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Abstract

Teichmüller spaces play a pivotal role in the study of dynamics, geometric group theory and

conformal geometry. In this thesis we study several geometric and probabilistic aspects of

these spaces.

We begin by showing that, while not hyperbolic, Teichmüller space with the Teichmüller

distance is statistically hyperbolic with respect to harmonic measures generated by non-

elementary measures with �nite �rst moment.

Points in the Teichmüller space of a surface S can be interpreted as conjugacy classes of

discrete faithful representations of the fundamental group of S on the group of isometries

of the hyperbolic plane, PSL(2,R). For a given measure on the fundamental group of S,

this characterization gives us associated measures on uniform lattices on PSL(2,R). It is a
long standing conjecture that the harmonic measures associated to these random walks have

dimension strictly smaller than one whenever the measure is admissible and has �nite �rst

moment. In this thesis we prove that the conjecture is true outside of a compact subset of

the Teichmüller space. Furthermore, we give some sharp bounds for the growth of the drift

of the associated random walks in terms of the Teichmüller distance. One key argument is

an adaptation of Gouëzel's pivoting techniques to actions of a �xed group on a sequence of

hyperbolic metric spaces.

Two commonly studied compacti�cations of Teichmüller spaces of �nite type surfaces

are the Gardiner�Masur compacti�cation and the Teichmüller compacti�cation. We �nish

by showing that these two compacti�cations are related, proving that the former is �ner

than the latter. This allows us to prove, among other results, that the Gardiner�Masur

compacti�cation is path connected and that its Busemann points are not dense. We also

determine for which surfaces the two compacti�cations are isomorphic, and we show that

some horocycles diverge in the Teichmüller compacti�cation based at some point. As an

ingredient in one of the proofs we show that the extremal length is not C2 along some paths

that are smooth with respect to the piecewise linear structure on measured foliations.
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Chapter 1

Introduction

Loosely speaking, the set of all conformal structures on a surface S up to conformal maps

is the moduli space of S, denoted M(S). By adding a natural topology to moduli space

one gets a powerful geometric approach to the related classi�cation problem. However,

under such natural topology the resulting space turns out to be rather complicated, and

any deeper study requires some additional constructions. If instead of just considering the

conformal structures we also keep track of the position of the curves up to isotopy we get the

Teichmüller space, a simply connected space which serves as a �universal cover� of moduli

space. The topological simplicity of Teichmüller spaces turn them into crucial tools in the

study of algebraic geometry. Furthermore, the deck transformations of the cover are the

rearrangements of the curves, that is, the mapping class group of the surface, which makes

Teichmüller spaces a prime tool for the study of such groups through geometric group theory

approaches.

It is possible to give some further structure to Teichmüller spaces by declaring that the

distance between two marked surfaces is large if it is conformally hard to send one to the

other. Precisely, the Teichmüller metric is de�ned by setting the distance between two

marked conformal structures as one half of the logarithm of the minimal K such that there

is a K-quasiconformal map between the surfaces. This metric turns out to be complete,

uniquely geodesic and, while not hyperbolic, it has many properties typical of negatively

curved spaces, as we shall see in Chapter 3. One of the main interests of such metric is that

geodesic rays are related to interesting dynamical actions. Namely, it is possible to identify

the resulting cotangent vectors with �at structures, and the resulting geodesic �ow with the
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dynamical action resulting from stretching the �at structure horizontally and contracting it

vertically. By forgetting the marking we obtain the same action on translation structures,

which results in a rather interesting action with applications in the study of the orbits of

rational billiards.

Due to the uniformization theorem there is a correspondence between conformal struc-

tures and constant curvature geometries, which makes Teichmüller spaces a useful tool in

the study of hyperbolic geometry. Since the universal cover of hyperbolic surfaces is the

hyperbolic plane, the Teichmüller space of a surface S can also be seen as the space of faith-

ful discrete representations of the fundamental group of S onto the isometry group of the

hyperbolic plane. This representation can be used to study dynamical aspects of the discrete

actions on the hyperbolic plane, as we shall see in Chapter 4.

The dynamical and geometric properties of Teichmüller spaces are an extremely active

and important area of modern research. One frequent object of study in the �eld of dynamics

is random walks, where we �x a probability measure on some group acting on a space and

repeatedly concatenate elements of that group. This generates a random sequence of group

elements, which when applied to a point in our space results in a random sequence of points.

Random walks are used extensively in modelling, but can also be used to obtain geometric

properties of our space. The asymptotic properties of random walks indicate the behaviour

of applying one random transformation many times to the space, which has innate interest.

In this thesis we shall study some properties of random walks on Teichmüller space, driven

by the mapping class group, as well as random walks on the hyperbolic plane, driven by

images via faithful representations of the fundamental group of a surface.

A tool frequently used in the study of random walks is that of a compacti�cation. In

this type of constructions one densely embeds the original space in a compact set. This

guarantees that each sequence, such as the one obtained by the random walk, has a converging

subsequence to some point. If one then proves that such point is almost surely unique

then one has that the random walk converges almost surely in the compacti�cation. This

rather standard reasoning can be applied in many cases, as is the case for Teichmüller

spaces. The compacti�cation, however, is not unique, and often several are de�ned. The

�nal contribution of this thesis is an in depth study of the the horofunction compacti�cation,

a general compacti�cation de�ned for metric spaces, in the setting of Teichmüller spaces.

The construction of said compacti�cation is rather general, and only requires an underlying

proper metric space. The study showcases a unique example of a horofunction boundary,
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di�erent from previously studied examples. While originally motivated by the study of

random walks, we �nd that random walks converge almost surely to a nowhere dense set

within the boundary of such compacti�cation.

1.1 Statistical hyperbolicity

Given a random walk converging almost surely towards a boundary, it is possible to de�ne

a probability measure ν on said boundary by setting the measure of a set as the probability

that the random walk converges to a point in that set. Such a measure is called the hitting

measure on the boundary. In the case of Teichmüller spaces, this measure can be pushed to

a measure on the set of geodesics.

Loosely speaking, a space is statistically hyperbolic with respect to some measure in the

set of geodesics if the space is on average hyperbolic at large scales. In Chapter 3 we prove

that Teichmüller spaces are indeed statistically hyperbolic with respect to measures obtained

by random walks. Precisely, we show the following.

Theorem 1.1.1. Let µ be a measure with �nite �rst moment on MCG(S) and let ν be

the resulting hitting measure on the Thurston boundary. Then, the Teichmüller space of

S with respect to the corresponding geodesic sampling obtained by the hitting measure ν is

statistically hyperbolic.

See Section 3.1 for a de�nition of statistical hyperbolicity, as well as a precise state-

ment of this result. This contrasts the well known result of Masur�Wolf [MW95], stating

that Teichmüller spaces are not hyperbolic, as well as complements the result of Dowdall�

Duchin�Masur [DDM14], which states that Teichmüller spaces are statistically hyperbolic

with respect to several Lebesgue-class measures. Note that Teichmüller spaces contain many

obstructions to hyperbolicity. For example, as shown by Minsky [Min96], it is possible to

embed product regions up to additive constants. Our result shows that, according to the

harmonic measures, these obstructions are statistically insigni�cant.

Under some conditions on the measure µ, the resulting hitting measure on the set of

geodesics is singular with respect to Lebesgue, so this result is di�erent than the one obtained

by Dowdall�Duchin�Masur.
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1.2 Singularity conjecture

The standard compacti�cation for the hyperbolic plane H2 is the Gromov compacti�cation,

or, equivalently in this case, the visual compacti�cation. Given a uniform lattice Γ ⊂
PSL(2,R) and a measure µ on Γ with �nite �rst moment the resulting random walk converges

almost surely to the boundary. Furthermore, the distance between the random walk and the

starting point grows asymptotically linearly. That is, there some well de�ned Drift(µ,Γ) > 0

such that for almost every path we have

lim
n→∞

d(wµ
nx0, x0)

n
= Drift(µ,Γ),

where wµ
n is the random walk after n steps and x0 is our starting �xed point. Note that

Drift(µ,Γ) does not depend on x0 nor the sample path. The drift is related with the Hausdor�

dimension of the measure ν on the boundary by the formula

dimHaus(ν(µ,Γ)) =
h(µ)

Drift(µ,Γ)
,

where h(µ) is the entropy of the measure, which is a purely combinatorial object. The

famous conjecture by Deroin�Kleptsyn�Navas [DKN09a], and more generally by Karlsson�

Ledrappier [KL11] states that dimHaus(ν(µ,Γ)) < 1 whenever the measure has �nite �rst

moment. Recent developments by Kosenko�Tiozzo [KT22] show that for a �nite amount of

cases the conjecture is true. In Chapter 4 we show that, for any suitable measure µ, the

conjecture is true for su�ciently degenerated lattices.

For a given compact surface S we can �x a measure µ on π1(S, p), and then consider

faithful representations ρ : π1(S) → PSL(2,R). We shall denote the drift obtained by the

lattice ρ(π1(S)) and the measure ρ∗µ as Drift(µ, ρ), and ν(µ, ρ) the corresponding hitting

measure. As explained brie�y before, the Teichmüller space of a surface S can also be seen

as the space of faithful discrete representations of the fundamental group π1(S, p) on the

space of isometries of the hyperbolic plane, PSL(2,R), up to conjugation by elements in

PGL(2,R). That is, a point ρ ∈ T (S) can be interpreted as a discrete faithful representation

ρ : π1(S, p) → PSL(2,R) up to conjugation. Therefore, given a measure µ on π1(S, p) and

a point ρ ∈ T (S), there is an associated family of random walks on the hyperbolic plane.

The associated random walks are not unique, as the representation is not unique. However,
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the associated drifts, and hence the dimensions of the harmonic measures, are invariant by

conjugation, so this is not an issue.

We have then a map dimHaus(ν(µ, ·)) : T (S) → R+, and the singularity conjecture can

be reestated as claiming that, whenever µ has �nite �rst moment, this function is strictly

smaller than 1 on all T (S). In Chapter 4 we prove that the conjecture is true outside of

some compact subset of Teichmüller space. More precisely, we show the following.

Theorem 1.2.1. Let µ be an admissible measure on π1(S) with �nite �rst moment. For any

ε > 0 there is a compact Kε ⊂ T (S) such that, for any ρ outside of that compact,

dimHaus(ν(µ, ρ)) < ε.

See Section 4.1 for the de�nition of admissible and �nite �rst moment. The precise

relation we �nd is slightly more re�ned. In Section 4.4 we show that the dimension decreases

at least inversely proportionally to the distance to some basepoint, and in Section 4.5 we show

it decreases exponentially along almost all geodesics, with respect to both Lebesgue class

measures and hitting measures. The main tool of the proof is the novel pivoting technique

developed by Gouëzel [Gou22a] and Baik�Choi�Kim [BCK23].

1.3 Horofunction compacti�cation

The horofunction compacti�cation is a general compacti�cation that only requires the un-

derlying metric space to be proper. Furthermore, the action of the isometry group of the

underlying space can always be extended continuously to a continuous action on the com-

pacti�cation, and geodesic rays always converge to a point. These two last properties make

the horofunction compacti�cation a potentially powerful tool for the study of metric spaces.

However, in many cases the horofunction construction results in a complicated space, which

makes its use di�cult.

Focusing on the case of Teichmüller spaces, the convergence of geodesics contrasts with

the most commonly studied compacti�cation, the Thurston compacti�cation. While the

latter compacti�cation admits a continuous extension of the MCG(S) action to the whole

compacti�cation, some geodesics do not converge to points in the boundary, and in fact

have large accumulation sets. There is another well studied compacti�cation of Teichmüller

space, the visual, or Kercho�'s, compacti�cation, which has converging geodesics. However,
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the action of the MCG(S) can not be extended continuously to the whole compacti�cation.

The horofunction compacti�cation avoids these two complications, which makes it particu-

larly interesting. However, while the other two compacti�cations described result in simple

spherical boundaries, this is not the case for Teichmüller spaces, as we shall see in Chapter 6.

One relevant set of points within the horoboundary is that of the Busemann points,

which are those that can be reached by sequences along geodesics. We prove the following

result regarding the sparsity of Busemann points for Teichmüller spaces.

Theorem 1.3.1. Let S be a closed surface of genus g with p marked points. Then the

Busemann points are not dense in the horoboundary of T (S) whenever 3g + p ≥ 5.

This answers a previously asked question by Liu�Su [LS14]. In subsequent joint work

with Fortier Bourque we strengthen the previous result to show that Busemann points are

actually nowhere dense within the horoboundary.

We also �nd that although random walks within this compacti�cation do converge to the

boundary, the resulting hitting measure is supported in a nowhere dense set (see Section 6.5.2

for details). Intuitively, this result tells us that the horofunction compacti�cation adds many

more points than the ones that are actually needed for the study of random walks. This does

not mean that the horofunction compacti�cation can not be used for the study of random

walks, as the work of Maher�Tiozzo [MT18] clearly shows. Related to the previous result,

the nowhere dense set is a subset of the Busemann points with Lebesgue measure one. No

previous example of the horoboundary had been shown to exhibit such behaviour.
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Figure 1.1: Sketch of the shape of the horoboundary of the Teichmüller metric for surfaces
without boundary.

Figure 1.1 shows a sketch of what we think the horoboundary looks like based on the

results of Chapter 6. The outer circle represents the section given by Theorem 6.6.1. Each

line perpendicular to the sphere represents one of the �bers induced by the projection map,

so it is associated with a unique Teichmüller ray starting at b. Note that while by Proposi-

tion 5.2.11 the �bers are path connected, by Theorem 6.4.10 they are bigger than segments

in some cases. Furthermore, a priori they might not be contractible.

The nearest point to the basepoint b of each �ber represents the Busemann point associ-

ated to the geodesic joining b to the �ber. This point could indeed be considered the nearest

point to b from the �ber, as one can access it in a straight way, through a geodesic exiting

b. On the other hand, the points in the outer circle represents the points associated to the

section alluded to earlier. These can be accessed through a sequence of Busemann points

whose associated �ber is a point, which can be considered as the most tangentially possible

way to reach points in the boundary.

Following a result by Masur [Mas82a], with respect to the measure on the �bers induced
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by the Lebesgue measure on the set of Teichmüller rays exiting b, almost all the �bers are

actually points. As we shall see in Theorem 6.5.5 these points are nowhere dense in the

boundary.

Note that there exist paths within the horoboundary connecting the �bers without pass-

ing through the section, and a priori there may be paths not represented in the sketch along

which the �bers vary continuously.

The path continuity of the �bers, as well as the existence of a section, allows us to prove

the following result.

Theorem 1.3.2. The horoboundary of any Teichmüller space of real dimension at least 2 is

path connected.

Finally, the connection between the horoboundary and the Gardiner�Masur boundary

allows us to translate some of these results to limit theorems regarding the values of certain

extremal lengths, extending results of Walsh [Wal19]. See Section 6.7 for details.

1.4 Structure of the thesis

In Chapter 2 we give a general introduction to Teichmüller spaces, as well as the tools and

concepts needed for the rest of the thesis. Chapter 3 deals with the statistical hyperbolicity

of the harmonic measure for Teichmüller space. In Chapter 4 we explain the bounds found

for the drift of a random walk as a function on Teichmüller space. Finally, in Chapters 5

and 6 we detail our �ndings regarding the horofunction compacti�cation, �rst for metric

spaces, and later for Teichmüller spaces. Each chapter starts with a brief introduction, as

well as the necessary background material speci�c to that that chapter.

1.5 Disclosures

The work contains both preprints and published works of the author, were some of the works

are collaborations. In particular, the material in Chapter 3 comes from a collaboration with

Gadre and Je�reys [AGJ22]; the material in Chapter 4 results from a collaboration with

Gadre, Gouëzel, Haettel, Lessa and Uyanik [AGG+22], as well as a preprint from the author

[Aze23]. Finally, the material in Chapters 5 and 6 come from a preprint of the author

[Aze21].
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Chapter 2

General background

2.1 Metric geometry

2.1.1 Basic de�nitions

Let (X, d) be a metric space. We shall say that a map γ from an interval I ⊂ R to X

is a geodesic if it is an isometric embedding, that is, if d(γ(t), γ(s)) = |t − s|. We shall

consider two geodesics to be equal if their image is equal and have the same orientation.

If for any two points a, b ∈ X there exists a path [a, b] joining them, with length equal to

the distance between a and b we say that X is geodesic. That path may not be unique,

and by [a, b] we mean any of them. If the path is unique for every a, b ∈ X then we say

X is uniquely geodesic. Furthermore, we say that the space is proper if the closed balls

D(x, r) = {p ∈ X | d(p, x) ≤ r} are compact. If geodesic segments can be extended

uniquely, that is, if for any geodesic segment γ1 there is a unique bi-in�nite geodesic γ2 such

that γ1 ∩ γ2 = γ1, we say that the space is straight.

Most of the spaces we work with in this thesis satisfy all the properties described so far.

In particular, Teichmüller space, with the Teichmüller metric, is proper, uniquely geodesic

and straight.

2.1.2 Hyperbolic geometry

Let (X, d) be a geodesic metric space, Given a set A ⊂ X and r > 0, we will denote byN(A, r)

the closed r-neighbourhood of A, that is, N(A, r) = {x ∈ X | d(x,A) ≤ r}. Given δ > 0,
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we say that X is δ-hyperbolic if its triangles are δ-slim, meaning that for any three points

a, b, c ∈ X and any three geodesics [a, b], [b, c] and [c, a] we have [a, b] ⊂ N([b, c]∪[c, a], δ). We

say that X is Gromov hyperbolic if there exists a δ ≥ 0 such that it is δ-hyperbolic. We will

use some properties of Gromov hyperbolic spaces, as well as their standard compacti�cation,

thorough this thesis, a standard reference for these topics is [BH13, Part III, Chapter H].

