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Abstract

Longitudinal studies repeatedly collect data from the same individuals over

time to study long-term factors. A commonly used model in longitudinal

studies is the linear mixed effects model, which considers the correlation be-

tween observations within individuals. There are two ways to fit the model in

statistical fields: the Frequentist and Bayesian approaches. The Frequentist

approach is widely used, while the Bayesian approach has become more com-

mon with computational advancements. The work in this thesis comprises a

comparison study between the Frequentist linear mixed effects model and the

Bayesian Hierarchical model, using simulated longitudinal data and data from

a heart failure study (BIOSTAT-CHF). It was observed that inferences from

both approaches were similar. However, the Bayesian approach offers an ad-

vantage by providing a probability distribution for the parameter estimates.

This shows the probability of values falling within a certain range and incor-

porates prior information from previous studies into the inference.

In longitudinal studies, missing data is a common problem that can impact

the statistical analysis estimates by producing biased estimates. A method

that deals with non-ignorable missingness in the response using Correlated

Random Effects (CRE) based on latent variables and Gibbs sampling has

been proposed in the literature and has performed well in scenarios assuming

semi-parametric modelling. However, when applied to linear mixed-effect

modelling, the covariance matrix parameters had difficulty converging. To

address this issue, the work in this thesis considers a weakly informative prior

using the Inverse Wishart distribution. Additionally, this CRE method is un-
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able to accommodate incomplete data in the analysis model explanatory vari-

ables. To address this problem, the work in this thesis proposed three methods

to deal with missingness in the response and explanatory variables by adapt-

ing the CRE method.

Two proposed methods, the Two-Step and the GCRE-MAR methods, were

designed to address non-ignorable missingness in the model response and ig-

norable missingness in the model explanatory variables. The GCRE-MNAR

method was designed for non-ignorable missingness in both the model re-

sponse and explanatory variables. In the Two-Step method, the CRE method

was adapted by incorporating an additional step using the MICE algorithm, a

common approach for handling MAR data and producing imputed datasets.

The CRE method is then applied to the imputed MICE datasets.

The GCRE-MAR and GCRE-MNAR represent generalised versions of the

CRE method. The GCRE-MAR method incorporates the incomplete explana-

tory variable model. The GCRE-MNAR method incorporates the incomplete

explanatory variable model and the incomplete explanatory variable missing-

ness process model. It considers correlated random effects between the in-

complete explanatory variable model and the missingness process.

The proposed methods were compared with the CRE method and some base-

line models using simulated longitudinal data for different numbers of re-

peated measures and missing proportion factors. The proposed methods per-

form similarly to the CRE method, given that the proposed methods consider

missing data in both the response and explanatory variables. In contrast, the

CRE method only has missing data in the response (no missing values are in

the explanatory variables). Furthermore, the proposed methods outperform

the available data method in out-of-sample predictive performance, and the

parameter estimates closely match the parameters that generated the data.
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Additionally, the proposed methods were applied to the BIOSTAT-CHF data,

and the results were consistent regardless of the applied method. The cor-

related random effects indicated that the NT-proBNP missingness was MAR,

and the eGFR missingness was MNAR. Finally, the sensitivity analysis for the

misspecified missingness mechanism for the proposed methods had a small

impact on the overall results, whereas the misspecified response missingness

model resulted in biased parameter estimates for some of the analysis model

coefficients.
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Chapter 1

Introduction

1.1 Introduction

Longitudinal data analysis is the process of studying a dataset that contains a

substantial number of participants’ records taken over time. This data type

provides researchers with a valuable forecasting and predictive modelling

source. By monitoring subjects or entities over time, researchers can un-

derstand changes and trends related to disease evaluation, treatment effective-

ness, individual development, economic trends, long-term effects, and more.

Considering the time and money required for such studies before proceeding

with the research is crucial (Caruana et al., 2015). Recently, there has been

an enormous amount of research using longitudinal methods in health studies

(Calman et al., 2013).

In longitudinal design studies, variables are repeatedly measured for each par-

ticipant. Observations are recorded at baseline and follow-up times, and mea-

sures from the same participant are typically highly correlated compared with

other participants (Murphy et al., 2022). Therefore, it’s important to take

into account the correlation between observations obtained from the same

participant when analysing data obtained at multiple time points. The Linear

Mixed Model (LMM) is a valuable method for handling this correlation while

considering predictor variables. This model assumes a linear relationship be-

tween the response and predictor variables and takes into account both sys-

1
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tematic variation that impacts the population as a whole and subject-specific

variation.

There are two main conceptual frameworks for carrying out statistical infer-

ence: the Frequentist approach and the Bayesian approach. The common

approach used in clinical research is the Frequentist approach (Perkins and

Wang, 2004). The Frequentist statistical methods perhaps only use informa-

tion from past studies at a design stage, not in the inference analysis. On

the other hand, the Bayesian statistical approach uses prior knowledge and

the observed data from the study and then combines them to update beliefs

(Wong et al., 2010). This procedure continues whenever new data is available.

Recently, Bayesian inference has been used in research related to health stud-

ies as well as a mixture of the Frequentist and Bayesian (Perkins and Wang,

2004). Both methods are widely employed, especially when addressing miss-

ing values, which is typically challenging using longitudinal data.

Longitudinal studies typically encounter individual dropout over time and

commonly have missing data (Diggle et al., 2013). For example, patients

may miss one or more scheduled appointments in medical studies, drop out

of the study, refuse to answer sensitive questions, or have participants’ data

entered incorrectly. This problem makes the data analysis step complicated.

Moreover, dealing with missing data inappropriately can lead to inefficient

and biased results (Janssen et al., 2010; Little and Rubin, 2019; Mason et al.,

2010; Molenberghs et al., 2014; Sterne et al., 2009). It can also influence the

conclusions drawn from the study (Stavseth et al., 2019). One of the chal-

lenges when missing values exist is to rule out why data is missing. This is

referred to as the missing data mechanism. Since the available data does not

provide any information about the missing data and its relationship with other

variables, it is crucial to understand the mechanisms that describe missing

data, which will be explained in more detail in the following Section 1.2.
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1.2 Missing Data

Missing data refers to unobtainable information; it is a probable and prob-

lematic complication in research fields, which should be considered in the

statistical analysis step. There are two types of missing observation in clini-

cal studies: lost follow-up when participants drop out of the study before the

study ends, and intermittently missingness when a participant misses follow-

up observation and attends later follow-ups. There can be various reasons

why participants fail to respond or drop out of the study. Some of the rea-

sons are benign. However, others greatly impact the statistical analysis, and

it is essential to handle missing data correctly to ensure the validity of statis-

tical analysis (Ma and Chen, 2018). The cause of missingness is necessary

in determining the appropriate statistical method, and specific assumptions

about the missingness mechanism need to be met. The suitability of a specific

method is determined by the underlying mechanism causing the absence of

data (Mason, 2010).

Missing data can be classified into three types: Missing Completely at Ran-

dom (MCAR), Missing at Random (MAR), and Missing Not at Random

(MNAR). This categorisation was introduced by Rubin (1976) and is still

widely used today. The missing data mechanism is usually unknown, and re-

lying simply on the data itself is insufficient to distinguish between MAR and

MNAR (Molenberghs and Kenward, 2007). The crucial concern is whether

the cause of missing data in a variable is associated with the variable itself; in

this case, individuals with missing data have different characteristics than in-

dividuals with observed data. Consequently, the statistical analysis should be

treated with considerable concern to avoid potential bias. Despite this, when

the missing data is not associated with the variable itself, the influence of the

missingness is benign and does not require a complex analysis (Molenberghs

et al., 2014). Additionally, missing by design can occur when necessary in-

formation is misrecorded in data collection. For example, missing data can
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result from a survey question being phrased poorly (Chaudhuri and Agiwal,

2024).

To explore the missingness mechanisms, let’s consider the outcome of interest

as Yi = (yi1,yi2, . . . ,yim)
′, which is m× 1 vector. The outcome of interest for

the ith subject at tth observation or measurement is represented by yit , where

t = 1, . . . ,m. Assuming there are missing values in Yi, therefore, we define a

vector of missingness indicators as Ri = (ri1,ri2, . . . ,rim)
′, represents the out-

come missingness indicator of the same length as Yi. Suppose ri j = 1 if yit

is observed and rit = 0 if yit is not observed. The data contains information

about Ri and Yi, referred to as complete data, Yi can be split into two sub vec-

tors, Y o
i and Y m

i , according to the observed and missing outcome, respectively.

Complete data consists of observed data and missingness indicators (Yi,Ri).

There might be confusion between complete data and complete case analysis

terminology. The former indicates a data set with a missing indicator vari-

able, and the latter indicates an analysis based on omitting individuals with at

least one missing observation on Yi. The complete data density is expressed

as f (Yi,Ri|Xi,β ,θ), where Xi is the design matrix in the Yi model, β and θ

refer to a model of interest and missingness process model parameters, re-

spectively. The type of the missingness mechanism should be evaluated to

come by adequate inference from incomplete data.

1.3 Missing Data Mechanism

The missing data mechanism describes the probability distribution of the

missingness indicator of the outcome in the model Ri, given Y o
i ,Y

m
i and Xi.

Generally, the study analyst does not control the missing data mechanism.

However, the adequacy of the analysis and the assumption about the miss-

ingness type depends on whether these assumptions satisfy the data at hand

(Molenberghs et al., 2014). Three types of missing data mechanisms deter-
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mine how the Ri depends on Yi and Xi. Based on these mechanisms, one can

choose the appropriate analysis method. In this context, we will discuss each

mechanism’s definition in detail.

1.3.1 Missing Completely at Random (MCAR)

The data are considered missing completely at random (MCAR) if the prob-

ability of missingness is independent of both observed and unobserved out-

come values. For example, the nurse was absent while collecting blood test

samples. Therefore, the missing data is unrelated to the participants in the

study. In MCAR, Ri is unrelated to Y o
i and Y m

i as follows:

f (Ri|Y o
i ,Y

m
i ,Xi) = f (Ri). (1.3.1)

An interesting property of MCAR is that the observed data is considered a

random sample; therefore, moments and the joint distribution of the observed

data do not change from moments and the joint distribution of the full data.

Full data refers to fully observed data (no missing values). Therefore, any

analysis method will yield identical results for both the observed and full data

(Molenberghs et al., 2014).

Using complete case analysis will result in unbiased estimates. However,

the efficiency may decrease (Ibrahim and Molenberghs, 2009) because of the

reduced number of observations. When there is 5% or less missingness in the

data, and the missingness is independent of observed and unobserved values,

then it is acceptable to use the complete case analysis (Graham et al., 2009;

Jakobsen et al., 2017). However, this situation is uncommon in real life data.

1.3.2 Missing at Random (MAR)

The data is said to be missing at random (MAR) if the probability of missing

outcome depends on the observed data and is independent of unobserved data.

For instance, younger participants did not show up to collect blood test sam-
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ples. Therefore, the missing data is related to the age factor, and age needs to

be fully observed. To be more specific, Ri is considered to be unrelated to Y m
i

given Y o
i as follows:

f (Ri|Y o
i ,Y

m
i ,Xi) = f (Ri|Y o

i ,Xi). (1.3.2)

Since the missingness mechanism depends on the observed outcome Y o
i , the

distribution of Yi is not the same distribution of Yi in the target population.

That is because the distribution of Yi in each stratum has a different pattern of

missingness. In cases of MAR, using complete case analysis or observed data

can lead to biased inference, and it is not a sample from the target population

(Molenberghs et al., 2014). This occurs when covariates related to the miss-

ing at random data mechanism are not included in the analysis.

Rubin (1976) proposed that inferences based on the likelihood can be made

by ignoring the missing data mechanism. Therefore, MCAR and MAR are

considered ignorable missing mechanism because inferences are only applied

to the observed data, and there is no need to set a model for the missing data

mechanism. The assumption of MAR implies that the likelihood for the ith

subject can be expressed as follows:

f (Y o
i ,Ri | Xi,) = f (Ri | Y o

i ,Xi)×
∫

f (Y o
i ,Y

m
i | Xi)dY m

i

= f (Ri | Y o
i ,Xi) f (Y o

i | Xi) .
(1.3.3)

The Equation 1.3.3 is derived by ignoring the missing outcome from the joint

distribution, where f
(
Ri | Y o

i ,Xi
)

doesn’t depend on Y m
i as a results of in-

tegrator. Consequently, when the missing mechanism of the data is MAR,

the missing value can be then predicted using the observed data and an ad-

equate model for the joint distribution of Yi, and there is no need to model

f
(
Ri | Y o

i ,Xi
)

(Ibrahim and Molenberghs, 2009; Molenberghs et al., 2014).

Conceivably, MAR is the default assumption whenever there is missing data,

except if there is a strong reason to prefer the MCAR assumption (Molen-
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berghs et al., 2014).

1.3.3 Missing Not at Random (MNAR)

In contrast to MCAR and MAR, MNAR is called non-ignorable missingness.

The missing data are considered MNAR if the probability of missingness de-

pends on both the missing and observed values. For example, participants

with specific health conditions refused to provide blood test samples. As a

result, the missing data directly correlates with the participant’s health status.

This means that the conditional distribution of Ri depends on both Y o
i and Y m

i

as follows:

f (Ri|Yi,Xi) = f (Ri|Y o
i ,Y

m
i ,Xi). (1.3.4)

Another situation is that Ri can indirectly relate to Y m
i through its association

on unobserved random effect bi as follows:

f (Ri|Yi,bi,Xi) = f (Ri|bi,Xi). (1.3.5)

The equation 1.3.5 is known as a Shared Random Effects (SRE), which will

be discussed in Section 2.5.3. Since the MNAR mechanism is mentioned as

non-ignorable missingness, that means the mechanism of the missing data

cannot be ignored to make inferences about the complete data distribution

(Molenberghs et al., 2014). Thus, the missing data mechanism model has to

be specified to derive an adequate inference. The ordinary analysis methods

are invalid when the missingness mechanism is MNAR; otherwise, it will pro-

duce bias estimates (Ibrahim and Molenberghs, 2009).

On the other hand, joint models for the outcome of interest and the missing

data are applied to obtain adequate estimates. In Section 2.5.3, we will discuss

three joint models that are commonly used: the selection model, pattern mix-

ture model, and shared parameter models. MNAR is common in longitudinal

studies (Ibrahim and Molenberghs, 2009).
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1.4 Thesis Goals and Contributions

This thesis begins by comparing two commonly used approaches for analysing

longitudinal study data: the Linear Mixed Effect Model from the Frequen-

tist approach and the Bayesian Hierarchical Model from the Bayesian ap-

proach. The objective of this comparison is to identify the characteristics of

each approach and determine their effectiveness. The aim of this study is to

thoroughly examine each approach and identify their nuances of application.

During the investigation, a typical problem arose, which is the issue of miss-

ing data, particularly in longitudinal studies. This is a commonly problematic

issue and makes it challenging for researchers to obtain effective results. In

this thesis, we propose procedures that deal with missing data, including a

combination of non-ignorable and ignorable missingness.

The assumption of the MNAR mechanism can exist for the response and the

predictors in the analysis model. There is existing literature on missing data

in longitudinal studies. Daniels and Hogan (2008); Fitzmaurice et al. (2008)

provides details about missing data methods for longitudinal studies. Molen-

berghs and Kenward (2007) describe missing data in clinical studies. Ibrahim

and Molenberghs (2009) extensively reviews missing data methods in longi-

tudinal studies, and Ma and Chen (2018) reviews the applications of Bayesian

methods to handle missing data.

Some studies focus on the missingness of the response variable. For example,

Gao (2004) used the shared random effect parameter models for missingness

in longitudinal data. They proposed maximum likelihood estimation with

Laplace approximation for parameter estimation to avoid high-dimensional

integration over the random effect parameter distributions and found that their

method was effective. Tsonaka et al. (2009) used a semi-parametric shared

parameter model for the random effects distribution, which produced reliable

parameter estimates regardless of the distributional assumption for the ran-
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dom effects.

Lin et al. (2010) proposed a method to handle non-ignorable missing data in

longitudinal studies. Their approach, the Correlated Random Effects model,

differs from the traditional Shared Random Effects model by allowing for dif-

ferent random effects in the outcome and missingness models. They obtained

a closed-form expression for the likelihood function by transforming the in-

tegral in the likelihood function into a conditional expectation. The results of

their simulations showed that their method produced reliable estimates. To

avoid the complicated numerical integration that the log-likelihood function

involves, Bhuyan (2019) came up with another way to model the "Correlated

Random Effects model". They used a simple algorithm that utilized Gibbs

sampling for estimation. The simulation results show that the estimates from

their proposed method are similar to the estimates from full data analysis

(with no missing values).

Other studies focus on the missingness of the predictors variables. Huang

et al. (2005) addressed the challenge of nonignorable missing covariate data

by ensuring the propriety of the joint posterior distribution under proper pri-

ors for regression coefficients in the missing data mechanism. Ibrahim et al.

(2005) compare four commonly used methodologies for generalised linear

models when dealing with missing covariate data. These include maximum

likelihood (ML), multiple imputation (MI), fully Bayesian (FB), and weighted

estimating equations (WEEs). The study aims to understand these methodolo-

gies’ relationships, properties, advantages, disadvantages, and computational

implementations.

Yu et al. (2013) developed an effective hierarchical Bayesian method with

repeated binary responses and a joint model for time-dependent missing co-

variates. In a study by Erler et al. (2016), two methods for handling miss-

ing covariates in longitudinal models were compared: Multiple Imputations
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by Chained Equations (MICE) and the full Bayesian approach. The study

found that the full Bayesian approach performed well without the need for

the specificity of the longitudinal process in the imputation models. Enders

et al. (2020) used a Bayesian imputation technique to handle missingness in

the model’s predictors with random coefficients, interaction, and nonlinear

terms. Their technique yielded an accurate parameter estimation, similar to

the full data results.

Nevertheless, some studies focused on handling missing data in both the

model response and predictors. For example, Du et al. (2022), introduce

a Bayesian Latent Variable Selection Model (BLVSM) to estimate model

parameters and handle missing data when the response and predictors are

MNAR or MAR in a linear model context. Stubbendick and Ibrahim (2003)

use the selection model for nonignorable missing predictors and response in

the normal random effect model. They employed maximum likelihood esti-

mation with the Gibbs sampler and Monte Carlo EM algorithm, along with

bootstrap. Their method performs well based on the simulation data results.

This area can be developed by producing an approach for longitudinal models

with missing values in the model response and predictors with different com-

binations of missingness characteristics using Bayesian inference.

This thesis proposes methods for addressing missing data in a longitudinal

context using linear mixed models and Bayesian inference. These methods

can account for missingness in both the model predictor and the response

and can handle different types of missingness mechanisms, including MNAR

and MAR. We extend the work outlined by Bhuyan (2019) in the class of

Correlated Random Effects selection modelling, where the longitudinal re-

sponse missingness is non-ignorable and the analysis model predictors are

fully observed. This model-based estimation and imputation procedure will

be extended to accommodate incomplete predictors. The proposed methods

can address different missing data mechanisms, such as MNAR response with
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a completely observed predictor, MNAR response with MAR predictors and

MNAR response and MNAR predictors.

Bayesian inference is carried out to simultaneously estimate the analysis model

parameters and the missingness models. This is a useful alternative in such

complex settings due to its ability to model incomplete responses and pre-

dictors jointly without solving the intractable log-likelihood function using

approximation methods, such as in existing Frequentist methods (Lin et al.,

2010). Furthermore, the Bayesian approach allows us to incorporate prior in-

formation from previous studies if available. We can also incorporate prior

beliefs, such as eliciting information from experts in the field. This could be

helpful for modelling the missingness process, as it provides insights into how

missingness relates to unobserved data, which often cannot be inferred from

the observed data alone. This provides an advantage of using Bayesian infer-

ence. Our goal is to estimate parameters of interest, provide reliable results

while dealing with missing data, and offer decision-makers and clinicians a

robust prognosis prediction method that allows them to forecast and analyse

patients’ health outcomes confidently.

Due to the extensive scope of the subject of missing data modelling, our study

is focused on examining the effectiveness of Bayesian full probability mod-

elling. Specifically, our focus is on analysing datasets with missing values in

any variable within the model, particularly in a longitudinal context. Our ap-

proach is to extend joint models using the Correlated Random Effects model

and compare it with the baseline models. The baseline models include the

full data model with fully observed variables (no missing data) and the avail-

able model with observed data (missing values remain in the dataset, and no

imputation is applied). The current Correlated Random Effects method ad-

dresses missing responses in longitudinal datasets. However, it is crucial to

be aware that such datasets often contain missing predictors alongside missing

responses. Therefore, our research investigates the incorporation of predictor
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missingness within the CRE method, widening the scope beyond addressing

missing only in the response.

The key contributions made by this thesis can be outlined as follows:

• A comparison between the Frequentist approach’s Linear Mixed Effects

modelling and the Bayesian approach’s Hierarchical Bayesian Modelling

in the context of longitudinal data with continuous outcomes. This is

evaluated both in a simulation and real data (from a clinical study inves-

tigating heart failure) setting.

• Implementing the Correlated Random Effects (CRE) method for nonig-

norable missingness in the response of longitudinal data, coupled with

offering a solution to the non-convergence of the covariance matrix prob-

lem.

• Generate a Two-Step process using Multiple Imputations by Chained

Equations (MICE) that adapt the CRE method to account for ignorable

missingness in the predictor variables as well as the non-ignorable miss-

ingness in the response variable.

• Develop a generalisation of the CRE method to account for ignorable

missingness in predictor variables instead of only non-ignorable miss-

ingness in the response variable via Gibbs sampling, named the Gener-

alised Correlated Random Effects - Missing at Random (GCRE-MAR)

method.

• Develop a further extension of the CRE method to account for non-

ignorable missingness in predictor and response variables, named the

Generalised Correlated Random Effects - Missing Not at Random (GCRE-

MNAR) method

• Examine the proposed methods’ performance compared to the baseline

methods. The baseline models include the full data model with fully
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observed variables (no missing data) and the available model with ob-

served data (missing values remain in the dataset, and no imputation is

applied). This will be done using a simulated study with different sce-

narios that may be encountered in such studies and real-life data from a

clinical study investigating heart failure.

• Evaluation of the proposed approaches through a sensitivity analysis.

1.5 Structure of the Thesis

In this thesis, we will focus on Bayesian inference under the longitudinal

context and missing data. The objectives of this project are briefly described

as follows: Chapter 1 presents the topic of the study by introducing some

fundamental missing data principles and discusses the thesis goals. Chap-

ter 2 explains the statistical background used throughout the thesis. Chapter 3

presents the real-world study data designed to investigate heart failure, as well

as the synthetic data simulated to test the performance of the proposed meth-

ods. Chapter 4 features a comparative analysis of the two statistical paradigms

(Frequentist and Bayesian inference) for longitudinal data and demonstrates

the application of one of the recent approaches in handling non-ignorable

missingness in longitudinal data, the CRE method.

Chapter 5 establishes the adapted CRE method, called the Two-Step method,

for addressing ignorable missingness in the predictor and non-ignorable miss-

ingness in the response. The generalisation of the CRE method to allow for

MAR in the predictors is introduced in Chapter 6. The CRE method is further

extended to allow for MNAR in both the response and predictors. This exten-

sion involves considering Correlated Random Effects between the incomplete

predictors and their missingness process and different Correlated Random Ef-

fects between the response and its missingness process, which is explained in

Chapter 7. Afterwards, Chapter 8 explores a sensitivity analysis in order to

evaluate the inference robustness of the proposed methods. A summary of
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the thesis, outline of the proposed methods’ strengths and limitations, and a

discussion of possible directions for future work are provided in Chapter 9.



Chapter 2

Statistical Background

2.1 Introduction

In this chapter, we will discuss the statistical methodologies used in this the-

sis. In Section 2.2, we will begin by providing an overview of the primary

methods used to analyse longitudinal data. Then, in Section 2.3, we will ex-

plain the Frequentist approach, including regression modelling. Section 2.4

will address Bayesian inference, including prior distributions, MCMC algo-

rithms, and convergence assumptions.

We will briefly summarize the current methods used to handle missing data in

Section 2.5 and describe the probit model used for the missingness indicator

model in Section 2.6. To conclude this exploration, we will explain the crite-

ria for assessing the model’s performance in Section 2.7. This chapter serves

as a fundamental primer, offering essential knowledge for understanding the

technical statistical methodologies featured in the upcoming chapters.

2.2 Multilevel Linear Model

Multilevel linear models, also known as Linear Mixed Models or Hierarchical

Linear Models, are a more complex form of the ordinary least squares model.

It is used to analyse variance in the response variable when the data is hierar-

chically structured. This is an important method for generalising results from

15
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longitudinal data. Several methods are used to fit models for longitudinal

data, including maximum likelihood (ML), restricted maximum likelihood

(REML), and Bayesian inference (Boedeker, 2017; Raudenbush and Bryk,

2002). In longitudinal studies, responses within an individual are correlated

since there are multiple observations of the same individual at different time

points, violating the statistical independence assumption in the standard lin-

ear regression. Therefore, correlation must be considered when selecting an

appropriate analysis method for the data (Carrière and Bouyer, 2002). Linear

Mixed Effects Models (LMMs) can be used when adopting the Frequentist

approach to inference, as the methodology supports repeated outcomes.

Similarly, the Hierarchical Bayesian model (HBM) is a natural alternative

to LMMs. Bayesian modelling is a powerful approach to data modelling that

has recently become widely used because it can handle quite complex data

structures using Markov Chain Monte Carlo sampling. The advantages of

Bayesian modelling are the ability to consider previous information using dif-

ferent priors, the ability to provide a sampling distribution of the parameters

in the model, and the posterior distribution can be used as a prior distribution

for future analysis. The inference of hierarchically structured data will be

discussed in the upcoming sections.

2.3 Linear Mixed Effect Model

The Linear Mixed Effects Regression Model (LMM) is an extension of stan-

dard linear regression models that accounts for non-independent data by in-

corporating fixed and random effects in the fitted model. The fixed effect

represents the systematic influence of the response variable, which is equiv-

alent to the predictors in standard linear models. The correlation between

observations for an individual (in a longitudinal context) is derived from shar-

ing unobserved variables, which is the random effect. The inclusion of the

random effect distinguishes mixed models from traditional standard models.
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To capture the correlation structure between observations within the same in-

dividual in longitudinal data, we will analyse the data using a mixed-effects

model with individual-specific random intercept. The linear mixed model de-

scribed by Laird and Ware (1982) is expressed as follows:

YYY i = XXX iβββ︸︷︷︸
fixed effects

+ ZZZiuuui︸︷︷︸
random effects

+eeei, (2.3.1)

where i = 1, . . . ,n represents individuals and t = 1, . . . ,m represents repeated

measures per individual. The model has the flexibility to handle data struc-

tures with both equal and unequal numbers of repeated measures per individ-

ual by incorporating the random effect, which accounts for the between and

within individual variability (Pinheiro and Bates, 2006). In this thesis, we

consider an equal number of repeated measures for each individual. There-

fore, the total number of observations is N = n×m. YYY i =(yi(1),yi(2), . . . ,yi(m))′

is a m× 1 vector of the response variable, each yi(t) represents the response

observation of tth time point for the ith individual, βββ = (β1, . . . ,βJ)
′ is a J×1

vector of fixed effect parameters, with j = 1, . . . ,J number of predictors.

Moreover, XXX ji = (x1i(t),x2i(t), . . . ,xJi(t)) is a 1 × J vector of J predictors

observed at time t for subject i. Thus, XXX i is an m× J matrix of predictors

associated with subject i and has the form:
x1i(t) · · · xJi(1)

... . . . ...

x1i(m) · · · xJi(m)

 . (2.3.2)

Furthermore, uuui is a vector of random effect parameters expressing the de-

viation from the population mean for each individual, and ZZZi is a vector of

the random intercept, which is constant across time within each individual.

eeei = (ei(1),ei(2), . . . ,ei(m))′ is a vector of random errors, where, ei(t) shows

additional deviation for the ith individual at tth time point. Moreover, the ran-

dom effect ui and the residuals ei each independently and identically follow a

normal distribution with a mean of zero and constant variance (Pinheiro and



2.3. LINEAR MIXED EFFECT MODEL 18

Bates, 2006) as follows:
uuui

i.i.d∼ N(0,σ2
B),

eeei
i.i.d∼ N(0,σ2

A).
(2.3.3)

Furthermore, they are uncorrelated, defined as follows:

E

[
u
e

]
=

[
0
0

]
and Cov

[
u
e

]
=

[
G 0
0 R

]
,

where, u = [u1, . . . ,un]
′, e = [e1(1)′, . . . ,en(m)′]′, G = σ2

BI and, R = σ2
AI.

Where, I is the identity matrix. Given that e∗ = Zu+ e. The variance of

Y calculated as follows:

Var(Y) = Var(Xβββ + e∗)

= Var(Xβββ )+Var(e∗)

= 0+ZGZT +R.

(2.3.4)

Consequently, the response is assumed to be normally distributed with a mean

equal to the fixed effects terms (Xβββ ) and the variance equals (V=ZGZT +R).

Accordingly,

Y ∼ N(Xβββ ,V). (2.3.5)

To describe the variability in the data, we will assume a compound symmetry

covariance structure for simplicity, where all observations have equal vari-

ances and a constant correlation between any two observations with differ-

ent time points. However, there are other types of covariance structures to

consider. For example, a first-order autoregressive covariance structure as-

sumes that correlations between observations decrease exponentially as time

increases. The Toeplitz covariance structure assumes that correlations depend

only on the lag, with each lag having its own correlation parameter. Lastly,

the unstructured covariance assumes no specific structure, meaning each pair

of time points has a unique correlation parameter (Littell et al., 2000). We can

rewrite Equation 2.3.5 in terms of the compound symmetry covariance matrix
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as follows:

Y ∼ N(Xβ ,In ⊗Σ), (2.3.6)

where In is the n-dimensional identity matrix, where n is the number of ran-

dom intercepts/ participants in the model and Σ is m×m matrix, where m is

the number of repeated measures. The diagonal elements of Σ are the sum-

mation of the two sources of variation in the LMM (σ2
E +σ2

B) representing

each individual’s variance at a different time point, and the off-diagonal is

the between-individual variance (σ2
B), which expresses the variation between

measurements per individual. This is called compound symmetry structure,

which is assumed for the variance-covariance matrix in the random intercept

model of the longitudinal data as mentioned in (Donald and D., 2006). Sup-

pose there are two repeated measures; the covariance matrix structure is ex-

pressed as follows:

Σ =

[
σ2

B +σ2
E σ2

B

σ2
B σ2

B +σ2
E

]
. (2.3.7)

The ⊗ indicates the Kronecker product, which is a multiplication of two ma-

trices. For example, consider A and B as matrices. The Kronecker product is

expressed as follows:

AAAI×P ⊗BBBK×L =


A11BBB A12BBB . . . A1PBBB

A21BBB A22BBB . . . A2PBBB
... ... . . . ...

AI1BBB AI2BBB . . . AIPBBB


IK×PL

, (2.3.8)

where each element from matrix AAA will be multiplied by the entire BBB matrix.
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So, the product I⊗Σ will be N ×N block matrix as follows:

In ⊗Σm =


Σ 0 . . . 0

0 Σ . . . 0
... ... . . . ...

0 0 . . . Σ


nm×nm

. (2.3.9)

This indicates that between individuals are independent. However, obser-

vations within individuals are correlated, and this correlation is expressed

through the variance-covariance matrix Σ. Therefore, this correlation must

be considered to find an applicable analysis method to the data (Carrière and

Bouyer, 2002). The correlation between observations for an individual is de-

rived from sharing unobserved variables (the random effect). To obtain the

marginal density for the data, the random effect in equation 2.3.1 must be in-

tegrated out, which is considered a nuisance parameter (Pinheiro and Bates,

2006). Since the random effect and the residuals are independent, we can

represent this as:

L(Θ | YYY ) =
n

∏
i=1

p
(

YYY i | βββ ,σ2
A,σ

2
B

)
=

n

∏
i=1

∫
p
(

YYY i | uuui,βββ ,σ
2
A

)
p
(

uuui | σ
2
B

)
duuui,

(2.3.10)

where Θ = (βββ ,σ2
B,σ

2
A) refers to the model parameters that need to be es-

timated. In most longitudinal studies, models are fitted to report marginal

means and consider the covariance structure as nuisance parameters. This is

named marginal / population average models, which explains the regression

coefficients as a marginal response to changing predictors (Lee and Nelder,

2004). On the other hand, there are conditional models, where the regression

coefficients explain each individual’s response variable. Thus, the marginal

model is expressed as follows:

E(YYY i) = XXX iβββ , (2.3.11)
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and the conditional model is expressed as follows:

E(YYY i|uuui) = Xiβββ +uuui. (2.3.12)

Choosing between marginal and conditional models in longitudinal studies

depends on the study objectives. Lee and Nelder (2004) mentioned that in the

case when the main interest is model predictions, both models can be used.

Muff et al. (2016) state that there are no differences between the marginal

and conditional formulas of the model when the output variable is assumed

to be normally distributed. Therefore, we will consider the marginal model

throughout the analysis. In particular, the parameters to be estimated in the

mixed effects models are the fixed effects parameters in βββ , the random effects

parameters u and the variance-covariance matrix parameters V.

2.3.1 Estimation Inference

To estimate the parameters in the Linear Mixed Effects Model (LMM), we

will use the lme function from the nlme package in R developed by Pin-

heiro et al. (2007). The model parameters can be estimated using the Maxi-

mum Likelihood (ML) and Restricted Maximum Likelihood (REML) meth-

ods. The maximum likelihood method estimates the most likely parameters

resulting from the observed data (Myung, 2003). In contrast, the REML

method estimates the variance components by taking into consideration the

degrees of freedom for the fixed effects in the model. The main difference be-

tween the REML and ML methods is the variance estimation (Peugh, 2010).

When ML is used to estimate the variance, the fixed components are treated

as known and measured without errors. In contrast, the fixed components

are considered nuisance parameters when estimating the variance using the

REML method. The maximum likelihood method tends to underestimate the

variance components (Pinheiro and Bates, 2006), whereas REML results in

less biased estimates than ML (Boedeker, 2017; Gałecki et al., 2013). In

summary, the main feature of the REML method is that it is preferred for



2.3. LINEAR MIXED EFFECT MODEL 22

estimating the variance components as it takes into account the degrees of

freedom for the fixed effects in the model (Boedeker, 2017). In the following

sections, we will define each of these techniques.

Maximum Likelihood

The maximum likelihood estimation of the parameters in the normal model

is reached via maximisation of the marginal likelihood, and the MLE of

(βββ ,σ2
E ,σ

2
B) is the one that maximises this expression:

LML(Θ | Y) =
N

∏
l=1

{
(2π)−

m
2 |V|−

1
2 exp

(
−1

2
(Y−Xβββ )T V−1 (Y−Xβββ )

)}
.

(2.3.13)

The Maximum Likelihood method is used to compare nested models with

different fixed effects, providing an advantage over the Restricted Maximum

Likelihood (REML) method. The REML will project data into two separate

spaces, making it impossible to compare the likelihoods (George and Aban,

2015).

Restricted Maximum Likelihood

To derive an unbiased estimator of the variance component, we will assume

that the fixed effect parameters are nuisance parameters and eliminate the

fixed effects parameters from the likelihood function (Laird and Ware, 1982)

as follows:

LREML (Θ | Y) =
∫

L(βββ ,V | Y)dβββ . (2.3.14)

REML starts by fitting the fixed effects parameters using generalised least

squares (GLS) estimation, which is used as an alternative to the ordinary least

squares (OLS) to account for the correlation structure in the data (Pinheiro

and Bates, 2006). Then the residuals of the regression model are maximized

to compute the estimates of the variance components. REML works by max-

imising the likelihood of the response model independent of β .
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In a linear mixed effect model, closed-form estimations may not be avail-

able for ML and REML calculations, thus requiring the use of conventional

numerical methods (Jiang and Nguyen, 2007).

Optimization Algorithms

Two common optimisation methods are often used to determine the parameter

value that maximises the likelihood of the observed data given the statistical

model. These methods are the Expectation Maximisation (EM) algorithm

and the Newton-Raphson iterations (Stirrup, 2016). The EM algorithm was

first introduced by Dempster et al. (1977) to compute the likelihood estima-

tion for models with incomplete data. Since then, it has been widely used

for likelihood estimation of linear mixed models, by treating the random ef-

fects as unobserved (latent) data (Laird and Ware, 1982). The EM algorithm

works by first setting initial values for model parameters. Then, based on

these initial/recent values, the expected values are computed (E-step). Next,

it updates the parameters to maximise the likelihood using the computed ex-

pectations (M-step). Finally, these steps are repeated iteratively until con-

vergence is reached. In contrast, the Newton-Raphson method is a widely

used iterative optimisation method in linear mixed model estimation. Thisted

(1988) defined this procedure, which begins with initial parameter estimates

and is continually updated. In each iteration, the algorithm computes the gra-

dient of the loglikelihood function around the recent parameter estimate to

compute the next parameter estimate. It requires calculating the first and sec-

ond derivatives of the likelihood function (Pinheiro and Bates, 2006; Stirrup,

2016). Based on this, the algorithm updates the parameter estimations, in-

tending to maximise the likelihood. This iterative process continues until it

reaches convergence to a roots of an equation.

These algorithms are useful for optimizing the complex likelihood often en-

countered in Linear Mixed Models (LMM). These algorithms estimate both

fixed and random effects simultaneously. The lme function applies a hybrid
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optimization technique. It begins by computing initial estimates of the Θ pa-

rameters. After that, it implements the EM algorithm for multiple iterations

to approach the optimum values, followed by a change to Newton-Raphson

iterations for achieving convergence to the optimal values. The EM algorithm

quickly approaches the optimal region for the parameters, but it becomes slow

near the optimum. On the other hand, the Newton-Raphson algorithm re-

quires a longer processing time than the EM algorithm, but it rapidly con-

verges as it gets closer to the optimum (Pinheiro and Bates, 2006). To ensure

robust statistical inference, it is essential to check the underlying assumptions.

The primary assumptions of the linear mixed models are presented next.

2.3.2 Assumptions

It is essential to check the model assumptions in order to have the correct

conclusion of the model analysis. The following are the assumptions of Linear

Mixed Models.

1. Linearity:

This means that the model’s relationship between the response variable

and predictors should follow a straight line. This assumption could be

checked using graphical plots of response vs. predictors (Pinheiro and

Bates, 2006).

2. Homogeneity of Variance:

This assumes that the residual variances are equal within groups (Pin-

heiro and Bates, 2006). It can be checked using graphical plots (pre-

dicted values vs. residuals). There should be no pattern or trend for the

homoscedasticity (constant variance) assumption to hold true.

3. Normally distributed residuals:

This assumes that the residuals of the model are normally distributed.

This can be checked using the Q-Q plots of residuals, where strong de-

viation points from the line of equality indicate that this assumption is
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violated. Also, it is one way to identify the outliers (Pinheiro and Bates,

2006).

4. Independent residuals:

The residuals are assumed to be independent within and between indi-

viduals.

2.4 Bayesian Hierarchical Linear Model

Lately, Bayesian methods have been widely used due to the latest improve-

ments in computation capacity and the sharp growth of efficient algorithms in

different disciplines. Furthermore, there has been a notable development in

their ability to address missing data problems (Huang et al., 2005). Bayesian

inference can incorporate additional information and often provide better out-

comes despite small sample sizes (Cai et al., 2010). The major difference

between the Frequentist approach and the Bayesian approach is the definition

of probability. In the Frequentist approach, the probability is related to the fre-

quency of events. On the other hand, in the Bayesian approach, the concept

of probability is related to the degree of belief about statements. In a Fre-

quentist’s view, the underlying parameters are fixed throughout a repeatable

process. Whereas in a Bayesian’s view, underlying parameters are unknown

and have a distribution (treated as a random variable). Therefore, under the

Bayesian framework, all parameters are random, so there is no longer a need

to distinguish between fixed and random effects. In this section, we will sum-

marise some important concepts of the Bayesian approach.

Bayes’ theorem, introduced by Bayes (1763), is fundamental in Bayesian in-

ference, which calculates the conditional probability, for example, when there

are two events, event X and event Y. The Bayes’ rule is expressed as follows:

p(X | Y ) =
p(Y | X)p(X)

p(Y )
, (2.4.1)
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where p(X) is the probability event X occurs, p(Y ) is the probability event

Y occurs and p(X | Y ) is the conditional probability of event X occurring

given that event Y occurred. The Bayes’ rule can be rewritten in the form of

Bayesian statistics as follows:

p(Θ | Y ) =
p(Y | Θ)p(Θ)

p(Y )
, (2.4.2)

where Θ is an unknown parameter which is considered a random variable, Y is

the observed data, p(Θ) is the prior distribution, p(Y | Θ) is the distribution of

the observed data or likelihood, either, p(Y ) =
∫

p(Θ)p(Y | Θ)dΘ in case of a

continuous variable or p(Y ) = ∑Θ p(Θ)p(Y | Θ) in case of a discrete variable.

As a consequence that p(Y ) does not depend on Θ, this can be considered as

a constant, and thus the Equation (2.4.2) can be rewritten as follows:

p(Θ | Y ) ∝ p(Y | Θ)× p(Θ), (2.4.3)

where p(Θ | y) is the posterior distribution, which is the basis of any inference

in Bayesian statistics; it summarises the knowledge of uncertain quantities.

The marginal likelihood for the data is expressed in Equation 2.3.5.

2.4.1 Prior Distribution

The prior distribution plays a crucial role in Bayesian statistics as it repre-

sents the uncertainty of the parameter Θ before observing the data. There

are two primary types of prior distribution: informative and non-informative.

An informative prior assigns more probability density to some locations than

others, providing additional knowledge about a variable. In contrast, a non-

informative prior expresses vague information about a variable with a wide

probability distribution, which has a minimal impact on the estimated param-

eters. In such cases, most of the information is obtained from the data, and the

inferences would be similar to those from the Frequentist inference (Lesaffre

and Lawson, 2012). Other names of noninformative priors that appeared in lit-

erature are: "nonsubjective", "objective", "default", "weak", "diffuse", "flat",
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and "minimally informative" (Lesaffre and Lawson, 2012).

