be used to obtain these intensity
measurements.
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the experimental difficulty18. A prominent disadvantage of the Mach-Zehnder interferometer is
its sensitivity to independent phase shifts across the two arms, resulting in mandatory frequent
realignment of the system. This prompted calibration measurements to be performed prior to and
after data runs to ensure continued stability.

Using our DMD setup with a suitable set of multiplexed holograms, we are able to generate the
homogeneously polarised POVM states |ϕi⟩ described in Eqns. 3.5.2, along with a set of orthogonal
states |ϕi⟩ to our POVM elements,

|ϕ1⟩ = b|H⟩ − a|V ⟩,

|ϕ3⟩ = a|H⟩ − ib|V ⟩,

|ϕ2⟩ = b|H⟩+ a|V ⟩,

|ϕ4⟩ = a|H⟩+ ib|V ⟩.
(3.6.4)

A perfectly calibrated system should display no intensity, Ii = 0 for the respective orthogonal
state |ϕi⟩, for i ∈ {1, 2, 3, 4} in the measurement channel corresponding to ϕi, while maintaining an
equal intensity distribution among all other quadrants on the camera. Conversely, light prepared in
the POVM state |ϕi⟩ will display maximum intensity in the corresponding detector quadrant Ii, as
the state is projected onto itself, while a lower but equal intensity is expected for all other POVM
element projections. This expected uniform intensity distribution among the other POVM elements
is an interesting consequence of the required equidistant formalism of the POVM basis vectors
described in the previous section19. We adjust both QP1 and QP2 iteratively while generating the
orthogonal states to achieve the desired calibration. Fig. 3.5 shows an experimental measurement
after system calibration of the POVM |ϕi⟩ and orthogonal |ϕi⟩ states, conforming to the desired
outcome, however displaying a small discrepancy in the equal intensity distribution expected from
a perfectly calibrated polarimeter, indicating some phase imbalances are still present in our system.

Figure 3.5: Intensity images Ii, for Ii ∈ {1, 2, 3, 4} taken with a camera of the generated POVM
states |ϕi⟩ and their orthogonal states |ϕi⟩ used for calibration of the POVM setup.

18Our test beams have been expanded to the desired resolution by the DMD and although their size can be adjusted
to match the waist of the homogeneous beams, this comes at a cost of resolution loss. However the real problem is
that transverse coherence of the beam profile is more important for the correct identification of spatially resolved
beams, making our system sensitive to transverse dephasing effects (i.e. different parts of the beam propagating at
different lengths) that are not seen in homogeneous beams.

19For the POVM measurement system, this is the definition of unbiased state reconstruction.
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Note that the discrepancy between the calculated instrumentation matrix from Eqn. 3.6.3 and
the theoretical case presented in Eqn. 3.5.10, factoring in system calibration, implies the exper-
imental setup is projecting onto slightly different POVM elements than the desired MIC-POVM
states |ϕi⟩.

The susceptible nature of the Mach-Zehnder interferometers to vibrational noise makes active
phase compensation difficult to maintain during the data collection process. We assume the im-
perfect phase shift between the two arms of the interferometer contributes to the primary source
of error in the deviation of our experimental instrument matrix values. However, we can attribute
the imbalance in optical activity along the beam paths or any inhomogeneity along the azimuthal
beam profile as potential sources of errors to consider. The effect of the latter is evaluated by con-
sidering a spatially resolved experimental instrumentation matrix Π(r⊥) for superpixel segments of
the transverse position of the POVM intensity images20. The average for such a matrix is given by,

Π(r⊥) =
1
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Overall, this instrument matrix possessed some entries that were nearer to the ideal matrix value;
however, there were more entries that deviated from the theoretical instrument matrix Π when
compared to the experimental matrix Πexp calculated in Eqn. 3.6.3. Once again, the blue-shaded
numbers are expected to be 1, while the red-shaded numbers are expected to be 0 when compared
to the ideal instrument matrix Π from Eqn. 3.5.10. Even after the beam images are cropped
accordingly, a large number of dark pixels still remain where we calculate the instrumentation
matrix before averaging. This potentially serves as a significant source of error in the final averaged
matrix. Since calculating the matrix from Eqn. 3.6.5 is computationally taxing and provides no
improvements to the measurement fidelity, we opt to use the experimental instrument matrix from
Eqn. 3.6.3 to assess the performance of our POVM setup instead.

3.7 Results and performance analysis

We assess the capabilities of our POVM system for a number of generated vector beams, given in
their general form by Eqn. 3.3.3. The following are the beams we consider,

20When dividing an image into smaller segments, a mean pixel value is calculated for each segment, representing
the collection of pixels, forming what is known as a superpixel. The size of these superpixels can be anything;
however, throughout our work, we employ square superpixels of dimensions n × n. For example, if we segment a
1000 × 1000 image into a collection of 4 × 4 superpixels, we end up with a 250 × 250 image. This method can
significantly boost processing speed, however, at the cost of resolution.
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|ψ1⟩ = |HG1,0⟩|H⟩+ |HG0,1⟩|V ⟩

|ψ2⟩ = |HG0,2⟩|H⟩+ |HG2,0⟩|V ⟩

|ψ3⟩ = |LG0
1⟩|H⟩+ |LG2

0⟩|V ⟩

|ψ4⟩ = |HG0,1⟩|H⟩ − |HG1,0⟩|V ⟩

|ψ5⟩ = |LG0
1⟩|H⟩+ |LG1

0⟩|V ⟩,

(3.7.1)

where |HGn,m⟩ are Hermite-Gaussian (HG) modes with their horizontal and vertical modes given
by the indices n and m, respectively, while |LGl

p⟩ describes a Laguerre-Gaussian (LG) mode with
radial mode number p and the azimuthal mode number given by l (see Section 1.5.3 for more
information). The spatial intensity profile of these vector beams can be found in Fig. 3.6 and
Fig. 3.7 respectively.

Figure 3.6: The total intensity and measurements of the POVM states of the three test beams |ψ1⟩,
|ψ2⟩ and |ψ3⟩.
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Figure 3.7: The total intensity and measurements of the POVM states of the two remaining test
beams |ψ4⟩ and |ψ5⟩.

To better quantify the behaviour of our system, we employ a range of vector beams with different
polarisation structures and spatial profiles. Initially, we chose two vector beams with radial and
azimuthal polarisation structures (i.e. |ψ1⟩ and |ψ4⟩ respectively) to quantify the behaviour of our
system, since these beams are typically involved in the interferometer calibration process21.

These beams possess the most basic vector structure possible to generate and are well under-
stood, making them ideal first beams to test our single-shot polarimeter with. The other beams
possess a slightly more complex polarisation structure. For instance, the beam given by |ψ2⟩ is
made of two overlapped orthogonal second-order HG modes, resulting in a unique cross-like pat-
tern, while |ψ3⟩ and |ψ5⟩ are both Poincaré beams possessing all possible polarisations in their
spatial profile. The complexity of their spatial and polarisation structures should provide useful
insight into our system’s behaviour. However, since higher-order vector beams possess a larger
spatial profile, we were limited to lower-order test beams as a consequence of the small chip of
our detector. For this reason, we test our polarimeter with vector modes up to the second order
only. Given that the two beams |ψ1⟩ and |ψ4⟩ exhibit very similar characteristics (see Fig. 3.6 and
Fig. 3.7), we opted to exclude |ψ4⟩ from any further investigation since it provides no additional
insight into our system.

Recall from section 1.5.3 that the mode number of LG beams is given by N = |l|+2p. Using this
relation, we calculate the LG mode numbers for the horizontal and vertical components of our test
beam |ψ5⟩ to equal 2 and 1, respectively. This discrepancy in mode numbers produces different
Gouy phases (more information in Section 1.5.4) for the two beam components, resulting in a

21We have to ensure the light from the two interferometer arms is overlapping properly. When generating one of
these beams and passing them through our interferometer, they split into their two |H⟩ and |V ⟩ components, with
a spatial profile resembling first-order HG modes. By ensuring the two HG modes remain superimposed throughout
propagation for a distance of around 1.5m− 2m (roughly comparable to the interferometer path length). Only then
do we consider our interferometer to be calibrated.
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variable intensity profile throughout beam propagation, as shown in the comparison between the
measured and theoretical intensities of |ψ5⟩ in Fig. 3.7. Such a quantity is difficult to accurately take
into consideration when attempting to develop a solid understanding of our experimental system
and quantify the accuracy of the POVM tomography reconstruction. For this reason, we choose
to ignore this beam and any others with different mode numbers between the two polarisation
components22.

A vital step in assessing the performance of our POVM tomography technique is differentiating
between any errors that occur in our setup as a result of the beam generation process and any as
a consequence of the detection system. All of the intensity images obtained from our single-shot
polarimeter, displayed in the first rows of Fig. 3.6 for the beams described by Eqn. 3.7.1, recorded
in the four quadrants of the CMOS camera as demonstrated in the inset of Fig. 3.3 undergo a
background subtraction to account for ambient noise, obtained by calculating an average light level
over a small section of the camera far from the incident beam. Additionally, we attempt to identify
the centres of the four beam components using moment analysis and remove any unwanted noise
via a low-pass Fourier filter. We overlap the intensities of the four POVM components to generate
the total intensity distribution (last column of Fig. 3.6), serving as a control measure to ensure
proper overlap of the individual POVM intensity profiles. Generally, we find a good quantita-
tive agreement between the experimental intensity measurements (top row) and the theoretically
predicted intensity patterns displayed (bottom row) in Fig. 3.6.

By using the measured intensity information, we are able to reconstruct the spatially vary-
ing Stokes vectors by inverting Eqn. 3.5.9 and using the experimental instrument matrix from
Eqn. 3.6.3 for any vector beam. Although homegeneously polarised beams exhibit near-perfect
generation accuracy, unfortunately, this does not extend to complex polarisation structures. There
may exist intrinsic uncertainties in the generation process of vector beams, causing slight deviations
of the generated polarisation profile from the desired and expected polarisation pattern23. To quan-
tify the accuracy of the measurement process, we compare POVM tomography with conventional
six-measurement Stokes tomography (see Fig. 3.3). For the beams in Eqn. 3.7.1, we generate po-
larisation plots modulated by beam intensity to verify our POVM tomography, comparing them to
theoretically simulated polarisation patterns and those from Stokes measurements. These patterns
are displayed in Fig. 3.8 below.

22When attempting to understand a new experiment, it is best to keep things simple by removing as many
variables as possible. In our case, the Gouy phase added an additional layer of complexity to the system, which
would require the precise imaging of the beam generation plane to the imaging plane to account for the rotation
of the various Gaussian modes caused by different propagation lengths between the two interferometer arms. This
increased complexity would have to be considered for a commercial system; however, for a proof of principal device
like our own, it was best to ignore for the time being.

23Although any homogeneous beam of arbitrary polarisation can be generated by three commercial polarisation
optics (HWP, QWP and a polariser), our beam generation system comprises diffraction of a multiplexed hologram
on a DMD with finite resolution, and spatial filtering of the desired order (see Section 2.5.1 for more information).
Even in our group, which is internationally leading.
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Figure 3.8: Polarisation state reconstruction of the test beams |ψ1⟩, |ψ2⟩, and |ψ3⟩ with POVM
tomography (left), theoretical simulation (middle), and Stokes tomography (right). We use the
same colour scheme indicated by the inset of Fig. 3.1 to characterise the polarisation profile and
beam opacity for intensity distribution.

From the polarisation plots in Fig. 3.8, we can deduce the structure of the generated beams
from Eqn. 3.7.1. We can see the first beam |ψ1⟩ has a radial polarisation structure, the second
beam |ψ2⟩ is a non-radial symmetric beam with a four-fold symmetric pattern analogous to a clover,
and the last beam |ψ3⟩ is a form of a Poincaré beam with all possible polarisations, carrying a net
orbital angular momentum (OAM) of 1ℏ per photon, generated from different LG modes along the
horizontal and vertical polarisation components.

Overall, we find an accurate reconstruction of the input states; however, there are some distor-
tions affecting the fidelity as a consequence of the preparation process. We elaborate on the source
of the observed distortion towards the end of this section. To quantify the accuracy of our recon-
structed beams, we calculate a spatially resolved angular accuracy δ [144], providing a measure of
the angular deviation of the polarisation states on the Poincaré sphere. The angular accuracy is
given by,
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δ = cos−1
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different beam reconstruction methods. Eqn. 3.7.2 provides a quantitative measure in terms of an
angular value depicting the difference in the angle between the ellipse of the polarisation plots being
compared, where a deviation angle of δ = 0° indicates perfect polarisation state reconstruction while
an angle of δ = 180° indicates comparison of orthogonal states. We note that δ = ϕ denotes a
rotation in linear polarisation of ϕ/2 as expected from the Poincaré sphere. We perform a pairwise
comparison between POVM tomography, theoretical approximation, and Stokes tomography for
our test beams from Eqn. 3.7.1 and present the results in Fig. 3.9, where we define an intensity-
weighted angular accuracy, averaged over the entire beam structure, denoted by ∆.

Figure 3.9: Quantitative evaluation of the angular accuracy δ, comparing the polarisation profiles
of POVM tomography, Stokes tomography, and theory for the three test beams from Eqn. 3.7.1 in
a pairwise fashion. Blue indicates strong agreement, while red indicates angular discrepancies in
the ellipse orientations. Here ∆ represents an intensity-weighted angular accuracy averaged over
the entire beam profile.

From Fig. 3.9, we generally observe that large regions of angular deviation usually correspond
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to regions of lower beam intensity, where noise is more prevalent and difficult to eliminate. We note
that [121] offers a method to calculate the fidelity, first introduced by Uhlmann in 1976 [145] that
measures the closeness between two quantum states µ and ν in terms of their density operators as

F (µ, ν) = [Tr
(√√

ρµρν
√
ρµ

)
]2 [146]. However, due to the complex polarisation structure of our test

beams, we use the angular accuracy as a more suitable method of detecting polarisation variations
in our data to evaluate any uncertainties arising from the generation and detection processes.

Our analysis confirms that indeed, POVM tomography allows the reconstruction of input po-
larisation states from a minimal number of measurements, but with a slightly reduced accuracy
when compared to Stokes tomography. The overcomplete nature of Stokes tomography provides
additional information that serves to reduce the error in the reconstruction process and, when cou-
pled with the complex experimental structure of the POVM setup, provides an overall indication
for the discrepancy in accuracy between the two methods.

The discrepancies between Stokes tomography and the theoretically generated polarisation pro-
files arise from potential errors in both the beam generation and measurement processes, an example
of which could be misalignment in the overlapped polarisation components emerging from the DMD.
Additionally, the rotating waveplates used to perform Stokes measurements (see Section 1.4) could
very well have been miscalibrated from prolonged use24. We expect any errors arising from the beam
preparation process to affect our POVM measurements as well; however, we express that the main
experimental challenge was the required compensation for the two Mach-Zehnder interferometer
arms using the quartz plates QP1 and QP2, along the entire beam profile. As stated previously, the
POVM setup is more complex, with much longer beam paths and far more optical elements in use,
each with a tendency to affect the polarisation structure of our generated beams in undesired ways
prior to the projection measurement. Finally, we generate our beams using holograms displayed
on a DMD with homogeneously polarised test beams, confirming the polarisation structure with
Stokes tomography before aligning our POVM system. Unfortunately, this method favours Stokes
tomography in the alignment process, where we are able to adjust for any polarisation changes to
the Stokes measurement system along the beam path but not the POVM polarimeter.

3.8 Conclusion

Our obtained results serve as a proof of principle that an experimental realisation of a system
capable of arbitrary vector beam characterisation with a single-shot measurement is indeed possi-
ble. The slightly larger deviations in the polarisation pattern throughout propagation are mainly
attributed to the lack of stability in the interferometer setup, which necessitates a need for recal-
ibration between measurements, affecting the experimental accuracy of our POVM tomography.
These stability issues with the interferometer were addressed in subsequent works when the Mach-
Zehnder interferometer was replaced in favour of the more stable Sagnac configuration, which will
be discussed in the following section. However, these variations in the polarisation profile were also
observed for the simple Stokes tomography setup, becoming more noticeable for beams with a far
more complicated polarisation structure (see Fig. 3.9). Interestingly, aberrations due to transverse
phase variations acquired from propagation through optical elements and Gouy phase do not affect
the overall topology of the beam, ensuring polarisation structure redistribution across the beam
profile25. An investigation focused on vector quality [147] and optical skyrmion number [82] to

24As a consequence of gear backlash (see Section 1.4).
25By topology we mean topological charge, a conserved quantity related to the azimuthal phase index l as a

consequence of helical phase fronts (more information in Section 1.5.3).
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ensure invariance of the vector structure of the light as a consequence of the introduced aberrations
and dephasing might be intriguing. Additionally, in future work, there is an interest in replac-
ing the spatially resolved detection method with projection onto pre-determined spatial modes,
enabling the experiment to run in the quantum regime with far greater efficiency utilising single
photon detectors rather than a CMOS camera. Alternatively, we could explore potential integrated
optics implementations of POVM state tomography using unique patterns imprinted onto silicon-
based metasurfaces for polarimetry [148]. These systems could prove beneficial in reducing errors
in input state beam reconstruction and potentially pave the road to the early stages of commercial
realisation of a POVM tomography polarimeter.

3.9 Subsequent work

Previously, we proved our setup is capable of input beam reconstruction for complex polarisation
structures, with some tolerated errors in the reconstruction accuracy as a consequence of introduced
aberrations or potential misalignment throughout the optical system. During the experiment, we
experienced difficulties maintaining the stability of the system, which required frequent calibrating
of the POVM polarimeter due to the susceptible nature of the Mach-Zehnder interferometer to
vibration noise. This caused noticeable misalignment in the beam profile after a moderate pe-
riod of time, which was detected by our calibration technique. In this section, we briefly discuss
our work published in [149], spearheaded by Amy McWilliam, that sees the reconstruction of the
polarimeter setup replacing the Mach-Zehnder interferometer with a path-displaced Sagnac inter-
ferometer inspired by [143], offering a significant increase in common path noise reduction and
thereby improving the stability of the experiment26.

Many of the working concepts shown in Fig. 3.10 remain the same as in our previous work
[71]27. As the beam enters the Sagnac interferometer, it is once again split into its vertical and
horizontal components by a PBS, propagating in the opposite directions. In this experiment,
the phase arising from the path difference of the two beams is compensated with glass slides,
where the same calibration method involving the elimination of orthogonal states discussed in
Section 3.6.1 is employed. Additionally, both the clockwise and anti-clockwise paths contain a half
waveplate (HWP1 and HWP2 from Fig. 3.10), responsible for introducing the beam splitting ratios
a and b to the two polarisation components Ĥ and V̂ given by Eqn. 3.5.2, essentially creating
the partially polarising beam splitter (PPBS) before leaving the interferometer through the same
PBS. The beam along the α path passes through a HWP3 and a quartz plate used for polarisation-
dependent calibration, while the beam along the β path is reflected into a QWP. All waveplate
angles are identical to the original setup from Section 3.6. Finally, the beams along the two paths
enter PBS2, where the POVM elements are generated, before once again being incident on four
different quadrants of a camera (see inset of Fig. 3.10) for a single-shot measurement of the spatially
dependent polarisation profile.

26My contribution to this work extends to the design of the experimental setup and consultations based on my
previous experience from our initial work.

27With the additional change of placing an optically active sample along the beam path.
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Figure 3.10: The improved Sagnac interferometer for the single-shot POVM tomography setup.
The setup consists of polarising beam splitters (PBS), half waveplates (HWP), a quarter waveplate
(QWP), glass slides (GS), a quartz plate (QP), and mirrors (M). The dashed and solid lines
represent the α and β paths, respectively, while the inset displays the camera image with the four
quadrants of the POVM measurements.

The analysis in [149] states the split path of the Sagnac interferometer creates a small differ-
ence in the optical path length that requires periodic calibration of the instrument matrix, where
significant improvements to the interferometer stability are reported, measured over a period of 8
hours at 30-minute intervals in a calm laboratory setting. However, noticeable deviations in beam
intensity were detected when the laboratory experienced increasing foot traffic. These deviations
are attributed to the small shifts in the glass slides positions from the vibrational noise.

In the classical regime, one could determine the optical activity using a spatially dependent
one-shot analysis of the photo-active material with our system, where identification of dichroism or
birefringent behaviour requires Mueller matrix calculations of the light beam propagating through
the active medium. Usually, this requires exposing the sample to the six input polarisation states
Ii(r⊥) for i ∈ {H,V,D,A,R, L}, where Stokes tomography is performed across all six input beams,
resulting in a total of 36 measurements. Alternatively, we could use POVM tomography to reduce
the number of measurements down to 16, for a total of four sequential measurements due to
the one-shot nature of the system. By exposing the sample to a Poincaré beam, we can test
the response of the medium simultaneously across all polarisation profiles, generating a single-
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shot optical activity detection system. This technique would be ideal for reconstructing optical
activity information for photo-sensitive samples that exhibit rapid dynamic changes or those where
prolonged exposure to light could be problematic. For this reason improvements to the stability of
the interferometer is vital to eliminate inaccuracies in the reconstruction of the Muller matrices of
the optically active medium. The experimental results discussed in [149] report successful Muller
matrix reconstruction with a Poincaré beam for stationary, rotated, and tilted retardation plates
using POVM measurements with excellent theoretical predictions and comparable accuracy to
Stokes tomography, as documented in Section 4 of [149].

3.10 Summary

In this chapter, we provide a detailed description of our experimental work, realising a single-shot
measurement system to characterise complex vector beams with generalised measurements. We
introduce an extensive mathematical description of the nature of generalised measurements and
the POVM sets in use. We discussed the experimental implementation of the MIC-POVM via
an interferometric setup and compared the obtained results to pre-existing tomography methods.
Finally, we gave a summary of later work involving a modified experimental configuration with
greater system stability.
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PART II

MATTER, SPECTROSCOPY AND
MAGNETO-OPTICAL EFFECTS
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Chapter 4

Atomic structure and the optical Bloch
equations

4.1 Introduction

Thus far, we have solely focused on developing a foundational understanding of light phenomena
relevant to our work. Starting from Maxwell’s equations and moving to polarisation, discussing
formalisms, generation methods, and measurement techniques before introducing transverse modes
of propagation, and finally shedding light on our experimental work with a minimum informationally
complete polarimeter. In this half of the thesis, our focus shifts to understanding the nature
of atomic interactions with propagating light fields, with a particular emphasis on spectroscopic
techniques involving spatially varying polarisation structures.

A large section of experimental research on matter-light interaction has used alkaline metals.
These elements possess a single valence electron1, which under certain assumptions can be treated
like a simple nucleus-electron system analogous to the hydrogen atom, significantly reducing the
complexity of their modelling. Rubidium is one such element with a manageable vaporisation
temperature2 that has been used in several matter-light interaction studies in recent years, with
applications in atomic clocks [150–152], magnetometry [153–155], and quantum memories [156–
158]. However, despite their experimentally friendly nature and rich atomic structure, the choice
to use rubidium in modern-day experiments remains heavily motivated by historic reasons.

One of the main driving forces behind the early work on matter-light interaction was to create
the fifth state of matter known as a Bose-Einstein condensate (BEC). As atoms are cooled into the
nanokelvin regime, a single “superatom” is created where quantum mechanical behaviour begins to
manifest in the macroscopic regime, making it easier to study and maybe even apply for real-world
applications3. In 1995, Eric Cornell and Carl Wieman created the first BEC by laser cooling atoms,
using diode lasers stripped from CD players that operated at a wavelength of around 780nm in the
near infrared (NIR) region, close to the rubidium cooling transition. The choice to use rubidium
had more to do with their leftover equipment from their previous work with cesium and less with
rubidium being the ideal candidate for a BEC. Although the historical reasoning for rubidium
cooling was based on convenience rather than scientific justification, it is worth noting that most
department heads and senior researchers today were PhD students and early career researchers
when the first BEC was formed, which would have influenced their ideas before being passed down

1Outermost electron.
2When compared to some of the other elements.
3Mathematically the whole atomic ensemble (i.e. “superatom”) now possesses a single wavefunction.
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to the next generation.
Furthermore, the diodes found in commercial CD players served as a low-cost laser source for

underfunded groups to conduct interesting experiments investigating new concepts or expanding
on existing ones. Unfortunately, the popularity of CDs waned over time in favour of DVDs, then
DVD HD, followed by Bluray, and eventually being replaced entirely by online streaming services,
raising the cost of laser diodes used for research purposes. Despite this, much of the equipment
found in laboratories at the turn of the century is still in use today, ensuring rubidium remains a
viable option for new experimental research in atom optics.

4.2 Rubidium energy structure

As the title of this section suggests, all of our atom experiments at the University of Glasgow use
rubidium. In their natural state, there are two isotopes of Rubidium, namely Rubidium-85 (85Rb)
and Rubidium-87 (87Rb), at an abundance of 72.19% and 27.83%, respectively [159]. We have
considered both isotopes throughout different stages of our experimental work, where in the early
stages of our system preparation, we took measurements with both isotopes by scanning our laser
frequency (more information in Section 6.5), to evaluate our system accuracy when comparing
our data to existing literature4. However, for reasons that will be covered in Section 6.6, we
concentrated primarily on 85Rb when carrying out our intended experiment. Nevertheless, we will
discuss both isotope structures in this section, following the literature in [160, 161].

Figure 4.1: The electron spin-orbit interaction. a) An elec-
tron orbiting a nucleus with orbital angular momentum L
(blue) and its spin precession axis S (red). b) The spin-
orbit coupling with a total angular momentum J (green).

In a simplified model, the alkaline
metals and any hydrogen-like atoms
are treated as a single electron or-
biting a nucleus, as illustrated in
Fig. 4.1a. The rest of the electrons
fill the internal structure of the atom
completely, where it is assumed they
do not interact with the valence elec-
tron (outermost electron) in any ca-
pacity5. For our work, it is sufficient
to consider only two orbitals in the
same shell, namely the 5S and the 5P
orbitals, where S and P indicate an
orbital angular momentum quantum
number of L = 0 and L = 1, respec-
tively. The magnitude of the orbital
angular momentum vector L can be
calculated from |L| =

√
L(L+ 1)ℏ.

It is worth mentioning that the mag-
nitude of any momentum vector can be calculated with a similar expression, replacing L with the
associated quantum number. Alongside L, there are four other fundamental quantum numbers that
tell us the energy state of the electron6, namely, n the principal quantum number (dictates energy
level), mL the magnetic moment number (determines the number of orbitals and their orientation
in a L-subshell), and S the electron spin (angular momentum of the electron). In this scheme,

4Which was possible since there was no laser locking mechanism in place yet.
5In reality, the valence electron will feel an electrostatic contribution from the other electrons.
6Ignoring any momentum coupling.
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the S orbital denotes the ground state and is separated by ∼ 379.4THz (or ∼ 788.1nm)7 from the
excited state orbital P .

Most fundamental particles possess an intrinsic spin8, which varies for bosonic (integer spin) and
fermionic (half integer spin) particles. In addition to the orbital angular momentum, the electron is
an example of a spin-1/2 particle with a spin quantum number of S = ±1/2. Note that the electron
spin motion resembles a precession around an axis, whose orientation is given by the sign of S. The
total angular momentum in the system from both contributions is given by J = L+ S, generating
an effect known as spin-orbit coupling, as shown in Fig. 4.1b. The combined momentum number
takes a value ranging between |L− S| ≤ J ≤ L+ S, where the S orbital (L = 0) has J = 1/2 and
the P orbital in the excited state (L = 1) can take J values of either J = 1/2 or J = 3/2. This
creates an effect known as the fine structure splitting. For alkaline metals, the transitions from
the ground state 5S1/2 to the 5P1/2 or 5P3/2 excited states are known as the D1 and D2 transition
lines, respectively.

Figure 4.2: The hyperfine interaction between the nucleas
and electron. a) A precessing electron S (red) orbiting the
nucleus with orbital angular momentum L (blue), interact-
ing with a precessing nucleus I (purple). b) The hyperfine
interaction with total angular momentum F (orange).

Similar to the electron, the nu-
cleus also possesses an intrinsic an-
gular momentum spin9, whose vector
is given by I (as shown in Fig. 4.2a)
and couples to the spin-orbit vector
J to give a total angular momentum
expressed by F = J + I as illus-
trated in Fig. 4.2b. This splits the
fine structure into further sublevels
labelled by F , an effect known as hy-
perfine splitting, with values rang-
ing from |J − I| ≤ F ≤ J + I. The
two isotopes of rubidium possess dif-
ferent nuclear spins, namely, I85 =
5/2 and I87 = 3/2. The implications
are that although both isotopes pos-
sess the same number of hyperfine lev-
els, the hyperfine states of 85Rb are
larger by 1 (i.e. F + 1), compared
to 87Rb (e.g. for the D2 line excited
states, 85Rb has the hyperfine states
1 ≤ F ≤ 4, while 87Rb has the states
0 ≤ F ≤ 3). The fine and hyperfine splitting are illustrated in the energy level diagram shown
in Fig. 4.3, for both 85Rb and 87Rb. The notation for the fine structure is given by nLJ , and
the frequency separation is around 7.1THz or 14.7nm. However, the hyperfine splitting (denoted
F , F ′, and F ′′ for the ground, D1 line, and D2 line, respectively) is generally separated by a few
gigahertz for the ground states and a few tens to a few hundred megahertz for the excited states,
as seen in Fig. 4.3. In a very similar fashion to the orbital angular momentum L, the hyperfine
structure possesses a set of 2F + 1 magnetic sublevels, denoted by the quantum number mF , and
has the range −F ≤ mF ≤ F . These sublevels are degenerate (i.e. they measure the same energy
but possess different quantum numbers) in the absence of any external magnetic fields.

