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Abstract

Cardiac electrophysiological modelling has long been a valuable tool for exploring both normal

and abnormal heart rhythms, playing a crucial role in diagnosing heart conditions and devel-

oping effective therapies. This thesis focuses on single-cell cardiac electrophysiology, with

particular attention to the variability in action potential (AP) and its impact on anti-arrhythmic

treatments. The primary goal is to investigate this common issue in cardiac electrical excita-

tion models and understand its implications for anti-arrhythmic therapies. To achieve this, a

variety of action potential models, ranging from complex to simplified, are employed to provide

an analysis.

Firstly, a method is presented that uses an asymptotic approximation of action potential dura-

tion (APD) in a simplified model to study ion-channel block dynamics. This approach involves

determining the specific properties of each myocyte based on the parameter values of a se-

lected model. Drug effects on ion conductance are quantified using a multiplicative factor, and

a mathematical formula is developed to approximate APD. This formula is then used to estab-

lish model parameters as functions of APD and drug-induced changes in APD for each heart

cell. Additionally, two protocol-related parameters are calibrated using an adaptive-domain ap-

proach based on optimal excitability. This precise formulation allows for direct assessment of

the conditions required to maintain a constant APD or its variations. It also enables predictions

about the proportion of excitable cells after drug application, as well as insights into stimulus

periods and dose-response relationships, consistent with experimental data.
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Subsequently, a regression method is developed to predict drug responses in cardiac elec-

trophysiology models by assessing how alterations in ion channel conductances affect model

outputs. The method focuses on predicting changes in action potential duration (APD) follow-

ing drug administration. The Ordinary Least Squares regression model provided accurate pre-

dictions, effectively capturing the relationship between drug-induced changes in ion channel

conductances and APD. In addition to the standard regression model, an advanced approach

is employed by incorporating nonlinear terms to capture the complex relationships between

conductances and physiological biomarkers. These nonlinear predictors enable the model to

account for interactions and dependencies that linear models often overlook. The enhanced

model unables more accurate predictions of the effects of ionic conductances..

Finally, a method is introduced to reproduce action potential variability observed in experi-

mental rabbit cardiomyocytes using Gaussian process emulators and rejection sampling. The

method accurately captures variations in APD and correlates them with changes in ionic con-

ductances across a population of models. By utilizing rejection sampling in combination with

GP emulation, large populations of models are efficiently generated, enabling the study of the

interactions between ionic conductances, action potentials, and drug effects without requiring

extensive computational resources.

This thesis enhances the understanding of cardiac electrophysiology by addressing variability

in action potential and its implications for anti-arrhythmic treatments. It proposes an integrated

approach combining modelling and experimentation, offering new insights into the complex

dynamics of cardiac function.
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Chapter 1

Introduction

1.1 Introduction
Cardiac action potentials (APs) are electrical impulses generated by the movement of ions

through specialised channels and exchangers located across the membranes of cardiomy-

ocytes, the heart’s muscle cells. These action potentials are crucial for initiating and coordi-

nating the contractions that pump blood throughout the body. The variation in action potentials

across different regions of the heart is significant and is depicted in Figure 1.1, highlighting

how these differences contribute to the heart’s overall function.

The study of heart electrophysiology, which focuses on the electrical properties of the heart,

has been an area of intense research. Understanding electrophysiology is essential not only

for comprehending the normal functioning of the heart but also for diagnosing and treating a

wide range of cardiac disorders. These disorders, particularly arrhythmiasconditions where

the heart beats irregularly, too fast, or too slowpose serious health risks.

In the United Kingdom, arrhythmias affect more than 2 million people, according to the NHS

(National Health Service n.d.). Some arrhythmias are associated with severe cardiac con-

ditions that can lead to sudden cardiac death. Alarmingly, this accounts for approximately

100,000 deaths annually in the UK alone (National Health Service n.d.). The primary types

1



of arrhythmias are atrial fibrillation (AF), which is defined by the rapid and irregular beating of

the atria; supraventricular tachycardia, which is a rapid heart rate that originates above the

heart’s ventricles; bradycardia, which is characterised by an abnormally slow heart rate; heart

block, a condition in which the electrical signals are partially or completely blocked as they

travel through the heart; and ventricular fibrillation, a life-threatening arrhythmia that causes

the ventricles to contract ineffectively instead of pumping blood (Zipes et al. 2017).

The consequences of these arrhythmias are significant, as they can result in serious problems

such as stroke, cardiac insufficiency, and abrupt cardiac arrest (Bonow et al. 2011). Hence,

electrophysiology plays a crucial role not just in comprehension but also in the advancement of

life-saving interventions and treatments (Muszkiewicz et al. 2016). Through the examination

of the complex nature of cardiac action potentials and their diverse variations, researchers

might contribute to advancement in treating these critical heart rhythm diseases. For decades,

cardiac electrophysiology modelling has been an essential tool for researching both normal

and pathological heart functions. Studies conducted at the membrane, cellular, tissue, and

organ levels have contributed to the development of a wide range of biophysically detailed

cardiac action potential (AP) models (Muszkiewicz et al. 2016). A common practice in model

development is to begin with parameter identification for specific ion channels using whole-cell

voltage-clamp experiments. Typically, model parameters are assigned fixed values, resulting

in a single predicted outcome. However, the APs recorded from actual cardiac cells during

experiments show variability, both within the same cell from one beat to another (intrinsic

variability) and between different cells (extrinsic variability)(Johnstone et al. 2016). The goal

of this thesis is to explore variability in cardiac electrophysiology in both normal and abnormal

conditions, as well as under the influence of drugs.

1.2 Variability in Cardiac Electrophysiology
Variability is a fundamental characteristic of all biological systems (Trayanova et al. 2023). It is

particularly evident in physiological functions among individuals of the same species and plays

a significant role in the progression and treatment of diseases (Marder and Taylor 2011). In

cardiac electrophysiology, variability is pronounced both between and within cells, even among
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Figure 1.1: Various regions in the heart and typical corresponding APs. Green for SA, AV
nodes; violet, for Atria and Ventricle. Figure is from (Michael et al. 2009)

cells from the same region of the heart (Feng et al. 1998). At the level of individual cardiomy-

ocytes, variability is observed in the shape and duration of the action potential (AP). Notably,

recent studies have shown that cardiomyocytes from healthy animals with nearly identical ge-

netic backgrounds still exhibit significant heterogeneity (Lachaud et al. 2022).
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Several key elements contribute to variability in cardiac electrophysiology. One major factor is

ion channel gating, where non-linear dynamics, such as APD alternans, can cause changes

within cells ( Johnstone et al. 2016). Additionally, extrinsic variability may arise from natural dif-

ferences among cells, such as cell size or the expression levels of ion channels. Measurement

errors during experimental data collection can further increase variability when these data are

used to derive parameters for cardiac AP models (Clayton et al. 2020). A potential source of

variability lies in the biophysical processes that regulate the flow of ionic currents across the

cellular membrane. Proteins crucial for electrophysiological function control the sarcolemmal

flux of ions such as sodium, calcium, and potassium. Any imbalance in these ionic currents

can lead to variations in AP morphology and duration (Muszkiewicz et al. 2016).

Intra-subject variability in electrophysiology is highlighted in studies such as (Bueno-Orovio

et al. 2012), which investigates spatial heterogeneities and variations in repolarisation across

different regions of the heart. Factors such as sex and age have been recognised as significant

contributors to variability among individuals. For instance, (Sims et al. 2008) demonstrated that

sex, age, and regional differences in the expression of the ICaL ionic current influence arrhyth-

mia characteristics in rabbits. On a cellular level, variability in ion concentrations inside and

outside cells impacts AP features like the resting membrane potential (RMP) and the duration

of AP at 90% repolarisation (APD90) (Passini et al. 2014). Additionally, inter-cellular variability

in cardiac cell volume and membrane capacitance has been linked to the patient’s age, as

shown in (Polak and Fijorek 2012). Temporal variability, such as beat-to-beat changes in the

action potential, is influenced by factors like AP alternans and ion channel kinetics (Walmsley

et al. 2015).

Exploring physiological variability through experimental approaches alone is challenging due

to the need to average data to control experimental errors. Recent studies have demonstrated

the effectiveness of computer models in examining the underlying causes of physiological

variability (Britton et al. 2013 and Groenendaal et al. 2015). Unlike traditional computational

modelling, which generates only an average virtual cardiomyocyte, a collection of averaged
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data may not accurately represent any specific cardiomyocyte (Ni et al. 2018). To address

this limitation, the population of models approach has gained popularity in electrophysiological

modelling and has been used to investigate variability in cardiac APs (Muszkiewicz et al. 2016).

later we provide more information about this approach.

Addressing the inter-subject and intra-subject heterogeneity in physiological and pathological

functions remains a significant challenge in biology and medicine (Sánchez et al. 2014). His-

torically, both experimental and computational studies have often overlooked the importance

of variability, despite its critical role in understanding cardiac function. Recently, however, new

modelling frameworks have been developed to explore the mechanisms underlying physiolog-

ical variability in cardiac electrophysiology and its contribution to increased arrhythmic risk.

These frameworks have been designed to investigate various arrhythmia conditions across

different animal species, including humans.

To analyse variability in cardiac electrophysiology, several methodologies have been employed.

These include cell-specific modelling approaches, sensitivity analysis methods, and the use of

populations of cardiac cell models that are subject to experimental constraints and calibration.

These methods have significantly enhanced our understanding of the heterogeneity present in

both normal and abnormal cardiac function. Below we provide a brief overview of the research

conducted using these methodologies to address variability in cardiac electrophysiology.

1.2.1 Cell-Specific Modelling Approach

The cell-specific modelling approach is a powerful technique designed to create biophysically

detailed models of specific cells used in experiments (Muszkiewicz et al. 2016). This method

addresses particular research questions by closely matching experimental data with models.

However, the complexity of the protocols involved limits the number of cells that can be inves-

tigated and modeled, thereby restricting the exploration of the full parameter space seen in

experimentally-calibrated populations of models. (Syed et al. 2005) pioneered this technique
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by using a genetic algorithm to align a biophysically complex model of the human atrial action

potential with AP traces produced by several cell models, as well as with experimental data.

This methodology was further employed in subsequent studies such as the one by (Davies

et al. 2012).

1.2.2 Sensitivity Analysis Approach

Sensitivity analysis is a method used to investigate the impact of varying model parameters on

outputs like the action potential and intracellular calcium transients (Muszkiewicz et al. 2016).

This technique involves altering parameters of interest around baseline model values, typi-

cally one at a time, with variations ranging from ±15% to ±30% from the baseline parameter

value. For instance, (Romero et al. 2009) used univariate sensitivity analysis in a model of

human ventricular single cells to study the effects of such variations on pre-clinical measures

associated with arrhythmia risk, such as APD. Similarly, (Pueyo et al. 2010) employed sen-

sitivity analysis to gain new insights into the processes of ventricular rate adaptation and its

connection with proarrhythmic risk in humans.

1.2.3 Population of Models Approach

A population of cell models is created by varying a set of model parameters, typically the

maximum channel conductances. Each model in the population has slightly different electro-

physiological characteristics. This population can then be calibrated to match experimental

data, such as action potential characteristics (Britton et al. 2013). Alternative approaches

include Bayesian calibration (Johnstone et al. 2016) or Gaussian process emulators (Chang

et al. 2015). The resulting population of models can be used to analyse the mechanisms

associated with specific parameters of a single model.

The population of models approach is considered an extension of sensitivity analysis, as it

involves varying multiple parameters simultaneously. Originally employed in cardiac electro-

physiology by researchers like ( Sobie and Sarkar 2011; Sobie 2009), this method modifies

multiple parameters in ventricular cell models, with values drawn from a log-normal distribution

centered on their baseline values. Regression analysis is then used to develop simplified mod-

els that link changes in ionic current parameters to changes in cellular characteristics. This
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approach has been applied to examine the influence of variability on repolarisation reserve and

the response to ionic channel block. For example, (Devenyi and Sobie 2016) recently used this

methodology to investigate the impact of calcium transients in rat cardiomyocytes by iterating

with experiments. Further work using this method can be found in studies by (Cummins et al.

2014 and Sarkar et al. 2012).

1.2.4 Experimentally-Calibrated Populations of Models Approach

Experimentally calibrated populations of models involve using ensembles of computer models

constrained by experimental data to investigate the factors contributing to physiological vari-

ability under various conditions, such as disease and drug effects (Muszkiewicz et al. 2016).

This approach has been employed to explore variability in both inter-subject and intra-subject

conditions by using experimentally calibrated populations of single cardiomyocyte models. The

first use of this approach in neuroscience was pioneered by (Marder and Taylor 2011), and it

has since gained popularity in cardiac excitation studies. (Passini et al. 2016) applied this ap-

proach to study hypertrophic cardiomyopathy, a genetic disorder of the heart that carries an

increased risk of arrhythmias due to the lack of specific drug treatments. Additionally, (Zhou

et al. 2013 and Zhou et al. 2016) used this technique to investigate the mechanisms behind

cardiac alternans, which refers to the regular variations between repeated action potentials

produced by a single cell. In recent work by (Sánchez et al. 2014), they calibrated a population

of models using experimental datasets from over 450 cell samples obtained from individuals

with atrial fibrillation (AF) and sinus rhythm. This study explored the ionic mechanisms driving

inter-subject heterogeneity in human atrial AP characteristics between AF and baseline cells.

1.3 A recent Study on Variability of Action Potential
Recent research has highlighted considerable differences in ion channel expression among

individual cells (Clark et al. 2023). Tables 1.1 and 1.2 at the end of this chapter summarise

key studies that have explored this variability, providing further insights into the underlying

mechanisms. While 1.3 summarises the key elements in each chapter of this thesis.
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We are particularly interested in the recent research conducted by (Lachaud et al. 2022)

highlighted in Table 1.2, which offers valuable insights into the variability of action potential

(AP) waveform within the left ventricle (LV) of individual hearts. In this study (Lachaud et al.

2022), AP characteristics of nearly 500 isolated cardiomyocytes were measured using voltage-

sensitive fluorescent dyes. These cells, obtained from specific regions of the left ventricular

wall of 12 rabbit hearts, had their APD values recorded before and after inhibiting specific ion

channels with two different drugs. The study revealed a surprising variability in APD90 among

the healthy, uncoupled cardiomyocytes before drug administration. At a stimulation rate of 2

Hz, the interquartile range of APD90 was 40 to 50 ms, with a median value of 250 ms. This

variation, which was not attributable to cell dissociation damage, was significantly larger than

the regional differences observed within single hearts or between different hearts. Further-

more, after inhibiting the IK(r) ionic current with 30 nM Dofetilide and the ICa(L) current with

1µM Nifedipine, cells with nearly identical baseline APD90 values exhibited a wide range of

different ∆APD90 responses.
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Cardiac Model Uncertain inputs Outputs Method Results
Sobie 2009
Luo and Rudy 1991 Relative Current APD PLS Regression Presentd a novel method that accurately quantifies
Fox et al. 2002 Strength Vpeak & Vrest parameter sensitivities in cardiac models enhancing
Kurata et al. 2005 ∆

[
Ca2+]

i the evaluation of computational predictions.
Sarkar and Sobie 2010
Tusscher et al. 2004 Relative Current AP & Ca2+ Inverse Regression Presentd a regression-based method that precisely defines
Hund et al. 2008 Strength biomarkers most ion conductances in a ventricular myocyte

model enabling prediction of parameter changes
Gemmell et al. 2014
Shannon et al. 2004 Relative Current APD90, APD50 Clutter-based Reproduced the experimentally observed variability in
Mahajan et al. 2008 Strength Dimension Reordering ventricular APD, identified key conductances and their

interactions that influence repolarisation.
Chang et al. 2015
Luo and Rudy 1991 Relative Current APD90, APD50 Bayesian Emulation Built GP emulators effectively analyse uncertainty and

Strength sensitivity in models, efficiently predicting how
key outputs are influenced by specific parameters.

Morotti and Grandi 2017
Morotti et al. 2016 Relative Current EAD Logistic Regression Identified the key ion conductances which cause

Strength early afterdepolarisations, confirming mechanistic
insights through logistic regression analysis.

Gong and Sobie 2018
Paci et al. 2013 Relative Current APD90 & CaTa Multi-variable Developed a regression model that predicts drug
Shannon et al. 2004 Strength Regression responses across different cell types, providing a valuable
Livshitz and Rudy 2009 approach to enhance drug development and overcome
O’Hara et al. 2011 limitations of experimental models.

Table 1.1: Studies that addressed and assessed variability in cardiac electrophysiology



Cardiac Model Uncertain inputs Outputs Method Results
Pouranbarani et al. 2019
Tusscher et al. 2004 Relative Current Membrane Multi-objective Introduced a multi-objective fitting method that accurately
Iyer et al. 2004 Strength resistance Rm optimisation reproduced Rm in cardiac cells, balancing

the trade-off between fitting AP waveforms and Rm
Feeny et al. 2020
Electrocardiogram Clinical features prediction score Machine Learning Explored how AI and ML transforming cardiac EP by enha-
test ECG features of cardiovascular ncing disease detection, diagnosis & patient prediction while

mortality addressing challenges in their clinical practice
Coveney and Clayton 2020
Courtemanche et al. Relative Current APD90, APD50 Gaussian Emulation Built GP emulators that are effective for analysing
Maleckar et al. 2009 Strength Vmax, V20, V40 sensitivity and uncertainty in cardiac models,

dVm/dt, & RestVm predicting key differences in how parameter changes
Camin, & Camax affect model outputs.

Aziz and Simitev 2021
Biktashev et al. 2008 Relative Current APD90 Nelder and Mead 1965 Developed a simplified cardiac excitation model that
Noble 1962 Strength method accurately replicates detailed models and experimental
Luo and Rudy 1991 data while improving computational efficiency
Courtemanche et al.
Lachaud et al. 2022
Shannon et al. 2004 Relative Current APD & ∆APD Rejection Sampling Linked Intra-regional variability in rabbit ventricular

Strength APs to the heterogeneous contributions of specific ion
channels, that was accurately reproduced and analysed
using a population of models that match experimental data.

Table 1.2: Studies that addressed and assessed variability in cardiac electrophysiology



Cardiac Model Uncertain inputs Outputs Method Results
Chapter 3; published in Simitev et al. 2023
McKean Jr 1970 Relative Current APD & Inverting a closed-form Develops a method to quantify electrophysiological

Strength ∆APD expression for APD properties of individual cardiomyocytes, enabling
using fast- slow simple accurate predictions of drug effects, including
model of electrical APD changes, cell excitability, and dose-
excitability response relationships.

Chapter 4
Luo and Rudy 1991 Relative Current Vmax, APD90, OLS Regression Develops a regression model to predicts drug
Tusscher et al. 2004 Strength APD30, CaTa, Step-wise Regression response. Enhances predictive accuracy in cardiac

CaT90, CaTrest with nonlinear outputs models by including nonlinear relationships between
conductances and physiological outputs.

Chapter 5
Shannon et al. 2004 Relative Current APD90, APD50, Rejection Sampling Builds GP emulators and uses rejection sampling to

Strength APD30, ∆APD90 using Gaussian Process accurately reproduces variations of APD that match
∆APD50, ∆APD30 Emulators experimental data.

Table 1.3: Chapters of this thesis address and assess variability in cardiac electrophysiology



The study by (Lachaud et al. 2022) investigated the differences in action potential (AP) wave-

form within a single heart, across various regions of the same heart, and among individual

cardiomyocytes. The findings revealed a notable degree of variability in APD, highlighting

the complex and heterogeneous nature of cardiac electrophysiology. By comparing intrinsic

variability within single hearts to inter-regional and inter-cellular differences, the study empha-

sises the necessity of accounting for these variations when developing models and treatments

for cardiac arrhythmias. Such variability is critical for comprehending the mechanisms that

contribute to arrhythmogenic events and has significant implications for the development of

personalised and precise therapeutic approaches for treating cardiac conditions. Addition-

ally, the study highlights that APD alone does not uniquely determine the electrophysiological

response of myocytes to drugs Additionally, suggesting the need for identifying further inde-

pendent biomarkers to improve the accuracy of ∆APD90 estimation.

1.4 Development of Anti-Arrhythmic Drugs
The heart’s ability to pump blood is driven by the coordinated contraction of approximately 50

million individual cardiac cells. Each contraction is initiated by the excitation of electrical im-

pulses known as transmembrane action potentials (AP) (Bers 2001). These electrical impulses

are crucial for maintaining the rhythmic contractions necessary for effective blood circulation

throughout the body.When the duration of these action potentials is altered due to disease,

inherited disorders, or environmental factors, the heart becomes susceptible to arrhythmias-

electrical instabilities that can quickly lead to a fatal reduction in cardiac output (Anumonwo

and Pandit 2015; Tse 2016). The alteration in action potential duration can disrupt the heart’s

normal rhythm, leading to life-threatening conditions. The strong motivation to develop anti-

arrhythmic drugs stems from the need to regulate action potential duration and restore it to

normal levels (Darbar 2018). These drugs are designed to prevent or correct arrhythmias

by targeting the underlying electrical disturbances within the heart. The APD and its change

under drug influence (∆APD) are key biomarkers used in the design and evaluation of anti-

arrhythmic drugs (Corrias et al. 2010). Monitoring these biomarkers allows researchers to

assess the effectiveness of drugs in regulating heart rhythms and preventing arrhythmias. Re-

cent advancements in optics-based techniques within cardiac electrophysiology have enabled
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the development of high-throughput systems capable of measuring APD and other secondary

AP waveform biomarkers at rates of up to 200 cells per hour (Warren et al. 2010; Lachaud

et al. 2018; Müllenbroich et al. 2021). These technological improvements have significantly

enhanced the ability to study cardiac electrophysiology, allowing for more precise and efficient

drug testing and development.

1.5 Structure of Thesis
This thesis is centered on the analysis of single-cell models of the action potential (AP) and

their application in cardiac electrophysiology. The primary objective is to address key chal-

lenges in the field by using cardiac action potential models. This thesis employs several distinct

mathematical models of cardiomyocytes, including the simplified McKean model (McKean Jr

1970), the Shannon model for rabbit left ventricular (LV) cardiomyocytes (Shannon et al. 2004),

the Luo-Rudy model for mammalian ventricular cells (Luo and Rudy 1991), and the ten Tuss-

cher model for human ventricular cells (Tusscher et al. 2004). These models are instrumental

in understanding the complex interactions and dynamic behaviour of electrophysiological sys-

tems, particularly when dealing with multiple interdependent variables. Unlike experimental

methods, mathematical models allow for the manipulation and measurement of variables in

ways that are otherwise not feasible. However, it is essential to acknowledge that these mod-

els are inherently imperfect representations of actual biological processes. Therefore, verifying

that their primary predictions align with experimental data is crucial for ensuring their reliability.

In recent years, statistical techniques have been developed and applied across various scien-

tific disciplines to quantify uncertainty in the parameters that influence model behavior. These

techniques provide a range of predictions by accounting for the uncertainty and variability

inherent in electrophysiological systems. Parameter uncertainty, often stemming from incom-

plete understanding, is a significant challenge in cardiac electrophysiology. This thesis aims to

explore these challenges by treating key characteristics of cardiac models, such as maximal
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conductances, as random variables that follow a probability distribution rather than fixed val-

ues. This probabilistic approach allows for the analysis of how variations in these distributions

can provide insights into the specific ionic currents that contribute to beat-to-beat variability in

action potential models.

This thesis is organised into seven comprehensive chapters, each meticulously designed to

guide the reader through the research process and findings. In this section, we will present

a detailed outline of the thesis structure, offering a summary of the key topics and concepts

explored in each chapter.

Chapters 1 & 2: These are the introductory chapters, Chapter 1 presents a concise overview

of cardiac electrophysiology, establishes the research context, explains the motivation behind

the research, and clearly defines the aims and research questions for each chapter within

the thesis. Chapter 2 builds upon this introduction by offering a more detailed examination

of cardiac electrophysiology. It traces the development of action potential models, beginning

with the pioneering work of Hodgkin and Huxley (Hodgkin and Huxley 1952), and explores

how these models have evolved. The chapter also delves into the fundamental mathematical

equations that govern cardiac cellular electrophysiology, detailing the specific roles of various

ionic currents in generating action potentials.

Chapter 3: This chapter focuses on addressing a significant gap in cardiac electrophysiology

by applying a basic conceptual model of cellular excitability to analyse experimental findings

related to ion channel block in a large and heterogeneous population of uncoupled cardiomy-

ocytes. Previous studies, including the work by Lachaud (Lachaud et al. 2022), have primarily

involved measuring the shortening of APD in approximately 500 rabbit ventricular myocytes

treated with Nifedipine. These cells, collected from various regions of the left ventricles of

multiple rabbits, demonstrated notable intrinsic variability in their APD and drug responses.

However, despite extensive research in this area, the complex and variable nature of cellular

responses has not been fully captured or explained by existing models.
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To address this gap, our work in Chapter 3 begins by solving the McKean model (McKean Jr

1970), a simple yet effective representation of the transmembrane action potential (AP). The

McKean model is chosen for its simplicity and effectiveness in representing rabbit ventricular

APD restitution. It is a fast-slow system of piecewise linear ordinary differential equations

(ODEs) similar to the FitzHugh-Nagumo type. This model was selected because its equations

incorporate the essential dynamics found in true cardiac AP models, including the traditional

Tikhonov slow-time subsystem characteristic of the McKean type. I solved the McKean model

during the first year of my PhD. The rest of the chapter is completed in the third year.

Building on the McKean model (McKean Jr 1970), we employ an asymptotic approximation

of APD to analyse the ion channel block studies conducted by (Lachaud et al. 2022). In this

analysis, we infer the cellular properties of each myocyte based on cell-specific parameter

values within the McKean model (McKean Jr 1970). This approach provides a more detailed

understanding of how individual variations in cellular properties contribute to the observed

variability in APD and drug responses. The analysis of fast-slow systems, such as the McKean

model (McKean Jr 1970), is based on rigorous foundations established by traditional theorems

from (Tikhonov 1952; Pontryagin 1957; and Fenichel 1979). A comprehensive reference with

detailed explanations and a wide range of sources is available in (Kuehn et al. 2015).

It is important to note that there are various alternative versions of the McKean kinetics besides

the one we used in Chapter 3, (McKean Jr 1970); they can be found in (Barkley 1991, and Fall

et al. 2002). These variants, along with the FitzHugh-Nagumo model, would produce similar

results - to the results in Chapter 3 - in terms of their overall characteristics, but they may

not be as conveniently expressed as the closed form presented in this chapter. The McKean

equations are a suitable phenomenological model for the restitution of the rabbit ventricular

APD. This is because realistic cardiac AP models typically have a Tikhonov slow-time subsys-

tem of McKean type, even though the overall model is essentially non-Tikhonov, as shown by

(Biktashev et al. 2008).
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A critical challenge in studying intrinsic variability is the difficulty in linking action potential

waveforms, which originate from ionic currents to the electrophysiological properties of indi-

vidual myocytes, including ion channel conductances and kinetic parameters (Pandit 2018).

Current high-throughput techniques, such as patch-clamping of ionic currents, are not fea-

sible for large numbers of cells (exceeding 100). Additionally, combining these techniques

with voltage-sensitive dyes introduces further technical challenges, complicating the accurate

measurement of electrophysiological properties across multiple cells.

In (Lachaud et al. 2022) employed a rejection sampling procedure using the detailed ionic

(Shannon et al. 2004) model to represent rabbit myocytes. This involved conducting a pa-

rameter sensitivity analysis, varying ionic conductances, and generating 50,000 model vari-

ants. These models were then calibrated by rejecting those variants outside the experimental

APD90 range. However, these calibrated models were not cell-specific, and the population

was not unique. Moreover, many parameters remained at baseline values, limiting the model’s

adaptability and complicating causal inference (Biktashev et al. 2008).