The non-informative prior can be an improper prior if the integral of this dis-

tribution does not integrate into one. One example of an improper prior is

the Jeffreys priors (Robert et al., 2009). However, if an improper prior leads

to an improper posterior, the inference would be considered invalid (Gelman,

2006). To make Bayes theorem easier to work with, we can use a conju-

gate prior where the prior and posterior distributions come from the same

distribution family. The posterior distribution will be the same as the prior

distribution but with updated hyperparameters. When we lack information

about the parameter of interest, we can use non-informative prior. However,

informative priors can be obtained from previous studies or expert knowledge

through prior elicitation. The concept of prior elicitation has been addressed

in numerous studies, such as Agiashvili et al. (2021); Azzolina et al. (2021);

Choy et al. (2009); James et al. (2010); Kinnersley and Day (2013); Martin

et al. (2012); Zapata-Vázquez et al. (2014).

2.4.2 Bayesian Inference

Bayesian inference relies on the posterior distribution, which can sometimes

be challenging to calculate in a closed form. In such cases, the Markov Chain

Monte Carlo (MCMC) algorithm is used to sample from it. This algorithm is

widely used in modern Bayesian computing, particularly when the posterior

distribution is difficult to work out analytically. MCMC is a numerical sim-

ulation method used to generate a random set of points from the parameter

space that is drawn from the posterior distribution. It’s then used to estimate

the distribution of the parameters and, finally, compute summary statistics

from it. Basically, MCMC is used when it is unachievable to sample Θ di-

rectly from the posterior distribution p(Θ | y), it samples iteratively so that

at each step of the process, the draws from the distribution become closer to

p(Θ | y) as the number of iterations increases.
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The MCMC algorithm is a numerical simulation of a chain of a series of

random variables with the transition probability property that the chain de-

pends only on the present state of the chain rather than the entire past of the

chain. Therefore, the draws are not independent samples. More explanation

about MCMC can be found in Gamerman and Lopes (2006). The most popu-

lar MCMC algorithms are the Gibbs Sampler, the Metropolis-Hastings Algo-

rithm and the Hamiltonian Monte Carlo (HMC) Algorithm. In this study, we

intend to use the brms function in R (Bürkner, 2017) to implement a Bayesian

hierarchical model for the data analysis, which utilises the HMC algorithm.

Each MCMC algorithm will be explained in the following sections.

2.4.3 Gibbs Sampler

Geman and Geman (1984) introduced the Gibbs Sampler, which is used when

it is possible to sample from the conditional posterior distribution, often re-

quiring each parameter’s conditional distribution to have a standard distribu-

tion form by using conjugate priors to the likelihood of parameters (Gelman

et al., 2013). Thus, each parameter is sampled from its conditional distribu-

tion depending on the remaining parameters’ most recent values. To illustrate

this, suppose each parameter Θp is sampled from the conditional distribution

given all previous components of Θ−p as:

p(Θp | Θ−p,Y ), (2.4.4)

where p represent the total number of parameters in the model and Θ−p con-

tains all the components of Θ, excluding Θp. The process of the Gibbs sam-

pling algorithm for S samples is implemented as follows:
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Algorithm 1 Gibbs Sampling Algorithm

Choose initial values of Θ(0)

for 1, . . . ,S iterations do

1- sample Θ
(s)
1 from its conditional distribution p

(
Θ1 | Θ

(s−1)
2 , . . . ,θ

(s−1)
p

)
2- sample Θ

(s)
2 from its conditional distribution p

(
Θ2 | Θ

(s)
1 ,Θ

(s−1)
3 , . . . ,Θ

(s−1)
p

)
...
p - sample Θ

(s)
p from its conditional distribution p

(
Θp | Θ

(s)
1 , . . . ,Θ

(s)
p−1

)

Repeat steps 1 through p for a long enough number of S draws until con-

vergence. In the case when the conditional distribution cannot be found in a

standard distribution form, one can use the Metropolis-Hastings Algorithm.

2.4.4 Metropolis-Hastings Algorithm

The Metropolis-Hastings Algorithm (M-HA) (Hastings, 1970) is a random

walk with acceptance and rejection rates to converge to the identified poste-

rior distribution. The algorithm assumes a proposal distribution q(Θ∗|Θs−1)

to generate a candidate sample Θ∗, where the proposal distribution depends

on the recent value of Θs−1. The decision to accept or reject the proposed

sample Θ∗ is based on the acceptance probability α(Θ∗,Θs−1), which is then

compared with a random value η drawn from the uniform distribution as

η ∼ Uni f (0,1). If α(Θ∗,Θs−1) ≥ η then the proposed value Θ∗ will be ac-

cepted, otherwise the value of Θs will remain unchanged Θs−1 = Θs. The

process Metropolis-Hastings Algorithm is implemented as follows:
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Algorithm 2 Metropolis-Hastings Algorithm

Choose initial values of Θ(0)

for 1, . . . ,S iterations do

1- Sample Θ(∗) from proposal distribution at time s, q
(

Θ∗ | Θ(s−1)
)

2- Calculate the acceptance rate as follows:

α =
p(Θ∗ | Y )q

(
Θ(s−1) | Θ∗

)
p
(
Θ(s−1) | Y

)
q
(
Θ∗ | Θ(s−1)

)
3 - Set

Θ
s =

{
Θ∗ with probability min(α,1)
Θs−1 otherwise .

where p(Θ | Y ) is the posterior distribution. Repeat the steps outlined in

Algorithm 2 for a sufficient number of iterations, S, until convergence is

achieved. Gibbs sampling is a special case of the M-HA, where each ran-

dom variable is updated successfully using the conditional distribution.

The Metropolis Algorithm (MA) introduced by Metropolis et al. (1953) is

a special case of Metropolis-Hastings Algorithm, when the proposal distribu-

tion is symmetric and meet the following condition: p(θ ∗ | Θs) = p(Θs | Θ∗)

for all Θ∗,Θs and s. The steps for Metropolis Algorithm MA are similar to

Metropolis-Hastings Algorithm, except for the calculation of the acceptance

rate, which will be calculated as follows:

α =
p(Θ∗ | Y )

p
(
Θ(s−1) | Y

). (2.4.5)

The proposal distribution can highly affect the performance of the M-HA and

MA (Rosenthal et al., 2011). The commonly used proposal distribution is the

Normal distribution as follows:

Θ
s+1 ∼ N(Θs,σ2), (2.4.6)
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where the mean (Θs) is the value of the parameter at the current step of the

chain and the variance (σ2), which is referred to as the step size. The adjust-

ment of the step size is necessary to control the performance of the algorithm,

and it is associated with the acceptance probability α(Θ∗,Θs−1). If σ2 is too

large, then most proposed values will be rejected. Contrarily, if σ2 is too

small, then most proposed values will be accepted. In both cases, the chain

will take a long time to converge. The recommended acceptance rate for high

dimensions is around 0.23 and 0.44 for one dimension (Gelman et al., 2013).

To avoid proposing negative values for strictly positive parameters, for in-

stance, the variance parameters, one can use reflection. To explain the idea of

reflection, let Θ ∈ (a,b) and assume a symmetric proposal as explained pre-

viously in Equation 2.4.6 then, if the proposed values are outside the interval,

the excess is reflected into the interval as follows:

if Θ
′ ≤ a, then

Θ
′ is reset to 2a−Θ

′,
(2.4.7)

where a is zero because we assume positive random variables; this process

will be repeated until Θ′ is positive. Moreover, this method will not break the

symmetric assumption when using Metropolis Algorithm. That is because if

Θ can reach Θ′ through a number of reflections, it is also possible for Θ′ to

reach Θ through the same number of reflections, so that the Hastings ratio
q(Θ′|Θ)
q(Θ|Θ′)

= 1 (Yang and Rodríguez, 2013).

2.4.5 Hamiltonian Monte Carlo (HMC) Algorithm

The main drawbacks of the previously mentioned MCMC algorithms (Gibbs

and M-H algorithms) lie in their slow convergence when applied to correlated

parameters in high dimensional models (Hoffman et al., 2014; Neal et al.,

2011) and the random walk behaviour (Gelman et al., 2013). Neal et al.

(2011) introduced an MCMC algorithm employing Hamiltonian dynamics,

which is a physical system in order to avoid the issues of correlated param-
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eters and random walk behaviour. Furthermore, Hoffman et al. (2014) pro-

posed a No-U-Turn Sampler as an extension to the HMC algorithm that pro-

vides efficient and accelerated convergence.

We will use the brms (Bürkner, 2017) function from brm package in R to

conduct the Bayesian Hierarchical model. The brms function is a versatile

function that utilises Hamiltonian Monte Carlo (HMC) with the No-U-Turn

Sampler (NUTS) algorithm to estimate Bayesian Hierarchical model param-

eters. Next, we will briefly overview the HMC and NUTS algorithms.

Hamiltonian Monte Carlo (HMC) Algorithm

The Hamiltonian Monte Carlo (HMC) Algorithm is a modified version of the

Metropolis Algorithm (Nishio and Arakawa, 2019), which considers the pa-

rameters to be a physical system component and then suggests a new proposal

by letting it alter through Hamiltonian dynamics. The Hamiltonian function

H(Θ, p) is defined as follows:

H(Θ, p) =U(Θ)+K(p), (2.4.8)

where U(Θ) is the potential energy, K(p) is the kinetic energy, and Θ and p

are the position and momentum vectors, respectively, describing the particle’s

motion. The dynamics have the characteristic to preserve the H invariant

(Nishio and Arakawa, 2019). This means Θ and p will remain constant over

time. The potential energy U(Θ) defined as:

U(Θ) =− log f (Θ), (2.4.9)

where Θ is the variable to be estimated and f (Θ) is the probability density

function of Θ (The posterior distribution of Θ). Every variable Θ has an aux-

iliary momentum variable p, where K(p) commonly follows a normal dis-

tribution with mean zero and M covariance matrix, to generate a proposal

distribution that enables the use of the posterior distribution’s gradient infor-

mation. The kinetic energy K(p) helps the algorithm move faster around the
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parameter space (Gelman et al., 2013). The joint density function of f (Θ, p)

has the following form:

f (Θ, p) = exp[−H(Θ, p)]. (2.4.10)

HMC produce samples of Θ and p from the aforementioned joint distribution.

Thus, we can select only Θ as samples from the target distribution. According

to the Hamiltonian dynamics concepts, the samples proceed with respect to

the total energy, as expressed by the following sequence of differential equa-

tions, known as Hamilton’s equations:

dΘ

dt
=

dH
d p

(2.4.11)

d p
dt

=
dH
dΘ

, (2.4.12)

determining how the system moves over time t. Moreover, these equations

cannot be solved analytically; therefore, a numerical method is needed to

break down the time t interval into a series of shorter time intervals ϑ . The

common numerical method HMC uses is the leapfrog, which sequentially

updates Θ and p. It starts with a half step for p and the full step for Θ by

incorporating the updated values for p. The leapfrog method achieves the

proposal points (Θ∗, p∗) via L steps of step size ϑ . The proposed values of

Θ∗ and p∗ are accepted or rejected by applying the Metropolis acceptance

probability as follows:

α = min{1,exp[H(Θ, p)−H(Θ∗, p∗)]}, (2.4.13)

if the proposed values are accepted, then the next state equals (Θ∗, p∗). If

rejected, the current state will stay the same. The challenging point of HMC

is that the sampling efficiency is sensitive to the values of the step size ϑ and

the number of steps L. For example, if the value of ϑ is chosen to be very

large, this results in a low acceptance rate. On the other hand, if the value

of ϑ is chosen to be very small, it will take a long time to explore the target
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distribution. Moreover, a small value of L will lead to high autocorrelation,

and a large value of L will take longer computational time (Neal et al., 2011).

Additionally, it may revert the parameters back to their initial values (Nishio

and Arakawa, 2019).

No-U-Turn Sampler

Hoffman et al. (2014) introduced the No-U-Turn Sampler (NUTS) to over-

come the limitation of specifying the value of L. This is used as an exten-

sion to the HMC to prevent the Markov chain from moving backwards by

stopping the simulation when the distance between the current and proposed

position starts decreasing (Varsi, 2021). For every iteration, NUTS automat-

ically chooses a suitable value for L to increase the distance at each leapfrog

step and prevent random walk behaviour (Nishio and Arakawa, 2019). This

is achieved by checking the following:

∂Q
∂τ

=
∂

∂τ

(Θ∗−Θ)′ (Θ∗−Θ)

2
= (Θ∗−Θ)′ p < 0, (2.4.14)

where Q is half the squared distance between the current and proposed po-

sition, τ is the time 1 ≤ τ ≤ L. The aforementioned equation means that

leapfrog steps will keep running until the derivative of Q with respect to

time is less than zero (Nishio and Arakawa, 2019). However, this condition

does not guarantee reversibility or correct convergence (Nishio and Arakawa,

2019). By using the doubling method (start with one leapfrog step, then two,

four, and so on) for slice sampling, NUTS avoids this problem.

The slice sampling Neal (2003) is an MCMC algorithm that samples from

a target distribution by selecting points uniformly beneath the distribution

curve f (Θ). This approach involves using an auxiliary variable ν and a

joint distribution that is distributed uniformly over the region as follows:

D = {(Θ,ν) : 0 < ν < f (Θ)} beneath the surface f (Θ). The joint distribution
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is expressed as follows:

f (ν ,Θ) =

{
1
z if 0 ≤ ν ≤ π(Θ)

0 otherwise
, (2.4.15)

where π(Θ) is a kernel of f (Θ), z =
∫

π(Θ)dΘ and the marginal distribution

of f (ν ,Θ) is f (Θ). Thus, by taking a sample from f (ν ,Θ) and discarding ν ,

the Θ can be extracted from the target distribution. These steps are performed

via slice sampling by sampling ν and Θ in turn (Nishio and Arakawa, 2019).

First, fix Θ and sample ν from:

p(ν | θ)∼ Uniform(0,π(Θ)), (2.4.16)

to satisfy ν ≤ π(θ). Next, find the slice by fixing ν and sample θ uniformly

from the horizontal sliced region S defined by:

S = {θ : ν ≤ π(Θ)}. (2.4.17)

Then, sample a new value of Θ uniformly from S. The issue in the slice

sampling algorithm is to identify S boundaries. Neal (2003) proposed the

doubling method, where the size of an initial segment which contains the cur-

rent value of Θ is randomly chosen and then expanded by doubling its size

until the endpoints are outside set S.

The procedure employs Hamiltonian dynamics to move the Markov chain

forward or backwards. Every step has a randomly selected direction. This

method involves iteratively repeating the process, where the number of steps

is doubled, and the directions are changed. Consequently, Leapfrog steps are

monitored by NUTS. When the following U-Turn condition is satisfied, the

algorithm stops.

(
Θ
+−Θ

−)′ p− < 0 or
(
Θ
−−Θ

+
)′ p+ < 0, (2.4.18)

where Θ+ and p+ are the forward direction after a Leapfrog step of Θ and
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p and Θ− and p− are the backward direction. For more information and

a pseudo-code of the HMC with the NUTS algorithm, see Hoffman et al.

(2014); Nishio and Arakawa (2019); Varsi (2021).

The length of the chain is a critical concern when running the MCMC algo-

rithm. Therefore, we need criteria to evaluate the chain’s convergence, which

will be explained next.

2.4.6 Convergence

Assessing the convergence is crucial to ensure that MCMC chains converge

to the posterior distribution in the long run. There are several ways to visu-

ally and statistically inspect convergence for each parameter. We will discuss

these methods next.

Visual Inspection

The trace plots can assess the convergence visually, which charts the parame-

ter value at each iteration against the iteration number. These plots help show

how the MCMC chain moves within the parameter space. We draw multi-

ple traces from various starting points within the parameter space to generate

these plots. We then discard the initial iterations, known as the warm-up

period, to reduce their influence. The smooth movement in the trace plots

indicates that the MCMC chain has successfully converged. However, if the

movement is stuck in some parameter space or has seasonal trends, this sug-

gests a lack of convergence.

Geweke

The Geweke test is a tool used to diagnose the convergence of Markov Chain

Monte Carlo (MCMC) chains. It was proposed by Geweke (1992). The test is

designed to divide a single chain into two non-overlapping segments, usually

the first 10% and last 50% of iterations after discarding the burn-in period

(Best et al., 1995). The means and standard deviations for each segment are
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then calculated, and the Z-test is applied to determine if the means of the be-

ginning and end of the chain are equal. The null hypothesis is that the means

are equal. The test statistic is compared to the standard normal distribution. If

the absolute value of the test statistic is less than or equal to 2, the test is not

significantly different from zero, and the chain is assumed to have converged

(Ntzoufras, 2011).

Gelman-Rubin Diagnostic

The Gelman-Rubin diagnostic (Gelman and Rubin, 1992) can be used to

check the convergence by running multiple chains with different starting points

and then splitting those chains into halves to calculate the within-chain and

between-chain variance. Suppose we have m chains each of length n as φi j,

where i = 1, ...,n and j = 1, ...,m. Then the between chain (B) and the within

chain (W) variance is calculated as follows:

B =
n

m−1

m

∑
j=1

(
φ̄. j − φ̄..

)2
, where φ̄. j =

1
n

n

∑
i=1

φi j, φ̄.. =
1
m

m

∑
j=1

φ̄. j,

W =
1
m

m

∑
j=1

s2
j , where s2

j =
1

n−1

n

∑
i=1

(
φi j − φ̄. j

)2
,

v̂ar(φ) =
n−1

n
W +

1
n

B,

R̂ =

√√
v̂ar(φ)
W

,

(2.4.19)

where R̂ is the estimated potential reduction. If the chains converged, the

between-chains variability values would be small. Consequently, R̂ gets closer

to one. Whenever R̂ is greater than 1.1, this indicates non-convergence, thus

it might be necessary to run the chains for longer.
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Autocorrelation

Using the Markov Chain Monte Carlo (MCMC) algorithm in Bayesian infer-

ence produces correlated samples. This is due to the structure of drawing the

samples where the new samples are drawn depending on the previous sample

only (the Markov property). As the sampler moves wider around the param-

eter space, the autocorrelation decreases, indicating the samples’ high effi-

ciency and leading to a better estimate, while high autocorrelation results in

slower convergence. Applying thinning, that is, discarding every sth iteration

from the chain, can help to reduce the autocorrelation. Thinning is a useful

option when there is limited computer memory and storage space, but the re-

duction in the number of samples via thinned Markov chains can produce less

precise results (Link and Eaton, 2012). The autocorrelation is also affected by

the step size of the proposal distribution when using the Metropolis-Hastings

(MH) algorithm, where a smaller step size leads to higher autocorrelation.

The autocorrelation can be assessed by using an autocorrelation function plot.

The coda package (Plummer et al., 2006) in R is used to implement the con-

vergence diagnostics discussed. When determining the length of a run, we

take into account various factors, including the running time, running multi-

ple MCMC chains and the number of parameters needed to store complete

posterior samples, rather than just summary statistics. This is particularly

important in our research, which involves multiple runs. We aim to achieve

effective sample sizes in the hundreds or thousands. This level of adequacy is

sufficient for the exploratory nature of our work, as stated in Mason (2010).

2.5 Methods for Handling Missing Data

In different fields of research, missing data occurs when the relevant variables’

values are not measured or recorded. Addressing this issue is essential to en-

suring the reliability and validity of statistical analysis. There are two general

categories of approaches to dealing with missing data: the Ad-Hoc methods
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and the Model-Based methods. This section provides a general overview of

common approaches to deal with missing data.

2.5.1 Ad-Hoc Methods

Ad-Hoc methods are considered a less complicated and straightforward way

to handle missing data. It works by offering prompt resolutions for the pres-

ence of missing data without applying complex imputation methods. Ad-Hoc

methods typically involve producing a single "complete" dataset, which is

analysed using the standard complete-data techniques (Mason, 2010). Al-

though this strategy is straightforward, it tends to be inadequate as it reduces

precision and creates bias if the missing data mechanism is not Missing Com-

pletely at Random (MCAR) (Little and Rubin, 2019; Ma and Chen, 2018;

Van Buuren, 2018). Complete-case data analysis is a common technique in

which rows with incomplete records are excluded from the analysis (Little

and Rubin, 2019). This method is implemented as a default technique in many

statistical software programs by automatically excluding rows with a missing

value for any variable. For example, widely used functions for longitudinal

data in R are: lme, nlme and brm which uses all available data (Ibrahim

and Molenberghs, 2009). For instance, rows containing missing values are

omitted when data is in long format, meaning only missing observations are

excluded, not the entire patient data (Pinheiro et al., 2017). By using all of the

available data in longitudinal data, these tools remove the complete-case bias

(Ibrahim and Molenberghs, 2009). Complete case analysis showed biased es-

timates and noticeably reduced power as expressed by Janssen et al. (2010);

Knol et al. (2010); Van Buuren (2018). It is suggested to use the complete

case if the proportion of missingness is less than 5% since the possible effect

of the missing data is minimal (Jakobsen et al., 2017).

Additionally, there are single imputation techniques in which the missing data

is filled with a single substituted value. The mean, median or mode values can

be used to replace the missing value, which is one technique. Also, regression
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modelling can be used to predict the value of the missing data derived from

the relationships between variables. In longitudinal data, the Last Observa-

tion Carried Forward (LOCF) can be applied to fill in the missing data, which

assumes the observed value will continue until a new observation is recorded.

Meanwhile, these techniques can potentially induce bias and improperly ac-

count for statistical uncertainty. As a result, they are not suggested for ac-

curate analysis (Schafer and Graham, 2002). Detailed information on these

techniques can be found in Little and Rubin (2019).

2.5.2 Model-Based Methods

Alternative to Ad-Hoc methods are Model-Based methods that use the infor-

mation from observed data along with specific assumptions about the cause

of the missing value (Mason, 2010) and effectively address the uncertainty

caused by missing data. There are several approaches, such as Bayesian full

probability modelling, weighting methods, multiple imputations, and maxi-

mum likelihood methods, which employ the Expectation maximization (EM)

algorithm (Mason, 2010).

Expectation Maximization (EM)

A well-known approach to handling missing values is the Expectation Max-

imization (EM) approach, which uses likelihood inference (Dempster et al.,

1977). EM alternates between an expectation step and a maximization step.

In the expectation step, the expected value of the missing data is derived based

on the observed data and the latest parameter estimates. In the maximization

step, the parameter values are estimated by maximizing the likelihood of the

parameters given the latest values of the missing data (Mason, 2010). The EM

algorithm considers missing data as random variables that could be excluded

from the likelihood function or integrated out of the likelihood as if they were

not sampled (Schafer and Graham, 2002). The EM estimator is unbiased and

efficient when the missing mechanism is MAR (Missing At Random) (Gra-

ham, 2003). The limitation of the EM algorithm is that the M step has no
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closed form. Although it requires numerical optimization techniques to over-

come this constraint, which may become more computationally difficult, and

when the proportion of missingness is large, the convergence rate might be

very slow (Little and Rubin, 2019). The steps of the EM algorithm are ex-

pressed as follows:

Algorithm 3 Expectation Maximization Algorithm

Choose initial values of Θ(0)

for 1, . . . ,S iterations do

E-step: Compute the expectation of log-likelihood l(Θ|Y ) as:

Q(Θ|Θs) = E[l(Θ|Y )|Θs]

M-step: the next proposed estimate of Θ is calculated by maximizing the expectation from
step E:

Θ
s+1 = argmaxΘ Q(Θ|Θs)

The algorithm repeats the process until it reaches a state of convergence. The

convergence is satisfied whenever the difference between the new Θs+1 and

the current Θs estimates is small. EM methods maximise the log-likelihood

function of the observed data to estimate the parameters directly, rather than

"filling in" the missing data such as the Multiple Imputation method (Dong

and Peng, 2013).

Multiple Imputation (MI)

Unlike the single imputation, where missing data is filled with a single plau-

sible value, multiple imputation fills the missing data with multiple plausi-

ble values introduced by Rubin (1987), and it is one of the popular ways to

deal with missing data. It has been recently widely used. There is exten-

sive literature such as: Hayati Rezvan et al. (2015); Lee and Simpson (2014);

O’Kelly and Ratitch (2014); Rubin (2004); Van Buuren (2018). Multiple Im-

putations will result in multiple complete datasets, where the values that are
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missing have been filled in/ imputed with plausible values. Usually, MI gener-

ates more than two datasets. Knowing that the imputed datasets are different

from one another, the produced estimates of each dataset will not be identical,

which allows the capture of additional uncertainty that arises by the missing

values to the estimates (Rubin, 2004).

Generally, MI works by deriving the full conditional distribution for each

incomplete variable, and the imputed values can be sampled from these distri-

butions to create multiple complete datasets with imputed missing data. Mul-

tiple Imputation by Chained Equations (MICE) is a popular MI technique,

which will be discussed in Section 5.2. MI and MICE methods consist of

three steps: First, generate multiple datasets that have imputed missing data

using the appropriate imputation model. Next, fit the appropriate statistical

analysis model on each imputed dataset. Then, calculate the pooled estimates

to gain the overall results and take into consideration the uncertainty produced

by the missing values.

The methods proposed for pooling (combining) the results, known as Rubin’s

Guidelines (Erler, 2019), are explained as follows: The average estimates ob-

tained from the analyses of K imputed datasets can be used to calculate the

pooled (combined) estimate for a parameter vector Θ as:

Θ =
1
K

K

∑
ℓ=1

Θ̂ℓ, (2.5.1)

where Θ̂ℓ represents the estimate derived from the ℓth imputed dataset. The

total variance of Θ is composed of the within and between imputation vari-

ances as T = VW +VB +
VB
K . The within-imputation variance is calculated as

follows:

VW =
1
K

K

∑
ℓ=1

V̂W ℓ, (2.5.2)
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where V̂wℓ denotes the estimated variances of the Θℓ from each imputed dataset.

The between imputation variance B is calculated as:

VB =
1

K −1

K

∑
ℓ=1

(
Θ̂ℓ−Θ

)(
Θ̂ℓ−Θ

)⊤
. (2.5.3)

The pooled estimates can be implemented in the MICE package in R (Van Bu-

uren and Groothuis-Oudshoorn, 2011). MI can decrease bias and improve

precision in situations where the variable with missing data is related to other

observed variables in comparison with complete case analysis (Lee and Simp-

son, 2014). Generally, it is important to mention that multiple imputation and

EM algorithms produce valid statistical estimates in the context of the MAR

condition (Little and Rubin, 2019). The estimates of the parameters may be

biased whenever the used analysis procedure assumes MAR, and the true un-

derlying mechanism of missing values is MNAR (Yang and Maxwell, 2014).

2.5.3 Joint Models for MNAR

Joint modelling is a statistical technique that combines the missing data pro-

cess and the analysis of the model of interest into a single, simultaneous pro-

cess. This approach is useful when dealing with non-ignorable missing data,

which requires modelling the missingness process. Estimating parameters

with non-ignorable missing data can be challenging since it requires the spec-

ification of the joint distribution of the data and the missing data mechanism,

which is necessary to produce unbiased estimates (Ibrahim and Molenberghs,

2009). In such cases, a missingness model is required to address the non-

ignorable missing data mechanism (Ma and Chen, 2018). To address non-

ignorable missing data, three common frameworks based on the factorisation

forms of the joint models for (Yi,Ri) are available (Little and Rubin, 2019):

the selection model (SM), the Pattern mixture model (PMM), and the Shared

parameter model (SPM).
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Selection Model (SM)

The selection model factors the joint distribution into the complete data model

for the response and the probability of missingness on the response. Follow-

ing the notation in Section 1.3.3, the selection model is expressed as:

f (Yi,Ri|Xi) = f (Yi|Xi) f (Ri|Yi,Xi), (2.5.4)

where f (Yi|Xi), the marginal distribution for Yi, represents the response model

and f (Ri|Yi,Xi), is conditional distribution of the missing indicator Ri given Yi,

represents the missingness model. Typically, the response model has a multi-

variate normal distribution and a logistic or probit model for the missingness

model (Mason, 2010). Selection models are useful when the main interest is

the marginal distribution of the outcome and understanding the overall distri-

bution (Ibrahim and Molenberghs, 2009; Ma and Chen, 2018). However, it

requires complex computational methods to fit the model, and the reliability

of the parameter estimates could be affected by model assumptions (Ibrahim

and Molenberghs, 2009).

Pattern Mixture Model (PMM)

The pattern mixture model groups the data according to different missing

patterns where the joint distribution is factored as the conditional distribution

of the response given the missing mechanism f (Yi|Ri,Xi) and the marginal

model for the missing mechanism f (Ri|Xi) as follows:

f (Yi,Ri|Xi) = f (Yi|Ri,Xi) f (Ri|Xi), (2.5.5)

where the marginal distribution of the response would be a mixture of normal

distributions since the distribution of the response depends on the missingness

process. This is because the response distribution depends on the missingness

process, meaning the response models will have different coefficients for dif-

ferent missing patterns. It can directly address identifiability issues by as-

suming a different distribution of the outcomes for each pattern, which makes
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it easier to explore the sensitivity to model parameters (Ibrahim and Molen-

berghs, 2009). However, the PMM has a disadvantage in that the parameters

of interest are not available directly. Averaging over patterns is required to

obtain the marginal distribution, which means that the regression coefficients

cannot be used to analyse how each predictor affects the overall distribution

directly (Ibrahim and Molenberghs, 2009).

In the context of longitudinal data, the SM and PMM have been reviewed

by Fitzmaurice (2003); Michiels et al. (2002).

Shared Parameter Model (SPM)

In the shared parameter model, both Yi and Ri are assumed to depend on a

shared random effect. This means that the model for complete data Yi and

the model for the missingness mechanism Ri are connected through random

effects. The shared parameter model can be thought of as a special case of the

mixed effect model that uses the selection model. In this case, the probability

of missingness is linked to random effects as follows:

f (Yi,Ri,bi | Xi) = f (Yi | bi,Xi) f (Ri | Xi,Yi,bi) f (bi | Xi) , (2.5.6)

where the random effects and the missingness process parameters can be

viewed as nuisance parameters (Ibrahim and Molenberghs, 2009). A probit

link function and the predictors were used to determine the missing prob-

ability, where the missing indicator follows a Bernoulli distribution. SPM

has the ability to specify response models and missingness models more eas-

ily and is able to deal with structured data with multiple levels (Ma and

Chen, 2018). On the other hand, it requires integration over the random ef-

fects, which makes it challenging to have a closed form (Daniels and Hogan,

2008). The SRE is generally used as an alternative to the selection model

in a longitudinal context, in which the response model and the missing re-

sponse indicator model have exactly the same random component bi. In

many circumstances, the underlying latent factors affecting the missingness
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might differ from those affecting the response, although they are correlated

because of common risk factors. To model this case Lin et al. (2010) in-

corporate a correlation between the random effects in SRE, named as Corre-

lated Random Effects (CRE) Model. This factorises the joint distribution as

p(Yi,Ri,bi,ci | Xi) = p(Yi | bi,Xi) p(Ri|Yi,ci,Xi) p(bi,ci), where bi and ci are

random effects in the response model and missing indicator model, respec-

tively.

2.6 Probit Model

The traditional linear regression model assumes a continuous dependent vari-

able that is used to model and predict the response based on a set of explana-

tory variables, also known as predictors. However, the response variable may

not always be available on a continuous scale. It could be a binary variable

that takes only two values. For example, an event of interest occurs or not,

yes or no, pass or fail, and it can also be coded as 1 and 0. Probit regression is

a statistical method that can be used to model a binary response given a set of

predictors. This model is used in different studies to estimate the probability

that an event can occur. The conditional probability that the response variable

Y is equal to 1, given a set of predictors X = [X1,X2, . . . ,XJ] is defined as:

E(Y |X) = p(Y = 1|X) = Φ(Xβ ), (2.6.1)

where Φ(.) is the cumulative standard normal distribution function. Conse-

quently, the error term in the Probit model has a zero mean and variance equal

to 1, which is the variance of the standard normal distribution (De Leeuw

et al., 2008). Probit regression assumes that the probability of the event of

interest (1) occurring is determined by a normally distributed latent variable

produced by the linear combination of predictor variables. Thus, the latent

response formulation using the Probit link function is defined as (Gelman and
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Hill, 2006):

yi =

1 if y∗i > 0

0 if y∗i < 0

y∗i = Xiβ + εi

εi
i.i.d∼ N(0,1),

(2.6.2)

where y∗i is the continuous latent variable. We can interpret parameters in

terms of a latent variable y∗i as follows: the latent variable y∗i change asso-

ciated with a one-unit change in the individual predictor variable, with the

other predictor variables held constant (Agresti, 2010). The variance of the

residuals is set to be equal to one to assure that the effects in the probit and

the latent variable models are the same (Agresti, 2018).

To conduct Bayesian inference and obtain the posterior distribution of the pro-

bit model coefficients, we need to add a prior distribution to the β in Equation

2.6.2, denoted as β ∼ p(β ). Albert and Chib (1993) used the latent vari-

able to make the conditional distributions of the model parameters equivalent

to those in a Bayesian normal linear regression model with Gaussian noise.

They achieved this by simulating the latent continuous data from truncated

normal distributions and then calculated the posterior distributions of param-

eters using the Gibbs sampling algorithm. Therefore, if the latent variable

y∗i is larger than 0, then event 1 is assumed to occur. Otherwise, event 0 is

assumed (Johnson and Albert, 2006).

2.7 Model Evaluation

It is important to assess the fit of a model in any statistical analysis. Evaluat-

ing the performance of a method includes measuring the bias, accuracy, and

coverage by using the parameter values generated from simulated data results

(Burton et al., 2006). We can better understand a method’s performance by

evaluating multiple performance criteria since results may vary across these
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criteria. We will define the formulations of commonly used performance cri-

teria, where β is the data generating parameter value and β̂ is the estimated

parameter value. The Root Mean Square Error (RMSE) is a measure of over-

all accuracy in the same units as the original data, incorporating bias and

variability (Collins et al., 2001). The RMSE is defined as:

RMSE =

√√√√∑
n
i=1

(
β̂i −β

)2

n
, (2.7.1)

where β̂i represents the ith estimated parameter value, with i = 1, . . . ,n repre-

senting the estimated parameter samples. The RMSE is also used to measure

the out-of-sample performance, where β̂i is the predicted value and β is the

observed value. As part of evaluating our models, we examine the bias and

efficiency of the parameter estimates. The Relative Bias (RB) of a parameter

estimate is used to assess the deviation of the parameter estimates from the

data-generating parameter (Burton et al., 2006). The RB is defined as:

Relative bias =
(β̂ −β )

β
, (2.7.2)

To evaluate how well a statistical method captures the data-generating param-

eter values, we use the Coverage Rate (CR), which is the percentage of times

the data-generating parameter values appear between the 2.5 and 97.5 per-

centiles of the posterior distribution of the parameter (Mason, 2010). The CR

is defined as:

Coverage Rate = Pr(β̂LCL ≤ β ≤ β̂UCL), (2.7.3)

where β̂LCL and β̂UCL are the lower and upper confidence limits for β (Nevalainen

et al., 2009). It is recommended that the coverage rate be greater than 90

(Collins et al., 2001).

The Kolmogorov-Smirnov (KS) test is a non-parametric statistical test ap-

plied to continuous data. It is used to determine the statistical significance
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between two independent sample distributions or a sample distribution to a

specific probability distribution. The Null hypothesis is that the two samples

have the same distribution, whereas the alternative hypothesis is that the two

samples have different distributions. The test statistic for the Kolmogorov-

Smirnov test is expressed as:

DKS = max |F1(o)−F2(o)| , (2.7.4)

where F1(o) is the empirical distribution function of sample data 1 and F2(o)

is the empirical distribution function of sample data 2. The KS test statis-

tic is represented by DKS, the maximum absolute difference between the two

empirical distribution functions of sample data 1 and 2. The test statistic is

then compared with the critical value obtained from the KS table. If DKS is

large, it implies that the two distributions are coming from different distribu-

tions, while a small DKS implies that the two distributions are similar (Bonnini

et al., 2014). The KS test will be executed using the ks.test() function

in R (R Core Team et al., 2013) and we will use the p-value with significance

level 0.05. The null hypothesis is rejected if the p-value is less than 0.05.



Chapter 3

Data

3.1 Introduction

This chapter will present the main datasets used in this thesis. The datasets

consist of real-world data collected from a heart failure study, named BIOSTAT-

CHF (Voors et al., 2016), and a synthetic dataset that we created to support

the methodological exploration. We created the synthetic dataset because we

know the actual parameter values that we need to evaluate the proposed meth-

ods in the upcoming chapters. We will provide a detailed description of both

datasets in the following sections.

The BIOSTAT-CHF dataset is based on a study investigating patients with

heart failure. Therefore, we will begin this chapter by introducing heart fail-

ure in Section 3.2. Next, in Section 3.3, we will describe the BIOSTAT-CHF

dataset, including defining the medical terms used in the dataset in Subsection

3.3.1, and explore the data in Subsection 3.3.2 to gain insight into the data.

After that, we will explain the synthetic data setup in Section 3.4.

3.2 Heart Failure

Chronic Heart Failure (CHF) is a major public health problem where the heart

fails to pump blood sufficiently to meet the body’s needs. This can lead to

morbidity and mortality. In developed countries, mortality from Heart Failure

50
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(HF) remains high, with over one million people in Europe and the United

States and 26 million people worldwide developing heart failure annually

(Ambrosy et al., 2014). According to James et al. (2018), approximately 64

million people worldwide suffer from heart failure. Furthermore, there has

been an increase in the total number of patients diagnosed with heart failure

(Groenewegen et al., 2020). Patients with CHF are often hospitalised at least

once every two years (Malmberg and Persson, 2000), and it is estimated that

heart failure costs $108 billion worldwide annually (Cook et al., 2014).

Additionally, HF has become more common as people age, and survival rates

for HF patients remain low worldwide (Ponikowski et al., 2014). As people

get older, they are more likely to develop cardiovascular risk factors (Smeets

et al., 2019). However, heart failure has recently become more common in

younger people, not just older individuals (Groenewegen et al., 2020). Heart

failure can be considered the chronic stage of another disease that leads to

heart dysfunction, making it difficult to identify an exact cause for an indi-

vidual (Groenewegen et al., 2020). Symptoms of heart failure can be similar

to those of other diseases, such as chronic obstructive pulmonary disease or

obesity, which can lead to misdiagnosis. Additionally, echocardiography is

not commonly performed in primary care units, which may contribute to un-

diagnosed cases of heart failure (Caruana et al., 2000).

As Ponikowski et al. (2014) suggested, a global methodology is needed to

recognise the best methods of tending to the issue of heart failure to fuse

the fundamental measures into regular practice. It is of interest to fit a ro-

bust prognosis prediction model in order to predict medical outcomes, such

as worsening of heart failure. With the availability of data from longitudi-

nal studies, we can predict early signs of heart failure by analysing patients’

records. This can help provide patients with medication at an early stage to

slow down HF progression and prevent hospitalisation. Given that each pa-

tient’s journey with HF is different, robust statistical methods are needed to
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assist cardiologists and decision-makers in predicting the patients’ HF. In the

next section, we will present the BIOSTAT-CHF dataset, which was collected

for a HF study.

3.3 BIOSTAT-CHF Data

A systems BIOlogy Study to TAilored Treatment in Chronic Heart Failure

(BIOSTAT-CHF) dataset was derived from 11 European countries and funded

by a grant from the European Commission. It was designed to improve and

support risk prediction models in individuals with HF (Voors et al., 2016).

The study was conducted between 2010 and 2015, and the recruitment period

lasted 25 months, with a median and Inter Quartile Range (IQR) follow-up

of 21(15-27) months. It consists of an index cohort and a validation cohort.

The index cohort comprises 2516 European heart failure patients, and the val-

idation cohort comprises 1738 from Scotland, UK. The enrolment of patients

in this study was from inpatient or outpatient clinics. Moreover, the age of

patients from the index cohort was more than 18 years old with symptoms of

heart failure worsening or new onset of heart failure. The provided dataset

(BIOSTAT-CHF) has two time points, the measurements were recorded at

baseline and at nine months (second visit). The BIOSTAT-CHF dataset is the

main source of real data to develop and test the performance of the proposed

methods, which was provided by the Robertson Centre for Biostatistics, Uni-

versity of Glasgow.

The BIOSTAT-CHF dataset has been valuable in numerous studies, includ-

ing developing risk models to predict mortality and hospitalizations due to

heart failure. They found that specific clinical routines can provide essen-

tial prognostic information for patients with HF, and the mortality predictors

differed from those of hospitalization due to HF (Voors et al., 2017). An-

other study compared the characteristics and outcomes of HF patients treated

as inpatients versus outpatients. The inpatients were sicker, but some outpa-
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tients also had poor prognoses, suggesting an overlap in conditions (Ferreira

et al., 2019). Since the BIOSTAT-CHF study is multicenter, researchers have

also compared participants’ characteristics, treatment, and outcomes based

on their European geographical locations, and the study showed significant

differences in the clinical treatment of heart failure across different regions

(Lombardi et al., 2020).

3.3.1 Definitions of Medical Phrases

In this section, we will define the BIOSTAT-CHF dataset biomarkers’ medical

phrases used in the study and how they are related to heart failure. Table 3.3.1

expresses a very brief summary of some medical definitions related to heart

failure. Next, we will further define the medical phrases and how they are

related to the HF.

Table 3.3.1: Definitions of some phrases related to heart failure.

Phrases Definition

Left Ventricular Ejection
Fraction (LVEF)

It is a measure of how much blood is pumping out of left ventricle of the heart.

Beta-blocker Is a medication used for chronic heart failure.

Heart Rhythms Are the patterns of the heartbeats.

N-terminal pro-B-type natri-
uretic peptide (NT-proBNP)

Is one of the most powerful prognostic biomarkers in cardiovascular diseases.

Estimated Glomerular Fil-
tration Rate (eGFR)

Is considered the best general indicator of how well kidneys are working.

• Left Ventricular Ejection Fraction (LVEF) is useful for diagnosing heart

failure. It measures how much blood is pumping out of the left ventricle

of the heart. A ‘weak’ heart muscle has a low LVEF. The now used

categorization for HF patients based on LVEF is provided in the study

by Ponikowski et al. (2014), as expressed in Table 3.3.2 below. An LVEF

of less than 40% indicates heart failure.
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Table 3.3.2: Categories of heart failure based on LVEF values.
LVEF ranges Type of HF Definition

LVEF ≥ 50% HFpEF Heart failure with preserved ejection fraction

40% ≤LVEF< 49% HFmrEF Heart failure with mid-range ejection fraction

LVEF < 40% HFrEF Heart failure with reduced ejection fraction

• Beta-blocker is a medication used to treat chronic heart failure. It has

been shown to improve chronic heart failure patients’ survival (Jost et al.,

2005). In patients with heart failure, the heart beats too fast, which can

exhaust the heart muscle. Beta-blockers work by slowing down the heart

rate and allowing the heart to recover.