7These values are calculated from numbers retrieved from [160, 161].
8With the exception of some bosons with zero spin (e.g. Higgs boson).
9This motion is also a precession.
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Figure 4.3: Energy levels of the ground state (F ), lower excited (F ′′), and upper excited (F ′) states
of the valence electron for 85Rb and 87Rb. Both the fine structure and hyperfine splitting are shown,
with the red arrow indicating increasing energy. The magnetic sublevels are indicated on the right,
where the green line is the zeroth magnetic sublevel. In our labs, we only make use of the D2 lines;
however, we included the D1 line structure for completeness.
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However, in the presence of a magnetic field, the mF levels experience a frequency shift via the
Zeeman effect. For a weak magnetic field this shift is given by [162],

∆E|F,mF ⟩ = µBgFmFBz, (4.2.1)

where µB is the Bohr magneton10 and Bz is the magnetic field in the z-direction. Here the z-
axis corresponds to the quantisation axis of the angular momentum, and gF is the Landé g-factor,
expressed in its complete form by,

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
+ gI

F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
, (4.2.2)

where gI is the nuclear spin g-factor and gJ is the fine structure Landé g-factor given by,

gJ = gL
J(J + 1)− S(S + 1) + L(L+ 1)

2J(J + 1)
+ gS

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)

≃ 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
,

(4.2.3)

here gL and gS are the orbital and spin g-factors of the electron, respectively. Since the largest
contribution from gI is around 0.15% of gJ , we can ignore the second term of Eqn. 4.2.2. Addition-
ally, the final expression in Eqn. 4.2.3 comes from using the approximate g-factor values gL ≈ 1
and gS ≈ 2. If we write Eqn. 4.2.1 in frequency format and assume natural units we get,

ωL = 1.40gFmFBz. (4.2.4)

This frequency is known as the Larmor frequency, which describes the precession of the atom
around an applied magnetic field11. This frequency is important when discussing magneto-optical
effects and will be referred to throughout our work in Chapter 6. For the magnetic field in our
experiment, the Zeeman splitting is on a much smaller scale compared to some of the frequencies
discussed in this section. For example, the magnetic sublevels mF of the upper ground state
(J = 1/2, F = 3) in 85Rb experience a shift of 0.47MHz/G, while the magnetic sublevels of the
upper excited state mF ′ experience a shift of around 0.70MHz/G (see Fig. 4.3), where the shift
between the furthest magnetic sublevels in the corresponding states (i.e. between m±F and m±F ′)
for an external magnetic field of 1 G is around 2.80MHz and 5.60MHz, respectively. In addition
to the magnitude of the Zeeman shift, the sign of the Landé g-factor also determines the shift
direction of the magnetic sublevel. An example of this can be seen in Fig. 4.4, where the ground
states of 85Rb shift in the opposite direction under the effect of the external magnetic field.

10The Bohr magneton has a value of around ∼ 1.40h MHZ/G [160, 161], where h is the Planck constant. However,
when discussing magnetic field shift, we assume natural units (i.e. h = 1).

11A common form of the Larmor frequency is ωL = γB, where γ is a quantity known as the gyromagnetic ratio,
given by γ = −eg/2M . Here e is the electron charge, g the Landé factor, and m the electron mass.
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Figure 4.4: Zeeman splitting of
85Rb ground state mF levels.
The different signs of the g-factor
gF indicate the splitting direc-
tion. The mF = 0 state is in
green, and the dashed line indi-
cates the mF sublevel positions
in the absence of an external
magnetic field. ThemF shift val-
ues are in MHz/G.

In an experimental setting, we are able to successfully observe the fine and hyperfine structure
splitting with a simple spectroscopy setup (see Section 5.3 for more information); however, the
Zeeman shifts of the magnetic sublevels in a low field regime are on the order of the natural linewidth
of the transition Γ, making it difficult to resolve experimentally. However, light polarisation can be
used to distinguish between the population in the different magnetic sublevels and plays an integral
role in polarisation spectroscopy, which will be discussed in a later chapter. More information on
the structure of 85Rb and 87Rb can be found in [160, 161].

4.3 Optical Bloch Equations: a two-level atom

Figure 4.5: A two-level atomic system. The
ground state energy is zero, the excited state
energy is ℏω0, and the photon energy is ℏω.

In this section, we develop a mathematical model
of a coherent light field interacting with an atomic
medium, building an understanding of matter-light
interaction following the literature in [163–166], lead-
ing to the derivation of the optical Bloch equa-
tions. Generally, we consider the simplest interac-
tion model, which sees the atom being treated as
a two-level system with a ground state |g⟩ and an
excited state |e⟩, separated by an energy gap as
shown in Fig. 4.5. The energy of a state |ψ⟩ of
any quantum mechanical system can be determined
from the eigenvalue equation (often called the time-
independent Schrödinger equation),

Ĥ|ψ⟩ = E|ψ⟩, (4.3.1)

where Ĥ is the Hamiltonian operator and E is the
system energy. We define the Hamiltonian operator
as,

Ĥ = T̂ + Ĥ0 + ĤI , (4.3.2)

where T̂ is the kinetic energy operator, Ĥ0 is the atomic Hamiltonian, and ĤI is the interaction
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Hamiltonian. For simplicity, we assume a stationary atom (i.e. T̂ = 0) and focus on the potentials
instead. The atomic Hamiltonian Ĥ0 describes the base energy of the atom in the absence of
external forces. This Hamiltonian takes into account the kinetic energy from the electron motion
and the Coulomb potential from the electrostatic interaction between the nucleus and electron. For
our system, the atomic energy of the two levels are given by,

Ĥ0|g⟩ = 0

Ĥ0|e⟩ = ℏω0|ψ⟩,
(4.3.3)

where we have opted to set the ground state energy to zero and the excited state energy is given by
the Planck relation as illustrated in Fig. 4.5. Here ℏ is the reduced Planck constant and ω0 is the
required photon frequency to excite the atomic transition. However, the interaction hamiltonian is
described by an electric dipole moment between the nucleus and the electron, taking the form,

ĤI = d̂ · E, (4.3.4)

where d̂ is the dipole operator and E the electric field of the incident photon. The dynamics of the
system are described by the time-dependent Schrödinger equation,

iℏ
∂|Ψ(r, t)⟩

∂t
= Ĥ|r,Ψ(t)⟩, (4.3.5)

where the atom can be described with the atomic wavefunction,

|Ψ(t)⟩ = cg(t)|g⟩+ ce(t)|e⟩e−iωot, (4.3.6)

here cg(t) and ce(t) are the complex probability amplitudes of the ground and excited states,
respectively, as a function of temporal variations. Substituting Eqn. 4.3.6 into Eqn. 4.3.5, we find,

iℏ
dcg(t)

dt
|g⟩+ iℏ

dce(t)

dt
|e⟩e−iωot = (Ĥ0 + ĤI)(cg(t)|g⟩+ ce(t)|e⟩e−iωot). (4.3.7)

Since Ψ only depends on t, the derivative is no longer partial. If we now multiply the equation
above with ⟨g| and |e⟩, respectively, we are left with two expressions,

iℏ
dcg(t)

dt
= cg(t)⟨g|(Ĥ0 + ĤI)|g⟩+ ce(t)⟨g|(Ĥ0 + ĤI)|e⟩e−iωot

iℏ
dce(t)

dt
e−iωot = cg(t)⟨e|(Ĥ0 + ĤI)|g⟩+ ce(t)⟨e|(Ĥ0 + ĤI)|e⟩e−iωot.

(4.3.8)

Using Eqns. 4.3.3 and substituting Eqn. 4.3.4 into Eqns. 4.3.8 above, we are left with,

iℏ
dcg(t)

dt
= ce(t)⟨g|d̂ · E|e⟩e−iωot

iℏ
dce(t)

dt
= cg(t)⟨e|d̂ · E|g⟩eiωot.

(4.3.9)

Since the dipole operator d̂ possesses an odd parity, both ⟨g|d̂ · E|g⟩ and ⟨e|d̂ · E|e⟩ vanish12.

12This might be easier to spot in wavefunction format using the dipole matrix elements d̂ii. In this formalism,
⟨i|d̂|i⟩ =

∫
dV |Ψi|2d̂. Since the total integrand parity is odd, the volume integration over a finite space is zero.
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Considering a monochromatic plane wave with an electric field similar to Eqn. 1.2.14 (i.e. E =
E0 exp

[
i(k · r− ωt)

]
ê) and photon energy E = ℏω (see Fig. 4.5), by substituting this field into

Eqns. 4.3.9 we obtain the expressions13,

iℏ
dcg(t)

dt
= ce(t)ℏΩ∗

(
ei(ω−ωo)t + e−i(ω+ωo)t

2

)

iℏ
dce(t)

dt
= cg(t)ℏΩ

(
ei(ω+ωo)t + e−i(ω−ωo)t

2

)
,

(4.3.10)

where the quantity Ω is given by,

Ω = E0
⟨e|d̂ · ê|g⟩

ℏ
. (4.3.11)

In a two-level system, the process where the atom is excited by absorbing the energy from an
incoming photon and decaying by re-emitting the photon describes a continuous interaction cycle,
the rate of which is given by the Rabi frequency Ω. This frequency determines the coupling
strength between the atom and the light field and depends on the beam intensity14. Note that the
interaction strength for every intensity will vary depending on the driven atomic transition and
light polarisation and must be calculated from the dipole matrix elements (see section 4.6 for more
information).

For a low-intensity light field close to resonance, the oscillation terms given by (ω + ω0) are
much faster than (ω − ω0), oscillating at roughly twice the frequency of the driving force. When
averaged over timescales relevant to the atom (e.g. atomic decay) they vanish. This is known as
the rotating wave approximation. Applying this approximation to Eqns. 4.3.11 yields,

iℏ
dcg(t)

dt
= ce(t)ℏΩ∗ e

i∆t

2

iℏ
dce(t)

dt
= cg(t)ℏΩ

e−i∆t

2
,

(4.3.12)

where ∆ = ω − ωo is the difference between the frequency of the light field and atomic transition
known as the detuning. The interaction Hamiltonian can be read off from Eqns. 4.3.12; however,
the complex amplitudes still contain time-dependent terms15. We remove these time dependencies
by introducing the coordinate transformation in the frame of reference of the rotating light field,
c′g = cg(t) and c

′
e = cee

i∆t into Eqns. 4.3.12, to give,

iℏ
dc′g
dt

= c′e
ℏΩ
2

iℏ
dc′e
dt

= c′g
ℏΩ
2

− c′eℏ∆,
(4.3.13)

where we assume the complex amplitudes of the two states fluctuate identically (i.e. Ω = Ω∗). This
signifies our interest in the local effects of the atom, discarding any global phase contributions. We

13We are only interested in the temporal evolution of the light field, which for a physical wave is given by
Re(E) = Re(e−iωt) = cos(ωt) = (eiωt + e−iωt)/2 (the second to last expression is from Euler’s formula and the last
expression is the cosine in exponential form).

14Recall that the intensity depends on the electric field by I = |E|2.
15Remember, you can express a system of linear first-order coupled differential equations in matrix form.
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can now read the total Hamiltonian of the system from Eqns. 4.3.13, expressed in matrix format,

Ĥ =
ℏ
2

0 Ω

Ω −2∆

 . (4.3.14)

Figure 4.6: An atom interacting with an optical
field (or absence of a field). a) atomic absorption;
b) stimulated emission; and c) spontaneous emis-
sion.

In our current formalism of the two-level sys-
tem we considered so far, the action of the light
field causes the atom to oscillate between the
ground and excited states, where the time evo-
lution is given by the Schrödinger equation. In
terms of energy, the monochromatic light field
transfers the energy to the atom, where the
atom re-emits the photon back into the light
field when de-excited, ensuring energy conser-
vation laws are obeyed. These two processes are
known as absorption and stimulated emis-
sion, respectively (as shown in Fig. 4.6a and
Fig. 4.6b, respectively). However, in this inter-
action model an atom prepared in the excited
state remains there unless acted upon by an ex-
ternal field. In reality, the excited state has a
finite lifetime τ before decaying into the ground
state and re-emitting a photon in a random di-
rection via means of spontaneous emission
(see Fig. 4.6c). Ultimately we consider the atom
to be irreversibly coupled to an environment
(which includes the light field)16 where spontaneous emission simulates energy loss in the sys-
tem, akin to oscillation damping from the Schrödinger picture. This process must be included in
the formalism of the Hamiltonian to describe the atom-light interaction correctly.

Consider a beam interacting with an ensemble of atoms, where the state of each atom is given
by the wavefunction |Ψ⟩ = cg|g⟩ + ce|e⟩, and the state of all atom-light interactions is the sum of
all atomic states |Ψint⟩ =

∑
i(|Ψ⟩)i. After performing the projection measurements on the atoms,

the interaction state Ψint is a statistical mixture of the two pure states of the system, |g⟩ and |e⟩.
Such a state is known as a mixed state and cannot be described by a single wavefunction, instead
we use density matrices to represent them defined by ρ̂ = |ψ⟩⟨ψ| (see Section 3.4). Considering the
atomic state in vector format, we represent the density operator in matrix format by,

ρ̂ =

cg
ce

(c∗g c∗e

)
=


∣∣cg∣∣2 cgc

∗
e

c∗gce |ce|2

 =

ρgg ρge

ρeg ρee

 , (4.3.15)

where the asterisk (*) denotes complex conjugate terms. Here the diagonal terms ρgg and ρee
represent population states, denoting the probability of finding the atom in the |g⟩ or |e⟩ state,
respectively. The off-diagonal terms ρge and ρeg are known as coherences, describing the phase
relation between the two states. Since the atom-light interaction processes (i.e. absorption and

16Note that we do not care about the environment and only concern ourselves with the state of the atom.
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spontaneous emission) are time-dependent, we obtain an expression of the time evolution of the
density matrix using the von Neumann (or Liouville) equation given by,

−iℏdρ̂
dt

=
[
ρ̂, Ĥ

]
, (4.3.16)

where Ĥ is the Hamiltonian and
[
ρ̂, Ĥ

]
= ρ̂Ĥ− Ĥρ̂ is the commutation relation. The derivation of

the optical Bloch equations is nearly complete, but we are missing a term describing spontaneous
decay. Unfortunately, a Hamiltonian cannot describe this process; however, we can incorporate
dampening effects into the density matrix formalism. The expected rate of spontaneous emission
can be expressed as the inverse of the excited state lifetime 1/τ , otherwise known as the decay rate
Γ. After this decay, the atom is in the ground state, where the rate of depopulation in the excited
state must equal the rate of repopulation in the ground state. We express the decay terms for the
population states by,

ρ̇ee = −ρ̇gg = −Γρee, (4.3.17)

and the decay rate of the coherences by,

ρ̇ge = −Γ

2
ρge

ρ̇eg = −Γ

2
ρeg,

(4.3.18)

where the dot (·) denotes a time derivative. The final form of the von Neumann equation, including
both the Hamiltonian of the matter-light interaction and the spontaneous decay and is given by,

−iℏdρ̂
dt

=
[
ρ̂, Ĥ

]
− Γ

−ρee 1
2
ρge

1
2
ρeg ρee

 . (4.3.19)

By substituting the Hamiltonian from Eqn. 4.3.14 into Eqn. 4.3.19 above and expanding, we
obtain an expression for the optical Bloch equations,

˙̃ρgg =
iΩ

2
(ρ̃ge − ρ̃eg) + Γρ̃ee

˙̃ρge = −iΩ
2
(ρ̃ee − ρ̃gg)− i∆ρ̃ge −

Γ

2
ρ̃ge

˙̃ρeg =
iΩ

2
(ρ̃ee − ρ̃gg) + i∆ρ̃eg −

Γ

2
ρ̃eg

˙̃ρee = −iΩ
2
(ρ̃ge − ρ̃eg)− Γρ̃ee,

(4.3.20)

where the tilde (∼) denotes being in the rotating frame of the light field similar to Eqns. 4.3.13. In
addition to the Bloch equations, the populations of the density matrix also obey the completeness
relation (i.e. ρgg + ρee = 1), since the atom can only occupy these two states and the off-diagonal
elements are complex conjugates of one another (i.e. ρ̃ge = ρ̃∗eg). There are analytic solutions to
some special cases of the Bloch equations, but they are generally solved using numerical methods,
especially when extended to multilevel atoms with more complex atomic structures.

Fortunately, for interaction with continuous wave (CW) lasers the dynamics of the absorption
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process do not change over time, which makes the steady-state solution a suitable approximation
to determine the scattering (or fluorescence) rate17. In this case we are interested in the population
of the excited state ρ̃ee since only excited atoms can scatter, where we define the scattering rate
as Γρ̃ee. In an experimental setting where a light source probes the atomic medium, the scattering
rate is proportional to the beam intensity up to a factor. By employing the steady state solution
(i.e. ˙̃ρssee = 0), we obtain an expression for the scattering rate,

Rscatt = Γρ̃ssee =
Γ

2

(I/Isat)

1 + (I/Isat) + 4(∆/Γ)2
, (4.3.21)

where the saturation intensity Isat is given by,

Isat =
cε0Γ

2ℏ2

4|d̂ · ê|2
, (4.3.22)

and derived from I/Isat = 2(Ω/Γ)2, where the intensity of the propagating wave is given by I =
(1/2)cε0E

2
0 [160, 161]. Here c is the speed of light and ε0 is the permittivity of free space.

Although we have focused on the dynamics of a two-level atom in this section, a similar formal-
ism can be applied to multilevel systems. Interestingly, in some experimental settings, an accurate
theoretical model can be developed based entirely on the evolution of the populations, this idea
will be explored further in Section 4.6.

4.4 Doppler broadening

The finite lifetime of the excited state leading to spontaneous decay of the atom into the ground
state by releasing a photon results in the broadening of the atomic linewidth as a consequence
of the Heisenberg uncertainty principle ∆E∆τ ≥ ℏ/2. Instead of taking the idealised form of a
Dirac delta function, the result more closely resembles a Lorentzian distribution18. Many different
phenomena contribute to absorption line broadening, with the most commonly observed broadening
effect being Doppler broadening.

During the absorption process, a photon with frequency ω and wave vector k excites an atom
with mass M from the ground state |g⟩ into the excited state |e⟩. This excited atom experiences a
change in linear momentum from P to P′ as a consequence of the photon interaction, as illustrated
in Fig. 4.7 (left). The momentum change also applies to stimulated and spontaneous emission,
where a photon is emitted instead as shown in Fig. 4.7 (right), where the atom decays from the
excited state |e⟩ back to the ground state |g⟩. The external motion of the atom is related to the
internal dynamics of the light-matter interaction for both the absorption and spontaneous emission
processes (as illustrated in Fig. 4.6a and Fig. 4.6c, respectively) via the momentum and energy
conservation laws. The momentum of the system is given by,

P′ = P± ℏk, (4.4.1)

where the (±) expressions represent the absorption and the spontaneous emission, respectively.
Similarly, the energy is expressed as,

17Some applications with shaped pulsed beams can change the dynamics of the absorption process and do not
reach a steady state.

18This broadening effect is commonly known as natural broadening.
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ℏω = ℏω0 ±
(P′ ·P′)

2M
∓ (P ·P)

2M
. (4.4.2)

Here ℏω0 = E|e⟩ − E|g⟩ and M is the mass of the atom. Note that the equation order for
absorption and emission remains unchanged. Substituting Eqn. 4.4.1 into Eqn. 4.4.2 and expanding
yields an expression for the photon energy,

ℏω = ℏω0 ±
1

2M

[
(P ·P)± 2ℏP · k+ ℏ2k2

]
∓ (P ·P)

2M

= ℏω0 +
ℏ
M

P · k± ℏ2k2

2M

= ℏω0 + ℏv · k± ℏ2k2

2M
,

(4.4.3)

where we have used P = Mv to arrive at the final expression. The second and third terms from
the last expression of Eqn. 4.4.3 above are the Doppler shift and the recoil energy, respectively.

Figure 4.7: The internal and external dynamics of the atom-light interaction via conservation of
linear momentum for absorption (left) and spontaneous emission (right).

The recoil energy becomes more significant when considering higher energy transitions. For the
D2 line of

85Rb, it is approximately around 2.47µeV, which is several orders of magnitude less than
the photon energy of the same transition of approximately 1.58eV. It is sufficient to state that
the recoil energy contribution is negligible and is therefore disregarded, leaving us with a photon
frequency given by,

ω = ω0 ∓ ωD, (4.4.4)

where ωD = −v · k is the Doppler angular frequency. Note that the sign (∓) is accounting for
the red and blue Doppler shifts, respectively. The magnitude and nature of the frequency shift
depends entirely on the atom’s velocity and its direction of motion relative to the photon. For
example, an atom counter propagating with the light field as shown in Fig. 4.8a, where the photon
wavevector is given by −k, has a Doppler frequency equal to ωD = v · k. In this case, scattering
is achieved by a laser frequency below the atomic resonance, as the Doppler effect will compensate
for the frequency difference caused by the atom’s motion. This is an example of red detuned
light. Similarly, for a co-propagating atom and photon, the Doppler frequency takes the form
ωD = −v · k, and scattering is achieved by a light frequency above the atomic resonance, where
once again the Doppler shifts compensate for the frequency difference, as illustrated in Fig. 4.8b.
This is an example of blue detuned light. Note that although we describe how the atom observes
the light field propagating in different directions relative to its own motion, the Doppler broadening
is a consequence of the frequency of light emitted by the observed (i.e. atoms) from the perspective
of a stationary observer (in this case the photodiode). For a vapour confined in a finite space with
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a temperature T (in Kelvin), the atom velocities follow the Maxwell-Boltzmann distribution, where
the Doppler broadening of the linewidth is given by [167],

∆ωD =
2ω0

c

(
2 ln(2)

kBT

M

)2

, (4.4.5)

where ω0 is the transition frequency, c is the speed of light, kB is the Boltzmann constant, and M
is the mass of the atom. For Rubidium at room temperature, this broadening is around 0.5GHz
and is observed experimentally in Doppler free spectroscopy (see Section 5.3 for more information).

Figure 4.8: The Doppler effect oc-
curring during atom-light interac-
tion. An atom with mass M and
velocity v counter or co-propagating
with a photon with momentum ℏk
observes a difference in the pho-
ton frequency relative to its motion,
where in a) the frequency is red
shifted and in b) it is blue shifted.
The green arrows indicate the +z-
direction.

4.5 Optical pumping schemes

In the previous section we established a formalism for Doppler broadening from the conservation
laws of linear momentum and energy during the interaction process between the atomic medium
and the optical field. In a very similar fashion, angular momentum is also a conserved physical
quantity, with rules governing the optical pumping of atomic media with beams of different polar-
isation structures. By definition, optical pumping refers to the redistribution of the atomic state
population through interactions with the light field. Throughout our work, only dipole transitions
are considered. For the allowed dipole transitions, there are three different light polarisations to
consider, namely σ−, π, and σ+. The occurrence of these transitions very much depends on the
quantisation axis of the angular momentum of the atom relative to the propagation direction of
the light. In the case where the two are parallel to each other, the allowed transitions are σ±,
where σ+ denotes left-circular (L̂) and σ− is right-circular (R̂) polarised light (see Fig. 4.9a and
Fig. 4.9b, respectively). However, if the quantisation axis and the light field are orthogonal to each
other, then π transitions are allowed to occur (see Fig. 4.9c). Here π is linearly polarised light,
transverse to the light propagation direction (and by definition parallel to the quantisation axis).
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If the quantisation axis is at an arbitrary angle relative to the light field, then all three transitions
can take place. Note that if a linearly polarised light beam is used when the quantisation axis of
the atom is parallel to the light beam, then σ± transitions will still occur as π polarisation can be
constructed from the orthogonal circular bases, that is π = 1/

√
2(σ+ + σ−).

Figure 4.9: Optical pumping of mag-
netic sublevels with polarised light. a)
σ+ pumping. b) σ− pumping. c) π
pumping. Here the dashed lines indi-
cate decay channels from the excited to
the ground states, and the orange cir-
cles represent closed transitions.

The question now is, how does one induce the desired
transitions in an experimental setting? The answer is
to use an external magnetic field B (which also causes
Zeeman splitting)19. Since the atom’s angular momentum
precesses around the direction of the applied magnetic
field, with a frequency given by the Larmor frequency ωL

from Eqn. 4.2.4, we can change the field orientation to
drive the desired atomic transitions.

Interestingly, the atomic interaction with polarised
light can induce special transitions among the magnetic
sublevel, subject to the angular momentum selection
rules. For the hyperfine states, these selection rules
are given by ∆F = F ′ − F = 0,±1, and by ∆mF =
mF ′ − mF = q, where q = ±1 for σ± polarised light
and q = 0 for π-polarised light as illustrated in Fig. 4.9.
These selection rules, coupled with the choice of the ex-
ternal magnetic field, provide a tool to manipulate the
internal dynamics of the atom-light interaction in an ex-
perimental setup. For example, if we subject the atoms to
an external magnetic field where only σ± transitions are
permitted, we can force the majority of the atom pop-
ulation into the furthest away magnetic sublevels of the
ground state (i.e. mF = ±F ), where the only permitted
transitions are |F,mF ⟩ −→ |F ′ = F + 1,mF ′ = mF ± q⟩
for the corresponding values of σ±, pumping the atoms
into a stretched state and forming what is known as a
closed transition. In this scheme there are no other decay
or excitation channels under the influence of the driving
field polarisation, hence these two states have a 100% ex-
citation and decay probability between one another (as
shown by the transitions in the orange circle in Fig. 4.9a
and Fig. 4.9b)20. This phenomenon is crucial in many im-
portant (and exciting) applications of atom-light interaction, including polarisation spectroscopy,
which will be extensively discussed in Section 6.5. Note that since our interest lies in the D2 line
of Rubidium (see Fig. 4.3), the selection rules for the orbital angular momentum and spin-orbit
coupling are given by ∆L = ∆J = 1.

The hyperfine selection rules limit the number of permitted transitions from a given state,
where at most eight different transitions can be excited from a single hyperfine state, subject to the
properties of the driving field. The same is also true for spontaneous decay; however, the random
decay probability is determined by the dipole matrix elements of the Clebsch-Gordan coefficients.

19More precisely a B-field is often used to define a quantisation axis. This is not strictly necessary, as the dynamics
of the system are independent of the mathematical choice.

20Here it is assumed the light field polarisation is purely σ±; otherwise, repopulation to other states is possible.
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4.6 Rate equations of multilevel systems

Theoretical and experimental work often complement one another, with the former offering pre-
dictions of phenomena in the physical world, which are verified by the latter. Unfortunately the
real world is complex21 and often clever techniques are used by experimentalists and theorists alike
to help reduce the complexity of the problem under study. For example, here at the University of
Glasgow’s optics group, the cold atom experiment employs an additional depumping laser source
[155], which de-excites the atoms down to the lower ground state of 87Rb after they have been cooled
by an optical molasses and trapped by an external magnetic field. The advantage is a simplification
in the probed atomic structure, as the system under study possesses far fewer magnetic sublevels
in both the ground and excited states. In the case of the cold atoms, the |F = 1⟩ → |F ′ = 0⟩
transition is investigated, resulting in what is known as a quasi-lambda-level structure, offering
a significant reduction in the complexity of the theoretical model. However, such experimental
changes can be difficult to implement. In this scenario, aside from having to procure an additional
laser source, incorporating it into the experimental configuration presents additional engineering
and alignment challenges for the experimentalist22.

A similar approach can be considered when designing a theoretical model of a system. Recalling
from Section 4.3, we derived an expression for the optical Bloch equations, which explain the
interaction of the atomic media with the light field for a simplified case of two level atom. However,
the rubidium D2 line possess a rich hyperfine structure with a total number of magnetic sublevels
equal to 24 and 36 for 87Rb and 85Rb, respectively. When considered in the matrix form of
Eqn. 4.3.19, we are looking at a matrix array with 576 and 1296 elements for the two isotopes of
rubidium, respectively, corresponding to an equivalent number of coupled differential equations for
the population and coherences to be solved for the systems23. In the case of some experiments, we
can simplify the model by ignoring the coherences.

If we assume the coherences evolve far too quickly that their steady-state solution can be
considered, then when averaged over the lifetime of the linewidth Γ, their contributions vanish.
This entails a reduction in the number of matrix elements from n2 down to n, creating a system
of coupled differential equations known as population rate equations24. A prime example of
an experiment that could be modelled this way is polarisation spectroscopy (Polspec), where the
atomic medium is pumped with a circularly polarised light source (i.e. σ±) and probed by a second
beam, generating a differential signal used for laser locking purposes. Polspec will be covered in
more detail in a later chapter of this thesis. Following the literature in [160, 161, 168–171], we
define the system population rate equations for the lower ground states by,

dPF,mF

dt
=

mF ′=mF+1∑
mF ′=mF−1

F ′=F+1∑
F ′=F−1

RF,mF→F ′,mF ′ΓPF ′,mF ′ , (4.6.1)

the upper ground states,

21From both a physics and a social point of view.
22Although the cold atom setup is a monstrosity (see [70] for an image of the setup), the simplifications to the

physics under study are well worth the experimental trouble, as those equations are equally monstrous.
23Although most of the coherences and population states will be zero, calculating matrices of such sizes is very

computationally taxing.
24This could still be a computationally taxing calculation (depending on your computer hardware and how good

a programmer you are), but is much more manageable now.
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dPF,mF

dt
= −

F ′=F+1∑
F ′=F−1

RF,mF→F ′,mF ′

Γ

2

I

Isat

(PF,mF
− PF ′,mF ′ )

1 + 4(∆/Γ)2
+

mF ′=mF+1∑
mF ′=mF−1

F ′=F+1∑
F ′=F−1

DF,mF→F ′,mF ′ΓPF ′,mF ′ ,

(4.6.2)

and the excited states,

dPF ′,mF ′

dt
= −

∑
Fupper

RF,mF→F ′,mF ′

Γ

2

I

Isat

(PF,mF
− PF ′,mF ′ )

1 + 4(∆/Γ)2
−

mF=mF ′+1∑
mF=mF ′−1

F=F ′+1∑
F=F ′−1

DF,mF→F ′,mF ′ΓPF ′,mF ′ ,

(4.6.3)

where (F,mF ) and (F ′,mF ′) are the hyperfine levels in the ground and excited states, with PF,mF

and PF ′,mF ′ being their respective populations. Here Γ is the natural linewidth, I is the beam
intensity, Isat is the saturation intensity, ∆ is the detuning, RF,mF→F ′,mF ′ is the transition line
strength ratio, and DF,mF→F ′,mF ′ is the decay rate probability. The three terms in Eqn. 4.6.2 and
Eqn. 4.6.3 correspond to stimulated emission, absorption, and spontaneous decay, respectively.
This formalism only considers closed transitions where the driving light field is resonant with the
upper ground state, explaining why the one term found in Eqn. 4.6.1 is the spontaneous decay, and
why only Fupper is considered in Eqn. 4.6.3. However, the rate equations can be adjusted to best
model the system under consideration. Since we are dealing with a multilevel system, the value of
RF,mF→F ′,mF ′ will have to be calculated for every different transition. We define the line strength
ratio by,

RF,mF→F ′,mF ′ =

(
dF,mF→F ′,mF ′

d⋆F,mF→F ′,mF ′

)2

, (4.6.4)

where dF,mF→F ′,mF ′ are the dipole matrix elements of the hyperfine transition and d⋆F,mF→F ′,mF ′ is

the strongest transition between the two hyperfine levels25. The dipole matrix elements are given
by,

dF,mF→F ′,mF ′ = (−1)2F
′+J+I+mF

√
(2J + 1)(2F ′ + 1)(2F + 1)

×


J J ′ 1

F ′ F I


 F 1 F ′

mF q −mF ′

 ,
(4.6.5)

where J and J ′ are the ground and excited state spin-orbit momentum, I is the nuclear spin,
and q is the polarisation-induced transition constant defined in the previous section. Here the
elements in the curly and curved brackets correspond to theWigner 6J and 3J symbols, respectively.
These symbols provide an alternative mathematical formalism of the Clebsch-Gordan coefficients

25Although this normalisation is not technically required, it does produce a transition strength value between 0
and 1.
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for angular momentum coupling26. In a similar fashion, the decay rate is given by,

DF,mF→F ′,mF ′ =
1

A
(2F ′ + 1)(2J + 1)


J J ′ 1

F ′ F I


2

. (4.6.6)

Notice how the decay probability does not rely on the light field (hence why there is no “q”
term in Eqn. 4.6.6)27; however, within the same hyperfine level F , the decay probability into any
of the mF states is equal and must sum to unity. At most, only three mF transitions are permitted
without violating the selection rules. We introduce the constant A to account for this modification
to the spontaneous decay probability and summarise the values it can take, subject to the allowed
number of transitions in Table 4.1 below.