Given the complexity and limitations of detailed models, Chapter 3 introduces a simplified

phenomenological model, specifically the McKean model (McKean Jr 1970), to mathemati-

cally describe the experimental procedures used by (Lachaud et al. 2022). Simplified models,

like those developed by (Mitchell and Schaeffer 2003; FitzHugh 1961; Nagumo et al. 1962;

and Aliev and Panfilov 1996), provide a more manageable approach to understanding cardiac

action potentials. The McKean model (McKean Jr 1970), in particular, stands out due to its

simplicity, featuring only three intrinsic parameters. It allows for an exact solution of the AP

waveform in a closed form. Through phase-space analysis, we derived a simplified asymptotic

relationship between APD and the model’s parameters, illustrating their geometric behavior.

This model was then applied to the experimental data from (Lachaud et al. 2022), enabling us

to uniquely determine individualised McKean model parameters for each rabbit myocyte.
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Chapter 4: In Chapter 3, we used the McKean model to infer cell-specific parameters based

on experimental data, benefiting from its simplicity and analytical approximations. While this

approach proved effective for analyzing ion-channel block in a large population of uncoupled

cardiomyocytes. This approach becomes less practical when we transition to more complex

models, such as the LR1 model (Luo and Rudy 1991). As this model incorporates detailed

biophysical properties and multiple ionic currents, it will require computational demands. To

address this, Chapter 4 introduces simpler, faster, and more cost-effective regression-based

methods that can efficiently analyze conductances and predict outcomes in complex cardiac

models like LR1, without compromising accuracy.

This chapter aims to enhance the understanding of sensitivity in computational models of car-

diac myocyte electrical activity by introducing a more efficient method for rapidly assessing the

impact of parameter changes on model outputs. Traditionally, evaluating model parameters

has been a time-consuming process, often requiring significant computational resources. To

address this challenge, we develop and test a novel approach that improves the speed and

efficiency of parameter assessment. Specifically, this work explores the use of both linear and

nonlinear regression models to analyse the relationship between ion channel conductances

and physiological outputs, with the goal of enhancing the predictive accuracy of cardiac elec-

trophysiology models.

Computational models in cardiac electrophysiology are extensively used to investigate the

mechanisms of arrhythmias and other heart-related phenomena. These models provide valu-

able insights, generating predictions, guiding experiments, and quantifying complex physiolog-

ical processes. However, they face significant challenges, particularly in capturing the experi-

mental variability in action potential duration (APD). Previous studies by (Sobie 2009; Sarkar

et al. 2012; and Sobie and Sarkar 2011) employed partial least squares (PLS) regression to

develop simplified models that link ion channel conductance changes to physiological outputs

such as action potentials and calcium transients. While these linear models have been in-

strumental in the field, they do not fully capture the complex nonlinear relationships between

variables, leaving room for further improvement.
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Building on this prior work, Chapter 4 introduces both ordinary least squares (OLS) regression

and nonlinear regression models to address these limitations. We extend the methodology by

applying these models to predict drug responses in the Luo-Rudy model, focusing specifically

on the effects of reducing the conductance GK by 30% to simulate ion-channel block, similar

to the Dofetilide experiments conducted by (Lachaud et al. 2022). By adjusting the GK values

in the model, we were able to calculate new APD90 values after drug application for each cell.

This application demonstrates the versatility of our regression techniques, highlighting their

utility not only for sensitivity analysis but also for accurately predicting drug-induced changes

in computational models of cardiac electrophysiology.

The second study presented in Chapter 4 introduces a novel approach to parameter sensitiv-

ity analysis by combining both linear and nonlinear regression techniques. This method offers

a more robust framework for understanding the complex relationships between ion channel

conductances and physiological outputs. By expanding upon Sobies work, which primarily fo-

cused on linear models, we incorporated nonlinear termsspecifically the squares of biomarker

valuesinto the analysis. This extension allows for a more comprehensive examination of the

correlations between ion channel conductances and action potential characteristics, enhanc-

ing the predictive power and accuracy of cardiac models.

To investigate the relationship between ionic conductances and biomarkers, we focused on

predicting GCaL, the maximal L-type calcium current permeability, based on six key biomark-

ers. Regression models were developed that incorporated both linear and nonlinear terms.

The inclusion of nonlinear predictors allowed us to account for more complex dependencies

between GCaL and the biomarkers. Stepwise regression was applied, starting with a full model

consisting of 12 terms6 linear and 6 nonlinearand backward selection was used to refine the

model. This process identified the most relevant predictor variables influencing GCaL.
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Chapters 5 & 6: In Chapter 4, stepwise regression helped identify key linear and nonlinear

relationships between ion channel conductances and biomarkers. However, its limitations in

capturing more complex nonlinear interactions became evident, with only 9 out of 16 conduc-

tances showing significant nonlinear terms. To address this, Chapter 5 introduces Gaussian

Process (GP) regression, a non-parametric and probabilistic framework that adapts to varying

dynamics across different data ranges. This method offers a more flexible and robust way

of capturing complex nonlinear interactions, making it better suited for modeling the intricate

dynamics present in cardiac electrophysiology.

Chapter 5 investigates the variability of action potentials (APs) in a population of rabbit car-

diomyocytes under both controlled and drug-induced conditions. The primary goal is to explore

the mechanisms responsible for this variability by integrating experimental data with compu-

tational modeling techniques. Specifically, this chapter focuses on creating and analyzing a

population of models using GP emulators, calibrated to match observed data. This approach

offers an efficient and cost-effective alternative to traditional simulation methods for under-

standing how variability across cells influences drug action.

Previous studies, such as those by Lachaud (Lachaud et al. 2022), utilized detailed ionic cur-

rent models like the Shannon model to study action potentials in rabbit cardiomyocytes (Shan-

non et al. 2004). They combined rejection sampling procedures with parameter sensitivity

analysis, generating 50,000 model variants. These variants were calibrated by rejecting those

that fell outside the experimental APD90 range, allowing for an investigation of the effects of

hERG and L-type calcium channel blocks.

Building on this foundation, Chapter 5 employs the same detailed ionic current model but

introduces a novel approach using GP emulators instead of traditional simulators. GP emula-

tors provide a faster, more computationally efficient method for generating model populations

within the experimental APD90 range, enabling a broader analysis of how cell-to-cell variability

affects drug responses, particularly in relation to hERG and L-type calcium channel blocks.
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By using GP emulators, the computational cost and time required for generating and analyzing

large model populations are significantly reduced. This method offers a scalable solution for

exploring the complex interactions between ionic currents and drug effects in cardiac cells. Ad-

ditionally, it allows for a quantitative comparison between the impacts of drug-induced channel

blocks and findings from previous studies, offering new insights into similarities and discrep-

ancies between different modeling approaches.

Chapter 5 introduces GP emulators as an alternative to traditional simulation methods, en-

abling faster and more efficient generation and analysis of large model populations. This

approach is used to explore relationships between ionic conductances, action potentials, and

drug effects. The chapter focuses on results related to APD90 with Nifedipine, while Chapter

6 will expand the analysis to additional outputs such as APD50, APD30, and the effects of

Dofetilide.

Chapters 7: This chapter serves as the concluding chapter of this thesis, providing a com-

prehensive summary of our research findings, discussing the strengths and limitations of each

chapter, and outlining possible chances for future research.
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Chapter 2

Background

2.1 Introduction
This chapter provides the essential mathematical and biological foundations for understanding

cardiac function and electrophysiology. It begins with a detailed explanation of the heart’s

structure and its role as a muscular pump. The chapter then delves into the mechanisms

underlying the heart’s electrical excitation and the propagation of action potentials (APs). A

brief overview is also presented on the evolution of cardiac electrophysiology models, starting

from the pioneering model by Hodgkin and Huxley (Hodgkin and Huxley 1952). These models,

which characterise the electrical activity of the heart at the cellular level, serve as powerful tools

for studying both individual cells and the entire heart, particularly in the context of abnormal

cardiac conditions. Additionally, the chapter reviews several experimental techniques used to

measure ionic currents and transmembrane potential in cardiomyocytes.
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2.2 The Heart Structure
The heart is a muscular organ situated behind the sternum, centrally located in the chest. It

consists of four chambers: the right and left ventricles, which are the lower chambers, and the

right and left atria, which are the upper chambers. The left atrium and left ventricle together

form what is commonly known as the left heart, while the right atrium and right ventricle are

collectively referred to as the right heart (Saxton et al. 2023). The four chambers are organised

into two pumpsthe right and lefteach responsible for directing blood flow to the pulmonary and

systemic circulations, respectively.

The right atrium receives deoxygenated blood from the body, excluding the lungs, via the

superior and inferior vena cavae. Additionally, the coronary sinus allows deoxygenated blood

from the heart muscle itself to drain into the right atrium. Consequently, the right atrium acts

as a reservoir for deoxygenated blood. From the right atrium, the blood flows into the right

ventricle, the primary pumping chamber of the right heart, through the tricuspid valve (Mori

et al. 2019).

2.2.1 Heart Function

The right ventricle pumps blood to the lungs for oxygenation via the right ventricular outflow

tract, the pulmonic valve, and the pulmonary artery. As the blood passes through the capillaries

in the lungs, it becomes oxygenated due to its close proximity to the oxygen-rich air in the

alveoli. This oxygenated blood is then collected by four pulmonary veins, two from each lung,

which empty into the left atrium.

The left atrium serves as a reservoir for oxygenated blood and, similar to the right atrium,

transfers blood to its corresponding ventricle through both active and passive mechanisms.

Consequently, the left ventricle fills with oxygenated blood as it passes through the mitral valve.

The left ventricle, the main pumping chamber of the left heart, then propels the oxygen-rich

blood into the systemic circulation through the aortic valve.
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This cycle is repeated with each heartbeat. The primary function of the four cardiac valvesthe

tricuspid, pulmonic, mitral, and aortic valvesis to ensure the unidirectional flow of blood, pre-

venting any backflow. Figure 2.1 illustrates the internal anatomy of the heart, including these

essential valves.

Figure 2.1: Sectional anatomy of the heart showing the four cardiac chambers (right atrium,
left atrium, right ventricle, left ventricle), the major blood vessels, and the key valves (tricuspid,
pulmonary, mitral, and aortic valves) responsible for ensuring unidirectional blood flow. Figure
is from (Wikimedia Commons contributors 2024a)
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2.2.2 Cardiac Conduction System

The heart functions as a pump that circulates blood throughout the entire body. Electrical

signals propagate down the conduction pathway of the heart with each beating. The process

begins when the sinoatrial (SA) node generates an excitation signal. Simply put, this excitation

signal undergoes four stages: initially, it is directed to the atria, where it goes through contrac-

tion. The signal is then delayed by the atrioventricular (AV) node until the atria are empty of

blood. This signal is then transmitted to the Purkinje fibers by the bundle of His, which is the

central bundle of nerve fibers. The Purkinje fibers transport it to the ventricles, which are the

lower cardiac chambers, where it causes their contraction (Padala et al. 2021). Each of these

stages constitutes a complete contraction of the heart muscle. To ensure that the heart con-

tinues to pulse, the heart conduction system sends thousands of signals each day. A diagram

of the cardiac conduction system is shown in Figure 2.2, which illustrates the entire path of the

excitation signal.

The heart functions as a pump that circulates blood throughout the entire body, and this action

is driven by electrical signals that propagate through the heart’s conduction pathway with each

heartbeat. The process begins when the sinoatrial (SA) node generates an excitation signal.

This signal then undergoes four key stages (Padala et al. 2021), outlined below:

• Atrial Contraction: The excitation signal is first directed to the atria, causing them to

contract.

• Atrioventricular Node Delay: The signal is delayed by the atrioventricular (AV) node,

allowing the atria to fully empty their blood into the ventricles.

• Transmission via the Bundle of His: The signal is then transmitted through the bundle of

His, the central bundle of nerve fibres, to the Purkinje fibres.

• Ventricular Contraction: The Purkinje fibres carry the signal to the ventricles, the heart’s

lower chambers, triggering their contraction.
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These stages together result in a complete contraction of the heart muscle (Padala et al. 2021).

To maintain the heart’s continuous rhythm, the heart’s conduction system sends thousands of

signals each day. A diagram of the cardiac conduction system, shown in Figure 2.2, illustrates

the entire path of the excitation signal.

Figure 2.2: Diagram of the cardiac conduction system, illustrating the flow of electrical im-
pulses through the heart, starting from the sinoatrial (SA) node, passing through the atrioven-
tricular (AV) node, and propagating via the bundle of His, right and left bundle branches, and
Purkinje fibers to coordinate the contraction of the heart muscle. Figure is from (Wikimedia
Commons contributors 2024b)

2.3 Cardiac Electrophysiology
The heart is an incredibly sophisticated organ. Every one of the roughly 3 billion heartbeats

that occur in an average person’s life necessitates the coordinated contraction of billions of

cardiac muscle cells, known as cardiomyocytes. This synchronised contraction is crucial for

the rhythmic pumping of blood, which is essential for sustaining life. The coordination of this

action is directed by a complex electrical system.
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The complicated nature of the cardiac electrophysiology system involves dynamic changes in

multiple components across various spatial and temporal scales. However, the quantitative

nature of cardiac electrophysiology, governed by physical laws and biological principles, can

be accurately measured in patients using non-invasive methods. This characteristic makes it

well-suited for computational modelling approaches that are based on mechanistic principles

and data analysis.

Computational models of cardiac electrophysiology provide individual parameters with pre-

cise control, and their replicability enables a comprehensive assessment of cardiac arrhythmia

functions. In recent decades, there has been an increasing interest in the use of computer

modelling for mechanistic investigations of cardiac electrophysiology (Trayanova et al. 2023).

The computational modelling of cardiac electrophysiology has made substantial progress over

the past seven decades, resulting in the establishment of recognised methodologies and an

expanding collection of practical applications.

2.3.1 Cardiac Action Potential

The cardiac AP refers to a change in the electrical potential across the cell membrane, typically

ranging from 60 to 120 mV. This process begins from a negative value known as the resting

membrane potential (RMP) in functional cardiac cells, which varies between −95 and −40

mV (András et al. 2021). The RMP in excitable cells is primarily determined by the conduc-

tance of inwardly rectifying K+ currents and can be approximately calculated using the Nernst

equation, accounting for the uneven distribution of K+ ions across the cell membrane. The

electrogenic ATP-dependent Na+-K+ pump also plays a crucial role in maintaining the RMP

by exporting 3 Na+ ions and importing 2 K+ ions (Lee 1996). Under normal conditions, the

APD determines the effective refractory period (ERP), which is the minimum amount of time

required before a new stimulus can trigger another AP. However, under pathological conditions,

such as hyperkalaemia, the relationship between APD and ERP can be disrupted, leading to

post-repolarisation refractoriness (Shaw and Rudy 1997). When discussing the cardiac AP, it

is important to consider two key aspects:
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• Variability Across Different Heart Regions: The term cardiac AP does not refer to

a uniform structure, as the shape and characteristics of the transmembrane potential

changes vary significantly across different regions of the heart, as illustrated in Figure

1.1 in previous chapter. Therefore, it is essential to study and describe individual APs in

a region-specific manner.

• Species-Specific Differences: There are also significant variations in cardiac APs be-

tween different species, even when measured from comparable regions of the heart(Britton

et al. 2013). This issue is particularly important, as many experimental findings have

been obtained from studies conducted on various species, yet this variability is often

overlooked.

2.3.2 Phases of the Ventricular Action Potential

The ventricular AP is typically categorised into five distinct phases, each playing a crucial role

in the cardiac cycle. Figure 2.3 illustrates the AP of ventricular cardiomyocytes, highlighting

the sequential progression through these phases. Below is a brief summary of each phase:

• Phase 0: Upstroke Phase 0 is characterised by rapid depolarisation, where the mem-

brane potential shifts into a positive voltage range within approximately 2 ms. This phase

is crucial for the swift propagation of the cardiac AP. The rapid upstroke is driven by the

activation of the fast sodium current (INa), which significantly increases the membrane

conductance of Na+. This results in a rapid positive shift in voltage across the cell

membrane, reaching a threshold value of around −70 mV and further increasing to ap-

proximately +40 mV. If the initial stimulus is insufficient to reach the threshold potential,

the fast sodium channels will not activate, and no AP will be generated (Sakakibara et al.

1993).

• Phase 1: Initial Repolarisation Phase 1 involves a rapid partial repolarisation of the

membrane. This phase sets the stage for the subsequent plateau phase. It begins

with the rapid inactivation of the Na+ channels, while transient outward potassium chan-

nels (Ito) open and close quickly, allowing potassium ions to leave the cell. This phase

appears as a notch on the AP waveform (Benitah et al. 2010).
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• Phase 2: Plateau Phase 2 is characterised by a stable, prolonged plateau, making it the

longest phase of the AP. It is unique to cardiac cells and marks the entry of calcium ions

(Ca2+) into the cell. During this phase, the repolarisation slows down due to the inward

flow of Ca2+, counterbalanced by the outward movement of potassium ions through the

IKs current. The membrane potential remains depolarised and relatively constant during

this prolonged phase.

• Phase 3: Final Repolarisation Phase 3 involves rapid repolarisation, which restores

the membrane potential to its resting value. During this phase, the L-type Ca2+ channels

close, while the potassium channels from Phase 2 remain open. Additional potassium

channels, including IKur, IKr, and IKs, contribute to the outward currents that play major

roles in controlling repolarisation. The slow deactivation of these channels ensures that

they continue to contribute to the outward current throughout Phase 3, allowing the

membrane potential to return to its resting level (Grant 2009a).

• Phase 4 : Resting Potential Phase 4 marks the end of the action potential. In stan-

dard non-pacemaker cells, the membrane potential during this phase is relatively stable,

typically around −90 mV. The resting membrane potential is the result of a balance be-

tween the influx of ions like Na+ and Ca2+, and the efflux of K+, regulated by various

membrane pumps. During Phase 4, the membrane potential is slightly depolarised (be-

tween −50 to −65 mV) and undergoes slow diastolic depolarisation, eventually leading

into Phase 0 (Dhamoon and Jalife 2005).

2.3.3 Transmembrane Ion Channels and Transporters in the Heart

The cardiac AP represents the change in voltage across the cell membrane, driven by the

movement of ions through ion channels. These ion channels open and close in a dynamic and

coordinated manner, facilitating the propagation of electrical signals within the heart (Grant

2009b). A significant advancement in the study of cardiac electrophysiology was the devel-

opment of the patch-clamp technique, which is widely used to quantify transmembrane ionic

currents in the heart. This technique is particularly effective in studying isolated myocytes, al-

lowing for the precise recording and analysis of individual ionic currents passing through single

ion channels, as well as the collective currents across the entire sarcolemma.
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Figure 2.3: The arrows in the figure represent ionic currents: upward arrows indicate outward
currents (leaving the cell), while downward arrows indicate inward currents (entering the cell).
This figure illustrates the five distinct phases of the ventricular cardiomyocyte action poten-
tial (AP) and the ionic currents contributing to each phase. During Phase 0 (Upstroke), the
rapid depolarization is driven by INa (downward arrow), indicating a large inward sodium ion
flow that causes a rapid positive shift in membrane potential. In Phase 1 (Initial Repolariza-
tion), Ito (upward arrow) and IKur (upward arrow) facilitate partial repolarization by allowing
potassium ions to leave the cell. Phase 2 (Plateau) is maintained by ICaL (downward arrow),
representing inward calcium ion flow, while IKs (upward arrow) provides outward potassium
ion flow, balancing the inward calcium current and maintaining the plateau. During Phase 3
(Final Repolarization), IKr (upward arrow) accelerates the outward flow of potassium ions to
drive rapid repolarization, and IK1 (upward arrow) contributes toward the end of repolarization
to restore the membrane potential to its resting state. Finally, in Phase 4 (Resting Potential),
IK1 (upward arrow) maintains the stable resting membrane potential by counterbalancing small
inward sodium and calcium ion leaks.

Before the use of the patch-clamp technique, recordings of transmembrane currents were less

accurate due to inadequate voltage control of the sample. Moreover, the precise determination

of rapid current changes and gating kinetics was challenging and often unattainable (Banyasz

et al. 2011).Table 2.1 summarises the various transmembrane ion channels and their roles

in the generation of the cardiac AP. Readers are encouraged to refer to the publication by

(András et al. 2021) for a more detailed and comprehensive understanding of the different

transmembrane ion channels in cardiac cells.
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Current Description AP Phase Activation Mechanism
INa Fast Inward Sodium Phase 0 Voltage, depolarisation
Ito,f Transient Outward, fast Phase 1 Voltage, depolarisation
Ito,s Transient Outward, slow Phase 1 Voltage, depolarisation
IKur Ultrarapid Delayed Rectifier Phase 1 & 2 Voltage, depolarisation
ICa,L Calcium, L-type Phase 2 Voltage, depolarisation
IKr Rapid Delayed-rectifying Potassium Phase 3 Voltage, depolarisation
IKs Slow Delayed-rectifying Potassium Phase 3 Voltage, depolarisation
lK1 Inward Rectifier Potassium Phase 3 & 4 Voltage, depolarisation

Table 2.1: This table contains the membrane ion currents responsible for generating the action
potential (AP).

2.4 Computational Modelling of Cardiac Action Potentials
The extensive range of experimental data characterising the structure and function of myocytes

has enabled the development of sophisticated electrophysiological models. These models can

accurately simulate APs and conduction properties across various species, including humans.

Over the past 70 years, significant progress has been made in modelling and replicating the

electrophysiology of the heart.

Computational models offer complete observability and controllability in simulations, allowing

researchers to overcome the limitations inherent in experimental models. These models pro-

vide predictions grounded in a deep understanding of underlying systems, and these predic-

tions can be readily tested. By guiding further research and connecting to existing knowledge

of physiological mechanisms, computational models play a critical role in advancing the field.

Furthermore, when simulations fail to replicate a specific phenomenon, it highlights potential

gaps in current knowledge or contradictions within the field. This presents an opportunity to

uncover essential elements or mechanisms that may not be represented in the model but are

crucial for understanding specific events in living cells. A computer model of cardiac cellular

electrophysiology typically includes a set of differential equations that describe the processes

of transmembrane ionic transport and excitation-contraction coupling. The primary modelling

frameworks used are outlined below (András et al. 2021):
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2.4.1 Hodgkin-Huxley Models

The Hodgkin-Huxley framework is one of the most commonly employed approaches for model-

ing ionic currents in excitable cells like neurons and cardiac cells. The objective of a Hodgkin-

Huxley model is to replicate the biophysical characteristics of ion channels, as determined

through patch-clamp experiments.

The membrane voltage VM is represented by Equation (2.1), which simulates the cardiac action

potential (AP) as the product of the inverse of membrane capacitance (CM) and the sum of all

ionic currents ∑X IX, where each IX(t) represents the current for a specific ion channel X .

Equation (2.2) shows the three major components determining the magnitude of an ion current

IX . This includes the open probability Popen, which refers to the likelihood that an individual ion

channel is in an open state at any given time, allowing ions to flow through it. This proba-

bility is governed by a set of independent “gates” (e.g., activation and inactivation gates) that

follow ordinary differential equations (ODEs) controlled by the membrane voltage (VM). The

combined states of these gates determine the proportion of open channels. Subsequently, the

open channel conductance and the ionic driving force across the channel are used to compute

the total current (Hodgkin and Huxley 1952). The driving force reflects the electrochemical

gradient that drives ion movement across the membrane.

dVM

dt
=− 1

CM
∑
X

IX(t), (2.1)

where:

IX(t) = ( Conductance X) · ( Open Probability X) · ( Driving Force X). (2.2)

31



The open probability of a channel depends on the states of its gates, which are governed by

probabilities that evolve over time. For example, if a channel requires three activation gates to

be open to conduct ions, the open probability can be expressed as:

Popen = m3 ·h, (2.3)

where m represents the probability that an activation gate is open, and h represents the prob-

ability that the inactivation gate is not inactivated. These probabilities change over time ac-

cording to ordinary differential equations (ODEs) driven by the membrane voltage ( VM ). The

equation for the driving force is:

Driving Force X = (VM −EX) , (2.4)

where: VM is the membrane potential, and EX is the Nernst or reversal potential for the ion X .

However, the Hodgkin-Huxley model has limitations, particularly in its inability to include state-

dependent effects, such as drug binding that occurs only when a channel is in an open state.

In such cases, Markov models provide a more suitable approach.

2.4.2 Markov Models

Markov models can be considered an extension of Hodgkin-Huxley models, enabling them to

effectively capture complex structures because they represent the probabilities of state transi-

tions as time-evolving variables. These transitions depend on the present state of the channel

and are influenced by factors such as membrane voltage or drug interactions. When Hodgkin-

Huxley cannot be used, Markov models are often employed in such scenarios, as they can

express different states of a channel (such as open, closed, inactivated by voltage, or inacti-

vated by drugs) along with the probability of transitioning between these states (Mahajan et

al. 2008). The transitions between states depend on state variables, such as the membrane

voltage VM r other modulating factors.

32



In a Markov model, a channel can transition between multiple states, such as:

CX
kαX⇌
kβX

OX
kαB⇌
kβB

BX (2.5)

where:

• CX : Closed state of the channel,

• OX : Open state of the channel,

• BX : Blocked or inactivated state,

• kαX and kβX : Forward and backward transition rates between closed and open states,

and

• kαB and kβB : Transition rates between open and blocked/inactivated states.

The probability of the channel being in a particular state evolves over time, rather than the

physical gates themselves following ODEs. These probabilities are driven by the transitions

between states, which depend on factors such as membrane voltage VM. For the open state

(OX ):
dOX

dt
= kαXCX − kβX OX − kαBOX + kβBBX (2.6)

The equation describes the dynamics of the open state (OX) probability by accounting for

various transitions: the influx from the closed state (CX) at a rate of kαXCX ; the efflux back to

the closed state at a rate of kβX OX ; and the transitions between the open state and the blocked

state (BX), with kαBOX representing the rate from open to blocked, and kβBBX from blocked to

open.
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The overall open probability (Popen ) is the sum of probabilities of all states considered “open”,

such as OX . The total ionic current through the channel IX is then calculated as:

IX = Popen ·gX · (VM −EX) (2.7)

where:

• gX : Single-channel conductance.

• VM : Membrane potential.

• EX : Reversal potential of the ion.

Markov models are beneficial for accurately representing state-dependent drug binding, where

a drug binds only when the channel is in the open state. However, this increased flexibility also

introduces challenges in terms of model identification and parameter estimation (Trayanova

et al. 2023).

2.5 A Brief History of Cardiac Electrophysiology Models
Mathematical modelling has proven to be a powerful tool for understanding complex biologi-

cal systems. The study of excitable cellular membranes, particularly in cardiomyocytes, has

become increasingly popular for in-depth mathematical modelling due to the intricate and dy-

namic nature of these systems. Cardiomyocyte physiology is a highly complex biological sys-

tem, characterised by numerous interacting components that behave in a non-linear manner.

The activity of each ion channel, pump, and transporter dynamically changes over time in re-

sponse to rapidly shifting environmental conditions. Cardiac cell models are constructed based

on extensive experimental data obtained from various preparations using techniques such as

whole-cell and single-channel patch clamps. This data helps with the design of the model

structure, determines the parameters of the model components, and validates the model’s

accuracy (Fink et al. 2011).
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Mathematical models of the heart exist on various spatial scales, from the subcellular car-

diac dyad to the entire heart. This study focuses on mathematical models representing a

single, isolated cardiomyocyte. Typically, a single model is assumed to be representative of

an entire cell type, although it may not fully capture the behavioural variation within individual

cells. These models are mathematical representations of the electrical events in the cell that

produce APs. They often involve numerous ordinary differential equations (ODEs) that repre-

sent state variables such as membrane voltage, ion concentrations in subcellular regions, ion

channel dynamics, and the various states of ion channels. As models become more complex,

it becomes increasingly challenging to accurately constrain every parameter, which can lead

to greater overall inaccuracy and errors in the system. Therefore, experimental tests of key

model predictions are crucial; they help validate the model and ensure that the parameters are

set appropriately, thereby improving the models accuracy and reliability. Voltage and gating

kinetics can be quantified by fitting the equations of the mathematical model to experimental

patch clamp recordings of the relevant current. This close calibration between ion channel

formulations and experimental data results in a high degree of validity between simulation and

experiment.