• Heart Rhythms refer to the patterns of heartbeats, and they can be clas-

sified into three levels: sinus rhythm, atrial fibrillation/flutter, and pace-

maker. A healthy heart usually beats in sinus rhythm, which is the nor-

mal rhythm. Atrial fibrillation/flutter, on the other hand, is characterized

by an irregular and often fast heart rate. A pacemaker is a small device

implanted into the body, used to regulate heart rhythm in case of seri-

ous arrhythmia. Atrial fibrillation is a commonly occurring condition in

patients who have heart failure (Savarese et al., 2022), and according to

a study by Shahid and Lip (2016), more than half of the patients with

atrial fibrillation are diagnosed with heart failure.

• N-terminal pro-B-type natriuretic peptide (NT-proBNP) is a hormone

produced by the heart when it is under stress, which usually happens

when the body is overloaded with fluids. This hormone activates kidneys

to dispose of more salt and water. NT-proBNP is one of the most pow-

erful prognostic biomarkers for detecting HF (Oremus et al., 2014; Wil-

son Tang, 2007) and evaluating its severity (Tsutsui et al., 2023; Werhahn

et al., 2022). It provides strong and independent prognostic information

in patients with heart failure (Weber and Hamm, 2006). Additionally,

the levels of NT-proBNP increase in patients with atrial fibrillation (AF)
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(Patton et al., 2009).

• Estimated Glomerular Filtration Rate (eGFR), is a measurement of the

clearance of exogenous filtration markers and is considered the best gen-

eral indicator of how well kidneys are working (Levey et al., 2003). The

value of eGFR gives information about how much kidney function a pa-

tient has, and as eGFR decreases, the kidney disease gets worse. Worsen-

ing renal function is associated with poor outcomes in HF patients with

chronic kidney disease (Metra et al., 2012). Levey et al. (2009) defined

the CKD-EPI equation that can be used to calculate the eGFR value us-

ing serum creatinine level, race, sex and age. The CKD-EPI equation is

expressed as:

eGFR = 141×min
[

SCr

k
,1
]α

×max
[

SCr

k
,1
]−1.209

×

= 0.993Age ×1.018[Sex]×1.159[Race]

(3.3.1)

where,

Sex =

{
1, if female

0, if male
, Race =

{
1, if black

0, otherwise

SCr is serum creatinine in mg/dl , k is equal to 0.7 when sex is fe-

male and 0.9 when male, and α is equal to −0.329 when sex is fe-

male and −0.411 when male and age expressed in years. These val-

ues were obtained by modelling serum creatinine using two slope linear

splines with six knots, sex, race, and age. which can help to overcome

the problem of underestimating eGFR at higher values, especially eGFR

> 60 mL/min/1.73m2. This was expressed by Levey et al. (2009).

The New York Heart Association (NYHA) classification consists of four

categories depending on the patient’s restriction during physical exer-

cise, e.g. walking for a certain distance. It is a way of classification to

detect heart failure. There are four categories in total, with Class III and
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IV being the most severe in terms of symptoms (Raphael et al., 2007).

The classes are outlined in Table 3.3.3 below:

Table 3.3.3: New York Heart Association classification based on the severity of symptoms
and physical activities.

NYHA Class Degree of symptoms with physical activity

Class I No limitation of physical activity.

Class II Slight limitation of physical activity.

Class III Marked limitation of physical activity.

Class IV Unable to carry on any physical activity without discomfort.

3.3.2 Exploratory Data Analysis

Descriptive statistics will be presented to provide an overview of patients

characteristics and study variables in the BIOSTAT-CHF dataset.

The majority of the patients in BIOSTAT-CHF were male (73%), and the av-

erage age was 69 years with a 12 year standard deviation (SD). The average

Body Mass Index (BMI), similar regardless of the sex, is 28 (SD 5). About

14% of patients were current smokers at baseline, and 27.8% were alcohol

consumers at baseline.

The majority of patients in the BIOSTAT-CHF dataset (63%) are male with

the LVEF< 40% (HFrEF), which is an indication of heart failure with reduced

ejection fraction. There are about 49% of patients who were categorised in

Class III in regards to the NYHA. The mean (SD) of the baseline eGFR is

63.5(23.5) ml/min/1.73m2, which, based on the National Kidney Foundation

(2002) classification, is "Kidney damage with mild decrease in eGFR".

The NT-proBNP is highly right-skewed as shown in Figure 3.3.1, with me-

dian (IQR) equal to 3386 ng/L (IQR =1613 ng/L - 88955 ng/L). Further-

more, about half (45%) of the participants in the study have "Sinus Rhythm",
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24% have "Atrium fibrillation/ flutter", 13% have "Pacemaker" and 16% are

characterised as Other as presented in Figure 3.3.2.

Figure 3.3.1: A histogram and density curve in red are shown for NT-proBNP on the left-hand
side and log(NT-proBNP) on the right side. The log transformation made the distribution of
NT-proBNP more symmetric.

Figure 3.3.2: A bar plot of the Heart Rhythm categories of participants in the BIOSTAT-CHF
dataset. The majority have Sinus Rhythm.

The BIOSTAT-CHF dataset contains missing data. A descriptive analysis was

conducted to explore the type of missingness in the variable of interest. Fig-

ure 3.3.3 shows that there is a large proportion of missing values in the NT-
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proBNP variable. The number of missing observations in NT-proBNP and

eGFR increased in the second visit. However, there are no missing values in

the other variables used in this study. From Figure 3.3.4, we can gain insights

into the possible relationships between variables and the missingness. It is

noticeable that the largest proportion of missing values in NT-proBNP and

eGFR occurs when the heart rhythm takes on the category "others" and in the

second visit.

Figure 3.3.3: A graph displaying the percentage of missing values for each variable of in-
terest, separated by the visit time. The variable log(NT-proBNP) has a higher percentage of
missing data.

Furthermore, the missing values in the NT-proBNP occur with a high per-

centage, regardless of the category of the heart rhythm. The missing values in

NT-proBNP are unrelated to Age and eGFR. On the other hand, the missing

values of eGFR are associated with lower values of NT-proBNP and older

participants. Understanding this association provides valuable insights into

the missing data pattern and can guide further investigations.
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Figure 3.3.4: A missing data matrix plot is a graphical representation that shows the as-
sociation between each variable of interest and the missingness. The x-axis represents the
characteristics of the variable of interest, while the y-axis represents the missing values of
each variable of interest. The continuous variable characteristics are described using a box
plot, while categorical variable characteristics are described using a bar plot.

3.4 Synthetic Data

In this section, we will describe our process for generating simulated data.

This will allow us to compare our results to known truth and evaluate different

statistical methods in upcoming chapters. Additionally, the simulated dataset

with known real values of missing observations will enable us to evaluate the

effectiveness of missing data modelling methods. Therefore, we generate syn-

thetic data scenarios by intentionally introducing missingness into complete

simulated datasets.

As this research focuses on repeated measures, we will generate longitudinal

data using the linear mixed effects model with a subject-specific random inter-

cept. The simulated data set-up was inspired by Bhuyan (2019) and Ibrahim

et al. (2002) and has been chosen to reflect the data found in similar studies.
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The analysis model for simulation considers a continuous response and two

continuous predictors, which are time-varying, one binary time-invariant pre-

dictor and subject-specific random intercept. This is the widely used linear

mixed effect regression model as follows:

Yi(t) = β0 +β1X1i(t)+β2X2i(t)+β3X3i +uiZ̃i(t)+ ei(t), (3.4.1)

where Yi(t) is the response variable for the ith subject at tth time point,

i= 1, . . . ,n and t = 1, . . . ,m. β0 = 10 is the overall intercept, β1 = 2 and β2 = 5

are regression coefficients associated with the time-varying fixed effect, and

β3 = 15 is the regression coefficient associated with the time-invariant fixed

effect. The random components are subject-specific random intercepts

ui
i.i.d∼ N(0,2) and ei

i.i.d∼ N(0,9) are the model’s residuals.

The time-varying predictor X2 is generated from a uniform distribution as:

Xi2(t)∼U(0,2) (3.4.2)

The time-invariant predictor X3 is generated from a Bernoulli distribution as:

Xi3 ∼ Bern(0.6) (3.4.3)

To assume possible missingness in the analysis model predictor, we consider

the incomplete predictor X1 to be a function of the other two complete predic-

tors and accommodates variations at different time points within each subject,

generated from the linear mixed model as follows:

Xi1(t) = α0 +α1X2i(t)+α2X3i +wiZ̃i(t)+ ri(t), (3.4.4)

where α0 = 1 is the overall intercept, α1 = 3 and α2 = 0.4 are regression

coefficients associated with the fully observed predictors. The individual’s

random intercept is assumed wi
i.i.d∼ N(0,2), and the residuals are assumed

ri
i.i.d∼ N(0,0.5).

Multiple independent simulations of the same setup are run as part of a par-
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allel simulation technique (Burton et al., 2006). The number of generated

simulated datasets was constrained by factors such as the proportion of miss-

ingness and sample sizes, statistical methods, computer availability, and time

limitations. Therefore, we generated 100 datasets with a fixed number of

subjects (n = 100), varying number of repeated measures (m = 2,4 & 8) and

proportion of missingness to approximate a range of missing values and re-

peated measures that may occur in real-life data. Specifically, we introduced

20%, 40%, and 60% missing data in the response variable of the analysis

model, along with a fixed 20% missing data in the incomplete predictor. Ad-

ditionally, we generate 20%, 40%, and 60% missing data in the incomplete

predictor of the analysis model, with a fixed 20% missingness in the response

variable of the analysis model. We initially set up to 60% missingness in

either the model response or the incomplete predictors. However, we techni-

cally exceeded this 60% proportion of missingness. For instance, when there

is 60% missingness in the model response, there is also 20% missingness in

the incomplete predictor. This indicates that the overall missingness is likely

greater than 60% missingness.

Then, some of the observations will be deleted based on various models of

missingness settings, which will be explained in detail in each upcoming

chapters. By ensuring that the missing values are known, this straightfor-

ward setup allows us to emphasize the essential features of the performance

of our proposed methods. In the case of simulated datasets where the missing

values are known, we also implement the models of the same structure but

with a complete set of values, referred to as the "Full data" model. This Full

model serves as a benchmark for evaluating the performance of the proposed

methods on simulated datasets. Furthermore, we apply the model of interest

to complete cases, denoted as the "Available data" model. This allows us to

compare the fit of the model of interest with a commonly employed approach,

that of complete case analysis.
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Typically, simulations aim to replicate results that could have arisen from a

single study. The credibility of the model parameter’s posterior distribution

and prediction can be verified using different data that has not been explicitly

incorporated into the model. Therefore, we will create test data with identi-

cal settings but with no missingness. Comparing the performance of several

methods comes next. It is essential to use more than one performance cri-

terion, such as Root Mean Square Error, Relative Bias, and Coverage Rate,

since findings vary between several criteria (Burton et al., 2006). A combina-

tion of posterior samples over 100 simulations will be presented as a measure

for the true estimate of interest. Criteria equations and definitions were ex-

plained in Section 2.7.



Chapter 4

Exploring Longitudinal Data Inferences
and the CRE Method

4.1 Introduction

After presenting our data in Chapter 3, we will start this chapter by fitting a

model to the BIOSTAT-CHF data. Next, we will examine the performance of

linear mixed effect models using the two approaches in the statistics frame-

work to model longitudinal data, the Frequentist and Bayesian approaches.

The aim is to determine which model provides a more robust prognosis pre-

diction of the response. Since we are dealing with longitudinal data, we con-

sider an issue that influences the model performance, which is missing data.

To address this, we employ a recent approach that introduces a Correlated

Random Effects (CRE) method using a Gibbs sampler for longitudinal data

in situations where the data contains missing responses generated by an infor-

mative missingness mechanism. We will explain the CRE method and iden-

tify the non-convergence factors that affect the model’s performance. This

chapter will use simulated and real-data (BIOSTAT-CHF) datasets.

This chapter is structured as follows: Section 4.2 defines the model for fit-

ting the BIOSTAT-CHF data in order to predict heart failure. Section 4.3 per-

forms a comparative study between the Bayesian and Frequentist approaches

and presents the corresponding results for comparison using simulated and

63
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real data. Section 4.4 highlights the methodology adopted for non-ignorable

missingness in the response and explains a possible solution to overcome non-

convergence issues, we will present this using simulated data and then apply

the CRE method to the real data. Finally, Section 4.5 discusses the main

findings.

4.2 BIOSTAT-CHF Model

The BIOSTAT-CHF dataset introduced in Section 3.3 contains multiple records

for each participant to detect changes, risk factors, or long-term predictor

variables for patients with heart failure. To analyze this dataset, we need to

capture the dependency of observations within participants by using the Lin-

ear Mixed Effect Model (LMM). Creating a single model using all variables

in the BIOSTAT-CHF dataset can be challenging. Therefore, it is necessary

to select a set of representative variables as a foundational step to apply the

method for predicting heart failure in individuals.

NT-proBNP is a strong prognostic factor in heart disease, as mentioned in

Section 3.3, and it has a considerable amount of missing values, as shown in

Figure 3.3.3, which made it desired to estimate it more effectively. Therefore,

it is considered as a response variable in the proposed LMM, with visit num-

bers creating repeated measures. The patient’s age, eGFR, Heart Rhythm,

and visit time are predictive factors in the model. The individuals (patients)

are considered as the random effect. This particular set of variables has been

chosen as benchmarks to start the model and recommended by an expert car-

diologist with extensive expertise in the field, Professor of Cardiology John

Cleland, in the School of Cardiovascular & Metabolic Health at the Univer-

sity of Glasgow. Moreover, the use of this particular set of predictors is also

supported by existing research that predicts an individual’s risk of heart fail-

ure (Voors et al., 2017).
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The model proposed for the BIOSTAT-CHF dataset is expressed as follows:

Yi(t) = β0 +β1Agei(t)+β2eGFRi(t)+β3HRi(t)+β1Timei(t)︸ ︷︷ ︸
fixed effects

+ ui + ei(t)︸ ︷︷ ︸
random terms

;

ui
i.i.d∼ N

(
0,σ2

B

)
& ei(t)

i.i.d∼ N
(

0,σ2
A

)
.

(4.2.1)

Linear Mixed Models (LMM) in Equation 4.2.1 were conducted to investi-

gate how the following fixed effects: age, eGFR, Heart Rhythm (HR) and

index time of visit can affect the patient’s NT-proBNP (Yi(t)). The character-

istics of these predictors were discussed in Section 3.3. The model takes into

consideration the within-subject variation via the random effect ui and within

individual variation via the model’s residuals (ei(t)), where both represent the

random terms in the model.

Log transformation

The use of NT-proBNP violated the normality assumption in the LMM. A log

transformation was applied to address this issue, which is a suggested trans-

formation technique (Gelman and Hill, 2006) to stabilize variance (Jiang and

Nguyen, 2007) and improve normality in skewed error distributions. The Q-

Q plot is a tool for checking the normality of error assumptions by matching

the residual quantiles with a normal distribution. The Q-Q plot with a curva-

ture or departure from the line of equality indicates non-normality distributed

residuals in the model. Therefore, the normality was re-evaluated after the

log-transformed the response, which resulted in a closer alignment with the

normal distribution as shown in Figure 4.2.1. As a result, the assumption of

normality is satisfied in the model with the log-transformed response vari-

able. Moreover, the residual vs. fitted values plot showed that the model

with NT-proBNP as the response variable violates the assumption of constant

variance of residuals. The log-transformed model validated the assumption

of homoscedasticity with evenly spread data points around fitted values. The
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plot is located in Section A in the Appendix.

Figure 4.2.1: Two different BIOSTAT-CHF models are compared by displaying their Q-Q
plots side by side. The Q-Q plot of the model fitted using NT-proBNP on the left-hand
side, as the response variable shows curvature, indicating that the residuals are not normally
distributed. On the other hand, the Q-Q plot of the model fitted using the logarithmic trans-
formed response variable log(NT-proBNP) on the right-hand side, shows that the residuals
are reasonably normally distributed, as the residual points fall mainly along a line of equality.
Therefore, the model with a log transformation NT-proBNP is considered to be a better fit for
the data.

Centering

Centering is a statistical transforming strategy that subtracts a variable’s mean

from its observed values. This approach is useful because it eliminates the

correlation between parameters in a regression model (Lynch, 2007), leads

to a meaningful interpretation of the regression parameters and makes the

model more stable (Paccagnella, 2006). Additionally, centred models may

converge faster than models that do not use centred variables (Paccagnella,

2006). While centring a variable will change the values of the regression pa-

rameters, it will not affect the association between the response and predictors

(Enders and Tofighi, 2007). Therefore, interpreting a centred model is simply

the expected response value when the predictors are equal to the mean value.

Since we have only two visits per subject in the BIOSTAT-CHF dataset, we

will centre the continuous predictor variables "age" and "eGFR" to the overall
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mean. The distribution of these variables before and after applying centring

transformation is shown in Figure 4.2.2. The original distribution of vari-

ables is centred around their mean values, while the transformed variables are

centred around zero.

Figure 4.2.2: The histogram and density curve (in red) of the continuous predictors in the
BIOSTAT-CHF data model are represented. The top panel shows the distribution of age,
while the bottom panel shows the distribution of eGFR. The distribution of each variable
is displayed on the left-hand side, while on the right-hand side, the distribution of centred
variables is presented. These predictors display a symmetrical distribution and have been
centred around their mean to enhance the interpretation of the results and reduce potential
correlation issues.

We will rewrite the model in Equation 4.2.1, taking into account the transfor-

mations discussed previously as follows:

log(NT − proBNP)i(t) = β0 +β1C.Agei(t)+β2C.eGFRi(t)+β3HRi(t)

+β1Timei(t)+ui + ei(t);

ui
i.i.d∼ N

(
0,σ2

B

)
& ei(t)

i.i.d∼ N
(

0,σ2
A

)
.

(4.2.2)
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4.3 Comparison Study Between the Frequentist and the
Bayesian Approaches in the Context of Longitudinal
Data

We aim to compare two statistical approaches, the Frequentist Linear Mixed

Effects Model and the Hierarchical Bayesian Model (HBM), to determine

which method is more reliable in predicting longitudinal data. We will use

the Root Mean Square Error (RMSE) to evaluate the model prediction of un-

observed outcomes. To compare the estimates from the Bayesian approach

and the Frequentist approach, we use the average of the posterior distribution

obtained from the Bayesian approach and compare it with the point estimates

from the Frequentist approach. We will compare the prediction errors be-

tween the two approaches by re-fitting the model 50 times, splitting the data

into 30% test and 70% training dataset with replacement. This process will

produce comparable RMSEs distribution from the two approaches, which can

help us to quantify the uncertainty between the two approaches. We can com-

pare the RMSE using the two approaches visually by plotting the density

plot of the RMSE. The calculation of the RMSE is shown in Equation 2.7.1

in Section 2.7 Additionally, we will test whether the two distributions of the

RMSEs are similar by using the Kolmogorov-Smirnov test (defined in Section

2.7). We will report the results of these tests in Subsection 4.3.1. Our ultimate

goal is to determine which method provides a more reliable longitudinal data

prediction.

4.3.1 Results

In this section, we will compare the results obtained from the Bayesian poste-

rior distribution and the point estimates from the Frequentist approach. This

will help us understand the relative location of the point estimates from the
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Frequentist approach compared to the posterior distribution of the Bayesian

approach. We used the brm function from the brms package (Bürkner, 2017)

to fit the Bayesian hierarchical model using the Hamiltonian Monte Carlo

(HMC) algorithm. Section 2.4.5 explains the HMC algorithm in detail.

We used the default prior in the brm function, which is considered non-

informative. The default prior for the regression coefficients βββ =(β0,β1, . . . ,βJ)

is a flat prior over the real numbers, meaning there are no restrictions on the

values for the coefficients. Furthermore, the default prior for the standard de-

viations of the random effect and the residual is the Student-t distribution with

3 degrees of freedom, location 0, and scale 12.3. This is expressed as:

p(βββ ) ∝ 1,

p(σ2
A)∼ Student−t(3,0,12.3),

p(σ2
B)∼ Student−t(3,0,12.3).

(4.3.1)

On the other hand, we used the lme function from the nlme package (Pin-

heiro et al., 2007) to fit the Frequentist Linear Mixed Model (LMM) as men-

tioned in Section 2.3.1. Both functions were applied using the R program

(R Core Team et al., 2013). In the refitting process, we will compute the av-

erage of the posterior distribution of each model parameter to calculate the

Root Mean Squared Error (RMSE). In the following sections, we will present

the results using simulated and real data.

Simulated Data Results

In this section, we will present the results obtained from simulated data de-

scribed in Section 3.4 with four repeated measures. However, the results of

other repeated measures are in Section A in the Appendix. Using the simu-

lated data, we can identify the location of the data-generated parameter val-

ues, as well as the Frequentist point estimates, in the posterior distribution.

Figure 4.3.1 shows that the Frequentist point estimates are located in the cen-
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tre of the Bayesian posterior distribution of the analysis model parameters.

Additionally, the 95% Confidence Interval (CI) falls within the range of the

posterior distribution. This alignment indicates that both approaches precisely

capture the underlying relationships within the data. Furthermore, the data-

generated parameter value is closely aligned with the posterior distribution,

further strengthening the accuracy of both methodologies.

Figure 4.3.1: The grey curve represents the posterior density obtained using the Bayesian
approach. There are three lines; a vertical blue dashed line representing the point estimate
using the Frequentist approach, the blue horizontal line representing the 95% CI and a vertical
red solid line representing the data generated value. Each plot represents one of the analy-
sis model parameters that generated the simulated data with four repeated measures. The
data-generated parameter value and the point estimates are located in the centre of the poste-
rior distribution, indicating a good level of agreement between the Bayesian and Frequentist
approaches.

As both approaches have produced similar estimated values, we would inves-

tigate which model performs better on unseen data. This will help us under-

stand how these approaches will work with real data when we do not know

the actual values of the parameter estimates. Furthermore, we aim to deter-
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mine the level of uncertainty associated with each approach. To do this, we

used the resampling process discussed in Section 4.3, which involves split-

ting the dataset into training and test data 50 times with replacement. In each

iteration, each individual could be selected for either the training or testing

set, allowing for varied inclusion of individuals across the iterations. Figure

4.3.2 shows the distribution of the RMSEs from the two approaches obtained

using this process. It is evident from the plot that both approaches produce

identical out-of-sample RMSE values, which indicates that there is no sig-

nificant difference in terms of out-of-sample performance between the two

approaches.

Figure 4.3.2: The plot displays two curves by applying the refitting process. The black
curve represents the out-of-sample RMSE calculated using Bayesian inference, while the
red dashed curve shows the RMSE calculated using Frequentist inference. Simulated data
with four repeated measures were used to generate the curves. Interestingly, both approaches
showed identical out-of-sample performance, indicating that there is no preference between
them.

A full posterior distribution in Bayesian analysis shows a complete view of

uncertainty compared with point estimates. Point estimates provide a single

value for a parameter, whereas the posterior distribution covers a range of

plausible values and the associated probabilities. This gives us a better un-

derstanding of the parameter’s possible values and provides a range of values

within which the parameter estimates value is likely to lie. For example, Fig-

ure 4.3.1 provides an overview of the plausible values. These values have a
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high density around the average value, which is close to the data-generating

value and Frequentist parameter estimate, representing values close to the

"truth". With values far away from the data-generating parameters, there is

a relatively sharp drop in density. This approach not only provides a range

of values like the Frequentist approach but also indicates which values within

that range are more plausible. Credible intervals may be helpful for decision-

making using Bayesian inference.

To calculate the out-of-sample performance using the RMSE, one can take

advantage of applying Bayesian inference, which allows us to produce a dis-

tribution of the RMSE, while Frequentist inference only provides a single

value for the RMSE for one dataset. In Figure 4.3.3, we can see the RMSE

distribution obtained through Bayesian inference and a calculated RMSE us-

ing inference for one of the resampling data with four repeated measures.

It has been found that the RMSE calculated using Frequentist inference is

located at the centre of the RMSE distribution obtained through Bayesian in-

ference. This suggests that the average of the RMSE distribution obtained

from Bayesian inference matches the RMSE calculated using Frequentist in-

ference, which is consistent with our previous observations. This conclusion

applies to all 49 datasets and 2 and 8 repeated measures. Therefore, we can

use Bayesian inference to produce a distribution of possible ranges of val-

ues for the RMSE, which provides a more comprehensive evaluation of the

out-of-sample performance.
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Figure 4.3.3: The plot shows a black curve representing the out-of-sample RMSE calculated
using Bayesian inference, while the red dashed line displays the RMSE calculated using
Frequentist inference. The RMSE value using Frequentist inference is located at the centre
of the RMSE distribution, using one out of fifty of the resampling simulated data with four
repeated measures.

Sensitivity Analysis of Informative Priors

The advantage of using the Bayesian approach is that it incorporates prior in-

formation into the inference. In this section, we aim to explore the impact of

different informative priors on the posterior estimates of the analysis model

compared to the Frequentist estimates. We want to assess the sensitivity of

the posterior estimates to different scenarios of prior information. Since we

use synthetic data, we know the data generating parameter values. Therefore,

we will set three different scenarios of informative priors.

The first scenario involves a strong informative prior, with a normal distri-

bution centered at the data-generating parameter value with a standard devi-

ation of 0.2, reflecting strong prior information with less uncertainty around

the data generating parameter value. The second scenario is a moderate in-

formative prior, which is also centred around the generating parameter value

but with a standard deviation of 3, allowing for larger uncertainty compared
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to the strong informative prior. Additionally, we will use an informative prior

that is centred around a misleading value with a standard deviation of 3, sim-

ilar to the moderately informative prior. The mean of the misleading values

is randomly selected within ±2 standard deviations of the data generating

parameter value. This will help us assess the robustness of Bayesian infer-

ence by examining the impact of using an informative prior based on an in-

accurate belief about the data generating parameter value with considerable

uncertainty.

Figure 4.3.4: The black curve represents the posterior density obtained using the Bayesian
approach with noninformative prior, the green curve represents the posterior density obtained
using the Bayesian approach with strong informative prior, the orange curve represents the
posterior density obtained using the Bayesian approach with moderate informative prior, and
the purple curve represents the posterior density obtained using the Bayesian approach with
misleading informative prior. There are three lines; a vertical blue dashed line represent-
ing the point estimate using the Frequentist approach, the blue horizontal line representing
the 95% CI and a vertical red solid line representing the data generated value. Each plot
represents one of the analysis model parameters that generated the simulated data with four
repeated measures. The posterior distribution shifted to the data-generated parameter value
with higher density when using a strong informative prior.
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The results from Figure 4.3.4 shows that when using noninformative, mod-

erately informative, and misleading informative priors, both the data gen-

erating parameter values and the Frequentist approach parameter estimates

are located at the centre of the posterior distributions. In contrast, when a

strongly informative prior is used, the centre of the posterior distribution is

more skewed towards the data generating parameter values with higher den-

sity. This suggests that the Bayesian approach benefits from using a strong

and correct informative prior; it positively affects the results by making the

posterior noticeably more concentrated around the true value, leading to more

accurate and confident parameter estimates. On the other hand, using weak or

misleading informative priors may not yield the same precision as strong and

correct informative prior, but the results still remain good and similar to those

obtained through the Frequentist approach.

Including informative prior distribution had a negligible impact on the pa-

rameter estimates of the analysis model. We will now assess the performance

on unseen data under different informative prior distribution scenarios. We

will use the resampling process discussed in Section 4.3 to evaluate the level

of uncertainty associated with each scenario.

Figure 4.3.5 displays the distribution of the RMSEs of the Bayesian approach

across different informative prior scenarios and the Frequentist approach. The

plot shows that the out-of-sample RMSE values are very similar, indicating

that there is no significant difference in terms of out-of-sample performance

between the Frequentist approach and the Bayesian approach with different

informative prior distributions. This was evaluated using the Kolmogorov-

Smirnov test (described in Section 2.7), which failed to reject the null hypoth-

esis with a p-value greater than 0.05. This means there is insufficient evidence

to conclude that there are differences between the RMSE distributions. These

results are consistent across different numbers of repeated measures (2 & 8),

leading to the same conclusion.
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Figure 4.3.5: The plot displays different out-of-sample RMSE curves by applying the refitting
process. The black curve represents the RMSE obtained using the Bayesian approach with a
noninformative prior, the green curve represents the RMSE obtained using the Bayesian ap-
proach with a strong informative prior, the orange curve represents the RMSE obtained using
the Bayesian approach with a moderate informative prior, and the purple curve represents the
RMSE obtained using the Bayesian approach with a misleading informative prior. The blue
curve shows the RMSE calculated using the Frequentist inference. Simulated data with four
repeated measures were used to generate the curves. Interestingly, all approaches showed
similar out-of-sample performance, indicating that there is no preference between them.

Real Data Results

We will use the BIOSTAT-CHF dataset to evaluate the performance of fitting

a longitudinal data model using Bayesian and Frequentist approaches. This

real-world dataset will give us an indication of how these two approaches be-

have in practice. We will use the model expressed in Equation 4.2.2 to fit

the model. However, there is missing data in the BIOSTAT-CHF dataset, so

we will use complete case analysis (where participants with missing data are

eliminated, which means that only participants with fully observed data re-

main) to compare the two approaches at this stage. In the upcoming chapters,

we will further analyse the BIOSTAT-CHF dataset to address the missing data

using proposed methods. The results of these analyses will be presented in

Section 4.4.7 of this chapter and in the results sections of Chapters 5, 6 and 7.
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Figure 4.3.6: The plot shows two approaches of statistical inference for the BIOSTAT-
CHF model parameters. The grey curve represents the posterior density curve based on
the Bayesian approach, while the vertical blue dashed line represents the point estimate us-
ing the Frequentist approach, and the blue horizontal line represents the 95% CI. Each plot
corresponds to a specific analysis model’s parameter. The point estimates are located in the
centre of the posterior distribution, indicating a good level of agreement between the two
approaches.

Figure 4.3.6 presents the estimates obtained from fitting the BIOSTAT-CHF

data model using Bayesian and Frequentist approaches. The figure shows a

posterior density and Frequentist point estimates, with the point estimates lo-

cated at the centre of the posterior distribution. Additionally, the 95% CI is

located within the bulk of the posterior distribution. This indicates that the

average of the posterior estimates is similar to the Frequentist point estimates

for all BIOSTAT-CHF analysis model parameters.

These estimates reveal practical insights. For instance, we observe a nega-

tive relationship between the centred eGFR and log(NT-proBNP). This im-

plies that for every one-unit ng/L increase in eGFR from its mean value, the

log(NT-proBNP) will decrease on average by 0.01 units, holding all other

variables constant. Similarly, the centred age shows a positive correlation
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with log(NT-proBNP). This suggests that for every one-year increase in age

from its mean value, the log(NT-proBNP) will increase on average by 0.01

units, again holding all other variables constant.

In addition, patients with Sinus heart rhythm have the lowest rate of log(NT-

proBNP) compared to those with other heart rhythm categories. Furthermore,

patients’ log(NT-proBNP) during their second visit will decrease on average

by 0.95 units while all other variables are kept constant. The Interclass Cor-

relation Coefficient (ICC) is approximately 0.64, which is the estimated cor-

relation of two measurements on the same patient.

The resampling process described in Section 4.3 will be employed to assess

the performance of two approaches using the BIOSTAT-CHF dataset. This

process involves splitting the dataset into training and test data 50 times with

replacement. Figure 4.3.7 displays the sampling distribution of the RMSEs

obtained from both approaches using this process. The plots reveal that both

approaches yield comparable out-of-sample RMSE densities. However, the

Bayesian approach produces somewhat lower RMSE values than the Frequen-

tist approach. Nevertheless, the KS test indicates no significant difference in

out-of-sample performance between the two approaches.
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Figure 4.3.7: The plot displays two curves by applying the refitting process. The black
curve represents the out-of-sample RMSE calculated using Bayesian inference, while the red
dashed curve shows the RMSE calculated using Frequentist inference. The data used is the
BIOSTAT-CHF dataset. Both approaches showed comparable out-of-sample performance,
but the Bayesian RMSE values are shifted towards lower values, which is indicative of better
out-of-sample prediction performance.

4.4 Application of the CRE Method

In the previous section of this chapter, we discussed fitting a linear mixed

model to estimate the mean response based on a collection of predictor vari-

ables. This approach is commonly used in longitudinal studies to account

for dependencies in the data. However, non-ignorable missing values can be

a problem in this type of study for various reasons, and inference based on

observed data may be biased. This section will discuss a recent approach

introduced by Bhuyan (2019), which uses Correlated Random Effects (CRE)

through a Gibbs sampler to handle non-ignorable missingness in the response.

The CRE is a generalisation of the SRE model framework mentioned in Sec-

tion 2.5.3, mainly when the correlation value between the random effects in

the CRE model is one. On the other hand, when the correlation between the

random effects is zero (independent), this indicates that the missingness is

ignorable. In the Correlated Random Effects model, the computational chal-

lenges arise due to the intractable numerical integration in the log-likelihood
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function as presented in Lin et al. (2010). To avoid approximation methods,

Bhuyan (2019) suggested an alternative modelling approach using the Gibbs

sampler, where the model parameters and latent variables are estimated at

each iteration.

The following subsections are associated with the expression of the CRE

model, the form of the joint distribution, the prior distribution, and the sampler

algorithm. These elements represent the CRE method proposed by Bhuyan

(2019). However, we have applied this method to a linear mixed model with

fixed effects, including subject-specific random effects, using the linear re-

gression parametric form. In contrast to the original study, they assumed a

semi-parametric regression form using Legendre polynomials (LP) as basis

functions. Finally, we will present the simulated and real-world data results

and discuss the potential MCMC non-convergence issue using weakly infor-

mative prior distributions.

4.4.1 CRE Model

Mixed effects regression is a standard framework for studying the relation-

ship between longitudinal response and predictor variables. For a continuous

response measured over m different time points from n subjects and a set of

predictors. The response for the ith subject at the tth time point, which we

denote by Yi(t), can thus be modelled as the following:

Yi(t) = µ +
J′

∑
j′=1

λ j′X j′i(t)+uiZ̃i(t)+ ei(t),

ui
i.i.d∼ N

(
0,σ2

B

)
& ei(t)

i.i.d∼ N
(

0,σ2
A

)
.

(4.4.1)

where J′ express the number of predictors of fixed effects, µ is the fixed in-

tercept represents the mean of the overall population, λ j′ is the regression

coefficient associated with the j′th fixed effects, X j′i(t) is the value of the j′th

fixed effect for subject i at time t. Subject-specific random effects ui capture
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the longitudinal dependence, and Z̃i(t) is the value of the random effect for

subject i at time t. The model’s residuals are expressed as ei(t). Next we will

define binary missing data indicator Ui(t), where Ui(t) = 0 if Yi(t) is missing

and Ui(t) = 1 if Yi(t) is observed. The latent response variable can be written

as:

Yi(t) =

Y ∗
i (t), if Ui(t) = 1,

missing, if Ui(t) = 0.
(4.4.2)

The regression model given in Equation 4.4.1 can be rewritten as follows:

Y ∗
i (t) = µ +

J′

∑
j′=1

λ j′X j′i(t)+uiZ̃i(t)+ ei(t). (4.4.3)

In addition, we consider a probit regression model (discussed in Section 2.6)

that defines the missingness as a normal distribution latent variable U∗
i (t) as

follows:

Ui(t) =

1, if U∗
i (t)> 0,

0, if U∗
i (t)≤ 0.

(4.4.4)

In Equation 4.4.4, U∗
i (t) is a continuous latent missingness indicator variable

for subject i at time t that represents the latent proclivity for missing data.

Then we consider the following model for missing response mechanism with

the same set of predictors in the response model as follows:

U∗
i (t) = τ +

J′

∑
j′=1

θ j′X j′i(t)+ viZ̃i(t)+ εi(t), (4.4.5)

where J′ express the number of fixed effects, τ is the fixed intercept represents

the mean of the overall population, θ j′ is the regression coefficient associated

with the j′th fixed effects, which expresses the systematic influence of miss-

ingness due to the unobserved response variables. Subject-specific random

effects vi capture the longitudinal dependence and are assumed to be i.i.d fol-

lowing normal distribution as N(0,σ2
C). The residuals εi(t) are assumed to be

i.i.d following normal distribution as N(0,1). Therefore, the probit regression



4.4. APPLICATION OF THE CRE METHOD 82

can be written as:

p(Ui(t) = 0|Yi(t)) = 1−Φ

(
τ +

J′

∑
j′=1

θ j′X j′i(t)+ viZ̃i(t)

)
, (4.4.6)

where Φ() is the standard normal cumulative distribution function, and the

predicted z-score of missing propensity is
(

τ +∑
J′
j′=1 θ j′(t)X ji(t)+ viZ̃i(t)

)
.

The Φ will return the proportion of the area under that z-score in a standard

normal density. Furthermore, the probit model includes a zero value as a

threshold, which divides the standard normal into two parts. So that if U∗(t)

greater than zero then Ui(t) = 1 and if U∗(t) less than zero then Ui(t) = 0.

To incorporate the possible correlation between the response variable Y ∗
i (t)

and the response missing indicator variable U∗
i (t), we consider ui and vi are

correlated random vectors following a multivariate normal distribution with

mean vector 000 and covariance matrix Σ =

(
σ2

B σ2
D

σ2
D σ2

C

)
, where σ2

D represents

the covariance between ui and vi random effects.

4.4.2 CRE Joint Distribution

The Bayesian approach is used to estimate the model parameters in Equa-

tion 4.4.3 and in Equation 4.4.5 using an iterative MCMC algorithm, Gibbs

sampling, to simultaneously impute missing values and produce analysis es-

timates. For Gibbs sampling to be carried out, one needs to sample from

the joint posterior of the model parameters and latent variables. Let YYY =

(Y11(t), . . . ,Ynm(t)), YYY ∗ =
(
Y ∗

11(t), . . . ,Y
∗
nm(t)

)
, UUU = (U11(t), . . . ,Unm(t)) and

UUU∗ =
(
U∗

11(t), . . . ,U
∗
nm(t)

)
, along with the joint posterior is expressed as fol-

lows:

p(ΘY,U ,YYY ∗,UUU∗ | YYY ,UUU) ∝ p(ΘY,U)×
n

∏
i=1

∫ m

∏
t=1

f (Y ∗
i (t),U

∗
i (t) | ui,vi)×

{I (U∗
i (t)> 0) I (Ui(t) = 1)+ I (U∗

i (t)≤ 0) I (Ui(t) = 0)}×g(ui,vi)duidvi,
(4.4.7)
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where ΘY,U = {λ̃λλ , θ̃θθ ,σ2
A,Σ} denote a set of all analysis model parameters in-

volved in Equation 4.4.3 and Equation 4.4.5. λ̃λλ = [µ,λλλ ] denotes a vector of

the overall mean and regression coefficients of fixed effects in the response

model and θ̃θθ = [τ,θθθ ] denotes a vector of regression coefficients of fixed ef-

fects and overall mean in the missingness indicator response model. The joint

prior distribution for Θ is represented by p(ΘY,U) , g(ui,vi) is the joint dis-

tribution of ui and vi follow N(0,Σ), f (Y ∗
i (t),U

∗
i (t)) is the joint distribution,

and I(A) is an indicator variable which takes the value 1 if A occurs and zero

otherwise.

To derive the posterior distributions of the joint model parameter ΘY,U , we

need to define the prior distribution, which explains the information of each

parameter uncertainty before seeing the data p(ΘY,U). It is an important part

of Bayesian statistics to derive the posterior distribution.

4.4.3 CRE Prior Distribution

The following non-informative prior is considered for ΘY,U as specified by

Bhuyan (2019).

p
(

λ̃λλ ,σ2
A

)
∝

1
σ2

A
; p

(
θ̃θθ
)

∝ 1; and p(Σ) ∝
1

| Σ |
. (4.4.8)

The non-informative priors shown in Equation 4.4.8 are used because there is

no prior information about these parameters and to minimise the influence of

the prior on the parameters estimate. Furthermore, these priors are conjugate

priors with normally distributed data.

The prior distribution is multiplied by the probability distribution of the data

to produce a posterior distribution. Bayesian inference is based on the pos-

terior distribution, which sometimes is not found in a closed form. In such

cases, Markov Chain Monte Carlo (MCMC) can be implemented as a numer-

ical simulation method to generate a random set of points from the parameter
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space drawn from the posterior distribution to estimate the distribution of the

parameters. Then, summary statistics can be computed from it. Using conju-

gate priors, the full conditional distribution for each parameter can be found

in closed form, allowing the Gibbs sampler to sample from the joint posterior

distribution. This process is explained in Section 4.4.4.

4.4.4 CRE Gibbs Sampler

The Gibbs sampler is an iterative procedure that estimates the variables se-

quentially one by one. For example, estimate one random variable while hold-

ing all other variables on their current values (constant). In the Bayesian ap-

proach, the response model parameters, the response missing indicator model

parameters, the response, and the missing response indicator are variables to

be estimated. The Gibbs sampler invokes the following steps:

1. Estimate the latent response model’s random intercept ui.

2. Estimate the latent response variable Y ∗
i (t).

3. Estimate the latent response model’s regression coefficients and residual

variance λ̃λλ & σ2
A.

4. Estimate the latent response missingness model’s random intercept vi.

5. Estimate the latent response missingness indicator U∗
i (t).

6. Estimate the latent response missingness model’s regression coefficients

θ̃θθ .

7. Estimate the covariance matrix that represents the correlation between

the random intercept in the response and missing model Σ.