Hyperfine transition Sublevel transition Value of A

∆F = −1 Any 3

∆F = 0 Any 2

∆F = 1, for F ′ ≥ 2
mF ′ = ±F ′ 1
mF ′ = ±F ′ ∓ 1 2
-F ′ + 2 ≤ mF ′ ≤ F ′ − 2 3

Table 4.1: Modification constant A to the decay probability subject to the allowed hyperfine and
magnetic sublevel transitions, where ∆F = F ′ − F and ∆mF = mF ′ −mF .

The first two conditions of Table 4.1 are straightforward: when decaying from a lower F ′ state
to a higher F state, there are no restrictions on the possible mF levels to occupy; however, when
decaying from a similar hyperfine state F ′ → F = F ′, the only allowed sublevel transitions are
∆mF = ±1, as ∆mF = 0 violates the selection rules. Since the quantum numbers are directly
linked to the angular momentum of the system, upon de-excitation, the atoms re-emit a photon
into the light field, with a unit of angular momentum equal to ±ℏ. Under conservation laws, the
final decay state must have an angular momentum opposite to the photon; however, |F,mF ⟩ →
|F ′ = F,mF ′ = mF ⟩ transitions possess an unchanged angular momentum after photon re-emission,
thereby violating conservation laws and hence are forbidden28. When considering a state decaying
from a higher F ′ to a lower F value, one of three transitions is allowed for the magnetic sublevels.
For the furthest apart sublevels, only a single transition is allowed as only one state exists that
obeys ∆mF = ±1 (this decay process, coupled with the right pumping scheme, is how we generate
the closed transitions discussed in the previous section), and for the second furthest states, only
two transitions are allowed (again, only two states are present that obey ∆mF = 0,±1), and finally
for any mF ′ in between, any of the three magnetic sublevel transitions can occur29. Note that
Table 4.1 does not include the case of a ∆F = 1 system, where F ′ = 1, since there is only ever one
decay channel and hence A = 1 is always expected.

Despite their intimidating appearance, the rate equations found in Eqn. 4.6.1, Eqn. 4.6.2, and
Eqn. 4.6.3 are very much identical to the population equations found in Eqns. 4.3.20 (the first and

26These symbols have been studied in the context of abstract algebra pertaining to group theory and possess some
interesting properties (i.e. the 3j symbol has cyclic permutations).

27As it should, this process is completely random.
28Note that these transitions are not forbidden for two photon absorption or emission.
29It might be easier to observe this for the case where ∆F = 1 by looking at Fig. 4.9.
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last equation), with the minor changes to the scattering rate and considering all possible allowed
transitions30. Although these equations can be used to model the population of any hydrogen-like
atom, we only concern ourselves with rubidium vapour. In Fig. 4.10 we demonstrate how the
population of the hyperfine upper ground state changes over time for 87Rb, pumped with σ+ and
σ− light.

Figure 4.10: Time evolution of the upper ground state population of 87Rb, pumped with σ+ and σ−
polarised light. The beam is tuned to |F = 2⟩ → |F ′ = 3⟩ transition with an intensity of I = 0.1Isat.

In this model, we assume an equal population distribution in the ground state sublevels prior
to the atomic interaction with the light field. Since 87Rb has eight magnetic sublevels between the
F = 1 and F = 2 ground states, the probability of finding the atom at any particular sublevel at
t = 0 is given by 1/8. Unfortunately, the atoms in the lower ground state will not interact with
the optical field since they are far off-resonance and are considered lost in our system.

The change to the atomic population as a consequence of the pumping process is relatively
straightforward; if we consider the case for σ+ pumping, an atom in the mF ground state will
always be excited to the mF ′ = mF +1 state under the influence of the light field. For example, an
atom sitting in the mF = −1 ground state will be pumped into the mF ′ = 0 excited state, where
the random nature of spontaneous decay could leave it in any of the mF = −1, mF = 0, or mF = 1
sublevels, where the atom is once again pumped into any of the mF ′ = 0, mF ′ = 1, or mF ′ = 2
excited states when interacting with the driving field. This process will continue until the atom
reaches the mF = 2 stretched state, leading to the |F = 2,mF = 2⟩ → |F ′ = 3,mF ′ = 3⟩ closed
transition, where decaying into any another ground state is prohibited, leading to an increase in
the population of the |F = 2,mF = 2⟩ state over time as shown in the left graph of Fig. 4.10. This
process works exactly the same for σ− pumping, where the majority of atoms will accumulate in
the |F = 2,mF = −2⟩ stretched state, resulting in a population increase over time, as illustrated
in the right graph of Fig. 4.10.

4.7 Summary

In this chapter, we introduced the interaction of matter with an optical field for a two-level system,
leading to the derivation of the optical Bloch equations, and later extended and simplified the

30Which is why these equations have so many sums.
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formalism to multilevel systems to obtain an expression for the population rate equations. We
discussed the energy structure of the two isotopes of Rubidium and their behaviour under the
influence of an external magnetic field. Lastly, we covered the concept of Doppler broadening and
looked at the outcome of optical pumping schemes as a consequence of atomic interaction with
polarised light.
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Chapter 5

Laser light for atomic interaction

5.1 Introduction

From the previous section, we know that atoms possess a complex internal structure due to the
numerous couplings of their orbital angular momenta. The momentum transfer caused by the
interaction of the atoms with an external light field is known to change the kinetic behaviour of the
atoms, leading to fascinating phenomena such as recoil cooling, which is required for many studies
involving atomic trapping. However, the majority of work involving warm vapour is more concerned
with probing the internal dynamics of the atoms, necessitating the use of a monochromatic and
coherent light source with frequency stability on the order of the natural linewidth (around 6MHz
for the D2 line of Rb [160, 161]), allowing for precise matching of the light wavelength to the atomic
transition. One light source that meets all of the aforementioned characteristics is a diode laser.
Diode lasers are not usually used by themselves and are instead housed inside cavities that offer a
wide range of tunable output wavelengths, making them a convenient tool to probe a wide range
of atomic transitions without the need for additional light sources.

There are many different types of diode laser cavities, with some of the most common being ex-
ternal cavity diode lasers (ECDL), vertical cavity surface-emitting lasers (VCSEL), and distributed
Bragg reflectors (DBR), with operational frequencies spanning a wide range of the electromagnetic
spectrum. For our applications with rubidium vapour, we use a near-infrared (NIR) laser diode
(around 780nm output wavelength), housed inside an ECDL1, with a tunable frequency range of
around 9.4GHz, producing a linewidth spanning a few hundred kilohertz, with a maximum out-
put power of about 120mW. This chapter describes the method by which ECDLs work and the
requirements to prepare them for usage in experiments with atomic vapours.

5.2 External cavity diode lasers (ECDL)

The linewidth of a typical NIR diode laser spans a few hundred megahertz and possesses poor
tunability. Additionally, they are particularly sensitive to temperature and current changes [172],
lacking the required precision and stability for experimental use with atomic vapours. However,
by building an external cavity around the laser diode (LD), we introduce a frequency selection
mechanism controlled largely by the properties of the cavity. Over the years, many different cavity
designs have been proposed, an example of which is the filter-stabilised ECDL, where the wavelength

1Although I have very briefly used a DBR laser in my investigation summarised in Section 6.5 (the reason is
discussed in the section), the majority of my work with rubidium vapour was done with an ECDL.
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selection is done using an interference filter [173, 174]. However, the most common and cheapest
cavity design is the Littrow configuration [172, 175], using a reflective holographic grating. In this
configuration, the LD is usually placed in a collimating mount housing a collimating lens (CL) with
a short focal length, where the input beam (IB) is incident on an angled reflective grating (RG),
which splits the beam into a spectrum of wavelengths. In the Littrow configuration, the ECDL
output beam is the zeroth diffraction order (0th) from the grating, while the first diffraction order
(1st) is back diffracted into the laser diode, forming an external cavity of length L and modifying
the diode gain medium, thereby amplifying the selected wavelength. It is worth noting that back
reflection of the first diffraction order is only possible when the angle of the beam incident on the
grating equals the diffraction angle of the zeroth order2. An illustration of the Littrow configuration
can be found in Fig. 5.1a below.

Although Littrow ECDLs are useful tools for atomic physics research, a major flaw in their
design is that the output beam path is coupled to the grating angle, which controls the operational
wavelength of the ECDL. This means the angle of the output beam path will change as the laser
frequency is scanned, as illustrated by the blue beam in Fig. 5.1b. A modification to the Littrow
configuration introduced by C. J. Hawthorn, K. P. Weber, and R. E. Scholten in [176] by introducing
a mirror (M) parallel to the grating (at 45° relative to the beam path) as illustrated in Fig. 5.1c.
The way it works is quite simple, since the 0th diffraction order from the grating is diffracted by
an angle equal to 2θ, where θ is the angle to the grating normal (n̂) from Fig. 5.1c. If the grating
is rotated by an angle α, the 0th order beam diffracted from the grating is now rotated by an
additional 2α. However, since the mirror is facing the opposite direction and is also rotated by α,
the beam reflected off the mirror surface is rotated back by an angle of 2α, ensuring the output
beam path remains unchanged3.

Since the grating diffraction angle depends on the groove spacing4, we can see from Fig. 5.1
that a larger cavity length results in a narrower laser linewidth as fewer wavelengths are fed back
into the laser diode. However, another quantity to take into account is the cavity’s free spectral
range (FSP), mathematically expressed as the frequency range ∆ν, given by ∆ν = c/2L, where
c is the speed of light and L is the cavity length. This quantity determines the mode hop-free
tuning range of the cavity (i.e. the laser frequency scanning range). Usually, a larger mode hop-
free range is desirable, which requires a shorter cavity; however, longer cavities are significantly
easier to align as they are more sensitive to the grating angle. Ideally, a balance between the two
is required to generate an ECDL with an optimal linewidth and frequency tuning range. However,
there are additional parameters to consider when tuning an ECDL. Since the diode is electrically
pumped, it is sensitive to variations in temperature and current, which affect the output spectrum.
Therefore, ECDL optimisation requires careful consideration of all these parameters (cavity length,
temperature, and current).

2Which is identical to the law of reflection (see Section 2.2 for more information).
3The mirror and grating are usually housed in the same mount. When the mount is rotated, both their incident

angles are changed.
4Alongside the wavelength and desired diffraction order, however, both quantities are assumed to remain un-

changed for Littrow ECDLs.
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Figure 5.1: Littrow configuration external cavities of length L, formed by a laser diode (LD) input
beam (IB) propagating through a collimating lens (CL) into a reflection grating (RG). Here, the
first diffraction order (1st) from the grating is back diffracted into the LD, modifying the output
frequency, while the zeroth order (0th) serves as the output light. a) A grating angled at 45° relative
to the IB. b) A grating rotated by an angle ϕ, shifting the output beam path. c) A modified Littrow
configuration introducing a mirror (M) to remove the path dependence on the grating angle.

Here in the atom’s lab at the University of Glasgow, our experiments run on our homemade
laser systems, utilising both the Littrow configurations and its modified version with the mirror.
These lasers were manufactured by our colleagues in the mechanical workshop using aluminium
parts, based on the designs of [172, 176]. In our warm vapour experiment, we employ a single
modified Littrow ECDL (see Fig. 5.2), where the design consists of five parts, namely: a mounting
platform, an aluminium chassis, the collimating tube, a grating and mirror mount, and a front
plate. The laser diode is inserted into a collimating tube housing an adjustable threaded aspherical
lens (a Thorlabs C110TME-B) with a 6.24mm focal length. The diode is held in place inside the
tube with a brass back plate and three small screws. The collimating tube is then placed inside the
ECDL chassis and secured in place by a grub screw, offering adequate contact between the diode
and the cavity’s main body for temperature stabilisation. A visible holographic blazed grating5

with grove spacing of 1800/mm (Thorlabs GH13-18V) and a small square mirror are glued on a
custom mount6, which is attached to the front plate with two springs held in place by a set of two
small metallic rods, as seen in Fig. 5.2a. The front plate is then attached to the chassis with two

5More information on how blazed gratings work can be found in [177].
6It is critical to ensure the grating (if blazed) is pointing in the right direction, as indicated by an arrow placed

on the side of the grating. In the past, someone in our lab, who shall remain unnamed, glued all the ECDL gratings
the wrong way round, forcing my supervisor Sonja and I to go around heating the grating mounts (using a heat gun
at 300°C) to weaken the superglue hold and fix their orientation.
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more springs, once again secured by a pair of metal rods7. The whole ECDL body sits on top of a
40mm× 40mm peltier module for temperature dissipation with a 10kΩ temperature sensor slotted
in a small hole drilled into the chassis, right above the peltier unit for temperature feedback8.
Finally, the assembled ECDL, with the peltier beneath, sits on a mounting platform with a M6
screw track to bolt the ECDL into the optical bench. A schematic of the ECDL internals can be
found in Fig. 5.2b below.

Figure 5.2: Schematics and image of our modified Littrow configuration ECDL used in the warm
vapour experiment. a) Image of the ECDL, highlighting the position of the peltier and the metal
rods holding the grating and mirror mount to the front plate and the front plate to the ECDL
chassis. b) Front and top view schematics of the ECDL internal structure without the peltier and
mounting platform. Schematics taken from [20].

Aligning an external cavity is a tedious process that can take up to a few hours even for the
most skilled of practitioners, since there are a number of parameters to consider. However, before
aligning the cavity to lase at the desired wavelength, we must first ensure the output beam from
the diode, leaving the collimating tube, is indeed properly collimated. First, the collimating tube is
removed from the ECDL chassis and clamped on a V-mount (Thorlabs VC3C/M). The beam shape
throughout propagation is then observed for a distance comparable to the propagation distance of
the light in the experiment in question. If the beam experiences significant changes to its profile
(focusing or diverging) along the propagation distance, the collimating lens is incorrectly positioned
and must be adjusted with a spanner wrench (like the Thorlabs SPW301). Note that since the
diode output is a transverse mode of propagation (see Section 1.5), the beam size is still expected
to change after traversing a sufficient distance; hence, we only concern ourselves with the beam

7In the past, these metallic rods were made from hardened metal; however, since they are easy to misplace, our
friends at the mechanical workshop made a few more for us out of steel, which is strong enough to withstand the
tension of the spring without deforming.

8Both the peltier and thermistor are covered in thermal paste to aid with temperature flow.
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shape along a distance comparable to our experimental setting9. Once we are satisfied with the
collimation, the tube is placed back into the aluminium mount and secured with the grub screw.
The ECDL is now ready to be aligned for experimental use.

In principle, the alignment procedure itself is quite simple; however, its delicate nature is the
reason for its increased complexity. The first step is to set the diode current to its lasing threshold;
for our diodes, it constitutes a current of somewhere between 37mA − 41mA, which generates an
output beam with a power of < 1mW. It is vital to operate the diodes around their lasing threshold,
since the diodes themselves are electrically pumped cavities, where the reflection from the front
facet acts as feedback to the laser chip, forcing it to lase according to the properties of the internal
cavity10. By running the diodes at threshold, we ensure their gain medium is amplified according
to the properties of the external cavity when aligned and not their internal one (i.e. the diode
itself)11.

The next step is to adjust the horizontal wavelength selection screw until we observe a maximum
output power on the power meter. Since these diodes are manufactured to run optimally around
780nm − 785nm, this increase in power corresponds to the region of the cavity where our desired
wavelength resides. Now comes the tricky bit, where we have to tune the vertical screw responsible
for the feedback. What complicates this procedure is that changes in the output beam power are
extremely sensitive to the vertical tilt angle of the grating. This process might have to be repeated
a few times (i.e. adjusting the horizontal and vertical screws of the ECDL) until a spike in beam
power is observed, measuring around 3mW − 5mW, indicating an aligned cavity. Although the
horizontal and vertical tilt axes of the grating are assumed to be independent, they can be coupled
if the grating is not glued properly, which increases the difficulty of the alignment procedure12.

To check the cavity is aligned properly, we introduce a spectrometer (Ocean Optics HR4000)
to the beam path and ensure only a single linewidth is observed. When the horizontal screw on
the ECDL is adjusted, the peak should move smoothly without any jumps. If secondary peaks
begin to emerge or the laser spectral line experiences mode hops as the wavelength is scanned,
the entire alignment process needs repeating, once again setting the diode current to its lasing
threshold. Once we ensure the ECDL is aligned, the current can be adjusted to the desired value
for experimental use.

5.3 Doppler free spectroscopy

Once the ECDL feedback has been aligned and tested, all that is left is to tune it to the desired
atomic transitions of rubidium. Since our spectrometer lacks the sensitivity required to accurately
determine the position of the atomic transitions, we tune our laser frequency using the atoms
themselves. Experimentally, we use a low-pressure Rb reference cell at room temperature (the likes
of Thorlabs GC25075-RB). As previously stated, the natural linewidth of the Rb transitions we are

9For our work, it is adequate to observe and correct for the changes in beam size by eye; however, for more
sensitive applications, a beam profiler should be used instead.

10Note that the diode cavity formed by its back and front facet is technically still an external cavity. However,
we label it as the internal cavity for differentiation. Additionally, this issue becomes much more problematic with
high-powered diodes, where the contributions from the internal cavity can no longer be ignored.

11This problem becomes irrelevant if the diode has no front facet. However, removing the front facet risks
destroying the semiconductor chip when exposed to the elements. An alternative solution is to use a laser diode
with an angled front facet where there is no back reflection into the chip.

12In our labs, we have a decommissioned ECDL whose old grating had to be removed. However, the position
where the grating sits on the mount has been excessively scratched when attempting to clean any residual superglue,
leaving the newly inserted grating slightly crooked. Till this day I could never get that laser to work properly.
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interested in (the D2 line) is around 6MHz, where the hyperfine splitting is on the order of a few
tens to a few hundred megahertz, so our laser linewidth of a few hundred kilohertz is sufficient to
resolve them all. Since our atoms are at room temperature, the atomic transitions are broadened
by the Doppler effect, making it difficult to resolve our hyperfine transitions. A derivation of the
Doppler effect from the conservation of momentum and energy can be found in Section 4.4.

A solution to this problem is to use the technique discussed in [178], called Doppler free saturated
absorption spectroscopy (satspec)13, which makes use of two counter-propagating laser beams,
known as the pump and probe beams. Experimentally, we employ a pump with a power at least
five times larger than the probe, which lets us work in what is known as the weak probe regime [179,
180]. The reasons for this will be discussed in Chapter 6. Generally, there are two experimental
implementations of satspec, as seen in Fig. 5.3. In the more common setup, horizontally polarised
light (red) propagates through a polarising beam splitter (PB) into the rubidium cell (Rb), pumping
the atoms. The beam is then incident on a quarter waveplate (QWP) set at 45°, turning the
beam circular (orange), before being reflected back by a planer mirror (M). This mirror changes
the handedness of the beam (pink), where its circularity is undone by the QWP, resulting in a
vertically polarised output (blue), which propagates back through the Rb cell probing the atoms
before being reflected off the PBS and into a photodiode (PD), as illustrated in Fig. 5.3a. The
second implementation of satspec is slightly different in construction. In this scheme, a diagonally
polarised light source is split into its horizontal (red) and vertical (blue) components, where the
vertical pump beam is reflected off two mirrors and into the Rb cell by a second PBS. Meanwhile, the
horizontally polarised probe beam transmits through both the PBS and Rb cells before terminating
at the PD, as demonstrated in Fig. 5.3b.

Figure 5.3: Experimental configuration
of saturated absorption spectroscopy
(satspec). a) The more common and
simple satpsec setup, where the same
beam pumps and probes the atoms.
b) A slightly more complicated sat-
spec setup, where the beams are over-
lapped in an interferometer-like style.
Here red is a horizontal beam, blue is
vertical, purple is diagonal, and cir-
cular is both orange and pink. Note
that the beams are separated for clar-
ity, where the dashed lines correspond
to the pump beam, while the solid lines
are the probe.

Although the satspec configuration mentioned in Fig. 5.3a is simple to construct, having the
same beam act as both the pump and probe could lead to some inconveniences. The first is that
it is difficult to control the ratio of the pump-probe powers, as the only available options being
either neutral density (ND) filters or non-polarising beam splitters (NPBS). However, they both
offer discreet changes to the light intensity, which could make it difficult to achieve the desired
power ratios14. The second and more important concern being when the pump beam excites the

13In some literature, this technique is also called hyperfine pumping.
14One could calculate the value of the required ND filter and stack them (since they stack linearly) to achieve the

desired result.
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atoms, the frequencies corresponding to the atomic transitions in the light field have been interacted
with. Therefore, when the reflected beam probes the Rb atoms there is a lower intensity of light
corresponding to the transition frequencies, leading to a weaker transmission signal for the probe.
However, both these issues are irrelevant for the satspec configuration seen in Fig. 5.3b. Although
it requires more optical elements, it remains relatively simple to construct15 and offers more control
over the ratio of the pump-probe powers via the HWP before the PBS. Additionally, since the
pump and probe are independent beams, the atomic frequencies are not depleted in the probe,
providing a better satspec signal.

The role of the pump in satspec is to excite the atom and depopulate the ground state when the
laser frequency is resonant with the atomic transition. This condition is met for any atom whose
Doppler shift frequency (ωD) compensates for the difference between the laser frequency (ω) and
the frequency of the atomic transition (ω0). Since the Doppler shift frequency from Eqn. 4.4.4 is
given by ωD = ±(ω − ω0), if the pump sees the atoms that are red shifted with a frequency of
ω1 = (ω − ω0), then the probe sees the atoms blue shifted by a frequency of ω2 = −(ω − ω0), since
both beams are counter propagating. If the same atom interacts with both the pump and probe
(i.e. ω1 = ω2), then either ω = ω0 or ω = 0, and since ω ̸= 0, the Doppler shift for atoms interacting
with both beams cancels out. Note that since the majority of the atoms have been excited by the
strong pump, the probe beam observes fewer atoms in the ground state, which translates to a
reduced absorption of the probe beam. If there are multiple atomic transition frequencies in the
laser scan range, the pump and probe beams could be interacting with the same atoms at different
transitions. For example, consider two atomic transitions, ω01 and ω02. If an atom has the same
Doppler shift frequency for both transitions but in opposite directions (i.e. red shifted to one and
blue shifted to the other), we can express these frequencies as ω01 = ω − ωD and ω02 = ω + ωD.
From these two equations, we notice an atom whose Doppler shift is at half the difference between
the two transitions (i.e. 2ωD = ω02−ω01) is resonant with both, generating a peak halfway between
the two actual transitions (i.e. at ω = (ω02 + ω01)/2). These peaks are known as cross-over peaks
and are usually stronger than their respective transition peaks. An example of an output signal
from a satspec setup can be found in Fig. 5.4 below.

15Perhaps I am biassed by stating their construction is simple, since I spend endless hours perfecting the alignment
of my spectroscopy setups to the smallest of details. However, such practices could severely backfire; in fact, I
remember a time when my colleague Sphinx Svensson was complaining about a rogue signal messing with their
satspec. When the cause was investigated, we found out they manage to perfectly align their optics, where a back
reflection from an element more than a metre away was interfering with the satspec PD. The pursuit of perfection
in an experimental setting is a time-wasting foolish endeavour, a lesson that if I had managed to learn, I might have
achieved more during my time as a PhD student.
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Figure 5.4: Satspec signal (dark blue) of the D2 upper ground level transitions for both 85Rb
(right) and 87Rb (left). The wide dips correspond to the Doppler broadened profile of the upper
ground-level transitions, while the individual Lorentzian shaped peaks are the hyperfine transitions
and the cross-over (CO) peaks. All transitions are labelled with the exception of the last transition
from both spectra (transitions are too weak). Note the red arrow corresponds to the direction of
increasing energy (or frequency).

5.4 Laser frequency stabilisation

If left untouched, an ECDL experiences frequency drifts larger than the atomic linewidth on
timescales of a few seconds, making it difficult to keep the laser frequency tuned to the atomic
hyperfine transitions. There are several parameters that could be considered responsible for this
drift, with the most obvious being air currents and vibrational noise. However, some simple pre-
cautions are in place to account for these effects, such as housing the ECDL inside a plastic box,
eliminating the contributions from the air currents generated by the air conditioning unit. Ad-
ditionally, the optical bench is equipped with stabilisation supports that mitigate the effect of
vibrations experienced by the optics. However, drifts in the laser frequency are more likely associ-
ated with fluctuations in the current and temperature profiles of the ECDL. The continued usage
of the ECDL heats up the diode laser, causing the peltier to dissipate the excess heat based on the
readings from the thermistor. The problem is, the thermistor is not in direct contact with the diode
chip, resulting in a delay between the heat generated by the diode and the changes in temperature
measured by the thermistor before alerting the peltier to dissipate the heat. This delay affects the
length of the diode’s internal cavity, effectively changing the gain medium and causing frequency
drifts over time. Since these drifts remain below the mode-hope-free tuning range of the ECDL,
active feedback with the current or a piezoelectric transducer (PZT) should compensate for their
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effect16. The easiest method to incorporate this experimentally is to generate an error signal that
crosses zero at the peaks of the atomic transitions and cross-over peaks. A signal with these features
can be produced from the derivative of the atomic spectrum, which is used as the reference for the
MOGLab diode laser controller’s dither locking. The cyan signal found in Fig. 5.4 is an example
of such an error signal. These laser electronics are able to produce a 250kHz oscillator signal to
dither the laser current or drive an external modulator (the PZT)17. A detailed guide on how to
laser lock with the MOGLab boxes can be found in [181].

5.5 Laser control with acousto-optic modulators (AOM)

In our main experiment described in Chapter 6.6, there was a need for greater control over the
frequency of the light field to quantify the observed magneto-optical effects and associate them to
a specific frequency on the atomic spectrum. For this reason, an acousto-optic modulator (AOM)
was introduced to the experimental setup. These devices consist of a crystal in contact with a
piezoelectric transducer (PZT) that modifies its refractive index when subjected to mechanical
stress. Usually they are driven by a radio frequency (RF), ranging from a few megahertz to a few
gigahertz. When the PZT strikes the crystal, it generates a travelling acoustic wave with a changing
refractive index, behaving like a Bragg grating. When an input light field with a frequency of ωi

propagates through the AOM crystal oscillating with a radio frequency given by ωRF , the output
beam will split into several diffracted modes, whose frequencies are given by,

ωm = ωi +mωRF , (5.5.1)

Figure 5.5: A simple circuit to control the
AOM operation, consisting of a voltage con-
trol oscillator (VCO), a voltage control at-
tenuator (VCA), resistors, and a switch.

where m is an integer denoting the order number
(i.e. m ∈ Z, where Z denotes the set of all inte-
gers). The shift in frequency occurs via simple en-
ergy and momentum transfer between the phonons
(sound particles) and the photons (light particles).
Note that positive orders (i.e. m ∈ Z+) are diffracted
away from the PZT, while negative orders (i.e. m ∈
Z−) are diffracted towards the PZT. The amount
of light diffracted into the non-zero orders depends
on the amplitude of the RF signal driving the PZT,
which controls the strength of the acoustic wave and
diffraction efficiency. These diffraction orders are a
result of momentum transfer between the photons
and phonons, with each order satisfying its specific
Bragg condition18. Since multiple collisions of the
light field with the sound wave is possible, the AOM
will usually diffract the incoming beam into more
than one diffraction order. The AOMs we use have efficiencies for the first diffraction order of

16A PZT works by converting a voltage into mechanical work and vice versa. Compensating for frequency drifts
requires applying a correcting voltage that adjusts the cavity length, bringing the laser back to the desired frequency.

17Unfortunately, for some reason, we never had much success locking the laser frequency by modulating the PZT
and opted to dither the laser current instead.

18The Bragg condition is given by mλ = 2Λ sin(θ), where m is the diffraction order, λ is the photon wavelength,
Λ is the phonon wavelength, and θ is the diffraction angle [182].
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around 68% to 80%19.
Unfortunately, due to time constraints, we could not programme the AOM to work with a DAQ

card, leaving us to manually control the AOM using a simple voltage control oscillator and voltage
control attenuator circuit, as shown in Fig. 5.5. Varying the VCA changes the amplitude of the
modulation signal, which will adjust the brightness of the diffraction orders, as illustrated in the
left image of Fig. 5.6. When compared to a phase grating, the change is analogous to altering the
height of the grooves, affecting the efficiency of the diffraction orders depending on the angle of
the incoming light field20. On the other hand, variations to the VCO will change the modulation
signal period, which is the same as changing the grating grooves (i.e. changing the number of lines
per mm) and adjusting the separation distance between the diffraction modes, as illustrated in the
right image of Fig. 5.6 below.