The first mathematical model for AP was the groundbreaking work on electrical activity in the

squid giant axon proposed by (Hodgkin and Huxley 1952). This was a significant breakthrough

in the computational modelling of electrophysiology. The current equation is:

Cm
dVm

dt
= Iext − (INa + IK + IL) , (2.8)

where

• Vm is the membrane potential,

• Iext is the external current applied to the membrane, and

• INa, IK, and IL are the sodium, potassium, and leakage currents, respectively.

35



The Ionic currents are defined as:

INa = gNam3h(Vm −ENa) ,

IK = gKn4 (Vm −EK) ,

IL = gL (Vm −EL) ,

where:

• gNa and gK are the maximal conductances for sodium and potassium, respectively,

• ENa,EK, and EL are the equilibrium potentials for sodium, potassium, and leakage ions,

respectively.

The gating variable equations are defined as follow:

dm
dt

= αm(1−m)−βmm,

dh
dt

= αh(1−h)−βhh,

dn
dt

= αn(1−n)−βnn,

where α and β are rate constants that depend on the membrane potential and govern the

opening and closing of the ion channels.

Given the similarities between neuronal and cardiac excitable properties, the Hodgkin-Huxley

(HH) current equations (2.8) have served as the foundation for computational cardiac elec-

trophysiology. As a result, numerous mathematical models of cardiac electrophysiology have

been developed, each aimed at addressing specific research questions. One modification

of the (HH) current equations (2.8) is the work by (FitzHugh 1961), who developed simplified

equations to simulate excitation and propagation. Modern models are often divided into distinct

subcellular compartments, and subsequent studies have provided models for specific cardiac

regions (e.g., ventricular cardiomyocytes, Purkinje fibres, atrial cardiomyocytes) across differ-

ent animal species (e.g., mouse, guinea pig, rabbit, dog). For a detailed overview of the most

well-known and advanced mathematical models in cardiac electrophysiology, refer to (Fenton

and Cherry 2008).
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2.5.1 Ventricular Models

Due to the clinical importance of ventricular fibrillation, the study of computational cardiac elec-

trophysiology has primarily focused on ventricular cardiomyocytes. A significant breakthrough

in ventricular modelling was the development of the Luo-Rudy model for a guinea pig cell (Luo

and Rudy 1994). Another highly influential model is the Shannon rabbit model (Shannon et al.

2004). This model effectively separates the various components of the delayed rectifier current

and incorporates the junctional subspace, with a particular emphasis on the precise descrip-

tion of calcium handling. The model was later modified by (Mahajan et al. 2008) to optimise its

rate-dependent characteristics, and it has been used to investigate alternans.

Modelling and simulating the electrical activity of the human ventricles are critical aspects of

computational cardiac electrophysiology. A primary distinction between humans and other an-

imals is the significant dependence of human cardiomyocytes on IKr for repolarisation, unlike

in other species (Jost et al. 2013). The first widely recognised models for human ventricular

activity were developed by (Tusscher et al. 2004, and 2006). The O’Hara et al. (ORd) model

(O’Hara et al. 2011) is now considered the most prominent human ventricular model. This

model was developed and tested using a diverse set of experimental data, some of which

were specifically collected for the purpose of developing the model.

2.5.2 Atrial Models

Research on modelling and simulating human atrial electrophysiology has become a popular

and important topic. Two well-known models of human atrial electrophysiology were developed

by (Courtemanche et al. 1998) and (Nygren et al. 1998). Both models accurately reproduce

the unique AP shape of atrial myocytes. For a more extensive review of atrial modelling and

simulation, readers are encouraged to consult (Wilhelms et al. 2013). These models are based

on experimental data from explanted hearts or samples from open heart surgery patients.

They have provided significant insights into the mechanisms underlying cardiac arrhythmias

under various conditions and have been used for both clinical and commercial applications

(e.g., Koivumäki et al. 2011 and Bai et al. 2018).
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2.5.3 Purkinje Cell Models

While Noble’s early work (Noble 1962) focused on Purkinje fibre cells in the initial cardiac elec-

trophysiological models, advancements in this area have been inconsistent. However, there

has been an increased interest in Purkinje fibres, leading to the development of models that

specifically examine their function and alterations in heart failure, the electrophysiological foun-

dation of rabbit Purkinje fibres, and the role of Purkinje fibres in the development of arrhythmias

(McAllister et al. 1975, and Di Francesco and Noble 1985). A recent development in this field

is the Purkinje model by Trovato et al. (Trovato et al. 2020), which includes a thorough cali-

bration using human data under various conditions. This model provides valuable insights into

Purkinje cells early after-depolarisations (EADs).

2.6 Applications of Cardiac Electrophysiology Models
Mathematical models that accurately represent the physical properties of the heart have been

developed to simulate its functioning at various levels, ranging from individual cells to the en-

tire organ. These models provide critical insights into the underlying mechanisms of complex

heart diseases and help in understanding clinical observations, ultimately contributing to im-

proved patient therapy. Below, several applications of these computational models in cardiac

electrophysiology are outlined.

2.6.1 Understanding Mechanisms of Normal Heart Rhythm and Arrhyth-

mias

Cardiac electrophysiology models have greatly enhanced our understanding of both normal

cardiac function and the mechanisms underlying arrhythmias. These computational models

are frequently used to investigate the specific impact of individual ion currents on various car-

diac mechanisms (Odening et al. 2021). For example, simulations at the cellular level have

shed light on the development of proarrhythmic events such as alternans and early afterdepo-

larisations (EADs). Early modelling work suggested that the reactivation of ICa,L contributes

to the formation of EADs, while IK,r plays a significant role in the rate dependency of these

events (Zeng and Rudy 1995). Furthermore, populations of ionic models can be employed to

explore the relative contributions of individual ionic currents to specific mechanisms. For in-
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stance, this approach was used to study atrial fibrillation (AF), where all AF model populations

exhibited consistent changes in IK,1, IK,ur, and Ito (Sánchez et al. 2014). Subsequent analy-

ses revealed that variability in APD90 is primarily influenced by inter-subject variability in IK,1

and INa,K, while variability in APD50 and APD20 is determined by a combination of factors,

including IK,ur, ICa,L, and Ito.

2.6.2 Estimating Proarrhythmic Risks of Ion-Channel Mutations

Another important application of cardiac cellular electrophysiology models is in predicting the

proarrhythmic effects of ion-channel mutations. Patch-clamp experiments alone cannot fully

elucidate how changes in ion channels affect APs or cellular proarrhythmia biomarkers. Com-

putational modelling bridges this gap by linking biophysical changes at the ion-channel level

to alterations in AP characteristics, thereby identifying potential triggers for abnormal heart

rhythms (Trayanova et al. 2023). For example, in the study by (Miller et al. 2023), electrophys-

iological alterations associated with long QT syndrome type-3 (LQTS3) mutations were im-

plemented in 1,000 models with varying baseline electrophysiological parameters. The study

found that while some models did not exhibit a phenotype with any of the mutations, others dis-

played a long QT phenotype with one, two, or all three mutations, depending on their baseline

characteristics. Notably, models with increased IK,s or IK,1 were less affected by the mutations.

2.6.3 Cardiac Antiarrhythmic Pharmacotherapy

Antiarrhythmic drugs (AADs) remain a cornerstone of therapy for patients with arrhythmias,

particularly atrial fibrillation (AF). However, the effectiveness of currently available AADs is

limited, and they are often associated with proarrhythmic side effects (Crumb Jr et al. 2016).

Drug-induced proarrhythmia is a significant limitation in the clinical use of these medications

(Heijman et al. 2021), highlighting the need for safer and more effective AADs. Cardiac cellular

electrophysiology models have become valuable tools in studying the effects of AADs and

evaluating the potential antiarrhythmic properties of new drugs. Initially, the suppressive effects

of AADs on ion channels were simulated by reducing the maximum ion flow. This approach
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provides insights into the general electrophysiological consequences of targeting multiple ion

channels. For instance, it can reveal the combined antiarrhythmic effects of targeting various

K+ channels at different pacing rates, using experimentally calibrated populations of virtual

human atrial myocyte models (Ni et al. 2020).

In summary, cardiac electrophysiology models are powerful tools for understanding the intri-

cate mechanisms of heart function and disease, predicting the impact of genetic mutations,

and guiding the development of safer and more effective drug treatments.
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Chapter 3

Phenomenological analysis of simple ion

channel block in large populations of

uncoupled cardiomyocytes

The results presented in this chapter have been published in (Simitev et al. 2023). This chapter

follows the published paper and includes figures from the paper with the agreement of all

authors.

3.1 Introduction
Traditionally, the understanding of arrhythmia mechanisms and the development of anti-arrhythmic

drug therapies have been based on the assumption that myocytes, or heart muscle cells, from

the same region of a single heart exhibit similar, if not identical, action potential waveforms and

responses to drugs. However, recent studies have challenged this assumption, revealing sig-

nificant variability in the electrical behaviour of uncoupled healthy myocytes, not only between

different hearts but also within the same region of a single heart (Muszkiewicz et al. 2016).
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In this chapter, I present a novel methodology for quantifying the unique electrophysiological

characteristics of large populations of uncoupled cardiomyocytes, particularly under conditions

where ion channels are blocked. This method utilises a fast-slow conceptual model of electri-

cal excitability, with the model parameters reflecting the distinct properties of each cell. The

approach is applied to a dataset comprising nearly 500 rabbit ventricular myocytes, where

the action potential duration (APD) was experimentally measured both before and after the

administration of the drug Nifedipine (Lachaud et al. 2022).

Within this chapter, the effect of the drug is modelled by a multiplicative factor that modifies

the effective ion conductance. An asymptotic expression for APD is derived, allowing for the

inversion of this formula to extract model parameters as functions of both APD and the drug-

induced change in APD (∆APD) for each myocyte. Additionally, the methodology involves

calibrating two protocol-related quantities; basic cycle length and drug dose.

The resulting explicit APD expression, along with the corresponding set of model parameters,

enables a range of critical predictions and analyses. First, it allows for a detailed evaluation

of the specific conditions necessary to maintain a consistent APD or ∆APD. It also provides

insights into the proportion of cells likely to remain excitable following drug application, thereby

contributing to a deeper understanding of cellular responses to drug treatments. Furthermore,

this approach facilitates the prediction of how variations in the stimulus period might influence

the overall response of the cardiomyocytes, offering a deep understanding about dynamic

changes in cellular excitability. Finally, it enables the prediction of dose-response curves, which

are validated against additional experimental data. This comprehensive approach provides a

powerful tool for advancing the understanding of drug effects on cardiac cells.
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In this chapter, I will start by describing the experimental data used in the research. Following

this, I will detail the steps involved in solving the McKean model and deriving the asymptotic

approximation of the action potential duration, which will be applied to the experimental data.

Next, I will calibrate the basic cycle length and drug dosage. Finally, I will explore the interre-

lationships of the parameters in the McKean model and the experimental data.

3.1.1 Experimental Data and Modelling of Drug Action on Cardiac Cells

In this chapter, I present and analyse the experimental data used to develop and validate

a model of drug action on cardiac cells. The ion-channel block experiments conducted by

(Lachaud et al. 2022) form the basis of this analysis, where the action potential (AP) char-

acteristics of nearly 500 uncoupled cardiomyocytes were measured using voltage-sensitive

fluorescent dyes. These cells were carefully isolated from specific regions of the left ventricu-

lar walls of 12 rabbit hearts, including apical, basal and endo, mid, and epicardial sub-regions,

to create a large and diverse population of myocytes. Following isolation, the cells were loaded

with voltage-sensitive dyes to facilitate precise measurement of their electrical activity.

The experiment commenced with the application of a periodic excitation stimulus at a basic

cycle length of 500 milliseconds, corresponding to a stimulation frequency of 2 Hz. Action po-

tential duration at 90% repolarisation (APD90) was measured for each cell under these base-

line conditions. The results revealed unexpectedly large variability in APD90 values among

the healthy cardiomyocytes, with an interquartile range of 40 to 50 milliseconds and a me-

dian value of 250 milliseconds (ms). This variability was significantly greater than the regional

differences in APD90 observed within single hearts and exceeded the differences between

individual hearts. Importantly, this variation was determined not to be caused by damage from

the cell dissociation process.

In the subsequent step of the experiment, specific ion channel inhibitors were introduced to

observe their effects on APD90. The IKr ionic current was inhibited using 30 nM of Dofetilide,

and the ICa(L) current was blocked with 1µM of Nifedipine. Following the administration of

these drugs, APD90 was measured again. It was observed that cells with nearly identical
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baseline APD90 values exhibited a wide range of changes in APD90 (∆APD90) after drug

application. This result demonstrated that APD alone does not adequately characterise or

predict the electrophysiological response of myocytes to drug treatment, challenging common

assumptions. The study aimed to interpret these findings using a conceptual mathematical

model to gain a better understanding of the underlying mechanisms. Detailed descriptions of

the experimental methods, quality control procedures, statistical analyses, and experimental

datasets are provided in (Lachaud et al. 2022).

3.1.1.1 The experimental protocol

The experimental protocol for isolating and analyzing rabbit cardiomyocytes is found in (Lachaud

et al. 2022), we briefly list the main details as follows:

• Animal Preparation:

– Species: Male New Zealand White rabbits weighing between 2 and 2.5 kg.

– Pre-treatment: Intravenous administration of 500 IU heparin.

– Anesthesia: Overdose of sodium pentobarbitone at 100mg/kg.

• Heart Extraction and Perfusion:

– Post-extraction: Hearts were excised following anesthesia.

– Perfusion Method: Retrograde perfusion at 25 mL/min, maintained at 37◦C.

– Perfusion Solution: Nominally calcium-free Krebs-Henseleit solution containing

0.6mg/mL collagenase (Type 1, Worthington Chemical) and 0.1mg/mL protease

(Type XIV, Sigma).

– Perfusion Duration: 6-8 minutes.

• Tissue Dissection:
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– Left Ventricle (LV) Processing: The free wall of the LV was dissected.

– Layer Separation: Endocardial and epicardial layers were isolated, each approxi-

mately 11.5 mm thick.

– Regional Segmentation: In certain instances, basal and apical segments were

separated by approximately 1 cm.

• Cell Preparation and Dye Loading:

– Dye: FluoVolt voltage-sensitive dye.

– Concentration: 0.17µ L/mL in Krebs medium.

– Loading Duration: 25 minutes at 20◦C.

– Post-loading Wash: Cells were washed with Krebs-Henseleit solution containing

1.8mmol/L extracellular calcium.

• Imaging Setup:

– Observation Platform: Cells were placed on a 35 mm dish with a cover-glass base.

– Environmental Control: Stage incubator maintained at 37±1◦C.

– Microscopy: Utilized 40×(NA 0.95) objective lens. item Excitation: Wavelength of

470±20 nm using a light-emitting diode.

– Emission Collection: Emitted light was collected between 510 and 560 nm using a

photomultiplier.

– Data Acquisition: Signals were digitized at a rate of 10 kHz.

• Cell Stimulation and Selection:

– Stimulation Frequency: 2 Hz.

– Pulse Duration: 2 ms.
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– Intensity: 1.5 times the threshold, delivered via carbon plate electrodes.

– Inclusion Criteria: Cells that maintained consistent response to 2 Hz field stimula-

tion for more than 4 minutes were selected for analysis.

Drug Ion Channel Target IC50

Dofetilide hERG (IKr) 7 (nM)
Nifedipine L-type Ca2+ (ICaL) 0.2 (µM)

Table 3.1: Ion Channel Targets and IC50 Values of Dofetilide and Nifedipine taken from (Gao
et al. 2020) and (Charnet et al. 1987) respectively

3.2 Method

3.2.1 The equations of McKean model

In order to analyse the research results of (Lachaud et al. 2022), we examine a two-dimensional

system of first-order ordinary differential equations, known as the McKean model. McKean in-

troduced this model for the action potential of spiking neurons in (McKean Jr 1970). The

equations are comparable to the FitzHugh-Nagumo equations (FitzHugh 1961 and Nagumo et

al. 1962), which are themselves a simplified version of the groundbreaking Hodgkin & Huxley

(Hodgkin and Huxley 1952) model for the squid giant axon’s action potentials. The equations

of the McKean model are:

dv
dt

= ε−1 f (v,w;a,b), f (v,w;a,b) :=−(v−H(v−a)+w), (3.1a)

dw
dt

= g(v,w;a,b), g(v,w;a,b) := v−bw, (3.1b)

where v and w are functions of time t and dynamical variables, representing the voltage

potential across the myocyte’s trans-sarcolemmal membrane and an effective gating variable,

respectively. The model incorporates three key parameters: a,b, and ε , where ε is a small

positive value such that 0 < ε ≪ 1. Equations (3.1) are dimensionless, with variables v and w

and parameters a,b, and ε scaled to remove units. This simplifies analysis by focusing on the

system’s dynamics without dependence on physical measurements.
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The function H(v−a) represents the Heaviside step function defined as:

H(v−a) =

 0 if v < a,

1 if v ≥ a.

The initial conditions for the McKean model are given as follows:

v(0) = vstim > a, w(0) = w0, (3.2a)

v(kβ ) = vstim , w(kβ ) = w((k−1)β ) = wβ . (3.2b)

The variables and parameters used in the above equations are defined in (Table 3.2):

Variable Definition
vstim The stimulus voltage applied to the system, where vstim > a.
w0 The initial value of the gating variable w at t = 0.
k The index representing the cycle number, where k = 0,1,2, . . ..
β The basic cycle length, representing the period of periodic excitation.
wβ The value of the gating variable w at the beginning of a cycle, chosen to

make the system’s solution essentially periodic.

Table 3.2: Definition of Variables

The first set of initial conditions (3.2a), specifies the starting point of the simulation. At t = 0,

the membrane voltage v is initialized to the stimulus voltage vstim , which is greater than the

parameter a, ensuring excitability. Simultaneously, the gating variable w starts from the value

w0, which is determined by the system’s dynamics.

The second set of conditions, (3.2b), reflects the periodic excitation of the system. The periodic

stimulation resets the membrane voltage v to vstim at the start of each cycle k with a period

of β . The gating variable w, however, evolves continuously across cycles, with its value at the

beginning of each cycle (w(kβ )) determined by the value at the end of the previous cycle (

w((k−1)β )).

47



The periodic excitation ensures that the system is modeled over successive intervals of length

β . The gating variable w is not reset but instead adapts to the periodic stimulation. The

value wβ is chosen so that w achieves a periodic steady-state solution, matching the periodic

nature of the stimulation protocol. This periodic behavior replicates the experimental conditions

described in (Lachaud et al. 2022).

The equations (3.1) serve as a phenomenological model for the action potential of uncoupled

rabbit ventricular myocytes. This periodic setup replicates the stimulation protocol used in

the experiments of (Lachaud et al. 2022) and ensures that the system behavior matches the

observed experimental dynamics. These conditions and their implementation in the model are

further explained and justified in our published paper (Simitev et al. 2023).

The numerical solutions for specific values of a and b in the McKean model produce a generic

action potential waveform, as shown in Figure 3.1(a). These waveforms are consistent with

those experimentally observed, as demonstrated in Figures 1 and 2 of (Lachaud et al. 2022).

In many cases, the inherent complexity of the McKean model makes obtaining exact analytical

solutions impractical. To address this, asymptotic methods are employed, which approximate

solutions by simplifying the model. These methods are particularly effective when dealing with

systems characterized by distinct timescales or complex parameters, allowing for a clearer

understanding of the system’s dynamics (Biktashev et al. 2008).

This approach ensures the model remains both computationally efficient and theoretically ro-

bust, enabling accurate modeling of the experimental results from (Lachaud et al. 2022).
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In the study conducted by Biktashev et al. (Biktashev et al. 2008), the asymptotic approach

was successfully applied to the caricature Noble model (Noble 1962). This technique was used

to explore the slow and fast manifolds within the system, allowing for a clearer understanding of

its dynamic behaviour. The Noble model, like many ionic models, contains parameters that can

complicate simulations and analyses. By applying asymptotic methods, these parameters can

be effectively reduced or eliminated, thereby simplifying the model and making its behaviour

easier to analyse.

3.2.2 Asymptotic approximation of McKean model

Inspired by the success of this approach, I applied a similar asymptotic method to solve the

McKean model (McKean Jr 1970). The goal was to reduce the complexity of the model, en-

abling a more straightforward examination of its properties and dynamics. This method not

only facilitates the analysis of the McKean model but also provides insights into its behaviour

that might be difficult to obtain through direct analytical or numerical methods. By simplify-

ing the model in this way, the asymptotic approach proves to be a powerful tool in the study of

complex systems. Consider the unique asymptotic limit as ε approaches zero from the positive

side; ε → 0+, in which equations (3.1) are simplified to a fast-time subsystem :

dv
dτ

= f (v,w),
dw
dτ

= 0, (3.3)

when expressed in terms of the fast-time variable τ := ε−1t. When written in terms of the

original slow-time variable t = O(1), the equations (3.1) reduce to the slow-time subsystem in

equation:

0 = f (v,w),
dw
dt

= g(v,w). (3.4)

The nullcline, denoted as f (v,w) = 0, is a simplified representation of a cubic function of v. It

is presented as a piece-wise linear graph in Figure 3.1(b).

The nullcline f (v,w) = 0 is referred to as the ’critical set’ because it corresponds directly to

the fixed points of the fast subsystem equation (3.3) and because the trajectories of the slow

subsystem equation (3.4) are restricted to follow it. More precisely, the function has local

minima and maxima at the coordinates Mmin = (a,−a) and Mmax = (a,1− a), respectively,
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Figure 3.1: (a). Three examples of action potential solutions to the McKean equations (3.1).
The ’voltage’ v(t) (thick curves) and the effective ’gating variable’ w(t) (thin curves) are shown
as functions of time for parameter values ε = 0.01,β = 3 and randomly selected combinations
of a and b as shown in the legend. The action potential duration α , diastolic interval δ , and
basic cycle length β are annotated on one of the AP curves. (b). Phase portrait and vector
field of the McKean equations (3.3) and associated notation. The nullclines f = 0 and g = 0
are shown as a dash-dotted blue line and a dashed turquoise line, respectively. The single
attracting global equilibrium (0,0) is marked with a black dot marker. A typical trajectory is
shown in a solid red line where a double arrow indicates a fast piece and a single arrow
indicates a slow piece of the trajectory. Parameter values used are a = 0.25, b = 0.3,ε = 0.01
and correspond to excitable dynamics. The figure is from our published paper (Simitev et al.
2023)

and also contains the roots in:


vsys = 1−w for w ∈ (−∞,−a],

vthr = a,vsys = 1−w for w ∈ [−a,1−a],

vdia =−w for w ∈ [1−a,∞).

(3.5)
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Since f (v,w)< 0 in the region Ω−
f :=

{
(v,w) ∈ R2 : w > w̄ where f (v, w̄) = 0}, and f (v,w)>

0 in the region Ω+
f :=

{
(v,w) ∈ R2 : w < w̄ where f (v, w̄) = 0}, the branches vsys (w) and

vdia (w), called ’systolic’ and ’diastolic’, respectively, consist of stable attracting fixed points and

the ’threshold’ branch vthr (w) consists of unstable repelling fixed points of the fast-subsystem

(3.3). The second nullcline g(v,w) = 0 is a straight line which partitions the phase plane in

two regions Ω−
g :=

{
(v,w) ∈ R2 : w > w̄ where g(v, w̄) = 0} where g(v,w) < 0, and Ω+

g :={
(v,w) ∈ R2 : w < w̄ where g(v, w̄) = 0} where g(v,w)> 0 and thus determines the direction

of the slow flow of (3.3) along the critical set. These facts are illustrated by the vector field

shown in Figure 3.1(b). Thus, in the singular approximations given by (3.3) and (3.4) a typical

trajectory of the McKean model (3.1) consists of fast jumps to one of the attracting branches

of the critical set followed by slow motions to the end the attracting region or until a globally

stable fixed point is reached as illustrated in Figure 3.1(b).

Global fixed points occur at the intersection of the two nullclines and apart from degenerate

cases there exists either one single or three distinct fixed points given by:

(v∗,w∗) ∈


{(0,0)} if b < a/(1−a),

{(0,0),(a,a/b),(b/(1+b),1/(1+b))} if b ⩾ a/(1−a).
(3.6)

Biological excitability refers to the response of a system to an external stimulus, which causes a

significant and finite reaction before returning to a single equilibrium state. In McKean’s model

(3.1), excitability is associated with a single stable attractor positioned between the fold points

Mmin and Mmax on the diastolic branch vsys (w). This corresponds to a specific parameter

space:

Ωex =
{
(a,b) ∈ R2 : b >−1∩b < a/(1−a)∩a > 0∩a < 1

}
. (3.7)

Region Ωex is depicted in Figure 3.1(a). In this scenario, beginning from the initial conditions

(3.2b) , the trajectory undergoes a rapid jump of an infinitesimally short duration O(ε), moving

from the point (vstim ,wβ ) to the point
(
vsys

(
wβ
)
,wβ

)
, as dictated by the fast subsystem (3.3).

Following this, the trajectory traces the systolic branch from this point to the point Mmax, over
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a time period determined by integrating the slow subsystem (3.4):

α :=
∫ 1−a

wβ

dt =
∫ 1−a

wβ

dw
g
(
vsys(w),w

) = 1
1+b

log
(

1− (1+b)wβ

1− (1+b)(1−a)

)
. (3.8)

At the fold point Mmax the systolic branch of the critical set vsys terminates and switches to

the repelling threshold branch vthr so the trajectory makes another infinitesimally short fast

jump over to point (vdia(1−a),1−a). Finally, the trajectory follows the attracting diastolic

branch vdia(w) towards the single global stable fixed point (0,0) for period of duration found by

integrating the slow subsystem (3.4):

δ :=
∫ wβ

1−a
dt =

∫ wβ

1−a

dw
g(vdia(w),w)

=
1

1+b
log
(

1−a
wβ

)
. (3.9)

This pattern repeats when the system receives its next excitation stimulus at (vstim ,wβ ), as

depicted in Figure 3.1(b). The parameter wβ , introduced in the initial conditions (3.2b), is

not an independent variable but is instead determined by the specified basic cycle length β .

For the uniqueness and existence of solutions to an initial-value problem, the solutions of

equations (3.1) must be identical up to a time shift (i.e., periodic APs) over two consecutive

intervals t ∈ (kβ ,(k + 1)β ],k ∈ N, requiring that they start from identical initial conditions.

This condition implies that a periodic sequence of action potentials can only exist when the

sequence w(kβ ),k = 0,1, . . . converges to a unique value wβ , possibly after a transient phase

involving a finite number of stimuli k > m. There may be parameter values, including β , for

which the sequence does not converge and instead produces more complex behaviors, such

as alternans.

Alternans, specifically APD alternans, is a response in which action potentials alternate be-

tween long and short durations despite a constant pacing cycle length. However, a strictly pe-

riodic response to external stimulation is assumed. Under this assumption, and using asymp-

totic approximation, the duration of any fast jumps is considered negligible, of order O(ε).

Consequently, expression (3.8) is identified as the duration of the action potential (APD), and

expression (3.9) is identified as the diastolic interval (DI). It is therefore required that the sum
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of the APD and DI equals the BCL as in the following equation:

β = α +δ =
1

1+b
log

((
1− (1+b)wβ

)
(1−a)

(1− (1+b)(1−a))wβ

)
. (3.10)

By solving this algebraic equation, one can determine the value of wβ that is required to create

a periodic sequence of action potentials (APs) of length:

wβ = ((1+b)+ exp((1+b)β )(1− (1+b)(1−a))/(1−a))−1. (3.11)

By substituting equation (3.11) into equation (3.8), we obtain explicit closed-form formulas for

the APD and the DI. These expressions are functions of the basic model parameters a and b,

s well as the basic cycle length (BCL) parameter β .