Steps 1 to 7 are repeated until the MCMC chains converge and produce

enough posterior samples. The convergence is assessed visually using the

trace plot and statistically using the Gelman-Rubin diagnostic, as mentioned

in Section 2.4.6. The Gibbs sampler produces a posterior distribution for each
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variable, which is used to conduct Bayesian inference. The Gibbs sampler

algorithm is described in Algorithm 4, where XXXJ′ is the design matrix con-

sisting of fixed effect variables. The full conditional densities of the model’s

parameters are from standard densities. Accordingly, the Gibbs sample can

be directly applied to estimate the model parameters. It is essential to as-

sess the convergence to make sure that the MCMC chain will converge to the

stationary distribution, which is the posterior distribution.
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Algorithm 4 CRE Method Gibbs Sampling Algorithm

Choose initial {Θ0
Y,U = λ̃λλ

0
, θ̃θθ

0
,σ20

A ,Σ0} and {u0,v0,Y ∗0,U∗0}.

for 1, . . . ,S iterations do

-Sample uS+1
i ∼ p

(
ui | Y ∗S

i (t), λ̃λλ
S
,σ2S

A ,ΣS,vS
i ,XXXJ′

)

-Sample Y ∗S+1

i (t) =


Y ∗S

i (t), if Yi(t) is observed

p
(

Y ∗
i (t) | uS+1

i , λ̃λλ
S
,σ2S

A ,XXXJ′
)
, if Yi(t) is missing.

-Sample σ2S+1

A ∼ p
(

σ2
A | Y ∗S+1

i (t), λ̃λλ
S
,uS+1

i ,XXXJ′
)
.

-Sampleλ̃ S+1 ∼ p
(

λ̃λλ | Y ∗S+1

i (t),uS+1
i ,σ2S+1

A ,XXXJ′
)
.

-Sample vS+1
i ∼ p

(
vi |U∗S

i (t), θ̃θθ
S
,ΣS,uS+1

i ,XXXJ′
)
.

-Sample U∗S

i (t) =


p
(

U∗
i (t) | θ̃θθ

S
,vS+1

i ,XXXJ′
)

left truncated∗ at 0, if Yi(t) is observed,

p
(

U∗
i (t) | θ̃θθ

S
,vS+1

i ,XXXJ′
)

right truncated∗ at 0, if Yi(t) is missing.

-Sample θ̃ S+1 ∼ p
(

θ̃θθ |U∗S+1

i (t),vS+1
i ,XXXJ′

)

-Sample ΣS+1 ∼ p
(
Σ | uS+1

i ,vS+1
i
)

∗ truncated normal distribution.

The full conditional distribution for (ui,vi,Y ∗
i (t),U

∗
i (t), λ̃ , θ̃) are the normal

distribution and for σ2
A and Σ are the inverse gamma distribution and the

inverse-Wishart distribution, respectively.
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4.4.5 Non-Convergence in CRE Method

A drawback of the CRE method is that the covariance matrix parameters may

struggle to converge. After further investigation, it was found that this could

be due to a vague prior (we will refer to the 1
|Σ| as a vague prior) was set for

the covariance matrix as mentioned in Section 4.4.3. We fixed this problem

by considering a weakly informative prior. By "weakly informative prior",

we mean that we can incorporate information into the prior distribution, such

as the values of the hyperparameters, that gives little guidance about the ex-

pected values of the parameters. For example, a normal distribution prior

with a large standard deviation (such as 100) allows for a wide range of ex-

pected values. This differs from a "vague prior", which provides minimal

(non-informative) guidance about the possible values of the parameters and

allows the data to guide the inference process. For instance, a uniform distri-

bution prior with the interval (0,1) implies that all possible values are equally

likely. We will use the Inverse Wishart distribution as a prior distribution for

the covariance matrix, it has the advantage of simplifying the posterior distri-

bution because it’s a conjugate prior with normally distributed data (Alvarez

et al., 2014; Huang and Wand, 2013). The density function of the Inverse

Wishart (IW) distribution p(Σ)∼ IW (ν ,Λ) is:

p(Σ) =
|Λ|ν

n |Σ|
−(ν+p+1)

2 e
−tr(V Σ−1)

2

2
ν p
2 Γ

ν

2

, (4.4.9)

where p is the dimension of the covariance matrix, Λ is p× p scale matrix,

which, in practice, is an identity matrix for non-informative priors and ν is the

degrees of freedom and meets the constraint that ν > p+1 so that the mean

exists. Because the mean of the IW is defined as:

E[Σ] =
Λ

ν − p−1
. (4.4.10)

As the degrees of freedom ν increase, the posterior mean shifts towards the

prior mean. This is because the prior mean will have a larger weight, as the
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posterior mean is a weighted mean of the prior and the sample mean (Zhang,

2021), leading to greater certainty about the information in Λ and making the

prior more informative. Here, Λ represents the position of the inverse Wishart

distribution used in the parameter space. As the element value of Λ decreases,

the variance of IW distribution decreases and might result in overestimating

or underestimating the variances (Schuurman et al., 2016). On the other hand,

setting larger values of elements in ν can affect the position of the parameter

space. So, the specification of Λ and ν should be balanced (Schuurman et al.,

2016). The commonly used less informative IW prior is with small ν and the

identity matrix Λ (Schuurman et al., 2016). Since the prior mean is affected by

the value of the degrees of freedom, it is suggestible to fix the prior mean by

setting the scale matrix Λ = (ν − p−1)I. Accordingly, the prior mean would

be fixed and equal to I regardless of the degrees of freedom value choice.

E(Σ) =
(ν − p−1)I

ν − p−1
= I. (4.4.11)

In our study, we will set ν = 4, which satisfies the constrain ν > p+1 and

Λ=(ν− p−1)I, which solved the non-convergence and reduces the influence

of the prior on the posterior distribution.

4.4.6 Creating Synthetic Data for Simulation

The performance of the CRE method using a non-informative prior and weakly

informative prior over the covariance matrix parameters, as discussed in the

previous sections, is examined using a simulated study. We will use the sim-

ulation data mentioned in Section 3.4. In order to generate missing values in

the model response, assuming its missingness mechanism is MNAR, we will

generate the missing values on the response Y based on the response missing-

ness model as follows:

U∗
i (t) = θ0 +θ1X1i(t)+θ2X2i(t)+θ3X3i(t)+ viZ̃i(t)+ εi(t), (4.4.12)
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where θθθ = {θ0,θ1,θ2,θ3} is a vector of the regression coefficients associ-

ated with the fixed effects. The values of θθθ = {−0.8,−0.4,3,4} were cho-

sen to produce 20% missing data proportion in the response, using a pro-

bit regression equation to connect missingness probabilities of the response

Y to values of Y through the latent missingness indicator regression model

U∗ for non-ignorable missingness. This was discussed in Section 2.6. The

missing data indicator U∗ for each observation is sampled from the binomial

distribution with a success rate equal to the observation’s missingness prob-

ability from the probit model, where the value is one if the corresponding Y

is observed and zero if missing. Moreover, vi
i.i.d∼ N(0,2) and the residuals

εi(t)
i.i.d∼ N(0,1). The covariance matrix associated with the random effects

is Σ =

(
2 −1

−1 2

)
. The data is simulated for 100 participants and four

repeated measures.

4.4.7 Results

This section is divided into two parts. In the first part, we will evaluate the

performance of adopting the weakly informative prior over the covariance

matrix parameter against the non-informative prior in the CRE method using

the simulated data. This enables us to test how the MCMC converge using

these two priors. In the second part, we will apply the CRE method to the

BIOSTAT-CHF dataset.

Simulated Data Results

For the purpose of illustration, we will show the results of one generated

dataset with 20% missingness in the model response with four repeated mea-

sures. However, the results are consistent across other missingness percent-

ages as well. In the following chapters, the performance of the CRE method

will be assessed using simulated data with varying repeated measures and the

proportion of missingness.
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To demonstrate the convergence performance of the CRE method, we show

the trace and density plots of the response model parameters, missingness

response model parameters, and the covariance matrix parameters in Figure

4.4.1 using the vague prior as p(Σ) ∝
1
|Σ| . We ran three chains, each with

different starting values and ran the MCMC for 50,000 iterations; the first

half of the samples are discarded to burn-in, and thinning is carried out by

taking every 10th sample. The Gelman-Rubin diagnostic factor, which is ex-

plained in Section 2.4.6, was greater than 1.1, indicating that the chain did

not achieve convergence. Even with a larger number of iterations of 100,000,

the MCMC chain did not show any convergence; the corresponding plots are

shown in Section A in the Appendix. Thus, samples are not from the posterior

distributions.
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Figure 4.4.1: Trace and density plots of the response model, missingness response model
and covariance matrix parameters posterior distributions, using the CRE method for MNAR
response with the vague prior for the covariance matrix as p(Σ) ∝

1
|Σ| . The parameters for

the missingness response model (theta[0], theta[1], theta[2] and theta[3]) and the covariance
matrix parameters (sigma[B]2, sigma[C]2 and sigma[D]2) did not converge.

To overcome this problem, a weakly informative prior as p(Σ) ∝ IW (ν ,Λ)

was used for the covariance matrix in the model as explained in Section 4.4.5.

The posterior distribution of the response model parameters, missingness re-

sponse model parameters, and the covariance matrix parameters are expressed

in Figure 4.4.2. Three chains were created using different initial values and

run for 50,000 iterations. The first half of each chain was discarded to burn

in, and every 10th sample was taken. The Gelman-Rubin diagnostic factor
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was found to be less than or equal to 1.1. This indicates that the chains have

converged, and samples are drawn from the posterior distributions.

Figure 4.4.2: Trace and density plots of the response model, missingness response model
and covariance matrix parameters posterior distributions, using the CRE method for MNAR
response with the IW distribution as a weakly prior for the covariance matrix as p(Σ) ∝

IW (ν ,Λ). The trace plots stabilize around a central value without trends indicating conver-
gence.
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Real Data Results

In this section, we will apply the CRE method to the BIOSTAT-CHF dataset.

The CRE method is specifically designed to deal with non-ignorable missing-

ness in the response variable in longitudinal data. Since the CRE method can

only handle missingness in the response variable, we will first filter the data

to exclude missing observations in the incomplete predictor variable, which is

the eGFR, before applying this method. This step ensures that the data aligns

with the assumptions of the CRE method. We will use the model described in

Equation 4.2.2.

Additionally, we will compare the results obtained from the CRE method

with the baseline method, which uses the observed data and does not han-

dle the missing values. This will be applied using the Bayesian hierarchical

model with HMC, explained in Section 2.4.5 through the brm function in the

brms package (Bürkner, 2017) in R (R Core Team et al., 2013).

Figure 4.4.3: The posterior distribution using the available data is represented by a grey
dashed curve, while the posterior distribution using the CRE method is represented by a
black curve using the BIOSTAT-CHF dataset. Both posterior distributions are overlaid.
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The BIOSTAT-CHF analysis model parameters posterior distribution esti-

mates of the CRE method, and the available data exhibit a similar distribu-

tion, as shown in Figure 4.4.3. This similarity suggests that both methods

have comparable estimates. However, the posterior density curve of the inter-

cept using the available data model has a higher density, and this difference

is significant based on the KS test. Additionally, there was a significant dif-

ference between the CRE method and the available data for time, between

individual variance σ2
B, centred eGFR and age coefficients based on KS test

(explained in 2.7). The BIOSTAT-CHF model estimates are similar to those

in section 4.3.1. The centred eGFR and the second time visit have a negative

relationship with the log(NT-proBNP), while the centred age positively corre-

lates with the log(NT-proBNP). Sinus Rhythm has a lower log(NT-proBNP)

than other heart rhythm types, and the ICC is the same.

Figure 4.4.4: Density plot show the response observed values in the black solid curve and the
CRE imputed response values in the grey dashed curves, where each curve is a different draw
of the latent variable from the posterior using the Gibbs sampler. The density of the imputed
values using the CRE method at each Gibbs sampler iteration is similar to the density of the
observed values.

The CRE method has the advantage of estimating the probability of miss-

ingness in the model response being MNAR via σ2
D. In the BIOSTAT-CHF

dataset, this value equals -0.38, indicating a weak/moderate indication of

MNAR in the log(NT-proBNP). Furthermore, the negative estimate of σ2
D
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suggests that patients with higher log(NT-proBNP) are more likely to have

missing outcomes. The second visit and the centred eGFR are positively as-

sociated with the missingness of the log(NT-proBNP).

Another advantage of using the CRE method is that it can impute missing

data in the response variable. In Figure 4.4.4, we can observe the log(NT-

proBNP) in the BIOSTAT-CHF dataset with the use of draws of the latent

variable from the posterior using the Gibbs sampler. The imputation process

was successful as the observed density and density from each iteration were

similar.

4.5 Discussion

This chapter acts as a foundation for motivating investigations in upcoming

chapters. We began the chapter by setting up a model for the provided real

data, the BIOSTAT-CHF data, which we will use throughout this thesis. Our

focus in this chapter was on fitting longitudinal data and finding challenges

researchers might face. The longitudinal data can be fit using two popular

statistics approaches: the Frequentist and the Bayesian approaches. Our first

goal was to determine which approach would yield better parameter estimates

and how each approach behaves when used to predict unseen data to reflect

real-world scenarios. We utilised resampling techniques to ensure a fair com-

parison between the two approaches. Our second goal was to handle the miss-

ingness that is common in such studies. In order to achieve this, we presented

the CRE method from the literature to handle MNAR in the response variable.

We also discussed the non-convergence issue that we encountered. We used

simulated data, where we already knew the actual data generating parameter

values, as well as real-world data using the BIOSTAT-CHF dataset.

In the Bayesian approach, we used the HMC utilized by the built-in func-

tion in R, the brm function Bürkner (2017). The HMC tends to converge to
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locations of higher posterior density faster than the Metropolis Algorithm be-

cause of the posterior gradient functions (Porter and Carré, 2014; Thomas and

Tu, 2021). Hamiltonian dynamics allows a chain to move through energy tra-

jectories with minimal computational cost, thereby decreasing correlations in

the chain. Additionally, the HMC efficiency remains unchanged despite deal-

ing with large dimensions; shorter chains are needed than MCMC (Hajian,

2007). Using the same dataset and number of iterations, the HMC produced

the results within 2.1 minutes, whereas the Metropolis Algorithm required

7.5 hours in our application. Additionally, the Metropolis algorithm requires

regular checks of the acceptance rate and adjusts the step size accordingly

(Porter and Carré, 2014). Thus, in this chapter and the upcoming chapters,

we will use the HMC algorithm for the baseline models to perform Bayesian

inference.

To build a model for the BIOSTAT-CHF dataset, which is a study designed

for heart failure, we used specific predictors that are known to affect the NT-

proBNP and are commonly used in heart failure literature. The study con-

ducted by Voors et al. (2017) also used this dataset to test the risk of mortal-

ity, HF hospitalisation, or a combination of both for patients with HF using

Cox regression. We replicated their results (these Cox regression results are

omitted from the thesis for brevity) and also found that NT-proBNP has a

large effect on the event of interest. Additionally, this variable had a lot of

missingness in the BIOSTAT-CHF study. This makes it a valuable variable to

investigate for improving methods of handling missing values in a biostatisti-

cal context. We considered this finding while proposing the model, given that

we are dealing with a continuous response. Although other variables in the

dataset could be used as predictors, for the purpose of testing the proposed

approaches in this chapter and upcoming chapters, we decided to use a sim-

ple model based on data exploration in Chapter 3 (e.g., Figure 3.3.4). This

resulted in a suitable model to test the upcoming methods and gain a better

understanding of their behaviour. However, in the future, it will be possible
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to scale up to larger models.

We used a linear mixed effect model in this chapter and throughout the thesis.

We evaluated the performance of the Bayesian and Frequentist approaches

using simulated data. We obtained similar results using both approaches,

regardless of the incorporation of informative prior distribution in Bayesian

inference. This implies that the data has a substantial impact on the infer-

ence. The estimates were close to the data-generating parameter values. Fur-

thermore, using the BIOSTAT-CHF dataset, the Frequentist estimates aligned

with the average of the posterior distribution and comparable out-of-sample

prediction. However, the Bayesian approach resulted in lower RMSE values

than the Frequentist approach, using the resampling technique for compar-

ison. The advantage of Bayesian inference is that it can produce a distri-

bution of parameter estimates. This can help decision-makers or healthcare

researchers understand the possible values of a parameter by identifying the

values with a high density and providing information about a more plausible

range of values anywhere within the interval. Another advantage of Bayesian

modelling is that it can include data from other sources and incorporate infor-

mative prior information (White et al., 2007).

For each simulation scenario, we conducted 100 repetitions, which were con-

strained by computational time. To assess the simulation uncertainty in our

results, we used the Monte Carlo standard errors (MCSE) for the bias esti-

mate to evaluate the precision of the parameter estimates from our analysis

model (Morris et al., 2019). A smaller MCSE indicates that the number of

simulated data repetitions is sufficient to obtain reasonably precise estimates.

Overall, the Monte Carlo standard errors ranged from a minimum of 0.01 to

a maximum of 0.07 for simulated data with four and eight repeated measures.

When only two repeated measures were used, this range increased to a min-

imum of 0.02 and a maximum of 0.11. These values are not relatively low

compared with the desired values in the literature (Cro et al., 2024; Mokkink
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et al., 2023; Seide et al., 2020). Nevertheless, they balanced the level of pre-

cision and computational time. The results showed unbiased estimates and

good out-of-sample performance with 100 repetitions. This analysis serves

as the foundation for the remainder of the thesis, where we address similar

trade-offs to ensure our analyses are both accurate and practical.

There were missing values in the BIOSTAT-CHF variables, so we used a

complete case analysis. We then applied a recent CRE method designed

to handle non-ignorable missingness in longitudinal model responses. This

method was introduced by Bhuyan (2019). However, our application differed

from theirs in that we used a linear parametric mixed model, whereas they

used a semiparametric model. We tested this approach using simulated data

and introduced a weakly informative prior to overcome non-convergence is-

sues. We applied the method to the BIOSTAT-CHF data with missingness

only in the response, as the method was designed to handle. We also com-

pared the CRE method with the baseline model that uses only available data.

The posterior estimates were similar, but the CRE method had the advantage

of imputing missing values of the response through Gibbs sampler iterations,

which showed similar density to the observed values.

Additionally, the CRE method indicated weak to moderate MNAR in the

log(NT-proBNP). As the log(NT-proBNP) increased, it was more likely to

be missing, which is obvious since high values of log(NT-proBNP) indicate

unhealthy patients who are more likely to have HF. Observations from the sec-

ond visit were also more likely to be missing, which is common in repeated

measures studies where patients are lost to follow-ups. As eGFR decreased,

the outcome was more likely to be missing, which makes sense because low

eGFR indicates unhealthy kidney function and may affect the follow-ups in

the study.
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The results of the BIOSTAT-CHF model show consistent findings using the

CRE method, available data (with only missing values in the response), and

complete case analysis, where participants with missing values are excluded,

leaving only those with fully observed data. This leads to the conclusion that

the centred eGFR and the second time visit have a negative correlation with

the log(NT-proBNP), while the centred age has a positive correlation with the

log(NT-proBNP). Additionally, patients in sinus rhythm have lower log(NT-

proBNP) levels compared to those with other heart rhythm types.

The BIOSTAT-CHF model has missing values in the model response and pre-

dictor eGFR, thus requiring the CRE method to handle missingness in both.

In this chapter, when the CRE method was applied, any missing value in the

predictors caused that row of data to be omitted from the model. This is un-

desirable since it reduces the dataset size, causing a loss of information. The

upcoming chapters will address this issue and explain how the CRE method

can be adapted accordingly. Furthermore, the CRE method will be applied to

various simulated data settings and compared with the generalised version of

the method that is developed in Chapter 5, Chapter 6 and Chapter 7. These

chapters will present the results of the CRE method.



Chapter 5

Proposed Two-Step Method

Some parts of this chapter have been submitted to and accepted for publication

in the 6th International Conference on Statistics: Theory and Applications

2024 (ICSTA’24) (Alzahrani et al., 2024).

5.1 Introduction

The Correlated Random Effects (CRE) method has been discussed in Chapter 4,

and one of the method’s drawbacks is that it cannot accommodate missing-

ness in the model predictors in addition to the MNAR in the response. In

longitudinal studies, it’s common to have missing data in both the predictor

and response variables due to participant dropout. The missingness in the

model predictors can appear in different studies, for example, clinical trials,

epidemiological studies and surveys (Tang and Zhao, 2014), it’s common to

have missing predictors in medical record data (Hsu et al., 2023) specifically

when the predictor variable is measured over time. To overcome this issue,

we propose a Two-Step method to deal with missing values in the response

and predictors, assuming the model response has non-ignorable missingness

and ignorable missingness in predictors.

Multiple imputation (Rubin and Schenker, 1986) is a popular method for han-

dling missing data. It has become widely used recently due to its availabil-

ity in development software, making it accessible to analysts (Hayati Rez-

100
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van et al., 2015). There is extensive literature on multiple imputation meth-

ods. Rubin (2004) demonstrates how multiple imputations can be used to

handle nonresponse in sample surveys and censuses. Graham et al. (2009)

discuss different MI methods for a normal model. Lee and Carlin (2010)

compared two multiple imputation methods: fully conditional specification

(FCS) and multivariate normal imputation (MVNI), which were found to pro-

duce unbiased results compared to complete-case analysis. Lee and Simpson

(2014) discusses the advantages and disadvantages of using multiple imputa-

tions in observational and experimental studies. Van Buuren and Groothuis-

Oudshoorn (2011) introduced and documented the "mice" package in R,

which uses the MICE Algorithm. The Multiple Imputation by Chained Equa-

tions (MICE) algorithm is a technique to impute missing values under the

MAR assumption (Van Buuren, 2018) due to its overall performance and ease

of use (Erler et al., 2016).

So far, our focus has been on modelling non-ignorable missing responses us-

ing the existing CRE method while assuming completely observed predictors.

This chapter aims to enhance the CRE approach by allowing missing values

in the model’s predictor. We propose the Two-Step method, where each step

is based on existing techniques, but the formulation and application of the

Two-Step method in this context represent a novel approach. The process

of the Two-Step method is illustrated in Figure 5.1.1. The process starts by

imputing the missing observations in the model’s predictor using the MICE

Algorithm, which is commonly used to impute incomplete predictors (Erler

et al., 2016) as a first step. Next, we apply the CRE method to impute miss-

ingness in the model response and produce model estimates simultaneously

as a second step. The MICE method works by creating multiple copies of

the data and replacing the missing data values in each copy. Then, a statisti-

cal method is used for each imputed dataset, which is, in this case, the CRE

method. Finally, calculate pooled estimates to get overall results and to allow

consideration of the uncertainty produced by the missing values (Van Buuren,
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2018).

Figure 5.1.1: The Two-Step method is a statistical technique that involves the following
steps. First, incomplete predictors are imputed using the MICE Algorithm, which results in
K-imputed datasets. Second, the CRE method is applied to the imputed predictors data for
each of these K datasets. Finally, the posterior distributions from each dataset are combined
to produce overall estimates. This is done by pooling the posterior distributions together.

In this chapter, we will discuss scenarios where the predictor variable has ig-

norable missing values, and the response variable has non-ignorable missing

values using the proposed Two-Step method. The chapter is divided into sev-

eral sections, each of which will cover different aspects. First, we will define

the MICE Algorithm in Section 5.2. Then, we will introduce the model in

Section 5.3 and the Two-Step method in Section 5.4. Section 5.5 will illus-

trate the creation of simulated data, and Section 5.6 will present the results,

which will include the findings associated with the simulated data in Subsec-

tion 5.6.1 and the application of the proposed method to the real-world dataset

(BIOSTAT-CHF) in Subsection 5.6.2. Finally, in Section 5.7, we will discuss

the main findings of the study.
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5.2 MICE Algorithm

Multiple Imputation by Chained Equations (MICE) is a method that is used to

impute missing data on each variable in an iterative manner. It is also known

as sequential regression multiple imputation (Huque et al., 2018). MICE re-

quires an imputation model for each variable with missing data. It works by

deriving the full conditional distribution for each incomplete variable, where

the incomplete variable is imputed conditional on all other variables. There-

fore, the imputed values are sampled from these distributions (Austin et al.,

2021; Van Buuren, 2018; White et al., 2011). Imputation under condition-

ally specified models can be implemented in available software (Van Buuren

and Groothuis-Oudshoorn, 2011), such as R (R Core Team, 2020). Various

research studies discuss the imputing longitudinal data using LMM for the

imputation model (Resche-Rigon and White, 2018; Schafer and Yucel, 2002;

Van Buuren et al., 2011). Huque et al. (2018) carried out a comparison study

between Multiple Imputation (MI) approaches for repeated measures. The

study found that MI methods provided less biased estimates. However, some

approaches based on generalised linear mixed-effects model performed well

in imputing missing data in longitudinal studies.

The MICE Algorithm begins by choosing a random sample of the incomplete

variable’s observed values and setting up the incomplete variable imputation

model. In each iteration, the process goes through all the incomplete vari-

ables and samples the model’s parameters from its conditional distribution

based on the observed part of the current variable values and the latest com-

pleted data values of other variables. Then, it draws imputed values from the

predictive distribution of missing values given the other variables and param-

eters. Finally, it fills in the incomplete variable with the imputed values from

the last iteration. The algorithm creates multiple copies (K) of the data and

replaces the missing values in each copy with predicted values from observed

data. Then, a standard statistical method for each imputed dataset is applied.
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Finally, the pooled estimates are computed to get general results and to con-

sider the uncertainty produced by the missing values (Van Buuren, 2018). The

process of the MICE Algorithm for a dataset consists of vectors of variables

XXX is outlined in Algorithm 5, based on Van Buuren (2018).

Algorithm 5 MICE Algorithm
-Specify an imputation model: p(XXXmis

j | XXXobs
j ,XXX− j,XXX j′).

- For each j fill in initial values XXX0
j by random drawing from XXXobs

j

-Repeat w = 1, . . . ,W iterations

-Repeat j = 1, . . . ,J incomplete variables

-Define DDDw = [XXXw
1 , . . . ,XXX

w
j−1,XXX

w−1
j+1 , . . . ,XXX

w−1
J′ ] as the currently complete data not in-

cluding the variable XXX j.

-Draw φφφ
w
j ∼ p(φφφ w

j | XXXobs
j ,DDDw,XXX j′).

-Draw imputations XXXw
j ∼ p(XXXmis

j | XXXobs
j ,DDDw,XXX j′,φφφ

w
j ).

-end of J.

-end of W .

where XXX j is the jth incomplete variable, j = 1, . . . ,J, and XXX j′ is the j′
th

com-

plete variable, j′ = 1, . . . ,J′ and X− j is all other incomplete variable except

XXX j. XXXmis
j and XXXobs

j are the missing and observed observations in the jth vari-

able, respectively. The imputation model imputes missing values for the in-

complete variable by using the incomplete variable as the outcome variable

and the other variables as predictors, as expressed in Equation 3.4.4. The

vector of the imputation model parameters for variable j is represented by

φφφ j. The MICE Algorithm is a useful tool for producing multiple imputations

by executing it in parallel K times. Typically, it requires only a few itera-

tions, generally between W = 5 and 10 (Van Buuren, 2018). This algorithm



5.3. PROPOSED MODEL 105

works as a Gibbs sampler, which is a Bayesian simulation technique. It takes

samples from the conditional distributions to obtain samples from the joint

distribution. Conditional distributions in MICE represent the distributions of

missing data variables given the observed data variables (Van Buuren, 2018).

5.3 Proposed Model

Consider a continuous response measured over m different time points from

n subjects and a set of predictors, some of which may have partially observed

values. The response for the ith subject at the tth time point, denoted as Yi(t),

can be modelled in a way similar to the CRE model presented in Chapter 4 as

follows:

Yi(t) = µ +
J

∑
j=1

β jX ji(t)+
J′

∑
j′=1

λ j′X j′i(t)+uiZ̃i(t)+ ei(t), (5.3.1)

where J′ and J represent the number of predictors of fixed effects that are

fully observed and partially observed, respectively. µ is the fixed intercept

that represents the mean of the overall population. The jth partially observed

fixed effects coefficient is denoted by β j, while the j′
th

fully observed fixed

effects coefficient is denoted by λ j, X ji(t) is the value of the jth partially

observed fixed effect for subject i at time t and X j′i(t) is the value of the

j′
th

fully observed fixed effect for subject i at time t. Additionally, subject-

specific random effects ui are included to capture longitudinal dependence

and are assumed to be i.i.d from N(0,σ2
B) and Z̃i(t) is the value of the random

effect for subject i at time t. The residuals ei(t) are assumed to be i.i.d from

N(0,σ2
A). Similar to Section 4.4.1, we can represent the regression model

defined in Equation 5.3.1 as a latent variable:

Y ∗
i (t) = µ +

J

∑
j=1

β jX ji(t)+
J′

∑
j′=1

λ j′X j′i(t)+uiZ̃i(t)+ ei(t), (5.3.2)
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where Yi(t) = Y ∗
i (t) if it’s observed and Yi(t) is missing otherwise. Consider

a probit regression model that defines the missing response mechanism with

predictors as a normal distribution latent variable as follows:

p(Ui(t) = 0|Yi(t)) = 1−Φ

(
τ +

L

∑
l=1

θlXli(t)+ viZ̃i(t)

)
, (5.3.3)

where, L represents the total number of predictors, which includes both ob-

served and partially observed predictors (L = J
′
+ J), the function Φ() is the

standard normal cumulative distribution function, and the predicted z-score of

missing propensity is
(
τ +∑

L
l=1 θlXli(t)+ viZ̃i(t)

)
, which represent the miss-

ing response mechanism model. The function Φ returns the proportion of the

area under that z-score in a standard normal density. Furthermore, the probit

model includes a zero value as a threshold, which divides the standard nor-

mal distribution into two parts. If U∗(t) is greater than zero then Ui(t) = 1

and if U∗(t) less than zero then Ui(t) = 0, where, U∗
i (t) is a continuous latent

missingness indicator variable for subject i at time t modelled as:

U∗
i (t) = τ +

L

∑
l=1

θlXli(t)+ viZ̃i(t)+ εi(t), (5.3.4)

where θl denotes the regression coefficients of the lth fixed effects expresses

the systematic influence of missingness due to the unobserved response vari-

able, τ is the fixed intercept represents the mean of the overall population.

The subject-specific random effects vi capture the longitudinal dependence

and assumed to be i.i.d N(0,σ2
C), and the residuals εi(t) are assumed to be

i.i.d from N(0,1). Moreover, the random effects ui and vi are correlated ran-

dom vectors following a multivariate normal distribution with mean vector 0

and covariance matrix Σ =

(
σ2

B σ2
D

σ2
D σ2

C

)
, where σ2

D represent the covariance

between the random effects ui and vi.
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5.4 Two-Step Method

The Two-Step method is a helpful method that involves using two different

techniques to handle missing data. Each technique has its own strength. The

CRE method has been shown in Bhuyan (2019) to effectively handle non-

ignorable missingness in the model response, while the MICE Algorithm ef-

fectively handles ignorable missingness in the model predictors. Combining

these approaches could extend the CRE method to also handle missingness in

the model predictors, thereby obtaining more accurate overall results in prac-

tice.

In the Two-Step approach, we will use the response and predictor variables

to impute the predictor variables that have missingness. This is because the

imputation and analysis steps are performed separately, and the imputation

model must include the response variable and other predictors (Erler et al.,

2016; Moons et al., 2006) to identify and capture any relationships present in

the data, which can improve the imputation accuracy. The recently recom-

mended number of imputations ranges from five to ten for more accurate esti-

mates of the regression coefficients and standard errors (Austin et al., 2021).

We will produce ten imputed MICE datasets using the Two-Step method,

which may be computationally expensive but can increase the accuracy of the

results. Estimates based on a low number of imputations can be acceptable.

However, it will increase the variability across repeated analyses, leading to

less precise inferences. In contrast, using a large number of imputations pro-

duces more consistent estimates across repeated analyses, which reduces the

Monte Carlo error. Furthermore, a large number of imputations may be nec-

essary for studies that compare different methods (White et al., 2011).

The Two-Step method starts by using the MICE Algorithm to produce multi-

ple imputed datasets of the missing observations in the analysis model’s pre-

dictors. Next, the CRE method is applied to each imputed data set to handle
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missingness in the model response, and the analysis model is estimated si-

multaneously as a second step using Gibbs sampling as mentioned in Section

4.4.4. Then, the overall parameter estimates are obtained by combining the

posterior distributions. This is done by aggregating the posterior distributions

from each dataset into a single distribution.

Let XXXJ be the incomplete predictor, XXX−J be the other incomplete predictors

except for XXXJ and XXXJ′ be all fully observed predictors, φφφ J is the vector of

regression coefficients for the imputation model of XXXJ, and K is the number

of imputed datasets. The Two-Step method presented in Algorithm 6.
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Algorithm 6 Two-Step Algorithm
for 1, . . . ,K generated dataset do

1-Specify an imputation model: p(XXXmis
j | XXXobs

j ,XXX− j,XXX j′).

- For each j fill in initial values XXX0
j by random drawing from XXXobs

j

for w = 1, . . . ,W iterations do
for j = 1, . . . ,J incomplete variables do

-Define DDDw = [XXXw
1 , . . . ,XXX

w
j−1,XXX

w−1
j+1 , . . . ,XXX

w−1
J′ ] as the currently complete data not in-

cluding the variable XXX j.

-Draw φφφ
w
j ∼ p(φφφ w

j | XXXobs
j ,DDDw,XXX j′).

-Draw imputations XXXw
j ∼ p(XXXmis

j | XXXobs
j ,DDDw,XXX j′,φφφ

w
j ).

end of J.
end of W.
end of step one.

2- Apply the CRE method for the joint distribution p
(

ΘY,U ,YYY ∗,UUU∗ | YYY ,UUU ,XXXkkk
JJJ,X

k
J′

)
using Gibbs sampler in Algorithm 4.4.4 for each K generated datasets.

end of K.
end of step two.

-Combine the K posterior distributions by pooling them together into one posterior
distribution.

As a consequence of using this approach, there will be K posterior distribu-

tions for each parameter estimate. Therefore, these posteriors will be com-

bined by mixing them into a single posterior for each analysis model parame-

ter to calculate the parameter inference. The posterior distribution is approxi-

mated by these (K) mixed drawings, aligning with the principles of Bayesian

statistical inference described by Gelman et al. (2013) and recommended by
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Zhou and Reiter (2010). However, since the chains are from different data

sets, the combined chain might exhibit non-convergence; for example, the

Gelman-Rubin statistic could be greater than 1.1. Hence, the convergence

should be inspected for each chain (Bürkner, 2017).

The Two-Step method involves two main steps: the MICE Algorithm and

the CRE method. During the first step, the MICE procedure implements a

Linear Mixed Effect Model (LMM) to impute missing values for partially ob-

served time-varying predictors, given all other variables.

In the Two-Step method, we used the 2l.pan function from the MICE pack-

age (Van Buuren and Groothuis-Oudshoorn, 2011) in R (R Core Team, 2020)

to impute missing data. The function uses Gibbs sampler and hierarchical

models, assuming a conditional LMM for the partially observed time-varying

predictor (Huque et al., 2018; Schafer and Yucel, 2002).

5.5 Creating Synthetic Data for Simulation

In this section, we aim to evaluate the performance of the proposed method in

dealing with non-ignorable missingness in the response and ignorable miss-

ingness in the predictor. To achieve this, we generate simulated data that

demonstrates MNAR in the model response and MAR in the model predictor

in a longitudinal context. We will use the simulation data mentioned in Sec-

tion 3.4. The missing values on the response Yi(t) were generated based on

the following model:

U∗
i (t) = θ0 +θ1X1i(t)+θ2X2i(t)+θ3X3i(t)+ viZ̃i(t)+ εi(t), (5.5.1)

where θ0 is the overall intercept, θ1, θ2 & θ3 are regression coefficients as-

sociated with the fixed effects. The missing data indicator U for each ob-

servation is determined by sampling from the binomial distribution, with a

success rate equal to the observation’s missingness probability from the pro-
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bit model, which is defined in Section 2.6. The probit regression equation

connects missingness probabilities of the response Y to values of Y through

the latent missingness indicator regression model U∗ for non-ignorable miss-

ingness. If the corresponding Y is observed, the value of U is one; if it is

missing, the value is zero.

The values of θθθ = [θ0,θ1,θ2,θ3] were derived to produce the desired missing

data proportion. Table 5.5.1 shows these values for each missingness percent-

age and number of repeated measures. Moreover, vi are assumed to be N(0,2)

and the residuals εi(t) follows N(0,1). The covariance matrix associated with

the random effects is Σ =

(
2 −1

−1 2

)
.

py = 20% py = 40% py = 60%

Parameter m=2 m=4 m=8 m=2 m=4 m=8 m=2 m=4 m=8

θ0 -2 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8
θ1 -0.3 -0.4 -0.4 -0.4 -0.4 -0.4 -0.7 -0.7 -0.7
θ2 3 3 2 1 1 1 1 1 1
θ3 7 4 4 4 4 4 4 4 4

Table 5.5.1: The table presents the values of the coefficients θθθ for the missing response
indicator regression model, for various proportions of missingness and a number of repeated
measures. This information is used to generate missing response values for the Two-Step
method, where py represents the percentage of missing values in the model response, and m
indicates the number of repeated measures.

The missing values for predictor Xi1(t) were generated using the function

deleteMARcensoring() in the missMethod package (Rockel, 2020)

in R. This assumes that the missingness in Xi1(t) is related to the values of

Xi2(t). Missing values are assumed in Xi1(t) whenever the corresponding

Xi2(t) value is within the pth quantile, where p is the proportion of missing-

ness. This approach enforces the MAR mechanism, where the missing values

of Xi1(t) depend on the observed values of another variable, Xi2(t).
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We produced simulation data with 100 subjects, and we tested the impact

of the following factors by varying their values. The first factor is the number

of repeated measures per subject, which we set to m = 2, m = 4, or m = 8.

The second factor was the proportion of missing data, which we varied in dif-

ferent ways. We considered cases where the response variable had 20%, 40%,

or 60% missing values, while the incomplete predictor variables had a fixed

missing proportion of 20%. We also explored scenarios where the incomplete

predictor variables had 20%, 40% or 60% missing values, and in such cases,

the response variable correspondingly had 20% missing values. By doing so,

we were able to examine the effectiveness of the proposed method under dif-

ferent proportions of missing data. To improve generalisability, we produced

100 replications for each condition to understand how the method behaves

under different conditions.

The missingness of the generated data is shown across different percentages

of incomplete predictors and responses in Figure 5.5.1. The observed and

missing values of the simulated datasets are illustrated for four repeated mea-

sures. Missing values in the response occur when the response variable values

themselves are lower, confirming that MNAR is the missing mechanism. Ad-

ditionally, the missing values in the incomplete predictor X1 are associated

with small values in the continuous complete predictor X2, indicating that

MAR is the missing mechanism. Comparable patterns are found in different

values of the repeated measures m = 2 & 8.
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Figure 5.5.1: Scatter plot showing the association between the response (y-axis) and the
complete predictor (x-axis) on the left-hand side plots and between the incomplete predic-
tor (y-axis) and the complete predictor (x-axis) on the right-hand side plots. The black dots
represent observed values (i.e. the available data), while the red triangles represent missing
values. The green crosses show the full data, including both observed and missing values.
The plot also displays three regression lines, representing different observed and missing val-
ues and illustrating the varying trends for MNAR in the response and MAR in the incomplete
predictor. The missingness in the response is dependent on the small values of the response
itself, while the incomplete predictor’s missingness is dependent on the small values of the
complete predictor. Both represent the desired missingness mechanism.
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We will test the performance of the proposed Two-Step method using the

simulated data. This enables us to evaluate the proposed method compared to

some baseline approaches, including the full data that contains all observed

data before excluding any missing values to reflect the best-case circumstance

and the available data, where any missing values (in the response or predic-

tor variables) cause that entire row to be removed from the dataset. We will

also compare the findings of the Two-Step method with the results obtained

from other methods. These methods include using the MICE Algorithm for

imputing the missing values in the model response and predictor and the CRE

method (discussed in Chapter 4) when there are fully observed predictors.

In this chapter, all models will be fitted using R (R Core Team et al., 2013),

which employs MICE, Two-Step, CRE and baseline methods. The MCMC

simulations will performed for 50,000 iterations, with a thinning rate of 10

applied and half of the iterations designated as a burn-in phase. A single

chain will be produced due to the computational time and storage of the Two-

Step method being cost-effective, and to assess convergence, we examine the

Geweke convergence statistic (defined in Section 2.4.6) for individual param-

eters and consider convergence achieved if all absolute values of the test statis-

tic are ≤ 2. We also visually examine the trace plots for each parameter. Based

on these criteria, all the runs discussed in this chapter are deemed to have con-

verged. The brm function is used to fit the full and available data methods,

and the brm_multiple function is used to fit and pool the results of the

MICE imputed data by combining the posterior distributions (Bürkner, 2017).

Both functions belong to the brms package (Bürkner, 2017), which uses the

HMC algorithm defined in Section 2.4.5, we will produce three chains, and

each one was executed for 2000 iterations.
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We will compare the Two-Step method performance based on model pa-

rameter estimates accuracy via Root Mean Square Errors (RMSE), Relative

Bias (RB), and Coverage Rate (CR). To ensure equal scale, Weighted Root

Mean Square Errors (WRMSE) are used to assess the overall method accu-

racy across all models of interest parameters, which were weighted by the

data-generating parameters. We discussed these criteria in Section 2.7. We

will investigate how these criteria are distributed across 100 replications.

5.6 Results

This section presents the results of the proposed Two-Step method and the

comparative methods, applied to simulated data and the BIOSTAT-CHF dataset.

5.6.1 Simulated Data Results

The results of the Two-Step method using the CRE method demonstrate that

imputed response values match the true generated values. Figure 5.6.1 shows

the average of imputed values at each iteration of the Gibbs sampler of the

response, falling within the ±2 Standard Deviation (SD) range of the average

imputed values across different proportions of missingness in the response

and for four repeated measures. This conclusion applies to other repeated

measures and across different proportions of missingness. These conclusions

demonstrate how well and consistently the Two-Step method captures true

values that were not seen.
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Figure 5.6.1: Scatter plots represent the model response Y on the y-axis and the fully observed
predictor X2 on the x-axis to assess the true values (depicted as black circles) against the
average of imputed values and the ±2 SD (represented by grey triangles and vertical lines)
using the Two-Step method for various missingness in the model response with four repeated
measures. The true values are mostly enclosed within the imputed values region.