Figure 5.6: The effect of changes to the modulation signal on the diffraction orders. On the left
images, the VCA is changed (signal amplitude), and on the right, the VCO is varied (signal period).

Since the beam angle changes when the RF is scanned, constant realignment of the optics
will be required, which is not ideal in an experimental setting. A solution to this problem is to
implement a double-pass AOM configuration [183], modifying the diffraction mode frequency by
ωm = ωi+2mωRF . The setup is quite simple to understand21, where a diagonally polarised beam is
split into its horizontal and vertical components using a PBS, and the transmitted beam propagates
through an iris opened just enough to let the beam through22. The beam is then focused into the
AOM with a lens (L), which generates the diffraction orders. Another lens (L) is then positioned
centrally, collimating the selected mode order, before it propagates through a second iris used for
physical mode selection. Finally, the light passes through a quarter waveplate (QWP), turning
the beam circular, which is reflected back by a mirror (M), inverting the beam’s handedness. The
light then propagates back through the QWP, undoing its circularity and generating a vertically
polarised output. The beam is then transmitted through the AOM again, modifying its frequency
once more before propagating towards the PBS, where it is reflected into the main experiment, as
illustrated in Fig. 5.7 below. A detailed guide on setting up a double-pass AOM configuration can
be found in [20, 70].

19Usually we are somewhere in the mid 70%.
20Normally the height of the groove is fixed; however, in the case of the AOM, the input beam is fixed and the

grating height is changed to optimise the diffraction order efficiencies.
21However, setting it up takes some practice.
22This iris is very important for accurate alignment of the back reflected beam.
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Figure 5.7: Experimental configuration of a double-pass AOM. Here the line colours indicated
different polarisations, where red is horizontal, blue is vertical, purple is diagonal, while orange and
pink are circularly polarised.

5.6 Power broadening: A brief investigation

In this section, we provide a summary of a brief investigation we conducted on the effects of power
broadening on the peaks of the atomic transition for different ratios of pump-probe beam powers.
Since our main work discussed in Chapter 6 involved the implementation of polarisation spec-
troscopy (polspec) as the starting point, a thorough investigation of the experimental configuration
was necessary to quantify the behaviour of the system and develop our understanding of how this
Doppler free spectroscopic technique works before adapting it for use with a spatially varying probe
beam. Furthermore, this investigation will prove useful when optimising the saturated absorption
spectroscopy (satspec) signal used to monitor the behaviour of the ECDL, which will eventually
be used for stabilising the laser frequency to the desired atomic transition. The expression for the
power broadening is incorporated into the absorption coefficient of the Lorentzian line shape. This
line shape describes the linewidth of the atomic transition, which has a full width at half maximum
(FWHM) given by [166],

∆ωFWHM = Γ

√(
1 +

I

Isat

)
, (5.6.1)

where Γ is the natural linewidth, I is the beam intensity, and Isat is the saturation intensity (around
1.669mW/cm2). Since the beam power is proportional to the light intensity (i.e. P ∝ I), changes
to the beam power lead to broadening of the absorption lines as expected. We investigate these
broadening effects for various power ratios of the pump-probe beams and present our findings in
Fig. 5.8 and Fig. 5.9, for 85Rb and 87Rb, respectively. It is worth noting that we record both the
absorption and saturation spectra for each data set and subtract one from the other to obtain the
linewidth of the hyperfine transitions only.
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Figure 5.8: Power broadening data of 85Rb, where four different probe beam powers are recorded
(5%, 10%, 15%, and 20% of the pump) for a pump beam with a power of a) 0.2mW (with transi-
tions labelling), b) 0.4mW, c) 0.6mW, d) 0.8mW, e) 1.0mW, and f) 2.0mW. Here zero detuning
corresponds to the |F = 3⟩ → |F ′ = 4⟩ transition. Note the position of the F ′ = 2 excited state is
difficult to accurately determine due to the weak nature of the transition.

We can see from Fig. 5.8 that the broadening effects become more apparent with the merging of
the two cross-over peaks (CO43 and CO42), followed by the disappearance of the weaker transition
|F = 3⟩ → |F ′ = 3⟩ and the third cross-over peak (CO32). However, the atomic resonance at zero
detuning continues to grow as we continue to investigate larger pumping powers.
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Figure 5.9: Power broadening data of 87Rb, where four different probe beam powers are recorded
(5%, 10%, 15%, and 20% of the pump) for a pump beam with a power of a) 0.2mW (with transi-
tions labelling), b) 0.4mW, c) 0.6mW, d) 0.8mW, e) 1.0mW, and f) 2.0mW. Here zero detuning
corresponds to the |F = 2⟩ → |F ′ = 3⟩ transition. Note the position of the F ′ = 1 excited state is
difficult to accurately determine due to the weak nature of the transition.

Since the hyperfine spacing between the excited states in 87Rb is more than twice as large as
the spacing in 85Rb, the effects of power broadening for similar pump-probe ratios on the F ′ = 2
excited state and the third cross-over peak (CO21) in 87Rb are less prominent, as they can still be
observed throughout all spectrums in Fig. 5.9, despite them being considered weak peaks. From
our investigation we deduce that potential laser locking to these weak transitions might still be
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possible, provided the right power settings are selected. It is worth mentioning that this data was
recorded a while ago, and unfortunately, no information on the beam size was collected. Back then,
we had a pinhole setup instead of a fibre, were still experimenting with optimal beam magnification
for spectroscopy. In the end, we ended up running the satspec setup with a pump power of around
0.4mW to 0.5mW, and a probe power equivalent to 10% of the pump, which provided sufficient
shielding from power broadening effects to access the desired atomic transitions while staying above
the noise level of the photodiodes. However, in our polspec experiment, we used a 0.3mW pump
with a 20% probe (i.e. 0.06mW), since the NPBS ends up throwing half of our light away, causing
problems with our detection system.

5.7 Summary

In this chapter, we introduced external cavity diode lasers as the light source used for our experi-
ments with atomic vapour. We briefly discussed Doppler free spectroscopy and how the geometry
of the counter-propagating beams eliminates Doppler broadening of absorption lines and leads to
the emergence of cross-over peaks. We then moved on to explore the properties of acousto-optic
modulators and their application in laser frequency control before presenting our brief investiga-
tion into power broadening effects across various power ratios of the pump-probe beams and their
impact on the absorption spectra of rubidium.
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Chapter 6

Doppler free spectroscopy with vector
vortex light

6.1 Introduction

In this final chapter, we shed light on our work incorporating our knowledge of vector beam gener-
ation and manipulation, with our understanding of atomic physics to realise an experimental con-
figuration for a Doppler-free spectroscopic setup, combining an optically pumped atomic medium
with a spatially varying polarisation signal, with an interest in laser frequency stabilisation. Al-
though there are a few Doppler-free techniques in existence, with the most known being saturated
absorption spectroscopy (satspec), the nature of our work is most comparable with polarisation
spectroscopy (polspec).

Polarisation spectroscopy is a Doppler-free technique, providing a passive modulation-free sig-
nal for laser stabilisation purposes. It was first introduced by Wieman and Hänsch in 1976 [184],
providing a useful tool for studying properties of atoms and materials with a plethora of applica-
tions, ranging from plasma physics [185–187], electro-optics [188], material physics [189] and even
biomedical tissue analysis [190]. This technique works by pumping the atoms into the excited state,
where they are probed by a diagonally polarised beam. This probe is then split into its horizontal
and vertical polarisation components before being incident on two separate photodiodes, generating
a Doppler-free differential signal made possible by the counter-propagating geometry of the pump
and probe beams (see Section 5.3 for more information). Polspec provides an improved signal-to-
noise ratio when compared to other Doppler free spectroscopic methods, prompting an interest in
subsequent research over the years to better understand this technique [168, 169, 191–193]. How-
ever, before we can discuss our experimental configuration leading to our spatially variant system,
we must first introduce the necessary theoretical background that will be used throughout this
chapter, starting with the derivation of the absorption and dispersion coefficients from the electric
susceptibility.

6.2 The electric susceptibility

Recall from chapter 1, we solved Maxwell’s equations in vacuum to derive an expression for the
propagating light wave, assuming an absence of external fields which significantly reduced the
complexity of the equations in question. In the presence of an atomic medium, the wave experiences
changes to its amplitude and phase as a consequence of the attenuation (or absorption) and
dispersion (or refraction) effects, which can be calculated from the dipole moment interaction of
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the atom and the light field. Since the theory remains a semi-classical one, we need to establish
a link between the microscopic behaviour of the atomic ensemble and the macroscopic response of
the polarisability (or polarisation density) to the incident light field. For a vapour with multiple
atomic species, the polarisability is given by [194],

P =
∑
j

nρ
jdj, (6.2.1)

where nρ
j and dj are the number density and the average dipole moment across different volume

segments of the jth atomic species. Note that the number density is given by nρ = N/V [195],
where N is the number of atoms and V is the occupied volume1. Since macroscopically the atomic
vapour is isotropic2, the polarisability P is defined to be parallel to the electric field E and given
by,

P = ε0χE, (6.2.2)

here ε0χ is a proportionality constant, where ε0 is the permittivity of free space and χ is the di-
mensionless quantity known as the electric susceptibility. Note that Eqn. 6.2.2 is only valid
provided the electric field E is not too large; otherwise, nonlinear effects begin to emerge3. As-
suming a low atomic density, we can neglect the local field corrections caused by the dipole-dipole
interaction, which simplifies the average dipole moment across the volume segments of the gas to
a dipole moment for the entire gas sample (i.e. dj → dj)

4. So far, only a classical approach to
polarisability has been considered; however, we now adopt a quantum description of the atomic
polarisability defined in Eqn. 6.2.1, replacing the dipole moment dj with the expectation value of

the dipole operator ⟨d̂j⟩. Any experimental application that requires frequency stabilisation will see
the laser locked to a specific transition, making use of only a single atomic species. Incorporating
this into the formalism for quantum polarisability yields,

P = nρ⟨d̂⟩. (6.2.3)

Recalling Eqn. 3.4.5, we can express the expectation value of an operator in terms of the density
matrix formalism as follows,

⟨d̂⟩ = Tr(ρ̂d̂) = d̂eg(ρge + ρeg), (6.2.4)

where d̂eg = ⟨e|d̂|g⟩ is the off-diagonal element of the dipole matrix5. Note that here we assume

both off-diagonal elements are equal and hence only consider one of them (i.e. d̂eg = d̂ge). After
substituting Eqn. 6.2.4 into Eqn. 6.2.3 and equating it to Eqn. 6.2.2, we are left with the following,

nρd̂eg(ρge + ρeg) = ε0χE. (6.2.5)

1Note that the dipole approximation only holds when the light wavelength is much larger than the size of the
atoms [166].

2Which means macroscopically the atomic vapour is uniform in all directions.
3This usually occurs when E is in the order of the atomic electric field strength [196].
4This assumption is reasonable given that we are working with atomic vapour at room temperature, where the

pressure is low and the atoms are well separated. However, for applications that involve dense matter with tightly
packed atoms, dipole-dipole interactions must be considered.

5Remember from the Trace identity we get Tr(ρ̂d̂) =
∑

nij ⟨n|ρij |i⟩⟨j|d̂|n⟩ =
∑

ij ρij⟨j|d̂|i⟩, where the diagonal
elements disappear as a consequence of the odd parity of the dipole operator (see Section 4.3 for more information).
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If we once again consider only the real part of the temporal evolution of the light field for a
monochromatic plane wave (i.e. Re(E) = E0Re(e−iωt) = E0 cos(ωt)) we get,

nρd̂eg(ρ̃gee
iωt + ρ̃ege

−iωt) =
1

2
ε0E0(χe

−iωt + χ∗eiωt), (6.2.6)

where we have used Euler’s formula to write cos(ωt) in exponential form and expressed the elements
of the density matrix using the rotating wave approximation ρge = ρ̃gee

iωt and ρeg = ρ̃ege
−iωt. Note

that χ∗ denotes the complex conjugate of χ, arising since the susceptibility is a function of frequency
χ(ω), obeying χ(−ω) = χ∗(ω) [164]. By staring at Eqn. 6.2.6, we instantly recognise that,

χ =
2nρd̂eg
ε0E0

ρ̃eg. (6.2.7)

All that remains is to find an expression for ρ̃eg. Fortunately, the dynamics of the coherences do
not change over time, and hence we can use the steady-state solution of the optical Bloch equations
listed in Eqns. 4.3.20 to obtain an expression for the steady state coherence ρ̃sseg, yielding,

ρ̃sseg =
Ω

2

i

(i∆− Γ/2)
, (6.2.8)

where Ω is the Rabi frequency, ∆ is the detuning, Γ is the decay rate, and i is the imaginary number.
A step-by-step derivation of Eqn. 6.2.8 can be found in Appendix B. By substituting Eqn. 6.2.8
back into Eqn. 6.2.7, we obtain an expression for the susceptibility in terms of the detuning given
by,

χ(∆) =
nρℏΩ2

ε0E2
0

i

(i∆− Γ/2)
, (6.2.9)

where we use the expression d̂eg = ℏΩ/E0, obtained by substituting the quantities I/Isat = 2(Ω/Γ)2

and I = (1/2)cε0E
2
0 into Eqn. 4.3.22. We plot the susceptibility against the ratio of the detuning

with the decay rate in Fig. 6.1 below.

Figure 6.1: Graph of the real
and imaginary parts of the
steady state electric suscep-
tibility χ(∆) normalised with
respect to the imaginary com-
ponent of the susceptibility at
zero detuning Im[χ(0)] for the
D2 line of 87Rb.

Since the interaction of the light field with the atomic medium affects both its amplitude and
phase, a complex refractive index ñ is required to characterise the changes to the beam profile.
This refractive index is related to the electric susceptibility by [164],
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ñ =
√

1 + χ(∆). (6.2.10)

In fact, the two curves in Fig. 6.1 above should be very familiar to any individual studying
atom optics; which are variations of the absorption Im[χ(∆)] and dispersion Re[χ(∆)] curves,
respectively. For lower atomic densities, we can make the following approximation6,

ñ = n+ iκ ≈ 1 +
1

2
χ(∆), (6.2.11)

where n and κ are the real and imaginary parts of the complex refractive index, corresponding to
the dispersion and attenuation, respectively. Inserting Eqn. 6.2.9 into Eqn. 6.2.11 above yields,

n(∆) = 1 +
nρℏΩ2

ε0E2
0

∆/2

(∆2 + Γ2/4)
, (6.2.12)

κ(∆) = −n
ρℏΩ2

ε0E2
0

Γ/4

(∆2 + Γ2/4)
. (6.2.13)

It is worth noting that the two expressions from Eqn. 6.2.12 and Eqn. 6.2.13 are related to
each other through the Kramers-Kronig relations. This relation connects the real and imaginary
components of a complex function via an integral and was independently established by Ralph
Kronig in 1926 [197] and Hendrik Kramers in 1927 [198]. Note that the imaginary part of the
complex refractive index κ is related to the absorption coefficient α via, α = 2kκ, where k = 2π/λ
is the wavevector7.

Since we are dealing with multilevel atoms, we can once again extend the formalism of the
susceptibility to cover multilevel atomic systems by assuming that our beam is weak enough to
prevent optical pumping during the time the atom spends in the light field [179, 180]8, which
allows the multilevel atom to be treated as a combination of many different two-level systems,
where the transition probability is given by the dipole matrix elements discussed in Section 4.6.
By applying this change to the electric susceptibility in Eqn. 6.2.9, we are left with,

χ|i⟩→|j⟩
(
∆|i⟩→|j⟩

)
=
nρℏΩ2

|i⟩→|j⟩

ε0E2
0

i(
i∆|i⟩→|j⟩ − Γ/2

) . (6.2.14)

The Rabi frequency is now given by Ω|i⟩→|j⟩ = (E0/ℏ)R|i⟩→|j⟩, whereR|i⟩→|j⟩ is the line strength
ratio similar to the expression defined in Eqn. 4.6.4.

6.3 Atomic density

In the previous section we developed a mathematical description for the electric susceptibility from
the optical Bloch equations, arriving at an expression for the dispersion and attenuation coefficients
as a consequence of the light-matter interaction. Since both of these quantities have a dependence
on the atomic density nρ, as demonstrated in Eqn. 6.2.12 and Eqn. 6.2.13, calculating a value for
the number density could provide useful insight into the behaviour of our system and help generate

6For lower atomic densities, we have χ≪ 1, and therefore, Taylor expansion leads to the expression in Eqn. 6.2.11.
7We emphasise that α is not a dimensionless quantity and has units of inverse length.
8This is referred to as the weak probe approximation, where the beam responsible for optical pumping possesses

a higher intensity than the beam probing the atom. In our experiment, the power of the pump beam is at least five
times the probe power.
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a more accurate numerical model for comparison between experiment and theory. There are various
ways to calculate the atomic density, where one potential method uses the spectral Faraday effect
to calculate the atomic density of metallic vapours at different temperatures [199]. However, for
the purpose of our work, a simple method requiring no specialised equipment based on Beer’s law
(or the Beer-Lambert law), following the literature in [200–202] is sufficient. Although we are
only interested in rubidium, this method can be generalised to work for any ensemble of atoms or
molecules. The first step is to determine the ratio of the light intensity absorbed by the atoms by
investigating the difference between the beam intensity entering vs. leaving the atomic cell. For a
general sample with M atomic species, the total absorption A is given by,

A =
M∑

m=1

Am =
M∑

m=1

log10

(
I im
Iom

)
, (6.3.1)

where Am is the absorption of a single species, while Iom and I im represent their output and input
intensities. However, the absorption is also related to the molar absorption coefficient εm via,

Am =
M∑

m=1

εm

∫ l

0

cm(z)dz, (6.3.2)

where the molar absorption coefficient (or absorptivity) εm, is defined as the fraction of the amount
of incident radiation that is absorbed by the surface [203] and here cm(z) is the molar concentration
along the optical path z. Experiments that require laser frequency stabilisation for a specific atomic
transition only make use of a single isotope of the element, which helps simplify Eqn. 6.3.1 and
Eqn. 6.3.2 into,

A = log10

(
I i

Io

)
= εcl. (6.3.3)

Since the Rb vapour is confined in a small cell of length l, we assume the molar concentration
does not change along the optical path, reducing

∫ l

0
c(z)dz into cl. By definition, the absorptivity

and the molar concentration are given by,

ε =
NA

ln 10
σ

c =
nρ

NA

,
(6.3.4)

where NA is the Avogadro constant, σ is the scattering (or attenuation) cross section, and n is the
number density. The cross section is given by [160, 161],

σ =
σ0

1 + I/Isat + 4(∆/Γ)2
, (6.3.5)

where ∆ is the detuning, Γ is the decay rate, I is the beam intensity, and Isat is the saturation
intensity. Here σ0 = ℏωΓ/2Isat, where ℏ is the reduced Planck constant and ω is the angular
frequency. Substituting Eqns. 6.3.4 and Eqn. 6.3.5 into Eqn. 6.3.3 yields,

ln(10) log10

(
I i

Io

)
= nρl

(
σ0

1 + I/Isat + 4(∆/Γ)2

)
. (6.3.6)
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Using the logarithmic identity logX Y logY Z = logX Z, and given that ln(10) = loge(10), we
obtain the following expression for the number density,

nρ = ln

(
I i

Io

)
1

σ0l

(
1 + I/Isat + 4(∆/Γ)2

)
. (6.3.7)

Since the number density is given by nρ = N/V [195], where N is the number of atoms and V
is the volume of the atom-light interaction region, we can rearrange Eqn. 6.3.7 to get an expression
for the number of atoms interacting with the light field as follows,

N = ln

(
I i

Io

)
A

σ0

(
1 + I/Isat + 4(∆/Γ)2

)
, (6.3.8)

where A is the cross-sectional area of the beam. Experimentally, the intensity ratio I i/Io can be
calculated with the help of a photodiode (PD).

The first step is to measure the PD voltage of a single-pass absorption spectrum far off-resonance;
this corresponds to the input voltage V i in the absence of atomic absorption (red dot in Fig. 6.2).
The PD signal after the beam passes through the Rb cell is then recorded, corresponding to the
output voltage V o near resonance (green dot in Fig. 6.2). Note that the optical density of each
isotope of rubidium must be calculated separately, and a resonance image must be taken for each
one. If the incident beam on the PD corresponds to a signal larger than the ambient noise but
below the PD saturation limit, and assuming the internal loss of the photodiode is negligible, we
can equate the ratios of the intensity and voltage,

V i

V o
=
I i

Io
. (6.3.9)

Figure 6.2: The absorption and saturation spectra of the D2 lines of 85Rb and 87Rb, used for
optical density calculations. The saturation spectrum is used to pinpoint the location of the atomic
transition on the absorption profile (red dashed lines) to obtain a more accurate PD measurement.
The green and red dots denote the laser frequency at resonance and off-resonance, respectively.
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Since increasing the beam intensity increases the number of incident photons, which increases
the matter-light interaction, it is experimentally depicted as a deeper absorption curve profile on
the oscilloscope. However, as I → Isat, the number of atoms interacting with the light field begins
to decrease, resulting in a reduction in the expansion of the absorption curve profile. As we continue
to increase the intensity further, I > Isat, this expansion begins to further slow down and eventually
will become difficult to observe. Since achieving more precise measurements relies on optimising
the signal-to-noise ratio, it is imperative to adjust the beam intensity to avoid saturating both the
atoms and the detector.

It is possible to determine the voltage ratio from the saturation profile of the atoms at a specific
transition; however, one has to take into account the atoms interacting with two different beams,
where a consequence of such a geometry is the emergence of the single hyperfine transition peaks
(see Section 5.3 for more information) that slightly lift the trough of the Doppler broadened profile,
potentially yielding a slightly lower atomic density value when calculated9. This method provides
no advantages in the calculation; however, one can use the saturation spectrum as a guide to
pinpoint the position of the transition where maximum absorption is expected and adjust the laser
frequency to occupy this position, as illustrated by the dotted red lines in Fig. 6.2.

Alternatively, one can determine the intensity ratio directly from the incident beams using a
CMOS or CCD camera instead. We prefer this method as it provides a number of key advantages.
Although a reverse-biassed PD has a saturation threshold controlled by the supplied voltage, a
camera gives the flexibility of changing the saturation limit by adjusting the exposure time without
the need to alter the beam intensity10. Additionally, some image sensors provide control over their
dynamic range, which helps maximise the signal contrast between the off-resonance and resonance
images for a more accurate calculation.

The dynamic range is an intrinsic property of image sensors, defined as the ratio between the
largest and smallest signal value perceived by the detector, often written in decibels or bits [204].
The camera converts incoming photons into a monochromatic digital signal expressed as a level in
grey scale, ranging from pure black to pure white, where the available number of occupiable grey
levels is subject to the property of the camera known as bit depth. For example, a 6-bit detector
has access to 64 grayscale levels; an 8-bit camera has 256 levels; and a 10-bit detector can occupy
any of the 1024 levels available. Ideally, one should utilise as much of the available dynamic range
when using an image sensor in hopes of maximising the contrast. In the example of Fig. 6.3a, the
light intensity and camera exposure time have been adjusted such that the brightest pixel (given
by the blue lines) is just below the saturation limit of an 8-bit detector. However, these same
quantities significantly exceed the limitations of a 6-bit detector but fall short of the capabilities
of a 10-bit detector. Therefore, it is imperative to calibrate the system relative to the detector in
use. In a similar fashion, Fig. 6.3b represents a system where either the beam intensity or exposure
time falls below the capabilities of all detectors, where the brightest pixel (red lines) occupy a much
lower greyscale level. In this case, the signal contrast has not been maximised and could result in
larger uncertainties when calculating the intensity ratio with Eqn. 6.3.9.

9Here the weak probe regime is assumed, since operating the experiment with a strong probe will require mea-
suring the probe’s intensity as well.

10Increasing the exposure time makes the detector more susceptible to environmental noise. Ideally, it is highly
recommended to capture a background image for post-process subtraction to eliminate this effect.
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Figure 6.3: Dynamic range
of detectors. a) The bright-
est pixel (blue) calibrated
to maximise the dynamic
range of an 8-bit detector
would oversaturate and un-
derutilise the 6-bit and 10-
bit detectors, respectively.
b) The brightest pixel (red)
calibrated well below the
maximum of all detectors,
underutilising the dynamic
range of all three and of-
fering access to far fewer
greyscale levels for image
intensity comparison.

Experimentally, we use a CMOS detector (JAI GO-5000M-USB), where the camera exposure
time is adjusted to ensure the off-resonance signal (no atomic absorption) is illuminated to the max-
imum possible without saturating the detector, thereby utilising as much of the available dynamic
range of the camera as possible. Once an off-resonance measurement is taken, the laser frequency
is then adjusted to resonance, where an image reflecting the atomic absorption is captured. This
procedure can be repeated for any number of isotopes of the atomic medium. The next step is to
determine the intensity of the beam. For Gaussian beams, we can calculate the intensity I of the
light from the total power P using the following relation,

I =
2P

πw2
0

, (6.3.10)

where w0 is the beam radius. In our case, the beam is fibre-coupled into a polarisation-maintaining
single mode fibre (PM-SMF), where the waist is determined by the fixed focus output collimator
(a Thorlabs F220FC-780 collimator), giving us a beam diameter of 2.1mm. However, we employ
a telescope system magnifying the beam by a factor of two, leaving us with a beam diameter of
4.2mm and in turn, a beam radius of 2.1mm (the experimental setup will be extensively discussed
in Section 6.6.1). All that remains is to measure the incident beam power to calculate the light
intensity. Unsurprisingly, we observe small changes in beam power when shifting between on and off-
resonance as a result of minor variations in diode current (and temperature). These modifications
change the length of the external cavity of the diode laser and correspond to approximately a 3%
difference in beam power, which is small enough to be ignored.

We investigated the atomic density of both rubidium isotopes at natural abundance (see Sec-
tion 4.2) housed inside a 75mm long cell with an input beam power of around 0.2mW at room
temperature (≈ 20°C)11. We record a set of videos with 100 frames each for the beam, at resonance
and off-resonance for the two isotopes of rubidium, and calculate a mean value of all frames to
increase reliability. Additionally, a fourth video is recorded for the background (i.e. when the
beam is blocked) to account for ambient noise subtraction in the analysis. A frame from the raw
data as recorded by the detector can be found in Fig. 6.4 below. We calculate an intensity ratio

11We chose this power to be as close as possible to the pump beam power without saturating the CMOS detector.
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I i/Io of 1.503 and 1.255 for 85Rb and 87Rb, respectively. Inserting these values into Eqn. 6.3.7 and
Eqn. 6.3.8 with the appropriate parameters leaves us with,

nρ
85 = 5.383× 107cm−3,

nρ
87 = 2.999× 107cm−3,

N85 = 5.594× 107,

N87 = 3.116× 107,
(6.3.11)

where nρ
85 and nρ

87 are the optical densities, while N85 and N87 correspond to the number of atoms
interacting with the light field for both rubidium isotopes. Unfortunately, the experimental setup
had no heating coils in place when I took the measurements; however, heating the cell would supply
the atoms with more kinetic energy, expressed as a shift in the Maxwell-Boltzmann distribution of
the atomic medium. This increase in the average kinetic energy of the atoms would increase the
likelihood of collisions with the light field, which in turn would increase the values calculated in
Eqn. 6.3.11 for the optical density and number of interacting atoms.

Figure 6.4: Beam intensity measurements used for optical density calculations. These images are
frames from a set of videos recording the beam off-resonance and at resonance for both rubidium
isotopes.

6.4 The Faraday effect

In chapter 4, we outlined the effect of an external magnetic field on the magnetic sublevels mF

of the hyperfine states, resulting in interesting magneto-optical effects that affect the atomic be-
haviour relative to the incident light field. In the absence of any magnetic fields, the mF states are
said to be degenerate, with no discernible imbalances in any of the pumping schemes, as seen in
Fig. 6.5a. However, in the presence of an external magnetic field, Zeeman splitting occurs, shifting
the magnetic sublevels by a frequency defined by Eqn. 4.2.1. This removes the degeneracy in the
atomic structure, allowing only specific transitions to occur, determined by the orientation of the
applied magnetic field relative to the propagation direction of the beam (see Section 4.5). Recall
that in the case where the magnetic field is in the direction of beam propagation, only σ± transi-
tions can occur (see Section 4.5 for more information). The shift in the magnetic sublevel frequency
causes a deviation in the σ± transitions from resonance, the magnitude of which is determined by
the strength of the external magnetic field. This deviation affects the excitation probability of the
two transitions, as illustrated in Fig. 6.5b. The difference in the atomic response to σ± polarised
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light translates to a change in the refractive index n± of the medium12, where n+ ̸= n−, giving rise
to a phenomenon known as circular birefringence13, which eventually leads to the Faraday
effect.

Figure 6.5: The energy levels in the absence and presence of circular birefringence for the D2 line
transition of 87Rb, |F = 1⟩ −→ |F ′ = 0⟩. a) Degenerate energy levels in the absence of an external
magnetic field. b) The introduced magnetic field only allows for σ± transitions, which are Zeeman
shifted by the Larmor frequency ±ωL, leading to circular birefringence in the atomic medium.
Note that the difference in frequency shift between the two sublevels is equal to twice the Larmor
frequency 2ωL.

By definition, the Faraday effect (named after Michael Faraday, who discovered it in 1845) is
the rotation of the plane of linear polarisation as it propagates through a medium with a magnetic
field parallel to the propagation direction [205]. Since any linear input beam can be decomposed
into the two orthogonal circular components σ± with equal amplitudes (and different phases), the
definition of the Faraday effect holds, even for circular polarised light. The shift in the dispersion
signal, given by the real part of the refractive index n±, induces a rotation in the light field given
by [206, 207],

θ = (n+ − n−)lk, (6.4.1)

where k is the wave vector k = 2π/λ, and l is the length of the medium. Interestingly, the Faraday
effect is commonly employed in Faraday rotators. These rotators are typically used in some optical
isolators, constructed from two polarisers with their transmission axes at 45° to one another, with a
crystal sitting in between subjected to a strong magnetic field on the order of a few Tesla [208, 209].
This magnetic field induces a birefringence in the medium causing the polarisation structure of the
light field to rotate by 45°, as illustrated in Fig. 6.6a. These isolators are usually the first optical
elements placed immediately after the laser system, preventing any back-reflected light from ever
reaching the laser, which reduces unwanted optical effects (e.g. frequency mode hops). Fig. 6.6b

12Note this is the real part of the complex refractive index describing the dispersion.
13Visit Section 2.4 for more information on birefringence.