The APD and DI are expressed as:

α(a,b,β ) =
1
b̃

log
(

exp(b̃β )
ãb̃+(1− ãb̃)exp(b̃β )

)
, ã := 1−a, b̃ := 1+b, (3.12a)

δ (a,b,β ) = β −α(a,b,β ). (3.12b)

These asymptotic formulas provide a detailed framework for analyzing the system’s dynamics

by describing how the action potential duration (APD) and diastolic interval (DI) vary as func-

tions of the model parameters. Figure 3.2 visualises these relationships within the parameter

domain Ωex, offering insights into the interactions between a, b, and β . The red wireframe

represents the APD (α), while the blue wireframe illustrates the DI (δ ). Additionally, the black

wireframe shows the surface where β = α +δ , serving as a consistency check and illustrating

the excitable dynamics domain Ωex for the specified values of a, b, and β .
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Figure 3.2: Asymptotic expressions (3.12a) and (3.12b) for the action potential duration α (red
wire-frame) and diastolic interval δ (blue wire-frame), respectively, as functions of the McKean
model parameters a and b in (a), and as functions of the ’rectangular’ variables x and y defined
in equation equation (3.13) in (b). The value of the basic cycle length is β = 4 and the surfaces
β = α + δ (black wire-frame) are plotted as a test and to illustrate the parameter space Ωex
for excitable dynamics given by equation (3.7). The figure is from our published paper (Simitev
et al. 2023)
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The transformations ã := 1−a and b̃ := 1+b simplify the expressions for APD and DI, while

the parameter space mapping (a,b) → (x,y) ensures clarity in visualizing the excitable dy-

namics domain. These tools, combined with the restitution analysis, provide a comprehensive

framework for understanding the dynamics of the McKean model under periodic stimulation.

To simplify the parameter space, a change of variables is introduced:

a = x, b = y/(1− x)−1, x ∈ (0,1), y ∈ (0,1), (3.13)

This transformation maps the excitable dynamics domain Ωex into the rectangular domain

(x,y) ∈ (0,1)× (0,1), , making the parameter space easier to visualize and interpret.

The value of wβ , required for periodic stimulation, is illustrated in Figure 3.3(a). It shows wβ as

a function of x and y for a fixed β = 4 This reveals that for a population of uncoupled McKean

models, where each model is characterized by different values of a and b, the initial condition

wβ varies between models to maintain a stable periodic response. Channel-blocking drugs,

which modify the ratio of open channels, can thus have different effects on individual cells due

to variations in wβ across the population.

Figure 3.3(b) presents the restitution curves ( α as a function of δ ) and their gradients for

selected combinations of a and b. These curves display the typical forms observed in exper-

imental data, and the gradients confirm the absence of instabilities for the chosen parameter

values.

3.2.3 Mathematical Representation of Ion Channel Block Experiment

We assume that myocytes can be mathematically described by the McKean equations (3.1).

Consider the dataset of experimental measurements D(B,Γ), defined as a collection of pairs

of action potential duration (APD) values Ai and (Ai +∆Ai), measured before and after the

application of a drug, respectively. These measurements are taken for each cell i = 1, . . . ,N,

under a fixed experimental basic cycle length B and drug concentration Γ. For this study,
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Figure 3.3: (a). The initial condition wβ required for conformance to stimulation with fixed
period β = 4 given by equation (3.11) as a function of the ’rectangular’ variables x and y
defined in equation (3.13). (b). Examples of asymptotic restitution curves α as a function of δ
(thick lines) and their derivatives ∂δ α (thin lines) for selected McKean parameter values given
in the legend. The figure is from our published paper (Simitev et al. 2023)
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B = 500 ms,Γ = 1µM Nifedipine, and the total number of cells N = 496. The dataset is

represented as:

D(B,Γ) = {(Ai(B),(Ai(B)+∆Ai(B,Γ))) , i = 1, . . . ,N} . (3.14)

To model these measurements using the McKean equations, we define the set of correspond-

ing McKean model parameters (ai,bi) for each cell i as:

P(β ,γ) = {(ai,bi) , i = 1, . . . ,N} , (3.15)

Here, β represents the model’s basic cycle length parameter, and γ is a parameter introduced

to account for the effect of drug action on the McKean model. Specifically:

• β : The basic cycle length in the McKean model, analogous to B in the experimental

setup, but expressed in non-dimensional units.

• γ : A factor (γ > 0) representing the influence of drug action, which modifies the McKean

model parameter a. For instance, γ > 1 reflects a reduction in the effective conductance

associated with ionic currents, as caused by channel-blocking drugs like Nifedipine.

Using these parameters, the relationship between the APD values (before and after drug appli-

cation) and the McKean model is expressed by the following system of 2N non-linear equations

Ai/B = α (ai,bi,β )/β , (3.16a)

(Ai +∆Ai)/B = α (γai,bi,β )/β , i = 1, . . . ,N. (3.16b)

The key parameters in the McKean model and their roles in equations (3.16) are summarized

in the table below:
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Parameter Definition

α This represents the asymptotic expression for the action

potential duration, as given in equation (3.12a).

β This is the basic cycle length.

γ A parameter that represents the effect of drug action within

the McKean model (γ > 0).

The influence of the drug is modeled by incorporating the factor γ into the parameter a in

equation (3.16b). While the McKean model is not a detailed electrophysiological model, its

parameter a is analogous to the total ionic current conductance in more physiologically detailed

models. Specifically:

Parameter Definition

a The only parameter on the right-hand side of the McKean

’voltage’ equation (3.1a) , which, in physiologically realistic

models, represents the total sum of all ionic currents.

b governs the rate of change of the effective gating variable

w via equation (3.1b) and should therefore be interpreted

as an effective kinetic parameter.

For the Nifedipine dataset (γ > 1) provided in (Lachaud et al. 2022), this framework models

the observed reduction in APD due to channel blockade. However, note that γ > 1 does not

imply enhanced channel activity but rather reflects a shift of the v-nullcline upwards along the

v-axis in the phase plane.

The other drug considered in (Lachaud et al. 2022) , Dofetilide, is not modeled here due to its

more complex effects:
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• Although Dofetilide data is provided in (Lachaud et al. 2022), it will not be modeled

here. Dofetilide has a more complex effect, as it prolongs the APD in some cells while

shortening it in others (see Fig. 3B(iii) in (Lachaud et al. 2022).

• Previous studies have shown that Dofetilide is a multi-channel blocker, which means it

affects multiple different ion channels. One of these channels is known as (IKr) (Crumb

Jr et al. 2016). The article by Yang (Yang et al. 2001) has examined the inhibitory

effects of Dofetilide on the slow component of the delayed rectifier potassium current,

also known as IKs. Furthermore, (Li et al. 2017) elucidates the impact of Dofetilide on

the late sodium current, denoted as (INaL), in cardiac cells. Therefore, when γ < 1,

which just prolongs the action potential duration (APD), it is inadequate to fully capture

the impact of this drug.

• To model Dofetilides effect accurately, two distinct ’effective conductance’ parameters

(similar to a) would be required: one to shorten and one to prolong the APD. However,

the McKean model only includes a single parameter a for this purpose, while the second

parameter b functions as an effective kinetic parameter and cannot serve this role.

3.2.4 Application of McKean Asymptotics to Experimental Data

The multiplicative model ā = γa, where a and ā represent the values of the McKean parameter

a before and after drug administration, respectively, is derived from a linear approximation of

the more general relationship ā = ā(Γ), where a is a function of the drug concentration Γ. For

sufficiently small values of Γ, the relationship can be approximated as:

ā = ā(Γ)≈ (1+ kΓ)a, where a = ā(0), and k =
∂ ā
∂Γ

(0),

leading to the conclusion that the multiplication factor γ depends linearly on the drug concen-

tration Γ, γ := (1+ kΓ). The constant k can be eliminated by calibrating with a known value

γ∗ = (1+ kΓ∗), resulting in an explicit relationship between the drug concentration Γ and the

drug action parameter γ :

Γ = Γ∗ γ −1
γ∗−1

.
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This relationship is then applied in equation (3.26), with the calibration values γ∗ and Γ∗ dis-

cussed in the next section. Note that, the multiplicative model shares similarities with the

’conductance-block’ model used in realistic cardiac ionic current models. In these models, the

ion channel current is expressed as I j = g0
jO
(
V −E j

)
, where g0

j represents the maximal con-

ductance of a population of fully open channels of type j, O is the open probability, and E j is

the reversal potential for the ion species flowing through these channels.

To incorporate drug action in these models, the maximal conductance g j is multiplied by a

factor γion = Kd/(Kd +Γ) which represents the percentage of channels C/C0 that remain

unbound in the presence of the drug. This expression is derived using a steady-state ap-

proximation of the law of mass action for the reaction C+Γ
k−⇌
k+

B, where k± are the reaction

rates, C and B are the open and bound channels, and C+B =C0 represents the total channel

population. The equilibrium constant Kd := k−/k+ measures the drug’s potency and is often

approximated by the half-maximal inhibitory concentration (IC50) obtained from experiments.

Although the ’conductance-block’ model is commonly employed in numerical studies e.g., (Mi-

rams et al. 2011), it cannot be directly applied here because the McKean parameter a is not

an actual ion channel conductance, despite functioning similarly in the model.

3.2.5 Domain of Excitability

The equations in (3.16) are only defined within a specific subset of the excitability domain,

denoted as Ωγ
ex ⊂ Ωex, where Ωex is given by equation (3.7). For a cell to remain excitable

after drug application, the parameter a must be confined to the interval a∈ (0,1/γ), rather than

the original interval (0,1). This is because, after drug administration, the effective conductance

is represented as ā= γa. A necessary condition for the validity of equation (3.12a) is that ā< 1.

As a result, the equations in (3.16) are limited to the domain defined by (3.17) and illustrated

in Figures 3.4(a) and 3.5(b).

Ωγ
ex =

{
(a,b) ∈ R2 : b >−1∩b < a/(1−a)∩a > 0∩a < 1/γ

}
. (3.17)
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The conditions for the existence of solutions to equations (3.16) are now clarified. The system

of 2N nonlinear algebraic equations decouples into N independent pairs, each corresponding

to a single cell. Consider one such pair of equations in the symbolic form in (3.18a) where

F : S ⊂ R4 → R2 is a continuous vector-valued function. The components F1 and F2 of F are

given by (3.18a);

F(A,∆A,a,b) = 0, (3.18a)

F =

(
F1

F2

)
=

(
A/B−α(a,b,β )/β

(A+∆A)/B−α(γa,b,β )/β

)
. (3.18b)

The points in R4 are represented as (x,y), where x = (A,∆A) ∈ R2 and y = (a,b) ∈ R2. It is

important to note that, according to the implicit function theorem, if (x0,y0) ∈ S is a point, such

that:

F(x0,y0) = 0, and det [∂yF](x0,y0)
̸= 0, (3.19)

then for every x in a neighbourhood of x0, there exists a unique function f with f(x) = yin a

neighbourhood of y0 where F(x,y = f(x)) = 0 holds. The determinant of the Jacobian matrix,

denoted by J, in the equation:

det [∂yF] = J = det
(

∂ (F1,F2)

∂ (a,b)

)
, (3.20)

represents the determinant of the matrix formed by taking the partial derivatives of the com-

ponents of vector F with respect to the components of vector y. The points (x0,y0) that meet

the first condition in (3.19) are guaranteed to exist. This is because, for any given value of y0

within the domain Ωexγ , a corresponding value of x0 can be found by directly calculating the

right-hand side of the equations in (3.16). Additionally, these pairs of points are unique. Cal-

culating the determinant of the Jacobian matrix is a straightforward process, but it results in a

complex expression. To check the second condition in (3.19), this determinant was evaluated

numerically, and the resulting surface, J(a,b), was plotted over the domain Ωγ
ex as shown in

Figure 3.4(a).
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Figure 3.4: (a). The Jacobian determinant J = det(∂ (F1,F2)/∂ (a,b)) as a function of pa-
rameters a and b for β = 0.3 and γ = 1.5 is shown by a blue wire frame, with the grid lines
being iso-lines of the rectangular coordinates x and y defined in equation (3.13). The pink
transparent region at the top of the axes box is the domain of excitability Ωγ

ex. (b). Convexity
and optimal calibration of excitability parameters, this plot illustrates the distance |µ −σ | be-
tween the center of mass µ of the parameter set P(β ,γ) and the centroid σ of the excitability
domain Ωγ

ex. The globally convex surface ensures the existence of a unique global minimum,
indicating an optimal calibration of β and γ . This minimization balances mathematical rigor
with physiological relevance, as it positions the parameters well within the domain of excitabil-
ity, avoiding instability near the boundaries and ensuring uniform excitable dynamics across
the system. The figure is from our published paper (Simitev et al. 2023)

The plot demonstrates that J is strictly positive across the entire domain, although it ap-

proaches 0+ as b gets closer to −1. However, the value b = −1 is excluded from the open

domain Ωγ
ex. This is significant because b = −1 represents a degenerate case where the

w-nullcline and the diastolic branch of the v-nullcline in the McKean model in equation (3.1)
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Figure 3.5: (a). Scatter plot of the set D(B,Γ) of 496 experimental measurements at B =
500 ms and Γ = 1µM Nifedipine, data due to (Lachaud et al. 2022) c.f. their figure 3C(iii). (b).
Scatter plot of the set P (β ∗,γ∗) of corresponding McKean parameters obtained by numerical
solution of the inverse problem (3.16) with calibrated β ∗ = 0.235 and γ∗ = 1.853. Thin dotted
lines denote the locations of the mean values of ai and bi with their intersection being the
centre of mass µ of P and the violet star marker is the centre of mass σ of Ωγ

ex. The shaded
areas are the parameter region for excitable dynamics Ωγ

ex in (b) and its pre-image in (a).
Histogram distributions with Gaussian kernel density estimations and simple data regression
lines are also plotted in both panels. The figure is from our published paper (Simitev et al.
2023)

coincide, leading to a non-excitable state. Based on these observations, it can be concluded

that a unique solution to equation (3.18) exists within the domain Ωγ
ex. This solution can be
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expressed as:

(a,b) = f(A,∆A) (3.21)

Here, the parameters a and b can be determined as functions of the experimental data, de-

noted by (A,∆A). The process of finding a closed-form solution for equation (3.16a) can be

simplified to solve for the parameter a as a function of (b,A) alone. The solution is given by:

a = 1− exp(b̃β )(exp(b̃Aβ/B)−1)
b̃(exp(b̃β )−1)exp(b̃Aβ/B)

, b̃ = 1+b (3.22)

However, solving equation (3.16b) for b is more challenging and cannot be done as easily.

Because of this difficulty, a numerical approach is used to solve both equations (3.16) for

the parameters a and b. The numerical method employed is straightforward and efficient.

Specifically, the modified Powell hybrid method (Powell 1970), as implemented in the SciPy

numerical library (Virtanen et al. 2020), is used to obtain the solutions.

3.2.6 Calibration of Basic Cycle Length and Drug Dose

To accurately analyse the system, it’s essential to determine the unknown parameters involved

in equations (3.16). These include not only the individual parameters ai and bi for each of the

N cells but also the basic cycle length (BCL) denoted by β , and the drug dose parameter repre-

sented by γ . Given that these characteristics are not fixed, a systematic technique is required

to calibrate them. To ensure a meaningful calibration, we impose two primary constraints:

• All solutions (ai,bi) for i = 1, . . . ,N must fall within the excitability domain Ωγ
ex. This

ensures that the system remains physiologically excitable.

• The distribution of these solutions should minimise the distance between their center of

mass and the center of mass of the excitability domain Ωγ
ex. In other words, solutions

should be positioned as close to the centre of the excitability domain as possible, while

avoiding to be near the boundaries where the system may lose its ability to be excited.
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Based on the above constraints, we define the calibration problem as a minimisation task:

(β ∗,γ∗) = arg min
(β ,γ)

|µ(β ,γ)−σ(β ,γ)| subject to (ai (β ∗,γ∗) ,bi (β ∗,γ∗)) ∈ Ωγ
ex∀i = 1, . . . ,N

(3.23a)

µ[P(β ,γ)] :=
1
N

(
N

∑
i=1

ai(β ,γ),
N

∑
i=1

bi(β ,γ)

)
, (3.23b)

σ
[
Ωγ

ex(β ,γ)
]
=

(
log

γ
γ −1

− 1
γ
, log

γ −1
γ

+
1

2(γ −1)

)
/ log

γ
γ −1

.

(3.23c)

Here:

Parameter Definition

µ represents the position vector of the center of mass of the

set P(β ,γ), which comprises the discrete points (ai,bi) in

the (a,b)-plane. It is computed by the equation (3.23b)

σ denotes the position vector of the center of mass of the

excitability domain Ωγ
ex in the (a,b)-plane, calculated by the

equation (3.23c)

The objective is to find the values of β and γ that minimise the distance between µ and σ ,

ensuring that all parameter pairs (ai,bi) remain within the excitability domain Ωγ
ex. Minimizing

the distance between the center of mass µ of the parameter set P(β ,γ) and the centroid σ

of the excitability domain Ωγ
ex strikes a balance between mathematical rigor and physiological

relevance. From a mathematical perspective, this approach ensures that the parameter values

are well-centered within the domain, avoiding proximity to the boundaries where excitability

may be lost. Physiologically, it reflects the natural variability observed in cardiac cells, ensur-

ing that the calibrated parameters produce robust and uniform excitable behavior across the

system. This minimization thus provides a practical framework for optimizing parameters while

maintaining consistency with both experimental observations and theoretical constraints.
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As solving the minimisation problem analytically is challenging due to its nonlinear nature and

the presence of constraints. We tried to gain insights by numerically evaluating the minimisa-

tion surface, representing the distance |µ −σ |, using experimental measurements (Ai,∆Ai)

from (Lachaud et al. 2022). Contour lines of this surface were plotted in the (β ,γ) plane in Fig-

ure 3.4(b). The plot revealed a globally convex surface with a single minimum, suggesting the

existence of a unique global minimum. While this doesn’t constitute a formal proof, it provides

strong evidence supporting the uniqueness of the solution for β and γ .

To robustly identify the optimal values of β and γ , especially given the complexity of the prob-

lem, a stochastic optimisation method was employed.This method combines classical and

fast-simulated techniques (Tsallis and Stariolo 1996) with a local search strategy at accepted

points (Xiang and Gong 2000). It’s well-suited for constrained global optimisation problems

involving multimodal and multivariate objective functions. The SciPy numerical library’s imple-

mentation of dual annealing (Virtanen et al. 2020), was utilised to perform the optimisation.

The application of this method successfully identified the optimal values of β and γ , ensur-

ing that all parameter pairs (ai,bi) reside within the excitability domain while minimizing the

distance between their center of mass and that of Ωγ
ex.

3.3 Results
Figure 3.5(a) presents the experimentally obtained dataset D(B,Γ), which includes pairs of

values (Ai,∆Ai) for i = 1, . . . ,N, taken from the study by (Lachaud et al. 2022). In contrast,

Figure 3.5(b) displays the corresponding solution set P = {(ai,bi) , i = 1, . . . ,N}, derived by

solving the problem defined by equations (3.16) and (3.23). This solution set was obtained

through numerical methods and visually represents the primary results of the approach de-

scribed earlier.
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The solution process involves several steps. For each pair of parameters β and γ , the domain

of excitability Ωγ
ex is constructed based on equation (3.17). The inverse problem, given by

equation (3.16), is then solved numerically within this domain. Subsequently, the distance

between the respective centers of mass, calculated using equations (3.23b) and (3.23c), is

determined. The final step minimises this distance with respect to β and γ as outlined in

equation (3.23a).

For the specific experimental dataset under consideration, this calibration process determines

the values of the basic cycle length and the drug dose parameter, resulting in β ∗ = 0.235 and

γ∗ = 1.853. These parameter values ensure that the centers of mass of P and Ωγ
ex |µ−σ | are

positioned at a distance less than 1.2× 10−9 from each other, specifically at the coordinates

(a∗,b∗) = (0.3045,−0.2442).

The domain of excitability, Ωγ
ex, is depicted in the (a,b) plane in Figure 3.5(a), while its corre-

sponding pre-image, f−1 (Ωγ
ex
)
, is shown in the (A,∆A) plane in Figure 3.5(b), as defined by

equation (3.21). The size and shape of Ωγ
ex are influenced by the drug dose parameter γ . In

Figure 3.5, the boundaries of both the image and pre-image are color-coded in panels (a) and

(b), respectively, to clearly demonstrate how they correspond to each other.

A notable feature is that the curve defined by b =−1 in the (a,b) plane is mapped to a single

point (0,0) in the (A,∆A) plane. This mapping indicates that solving the inverse problem

numerically is particularly challenging near this point, as evidenced by the plot of the Jacobian

determinant values shown in Figure 3.4(a).
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The transformation f−1, which acts as a change of variables, maps specific curves in the (a,b)

plane to straight lines in the (A,∆A) plane. For example, the curve a = 0,b = a/(1−a) maps

to the line ∆A = 0, while the curve a = 1/γ maps to the line ∆A =−A. Consequently, the pre-

image f−1 (Ωγ
ex
)

has a triangular shape in the (A,∆A) plane, independent of the parameters

β and γ . This finding is consistent with the analysis by Lachaud et al. where this region was

empirically identified as shown in Figure 3C(iii) of their paper (Lachaud et al. 2022).

The triangular shape identified in f−1 (Ωγ
ex
)

mirrors the boundaries observed experimentally,

emphasizing the robustness of the transformation in capturing the structural organization of

myocyte responses. (Lachaud et al. 2022) suggested that this triangular region reflects the

underlying variability in cellular electrophysiology, which is now theoretically explained through

the interplay between the (a,b) parameters and the (A,∆A) experimental data.

Additionally, the consistency of this triangular shape across different values of β and γ re-

inforces the fundamental relationship between the physiological characteristics of cardiomy-

ocytes and their observable responses to drugs. The agreement between the mapped bound-

aries of the excitability domain and the empirically observed distributions highlights the pre-

dictive accuracy of the McKean model. This consistency provides further evidence that the

heterogeneity observed by Lachaud et al., such as differences in the extent of APD changes

across myocytes, can be systematically attributed to variations in the underlying model param-

eters.

The mapping also supports the conclusion that these parameter variations are essential for

maintaining stable repolarization while allowing distinct cellular responses to pharmacological

interventions.

68



Moreover, this framework not only aligns with but also extends the work of Lachaud et al.

by demonstrating how these distributions can be quantitatively analyzed and predicted us-

ing the McKean model. The model offers additional insights, such as predicting how drug

dose and pacing frequency influence the overall distribution of (A,∆A), which Lachaud et al.

observed qualitatively. This strengthens the conclusion that the electrophysiological hetero-

geneity documented in their study is a natural consequence of the structural and functional

diversity captured within the excitability domain Ωγ
ex.

In addition to these visualisations, Figure 3.5 also includes histograms, Gaussian kernel den-

sity estimations, and simple regression lines for both the experimental dataset D and the

solution set P . These statistical tools are commonly employed in the analysis of experimental

data and can be compared to similar analyses, such as Figure 3C(iii) in (Lachaud et al. 2022).

The mapping function f, which is a calibrated solution to equations (3.16), and its inverse f−1,

are both vector-valued functions with two inputs:

R2 ∋ (A,∆A)
f
⇄
f−1

(a,b) ∈ R2. (3.24)

This means that f and f−1 each take two arguments and return two outputs, corresponding to

the (A,∆A) and (a,b) planes. As a result, Figure 3.5 alone does not provide a clear graphical

representation of how experimental data points in the (A,∆A) plane correspond to parame-

ter values in the (a,b) plane. To better visualise this relationship, Figure 3.6 separately plots

the two components of f = ( f1, f2), where a = f1(A,∆A) and b = f2(A,∆A). This approach

allows for directly mapping physiological measurements to the corresponding model parame-

ters. Specifically, it helps identify the value of ai associated with a given data point (Ai,∆Ai) in

panel (a) and the value of bi corresponding to the same data point in panel (b).
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Figure 3.6: McKean model parameters a and b as functions of A and ∆A are shown as wire-
frame surfaces in panels (a) and (b), respectively. The scatter plot of the experimental data D
of (Lachaud et al. 2022) is shown as blue dots and its projections onto the surfaces a(A,∆A)
and b(A,∆A) are shown as red dots. The figure is from our published paper (Simitev et al.
2023)

In Figure 3.6, the surfaces a(A,∆A) and b(A,∆A) are depicted as wireframes with grid lines

representing iso-lines of the rectangular coordinates x and y, as defined in equation (3.13) from

earlier sections. This visualisation emphasises a key point: an experimentally measured value

of action potential duration A does not uniquely determine the cellular properties of a myocyte.

Instead, a single value of A corresponds to a range of possible values for the parameters a

and b, as shown in panels (a) and (b).
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3.3.1 Parameter Interrelationships

The study conducted by (Lachaud et al. 2022) primarily concluded that the morphology of

the action potential (AP) is preserved through specific relationships linking various ionic con-

ductances, and that these interrelationships are crucial for maintaining stable repolarisation,

despite significant inter-cell variability in individual conductances. This variability, they argued,

also explains the differing sensitivities to ion channel blockers across cells.

To verify these conclusions and to explicitly determine these interrelationships, consider the

curves:

Ca = (A,∆A)|(a= const ,b) , Cb = (A,∆A)|(a,b= const ) ,

CA = (a,b)|(A= const ,∆A) , C∆A = (a,b)|(A,∆A= const ) ;
(3.25)

We have plotted a series of curves-depicting the first set in Figure 3.7(a) and the second set in

Figure 3.7(b). These curves are designed to illustrate the necessary relationships among the

internal model parameters that must be satisfied to keep the AP duration (APD) constant. For

instance, a curve of the type CA represents the specific interrelationship required among the

parameters for a constant APD, with similar logic applied to the other types of curves. Upon

examination, it becomes evident that the situation is more complex than (Lachaud et al. 2022)

initially suggested. The interrelationship represented by CA varies not only with the parameters

but also with the particular APD value. For example, when A = 0 ms or for small values of A,

the dependence on a is minimal, and there is an approximately linear relationship between

a and b. However, as A increases, the relationship evolves and approaches b = 1
1−a , which

corresponds to the boundary of the excitability domain Ωγ
ex . Similar observations apply to the

other grid lines depicted in Figure 3.7.
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Figure 3.7: (a). Lines in the (A,∆A) plane are obtained at constant values of a (olive green)
and at constant values of b (purple) as labeled in the vicinity of each curve. (b). Lines in the
(a,b) plane are obtained at constant values of A (olive green) and at constant values of ∆A
(purple) as indicated in the vicinity of each curve. In both panels β = 0.235 and γ = 1.853.
Other elements of the plot are similar to those described in the caption of Figure 3.5. The
figure is from our published paper (Simitev et al. 2023)

It is worth noting that some of these interrelationships have already been derived in closed

form in the earlier sections of this work. Specifically, the grid lines Ca and Cb shown in Figure

3.7(a) can be expressed using the general formula provided in equation (3.12a). Likewise, the

curves CA and C∆A are derived from equation (3.22), which outlines the conditions necessary

for solving the problem defined by equation (3.16) when evaluated for specific values of A and

∆A.
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3.3.2 Dependence on Drug Concentration and Basic Cycle Length

The McKean model (McKean Jr 1970), while not closely aligned with the electrophysiological

structures of myocytes, as acknowledged throughout this chapter, still offers significant advan-

tages. One key strength of this approach lies in its ability to provide theoretical insights and

make simple, yet effective, predictions. These predictions can be both economically generated

and practically tested through experimental measurements. Figure 3.8(a) & (b), illustrate these

predictions by showing how the experimental myocyte scatter cloud, denoted as D , changes

in response to variations in drug concentration Γ and basic cycle length B, respectively. To

generate these predictions, it is assumed that a preliminary reference experiment has been

conducted at fixed values of BCL and drug concentration, denoted as B∗ and Γ∗, respectively.