Given two points a, b ∈ X and a basepoint p ∈ X, the Gromov product of a and b is

de�ned as

(a · b)p =
1

2
(d(p, a) + d(p, b)− d(a, b)).

It can be seen directly from the de�nition of Gromov hyperbolicity that the Gromov product

of a and b under the basepoint p can be interpreted geometrically as the distance of p to the

geodesic [a, b] up to the additive constant δ.

2.1.3 Compacti�cations

A compacti�cation of a space functions, among other things, as a way of characterizing

convergence to in�nity. Formally, a compacti�cation of a topological space X is a pair

(f,X), where X is a compact topological space and f : X → X is an embedding with f(X)

dense in X. The boundary of a compacti�cation ∂X = X −X then describes the di�erent

ways of converging to in�nity provided by that compacti�cation. We shall usually identify

the points in X with the ones in X via the map f , and say that a sequence (xn) ⊂ X

converges in X if f(xn) converges.

A compacti�cation (f1, X1) of X is �ner than another one (f2, X2) if there exists a

continuous extension f 2 : X1 → X2 of f2 such that f 2 ◦ f1 = f2. Since f2(X) is dense in X2,

the continuous extension f 2 is surjective. Furthermore, we can restrict the map f 2 to the

boundary to get a surjective map f 2

∣∣
∂X1

: ∂X1 → ∂X2, which can be seen as a projection.

Having a compacti�cation �ner than another ones means, from an intuitive point of view,

that the �ner compacti�cation catalogs more ways of converging to in�nity than the other

one. Namely, any sequence in X converging in the �ner compacti�cation converges also in

the coarser one, while the opposite may not be true.

We say that two compacti�cations are isomorphic if each one is �ner than the other one.

The following Lemma found in [Wal19, Lemma 17] gives an intuitive understanding of the

�ner relation.
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Lemma 2.1.1. Let (f1, X1) and (f2, X1) be two compacti�cations of a Hausdor� space X

such that f2 extends continuously to an injective map f 2 : X1 → X2. Then the two compact-

i�cations are isomorphic.

In other words, the previous Lemma tells us that if the projection f 2 is actually injectuve,

the two compacti�cations are isometric.

We will usually refer to the space X as the compacti�cation when the embedding is

either unique or the relevant properties are invariant under the di�erent choices of such.

Since the images of X by the embedding are dense, the extensions we get to compare the

compacti�cations are unique. That is, we have the following result

Lemma 2.1.2. Let (f1, X1) and (f2, X2) be two compacti�cations of a Hausdor� space X

such that X1 is �ner than X2. Then the extension f2 : X1 → X2 is unique.

Proof. For any x ∈ X we have f2(f1(x)) = f2(x). Hence, the image of f2 is determined on a

dense subset of X1, so by continuity it is determined on X1.

Visual compacti�cation

Let X be a proper, uniquely geodesic, straight space. The visual compacti�cation was

introduced by Eberlein�O'Neill in [EO73], as a generalization of the Poincaré disk model.

Geometrically, the visual compacti�cation describes what an observer at a basepoint b ∈ X

in X would see as particles get further and further away from b. That is, a sequence in

the visual compacti�cation based at b converges if and only if the sequence gets further

away from b, and the direction of the ray connecting b and the sequence converges. To

give this notion a formal de�nition let Db be the set of in�nite geodesic rays starting at

b, with the topology given by uniform convergence on compact sets. Furthermore, denote

S1
b = {x ∈ X | d(x, b) = 1} the sphere of radius 1 around b.

Lemma 2.1.3. The map from Db to S1
b de�ned by sending γ ∈ Db to γ(1) is a homeomor-

phism.

Proof. Since the topology on Db is given by uniform convergence on compact sets, the point

γ(1) varies continuously with respect to γ.

On the other hand, since the space is straight and has unique geodesics, given any point

a ∈ S1
b there is a unique geodesic ray starting at b and passing through a. This is the inverse
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to the map obtained by evaluating the geodesics. To see that the relation is continuous we

consider a sequence (an) ⊂ S1
b converging to some a, and denote (γn) and γ the associated

geodesics. Assume γn does not converge to γ. Then we have a subsequence without γ as an

accumulation point. For any t > 0, the geodesic segments γ|[0,t] are contained in the ball of

radius t, which is compact, as X is proper. As these are geodesics we have equicontinuity,

so by Arzelà�Ascoli we can take a subsequence converging uniformly to some path γ′. Since

the distance function is continuous, γ′ is a geodesic. Furthermore, γ′(1) = limn→∞ γn(1) =

limn→∞ an = a. By uniqueness of geodesics, γ′ and γ are equal when restricted to [0, 1],

which by straightness implies they are equal. Hence, γn converges to γ uniformly on the

compact [0, t].

Following a similar reasoning it is possible to show the following, still under the same

hypotheses on X.

Lemma 2.1.4. The space X is homeomorphic to Db × [0,∞)/Db × {0}.

Proof. We de�ne the map C : Db × [0,∞)/Db × {0} → X given by C(θ, r) = θ(r). This

is well de�ned, as C(θ, 0) = b for any θ ∈ Db. Furthermore, this is a bijection, since for

every x ∈ X − {b} there is a unique geodesic ray from b to x. The map is continuous,

as the topology on Db is given by uniform convergence on compact sets. To see that the

inverse is continuous consider a sequence an ∈ X converging to some a ∈ X. If a = b, then

d(an, b) → 0, so we have continuity. Otherwise we denote rn = d(an, b) and r = d(a, b). We

have rn → r, so denoting (γn) and γ the unique geodesic in Db such that γn(rn) = an and

γ(r) = a and applying Arzelà�Ascoli's theorem in the same way as in Lemma 2.1.3, we have

that γn converges to γ.

The space Db× [0,∞)/Db×{0} can be included into the compact space Db× [0,∞]/Db×
{0}, which can be written as (Db × [0,∞)/Db × {0})∪Db×{∞}. Using the homeomorphism

from Lemma 2.1.4, we can use this inclusion to give a compact topology on the space X∪Db.

The visual compacti�cation is de�ned as the pair (i,X∪Db), where i is the inclusion i : X →
X ∪Db and the topology on the space X ∪Db is the one we just de�ned. We shall denote

X ∪Db as X
v

b , or X
v
when the basepoint is not relevant to the discussion.
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Gromov compacti�caiton

Let (X, d) be a proper Gromov hyperbolic space. Given two sequences (an), (bn) ⊂ X we say

that they are equivalent, and write (an) ∼ (bn), if for some (and hence any) p ∈ X we have

(an, bn)p → ∞. The Gromov boundary ∂X
G
is de�ned as the equivalence set of sequences

(an) ⊂ X such that (an, am)p → ∞ for any p ∈ X, with the de�ned relation. The Gromov

product between two elements of the boundary can be de�ned by

(a · b)p := sup lim inf
m,n→∞

(am · bn)p,

where the supremum is taken over all sequences (am), (bn) related to a, b respectively.

Furthermore, if a ∈ X and b ∈ ∂X
G
, we can use the same de�nition replacing the se-

quence (am) by a. We can give a topology to the set X ∪ ∂X
G
by adding the open sets

V (a, r) = {b ∈ X ∪ ∂XG|(a · b)p > r}. The resulting topology is compact, and the inclusion

i : X → X ∪ ∂X
G
is continuous. Hence, (i,X ∪ ∂X

G
) with the described topology is a

compacti�cation, usually called the Gromov compacti�cation. Using the triangle inequality

it is straightforward to check that this construction does not depend on the basepoint p. We

shall denote the Gromov compacti�cation as X
G
.

Let (X, d) be straight and uniquely geodesic, as well as proper and Gromov hyperbolic.

Then, both the visual and the Gromov compacti�cations are de�ned. Let γ : [0,∞) → X be

a geodesic ray starting at p. Then, (γ(t) · γ(s))p = min(t, s), so γ(t) converges to a unique

point in the Gromov compacti�cation. Therefore, we have a map f : X
v

p → X
G
, de�ned by

sending each point x ∈ X ∪Dp to either x ∈ X ∪ ∂XG
if x ∈ X or to lims→∞ x(s) ∈ ∂X

G
if

x ∈ Dp. Denote iv, ig the inclusion from the visual and Gromov compacti�cation respectively.

Then it is clear than f(iv) = ig, since f(iv(x)) = x for all x ∈ X. Furthermore, Let

(γn(tn)) ⊂ ∂X
v
be a sequence converging to γ ∈ Dp. By the de�nition of convergence in the

visual compacti�cation we have that γn converges locally uniformly to γ. Hence, for each

n we have some sn such that d(γn(s), γ(s)) < δ for all s < sn, and sn → ∞. Then, since

the Gromov product between two points with respect to p is the distance of the geodesic

between those two points to p, up to the constant δ,

(γn(tn) · γ(tn))p ≥ d(p, [γn(tn), γ(tn)]− δ ≥ sn − 2δ.

So (γn(tn) · f(γ))p → ∞, and hence γn(tn) → f(γn(tn)) in the Gromov compacti�cation.
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Therefore, f is continuous and the visual compacti�cation is �ner than the Gromov compac-

ti�cation.

Horofunction compacti�cation

Let (X, d) be a proper metric space. Given a basepoint b ∈ X, one can embed X into the

space of continuous functions from X to R via the map h : X → C(X) de�ned by

h(x)(·) := d(x, ·)− d(x, b).

The topology given to C(X) is that of uniform convergence on compact sets. The map h

is indeed continuous, as the distance function is continuous. Furthermore, h is injective,

as h(x) has a strict global minimum at x. It can also be proven that since X is proper,

h is an embedding. For more details about this construction see, for example, [Wal14a,

Section 2]. Furthermore, the properness of X implies it is second countable, so the closure

of h(X) is compact, Hausdor� and second countable. We shall denote the closure of h(X)

on C(X) as X
h
. The horofunction compacti�cation is de�ned as the pair (h,X

h
). We

call the set ∂X
h
= X

h − X the horofunction boundary or horoboundary, and we call its

members horofunctions. If we want to specify the chosen basepoint we write X
h

b . However,

it is possible to see that quotienting the compacti�cation by letting f ∼ g whenever the

di�erence is constant we get an isomorphic compacti�cation, showing that the horofunction

compacti�cation does not depend on the basepoint.

Usually the easier points to identify in the horoboundary are the Busemann points. These

are the ones that can be reached as a limit along almost geodesics, which is a slight weakening

of the notion of geodesic by allowing an additive constant approaching 0. That is, a path

γ : [0,∞) → X is an almost geodesic if for each ε > 0,

|d(γ(0), γ(s)) + d(γ(s), γ(t))− t| < ε

for all s and t large enough, with s ≤ t. Rie�el [Rie02] proved that every almost geodesic

converges to a limit in ∂X
h
. A horofunction is called a Busemann point if there exists an

almost geodesic converging to it. We shall denote the Busemann point associated in this

way to the almost geodesic γ by Bγ.

We shall prove in Section 5.2 that the horofunction compacti�cation is �ner than the
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visual compacti�cation, whenever both compacti�cations are de�ned. Therefore, if the Gro-

mov compacti�cation is also de�ned, the horofunction compacti�cation is also �ner than the

Gromov compacti�cation.

2.2 Teichmüller spaces

A surface with marked points S is a pair (Σ, P ), where Σ is a compact, orientable surface

with possibly empty boundary, and P ⊂ Σ is a �nite, possibly empty, set of points, where

we allow points to be on the boundary. The Teichmüller space T (S) is the set of equivalence

classes of pairs (X, f) where X is a Riemann surface and f : Σ → X is an orientation-

preserving homeomorphism. Two pairs (X, f) and (Y, g) are equivalent if there is a conformal

di�eomorphism h : X → Y such that g−1 ◦ h ◦ f is isotopic to identity relP .

The Teichmüller distance between two points [(X, f)], [(Y, g)] ∈ T (S) is de�ned as the

value 1
2
log infK, where the in�mum is taken over all K ≥ 1 such that there exists a K-

quasiconformal homeomorphism h : X → Y with g−1◦h◦f isotopic to identity relP . There is

a quasiconformal homeomoprhism realizing the in�mum. Furthermore, it is possible to assign

a smooth structure compatible with the metric, provided by the Fenchel�Nielsen coordinates.

See [FM12, Part 2] for some background on the Teichmüller metric and the Fenchel�Nielsen

coordinates. While it is possible to de�ne several other metrics on Teichmüller space, in

this thesis we focus on the Teichmüller distance. With this metric, Teichmüller space is not

hyperbolic, but satis�es many hyperbolic-like characteristics. Notably, given any geodesic

there is an embedding of the hyperbolic plane H2 into T (S) containing said geodesic. Such

an embedding is called Teichmüller disk. T (S) satis�es all the properties discussed in Sec-

tion 2.1.1. Namely, T (S) is proper, uniquely geodesic and straight.

2.2.1 Quadratic di�erentials and �at metrics

A quadratic di�erential on a Riemann surface X is a map q : TX → C such that q(λv) =

λ2q(v) for every λ ∈ C and v ∈ TX. Considering only holomorphic quadratic di�erentials

with �nite area
∫
X
|q| with simple poles only at the marked points we get a characterization

of the cotangent space to the Teichmüller space based at [(X, f)]. We shall denote the set of

holomorphic quadratic di�erentials on ρ ∈ T (S) as Q(ρ), and the subset of Q(ρ) with area

1 as Q1(ρ). The union of all Q(ρ) gives a bundle Q over T (S). By contour integration and
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a choice of square root, each q ∈ Q(x) de�nes a half-translation structure on S. That is, it

de�nes charts to C = R2 with half-translation transition functions of the form z → ±z + c.

The SL(2,R)-action on R2 preserves the area and also the form of the transition functions.

Hence, it descends to an action on Q. The compact part SO(2,R) acts by rotations and

preserves the conformal structure. The diagonal part of the action given by[
et/2 0

0 e−t/2

]

is called the Teichmüller �ow and we will denote it by ϕt. Given a point ρ ∈ T (S) and

a quadratic di�erential q ∈ Q1(ρ) the path R(q; ·) : (−∞,∞) → T (S) de�ned by setting

R(q; t) as the projection to T (S) of ϕtq is a geodesic with constant speed 1. Furthermore, it

is the unique geodesic such that γ(0) = p and γ′(0) = |q|/q. To ease the notation, we shall

denote R(q; ·) as R(q).

2.2.2 Measured foliations

A multicurve on S is an embedded 1-dimensional submanifold of Σ\P with boundary in

∂Σ\P such that

� no circle component bounds a disk with at most 1 marked point;

� no arc component bounds a disk with no interior marked points and at most 1 marked

point on ∂Σ and

� no two components are isotopic to each other in Σ rel P .

Each of the components is called curve. A weighted multicurve is a multicurve together with

a positive weight associated to each curve. We shall consider (weighted) multicurves up to

isotopy rel P . If a simple curve is a circle we shall denote it closed curve, and proper arc

otherwise.

A measured foliation on S is a foliation with isolated prong singularities, where we allow

1-prong singularities at marked points, equipped with an invariant transverse measure µF .

For a standard reference on measured foliations see [FLP12, Exposé 5]. Denoting αi and wi

the components of the multicurve and the weights of each individual curve, the intersection
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number i(α, F ) is de�ned as inf
∑

iwi

∫
αi
|µF |dαi, where the in�mum is taken over all repre-

sentatives of α. Two measured foliations F and G are equivalent if i(α, F ) = i(α,G) for every

multicurve α. We shall always consider measured foliations up to this equivalence relation.

The set of measured foliations is usually denoted as MF , and its topology is de�ned in such

a way that a sequence (Fn) ⊂ MF converges to F if and only if i(α, Fn) converges to i(α, F )

for every multicurve α.

Given a quadratic di�erential one can de�ne the vertical foliation as the union of vertical

trajectories, that is, maximal smooth paths γ such that q(γ′(t)) < 0 for every t in the interior

of the domain. This foliation can be equipped with the transverse measure given by |Re√q|.
This measured foliation is called the vertical measured foliation of q, and shall be denoted

as V (q). This map is actually an homeomorphism. As such, given a measured foliation

F and a complex structure X there is a unique quadratic di�erential qF,X on X such that

V (qF,X) = F . This quadratic di�erential is usually called the Hubbard�Masur di�erential

associated to F on X [HM79]. Furthermore, for each λ > 0 we have qλF,X = λqF,X . Similarly,

the horizontal foliation H(q) can be de�ned as the union of maximal smooth paths γ such

that q(γ′(t)) > 0, with the transverse measure | Im√
q|.

It is possible to associate a measured foliation to each weighted multicurve by thickening

each proper arc and closed curve to a rectangle or cylinder respectively with width equal

to the weight of the curve, and then collapsing the rest of the surface. The intersection

numbers are maintained by this construction. This association is injective, and hence we

shall consider the set of weighted multicurves as a subset of the measured foliations, and use

both expressions of weighted multicurve indistinctly.

By removing the critical graph, a measured foliation is decomposed into a �nite number

of connected components, each of which is either a thickened curve, or a minimal component

which does not intersect the boundary, in which every leaf is dense [Str84, Chapter 24.3].

Each transverse measure within the minimal components can be further decomposed into

a sum of �nitely many projectively distinct ergodic measures. A foliation F ′ is an inde-

composable component of F if it is either a thickened curve or a minimal component with

a transverse measure that cannot be decomposed as a sum of more than one projectively

distinct ergodic measure. Every foliation can be decomposed uniquely into a union of in-

decomposable foliations. For a surface of genus g with no boundaries nor marked points

Papadopoulos shows [Pap86] that the maximum number of indecomposable components for

any foliation is 3g − 3. It is possible to get an upper bound for foliations on surfaces with
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boundary and marked points by swapping the marked points for boundaries and using the

doubling trick we will explain in Section 6.2.1.