CHAPTER 6. DOPPLER FREE SPECTROSCOPY WITH VECTOR VORTEX LIGHT 116

shows an example where the back reflected light is rotated by an additional 45° after propagating
through the crystal, turning the beam vertically polarised, which is absorbed by the polariser.

Figure 6.6: An optical isolator made from a crystal subjected to a strong magnetic field B, which
rotates the polarisation of a propagating beam along k utilising the Faraday effect. a) A diagonal
beam is left with only the horizontal component after passing through a polariser, which is rotated
by 45° as it propagates through the crystal, leaving the system once again diagonally polarised. b)
A diagonally reflected beam is turned vertical after passing through the crystal, which is absorbed
by the second polariser (relative to the beam propagation direction), preventing the light from
exiting the isolator14.

In addition to circular birefringence, the external magnetic field also induces a circular dichroism
(i.e. a preferential absorption of σ±) in the medium (see Section 2.4 for more information on
dichroism). If once again we assume only σ± transitions are permitted, a linearly polarised light
propagating through a sample will evolve into an elliptically polarised beam after leaving the
interaction medium, as a consequence of the difference in the attenuation coefficient of the two
circular components (i.e. α+ ̸= α−). This effect becomes much more dominant close to resonance.
It is worth noting that the Faraday effect only occurs in a longitudinal magnetic field. If the
magnetic field is transverse to the beam propagation, then the Voigt effect would be observed,
where the induced ellipticity and optical rotation are a result of the phase shift and differential
absorption of the orthogonal linearly polarised components of the input light field [207]. The
Faraday effect is still very much an active area of research, spanning an interest in a wide range
of topics utilising atomic vapours [210–214]. In this work, we are only interested in the Faraday
effect.

6.5 Polarisation spectroscopy (polspec)

As previously stated, setting up the polarisation spectroscopy experiment was a good starting point
for our project, as usually building a well-understood system from previous literature can help lay

14Note that an optical isolator does not preserve the polarisation of the input beam. In this example, the output
will always be diagonally polarised with the exception of vertically polarised light, which will be fully absorbed
(remember from Section 2.4 that the polarisation parallel to the wire grid is absorbed).



CHAPTER 6. DOPPLER FREE SPECTROSCOPY WITH VECTOR VORTEX LIGHT 117

the groundwork for one’s own research. Inspired by the literature from [168, 169, 192] we adapt a
polspec configuration to suit our needs, introducing some changes to the interferometer, which will
be discussed in this section.

6.5.1 Theory and experimental realisation

We present our experimental setup in Fig. 6.7. The setup itself is quite simple, where a beam
generated from an external cavity diode laser (ECDL) at 780nm, propagates through a Faraday
isolator (FI), which is then diagonalised by a half waveplate (HWP) and separated into the hori-
zontal and vertical polarisation components with a polarising beam splitter (PBS). The experiment
consists of two parts: a saturated absorption spectroscopy (satspec) setup and the main polspec
section, highlighted by the optics in the red and green borders in Fig. 6.7, respectively. The verti-
cally polarised light is reflected from the PBS1 towards a standard Doppler free satspec setup (see
Section 5.3 for more information), used to monitor the laser stability. The vertical beam (blue)
is then diagonalised, before being split by PBS2 to generate a counter propagating pump-probe
configuration, where the pump is reflected off both PBS2 and PBS3 before being incident on the
rubidium cell (Rb), while the horizontal probe (red) is transmitted through both PBS2 and PBS3,
eventually terminating at the photodiode (PD)15. Usually in satspec, a strong pump and a weaker
probe are employed, in our setup the probe is normally around 10%− 20% the pump power. The
pump-probe ratio in our experiment was carefully selected after an investigation on broadening
effects experienced by the atoms as a consequence of beam power (more in Section 5.6).

On the other hand, the horizontally polarised light transmitted through PBS1 bounces off a
dual mirror setup, steering the beam into a telescope system (formed by the lenses L1 and L2)
with a pinhole (Pin) placed at the focus of the two lenses, used to generate a spatially uniform
intensity distribution and remove any deformities in the light profile, at the cost of beam power. We
investigated various pinholes with diameters ranging from 10µm to 100µm to find the most suitable
one for our needs. Since the beam profile generated from the ECDL was highly irregular, with an
arbitrary geometric shape and a hole in the centre, a 20µm pinhole proved sufficient to clean the
beam profile at a modest loss of power (around 30% − 60%)16. The beam is then diagonalised
and once again split into the horizontal and vertical components by PBS4. The transmitted light
propagating through the quarter waveplate (QWP), generating circularly polarised light, will act
as our pump beam, exciting the atomic state population and creating a polarisation anisotropy
in the atomic medium (see Section 2.4). This beam is then reflected off a 50:50 non-polarising
beam splitter (NPBS) and a mirror (M), halving the light intensity17, before passing through the
rubidium cell at room temperature18. The cell is wrapped in µ-metal (but remains open from
the sides), which is a soft ferromagnetic nickel-iron alloy with a very high magnetic permeability,
shielding the cell from any external magnetic fields not in the direction of beam propagation19. In

15Since the PD chip is smaller than the beam diameter, the recorded signal is maximised by using a lens to focus
the beam into the PD chip.

16Thankfully, polspec setup does not require high beam powers; in fact, the signal features were clearer when the
intensity was kept well below saturation.

17Although the NPBS and mirror combination preserve the handedness of the beam circularity, identifying the
polarisation structure of the pump was not a concern at this point in time.

18At room temperature, the pressure in the cell is low enough that de-excitation effects from atomic collisions can
be ignored.

19The µ-metal needs heat treatment to increase its grain structure. By definition, grains are crystalline lattices
consisting of a cluster of atoms separated by a boundary, where increasing the grain structure maximises the
absorption of the magnetic field flux. This process is not to be confused with annealing, where the metal is heated
and allowed to slowly cool to remove internal stresses. The difference between the two is briefly summarised in [215].
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an attempt to eliminate the influence of the transverse magnetic fields, the µ-metal shielding was
made longer than the rubidium cell, by around 1.5cm−2cm on either side to ensure the component
of the earth’s magnetic field entering the cell is as parallel to the beam propagation direction as
feasibly possible. Since the presence of a transverse magnetic field results in coupling of the ground
state mF sublevels (an example of such a coupling can be seen in Fig. 1 from [155]), this could lead
to repopulation of our atomic states, destroying the anisotropy we created in the medium from
the pumping process. In a similar fashion, the beam reflected off PBS4 is diagonalised by a HWP
before passing through the Rb cell probing our atomic medium. The beam then propagates into
a mirror, transmitting through the NPBS and PBS5 where the individual polarisation components
(Ĥ and V̂ ) are separated and focused into two different photodiodes.

Figure 6.7: Experimental configuration of polarisation spectroscopy. The setup consists of a sat-
urated absorption spectroscopy (satspec) part in the red border and the primary polarisation
spectroscopy (polspec) section within the green border. The beam colours indicate different po-
larisation structures, where horizontal is red, vertical is blue, purple is a mixture of the two, and
orange is circularly polarised. The experiment consists of an external cavity diode laser (ECDL), a
Faraday isolator (FI), half waveplates (HWP), a quarter waveplate (QWP), polarising beam split-
ters (PBS), lenses (L), mirrors (M), a pinhole (Pin), rubidium vapour cells (Rb), a non-polarising
beam splitter (NPBS), and photodiodes (PD).

Throughout our experiment, even at later stages when a vector vortex beam is introduced as
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the probe, the atoms in our cell are only subjected to the earth’s magnetic field20. Although we
could have introduced coils for heating and magnetic field generation to the experiment in order
to improve our signal, there was a strong desire to observe and quantify these magneto-optical
using the most basic spectroscopy configuration possible, with minimal assistance from external
elements.

Unlike satspec, the polarisation of the pump and probe differs in polspec, with the probe being
linear and the pump circular. Because of this difference, introducing a normal or circular PBS
will not achieve the overlapped counter-propagating beam configuration desired without significant
changes to the light polarisation structure. There are two solutions to this problem. The first
is to employ an experimental configuration where one of the beams enters the rubidium cell at a
slight angle with respect to the other. The disadvantage is that many of the atoms excited by
the pump will not be probed, resulting in a less sharp polspec signal. The other method (and the
one we implemented) is to use an NPBS. This way, we can ensure the pump and probe beams
are thoroughly overlapped, yielding a sharper differential signal. However, the added challenge
with using a NPBS is the slight distortion to the polarisation profile experienced by the light field
when propagating through them, which requires compensation (e.g. by rotating the waveplates
slightly)21.

To better understand the behaviour of the probe, we derive an expression of the signal generated
from the two photodiode outputs and their differential counterpart. For a fully polarised probe
beam, we can express the polarisation in Jones formalism by,

E =

Ex

Ey

 = E0

cos(θ)

sin(θ)

 , (6.5.1)

where E0 is the initial wave amplitude and θ is the polarisation angle with respect to the horizontal.
Since under the influence of the magnetic field, the occurring transitions are σ± transitions, it is
convenient to write Eqn. 6.5.1 in the circular basis,

E =
1

2
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√
2

2
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(
eiθσ− + e−iθσ+

)
,

(6.5.2)

where σ± are the left and right circular polarisation components, respectively, defined in
Eqns. 1.3.10. Note that the first matrix term in Eqn. 6.5.2 comes from using the exponential
form of the sine and cosine functions. For a light field propagating through a cell of length L,
the two circular components experience absorption and dispersion effects from the atomic vapour
and the glass cell, where the birefringence in the glass cell is a consequence of the manufacturing

20More accurately, the atoms experience a component of the earth’s magnetic field. There has been an attempt
to measure it using a Gaussmeter (a Hirst Magnetics GM07), but since only a transverse probe was available at
the time, the field along the z-axis inside the shielding could not be accurately determined. However, we recorded
a measurement of 0.39G − 0.49G at the cell entrance without the shielding and a value of around 0.64G − 0.75G
at the entrance of the shielded cell. Although this increase in the field line density is consistent with the expected
behaviour of introducing the µ-metal around the cell, I would take these values with a pinch of salt.

21Although an angled pump-probe beam is the most common configuration found in literature, the choice to use
a NPBS stems from attempting to obtain a maximal signal, given no heating coils are used.
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process and pressure gradient, influencing the probe beam as follows [168],

E =
1√
2
E0

(
eiθσ−e

−ikn+Le−α+L/2e−ikñg+ l + e−iθσ+e
−ikn−Le−α−L/2e−ikñg− l

)
, (6.5.3)

where n± is the refractive index, α± is the absorption coefficient, and ñg± is the complex refractive
index of the glass window for the polarisation state driving σ± transitions, respectively. Here l is
the glass window thickness, k = 2π/λ is the wavevector, and i is the imaginary number. We can
decompose the complex refractive index of the glass window into its real and imaginary parts as
ñg± = ng± − iαg±/2k [216], describing the dispersion and absorption, respectively22. Substituting
ñg± into Eqn. 6.5.3 above and rearranging, leaves us with,

E =
1√
2
E0e

−iΛ(eiθe−iΠσ− + e−iθeiΠσ+), (6.5.4)

where,
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4
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2
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(6.5.5)

and,

n = (n+ + n−)/2,

α = (α+ + α−)/2,

ng = (ng+ + ng−)/2,

αg = (αg+ + αg−)/2,

∆n = (n+ − n−),

∆α = (α+ − α−),

∆ng = (ng+ − ng−),

∆αg = (αg+ − αg−).

(6.5.6)

The full derivation of Eqn. 6.5.4 and Eqns. 6.5.5 beginning from Eqn. 6.5.3 can be found in
Appenxid C. Since the photodiodes record the intensity of the light field in the horizontal and
vertical polarisation states, as a consequence of PBS5, we obtain an expression of the electric field
in Eqn. 6.5.4 in the Ĥ and V̂ basis by substituting in σ+ = (Ĥ + iV̂ )/

√
2 and σ− = (Ĥ − iV̂ )/

√
2,

yielding,

E = E0e
−iΛ
[
eiθ(Ĥ − iV̂ )e−iΠ + e−iθ(Ĥ + iV̂ )eiΠ

]
= E0e

ΛIe−iΛR

{[
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]
Ĥ

− i
[
ei(θ−ΠR)eΠI − e−i(θ−ΠR)e−ΠI

]
V̂
}
,

(6.5.7)

where ΠR and ΠI are the real and imaginary parts of Π, while ΛR and ΛI are the real and imaginary
parts of Λ from Eqn. 6.5.5. By substituting Eqn. 6.5.7 into Eqn. 1.3.8, we obtain an expression for
the intensity in the horizontal IĤ and vertical IV̂ polarisation basis, given by,

22Note the quantity αg±/2k = κg± , where κg± is the imaginary part of the complex refractive index ñg± .
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IĤ = 2I0e
2ΛI

[
cos
(
2(θ − ΠR)

)
+ cos(2ΠI)

]
, (6.5.8)

IV̂ = 2I0e
2ΛI

[
− cos
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2(θ − ΠR)

)
+ cos(2ΠI)

]
, (6.5.9)

where the probe differential signal is expressed as,

Iprobe = IĤ − IV̂ = 4I0e
−(αL+αgl) cos

(
2(θ − ΠR)

)
. (6.5.10)

As previously stated, the absorption and dispersion effects experienced by the light field from
interacting with the rubidium atoms are related to one another via the Kramers-Kronig relation,
and one can design an experiment to observe their respective effects. In the case of polspec, utilising
a probe beam with a single polarisation structure, the birefringence in the cell is assumed to be
small, which in turn results in a small rotation angle of the polarisation plane (Faraday rotation)
as a consequence of the anisotropy in the atomic medium. This is a valid assumption since the
Faraday rotation described by Eqn. 6.4.1 depends on the difference of the refractive index (i.e.
∆n = n+ − n− ) of the two σ± polarisations, who are in turn proportional to the shifted detuning
(i.e. n± ∝ ∆±). This shift is proportional to twice the Larmor frequency (i.e. ∆± ∝ ±2ωL), as
described by Eqn. 4.2.4. However, in the presence of the earth’s magnetic field, the detuning shift
is very small, making Faraday rotation difficult to observe23. That is not to say the Faraday effect
is completely absent in polspec; in fact, the introduced phase does contribute to the experimentally
observed outcome for the spatial variation of this experiment, which will be discussed in the next
section. For now, it is safe to say the observed differential signal from the photodiode is dominated
by circular dichroism (i.e. preferential absorption of σ±) caused by the anisotropy in the atomic
medium as a consequence of the pumping process, given in terms of the absorption coefficient,

∆α =
∆α0

1 + 4(∆probe/Γ)
, (6.5.11)

where ∆α0 is the maximum absorption difference at the line centre, ∆probe is the probe beam
detuning and Γ is the decary rate. With the Kramers-Kronig relations, we can relate the refractive
index to the absorption coefficient of Eqn. 6.5.11 as,

∆n =
2∆probe

Γk
∆α, (6.5.12)

where k is the wavevector. By applying the small angle approximation to a diagonal probe beam
(i.e. θ = π/4) and using Eqn. 6.5.12, we can express Eqn. 6.5.10 as,

Iprobe = −4I0e
−(αL+αgl)

(
2∆probe

Γ
∆αL+∆ngkl

)
, (6.5.13)

where we have used the trigonometric identity cos(x+ y) = cos(x) cos(y) − sin(x) sin(y). This
signal will have a similar shape to the dispersion curve in Fig. 6.1 and can be used to lock the laser
frequency to the desired atomic transition. In previous literature, a polspec signal was recorded
with very low beam intensities using a pump power of 10µW and a 1µW probe [168]. To observe the
features on the polspec signal for other transitions, it is best to keep the beam intensity well below
saturation; however, using such low powers presents a few challenges (e.g. a smaller signal-to-noise

23Since a photodiode converts the incoming light intensity into an electric signal, disregarding any phase informa-
tion from the light field, the Faraday effect cannot be observed using just a photodiode anyway.
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ratio) and is not feasible without specialised equipment (e.g. very sensitive photodiodes).

6.5.2 Results and analysis

This section presents our experimental findings from the polspec experiment. In Fig. 6.8 we sum-
marise our results utilising beams with four different pumping powers of 0.4mW, 0.3mW, 0.2mW,
and 0.1mW. The probe beam power is set at 10% with respect to each pump. Each signal has been
digitally filtered to account for ambient and electronic noise, with zero detuning corresponding to
85Rb D2 line transition of |F = 3⟩ → |F ′ = 4⟩ .

Figure 6.8: Polarisation spectroscopy signals for various pump-probe beam power. a) 0.4mW pump
& 0.04mW probe; b) 0.3mW pump & 0.03mW probe; c) 0.2mW pump & 0.02mW probe; and d)
0.1mW pump & 0.01mW probe. The signal-to-noise ratio decreases, with decreasing beam power
resulting in a more distorted spectrum. Here the intensity of the Ĥ beam corresponds to the blue
signal, the orange spectrum is the V̂ beam, and the differential signal IĤ − IV̂ is in green. Note
that zero detuning is defined at the D2 line transition 85Rb : |F = 3⟩ → |F ′ = 4⟩.

In an attempt to further understand the experimental setup, we investigated methods to im-
prove the output signal to determine the system limitations24. For this purpose, we built an

24Although it is intuitive to think the low power settings of the beams are the primary reason for the distorted
signals seen in Fig. 6.8, this still needed to be investigated to identify the experimental limitations.
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instrumentation amplifier (IA) with a variable gain, controlled by a potentiometer (pot). The am-
plifier schematic can be found in Fig. 6.9 and is split into three different parts. The electronics
within the blue border form an input buffer and amplifier circuit; the components in the red border
are responsible for the differential output signal; and what is inside the green border forms a DC
voltage offset for the V2 signal.

Figure 6.9: Schematic of an
instrumentation amplifier with
variable gain. The blue sec-
tion is a buffer and amplifica-
tion circuit; the red part gener-
ates the differential signal; and
the green is an offset DC volt-
age. Here V1 and V2 are the
signal inputs, while Vo1 and
Vo2 are the signals after ampli-
fication, Vout is the differential
signal output, 0V is the ground,
Amps are operation amplifiers,
pots are potentiometers, and re-
sistors are labelled R. Note that
R1-R4 have the same resistance
of 910Ω.

The way this amplifier works is quite simple. The two signals from the photodiode enter via
the V1 and V2 channels, where they are incident on two sets of operation amplifiers (Op-Amps),
Amp1 and Amp2. These amplifiers are low-noise precision op-amps manufactured by analogue
devices (Op27G), and together with the Pot1 potentiometer25 and the R1 resistors serve to act as
a buffer and amplifier circuit, the gain of which is controlled by the value of the potentiometer26.
The amplified signals from the two buffer outputs (Vo1 and Vo2) now reaches the differential part
of the circuit (in the red border), where one signal is subtracted from the other to generate the
desired polspec signal (Vout), the gain of which is given by,

V out =
R3

R2
(1 +

2R1

RPot1

)(V 1− V 2). (6.5.14)

By design, op-amps possess a very large internal gain and infinite input impedance (i.e. no
current flows into the op-amp input pins), which is why resistors are needed to control the signal
gain. Note that to eliminate common-mode rejection27, all resistors (except R5) have the same
resistance of 910Ω. In this case the ratio of R3 over R2 is equal to one, suggesting the gain to the
differential signal is solely controlled by Pot1. Although the offset function of the amplifier (green
border in Fig. 6.9) was not used, it introduces an offset voltage to the V2 signal, resulting in a

25Note that potentiometers are just variable resistors.
26The choice of resistors in this circuit was based on what pots I had available at the time. Ideally, it is best to

choose resistors with resistances close to the value of the pot (if only signal amplification is desirable).
27Common-mode signals are unwanted noise that equally affects both input terminals of the IA, and an IA is

designed to reject these signals and amplify only the difference between the inputs.
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vertical shift in the differential signal28. Note that although not depicted in Fig. 6.9, each amplifier
requires a differential voltage to operate, which can be achieved using a two-channel power supply29.
Throughout our experiment, we used a differential voltage of ±12V. We successfully managed to
use the instrumentation amplifier with the same photodiodes to obtain a more visible differential
signal for low-intensity measurements, as shown in Fig. 6.10 below.

Figure 6.10: The polspec differential signals with an instrumentation amplifier. The signals are
normalised with respect to the maximum at zero detuning. The powers of the pump and probe are
a) a 0.4mW pump & 0.04mW probe; b) a 0.2mW pump & 0.02mW probe; and c) a 0.1mW pump
& 0.01mW probe. Once again, zero detuning is at the D2 line transition

85Rb : |F = 3⟩ → |F ′ = 4⟩.

The data from Fig. 6.10 proved the detection system was indeed a key limitation to generate
a differential signal at low intensities. It would have been interesting to check the stability of the
laser lock using these signals by connecting the IA to a servo30. Unfortunately, at the time I was
using a Thorlabs laser diode controller (LDC210C) and temperature controller (TED200C) with
an ISO-TECH synthetic frequency generator (GFG 2004), and had no access to a servo and hence
no laser locking capabilities.

28I was later told this counts as data tampering since artificially shifting one of the input signals can cover up the
imbalances in the light intensity incident on the two photodiodes. For this reason, I refrained from using it.

29A differential voltage can be achieved by connecting the positive terminal of one channel to the negative of
the other and grounding them both. This essentially creates a 0V in the middle, where the remaining positive and
negative terminals from the two channels supply a +V and -V voltage, respectively.

30Although rigorous testing of the IA would be required before any such connection is made, especially since the
amplifier had to be remade. The first time around, I was chasing my tail trying to remove a rogue signal interfering
with the spectrum (which later turned out to be a result of wrongly soldering two resistors).
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Another interesting investigation we conducted was to observe the behaviour of the polspec sig-
nal when using probe beams of different polarisation structures, projected along different orthogonal
polarisation bases. Unfortunately, at this point in time my experiment was down31, however, our
friends at the Fraunhofer Centre for Applied Photonics had an identical polspec setup in place and
were kind enough to let me use it to complete my investigation. The two major differences were the
laser system in their setup, used a distributed Bragg reflector (DBR) coupled into a single-mode
fibre, instead of an external cavity diode laser (ECDL) and the polarimeter arms were reversed
(i.e. the shielded cell sits between PBS4 and the NPBS from Fig. 6.7), meaning the initial probe
polarisation is horizontal. We present our findings in the figures below.

Figure 6.11: Polspec data with a HV measurement system for the six polarisation structures
generated from a horizontal probe passing through waveplates at different angles. Here a) HWP
at 0°, b) HWP at 22.5°, c) HWP at 45°, d) HWP at 67.5°, e) QWP at 45°, f) QWP at 135°.

Fig. 6.11 is generated from the normal horizontal and vertical (HV) measurement system by
the PBS before the photodiodes (see Fig. 6.7). Here, the polarisation of the input probe beam is

31If I recall correctly, the ECDL stopped functioning and needed repairs, which meant the whole experiment had
to be realigned.
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varied across all six polarisation structures, and the polspec signal is recorded for each one. When
observing the shape of the signals from Fig. 6.11, we see that a polspec signal was not generated for
a probe beam with a horizontal (Fig. 6.11a) and vertical (Fig. 6.11c) polarisation structure. This
phenomenon is to be expected since a component of the probe signal is now completely orthogonal
to one of the detectors, and therefore we expect no light to be incident on it (i.e. IĤ should be zero
at PD2 and IV̂ should be zero at PD3)

32. The outcome is that one of the two signal components
is zero, and the recovered result resembles the profile of a satspec signal33. In a similar fashion, a
HWP set at 45° is placed before the PBS splitting the beams into the photodiode to generate a
signal projected along the diagonal and anti-diagonal (AD) bases, the result of which is illustrated
in Fig. 6.12.

Figure 6.12: Polspec data with an AD measurement system for the six polarisation structures
generated from a horizontal probe passing through waveplates at different angles. Here a) HWP
at 0°, b) HWP at 22.5°, c) HWP at 45°, d) HWP at 67.5°, e) QWP at 45°, f) QWP at 135°.

32Although we expect this to be true, it actually depends on the extinction ratio of the optics in use. Since our
PBS is not perfect, the signals are never exactly zero.

33Since the differential signal is always generated in the order given by Eqn. 6.5.10, one of the output signals will
be inverted, as seen by Fig. 6.11c.
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Once again we find the diagonal and anti-diagonal (Fig. 6.12b and Fig. 6.12d respectively)
possess a signal component equal to zero, whereas the two other signals generated by the HWP
have a normal spectral shape associated with a polspec signal. Finally, a QWP set at 45° is now
used just before the PBS to generate the final data set, where the beam is projected along the right
and left circular measurement bases (RL), which is displayed in Fig. 6.13.

Figure 6.13: Polspec data with a RL measurement system for the six polarisation structures gen-
erated from a horizontal probe passing through waveplates at different angles. Here a) HWP at 0°,
b) HWP at 22.5°, c) HWP at 45°, d) HWP at 67.5°, e) QWP at 45°, f) QWP at 135°.

The signals displayed in Fig. 6.13 are quite peculiar, and their behaviour differs from the pre-
viously illustrated results. Here, the probe beam with a circularly polarised structure does not
return a signal with zero intensity across the two photodiodes, and from observation we can see
that Fig. 6.13b and Fig. 6.13d are similar in shape to the signals in Fig. 6.12 but inverted (i.e. the
HWP is set at −45°). One possible explanation is that the NPBS affects the ellipticity of the probe
beam, turning the circular polarisation into linear and vice versa, such that the signal for the diago-
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nals and circulars are swapped when the projection measurements are performed34. An interesting
occurrence in the polspec signals (primarily those with a dispersive shape) is that one of the two
signal components has a peak while the other a trough, which are mostly visible on the spectrum
at the position corresponding to the transitions from the upper ground to the upper excited states
and especially for the circular beams, as seen in Fig. 6.11 and Fig. 6.12. This phenomenon occurs
as a consequence of the induced anisotropy in the medium from the pumping process, known as
enhanced absorption (for the troughs) and diminished absorption (for the peaks). This provides
definitive proof that circular dichroism and, by extension, circular birefringence exist in the atomic
medium as measured by the absorption of the probe beams driving the σ± transitions. Note that
we can also observe this effect in the cross-over peaks; for example, the height of the cross-over
peaks in Fig 6.11e and Fig 6.11f are different, suggesting the probe beam in the former experiences
less absorption when propagating through the Rb cell.

6.5.3 Final remarks

From all the data we have presented so far, it is obvious that the transitions given by
|F = I + 1/2⟩ → |F ′ = I + 3/2⟩, where I is the nuclear spin, dominate the polarisation spec-
troscopy signal with a dispersive shape. These transitions leave the majority of the atoms in the
stretched state, where the dipole selection rules prohibit the atoms from decaying to the lower
ground state. For example, in 87Rb (I = 3/2), the transition |F = 2⟩ → |F ′ = 3⟩ is closed,
and hence the atoms can only decay back to the |F = 2⟩ state. However, for the transitions
|F = 2⟩ → |F ′ = 2⟩ and |F = 2⟩ → |F ′ = 1⟩, there is a decay channel to the lower ground
state |F = 1⟩, which is very far off-resonance from the probe beam (around 6.83GHz away)
and does not contribute to the polarisation spectroscopy signal. For this reason, we expect the
|F = 2⟩ → |F ′ = 3⟩ transition to be the largest for 87Rb, and the |F = 3⟩ → |F ′ = 4⟩ transition to
be the most dominant for 85Rb, which is the case, as observed in both Fig. 6.8 and Fig. 6.10.

Note that the experiment required some calibration prior to data gathering, where a set of three
waveplates were introduced (one HWP and two QWPs) placed before the last PBS in the setup,
as shown in Fig. 6.14. Since the optics used throughout the experiment are far from perfect, the
intensity ratio of the transmitted and reflected beams from the PBS could differ. The first step is
to use a horizontal probe and adjust the compensation plates to minimise the vertical signal off-
resonance. This should take into consideration the effects of the cell windows on the polarisation
profile of the probe beam. We use the HWP to adjust the polarisation of the beam, while the QWP
changes the ellipticity; however, the second QWP is required to undo the circularity introduced by
the first QWP and return the beam to its initial polarisation state. For example, if we consider
the case of a HV detection system with a diagonal probe beam, a single QWP will turn the beam
circular thereby changing the polarisation structure of the input beam35. Therefore, the second
QWP is used to revert the beam back into diagonal before being incident on the PDs. Additionally,
the PBS does not seem to split circular light equally (favouring the reflected arm), and hence a
neutral density (ND) filter is used to adjust the inequality in the intensity profile of the probe
beam.

34Despite their name, a NPBS affecting the polarising structure of a beam in this manner is very common.
35As long as the QWP fast axis is not aligned with the polarisation direction of the probe, which is likely the case.
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Figure 6.14: Polspec detection sys-
tem with compensation plates. The
HWP is used to adjust the polari-
sation of the probe beam, while the
QWP changes the ellipticity. The sec-
ond QWP is used to undo the circu-
larity introduced by the first QWP.