Using this reference data, the corresponding set of McKean model parameter values, P , is

estimated by solving equations (3.16) and (3.23). The reference values β ∗ and γ∗ are deter-

mined simultaneously, as described in previous sections. For instance, the study continues

to use the data from (Lachaud et al. 2022), where B∗ = 500 ms and Γ∗ = 1µM of Nifedipine,

resulting in calibration values of β ∗ = 0.235 and γ∗ = 1.853.

The calculated cell-specific values (ai,bi) for i = 1, . . . ,N are then applied to the asymptotic

expressions for APD and △ APD. These are essentially the expressions from equation (3.16),

but now with varying values of β and γ away from their reference values β ∗ and γ∗. The results

are then converted to dimensional units using the scaling transformations:

Γ = Γ∗ γ −1
γ∗−1

, B = B∗ β
β ∗ . (3.26)

As the drug dose decreases, the expected reduction in action potential duration also de-

creases. Conversely, when the drug dose Γ increases, the myocyte scatter cloud extends

downward to increasingly negative values of ∆A, indicating that the drug progressively short-

ens the APD. Importantly, the pre-image of the excitability domain does not depend on Γ.

Eventually, as the drug dose increases, a portion of the myocyte population drifts outside the

excitability domain, making them non-excitable. The proportion of non-excitable cells can be
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Figure 3.8: Prediction for the spread of the experimental data-point distribution D of (Lachaud
et al. 2022) (black cloud) with the variation of the drug concentration Γ in (a), and the basic
cycle length B in (b). The figure is from our published paper (Simitev et al. 2023)

estimated relative to the reference experiment using the following expression:

L = 1−
∫

Ωγ
ex

dS∫
Ωγ∗

ex
dS

= 1− log((γ −1)/γ)
log((γ∗−1)/γ∗)

, (3.27)
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Here, it is assumed that cell properties are uniformly distributed within their excitability do-

mains. The “coefficient of loss” L represents the ratio of the planar area of Ωγ
ex at drug concen-

tration γ to the planar area of Ωγ∗
ex at the reference concentration γ∗. Equation (3.27) can be

reformulated in terms of drug concentration Γ by applying the change of variables described

in equation (3.26).

When the basic cycle length B varies, the myocyte scatter cloud undergoes what appears to

be a shape-preserving scaling transformation. As B increases, the cloud enlarges, and as B

decreases, the cloud shrinks, while maintaining its overall shape, as shown in Figure 3.8(b).

The preimage f−1 (Ωγ
ex
)

similarly changes size in response to B. The myocyte scatter cloud

scales nonlinearly, as determined by equation (3.12a), and as illustrated in the restitution curve

in Figure 3.3(b). This non-linear scaling leads to “saturation” for values of B larger than those

shown in Figure 3.8(b).

3.3.3 Dose-response curves

From a control and medical intervention perspective, one of the most crucial challenges is

determining the appropriate target drug concentration, denoted as ΓT , that should be admin-

istered to a population of myocytes. The goal is to ensure that all myocytes in the population

respond with an identical, “healthy” action potential under periodic stimulation. This desired

action potential duration is referred to as AT . Importantly, the target concentration ΓT will vary

for each cell within the population due to individual cellular differences.

To calculate ΓT , we begin by assuming that a preliminary reference experiment has been

conducted at fixed values of B∗ and Γ∗. During this experiment, the parameters β ∗ and γ∗

were calibrated, and the McKean model parameters were determined. Using this information,

the target drug concentration ΓT can be expressed as follows:

ΓT =
Γ∗

γ∗−1

(
1
a
−

exp
(
b̃β ∗)(exp

(
b̃AT β ∗/B∗)−1

)
ab̃
(
exp
(
b̃β ∗

)
−1
)

exp
(
b̃AT β ∗/B∗

) −1

)
, b̃ = 1+b (3.28)
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Note that the expression b̃ = 1+b is essentially the same as equation (3.22), where the target

value of the McKean “conductance” parameter is linked to the reference experiment’s value by

the relationship aT = γT a. Additionally, scaling (3.26). is applied to convert these values to

dimensional units.

However, the values of γT obtained from this expression must also satisfy two important con-

straints:

• γT > 1, which implies that ΓT > 0µM (the minimal drug concentration that can be ad-

ministered is 0µM ),

• γT < 1
a , ensuring that aγT < 1, a condition necessary for the cell to remain excitable.

Figure 3.9(a) illustrates these results by showing the target drug concentration values for

Nifedipine, expressed in µM, with β ∗ and γ∗ calibrated based on the data from Lachaud et al.

(2022). The surface ΓT is logarithmically transformed for better visualisation and is plotted as

a function of the experimental biomarkers (A,∆A) from the controlled experiment.

Figure 3.9(b) presents more conventional dose-response curves, which are computed us-

ing equation (3.16b) for each cell in the population, as well as for the “mean cell” within the

population-defined as the cell with parameter values given before

(a∗,b∗) = (0.3045,−0.2442).

These predicted dose-response curves are compared with experimental data from (Himmel

et al. 2012), which measured the dose-response to the same drug Nifedipine by observing

changes in action potentials and field potentials in thin slices of rabbit ventricular tissue and

rabbit Purkinje fibers.
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Figure 3.9: (a). Values ΓT of the drug concentration (Nifedipine in µM ) necessary to elicit
action potentials with a prescribed duration AT = 180 ms in a heterogeneous population of
myocytes (blue wireframe surface). The solid red line is a projection of the line ΓT = 0µM
and the transparent aquamarine surface is ΓT = Γ∗(1−a)/(γ∗−1)/a, both constraining the
acceptable values ΓT can take. (b). Dose-response curve of Nifedipine was computed using
equation (3.16b). Thin semi-transparent lines are dose-response curves for individual cells
in the myocyte population of (Lachaud et al. 2022), with the solid black line corresponding
to the ’mean cell’ with parameter values (a∗,b∗) = (0.305,−0.244). Experimental data (blue
dotted lines) from rabbit Purkinje fibre action potentials (triangles down) and ventricular action
potentials (circles) and field potentials (squares) in thin-slice tissue preparations is also shown
(data from Fig. 6B of (Himmel et al. 2012)). In both panels, McKean parameters (a,b) are
calibrated to experimental data of (Lachaud et al. 2022) using B∗ = 500 ms,Γ∗ = 1µM nif.
and β ∗ = 0.235 and γ∗ = 1.853. The figure is from our published paper (Simitev et al. 2023)
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Despite the significant differences between Himmel (Himmel et al. 2012) and Lachaud (Lachaud

et al. 2022) experimental setups, the results demonstrate a remarkable agreement between

the predicted and experimental dose-response curves. These differences include the follow-

ing:

• The use of tissue slices in Himmel’s experiments, as opposed to uncoupled cells in

Lachaud’s experiments. This variation in methodology is crucial, as it impacts how cel-

lular responses are measured and interpreted.

• The types of measurements employed, with some cases involving field potentials. This

difference in measurement technique can lead to variations in the observed data, yet

the agreement between the results remains strong.

• The inherent variability in cellular properties, such as the comparison between Purkinje

fibers and ventricular myocytes. This variation is significant because these different cell

types can exhibit distinct responses to the same experimental conditions.

• Differences across animal populations, which introduce another layer of variability, as

different animals may respond differently to the same stimuli.

This evident cellular heterogeneity has been a key motivation for our work in this PhD, particu-

larly Chapters 3 and 5, driving the exploration of how different experimental conditions can still

lead to consistent and reliable results.
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Chapter 4

Regression Methods for Estimation of

Parameters in Cardiac Ionic Current

Models.

4.1 Introduction

4.1.1 Motivation

The motivation for this chapter arises from the need to enhance the accuracy and efficiency

of parameter sensitivity analysis in cardiac electrophysiology models. Traditional approaches

often rely on linear regression techniques, which may not fully capture the complexity of the

relationships between ion channel conductances and physiological outputs like APD and cal-

cium transients. However, by incorporating nonlinear transformations of input variables, such

as squaring them, it is possible to better represent these complex relationships while still us-

ing a linear regression framework. This approach offers a more detailed understanding of

model sensitivities without the increased computational burden associated with fully nonlinear

regression techniques. Given the importance of accurate modelling for understanding cardiac

arrhythmias and predicting drug responses, this work seeks to address these challenges by

refining the methods used in parameter sensitivity analysis.
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4.1.2 Aim

The aim of this chapter is to carry out a sensitivity analysis of cardiac electrophysiology mod-

els by employing linear regression techniques that include nonlinear transformations of input

variables. This approach seeks to enhance the predictive power and accuracy of the mod-

els by better capturing the complex relationships between ion channel conductances and key

physiological biomarkers. Additionally, this method will be applied to assess drug responses,

thereby demonstrating its utility in predicting the effects of pharmacological interventions and

contributing to the development of more effective treatments for cardiac conditions.

4.2 Method

4.2.1 Baseline Cardiac Action potential Model from Luo and Rudy (1991)

Several models of the AP ventricular myocytes have been developed and extensively dis-

cussed in the literature. The LR1 (Luo and Rudy 1991), developed to simulate the action

potential of ventricular myocytes in guinea pigs. It has been a foundational contribution to

the field of cardiac electrophysiology. It is known for its comprehensive representation of the

depolarisation and repolarisation phases of the cardiac AP. This model incorporates several

key ionic currents, including fast sodium (Na+), L-type calcium (Ca2+), and various potassium

(K+) currents such as the inward rectifier K+ current and the delayed rectifier K+ currents.

It also accounts for the Na+−K+ pump, the Na+−Ca2+ exchanger, and background Na+,

Ca2+, and K+ currents.

LR1 model is characterised by its ability to replicate key aspects of ventricular myocyte elec-

trophysiology, such as action potential duration, shape, and the ionic basis of these phenom-

ena. With a focus on the interaction between depolarisation and repolarisation processes,

the model uses a series of differential equations to describe the time-dependent and voltage-

dependent behaviour of ionic currents and concentrations. This model’s rigorous structure and

detailed biophysical basis make it particularly valuable for simulating the effects of pharmaco-
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logical agents and for studying the mechanisms of arrhythmogenesis (Luo and Rudy 1991). Its

balance between complexity and computational efficiency has made it a widely used tool for

exploring the fundamental dynamics of cardiac APs, making it an essential reference in both

theoretical and applied cardiac electrophysiology research.

4.2.2 Model Inputs and Outputs

In this chapter, we utilised LR1 model (Luo and Rudy 1991) to investigate the effects of varying

specific ionic conductances on AP characteristics of ventricular myocytes in guinea pigs. Six

key ionic conductances were selected, and a population of models was generated by randomly

varying these conductances. Importantly, all other parameters in the LR1 model, apart from

those listed in Table 4.1, were left unchanged from the values specified in the original LR1 pub-

lication (Luo and Rudy 1991). This ensures that the only modifications to the reference model

are the changes in conductances as described in this section. The baseline conductance val-

ues were scaled using multiplicative factors, where each factor was randomly selected from

a log-normal distribution with a median of 1. This distribution ensured that the likelihood of a

conductance being doubled was the same as the likelihood of it being halved.

The scaling of conductances can be expressed mathematically as:

G′
i = pi ·Gi,baseline, (4.1)

where:

• G′
i is the scaled conductance for the ith ionic current,

• pi is the scale factor for the ith conductance, selected from a log-normal distribution,

• Gi,baseline is the baseline value of the ith conductance from the original LR1 model.
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For simplicity, we will use the symbols PNa, Psi, PK1, PK, PKp, and PB to represent the scaled

conductances for sodium (GNa), slow inward calcium (Gsi), inward rectifier potassium (GK1),

delayed rectifier potassium (GK), plateau potassium (GKp), and background currents (GB), re-

spectively. The scale factors pi denote the multiplicative adjustment applied to each baseline

conductance value. A comprehensive list of the varied conductances and their baseline val-

ues, as provided in the original published model (Luo and Rudy 1991), is presented in Table

4.1. For each set of conductances, we simulated the resulting APs. The simulations were

Parameter Definition Baseline value
GNa Maximal Na +conductance 16mS/cm2

Gsi Maximal slow-inward
(
Ca2+) conductance 0.09mS/cm2

GK1 Inward rectifier current 0.6047mS/cm2

GK Delayed rectifier current 0.282mS/cm2

GKp Maximal plateau K+conductance 0.0183mS/cm2

GB Background conductance 0.03921mS/cm2

Table 4.1: List of ionic conductances scaled in the LR1 model simulations in this chapter. All
other parameters are unchanged from their baseline values in the original publication (Luo and
Rudy 1991).

conducted using the (LR1) model using MATLAB (R2019B, The MathWorks, Inc., USA), with

code obtained from the CellML repository (www.cellml.org) (Miller et al. 2010). Throughout

these simulations, the following key biomarkers were recorded:

• Resting Membrane Potential (Vrest): The voltage of the cell membrane when it is not

generating an AP.

• Peak Voltage (Vpeak): The maximum voltage reached during the AP.

• Action Potential Duration (APD90): The time interval between the beginning of an AP

and 90% repolarisation from the maximum voltage (Vpeak).

These biomarkers were chosen as they provide critical insights into the electrical behaviour of

the cell under different conditions of ionic conductance, allowing for a deeper understanding of

the mechanisms driving cardiac APs.
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Simulations were conducted with a large number of sets of randomly generated parameters to

create input and output matrices. Each input matrix, denoted as X, is a numerical representa-

tion of the scaled ionic conductances. It has dimensions n×q, where n represents the number

of randomly generated parameter sets (or models), and q denotes the number of varied scal-

ing factors (six in this case). Specifically, the entry Xi j of X corresponds to the scaled value of

the jth conductance for the ith model.

The output matrix, denoted as Y, contains the key biomarkers recorded from the simulations.

It has dimensions n×m, where n is the number of models, and m corresponds to the number

of output variables recorded (three: Vrest, Vpeak, and APD90). Specifically, the entry Yi j of Y

represents the jth biomarker value (e.g., Vrest, Vpeak, or APD90) recorded for the ith model.

4.2.3 Performing OLS Regression

Ordinary least squares (OLS) regression was employed to analyze the relationship between

the input conductances and the output biomarkers. The regression was performed using the

’LinearRegression’ implementation from the ’scikitlearn’ library. The objective of the OLS pro-

cedure was to compute a q×m matrix of regression coefficients, B, that enables prediction

of outputs for new input sets. Specifically, OLS determines B such that the predicted output

matrix Ypredicted = XB closely approximates the actual output matrix Y.

The regression coefficients B are calculated using the standard closed-form formula:

B =
(

XTX
)−1

XTY, (4.2)

where:

• XT is the transpose of the input matrix X.
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• XTX is a q×q matrix representing the pairwise correlations between the input variables

(conductances).

•
(
XTX

)−1
is the inverse of this square matrix, which exists if X has full rank.

For this study, the parameters were varied independently, and a large number of simulations

were conducted to ensure robust estimation of B. Since the number of simulations, n, ex-

ceeded the number of input variables, q, the input matrix X had full rank. This guaranteed that

XTX was invertible, avoiding issues of multicollinearity and ensuring reliable computation of

the regression coefficients.

The dimensionality of the matrices is as follows:

• X: An n× q matrix, where n is the number of simulations and q is the number of input

variables.

• Y: An n×m matrix, where m is the number of output variables.

• XTX: A q×q matrix, representing the correlations among input variables.

• B: A q×m matrix, containing the regression coefficients that describe how the inputs

influence each output.

This approach ensures a rigorous and interpretable estimation of the relationship between

ionic conductances and cardiac action potential biomarkers. By leveraging the robustness of

OLS regression and the large number of simulations, the results provide a reliable framework

for sensitivity analysis.
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4.2.4 Standardisation of Data for Regression Analysis

Before conducting the regression analysis, the values in both the input and output matrices

were mean-centred and normalised using their respective standard deviations. Specifically,

each element in the matrices was transformed according to the formula:

xnew =
xorig −µx

σx
, (4.3)

where xorig represents the original value, µx is the mean, and σx is the standard deviation of

each column. This standardisation process ensured that the variables were on a comparable

scale, which is essential for accurate regression analysis.

Given that the random scale factors in the input matrices followed a log-normal distribution,

most of these values were log-transformed prior to calculating the mean (µ) and standard de-

viation (σ ). This transformation was necessary to approximate a normal distribution, facilitating

better regression performance.

In the output matrix, the Action Potential Duration (APD90) distribution was right-skewed. The

histograms showing the distributions of the three output variables APD90, Vrest, and Vpeak

are shown in Figure 4.1. These visualisations provide insight into the initial data distributions

and the effects of the applied transformations. To address this skewness, APD90 values were

log-transformed before the regression analysis and then re-transformed back into their origi-

nal units for clarity when displaying the results in figures. By contrast, Vrest and Vpeak were

approximately normally distributed, as confirmed by visual inspection of their histograms. Con-

sequently, these variables were not log-transformed but were simply standardised by mean-

centring and scaling.
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Figure 4.1: This figure presents histograms illustrating the distributions of the three output vari-
ables: APD90, Vrest, and Vpeak. The APD90 distribution shows right-skewness, addressed
through log transformation prior to regression analysis, while Vrest and Vpeak follow approx-
imately normal distributions and were only standardised without log transformation. These
histograms offer a visual representation of the initial data distributions and the effects of the
transformations applied to the variables.

4.3 Results

4.3.1 Action Potential Variability

Figure 4.2 presents the time series of AP traces generated by randomly varying the six max-

imum ionic conductances in LR1 model. The scaling factors for these conductances (PNa,

Psi, PK1, PK, PKp, and PB) were applied to the baseline values of the conductances (GNa, Gsi,

GK1, GK, GKp, and GB). The scaling factors were standardised to ensure they followed a con-

sistent range for comparison. Random variations in these conductances resulted in changes
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Figure 4.2: Time series of action potentials generated from the initial population of 1000
models based on the LR1 model (Luo and Rudy 1991). The figure illustrates the variation
in APs across the population, showcasing the diversity in AP behaviour among the model
variants. In the top right corner, the baseline model’s AP trace is highlighted, with key outputs
marked, including APD90, Vrest, and Vpeak.

to APD90, Vrest, and Vpeak. Depending on the specific combination of conductance values

in each trial, these outputs could increase or decrease. This process was repeated multiple

times, generating input and output matrices with n = 1000 rows (representing the number of

trials), q = 6 columns for the six varied conductances, and m = 3 columns for the three output

variables (APD90, Vrest, and Vpeak).

4.3.2 Regression and Predictive Model

The OLS regression was performed on the input matrix X and the output matrix Y. This regres-

sion produced a 6× 3 matrix of regression coefficients, from 6 inputs (scaled conductances)

and 3 outputs (biomarkers). This matrix is denoted as B, and provides an empirical model for

predicting the outputs based on new input parameters. The predicted output, Ypredicted, can

be obtained using the equation:

Ypredicted = X×B, (4.4)
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Figure 4.3 displays scatterplots comparing the ’actual’ outputs (calculated by numerically inte-

grating the LR1 model differential equations) against the predicted outputs obtained from the

OLS regression model. The plots show that the empirical model performs highly accurately,

with R2 values ranging from 0.97 to 0.99 across the three output variables. These results

demonstrate that, despite the underlying nonlinearities of the LR1 model, the simplified linear

model based on OLS regression is a reliable predictor of the outputs.

Figure 4.3: This figure shows scatterplots comparing the actual outputscalculated by numer-
ically integrating the LR1 model’s differential equationswith the predicted outputs generated
from the OLS regression model. The close alignment of data points along the 45-degree line,
together with R2 values between (0.97 and 0.99), indicates a strong agreement between the
actual and predicted values for the three output variables (a) Vpeak, (b) Vrest, and (c) APD90,
respectively. Despite the nonlinearity inherent in the LR1 model, the OLS regression model
serves as a highly accurate predictor of the outputs.
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4.3.3 Interpretation of Regression Coefficients

The regression coefficients in the B matrix provide insights into how variations in the six input

conductances affect the three output variables. Each column of the matrix corresponds to

a specific output (APD90, Vrest, or Vpeak), while each row represents the influence of a

particular conductance. Analysing these coefficients allows for an understanding of the relative

contributions of each conductance to the outputs.

Figure 4.4 illustrates the values of the B matrix, highlighting how changes in each ionic con-

ductance impact the three output variables. This plot is analogous to Figure 3A in the study by

Sobie, published in (Sobie 2009), where Sobie used Partial Least Squares (PLS) regression

with the NIPALS algorithm (Geladi and Kowalski 1986). The visualisation of the regression

coefficients provides a compact and intuitive representation of the sensitivity of the outputs to

variations in the conductances. Although the effects of varying each ionic conductance could

be determined by adjusting parameters one at a time, It is inefficient for complex models in-

volving many ion-transport mechanisms. In contrast, the OLS regression technique allows

for rapid and systematic evaluation of how changes in multiple parameters affect the model

outputs simultaneously. Additionally, the procedure provides a straightforward graphical rep-

resentation of the relative effects of each parameter, enabling a clear understanding of which

conductances have the greatest influence on the outputs. This is particularly useful in models

such as LR1, where numerous mechanisms interact to influence the overall behaviour of the

AP.

4.4 Application I: Using OLS regression to Predict Drug Re-

sponse
The OLS regression is employed in this study to create an empirical model that predicts how

the output biomarkers, particularly APD90, change in response to modifications in ionic con-

ductances, both before and after the application of a drug. To evaluate the accuracy of this

empirical model, we compare the predictions to direct simulation results.
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Figure 4.4: This figure shows the values of the B matrix, representing the regression coeffi-
cients that quantify how changes in each ionic conductance affect the three output variables.
This figure mirrors Figure 3A in (Sobie 2009), which used Partial Least Squares (PLS) regres-
sion, but here OLS regression is applied. The chart offers a clear visualisation of how sensitive
the outputs are to variations in different conductances, providing an intuitive representation of
the model’s behaviour. The y-axis values are unitless because they represent the regression
coefficients from the linear regression model. The regression coefficients are derived from re-
lationships between unitless standardized variables; inputs and outputs, thus the y-axis does
not carry any physical units. This is consistent with the mathematical properties of standard-
ized regression.

4.4.1 Method

We begin with the assumption that the output biomarkers, such as APD90, are functions of

the ionic conductances (represented by scaling factors P) in the LR1 model. The relationship

between P and the outputs A can be expressed as:

A = f (P), (4.5)
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where:

• A is the matrix of output biomarkers (e.g., APD90)

• P is the matrix of the scaling factors of the six conductances such as GNa, GK, etc.).

• f represents the function that maps the conductances to the biomarkers, which in the

LR1 model is a set of nonlinear differential equations.

Next, we investigate the effects of altering ionic conductances on AP dynamics in a population

of 1000 cells simulated using the LR1 model. Specifically, this study focuses on how reduc-

ing the conductance of GK (potassium conductance) by 30% influences APD90. Potassium

currents, in general, play a crucial role in the repolarization phase of the AP. By reducing GK

the model investigates how a decrease in the overall potassium conductance affects the re-

polarization process and APD90. Since potassium currents are responsible for returning the

cell membrane potential back to its resting state, any reduction would slow down this process,

leading to AP prolongation. Reducing GK affects multiple potassium currents, which can cause

delayed repolarization and extend APD90 (Maleckar et al. 2009). Since APD90 is a key marker

of electrical activity in the heart, modifying GK is a straightforward way to study changes in re-

polarization dynamics and simulate drug effects that target potassium channels. Many experi-

mental studies and clinical trials have shown that IKr blockers (such as Dofetilide, and others)

affect cardiac repolarization by reducing the potassium current, making it a common target in

cardiac models. The reduction of by 30% is chosen to reflect the drug’s pharmacological effect

observed in these studies in particular the study in (Lachaud et al. 2022).

4.4.1.1 Applying the Drug’s Effect

The drug effect is assumed to act on the potassium current GK which we aim to reduce by

30%. This action was implemented by multiplying the scaling factors of GK in the matrix of

conductances P by 0.7, representing a 30% reduction in the potassium current.
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4.4.1.2 Construct the Drug Action Matrix

The drug’s action is mathematically represented by a matrix Γ that modifies the conductance

of GK, while keeping other conductances unchanged. The matrix Γ is constructed as follows:

Γ =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1+ γ 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, (4.6)

where γ =−0.3 represents a 30% reduction in GK. The notation γ in this chapter differs from

its use in Chapter 3. In Chapter 3, γ represents a multiplicative factor applied to the McKean

model parameter a, capturing the effect of drug action in a simplified mathematical framework.

In Chapter 4, γ denotes a relative change ( −30% ) in the potassium conductance GK, directly

modeling the pharmacological impact on ionic currents in the LR1 model.

4.4.1.3 Modify the Conductance Vector P
To apply the drug’s effect, the matrix P is multiplied by the drug action matrix Γ, leading to a

new vector of scaling factors PD, where the conductance GK is reduced by 30% :

PD = ΓP =



PNa

Psi

PK1

(1+ γ)PK

PKp

PB


=



PNa

Psi

PK1

0.7PK

PKp

PB


. (4.7)

The new matrix PD, which contains the drug-modified conductances.
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4.4.1.4 Simulate the Drug’s Effect

After modifying the conductances, the APs are simulated using the new conductance values

PD for 1000 cells. The simulation generates new APs for all cells in the population, reflecting

the impact of the drug on the electrical activity of the heart cells.

4.4.1.5 Obtain the New APD90

We carried out a protocol to simulate the effects of reducing GK by 30% on the AP in a pop-

ulation of 1000 virtual cardiac cells using the LR1 model. The protocol generates 30 action

potentials per cell, extracts the last two APs, and records them for further analysis. In this sim-

ulation protocol, the basic cycle length (BCL) is set to 1000 milliseconds (ms), meaning that the

time between consecutive stimuli is 1000 ms, equivalent to a heart rate of 1 Hz (i.e., 60 beats

per minute). The protocol involves delivering a total of 30 stimuli to each virtual cardiac cell

over a period of 30 seconds. Each stimulus elicits an action potential (AP), and the simulation

records the behaviour of the membrane voltage and other variables in response to each stim-

ulus. The LR1 model functions are obtained from CellML repository (www.cellml.org), (Miller

et al. 2010). These functions calculate voltage, states, and other variables using a differen-

tial equation solver (ODE) across the time course of the simulations. From the the AP traces

we calculate APD90, by determining the time it takes for the membrane potential to repolar-

ize to 90% of the difference between the peak voltage and the resting membrane potential.

This value was measured for each model variant to assess the effects of reducing potassium

conductance on APD90.

4.4.1.6 Data Splitting and Regression

The data was split into 80% training data and 20% test data. The training data was used to

fit the OLS regression model. The same regression techniques, used in the previous sec-

tion, were applied. In OLS regression, the goal is to find a linear relationship between the

conductances and the biomarkers. This can be written as:

A = PB. (4.8)
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The regression coefficient matrix B represents the effect each conductance has on the out-

put biomarkers. The OLS regression algorithm calculates the regression coefficient matrix B,

which minimises the difference between the predicted and actual biomarker values by min-

imising the sum of squared residuals. Mathematically, OLS solves the following optimisation

problem:

min
B

∥A−PB∥2, (4.9)

where ∥ · ∥ represents the Euclidean norm.

4.4.1.7 Predicting the Biomarkers After Drug Application

After the drug is applied, we modify the conductances of the potassium current (GK) by 30%

reduction. This results in a new matrix of conductances PD, where the values of GK have been

scaled by 0.7:

PD = ΓP. (4.10)

The OLS regression model is then used to predict the new biomarker values AD after the drug

application. The prediction is made using the previously calculated regression coefficients B :

AD
pred = PDB. (4.11)

This gives us the predicted values for APD90, after the drug has been applied. By applying

these steps, we simulate the drugs effect on the LR1 model and assess the changes in APD90.