It was shown by Thurston that for surfaces without boundary it is possible to achieve a

dense subset by restricting to simple closed curves, see Fathi�Laudenbach�Poénaru [FLP12]

for a reference. When there are boundaries the picture gets slightly more complicated, but

it has been shown by Kahn�Pilgrim�Thurston [KPT22, Proposition 2.12] that multicurves

can be seen as a dense subset. More precisely, they show the following.

Proposition 2.2.1 (Kahn�Pilgrim�Thurston). Let F be a measured foliation in S not con-

taining proper arcs. Then there exists a sequence of multicurves composed solely of closed

curves approaching F .

The result can be extended to any foliation by cutting along the proper arcs and ap-

proaching the foliation in the resulting surfaces by multicurves. Then, joining the multic-

urves from the proposition with the proper arcs and the adequate weights we get a sequence

of multicurves converging to our original foliation.

2.2.3 Extremal length

Given a marked conformal structure on S, that is, a point ρ ∈ T (S), the extremal length of

F on ρ is de�ned as

Extρ(F ) :=

∫
X

|qF,ρ|.

The map Ext : MF(S)×T (S) → R is continuous and homogeneous of degree 2 in the �rst

variable.

Given two points x, y ∈ T (S) we can de�ne the function

Kx,y := sup
F∈Pb

Extx(F )

Exty(F )
,

where Pb are the measured foliations F satisfying Extb(F ) = 1. As revealed by Kerckho�'s

formula [Ker80], the value 1
2
logKx,y coincides with the usual de�nition of the Teichmüller

distance dTeich(x, y).

The characterization above points towards exponential growth of the extremal length of

some foliations along geodesics. In fact, Walsh proves that whenever the foliation F is not
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aligned with the horizontal foliation of the quadratic di�erential associated with the geodesic,

the growth is exponential. Furthermore, we have an explicit formula for the rate of growth.

Theorem 2.2.2 ([Wal19, Theorem 1 and Lemma 3]). Let S be a surface without boundary,

R(q) : R+ → T (S) be the Teichmüller ray with initial unit-area quadratic di�erential q, and

F be a measured foliation. Then,

lim
t→∞

e−2t ExtR(q;t)(F ) =
∑
j

i(Gj, F )
2

i(Gj, H(q))
,

and

e−2t ExtR(q;t)(F ) ≥
∑
j

i(Gj, F )
2

i(Gj, H(q))
,

where the {Gj} are the indecomposable components of the vertical foliation V (q), and H(q)

is the horizontal foliation.

2.2.4 Moduli space and the mapping class group

The mapping class group of S = (Σ, P ), denotedMCG(S), is de�ned as the set of equivalence

classes of di�eomorphisms h : Σ → Σ �xing the marked points. Two di�eomorphisms

h1, h2 : Σ → Σ are equivalent if h2 ◦h−1
1 is isotopic to the identity rel(P ). The mapping class

group acts on Teichmüller space by changing the marking. Namely, given [(X, f)] ∈ T (S)

and h ∈ MCG(S) we de�ne h([(X, f)]) = [(X, f ◦ h−1)]. This action is well de�ned, since

for any h1 ∼ h2 ∈ MCG(S) and (X, f) ∼ (Y, g) we have some conformal di�eomorphism

h : X → Y such that g−1 ◦h◦f is isopotic to the identity relP , so (g ◦h−1
2 )−1 ◦h◦ (f ◦h−1

1 ) =

h2 (g
−1 ◦ h ◦ f)◦h−1

1 is also isotopic to the identity rel(P ), by concatenating �rst the isotopy

between g−1 ◦ h ◦ f and the identity, and then the isotopy between h2 ◦ h−1
1 and the identity.

Since both isotopies leave P �xed, the concatenation also leaves P �xed.

The action ofMCG(S) on T (S) is an isometric action. Indeed, let [(X, f)], [(Y, g)] ∈ T (S)

be two points, and let ϕK : X → Y be the K−quasiconformal map realizing the Teichmüller

distance, that is, such that 1
2
logK = d([(X, f)], [(Y, g)]). Then, as in the last paragraph,

for any h ∈ MCG(S) we have (g ◦ h−1)−1 ◦ ϕK ◦ (g ◦ h−1) is isotopic to the identity relP ,

so d(h([(X, f)]), h([(Y, g)])) ≤ d([(X, f)], [(Y, g)]). Since h is invertible we get that h is an

isometry.
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The action of MCG(S) on T (S) is properly discontinuous, so we can de�ne the quotient

M(S) as T (S)/MCG(S). This quotient space is the moduli space of S, and can be seen as

the set of conformal structures on S, without considering the marking.

By the Nielsen-Thurston classi�cation, an element of the mapping class group is either

�nite order, reducible or pseudo-Anosov. A �nite order element is an automorphism of some

Riemann surface. A reducible element has some power that �xes a multi-curve on the surface.

A pseudo-Anosov element f has a Teichmüller axis: an f -invariant bi-in�nite Teichmüller

geodesic along which the map translates realising the in�mum of dTeich(x, f(x)) over T (S)

by this translation. This description of a pseudo-Anosov map implies that the Teichmüller

axis is unique and that its vertical and horizontal measured foliations are uniquely ergodic.

2.2.5 Metric length and the thick part of Teichmüller space

By the uniformization theorem, if the Euler characteristic of S is negative then for each

[(X, f)] ∈ T (S) there is a unique hyperbolic metric in X− f(P ). Let S be the set of isotopy

classes of simple closed curves on S, and let γ ∈ S. We de�ne the metric length of γ in

[(X, f)] as the in�mum length of f(γ) under the unique hyperbolic metric, and denote it as

Hyp[(X,f)](γ).

Given ε > 0, a point [(X, f)] ∈ T (S) is ε−thick if Hyp[(X,f)](γ) ≥ ε for all γ ∈ S.
We let Tε(S) be the subset of T (S) consisting of all the ε−thick points. The metric on

[(X, f)] is invariant under the aciton of MCG(S), so if ρ ∈ T (S) is ε−thick, so is h(ρ) for

any h ∈ MCG(S). Hence, MCG(S)(Tε(S)) = Tε(S). The ε-thick part of Teichmüller space

is where the most regular and hyperbolic-like behaviour is observed. For example, large

segments contained in the thick part of edges of geodesic triangles are close to one of the

other two edges, as proven by Ra� [Raf14]. The Mumford compactness theorem says that

for any ε > 0, the thick part Mε(S) is compact.

Since the thick part of Teichmüller space exhibits regularity, we shall be interested in

geodesics that spend a positive proportion of their time in the thick part. For a geodesic γ,

time t > 0 and ε > 0 we de�ne

Thick%ε (γ, t) :=
|{0 ≤ s ≤ t : γ(s) ∈ Tε(S)}|

t
.

We shall observe that most geodesics spend an arbitrarily large proportion in the ε-thick

space, provided ε is small enough.
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2.2.6 Compacti�cations of Teichmüller space

Teichmüller space with the Teichmüller metric is not hyperbolic, so the Gromov boundary

can not be de�ned. However, the visual and the horofunction compacti�cation are both well

de�ned. There are many more ad-hoc compacti�cations de�ned for Teichmüller space. In

this thesis we will deal with two of them: Gardiner�Masur's and Thurston's compacti�cation.

Gardiner�Masur's compacti�cation

For a surface S with marked points and empty boundary we can embed T (S) into the space

of projective continuous functions from the set S of simple closed curves on S to R via the

map ϕ : T (S) → P (RS) de�ned by

ϕ(X) =
[
ExtX(α)

1/2
]
α∈S ,

where the square brackets indicate a projective vector. Gardiner and Masur show [GM91]

that this map is indeed an embedding, and that ϕ(T (S)) is precompact. The Gardiner�Masur

compacti�cation of a surface without boundary is then de�ned as the pair (ϕ, ϕ(T (S))).

While this de�nition works �ne for surfaces without boundary, some tweaks have to be

done when dealing with surfaces with boundary. We shall detail the extended construction

in Chapter 6, as well as extend the required results.

One of the relevant features of the Gardiner�Masur compacti�cation is that it coincides

with the horofunction compacti�cation with respect to the Teichmüller distance. Indeed,

Liu�Su [LS14] and Walsh [Wal19] prove that for surfaces without boundary these two com-

pacti�cations are isomorphic. We shall extend the relevant results to surfaces with boundary

in Chapter 6.

Thurston's compacti�cation

A similar construction to Gardiner�Masur's compacti�cation had been done previously by

using the metric length instead of the extremal length. We shall not be dealing with this

compacti�cation for surfaces with non-empty boundary, so we shall quickly go over the

de�nition for surfaces with empty boundary. As before, we can embed T (S) into the space

of projective continuous functions from the set S of simple closed curves on S to R via the
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map φ : T (S) → P (RS) de�ned by

φ(X) =
[
HypX(α)

1/2
]
α∈S ,

where the only di�erence with respect to the Gardiner�Masur construction is that we use

the hyperbolic length instead of the extremal length. This is indeed an embedding, and the

image is precompact. The compacti�cation of the image, toghether with the embedding, is

called the Thurston compacti�cation.

The set of projective measured foliations PMF(S) is de�ned by considering the equiv-

alence classes of measured foliations, where two measured foliations F,G ∈ MF(S) are

equivalent if they are equal as foliations and the measure of one is a non-zero multiple

of the other. The boundary of the Thurston compacti�cation can be naturally identi�ed

with PMF(S). As shown by Lenzhen [Len08], not all geodesics converge to the Thurston

boundary. However, geodesics associated to quadratic di�erentials whose vertical foliation

is uniquely ergodic do, as shown by Masur [Mas82b]. In particular, given a quadratic di�er-

ential q based at x ∈ T (S) whose vertical foliation is the uniquely ergodic foliation F , then

R(q; ·) converges to the projectivized version of F in PMF(S).

It is possible to endow PMF(S) with a natural family of measures, the Lebesgue measure

class, by pulling back Lebesgue measures from the charts de�ned by using train tracks

coordinates. For more details we refer, for example, to [Gad14, Section 2.2]. These measures

are supported in the set of projective measured foliations, so it is possible to get a measure

on the set of geodesic rays exiting some basepoint x ∈ T (S), which as we recall can be

identi�ed with Q1(x). It follows from Dowdall�Duchin�Masur [DDM14, Proposition 5.5]

that, according to the resulting Lebesgue measures, almost all geodesics spend eventually an

arbitrarily large proportion of time in the thick space. Precisely,

Theorem 2.2.3. Dowdall�Duchin�Masur Let o ∈ T (S) be a basepoint in Teichmüller space.

Furthermore, let λ be the Lebesgue measure on Q1(o). Then, for all 0 < ξ < 1 there is some

ε(ξ) > 0 such that for σ-almost every q there is tξq <∞ such that

Thick%ε(ξ)(R(q), t) ≥ ξ

for all t ≥ tξq.
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2.3 Random walks and measures on boundaries

Let G be a discrete group and µ a probablity measure on G. The step space Ω := GN is

the space of in�nite sequences of group elements, which we consider as a probability space

with the product measure P := µN. We will denote random walk on G starting at g0 the

stochastic process (indexed by N∪0) obtained by associating to each n the G-valued random

variable wn : Ω → G

(g1, g2, . . .) → wn := g0g1 . . . gn.

In other words, a random walk on G is a time homogeneous, space homogeneous Markov

chain with transition probabilities given by p(g, h) = µ(g−1h). Our random walks will always

start at the neutral element, that is, g0 = e.

On all of our cases the group G will act by isometries on some metric space (X, d), and

we will be interested on the process we get by applying the random walk to some starting

point x ∈ X, i.e., in the process (wnx)n∈N. This may make the choice of creating the random

walk on the group by right multiplication look weird, since this may result in the new process

not being a Markov chain. However, by doing it this way we can interpret the steps as going

from wnx to (wngn+1w
−1
n )wnx, i.e., every step consists on drafting independently an isometry

gn+1 ∈ G with probability µ, translating it to the point wnx (i.e., considering the isometry

wngn+1w
−1
n ) and applying this new isometry. Since there might be more than one way of

translating our isometry, and the way we chose depends on the path wn, we might end up

with something that is no longer a Markov chain. However, by making this choice we get

something similar to time and space homogeneity, since the distribution of every step will

be a random translation of the distribution of the �rst step, i.e.,

P[wnx = y|wn−1x = z] = P[wn−1gnx = y|wn−1x = z] =

= P[gnx = w−1
n−1y|x = w−1

n−1z].

We will refer to this new process as random walk on X (generated by (G, µ)). This can also

be seen as the projection of the random walk on G to X.

Sometimes we will consider both forward and backward random walks. The backward

random walk is simply the random walk with respect to the re�ected measure µ̂ de�ned by

µ̂(g) = µ(g−1). We then consider bi-in�nite sequences as elements of GZ with the shift σ

acting as a step of the random walk. For the push-forward h of the product measure µZ on
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GZ the conditional measure for the shift is given by µ. We can separate the forward and

backward directions to write h as the product ν × ν̂. We call the measure ν the harmonic

measure.

2.3.1 Random walks on Teichmüller space

A subgroup of MCG(S) is non-elementary if it contains a pair of pseudo-Anosov mapping

classes with distinct Teichmüller axes. Let x ∈ T (S) be a base-point. Kaimanovich-Masur

showed that if the support of a probability distribution µ on MCG(S) generates a non-

elementary subgroup then for h-almost every sample path ω = (wn) the sequence wnx

converges to a projective class of a uniquely ergodic measured foliation on S. See [KM96,

Theorem 2.2.4]. So the Kaimanovich-Masur theorem can be rephrased as convergence to

the boundary PMF(S) for h-almost every sample path. In particular, the measure ν on

MCG(S)N pushes forward to a measure on PMF(S). We call this the harmonic measure

on PMF(S).

As shown by Maher�Tiozzo [MT18, Theorem 1.2], �nite �rst moment in the curve com-

plex is su�cient for positive linear drift of typical sample paths when projected to the curve

complex using the mapping class group action. Since Teichmüller distance is a coarse upper

bound for the curve complex distance, �nite �rst dTeich-moment implies �nite �rst moment in

the curve complex. Hence we have positive linear drift of sample paths in the curve complex

and consequently in Teichmüller space.

Going back to the work of Kaimanovich�Masur, they showed that if µ has �nite entropy

and �nite �rst logarithmic moment with respect to the Teichmüller metric then the push-

forward measure is measurably isomorphic to ν. See [KM96, Theorem 2.3.1]. For this reason,

and to keep the notation simple, we denote the measure on PMF(S) by ν even though we

do not need the measurable isomorphism.
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Chapter 3

Statistical hyperbolicity of Teichmüller

space

3.1 Introduction

The notion of statistical hyperbolicity, introduced by Duchin-Lelièvre-Mooney in [DLM12],

encapsulates whether a space is on average hyperbolic at large scales, that is, for any point

in the space and spheres centred at that point whether as the radius r → ∞ the average

distance between pairs of points on the sphere of radius r is 2r. This corresponds to the

distance between two randomly selected point being similar to the length of the path passing

through the center of the sphere, which is the case when the corresponding triangle is thin

and the points are not too close between them. To make sense of the average distance, one

requires measures on spheres.

For many Lebesgue-class measures on Teichmüller space, Dowdall-Duchin-Masur showed

that Teichmüller space with the Teichmüller metric is statistically hyperbolic. See [DDM14,

Theorems B, C and D]. Here, we consider the same question for the harmonic measures that

arise from random walks on the mapping class group determined by probability distributions

with �nite �rst moment with respect to the Teichmüller metric, and whose supports generate

non-elementary subgroups. As explained in Section 2.3.1, Kaimanovich-Masur showed that

under such natural assumptions random walks converge almost surely to the Thurston boun-

dary of Teichmüller space. This de�nes a harmonic measure on the Thurston boundary, and

Kaimanovich-Masur showed that this measure is supported on the set of uniquely ergodic
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measured foliations. See [KM96, Theorem 2.2.4] for both statements. Since Teichmüller rays

with uniquely ergodic vertical foliations asymptotically converge to this vertical foliation, it

is possible to pull back the harmonic measure to the unit cotangent space at a base-point.

This allows us to equip spheres in Teichmüller space with a harmonic measure. We can then

consider the question of whether Teichmüller space is statistically hyperbolic with respect to

these measures.

The main theorem of this chapter, proven as a combination of Corollary 3.3.4 from

Section 3.3.4, Corollary 3.3.5 from Section 3.3.5, and [DDM14, Theorem A], is:

Theorem 3.1.1. Let S be a surface of �nite type. Let µ be a probability distribution on the

mapping class group MCG(S) with �nite �rst moment with respect to the Teichmüller metric,

and such that the support generates a non-elementary subgroup. Then the Teichmüller space

T (S) with the Teichmüller metric is statistically hyperbolic with respect to the harmonic

measure de�ned by the µ-random walk on MCG(S).

When S is a torus or a torus with one marked point or a sphere with four marked points,

T (S) with the Teichmüller metric is isometric to H. If µ also has �nite �rst moment in the

word metric then by a theorem of Guivarch-LeJan [GLJ90], the harmonic measure from the

µ-random walk is singular with respect to the Lebesgue measure class.

With respect to the class of Lebesgue measures on T (S), a similar singularity of harmonic

measures also holds when the complex dimension is greater than one. Gadre [Gad14, Theo-

rem 1.1] proved the singularity of harmonic measures from �nitely supported random walks

on MCG(S) and Gadre�Maher�Tiozzo [GMT17, Theorem 1.4] proved the singularity for

harmonic measures for random walks with �nite �rst moment with respect to a word metric

on MCG(S). Finite �rst moment with respect to the word metric implies �nite �rst moment

with respect to the Teichmüller metric. For this large class of random walks, Thereom 3.1.1

gives a conclusion that is distinct from the main results of Dowdall-Duchin-Masur [DDM14]

and, as we outline below, requires di�erent tools.