In our attempt to understand the behaviour of this system, we had numerous discussions on
the role played by the pump and the magnetic field in producing the polspec signals, and although
I have discussed them in different sections throughout this chapter, highlighting their importance
to the experiment, I would like to briefly summarise their roles before moving on to the spatial
variation of this experimental setup. The introduction of the magnetic field in the direction of
the beam propagation limits the allowed atomic transitions to σ± in the paraxial approximation,
where the mathematically described axis of atomic precession is aligned with the direction of
the magnetic field. In this configuration, we get a Zeeman splitting where the excited mF ′ and
ground mF magnetic sublevels each experience a frequency shift given by the Larmor frequency
from Eqn. 4.2.4. A consequence of the Zeeman effect is that the driving transitions (i.e. σ±) are
also shifted, the magnitude of which is given by their respective Larmor frequencies ωL(σ±), as
demonstrated in Fig. 6.15, and observed in the components of the polspec signals presented in
Section 6.5.2. The magnetic field alone is insufficient to produce the polspec signal because the
frequency shift introduced to the σ± transitions applies to all mF states, with a slight change to the
transition probability. In this configuration, all possible magnetic sublevel transitions obeying the
selection rules can occur36 and the atomic medium is isotropic, lacking the capacity for preferential
absorption and dispersion that are required for the production of a polspec signal. However, the
pumping process using a circular probe takes care of this, introducing an anisotropy in the medium,
leading to circular dichroism (preferential absorption of the σ± components) and birefringence
(added phase shift to the σ± components). In terms of the atomic energy scheme, the atoms are
now concentrated in the furthest away mF level, as illustrated in Fig. 6.15 below, and the passing
probe beam now experiences a preferential absorption of the two polarisation components, leading
to the phenomena of enhanced and diminished absorption used to generate the polspec signals
presented in this section37. Note that although it is assumed the majority of the atoms will occupy
the last magnetic sublevel (i.e. mF = 3), some of the atoms will end up in other ground states
from external effects like collisions with the cell wall. Additionally, some of the atoms that joined
the system recently might occupy these ground states, since the population of the ground state in

36In terms of the spectrum, these mF transition peaks are small Lorentzian peaks occupying the area below the
larger Lorentzian peak representing the |F ⟩ → |F ′⟩ transition. These peaks can be resolved using higher magnetic
fields or lasers with a small enough linewidth.

37In terms of the spectrum, and using the example in Fig. 6.15, the Lorentzian peak corresponding to the
|F = 3⟩ → |F ′ = 4⟩ transition of 85Rb now has only two smaller Lorenzian peaks within its profile correspond-
ing to the |F = 3,mF = 3⟩ → |F ′ = 4,mF ′ = 2⟩ and the |F = 3,mF = 3⟩ → |F ′ = 4,mF ′ = 4⟩ transitions.
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the absence of a driving field is assumed to be uniform38.

Figure 6.15: The magnetic field and pumping scheme required for a polspec signal in the |F = 3⟩ →
|F ′ = 4⟩ transitions of 85Rb. An external magnetic field parallel to the beam propagation direction
permits only σ± transitions from occurring, which also shifts the ground state sublevel and the
σ± transition by their Larmor frequencies ωL(g) and ωL(σ±), respectively. Meanwhile, the pump
generates an anisotropy in the atomic medium, where the majority of the atoms occupy the furthest
ground state (mF = 3), introducing a preferential absorption of the two σ± components in the probe
beam. These two effects together result in generating two absorption signals separated by their
Larmor frequencies, whose difference (ωL(σ+) − ωL(σ−)) produces the polspec signal. Note that we
only consider half the magnetic sublevels in this figure; however, the concept remains the same for
the negative magnetic sublevels.

6.6 Spatial polarisation spectroscopy (spatpolspec)

The final objective of the second half of my PhD was to set up a system capable of detecting
a spatially varying polarisation signal using a vector vortex probe beam in an optically pumped
medium under the influence of an external magnetic field. The intention is to establish a pattern
between the spatial structure of the output beam and the frequency of the light source using
polarisation spectroscopy (polspec) as a stepping stone for laser locking purposes with a spatially
varying frequency modulated signal. In this section, we explore our work realising an experimental

38Although we magnify our beams as much as possible, it is difficult to fully occupy the entire diameter of the
cell without replacing many of our optical elements with 2-inch optics.
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configuration of spatial polarisation spectroscopy (spatpolspec), discussing changes to the initial
polspec setup and the theoretical model, providing preliminary results utilising an acousto-optic
modulator (AOM) for laser frequency modulation, and investigating the changes to the spatially
resolved polarisation signal around atomic resonance. We test the signal using two different hybrid
beams generated from a vector vortex plate and a quarter waveplate (QWP), drawing a comparison
between our system’s outcome and a simple theoretical model of light absorption and dispersion.
We conclude by reviewing key limitations to the experimental configuration, discussing potential
improvements to the setup, and explore possible methods of implementation for laser frequency
stabilisations.

6.6.1 Experimental realisation

Many of the concepts introduced in the previous section remain the same; however, the altered
setup for spatpolspec can be seen in Fig. 6.16 below.

Figure 6.16: The experimental configuration for Spatial polarisation spectroscopy. The setup is
split into three parts: a saturated absorption setup (red border), an AOM frequency modulation
configuration (blue border), and the main spatpolspec section (green border). Once again, the beam
colours indicate different polarisation structures, where horizontal is red, vertical is blue, purple is
a diagonal, orange and pink are circulars, and green is a vector beam. The experiment is made up
of an external cavity diode laser (ECDL), a Faraday isolator (FI), a polarisation-maintaining single
mode fibre (PM-SMF) attached to fibre collimators (FC), half waveplates (HWP), quarter wave-
plates (QWP), a vector vortex plate (VVP), polarising beam splitters (PBS), lenses (L), mirrors
(M), rubidium vapour cells (Rb), Irises, an acousto-optic modulator (AOM), a non-polarising beam
splitter (NPBS), a Wollaston beam splitter (WBS), a photodiode (PD), and a camera (Cam).
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The transition from the polspec setup depicated in Fig. 6.7 to the final spatpolspec setup
shown in Fig. 6.16 was not instantaneous, and instead changes to the experimental configuration
were introduced out of necessity to quantify the behaviour of our system. In the early stages of the
spatpolspec experiment, the HWP used to diagonalise the probe beam was removed in favour of
a vector vortex plate (or q-plate) and a quarter waveplate in the order seen in Fig. 6.16, whereas
the two photodiodes shown in Fig. 6.7 were replaced by a CMOS camera (JAI GO-5000M-USB) to
observe the changes to the spatial signal as the laser frequency is varied. The first step was to turn
off the laser scanning and manually change the laser frequency39, as we scanned the laser frequency
across certain regions of the rubidium spectrum, we observed changes in the beam shape as lobes
began to form in some parts of the beam profile, which were rotated when the laser frequency
changed. There was no doubt something interesting was occurring, and to investigate this effect,
further changes to the experimental setup were required. Next we introduced an AOM (a Gooch
& Housego 3080-125) in a double-pass configuration to control the laser frequency and prevent
changes to the beam path40, as seen in the setup within the blue border in Fig. 6.16. Note that for
an AOM to work, the input beam has to be frequency stabilised. Since at the time I had no servo
in place, I decided to replace all the electronics running the ECDL with a MOGLabs diode laser
controller instead, to lock the laser to the desired atomic transition41.

Although in a double-pass configuration the beam position should not change, and despite my
best efforts, it is very difficult to perfectly align the lenses in the AOM setup. As a consequence,
the beam path experiences slight shifts in position as the AOM frequency is scanned. These shifts
are negligible in free space but significant enough to interfere with a lens focusing a beam into a
20µm pinhole, obstructing the light and preventing the output beam from propagating through.
For this reason, the pinhole was replaced in favour of a polarisation-maintaining single mode fibre
(PM-SMF) in the panda configuration to clean the beam profile from the ECDL42. This fibre was
attached to two fibre collimators (FC) on each end, acting similar to the two lenses that focus and
collimate the beam into and out of the pinhole, as demonstrated in Fig. 6.7.

A PM-SMF is made polarisation-maintaining via two flexible stress rods that span the entire
length of the fibre, introducing mechanical stress and creating a birefringence in the fibre core.
The input light is focused by the FC into the core, which is located between the two stress rods,
surrounded by the cladding, and housed inside a thick rubber jacket to prevent light leakage and
ensure the fibre components are well protected from any external elements (see Fig. 6.17). Since
the focal length of the FC lens is relatively small43, the positional shift of the beam path caused
by changes to the AOM frequency is significantly reduced, ensuring there is an output beam for
the entire AOM scan range. However, the trade-off is that the intensity of the light from the fibre

39Since our lasers have an oscillating piezoelectric transducer (PZT) to change the cavity length and scan the
frequency, the amount in which it expands or contracts is controlled by the amplitude of the provided signal. To
manually scan the laser, we simply set the amplitude to zero and adjust the PZT by changing the offset frequency
on the signal generator. Note that if the amplitude is set to zero, the supplied frequency no longer has an effect on
the PZT.

40More information on AOMs can be found in Section 5.5; however, in a double-pass configuration, the laser
frequency is adjusted by twice the frequency of the selected AOM mode and the beam path is expected to remain
unchanged througout propagation.

41These controllers are very useful and easy to use, containing a laser driver, temperature controller, signal
generator, and servo all built into the circuitry, offering plenty of options for customisation. Unfortunately, this
makes them very expensive.

42The fibre was manufactured by Evanescent Optics Inc., constructed from a standard PM780-HP type fibre with
a core diameter of 4.5µm [217].

43We used two Thorlabs FC/APC fibre collimation packages at 780nm (F220APC-780) with a focal length of
11.07mm, generating an output beam with a diameter of 2.1mm.
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changes as the AOM frequency is scanned, caused by a slight misalignment of the focusing of the
input beam to the fibre core, as illustrated by the comparison of two input beams in Fig. 6.17a.
Similar to wave retarders, these fibres also possess a fast and slow axis (see Fig. 6.17b). However,
they do not preserve all polarisation structures and only maintain the polarisation of a linear input
beam aligned parallel to one of the two axes, meaning at most only two beams with orthogonal linear
polarisation structures can be coupled into the same PM-SMF44. Experimentally, since fibres are
normally screwed into a static lens or mirror mount, a HWP (sometimes with a PBS) is introduced
before the input FC to adjust the polarisation structure of the input beam to match the alignment
of the fibre axes (as seen from Fig. 6.16)45.

Figure 6.17: A panda configuration polarisation maintaining single mode fibre (PM-SMF), consist-
ing of the core, two stress rods, cladding, and jacket. a) Top view of the fibre and fibre collimator
(FC). The parallel beam (blue) is aligned to ensure perfect fibre coupling, resulting in maximum
output intensity; however, the angled beam (red) is not fully coupled into the core and will ex-
perience significant intensity losses. b) Front view of the fibre. The dotted lines highlight the
orientation of the fast and slow axes of the fibre. Note that the size of the fibre core has been
enlarged for clarity.

Although fibre coupling an input beam can be a tedious process, there are several advantages
to using a fibre in an experimental setup. Single mode fibres are efficient at cleaning the shape
of even the most bizarre of input beams, generating an output light field with a transverse mode
profile resembling a Gaussian beam (see Section 1.5 on Gaussian modes). In the case of our single-
mode fibre, the output is the fundamental transverse mode labelled TEM00. Additionally, they
can separate the alignment of different sections of an experiment. For example, if the beam prior
to entering the fibre shown in Fig. 6.16 experiences significant changes to the alignment, then the
alignment of the spatpolspec setup (green border in Fig. 6.16) will remain unchanged, provided
the position and orientation of the output FC have not been adjusted. However, despite their
usefulness, there are some disadvantages associated with using fibres. Since coupling a beam into a
fibre is never 100% efficient, some of the light is lost in the process, resulting in an output beam with
reduced power. Another common issue is that dust particles can be burnt on the core as a result
of prolonged exposure to focused laser light, severely affecting the shape and power of the output

44Note that it is possible to create a fibre that maintains circular polarisation. The easiest way is to rotate a
PM-SMF, creating a circular birefringence in the fibre core, which introducing different phase velocities to the two
circular components. An example of such a fibre is the Thorlabs Spun PM Optical Fibre (SHB1500).

45One can ensure the correct beam polarisation is entering the fibre by connecting the fibre output to a polarisation
analyser, like the one by Schäfter+Kirchhoff (SK010PA), and rotating the HWP to minimise fluctuations in the
output beam polarisation profile while manually stressing the fibre. If a polarisation analyser is unavailable, a power
meter with a polariser can be used instead.
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beam46. Additionally, since the output from a fibre is very divergent, it is difficult to replace an
output collimator with a lens for beam magnification47. Therefore, a telescope system to magnify
the beam by a factor of two was introduced in the setup, increasing the beam diameter from 2.1mm
to 4.2mm, in an attempt to cover as much of the Rb vapour cell as possible in the spatposlpec
experiment. The final adjustment we made to the setup was replacing the PBS before the camera
with a Wollaston beam splitter (WBS) to capture the projections of both orthogonal polarisation
states in a single-shot image. Although the position of the satspec was changed (red border from
Fig. 6.16), it remains the same in structure as the previous polspec setup seen in Fig. 6.7.

From Fig. 6.16 we observe that in our experiment, a vertical probe beam propagates through
a q-plate, followed by a QWP with its fast axis orientated at 45° with respect to the horizontal,
generating our vortex beams. Using Eqn. 1.3.21 and Eqn. 2.5.1, we calculate an expression for the
Jones matrix of our vortex beam as follows,
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iπ
4

1 i

i 1


cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)


0

1


=

1

2
√
2

[
(LG

|l|
0 e

2iδ + LG
−|l|
0 e−2iδ)σ+ − (LG

|l|
0 e

2iδ − LG
−|l|
0 e−2iδ)σ−

]
,

(6.6.1)

where LG
|l|
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0 are the Laguerre-Gaussian modes discussed in Section 1.5.3 with an az-

imuthal index l and a radial index p = 0. Here θ = qϕ + δ, where q is the q-plate order, ϕ is the
azimuthal angle, and δ is the orientation of the q-plate fast axis48. Following the same calculation
expressed in Appendix C, we can rewrite Eqn. 6.6.1, similar to Eqn. 6.5.4 as,
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where Λ and Π are the same quantities from Eqn. 6.5.5. Experimentally, we employ a left circular
(or σ+) pump beam and two different spatially variant hybrid probe beams, generated with a set
of two vortex retarders, namely q = 1/2 and q = 1 plates. The first probe beam is a hybrid beam49

generated with a vertically polarised light propagating through a q = 1/2 vortex plate, followed by
a QWP at 45°. The second beam is also a hybrid, following the same generation method as the
first, with the distinction that a q = 1 q-plate is used instead.

The AOM has an operation frequency of 80MHz and is connected to a simple voltage-controlled
attenuator (VCA) and voltage-controlled oscillator (VCO) circuit, controlling the amplitude and
frequency of the PZT modulation signal used to oscillate the AOM crystal50. The VCO itself has a
limited scan range of 50MHz to 100MHz (or 100MHz to 200MHz in a double-pass configuration);
therefore, it was vital to carefully consider which transition of which isotope of rubidium to lock our

46The fibre would require polishing using sandpaper of different grits (ranging from 30µm to 0.1µm). This process
takes around 30 minutes with a fibre polishing machine; however, it can take much longer if done by hand.

47At the time, only these specific collimators were available for use. Note there are collimators with adjustable
lenses (like the 60FC-SF collimators from Schäfter+Kirchhoff), which can significantly help with fibre coupling
efficiency.

48For more information, visit Section 2.5.2.
49Hybrid beams are those that possess both linear and circular polarisation structures across the beam profile.
50Note that the amplitude and frequency of the modulation signal were manually controlled by a set of two

potentiometers (pots).
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laser to. Based on our previous work with the initial polspec experiment described in Section 6.5,
we decided to investigate one of the closed transitions of rubidium for the same reasons discussed in
Section 6.5.3. Initially, we locked our laser to the 87Rb: |F = 2⟩ → |F ′ = CO32⟩ spectral feature51,
positioned around 133.325MHz [161] away from the |F = 2⟩ → |F ′ = 3⟩ closed transition, and falls
within the frequency range of our AOM VCO. However, since 87Rb has a lower natural abundance
than 85Rb, there are fewer atoms for the light field to interact with, making it difficult to observe any
distinct changes to the probe profile as the AOM frequency is varied52, unlike the clear rotation
seen before in the probe beam when the laser frequency was arbitrarily scanning across a large
section of the atomic spectrum. For this reason, we decided to switch to the closed transition of
85Rb instead. Unlike the cross-over peak in 87Rb we could lock to, which generated a strong and
clear error signal, the smaller frequency separations in the excited hyperfine states of 85Rb meant
we had to lock our laser to the D2 line |F = 3⟩ → |F ′ = CO32⟩ transition of 85Rb for the AOM in
use. This peak sits around 152.341MHz [160] away from the |F = 3⟩ → |F ′ = 4⟩ closed transition
and unfortunately produces a relatively weak signal, sensitive to the smallest of ambient noise.
However, by adjusting the settings of the MOGLabs box and using a suitable power ratio for the
satspec pump-probe beams, we managed to successfully produce a satisfactory error signal to lock
our laser to for the entire duration of our data collection runs53.

6.6.2 Results and analysis

Figure 6.18: The AOM scan region is out-
lined in red across the F ′ = 4 D2 line
transition of 85Rb. We lock our laser
to the CO32 cross-over peak, positioned
152.34MHz away from the desired transi-
tion.

In this section, we present our experimental findings
and compare the results to a theoretical model based
on a simplified form of Eqn. 6.6.2. As previously
stated, we lock our laser to the CO23 cross-over peak
of 85Rb and use a double-pass AOM to change the
laser frequency by a range spanning from 134MHz to
170MHz, as depicted by the red outline on the atomic
spectrum in Fig. 6.18. It is believed that this frequency
range is sufficient to capture the entire behaviour of
the probe beam rotation. Normally, we define zero
detuning at resonance (i.e. the |F = 3⟩ → |F ′ = 4⟩
transitions); unfortunately, since the AOM is manu-
ally controlled, the frequency is accurate to the nearest
MHz54. The limitation in the flexibility of the AOM
scan meant we were in fact slightly shifted by 340.5kHz
from resonance55. Note that if 152MHz is considered
to be at zero detuning (i.e. ∆ = 0), then our scan
ranges from ∆ = ±9MHz.

51CO32 is the cross-over peak sitting between the |F ′ = 2⟩ and |F ′ = 3⟩ transitions. More information can be
found in Section 5.3.

52Remember the absorption and dispersion coefficients introduced in Section 6.2 depend on the atomic density
nρ.

53Occasional laser re-locking might be required when accidentally bumping into the optical bench.
54The AOM circuit was connected to a picoscope, where the beam images are recorded for the AOM frequency

ranging from 67MHz to 85MHz, which corresponds to the laser frequency range stated above of 134MHz to 170MHz
when considering the AOM double pass.

55Which means we label the zero detuning relative to the AOM double pass frequency of 152MHz, whereas the
|F = 3⟩ → |F ′ = 4⟩ transition is actually 152.341MHz away from the CO32 peak of 85Rb. Note that this is taken
into consideration in our theoretical model.
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Once the correct waveplates are placed in the probe beam path, we capture an image of the
beam profile far off-resonance, which will account for changes experienced by the probe beam as a
consequence of external parameters (e.g. birefringent from optics, ambient light, etc.). We then lock
the laser to the CO32 transition, scan the AOM frequency across our detuning range, and record
an image of the probe beam interaction with the rubidium vapour for every frequency increment.
Since the Wollaston beam splitter (WBS) placed before the camera projects the probe beam along
the horizontal and vertical polarisation states, the entire measurement process is repeated twice
more for the two diagonal and two circular states, using the appropriate waveplates placed before
the WBS56. The intensity profiles of the experimental (off-resonance) and theoretical beams taken
off-resonance for both the q = 1/2 and q = 1 hybrid probes can be found in Fig. 6.19 and Fig. 6.20
respectively.

Figure 6.19: Intensity profile of the q = 1/2 hybrid probe beam projected onto the six Stokes
bases. The top row contains our experimental beams (off-resonance), while the bottom row are the
simulated beams.

Figure 6.20: Intensity profile of the q = 1 hybrid probe beam projected onto the six Stokes
bases. The top row contains our experimental beams (off-resonance), while the bottom row are the
simulated beams.

56Note that every single one of our images has been background subtracted and passed through a low-pass Fourier
filter to remove unwanted noise; however, the ring-like structures surrounding our beams are interference patterns
modifying the probe intensity profile, generated by the vortex plates, and cannot be removed by low-pass filtering.
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The off-resonance images help determine the characteristics of the hybrid beams used in the
experiment, since unfortunately, the fast axis orientation of the vortex plates was not recorded when
the data was collected. However, we can estimate a value for these angles by matching the intensity
profile of the theoretical plots to our experimental data, as shown in Fig. 6.19 and Fig. 6.20. By
doing so, we estimate the fast axis angle δ of the q = 1/2 plate to have been around −6°, while
the fast axis angle of the q = 1 plate is estimated to have been around −15°. Note that one can
derive an expression for the electric field of both hybrid probes as they interact with the atomic
medium by substituting the azimuthal index l = 1 for the q = 1/2 waveplate and l = 2 for the
q = 1 waveplate, along with their δ values stated above into Eqn. 6.6.2.

To best visualise the effect of the atoms on the light field, the probe images (example in
Fig. 6.21a) collected by shifting the AOM frequency are normalised by the off-resonance beam,
which generates a beam with a unique lobe structure57. In the case of our q = 1 beam, there are
four lobes in the shape of an “X” (Fig. 6.21b); however, it is worth mentioning that the number of
observed lobes is always twice the azimuthal index 2l. Since all our hybrid beams are vortex beams
with a singularity at the centre, we apply a digital mask to the images in the shape of a hollow
disc with different inner and outer radii (red circles from Fig. 6.21b) relative to the beam’s central
coordinate (red dot in Fig. 6.21b)58, where the portion of the beam outside the mask is excluded
from further analysis. Finally, the beam within the mask is unwrapped into a polar plot, where
the polar angle at 0 degrees is defined along the x-axis (see inset of Fig. 6.21b), and positive angles
are measured counter-clockwise for a full 2π rotation. The unwrapped image of the probe beam
can be found in Fig. 6.21c below.

Figure 6.21: Analysis of a spatpolspec probe beam. a) An experimental q = 1 probe beam. b)
A q = 1 probe beam normalised with the off-resonance image, producing a four-fold “X” pattern.
The red dot is an estimation of the beam centre using moment analysis, while the two red circles
highlight the region of the beam to be unwrapped. The polar coordinate is defined with 0 radians
along the x-axis increasing counter-clockwise. c) The unwrapped image of the beam in the desired
region, where the polar angle is along the vertical axis.

We continue to normalise all the probe beam images by the off-resonance image before un-
wrapping and overlapping them to construct a continuous polar profile plot of the beam behaviour

57Note that to prevent division by zero, which can occur in regions of the off-resonance beam where light is absent,
all pixels with values under 1 are set to 1 in the analysis.

58The coordinates of the beam centre are found using moment analysis. This technique uses thresholding to
estimate the central coordinates of the beam by approximating the beam shape from the image pixel values (i.e.
intensity).
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across the entire AOM frequency scanning range. We then compare our experimental data to a
theoretically generated probe beam in the same frequency range. We demonstrate such a plot for
our q = 1 hybrid probe beam, projected over the horizontal and vertical polarisation states in the
top and bottom rows of Fig. 6.22, respectively. Just from observation, we can deduce that the
rotation direction of the Ĥ projected beam in Fig. 6.22a1 and Fig. 6.22a2 is counter-clockwise,
while the beam projected along V̂ in Fig. 6.22b1 and Fig. 6.22b2 rotates clockwise, with increasing
AOM frequency.

Figure 6.22: Experimental (left) and theoretical (right) polar plots of our q = 1 hybrid probe beam
projected along a) the Ĥ state, and b) the V̂ state, across our desired range of AOM frequencies.

To translate this rotation into an angle, we calculate the sum of all pixel values for every polar
angle normalising by the highest pixel value and plot the intensity distribution against the polar
angle to generate a curve with sinusoidal features that mimic the beam rotation pattern. Note
that we only consider the curves for the first and last polar plots (i.e. the AOM frequency at
67MHz and 85MHz), since the beams rotate in one direction, and hence the rotation angle can be
calculated from the difference between the two curves. An example of these plots can be found in
Fig. 6.23 and Fig. 6.24 for the beam projected along the horizontal and vertical polarisation states,
respectively. Since the intensity profile of the experimental beam is not uniform, which is reflected
as inconsistencies in the sinusoidal profile of the curve, we fit the data to a sine curve, which helps
us with determining the position of the curve peaks. By taking the difference between the two sets
of peaks that correspond to the AOM frequency at 67MHz and 85MHz, we calculate an average
rotation angle of all four peaks59 of our experimental (exp) and simulated (sim) beams for the data

59We do this for improved accuracy. However, the number of peaks will vary, i.e. a q = 1 will have four peaks
from its four-fold pattern, while a q = 1/2 beam will only have two.
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set presented in Fig. 6.22. The results are summarised in Table 6.1 below.

Figure 6.23: Experimental (left) and theoretical (right) plots of the normalised intensity against
the polar angle for our q = 1 beam, projected along Ĥ, for the AOM frequency at 67MHz (blue)
and 85MHz (green). The solid lines represent the raw data, while the dashed lines are fitted curves.

Figure 6.24: Experimental (left) and theoretical (right) plots of the normalised intensity against
the polar angle for our q = 1 beam, projected along V̂ , for the AOM frequency at 67MHz (blue)
and 85MHz (green). The solid lines represent the raw data, while the dashed lines are fitted curves.

Projection Rotation angle (exp) Rotation angle (sim) Rotation difference (sim - exp)

Ĥ 27.55° ± 0.58° 37.54° ± 0.78° 9.98° ± 0.97°

V̂ 29.61° ± 2.08° 37.09° ± 1.28° 7.47° ± 2.44°

Table 6.1: Rotation angles of the experimental (exp) and theoretical (sim) q = 1 beam pattern,
projected along Ĥ and V̂ , along with the difference in rotation between the two.

In a similar fashion, we generate the polar plots and intensity curves for the q = 1 probe beam
projected along the diagonal (D̂) and anti-diagonal (Â), along with the right (R̂) and left (L̂)
circular states. These plots can be found in Fig. 6.25 and Fig. 6.26, respectively.
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Figure 6.25: Experimental (left) and theoretical (right) polar plots (a and b) and plots of intensity
against polar angle (c and d) of our q = 1 hybrid probe beam projected along the Â (a and c) and
D̂ (b and d) bases.



CHAPTER 6. DOPPLER FREE SPECTROSCOPY WITH VECTOR VORTEX LIGHT 141

Figure 6.26: Experimental (left) and theoretical (right) polar plots (a and b) and plots of intensity
against polar angle (c and d) of our q = 1 hybrid probe beam projected along the R̂ (a and c) and
L̂ (b and d) bases.
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Once again, the calculated rotation angles for the data from Fig. 6.26 and Fig. 6.25 are sum-
marised in the table below.

Projection Rotation angle (exp) Rotation angle (sim) Rotation difference (sim - exp)

Â 0.77° ± 0.58° 0° −0.77° ± 0.58°

D̂ 0.26° ± 0.26° 0° −0.26° ± 0.26°

R̂ 0.39° ± 0.43° 0° −0.39° ± 0.43°

L̂ 0.13° ± 0.22° 0° −0.13° ± 0.22°

Table 6.2: Rotation angles of the beam pattern for the experiment (exp) and theory (sim) and their
rotation difference for a q = 1 hybrid probe projected along Â, D̂, R̂, and L̂. Since the simulated
rotation angles are all zero, we recover the experimental rotation angles when calculating the
difference between the two.

By observing the beam behaviour projected along the Ĥ and V̂ polarisation states, we deduce
the rotation pattern follows the same direction when compared to our theoretical model. However,
there are slight discrepancies between the values of the rotation angle, as seen from Table 6.1. As
previously stated, our simulation modelling the light interaction with the atomic medium is very
simple and lacks many features and parameters found in an experimental setting (e.g. Doppler
broadening, temperature variations, transverse magnetic field contributions, birefringent effect of
optics, etc.)60, limiting our ability to accurately model our spatpolspec system.

Shifting our focus to the plots in Fig. 6.26 where our beam is projected along the circular bases,
we observe no distinct features or patterns in the simulated beam profile, apart from a gradual vari-
ation in the light intensity across our frequency range. Given that our q = 1 hybrid beam possesses
both circular components, a projection onto the circular bases (i.e. R̂ and L̂) will produce dark
regions in the beam profile, corresponding to an orthogonal projection. Recall that the magnetic
field in our system is assumed to be longitudinal (i.e. in the direction of beam propagation, where
only σ± transitions are allowed); this projection essentially throws away half of the information
encoded in the light field from the interaction with the atomic vapour. Since the rotation of the
beam pattern is a magneto-optical effect generated from the preferential absorption of the σ± com-
ponents and the phase difference between the two (i.e the Faraday effect, see Section 6.4), it is
no surprise that eliminating one of the σ± components gets rid of the rotation completely. Addi-
tionally, the regions in the polar plots from Fig. 6.26a2 and Fig. 6.26b2, where the brightness is
maximum, occur at the frequency of the respective σ± transition, shifted by the external magnetic
field61. Given that our beams are normalised by the off-resonance image, we assume the smallest
discrepancy between the two occurs at the resonance of the two σ± transitions, hence why the
intensity is highest around that region. From the plots in Fig. 6.26c2 and Fig. 6.26d2, we deduce
that the off-resonant beam and the beams across our frequency range are identical in structure,
and hence no distinct patterns are found from any of these plots. Unlike in theory, experimentally

60Although Eqn. 6.6.2 contains the birefringent effect of the glass cell, due to time constraints it was not included
into the simulation (although clear glass generally absorbs between 2% − 4% of the light field [218], which for the
two Rb cell windows would be around 4%− 8%), which is relatively small and therefore can be ignored.

61We model our system assuming a magnetic field of 0.5G, which gives a Larmor frequency shift of approximately
4.4MHz for σ− and 8.8MHz for σ+. Since zero detuning is assumed to be at 76MHz, a shift of 4.4MHz and 8.8MHz
MHz corresponds to 78.2MHz and 80.8MHz on our AOM frequency range, which sits within the bright region of the
polar plots in Fig. 6.26.
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generated beams are not perfect, and variations in the intensity and polarisation profiles are to be
expected. Although the beam possesses a subtle structure (shaped like a thin “X”, similar to the
pattern in Fig. 6.21), the polar plots suggest the beam experiences a very small rotation peaking
near resonance (≈ 76MHz), but rotates back as it clears the F ′ = 4 transition, in a motion akin to a
slight wiggle. However, the beam does rotate slightly by a very small angle, as stated in Table 6.2.

Since our beams also possess diagonal components, when we project our light onto the D̂ and
Â bases, we expect to see dark regions in the beam profile corresponding to orthogonal projection,
where we once again lose the light intensity before reaching the detector. Although it is very
difficult to see, some regions in the polar plot of the probe beam from Fig. 6.25a2 and Fig. 6.25b2
are still illuminated, suggesting the off-resonance and resonance beams are not fully identical and
some magneto-optical effect is in play. However, similarly to the case in Fig. 6.26, the effect is far
too small to induce a rotation in the beam profile, as seen from the angles summarised in Table 6.2.
On the other hand, our experimental beam behaves identically to the beams in Fig. 6.26, displaying
a very small rotation angle as seen from Table 6.2.