4.4.1.8 Evaluating the Model’s Accuracy

The predicted values AD
pred are compared against AD

sim; the actual values obtained from the

LR1 model simulations after the drug application. This is done using scatter plots, where the

predicted APD90 values are plotted against the actual APD90 values, along with a 45-degree

line (indicating perfect prediction). In addition, the R-squared values are used to assess how

well the linear OLS regression model approximates the changes induced by the drug in the

more complex nonlinear LR1 model.
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4.4.2 Results

4.4.2.1 Effects of the Drug on Action Potentials

The application of the drug resulted in significant changes in APD90 across the population of

simulated cells. Figure 4.5 shows the AP traces for 500 randomly selected cells before and af-

ter the drug was applied. The blue traces represent the APs prior to the drug application, while

the red traces represent the APs after the 30% reduction in GK. The figure clearly illustrates

that the majority of cells exhibited a significant prolongation of APD90, which corresponds

to delayed repolarisation. However, a subset of very few cells displayed different behaviour,

failing to fully repolarise and experiencing a plateau in their AP. Also, a small group of cells

showed a decrease in APD90, indicating varying responses to the drug. This variation in re-

sponse aligns with observations from an experimental study in (Lachaud et al. 2022), where

drugs targeting potassium currents caused heterogeneous effects within a population which

suggests that the drug’s effects might depend on the specific ionic conductance profile of each

cell. Figure 4.6 presents a scatter plot comparing the baseline APD90 values (before drug ap-

Figure 4.5: This figure displays AP traces of 500 randomly selected cells before and after
the drug application. The blue traces represent the APs before the drug application, while
the red traces show the APs after reducing GK by 30%. As observed, the drug caused a
significant prolongation of APD90 in the majority of the cells, although some cells showed
plateauing and failed to repolarise. Some cells exhibited a slight decrease in APD90, indicating
varying responses within the population. This result is consistent with different drug responses
observed in experimental studies such as (Lachaud et al. 2022).
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plication) with the change in APD90, denoted as ∆APD90, which represents the difference in

APD90 before and after the drug application. The scatter plot demonstrates that for most cells,

APD90 increased following the reduction in GK, consistent with the AP prolongation observed

in the traces.
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Figure 4.6: This figure illustrates the scatter plot of APD90 before the drug application against
∆ APD90 (the difference in APD90 before and after the drug). The data points show that, for
the majority of cells, APD90 increased significantly following the reduction in GK. However,
the cells exhibited different behaviour are excluded from this figure.

4.4.2.2 Predicting Drug-Induced APD90 Changes

To evaluate the performance of the OLS regression model in predicting the drug-induced

changes in APD90, we compared the predicted APD90 values to the actual values obtained

from direct LR1 model simulations after the drug was applied. Figure 4.7 presents a scatter

plot comparing the simulated APD90 values to the predicted APD90 values. The 45-degree

line in the plot indicates good agreement between the simulation and prediction.

4.5 Application II: OLS Regression Analysis with Nonlinear

Interactions
The primary aim of this study is to establish the relationship between various ionic conductance

parameters and a set of cardiac biomarkers using OLS linear regression models that incorpo-

rate nonlinear terms. We focus on modelling the relationships between multiple ionic con-

ductances, such as sodium, potassium, and calcium conductances, and key cardiac biomark-

96



Figure 4.7: This figure compares the APD90 values obtained from direct LR1 model simu-
lations after drug application calculated by numerically integrating the LR1 model differential
equations vs the predicted APD90 values from the OLS regression model. Each data point
represents a cell, and the 45-degree line indicates perfect agreement between simulation and
prediction. The close alignment of the data points along this line demonstrates the high accu-
racy of the OLS regression model in predicting the drug-induced changes in APD90. Despite
the underlying non-linearities in the LR1 model, the linear regression model effectively cap-
tured the relationship between conductance changes and APD90.

ers. These biomarkers are critical indicators of cardiac electrophysiology, providing insight

into the function and behaviour of cardiac cells. By constructing regression models for each

conductance, we aim to identify the most important factors influencing them and explore how

nonlinear interactions between these biomarkers enhance the explanation of the underlying

physiological processes. The use of stepwise regression allows us to refine these models by

selecting the most significant predictor variables, providing a comprehensive understanding of

how various ionic conductances are regulated and interact with key cardiac biomarkers.

4.5.1 Nonlinear Terms in a Regression Model

Incorporating nonlinear terms - such as squared predictor, square root of a predictor, or inter-

action terms (multiplication of 2 predictors) - into a regression model can provide several key

benefits, especially when dealing with complex real-world data. One of the primary advan-

tages is the ability to capture complex relationships. In many cases, the relationship between
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an independent variable and the dependent variable is not strictly linear; it may be curved or

change at different levels. By including nonlinear terms like squares of the inputs, the model

can better represent these dynamics, offering a more accurate depiction of how changes in

the predictor affect the outcome.

Nonlinear terms also improve the overall model fit. By accounting for these complex relation-

ships, the model reduces bias, leading to lower residuals, a smaller root mean square error

(RMSE), and a higher R2 value. This means the model can explain more of the variation in the

dependent variable. Additionally, nonlinear terms allow for the uncovering of interactions be-

tween variables and can significantly enhance the model’s accuracy. Nonlinear relationships

between variables are common in biological systems, and by capturing these interactions, the

model becomes more robust and reliable for making predictions (Trayanova et al. 2023). For

instance, in cardiac physiology, an increase in a biomarker might have a strong effect up to a

point, after which the effect tapers off, which can be captured with nonlinear terms (Trayanova

2011).

An example of this is the relationship between calcium transient amplitude (CaTa) and L-type

calcium current permeability (GCaL). As CaTa (a biomarker of calcium dynamics) increases,

the effect on GCaL (maximal L-type calcium current permeability) might be strong initially. For

small increases in CaTa, the corresponding increase in GCaL could be substantial because of

the strong dependence of calcium dynamics on the permeability of calcium channels. How-

ever, beyond a certain CaTa threshold, further increases result in a smaller increase of GCaL.

This indicates a concave-down (or saturating) relationship between CaTa and GCaL. To model

such a nonlinear relationship, we consider incorporating a squared term like CaTa2 which is

effective when combined with a linear term.

GCaL = α ·CaTa+β ·CaTa2, (4.12)
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where α is the linear effect of CaTa on GCaL and β is the quadratic effect. β is negative as

it responds to the slow increase of GCaL as CaTa increses which follows the concave-down

graph shape. So, for low CaTa values, α ·CaTa dominates, resulting in a strong increase

in GCaL. Whereas for higher CaTa values, the negative β ·CaTa2 outweighs the linear term,

causing the increase in GCaL to slow down.

4.5.2 Baseline Cardiac Action Potential Model from Tusscher et al. (2004)

In this study, we employed the Ten Tusscher NobleNoblePanfilov (TNNP) model (Tusscher

et al. 2004), which is one of the most widely used human ventricular cell models in cardiac

electrophysiology. The TNNP model was developed to simulate the electrical activity of human

ventricular cells and provides three distinct sets of parameters to represent the three major cell

types found in the ventricular myocardium: epicardial, endocardial, and M cells. These cells

differ in their AP profiles due to their unique ion channel properties and are located in different

layers of the ventricular wall, with M cells situated between the endocardial and epicardial

layers.

The model consists of 12 gating variables that govern the opening and closing of ion channels,

controlling the flow of ions such as sodium
(
Na+

)
, potassium (K+), and calcium

(
Ca2+)

across the cell membrane. In addition to the gating variables, the TNNP model simulates the

intracellular concentrations of Na+,K+, and Ca2+, which are crucial for generating APs and

regulating cardiac excitability and contractility.

The TNNP model consists of a system of differential equations, including the voltage equation,

which describes the change in membrane potential over time in response to ionic currents.

This allows the model to capture the dynamic behaviour of a single ventricular cell in response

to electrical stimuli. The TNNP model has since been used extensively in cardiac research,

offering insights into the mechanisms of arrhythmias, drug interactions, and the overall electro-

physiological function of the heart (Ten Tusscher and Panfilov 2006). For a detailed description
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of the voltage equation and all the associated variables governing ionic currents and gating

mechanisms, refer to the original publication by (Tusscher et al. 2004). We chose this model

because the work by (Sarkar and Sobie 2010) was based on the TNNP model, and this study

aims to explore whether the regression can be further improved.

4.5.3 Sampling and Generating a Population of Models

To generate a population of cardiac models with varying ionic conductances, we utilised the

Latin hypercube sampling (LHS) method (McKay et al. 2000). It is a statistical approach com-

monly employed for constructing computer experiments and ensuring efficient parameter ran-

domisation across a given range of distributions. In essence, the method divides each param-

eters function into equal partitions, with the number of divisions determined by the number of

sample points desired. For our study, we applied LHS to the 16 ionic conductances associ-

ated with cardiac cellular electrophysiology, allowing us to create a set of 500 unique models.

Each of these models represented different combinations of conductance parameters, drawn

from a distribution that varied by approximately 70% from the baseline values. Parameters

were set to vary between 0.1 and nearly double their original values to ensure a wide range

of physiological behaviours while still maintaining realistic conditions. Table 4.2 contains all

the conductances we used in the TNNP simulation. After generating these 500 variants of the

TNNP model (Tusscher et al. 2004), we simulated APs and calcium transients to extract key

biomarkers. These biomarkers include:

• Vmax (Vpeak): The maximum or peak voltage value of the membrane potential following

a stimulus.

• APD90 and APD30: The time from the beginning of the stimulus to the point where the

membrane potential reaches 90% or 30% respectively, of full repolarisation, defined by

the difference between the peak and resting membrane potentials.

• CaTa (∆ Ca): The calcium transient amplitude, calculated as the difference between the

peak and diastolic levels of intracellular calcium
(
Ca2+).

• CaTrest: The calcium transient at rest, representing the baseline calcium level between

beats.
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conductances Definition Baseline value
GNa Maximal Na+ conductance 14.838nS/pF
GNab Background Na+ conductance 2.9×10−4nS/pF
GCaL Maximal L-type Ca 2+ current permeability 1.75×10−4 cm3/µF.s
GCab Background Ca2+ conductance 5.92×10−4nS/pF
Gto Maximal transient outward K+ conductance 0.294nS/pF
GKr Rapid delayed rectifier K+ current scaling factor 0.096nS/pF
GKs Maximal slow delayed rectifier K+ conductance 0.245nS/pF
GK1 Maximal inward rectifier K+ conductance 5.405nS/pF
GpK Maximal plateau K+ conductance 0.0146nS/pF
INaK Maximal Na+−K+ pump current 1.362pA/pF
kNaCa Maximal Na+−Ca2+ exchange current 1000pA/pF
arel SR Ca 2+ release scaling factor 16.464µMms−1

crel SR Ca2+ release scaling factor 8.232µMms−1

Vleak Passive SR Ca 2+ leak scaling factor 8×10−5 ms−1

Iup Maximal rate of SR Ca2+ uptake (SERCA) 0.425µM/ms
GpCa Maximal sarcolemmal Ca 2+ pump current 0.825pA/pF

Table 4.2: This table lists the baseline values for 16 parameters in the TNNP model, which
include ionic conductances and related scaling factors regulating ionic currents or intracellular
processes. All other parameters in the TNNP model were kept unchanged, ensuring that the
observed variability in outputs was solely due to the variation of the parameters listed here.
Baseline values are consistent with those reported in (Tusscher et al. 2004) and (Sarkar and
Sobie 2010).While parameters such as GNa and GKr represent true ionic conductances, oth-
ers, like arel and Vleak, , are scaling factors related to calcium dynamics or transport processes.
The term “conductance” is used broadly to encompass all these parameters. These param-
eters were varied by up to ±70% of their baseline values using Latin Hypercube Sampling
(LHS) to generate a population of 500 models for sensitivity analysis.

• CaT90: The time interval at which the calcium transient reaches 90% of its recovery to

the resting state after an AP.

By combining these variations in conductances with physiological outputs, we created a robust

dataset for regression analysis.

4.5.4 Method

We started by constructing a dataset in which the dependent variable is GCaL, the maximal

L-type calcium current permeability. This is the key variable we aim to predict or explain using

a set of biomarkers derived from simulations. The dataset includes values for six key biomark-

ers, as described previously, along with the squared terms for each of these biomarkers. By

incorporating both linear and squared terms, we ensure the model can capture both simple
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and more complex nonlinear relationships between the biomarkers and GCaL. Now we have

two different sets of predictor variables in our regression analysis: linear and nonlinear terms.

The linear terms include Vmax, APD90, APD30, CaTa, CaTrest, and CaT90, while the nonlin-

ear terms consist of the squared values of each, such as Vmax2, APD902, APD302, CaTa2,

CaTrest2, CaT902.

We then constructed two separate models for OLS regression analysis. The first one we

called it the the Full Model, which included both the linear and nonlinear squared terms of

all six biomarkers. This allowed us to examine potential nonlinear relationships between the

biomarkers and the dependent variable, GCaL. The second one is the Reduced Model, which

included only the linear terms, omitting the squared terms. By comparing the two models, we

aimed to determine how much explanatory power was lost when the nonlinear effects were

removed, thereby assessing the importance of the nonlinear relationships in the data.

Then we applied stepwise regression using the backward selection method for both the full and

reduced models. The process began with the Full Model that included all predictors, and then

iteratively removed the least significant predictor based on the Akaike Information Criterion

(AIC) until the optimal subset of variables was identified. To ensure robustness and avoid

overfitting in the regression models we implemented several techniques:

• We used 0-fold cross-validation which is a process that is repeated 10 times and divides

the data into 10 subsets, trains the model on 9 subsets, and validates on the remaining

one.

• We performed stepwise regression with backward selection, which starts with a full

model and iteratively removes less significant predictors. This reduces model complexity

by keeping only the most relevant variables, helping to prevent overfitting.

• We specified the maximum number of predictors to consider to ensure that only the

most important variables are retained in the model, balancing simplicity and predictive

accuracy.
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4.5.5 Results

The plot 4.8 presents a comparison of model performance for both linear and nonlinear models

in predicting GCaL the maximal L-type calcium current permeability. It depicts how the Root

Mean Square Error (RMSE) and R2 values change as the number of variables (n) in the model

increases, for both linear and nonlinear models. The x-axis represents the number of variables

included in the model, while the y-axis represents both RMSE and R2 values.

The blue line shows the RMSE values for the nonlinear models, while the green line shows

RMSE values for the linear models. RMSE measures the average difference between the

observed and predicted values, with lower values indicating better model performance. As

expected, we observe a general decrease in RMSE as the number of variables increases,

indicating improved model fit with more predictors. The red line represents the R2 values for

the nonlinear models, and the black line represents the R2 values for the linear models. R2

measures the proportion of variance in the dependent variable that is explained by the model,

with higher values indicating a better fit. We see that the R2 values increase as the number

of variables increases, meaning the models explain more of the variation in GCaL as additional

predictors are added. This plot is critical for evaluating the trade-off between model complexity

and predictive accuracy. It demonstrates how adding both linear and nonlinear terms to the

model affects its performance. By comparing RMSE and R2 for linear and nonlinear models

across varying numbers of predictors, we can assess how much explanatory power is gained

by including nonlinear terms. Notably, nonlinear models tend to have higher R2 values and

lower RMSE than their linear counterparts, indicating that the inclusion of nonlinear terms

improves the overall model fit. Also, from this plot, we can decide the optimal number of

variables to include in the model. Adding too many variables could lead to overfitting, while

too few variables might result in an underfitted model that doesn’t capture the relationships

well. This visualisation helps balance model complexity with predictive accuracy, guiding the

selection of the best subset of predictors.
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Figure 4.8: The plot compares the Root Mean Square Error (RMSE) and R-squared R2 values
for the best linear and nonlinear models across different numbers of predictors (n). The red
and black lines represent the R2 values for nonlinear and linear models, respectively, while the
blue and green lines depict the RMSE values. The graph demonstrates that nonlinear models
consistently achieve higher R2 and lower RMSE values, indicating better fit and predictive
accuracy compared to linear models. The x-axis shows the number of variables included in
the model, with both linear and nonlinear models improving as more predictors are added.

The optimal model for predicting GCaL appears to be the nonlinear model with 6 variables, as

it provides both a high R2 value and a low RMSE, indicating strong predictive accuracy and

minimal error without overfitting.

The bar graph in Figure 4.9 illustrates the regression coefficients for both the linear and non-

linear models used to predict GCaL, the maximal L-type calcium current permeability. The blue

bars represent the coefficients from the linear model, while the green bars represent the ad-

ditional coefficients from the nonlinear model, which includes squared terms. Each predictor

(such as Vmax, APD90 and APD30) is listed on the x-axis, along with their squared terms. The

height of each bar reflects the strength and direction (positive or negative) of each predictor’s

contribution to the model. For instance, APD30 shows a large positive impact in both the linear

and nonlinear models, while other predictors like CaTa2 exhibit a minor negative contribution.

This visualization highlights how both linear and nonlinear terms influence the model and al-

lows for comparison of the relative importance of each predictor in determining GCaL. The
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Figure 4.9: This figure illustrates the regression coefficients for both the linear and nonlinear
terms used to predict GCaL, the maximal L-type calcium current permeability. The blue bars
represent the coefficients from the linear model, while the green bars represent the additional
coefficients from the nonlinear model, which includes squared terms. Each predictor (such as
Vmax, APD90 and APD30) is listed on the x-axis, along with their squared terms. The height
of each bar reflects the strength and direction (positive or negative) of each predictor’s contri-
bution to the model. For instance, APD30 shows a large positive impact in both the linear and
nonlinear models, while other predictors like CaTa2 exhibit a minor negative contribution. This
visualisation highlights how both linear and nonlinear terms influence the model and allows for
comparison of the relative importance of each predictor in determining GCaL.

predictors APD30 and APD90 seem to have the strongest influence on GCaL as indicated by

their large coefficients, both in the linear and nonlinear models. These variables show a posi-

tive contribution, meaning that the increases in APD30 and APD90 are related to the increase

in GCaL. The squared terms, represented by the green bars, show that the nonlinear model

introduces additional contributions for variables like Vmax2, APD302, CaTa2. These nonlinear

terms help capture more complex relationships between these predictors and GCaL particularly

when the effect of a predictor changes at higher or lower levels. For instance, Vmax2 has a

small but positive contribution in the nonlinear model, suggesting that higher values of Vmax

amplify its effect on GCaL.
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4.6 Discussion
In our analysis using stepwise regression, we found that only 9 out of the 16 conductances

involved square terms in the optimal model, while the remaining 7 conductances did not exhibit

any significant nonlinear relationships through squared terms as shown in Figure 4.10. This

suggests that while the stepwise regression approach, incorporating both linear and nonlinear

terms, is a useful tool for exploring relationships between variables, it may not fully capture

the complexity of the underlying nonlinear interactions in the data. The method is effective in

identifying key linear relationships and has the advantage of being easy to interpret. However,

the limited inclusion of nonlinear terms suggests that this approach may fall short in situations

where more intricate, nonlinear dynamics govern the behaviour of the system. In such cases,

relying solely on polynomial regression or stepwise selection may overlook important nonlinear

patterns.

Another reason could be that stepwise regression has a localized approach when it comes

to capturing nonlinear relationships. In real-world data, especially in biological systems like

cardiac modeling, the relationship between conductances and biomarkers may vary across

different ranges of the data. For instance: In one range of a biomarker (e.g., low values of

APD90) the relationship with conductance might be best described by a quadratic form. While

in another range (e.g., higher values of APD90) the relationship could become more cubic or

exhibit entirely different nonlinear dynamics.

In the regression process, we typically include specific nonlinear terms that apply globally to

the entire data range. However, this means that the relationship between variables is con-

strained to be of a particular form across all values of the predictors. This limitation can make

it difficult for the regression technique to capture more complex relationships that may change

across different ranges of data.
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To further improve the model’s ability to capture the nonlinear interactions among conduc-

tances and biomarkers, we will explore more advanced techniques in the next chapter. We

investigated Gaussian process regression, which is considered an excellent choice for captur-

ing nonlinear interactions among conductances and biomarkers (Kennedy and O’Hagan 2001).

The Gaussian process is a non-parametric, probabilistic model that is particularly effective in

handling complex and nonlinear relationships in data. They are often used in scenarios where

standard regression models fail to capture the underlying complexity, as they provide a flexible

and robust way to model uncertainty in predictions and nonlinearity.
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Figure 4.10: Regression Coefficients for Conductances and their Nonlinear Terms. The figure
shows the contributions of linear and nonlinear terms in predicting GCaL. Nonlinear terms
were included for 9 of the 16 conductances, while the remaining 7 did not exhibit significant
nonlinear relationships.
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Chapter 5

Rejection Sampling Using Gaussian

Process on Cardiac Single Cell Models

5.1 Introduction

5.1.1 Motivation

Variability is an inherent characteristic of all biological systems, including cardiac electrophysi-

ology (Trayanova et al. 2023). Historically, this variability has often been overlooked in research

and computational analyses (McEntire et al. 2021). Even cardiomyocytes derived from geneti-

cally similar and healthy animal models exhibit considerable heterogeneity in their characteris-

tics among individual cells (Lachaud et al. 2022). Recent studies have documented significant

variations in ion channel expression between cells (Clark et al. 2023), highlighting the impor-

tance of understanding this variability, though it remains a substantial challenge (Muszkiewicz

et al. 2016).
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Traditional computational modelling approaches typically generate a single representative car-

diomyocyte, which fails to capture the true diversity observed in individual cells. To address this

limitation, the population of models approach has gained popularity in electrophysiology mod-

elling, enabling the exploration of mechanisms underlying physiological variability in cardiac

electrophysiology. Recent studies have employed this approach, demonstrating its potential

to better understand the variability in cardiac function (Sarkar et al. 2012; Britton et al. 2013;

Whittaker et al. 2020).

5.1.2 Aim

This chapter seeks to enhance our understanding of cardiac models and myocytes by investi-

gating the factors contributing to variability in action potential duration (APD). To achieve this,

we employ a statistical technique known as an emulator to estimate the parameter values of

cardiac action potential (AP) models, which are essential in defining the internal physiological

state of the cell. In a recent study (Lachaud et al. 2022), a large set of models was generated

by systematically varying the maximal conductances of eight ion channels. These models were

subsequently evaluated using a simulator that effectively replicated the responses observed

in ICa(L) and IK(r) block experiments. Our objective is to generate populations of cell models

that precisely replicate the observed variability in APD, with the aim of determining whether

this variability can be linked to specific variations in the relative expression of ion channels

across different cells.

5.2 Methods

5.2.1 Baseline Cardiac Model from Shannon Model (2004)

Several models of the action potential in rabbit ventricular myocytes have been developed and

extensively discussed in the literature, including those by (Mahajan et al. 2008) and (Luo and

Rudy 1994). For the current study, the Shannon model (Shannon et al. 2004) was selected,

as it was specifically designed using data derived from rabbit ventricular cells. This model was

chosen for its ability to accurately represent the action potential of rabbit ventricular myocytes,

making it particularly relevant for clinical applications.
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This model incorporates 14 transmembrane currents, including fast Na+, L-type Ca2+, the

rapid and slow components of the delayed rectifier K+, inward rectifier K+, fast and slow tran-

sient outward K+, Ca2+-activated Cl−, Na+−Ca2+ exchanger, Na+−K+ pump, sarcolemmal

Ca2+ pump, and background Na+, K+, and Cl− currents. The model uses a total of 45 vari-

ables to replicate some experimental observations, such as action potential morphology, action

potential duration, and restitution curves. The model’s relative computational simplicity makes

it well-suited for exploring the dynamics of cardiac electrophysiology.

5.2.2 Model Inputs and Outputs

The membrane voltage (V) in a cardiac cell is typically described by the following ordinary

differential equation (ODE):
dV
dt

=− 1
Cm

(Iion + Istim ) , (5.1)

where:

• V is the membrane voltage,

• Cm is the membrane capacitance,

• Iion represents the total ionic current across the membrane,

• Istim is an external stimulus current.

Equation (5.1) captures the rate of change of the membrane voltage as a function of the total

ionic currents and any external stimulus applied to the cell. The total ionic current across

the membrane, Iion , is typically represented as the sum of all individual ionic currents flowing

through various ion channels, pumps, and exchangers in the cell membrane. The equation

can be written as:

Iion = INa + IKr + Ito + INaCa + IClb + ICaL + INaK + IKs + · · · (5.2)
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Each term represents a different ionic current, contributing to the overall ionic current Iion that

influences the membrane voltage. Additional currents may be included depending on the spe-

cific model or the types of ionic channels, exchangers, and pumps considered. Each current

in the Shannon model for rabbit ventricular myocytes is typically described by an equation, for

instance, the equation for the sodium current (INa) is:

INa = GNam3h j (V −ENa) , (5.3)

where:

• GNa is the maximum sodium conductance,

• m,h, and j are gating variables that represent the activation and inactivation states of

the sodium channel,

• ENa is the equilibrium (Nernst) potential for sodium.

In this study, eight ionic conductances were selected for random variation by modifying the

baseline conductance with a scale factor p. These scale factors are referred to as inputs. For

instance, the modified conductance for GKr can be expressed as:

G′
Kr = p ·GKr,baseline (5.4)

Table 5.1 lists currents and pumps in the Shannon model (Shannon et al. 2004), whose con-

ductances were varied to construct populations of models. The eight conductances are chosen

based on a preliminary parameter sensitivity analysis, which showed that the conductance of

eight ionic currents had the most significant impact on repolarisation (Romero et al. 2009).

The selection of these conductances was also informed by prior investigations by Lachaud

(Lachaud et al. 2022), where simulation techniques were used to analyse the impact of each

conductance on the action potential. A population of models was generated by applying these

modifications to the baseline conductances. The Shannon model (Shannon et al. 2004) was

simulated using MATLAB (R2019B, The MathWorks, Inc., USA), with code obtained from the
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Ionic currents Description
INaK Sodium-potassium pump current
IKr Rapid delayed rectifier potassium current
Itos Slow transient outward potassium current
IK1 Inward rectifying potassium current

INaCa Sodium-calcium exchanger current
IClb Background chloride current
ICaL L-type calcium current
IKs Slow delayed rectifier potassium current

Table 5.1: List of ionic currents and pumps in the Shannon model (Shannon et al. 2004),
whose conductances were varied to construct populations of models.

CellML repository (www.cellml.org) (Miller et al. 2010). The simulation focused on measur-

ing three key model biomarkers: action potential duration at 90%, 50%, and 30% repolarisa-

tion (APD90, APD50, and APD30, respectively), all derived directly from the action potential.

These biomarkers are referred to as outputs in this context.

5.2.3 Gaussian Process Emulators

Statistical emulators, such as Gaussian Processes (GPs), have been widely applied across

various fields of research. These applications range from predicting scalar values in cardiac

electrophysiology (Coveney and Clayton 2020), to musculoskeletal modelling (Benemerito et

al. 2022), time series analysis in finance (Han et al. 2016), and weather forecasting (Roberts et

al. 2013). A GP is a powerful regression tool commonly used in machine learning, well-suited

for handling uncertainty and variability. GP emulators, which comprise mean and variance

components, provide a probabilistic estimate of the output, making them invaluable for sensi-

tivity and uncertainty analysis.

The Gaussian Process emulator is particularly effective in clarifying the input-output relation-

ships in complex, nonlinear systems. The model is initially trained on a set of design data

that includes both inputs and corresponding outputs. Once trained, a GP emulator can swiftly

predict the required output for new inputs that were not part of the original training set. In a

study by (Chang et al. 2015), GP emulators were used to manage uncertainty and variability

in a cardiac cell model, offering significant advantages over traditional methods such as Monte
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Carlo simulations, which require a large number of simulator runs to achieve similar results

(Melis et al. 2017). Various methodologies can be employed to construct an emulator for a

complex model. Recent studies have utilised partial least squares (PLS) regression to develop

emulators that are particularly effective for sensitivity analysis (Sobie 2009; Sarkar et al. 2012).