On the other hand, �nite �rst moment with respect to the Teichmüller metric does not

imply �nite �rst moment in the word metric. This is because the mapping class group is

distorted under the orbit map to Teichmüller space. For the exceptional surfaces mentioned

above whose Teichmüller space is H, Furstenberg showed in [Fur71] that there is a �nite �rst

dH-moment random walk whose harmonic measure on S1 is absolutely continuous. Thus,

for the exceptional surfaces Theorem 3.1.1 derives statistical hyperbolicity covering both
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singular and Lebesgue class measures in one statement.

We will �rst present the proof of Theorem 3.1.1 when the complex dimension of T (S)

is greater than one. This is the harder case. For the exceptional surfaces, that is when

T (S) = H, the proof of Theorem 3.1.1 is obviously easier because the ambient geometry is

already hyperbolic. However, as mentioned above, many harmonic measures are singular. So

there is something to prove. The argument required in the exceptional case is straightforward

and uses the geodesic separation property for harmonic measure that is already formulated

in the proof of the harder case of Theorem 3.1.1.

In fact, we present the exceptional case as a special case of a more general theorem when

the ambient geometry is hyperbolic. In Section 3.4.1 we prove:

Theorem 3.1.2. Let Γ be a lattice in Isom(Hn) for n ⩾ 2. Let µ be a probability distribution

on Γ with �nite �rst Hn-moment such that the support of µ generates a subgroup that contains

a pair of loxodromic elements with distinct axes. Then, with respect to the harmonic measure

de�ned by the µ-random walk on Γ, the space Hn with the hyperbolic metric is statistically

hyperbolic.

We note that when n > 2 and Γ is a non-uniform lattice, Randecker-Tiozzo [RT21,

Theorem 2] proved that a harmonic measure arising from a µ whose support generates Γ

and has �nite (n − 1)th moment with respect to a word metric is singular. For uniform

lattices, many classes of harmonic measures are known or conjectured to be singular. For

instance, the singularity conjecture of Guivarc'h-Kaimanovich-Ledrappier mentioned in the

introduction asserts that harmonic measures that arise from �nitely supported random walks

on a uniform lattice in SL(2,R) are singular. Furtermore, results of Kosenko�Tiozzo [KT22]

as well as the ones we shall present in Chapter 4 show many cases in which the measures are

indeed singular. So Theorem 3.1.2 has new content.

From now on we assume that the complex dimension of T (S) is greater than one and

present the proof of Theorem 3.1.1 with that assumption.

3.1.1 Strategy of the proof

To derive statistical hyperbolicity, Dowdall-Duchin-Masur set up two properties to check.

The �rst property is the thickness property introduced in Section 2.2.5. It states that as

the radius of a sphere goes to in�nity a typical radial geodesic segment spends a de�nite
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proportion of its time in the thick part of Teichmüller space. The second property is called

the separation property. See [DDM14, De�nition 6.1]. It states that as the radius of a

sphere goes to in�nity a typical pair of radial geodesic segments exhibit good separation.

For Lebesgue-class visual measures, the ergodicity of the Teichmüller geodesic �ow is the key

tool in their proof of the thickness property. For rotationally invariant Lebesgue measures,

they verify the separation property by disintegrating the measure along and transverse to

Teichmüller discs and then use the hyperbolic geometry of these discs.

For random walks, di�erent tools are needed. The main tool is the ergodicity of the shift

map on the space of bi-in�nite sample paths. This ergodicity can be leveraged to prove

that a typical bi-in�nite sample path recurs to a neighbourhood of its tracked geodesic with

a positive asymptotic frequency. As sample paths lie in a thick part, recurrence implies

that the tracked geodesics spend a positive proportion of their time in a thick part. By

tweaking the size of the neighbourhood, and hence the thick part, we show that the time

spent in the thick part by the tracked geodesic can achieve any positive proportion. While

a positive proportion of thickness is suggested by the main theorem in [GMT17], the precise

quantitative version that we need here requires some work.

For the separation property, we project two fellow travelling radial geodesic segments

to the curve complex. By a theorem of Maher-Tiozzo, a typical sample path makes linear

progress in the curve complex. Combining this theorem with the recurrence, we show that

the projections of fellow travelling radial geodesic segments must nest into a shadow. Also

by a proposition in Maher-Tiozzo, the harmonic measure of a shadow tends to zero in the

distance of the shadow from the base-point. This then enables us to conclude the required

separation property.

3.1.2 Disclosures

This chapter is based on joint work with Vaibhav Gadre and Luke Je�reys. The work

contained in this chapter has been published [AGJ22].
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3.2 Section speci�c background

3.2.1 Statistical hyperbolicity

Let (X, d) be a metric space. Let x ∈ X. Let r > 0. Recall from the introduction that we

denote the set Sr
x = {x′ ∈ X such that d(x, x′) = r} the sphere of radius r centred at x.

Suppose νr is a family of probability measures supported on Sr
x. Provided the limit exists,

one de�nes a numerical index E(X) := E(X, x, d, {νr}) by

E(X) = lim
r→∞

1

r

∫
Sr
x×Sr

x

d(x′, x′′) dνr(x
′)dνr(x

′′)

A space is said to be statistically hyperbolic if E(X) = 2. This is motivated by the fact

that E(Hn) = 2 for any n ≥ 2 equipped with the natural measures on spheres. Moreover, it

was demonstrated by Duchin-Lelièvre-Mooney [DLM12, Theorem 4] that E(G) = 2 for any

non-elementary hyperbolic group G with any choice of generating set.

For uniform lattices in Isom(Hn), the Green metric de�ned by the random walk is quasi-

isometric to the induced hyperbolic metric through the orbit map. This suggests a derivation

of statistical hyperbolicity by reducing the problem to the Duchin-Lelièvre-Mooney result.

As our proof of Theorem 3.1.2 covers both uniform and non-uniform lattices, we omit the

details for this alternate approach. In any case, it would work only for uniform lattices.

We direct the reader to [DLM12] for further discussion on the sensitivity of E. Indeed, it

is not quasi-isometrically invariant, and has dependence on the base-point x and the choice of

measures vr. Furthermore, δ-hyperbolicity and exponential volume growth are not su�cient

to guarantee statistical hyperbolicity.

3.2.2 Statistical hyperbolicity for a harmonic measure

Recall that, as explained in Section 2.2.5, the stationary measure generated by a random

walk in T (S) can be pulled to a measure on the set of unit area quadratic di�erentials for

the marked Riemann surface x ∈ T (S), denoted Q1(x). Since Teichmüller space is straight

and uniquely geodesic, this gives us a measure on every sphere Sr
x via the map induced by

R(·; r) : Q1(x) → §rx sending q to R(q; r). Thus, we consider that T (S) with the Teichmüller
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metric is statistically hyperbolic with respect to harmonic measure ν if

lim
r→∞

1

r

∫
Q1(x)×Q1(x)

d(R(q; r), R(q′; r)) dν(q)dν(q′) = 2.

3.2.3 Statistical hyperbolicity in Teichmüller space

Dowdall-Duchin-Masur [DLM12] reduce statistical hyperbolicity of Teichmüller space with

the Teichmüller metric for a family of measures {νr} to the veri�cation of two properties: the

thickness property [DLM12, De�nition 5.2] and the separation property [DLM12, De�nition

6.1]. We will now state these properties and in Section 3.4, we will give a quick sketch of how

these properties imply statistical hyperbolicity. For those unfamiliar with Dowdall-Duchin-

Masur, we recommend reading through the sketch immediately after De�nitions 3.2.1 and

3.2.2.

Recall that for a choice of ε > 0 and a geodesic R(q) : R → T (S), we denote the

proportion of time [R(q; 0), R(q; t)] spends in Tε(S) by

Thick%ε (R(q), t) :=
|{0 ⩽ s ⩽ t : R(q; s) ∈ Tε(S)}|

t
.

The precise de�nition of the thickness and separation properties given by Dowdall-

Duchin-Masur refers to sequences of measures in spheres. We shall adapt such de�nition

to a measure on Q1(o) for some basepoint o ∈ T (S). The original de�nition can be recov-

ered by considering the sequence of measures on spheres obtained by mapping the measure

on Q1(o) to the spheres of radius r, Sr
o via the map induced by R(·; r) : Q1(o) → Sr

o sending

q to R(q; r).

The adapted de�nition of the thickness property is the following.

De�nition 3.2.1 (Thickness property). Given a basepoint o ∈ T (S), a probability measure

ν on the set of directions Q1(o) has the thickness property if for all 0 < θ, η < 1 there exists

an ε > 0 such that

lim
r→∞

ν
(
{q ∈ Q1(o) | Thick%ε (R(q), t) ⩾ θ for all t ∈ [ηr, r]}

)
= 1,

for all o ∈ T (S).
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The other required property relates to avoiding measures whose geodesics are too clus-

tered. This is done by requiring that for any M > 0, the distance between most geodesic

rays is eventually at least M . Precisely, the adapted separation property is the following.

De�nition 3.2.2 (Separation property). Given a basepoint o ∈ T (S), a measure ν on the

set of directions Q1(o) has the separation property if for all M > 0 and 0 < η < 1, we have

lim
r→∞

ν × ν
(
{(q, q′) ∈ Q1(o)×Q1(o) | dTeich(R(q; t), R(q′; t)) ⩾M for all t ∈ [ηr, r]}

)
= 1,

for all o ∈ T (S).

In the next section, we derive these properties for a harmonic measure that arises from

a random walk on the mapping class group determined by a probability distribution with

�nite �rst moment with respect to the Teichmüller metric whose support generates a non-

elementary subgroup.

3.3 Derivation of the Thickness and Separation Proper-

ties

3.3.1 Recurrence

Let x be a base-point in Teichmüller space. Let ω be a bi-in�nite sample path. As a

convenient notation, we let xn = wnx for any n ∈ Z. In particular, this means that x0 is the

same as the base-point x. For almost every ω, the sequences xn and x−n converge projectively

as n → ∞ to distinct uniquely ergodic measured foliations λ+ and λ− respectively. For

such sample paths, let γω be the bi-in�nite Teichmüller geodesic between λ+ and λ−. As

convenient notation, let γ = γω and let γn be a point of γ that is closest to xn. The diameter

of the set of closest points is coarsely bounded above by dTeich(xn, γn). As sample paths

deviate sub-linearly from their tracked geodesics [Tio15], the choice of the closest point does

not a�ect our estimates. This will become quantitatively precise subsequently.

Let

ΛR = {ω such that dTeich(x, γω) < R} .

By Kaimanovich�Masur [KM96, Lemma 1.4.4], the function ω → dTeich(x, γω) is measurable.

Recall that h is our notation for the harmonic measure ν× ν̂ on bi-in�nite sample paths. So
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Figure 3.1: A sample path ω in ΛR.

if R is large enough then h(ΛR) > 0 and h(ΛR) → 1 as R → ∞.

An integer k will be called an R-recurrence time for ω if σkω ∈ ΛR where recall that σ is

the shift map. Suppose j < k are R-recurrence times for ω and denote dTeich(xj, xk) = 2d.

This distance will be bounded by the sum of the length of each step we do, that is,

2d ⩽
k∑

i=j+1

dTeich(xi−1, xi) =
k∑

i=j+1

dTeich(x, gix).

We let [γj, γk] be the segment of γω connecting γj and γk. We note that

Length[γj, γk] ⩽ 2R + 2d.

If 2d ⩽ 2R, then

[γj, γk] ⊂ B(xj, 3R) ∪B(xk, 3R).

So suppose 2d > 2R. We consider the sub-segments of [γj, γk] that might be outside of the

union B(xj, 3R) ∪ B(xk, 3R). We denote the union of these sub-segments by Cj,k and let

L(j, k) to be the sum of their lengths.

Let 0 < ρ < p < 1. We choose R large enough such that h(ΛR) ⩾ p. Let n ∈ N and set

E(1)
n =

{
ω such that

1

m

∑
0⩽k⩽m

χΛR
(σkω) < p− ρ for some m ⩾ n

}

where χ is the indicator function. By ergodicity of the shift map σ it follows that h(E
(1)
n ) → 0

as n→ ∞.

Suppose ω is in the complement of E
(1)
n . Then the number of times i ∈ {0, · · · , n} such
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that σiω /∈ ΛR is at most (1 + ρ − p)n. Let jmin and jmax be the smallest and largest

R-recurrence times in {0, . . . , n}. Then we note that

jmin ⩽ (1 + ρ− p)n and jmax ⩾ n− (1 + ρ− p)n.

By bounding with steps, we get the estimate

dTeich(x, xjmin
) ⩽

jmin∑
i=1

dTeich(x, gix).

We will separate the sum into two sums. The �rst will contain terms dTeich(x, gix) for

which dTeich(x, gix) ⩽ D and the second will contain the rest of the terms. For convenience

of notation, we let B be the set of bi-in�nite sample paths ω whose �rst step g1 satis�es

dTeich(x, g1x) ⩽ D. The set B depends on the choice of D but we will suppress this from the

notation for the moment and point it out when required later. With this notation, the sum

above becomes

dTeich(x, xjmin
) ⩽

jmin∑
i=1

dTeich(x, gix)χB(σ
i(ω)) +

jmin∑
i=1

dTeich(x, gix)χΩ\B(σ
i(ω)),

We can bound the �rst sum by
∑jmin

i=1 D ⩽ (1 + ρ− p)Dn, and the second one by

n∑
i=1

dTeich(x, gix)χΩ\B(σ
i(ω)).

We denote each of the terms of the sum above as bDi , that is b
D
i (ω) = dTeich(x, gix)χΩ\B(σ

i(ω)).

The random variables bDi are all independent and identically distributed. Furthermore,

bDi (ω) ⩽ dTeich(x, gix), which, since the measure has �nite �rst dTeich-moment, is integrable.

By the strong law of large numbers, the sum above when divided by n converges almost

surely to E[bDi ]. Let C denote this expectation.

We conclude that the sets

E(2)
n =

{
ω such that

1

m

m∑
i=0

bDi (ω) > C + c for some m ⩾ n

}
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satisfy h(E
(2)
n ) → 0 as n→ ∞ for all c > 0.

As D tends to in�nity, the random variable bDi converges to zero point-wise. By the

dominated convergence theorem where we are dominating by dTeich(x, gx), we get that if D

is large enough, then the expectation C is small.

Assume ω is in the complement of both E
(1)
n and E

(2)
n . Then,

dTeich(x, xjmin
) ⩽ ((1 + ρ− p)D + C + c)n,

and, by the same reasoning,

dTeich(xjmax , xn) ⩽ ((1 + ρ− p)D + C + c)n.

This implies

dTeich(γ0, γjmin
) ⩽ ((1 + ρ− p)D + C + c)n+ 2R

and

dTeich(γjmax , γn) ⩽ ((1 + ρ− p)D + C + c)n+ 2R.

We will now estimate from above the time that the segment [γjmin
, γjmax ] spends outside

the neighbourhood of points along the sample path. A pair j < k of recurrence times is

consecutive if every J satisfying j < J < k is not a recurrence time.

If k = j + 1, the set Cj,j+1 will be non empty only if dTeich(xj, xj+1) ⩾ 2R. In that case,

if we choose D smaller than R, then L(j, j + 1) ⩽ bDj+1.

If k > j +1, we have k− j − 1 steps taken outside the R-neighbourhood of the geodesic.

We can split these steps depending on whether they are in B or not. Recall that since we

are outside the exceptional set E
(1)
n , we know that the total number of non-recurrence times

is bounded above by (1 + ρ− p)n. In the estimate for the sum of L(j, k), we note that each

non-recurrence time contributes to at most two terms in the sum. We deduce that

∑
j<k

consecutive

L(j, k) ⩽
∑

j+1=k
consecutive

bDj+1 +
∑

j+1<k
consecutive

k∑
i=j+1

(
bDi + dTeich(x, gix)χB(σ

i(ω))
)

⩽
n∑

i=1

bDi + 2(1 + ρ− p)nD

⩽ (2(1 + ρ− p)D + C + c)n.
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3.3.2 Linear progress

The Teichmüller metric is sub-additive along sample paths. By Kingman's sub-additive

ergodic theorem, there exists a constant A ⩾ 0 such that for almost every sample path ω we

have

lim
n→∞

dTeich(x0, xn)

n
= A.

By Maher�Tiozzo [MT18, Theorem 1.2], A > 0.

Let 0 < a < 1 be a constant smaller than A. Let n ∈ N. Consider the set of sample

paths

Ω(3)
n = {ω such that (A− a)m < dTeich(x0, xm) < (A+ a)m for all m ⩾ n} .

Let E
(3)
n be the complement Ω \ Ω(3)

n . It follows that h(E
(3)
n ) → 0 as n→ ∞.

3.3.3 Thickness along tracked geodesics

Let 0 < θ′ < 1.

We parameterise the tracked geodesic γ = γω by unit speed such that at time zero we

are at γ0, a closest point to x0 = x, and γ(t) → λ+ as t→ ∞.

Let Λ(r, θ′, ε′) be the set of sample paths ω such that for all s > r we have

Thick%ε′ (γ, s) ⩾ θ′.

Proposition 3.3.1. Given 0 < θ′ < 1 there exists an ε′ > 0 such that

lim
r→∞

h(Λ(r, θ′, ε′)) = 1.