In order to assess how well the Two-Step method performs in comparison

to baseline models, CRE method and MICE Algorithm method of the re-

sponse and predictor, we calculated the Weighted Root Mean Squared Error

(WRMSE) for each generated dataset from the simulated study. We then vi-

sualized the distribution of the WRMSE for different applied models, propor-

tions of missingness, and repeated measures in Figure 5.6.2. The results show

that the Two-Step method has similar WRMSE values to the CRE method and

MICE Algorithm method, except with slightly larger values and uncertainty

of the WRMSE when using the MICE Algorithm with 60% missing values

in the incomplete predictor model and with m = 2 and 4. The available data

method, on the other hand, has larger WRMSE values overall and even larger

WRMSE uncertainty with 60% missing values in the incomplete predictor

model.
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Considering the general inequality among methods, we will analyse the par-

ticular differences for every analysis model parameter next. The RMSE analy-

sis displays the degree of variation between the estimated and data-generating

parameters, giving us insight into how accurate our estimations are with the

data-generating parameters.

Figure 5.6.2: Boxplots represent the overall WRMSE for each method across different pro-
portions of missing data and repeated measures. The y-axis represents the WRMSE values,
while the x-axis represents one of the proportions of missing data in the model response and
incomplete predictor. Each boxplot corresponds to one of the applied methods, and each
plot represents different repeated measures. The results show that all methods have similar
WRMSE, with a slight increase in the available data method.
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The Two-Step method has been shown to produce results similar to the CRE

and MICE Algorithm methods in terms of the RMSE of the analysis model

fixed coefficients and variance components. However, the CRE method pro-

duces less RMSE than the Two-Step and MICE Algorithm methods in cases

where a large proportion of missing data (60%) is in the model’s incomplete

predictor.

When analysing residual variance σ2
A, the MICE Algorithm method produces

slightly larger RMSE values than the Two-Step method in situations where

60% of data is missing in the model incomplete predictor. Additionally, the

MICE Algorithm method produces larger RMSE values and higher levels of

uncertainty for the between-individual variances σ2
B when m = 2, across dif-

ferent proportions of missing data, and when 60% of data is missing in the

model incomplete predictor with m = 4 and 8.

On the other hand, the available data method produces larger RMSE values

overall and more substantial RMSE uncertainty when there is a large propor-

tion of missing data (60%) in the model incomplete predictor, specifically for

the fixed effect coefficients. The RMSE distributions representing β0 and β1

can be found in Figure 5.6.3, while the RMSE distribution for variance com-

ponents can be found in Figure 5.6.4 across different repeated measures and

proportions of missingness. The results of RMSE for β2 and β3 can be found

in Section B in the Appendix.



5.6. RESULTS 120

Figure 5.6.3: Boxplots illustrate the RMSE of β0 in the left-hand side plots, and β1 in the
right-hand side plots for each method applied to various proportions of missingness and dif-
ferent repeated measures. The y-axis shows the RMSE values, and the x-axis represents one
of the proportions of missingness in the model response and incomplete predictor. Each box-
plot represents one of the applied methods. It’s obvious that the available data method has
quite larger RMSE values than other methods.
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Figure 5.6.4: Boxplots illustrate the RMSE of σ2
A in the left-hand side plots, and σ2

B in the
right-hand side plots for each method applied to various proportions of missingness and dif-
ferent repeated measures. The y-axis shows the RMSE values, and the x-axis represents
one of the proportions of missingness in the model response and incomplete predictor. Each
boxplot represents one of the applied methods. It is evident that the available data method
produces larger RMSE values compared to other methods. Also, the available data and MICE
Algorithm methods have larger RMSE values and uncertainty for σ2

B with m=2.
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The RB evaluates the model estimates to identify patterns of overestimation or

underestimation, pointing out differences in the precision of data-generating

parameters across all applied methods. Results of simulated data show that

the Two-Step method has a similar RB to the CRE method, MICE Algorithm

method, and available data method for β1 and β2, with larger RB uncertainty

when there is 60% missingness in the model’s incomplete predictor for β2 and

β0 using the available data method. The Two-Step method has a similar RB

to the CRE method for β0 and β3. However, the Two-Step method has larger

RB uncertainty when there is a 60% missingness in the model’s incomplete

predictor.

The available data method and the MICE Algorithm method tend to under-

estimate the intercept parameter, and this increases as the number of repeated

measures increases, and with a larger proportion of missingness in the model

response (40% and 60%). On the other hand, these methods tend to overesti-

mate β3, which increases as the number of repeated measures increases, with

a larger proportion of missingness in the model response (40% and 60%). The

results for β0 and β1 are presented in Figure 5.6.5, while β2 and β3 results can

be found in Section B in the Appendix.

From Figure 5.6.6, the MICE Algorithm method underestimates the residual

variance and overestimates the between-individual variance as the number of

repeated measures decreases. Additionally, the MICE Algorithm method and

the Two-Step method tend to underestimate the residual variance and overes-

timate the between-individual variance with 60% missingness in the model’s

incomplete predictor.

We have assessed the accuracy of parameter estimation for analysis model

parameters and found some valuable insights into the performance of vari-

ous methods. The results show that the Two-Step method outperforms the

available data method, which is typically used for longitudinal data in terms
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of RMSE. This indicates that the Two-Step method has superior precision

in estimating parameters. Additionally, it’s important to note that the avail-

able data and MICE Algorithm methods demonstrate biased estimation when

large proportions of missing data are present in the model’s incomplete pre-

dictor, while the proposed Two-Step method only showed bias for the variance

components with 60% missingness in the incomplete predictor. On average,

the Two-Step estimates are closer to the data-generating parameters than the

available data method.

This suggests that the Two-Step method is more effective in reducing estima-

tion errors. Furthermore, the relative bias analysis reveals that the Two-Step

method provides unbiased estimations, which implies that it consistently pro-

vides estimates that are centred around the true values. The MICE Algorithm

and Two-Step methods produced biased estimates for the variance compo-

nents. This was due to applying the MICE Algorithm in the first step of the

Two-Step method, which produced biased estimates for the variance compo-

nents. This occurred when there were 60% missing values in the incomplete

predictor.

The CR assesses how effectively each approach covers the data-generating

parameters of the analysis model parameters. For most analysis model param-

eters, the CR varies between 0.9 and 0.99, with some exceptions. For instance,

the model intercept β0 and slope β3 using the MICE Algorithm method has

low CR for all proportions of missingness with m = 8 and high proportions of

missingness in the model response (40% and 60%) with m = 2 and 4. Addi-

tionally, for 60% missingness in the incomplete predictor with m = 2 for the

model intercept β0 and slope β1 for 60% missingness in the model response

with m = 2 and 8. The available data method has low CR with 20% missing-

ness in the model response and incomplete predictor with m = 8 for β0 and

all proportions of missingness except 60% missingness in the model response

with m = 8 for β3.
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Figure 5.6.5: Boxplots illustrate the RB of β0 in the left-hand side plots, and β1 in the right-
hand side plots for each method applied to various proportions of missingness and different
repeated measures. The y-axis shows the RB values, and the x-axis represents one of the
proportions of missingness in the model response and incomplete predictor. Each boxplot
represents one of the applied methods. It’s obvious that the available data method RB uncer-
tainty increases when there is 60% missingness in the incomplete predictor.
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Figure 5.6.6: Boxplots illustrate the RB of σ2
A in the left-hand side plots, and σ2

B in the right-
hand side plots for each method applied to various proportions of missingness and different
repeated measures. The y-axis shows the RB values, and the x-axis represents one of the
proportions of missingness in the model response and incomplete predictor. Each boxplot
represents one of the applied methods. The Two-Step and MICE Algorithm methods produce
biased results when there is 60% missingness in the incomplete predictor.
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Regarding the variance components, the MICE Algorithm method CR is low

for 60% missingness in the model incomplete predictor for different repeated

measures. The CRE method has a low CR for the between-individual vari-

ance σ2
B with m = 4 for all missingness proportions and with m = 2 for 20%

missingness in the model response regardless of the proportion of missing-

ness in the model incomplete predictor. The Two-Step method has a low CR

for residual variance σ2
A with m = 8 and 60% missingness in the model in-

complete predictor. Section B in the Appendix contains plots related to the

CR for each analysis model parameter.

Regarding out-of-sample prediction performance, it has been observed that

the Two-Step method and the CRE method perform better than the available

data method and the MICE Algorithm method. The Two-Step method per-

forms better than the available data method as the proportion of missingness

increases. On the other hand, the MICE Algorithm method outperforms the

available data method. The results for one scenario of a proportion of miss-

ingness are shown in Figure 5.6.7, while the rest can be found in Section B in

the appendix.

As the number of repeated measures increases, the RMSE of the missingness

response model parameters using the Two-Step method decreases. The slope

θ1 has the lowest RMSE value and uncertainty among all the parameters. As

the number of repeated measures increases, the model’s parameters become

unbiased. However, the covariance parameter between the random effects σ2
D

has larger RB uncertainty as the repeated measure increases. The covariance

parameter between the random effects σ2
D has a low CR with m = 2 and 4

for 20% missingness in the model response and incomplete predictor. The

between-individual variance parameter in the missing response model has a

low CR with m = 2 for 20% missingness in the model response, regardless

of the missingness in the incomplete predictor. The fixed effect coefficient

shows a low CR with m = 8 for 60% missingness in the incomplete predictor,
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except the model’s intercept θ0. In all other cases, the CR of the missingness

response model parameters using the Two-Step method varies between 0.9

and 0.99. The CR plots can be found in Section B in the appendix.

Figure 5.6.7: The density plots of the out-of-sample RMSE for different methods across var-
ious repeated measures with 20% missingness in the response and 40% in the incomplete
predictor. Each density curve corresponds to one of the methods used, and each plot corre-
sponds to a different value of repeated measures. The Two-Step method performs better than
the available data method, which appears to have less density and slightly shifted to the right.
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Figure 5.6.8: Boxplots illustrate the RB of the missingness response model parameters using
the Two-Step method across various proportions of missingness and repeated measures. The
y-axis represents the RB values, while the x-axis shows the proportion of missingness, and
each boxplot represents a specific missingness response model parameter. Each plot corre-
sponds to a different repeated measure value. As the repeated measure increases, the model
parameter becomes more unbiased.
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5.6.2 Real Data Results

Many longitudinal real-world datasets are subject to missing values, which

should be handled carefully in the statistical analysis. In order to handle

missingness in the real-world BIOSTAT-CHF dataset, we applied the Two-

Step method to deal with missing values in the model response and predic-

tor. We have also applied the MICE Algorithm method and available data as

baseline approaches. We have used the Bayesian Hierarchical Model (BHM)

using HMC expressed in Section 2.4.5 as a default method for dealing with

repeated measures (mixed models) for the available data approach. The im-

plementation of the Two-Step and baseline approaches in the BIOSTAT-CHF

dataset is based on the model described in Equation 4.2.2 in Section 4.2.

The MICE approach was applied to the response variable "log(NT-proBNP)"

and to the incomplete predictor variable "c.eGFR", which have missing val-

ues, to generate ten imputed datasets. The density plot in Figure 5.6.9 shows

the blue curves for the observed values of log(NT-proBNP) and c.eGFR, over-

lain by the ten generated imputed datasets in red curves. The plot indicates

that the imputation process effectively captures the underlying distribution of

the variables, resulting in imputed values that are very similar to the observed

values. However, there is a slight leftward shift in the MICE-generated data

for log(NT-proBNP) in comparison to the original data.
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Figure 5.6.9: The density plot illustrating the distribution of the "log(NT.proBNP)" is on
the left, and the incomplete predictor "eGFR" (which has been centred) is on the right in
the BIOSTAT-CHF dataset. The plot displays a blue curve for the observed dataset and red
curves for ten MICE-imputed datasets. The observed and imputed data have similar densities,
except the imputed data for the response shifted leftward from the observed data distribution.

Figure 5.6.10 shows the posterior distributions obtained from three different

methods: the Two-Step method, the available data method, and the pooled es-

timates from the MICE Algorithm. The posterior distribution of the model’s

parameters indicates that the Two-Step and available data methods have sim-

ilar posterior distributions. However, the pooled posterior distribution from

the MICE Algorithm differs noticeably, particularly in the variance compo-

nent. The Kolmogorov-Smirnov test indicates that eGFR, Pacemaker, and

the residual variance σ2
A have p-values greater than 0.05. This suggests no

significant difference between the Two-Step and available data methods in

these parameters. Additionally, the covariance between the random effects is

σ2
D =−0.25, which suggests that there is weak/moderate MNAR evidence of

the response variable. The result is similar to what we found when apply-

ing the CRE method in Section 4.4.7. It is worth mentioning that the pooled

posterior distribution from the MICE Algorithm appears less smooth than the
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other methods despite using 10,000 iterations with HMC, with the Gelman-

Rubin diagnostic being less than 1.1.

Figure 5.6.10: The plot consists of three curves representing different methods used in the
BIOSTAT-CHF model. The black solid curve represents the posterior distribution of the
Two-Step method, while the dark grey dashed curve represents the available data method.
The light grey dashed curve represents the MICE imputed response and predictor. Each
plot represents one of the model parameters. The MICE Algorithm converged to variance
parameter estimates different from the Two-Step and available data methods.

The density of the observed and Two-Step imputed response variable values

are shown in Figure 5.6.11. Each grey curve is a different draw of the latent

variable from the posterior, whereas the black curve represents the observed

data. The similarities between the observed and imputed data density curves

indicate that the imputation process successfully preserved the overall data

distribution.
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Figure 5.6.11: Density plot show the response observed values in the black solid curve and
Two-Step imputed response values in the grey dashed curves, where each curve is a different
draw of the latent variable from the posterior using Gibbs sampler. The density of the imputed
values using the Two-step method at each Gibbs sampler iteration is similar to the density of
the observed values.

5.7 Discussion

We have proposed a Two-Step method to address the issue of missing data

when it occurs in both the analysis model response and predictor in the lon-

gitudinal study. This is a common occurrence in longitudinal datasets, as the

variables are measured repeatedly over time to analyze their effects over time

and draw sufficient conclusions. Our proposed method aims to handle such

missingness effectively and draw accurate conclusions from the analysis. The

Two-Step method is used to handle missing data in two stages. Firstly, it em-

ploys the MICE Algorithm to handle missing values in the analysis model

predictor and generates multiple complete versions of the data. Subsequently,

it applies the CRE method, which is a recent approach for dealing with non-

ignorable missingness in the model response for longitudinal data. Bhuyan

(2019) introduced this method to be efficient using Gibbs sampling. Since

the MICE Algorithm assumes the MAR mechanism, which deals with ignor-

able missingness, and the CRE method was proposed to handle non-ignorable
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missingness in the response, the Two-Step method is designed to handle non-

ignorable missingness in the analysis model response and ignorable missing-

ness in the analysis model incomplete predictor.

The proposed Two-Step method was tested using simulated data. The re-

sults showed that the method can accurately estimate the true generated val-

ues of the response through Gibbs sampling. The analyst can then use this

estimation to impute data that resembles the unobserved data. Additionally,

the Two-Step method outperforms the available data and MICE Algorithm

methods in terms of the overall analysis model’s parameters WRMSE. When

it comes to out-of-sample performance, both the Two-Step and CRE methods

perform similarly (Given that the CRE method has fully observed explanatory

variables, whereas the Two-Step method can handle up to 60% missingness in

the explanatory variables) and better than the MICE Algorithm and available

data methods. These results are quite promising, especially for longitudinal

studies and healthcare, as they suggest that the Two-Step method produces

reliable conclusions even with unseen or untrained data. This indicates that

the proposed method handles missing data more effectively, leading to more

reliable clinical decisions.

In terms of estimating the individual analysis model’s parameters using the

RMSE criteria, the Two-Step and MICE Algorithm methods show similar

performance to the CRE method. However, the Two-Step and MICE Algo-

rithm methods tend to have higher RMSE values and uncertainty when there

is 60% missingness in the incomplete predictor, with the Two-Step method

having a lower RMSE than the MICE Algorithm method for the fixed effects

coefficient. The Two-Step method has a smaller RMSE than the MICE Algo-

rithm method for estimating σ2
A with 60% missing values in the incomplete

predictor. Similarly, the MICE Algorithm method shows a larger RMSE in

estimating σ2
B when m = 2, and with 60% missingness in the incomplete pre-

dictor for m = 4 and 8. Additionally, the available data shows a noticeably



5.7. DISCUSSION 134

larger RMSE compared to other methods, specifically for analysis model fixed

effects coefficients with 60% missing values in the incomplete predictor.

Generally, the applied methods result in unbiased estimates for the analysis

model parameters. Except for the available data, which tend to have larger

RB uncertainty with 60% missingness in the incomplete predictor in some

fixed effects coefficients. The Two-Step method and the CRE method are

similar in their performance. However, the Two-Step method has larger RB

uncertainty if there is 60% missingness in the incomplete predictor. This is

due to the fact that the Two-Step method is designed to handle extra miss-

ingness compared to the CRE method, where the latter only considers fully

observed predictors. As a result, the proposed method introduces extra error

into the model. The available data method and the MICE Algorithm method

produce biased results for β0 and β3 as the repeated measures increase and

when there is a larger proportion of missingness in the response. The MICE

Algorithm method produces biased estimates of variance parameters with low

repeated measures. The MICE and Two-Step methods produce biased vari-

ance estimates with 60% missingness in the incomplete predictor. The MICE

Algorithm method struggles to estimate the data-generating parameters accu-

rately when the model response has a high proportion of missing values for

β0 and β3. In some scenarios, the CRE method also struggles to capture the

data-generating of the between-individual variance σ2
B parameter.

Regarding the response missingness model parameters using the Two-Step

method, the estimates become more accurate and unbiased as the repeated

measures increase. Notably, the slope θ1 has less uncertainty regarding RMSE

and is therefore inferred more consistently. This slope parameter is associ-

ated with the incomplete predictor that has been imputed. The covariance

between the random effects of the response models, σ2
D, showed unbiased re-

sults with repeated measures of more than two. However, it has higher uncer-

tainty, which indicates that the proposed Two-Step method can estimate the
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possibility of missingness in the model response characteristic due to MNAR

across various data samples. Nevertheless, the proposed method was unable

to capture the actual value of σ2
D with low repeated measures and low missing

values in the response and incomplete predictor.

The Two-Step method was applied to the BIOSTAT-CHF dataset to deter-

mine how well it can handle missing data in a real-world scenario. The results

showed that the proposed Two-Step method produced comparable estimates

to the available data, but the Two-Step method has the advantage of produc-

ing imputed response values that closely resembled the observed ones, mak-

ing predictions for people that have missing values and generate parameter

estimates that indicate that the missingness in the response is less likely to be

MNAR. In contrast, the MICE Algorithm method produced different param-

eter estimates in terms of variance parameters.

It’s worth noting that the proposed Two-Step method is computationally ex-

pensive because it involves applying the CRE method to multiple imputed

datasets. As a result, it requires K computational time of the CRE method,

and the computational time and storage space may be limited. However, this

problem can be addressed by introducing joint modelling, which simultane-

ously handles ignorable missingness in the incomplete predictor and non-

ignorable missingness in the model response. This can reduce the amount

of time needed to run the method and eliminate the need for a pooling results

step, as the joint modelling can consider uncertainty. This will be further ex-

plored in the upcoming Chapter 6. It’s also important to test the proposed

Two-Step method with misspecified missingness assumptions to determine

how sensitive the conclusion is when the missingness mechanism is not as-

sumed. This will be addressed in Chapter 8.



Chapter 6

Extension to the CRE Method with
Ignorable Predictors (GCRE-MAR)

6.1 Introduction

This chapter will extend the Correlated Random Effects (CRE) method (Bhuyan,

2019) by incorporating missingness in the model predictor variables into the

joint modelling framework. The CRE method has proven to be a valuable

tool for analysing data with non-ignorable missingness in the model response

(Bhuyan, 2019). However, its original version needs to be improved in its

ability to accommodate scenarios where the model’s predictors can have miss-

ing values, too. The proposed extension of the CRE method is specifically

designed to handle ignorable missingness in the model predictor variable as

well as the non-ignorable missingness in the model response by using Gibbs

sampling. This approach simplifies the incorporation of the incomplete pre-

dictor model’s conditional distribution into the CRE method, allowing us to

simultaneously impute the missing predictor and response and analyse the

main model.

It is not uncommon in longitudinal studies to have missing values in the

model response as well as the model predictors due to various factors since

the data collection involves repeatedly measuring model predictors across

multiple time points, which can increase the possibility that the predictors

136
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contain missing data points. Thus analysing and imputing the time-varying

predictors require further attention to account for the relationship between the

time-variant predictors and the response. We explore this by developing an

extended CRE joint model incorporating more realistic model predictor miss-

ingness assumptions. Since the missing predictor distributions are required

in cases with incomplete predictors, in addition to a response model (Ma and

Chen, 2018), incorporating the partially observed predictor variables into the

joint modelling process enables us to capture intricate relationships and inter-

dependencies that might exist among variables in the dataset.

There are two main approaches to handling missing values in the predictor

variable in joint modelling. The first method uses multivariate distributions

to model all missing predictors as linearly associated (Ma and Chen, 2018).

The second method involves dividing the joint distribution into a sequence

of one-dimensional conditional distributions for each missing predictor. This

approach iteratively estimates missing predictor values based on the avail-

able observed data and the conditional distributions of other variables (Erler

et al., 2016; Ibrahim et al., 2002), which is preferred when there are mixed

types (Ibrahim et al., 2002) and a large number of missing predictors (Ma and

Chen, 2018). This will be explained in the upcoming Section 6.2.

We propose a new method called Generalised Correlated Random Effects

with a Missing at Random predictor (GCRE-MAR). This method does not

distinguish between dropout or intermittent missingness, which provides flex-

ibility in terms of missing data model specification. Additionally, it can han-

dle both non-monotone and monotone missing data patterns. Our goal is to

increase the applicability of the CRE method by creating the GCRE-MAR

method and offering a solution to real-world data problems.
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This chapter explores various aspects of the proposed method. The chapter

begins with an explanation of the model itself in Section 6.2, followed by

an explanation of the joint distribution in Section 6.3. Section 6.4 describes

the prior distribution setup, and Section 6.5 illustrates the sampler algorithm,

while Section 6.6 details the simulated data setup. The proposed method

results are presented in Section 6.7, which includes simulated data results

in Subsection 6.7.1 and results for an application to real data (the BIOSTAT-

CHF data) are shown in Subsection 6.7.2. Finally, Section 6.8 compares the

results of the GCRE-MAR method to the baseline methods, highlighting its

advantages and drawbacks.

6.2 Proposed Model

In order to account for missingness in the model predictors, consider a con-

tinuous response measured over m different time points from n subjects and a

set of predictors, some of which possibly have partially observed values. The

response variable for the ith subject at the tth time point, which we denote by

Yi(t) can thus be modelled as follows:

Yi(t) = µ +
J

∑
j=1

β jX ji(t)+
J′

∑
j′=1

λ j′X j′i(t)+uiZ̃i(t)+ ei(t), (6.2.1)

where J′ and J represent the number of predictors of fixed effects that are

fully observed and partially observed, respectively. µ is the fixed intercept

representing the mean of the overall population. The jth partially observed

fixed effects coefficient is denoted by β j, while the j′
th

fully observed fixed

effects coefficient is denoted by λ j, X ji(t) is the value of the jth partially ob-

served fixed effect for subject i at time t and X j′i(t) is the value of the j′
th

fully

observed fixed effect for subject i at time t. Additionally, subject-specific

random effects ui are included to capture longitudinal dependence and are

assumed to be i.i.d N(0,σ2
B) and Z̃i(t) is the value of the random effect for
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subject i at time t. The residuals ei(t) are also assumed to be i.i.d, following

a Normal distribution as N(0,σ2
A). Similar to the CRE model discussed in

Section 4.4.1, the binary missing response indicator Ui(t) is defined as:

Ui(t) =

1, if Yi(t) is obseverd,

0, if Yi(t) is missing.
(6.2.2)

Consider a probit regression model (as described in Section 2.6) that defines

the missingness as a normal distribution latent variable set to U∗
i (t) > 0 if

Ui(t) = 1 and U∗
i (t)≤ 0 if Ui(t) = 0, which models the response missingness

mechanism as follows:

U∗
i (t) = τ +

J′

∑
j′=1

θ j′X j′i(t)+ viZ̃i(t)+ εi(t), (6.2.3)

where J′ represents the number of fully observed predictors of fixed effects,

θ j′ denotes the regression coefficients of the j′th fully observed fixed effect

expressing the systematic influence of missingness due to the unobserved re-

sponse variable and τ is the fixed intercept representing the mean of the over-

all population. The subject-specific random effects, denoted by vi, capture the

longitudinal dependence and are assumed to be i.i.d following Normal distri-

bution as N(0,σ2
C). The residuals, denoted by εi(t), are also assumed to be

i.i.d following Normal distribution as N(0,1). Moreover, the random effects

ui and vi are considered as correlated random vectors following a Multivari-

ate Normal distribution with a mean vector of zeros and covariance matrix

as Σ =

(
σ2

B σ2
D

σ2
D σ2

C

)
, where σ2

D refers to the covariance between the random

effects ui and vi.

The regression model given in Equation 6.2.1 can be rewritten as follows:

Y ∗
i (t) = µ +

J

∑
j=1

β jX ji(t)+
J′

∑
j′=1

λ j′X j′i(t)+uiZ̃i(t)+ ei(t), (6.2.4)
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where Y ∗
i (t) is a latent random variable set to Yi(t) = Y ∗

i (t) if Ui(t) = 1 and

Yi(t) is missing if Ui(t) = 0.

Suppose there are J partially observed predictors and L−J (where L = J+J′)

fully observed predictors. The joint distribution of all partially observed pre-

dictors factors as:

p(Yi(t),X1i(t), . . . ,XJi(t) | X(J+1)i(t), . . . ,XLi(t)) =

p(Yi(t) | X1i(t), . . . ,XJi(t),X(J+1)i(t), . . . ,XLi(t))×

p(X1i(t), . . . ,XJi(t) | X(J+1)i(t), . . . ,XLi(t)),

(6.2.5)

where p(Yi(t),X1i(t), . . . ,XJi(t) | X(J+1)i(t), . . . ,XLi(t)) is the joint conditional

distribution for all incomplete predictors and the response,

p(Yi(t) | X1i(t), . . . ,XLi(t)) is the distribution of Yi(t) and p(X1i(t), . . . ,XJi(t) |
X(J+1)i(t), . . . ,XLi(t)) is the conditional distribution of the incomplete predic-

tors and represents the predictors model.

There are two suggestions to specify the conditional distribution of the in-

complete predictor model. The first approach is called separate specification

(Enders, 2022; Enders et al., 2020), which refers to independently specifying

a univariate predictor model for each incomplete predictor. It assumes the

conditional distribution p(X1i(t), . . . ,XJi(t) | X(J+1)i(t), . . . ,XiL(t)) is a multi-

variate normal distribution, such that the incomplete predictors are linearly

related. For multiple continuous incomplete predictors, we can use a multi-

variate normal distribution or a multivariate probit regression for binary in-

complete predictors (Ma and Chen, 2018). Based on this assumption, we can

specify the full conditional distribution for each incomplete predictor, given

all other incomplete and complete predictors as a univariate normal distri-

bution. The second approach is called sequential specification (Erler et al.,

2016; Ibrahim et al., 2002; Lüdtke et al., 2020), and this can accommodate a

non-linear relationship between the incomplete predictors. It factors the joint

distribution of all incomplete predictors in a sequential manner of univariate
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distributions for each predictor, where each incomplete variable is modelled

conditionally on other variables (Ibrahim et al., 2002) as follows:

p(X1i(t), . . . ,XJi(t) | X(J+1)i(t), . . . ,XLi(t)) =

p(XJi(t) | X(J+1)i(t), . . . ,XLi(t))× p(X(J−1)i(t) | XiJ,X(J+1)i(t), . . . ,XLi(t))×

p(X(J−2)i(t) | XJi,X(J−1)i,X(J+1)i(t), . . . ,XLi(t))× . . . . . . . . . . . .×

p(X(1)i(t) | XJi,X(J−1)i,X(J−2)i(t),X(J+1)i(t), . . . ,XLi(t)).
(6.2.6)

This approach is equivalent to separate specification when assuming a multi-

variate normal distribution for incomplete predictors, and it is preferred when

dealing with mixed data types or high dimensions of incomplete predictors

(Ma and Chen, 2018). Implementing sequential specification is generally

complicated because it requires working out how to factorize the joint dis-

tribution to achieve the desired model, where the order of the conditional

distributions will lead to different joint distributions (Ma and Chen, 2018).

The recommendation of the order of the predictors is to condition the categor-

ical variables on the continuous variables and according to the percentages of

the missing value so that it starts with the variable that has the lowest percent-

age of missing values (Erler et al., 2016). Nevertheless, the results would be

unbiased regardless of the order of the conditional distribution of missing pre-

dictors whenever the models fit the data well (Zhu and Raghunathan, 2015).

On the other hand, separate specification only needs to specify the required

univariate predictor model and nothing else.

In this study, we will use separate specification for the time-varying partially

observed (incomplete) predictor model for the reason that we are dealing with

a linear relationship between variables and only have a few predictors to deal

with. We are specifically working with one incomplete continuous predictor.

This approach allows us to handle time-varying predictors that are measured

on the same time scale as the outcome. The model can be specified similarly
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to a Linear Mixed Model (LMM) as follows:

X ji(t) = δ +
J′

∑
j′=1

α j′X j′i(t)+wiZ̃i(t)+ ri(t), (6.2.7)

where X ji(t) is the jth partially observed predictor for subject i at time t. α j′

denotes the regression coefficients of the j′th fully observed fixed effects, δ

is the fixed intercept representing the mean of the overall population. The

random intercept wi
i.i.d∼ N(0,σ2

E) and the residuals ri(t)
i.i.d∼ N(0,σ2

F). This is

known as a separate specification because each incomplete predictor requires

a unique regression model. In our study, we will assume one partially ob-

served predictor and two fully observed predictors.

In order to estimate the values of partially observed predictors X ji(t), we need

to derive its conditional distribution given all other predictor variables as dis-

cussed. Suppose the missing response indicator U∗
i (t) in Equation 6.2.3 is

conditional on the incomplete predictors. In that case, the posterior distri-

bution of the incomplete predictors X ji(t) should consider the influence of

the missing indicator variable U∗
i (t). However, this assumption may cause a

collinearity problem (Du et al., 2022). Thus, we consider independence be-

tween incomplete predictors X ji(t) and the missing response indicator U∗
i (t).

6.2.1 GCRE-MAR Assumptions

We assume that some predictors in the analysis model in Equation 6.2.1 are

partially observed, and their missing values depend on other observed predic-

tors under the MAR missingness mechanisms assumption. Furthermore, the

model in Equation 6.2.3 expresses the systematic influence of missingness

due to the unobserved response variables, and we posit the missingness of

the response does not depend on the partially observed predictors for simplic-

ity in deriving the complex conditional distribution of the partially observed

predictors.
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6.3 Joint Distribution

We propose a Bayesian estimation method that can simultaneously estimate

the parameters associated with the joint model using Gibbs sampling. To

distinguish between the observed and partially observed predictor, as men-

tioned previously, we use X ji(t) for a predictor that contains missing values

(partially observed predictor) and X j′i(t) for the fully observed predictor (pre-

dictor that doesn’t contain any missing values). Similar to Section 4.4.2, let

XXX j = (X j11(t), . . . ,X jnm(t)) and XXXJ′ = (XT
1 , . . . ,XT

J′ ). XXXJ′ is a matrix contain-

ing each fully observed predictors as a vector. The joint posterior density for

the latent variables and the parameters associated with the proposed model is:

p
(
ΘY,U ,Θxmis,XXX j,YYY ∗,UUU∗ | YYY ,UUU ,XXXJ′

)
∝ p(ΘY,U)× p(Θxmis)×

n

∏
i=1

∫
∞

−∞

m

∏
t=1

f
(
Y ∗

i (t),U
∗
i (t) | ui,vi,XXX j,XXXJ′

)
× f

(
XXX j | wi,XXXJ′

)
× f (wi)×

{I (U∗
i (t)> 0) I (Ui(t) = 1)+ I (U∗

i (t)≤ 0) I (Ui(t) = 0)}×g(ui,vi)duidvidwidXXX j,
(6.3.1)

where ΘY,U = {µ,βββ ,λλλ ,τ,θθθ ,σ2
A,Σ} and Θxmis = {δ ,ααα,σ2

E ,σ
2
F}. The joint

prior is denoted by p(Θ), the joint distribution of Y ∗ and U∗ is denoted by

f (Y ∗,U∗), the joint distribution of ui and vi is represented by g(ui,vi), and

is a multivariate normal distribution N(0,Σ), the conditional distribution of

partially observed predictor XXX j is represented by the predictor model f
(
XXX j
)
,

f (wi) is the incomplete predictor model random intercept distribution and

I(A) is an indicator variable which takes value 1 if A occurs and zero other-

wise.
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6.4 Prior Distribution

In this section, we will consider the following priors for ΘY,U and Θxmis:

p
(

β̃ββ ,σ2
A

)
∝

1
σ2

A
; p
(
θ̃θθ
)

∝ N(0,b); p(Σ) ∝ IW (ν ,Λ);

p
(

α̃αα,σ2
F

)
∝

1
σ2

F
; p(σ2

E) ∝ IG(b0,b0),
(6.4.1)

where β̃ββ = [µ,βββ ,,,λλλ ] is a vector of the overall intercept and regression co-

efficients of fully and partially observed predictors in the response model,

θ̃θθ = [τ,θθθ ] is a vector of the overall intercept and regression coefficients of

fully observed predictors in the missingness model and α̃αα = [δ ,ααα] is a vector

of the overall intercept and regression coefficients of fully observed predictors

in the incomplete predictor model. To ensure convergence, we use weakly in-

formative priors for the matrix variable p(Σ) that we discovered and resolved

in Chapter 4 and the missingness model coefficients p
(
θ̃θθ
)
.

Prior information is required to support convergence in the missingness model

coefficients as suggested by Du et al. (2022) and in practice using the GCRE-

MAR method, so we set a relatively large prior variance value for this purpose

b = 10. When we tested values of b < 5, the inference became more sensitive

to the choice of the prior, which had a stronger influence on the results. How-

ever, for values of b > 5, the inference was less affected by the prior choice,

allowing the data to have a greater influence on the posterior estimates. There-

fore, we selected b = 10 to ensure that the prior remained non-informative. In

Section 4.4.5, we discussed that the Inverse Wishart (IW) distribution solved

the non-convergence of the matrix variable and the hyperparameters are set to

Λ = (ν − p−1)I, with ν = 4.

For other priors, we use non-informative priors. We use the Inverse-Gamma

(IG) distribution as a conjugate prior for the variance parameter of normally

distributed data p(σ2
E). Lower values of b0 lead to non-informativeness, and
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as b0 gets closer to zero, it may produce an improper posterior density (Gel-

man, 2006). Therefore, we assume a reasonable value of b0 = 1. Overall, we

chose conjugate priors, which allow us to derive the full conditional distribu-

tions of each variable in a closed form and implement the Gibbs sampler.

6.5 Gibbs Sampler

The advantage of factorising the joint distribution of data is that the estimation

of the parameters of interest is computed within each iteration of the imputa-

tion procedure and is conditional on the imputed variables’ current value. The

simultaneity of the analysis and the imputation produce a posterior distribu-

tion of the parameters, which automatically considers the uncertainty due to

the missing values, and no pooling and further analysis are required, which

is often required for other multiple imputation approaches. Moreover, the re-

sponse variable is not included in the incomplete predictor model because the

relationship between the incomplete predictor and the response is considered

in the joint likelihood of the data.

The first steps are the 1-7 steps outlined in Section 4.4.4, followed by gen-

erating estimates for the predictor model’s random components, coefficients,

and missing predictor values. Additional steps to the Gibbs sampler in Section

4.4.4 include:

8. Estimate the predictor model’s random intercept, wi.

9. Estimate the predictor model’s random intercept variance, σ2
E .

10. Estimate the predictor model’s regression coefficients, α̃αα .

11. Estimate the predictor model’s residual variance, σ2
F .

12. Estimate the missing values of the incomplete predictor, X ji(t).

The entire structure of the Gibbs sampler is given in Algorithm 7 overleaf.

In each iteration, the missing response and predictor values will be simulated



6.5. GIBBS SAMPLER 146

simultaneously. This allows us to obtain direct and joint estimates from the

posterior distributions of the parameters and of the missing values using the

GCRE-MAR method.
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Algorithm 7 GCRE-MAR Method Gibbs Sampling Algorithm

Choose initial values of {Θ0
Y,U = β̃ββ

0
, θ̃θθ

000
,σ20

A ,Σ0}, {Θ0
mis = α̃αα

000,σ20

F ,σ20

E } and
{X0

j ,w
0,u0,v0,Y ∗0,U∗0}.

for 1, . . . ,S iterations do

-Sample uS+1
i ∼ p

(
ui | Y ∗S

i (t), β̃ββ
S
,σ2S

A ,ΣS,vS
i ,XXXJ′

)
.

-Sample Y ∗S+1

i (t) =


Y ∗S

i (t), if Yi(t) is observed

p
(

Y ∗
i (t) | β̃ββ

S
,XS

ji(t),u
S+1
i ,σ2S

A ,XXXJ′
)
, if Yi(t) is missing.

-Sample σ2S+1

A ∼ p
(

σ2
A | β̃ββ

S
,XS

ji(t),Y
∗S+1

i (t),uS+1
i ,XXXJ′

)
.

-Sample β̃ββ
S+1 ∼ p

(
β̃ββ | Y ∗S+1

i (t),uS+1
i ,XS

ji(t),σ
2S+1

A ,XXXJ′
)
.

-Sample vS+1
i ∼ p

(
vi |U∗S

i (t), θ̃θθ
S
,ΣS,uS+1

i ,XXXJ′
)
.

-Sample U∗S

i (t) =


p
(

U∗
i (t) | θ̃θθ

S
,vS+1

i ,XXXJ′
)

left truncated∗ at 0, if Yi(t) is observed,

p
(

U∗
i (t) | θ̃θθ

S
,vS+1

i ,XXXJ′
)

right truncated∗ at 0, if Yi(t) is missing.

-Sample θ̃θθ
S+1 ∼ p

(
θ̃θθ |U∗S+1

i (t),vS+1
i ,XXXJ′

)
.

-Sample ΣS+1 ∼ p
(
Σ | uS+1

i ,vS+1
i
)
.

-Sample wS+1
i ∼ p

(
wi | XS

ji(t),σ
2S

F ,σ2S

E ,XXXJ′
)
.

-Sample σ2S+1

E ∼ p
(
σ2

E | wS+1
i ,XXXJ′

)
.

-Sample σ2S+1

F ∼ p
(

σ2
F | XS

ji(t), α̃αα
SSS,wS+1

i ,XXXJ′)
)
.

-Sample α̃αα
S+1 ∼ p

(
α̃αα | XS

ji(t),σ
2S+1

F ,wS+1
i ,XXXJ′

)
.

-Sample XS+1
ji (t)=


XS

ji(t), if X ji(t) is observed,

p
(

X ji(t) | Y ∗S+1

i (t), β̃ββ
S+1

,uS+1
i , α̃ααS+1,wS+1

i ,σ2S+1

A ,σ2S+1

F ,XXXJ′
)
, if X ji(t) is missing.

∗ truncated normal distribution.
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6.6 Creating Synthetic Data for Simulation

The aim of creating simulated data is to evaluate the performance of the pro-

posed GCRE-MAR method in dealing with non-ignorable missingness in the

response and ignorable missingness in the predictor. The simulation setup em-

ployed in this chapter aligns with the simulated data detailed in Section 5.5,

with the exception of the form of the response missingness process model.

In this case, we assume that the incomplete predictor is independent of the

missing response model for simplicity, as mentioned before. Therefore, the

missing values on the response variable Yi(t) were generated based on the

following model:

U∗
i (t) = θ0 +θ1X2i(t)+θ2X3i(t)+ viZ̃i(t)+ εi(t) (6.6.1)

Table 6.6.1 displays the values of θθθ for each missingness proportion and the

number of repeated measures to achieve the desired missing data proportion.

py = 20% py = 40% py = 60%

Parameter m=2 m=4 m=8 m=2 m=4 m=8 m=2 m=4 m=8

θ0 -2 -0.6 -0.6 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5
θ1 3 0.7 0.7 0.4 0.4 0.4 0.4 0.4 0.4
θ2 7 4 4 2 2 2 1.2 1.2 1.2

Table 6.6.1: The table presents the values of the coefficients θθθ for the missing response
indicator regression model, for various proportions of missingness and a number of repeated
measures. This information is used to generate missing response values for the GCRE-MAR
method, where py represents the percentage of missing values in the model response, and m
indicates the number of repeated measures.

The missingness of the generated data is shown across different percentages

of incomplete predictors and responses in Figure 6.6.1. The observed and

missing values of the simulated datasets are illustrated for four repeated mea-

sures. Missing values in the response occur when the response variable values

themselves are lower, confirming that MNAR is the missing mechanism. Ad-

ditionally, the missing values in the incomplete predictor X1 are associated
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with small values in the continuous complete predictor X2, indicating that

MAR is the missing mechanism. Comparable patterns are found in different

values of the repeated measures m = 2 & 8.
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Figure 6.6.1: Scatter plot showing the association between the response (y-axis) and the
complete predictor (x-axis) on the left-hand side plots and between the incomplete predic-
tor (y-axis) and the complete predictor (x-axis) on the right-hand side plots. The black dots
represent observed values after removing missing data (i.e. the available data), while the red
triangles represent missing values. The green crosses show the full data, including both ob-
served and missing values. The plot also displays three regression lines, representing different
observed and missing values and illustrating the varying trends for MNAR in the response
and MAR in the incomplete predictor. The missingness in the response is dependent on the
small values of the response itself, while the incomplete predictor’s missingness is dependent
on the small values of the complete predictor. Both represent the desired missingness mech-
anism.
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We will test the performance of the GCRE-MAR method using the simulated

data, which allows us to compare the proposed method with other baseline

methods, which are the full data and the available data. The full data uses

the fully observed data before eliminating the missing values, representing

the best-case scenario. The available data method involves using only the ob-

served values after eliminating any missing values in the response or predictor

variables. Additionally, we will compare the GCRE-MAR method with the

Two-Step method and the imputation method that uses the MICE Algorithm

to impute the model response and predictor; these are discussed in Chapter 5.

We will also compare it with the CRE method with fully observed predictors

as discussed in Chapter 4. Moreover, we will apply the GCRE-MAR method

with fully observed predictors to compare the results of the generalised ver-

sion of the CRE method with the original CRE method and to assess the

performance of the GCRE-MAR method when there are no missing values in

the predictor variable.