5.2.4 Constructing a Gaussian Process Emulator

A Gaussian Process (GP), as defined by Rasmussen( Williams and Rasmussen 2006), is a

powerful statistical tool that models a collection of random variables, with the defining property

that any finite subset of these variables has a joint Gaussian distribution. This characteristic

allows GPs to flexibly capture complex relationships in data. In the context of this study, GPs

are parametrised by two essential functions: a mean function and a covariance function. The

mean function represents the central trend or expected value of the process across the input

space, while the covariance function (also known as the kernel function) describes the degree

of correlation or similarity between function values at different input points.

In constructing GP emulators for this research, we employed the scikit-learn library, which

provides robust tools for implementing and optimising GPs. Each emulator developed is char-

acterised by a GP with a linear mean function, which captures the general trend of the data,

and a Gaussian covariance function, which effectively models the relationships and depen-

dencies between different inputs. The hyperparameters of these emulators, which control the

behaviour of the mean and covariance functions, were optimised through training on a set of

design data. This training process assumed a uniform prior distribution, allowing the emulator

to generalise well to new data while maintaining flexibility in modelling complex patterns. The

result is a set of GP emulators that are both accurate and computationally efficient, capable of

providing reliable predictions and insights into the underlying processes being studied.
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The validation of the emulators was conducted by generating an additional set of test data,

which included both inputs and corresponding outputs derived from simulator runs. This test

data served as a benchmark to assess the accuracy and reliability of the emulators. For each

set of inputs in the test data, the outputs predicted by the emulator were directly compared to

the outputs generated by the action potential (AP) simulator model.

To rigorously evaluate the differences between the outputs produced by the emulator and those

from the AP simulator, the Bland-Altman test (Bland and Altman 1986) was employed. The

Bland-Altman test is a widely recognised method for assessing agreement between two dif-

ferent measurement techniques. It involves plotting the differences between the two methods

against their mean, allowing for the identification of any systematic biases and the assessment

of the limits of agreement. By applying this statistical test, we were able to quantify the degree

of accuracy of the emulator in replicating the simulator outputs, ensuring that the emulator

provides a reliable approximation of the AP simulator model across the range of tested inputs.

This validation step is crucial for confirming that the emulator can be confidently used as a

surrogate for the more computationally intensive simulator in further analyses.

5.2.5 Rejection Sampling

Rejection sampling is a statistical inference technique used to generate random values from

a target distribution. This method is rooted in the Monte Carlo approach, which involves gen-

erating random samples from a proposal distribution and subsequently rejecting those that

do not satisfy a specific acceptance criterion. The acceptance of a sample is determined

through a rigorous comparison of the ratio between the target density and the proposal den-

sity. Specifically, each sample is evaluated against this ratio, and only those that meet the

required threshold are accepted. The accepted samples are then distributed according to the

desired target density, ensuring that they accurately represent the underlying distribution of

interest.
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This technique is particularly useful in scenarios where direct sampling from the target distribu-

tion is challenging or computationally expensive. By carefully selecting the proposal distribu-

tion and applying the rejection criterion, rejection sampling allows for the efficient generation

of samples that conform to the desired distribution. For a more detailed discussion on the

implementation and application of rejection sampling, including its initial development and var-

ious adaptations, please refer to the foundational works by (Gilks and Wild 1992; Robert et al.

1999; Gilks et al. 1994; Künsch 2005). These references provide a comprehensive overview

of the methodology and its practical applications in statistical inference.

The fundamental principle of rejection sampling is that the proposal density must fully en-

compass the target density. In practical terms, this requires that the target distribution be

completely covered by a scaled version of the proposal distribution. The aim is to ensure that

the ratio of the target density to the proposal density does not exceed a certain scaling factor,

which is greater than one. This condition ensures that the method efficiently selects samples

that accurately represent the target distribution.

Let f (x) be the target density and let g(x) be the proposal density, then the ration f (x)/g(x)

must not exceed a particular scaling factor k, where k is greater than 1. For a given value of

k, we have the condition that 0 < f (x)/k⋆g(x) < 1. To optimise efficiency, it is preferable to

minimise the value of the scaling factor k, as larger values result in the rejection of a significant

number of samples.

The Algorithm

Once the condition is met and the constant k is determined, the rejection sampling procedure

can proceed. The following algorithm provides a clear, step-by-step guide for efficiently gen-

erating samples from the target distribution f , as successfully demonstrated in the work by

(Ridley and Forget 2021):

• Simulate U ∼ Unif(0,1).

116



• Simulate a candidate X ∼ g from the proposal density.

• If U ≤ f (X)
kg(X) , then “accept” the candidate X .

• Otherwise, “reject” X and go back to the beginning.

• Repeat until the desired number of samples from the target density f has been ac-

cepted.

The rejection sampling algorithm is characterised by the property that the number of attempts

required to accept a candidate sample follows a geometric distribution, where the probability

of success on each attempt is the reciprocal of the scaling factor; 1
k .

To achieve our objective of replicating the variation observed in experimental measurements,

we have chosen to utilise Gaussian process emulators as our modelling approach. These

emulators are advantageous due to their ease of sampling and their ability to be trained using

design data that closely approximates the underlying characteristics of the target distribution,

which in this case corresponds to the ion block experiments conducted by Lachaud et al.

(Lachaud et al. 2022).

5.2.6 Design Data

Before constructing and running the Gaussian process emulator, we generated a design

dataset that includes sets of parameter inputs and their corresponding output values from

simulations. These design data are used to build and fit the GP emulator and can then be

used to evaluate any dataset of inputs.

5.2.7 Simulation and Calibration of the Population of Models

In order to construct a GP emulator, it is vital to create a design dataset comprising a set of

parameter inputs and the corresponding simulator outputs. To capture the variability in action

potential duration (APD) between cells, a population of 6000 variants was created. These vari-

ants were constructed by sampling random values for the conductances from uniform distribu-

tions using Latin hypercube sampling (McKay et al. 2000). We apply a log-normally distributed

117



random scale factor to adjust the baseline value of each parameter for every individual. We

selected these components to span a range of values from 0 to 2, so that the minimum value

of the input parameter became 0, the maximum became 2, and the baseline value 1. This set

of inputs is designed to cover a wide range of possible values for the input parameter. This will

allow the emulator to accurately replicate the model over this actual range of values.

In order to ensure that emulators are trained well, it is important to use design data that covers

the whole input space evenly. Therefore, we have opted to utilise Latin Hypercube sampling

(McKay et al. 2000). The processing cost remains low regardless of the number of altered

parameters, allowing for the investigation of a complex parameter space without incurring ad-

ditional costs. Due to the complex structure of most cardiac cell models, it is not viable to com-

putationally sample every potential combination of parameter values. The majority of studies

examining experimentally-calibrated populations of models in cardiac electrophysiology, such

as (Britton et al. 2014) utilised Latin Hypercube sampling.

The population of candidate models generated in the preceding stage is now subjected to

simulation and calibration in order to identify the models that exhibit electrophysiological char-

acteristics within the same range as those observed in experimental data. Firstly, each model

in the population was integrated in time with a relative tolerance of 0.2× 10−6 employing an

adaptive-step, adaptive-order method for systems of stiff ordinary differential equations based

on numerical differentiation formulas, implemented in MATLAB (R2019B, The MathWorks, Inc.,

USA). Then each model variant was stimulated by a constant current pulse at 2 Hz, a train of

1000 APs was computed, where the last two APs were recorded for APD values extraction

and further analysis. The established protocols are utilised to quantify a set of three outputs,

APD90, APD50, and APD30 where APDxx is the action potential duration at xx% repolarisa-

tion.
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Model runs were excluded from the design data if there was any evidence of unphysiological

behaviour in the model outputs. Model variants were rejected from the population if they failed

to depolarise above 0 mV or if they had a resting Vm > −65mV. An experimental calibration

process is conducted to define the range of values for model outputs. This is done by comput-

ing the minimum and maximum values received from experimental measurements. Extreme

outliers are frequently eliminated to exclude any abnormalities. The biomarkers were APD90,

APD50, and APD30 along with their calibration ranges are shown in Table 5.2.

Biomarker (Nifedipine Drug) APD90 APD50 APD30
Min range (ms) 30.6 20.3 14.1
Max range (ms) 333.2 273.3 229.9

Biomarker (Dofetilide Drug) APD90 APD50 APD30
Min range (ms) 90.9 75.5 46.1
Max range (ms) 376.5 323.2 263.5

Table 5.2: The calibration of the population of models for the drugs Nifedipine and Dofetilide
involved determining the experimental ranges of selected biomarkers. Calibration ranges taken
from (Lachaud et al. 2022).

5.2.8 Fitting GP Emulators

Cardiac cell models function as simulators that generate a vector of outputs, denoted as As,

based on a vector of input parameters, denoted as G. This relationship can be expressed

mathematically as As = fs(G). To construct and fit the emulator, approximately 80% of the

available design data, referred to as the training dataset, is utilised. These emulators are

subsequently evaluated using a test dataset, which is generated independently from simulator

runs and is not involved in the fitting process. Our approach to constructing Gaussian process

emulators follows methodologies established in recent research (Chang et al. 2015). Separate

emulators were developed for each model output.

Generally, an emulator is a statistical model that approximates a simulator, often referred to as

a surrogate model. The emulator models the relationship as Ae = fe(G), where the emulator’s

output approximates the simulator’s output, such that Ae ≈ As for a given input G. In this study,

the emulator is defined as a Gaussian process, with its hyperparameters optimised using a

set of simulator runs known as design data. Once the Gaussian process is trained, it can

provide posterior predictions Ae for a new input G∗, even if the simulator has not been run for
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that specific input. This posterior prediction is represented as a probability distribution that in-

cludes both an expected value and a variance. The variance of the prediction Ae quantifies the

uncertainty associated with predicting the simulator’s behaviour at G∗ (Coveney and Clayton

2020).

5.2.9 Conducting Rejection Sampling

In this chapter, our objective is to accurately replicate the variations observed in experiments

to analyse the conductances. To achieve this, rejection sampling is used to reproduce APDs

matching the experimental ones. We used Gaussian process emulators as the proposed den-

sity as these emulators are easily obtainable for sampling and are trained using design data

that roughly equals the target density, which corresponds to the ion block study conducted

by Lachaud et al. (Lachaud et al. 2022). This experimental data we use to demonstrate our

techniques consists of APD values measured from rabbit ventricular cells.

5.3 Results
In this section, we will focus exclusively on presenting the findings related to the output APD90.

All other outputs, as well as the results involving the drug Dofetilide, will be discussed in detail

in Chapter 6.

For each model variant in the population, the simulator was used to generate both the design

(training) and test datasets, with the resulting action potentials serving as the basis for deriving

the outputs. Figure 5.1 shows the time series of action potentials from the initial population,

which were utilised to measure the APD biomarkers. The APD outputs, directly measured

from these action potentials, are depicted in Figure 5.2, where APDxx is the time intervals

between the beginning of an AP and xx% repolarisation from maximum voltage (Vpeak). After

the simulation, we carried out a filtering process to evaluate each model variant to ensure it

successfully generated a valid action potential (AP). In the context of cardiac electrophysiology,

a valid action potential refers to a waveform that accurately reflects the physiological character-

istics of a cardiac cell’s electrical activity, including the proper initiation, depolarisation, plateau

phase, and repolarization of the cell membrane. All AP phases are explained in details in
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Figure 5.1: Time series of action potentials generated from the initial population of rabbit
Shannon models (Shannon et al. 2004) using the simulator. These time series were used to
derive key APD biomarkers, forming the basis for both the design (training) and test datasets.
The figure visually represents the variation in action potentials across different model variants,
highlighting the diversity within the population and providing a foundation for subsequent anal-
ysis of the APD measurements

Chapter 2. This valid waveform is crucial because it represents the cell’s ability to respond to

electrical stimuli and propagate an electrical signal, which is essential for coordinated heart

function. Models that failed to produce a valid action potentialdue to issues such as incorrect

ion channel behaviour, abnormal resting potentials, or incomplete repolarizationwere excluded

from further analysis. Only those model variants that generated realistic and physiologically

plausible action potentials were retained, ensuring that subsequent analyses were based on

accurate and meaningful data. This step was critical in maintaining the scientific validity of our

study and ensuring that the conclusions drawn reflect true biological processes. Figure 5.3

provides a visual representation of several model variants, specifically highlighting the APD90

values which is a critical metric in cardiac electrophysiology, reflecting the normal rhythm and

function of cardiac cells. In examining the figure, we observe that while some models suc-

cessfully produced valid action potentials with APD90 values within the expected physiological

range of 100 to 400 milliseconds, there are notable exceptions. Some models exhibited APD90
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Figure 5.2: Action potential recorded biomarkers. APDxx values are the time intervals be-
tween the beginning of an AP and xx% repolarisation from maximum voltage (Vpeak)

values outside this range, particularly those falling below 100 milliseconds or exceeding 400

milliseconds. These outliers likely correspond to models that failed to produce a valid action

potential. We conclude that models with APD90 values outside the typical range often indicate

non-physiological or unstable behaviours, making them unsuitable for further analysis.

5.3.1 Validation of GP Emulators

Figure 5.4 provides a comprehensive analysis of the accuracy and reliability of the APD90 GP

emulator by comparing its outputs directly against those generated by the traditional simulator

across a wide range of test data points. The figure utilises a Bland-Altman plot, a statistical

method commonly employed to assess the agreement between two different measurement

techniques. In this plot, the x-axis represents the average of the APD90 values obtained from

the simulator and the GP emulator, calculated as:

Average APD90 =
APD90sim +APD90emu

2
(5.5)
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Figure 5.3: A procedure of elimination was conducted to exclude any action potential (AP)
when the APDxx falls outside of an acceptable range. Here are some different values of
APD90 with the corresponding AP traces.

The y-axis represents the difference between the APD90 values predicted by the emulator and

those calculated by the simulator, expressed as:

Difference in APD90 = APD90emu −APD90sim (5.6)

Each point on the plot corresponds to a specific input, showing the difference between the

APD90 values predicted by the emulator and those produced by the simulator plotted against

the average of these two values. The dashed lines in the plot are particularly significant as

they represent the mean difference between the two methods, ∓1.96 standard deviations.

These boundaries encompass approximately 95% of the differences between the emulator

and simulator outputs, providing a clear indication of the expected range of variation, or “limits

of agreement”, between the two methods.
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The placement of data points within these limits is crucial for evaluating the emulator’s per-

formance. Points that lie within the dashed lines suggest that the emulator’s predictions are

generally consistent with the simulator’s results, indicating that the emulator is a reliable al-

ternative to the simulator in those instances. Conversely, points falling outside these bounds

highlight areas where the emulator’s predictions significantly diverge from the simulator, sig-

naling potential discrepancies that may require further investigation.

Figure 5.4: Bland-Altman plot comparing the APD90 measurements obtained from the Sim-
ulator and Emulator methods. The x-axis represents the average of the APD90 values from
both methods, calculated as Average in (5.5). The y-axis shows the difference between the
APD90 values produced by the Emulator and the Simulator, expressed as Difference in (5.6).
The dashed lines represent the limits of agreement ( ±1.96 standard deviations), providing a
visual assessment of the consistency between the two methods and highlighting any potential
bias.

For the given values APD90sim = 249 and APD90emu = 248, the Average APD90 is 248.5 and

the difference in APD90 is −1. The calculate the percentage difference relative to APD90emu

is:

Percentage Difference =

(
Difference in APD90

APD90emu

)
×100 ≈−0.4032% (5.7)
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The calculated percentage difference between the emulator and simulator APD90 values is

approximately −0.40%. This result indicates that the APD90 value predicted by the emulator

is slightly lower than that of the simulator by 0.40%. The small magnitude of this difference

suggests that the emulator is highly accurate and closely approximates the simulator’s perfor-

mance, thus providing reliable predictions.

5.3.2 Visualisations of Experimental Data

In the study by Lachaud et al. (Lachaud et al. 2022), the drug Dofetilide was administered at

a concentration of 30 nM to induce a blockade of the hERG channels. This inhibition of the

rapid delayed rectifier potassium current (IKr) resulted in a prolonged action potential duration

(APD). In contrast to the effects of Dofetilide, the inhibition of L-type calcium channels by 1 µM

Nifedipine led to a shortening of the APD. Figure 5.5 shows the distribution of action potential

duration in the experiments conducted by (Lachaud et al. 2022). The histograms illustrate the

impact of both drugs on the measurements of APD biomarkers before and after the application

of drugs. To ensure the effectiveness of rejection sampling, it is crucial that the kernel density

estimate (KDE) generated by the Gaussian Process (GP) emulator fully encompasses the

KDE derived from the experimental data. If this condition is not met, the rejection sampling

method will fail to properly filter out models that produce unphysical results. This requirement

guarantees that the sampled models align closely with the distribution of biomarkers observed

in the experimental data, thereby maintaining the validity of the model population. However, as

illustrated in Figure 5.6, there were instances where the KDE of the APD90 measurements did

not fully overlap between the GP emulator and the experimental data, both before and after

drug inhibition.

To address this issue, it is necessary to introduce a scaling factor, denoted as k, which ensures

that the scaled GP emulator’s KDE fully encompasses the target KDE from the experimental

observations. This scaling factor k, as explained in the methods section, is determined by

the maximum ratio between the GP emulator’s density and the experimental data density. By

scaling the proposal distribution (GP emulator) with this factor, we adjust the distribution so

that it reliably covers the entire range of the target distribution. For each case examined, we
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Figure 5.5: Histograms illustrating the distribution of action potential duration (APD) biomark-
ersAPD90, APD50, and APD30both at before drug and after drug application in the study by
Lachaud et al. (Lachaud et al. 2022). The figure comprises a total of 12 histograms, with
datasets representing the experimental measurements before and after the administration of
two drugs: 1 µM Nifedipine, which inhibits L-type calcium channels and results in a shorten-
ing of the APD, and 30 nM Dofetilide, which blocks hERG channels and leads to a prolonged
APD. Each set of histograms compares the changes in APD90, APD50, and APD30, providing
a detailed visual representation of the drug’s effects on the action potential duration across
different biomarkers.

calculated the appropriate value of k and applied it to scale the GP emulator. We then provided

an additional visualisation, shown in Figure 5.7, to confirm that the scaled proposal distribution

consistently exceeds the target distribution, thereby ensuring the effectiveness of the rejection

sampling process.
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Figure 5.6: This plot illustrates the Kernel Density Estimates (KDE) for APD90 measurements
generated by the Gaussian Process (GP) emulator compared to those derived from experi-
mental data, both before and after drug inhibition. The figure highlights instances where the
KDEs do not fully overlap, indicating differences between the emulator’s predictions and the
observed experimental distributions.

Figure 5.7: This figure shows the scaled Kernel Density Estimate (KDE) of the GP emulator
for APD90 after multiplying by the scaling factor k to ensure that the KDE of the GP emulator
does fully encompass the experimental KDE. This visualisation confirms that the scaled distri-
bution consistently exceeds the target distribution, thereby enhancing the effectiveness of the
rejection sampling process.

5.3.3 Biomarker Distributions in each Model Population

We utilised one million iterations to initialise our rejection sampling procedure, yielding a pop-

ulation of 10,000 acceptable models before and after the drug. However, it is important to

emphasise that these choicesone million iterations and 10,000 modelsshould not be inter-

preted as measures of the method’s efficiency but they reflect the specific parameters cho-

sen for this study and the stringent criteria used to ensure that only models closely matching

the desired characteristics were retained. In Figure 5.8, the APD90 distributions from the

Nifedipine dataset are represented in blue, while the distributions from the sampled models

generated through the rejection sampling method are shown in red. The rejection sampling

approach effectively produced model populations that closely mirror the variability observed in
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the experimental data. This successful alignment indicates that using rejection sampling with

GP emulators for distributional calibration significantly enhances the accuracy of the model

populations in reflecting the characteristics of the experimental datasets. Until recently, the

Figure 5.8: The left subplot shows the distribution of APD90 from the experimental data (blue)
and the sampled data (red) before Nifedipine administration, while the right subplot illustrates
the same distributions after the drug application. The alignment of these distributions indicates
the accuracy of the rejection sampling method in capturing the effects of Nifedipine on APD90.

calibration of model populations has largely involved excluding any simulated models that pro-

duce outputs inconsistent with the observed values in the dataset (Muszkiewicz et al. 2016).

In two recent studies in cardiac electrophysiology (Lancaster and Sobie 2016 and Tixier et al.

2017), parameter values were selected to ensure that the models collectively exhibited the

appropriate mean and standard deviation for the experimental measurements of interest. One

approach, as described in the study by (Lawson et al. 2018), involved randomly scaling cellular

parameters to generate variability in ion-channel expression using the sequential Monte Carlo

(SMC) algorithm. In the work by (Lachaud et al. 2022), a more straightforward method was

employed, in which they generated 3,425 Shannon models that were accepted into the control

population by fitting the distribution of the models to the experimental data.

The rejection sampling procedure in this chapter effectively generated a population of models

that accurately captures the distribution of outputs for the two ion channel block datasets, both

of which exhibit significant variability among individual cells. Table 5.3 demonstrates a perfect

match, with identical mean values for APD outputs across the model populations from our

study and the experimental data (Lachaud et al. 2022).
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Setting Mean APD90 APD50 APD30

Basline Nif.
Experiment 249 204 159

Population 248 203 159

Drug Nif.
Experiment 152 107 70

Population 154 109 69

Basline Dof.
Experiment 264 221 171

Population 264 221 171

Drug Dof.
Experiment 289 242 183

Population 289 241 180

Table 5.3: All biomarkers show a perfect agreement with identical mean values in the model
distribution and experiments by (Lachaud et al. 2022)

5.3.4 Statistical Analysis

To assess the effectiveness of our technique, we utilised a statistical tool known as the Quantile-

Quantile (QQ) plot. This graphical method is particularly useful for comparing two datasets to

determine if they originate from the same distribution, and it is commonly employed to check

the assumption of normality in statistical analyses. The QQ plot functions by plotting the quan-

tiles of one dataset against the corresponding quantiles of another. If the datasets share the

same distribution, the points on the QQ plot will approximately align along a 45-degree line

through the origin. Deviations from this line suggest differences between the distributions; for

instance, an S-shaped curve may indicate that the data has heavier tails than the reference

distribution.
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We generated a QQ plot to compare the quantiles of the experimental distribution (plotted on

the x-axis) with those of the sampled data obtained through rejection sampling (plotted on

the y-axis). As shown in Figure 5.9, the majority of data points closely align with the diago-

nal line, indicating a strong agreement between the sampled and experimental distributions.

This alignment suggests that our rejection sampling technique effectively captures the overall

distribution of the experimental data.

The QQ plot is particularly valuable as it not only allows for the evaluation of overall similarity

between distributions but also facilitates the identification of specific deviations due to varia-

tions in the data. This capability is crucial for diagnosing assumptions in statistical models,

such as the normality assumption in linear regression. Despite the strong overall agreement,

our analysis also revealed that each model population exhibited notable variations compared to

the experimental dataset for different model outputs, highlighting the inherent variability within

the models.

Figure 5.9: QQ plot. On the x-axis are the quantiles of the experimental distribution and on
the y-axis are the quantiles of the sampled data, where the left plot corresponds to before drug
and the after drug is on the right.
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5.3.5 Distributions of Ion Channel Conductances in the Sampled Popu-

lation of Models

The aim of this chapter is to identify the distributions of ion channel conductance values that

accurately reflect the variability in electrophysiological characteristics observed across a large

population of cells. We employed rejection sampling with Gaussian Process (GP) emulators

to generate a population of models, which were then used to quantitatively predict the range

of responses to two ion channel blocks. Our methodology was applied to the rabbit action

potential (AP) model proposed by Shannon (Shannon et al. 2004) to evaluate the accuracy of

the cell models in predicting drug effects. We also investigated and compared the variability in

parameter distributions within the accepted model population for each AP model.

The data presented in Figure 5.10 shows that the majority of conductance values span the

entire sampling range (0.12 times the baseline value for each conductance). This highlights the

robustness of the Shannon rabbit action potential model to variations in conductance values.

In both the before drug and drug-affected populations of APD90, the median conductance

values generally align with the baseline value of 1, with the exceptions of gCaL and gNaCa.

Figure 5.10: Box plot of selected parameter distributions in the Shannon model population for
both before drug and drug response APD90. The lower and upper box boundaries are the 25th

and 75th percentiles, respectively. The median is denoted by a solid black line inside the box
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5.3.6 Partial Correlation Coefficient for Model Biomarkers

Ionic currents display consistent behaviour across different phases of the action potential,

with some currents being particularly sensitive to changes, potentially leading to alterations

in the shape of the action potential. We investigated whether there were any relationships

between the parameter values in the models of each population and the APD biomarkers.

To explore these relationships, we used the partial correlation coefficient (PCC) plot, which

illustrates the relationship between a biomarker and the corresponding conductances within

the population, while controlling for the influence of other variables. The PCC plot is invaluable

for understanding the unique relationships between variables, as it isolates the direct effects

by removing the confounding influence of other factors.

In Figure 5.11, the PCC plot demonstrates how each conductance variable is related to APD90

after accounting for the effects of the other conductance variables, thereby clarifying the direct

relationship between APD90 and each specific conductance. Notably, the conductance vari-

ables gCaL and gNaCa show a direct correlation, where an increase in these conductances

is associated with an increase in APD90 when other variables are controlled for. Conversely,

gNaCa, gKr, gtos, and gClb exhibit an inverse correlation, where an increase in any of these

conductances is associated with a decrease in APD90, again controlling for other variables.

Interestingly, in the Nifedipine drug population models, the conductance gK1 demonstrates

a negative correlation with APD90, yet it shows a weaker relationship with APD90 in other

populations.

In Figure (5.11), the PCC plot shows how each conductance variable is related to APD90 after

accounting for the effects of the other conductance variables, which helps in understanding the

direct relationship between APD90 and each conductance variable. Clearly, gCaL and gNaCa

have a direct relationship, where an increase in these conductance variables is associated with
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an increase in APD90 when controlling for other variables. While, all of gNaK, gKr, and gtos

exhibit an inverse correlation, wherein an increase in any of this conductance is associated

with a drop in APD90 while controlling for other variables. Notably, after application of the drug

Nifedipine, the conductance gK1 established a negative correlation with APD90.

Figure 5.11: Partial correlation coefficient (PCC) plot for APD90 and the corresponding con-
ductances in before drug (top) and after drug population (Nifedipine) (bottom)

5.3.7 Correlation Between Ion Conductances of Model Populations

We generated 2D density plots to visualise the distributions of specific pairs of ionic conduc-

tances within the populations of the Shannon model. The KDE approach allows us to identify

regions of high and low density within the data. These plots reveal that most conductance

parameters span nearly the entire range, extending up to ∓100% of their original values from

the baseline model. The only notable exception is gCaL, which occupies the upper half of the

sampled gCaL range, as shown in Figure 5.12 for the baseline population. This distribution

suggests a consistent tendency for gCaL to remain near its upper limit in the sampled popula-

tions, which may have significant implications for the overall electrophysiological behaviour of

the model.
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Figure 5.12: The figure presents a series of seven 2D density plots, each visualising the
relationship between the calcium current conductance gCaL and one of the other ionic conduc-
tances within the Shannon model populations. The plots were generated to illustrate how gCaL
correlates with gNaK, gKr, gKtos, gK1, gNaCa, gClb, and gKs. Each plot was created using kernel
density estimation (KDE) to capture the density of the data points, with gCaL plotted on the
y-axis and the corresponding conductance on the x-axis.