Proof. Given R > 0 there exists ε(R) > 0 such that B(x0, 3R) ⊂ Tε(R)(S). By equivariance,

B(xn, 3R) ⊂ Tε(R)(S) for all n ∈ Z.
Suppose that ω is in the complement of E

(1)
n ∪E(2)

n . We �rst prove the proposition along

the discrete set of times γn along γω. By the triangle inequality

dTeich(γ0, γn) ⩾ dTeich(x0, xn)− dTeich(x0, γ0)− dTeich(xn, γn).
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Since γ0 is the closest point in γω to x0

dTeich(x0, γ0) ⩽ dTeich(x0, xjmin
) +R ⩽ ((1 + ρ− p)D + C + c)n+R.

Similarly

dTeich(xn, γn) ⩽ dTeich(xn, xjmax) +R ⩽ ((1 + ρ− p)D + C + c)n+R.

So we get

dTeich(γ0, γn) ⩾ dTeich(x0, xn)− 2((1 + ρ− p)D + C + c)n− 2R.

Further assume that ω is also in the complement of E
(3)
n . We deduce from the above

estimates that

dTeich(γ0, γn) ⩾ (A− a)n− 2((1 + ρ− p)D + C + c)n− 2R. (3.3.1)

We note that the points in the segment [γ0, γn] that are not in Tε(R)(S) are in the union

of the sets [γ0, γjmin
], [γjmax , γn] and the sets Cj,k for all consecutive recurrence pairs j < k.

The individual upper bounds on the lengths of each set in the union gives us the bound on

the thick proportion for a choice of ε′ ⩽ ε(R)

1− Thick%ε′ (γ, dTeich(γ0, γn)) ⩽
4((1 + ρ− p)D + C + c)

(A− a)− 2((1 + ρ− p)D + C + c)− 2R/n
. (3.3.2)

Now we make explicit choices as follows.

� Note that as R → ∞, the proportion p→ 1 and hence min{(1− p)−1/2, R} → ∞.

� Recall that if we tend D → ∞ then C → 0.

� So if we set D = min{(1− p)−1/2, R} then we can pass to R large enough so that C is

small enough.

� Furthermore, note that D(1 − p) ⩽ (1 − p)1/2 which can also be made small with R

large enough.

� Recall also that ρ, c and a can be chosen after all the other constants have been set,

and so we can set them to be small enough.
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These choices imply that by choosing R large enough we may arrange that the numerator

and the second term in the denominator in (3.3.2) are small. Once R has been �xed the

third term in the denominator goes to zero as n → ∞. In conclusion, by choosing R large

enough we may arrange the right hand side of (3.3.2) to be smaller than 1− θ′.

Now we conclude the proposition as the time s→ ∞ along γω. By an argument identical

to the derivation of (3.3.1), we get the upper bound

dTeich(γ0, γn) ⩽ (A+ a)n+ 2((1 + ρ− p)D + C + c)n+ 2R.

Given a time s > 0, we may choose n to satisfy

(A− a)n− 2((1 + ρ− p)D+C + c)n− 2R < s < (A+ a)n+2((1+ ρ− p)D+C + c)n+2R.

When s is large enough, such a choice always exists. Since we are only interested in the limit

as s→ ∞, we may make this choice. Further tweaking R and hence p and also tweaking ρ, c

and a we may arrange that the ratio of the upper bound to the lower bound in the above

inequality is as close to one as we want. This implies that as s→ ∞ the thick proportion of

[γ0, γ(s)] is the same as the thick proportion of [γ0, γn].

Finally, we note that the set of exceptions is the union E
(1)
n ∪E(2)

n ∪E(3)
n whose measure

tends to zero as n→ ∞. In particular, this implies h(Λ(r, θ′, ε′)) → 1 as r → ∞, and we are

done.

As a direct consequence of Proposition 3.3.1, we get the following conclusion.

Proposition 3.3.2. Let 0 < θ′ < 1. Then there exists an ε′ > 0 such that for almost every

bi-in�nite sample path ω there exists tω such that for all t > tω

Thick%ε′ (γ, t) ⩾ θ′.

3.3.4 Thickness along rays

Now let y be some other base-point in T (S) possibly distinct from the base-point x0 for the

random walk. Masur [Mas80, Theorem 2] proved that Teichmüller rays with the same vertical

foliation are asymptotic if the foliation is uniquely ergodic. We now use this result to transfer

the thickness estimates from tracked geodesics to corresponding rays from y. Suppose that
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ω is a typical bi-in�nite sample path with the tracked geodesic γω. Let λ
+
ω be the projective

measured foliation that γω converges to in the forward direction. Let qω ∈ Q1(y) be the unit

area quadratic di�erential based at y with vertical foliation λ+ω .

Proposition 3.3.3. Let 0 < θ < 1. Then there exists ε > 0 such that for almost every

bi-in�nite sample path ω there is a time Tω > 0 such that

Thick%ε (R(qω), t) ⩾ θ

for all t ⩾ Tω.

Proof. By [KM96, Theorem 2.2.4], for almost every ω the foliation λ+ω is uniquely ergodic.

By Masur's theorem, there is a time s > 0 that depends only on dTeich(γω, y) such that

for all t ⩾ s we have dTeich(R(qω; t), γω) < 1/2. We may choose ε ⩽ ε′ such that the 1-

neighbourhood of Tε′(S) is contained in Tε(S). This means after the time s along R(qω) any

ε′-thick segment of γω gives an ε-thick segment of R(qω) of at least the same length. We now

set θ′ > θ and use Proposition 3.3.2. Let t > s. The total length of ε′-thick segments of γω

that are inside a 1-neighbourhood of [R(qω; s), R(qω; t)] is at least θ
′t− s− dTeich(γ(0), y). If

t is large enough then θ′t− s− dTeich(γ(0), y) > θt, and we are done.

As an immediate corollary, we get

Corollary 3.3.4. The harmonic measure ν on Q1(y) satis�es the thickness property 3.2.1

for any y ∈ T (S).

3.3.5 Separation properties

To prove the separation properties, we project to the complex of curves. As proven by

Masur�Minsky [MM99], under this projection Teichmüller geodesics give unparameterised

quasi-geodesics and thick segments make coarse linear progress. If a pair of Teichmüller rays

with good thickness properties up to a distance r are not well-separated then their projections

to the curve complex fellow travel. Hence, the endpoints of their projections lie in some

shadow and this shadow is pushed further and further out as r → ∞. So roughly speaking,

we may conclude the separation properties from knowing that the harmonic measure of these

shadows goes to zero. We now give the details of the argument.
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The complex of curves C(S) is a graph whose vertices are isotopy classes of essential

simple closed curves on S. Two vertices α and β have an edge between them if α and β

have representatives that are disjoint. The curve complex C(S) is a locally in�nite graph

with in�nite diameter. Masur-Minsky [MM99, Theorem 1.1] showed that C(S) is in fact δ-

hyperbolic. Recall that the Gromov product on C(S) is de�ned as follows: given a base-point

x and two points y, z in the space, the Gromov product of y and z based at x is de�ned as

(y, z)x =
1

2
(dC(x, y) + dC(x, z)− dC(y, z))

where dC denotes the distance in the curve complex. Let ∂C(S) be the Gromov boundary of

C(S). Given a number τ > 0, the shadow of y from x with distance parameter dC(x, y)− τ

is de�ned as

Shadx(y, τ) = {z ∈ C(S) ∪ ∂C(S) such that (y, z)x ⩾ dC(x, y)− τ}.

There are di�erent de�nitions of shadows in the literature and the one we use here is from

Maher�Tiozzo [MT18, Page 197].

To every marked hyperbolic surface x ∈ T (S), one can consider a systole on x, that

is, a shortest closed hyperbolic geodesic on x. A systole is always a simple closed curve

and hence can be thought of as a vertex in the curve complex C(S). This de�nes a coarse

projection sys : T (S) → C(S) from Teichmüller space to the curve complex. By Masur�

Minsky [MM99, Theorems 2.3 and 2.6], the projection sys(γ) of a Teichmüller geodesic γ is

an unparameterised quasi-geodesic in C(S) with uniform constants that depend only on the

surface.

Let M > 0. Suppose qω, qη ∈ Q1(y) are chosen with respect to the harmonic measure,

where ω and η are the associated bi-in�nite sample paths. Let Tω and Tη be the thresholds

given by Proposition 3.3.3 for ω and η, respectively. Pick T larger than Tω and Tη. Suppose

that dTeich(R(qω;T ), R(qη;T )) < M . Since the projection by systoles is coarsely Lipschitz,

we may continue to assume dC(sys(R(qω;T )), sys(R(qη;T ))) < M .

We consider the projections sys([y,R(qω;T )]) and sys([y,R(qη;T )]). Since, R(qω) and

R(qη) spend at least θ proportion of their time in the thick part their projections to C(S)make

linear progress, that is there exists a constant κ > 0 such that dC(sys(y), sys(R(qω;T )) ⩾ κT

and dC(sys(y), sys(R(qη;T )) ⩾ κT.
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·sys(y)

·
sys(R(qω;T ))

·
sys(R(qη;T ))·sys(x)

M ·

· λ+η

Figure 3.2: The Gromov product (sys(R(qω;T )), λ
+
η )sys(x) in C(S), up to an additive constant.

Denote by λ+η the limiting point of sys(R(qη)). By hyperbolicity of C(S) there is a

constant r > 0 such that the Gromov product between λ+η and sys(R(qω;T )) satis�es

(sys(R(qω;T )), λ
+
η )sys(y) ⩾ dC(sys(y), sys(R(qω;T )))−M − r.

In order to estimate harmonic measures, we will now pass to sys(x) as the base-point for

Gromov products. By the triangle inequality

dC(sys(x), sys(R(qω;T ))) ⩾ dC(sys(y), sys(R(qω;T )))− dC(sys(x), sys(y)).

Note that dC(sys(x), sys(R(qω;T ))) goes to in�nity as dC(sys(y), sys(R(qω;T ))) does. We have

(sys(R(qω;T ), λ
+
η )sys(x) ⩾ dC(sys(x), sys(R(qω;T )))−r′, where r′ =M+r+2dC(sys(x), sys(y)).

Then λ+η is contained in Shadsys(x)(sys(R(qω;T )), r
′). By [MT18, Proposition 5.1], the supre-

mum of the harmonic measure of Shadsys(x)(sys(R(qω;T )), r
′) tends to zero as T → ∞.

As an immediate corollary we get

Corollary 3.3.5. The harmonic measure ν on Q1(y) satis�es the separation property 3.2.2

for any y ∈ T (S).
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For exceptional moduli or more generally for lattices in Isom(Hn), the ambient geometry

is hyperbolic. So we may directly use shadows/ half-spaces in Hn. As above, the harmonic

measure of shadows decays to zero as the distance from the base-point goes to in�nity. So

the proof can be carried out exactly as above to conclude the separation property.

3.4 Statistical Hyperbolicity

For the sake of completeness, we now sketch the spherical version of the argument given by

Dowdall-Duchin-Masur [DDM14, Theorem 7.1] of how the thickness and separation proper-

ties imply statistical hyperbolicity. The idea is to mimic a proof of the fact that E(Hn) = 2

for the natural measures on spheres which makes use of the δ-hyperbolicity of Hn, and of

the speed of separation of geodesics.

However, as discussed above, Teichmüller space is neither δ-hyperbolic, nor negatively-

curved in the sense of Busemann. The motivation for the separation property 3.2.2 is to

show instead that most pairs of geodesics after some threshold time become separated by a

de�nite amount. This replaces the use of the negative curvature of Hn. The combination

of the following theorem of Dowdall-Duchin-Masur [DDM14, Theorem A] and the thickness

property 3.2.1 then replaces the use of the δ-hyperbolicity of Hn.

Theorem 3.4.1 ( [DDM14], Theorem A). For any ε > 0 and any 0 < θ′ ⩽ 1, there exist

constants C and L such that for any geodesic sub-interval I ⊂ [x, x′] ⊂ T (S) of length at

least L and spending at least θ proportion of its time in Tε(S), we have

I ∩ NbhdC([x, x
′′] ∪ [x′, x′′]) ̸= ∅,

for all x′′ ∈ T (S).

We now sketch the proof of statistical hyperbolicity using Theorem 3.4.1 with the thick-

ness and separation properties adapted to measures on Q1(x), namely De�nition 3.2.1 and

De�nition 3.2.2.

Let x ∈ T (S). We choose θ large enough, say θ = 3/4, and then for any 0 < p < η < 1/3

we let ε = ε(θ, η) > 0 be that guaranteed by the thickness property 3.2.1. Now choose θ′ < θ,

say θ′ = 1/2, and let C and L be the constants given by Theorem 3.4.1 for our choice of θ′

and ε. The thickness and separation properties then imply that for all r large enough, there
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exists a subset Pr ⊂ Q1(x)×Q1(x) whose complement has ν × ν-measure at most p and is

such that for all (q, q′) ∈ Pr we have dTeich(R(q; t), R(q
′; t)) ⩾ 3C, and

Thick%ε (R(q), t),Thick
%
ε (R(q

′), t) ⩾ θ,

for all ηr ⩽ t ⩽ r. It can be checked that B(R(q; t), C) ∩R(q′) = ∅ for all such q, t.

Choosing r large enough, we can arrange that the interval Ir = [R(q; ηr), R(q; 2ηr)] spends

at least θ′ proportion of its time in Tε(S), has length at least L and, since η < 1/3, is contained

in [x,R(q; r)]. By applying Theorem 3.4.1, we must have that Ir ∩ NbhdC([x,R(q
′; r)] ∪

[R(q; r), R(q′; r)]) ̸= ∅ and, since we have already noted that Ir ∩ NbhdC([x,R(q
′; r)]) = ∅,

it then follows that there exists a point in [R(q; r), R(q′; r)] at distance at most 2ηr+C from

x. Hence we have that

dTeich(R(q; r), R(q
′; r)) ⩾ (2− 4η)r − 2C,

for all q, q′ ∈ Pr. From which it follows that

E(X) := lim
r→∞

1

r

∫
Q1(x)×Q1(x)

dTeich(R(q; r), R(q
′; r)) dν(q) dν(q′)

⩾ lim inf
r→∞

1

r

∫
Q1(x)×Q1(x)

dTeich(R(q; r), R(q
′; r)) dν(q) dν(q′)

⩾ lim inf
r→∞

1

r
(1− p)((2− 4η)r − 2C)

= (1− p)(2− 4η).

Hence, the result follows as p and η can be taken to be arbitrarily small.

3.4.1 Proof of Theorem 3.1.2

We now give a quick proof of Theorem 3.1.2. The ambient geometry in Hn is already hyper-

bolic. So we can simply bypass the thickness discussion and directly invoke the separation

property for the harmonic measure discussed at the end of Section 3.3.5. The proof of

statistical hyperbolicity then follows the one in Section 3.4 and is simpler.
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Chapter 4

Growth of the drift as a function of

Teichmuller space

4.1 Introduction

In this section S shall denote a compact oriented surface with empty boundary, no marked

points and negative Euler characteristic with a basepoint p. Let Γ = π1(S, p) and let µ be

a probability measure on Γ that is admissible, i.e., the semigroup generated by the support

of µ is equal to Γ. Further assume that µ has �nite �rst moment. Consider a random

walk Zn = g1 · · · gn where gi are i.i.d. elements of Γ with distribution µ. Fixing a complete

hyperbolic metric ρ on S, de�ne

Drift(ρ) := lim
n→∞

|Zn|ρ
n

where |Zn|ρ denotes the ρ-length of the unique hyperbolic geodesic representing the free

homotopy class of the element Zn. The limit above exists almost surely, and is well de�ned.

The quantity Drift(ρ) is called the speed (or drift) of the random walk on (S, ρ).

In this section we shall study how Drift(ρ) changes as one varies the hyperbolic metric ρ

on S, or in other words as [ρ] varies over points in the Teichmüller space T (S). When one

moves in Teichmüller space, some curves get longer but others get shorter, so the behavior is

not obvious. However, one expects that most curves get longer, so one should expect Drift(ρ)

to tend to in�nity as ρ diverges to in�nity in Teichmüller space. There is a di�culty, though,
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that most curves become more and more parallel to each other (up to orientation) when ρ

converges to a point at in�nity, as they align asymptotically with the measured foliation at

in�nity. Since the steps of the random walks are equivalent to travelling along the lift of

the curves in the universal cover, this means that consecutive steps of the random walk are

likely to be both large, but in opposite directions, thereby cancelling each other e�ectively

and possibly not contributing to the drift. Our main theorem shows that the former e�ect

dominates the latter: The drift indeed tends to in�nity at in�nity. However, this discussion

hints at the fact that this is not straightforward, and indeed our proof is rather indirect.

Precisely, as a corollary of Proposition 4.4.1, proven in Section 4.4, we obtain the following

theorem.

Theorem 4.1.1 (Drift is a proper function on Teichmüller space). Assume that the prob-

ability measure µ on Γ is admissible and has a �nite �rst moment. Then the function

Drift : T (S) → [0,+∞) is proper.

Recall that a function is proper if the preimage of any compact set is compact. In our

particular case, since Drift is non-negative, and, by Furstenberg's formula [KL11, Theorem

18], continuous, properness is equivalent to the statement that for each C > 0 there exists a

compact set K ⊂ T (S) such that Drift(ρ) > C for all [ρ] /∈ K.

More quantitatively, given a �nite �lling set of curves F , we �nd that the drift is equal

up to a constant multiple to the maximum hyperbolic length within the set F .

Theorem 4.1.2. Let F be a �nite �lling set of curves, and letMF
ρ be the maximum hyperbolic

length among the curves under the hyperbolic geometry de�ned by ρ. Then there is some

K <∞ such that
1

K
MF

ρ ≤ Driftµ(ρ) ≤ KMF
ρ

for all ρ ∈ T (S).