All of the methods are implemented in R (R Core Team et al., 2013) and Gibbs

sampler is carried out for the proposed method. The brm function (Bürkner,

2017) is used to fit the full and available data methods using the HMC method

as defined in Section 2.4.5, while the MICE method pooled results are fitted

using the brm_multiple function. The MCMC simulations will run for

50,000 iterations, with half of that designated as a burn-in phase and a ten-

thinning rate applied. To ensure convergence, three chains are initialized with

different starting values to calculate the Gelman-Rubin (explained in Section

2.4.6) convergence statistic for individual parameters. We consider conver-

gence achieved if all values were below 1.1. We also visually inspect the

trace plots. Based on these criteria, we deemed that all discussed runs are

converged.

We will evaluate the GCRE-MAR method’s performance by comparing the

accuracy of its parameter estimates. We will use the Root Mean Square Er-
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ror (RMSE), Relative Bias (RB), and Coverage Rate (CR) as measures of

accuracy for individual parameters. However, different parameter magni-

tudes could distort the results and hence to ensure equal weighting across

all model of interest parameters, we will use Weighted Root Mean Square

Errors (WRMSE) for overall method accuracy, in which we assigned weights

based on the data-generating parameters. We defined these criteria in Section

2.7, and we will evaluate them across 100 replications of the simulated data.

6.7 Results

This section presents the results of the proposed GCRE-MAR method and

the comparative methods, applied to simulated data and the BIOSTAT-CHF

dataset.

6.7.1 Simulation Data Results

The simulated data values and average imputed values of each iteration of the

Gibbs sampler using the GCRE-MAR method of the response and predictor

closely match across different sample sizes and the proportion of missing-

ness, indicating alignment. Moreover, the simulated data values fall within

the ±2 Standard Deviation (SD) range of the average imputed values. Fig-

ure 6.7.1 demonstrates one scenario out of the 100 replications where the

proposed method imputed values match the simulated data values. However,

similar conclusions were drawn for the remaining 99 replications and differ-

ent combinations of missingness proportion. These results demonstrate the

effectiveness and reliability of the proposed GCRE-MAR method in captur-

ing the data-generating values that were not observed.
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Figure 6.7.1: Scatter plots represent the model response Y on the y-axis and the fully observed
predictor X2 on the x-axis (on the left-hand side). The model incomplete predictor X1 on the
y-axis and the fully observed predictor X2 on the x-axis (on the right-hand side). These plots
are used to assess the simulated data values (depicted as black circles) against the average
of imputed values and the ±2 SD (represented by grey triangles and vertical lines) using
the GCRE-MAR method for various repeated measures, with 20% missingness in the model
response and 40% missingness in the model predictor. The simulated data values are mostly
enclosed within the imputed values region.



6.7. RESULTS 154

Figure 6.7.2: Boxplots represent the overall WRMSE for each method across different pro-
portions of missing data and repeated measures. The y-axis represents the WRMSE values,
while the x-axis represents one of the proportions of missing data in the model response and
incomplete predictor. Each boxplot corresponds to one of the applied methods, and each
plot represents different repeated measures. The results show that all methods have similar
WRMSE, with a slight increase in the available data method.

The overall WRMSE across all model parameters in Figure 6.7.2, illustrates

the method’s performance across various sample sizes and proportions of

missing data. When there is 20% missingness in both the model response
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and incomplete predictor, the GCRE-MAR method WRMSE aligns with the

available data method and has less WRMSE uncertainty with m = 2 & 4.

Meanwhile, the available data, Two-Step, and MICE Algorithm methods have

larger WRMSE values and uncertainty when the incomplete predictor has a

higher proportion of missingness (60%). Overall, the available data method

has slightly larger WRMSE values than the proposed GCRE-MAR method.

Considering the apparent overall inequalities of WRMSE across methods,

let’s explore the specific differences across each model parameter. The fol-

lowing plots explore these differences in detail. The RMSE analysis provides

insights into the accuracy of our estimates relative to the data-generating pa-

rameters, indicating the degree of deviation between the estimated and data-

generating parameters.

To illustrate our findings, Figure 6.7.3 shows the RMSE for β0 and β1, while

β2 and β3 are available in Section C in the Appendix. The RMSE of the

response model coefficients are higher in the available data method, partic-

ularly with 60% missingness in the incomplete predictor. The CRE method

has smaller model coefficients’ RMSE than the GCRE-MAR method, except

for β3. This is because the CRE method is working with more observed data

than the GCRE-MAR method. Recall that the CRE method cannot handle

scenarios where there is missingness in the predictors, so we have run the

method with missingness in the response only. This presents an easier sce-

nario for the CRE method and it is able to perform slightly better. Never-

theless, it is a useful benchmark for the GCRE-MAR method. When there

is 60% missingness in the incomplete predictor, the Two-Step and MICE Al-

gorithm methods have a higher RMSE than the GCRE-MAR method. The

GCRE-MAR method, when applied to scenarios with no missingness in the

predictors, shows a lower RMSE in the model coefficients, except similar re-

sults for β3. This is because the method considers more observed data without

considering any missingness in the model predictor.
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Figure 6.7.3: Boxplots illustrate the RMSE of β0 in the left-hand side plots, and β1 in the
right-hand side plots for each method applied to various proportions of missingness and dif-
ferent repeated measures. The y-axis shows the RMSE values, and the x-axis represents one
of the proportions of missingness in the model response and incomplete predictor. Each box-
plot represents one of the applied methods. It’s obvious that the available data method has
quite larger RMSE values than other methods.
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Figure 6.7.4: Boxplots illustrate the RMSE of σ2
A in the left-hand side plots, and σ2

B in the
right-hand side plots for each method applied to various proportions of missingness and dif-
ferent repeated measures. The y-axis shows the RMSE values, and the x-axis represents
one of the proportions of missingness in the model response and incomplete predictor. Each
boxplot represents one of the applied methods. It is evident that the available data method
produces larger RMSE values compared to other methods and is even larger in σ2

B.

The RMSE values of the variance components in the response model indicate

that the variance components have a large RMSE in the available data method

compared with other applied methods. This increases further when 40% and
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60% are missing in the incomplete predictor. The GCRE-MAR method with

no missingness in the predictors, and the CRE method have a similar RMSE

of the variance components as the GCRE-MAR method. However, the Two-

Step and MICE imputed methods have a large RMSE of the variance compo-

nents in 60% missingness in the incomplete predictor. Additionally, the avail-

able data and the MICE imputed methods has a larger RMSE of the between-

individual variance with m = 2. These findings are presented in Figure 6.7.4.

Figure 6.7.5 is used to showcase the findings for β0 and β1 parameters. Note

that Section C in the Appendix contains RB of β2 and β3. The RB assesses the

model estimates for tendencies of overestimation or underestimation, high-

lighting nuances in the accuracy of estimating the data-generating parameters

across all applied methods. The response model’s slope parameters β1 and β2

have similar RB of the available data method and the GCRE-MAR method.

However, there is a larger RB uncertainty of the available data method with

60% missingness in the incomplete predictor, and it overestimates β3 in cases

where m = 4&8. The response model intercept is underestimated using the

available data method when there are large proportions of missingness in the

response variable (40% and 60%) with m = 4&8, and as the proportion of

missingness in the incomplete predictor increases, the RB uncertainty in-

creases using the available data method. The CRE, Two-Step, MICE Algo-

rithm, observed predictor GCRE-MAR, and GCRE-MAR have similar RB,

except the MICE Algorithm tends to underestimate β0 and overestimate β3

with m = 4&8.

The RB values of the variance components in the response model in Fig-

ure 6.7.6 indicate that the σ2
A is being overestimated with m = 2 while the σ2

B

is being underestimated when using the GCRE-MAR method and this bias

decreases with the increase of repeated measures. This estimation is compa-

rable to the observed predictor GCRE-MAR and CRE methods. Although the

available data provides an unbiased estimation of the variance component, it



6.7. RESULTS 159

has a larger RB uncertainty. The MICE Algorithm method tends to overes-

timate the σ2
B and underestimate the σ2

A with larger RB uncertainty, except

when m = 8. On the other hand, the Two-Step method tends to overestimate

the σ2
B and underestimate the σ2

A when m = 4 and m = 8. The MICE Algo-

rithm and the Two-Step methods tend to underestimate σ2
A and overestimate

σ2
B with a large proportion of missingness in the incomplete predictor (40%

and 60%); however, this bias decreases as repeated measures increase.

Our assessment of parameter estimation accuracy of the response model pa-

rameters has revealed valuable insights into the performance of the GCRE-

MAR method compared to other methods used. The GCRE-MAR method

has been shown to have a smaller RMSE than the available data method,

which is typically used when dealing with longitudinal data. This indicates

that the GCRE-MAR method has an overall superior precision in estimat-

ing parameters. It’s worth noting that the GCRE-MAR method and available

data method demonstrate unbiased estimation according to the relative bias

analysis. The smaller RMSE of the GCRE-MAR method suggests that, on

average, its estimates are closer to the data-generating parameters compared

to the available data method. This indicates that the GCRE-MAR method is

more effective in minimizing the spread of estimation errors. Additionally, the

unbiased estimation revealed by the relative bias for the GCRE-MAR method

underscores its consistency in providing estimates that are centred around the

data-generating values.
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Figure 6.7.5: Boxplots illustrate the RB of β0 in the left-hand side plots, and β1 in the right-
hand side plots for each method applied to various proportions of missingness and different
repeated measures. The y-axis shows the RB values, and the x-axis represents one of the
proportions of missingness in the model response and incomplete predictor. Each boxplot
represents one of the applied methods. It’s obvious that the available data method RB uncer-
tainty increases when there is 60% missingness in the incomplete predictor.



6.7. RESULTS 161

Figure 6.7.6: Boxplots illustrate the RB of σ2
A in the left-hand side plots, and σ2

B in the right-
hand side plots for each method applied to various proportions of missingness and different
repeated measures. The y-axis shows the RB values, and the x-axis represents one of the
proportions of missingness in the model response and incomplete predictor. Each boxplot
represents one of the applied methods. The available data method has unbiased results with
large RB uncertainty compared with other methods.

To evaluate how well each method covers the data-generating parameters of

the response model parameters, we report the CR. The CR fluctuates between

0.9 and 0.99 for most fixed effects coefficients, with a few exceptions, which
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are β3 with m = 8, where all methods see a decrease in CR when there is 60%

missingness in the response variable. The GCRE-MAR method shows a CR

of β1 less than 0.9 in the case of 40% missingness in the incomplete predic-

tor and with m = 8. The MICE Algorithm method shows some decreases in

CR, specifically in β0 and m = 8, except when there is 40% missingness in

the incomplete predictor, and it shows a CR decrease in β0 with m = 4 when

there is 40% missingness in the response variable. The plots for the CR of the

response model parameters can be found in Section C in the Appendix.

The CR of the variance component ranges between 0.9 to 0.99, except for

some cases where certain methods show a low CR in specific conditions. For

instance, the MICE Algorithm method has a low CR in σ2
A when there is 40%

or 60% missingness in the incomplete predictors, and when there is 40% miss-

ingness in the response variable, with m = 4. Similarly, the Two-Step method

displays a low CR in σ2
A with 60% missingness in the incomplete predictors

and m = 4.

The GCRE-MAR method, the GCRE-MAR method with no considered miss-

ingness in the model predictors, and the CRE method shows lower CR for

σ2
B in all missingness proportions except for when there is 60% missingness

in the model response with m = 2, where in this case, the full data method

has a lower CR. When there is 60% missingness in the model response with

m = 8, the GCRE-MAR with no considered missingness in the model predic-

tors exhibits a lower CR for σ2
B except when there is 60% missingness in the

response variable with m = 4 and lower CR with m = 8 when there is 60%

missingness in the response variable. The MICE Algorithm method showed

a substantial decrease in the CR for σ2
B when there is 60% missingness in

the incomplete predictor, which indicates that the MICE Algorithm method

struggled to cover the data-generating values of variance parameters when a

substantial proportion of data was missing in the incomplete predictor.
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Figure 6.7.7: The density plots of the out-of-sample RMSE for different methods across var-
ious repeated measures with 20% missingness in the response and 60% in the incomplete
predictor. Each density curve corresponds to one of the methods used, and each plot corre-
sponds to a different value of repeated measures. The available data method appears to have
less density and slightly shifted to the right.
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Figure 6.7.8: Boxplots illustrate the RB of the missingness response model parameters using
the GCRE-MAR method across various proportions of missingness and repeated measures.
The y-axis represents the RB values, while the x-axis shows the proportion of missingness,
and each boxplot represents a specific missingness response model parameter. Each plot
corresponds to a different repeated measure value. As the repeated measure increases, the
model parameter becomes more unbiased.
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In the context of out-of-sample prediction performance, the GCRE-MAR

method performs better than the available data method, while the MICE Algo-

rithm method has the second-worst out-of-sample performance. Figure 6.7.7

displays the out-of-sample performance for 20% missingness in the model

response and 60% missingness in the incomplete predictor for different re-

peated measures and across different methods. The results are consistent with

the remaining proportion of missingness, the plots can be found in Section C

in the Appendix.

The RB plots of the missingness response model parameters using the GCRE-

MAR method are expressed in Figure 6.7.8, and the RMSE plots of the miss-

ingness response model parameters can be found in Section C in the Ap-

pendix. The coefficient parameters of the missingness response model using

the GCRE-MAR method have a small RMSE, except for θ2 and the variance

components, which have a large RMSE. However, as the proportion of miss-

ingness in the response parameter increases, the RMSE of the variance com-

ponents decreases. Regarding RB, the parameters show unbiasedness except

for the variance components in a small number of repeated measures (m = 2).

The RB plots of the incomplete predictor model parameters using the GCRE-

MAR method are expressed in Figure 6.7.9, and the RMSE of the incomplete

predictor model parameters can be found in Section C in the Appendix. The

incomplete predictor model parameters using the GCRE-MAR method have a

small RMSE overall and a larger RMSE of α0 when there is 60% missingness

in the incomplete predictor. The RMSE uncertainty of α0, α2, and σ2
E are

larger compared with the remaining parameters. Regarding RB, the param-

eters show unbiasedness except for σ2
F with m = 2 and 20% of missingness

in the response variable. Furthermore, α2 has a considerably large RB uncer-

tainty overall. The difference between α2 having larger RB uncertainty and

larger RMSE values compared with α1 is that the variable associated with α2

is used to generate the missingness in the incomplete predictor.
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The plots illustrating these findings can be found in Section C in the Ap-

pendix. The CR of the covariance parameter between the random effects

of the response model and the missingness response model (σ2
D) using the

GCRE-MAR method is lower when the number of repeated measures is either

2 or 4. This pattern holds for all combinations of missing data proportions,

except when the model response has 60% missingness. The same pattern is

observed for the missingness response model’s individual variance (σ2
c ) when

there are two repeated measures. Additionally, σ2
c has a lower CR when there

is 20% missingness in both variables. When there are two repeated measures,

the incomplete predictor model’s residual variance (σ2
F) has a lower CR when

there is 20% missingness in the response variable, regardless of the proportion

of missingness in the incomplete predictor. The incomplete predictor model’s

intercept (α0) has a lower CR when there is 40% missingness in the incom-

plete predictor and m = 4. The remaining variables in both missing variables

models (the missingness response model and the incomplete predictor model)

using the GCRE-MAR have reasonable CR.

The GCRE-MAR method is effective in capturing missingness response model

parameters but may not capture the covariance variable between the random

effects when there are fewer repeated measures. This is possible only with

a large proportion of missingness in the response. With more repeated mea-

sures and missingness in the response, the data-generating covariance param-

eters value can be captured. The proposed method appears to face difficulties

when dealing with a smaller proportion of missing data and a smaller number

of repeated measurements. This suggests that the method may require a larger

proportion of missing data and more repeated measurements to provide accu-

rate estimates for the missingness response model and incomplete predictor

model, which can better represent the data-generating values.
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Figure 6.7.9: Boxplots illustrate the RB of the incomplete predictor model parameters, using
the GCRE-MAR method across various proportions of missingness and repeated measures.
The y-axis represents the RB values, while the x-axis shows the proportion of missingness,
and each boxplot represents a specific missingness response model parameter. Each plot
corresponds to a different repeated measure value. As the repeated measure increases, the
model parameter becomes more unbiased, with larger RB uncertainty in α2.
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6.7.2 Real Data Results

In this section, we will be using the GCRE-MAR method to tackle the chal-

lenge of dealing with missing values in both the response and predictor vari-

ables of the BIOSTAT-CHF dataset, which is a real-world dataset. The pur-

pose of this analysis is to test the effectiveness of the proposed method on

actual data. Moreover, we will also use the BHM using the available data as

the baseline method, which is the default approach when it comes to dealing

with repeated measures (mixed models). The model employed in this section

was introduced in Equation 4.2.2 in Section 4.2. As the true parameter values

are unknown, we will utilize Kolmogorov-Smirnov (KS) test statistics defined

in Section 2.7 to compare the GCRE-MAR and available data methods.

Figure 6.7.10 displays a noticeable difference in the model’s intercept den-

sity curves in the two methods, and the disparity in the density curves of the

other model’s parameters suggests a meaningful distinction between the per-

formance of the two methods. The Kolmogorov-Smirnov test confirms this

observation, indicating that only centred eGFR and the Pacemaker variables

have no significant difference between the two methods. The random effects’

covariance is σ2
D = −0.241, suggesting weak/ moderate evidence of MNAR

(Missing Not at Random) of the model response. The imputed values of the

model response and predictor using the GCRE-MAR method are presented

in Figure 6.7.11, which shows similarities between the observed and imputed

data density curves, suggesting that the imputation process successfully pre-

served the overall data distribution.

Next, we will separate the data into a training set and a test set to further

evaluate the proposed method’s effectiveness on unseen data. We will make

two assumptions for the test data to explore diverse scenarios and assess the

model’s performance under various conditions.
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Figure 6.7.10: Posterior distributions of the BIOSTAT-CHF model parameters using the
GCRE-MAR method (black solid curve) and the available data method (grey dashed curve).
Each plot represents one of the BIOSTAT-CHF model parameters. Density curves overlay,
except the model intercept and perhaps to some extent, the coefficient for the Time variables.

Figure 6.7.11: Density plots show the observed values in the black solid curve and the GCRE-
MAR imputed response (left-hand) and predictor (right-hand) values in the grey dashed
curves, where each curve is a different draw of the latent variable from the posterior us-
ing Gibbs sampler. The density of the imputed values using the GCRE-MAR method at each
Gibbs sampling iteration is similar to the density of the observed values.
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Case 1: Split the data into test and training data, where the test data has fully observed
values.

In order to evaluate the performance of the proposed method and compare

it with the baseline method, which can’t impute missing values, we need to

split the BIOSTAT-CHF data into test and training sets. To avoid advantaging

the GCRE-MAR method, we will treat the test data as fully observed and

the training data with missing values in the response and predictor. However,

only 395 participants in the dataset have complete data, which accounts for

only 15% of all 2516 participants. Therefore, we will allocate 85% of the data

to the training set and 15% to the test set.

Figure 6.7.12: Posterior distributions of the BIOSTAT-CHF model parameters using the
GCRE-MAR method is in a black solid curve, and the available data method is in a grey
dashed curve. Each plot represents one of the BIOSTAT-CHF model parameters in Case 1.
Density curves overlay except for the model intercept and the variance parameters.

The training data were processed using GCRE-MAR and available data meth-

ods. The resulting posterior distributions are shown in Figure 6.7.12, which

shows that the model’s intercept and variances exhibit distinct density curves

between the two methods. Furthermore, the Kolmogorov-Smirnov test was
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computed to assess the differences with a significance level of 0.05; the null

hypothesis was rejected for all variables except for Pacemaker and Atrial fib-

rillation.

The covariance between the random effects is σ2
D = −0.056, which suggests

a very weak indication of MNAR (Missing Not at Random) of the response in

the training data. The out-of-sample performance using RMSE between both

methods appears similar, as indicated by a Kolmogorov-Smirnov test with a

p-value of 0.08, which implies that both methods perform comparably. How-

ever, it’s noticeable that the RMSE density plot of the available data method

exhibits a slight shift towards smaller values. Nonetheless, this shift is negli-

gible, as presented in Figure 6.7.13.

The GCRE-MAR method’s imputed response overlaps well with the test data,

but they exhibit noticeably different density patterns compared to the training

data. This suggests that the imputation is similar to the complete case, as

shown in Figure 6.7.14. On the other hand, we notice that the imputed data

for the incomplete predictor variable using the GCRE-MAR method aligns

well with the training data distribution but differs from the test data distri-

bution. This indicates that the imputed incomplete predictor data aligns well

with the training set, demonstrating a satisfactory imputation process for the

observed data. Overall, the plot highlights the contrasting behaviour between

the response and incomplete predictor variables regarding imputation perfor-

mance. The imputed response data show a greater disparity between training

and test, while the imputed incomplete predictor data resemble the training

set more closely.
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Figure 6.7.13: The RMSE density (on the left-hand side) and CDF (on the right-hand side) of
the out-of-sample prediction in BIOSTAT-CHF training data in Case 1, where the black solid
curve represents the GCRE-MAR method, and the grey dashed curve represents the available
data method. The RMSE of the available data method is shifted toward a lower RMSE values.

Figure 6.7.14: Density plots show the observed values in the black solid curve and the
GCRE- MAR imputed response (left-hand) and predictor (right-hand) values in the grey
dashed curves, where each curve is a different draw of the latent variable from the poste-
rior using Gibbs sampler in Case 1. The imputed response overlaps with the test data, and
the imputed incomplete predictor overlaps with the training data.



6.7. RESULTS 173

Case 2: Split the data into test and training data, where the test data has missing values
in the predictor.

In previous Case 1, we advantaged the available data approach in terms of

evaluation, which is an unfair comparison with the GCRE-MAR method. In

Case 2, we will discuss handling missing values in predictor variables while

evaluating a model. It is essential to consider this aspect as it enables us

to test the model’s performance under realistic conditions. In this scenario,

the training data contains missing values in both the response and predictor

variables, while the test data only has missing values in the predictor variable.

The percentage of data split for both the training and test data is the same as

in Case 1.

Figure 6.7.15: Posterior distributions of the BIOSTAT-CHF model parameters using the
GCRE-MAR method is in a black solid curve, and the available data method is in a grey
dashed curve. Each plot represents one of the BIOSTAT-CHF model parameters in Case 2.
Density curves overlay except for the variance parameters.

The resulting posterior distributions are shown in Figure 6.7.15, where the

posterior distribution of model parameters for the GCRE-MAR and avail-

able data methods overlaps, indicating similarity. However, it is worth not-

ing that the variance components of both methods exhibit distinct posterior
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distributions; this indicates noticeable differences between the two methods

in terms of variance estimation. The Kolmogorov-Smirnov test reveals that

Pacemaker, Others, eGFR and age have p-values greater than 0.05, suggest-

ing no significant difference between the methods in these parameters.

The random effects’ covariance is σ2
D =−0.01, suggesting weak evidence of

MNAR (Missing Not at Random) in the model response. The GCRE-MAR

method was applied to the test data to impute the missing values of the predic-

tor variable "eGFR", and only fully observed values of the predictor variable

"eGFR" are used in the available data method to assess the method’s out-of-

sample performance.

The density plot of the RMSE presented in Figure 6.7.16 shows that the

available data method slightly shifts towards larger values compared with

the GCRE-MAR method. The Kolmogorov-Smirnov test indicates signifi-

cant differences between the GCRE-MAR and available data methods with a

significance level of 0.05. Comparing this RMSE distribution to the RMSE

distribution in Case 1 (Figure 6.7.13), where there was no missingness in the

test data, we observe that both distributions are similar and centred around

similar values. However, the GCRE-MAR method outperformed the available

data method regarding RMSE in Case 2, which suggests that the performance

of the GCRE-MAR method in terms of RMSE improved in the presence of

missing values in the test data.

Moreover, the conclusions drawn from comparing the training data distribu-

tion, test data distribution, and GCRE-MAR imputed values distribution in

Case 1 remain the same in Case 2 (as seen in Figure 30 in the Appendix).

The consistency of the findings suggests that the imputation process using the

GCRE-MAR method enables reliable assessments of the training, test, and

imputed values.
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Figure 6.7.16: The RMSE density (on the left-hand side) and CDF (on the right-hand side) of
the out-of-sample prediction in BIOSTAT-CHF training data in Case 2, where the black solid
curve represents the GCRE-MAR method, and the grey dashed curve represents the available
data method. The RMSE of the GCRE-MAR method is shifted toward a lower RMSE values.

6.8 Discussion

In this chapter, we introduced a statistical methodology that is a generalisation

of the existing method used to handle non-ignorable missingness in the model

response, known as the CRE method discussed in Chapter 4, which was im-

plemented using the Correlated Random Effects and the Gibbs sampling in-

troduced by Bhuyan (2019). Our proposed method, called GCRE-MAR, can

handle the missingness in the model predictor in addition to the missingness

in the model response. Missingness is common in both the response and pre-

dictors when dealing with longitudinal studies; where repeated measures of

both the response and predictors are collected over time.

The proposed GCRE-MAR method assumes that missingness in the model

predictor is ignorable, while the model response missingness is non-ignorable.

This assumption is similar to the proposed method introduced in Chapter 5,

but the GCRE-MAR method has advantages in that it can handle missingness
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simultaneously and jointly using the Gibbs sampler. In contrast, the Two-Step

method in Chapter 5 has two different steps and is computationally expensive

compared to our approach, the GCRE-MAR. The computational time for the

Two-Step method is about three times longer than the GCRE-MAR method,

based on a specific setup using ten imputed datasets in the Two-Step method.

As the number of imputed datasets increases, the difference in computational

time for the Two-Step method becomes even more pronounced.

The simulation study analysis in Section 6.7.1 is limited to a setting involv-

ing one incomplete predictor and two fully observed predictors. The results

demonstrate that the proposed GCRE-MAR method, when used with a fully

observed predictor, generally performs equally well as the CRE method. This

indicates that the GCRE-MAR method is a generalisation of the CRE method,

as both can handle missingness in the model response while the model pre-

dictors are fully observed. Additionally, the GCRE-MAR method was able to

accurately impute missing values of the response and predictor variables for

different sample sizes and proportions of missingness, similar to the simu-

lated data values. This demonstrates a high level of accuracy and reliability in

handling missing data, making it a suitable and effective option for practical

use.

Based on our analysis, we have found that the proposed GCRE-MAR method

performed better than the available data method in terms of the overall perfor-

mance of the parameter estimates based on WRMSE. The model coefficients’

RMSE of the CRE method was found to be lower than that of the GCRE-MAR

method due to the extra error introduced by GCRE-MAR to address missing-

ness in the model predictor. In contrast, the CRE method only deals with

the missingness in the model response, whereas the GCRE-MAR method can

flexibly handle both scenarios. Which are missingness in the response and

missingness in both the response and predictors. The GCRE-MAR method

offers an additional ability in this regard.
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The GCRE-MAR method was found to have a lower RMSE for the response

model parameters in comparison to the available data method. For the re-

sponse model coefficients, the GCRE-MAR method showed a comparable

bias to the compared methods. On the other hand, the available data method

produced unbiased results but with considerable uncertainty, especially when

there was a high proportion of missing data (60%) in the model incomplete

predictor. When there were many repeated measures (m=8), the available data

method resulted in more biased results of β0 and β3 compared to the GCRE-

MAR method.

Although the GCRE-MAR method has a lower RMSE as compared to the

available data method, indicating higher overall accuracy in estimating the re-

sponse model parameter values, it exhibits bias for the variance parameters as

repeated measures decrease. This means that while the GCRE-MAR method

may perform better in estimating the response model coefficients, it may not

accurately capture the variability in the model with a low number of repeated

measures. The difference in RB values between the GCRE-MAR method and

the available data method, with respect to variance parameters, suggests that

the GCRE-MAR method’s estimation tends to deviate more from the data-

generating variance than the available data method but with tighter estimation

bounds. Furthermore, the GCRE-MAR method was able to capture the data-

generating parameters except for the σ2
B with m = 2 and with 60% missing-

ness in the response with m = 8.

Dealing with a large proportion of missing data in the incomplete predictor

can be challenging for the Two-Step and MICE methods which is consistent

with the findings presented in Chapter 5. This results in high RMSE when

estimating the response model parameters, overestimation of σ2
B, underesti-

mation of σ2
A, and an inability to capture the estimation of the data generating

parameters’ values. This could be the nature of the MICE Algorithm, which
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can lower the imputation quality when there are more missing values. Since

the algorithm relies heavily on observed values, it can limit the information

available for imputation.

The missingness response model estimates using the GCRE-MAR method

showed unbiasedness, except for variance parameters with m= 2. The GCRE-

MAR method captured the data-generating covariance parameters between

the random effects of the response models for a higher proportion of miss-

ingness in the response and with large repeated measures. It was generally

effective in capturing the data-generating parameters of missingness response

model parameters. However, when there are fewer repeated measures (e.g.

2 or 4), the covariance between the response model and the missingness re-

sponse model may not be captured. This is only observed when there is a large

proportion of missingness in the response (60%). The covariance variable in-

dicates how likely the missingness in the response is to be MNAR. With a

larger number of repeated measures and a larger proportion of missingness in

the response, the method was able to capture the data-generating covariance

parameters. The proposed method may require a larger proportion of missing

data and more repeated measurements to provide accurate estimates of the

covariance parameter.

On the other hand, the incomplete predictor model parameters show unbiased

results overall, with a large uncertainty of α2. Except for biased estimates

and failed to capture the data-generating parameter value of σ2
F with m = 2

and 20% missingness in the response variable. It suggests that the GCRE-

MAR method struggles to capture the between individual variances with a

small number of repeated measures and a low proportion of missingness in

the model response variable. It is worth mentioning that out-of-sample pre-

diction was similar to the full data model. So, the effect of not estimating

these parameters (and the parameters in the previous paragraphs) is small.
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Based on the application of the available data method and the GCRE-MAR

method on a real-world (BIOSTAT-CHF) dataset, it was found that the GCRE-

MAR method performed better than the available data method in terms of

out-of-sample performance when evaluated on test data that had missingness

in the incomplete predictor (eGFR). This raises concerns about the reliability

of the available data method as a tool for decision-makers and physicians to

make informed decisions and improve patient care outcomes using data with

missingness.

The GCRE-MAR method has an advantage over the available data, which can

impute unseen data. The imputation samples of the response (NT-proBNP)

are distributed similarly to the test data, which only contains complete case

data. Furthermore, the imputed sample values of the incomplete predictor

(eGFR) are distributed similarly to the training data, which contains data that

are not complete cases. This indicates that the missingness in the response is

ignorable. Furthermore, the covariance between the response model and the

missingness response model confirms that the missingness in the response

(NT-proBNP) is less likely to be MNAR.

On the other hand, it is possible that eGFR (or other predictors we may want

to work with in the future) might have non-ignorable missingness. Therefore,

this method needs to be generalised further to estimate and handle the model

parameters when the model’s incomplete predictor has non-ignorable miss-

ingness. This will be introduced in Chapter 7. We will perform a sensitivity

analysis to ensure that the GCRE-MAR method produces reliable results for

decision-makers and ensure the method’s consistency across various situa-

tions. This will be presented in Chapter 8.



Chapter 7

A Further Extension to The CRE Method
with Non-Ignorable Predictors
(GCRE-MNAR)

7.1 Introduction

So far, our focus has been on modelling non-ignorable missing response using

the existing CRE method discussed in Chapter 4 and assuming the missing-

ness of the model predictor is ignorable, which we introduced two approaches

to deal with that in Chapter 5 and Chapter 6. This chapter aims to enhance our

approach by introducing a predictor missingness model into our joint model

by allowing predictor missingness to depend on the incomplete predictor it-

self. Also, the incomplete predictor can depend on the other predictors and is

correlated with the predictor missingness model via random effects, follow-

ing the Correlated Random Effects method.

Previously, Correlated Random Effects are assumed for the response model

and the response missingness procedure. However, in the proposed approach,

we also assume a Correlated Random Effects for the predictor model and the

predictor missingness procedure. This allows us to simultaneously impute the

missing predictors and response, estimate the probability of the missingness

of model response and predictor to be MNAR, and analyse the main model,

180
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missingness model of the response and predictor parameters. We explore

this by extending the GCRE-MAR joint model introduced in Chapter 6 by

incorporating more realistic predictor missingness assumptions. We assume

MNAR (Missing Not At Random) for the model response and predictor as

a more complex scenario because the reason behind the missingness is not

always available. The proposed method, Generalised Correlated Random Ef-

fects with Missing Not At Random predictor (GCRE-MNAR), has the ability

to indicate the probability of MNAR occurring in both the model response and

predictor. MNAR is the most common scenario and is often seen in longitu-

dinal studies involving repeated measures (Ibrahim and Molenberghs, 2009).

There are numerous studies discussed methods to handle non-ignorable miss-

ingness in the model predictors; for example, Huang et al. (2005) proposes

Bayesian methods to estimate parameters in generalised linear models with

nonignorable missingness in the predictors and addresses issues of posterior

impropriety by introducing proper priors. Roy and Lin (2005) proposes a

selection model for estimation in generalised linear mixed models for longi-

tudinal data with informative dropouts. The model allows for missing time-

varying predictors alongside the response variable and employs the EM algo-

rithm for inference. Stubbendick and Ibrahim (2006) proposes two models

for estimating parameters in nonignorable missing responses and predictors

for discrete longitudinal data. These are generalised linear mixed models with

maximum likelihood estimation and a multivariate probit model using the EM

method.

Moreover, Fang et al. (2018) proposed an estimator for predictors in gener-

alised linear models with nonignorable missing data using imputation-based

adjustments and a semiparametric approach to estimate parameters. Wu (2008)

proposed an approximation technique for non-ignorable missing model pre-

dictors for a non-linear mixed effect model. Li and Grace (2013) proposed

a method that can handle missingness in the model response and predictor
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for longitudinal data using a pairwise likelihood method; however, they as-

sume non-simultaneous missingness within observations. In real-world lon-

gitudinal datasets, not recording both the response and predictor variables

is common when a participant doesn’t show up is common. The proposed

method aims to simultaneously handle missingness in the response and pre-

dictor, where one or both variables’ observations are missing.

This chapter will cover the proposed model in Section 7.2, the joint distribu-

tion’s structure in Section 7.3, the prior distribution setup in Section 7.4, and

a description of the sampler procedure in Section 7.5. We will set up simula-

tion data in Section 7.6, then use it to test the proposed method in Subsection

7.7.1. Additionally, we will apply the proposed method to the data provided

data, BIOSTAT-CHF data, in Subsection 7.7.2. Finally, we will discuss the

pros and cons of this approach over the baseline approaches in Section 7.8.

7.2 Proposed Model

The proposed method GCRE-MNAR will incorporate changes to the incom-

plete predictor model while preserving the response and missing response

indicator model structure as in the GCRE-MAR method, which is described

in Section 6.2. The modifications made to the incomplete predictor model

and introduction of the missing predictor indicator model are intended to im-

prove its ability to handle non-ignorable missingness in the model predictor,

bringing it into closer alignment with the types of missing data that could be

encountered in longitudinal data. The GCRE-MNAR uses the same equations

in Chapter 6, Equations 6.2.1 through 6.2.4, which is the response and miss-

ing response indicator equation, assuming Correlated Random Effects. Nev-

ertheless, for handling time-varying predictors in this way, as a linear mixed

model, the partially observed predictor model X ji(t) is presented as follows:

X ji(t) = δ +
J′

∑
j′=1

α j′X j′i(t)+wiZ̃i(t)+ ri(t), (7.2.1)
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where X ji(t) is the jth partially observed predictor for subject i at time t.

α j′ denotes the regression coefficients of the j′th fully observed fixed effects,

and δ is the fixed intercept representing the mean of the overall population.

The random intercepts wi are assumed to be independent and identically dis-

tributed (i.i.d) following a Normal distribution N(0,σ2
E) and the residuals ri(t)

are assumed to be independent and identically distributed (i.i.d) following a

Normal distribution N(0,σ2
F). This is known as the separate specification

since a unique regression model is needed for each incomplete predictor, this

is discussed in Section 6.2. We will assume one partially observed predictor

and two fully observed predictors.

Since we assume non-ignorable missingness for the partially observed pre-

dictor X ji(t), we consider the corresponding missingness model as:

R∗
ji(t) = χ +

J′

∑
j′=1

ψ j′iX j′i(t)+qiZ̃i(t)+ξi(t), (7.2.2)

where R∗
ji(t) is the latent incomplete predictor missingness model for predic-

tor j of subject i at time t, ψ j′ denotes the regression coefficients of the j′th

fully observed fixed effects, χ is the fixed intercept representing the mean of

the overall population. Subject-specific random effects qi capture the longi-

tudinal dependence and are assumed to be independent and identically dis-

tributed (i.i.d) following a Normal distribution N(0,σ2
G). The residuals ξi(t)

are assumed to be i.i.d following a Normal distribution N(0,1).

In this approach, the missing indicator is a binary variable associated with

an underlying latent variable that follows a Standard Normal distribution.

Thresholds are specified to determine whether the original variable’s value

is missing or observed. Therefore, the missing predictor indicator R ji(t) is

conditional on the propensity R∗
ji(t) through a probit regression as follows:

p(R ji(t) = 1|X ji(t)) = Φ
(
χ +ψ j′(t)X j′i(t)+qiZ̃i(t)

)
, (7.2.3)
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where:

R ji(t) =

1, if R∗
ji(t)> 0,

0, if R∗
ji(t)≤ 0.

(7.2.4)

The right-hand side of Equation 7.2.3 is a regressive predictor model that

defines the association between the missingness in the partially observed pre-

dictor X ji(t) and other observed predictors XXXJ′. If the corresponding partially

observed predictor value is observed, then Ri j(t) = 1 and R ji(t) = 0 if it is

missing. The latent incomplete predictor variable can be written as:

X ji(t) =

X∗
ji(t), if R ji(t) = 1,

missing, if R ji(t) = 0.
(7.2.5)

The regression model given in Equation 7.2.1 can be re-written as follows:

X∗
i j(t) = δ +

J′

∑
j′=1

α j′X j′i(t)+wiZ̃i(t)+ ri(t), (7.2.6)

where X∗
i j(t) is the latent incomplete predictor variable. Following the Corre-

lated Random Effects approach, we will incorporate a correlation between the

missing predictor model and the predictor model following Bhuyan (2019).

We consider wi and qi are correlated random vectors following a multivariate

normal distribution with mean vector 000 and covariance matrix Σx j =

(
σ2

E σ2
H

σ2
H σ2

G

)
.

Nevertheless, the equations follow the same basic form of the response model

as the GCRE-MAR method. This approach falls into the category of selection

models defined by Bhuyan (2019).

7.3 Joint Distribution

To distinguish between the observed and partially observed predictor, we use

X j(t) for predictors that contain missing values (partially observed predic-

tor) and X j′(t) for the fully observed predictors (predictors that don’t con-

tain any missing values). We will assume that only one predictor is par-
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tially observed. Let XXX j = (X11(t), . . . ,Xnm(t)), XXX∗
j =

(
X∗

11(t), . . . ,X
∗
nm(t)

)
,

RRR j = (R11(t), . . . ,Rnm(t)) and RRR∗
j =

(
R∗

11(t), . . . ,R
∗
nm(t)

)
. YYY ,YYY ∗,UUU and UUU∗

are as mentioned in Section 6.3. The joint posterior is expressed as follows:

p
(
ΘY,U ,Θxmis,R,XXX

∗
j ,RRR

∗
j ,YYY

∗,UUU∗ | YYY ,UUU ,XXX j,RRR j,XXX j′(t)
)

∝ p(ΘY,U)× p(Θxmis,R)×
n

∏
i=1

∫
∞

−∞

m

∏
t=1

f
(
Y ∗

i (t),U
∗
i (t) | ui,vi,X∗

ji(t),XXX j′(t)
)
× f

(
X∗

ji(t),R
∗
j(t) | wi,qi,XXX j′(t)

)
×

{I (U∗
i (t)> 0) I (Ui(t) = 1)+ I (U∗

i (t)≤ 0) I (Ui(t) = 0)}×g(ui,vi)×

{I (R∗
i (t)> 0) I (Ri(t) = 1)+ I (R∗

i (t)≤ 0) I (Ri(t) = 0)}×g(wi,qi)

duidvidwiqidX ji(t),
(7.3.1)

where {ΘY,U = µ,βββ ,λλλ ,τ,θθθ ,σ2
A,Σ} and {Θxmis,R = δ ,ααα,σ2

F ,χ,ψψψ,Σx j}. The

joint priors are defined as p(Θ). The joint distribution of random effects

g(.) follows a multivariate normal distribution, f (.) is the joint distribution

and I(A) is an indicator variable which takes value 1 if A occurs and zero

otherwise.

7.4 Prior Distribution

Consider the following priors for Θxmis,R:

p
(

α̃αα,σ2
F

)
∝

1
σ2

F
; p(ψ̃ψψ) ∝ N(0,b); p

(
Σx j

)
∝ IW (ν ,Λ); (7.4.1)

and the priors of ΘY,U defined as:

p
(

β̃ββ ,σ2
A

)
∝

1
σ2

A
; p

(
θ̃θθ
)

∝ N(0,b); p(Σ) ∝ IW (ν ,Λ), (7.4.2)

where α̃αα = [δ ,ααα] is a vector of the overall intercept and regression coefficients

of fully observed predictors in the incomplete predictor model, ψ̃ψψ = [χ,ψψψ] is

a vector of the overall intercept and regression coefficients of fully observed

predictors in the incomplete predictor missingness model, β̃ββ = [µ,βββ ,,,λλλ ] is

a vector of the overall intercept and regression coefficients of fully and par-
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tially observed predictors in the response model and θ̃θθ = [τ,θθθ ] is a vector of

the overall intercept and regression coefficients of fully observed predictors

in the response missingness model. To ensure convergence, we use weakly

informative priors for the matrix variable p(Σ) that we discovered and re-

solved in Chapter 4 and p
(
Σx j

)
, as well as for the missingness model coef-

ficients p(θ) and p(ψ). Prior information would encourage convergence in

the missingness model coefficients (Du et al., 2022), so we set a relatively

large prior variance value of b = 10 for this purpose. As discussed in Sec-

tion 4.4.5, the hyperparameters for the Inverse Wishart distribution are set to

Λ=(ν− p−1)I and the degrees of freedom to ν = 4. We use non-informative

priors for all other priors. In order to facilitate the Gibbs sampler, we chose

conjugate priors, which allow us to derive the full conditional distributions of

each variable in a closed form.