In a similar fashion, we calculate the rotation angle of the q = 1/2 probe beam for all six Stokes
projections and summarise the values in Table 6.3 below. Note that the polar plots and intensity
figures for the q = 1/2 probe can be found in Appendix D.

Projection Rotation angle (exp) Rotation angle (sim) Rotation difference (sim - exp)

Ĥ 57.17° ± 2.06° 74.17± 1.81° 17.00° ± 2.74°

V̂ 57.68° ± 0.52° 74.17° 16.49° ± 0.52°

Â 0 0° 0

D̂ 0.52° 0° −0.52°

R̂ 2.06° 0° −2.06°

L̂ 0.77° ± 0.26° 0° −0.77° ± 0.26°

Table 6.3: Rotation angles of the beam pattern for the experimental (exp) and theoretical (sim)
q = 1/2 hybrid probe and the difference between them, projected across all polarisation bases.

6.6.3 A brief description of our theoretical model

So far, I have extensively compared our data to a theoretical model that we developed to shed light
on the behaviour of our experimental setup. However, I am yet to provide any details about this
model62, and I will take the opportunity to briefly do so here.

The model can be split into three different sections: the first is the beam generation element,
the second is the interaction with the atoms, and the third is the analysis of the emerging beam.
The beam generation method is quite simple; we define the appropriate parameters associated with
an LG beam (e.g. Rayleigh range, beam waist, radius of curvature, etc.) and insert them into the
LG mode equation, given by Eqn. 1.5.18, to generate our desired modes. We then superimpose the
LG modes to generate the amplitude terms of the probe electric field seen in Eqn. 6.6.2 (the terms
in circular brackets), choosing appropriate values for the q-plate fast axis orientation δ. By now,
we are done preparing the initial beam and shift our focus to the atoms.

62For all you know, it’s all a hoax. But all jokes aside, it really does exist (source: Trust me!).
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First, we defined some of the textbook parameters (e.g. natural linewidth Γ, saturation intensity
Isat, etc.) and some parameters derived from our experimental setup (e.g. atomic density nρ, cell
length l, etc.). We then define our electric susceptibility function from Eqn. 6.2.9, considering
the refractive index and absorption coefficient from the susceptibility and taking into account the
Larmor frequency, which we calculate for the two σ± components from Eqn. 4.2.4. These interaction
coefficients are inserted into Eqn. 6.6.2; however, for simplicity, we ignore the complex refractive
index contributions from the glass cell windows. This should give us the light field after the
interaction with the atoms, and all that remains to flush out the effect of the atoms is to subtract
this output beam from the input beam we generated at the start. The final step is to introduce a
polarisation structure into the beam for projection measurements63.

The last part of the model handles the analysis. The beams are first normalised with their off-
resonance counter part before being unwrapped and cropped accordingly. This process is repeated
for every single detuning value (in our case, we simulate a detuning from 67MHz to 85MHz to
mimic the AOM frequency), to generate the polar plots like the ones seen in Fig. 6.22. Finally, we
sum the intensity values of the first and last polar plots to generate the intensity figures like the
ones seen in Fig. 6.23 and Fig. 6.24. I have included the code in Appendix E; however, I would like
to emphasise that some parts of the code might need to be highlighted in or out in order to include
or exclude various functionalities. Additionally, the output from certain functions might need to
be manually checked to ensure accuracy64.

6.6.4 Conclusion

The results discussed in this section serve as proof that the experimental realisation of a Doppler-
free spectroscopic system using vector vortex light is indeed possible, achieved by associating the
spatial mode of the probe beam with a rotation angle corresponding to a specific frequency on the
atomic spectrum. The slight differences in the rotation angles between our experimental results
and those generated from the numeric simulation could be attributed to a number of reasons.
Although the numerical model does support the behaviour of our data, the simulation lacks many
of the quantities and parameters found in an experimental setting that should be considered when
developing a model of an experimental setup65. Although we ensure the counter-propagating pump-
probe beams experience as much overlap as possible, in the hope of probing excited atoms, there
is no guarantee that the interaction of the light field spans the entire length of the rubidium cell
and instead could be concentrated at the entrance around the glass windows, where the light fields
are yet to experience a substantial reduction in their respective intensities throughout propagation.
Depending on the outcome of such an investigation, the theoretical model could be adapted to
include an effective cell length for a more accurate representation of the interaction region.

Additionally, our experiment proves these magneto-optical effects can still be successfully ob-
served and quantified at room temperature, solely utilising the magnetic field of the earth. However,
it would have been interesting to investigate these parameters to generate the most optimal spatial

63We introduce the polarisation structure at the end for simplicity; however, we code the simulation to follow the
behaviour expected from light interacting with an atomic medium where the magnetic field is in the direction of
propagation (i.e. only σ± transitions are permitted) and hence do not need the polarisation structure until we are
ready to perform the projection measurements.

64If the reader expects a polished and optimised piece of code, I regret to disappoint. By no means am I a software
developer, but I do have three close friends who are, and they would definitely have a heart attack if they saw this
thing.

65Our numeric model was in fact developed towards the very end of my PhD period (Huge thanks to Adam Selyem
for getting the ball rolling), and unfortunately not much time was invested in refining it.
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signal using a more controlled temperature and magnetic field environment while scanning across
the entire range of the D2 line transitions of both rubidium isotopes66.

Although the introduction of the AOM to the experiment provided me with a wealth of knowl-
edge and eventually became a critical component to running the experiment, I still consider it to
be my biggest experimental blunder during my time as a PhD student. Not only is it extremely
challenging to perfectly align the AOM to avoid the shift in beam path in the double-pass con-
figuration, they operate at specific frequencies, requiring careful consideration when selecting the
atomic transition to lock the laser to. In the case of our 80MHz AOM, probing the stretched state
of 85Rb forced us to lock the laser to the F ′ = CO32 cross-over peak, which is a relatively weak
peak, introducing an added challenge when attempting to frequency stabilise our ECDL. Addition-
ally, the change in the beam path interfered with our fibre coupling, affecting the total intensity of
the output beam, once again introducing an additional challenge to the analysis process. Finally,
due to time constraints, it was not possible to set up digital control over the AOM using a data
acquisition (DAQ) card, so a simple voltage control oscillator and attenuator circuit controlled
by two potentiometers was used, making it difficult to accurately select the desired modulation
frequency of the AOM. A more efficient solution to correlate the probe beam to the atomic spec-
trum is to trigger the camera with the oscilloscope and adjust the camera frame rate and laser
scanning frequency to associate every probe beam image with a point on the rubidium spectrum.
Alternatively, one could introduce a very slow scanning frequency (< 0.5Hz) and capture a video
of the probe beam, associating the sum of the pixel values of each frame to a specific region on the
atomic spectrum67. One disadvantage to this method being the off-resonance images can quickly
saturate when using a sensitive camera, while the beam at resonance is far too dim to observe (very
common when heating the rubidium vapour), which sounds like an analysis nightmare.

Despite not achieving the goal of designing and constructing a laser locking system using a
spatially dependent locking signal, our experimental findings serve as the first milestone in realising
such a system. The general problem with polarisation spectroscopy is the susceptibility to changes
in the beam polarisation as a consequence of changes to the birefringence of the glass cell, especially
in the presence of temperature variations, despite polspec signals offering an improved signal-to-
noise ratio. However, it is assumed that using a larger spatial signal offers a more robust solution to
the additional distortions experienced by conventional polspec signals, simply by selecting a region
of the beam least affected by such disturbances. The real challenge lies in implementing a stable
detection scheme fast enough to receive the probe beam, generate the error signal, and feed it to a
servo to stabilise the laser frequency (for reference, the PZT in our ECDL oscillates at a frequency
of around 250kHz to maintain the laser lock). However, schemes that provide passive modulation-
free laser locking utilising variations in the spatial structure of the beam profile have been explored
before [219]. This squash locking technique could provide useful insight into realising a fast and
efficient laser locking system utilising diferences in the spatial patterns of the probe beam.

6.7 Summary

In this chapter, we provide a detailed account of our experimental work, realising a Doppler-free
spectroscopic setup using vector vortex light. We start by introducing the electric susceptibility

66In fact, this task now falls to my successor, Richard Maduro, who has already made significant improvements
to what used to be my experimental setup. Well done, Richard!

67My supervisor, Sonja Franke-Arnold, might have suggested something along those lines a while back. I have no
idea why I chose to follow the AOM route; however, after my experiences with one of them, an apology is definitely
warranted. Sorry Sonja!
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in relation to the density matrix elements of the optical Bloch equations, moving on to discuss a
method for optical density calculation based on Beer’s law. We then briefly discuss the Faraday
effect, before introducing the theory and experimental configuration of our polarisation spectroscopy
(polspec) setup and discussing our findings. Finally, we provide a detailed account of the changes
to the polspec configuration to generate our spatial polarisation spectroscopy (spatpolspec) setup
and compare our obtained results to a simple numeric model of matter-light interaction.
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Conclusion

Before we conclude with a few words, we would like to provide a full summary of the work presented
in this thesis. In the first part, the primary focus was on the properties of light, introducing the elec-
tromagnetic nature of light, then derived an expression of the plane wave solutions from Maxwell’s
theory before spending a great deal of time establishing a solid understanding of light polarisa-
tion, its generation, manipulation, and representation both mathematically (Jones and Stokes) and
graphically (polarisation ellipse and Poincaré sphere). We then explored the implementation of
polarisation state reconstruction via Stokes tomography, before introducing Gaussian modes, in-
vestigating their behaviour throughout propagation. The next chapter introduced some properties
of light manipulation, beginning with the basic phenomena of reflection, focusing, and imaging. We
then discuss the concepts of birefringence and dichroism, which are both very important properties
of optical elements with a recurring theme throughout this thesis. This chapter concludes with a
detailed description for generation methods of complex light fields using digital micromirror devices
and vector vortex plates to produce beams with varying polarisation structures for experimental
use. The first part concludes with a detailed explanation of our experimental work, which uses the
elements of an unbiased positive operator valued measure set to realise an experimental configu-
ration for a single-shot polarimeter for polarisation state reconstruction with a reduced number of
required measurements. We provide a detailed account of the underlying theory and the experimen-
tal setup before comparing our measurements from the POVM system with measurements from a
conventional Stokes tomography and theoretically produced data. This study eventually concludes
with a description of the subsequent work that followed, introducing changes to the interferometric
setup for improved stability.

In the second part, we shift our focus to the study of light-matter interaction, introducing
the basic structure of rubidium atoms and the interaction of a light field with a two-level atom
generating a series of coupled differential equations known as the Optical Bloch equations. We
then provide an introduction to pumping schemes, discussing how the polarisation of the light field
causes different atomic transitions and how an atomic medium subjected to an external magnetic
field will only experience certain transitions as a consequence of the magnetic field orientation. The
chapter concludes with a discussion of population rate equations, where we investigate the changes
in the populations of the upper ground state of 87Rb as a consequence of the pumping process
with circularly polarised light. We then spend a moderate amount of time explaining in detail
the method for generating coherent and monochromatic resonance light with ECDLs, exploring
spectroscopic techniques for generation of Doppler free spectra for laser stabilisation purposes.
The chapter concludes with a brief description of acousto-optic modulators and the way they work
before delving into a brief study conducted a while back about the effects of power broadening on
the spectral lines of the hyperfine transitions. This investigation played a key role in our choice of
experimental beam powers. In the last chapter of part two, we combined the knowledge we have
accumulated so far to realise an experimental configuration for Doppler free spectroscopy with
vector vortex light. By using the density matrix elements from the optical Bloch equations, we
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derive an expression for the electric susceptibility, which we use to define the complex refractive
index of our system in order to model the effects of absorption and dispersion of the light field from
interaction with the atomic medium. We then introduce a simple method to determine the atomic
density of our rubidium vapour based on the Beer-Lambert law, before moving on to discuss how
the Faraday effect emerges as a consequence of circular birefringence. In the second to last section,
we provide a detailed description of the theory and experimental implementation of polarisation
spectroscopy, a Doppler-free spectroscopic technique that served as the foundation for our primary
project. In this section, we share our findings and conclude with final remarks that provide a
summary of the roles played by the external magnetic field and the pumping process in producing
the experimentally observed signal. In the final section of this chapter, we extensively discuss our
work, adapting the experimental configuration from polarisation spectroscopy and introducing a
probe beam with a spatially varying polarisation structure, along with an acousto-optic modulator
as a means of shifting the laser frequency to scan around the desired atomic transition. We then
share our experimental findings, discussing the interesting effects we observe and comparing the
results to a simple simulation. Finally, we provide a brief description of our theoretical model and
the equations required to generate the numerical data before concluding with an overview of our
work with spatial polarisation spectroscopy.

I would like to iterate that I might be one of the few individuals at the University of Glasgow’s
optics group in the past decade that was entrusted with the responsibility of an active role in
projects of both a pure optical nature and those with an element of matter-light interaction. Re-
gardless of the differences between these projects, structured light remains at the core of each one of
our experiments. Although, the technique introduced in Chapter 3 of a polarimeter projecting the
light field on a suitable set of generalised measurements has been realised in previous literature, our
investigation has proved that reconstruction of vector beams using this technique in a single-shot
measurement system is indeed possible. Despite the good agreement between our data and those
generated from both a theoretical model and Stokes tomography, the instability of the interferom-
eter made this experiment more challenging than initially anticipated. However, the next iteration
of the project addressed the stability issues by replacing the Mach-Zehnder interferometer with the
Sagnac configuration, providing a more robust experimental setup for potential reconstruction of
the optical activity information of dynamically changing materials. On the other hand, variations
in the Gouy phase from overlapped beams with non-matching spatial mode numbers remain a key
limitation of our experimental technique, as well as a potentially new and exciting avenue of study
to explore in any future work with POVM polarimetry utilising complex light fields.

Shifting to our experiment with matter-light interaction, I would like to emphasise that the
results of our work described in Chapter 6, building on the well-known technique of polarisation
spectroscopy, which demonstrates that a Doppler-free spectroscopic configuration using vector vor-
tex light is indeed possible, were promising and in agreement with a simple theoretical model we
devised. These results clearly associate the behaviour of the probing beam, in the form of a unique
rotation, with specific frequencies on the atomic spectrum as a consequence of magneto-optical
effects. Despite this first successful milestone and the effort it took to reach it, we have merely
scratched the surface of our investigation into a potential new technique for modulation-free laser
frequency stabilisation utilising a spatially varying error signal. Although the experimental config-
uration was adapted accordingly, the introduction of the acousto-optic modulator (AOM) to the
setup as a means for laser frequency control limited our scanning range to a specific region of the
atomic spectrum. In addition, the slight angular deviations experienced by the beam double-passed
through the AOM were reflected as changes in the light intensity emerging from the single-mode
fibre. A practical solution to this problem is to remove the AOM and introduce a very slow laser
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frequency scan while recording the behaviour of the spatial probe, where summing all pixel values of
the spatial signal, accounting for ambient noise, will recover the absorption features of the atomic
spectrum. This method provides a new avenue of study to explore the magneto-optical effects
arising in other regions of the atomic spectrum as a result of optical pumping and the interaction
of the medium with external magnetic fields. However, I must confess that it deeply saddens me
to realise that my involvement in this work has officially come to an end, especially since I was the
one who built this experiment from nothing. However, as the first-generation experimentalist at
the University of Glasgow to work on spatial polarisation spectroscopy, I have high hopes for the
future of this experiment.

Alas, our dear readers, we have come to the end. However, before we say our farewells and go
our separate ways, I would like to conclude with a few of my final thoughts. As I reflect on my
time at the University of Glasgow, I find it amusing that the countless hours spent aligning optics,
soldering electronics, gathering data, or writing code for analysis purposes are labours where an
experimental PhD student will spend the bulk of their time on; however, they are merely silent
contributors to producing this thesis. I would like to emphasise that experimental work is often
unpredictable by nature. Things can break where you least expect, or you could end up wasting
an entire day looking for a single electronic or optical component and still find nothing, only to
be forced to salvage from old discarded items collecting dust in a cupboard. However, I can say
with utmost confidence that the feeling of joy you experience when your experiment works and
your data behaves in the intended manner is indescribable. Finally, I would like to state that
my introduction to the world of experimental optics was riddled with various difficulties. After
just three months of being a PhD student, the unforeseen pandemic of 2020 resulted in months of
extensive restrictions to the labs at both the university and our industrial partners, which severely
affected my experimental growth. At times, I cannot help but wonder how different my time as
a PhD student would have been if the pandemic had not occurred, and how different this thesis
might have been. Despite it all, I would not trade the wealth of knowledge and experiences I have
accumulated in the past four years for anything. I hope, dear readers, that by now you have found
what you were looking for and that I was successful in my quest to provide a clear depiction of the
nature of experimental optics.
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[216] Wolfgang Demtröder. “Laser spectroscopy: Fourth edition”. In: Laser Spectroscopy: Fourth
Edition 1 (Jan. 2008). doi: 10.1007/978-3-540-73418-5 (Cited on page 120).

[217] Thorlabs. Polarization-Maintaining Fiber: PANDA Style (PM780-HP). url: https://www.
thorlabs.com/drawings/dedd176b3ca2de07-1FDF74D3-DC69-9049-FB8A4C000C733507/

PM780-HP-SpecSheet.pdf (visited on June 30, 2024) (Cited on page 132).

[218] Swift Glass. Understanding Glass Properties: The Absorption Spectrum. url: https://www.
swiftglass.com/blog/understanding-absorption-spectrum/#:~:text=Composition,

absorbs%20between%205%2D10%25. (visited on June 29, 2024) (Cited on page 142).

[219] Fritz Diorico, Artem Zhutov, and Onur Hosten. “Laser-cavity locking utilizing beam ellip-
ticity: accessing the 10−7 instability scale relative to cavity linewidth”. In: Optica 11.1 (Jan.
2024), p. 26. issn: 2334-2536. doi: 10.1364/optica.507451. url: http://dx.doi.org/
10.1364/OPTICA.507451 (Cited on page 145).

https://doi.org/10.1016/j.optcom.2009.02.008
http://dx.doi.org/10.1016/j.optcom.2009.02.008
http://dx.doi.org/10.1016/j.optcom.2009.02.008
https://etheses.dur.ac.uk/11212/
https://etheses.dur.ac.uk/11212/
https://doi.org/10.1088/0953-4075/47/7/075005
http://dx.doi.org/10.1088/0953-4075/47/7/075005
http://dx.doi.org/10.1088/0953-4075/47/7/075005
https://doi.org/10.1016/0030-4018(88)90422-1
http://dx.doi.org/10.1016/0030-4018(88)90422-1
http://dx.doi.org/10.1016/0030-4018(88)90422-1
https://doi.org/https://doi.org/10.1016/j.optcom.2007.04.027
https://doi.org/https://doi.org/10.1016/j.optcom.2007.04.027
https://www.sciencedirect.com/science/article/pii/S0030401807004294
https://etheses.dur.ac.uk/11212/
https://etheses.dur.ac.uk/11212/
https://www.mushield.com/heat-treating/magnetic-shielding-heat-treating-vs-annealing/
https://www.mushield.com/heat-treating/magnetic-shielding-heat-treating-vs-annealing/
https://doi.org/10.1007/978-3-540-73418-5
https://www.thorlabs.com/drawings/dedd176b3ca2de07-1FDF74D3-DC69-9049-FB8A4C000C733507/PM780-HP-SpecSheet.pdf
https://www.thorlabs.com/drawings/dedd176b3ca2de07-1FDF74D3-DC69-9049-FB8A4C000C733507/PM780-HP-SpecSheet.pdf
https://www.thorlabs.com/drawings/dedd176b3ca2de07-1FDF74D3-DC69-9049-FB8A4C000C733507/PM780-HP-SpecSheet.pdf
https://www.swiftglass.com/blog/understanding-absorption-spectrum/#:~:text=Composition,absorbs%20between%205%2D10%25.
https://www.swiftglass.com/blog/understanding-absorption-spectrum/#:~:text=Composition,absorbs%20between%205%2D10%25.
https://www.swiftglass.com/blog/understanding-absorption-spectrum/#:~:text=Composition,absorbs%20between%205%2D10%25.
https://doi.org/10.1364/optica.507451
http://dx.doi.org/10.1364/OPTICA.507451
http://dx.doi.org/10.1364/OPTICA.507451


167

Appendix A

Naimark extension of the POVM
elements

We provide more details on the realisation of the Naimark extension of the POVM states to im-
plement the four-outcome POVM measurement system described in the text. The unitary trans-
formation applied to the input state, as written in the extended basis, reads,

U =
∑

i,j=1,2;
µ,ν=α,β

Uµijν |kµ⟩|ei⟩⟨ej|⟨kν |, (A.1)

where ⟨e1| and ⟨e2| denote orthogonal polarisation states and ⟨kα| and ⟨kβ| different propagation
paths. Here Uµijν = ⟨kµ|⟨ei|U |ej⟩|kν⟩ are the elements of the matrix U ,

U =

√
2

2



−ia ib a −b

−ia −ib −a −b

−ib −a −ib a

−b −ia b −ia


, (A.2)

written in the basis of the extended Hilbert space {|e1⟩|kα⟩, |e2⟩|kα⟩, |e1⟩|kβ⟩, |e2⟩|kβ⟩} in this order.
With a polarising beam splitter and a CMOS camera, the final projection measurement P can be
realised for spatial resolution detection. For an input state defined in the extended state space,

|ψ⟩ ⊗ |kα⟩ =
(
|uH⟩|H⟩+ eiϕ|uV ⟩|V ⟩

)
⊗ |kα⟩, (A.3)

the probability that a photon is detected in one of the interferometer arms, identified by the path
ν and polarisation i, is therefore given by [118],

⟨ψ|π̂iν |ψ⟩ = |⟨kν |⟨ei|U |ψ⟩|kα⟩|2, (A.4)

where π̂iν = ⟨kα|U †|ei⟩|kν⟩⟨kν |⟨ei|U |kα⟩ are the POVM elements, which using Eqn. (A.1) may be
expressed as,

π̂iν =
∑

j′,j=1,2

U∗
νij′αUνijα|êj′⟩⟨êj|. (A.5)
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It is then readily verified that choosing U as given in Eqn. (A.2) and using the notation trans-
formation π̂1 = π̂1α, π̂2 = π̂2α, π̂3 = π̂1β and π̂4 = π̂2β, we obtain π̂i =

1
2
|ϕi⟩⟨ϕi| for i ∈ {1, 2, 3, 4},

with the projection measurements given by their respective expectation values Pi = ⟨ψ|π̂i|ψ⟩.
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Appendix B

The coherence density matrix element
ρeg in the steady state solution

Recall from Section 4.3 that the optical Bloch equations in the rotating wave approximation are
given by,

˙̃ρgg =
iΩ

2
(ρ̃ge − ρ̃eg) + Γρ̃ee, (B.1)

˙̃ρge = −iΩ
2
(ρ̃ee − ρ̃gg)− i∆ρ̃ge −

Γ

2
ρ̃ge, (B.2)

˙̃ρeg =
iΩ

2
(ρ̃ee − ρ̃gg) + i∆ρ̃eg −

Γ

2
ρ̃eg, (B.3)

˙̃ρee = −iΩ
2
(ρ̃ge − ρ̃eg)− Γρ̃ee, (B.4)

where the populations obey ρ̃gg + ρ̃ee = 1. For the steady state solution, ˙̃ρssgg = ˙̃ρssge = ˙̃ρsseg = ˙̃ρssee = 0,
we have,

0 = −iΩ
2
(ρ̃ssee − ρ̃ssgg)− i∆ρ̃ssge −

Γ

2
ρ̃ssge, (B.5)

0 =
iΩ

2
(ρ̃ssee − ρ̃ssgg) + i∆ρ̃sseg −

Γ

2
ρ̃sseg, (B.6)

0 = −iΩ
2
(ρ̃ssge − ρ̃sseg)− Γρ̃ssee, (B.7)

where we have ignored Eqn. B.1. If we add Eqn. B.5 and Eqn. B.6, we are left with,

ρ̃ssge =
i∆− Γ/2

i∆+ Γ/2
ρ̃sseg. (B.8)

Inserting Eqn. B.8 into Eqn. B.7, we get,

ρ̃ssee =
iΩ

i∆+ Γ/2
ρ̃sseg. (B.9)

Now, by substituting Eqn. B.9 and ρ̃ssgg = 1− ρ̃ssee back into Eqn. B.6, we find,
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0 =
iΩ

2
(2ρ̃ssee − 1) + (i∆− Γ/2)ρ̃sseg

0 =
iΩ

2

(
2

[
iΩ

i∆+ Γ/2
ρ̃sseg

]
− 1

)
+ (i∆− Γ/2)ρ̃sseg

iΩ

2
=

[
−Ω2

i∆+ Γ/2
ρ̃sseg

]
+ (i∆− Γ/2)ρ̃sseg

iΩ

2
(i∆+ Γ/2) = [−Ω2 + (i∆− Γ/2)(i∆+ Γ/2)]ρ̃sseg

∴ ρ̃sseg =
iΩ

2

(i∆+ Γ/2)

[−Ω2 + (i∆− Γ/2)(i∆+ Γ/2)]
.

(B.10)

Since the Rabi frequency is proportional to the electric field amplitude Ω ∝ E0, for strong
driving fields, the Rabi frequency is much larger than the detuning (i.e. Ω ≫ ∆); however, for
weak driving fields, we have Ω ≪ ∆ [165]. If we assume our light fields are weak (they generally
are), then Ω2 → 0 and Eqn. B.10 reduces to the following,

ρ̃sseg =
Ω

2

i

(i∆− Γ/2)
, (B.11)

which is the final expression of ρ̃sseg found in Eqn. 6.2.8.
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Appendix C

Complex electric field of the probe beam
in polarisation spectroscopy

Starting with Eqn. 6.5.3,

E =

√
2

2
E0

(
eiθσ−e

−ikn+Le−α+L/2e−ikñg+ l + e−iθσ+e
−ikn−Le−α−L/2e−ikñg− l

)
. (C.1)

Substituting ñg± = ng± − iαg±/2k into the equation above yields,

E =

√
2

2
E0(e

iθσ−e
−ikn+Le−α+L/2e−ikng+ le−αg+ l/2

+ e−iθσ+e
−ikn−Le−α−L/2e−ikng− le−αg− l/2).

(C.2)

If we factor out everything within the bracket with the exception of eiθσ− and e−iθσ+, we are
left with,

E =
1√
2
E0e

−ikn+Le−α+L/2e−ikng+ le−αg+ l/2e−ikn−Le−α−L/2e−ikng− le−αg− l/2

(eiθσ−e
ikn−Leα−L/2eikng− leαg− l/2 + e−iθσ+e

ikn+Leα+L/2eikng+ leαg+ l/2).

(C.3)

Focusing on the term outside the brackets, if we gather the terms together, we are left with,

=⇒ 1√
2
E0e

−ikn+Le−α+L/2e−ikng+ le−αg+ l/2e−ikn−Le−α−L/2e−ikng− le−αg− l/2

=
1√
2
E0e

−2ik(n++n−)L/2e−2ik(ng++ng+ )l/2e−2(α++α−)L/4e−2(αg++αg− )l/4

=
1√
2
E0e

−2i[k(nL+ngl)−i(αL+αgl)/2].

(C.4)

If we define an exponential e2x, we can separate it into e2x = exex (which holds by the property
of exponential functions, i.e. exex = ex+x = e2x). Applying this to the exponent in Eqn. C.4 above
and multiplying the left term inside the bracket of Eqn. C.3 with e−i[k(nL+ngl)−i(αL+αgl)/2] gives,
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=⇒ e−i[k(nL+ngl)−i(αL+αgl)/2](eiθσ−e
ikn−Leα−L/2eikng− leαg− l/2)

= eiθσ−e
−i[k({n−n−}L+{ng−ng−}l)− i

2
({α−α−}L+{αg−αg−}l)]

= eiθσ−e
−i

[
k
2 (∆nL+∆ngl)− i

4(∆αL+∆αgl)
]
,

(C.5)

where the definitions of the variables in Eqn. 6.5.6 hold1. Similarly, if we multiply the right side of
the term inside the bracket of Eqn. C.3 by e−i[k(nL+ngl)−i(αL+αgl)/2], we are left with,

=⇒ = e−iθσ+e
−i[k({n−n+}L+{ng−ng+}l)− i

2
({α−α+}L+{αg−αg+}l)]

= e−iθσ+e
i
[
k
2 (∆nL+∆ngl)− i

4(∆αL+∆αgl)
]
.

(C.6)

Combining all three calculations from Eqn. C.4, Eqn. C.5, and Eqn. C.6, we are left with the
final form of Eqn. C.3 given by,

E =
1√
2
E0e

−iΛ(eiθσ−e
−iΠ + e−iθσ+e

iΠ), (C.7)

where,

Π =
k

2

(
∆nL+∆ngl

)
− i

4

(
∆αL+∆αgl

)
Λ = k(nL+ ngl)−

i

2
(αL+ αgl),

(C.8)

obtaining the results from Eqn. 6.5.4 and Eqn. 6.5.5, respectively.

1Preforming this calculation means we are left with e−i[k(nL+ngl)−i(αL+αgl)/2] outside the bracket in Eqn. C.4.
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Appendix D

Polar plots and intensity figures for the
q=1/2 hybrid probe beam

Figure D.1: Experimental (left) and theoretical (right) polar plot of the q = 1/2 hybrid probe beam
projected along a) the Ĥ state, and b) the V̂ state, across the AOM scan.
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Figure D.2: Experimental (left) and theoretical (right) intensity against polar angle for the q = 1/2
hybrid probe beam projected along a) the Ĥ state, and b) the V̂ state, across the AOM scan.

Figure D.3: Experimental (left) and theoretical (right) polar plot of the q = 1/2 hybrid probe beam
projected along a) the Â state, and b) the D̂ state, across the AOM scan.
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Figure D.4: Experimental (left) and theoretical (right) intensity against polar angle for the q = 1/2
hybrid probe beam projected along a) the Â state, and b) the D̂ state, across the AOM scan.