The theorem above is proven in Section 4.3, as a combination of the upper bound of

Lemma 4.3.2 and the lower bound of Lemma 4.3.4.

Studying the relation between MF
ρ and the Teichmüller distance it is possible to �nd

characterisations of the asymptotic behaviour of the drift. In Section 4.4 we study the linear

behaviour, and show that the drift grows at least linearly with respect to the Teichmüller

distance, and that the linear bound is sharp if we move along a Teichmüller ray generated

by a Jenkins�Strebel di�erential.
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Theorem 4.1.3. Let o ∈ T (S) be a basepoint. There is some constant c(o) > 0 such that,

for any ρ ∈ T (S) we have

Driftµ(ρ) ≥ c(o)dTeich(ρ, o).

Furthermore, let q ∈ Q1(o) be Jenkins�Strebel. Then, there is some C(q, o) <∞ such that

Driftµ(R(q; t)) ≤ C(q, o)t

for all t ≥ 1.

In Section 4.5 we continue by showing that the typical behaviour is not linear growth,

but exponential.

Corollary 4.1.4. Let o ∈ T (S) be a basepoint, 0 < θ < 1 and λ be the Lebesgue measure on

Q1(o). Then, for λ−almost all directions q ∈ Q1(o) we have

eθt < Driftµ(R(q; t)) < e
1
θ
t,

for any t > t(q), where t(q) is some �nite time depending on q.

The previous results applies also to harmonic measures. See Theorem 4.5.7 for the precise

statement.

We �nd that the behaviour does not induce a duality. By combining the two previous

results we �nd in Section 4.6 geodesics along which the growth oscillates between being

exponential and almost linear.

Corollary 4.1.5. Let o ∈ T (S) be a �xed basepoint. There is a constant c(o) > 0 such that,

for any increasing diverging function f : R+ → R+ there is some q ∈ Q1(o) and diverging

increasing sequences (tn), (sn) ⊂ R+ such that

Driftµ(R(q; tn)) > c(o)etn

and

Driftµ(R(q; sn)) < f(sn)sn.

As a part of the proof we also show that the quasiconvexity of hyperbolic lengths along

Teichmüller geodesics proven by Lenzhen�Ra� [LR11] can be adapted to the drift.
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Corollary 4.1.6. Let µ be an admissible measure on π1(S, p) with �nite �rst moment. There

exists a constant K ′ > 0 such that for any Teichmüller geodesic G and points x, y, z ∈ T (S)

appearing in that order along G, we have

Driftµ(y) ≤ K ′max(Driftµ(x),Driftµ(z)).

Our strategy to prove the lower bound of the drift function in Theorem 4.1.2 is through

a compacti�cation argument. By rescaling the metrics by 1/MF
ρ we get a certain compacti�-

cation of our space, where the action extends continuously. Then we �nd that the action on

such boundary space satis�es the necessary properties for Gouëzel [Gou22a] and Baik�Choi�

Kim [BCK23] pivotal arguments, which gives a positive linear drift. Then, by continuity of

the action, we deduce that the properties are satis�ed inside the rescaled Teichmüller space,

obtaining a positive drift inside. Undoing the rescaling we get the drift is proper. Note

that in [AGG+22] we perform a more complicated argument, proving that the drift itself is

positive at the boundary, and then showing that the drift is lower semicontinuous on the

compacti�cation. However, such re�nement is not needed to obtain the main results, and

this simpli�cation allows us to present a more complete proof.

Note that the drift can also be considered as a Lyapunov exponent. More precisely, if

[ρ] ∈ T (S) is a point in Teichmüller space, we can consider [ρ] as a conjugacy class of a

discrete, faithful representation ρ : π1(M) → PSL(2,R). Indeed, if we �x a matrix norm ∥·∥
on PSL(2,R), we have

Drift(ρ) = lim
n→+∞

1

n

∫
log∥ρ(g1) · · · ρ(gn)∥ dµ(g1) · · · dµ(gn),

which is the Lyapunov exponent of the random walk on PSL(2,R).
A related argument was used in [DF19] to study continuity of Lyapunov exponents for

certain meromorphic families of representations in SL(2,C), with the same idea which con-

sists in looking at the scaled limiting action on an R-tree. One simple situation where both

approaches can be used is the case where the hyperbolic structure degenerates by only pinch-

ing a simple closed curve: this degeneracy can also be described by a meromorphic family of

representations. However, in the context of representations of surface groups into PSL(2,R),
the setting of our continuity result below is more general.

The main feature of this argument is that the representations at boundary points do not
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live on the same space as the original representations: the group acts on an R-tree instead of

the hyperbolic disk. These representations are constructed in [Bes88] and [Pau88] (following

previous work [CM87] and [MS84]). In particular, the topological type of Gromov boundaries

changes in the limit. This means that the usual continuity argument for the drift, relying

on the convergence of stationary measures on the boundary (see [EK13]), does not work.

However, we are able to obtain uniform lower bounds for the drift in this context thanks to

the pivotal times argument of [Gou22a].

Returning to the setting of Theorem 4.1.1, it is well known that Drift(ρ) > 0 for all ρ

and the random walk driven by µ converges to the boundary almost surely. In order words,

the limit

X∞ = lim
n→∞

ρ(Zn)o,

exists almost surely and X∞ is in the visual boundary ∂H of H, (cf. [Kai00]). Recall that

this limit de�nes a hitting measure on ∂H as follows: for any Borel set U ⊂ ∂H,

νρ(U) := P( lim
n→∞

ρ(Zn)o ∈ U).

The measure νρ is the unique µ-stationary measure on the visual boundary for the ρ-

action. Denoting by dim(ν) the Hausdor� dimension of ν, we recall the following conjecture

mentioned in the introduction.

Conjecture (Singularity Conjecture). If µ is admissible and has �nite support, then there

exists κ < 1 such that

dim(νρ) ≤ κ

for all [ρ] ∈ T (M).

The conjecture above, stated in [DKN09b, Conjecture 1.21] and more generally in [KL11],

remains open in spite of some recent progress made in [KT22]. We remark that for all ρ

there exists µ with in�nite support on Γ such that dim(νρ) = 1. This follows from the

Furstenberg-Lyons-Sullivan discretization of Brownian motion [LS84], and also from more

general results of Connell and Muchnik [CM07].

The drift of the random walk is closely related to the Hausdor� dimension of the station-
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ary measure. Work in [Tan19] shows that:

dim(νρ) =
h(µ)

Drift(ρ)
,

where h(µ) denotes the entropy of the random walk.

Therefore results 4.1.1 to 4.1.5 immediately translate into statements about the behaviour

of the Hausdor� dimension of the stationary measure. For example, from Theorem 4.1.1:

Corollary 4.1.7 (Dimension drop of stationary measures). For each ε > 0 there exists a

compact K ⊂ T (S) such that dim(νρ) < ε for all [ρ] /∈ K.

Proof. This follows immediately from Theorem 4.1.1 and the above formula for dim(νρ).

4.1.1 Disclosures

This chapter is based on joint work with Vaibhav Gadre, Sébastien Gouëzel, Thomas Haettel,

Pablo Lessa and Caglar Uyanik [AGG+22], as well as a follow up paper by the author [Aze23].

4.2 Section speci�c background

4.2.1 Converging actions

A key notion we shall use in our proof is that of Converging actions, which we introduce in

this section.

De�nition 4.2.1. Consider a group Γ, and a sequence of pointed metric spaces (Xk, ok)k∈N∪{∞},

each of them endowed with an isometric action ρk of Γ. We say that this sequence of actions

converges if, for each g ∈ Γ, the distance dist(ok, ρk(g)ok) converges to dist(o∞, ρ∞(g)o∞) as

k → ∞.

Following work of Bestvina [Bes88] and Paulin [Pau88], for any diverging sequence (ρk) ⊂
T (S) it is possible to pick a subsequence and sequence of numbers (M̃k) such that, by

rescaling the hyperbolic space by 1
M̃k

we have convergence of the action ρk to some non-

empty R-tree. Precisely, �x a �nite symmetric generating set F ⊂ Γ containing the identity.
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By [Bes88, Proposition 2.1] there exists for each ρ a basepoint oρ ∈ H such that

max
γ∈F

dist(oρ, ρ(γ)oρ) = min
x∈H

max
γ∈F

dist(x, ρ(γ)x).

We de�ne the rescaling factor M̃ρ = M̃F
ρ as the common value of both sides of the equation

above. From the de�nition, it follows that M̃ρ is continuous and proper on T (S). Consider

the rescaled distance distρ = M̃−1
ρ dist on H.

Recall that an R-tree is a non-empty metric space which is 0-hyperbolic and such that

every pair of points is joined by a unique geodesic. The following is the main result of [Bes88]

and [Pau88] (following previous work [CM87] and [MS84]).

Lemma 4.2.2. Each sequence ρn such that [ρn] leaves every compact subset in T (M), has

a subsequence ρnk
with nk → +∞ such that ρnk

when viewed as an action on H endowed

with the distance distρnk
and the basepoint oρnk

, converges to an action ρT on an R-tree
(T, distT , oT ).

Furthermore, the group ρT (Γ) acts minimally on T (i.e., there is no proper closed invari-

ant subtree), and for any arc I in T the set of γ ∈ Γ such that ρT stabilizes I is a virtually

abelian subgroup of Γ.

We now verify that the action ρT is non-elementary.

Lemma 4.2.3 (Non-elementary action on the R-tree). Let ρT be a representation of Γ

into the isometry group of an R-tree (T, distT ) with the property that stabilizers of arcs are

virtually abelian.

Then there exist γ1, γ2 ∈ Γ such that ρT (γ1) and ρT (γ2) are loxodromic isometries of T

along geodesics whose intersubsection is either empty or a compact arc.

Proof. The action of ρT (Γ) is irreducible in the sense that there is no global �xed point on

the boundary at in�nity (see [Pau89, Proposition 2.6]). The existence of the two required

loxodromic elements now follows from [Chi01, Proposition 3.7].

4.2.2 Pivot technique

In this section we go over the pivoting technique developed by Gouëzel [Gou22a] and Baik�

Choi�Kim [BCK23], adapting them to our setting. The �rst notion we need to introduce
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the pivot technique is that of Schottky sets. These sets of isometries encapsulate the low

likeness of random walks to backtrack within negatively curved spaces. Precisely, a �nite set

of isometries S acting on a Gromov hyperbolic space X, is said to be (η, C,D)-Schottky if

the following three conditions are satis�ed:

1. For all x, y ∈ X the proportion of a ∈ S such that (x, ay)o ≤ C is at least 1− η.

2. For all x, y ∈ X the proportion of a ∈ S such that (x, a−1y)o ≤ C is at least 1− η.

3. For all a ∈ S one has dist(o, ao) ≥ D.

The pivoting strategy has two main steps. The �rst one consists in showing that a

sequence with a linear amount of isometries sampled from Schottky pairs has linear drift.

That is, let (ri) ⊂ Γ be a �xed sequence of isometries, and let (sk) = (akbk) be a sequence of

random variables sampled such that each ak and bk is sampled uniformly and independently

from the Schottky set S. Then, one shows that the sequence (yn) = (r0s0r1s1 . . . rnsnrn+1)

exhibits linear displacement with high probability, independently of the sequence (ri).

Proposition 4.2.4 ([Gou22a, Proposition 4.1]). There exists a uniform κ > 0 such that,

for any C, δ > 0, η < 1
100

, D > 20C + 100δ + 1, δ-Gromov hyperbolic space X with isometry

group Γ, (η, C,D)-Schottky set S ⊂ Γ, sequence (rn) ⊂ Γ and basepoint o ∈ X we have

P(d(o, yno) < κn) ≤ e−κn,

for all n ≥ 0, where yn = r0s0r1 . . . rnsnrn+1 is the sequence de�ned above.

The main idea for the proof is that, since the elements ri are �xed, the probability

that each sn backtracks is small. Extra care has to be given to the fact that it is possible to

backtrack several pivoting positions at once, and this is solved by showing that the probability

of doing so is exponentially small on the backtracking.

In the second step one shows that if the support of the measure µ driving the random

walk (wn) generates a Schottky set S, then the random walk (wn) contains in some sense the

process yτ(n), where τ(n) grows linearly with high probability. Crucially for our application,

the growth of τ(n) depends solely on the measure µ, and its combinatorial relation with S.

While this latter property can be infered from Gouëzel's proof, it is not stated explicitly.

Here we provide an explicit re-statement.
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Figure 4.1: Sketch of the sequence (yn) in Proposition 4.2.4. The elements rk are �xed, while
the elements ak and bk are sampled uniformly from the Schottky set.

Theorem 4.2.5 (Explicit version of [Gou22a, Theorem 1.1]). Let Γ be a group, S ⊂ Γ be a

subset and µ be a measure on Γ such that the semigroup generated by its support contains S.

Then, there is c, n0 > 0 such that, for any C, δ, η,D,X, o as in Proposition 4.2.4 for which

Γ acts on X by isometries and S is (η, C,D)-Schottky, the random walk (wn) driven by µ

satis�es

P(d(o, wno) < cn) ≤ e−cn

for all n ≥ n0.

Proof. Let M be big enough so the support of µM contains S. Since the set S is �nite, there

is some α > 0 such that µM(g) ≥ α
|S| for all g ∈ S. The key idea for this step is to set

N = 2M and write the measure µN as the sum αµ2
S + (1 − α)ν, where µS is the uniform

measure on S and ν is the remaining measure. Then, the random walk (w̃n) = (wNn) can be

reconstructed by considering Bernoulli variables εi such that P(εi = 1) = α, random variables

si sampled according to µ2
S and random variables gi sampled according to ν. Precisely, we

let (w̃n) = γ0γ1 . . . γn, where γi = si if εi = 1 and γi = gi otherwise. Let t0 < t1 < . . . tk < . . .

be the times for which εtj = 1. Furthermore, let τ(n) < n be the largest index j such that

tτ(n) < n. Then, denoting s′i = sti and ri = gti−1+1gti−1+2 . . . gti−1, where for convenience we

set t−1 = −1, and r̃τ(n)+1 = gτ(n)+1 . . . gn we have (w̃n) = (r0s0r1 . . . rτ(n)sτ(n)r̃τ(n)+1). The

random variables (si) are independent of (ri) and τ(n). Therefore, by Proposition 4.2.4 there
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is some uniform κ > 0 such that

P(d(o, w̃no) < κτ(n)|(ri), τ(n)) ≤ e−κτ(n).

That is, the above probability is smaller than e−κτ(n) for any conditioning on the sequence

(ri). Hence, we can remove the conditioning to the sequence ri, getting

P (d(o, w̃no) < κτ(n)|τ(n)) ≤ e−κτ(n).

Finally, τ(n) counts the amount of successful Bernoulli trials with parameter α after n

attempts. That is, τ(n) follows a binomial distribution B(n, α). In particular,

P
(
τ(n) ≤ α

2
n
)
≤ exp

(
−α

2

2
n

)
.

Therefore, splitting the event {d(o, wno) <
2κ
α
n} into the cases where τ(n) > α

2
n and τ(n) ≤

α
2
n we get

P
(
d(o, wno) ≤

κα

2
n
)
≤ P

(
d(o, wno) ≤ κτ(n) ∩ τ(n) > α

2
n
)
+ P

(
τ(n) ≤ α

2
n
)

≤ e−κα2

2
n + e−

α2

2
n.

There is some c′ and n0 such that e−κα2

2
n + e−

α2

2
n < e−c′n for all n > n0. Therefore, the

theorem follows from setting c = max
(
κα
2
, c′
)
.

The following is a su�cient condition for a set S to be Schottky with certain parameters,

which depends on checking conditions involving only a �nite number of points. Since the

notion of convergence we use in De�nition 4.2.1 only gives controls for �nitely many points at

a time, this criterion will enable us to construct �nite sets which are Schottky sets uniformly

along a converging family of representations.

Lemma 4.2.6 (Schottky set criterion). Let (X, dist) be a δ-hyperbolic metric space with a

basepoint o ∈ X. Suppose S is a �nite symmetric set of isometries of X such that c1 +2δ <

c2/2 where c1 = max
g ̸=h,g,h∈S

(go, ho)o, and c2 = min
g∈S

dist(o, go).

Then S is an (η, C,D)-Schottky set with η = 2
#S

and C = c1 + 3δ and D = c2.
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Proof. Let ε ∈ (2δ, c2/2− c1) and for each g ∈ S set

V (g) = {x ∈ X : (x, go)o ≥ c1 + ε}.

Claim 1: If g ̸= h then V (g) ∩ V (h) = ∅.
Indeed if x ∈ V (g) ∩ V (h) then one would have

c1 + ε ≤ min{(x, go)o, (x, ho)o} ≤ (go, ho)o + δ ≤ c1 + δ,

contradicting the fact that δ < ε.

Claim 2: If x /∈ V (g−1) then gx ∈ V (g).

To see this observe that from the �rst condition one has

dist(o, x) + dist(o, g−1o)− dist(x, g−1o)

2
< c1 + ε,

while if gx /∈ V (g) we would have

dist(o, gx) + dist(o, go)− dist(gx, go)

2
< c1 + ε.

Taking the sum this would imply

c2 ≤ dist(o, go) < 2c1 + 2ε,

contradicting the fact that ε < 1
2
c2 − c1.

Claim 3: If x ∈ V (g) and y ∈ V (h) for g ̸= h then (x, y)o ≤ c1 + 2δ.

By hyperbolicity one has

min((x, go)o, (x, ho)o) ≤ (go, ho)o + δ ≤ c1 + δ.

Since (x, go)o ≥ c1 + ε > c1 + δ this implies that (x, ho)o ≤ c1 + δ. From this we obtain

min((y, ho)o, (x, y)o) ≤ (x, ho)o + δ ≤ c1 + 2δ,

but since (y, ho)o ≥ c1 + ε > c1 + 2δ this implies (x, y)o ≤ c1 + 2δ as claimed.