7.5 Gibbs Sampler

The first steps are 1-7 steps mentioned in Section 4.4.4, followed by generat-

ing estimates for the incomplete predictor model and the incomplete predictor

missingness model. The step-by-step Gibbs sampler procedure when the re-

sponse and predictor are MNAR is given below:

8. Estimate the predictor model’s random intercept, w.

9. Estimate the missing predictor values, X∗
ji(t).

10. Estimate the predictor model’s residual variance, σ2
F .

11. Estimate the predictor model’s regression coefficient, α̃αα .

12. Estimate the predictor missingness model’s random intercept, q.

13. Estimate the predictor missingness model’s regression coefficient, ψ̃ψψ .

14. Estimate the covariance matrix that represents the correlation between

the random intercept in the incomplete predictor and missing predictor

model, Σx j .
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Repeat steps 1-14 until the MCMC chains converge and produce enough pos-

terior samples. The Gibbs sampler produces a posterior distribution for each

variable, which is used to conduct Bayesian inference. The structure of the

Gibbs sampler is given in Algorithm 8 and Algorithm 9 overleaf.

Algorithm 8 GCRE-MNAR Method Gibbs Sampling Algorithm-Part 1

Choose initial {Θ0
Y,U = β̃ββ

0
, θ̃θθ

000
,σ20

A ,Σ0}, {Θ0
mis,R = α̃αα

000, ψ̃ψψ000,σ20

F ,Σ0
x}

and {u0,v0,Y ∗0,U∗0,R∗0,X∗0
j ,q0,w0}.

for 1, . . . ,S iterations do

-Sample uS+1
i ∼ p

(
ui | Y ∗S

i (t), β̃ββ
S
,σ2S

A ,ΣS,vS
i ,XXXJ′

)
.

-Sample Y ∗S+1

i (t) =


Y ∗S

i (t), if Yi(t) is observed

p
(

Y ∗
i (t) | β̃ββ

S
,XS

ji(t),u
S+1
i ,σ2S

A ,XXXJ′
)
, if Yi(t) is missing.

-Sample σ2S+1

A ∼ p
(

σ2
A | β̃ββ

S
,XS

ji(t),Y
∗S+1

i (t),uS+1
i ,XXXJ′

)
.

-Sample β̃ββ
S+1 ∼ p

(
β̃ββ | Y ∗S+1

i (t),uS+1
i ,XS

ji(t),σ
2S+1

A ,XXXJ′
)
.

-Sample vS+1
i ∼ p

(
vi |U∗S

i (t), θ̃θθ
S
,ΣS,uS+1

i ,XXXJ′
)
.

-Sample U∗S

i (t) =


p
(

U∗
i (t) | θ̃θθ

S
,vS+1

i ,XXXJ′
)

left truncated∗ at 0, if Yi(t) is observed,

p
(

U∗
i (t) | θ̃θθ

S
,vS+1

i ,XXXJ′
)

right truncated∗ at 0, if Yi(t) is missing.

-Sample θ̃θθ
S+1 ∼ p

(
θ̃θθ |U∗S+1

i (t),vS+1
i ,XXXJ′

)
.

-Sample ΣS+1 ∼ p
(
Σ | uS+1

i ,vS+1
i
)
.

∗ truncated normal distribution.
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Algorithm 9 GCRE-MNAR Method Gibbs Sampling Algorithm-Part 2

-Sample wS+1
i ∼ p(wi | X∗S

ji (t),σ
2S

F ,ΣS
x ,q

S
i ,XXXJ′).

-Sample X∗S+1
ji (t)=


X∗S

ji (t), if ,X ji(t) is observed,

p(X∗S
i j (t) | Y ∗S+1

i (t), β̃ββ
S+1

, α̃ααS,σ2S+1

A ,σ2S

F ,uS+1
i ,wS+1

i ,XXXJ′) if ,Xi j(t) is missing.

-Sample σ2S+1

F ∼ p(σ2
F | X∗S+1

ji , α̃ααS,wS+1
i ,XXXJ′).

-Sample α̃αα
S+1 ∼ p(α̃αα | X∗S+1

i j ,σ2S+1

F ,wS+1
i ,XXXJ′).

-Sample qS+1
i ∼ p(qi | R∗S

, ψ̃ψψS,ΣS
x ,w

S+1
i ,XXXJ′).

-Sample R∗S+1

i (t) =


p
(

R∗
i (t) | ψ̃ψψ

S,qS+1
i ,XXXJ′

)
left truncated∗ at 0, if X ji(t) is observed,

p
(

R∗
i (t) | ψ̃ψψ

S,qS+1
i ,XXXJ′

)
right truncated∗ at 0, if X ji(t) is missing.

-Sample ψ̃ψψ
S+1 ∼ p(ψ̃ψψ | R∗S+1

,qS+1
i ,XXXJ′).

-Sample ΣS+1
x ∼ p(Σx | wS+1

i ,qS+1
i ).

∗ truncated normal distribution.

7.6 Creating Synthetic Data for Simulation

In this section, our primary objective is to generate simulated data deliberately

designed to exhibit MNAR in the model response and predictor in a longitu-

dinal context. This will make it suitable for testing the proposed method’s

performance in handling non-ignorable missingness. The simulation setup

employed in this chapter aligns with the simulated data detailed in Section

3.4. The missing values for the response Y were generated based on:

U∗
i (t) = θ0 +θ1X2i(t)+θ2X3i + viZ̃i(t)+ εi(t), (7.6.1)
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where θ0 is the overall intercept, θ1& θ2 are regression coefficients associ-

ated with the fully observed fixed effects. The missing data indicator U∗ for

each observation is sampled from the binomial distribution with a success

rate equal to the observation’s missingness probability from the probit model,

where the value is one if the corresponding Y is observed and zero if missing.

The values of θθθ were derived to produce the desired missing data proportion;

Table 7.6.1 shows the values of the missing response indicator model for each

missingness percentage and number of repeated measures.

py = 20% py = 40% py = 60%

Parameter m=2 m=4 m=8 m=2 m=4 m=8 m=2 m=4 m=8

θ0 -2 -0.6 -0.6 -2.5 -2.5 -2.5 -1.5 -1.5 -1.5
θ1 3 0.7 0.7 1.4 1.4 1.4 0.4 0.4 0.4
θ2 7 4 4 2.2 2.2 2.2 1.2 1.2 1.2

Table 7.6.1: The table presents the values of the coefficients θθθ for the missing response indi-
cator regression model, for various proportions of missingness and a number of repeated mea-
sures. This information is used to generate missing response values for the GCRE-MNAR
method, where py represents the percentage of missing values in the model response, and m
indicates the number of repeated measures.

Moreover, vi are assumed to be N(0,2), the residuals εi follow N(0,1) and the

covariance matrix associated with the random effects is Σ =

(
2 −1

−1 2

)
.

The probit regression equation is used to connect missingness probabilities

of the response Y to values of Y through the random component based on the

latent missingness indicator regression model U∗ for non-ignorable missing-

ness. Furthermore, a different probit regression equation is used to connect

missingness probabilities of the incomplete predictor X1 to the values of X1

through the random component based on the latent missingness indicator re-

gression equation R∗
1, assuming the incomplete predictor X1 is missing not at

random. These are modelled using the latent variable form for probit regres-

sion. The incomplete predictor X1 missing values were generated based on
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the missingness indicator R∗
i1(t) which is defined as:

R∗
i1(t) = ψ0 +ψ1X2i(t)+ψ2X3i +qiZ̃i(t)+ξi(t), (7.6.2)

where ψ0 is the overall intercept, ψ1&ψ2 are regression coefficients associ-

ated with the fully observed fixed effects and the values of ψψψ will differ based

on the desired proportion of missingness and repeated measures as presented

in Table 7.6.2. Each observation’s missing data indicator R∗
i1(t), is sampled

from the binomial distribution with a success rate equal to the observation’s

missingness probability from the probit model, which has a value of one if

corresponding Xi1(t) is observed and zero otherwise, with a success rate equal

to the observation’s missingness probability specified using the probit model.

The individual’s random intercept is assumed qi ∼ N(0,2), and the residuals

are assumed ξi ∼ N(0,1). Since we assume a Correlated Random Effects be-

tween the incomplete predictor regression model and the incomplete predictor

missing indicator model, the covariance matrix associated with the random ef-

fects in the incomplete predictor X1 can be expressed as Σx1 =

(
2 −1

−1 2

)
.

px1 = 20% px1 = 40% px1 = 60%

Parameter m=2 m=4 m=8 m=2 m=4 m=8 m=2 m=4 m=8

ψ0 -6 -6 -6 -4 -4 -4 -9 -3 -3
ψ1 8 8 8 5 5 5 8 2 2
ψ2 5 5 5 0.1 0.1 0.1 0.4 1 1

Table 7.6.2: The table presents the values of the coefficients ψψψ for the missing predictor indi-
cator regression model, for various proportions of missingness and a number of repeated mea-
sures. This information is used to generate missing predictor values for the GCRE-MNAR
method, where px1 represents the percentage of missing values in the model predictor, and m
indicates the number of repeated measures.



7.6. CREATING SYNTHETIC DATA FOR SIMULATION 191



7.6. CREATING SYNTHETIC DATA FOR SIMULATION 192

Figure 7.6.1: A scatter plot describing the association between the response (y-axis) and the
incomplete predictor (x-axis) on the left-hand side plots and between the complete predic-
tor (y-axis) and the incomplete predictor (x-axis) on the right-hand side plots. The black dots
represent observed values after removing missing data, while the red triangles represent miss-
ing values. The green crosses show the full data, including both observed and missing values.
The plot also displays three regression lines, representing different values and illustrating the
varying trends for MNAR in the response and the incomplete predictor. The missingness in
the response and incomplete predictor are dependent on the small values of the variable itself,
which represent the desired missingness mechanism.
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To provide insights into generated data missingness across different propor-

tions of missingness in the model response and the incomplete predictor, Fig-

ure 7.6.1 visually represents observed and missing values across the simulated

datasets at varying percentages and four repeated measures. The missing val-

ues happen with lower values of the variables, which indicates that the miss-

ing mechanism is MNAR. Additionally, similar patterns are observed across

different repeated measures which are m = 2 & 8.

We will use the simulated data to evaluate the GCRE-MNAR method per-

formance so that we are able to assess the proposed approach with the base-

line methods. These are the full data method, which uses the fully observed

data before eliminating the missing values and capturing an ideal scenario

and the available data method, which uses the observed values by discarding

any missing data. Additionally, the proposed method will be compared to the

CRE method with fully observed predictors which was discussed in Chapter

4 and the GCRE-MNAR method with fully observed predictors in order to

assess the effectiveness of the GCRE-MNAR method in the absence of miss-

ing values in the incomplete predictor variable and to compare the results of

the generalised version of the CRE with the original CRE method. This eval-

uation will provide valuable insights into these methods’ effectiveness and

suitability under conditions where both the model’s response and predictor

missingness are non-ignorable.

R (R Core Team et al., 2013) is used to fit all of the methods, and it per-

forms Markov Chain Monte Carlo (MCMC) is carried out for the proposed

method. The brm function in the brms package (Bürkner, 2017) is used to

fit the full and available data methods using the HMC method as defined in

Section 2.4.5. The MCMC simulations will run in three chains, each with

different starting values and a total of 50,000 iterations, with the first half of

iterations being regarded as burn-in and a thinning rate of 10 is applied. Con-

vergence is assumed to have been reached if all values were below 1.1, based
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on the Gelman-Rubin convergence statistic for each individual parameter as

mentioned in Section 2.4.6 and through visual trace plots across iterations.

All upcoming results are considered to have converged.

We will evaluate the GCRE-MNAR method’s performance by comparing the

accuracy of its parameter estimates. We will use the Root Mean Square Er-

ror (RMSE), Relative Bias (RB), and Coverage Rate (CR) as measures of

accuracy for individual parameters. However, different parameter magni-

tudes could distort the results and hence to ensure equal weighting across

all model of interest parameters, we will use Weighted Root Mean Square

Errors (WRMSE) for overall method accuracy, in which we assigned weights

based on the data-generating parameters. We defined these criteria in Section

2.7, and we will evaluate them across 100 replications of the simulated data.

7.7 Results

This section presents the results of the proposed GCRE-MNAR method and

the comparative methods, applied to simulated data and the BIOSTAT-CHF

dataset.

7.7.1 Simulation Data Results

Across different sample sizes and missingness proportions, the simulated data

values and averaged imputed values from the Gibbs sampler iterations using

the GCRE-MNAR method of the response and incomplete predictor approx-

imately match, showing alignment. Furthermore, the averaged imputed val-

ues’ ±2 Standard Deviation (SD) range contains simulated data values. Fig-

ure 7.7.1 represents one case scenario when there is 20% missingness in the

analysis model response and 40% missingness in the incomplete predictor in

the analysis model with different numbers of repeated measures. This shows

that the imputed values from the proposed GCRE-MNAR method match the

simulated data values. Comparable observations were also drawn for other



7.7. RESULTS 195

scenarios of different combinations of proportion of missingness and repeated

measures. These findings show that the GCRE-MNAR approach is effective

in capturing missing values that resemble the data-generating values, indicat-

ing its reliability and efficiency.
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Figure 7.7.1: Scatter plots represent the model response Y on the y-axis and the fully observed
predictor X2 on the x-axis (on the left-hand side). The model incomplete predictor X1 on the
y-axis and the fully observed predictor X2 on the x-axis (on the right-hand side). These plots
are used to assess the simulated data values (depicted as black circles) against the average
of imputed values and the ±2 SD (represented by grey triangles and vertical lines) using the
GCRE-MNAR method for various repeated measures, with 20% missingness in the model
response and 40% missingness in the model predictor. The simulated data values are mostly
enclosed within the imputed values region.
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Figure 7.7.2: Boxplots represent the overall WRMSE for each method and different pro-
portions of missing data and repeated measures. The y-axis represents the WRMSE values,
while the x-axis represents one of the proportions of missing data in the model response and
incomplete predictor. Each boxplot corresponds to one of the applied methods, and each
plot represents different repeated measures. The results show that all methods have similar
WRMSE, with a slight increase in the available data method.

Figure 7.7.2 displays the performance of the applied methods across differ-

ent sample sizes and proportions of missing data. The boxplots show the



7.7. RESULTS 198

overall WRMSE across all model parameters. The proposed GCRE-MNAR

method generally outperforms the available data. The available data shows

higher WRMSE uncertainty when the incomplete predictor has large propor-

tions of missingness (40% and 60%). However, the GCRE-MNAR method

produces comparable results with the available data when there is 20% miss-

ingness in the analysis model response and incomplete predictor, regardless

of the number of repeated measures. On the other hand, the GCRE-MNAR,

GCRE-MNAR with fully observed predictors, and CRE methods have very

similar WRMSE performance. However, with 60% missingness in the in-

complete predictor, the GCRE-MNAR method slightly shifts towards a larger

WRMSE. GCRE-MNAR encounters an additional challenge than the CRE

method, as the CRE method has fully observed predictor data that would not

typically be available in practice.

Figure 7.7.3 shows the RMSE distribution for β0 and β1, while β2 and β3

plots are included in Section D the Appendix. We will explore the differences

for each analysis model parameters. The RMSE analysis, which shows the

degree of variation between the estimated and data-generating parameters, is

used to evaluate the accuracy of the methods. It is generally observed that the

available data method produces higher RMSE for the analysis model fixed

effects coefficients as compared to other applied methods. GCRE-MNAR,

GCRE-MNAR with observed predictors, and CRE methods have very similar

RMSE values, except when there is 60% missingness in the analysis model

incomplete predictor, where the GCRE-MNAR produces larger RMSE val-

ues. It’s worth noting that for the slope β1, the GCRE-MNAR produced lower

RMSE values and uncertainty compared with GCRE-MNAR with observed

predictor and CRE methods when there is 20% missingness in the analysis

model response and incomplete predictor with two repeated measures.
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Figure 7.7.3: Boxplots illustrate the RMSE of β0 in the left-hand side plots, and β1 in the
right-hand side plots for each method applied to various proportions of missingness and dif-
ferent repeated measures. The y-axis shows the RMSE values, and the x-axis represents one
of the proportions of missingness in the model response and incomplete predictor. Each box-
plot represents one of the applied methods. The available data method produces larger RMSE
values compared to other methods.
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Figure 7.7.4: Boxplots illustrate the RMSE of σ2
A in the left-hand side plots, and σ2

B in the
right-hand side plots for each method applied to various proportions of missingness and dif-
ferent repeated measures. The y-axis shows the RMSE values, and the x-axis represents one
of the proportions of missingness in the model response and incomplete predictor. Each box-
plot represents one of the applied methods. The available data method produces larger RMSE
values and even larger for σ2

B with m = 2 compared with other methods
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Regarding the variance parameters in the analysis model, the available data

method generally produces higher RMSE values overall, especially when

there is 60% missing data in the incomplete predictors, and larger RMSE val-

ues and uncertainty for σ2
B with two repeated measures. The GCRE-MNAR

method tends to have even larger RMSE values than the GCRE-MNAR with

fully observed predictor and CRE methods when there is 60% missingness

in the incomplete predictor but is similar otherwise. It is worth noting that

Figure 7.7.4 shows that with 60% missingness in the response, the applied

methods generally result in larger RMSE extreme values, except for the full

data method. The comparable RMSE between GCRE-MNAR with fully ob-

served predictor and CRE methods indicates that the CRE method is a special

case of the GCRE-MNAR when no missing values exist in the analysis model

predictor.

The distribution of the RB for β0 and β1 in Figure 7.7.5, and β2 and β3 in Sec-

tion D in the Appendix. The RB analyses the model’s parameters estimates in

order to spot trends in over- or underestimation of the parameters that generate

the data across all applied methods. Overall, the applied methods produce un-

biased estimates of the analysis model fixed effects parameters. However, the

available data method tends to have larger RB uncertainty when there is 60%

missingness in the incomplete predictor compared to other applied methods.

It also underestimates the intercept β0 and overestimates slope β3. The over

and underestimations of these parameters increase as the repeated measures

increase.



7.7. RESULTS 202

Figure 7.7.5: Boxplots illustrate the RB of β0 in the left-hand side plots, and β1 in the right-
hand side plots for each method applied to various proportions of missingness and different
repeated measures. The y-axis shows the RB values, and the x-axis represents one of the
proportions of missingness in the model response and incomplete predictor. Each boxplot
represents one of the applied methods. The available data method underestimates the inter-
cept β0 as repeated measures increase, though the other methods produce unbiased estimates.



7.7. RESULTS 203

Figure 7.7.6: Boxplots illustrate the RB of σ2
A in the left-hand side plots, and σ2

B in the right-
hand side plots for each method applied to various proportions of missingness and different
repeated measures. The y-axis shows the RB values, and the x-axis represents one of the
proportions of missingness in the model response and incomplete predictor. Each boxplot
represents one of the applied methods. The GCRE-MNAR method produces unbiased esti-
mates of σ2

A and underestimates σ2
B as the repeated measure decreases.
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Based on the RB values of the response model’s variance components shown

in Figure 7.7.6, the applied methods yield unbiased estimates for the resid-

ual variance of the analysis model, σ2
A. However, the available data method

has a large RB uncertainty with 60% in the incomplete predictor and a high

proportion of missingness in the response (40% and 60%) with m = 2 & 4.

The GCRE-MNAR, GCRE-MNAR with fully observed predictor, and CRE

methods have similar performance in underestimating the between-individual

variance of the analysis model, σ2
B. However, this biasedness decreases as the

number of repeated measures increases. The available data method produces

unbiased estimates of σ2
B but with larger RB uncertainty compared to other

methods.

Our results compare the accuracy of the GCRE-MNAR method and the avail-

able data method for estimating analysis model parameters, which showed

that the GCRE-MNAR method had a smaller RMSE, indicating more pre-

cise parameter estimation than the available data method. The available data

method had biased estimates for some analysis model coefficients, while the

GCRE-MNAR method was generally unbiased. However, the GCRE-MNAR

method produced biased estimates for between-individual variance with fewer

repeated measures. In summary, the GCRE-MNAR method reduces the spread

of estimation errors and generally provides consistent, unbiased estimates.

To assess how accurately each method captures the data-generating param-

eters of the analysis model, we used the CR, the corresponding plots can be

found in Section D in the Appendix. In most cases, the CR ranges from 0.9

to 0.99. However, there are a few exceptions where the available data method

was unable to capture the data-generating parameters of β0 and β3. Specifi-

cally, for β0, the available data method failed to capture the actual parameter

values when there is 60% missingness in the response with m = 4 & 8 and

when there is 40% missingness in the response with m = 8. For β3, the avail-

able data method was unable to capture the actual parameter values when
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there is 40% missingness in the response with m = 8 and when there is 40%

missingness in the incomplete predictor with m = 2 & 4.

The proposed GCRE-MNAR method was not able to capture the actual pa-

rameter values for β0 and β1 with m = 2 when there is 60% missingness in the

incomplete predictor, but the CR is only slightly below 0.9. Also, for σ2
B with

m = 2 in all combinations of proportions except when there is 60% missing-

ness in the response and 40% missingness in the incomplete predictor. With

m = 4, the GCRE-MNAR, GCRE-MNAR with fully observed predictor and

CRE methods were unable to capture the true parameter values of σ2
B in all

combinations of proportions except when there is 40% missingness in the in-

complete predictor. With m= 8, both the GCRE-MNAR, GCRE-MNAR with

fully observed predictor and CRE methods were unable to capture the actual

parameter values of σ2
B when there is 40% missingness in the response.

Regarding the out-of-sample prediction performance, the GCRE-MNAR

method outperforms the available data method in various combinations of

missingness in the model response, incomplete predictor, and repeated mea-

sures. However, when there are 20% missing values in both the model re-

sponse and incomplete predictor with two repeated measures, the proposed

method performs similarly to the available data method. Figure 7.7.7 presents

the out-of-sample performance for 20% missingness in the model response

and 60% missingness in the incomplete predictor across different methods

and repeated measures. The plots displaying the remaining proportion of

missingness can be found in Section D of the Appendix.
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Figure 7.7.7: The density plots of the out-of-sample RMSE for different methods across var-
ious repeated measures with 20% missingness in the response and 60% in the incomplete
predictor. Each density curve corresponds to one of the methods used, and each plot corre-
sponds to a different value of repeated measures. The available data method appears to have
less density and slightly shifted to to higher RMSE values.
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RB boxplots of the missingness response model parameters across generated

simulated datasets, various proportions of missingness and repeated measures

are in Figure 7.7.8, and the plots for RMSE and CR can be found in Section

D in the Appendix. The RMSE of the coefficient parameters for the miss-

ingness response model using the GCRE-MNAR method decreases as the

number of repeated measures increases. Out of all the missingness response

model parameters, θ1 has lower RMSE values and uncertainty. As the number

of repeated measures increases, the missingness response model parameters

become less biased, and the σ2
D, which is the between response models co-

variance parameter, has larger RB uncertainty.

When there are only two repeated measures, the GCRE-MNAR method is un-

able to capture the data-generating parameters for the missingness response

model fixed effect coefficients, especially when there is 40% missingness

in the incomplete predictor, and the variance parameters when there is 20%

missingness in the model response and incomplete predictor and 60% miss-

ingness in the incomplete predictor.

The intercept θ0 shows low CR with m = 4 & 8 when there is 40% miss-

ingness in the response. σ2
D has a slightly lower CR than 0.9 when there is

40% missingness in the incomplete predictor with four repeated measures.

With 60% missingness in response σ2
D has a low CR when there are four and

eight repeated measures. Otherwise, the CR ranges between 0.9 and 0.99.

Figure 7.7.9 shows the RB plot associated with the incomplete predictor model

parameters, and the RMSE and CR plots can be found in section D in the Ap-

pendix. According to the incomplete predictor model parameters, the GCRE-

MNAR model produced low RMSE values for the residual variance σ2
F and

the slope α1 parameter of the incomplete predictor model. These values had

lower RMSE uncertainty compared to other model parameters. Relative bias

was also found to be unbiased; however, RB uncertainty for α2 was wider.
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Figure 7.7.8: Boxplots illustrate the RB of the missingness response model parameters using
the GCRE-MNAR method across various proportions of missingness and repeated measures.
The y-axis represents the RB values, while the x-axis shows the proportion of missingness,
and each boxplot represents a specific missingness response model parameter. Each plot
corresponds to a different repeated measure value. As the repeated measures increase, the
missingness response model parameters become unbiased.

For the incomplete predictor model, the GCRE-MNAR method was able to

capture the data-generating parameter values where CR varied between 0.9

and 0.99, except for when there were 20% missing values in the model re-

sponse and incomplete predictor with m = 8, σ2
E , α1, and α2, which had low



7.7. RESULTS 209

CR. When there were four repeated measures, α2 had low CR when there

were 60% missing values in the incomplete predictor, and σ2
E had low CR

when there were 60% values in the response. The residual variance σ2
F had

low CR with m = 2 when there were 20% missing values in the model re-

sponse and incomplete predictor, as well as when there were 60% missing

values in the incomplete predictor.

As the repeated measures increase, the RMSE and the RB (in Figure 7.7.10)

associated with the incomplete predictor missingness model parameters de-

crease. Interestingly, when the incomplete predictor has a high proportion of

missing values (40% and 60%), the RMSE and RB are lower than when the

incomplete predictor has only 20% missing values, regardless of the propor-

tion of missingness in the response. The GCRE-MNAR method can capture

the data-generating parameters of incomplete missingness model parameters

when there is a higher proportion of missingness in the incomplete predictor

(40% and 60%) with m = 4 & 8. Additionally, the covariance parameter σ2
H

is captured regardless of the proportion of missingness with m = 8. However,

with two repeated measures, the GCRE-MNAR method struggles to capture

the data-generating parameters for the incomplete missingness model param-

eters.

Using the GCRE-MNAR method, the missingness response model parame-

ters, the incomplete predictor model parameters and the missingness incom-

plete predictor model parameters can be estimated effectively with larger sam-

ple sizes (larger number of repeated measures). As the sample size increases,

the accuracy and precision of the estimates improve, as indicated by the low

RB and RMSE values and high CR values. These results suggest that the

method is capable of producing reliable estimates that closely match the ac-

tual values, especially when working with more repeated measurements taken

over time.
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Figure 7.7.9: Boxplots illustrate the RB of the incomplete predictor model parameters, using
the GCRE-MNAR method across various proportions of missingness and repeated measures.
The y-axis represents the RB values, while the x-axis shows the proportion of missingness,
and each boxplot represents a specific missingness response model parameter. Each plot
corresponds to a different repeated measure value. The GCRE-MNAR method produces
unbiased estimates of the incomplete predictor model parameters, with larger RB uncertainty
for α2.



7.7. RESULTS 211

Figure 7.7.10: Boxplots illustrate the RB of the incomplete predictor missingness model pa-
rameters, using the GCRE-MNAR method across various proportions of missingness and
repeated measures. The y-axis represents the RB values, while the x-axis shows the pro-
portion of missingness, and each boxplot represents a specific missingness response model
parameter. Each plot corresponds to a different repeated measure value. With large miss-
ingness in the incomplete predictor, the incomplete predictor missingness model parameters
tend to be more unbiased compared with a smaller proportion of missingness.

7.7.2 Real Data Results

We will apply the GCRE-MNAR method to the real-world BIOSTAT-CHF

dataset. We also employed the available data approach, a default strategy for

handling repeated measures. To implement the GCRE-MNAR and available
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data approaches on the BIOSTAT-CHF dataset, we used the model described

in Equation 4.2.2 in Section 4.2.

Figure 7.7.11 shows the parameter’s posterior distribution for the GCRE-

MNAR and available data approaches. There is a clear distinction between

the two approaches’ intercept density curves. This finding is supported by the

Kolmogorov-Smirnov test, which shows that only eGFR and Pacemaker have

p-values higher than the 0.05 significance level. This suggests that the null

hypothesis (there is no difference between the two methods) is not rejected.

The missingness response model and the model of interest have a random ef-

fects covariance of σ2
D =−0.24, which indicates weak to moderate evidence

of MNAR (Missing Not at Random) of the model’s response. However, the

random effects covariance between the incomplete predictor model and the

missingness incomplete predictor process is σ2
H = −0.84, which indicates

strong evidence of MNAR (Missing not at random) in the model’s incomplete

predictor, "eGFR".

We explore the performance of the GCRE-MNAR approach for data imputa-

tion in Figure 7.7.12, which displays the density for the observed and GCRE-

MNAR imputed response and predictor variables for each draw of the latent

variable from the posterior using Gibbs sampler. The similarities between the

observed and imputed data from the GCRE-MNAR approach density curves

imply that the general data distribution was successfully retained during the

imputation procedure.

Next, we will separate the data into a training set and a test set to evaluate

further the proposed GCRE-MNAR method’s effectiveness with unseen data.
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Figure 7.7.11: Posterior distribution of the GCRE-MNAR method in a black solid curve and
the available data method in a grey dashed curve, each plot represents one of the BIOSTAT-
CHF model parameters. Density curves overlay except for the model intercept and perhaps
to some extent, the coefficient for the Time variables and HR Other.

Figure 7.7.12: Density plots show the observed values in the black solid curve and the GCRE-
MNAR imputed response (left-hand) and predictor (right-hand) values in the grey dashed
curves, where each curve is a different draw of the latent variable from the posterior using
Gibbs sampler. The density of the imputed values using the GCRE-MNAR method at each
Gibbs sampling iteration is similar to the density of the observed values.
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Case 1: Split the data into test and training data, where the test data has fully observed
values.

This section aims to assess the performance of the proposed method for han-

dling missing values in comparison to the available data method. We will split

the BIOSTAT-CHF data into test and training sets to assess the approaches’

ability to generalise to data it has not been built upon. The test data will be

considered fully observed, while the training data will have missing values for

both the predictor and response variables. Out of the total 2516 participants in

the study, only 395 have complete data, which accounts for 15% of the total

population. Therefore, we will allocate 85% of the data to the training set and

15% to the test set.

Figure 7.7.13: Posterior distribution of the GCRE-MNAR method in black solid curve and
the available data method in grey dashed curve, each plot represents one of the BIOSTAT-
CHF training data model parameters in case 1. Density curves overlay except for the model
intercept and the variance parameters.

In this analysis of case 1, we compare the GCRE-MNAR and available data

approaches’ posterior distributions of the training data to gain insights into

their performance. The resulting posterior distributions are shown in Figure
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7.7.13, which shows that the model’s intercept and variances exhibit distinct

density curves between the two methods. Furthermore, the Kolmogorov-

Smirnov test assessed the differences between the two approaches. For a

significance level of 0.05, the null hypothesis was rejected for all variables

except for eGFR. The covariance between the random effects of the response

is σ2
D = −0.052, which suggests a weak indication of MNAR (Missing Not

at Random) of the response "NT-proBNP" in the training data. On the other

hand, the covariance between the random effects of the incomplete predic-

tor "eGFR" is σ2
H = −0.57, which suggests a moderate/ strong indication of

MNAR (Missing Not at Random) of the incomplete predictor "eGFR" in the

training data.

Figure 7.7.14 displays a visual comparison between the RMSE of the GCRE-

MNAR and the available data approaches. The out-of-sample performance

between both methods is statistically significantly different, as indicated by a

Kolmogorov-Smirnov test with a p-value of less than 0.05. The density plot

of the available data RMSE exhibits a slight shift towards smaller values, sug-

gesting a higher predictive performance.

The density for the observed and GCRE-MNAR imputed response, and pre-

dictor variables are shown in Figure 31 in the Appendix. The GCRE-MNAR

method’s imputed response overlaps well with the test data, indicating a rea-

sonable imputation similar to the complete case. On the other hand, the train-

ing data shows considerably different density patterns. We observe a simi-

larity between the training data distribution and the imputed data for the in-

complete predictor variable using the GCRE-MNAR method while displaying

differences from the test data distribution; this demonstrates an effective im-

putation procedure for the observed data, suggesting that the imputation of

the incomplete predictor data matches well with the training set. The imputed

response data shows a larger deviation from the training data, whereas the

training data is more similar to the imputed incomplete predictor data. This is
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similar to the findings in the GCRE-MAR results in Chapter 6.

Figure 7.7.14: The RMSE density (on the left-hand side) and CDF (on the right-hand side)
of the out-of-sample prediction in BIOSTAT-CHF training data in case 1, where the black
solid curve represents the GCRE-MNAR method and the grey dashed curve represents the
available data method. The RMSE of the available data method is shifted toward lower RMSE
values.

Case 2: Split the data into test and training data, where the test data has missing values
in the predictor.

In this case, the training data contains missing values in both the response and

predictor variables, while the test data only has missing values in the predictor

variable. The split percentages for the training and test data are the same as

in Case 1.

To understand the performance of the GCRE-MNAR and available data ap-

proaches, we compare their posterior distributions of the training data in

this analysis of case 2. Figure 7.7.15 displays the posterior distributions

that originated from these methods. The similarity is observed by looking

at the overlap in the posterior distribution of model parameters between the

GCRE-MNAR and the available data approaches. Heart Rhythms: Atrial Fib-

rillation and Others and eGFR have p-values greater than 0.05 according to

the Kolmogorov-Smirnov test results, indicating no significant difference be-
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tween the two methods in these parameters. It is interesting to note that the

variance components of the two approaches show quite a difference in regard

to the posterior distributions. The random effects’ covariance is σ2
D =−0.01,

suggesting weak evidence of MNAR (Missing Not at Random) in the model’s

response and moderate/strong evidence of MNAR (Missing Not at Random)

in the model’s incomplete predictor σ2
H =−0.65.

Figure 7.7.15: Posterior distribution of the GCRE-MNAR method in black solid curve and
the available data method in grey dashed curve, each plot represents one of the BIOSTAT-
CHF training data model parameters in case 2. Density curves overlay except for the variance
parameters.

To assess the method’s out-of-sample performance, the GCRE-MNAR method

was applied to the test data to impute the missing values of the incomplete

predictor, eGFR, and only fully observed values of the eGFR are used in

the available data method to calculate the out-of-sample-performance. The

RMSE of the available data method exhibits a slight shift towards larger val-

ues compared with the GCRE-MNAR method, as expressed in Figure 7.7.16.

The Kolmogorov-Smirnov test indicates that both methods don’t perform

comparably. Comparing RMSE distribution in Case 2 and Case 1, we observe

that both distributions are similar and centred around very similar values, but
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in Case 2, the GCRE-MNAR method outperformed the available data method

in terms of RMSE. This suggests that the performance of the GCRE-MNAR

method in terms of RMSE is preferable since it can handle missingness and

outperforms the available data method in out-of-sample prediction. Further-

more, the conclusions of comparing the training data distribution, test data

distribution, and GCRE-MNAR imputed values in case 1 remain consistent

(as displayed in Figure 32 in the Appendix). The consistency of the results in-

dicates that the imputation procedure employing the GCRE-MNAR approach

provides reliable analyses.

Figure 7.7.16: The RMSE density (on the left-hand side) and CDF (on the right-hand side)
of the out-of-sample prediction in BIOSTAT-CHF training data in case 2, where the black
solid curve represents the GCRE-MNAR method and the grey dashed curve represents the
available data method. The RMSE of the GCRE-MNAR method is shifted toward lower
RMSE values.

7.8 Discussion

In this chapter, we further generalise the GCRE-MAR method introduced in

Chapter 6, which is a generalisation of the CRE introduced by Bhuyan (2019)

that was discussed in Chapter 4. The aim is to allow for missing values in the

analysis model response and predictors while assuming non-ignorable miss-
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ingness in both. Additionally, the proposed GCRE-MNAR method estimates

two covariance parameters to determine the possibility of the missingness in

the response and the predictor being MNAR by using Correlated Random Ef-

fects, which is a statistical technique used to model the relationship between

the missing model and the observed model. This information is useful for data

analytics since the reason behind the cause of missing data cannot be deter-

mined beforehand and can help improve the accuracy of results. We evaluated

the GCRE-MNAR method using simulated data with different combinations

of missingness in the response and predictor and across different repeated

measures.

We have assessed the accuracy of parameter estimation in our analysis of

model parameters using simulated data, which is limited to a setting involv-

ing one incomplete predictor and two fully observed predictors. This has pro-

vided valuable insights into the performance of the GCRE-MNAR method

compared to the available data method. The available data method is the de-

fault method for addressing linear mixed models in longitudinal data, which

only uses the observed data. Our findings show that the GCRE-MNAR method

has a smaller RMSE of the analysis model’s parameters than the available data

method, indicating that the GCRE-MNAR method is more effective in reduc-

ing the spread of estimation errors.

Moreover, the GCRE-MNAR has similar performance to the GCRE-MNAR

with the fully observed predictor and the CRE methods except when there is

a large proportion of missingness in the incomplete predictor (60%). In such

cases, the GCRE-MNAR method tends to have larger RMSE values because

the GCRE-MNAR can handle missingness in the model predictor. In contrast,

the GCRE-MNAR with a fully observed predictor and CRE methods consider

a fully observed predictor, and thus, the GCRE-MNAR introduces more error

in the method.
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The applied methods to the simulated data produced unbiased estimates of

the analysis model parameters. However, the available data underestimates

the analysis model intercept β0 and overestimates β3 as the number of re-

peated measures increases. It also has a large RB uncertainty when there is

60% missingness in the incomplete predictor. The proposed GCRE-MNAR

method and its special cases (the GCRE-MNAR with a fully observed pre-

dictor and the CRE methods) tend to produce biased σ2
B. However, this bias

is reduced with the increase in repeated measures, indicating that the GCRE-

MNAR struggles with low sample size and requires a larger sample size to

produce accurate estimates. The unbiased estimation revealed by the relative

bias for the GCRE-MNAR method underscores its ability to provide estimates

that are centred around the actual values.

The results indicate that the GCRE-MNAR method consistently performs

better than the available data method in predicting out-of-sample accuracy.

It suggests that the GCRE-MNAR method could potentially enhance the re-

liability of conclusions drawn from medical longitudinal studies and handle

missingness in the analysis model response and incomplete predictor. Provid-

ing more accurate forecasts of results outside the training data and imputing

missing values in the analysis model response and incomplete predictor could

be particularly helpful in medical research, where decisions often affect pa-

tient care and treatments. The ability to make reliable predictions is essential

in such research.

The GCRE-MNAR method is a reliable and precise method for estimating

missingness response, incomplete predictor, and missingness incomplete pre-

dictor model parameters with larger sample sizes. As the number of repeated

measures increases, the precision and reliability of the estimates improve, as

indicated by low RB, low RMSE values and high CR values. Furthermore, the

GCRE-MNAR method can produce reliable estimates of the incomplete pre-

dictor missingness model parameters’ data-generating parameters when there
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is a large proportion of missingness in the incomplete predictor (40% and

60%). This may be because a larger proportion of missingness provides the

method with more information about the missingness pattern to estimate the

parameter values of the missingness incomplete predictor model.

The GCRE-MNAR method was applied to the BIOSTAT-CHF dataset, and it

was found that the estimation of analysis model parameters differed between

the GCRE-MNAR method and the available data method. Based on the co-

variance parameter, missingness in the response is less likely to be MNAR,

whereas missingness in the incomplete e.GFR is more likely to be MNAR.

The GCRE-MNAR imputed values of the response and incomplete e.GFR

predictors were found to be similar to the observed ones.

Two scenarios were applied to split the dataset to evaluate the performance

of the available data method and the proposed GCRE-MNAR method in the

BIOSTAT-CHF dataset. In the first scenario, the methods were trained using

the dataset with missing values in the response and predictor, and these meth-

ods were then tested on a fully observed test dataset. In the second scenario,

the test dataset contained missing values in the eGFR. The out-of-sample per-

formance was different in both scenarios. In the first scenario, the available

data method outperformed the GCRE-MNAR method, but in the second case,

the GCRE-MNAR outperformed the available data method. This implies that

the GCRE-MNAR method offers advantages in handling missing data by pre-

dicting unseen data and providing imputed values for the response and pre-

dictor. Additionally, in both scenarios, the covariance parameter values con-

cluded that the missingness in the response is MAR and eGFR is MNAR.

Regarding imputation performance, it’s worth noting that the behaviour of

response and predictor variables differs between training and test datasets.

Specifically, the training set is more similar to the imputed predictor data than

the imputed response. This disparity may be linked to the underlying cause
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of the missing data. Furthermore, the GCRE-MNAR has the added advantage

of providing us with the missingness mechanism of the incomplete predictor

along with the response variable.

Overall, the GCRE-MNAR method is a promising approach for handling

missing data in statistical models, particularly in cases where the missingness

is non-ignorable. The method can provide valuable insights into the probabil-

ity of missingness being MNAR and can improve the accuracy of the result.

Since the assumption of MNAR relies on unobserved data, it is essential to

apply sensitivity analysis to assess the robustness of the results and conclu-

sions to assumptions made about the missing data mechanism. Analysts can

use it to address potential bias, discover the uncertainty associated with their

conclusions, and evaluate the impact of assumptions about the missing data

process on their findings. This helps improve the clarity of the research, which

is especially when dealing with human lives. Additionally, the GCRE-MNAR

method could improve various fields beyond medical research. For example,

longitudinal studies in education research and social science surveys, where

missing data is a common challenge. In Chapter 8, we will address how to

perform sensitivity analysis in this context.



Chapter 8

Sensitivity Analyses for the Proposed
Methods

8.1 Introduction

In real-world data, it is impossible to determine the real model and missing-

ness mechanism. Therefore, it is important to assess how the proposed meth-

ods perform when their assumptions do not hold. We can evaluate whether the

model fits the observed data, but we cannot assess how well it fits the unob-

served data based on the observed data alone. Conducting sensitivity analysis

is crucial in this regard. Staudt et al. (2022) recommended using sensitiv-

ity analysis in randomized controlled trials to evaluate the effects of various

missing data assumptions on study results. The reliability of the conclusions

depends on the consistency of conclusions across different models (Mason,

2010).