Additionally, pair plots were created to visually summarise the correlations between the same

pairs of conductances in the populations both before and after the application of the drug, as

illustrated in Figure 5.13. The plot consists of three key elements: the upper diagonal shows

the correlation coefficients, providing a quantitative measure of the strength and direction of

the relationships between each pair of conductances; the diagonal presents the Kernel Den-

sity Estimates (KDE) for each conductance, illustrating the distribution of values within the

population; and the lower diagonal features scatter plots, visually representing the relationship

between each pair of conductances.
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This comprehensive visualisation highlights how the application of the drug influences the

correlations and distributions of the ion conductances in the model population.

Figure 5.13: Pair plot visualising the relationships between conductances in the sampled
APD90 population before and after Nifedipine administration. The navy colour represents the
conductances before the drug, while the red colour represents the conductances after the drug
application. The plot includes three key elements: the upper diagonal shows the correlation
coefficients, indicating the strength and direction of relationships between conductance pairs;
the diagonal displays the Kernel Density Estimates (KDE) for each conductance, illustrating
the distribution of values within the population; and the lower diagonal presents scatter plots
that provide a visual representation of the relationships between conductance pairs. This com-
prehensive visualisation effectively demonstrates the impact of Nifedipine on the correlations
and distributions of ion conductances within the model population.

135



To assess the effect of particular ion channels on the duration of the action potential (APD)

through pharmacological reactions, we undertake an investigation to precisely determine the

change in the distribution of specific conductance before and after the application of the drug.

We perform an analysis to examine the distribution of ionic conductances in the population

before and after administering the drug Nifedipine. We begin with two datasets that represent

the values of the conductances corresponding to APD90 before and after the application of

the drug, respectively. Each dataset has the eight conductances of the currents listed in Table

(5.1).

To begin our analysis, we applied Kernel Density Estimation (KDE) to each conductance in

both datasets (before and after drug) to represent their distributions. KDE provides a smoothed

estimation of the probability density function for a stochastic variable, allowing for a clearer

understanding of the underlying distribution. We generated KDEs for each conductance and

compared them visually before and after drug application, refer to Figure 5.14. These plots of

KDEs helped us observe how the distribution of each conductance was affected by the drug.

Following this, we selected specific data points from the KDE before the drug application (1000

points; 10% of the data points) and examined how these points shifted or changed after the

drug was introduced. This approach enabled us to gain insights into the impact of the drug on

the conductance distributions.

Let the KDE of a conductance g before the drug application be Kb, and Ka be the KDE of g

after the application of the drug. For each selected point xb on Kb, we have:

yb = Kb (xb), (5.8)

and similarly, for points on Ka:

ya = Ka (xa). (5.9)
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Figure 5.14: Kernel Density Estimation (KDE) plots illustrating the distributions of each ionic
conductance before drug (navy lines) and drug-applied datasets (red lines). These plots pro-
vide a smoothed estimation of the probability density functions, enabling a visual comparison
of how the distributions of the conductances change after drug application.

Since xa is the value after the drug, we can write it as xa = (α · xb), where α is a multiplicative

factor representing the drug action applied to xb.
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Then we have:

Kb(xb) = Ka(αxb). (5.10)

For each selected point, we solve the equation (5.10) above for α , to identify the new value

(αxb) on the Ka distribution corresponding to each point xb on the Kb distribution. To analyse

the change in xb we compute the derivative of Kb with respect to xb to determine whether it is

increasing or decreasing at each point. Based on this derivative, we decide which root (it could

be more than one root) to accept as the new value after the drug action. To visualise we plot

the roots (the solutions to the equation (5.10)) and the selected α values against the selected

points from xb.

Figure 5.15 shows how each point on the Kb distribution maps to the Ka distribution after

the drug application. By systematically comparing the KDEs and analysing the transforma-

tion of specific points due to the drug, we gain insights into the effects of Nifedipine on the

conductance values of APD90. This method provides a detailed understanding of how each

conductance is affected by the drug, which can be crucial for further pharmacological studies

and applications. When the α curve follows a root curve and then jumps to another root curve

at some point, this behaviour can be interpreted in the context of the sign of the derivative of

Kb (xb). As the alpha curve represents the scaling factor applied to xb that makes the densities

Kb (xb) and Ka (αxb) equal. The derivative dKb/dxb indicates the rate of change of the density

Kb with respect to xb. When dKb/dxb ≥ 0, it suggests that Kb is increasing or staying constant

as xb increases. In this case, the α value follows the first root curve. When dKb/dxb < 0, it

suggests that Kb is decreasing as xb increases. This is the point where the α value may jump

to the other root curve, which provides the alternative solution.

The jump in the α curve from the first root to another root indicates a transition in the relation-

ship between the densities Kb and Ka. This transition is closely related to the change in the

sign of dKb/dxb. When the derivative changes sign, it signifies a shift in the density behaviour,

prompting the α value to switch to the other root to maintain the equality Kb (xb) = Ka (αxb).
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Figure 5.15: Visualisation of the mapping of specific data points from the Kernel Density
Estimation (KDE) of conductance Kb ( before drug application) to the KDE Ka (after drug
application). The figure illustrates how each selected point xb on distribution Kb shifts to a new
value α ·xb on the post-drug distribution Ka due to the application of Nifedipine. The roots of the
equation Kb (xb) = Ka (α · xb) are plotted to show the transformation, with the corresponding
α values indicating the extent of change for each point. Notably, the figure reveals a jump
from a root to another (root01 & root02 respectively) in the mapping process, highlighting a
significant shift in conductance values due to the drug. This jump provides further insights into
the non-linear effects of Nifedipine on the conductance values associated with APD90, offering
a more detailed understanding of the drug’s impact on the electrophysiological properties of
the model.

Two conductances, gtos, and gKs, exhibited unique behaviour, with gaps appearing where no

roots could be found. This occurred because the KDE for the before drug condition (Kb) was

higher than the KDE after drug application (Ka) over certain ranges, leading to intervals where

the equation Kb (xb) = Ka (αxb) had no solutions. To address this issue, we made adjustments

to our calculations, enabling us to resolve the problem. In Figure 5.16, these special cases are

illustrated, clearly showing intervals where no solutions exist and where the value of α does

not correspond to either of the roots. 139



Figure 5.16: Visualisation of special cases for conductances gtos and gKs, where gaps with
no roots were identified. The figure illustrates intervals where the KDE ( Kb ) before the drug
action exceeds the post-drug KDE (Ka), resulting in regions without solutions to the equation
Kb (xb) = Ka (αxb). These intervals are marked by a lack of corresponding α values following
the roots, highlighting the challenges in mapping conductance values when the before drug
distribution is higher than the post-drug distribution.

5.4 Distributions of APD50 and APD30 in Nifedipine Popu-

lation
In Figures 5.17 and 5.18, the distributions of APD50 and APD30 respectively from the Nifedip-

ine dataset are represented in blue, while the distributions from the sampled models generated

through the rejection sampling method are shown in red. The rejection sampling approach

effectively produced model populations that closely mirror the variability observed in the ex-

perimental data. This successful alignment indicates that using rejection sampling with GP

emulators for distributional calibration significantly enhances the accuracy of the model popu-

lations in reflecting the characteristics of the experimental datasets.

5.5 Distributions of APD90, APD50 and APD30 in Dofetilide

Population
The following figures compare the distributions of APD90, APD50, and APD30 between the

experimental data from Dofetilide administration and the sampled data generated through the

rejection sampling method. Each figure includes two subplots: the left shows the distribution

before the drug was applied, and the right shows the distribution after the drug application.

These comparisons help to assess the effectiveness of the rejection sampling method in repli-

cating the experimental variability observed in response to Dofetilide.
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Figure 5.17: A comparison of the APD50 distributions between the Nifedipine experimental
dataset (blue) and the model populations generated via rejection sampling (red). The left panel
shows the distributions before the drug application, while the right panel displays the distribu-
tions after the drug application. The strong similarity between the two distributions highlights
the success of the rejection sampling method with GP emulators in precisely capturing the
variability seen in the experimental data.

Figure 5.18: A comparison of the APD30 distributions between the Nifedipine experimental
dataset (blue) and the model populations generated via rejection sampling (red). The left panel
shows the distributions before the drug application, while the right panel displays the distribu-
tions after the drug application. The close alignment between the experimental and model
distributions demonstrates the effectiveness of the rejection sampling method in capturing and
replicating the observed experimental variability in the model populations.

5.6 Distributions of ion conductances
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Figure 5.19: The figure compares the distributions of APD90, APD50, and APD30 between
experimental data from Dofetilide administration and the sampled models generated through
the rejection sampling method. The left column (from top to bottom) shows the distributions of
APD90, APD50, and APD30 before drug application, while the right column presents the same
distributions after drug administration. APD90 and APD50 exhibit strong alignment between
experimental and sampled data, indicating successful replication of variability. However, the
APD30 distribution shows less accuracy in capturing the experimental variability.
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Figure 5.20: Pair plot visualising the relationships between conductances in the sampled
APD50 population before and after Nifedipine administration. The navy colour represents the
conductances before the drug, while the red colour represents the conductances after the drug
application. The plot includes three key elements: the upper diagonal shows the correlation
coefficients, indicating the strength and direction of relationships between conductance pairs;
the diagonal displays the Kernel Density Estimates (KDE) for each conductance, illustrating
the distribution of values within the population; and the lower diagonal presents scatter plots
that provide a visual representation of the relationships between conductance pairs. This com-
prehensive visualisation effectively demonstrates the impact of Nifedipine on the correlations
and distributions of ion conductances within the model population.
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Figure 5.21: Pair plot visualising the relationships between conductances in the sampled
APD30 population before and after Nifedipine administration. The navy colour represents the
conductances at baseline (before the drug), while the red colour represents the conductances
after the drug application. The plot includes three key elements: the upper diagonal shows the
correlation coefficients, indicating the strength and direction of relationships between conduc-
tance pairs; the diagonal displays the Kernel Density Estimates (KDE) for each conductance,
illustrating the distribution of values within the population; and the lower diagonal presents
scatter plots that provide a visual representation of the relationships between conductance
pairs. This comprehensive visualisation effectively demonstrates the impact of Nifedipine on
the correlations and distributions of ion conductances within the model population.
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Figure 5.22: Pair plot visualising the relationships between conductances in the sampled
APD90 population before and after Dofetilide administration. The navy colour represents the
conductances at baseline, while the red colour represents the conductances after the drug
application. Unlike the noticeable changes observed with Nifedipine, the impact of Dofetilide
on the correlations and distributions of ion conductances is more moderate, indicating a less
dramatic effect of this drug on the model population.
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Figure 5.23: Pair plot visualising the relationships between conductances in the sampled
APD50 population before and after Dofetilide administration. The navy colour represents the
conductances at baseline, while the red colour represents the conductances after the drug
application. Unlike the noticeable changes observed with Nifedipine, the impact of Dofetilide
on the correlations and distributions of ion conductances is more moderate, indicating a less
dramatic effect of this drug on the model population.
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Figure 5.24: Pair plot visualising the relationships between conductances in the sampled
APD30 population before and after Dofetilide administration. The navy colour represents the
conductances at baseline, while the red colour represents the conductances after the drug
application. Unlike the noticeable changes observed with Nifedipine, the impact of Dofetilide
on the correlations and distributions of ion conductances is more moderate, indicating a less
dramatic effect of this drug on the model population.
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Chapter 6

Conclusion

In this chapter, we provide a comprehensive summary of our work and outcomes. We also

discuss the limitations of our approaches and present a perspective on potential future ad-

vancements.

6.1 Summary of Results, Strengths and Limitations

Chapter 3

In Chapter 3, we present a comprehensive study that employed a simplified conceptual model

of cellular excitability to analyse experimental measurements of ion channel blockade within

a vast and diverse population of uncoupled cardiomyocytes. The experimental data, sourced

from the work of (Lachaud et al. 2022), primarily consist of observations related to the short-

ening of action potential duration (APD) in nearly 500 rabbit ventricular myocytes. These cells,

collected from various regions of the left ventricles across multiple animals, were subjected to

an application of 1µM of the drug nifedipine. This diverse sourcing resulted in a significant in-

trinsic variation in both the APD and the cellular response to the drug, a phenomenon already

quantified in the original study by (Lachaud et al. 2022).
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The primary objective of this analysis is to infer the intrinsic properties of each myocyte by de-

termining cell-specific parameter values within a suitable mathematical framework. To this end,

the McKean model (McKean Jr 1970) was selected due to its inherent simplicity and efficacy

in capturing essential excitability dynamics. This model, characterised by a fast-slow system

of piece-wise linear ordinary differential equations reminiscent of the FitzHugh-Nagumo type,

incorporates two variables interpretable as voltage and an effective gating variable. It also

includes two intrinsic parameters that can be viewed as an effective ion current conductance

and an effective kinetic parameter. Within this framework, the authors delineate the parameter

space domain where the model exhibits excitable dynamics, distinguishing it from oscillatory

or bistable behaviors. They further derive an asymptotic approximation for the duration of 1 : 1

action potentials generated under strictly periodic stimulation, leveraging standard fast-slow

asymptotic analysis techniques (Fenichel 1979; Tikhonov 1952). This approximation appears

as an explicit analytical expression for the APD as a function of the McKean model parame-

ters and the basic cycle length of stimulation, denoted as α(a,b,β ). Such relationships are

commonly referred to as restitution curves in electrophysiological literature.

To model the pharmacological action of nifedipine, we introduce a multiplicative factor γ to

the effective conductance parameter a. This modification leads to a set of nonlinear algebraic

equations that, when solved, yield the McKean model parameters ai and bi for each cell i =

1, . . . ,N. These solutions can be determined using experimental measurements of the APDs

Ai and Ai +∆Ai, recorded under periodic stimulation with a basic cycle length B before and

after the application of the drug at concentration Γ. Intriguingly, this framework results in an

adaptive domain problem where the parameter domain Ωγ
ex(β ,γ), along with the basic cycle

length β and the drug dose parameter γ , must be determined as part of the solution. This

determination is facilitated by introducing an additional modelling assumption: the Euclidean

distance between the centroid of the domain and the algebraic mean of the McKean parameter

values of the population is minimised. Through direct numerical evaluation, it is demonstrated

that both the adaptive domain minimisation and the set of 2N nonlinear algebraic equations

admit unique solutions, which are subsequently obtained using standard numerical routines.
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Notably, the existence of Ωγ
ex(β ,γ), distinct from Ωex(β ,γ), suggests that when incorporating

heterogeneity into realistic models, parameter values should be selected from a restricted

region of the parameter space. The findings derived from this study are subsequently utilised

to:

• Further the understanding of the interrelationships proposed by (Lachaud et al. 2022),

as necessary for ensuring the generation of stable AP morphology and repolarisation;

• Predict the scatter of APD values within the population in response to variations in basic

cycle length and drug concentration;

• Calculate nifedipine drug-response curves for each cell in the population and ascertain

the drug concentration required for each uncoupled cell, and the population collectively,

to achieve a uniform APD value; (These predictions were investigated with experimental

validation and showed agreement with independent experimental measurements (Him-

mel et al. 2012)

• Predict the proportion of cells that become inexcitable at elevated drug doses.

A significant strength of this work lies in its adept use of the McKean model (McKean Jr 1970)

to interpret complex biological phenomena through a simplified mathematical model. The

model’s piece-wise linear nature facilitates exact solutions in closed form, enabling the deriva-

tion of explicit analytical expressions for key electrophysiological metrics such as the APD. This

clarity not only aids in understanding the underlying dynamics but also in making precise pre-

dictions about cellular behavior in response to pharmacological interventions. The innovative

approach of introducing an adaptive domain problem adds depth to the analysis, ensuring that

the solutions are not just mathematically but also biologically relevant by accounting for the

inherent heterogeneity within the myocyte population.

150



However, the reliance on an asymptotic expression for the APD, may not capture the full as-

pects observed in real-world data, and the fundamental mathematical structure of cardiac

electrical excitability. Additionally, the exclusive focus on the drug action affecting the effective

conductance parameter a, specifically in the context of APD shortening as induced by nifedip-

ine, limits the generalisation of the findings. Other drugs, mechanisms of action, and scenarios

such as APD prolongation remain unexplored within our research. Furthermore, the current

model does not account for the coupling between myocytes, a factor that could significantly

influence AP waveform synchronisation and tissue-wide responses.

Chapter 4

In Chapter 4, we carried out an extensive analysis to enhance the predictive power and under-

standing of cardiac electrophysiology models by integrating both linear and nonlinear regres-

sion techniques. The key findings from this chapter are summarised as follows:

• Successfully linked variations in ion channel expression to physiological phenomena

such as action potentials (APs) and cellular calcium transients using ordinary least

squares (OLS) regression models.

• Modelled the effects of a 30% reduction in GK conductance, simulating the impact of

ion-channel block similar to Dofetilide experiments.

• Predicted APD90 values after drug application and compared them to simulated data,

showcasing the practical utility of the OLS regression in predicting drug responses.

• Demonstrated the effectiveness of combining parameter randomisation with regression

to assess parameter sensitivity in complex computational models.

• Enhanced the analysis by incorporating nonlinear predictors, particularly the squares of

biomarker values, when applying stepwise regression with backward selection.

• Improved model accuracy through the careful selection of predictor variables, minimis-

ing overfitting and offering deeper insights into the relationships between ion channel

conductances and physiological outputs.
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The strengths of our methodology are multifaceted, offering significant improvements in the

predictive power and accuracy of computational models, particularly in cardiac electrophysi-

ology. By combining Ordinary Least Squares (OLS) regression with nonlinear modelling, we

are able to conduct a more comprehensive analysis that shows the complex dependencies

between ion channel conductances and physiological outputs. This detailed approach not en-

hances our understanding of these relationships andves highly practical for sensitivity analysis

and predicting drug responses, making it a valuable tool in drug development research.

Incorporating nonlinear terms adds complexity to models, making them harder to interpret

and requiring more computational resources. The method can be unstable, with small data

changes leading to different model selections. Multicollinearity arises when predictor vari-

ables are highly correlated, potentially distorting the regression results. In our analysis, we

addressed this by removing three biomarkers that exhibited high correlations with others. For

instance, action potential amplitude (APA) was strongly correlated with Vmax, leading us to

retain Vmax and exclude APA to avoid redundancy in the model. While stepwise regression

helps reduce overfitting, it can still occur, especially with small or noisy datasets, affecting the

results’ applicability. Additionally, the accuracy of regression models depends on the quality

of input data, and the methods may vary in effectiveness across different biological systems,

requiring careful application beyond cardiac electrophysiology.

Chapter 5

In Chapter 5, we investigated the variability of action potentials (APs) in a population of rabbit

cardiomyocytes under both controlled and drug-induced conditions, using rejection sampling

combined with Gaussian Process (GP) emulators. The primary goal was to gain insights into

the underlying mechanisms driving this variability and to explore how it influences drug action.

The key findings from this study are summarised as follows:

• Successfully implemented GP emulators as an alternative to traditional simulators, sig-

nificantly reducing computational cost and time in generating and analysing large popu-

lations of models.
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• Accurately reproduced the heterogeneous experimental data recorded by (Lachaud et

al. 2022), ensuring that the generated populations of models were well-calibrated to

match observed experimental APD90 ranges.

• Conducted a detailed analysis of the corresponding ion conductances in the generated

populations, providing valuable insights into the causes of variability in action potentials

across cells.

• Performed a quantitative comparison of the effects of drug-induced channel blocks, par-

ticularly hERG and L-type calcium channels, with previous results, highlighting consis-

tencies and differences between different modelling approaches.

The methodology introduced in Chapter 5 offers several strengths, particularly in the efficienc-

model generation and analysis efficiency. Gaussian Process (GP) emulators represents a sig-

nificant advancement over traditional simulators by dramatically reducing computational cost

and time, making it feasible to generate and analyse large populations of models. This effi-

ciency does not come at the cost of accuracy, as the GP emulators were able to reproduce the

heterogeneous experimental data with high fidelity, ensuring that the models remained well-

calibrated to the observed data. Additionally, the ability to conduct a comprehensive analysis

of ion conductances within the generated populations provides deep insights into the mech-

anisms driving variability in action potentials, which is crucial for understanding drug effects.

The approach also facilitates direct comparisons with previous studies, allowing for the inter-

pretation of drug-induced variability in cardiac cells.

The methodology presented in Chapter 5, while innovative and efficient, has some limita-

tions. One key issue is the potential instability in the rejection sampling process when using

Gaussian Process (GP) emulators, where small changes in input data could lead to different

models being selected, affecting result consistency. Although GP emulators reduce compu-

tational costs, they might not fully capture the complex, nonlinear relationships between ion

conductances and action potentials in all cases. The accuracy of the emulators is also highly

dependent on the quality of the experimental data used for calibration; any inaccuracies in
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this data could lead to incorrect conclusions. Additionally, the method may struggle with mul-

ticollinearity, where highly correlated ion conductance variables can distort the analysis and

complicate the interpretation of the results. Finally, while the approach is practical for large

populations, it may need further validation for use with different species or under varying con-

ditions, limiting its broader applicability.

6.2 Future work
Expanding upon the foundation laid out in this thesis, many potential areas for future research

can help us gain a deeper understanding of cardiac excitability, improve our knowledge of drug

interactions, and advance the application of these findings in medical treatments.

Chapter 3

• Enhancing Model Accuracy: Given the piece-wise linear nature of the McKean model

(McKean Jr 1970), it’s feasible to replace the asymptotic expression used for APD with

more precise exact expressions. This refinement would enable the incorporation of ex-

perimental measurements of secondary AP biomarkers, such as the action potential

duration at 50% and 30% from the peak, which are currently indistinguishable using the

present asymptotic approach.

• Exploring Alternative Models: Introducing the caricature Noble model, as proposed

by (Biktashev et al. 2008), could offer a more comprehensive representation of cardiac

excitability. Derived through a systematic procedure from an actual ionic current model,

this model captures the fundamental mathematical structure of cardiac electrical ex-

citability. Importantly, it includes a super-fast subsystem, absent in the McKean model,

allowing for the analysis of biomarkers describing the initial phase of the action poten-

tial, such as the time from 10% to 90% of the upstroke (TRise). This aspect is crucial

for understanding cellular processes distinct from those governing APD. The caricature

Noble model has been recently tailored to replicate the action potential morphology and

restitution properties of various cardiomyocyte phenotypes (Aziz and Simitev 2021) and

possesses known exact and asymptotic solutions (Biktashev et al. 2008; Simitev and

Biktashev 2011), albeit with increased complexity.
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• Broadening Drug Action Scenarios: The current analysis focuses solely on the drug

action affecting the effective conductance parameter a, particularly in the context of

APD shortening as relevant to the nifedipine dataset of (Lachaud et al. 2022). Future

investigations should explore scenarios involving APD prolongation and drug actions

impacting the effective kinetic parameter b. For instance, the drug Dofetilide induces

APD prolongation, with corresponding measurements reported in (Lachaud et al. 2022).

Analysing such cases would necessitate adapting the parameter domain of excitability

differently, warranting dedicated exploration.

• Incorporating Myocyte Coupling: Extending the current methodology to account for

the coupling between myocytes would provide insights into AP waveform synchronisa-

tion, a factor likely pivotal in generating stable action potential responses at the tissue

level. Such an extension would bridge the gap between cellular-level dynamics and

organ-level electrophysiological behavior.

Chapter 4

• Refining Nonlinear Models: In Chapter 4 we used the square terms of the predictors

such as CaTa2, future work could explore higher-order nonlinear terms like CaTa3 or

CaTa4. Alternative nonlinear modelling techniques could be used, such as using inter-

action terms, i.e. (CaTa × APD90). This could improve the accuracy of nonlinear regres-

sion models, which might lead to a deeper understanding of the complex relationships

between ion channel conductances and physiological outputs, revealing correlations that

the squared terms failed to identify.

• Validating with Experimental Data: For the work in Chapter 4, future efforts could fo-

cus on validating the computational predictions with additional experimental data, which

is critical for ensuring the accuracy and reliability of the developed models. By validating

the regression models against a larger and more diverse set of experimental data, it

would be possible to assess how well the models generalise to different physiological

conditions and experimental setups.
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• Exploring Multi-Dimensional Sensitivity Analysis: The work in Chapter 4 could be

extended by considering multi-dimensional parameter spaces. In the current analysis,

we evaluated the sensitivity of individual parameters (such as the conductance of a

single ion channel) on biomarkers like APD or CaTa. However, ion channels do not

operate in isolation, and their interactions, such as (GCaL×GKs) often play a critical role

in shaping the overall electrophysiological behaviour of the cell. This step could provide

a deeper understanding of how multiple ion channels interact and collectively influence

cardiac electrophysiology.

• Incorporating Machine Learning Techniques: To address the limitations identified

in Chapter 4, where traditional regression models were used, we introduced Gaussian

Process (GP) emulation techniques in Chapter 5. While GP emulators improved the

computational efficiency and ability to capture nonlinear interactions, there are addi-

tional machine-learning approaches that could further enhance the model’s predictive

power. The neural networks (NNs) could be integrated to model highly nonlinear and

complex relationships between input and output variables. The NNs could be trained to

predict APD, or drug effects by learning from experimental data. NNs can capture multi-

dimensional dependencies and offer flexibility in modeling interactions between multiple

ion channels and their effects on any biomarkers of interest.

Chapter 5

• Enhancing GP Emulator Accuracy: The GP emulators developed in Chapter 5 used

the Radial Basis Function (RBF) kernal. Future work could refine the GP by integrat-

ing more advanced kernel functions such as periodic kernels to capture cyclic biologi-

cal rhythms or non-stationary kernels for modeling variability that changes over time or

across different conditions. Additionally, GP emulators could be combined with other

machine learning techniques like neural networks or decision trees could be explored.

For instance, using neural networks to capture highly nonlinear relationships and GP

emulators to model uncertainty could create a more robust framework for handling the

complexity of cardiac electrophysiology data. These enhancements would likely im-

prove the accuracy and predictive power of the GP emulators, particularly when re-

producing experimental data characterized by high variability, such as heterogeneous
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drug responses or varying ionic conductances across large populations of cardiomy-

ocytes. Incorporating these advanced techniques would also allow for better general-

ization across different experimental conditions, making the models more versatile in

predicting physiological outcomes.

• Optimizing Rejection Sampling Efficiency: Although the use of GP emulators in

Chapter 5 already improved computational efficiency, future work could explore ways

to optimise the rejection sampling process further. This might involve analysing the pre-

viously accepted or rejected samples and looking for the ranges of the input spaces

where models are more likely to meet the acceptance condition and less sample re-

jection. This shall improve the efficiency and reduce the number of rejected models,

thereby speeding up the analysis and enabling the study of even larger populations.

• Expanding to Multi-Output Analysis: In Chapter 5, we only considered a single output

at a time such as APD90 and we attempted 2 outputs at a time. Future research could

extend the current methodology to a higher-dimensional level by considering multiple

outputs simultaneously. For instance, analysing APD90, APD50, and APD30 together

would allow us to generate a population of models with corresponding conductances

related to all outputs. This multi-output approach could provide a deeper understanding

of how variations in ion conductances influence multiple aspects of cardiac function,

offering more comprehensive insights into the underlying mechanisms and potentially

revealing interactions between different physiological parameters.

• Expanding Drug Response Models: Extending the current work to include a wider

variety of drug responses, including those affecting different ion channels or those with

more complex mechanisms of action, could provide a broader understanding of how

drugs influence cardiac cells. This could also involve studying multi-drug interactions to

assess how combinations of drugs impact action potentials.
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• Exploring Heterogeneity in Different Cell Types: While the current work in Chapter 5

focused on rabbit ventricular cardiomyocytes, future studies could explore heterogeneity

in other species including human cardiomyocytes, atrial myocytes, or Purkinje fibers.

For example, analyzing human atrial myocytes may provide insights into atrial fibrillation

mechanisms. Expanding the model to these different cell types could help reveal cell-

type-specific responses to drugs and contribute to a better understanding of cardiac

diseases across species and regions of the heart.

By pursuing these future research directions, the work presented in Chapters 3, 4, and 5

could be significantly expanded, leading to a more comprehensive understanding of cardiac

electrophysiology and its applications in drug development.
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