Claim 4: S is (η, C,D)-Schottky for the constants in the statement.
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Let us check the �rst property in the de�nition of Schottky sets, as the second one follows

by symmetry of S and the third one comes from the de�nition of c2. Given x, y ∈ X let

a1, a2 ∈ S be distinct and such that x /∈ V (a−1
i ) for i = 1, 2. By Claim 1 the ai are chosen

among at least #S − 1 elements of S. By Claim 2 one has aix ∈ V (ai) for i = 1, 2. By

hyperbolicity and Claim 3 one has

min((a1x, y)o, (a2x, y)o) ≤ (a1x, a2x)o + δ ≤ c1 + 3δ = C.

This implies that either (a1x, y)o ≤ C or (a2x, y)o ≤ C. Hence the subset of S consisting

of elements with (ax, y)o > C can have at most two elements.

4.3 Bounds in terms of maximum curve length

Let F be a �xed �nite �lling set of closed curves on S. Let ε > 0 and let µε = (1− ε)µ+ εδe

be a relaxation of µ, where we introduce a slight probability of the random walk not moving

at each step. For any ρ ∈ T (S) we have Driftµε(ρ) = (1 − ε)Driftµ(ρ). Furthermore,

since µ is admissible, there is some k ∈ N such that the curves associated to the group

elements of supp(µk
ε) contain F . Then, Driftµk

ε
(ρ) = k(1− ε)Driftµ(ρ). Since all the results

in this chapter regarding the drift are true up to multiplicative constants we will assume

that supp(µ) already contains F . Denote MF
ρ = maxγ∈F (Hypρ(γ)). Note that

M̃F
ρ = min

x∈H
max
γ∈F

dist(x, ρ(γ)x) ≥ max
γ∈F

Hyp ρ(γ) =MF
ρ (4.3.1)

We shall �rst prove the following well known result. The proof is similar to the one done

by Minsky [Min93, Lemma 4.7]

Lemma 4.3.1. Let F be a �nite �lling set of curves in S and let o ∈ T (S) be a �xed

basepoint. Then, there is a constant K such that, for any ρ ∈ T (S) and free curve γ in S

we have,

Hypρ(γ) ≤ KMF
ρ Hypo(γ).

Proof. Let Dρ be the maximum diameter of the polygons formed by the distance minimizing

con�guration of the curves F , and ∂Dρ its perimeter. Since the curves of F cut S into

polygons, the value of Hypρ(γ) is bounded by the number of intersections of the curve γ
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with F multiplied by the maximum diameter of the polygons. That is,

Hypρ(γ) ≤ Dρ

∑
α∈F

i(γ, α) ≤ ∂Dρ

∑
α∈F

i(γ, α).

Under the metric de�ned by o, for any closed curve α we can isometrically embed an

annulus around α of thickness δo(α) > 0. Then, for any other curve γ we have i(α, γ)δo(α) ≤
Hypo(γ). Hence,

Hypρ(γ) ≤ ∂Dρ

∑
α∈F

1

δ(α)
Hypo(γ).

Finally, the maximum perimeter of the polygons is smaller than twice the sum of the lengths

of all the curves in F , so, denoting by |F | the cardinality of F ,

∂Dp ≤ 2
∑
α∈F

Hypp(α) ≤MF
p 2|F |.

We get the result by setting K = 2|F |
∑

α∈F
1

δ(α)
.

Since the number of curves in F is �nite, MF
ρ is �nite for all ρ ∈ T (S). Hence, for any

other ρ ∈ T (S) we have ∑
g∈Γ

|g|ρµ(g) ≤ KMF
ρ

∑
g∈Γ

|g|oµ(g) <∞.

Therefore, if µ has �nite �rst moment with respect so some basepoint o ∈ T (S), it has �nite

�rst moment for all ρ ∈ T (S). That is, it makes sense to say that the measure µ has �nite

�rst moment if it has �nite �rst moment with respect to at least one (and hence any) point

in T (S).

Using Lemma 4.3.1 it is relatively straightforward to check that the value MF
ρ serves to

give an upper bound.

Lemma 4.3.2. There exists a constant C < ∞ such that Drift([ρ]) ≤ CMF
ρ for all [ρ] ∈

T (S).

Proof. Fix some basepoint o ∈ T (S). By Lemma 4.3.1 there is some K < ∞ such that
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|Zn|ρ ≤ KMp|Zn|o. Therefore,

Driftµ(ρ) = lim
n→∞

|Zn|ρ
n

≤ KMF
p lim

n→∞

|Zn|o
n

= KMF
p Driftµ(o).

The lower bound is signi�cantly more involved. To have lighter notation, we will keep

the action implicit and write gok instead of ρk(g)ok. Since there is only one possible action

for each basepoint ok, this should not create confusion.

Let us �x a sequence of pointed δ-hyperbolic spaces (Xk, ok) endowed with actions of a

group Γ, and assume that ρk converges to ρ∞ in the sense of De�nition 4.2.1. Let also µ be

probability measures on Γ such that ρ∞∗µ is non-elementary on X∞.

The following lemma is a classical application of a ping-pong argument.

Lemma 4.3.3. Let η > 0. Then there exists C > 0 such that, for any D > 0, there exist N

and a �nite symmetric set S in Γ in the support of µN
∞ such that #S ≥ 2/η and

max
g ̸=h,g,h∈S

(go∞, ho∞)o∞ < C − 3δ, min
g∈S

dist(o∞, go∞) > D. (4.3.2)

Proof. This follows readily from the proof techniques of [BMSS23, Proposition A.2] or [Gou22b,

Proposition 3.12].

Let η > 0. For suitable C andD, we can consider a set S as in Lemma 4.3.3. By de�nition

of converging actions and since the number of relations is �nite, for large n the inequalities

in (4.3.2) also hold for ρk. By Lemma 4.2.6, it follows that ρk(S) is an (η, C,D)-Schottky

set, uniformly for all large enough k. We can then use this Schottky set in cojuction with

Proposition 4.2.4, to obtain quantitative estimates that are uniform in k. Going back on the

refactorization we obtain a lower bound in terms of the rescaling factor Mρ.

We can then prove the lower bound.

Lemma 4.3.4. There exists a constant c > 0 such that Drift([ρ]) ≥ cMρ for all [ρ] ∈ T (M).

Proof. Suppose by contradiction that we may �nd a diverging sequence of representations

ρk for which Drift([ρk])/Mρk tends to zero. By Lemma 4.2.2 we can take a subsequence such

that the rescaled action converges to some ρT on an R-tree. Relabel that subsequence as ρk.
Let η < 1/100 and let C given by Lemma 4.3.3 for this value of η. Take D = 20C+100δ+1.

56



By Lemma 4.2.3 the action of ρT is non elementary, so by Lemma 4.3.3 and the discussion

that follows it there is some k0 and a symmetric set S ⊆ Γ such that ρk(S) is (η, C,D)

Schottky for all k ≥ k0. Then, by Theorem 4.2.5 there is some c, n0 such that

P

(
distρk(ok, ρk(wn)ok)

M̃ρk

< cn

)
≤ e−cn

for all n ≥ n0 and k ≥ k0. Therefore, for all k ≥ k0,

lim
n→∞

distρk(ok, ρk(wn)ok)

M̃ρkn
≥ c

almost surely. Hence,

Drift(ρk) = M̃ρk lim
n→∞

distρk(ok, ρk(wn)ok)

M̃ρkn
≥ M̃ρkc ≥Mρkc,

giving us a contradiction.

The proof of Theorem 4.1.2 is a result of combining Lemmas 4.3.2 and 4.3.4.

4.4 Linear bounds

We shall �rst prove the following lower bound:

Proposition 4.4.1. For each [ρ0] ∈ T (S) there exists a constant c > 0 such that

Drift([ρ]) ≥ c distTeich([ρ], [ρ0])

for all [ρ] ∈ T (M).

In view of Lemma 4.3.4, to prove the lower linear bound it su�ces to �nd a set of curves

F such that MF
ρ can be bound from below by a multiple of distTeich([ρ0], [ρ]). We �x F ⊂ Γ

to be a subset that is �nite, symmetric and �lling.

Let Extρ(γ) denote the extremal length of the curve γ under the conformal structure

provided by ρ. As proven by Maskit [Mas85, Corollary 3], we have

1

2
Hypρ(γ)e

Hypρ(γ)/2 ≥ Extρ(γ), (4.4.1)
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so it su�ces to obtain a lower bound on extremal length. This will be obtained from the

result of Walsh [Wal19, Lemma 3] explained in Section 2.2.3.

Recalling Walsh's result, for a unit area quadratic di�erential q based at some basepoint

[ρ0], denote R(q; t) the point in Teichmüller space obtained after following a Teichmüller ray

for time t > 0 in the direction provided by q. Let V (q) (respectively H(q)) be the vertical

(respectively horizontal) foliation of q, and let Gj be the vertical components of V (q). Then,

Walsh proved the following inequality

e−2t ExtR(q;t)(γ) ≥
∑
Gj

i(Gj, γ)
2

i(Gj, H(q))
, (4.4.2)

Denoting Eq(γ) =
∑

Gj

i(Gj ,γ)
2

i(Gj ,H(q))
, we will use the fact that F is �lling to derive a uniform

(over q) lower bound on maxγ∈F Eq(γ).

Lemma 4.4.2. Given a basepoint [ρ0] ∈ T (M) there is some c > 0 such that

inf
q∈T 1([ρ0])

max
γ∈F

Eq(γ) > c,

where the in�mum is taken over all unit area quadratic di�erentials at [ρ0].

Proof. For any q ∈ T 1([ρ0]), we have i(Gj, H(q)) ≤ i(G(q), H(q)) = Area(q) = 1. This

implies Eq(γ) ≥
∑

Gj
i(Vj, γ)

2.

Assume we have a sequence qn of unit area quadratic di�erentials at [ρ0] such that

maxγ∈F Eqn(γ) converges to 0 for all j. Since the space of unit area quadratic di�eren-

tials at a basepoint is compact we can pass to a subsequence that converges to some q.

Furthermore, since geometric intersection number is continuous we have Eq(γ) = 0 for all

γ ∈ F . In particular, this implies i(V (q), γ) = 0 for all γ ∈ F . This is impossible because F

is a �lling set.

We use the above lemma to get the following global lower bound on the maximal lengths

over F .

Lemma 4.4.3. Given a basepoint [ρ0] ∈ T (M) there are some c1, c2 > 0 such that, for all

[ρ] ∈ T (M),

max
γ∈F

Extρ(γ) ≥ c1e
2 distTeich([ρ0],[ρ])
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and hence

MF
ρ = max

γ∈F
Hypρ(γ) ≥ c2 distTeich([ρ0], [ρ])

where distTeich denotes the Teichmüller distance.

Proof. Let q be such that [ρ] = R(q; distTeich([ρ0], [ρ])). By Equation (4.4.2) we have

max
γ∈F

Extρ(γ) ≥ e2 dist([ρ0],[ρ]) max
γ∈F

Eq(γ),

and so by Lemma 4.4.2 we get the �rst inequality. By Equation (4.4.1) we have

max
γ∈F

1

2
Hypρ(γ) + logmax

γ∈F

1

2
Hypρ(γ) ≥ 2 dist([ρ0], [ρ]) + log(c1),

so the second inequality in the lemma is asymptotically satis�ed for any c2 slightly smaller

than 2. Furthermore, given any bounded domain we can choose c2 small enough so the

inequality is satis�ed.

The proof of Proposition 4.4.1 is a corollary of Lemma 4.4.3 and Lemma 4.3.4. The proof

of Theorem 4.1.1 is then a corollary of Proposition 4.4.1.

The main ingredient for the upper bound is the following result, established by Masur

[Mas82b, End of the proof of Theorem 1.1], which �nds limiting values for hyperbolic lengths

along Jenkins�Strebel quadratic di�erentials.

Theorem 4.4.4 (Masur). Let q be a unit area Jenkins�Strebel quadratic di�erential and let

α1, . . . , αk be its core curves. Then, for any sequence (ρn) ⊂ T (S) converging to q in the

visual compacti�cation and any curve γ in S we have

lim
n→∞

Hypρn(γ)

4dTeich(o, ρn)
=

k∑
i=1

i(αi, γ).

Proof of Theorem 4.1.3. By Proposition 4.4.1 we only have to prove the upper bound. Let

α1, . . . , αk be the core curves of the vertical foliation of q and let γ1, . . . , γl be the curves

within the �lling set F . Let δ > 0. Then, by Theorem 4.4.4 for each γj we have a tj such

that, for all t > tj, we have

HypR(q;t)(γj) < 4

(
k∑

i=1

i(αi, γj) + δ

)
t.
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Hence we can take C(q, j) big enough so HypR(q;t)(γj) < C(q, j)t for all t ≥ 1. The theorem

follows by setting C(q) = Kmaxj≤k C(q, j), where K is the constant given by Theorem 4.1.2.

4.5 Exponential bounds

The goal of this section is to prove that the standard behaviour of the drift is exponential

growth with respect to the Teichmüller distance. We begin by observing that as a direct

result of Wolpert's Lemma, the growth can not be higher than exponential.

Proposition 4.5.1. Given a basepoint o ∈ T (S), there exists some constant C(o) such that

Driftµ(ρ) ≤ Driftµ(o)e
2dTeich(ρ,o).

Proof. As proven by Wolpert [Wol79, Lema 3.1] for any two points o, ρ ∈ T (S) and loop γ

we have

Hypρ(γ) ≤ e2dTeich(o,ρ) Hypo(γ).

Therefore,

Driftµ(ρ) = lim
n→∞

Hypρ(Zn)

n
≤ e2dTeich(o,ρ) lim

n→∞

Hypo(Zn)

n
= e2dTeich(o,ρ) Driftµ(o).

The following result by Choi�Ra� [CR07, Theorem B] allows us to improve the previous

upper bound, as well as get a lower bound for the growth of the drift for points in the thick

part of Teichmüller space. Recall that Tε(S) denotes the ε-thick part of Teichmüller space.

Theorem 4.5.2 (Choi�Ra�). Fix ε > 0 and o ∈ Tε(S). There is a �nite �lling set of closed

curves G and a constant D > 0 such that, for any ρ ∈ Tε(S) we have∣∣∣∣dTeich(ρ, o)− log

(
max
α∈G

Hypρ(α)

Hypo(α)

)∣∣∣∣ ≤ D.

Proposition 4.5.3. Let ε > 0 and let o ∈ Tε(S). Then, there exists constants c, C > 0 such

that for any ρ ∈ Tε(S) we have

cedTeich(ρ,o) ≤ Driftµ(ρ) ≤ CedTeich(ρ,o).
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Proof. Let G be the �lling set of curves from Theorem 4.5.2. For any curve γ ∈ G we have

Hypρ(γ) = Hypo(γ)
Hypρ(γ)

Hypo(γ)
≤ Hypo(γ)max

α∈G

Hypρ(α)

Hypo(α)
.

Then, taking the maximum among all γ ∈ G in the previous inequality we have, by Theo-

rem 4.1.2, some K > 0 such that

Driftµ(ρ) ≤ Kmax
α∈G

Hypρ(α) ≤ Kmax
α∈G

Hypo(α)e
DedTeich(ρ,o),

where the last inequality follows from applying Theorem 4.5.2. On the other hand,

maxα∈GHypρ(α)

minα∈GHypo(α)
≥ max

α∈G

Hypρ(α)

Hypo(α)
,

so similarly we have

Driftµ(ρ) ≥
1

K
max
α∈G

Hypρ(α) ≥
1

K
min
α∈G

Hypo(α)e
−DedTeich(ρ,o).

Hence, the result follows from setting the values c = 1
K
minα∈G(Hypo(α))e

−D and C =

Kmaxα∈G(Hypo(α))e
D.

By Mumford's compactness the preimage of every bounded subset of moduli space is

contained in some ε-thick part of Teichmüller space for ε small enough. Hence we have the

following result.

Corollary 4.5.4. Let γ : [0,∞) → T (S) be a Teichmüller ray such that its image is bounded

in moduli space. Then, there is c, C > 0 such that

cet ≤ Driftµ(γ(t)) ≤ Cet.

To prove that for almost all directions the growth is exponential we �rst observe that the

growth of the drift is, up to a constant, not lost for big enough times. The main ingredient

we shall use in the proof is the following.

Theorem 4.5.5 (Lenzhen�Ra� [LR11, Theorem A]). There exists a constant K > 0 such

that for every closed curve γ, any Teichmüller geodesic G and points x, y, z ∈ T (S) appearing
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in that order along G, we have

Hypy(γ) ≤ Kmax(Hypx(γ),Hypz(γ)).

By Theorem 4.1.2 Lenzhen�Ra�'s result translates directly to the drift. That is, we have

Corollary 4.1.6.

Proof of Corollary 4.1.6. By Theorems 4.1.2 and 4.5.5 there are constants C,K > 0 such

that

Driftµ(y) ≤ Cmax
γ∈F

Hypy(γ) ≤ KCmax
γ∈F

(max(Hypx(γ),Hypz(γ))

Switching the order of the maximums we have

Driftµ(y) ≤ KCmax

(
max
γ∈F

Hypx(γ),max
γ∈F

Hypz(γ)

)
≤ KC2max(Driftµ(x),Driftµ(z)).

Furthermore, the drift is a proper function, so along any Teichmüller ray R(q), the value

of Driftµ(R(q; t)) is eventually larger than Driftµ(R(q; 0). Hence, we have the following.