Figure D.5: Experimental (left) and theoretical (right) polar plot of the q = 1/2 hybrid probe beam
projected along a) the R̂ state, and b) the L̂ state, across the AOM scan.
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Figure D.6: Experimental (left) and theoretical (right) intensity against polar angle for the q = 1/2
hybrid probe beam projected along a) the R̂ state, and b) the L̂ state, across the AOM scan.
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Appendix E

Python coded to simulate spatial
polarisation spectroscopy

Below is the annotated Python code used to generate our theoretical spatpolspec data (warning, it
is lengthy). I would like to emphasise that the code was constantly altered throughout use, which
means the code below might slightly differ from the one I used to generate the data. However, all
functionalities should remain the same.

import numpy as np # f o r ar rays

import cv2

from fun c t o o l s import l r u ca ch e

import matp lo t l i b . pyplot as p l t # f o r p l o t s

import sympy as sp # symbol ic c a l c u l a t i o n s

# Laguerre Polynomial f o r s imu la t i on s

from sympy import a s s o c l a g u e r r e as l ague r r ePo ly

from sc ipy import cons tant s as const

from sc ipy . s i g n a l import f i nd peak s

# This func t i on p r o j e c t s the beam onto the r e s p e c t i v e p o l a r i s a t i o n ba s i s

de f p r o j e c t i o n ( proj , beam ) :

r e s u l t = np . empty ( pro j . shape , dtype=ob j e c t )

row , c o l = pro j . shape

f o r i in range ( row ) :
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f o r j in range ( c o l ) :

r e s u l t [ i ] [ j ] = np . abso lu t e (np . vdot ( pro j [ i ] [ j ] , beam [ i ] [ j ] ) )∗∗2

re turn r e s u l t

# Converts a c a r t e s i a n meshgrid to po la r

de f c a r t 2po l (x , y ) :

r = np . sq r t ( x∗∗2 + y∗∗2)

phi = np . arctan2 (y , x )

re turn r , phi

# Rayle igh range , a l s o z 0

@lru cache ( maxsize=None )

de f r a y l e i g h ( beam waist , wave length ) :

r e turn np . p i ∗beam waist ∗∗2/ wave length

# Evolut ion o f beamwaist with d i s t anc e z , a l s o w( z )

@lru cache ( maxsize=None )

de f wais t ( z , beam waist , z 0 ) :

r e turn beam waist ∗(1+( z/ z 0 )∗∗2)∗∗ (1/2)

# Evolut ion o f rad iu s o f curvature with d i s t anc e z , a l s o R( z )

@lru cache ( maxsize=None )

de f rad iu s ( z , z 0 ) :

t ry :

r e turn z ∗(1+( z 0 /z )∗∗2)

except ZeroDiv i s i onErro r :

r e turn np . I n f
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# This func t i on gene ra t e s the Laguerre−Gaussian beam e l e c t r i c f i e l d ( U lp )

de f l a gu e r r e ( l , p , r va l , ph i va l , z , beam waist , wavelength ) :

r , phi = sp . symbols ( ’ r phi ’ )

k = 2 ∗ np . p i / wavelength

z 0 = ray l e i g h ( beam waist , wavelength )

w z = waist ( z , beam waist , z 0 )

p s i z = ( sp . Abs( l ) + 2∗p + 1) ∗ np . arctan ( z / z 0 )

lg beam = ( beam waist /w z ) ∗ ( ( r ∗ sp . s q r t ( 2 ) ) / w z )∗∗ sp . Abs ( l ) ∗ \

sp . exp(−( r /w z )∗∗2) ∗ \

l ague r r ePo ly (p , sp . Abs ( l ) , (2∗ r ∗∗2)/w z ∗∗2) ∗ \

sp . exp(−1 j ∗( l ∗phi−p s i z+k∗ r ∗∗2/(2∗ rad iu s ( z , z 0 ) ) ) )

func = sp . lambdify ( [ r , phi ] , lg beam )

return func ( r va l , ph i va l )

# Create a matrix where each element

# i s a j one s vec to r d e s c r i b i n g the p o l a r i s a t i o n d i r e c t i o n

de f j one s mat r i x ( array , rows , c o l s ) :

array = np . array ( array )

array = (1 / np . l i n a l g . norm( array ) ) ∗ array

matrix = np . empty ( ( rows , c o l s ) , dtype=ob j e c t )

i t = np . nd i t e r ( matrix , f l a g s =[ ’ mult i index ’ , ’ r e f s ok ’ ] ,

o p f l a g s =[ ’ readwr i te ’ ] )

f o r element in i t :

matrix [ i t . mu l t i index ] = array
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re turn matrix

########################################################################

wave length = 780e−9 # m

w0 = 2.1 # mm (beam waist )

########################################################################

# Def ine g r id phy s i c a l dimensions

x l eng th = 5 # Phys i ca l l ength in the x d i r e c t i o n ( d e s i r ed un i t mm)

y l eng th = 5 # Phys i ca l l ength in the y d i r e c t i o n ( d e s i r ed un i t mm)

g r i d p o i n t s = 200 # number o f po in t s in the g r id

# Create coord ina te ar rays

x g r i d = np . l i n s p a c e (−x length , x length , g r i d p o i n t s )

y g r i d = np . l i n s p a c e (−y length , y length , g r i d p o i n t s )

g r i d s i z e = in t ( g r i d p o i n t s /2)

# Creates a meshgrid o f x and y va lue s from the range s p e c i f i e d below

xx , yy , = np . meshgrid ( x gr id , y g r i d )

# conver t s c a r t e s i a n coo rd ina t e s to po la r

rr , pphi = ca r t 2po l ( xx , yy )

# c r e a t i n g an array o f Jones ve c t o r s f o r a l l Stokes bases

ho r i z on ta l mat r i x = jone s mat r i x ( [ 1 , 0 ] , 2∗ g r i d s i z e , 2∗ g r i d s i z e )

v e r t i c a l ma t r i x = jone s mat r i x ( [ 0 , 1 ] , 2∗ g r i d s i z e , 2∗ g r i d s i z e )

d iagona l matr ix = jone s mat r i x ( [ 1 / np . s q r t ( 2 ) , 1/np . s q r t ( 2 ) ] ,

2∗ g r i d s i z e , 2∗ g r i d s i z e )



181

ant id i agona l mat r i x = jone s mat r i x ( [ 1 / np . s q r t ( 2 ) , −1/np . s q r t ( 2 ) ] ,

2∗ g r i d s i z e , 2∗ g r i d s i z e )

r i gh t mat r i x = jone s mat r i x ( [ 1 / np . s q r t ( 2 ) , −1 j /np . s q r t ( 2 ) ] ,

2∗ g r i d s i z e , 2∗ g r i d s i z e )

l e f t ma t r i x = jone s mat r i x ( [ 1 / np . s q r t ( 2 ) , 1 j /np . s q r t ( 2 ) ] ,

2∗ g r i d s i z e , 2∗ g r i d s i z e )

# The q−p l a t e f a s t−ax i s o r i e n t a t i o n

pha s e ha l f = −(6 ∗ np . p i )/180 # q=1/2 phase

phase one = −(15 ∗ np . p i )/180 # q=1 phase

# Ass ign ing the beam mode to the sigma plus /minus E f i e l d

# BEAM SELECTION: COMMENT/UNCOMMENT THE ELECTRIC FIELDS

# CORRESPONDING TO THE DESIRED BEAM

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# # Generates the q=1/2 beam

# LG10 = lague r r e (1 , 0 , rr , pphi , 0 , w0 , wave length )

# LGn10 = lague r r e (−1 , 0 , rr , pphi , 0 , w0 , wave length )

# E p l u s f i e l d = np . f l i p ( (LG10 ∗ np . exp (2 ∗ 1 j ∗ pha s e ha l f ) +

# LGn10 ∗ np . exp(−2 ∗ 1 j ∗ pha s e ha l f ) ) , ax i s=1)

# E minus f i e l d = np . f l i p (−(LG10 ∗ np . exp (2 ∗ 1 j ∗ pha s e ha l f ) −

# LGn10 ∗ np . exp(−2 ∗ 1 j ∗ pha s e ha l f ) ) , ax i s=1)

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Generates the q=1 beam

LG20 = lague r r e (2 , 0 , rr , pphi , 0 , w0 , wave length )

LGn20 = lague r r e (−2 , 0 , rr , pphi , 0 , w0 , wave length )

E p l u s f i e l d = np . f l i p ( (LG20 ∗ np . exp (2 ∗ 1 j ∗ phase one ) +
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LGn20 ∗ np . exp(−2 ∗ 1 j ∗ phase one ) ) , ax i s=1)

E minus f i e l d = np . f l i p (−(LG20 ∗ np . exp (2 ∗ 1 j ∗ phase one ) −

LGn20 ∗ np . exp(−2 ∗ 1 j ∗ phase one ) ) , ax i s=1)

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

# Atomic f unc t i on s

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

n rho = 5.383 e07 ∗ 1e6 # mˆ−3 ( atomic dens i ty from experiment )

Gamma = 2 ∗ np . p i ∗ 6 .065 e6 # Hz ( natura l l i n e width )

# Hz (D2 l i n e 85Rb : From F=3 ground s t a t e )

# [ upper s t a t e hype r f i n e s p l i t t i n g ignored ( too smal l ) ]

omega0 = 2 ∗ np . p i ∗ (384 .230 e12 − 1 .265 e9 )

# W/mˆ2 ( s a tu ra t i on i n t e n s i t y )

I s a t = ( const . hbar ∗ Gamma ∗ omega0∗∗3) / (12 ∗ np . p i ∗ const . c ∗∗2)

c e l l l e n g t h = 75e−3 # m

# This func t i on c a l c u l a t e s s h i f t from the B− f i e l d c a l c u l a t i o n f o r

# 85Rb: Fg = 3 −−> Fe = 4 (B− f i e l d in Gauss )

de f B f i e l d d e tun i ng (Bz ) :

# Zeeman s p l i t t i n g o f ground s t a t e

# vaues : 1 . 4 from Bohr magneton , 3 from mf , 1/3 from g F

zeeman sp l i t g round = 1 .4 ∗ 3 ∗ 1/3 ∗ Bz

# Zeeman s p l i t t i n g o f the two sigma components

z e eman sp l i t e x c i t e d p l u s = 1 .4 e6 ∗ 4 ∗ 1/2 ∗ Bz
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ze eman sp l i t ex c i t ed minus = 1 .4 e6 ∗ 2 ∗ 1/2 ∗ Bz

# angular f requency o f the two sigma components

omega plus = omega0 − 2∗np . p i ∗( zeeman sp l i t g round +

z e eman sp l i t e x c i t e d p l u s )

omega minus = omega0 − 2∗np . p i ∗( zeeman sp l i t g round +

zeeman sp l i t ex c i t ed minus )

# detuning o f the two sigma components

de tun ing p lus = omega plus − omega0

detuning minus = omega minus − omega0

re turn detun ing p lus , detuning minus

# s u s c e p t i b i l i t y func t i on to c a l c u l a t e the absorpt ion and d i s p e r s i o n

de f s u s c e p t i b i l i t y ( de l ta , larmor ) :

r e turn ( ( n rho ∗ const . hbar∗ const . c )/4 )∗ (Gamma∗∗2/ I s a t ) ∗ \

(1 j / ( (1 j ∗( d e l t a+larmor ))−Gamma/2))

# Atomic i n t e r a c t i o n func t i on with the l i g h t f i e l d

de f a t om i c i n t e r a c t i on ( detuning , E sigma plus , E sigma minus ,

a l pha s ca l i ng , n s ca l i ng , o f f r e s =1):

# assume B− f i e l d i s 0 . 5G

mag f i e l d s p l i t t i n g p l u s , mag f i e l d s p l i t t i n g m i nu s = B f i e l d d e tun i ng (1/2)

# absorpt ion c o e f f i c i e n t f o r s igma plus and sigma minus

a lpha p lu s = s u s c e p t i b i l i t y ( detuning , m a g f i e l d s p l i t t i n g p l u s ) . imag

alpha minus = s u s c e p t i b i l i t y ( detuning , mag f i e l d s p l i t t i n g m i nu s ) . imag
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# r e f r a c t i v e index f o r s igma plus and sigma minus

n p lus = s u s c e p t i b i l i t y ( detuning , m a g f i e l d s p l i t t i n g p l u s ) . r e a l

n minus = s u s c e p t i b i l i t y ( detuning , mag f i e l d s p l i t t i n g m i nu s ) . r e a l

# absorpt ion terms f o r s igma plus and sigma minus

ab so rp t i on p lu s = −(2∗np . p i /wave length )∗ c e l l l e n g t h ∗ \

a lpha p lu s ∗ a l pha s c a l i n g

absorpt ion minus = −(2∗np . p i /wave length )∗ c e l l l e n g t h ∗ \

alpha minus ∗ a l pha s c a l i n g

# Faraday e f f e c t ( d i f f e r e n c e o f the r e f r a c t i v e index )

theta = ( n plus−n minus )∗ c e l l l e n g t h ∗(2∗np . p i /wave length )∗ n s c a l i n g

# E f f e c t o f absorpt ion on beam

E f i e l d s i gma p l u s = E sigma plus −(E s igma plus ∗

np . exp ( ab so rp t i on p lu s )∗ o f f r e s )

E f i e ld s igma minus = ( E sigma minus−(E sigma minus ∗

np . exp ( absorpt ion minus ) )∗ o f f r e s ) \

∗ np . exp (1 j ∗ theta )

re turn np . asar ray ( [ E f i e l d s i gma p lu s , E f i e ld s igma minus ] )

de f a pp l y p o l a r i s a t i o n ( detun ing va l , a l pha s ca l i ng , n s ca l i ng ,

o f f s e t d i v i s i o n=None , show f i g=None ) :

# Calcu la te a l l atom beams at once

atom beams = a tom i c i n t e r a c t i on ( detun ing va l , E p l u s f i e l d ,

E minus f i e ld , a l pha s ca l i ng , n s c a l i n g )

# Apply the p o l a r i s a t i o n s t r u c tu r e to each beam
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atom plus = np . mult ip ly ( atom beams [ 0 , : , : ] , l e f t ma t r i x )

atom minus = np . mult ip ly ( atom beams [ 1 , : , : ] , r i gh t mat r i x )

atom beam = atom plus − atom minus

H proj = p r o j e c t i o n ( hor i zonta l mat r i x , atom beam ) . astype ( ’ f l o a t64 ’ )

V proj = p r o j e c t i o n ( v e r t i c a l ma t r i x , atom beam ) . astype ( ’ f l o a t64 ’ )

R proj = p r o j e c t i o n ( r i ght matr ix , atom beam ) . astype ( ’ f l o a t64 ’ )

L pro j = p r o j e c t i o n ( l e f t ma t r i x , atom beam ) . astype ( ’ f l o a t64 ’ )

D proj = p r o j e c t i o n ( d iagona l matr ix , atom beam ) . astype ( ’ f l o a t64 ’ )

A proj = p r o j e c t i o n ( ant id i agona l mat r ix , atom beam ) . astype ( ’ f l o a t64 ’ )

t o t a l p r o j = R proj + L pro j

# o f f Resonance beam preparat i on f o r norma l i s a t i on

o f f r e s onan c e = a tom i c i n t e r a c t i on (−400e6 , E p l u s f i e l d ,

E minus f i e ld , 1 , 1 , 0)

o f f p l u s = np . mult ip ly ( o f f r e s onan c e [ 0 , : , : ] , l e f t ma t r i x )

o f f m inus = np . mult ip ly ( o f f r e s onan c e [ 1 , : , : ] , r i gh t mat r i x )

of f beam = o f f p l u s − o f f minus

H p r o j o f f = p r o j e c t i o n ( ho r i zonta l mat r i x , o f f beam ) . astype ( ’ f l o a t64 ’ )

V p r o j o f f = p r o j e c t i o n ( v e r t i c a l ma t r i x , o f f beam ) . astype ( ’ f l o a t64 ’ )

R p r o j o f f = p r o j e c t i o n ( r i ght matr ix , o f f beam ) . astype ( ’ f l o a t64 ’ )

L p r o j o f f = p r o j e c t i o n ( l e f t ma t r i x , o f f beam ) . astype ( ’ f l o a t64 ’ )

D p r o j o f f = p r o j e c t i o n ( d iagona l matr ix , o f f beam ) . astype ( ’ f l o a t64 ’ )

A p r o j o f f = p r o j e c t i o n ( ant id iagona l mat r ix , o f f beam ) . astype ( ’ f l o a t64 ’ )

# Small e p s i l o n value to avoid d i v i s i o n by zero

ep s i l o n = 1e−20

# Replace zero va lues in t o t a l t e s t with ep s i l o n
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# to avoid d i v i s i o n by zero

H o f f s a f e = np . where ( H p r o j o f f == 0 , eps i l on , H p r o j o f f )

V o f f s a f e = np . where ( V p r o j o f f == 0 , eps i l on , V p r o j o f f )

R o f f s a f e = np . where ( R p r o j o f f == 0 , eps i l on , R p r o j o f f )

L o f f s a f e = np . where ( L p r o j o f f == 0 , eps i l on , L p r o j o f f )

D o f f s a f e = np . where ( D p r o j o f f == 0 , eps i l on , D p r o j o f f )

A o f f s a f e = np . where ( A p r o j o f f == 0 , eps i l on , A p r o j o f f )

S t o k e s o f f s a f e = np . s tack ( ( H o f f s a f e , V o f f s a f e , A o f f s a f e ,

D o f f s a f e , R o f f s a f e , L o f f s a f e ) , ax i s=0)

i f o f f s e t d i v i s i o n i s None :

s t o k e s p r o j e c t i o n s = np . s tack ( ( H proj , V proj , A proj , D proj ,

R proj , L pro j ) , ax i s=0)

e l s e :

s t o k e s p r o j e c t i o n s = np . d i v id e (np . s tack ( ( H proj , V proj , A proj ,

D proj , R proj , L pro j ) ,

ax i s =0) , S t o k e s o f f s a f e )

i f show f i g i s not None :

f i g = p l t . f i g u r e (1 )

axes = [ f i g . add subplot (1 , 7 , i + 1) f o r i in range ( 7 ) ]

axes [ 0 ] . s e t t i t l e ( ’ Total ’ )

axes [ 0 ] . imshow( t o t a l p r o j , cmap=p l t . get cmap ( ’ gray ’ ) )

axes [ 3 ] . s e t t i t l e ( ’R’ )

axes [ 3 ] . imshow( s t o k e s p r o j e c t i o n s [ 4 ] , cmap=p l t . get cmap ( ’ gray ’ ) )

axes [ 4 ] . s e t t i t l e ( ’L ’ )

axes [ 4 ] . imshow( s t o k e s p r o j e c t i o n s [ 5 ] , cmap=p l t . get cmap ( ’ gray ’ ) )
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axes [ 1 ] . s e t t i t l e ( ’H’ )

axes [ 1 ] . imshow( s t o k e s p r o j e c t i o n s [ 0 ] , cmap=p l t . get cmap ( ’ gray ’ ) )

axes [ 2 ] . s e t t i t l e ( ’V’ )

axes [ 2 ] . imshow( s t o k e s p r o j e c t i o n s [ 1 ] , cmap=p l t . get cmap ( ’ gray ’ ) )

axes [ 5 ] . s e t t i t l e ( ’D’ )

axes [ 5 ] . imshow( s t o k e s p r o j e c t i o n s [ 3 ] , cmap=p l t . get cmap ( ’ gray ’ ) )

axes [ 6 ] . s e t t i t l e ( ’A’ )

axes [ 6 ] . imshow( s t o k e s p r o j e c t i o n s [ 2 ] , cmap=p l t . get cmap ( ’ gray ’ ) )

# remove ax i s from images

f o r ax in axes :

ax . ax i s ( ’ o f f ’ )

p l t . show ( )

p l t . c l o s e ( )

p l t . c l f ( )

r e turn s t o k e s p r o j e c t i o n s

# th i s func t i on imports the image and coord inate s , and s e l e c t s a

# reg i on from the beam to unwrap in to a po la r p l o t

de f unwrap image ( img , inner rad , outer rad , show f i g=None ) :

# obta in image dimensions

height , width = img . shape

# determine image cent r e

c en te r = ( i n t ( he ight /2) , i n t ( width /2))

# c r ea t e a mask array o f z e r o s equal to the image dimensions

mask = np . z e r o s ( ( height , width ) , dtype=np . u int8 )

# generate an image mask ( order o f drawn mask matter )
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# s e t s a l l p i x e l up to oute r rad to white (255)

cv2 . c i r c l e (mask , center , outer rad , 255 , −1)

# s e t s a l l p i x e l up to inne r r ad to black ( 0 ) ,

# th e r e f o r e only p i x e l s between outer and inner are now white (255)

cv2 . c i r c l e (mask , center , inner rad , 0 , −1)

# Apply the mask to the image

masked image = cv2 . b i tw i s e and ( img , img , mask=mask)

# Unwrap the masked image

unwrapped image = cv2 . l i n e a rPo l a r (masked image , center , outer rad ,

cv2 . INTER LINEAR +

cv2 .WARP FILL OUTLIERS)

i f show f i g i s not None :

# Create theta and rho va lue s f o r the mesh p lo t

# array i s backwards to ensure data i s c o r r e c t l y po la r p l o t t ed

th e t a va l u e s = np . l i n s p a c e (2∗np . pi , 0 , unwrapped image . shape [ 1 ] )

rho va lue s = np . l i n s p a c e (0 , unwrapped image . shape [ 0 ] ,

unwrapped image . shape [ 0 ] )

# Create meshgrid f o r po la r coo rd ina t e s

theta mesh , rho mesh = np . meshgrid ( the ta va lue s , rho va lue s )

# i d e n t i f y the r eg i on o f i n t e r e s t

i n n e r c i r c l e p l t = p l t . C i r c l e ( center , inner rad , c o l o r =’r ’ ,

f i l l =Fal se )

o u t e r c i r c l e p l t = p l t . C i r c l e ( center , outer rad , c o l o r =’r ’ ,

f i l l =Fal se )

c e n t e r p l t = p l t . C i r c l e ( center , 7 , c o l o r =’r ’ , f i l l =True )
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f i g , axs = p l t . subp lo t s (1 , 2 , f i g s i z e =(14 , 8 ) )

axs = axs . f l a t t e n ( )

# Plot the mask reg i on

axs [ 0 ] . imshow( img , cmap=’gray ’ )

axs [ 0 ] . add patch ( c e n t e r p l t )

axs [ 0 ] . s e t y t i c k s ( [ ] )

axs [ 0 ] . s e t x t i c k s ( [ ] )

axs [ 0 ] . add patch ( i n n e r c i r c l e p l t )

axs [ 0 ] . add patch ( o u t e r c i r c l e p l t )

# Plot the po la r map

axs [ 1 ] . p co l o r ( rho mesh , theta mesh , unwrapped image . t ranspose ( ) ,

cmap=’gray ’ )

axs [ 1 ] . s e t y l a b e l ( ’ Polar ang le $\Theta$ ’ )

axs [ 1 ] . s e t y l im (max( th e t a va l u e s ) , min ( th e t a va l u e s ) )

axs [ 1 ] . s e t x l a b e l ( ’Rho ’ )

axs [ 1 ] . s e t t i t l e ( ’ Polar plot ’ )

p l t . t i g h t l a y ou t ( )

p l t . show ( )

p l t . c l o s e ( )

p l t . c l f ( )

r e turn unwrapped image . t ranspose ( )

# Function that gene ra t e s the cont inuous po la r p l o t s

de f s e q u e n t i a l p o l a r p l o t ( cropped array , show f i g=None ) :
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x , y , = cropped array . shape

# Concatenate a l l unwrapped images along the theta dimension

combined unwrapped image = np . concatenate ( cropped array , ax i s=0)

# Create theta and rho va lue s f o r the mesh p lo t

# array i s backwards to ensure data i s c o r r e c t l y v i s u a l i s e d

th e t a va l u e s = np . l i n s p a c e (2∗np . pi , 0 ,

combined unwrapped image . shape [ 1 ] )

rho va lue s = np . l i n s p a c e (0 , combined unwrapped image . shape [ 0 ] ,

combined unwrapped image . shape [ 0 ] )

# Create meshgrid f o r po la r coo rd ina t e s

theta mesh , rho mesh = np . meshgrid ( the ta va lue s , rho va lue s )

x t i c k s = [ ( combined unwrapped image . shape [ 0 ] / x )∗

i−y/2 f o r i in range (1 , x+1)]

x t i c k s l a b e l = [ ( 6 7 + i ) f o r i in range (x ) ]

i f show f i g i s not None :

p l t . p co l o r ( rho mesh , theta mesh ,

combined unwrapped image , cmap=’gray ’ )

p l t . yl im (max( th e t a va l u e s ) , min ( th e t a va l u e s ) )

p l t . y l ab e l ( ’ Polar ang le ( rad ians ) ’ , f o n t s i z e =11)

p l t . x l ab e l ( ’ Frequency range (MHz) ’ , f o n t s i z e =11)

p l t . y t i c k s ( [ 0 , np . p i /2 , np . pi , 3∗np . p i /2 , 2∗np . p i ] ,

[ ” 0” , r ”$\ f r a c {\ pi }{2}$ ” , r ”$\pi$ ” ,

r ”$\ f r a c {3\ pi }{2}$ ” ,

r ”$2\pi$ ” ] , f o n t s i z e =11)
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p l t . x t i c k s ( x t i c k s , x t i c k s l a b e l , f o n t s i z e =11)

f i g . s a v e f i g ( f ’ p o l a r p l o t . jpg ’ , dpi=300)

p l t . t i g h t l a y ou t ( )

p l t . show ( )

p l t . c l o s e ( )

p l t . c l f ( )

de f r o t a t i o n ang l e ( cropped array , show f i g=None ) :

# sum of the ho r i z on t a l p i x e l va lue s o f the po la r image ( unwrapped image )

sum array = np . sum( cropped array , ax i s=1)

# de f i n e x−ax i s from 0 to 2 p i

# Theta va lue s f o r y−ax i s

t h e t a va l u e s = np . l i n s p a c e (2∗np . pi , 0 , sum array . shape [ 1 ] )

# arrays to save ang le va lue s

a n g l e d i f f = [ ]

l e g l a b e l = [”67MHz” , ”85MHz” ]

l e g c oun t e r = 0

f o r ind , f r e q p l o t in enumerate ( sum array ) :

f r e q p l o t = f r e q p l o t / np . amax( f r e q p l o t )

peaks = f i nd peak s ( f r e q p l o t , width=None , he ight=None ,

d i s t ance=None , prominence=1e −4) [0 ]

# i f p l o t i s not None :

# # Plot o r i g i n a l data and f i t t e d curve



192

# p l t . p l o t ( the ta va lue s , f r e q p l o t , l a b e l =’Or i g i na l Data ’ )

# p l t . p l o t ( t h e t a va l u e s [ peaks ] , f r e q p l o t [ peaks ] ,

# ”x” , c o l o r=”red ”)

# p l t . x l ab e l ( ’ Polar ang le ( rad ians ) ’ )

# p l t . y l ab e l ( ’ Normalised i n t e n s i t y ( a . u . ) ’ )

# p l t . show ( )

i f show f i g i s not None :

i f ind == 0 or ind == len ( sum array ) − 1 :

a n g l e d i f f . append ( th e t a va l u e s [ peaks ] )

c o l = [ ” blue ” , ” green ” ]

# Plot o r i g i n a l data and f i t t e d curve

p l t . p l o t ( the ta va lue s , f r e q p l o t ,

l a b e l=l e g l a b e l [ l e g c oun t e r ] ,

c o l o r=co l [ l e g c oun t e r ] )

p l t . x t i c k s ( [ 0 , np . p i /2 , np . pi , 3∗np . p i /2 , 2∗np . p i ] ,

[ ” 0” , r ”$\ f r a c {\ pi }{2}$ ” , r ”$\pi$ ” ,

r ”$\ f r a c {3\ pi }{2}$ ” , r ”$2\pi$ ” ] , f o n t s i z e =11)

p l t . y t i c k s ( f o n t s i z e =10)

p l t . x l ab e l ( ’ Polar ang le ( rad ians ) ’ , f o n t s i z e =11)

p l t . y l ab e l ( ’ Normalised i n t e n s i t y ( a . u . ) ’ , f o n t s i z e =11)

p l t . l egend ( l o c=”lower r i g h t ” , nco l=1)

l e g c oun t e r += 1

p l t . show ( )

p l t . c l o s e ( )

p l t . c l f ( )

a n g l e d i f f = np . asar ray ( a n g l e d i f f )
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a n g d i f f v a l = np . abs ( a n g l e d i f f [ 0 ] − a n g l e d i f f [ −1]) ∗ 180/np . p i

r e turn an g d i f f v a l , np .mean( a n g d i f f v a l ) , np . std ( a n g d i f f v a l )

# de f ined detuning range

detun ing range = np . arange (−18.3405 e6 , 18 e6 + 1e6 , 2 e6 )

pro ject ion measurements = np . asar ray ( [

a pp l y p o l a r i s a t i o n ( f req , 1 , 1 , o f f s e t d i v i s i o n =0, show f i g=None )

f o r ind , f r e q in enumerate ( detun ing range ) ] )

# p r o j e c t i o n order : H, V, A, D, R, L

s t oke s i ndex = [”H” , ”V” , ”A” , ”D” , ”R” , ”L” ]

f o r i in range ( l en ( s t oke s i ndex ) ) :

# s e l e c t s the p r o j e c t i o n

s e l e c t p r o j e c t i o n = pro ject ion measurements [ : , i ]

# unwraps the beam and crops i t s out ac co rd ing ly

unwrapped imgs = np . asar ray ( [ unwrap image (beam , 10 , 90 , show f i g=None )

f o r ind , beam in enumerate ( s e l e c t p r o j e c t i o n ) ] )

unwrapped imgs cropped = unwrapped imgs [ : , 5 0 : 1 90 ]

# gene ra t e s the stacked po la r p l o t s

s e q u e n t i a l p o l a r p l o t ( unwrapped imgs cropped , show f i g=0)

# gene ra t e s the i n t e r n s i t y p l o t s vs po la r ang le f o r r o t a t i on

# angle i d e n t i f i c a t i o n

p r i n t ( s t ok e s i ndex [ i ] , ” : ” , r o t a t i o n ang l e ( unwrapped imgs cropped ,

show f i g=None ) )
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