For valid inference, appropriate distributional assumptions and a model for

the missing data mechanism are required. Since these assumptions impact the

results, conducting sensitivity analysis is essential (Ibrahim and Molenberghs,

2009) to demonstrate how assumptions that differ from those in the primary

analysis influence the results (Morris et al., 2014). Changes in the model’s

distributions and the missing indicator model ideally should minimally affect

the response model regression coefficients estimate. This is because there are

223
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various ways to model these distributions, and each model has a distinct con-

cept. The missingness model investigates the relationship between missing

data and other variables. The partially observed variable distributions help to

handle missing data by imputing it. The response model is used to analyse the

relationship between variables of interest and predicting outcomes. The pos-

sible models can typically be determined by additional information about the

missing data or through expert elicitation (Stubbendick and Ibrahim, 2003).

It is not possible to know the parametric forms of the partially observed vari-

able model and the assumed missing data mechanism using the data at hand

(Ibrahim and Molenberghs, 2009). Due to various options for the distribution

assumptions and the missing data mechanism, it requires evaluating different

models (Ibrahim and Molenberghs, 2009).

Extensive literature suggests various approaches to reviewing the models. For

example, Birmingham et al. (2003) discussed estimating the parameters of in-

terest across a range of plausible sensitivity parameter values, where the rela-

tionship between the response and the response missingness process is called

the sensitivity parameter (Minini and Chavance, 2004). According to Ibrahim

et al. (2005), there are two ways to approach the missing data selection model.

The first is to let the data decide the selection model empirically by starting

with the main effects and progressively adding terms while assessing each

model’s fit using the likelihood ratio or AIC. However, data from alternative

nonignorable models does not provide much information. On the other hand,

sensitivity analyses may be more appropriate, particularly in cases where the

data is unable to distinguish between alternative nonignorable missing-data

methods. According to Molenberghs and Kenward (2007), one strategy is to

fit several plausible MNAR models or perform a primary analysis with differ-

ent adjustments, such as the inclusion of predictors.

Specifying the selection model predictors is not straightforward. Du et al.

(2022) studied the consequences of including too few or too many predictors
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in the missingness model misspecification. It is recommended to include all

variables in the response model into the missingness model as it can be chal-

lenging to choose which factors to consider (Du et al., 2022), and to avoid

making the missingness too complex to prevent the model from being non-

identifiable (Ibrahim et al., 2005). Bhuyan (2019) and Lin et al. (2010) evalu-

ated the sensitivity of the CRE approach using a misspecified missingness re-

sponse model that assumes the association between the missingness response

process and the response variable is specified through a fixed effect. The re-

sults showed that the response model estimators were biased, which is not

surprising.

This chapter discusses various sensitivities of the proposed Two-Step, GCRE-

MAR, and GCRE-MNAR approaches to investigate the reliability of conclu-

sions. To provide practical recommendations, we will conduct two types of

sensitivity analysis to obtain a complete picture of the robustness of the in-

ference. Firstly, in Section 8.2, we will test the sensitivity of the proposed

approaches to different types of misspecified missing data mechanisms (e.g.

MAR and MNAR). Secondly, in Section 8.3, we will examine each proposed

approach using misspecified missing data process models (i.e. missingness

model structure that is misspecified). Finally, Section 8.4 discusses the main

results.

8.2 Missing mechanism Sensitivity Analysis

We will create scenarios to test different sensitivities of the proposed ap-

proaches. These scenarios will have missingness mechanisms that depart

from the approach’s assumptions for the response and predictor. We will use

the simulation set-up described in Section 3.4. We will generate the missing

MNAR values using each method’s process structure. The MNAR values for

the incomplete predictor are described in Section 7.6, and the MNAR values

for the response are described in Section 6.6. To generate MAR values, we
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will employ the deleteMARcensoring() function in the missMethod

package (Rockel, 2020) in R by assuming that the missingness is related to the

values of the fully observed continuous predictor Xi2(t). Specifically, the val-

ues of the model response or incomplete predictor will be missing whenever

the corresponding Xi2(t) value is within the pth quantile, where p is the pro-

portion of missingness. Furthermore, test data will be generated using fully

observed data to evaluate out-of-sample prediction performance. To ensure a

comprehensive analysis, we will generate 100 datasets with different numbers

of repeated measures and the proportion of missingness, as carried out in pre-

vious analyses (Chapters 5-7). The methods’ performance will be compared

using Root Mean Square Error (RMSE), Relative Bias (RB), and Coverage

Rate, as explained in Section 2.7.

8.2.1 Two-Step and GCRE-MAR Methods

The Two-Step and GCRE-MAR methods deal with two types of missing data:

MNAR in the model response and MAR in the incomplete predictor. We will

apply these methods to simulated data that includes MNAR in both the model

response and incomplete predictor (MNAR_Y & MNAR_X), which misspec-

ified the missingness mechanism for the model’s incomplete predictor. To

misspecify the missingness mechanism for the model response, we will gen-

erate data that have MAR in both the model response and the incomplete pre-

dictor (MAR_Y & MAR_X). Additionally, to test the misspecification of the

missingness mechanism for the model response and incomplete predictor, we

will simulate data with MAR missingness in the model response and MNAR

missingness in the model incomplete predictor (MAR_Y & MNAR_X). We

will compare the misspecification results with baseline methods, which are

the full and available data methods. The plots representing the following

findings are in Section E in the Appendix.
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Misspecified the Missingness Mechanism for the Model’s Incomplete Predictor by As-
suming MNAR_Y & MNAR_X

The misspecification of the missingness mechanism in the model’s incom-

plete predictor yields similar results between the Two-Step and the GCRE-

MAR methods, with a few exceptions that we will mention throughout. The

RMSE between the analysis model’s estimated parameter values and the data

generating values is large overall, with an even larger RMSE when using

the available data with 60% missingness in the model’s incomplete predictor.

Moreover, the Two-Step and GCRE-MAR methods resulted in lower RMSE

for σ2
B compared to the available data. However, the Two-Step method has

a larger RMSE and uncertainty than the available data method when there is

60% missingness in the model’s incomplete predictor for the random inter-

cept variance σ2
B.

The parameter estimates are unbiased overall, except for the model’s inter-

cept β0 with 60% missingness in the incomplete predictor using the Two-Step

method. The available data method resulted in a larger RB uncertainty of

β0 and a more biased estimate with a larger proportion of missingness in the

response variable. The random intercept variance σ2
B becomes unbiased as

repeated measures increase. The Two-Step method showed that the variance

components are biased with 60% missing values in the model’s incomplete

predictor.

In this case, the out-of-sample prediction performs well in predicting new

data, with larger uncertainty when there is 60% missing data in the response

variable. Additionally, the CR is mostly reasonable, except for the poor CR

of σ2
B when using the GCRE-MAR method with a small number of repeated

measures and as the number of repeated measures increases, the Two-Step

method with 60% missing values in the model’s incomplete predictor.
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Misspecified the Missingness Mechanism for the Model’s Response Variable by Assum-
ing MAR_Y & MAR_X

In cases involving both MAR_Y & MAR_X , misspecifying the missingness

in the model’s response yields similar results between the Two-Step and the

GCRE-MAR methods. The overall RMSE is high, especially with a higher

proportion of missingness in the model’s response and 60% missingness in

the incomplete predictor separately for β0 and β2. The available data resulted

in high RMSE with 60% missingness in the incomplete predictor. However,

when the proportion of missingness in the model’s response and the incom-

plete predictor is low (20%), there are low RMSE and negligible differences

between the RMSE values of the applied methods.

The parameter estimates are mostly unbiased, with the larger RB uncertainty

for β0 and β2, with 60% missingness in the model’s response. As the number

of repeated measures increases, the variance components become unbiased.

On the other hand, the Two-Step method resulted in a biased estimate of σ2
A,

with a high proportion (40% and 60%) of missingness in the model response

and 60% missingness incomplete predictor. However, it becomes more bi-

ased as the repeated measures decrease. The between-individual variance σ2
B

estimates are mostly biased.

The out-of-sample prediction performs well with unseen data but has larger

uncertainty when there is a high proportion of missing data, 60%, in the re-

sponse variable. The available data performs poorly, particularly when 60%

of missing data is in the incomplete predictor. The CR for σ2
B was poor but

reasonable for other variables.

Misspecified the Missingness Mechanism for the Model’s Response and Incomplete Pre-
dictor by Assuming MAR_Y & MNAR_X

The results of misspecification of the missingness mechanisms of the model’s

response and incomplete predictor for the Two-Step and GCRE-MAR meth-
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ods that deal with MAR_Y & MNAR_X have similar outcomes with a few ex-

ceptions, which will be mentioned. The RMSE resulted in high values overall

and even higher when there is a high proportion of missingness (60%) in the

response or incomplete predictor variables separately. The RMSE values of

β1, β3 and σ2
B increase using the Two-Step method with 60% missingness in

the incomplete predictor. When there is a low proportion of missingness in

the model response and incomplete predictor (20%), the RMSE values are

similar to the best-case scenario (the full data).

The proposed methods resulted in unbiased estimates overall with larger un-

certainty when there are 60% missing values in the model response for β0

and β2. The Two-Step method produced biased β0 and a larger uncertainty

of β1 with 60% missing values in the incomplete predictor. The variance

components become unbiased as the number of repeated measures increases.

However, the Two-Step method resulted in biased σ2
B with 60% missingness

in the incomplete predictor and 40% and 60% missingness in the response

variable.

The proposed method performs well in predicting unseen data but with larger

uncertainty when the proportion of missingness in the response variable is

high. The CR of σ2
B is poor and reasonable for other parameters.

8.2.2 GCRE-MNAR Method

The GCRE-MNAR method deals with non-ignorable missing (MNAR) data

in the model response and incomplete predictors. We will apply this method

to different simulated data: MAR in the model’s incomplete predictor and

MNAR in the model’s response (MNAR_Y & MAR_X), which misspecifies

the missingness assumption for the model’s incomplete predictor. To mis-

specify the missingness assumption for the model’s response, we will gener-

ate data with MAR missingness in the model response and MNAR missing-

ness in the model incomplete predictor (MAR_Y & MNAR_X). Furthermore,
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we will simulate data with MAR missingness in both the model response and

incomplete predictor (MAR_Y & MAR_X) to misspecify the missingness as-

sumption of the model response and incomplete predictor. We will compare

the proposed method’s misspecification results with those of baseline meth-

ods, i.e. the full and available data methods. Section E in the Appendix

contains plots that illustrate the following results.

Misspecified the Missingness Mechanism for the Model’s Incomplete Predictor by As-
suming MNAR_Y & MAR_X

When using the GCRE-MNAR method with a misspecified missingness mech-

anism for the incomplete predictor with MNAR_Y & MAR_X , it’s not surpris-

ing that the RMSE values for the parameter estimates are high. They are even

higher with 60% missing values in the incomplete predictor using the avail-

able data method. The estimates are unbiased overall, but there is a larger

uncertainty of β3 when there is a larger proportion of missingness in the re-

sponse variable (40% and 60%). The available data produces biased estimates

for β0 and β3. As the number of repeated measures increases, the between-

individual variance, σ2
B, becomes unbiased but with larger uncertainty. The

out-of-sample prediction performance is not affected by the misspecification

of MNAR_Y & MAR_X case. However, the available data has a lower density

of out-of-sample RMSE with a longer tail towards larger values when there

is a 60% missing value in the incomplete predictor. Regarding CR, most pa-

rameters have a reasonable rate, except for σ2
B.

Misspecified the Missingness Mechanism for the Model’s Response Variable by Assum-
ing MAR_Y & MNAR_X

The GCRE-MNAR method produced large RMSE overall and even higher

values with a large proportion of missingness (60%) in the response. How-

ever, with 20% missingness in the response and incomplete predictor, the

RMSE values were similar to the full data method. Generally, the GCRE-

MNAR method produced unbiased estimates with large uncertainty for β0
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and β2 when 60% of the response values were missing. As the number of

repeated measures increased, the variance parameters became unbiased. The

out-of-sample prediction performed well under this misspecification assump-

tion, with larger uncertainty when 60% of the response variable was missing.

The CR for σ2
B was poor compared to other analysis model parameter esti-

mates.

Misspecified the Missingness Mechanism for the Model’s Response and Incomplete Pre-
dictor by Assuming MAR_Y & MAR_X

In the context of specifying the missingness mechanism for the model’s re-

sponse and incomplete predictor, the GCRE-MNAR method resulted in high

overall RMSE, which increased even further with a large proportion of miss-

ingness, specifically 60% in the model response. The available data method

produced higher RMSE than the GCRE-MNAR method with 60% missing

values in the incomplete predictor. However, when there is 20% missingness

in the response and incomplete predictor, the RMSE values are not large. In

terms of RB, the analysis model parameter estimates are unbiased in most

cases, except the variance parameters, which become unbiased as the num-

ber of repeated measures increases. However, σ2
B is still biased with a large

number of repeated measures. Generally, out-of-sample prediction performs

well with unseen data, with a higher level of uncertainty when there is 60%

missingness in the response. Additionally, the available data method performs

more poorly than the GCRE-MNAR method with 60% missing values in the

incomplete predictor. The values of the CR are generally reasonable, except

for σ2
B.

8.3 Missingness Model Sensitivity Analysis

In this section, we will conduct additional simulations to evaluate the im-

pact of applying a misspecified missingness process model for the proposed

methods. As the proposed methods are generalisations of the existing CRE
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method, we will follow a similar misspecification model set-up proposed by

Bhuyan (2019) and Lin et al. (2010) for Correlated Random Effects. The

missingness model involves a fixed effect (η) that determines how missing-

ness depends on the response. Consequently, the analysis and missingness

process models are no longer correlated via a random effect but rather through

the fixed effect η . We set the values of the missingness process model accord-

ing to each model’s simulation data for missingness and centred the incom-

plete variable (either the response or the incomplete predictor) in the miss-

ingness process model around its mean value (ζ ) to keep the proportion of

missingness fixed, which resulted in 35% missingness. We will present the

misspecification model for each proposed method below, along with the re-

sults. We will generate 100 datasets for each scenario with different repeated

measures using the same simulated data set-up described in Section 3.4.

8.3.1 Two-Step Method

As there is a missingness process model for the response in the Two-Step

method, we will misspecify this and generate missingness in the response

based on the following model:

U∗
i (t) = θ0 +θ1X1i(t)+θ2X2i(t)+θ3X3i(t)+η (Yi(t)−ζ )+ εi(t) (8.3.1)

where ζ is the mean value of the response variable, η = 0.5 and values of

fixed effects coefficients are: θθθ = {−0.8,−0.4,3,4}.

8.3.2 GCRE-MAR Method

As the GCRE-MAR method involves a missingness process model for the

response, we will generate missingness in the response based on the following

misspecified model:

U∗
i (t) = θ0 +θ1X2i(t)+θ2X3i(t)+η (Yi(t)−ζ )+ εi(t) (8.3.2)
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where ζ is the mean value of the response variable, η = 0.5 and values of

fixed effects coefficients are: θθθ = {−0.6,0.7,4}.

Figure 8.3.1 displays the relative bias of the parameter estimates in the anal-

ysis model using the GCRE-MAR method as a representative example. The

RB using the Two-Step method, RMSE, out-of-sample prediction, and cover-

age rate plots are in Section E of the Appendix.

The Two-Step, GCRE-MAR and available data methods have large RMSE

overall and biased parameter estimates for β0 and β3 with a low coverage

rate, which decreases as the repeated measures increase. However, as the re-

peated measures increase, the estimates of the between-individual variance

parameter become more unbiased. In terms of out-of-sample prediction, the

Two-Step method and the GCRE-MAR method perform similarly, showing

low overall densities with noticeable tails extending towards larger values.

Although the estimates of β0 and β3 appear to exhibit some bias, the magni-

tude of the bias is small, resulting in a lower density of out-of-sample predic-

tion performance due to using a misspecified response missingness model to

test their sensitivity.
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Figure 8.3.1: Boxplots illustrate the RB of parameter estimates in an analysis model when
using a misspecified missingness response model in the GCRE-MAR method. The y-axis
displays the RB values, while the x-axis represents the number of repeated measures. Each
boxplot corresponds to a specific method used. It is evident that the estimates of β0 and β3

are biased using the GCRE-MAR and available data methods.
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8.3.3 GCRE-MNAR Method

The GCRE-MNAR method includes separate models for response and incom-

plete predictor missingness processes, which can be misspecified individually

and together.

Misspecified Response Missingness Process Model

The response’s missing values are generated based on the misspecified miss-

ingness process model as follows:

U∗
i (t) = θ0 +θ1X2i(t)+θ2X3i(t)+η (Yi(t)−ζ )+ εi(t) (8.3.3)

where ζ is the mean value of the response variable, η = 0.5 and values of

fixed effects coefficients are: θθθ = {−0.6,0.7,4}. The missingness model for

the incomplete predictor is specified correctly, as described in Section 7.6.

Misspecified Incomplete Predictor Missingness Process Model

The incomplete predictor’s missing values are generated based on the mis-

specified missingness process model as follows:

R∗
i1(t) = ψ0 +ψ1X2i(t)+ψ2X3i +η (Xi1(t)−ζx)+ξi(t) (8.3.4)

where η = 2.5, ζx is the mean value of the incomplete predictor (Xi1(t))

and values of fixed effects coefficients are: ψψψ = {−6,8,5}. The missingness

model for the response is specified correctly, as described in Section 7.6.

Misspecified Response Missingness Process Model and Incomplete Predictor Missing-
ness Process Model

Finally, we will test the proposed GCRE-MNAR method when both the miss-

ingness process model for the response and incomplete predictor are misspec-

ified using Equation 8.3.3 and 8.3.4.

The results of misspecification in either the missingness response model or
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both the missingness response model and the incomplete predictor missing-

ness model, are similar to the case when the missingness response model in

the Two-Step and the GCRE-MAR method was misspecified. Except when

the incomplete predictor missingness process model is misspecified. In this

case, the analysis model’s parameter estimates for β0 and β3 (as shown in Fig-

ure 8.3.2) are not biased, and the out-of-sample performance is about as good

as the full data. Moreover, the coverage rate of the random intercept variance

σ2
B is low when there is a low number of repeated measures and become un-

biased as the number of repeated measures increases. The remaining plots for

each case can be found in Section E in the Appendix.
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Figure 8.3.2: Boxplots illustrate the RB of parameter estimates in an analysis model when
using a misspecified missingness incomplete predictor model in the GCRE-MNAR method.
The y-axis displays the RB values, while the x-axis represents the number of repeated mea-
sures. Each boxplot corresponds to a specific method used. It is evident that the variance
parameters estimators are biased as the repeated measures decrease using the GCRE-MNAR
method.
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8.4 Discussion

In this chapter, we examined the proposed methods for misspecified missing

data mechanisms and missingness process models. Since these assumptions

of the proposed models cannot be verified in practice. The aim of this explo-

ration is to determine whether using these methods under different assump-

tions of missing data will affect the analysis model parameter estimates and

consequently change the conclusion of the results.

When the missing mechanism is misspecified for each proposed method, it

results in large RMSE values and uncertainty for out-of-sample prediction

performance when there is a high proportion of missingness (60%) in the re-

sponse variable and with a small number of repeated measures. This can lead

to a risk of overfitting the outcome and an inability to generalise the results

to unseen data. The available data mostly performs poorly in terms of out-

of-sample prediction when there is a high proportion of missingness in the

incomplete predictor (60%). If the missing mechanism of the missingness in

the response variable is misspecified, either alone or with the incomplete pre-

dictor missingness, it results in a large RMSE when there is a high proportion

of missingness (60%) in the response. This indicates that the model’s esti-

mates deviate considerably from the data-generating parameter values.

On the other hand, when there is a low proportion of missingness (20%) in

the response and incomplete predictor, the RMSE values are similar to the full

data, which is the best-case scenario. This indicates that the proposed meth-

ods under the misspecified missingness assumption do not perform well with

a high proportion of missingness and do not struggle with a low proportion of

missingness. The model intercept parameter is mostly affected by misspec-

ified missingness assumption, resulting in biased estimates, especially with

a high proportion of missingness. The variance parameter estimates become

unbiased as the number of repeated measures increases, which is consistent
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with the findings of the proposed methods with correct specification of miss-

ingness assumptions. However, the coverage rate of the between-individual

variance is consistently low, indicating that the proposed methods are not cap-

turing this data-generating parameter value as frequently as they should.

The misspecified missingness process model affects some parameter esti-

mates, resulting in biased estimates. The number of repeated measures affects

the between-individual variance estimates, where performance increases as

the number of repeated measures increases. This result is consistent with the

results of the proposed methods under the correct specification of the miss-

ingness process model. The out-of-sample prediction with the misspecified

missingness process model results in larger uncertainty toward larger val-

ues. However, this is not the case when the incomplete predictor missingness

model is misspecified using the GCRE-MNAR method. In this scenario, the

model misspecification does not affect the parameter estimates and the out-

of-sample prediction.

The use of misspecified missingness assumptions and missingness process

models did not considerably impact the overall conclusions. The impact de-

creases as the number of repeated measures increases, indicating that mis-

specification has less impact on the results with a larger sample size. How-

ever, the proposed methods struggle to capture the actual between-individual

variance, which may affect the robustness of the conclusions given that vari-

ability among individuals is an essential part of longitudinal data analysis.

It’s important to note that the out-of-sample performance tends to be skewed

towards larger values, especially with a higher proportion of missingness in

the response variable and a low number of repeated measures. This skewness

should be considered as it might have an impact on how reliable and effective

the model is seen to be in real-world situations.



Chapter 9

Conclusions and Extensions

9.1 Summary

Longitudinal data is a type of study in which data is collected repeatedly over

time for each individual. It is used to study long-term effects and has ap-

plications in various fields of study. Mixed models are commonly used to

account for individual variability and produce more precise estimates. Lon-

gitudinal studies require an extended recruitment period and collection of

repeated measures, which makes them subject to missing data, potentially

caused by unknown reasons.

This thesis begins with a general introduction to the research interest, pro-

vides an overview of the statistical literature used to analyse longitudinal

data, missing data, statistical techniques used in the thesis and explains the

data used in the analysis. It then compares two approaches in the statistical

field for analysing longitudinal data: the Linear Mixed Effects model from the

Frequentist approach and the Bayesian Hierarchical model from the Bayesian

approach. This comparison is to understand how analogous approaches per-

form when applied to simulated and real-world data used in this thesis.

Incomplete data is common for various reasons in longitudinal studies. A

recent method has been proposed by Bhuyan (2019), called the Correlated

Random Effects method, which assumes nonignorable missingness in the re-

240
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sponse and fully observed predictor variables. We introduced a solution to

overcome non-convergence in the CRE method and then proposed three meth-

ods to accommodate missingness in the explanatory variables and model re-

sponse (where the current CRE method can only handle missingness in the

model response). The three methods are the Two-Step method, the GCRE-

MAR method, and the GCRE-MNAR method.

The proposed methods consider different combinations of missingness mech-

anisms in both the model predictor and the response. These methods aim

to impute missing data and estimate parameters of interest in cases where the

response has non-ignorable missingness and predictors have ignorable or non-

ignorable missingness, by adapting the Correlated Random Effects method.

This is achieved using a Bayesian estimation procedure to simultaneously es-

timate the analysis model parameters and the missingness models, providing

a useful alternative to solving the intractable log-likelihood function using ap-

proximation methods.

The proposed methods were evaluated using simulated data with different

factors: the number of repeated measures and the proportion of missingness.

Additionally, the proposed methods were compared with baseline methods;

the full data (containing no missing values), the available data (missing val-

ues remain in the dataset and no imputation is applied), and the CRE method.

The proposed methods were also applied to real-world data to create predic-

tive models for heart failure patients (BIOSTAT-CHF dataset). As the reason

behind the missing values in real-world data is unknown, sensitivity analy-

sis was applied to misspecify the missingness mechanism and missingness

model for the proposed methods to examine how this might affect the overall

performance of each method.
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9.2 The Strengths and Limitations

Each subsection will briefly explain the different methods used in this thesis,

along with the overall results and the main strengths and limitations.

9.2.1 Frequentist and Bayesian Comparison

In Chapter 4, we compared the Frequentist approach using Linear Mixed Ef-

fects modelling and the Bayesian approach using Hierarchical Bayesian mod-

elling. We used simulated and real-world data, as described in Chapter 3. This

comparison study found that the point estimate obtained from the Frequentist

approach and the average of the posterior distribution from the Bayesian ap-

proach are similar and close to the data-generating parameters. This similarity

is likely due to the use of a non-informative prior, which has less influence on

the posterior distribution. Thus, the parameter estimates will depend more

on the likelihood, which is derived from the observed data. This is similar

to Frequentist inference, which also focuses on the likelihood. In addition,

the out-of-sample prediction was similar, but the Bayesian approach yielded

a smaller average RMSE value when applied to the BIOSTAT-CHF dataset,

although the difference was not significant.

The Frequentist approach provides a confidence interval and a point estimate.

The confidence interval is challenging to interpret in terms of probabilistic

statements about the model parameters. On the other hand, the Bayesian ap-

proach offers a point estimate and a probability distribution, providing insight

into the chances of a particular value for a parameter. This makes it easier for

decision-makers to interpret the uncertainty of parameter estimates. Further-

more, Bayesian methods allow the incorporation of prior knowledge, which

can be valuable given the wide range of available information today. How-

ever, Bayesian analysis can be computationally intensive for large datasets or

complex models.
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Using 100 repetitions in the simulated data balances the accuracy and the

computational feasibility. However, achieving a lower MCSE (e.g. less than

0.001) will improve the precision of the estimates, which would require a

substantially larger number of repetitions (Morris et al., 2019).

9.2.2 CRE Method

The CRE method (Bhuyan, 2019), proposed in the literature, addresses non-

ignorable missingness in the response variable for longitudinal data models.

It has shown good performance using Legendre polynomials (LP) for semi-

parametric modelling of time-varying variables. However, when using a Lin-

ear Mixed Effects model, which is an appropriate structure to model the data

used in this thesis, the covariance matrix parameters did not converge even

with a large number of iterations. A weakly informative prior was introduced

in Chapter 4, Section 4.4.5, to address this issue, which resolved this problem.

The advantages of the CRE method include using Bayesian inference, which

avoids the computational challenge of intractable numerical integration in the

log-likelihood function. Additionally, it incorporates Correlated Random Ef-

fects between the response model and the missingness response model, al-

lowing for the estimation of a covariance parameter that can indicate the re-

sponse’s missingness mechanism. As the value of the parameter increases,

the response’s missingness is more likely to be MNAR, which is a useful

technique when applied to real data, as the missingness mechanism is often

unknown.

However, a drawback of the CRE method is that it assumes the model predic-

tors are fully observed, whereas, in longitudinal studies, often the predictors

also have missingness.
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9.2.3 Two-Step Method

The Two-Step method introduced in Chapter 5 is the first proposed method in

this thesis for dealing with missing data in both the model predictors and the

model response. It is designed to handle situations where the missingness in

the model response is non-ignorable, while the missingness in the incomplete

predictors is ignorable. The Two-Step method involves two steps. First, it

imputes the missing values for the incomplete predictors using the MICE al-

gorithm, which assumes that MAR is the missing mechanism for the incom-

plete predictors. Then, the CRE method is applied to estimate the analysis

model parameters, considering that the missing mechanism for the response

is MNAR.

The Two-Step method was evaluated using simulated data and compared to

how the CRE method performed. The Two-Step method considers missing-

ness in the model’s predictors, which is an advantage over the CRE method.

However, the CRE method gains an unfair advantage in this comparison be-

cause it does not handle missingness in the predictors. Therefore, the CRE

method was run with no missing data in the predictors. This advantages the

CRE method, because it has data that would not otherwise be available in

practice. Although there is an apparent similarity in performance between the

Two-Step and CRE methods, the Two-Step method is additionally handling

missingness in the predictors without a loss of performance in the majority of

scenarios.

The RMSE of the parameter estimates indicated that the Two-Step method

resulted in larger RMSE values than the CRE method when there were 60%

missing values in the incomplete predictor. This finding makes sense be-

cause the CRE method does not have missing data in the model predictors.

In other words, the Two-Step method produces results similar to the CRE

method when the CRE method has additional data that is not available in

practice, and the Two-Step method has up to about 60% missing data for the
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incomplete predictor variable. In contrast, the available data method’s RMSE

for parameter estimates is larger than the Two-Step and CRE methods.

Overall, the Two-Step method produced unbiased parameter estimates, except

for the response model variance parameters, in the case of 60% of the miss-

ing values in the incomplete predictor. This proportion of missing data with

multiple imputations can introduce additional variability, which may affect

the estimation of variance parameters. However, this bias decreased as the

repeated measures increased. Additionally, the Two-Step method’s estimates

for the response missingness process model’s parameters become unbiased

as the repeated measures increased. Misspecifying the missingness mecha-

nism did not considerably affect the out-of-sample performance. However, it

did impact the variance parameter estimates by resulting in biased estimates

when there was a higher proportion of missing data in the incomplete predic-

tor. This result is unsurprising, as it aligns with findings when the missingness

mechanism is correctly specified.

The Two-Step method involves applying the CRE method to multiple imputed

datasets, which makes it more computationally costly and time-consuming

than the CRE method. The computational time and storage space required

depends on the number of MICE-imputed datasets, the dataset sample size,

and the availability of parallel computing. These factors may make the pro-

cess prohibitive. On the other hand, the Two-Step method could benefit from

adding auxiliary variables in the incomplete predictor imputation model dur-

ing the MICE step. These variables could help predict the missingness in the

incomplete predictor. This is because adding these variables will have a min-

imal effect on the analysis of the two-step method. However, these variables

will affect the analysis of the GCRE-MAR and GCRE-MNAR methods due

to joint modelling.
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The Two-Step method resulted in biased parameter estimates and low out-of-

sample performance when the missingness response model was misspecified.

Additionally, the Two-Step method considers specific missingness mecha-

nisms. The model’s response is considered to be MNAR, and the incomplete

predictors are considered to be MAR, which may not accurately reflect real-

world data in all cases.

9.2.4 GCRE-MAR Method

The GCRE-MAR is a generalisation of the CRE method, proposed in Chap-

ter 6 to address missing data in both the model’s response and predictors and

overcome the Two-Step method’s computational burden. This method takes

into account non-ignorable missingness in the model’s response and ignorable

missingness in the model’s predictors. The proposed GCRE-MAR method

can impute missing data and estimate the analysis model parameters simul-

taneously. Compared to the CRE method, the GCRE-MAR method incorpo-

rates an incomplete predictor model using Gibbs sampling as an additional

step.

The analysis of the GCRE-MAR method using simulated data showed that, in

general, the GCRE-MAR applied to fully observed predictors performs sim-

ilarly to the CRE method, both of which did not consider missingness in the

incomplete predictors. This suggests that the CRE method is a special case of

the GCRE-MAR method when the analysis model predictors have no missing

data. The GCRE-MAR method outperforms the available data method for the

response model’s parameter estimates and out-of-sample performance. This

is because the proposed method can impute missing data that is similar to the

actual values that were generated, which helps prevent the loss of valuable

information that occurs with the available data method.

For the response model variance parameters, the GCRE-MAR method outper-

forms the Two-Step method when there was 60% missingness in the model’s
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incomplete predictor. The GCRE-MAR method can produce unbiased param-

eter estimates for the response model variance parameters when there is 60%

missing data in the model’s incomplete predictor. The GCRE-MAR underes-

timates the between-individual variance; however, as the repeated measures

increase, it results in an unbiased estimate. Additionally, the GCRE-MAR

produced unbiased estimates of the response missingness process model as

repeated measures increased. This suggests that the proposed method is able

to capture the actual parameter values as the sample size increases (more re-

peated measures).

The missing data mechanism misspecification did not greatly affect the out-

of-sample performance of the proposed method. However, it produced bi-

ased variance parameter estimates with fewer number of repeated measures,

similar to the results obtained with the correctly specified missing data mech-

anism. Generally, the GCRE-MAR method performs well when the sam-

ple size is larger, especially with larger numbers of repeated measures. It

accounts for specific missingness mechanisms in the model’s response and

incomplete predictors, where the model’s response is MNAR and the incom-

plete predictors are MAR. This may not accurately reflect real data in all

cases. The GCRE-MAR method produced biased parameter estimates and

showed poor performance in out-of-sample prediction when the missingness

response model was misspecified. This suggests that the proposed method is

sensitive to the choice of missingness response model structure.

9.2.5 GCRE-MNAR Method

The GCRE-MNAR method introduced in Chapter 7 is an extension of the

CRE and the GCRE-MAR methods. It is designed to handle missing data in

both the model response and predictors. This method considers non-ignorable

missingness in both the model response and incomplete predictor variables. It

uses the Gibbs sampler and Correlated Random Effects to model the relation-

ship between the incomplete variables (the model response and incomplete
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predictors) and their corresponding missingness process model.

The GCRE-MNAR method was evaluated using simulated data. The results

showed that the performance of the response model’s parameter estimates for

the CRE method, the GCRE-MNAR method, and the GCRE-MNAR method

applied to fully observed predictors are similar, except when there were 60%

missing values in the incomplete predictor. In that case, the GCRE-MNAR

method tended to have a larger RMSE, although it was still smaller than the

available data method. This comparison suggests that the GCRE-MNAR per-

forms as well as the CRE method. However, this comparison is unfair because

the CRE method cannot handle missing data in the predictors. Therefore, the

CRE method was run with no missing data in the predictors, which allows

it to access the data that would otherwise be missing. On the other hand, the

GCRE-MNAR method has the advantage of handling missing data in both the

model response and incomplete predictors.

Comparing the proposed method applied to fully observed predictors with the

CRE method indicates that the GCRE-MNAR method is a generalisation of

the CRE method when there is no missing data in the model predictors. Fur-

thermore, the proposed GCRE-MNAR method performs as well as the CRE

method when the CRE method has extra, unavailable data in practice, while

the GCRE-MNAR method can handle up to about 60% missingness for the

explanatory variables. Generally, the GCRE-MNAR method produced unbi-

ased model parameter estimates and outperformed the available data method,

especially for the response model’s intercept and the time-invariant predictor

parameters estimate.

However, the GCRE-MNAR method underestimated the between-individual

variance with a small number of repeated measures. As the number of re-

peated measures increased, the GCRE-MNAR method produced unbiased

parameter estimates for the response missingness process model, the model
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for the incomplete predictor, and the incomplete predictor missingness pro-

cess model. This indicates that the proposed method might require more data

points (more repeated measures) to accurately capture the data-generating pa-

rameter values of the between-individual variance and the missingness pro-

cess models. Except for the covariance matrix parameters for the incomplete

predictor model, the GCRE-MNAR method produced biased estimates with

a low (20%) proportion of missingness in the incomplete predictor. This in-

dicates that the method is able to capture the covariance matrix parameters

for the incomplete predictor model when there is a substantial proportion of

missingness in the incomplete predictor variable. Its out-of-sample perfor-

mance outperformed the available data method.

The misspecified missingness mechanism affects the parameter estimates of

the between-individual variance, which becomes unbiased as the number of

repeated measures increases. This is unsurprising, as it aligns with the GCRE-

MNAR method’s results with a correctly specified missingness mechanism.

On the other hand, the misspecification of the incomplete predictor missing-

ness model did not affect the out-of-sample performance and the parameter

estimates. This means the GCRE-MNAR method produces unbiased results

and performs well in terms of out-of-sample prediction.

The distinctive feature of the GCRE-MNAR method over the GCRE-MAR

method is the covariance parameter between the incomplete predictor model

and the incomplete predictor missingness process model. The covariance pa-

rameter indicates the probability that the missingness in the incomplete pre-

dictor is MNAR. However, for a moderate to large proportion of missing-

ness in the incomplete predictor, this parameter is estimated more accurately.

The missingness mechanism is usually unknown. An advantage of using the

GCRE-MNAR method is that it can be helpful for data analytics in estimat-

ing the model’s parameters and determining the probability of the missingness

mechanism in the model response and predictors when there is a considerable
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amount of missing data in the model’s incomplete predictor.

9.3 BIOSTAT-CHF Dataset Results

The BIOSTAT-CHF dataset was used throughout the thesis as a real-world

data application for the proposed methods. We first used it to compare the

Frequentist and Bayesian approaches using only complete case data (patients

with fully observed response and predictors variables). Next, we applied the

CRE method from the literature after filtering the data, so that the missing

values only appeared in the response variable (NT-proBNP) and with fully ob-

served predictors. Then, for each proposed method (Two-Step, GCRE-MAR,

and GCRE-MNAR methods), we carried out inference when there were miss-

ing values in the response variable and a predictor (eGFR) to understand how

the proposed methods handle real-life scenarios.

The results from the different applications mentioned were consistent. We

discovered a negative relationship between eGFR and log(NT-proBNP). This

means that for every one unit increase in eGFR from its average value (cen-

tred eGFR), the log(NT-proBNP) will decrease by approximately 0.01 units

on average while holding all other variables constant. The centred age shows

a positive correlation with log(NT-proBNP). This indicates that for every one

year increase in age from its average value, the log(NT-proBNP) will increase

by approximately 0.01 units on average, holding all other variables constant.

Additionally, patients with Sinus heart rhythm have the lowest rate of log(NT-

proBNP) compared to Atrial fibrillation and Pacemaker heart rhythm cate-

gories. In contrast, the Other category shows a log(NT-proBNP) rate similar

to Sinus rhythm. Furthermore, patients’ log(NT-proBNP) decreased by ap-

proximately one unit on average during their second visit, while all other

variables were constant. The within-individual variance is greater than the

between-individual variance, indicating that the differences in observations
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within each individual are greater than the differences between the individu-

als’ means. Note that the majority (73%) of patients in this study (BIOSTAT-

CHF) were male, which represents a limitation in the generalizability of the

results. According to Timmis et al. (2022), males have a higher incidence and

worse risk factors for cardiovascular disease compared with females.

The advantage of using the Correlated Random Effects employed by the pro-

posed methods (Two-Step, GCRE-MAR, and GCRE-MNAR) is that it can

estimate the possibility of missingness in the model response being MNAR.

An approximate estimate of −0.2 suggests that the missingness in the NT-

proBNP is less likely to be MNAR. Additionally, GCRE-MNAR provides an

additional advantage by estimating the possibility of missingness in the in-

complete predictor of the model as being MNAR, with an estimate of -0.8

indicating that missingness in the eGFR is more likely to be MNAR. The

negative values suggest that patients with higher NT-proBNP and eGFR are

more likely to have missing values.

9.4 Extensions

The proposed methods introduced in this thesis open up several opportunities

for further exploration. Future studies could benefit from the incorporation

of expert knowledge as a prior distribution in a Bayesian setting, which is an

advantage of the Bayesian approach over the Frequentist approach. This tech-

nique is called prior elicitation. For further reading, see Martin et al. (2012).

One possible future direction could involve exploring nonlinear models, such

as using the semi-parametric model used by Bhuyan (2019) for the CRE

method or assimilating the Gaussian Process or other flexible functional forms.

To reduce the complexity of the nonlinear longitudinal model with a large

number of repeated measures, consider only one variable as nonlinear in the

model. This simplifies the model by concentrating the nonlinearity on the
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most relevant variable while keeping the rest of the model linear.

The linear mixed effects model focuses on estimating the mean of the re-

sponse variable. However, in medical studies, different patients may behave

differently in the extreme values of the outcome distribution. Future studies

could benefit from considering the Quantile Regression (QR), which provides

a more comprehensive understanding of how the analysis model predictors

could affect the analysis model response variable at different quantiles. To

adapt the quantile regression in the proposed methods, the relationship be-

tween the QR check function and the Asymmetric Laplace Distribution can

be reformulated into the standard likelihood framework (Yuan and Yin, 2010).

By incorporating QR into the proposed methods, the missingness model can

reflect the probability of observing the response at different quantiles. Addi-

tionally, the correlated random effects will differ across the different quantiles

of the response.

A possible future direction could involve investigating a binary or count re-

sponse variable using Generalised Linear Mixed Models (GLMMs). This

approach may introduce complexity due to the need for link functions and in-

corporating latent variables with binary responses utilising the probit model,

which could increase the computational burden. Estimating the variance of

the random effect is a challenge of the probit mixed effects regression model

for longitudinal binary response data (Wu et al., 2018). Additionally, overdis-

persion is a common challenge when working with longitudinal count data

using the Poisson model (Rizzato et al., 2016). Additionally, future work

could explore and incorporate interaction terms in the analysis and missing-

ness models.

Another interesting area for further investigation is the real-world applica-

tion of these methods, which involves scaling up the proposed model for the

BIOSTAT-CHF dataset. This can be achieved by applying variable selec-



9.5. PRACTICAL RECOMMENDATIONS FOR ANALYSTS 253

tion techniques to employ all available variables in the dataset. Additionally,

it would be beneficial to examine other real-world data with more repeated

measures.

The proposed methods were tested using only one continuous predictor with

missing data. Future research could involve testing the proposed methods

with a nominal incomplete predictor, multiple and mixed types of incom-

plete predictors, interaction terms with incomplete predictors and when the

response variable is binary and subject to missingness. The Two-Step method

can include auxiliary variables that are predictive of missingness in the impu-

tation model in step one (MICE algorithm), which we don’t want to condi-

tion the analysis on these variables (by using the GCRE-MAR method or the

GCRE-MNAR method).

Future research could explore the performance of the proposed methods on

a finer grid. This would involve a larger number of different combinations of

missing proportions, the number of individuals, and repeated measures. The

results of the proposed methods showed unbiased parameter estimates as the

number of repeated measures increased. Therefore, it is expected that with

a larger number of repeated measures (more than eight) and a larger number

of participants (more than 100), the proposed methods will yield even more

unbiased results; however, this will increase the computational time.

9.5 Practical Recommendations for Analysts

The thesis discusses three proposed methods to address missing data in both

the model response and incomplete predictor in longitudinal data. A practi-

cal recommendation for analysts is to begin with the GCRE-MNAR method,

which provides two parameter estimates on the possibility of missing not at

random data for both the model response and the incomplete predictor. This

can help understand the missing data mechanism in both the model response
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and the incomplete predictor. If the results from the GCRE-MNAR inference

indicate that the incomplete predictor is less likely to be missing not at ran-

dom, then it is recommended for analysts to use the GCRE-MAR method. If

analysts want to incorporate predictive auxiliary variables of the incomplete

predictor with minimal effect on the analysis and don’t prioritise time, they

could consider using the Two-Step method. In general, it is recommended for

analysts to conduct sensitivity analysis when transitioning from one method

to another to test the consistency of results.

9.6 Proposed Methods Implementation

The algorithms used in this thesis were implemented using the R program-

ming language. These include the Two-Step method, the GCRE-MAR method,

and the GCRE-MNAR method. The code for these methods has been devel-

oped by the author and is available upon request.
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