Lemma 4.5.6 (Drift is quasi increasing). There is some constant K > 0 such that, for any

basepoint o ∈ T (S) there is some time to for which

Driftµ(R(q; s)) ≤ K Driftµ(R(q; t))

for any t > to, t > s > 0 and q ∈ Q1(o).

Proof. Let to be big enough so Driftµ(ρ) > Driftµ(o) for any ρ such that dTeich(ρ, o) > to. By

Proposition 4.4.1 such a to exists. Then, for any quadratic di�erential q based at o, t > to

and t > s > 0 we have, by Corollary 4.1.6,

Driftµ(R(q; s)) ≤ Kmax (Driftµ(R(q; 0),Driftµ(R(q; t)))) = K Driftµ(R(q; t))

Lemma 4.5.6, combined with Proposition 4.5.3, gives upper and lower bound on the

growth of the drift along a geodesic provided said geodesic does not spend too much continued
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time outside the thick part. For a given geodesic R(q), ε > 0 and t > 0, we aim to �nd some

control on the largest sbotq (t) ≤ t and lowest stopq (t) ≥ t such that R(q; sbotq (t)), R(q; stopq (t)) ∈
Tε(S). Given a geodesic ray γ : R+ → T (S), we de�ned the proportion of the amount of

time spent in the thick part up to time t as

Thick%ε (γ, t) :=
|{0 ≤ s ≤ t : γ(s) ∈ Tε(S)}|

t
.

Theorem 4.5.7. Let o ∈ T (S) be a basepoint in Teichmüller space. Furthermore, let σ be a

measure on Q1(o) such that for all 0 < ξ < 1 there is some ε(ξ) > 0 such that for σ-almost

every q there is tξq <∞ such that

Thick%ε(ξ)(R(q), t) ≥ ξ

for all t ≥ tξq.

Fix then 0 < θ < 1. For σ-almost all directions q ∈ Q1(o) there is t(q, θ) <∞ such that

eθt < Driftµ(R(q; t)) < e
1
θ
t

for all t > t(q, θ).

Proof. Given 0 < θ < 1, let ξ = 1+θ
2
. For a given q ∈ Q1(o) and t > 0 let stopq (t) ≥ t be the

smallest time larger than t such that R(q; stopq (t)) ∈ Tε(ξ)(S). The time spent outside Tε(ξ)(S)

directly after t is stopq (t)− t. Hence,
stopq (t)−(stopq (t)−t)

stopq (t)
> ξ. Therefore, stopq (t) < 1

ξ
t. Hence, By

Lemma 4.5.6 we have K, to > 0 such that, for all t > to,

Driftµ(R(q; t)) ≤ K Driftµ(R(q; s
top
q (t))).

Since R(q; stopq (t)) is in the ε-thick part of Teichmüller space we have, by Proposition 4.5.3,

Driftµ(R(q; t)) ≤ K Driftµ(R(q; s
top
q (t)) ≤ CKes

top
q (t) ≤ CKe

1
ξ
t.

Similarly, denoting sbotq (t) the largest time smaller than t such that R(q; stopq (t)) ∈ Tε(ξ)(S)

we get sbotq (t) > ξt. Following the same reasoning we get

Driftµ(R(q; t)) ≥
1

K
Driftµ(R(q; s

bot
q (t)) ≥ c

K
es

bot
q (t) ≥ c

K
eξt.
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Since ξ < θ < 1 there is some tθ such that eθt > c
K
eξt and e

1
θ
t < CKe

1
ξ
t for all t ≥ tθ. Hence,

the theorem follows from setting t(q, θ) = max(tq, tθ, to).

Recall that it follows from Downdall�Duchin�Masur [DDM14, Proposition 5.5] that the

hypothesis of Theorem 4.5.7 is satis�ed by a wide variety of Lebesgue-class measures, giving

us a proof of Corollary 4.1.4. Furthermore, as we have shown in Proposition 3.3.3, the

property is also satis�ed for harmonic measures generated by non-elementary measures on

the mapping class group with �nite �rst moment.

The previous Theorem can be used to get the following limiting results.

Corollary 4.5.8. Let σ be a measure on Q1(o) satisfying the hypothesis of Theorem 4.5.7.

Then, for any ε > 0 we have, for σ-almost every q ∈ Q1(o),

lim inf
t→∞

Driftµ(R(q; t))

e(1−ε)t
= ∞

and

lim sup
t→∞

Driftµ(R(q; t))

e(1+ε)t
= 0.

Furthermore, there is σ-almost surely some 0 < c(q) <∞ such that

lim inf
t→∞

Driftµ(R(q; t))

et
≤ c(q) ≤ lim sup

t→∞

Driftµ(R(q; t))

et
.

Proof. Let θ = 1− ε. Then, by Corollary 4.1.4 there is some c > 0 such that σ-almost every

q ∈ Q1(o) we have

Driftµ(R(q; t)) ≥ e(1−ε)t

for all t big enough. Hence, the �rst relation follows. Similarly for θ = 1
1+ε

we get the second

relation. The last relation follows from taking a diverging sequence of times (tn) such that

R(q; tn) ∈ Tε(S) and applying Proposition 4.5.3.

4.6 Variable growth

In this section we prove that there is some geodesic along which we have variable growth.

The basic idea of the proof is alternating Proposition 4.5.3 and Theorem 4.1.3, using the

fact that both results apply to dense sets of directions.
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Proof of Corollary 4.1.5. Fix δ, ε > 0 such that the basepoint o ∈ T (S) is in the ε-thick part

of Teichmüller space. We shall build inductively a sequence of quadratic di�erentials (jk), as

well as sequences of times (sk), (tk) such that, Driftµ(R(jk; si)) <
(
f(si)− δ2−2(k−i)

)
si for

each i ≤ k and each R(jk; ti) is at most at distance δ
(
2− 2−2(k−i)

)
from Tε for each i ≤ k.

The theorem will follow by taking an accumulation point of such sequence.

For k = 0 let j0 ∈ Q1(o) be a Jenkins-Strebel quadratic di�erential. By Theorem 4.1.3

there are constants C(j0), t(j0) such that Driftµ(R(j0; t)) < C(j0)t for all t > t(j0). Let s0

be big enough such that f(s0) > C(j0) + δ and s0 > t(j0). Finally, let t0 = 0.

Assume then we have the sequence up to k. The set of recurrent directions to Tε is

dense, so we can take a sequence of quadratic di�erentials (qn) ⊂ Q1(o) spawning recurrent

geodesics and converging to jk. Since q
n → jk, the geodesics R(q

n; ·) converge to the geodesic
R(jk; ·) pointwise. The drift is a continuous function with respect to Teichmüller space, so

Driftµ(R(q
n; si)) → Driftµ(R(jk; si)) ≤ (f(si)− δ2−2(k−i))si for each i ≤ k. Let q be the �rst

element of the sequence (qn) such that

Driftµ(R(q; si)) < (f(si)− δ2−(2(k−i)+1))si

and

dTeich(R(q; ti), R(jk; ti)) < δ2−(2(k−i)+1)

for all i ≤ k. The geodesic R(q) is recurrent, so we can �x tk+1 > sk + 1 such that

R(q; tk+1) ∈ Tε.

The set of Jenkins�Strebel directions is dense, so we can take a sequence (jn) converging

to q. As before, the convergence within the sequences is pointwise, so Driftµ(R(j
n; si)) →

Driftµ(R(q; si)) ≤ (f(si)− δ2−(2(k−i)+1))si for each i ≤ k. Let jk+1 be the �rst element of the

sequence (jn) such that

Driftµ(R(jk+1; si)) ≤ (f(si)− δ2−2(k+1−i))si

and

dTeich(R(jk+1; ti), R(q; ti)) < δ2−2(k+1−i)

for all i ≤ k + 1. As before, there is some C(jk+1) such that Driftµ(R(jk+1; t)) < C(jk+1)t,

so let sk+1 be the �rst time larger than tk+1 such that f(sk+1) > C(sk+1) + δ. Furthermore,
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for i ≤ k

dTeich(R(jk+1; ti), Tε) ≤ dTeich(R(jk+1; ti), R(q; ti))+dTeich(R(q; ti), R(jk; ti))+dTeich(R(jk; ti), Tε)

< δ
(
2−(2(k−i)+1) + 2−2(k+1−i) + 2− 2−(2(k−i))

)
= δ

(
2− 2−2(k+1−i)

)
and for i = k + 1 we have, since R(qk+1; tk+1) ∈ Tε,

dTeich(R(jk+1; tk+1), Tε) ≤ dTeich(R(jk+1; tk+1), R(qk+1; tk+1)) < δ.

Hence, we have completed the induction step.

Let qf be an accumulation point of the sequence (jk). There is then a subsequence, rela-

beled (jk) converging to qf . By pointwise convergence, Driftµ(R(jk; si)) → Driftµ(R(qf ; si),

so Driftµ(R(qf ; si) < f(si)si for each i. Furthermore, R(jk; ti) → R(qf ; ti), so for each i the

points R(qf ; ti) are at most at distance 2δ from the Tε. Therefore, there is some ε′ such

that R(qf ; ti) ∈ Tε′ for all i. Hence, by Proposition 4.5.3 there is some c > 0 such that

Driftµ(R(qf ; ti)) > ceti . Furthermore, tk+1 > sk +1 > tk +1, so the sequence (tk) diverges to

in�nity, and so does (sk). Finally, the geodesic R(qf ; ·) is recurrent, so by Masur's criterion

[Mas92, Theorem 1.1] the vertical foliation of qf is uniquely ergodic.

4.7 Singularity conjecture and open questions

In this last subsection we return to the singularity conjecture and dimension drop of station-

ary measures. Recall from the introduction that by the results of [Tan19], the stationary

measure νρ is exact dimensional and its dimension is given by

dim(νρ) =
h

Drift(ρ)
, (4.7.1)

where h = h(µ) is the asymptotic (or Avez) entropy de�ned by

h = lim
n→+∞

1

n
H(Zn),

and H(Z) = −
∑

g∈supp(Z) P(Z = g) log(P(Z = g)) denotes the Shannon entropy of the

random variable Z. Note that h does not depend on the representation ρ.

66



Recall the singularity conjecture from the introduction:

Conjecture (Singularity conjecture). If µ is admissible and has �nite support then there

exists δ < 1 such that

dim(νρ) ≤ δ

for all [ρ] ∈ T (M).

Since the visual boundary is one-dimensional, equation (4.7.1) implies that h ≤ Drift(ρ)

for all ρ. The singularity conjecture then amounts to this inequality being strict on all of

T (M).

Let us record some basic properties of Drift.

Proposition 4.7.1. The function Drift : T (S) → (0,+∞) is continuous.

Proof. This follows from Furstenberg formula [KL11, Theorem 18] for speed and convergence

of the stationary measures.

One basic result from Drift(p) being continuous and proper is as follows

Corollary 4.7.2. The functions Drift : T (S) → [h,+∞) and dim(ν) : T (S) → (0, 1] attain

their minimum and maximum respectively.

It is natural to ask then the following question

Question 4.7.3. Does dim(νρ) attain its maximum at a unique point in T (S)? Equivalently

is Drift minimized at a unique point?

When the maximal dimension is 1 and µ is symmetric (i.e., µ(g) = µ(g−1) for all g) the

answer to the previous question is a�rmative. That is, we have the following.

Proposition 4.7.4. If µ is admissible symmetric and has �nite �rst moment, then there

exists at most one point [ρ] ∈ T (S) such that dim(νρ) = 1.

Proof. As shown by Blachère�Haïssinsky�Mathieu [BHM11, Theorem 1.5], if µ is symmetric

then whenever dim(νρ) = 1 the measure νρ is absolutely continuous with respect to the

Lebesgue measure on the boundary.

Suppose dim(νρ1) = dim(νρ2) = 1. There exists a quasi-conformal homeomorphism

φ : H → H such that φ(o) = o and φ ◦ ρ1(γ) = ρ2(γ) ◦ φ for all γ ∈ Γ. The quasi-conformal
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map φ extends continuously to the visual boundary in a unique way. Denoting this extension

by φ as well we have φ∗νρ1 = νρ2 .

This implies that the restriction of φ to the visual boundary is absolutely continuous.

However this can only happen if [ρ1] = [ρ2], as shown by Agard [Aga85].

On the other hand, there are some interesting questions pending regarding the �ner vari-

ation of the growth. Theorem 4.5.7 shows that along a typical geodesic the drift grows

exponentially. However, it does not determine precisely the �uctuations within such expo-

nential growth. Furthermore, Corollary 4.1.5 shows that the behaviour of the drift along

a geodesic can vary wildly, so it is natural to ask whether there is some variation within a

typical geodesic.

Question 4.7.5. Let ν be a measure on Q1(o) satisfying the hypothesis of Theorem 4.5.7.

Do we have

0 < lim inf
t→∞

Driftµ(R(q; t))

et
= lim sup

t→∞

Driftµ(R(q; t))

et
<∞

ν-almost surely?

Note that by Corollary 4.5.8 we have lim supt→∞
Driftµ(R(q;t))

et
> 0 and lim inft→∞

Driftµ(R(q;t))

et
<

∞. In the proof of Theorem 4.5.7 we have bounded the quotient between the drift and the

exponential et by a function depending on the maximal continuous time spent in the thin

part of Teichmüller space up to time t. The growth of these maximal departures may vary

di�erently depending on the measure. On the one hand, following work of Gadre [Gad17,

Lemma 5.5] it is reasonable to conjecture that the maximal departure grows slightly faster

than log(t) for the Lebesgue measure. On the other hand, because of exponential decay

of subsurface projections for harmonic measures, it may be expected (though this is still

unproved) that the largest continuous time spent in the thin part for a harmonic typical

Teichmüller geodesic is of the order of log(log(t)). Therefore, the answer to the previous

question might be di�erent for the Lebesgue and harmonic measures.
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Chapter 5

The horofunction compacti�cation of

proper, uniquely geodesic, straight

metric spaces

5.1 Introduction

The horofunction compacti�cation of a metric space is de�ned in terms of the metric, so

its properties are well aligned for studying the metric properties of the space. For example,

all geodesic rays converge to points and isometries of the space can be extended to homeo-

morphisms of the compacti�cation. This compacti�cation was �rst introduced by Gromov

[Gro81] as a natural, general compacti�cation, based on previous ideas of Busemann. The

horofunction compacti�cation has since found several applications, such as obtaining asymp-

totic properties of random walks on weakly hyperbolic spaces by Maher�Tiozzo [MT18], de-

termining the isometry group of some Hilbert geometries by Lemmens�Walsh [LW11] and

obtaining properties of quantum metric spaces by Rie�el [Rie02]. The compacti�cation is

obtained by embedding the metric space X into the space C(X) of continuous functions on

X via the map h : X ↪→ C(X) de�ned by

h(p)(·) = d(p, ·)− d(p, b),

where b ∈ X is an arbitrarily chosen basepoint. As explained, for example, by Walsh

[Wal14a, Section 2], if the space X is proper then h is and embedding, the closure of h(X)
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is compact and the horofunction compacti�cation of X is de�ned as the pair (h, h(X)).

By considering two functions equivalent if they di�er by a constant one can show that the

compacti�cation does not depend on the basepoint b. While this compacti�cation has been

rather useful, it is sometimes hard to visualize, and there are not that many examples

where the horofunction boundary is explicitly known. Some cases where the horofunction

compacti�cation is understood include Hadamard manifolds and some of their quotients,

by Dal'bo�Peigné�Sambusetti [DPS12], as well as the Heisenberg group with the Carnot�

Carathéodory metric, by Klein�Nicas [KN10], and Hilbert geometries, by Walsh [Wal14b].

On the other hand, for a proper, uniquely geodesic, straight metric space X (see Sec-

tion 2.1.1 for de�nitions) the visual compacti�cation based at some point b ∈ X is de�ned

by pasting the set of geodesic rays exiting b, denoted Db, to the space X in such a way that

a sequence (xn) ⊂ X converges to some ray γ ∈ Db if the distance d(b, xn) goes to in�nity as

n → ∞, and the geodesic ray between b and xn converges uniformly on compacts to γ. See

Section 2.1.3 for details on the topology of X ∪ Db. This compacti�cation may depend on

the basepoint b, which restricts its usefulness. It can even happen that isometries of X that

move the basepoint can not be extended continuously to the compacti�cation, as Kerckho�

showed for Teichmüller spaces [Ker80]. However, the visual compacti�cation usually has a

simple geometric interpretation. For example, for a Hadamard manifold, as well as for a

Teichmüller space with the Teichmüller metric, this compacti�cation is homeomorphic to a

closed ball of the same dimension as the space, where the boundary of that ball is the space

of geodesic rays based at b. In the context of Teichmüller spaces with the Teichmüller metric,

the visual compacti�cation is often called the Teichmüller compacti�cation.

The work in this chapter is aimed towards an application to Teichmüller spaces with the

Teichmüller metric. However, to make the work as general as possible we begin our analysis

by using some metric properties of the Teichmüller metric. The relationship between the

horofunction compacti�cation and the visual compacti�cation is established by observing

that, for such a metric space, a sequence converging to a point in the horofunction compac-

ti�cation also converges in the visual compacti�cation. This allows us to build a continuous

map Π from the horofunction compacti�cation h(X) to the visual compacti�cation X ∪Db,

showing that the former is �ner than the latter.

Given a geodesic ray γ, the path γ(t) converges, as t → ∞, to the Busemann point

associated to γ in the horofunction compacti�cation, which we denote Bγ. As the map Π is

de�ned in terms of sequences it follows that, if γ starts at the basepoint b, then Π(Bγ) = γ.
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The existence of the map Π shows a strong relation between the horofunction and the visual

compacti�cation, which we state in the following result.

Theorem 5.1.1. Let (X, d) be a proper, uniquely geodesic, straight metric space. For any

basepoint b ∈ X, there is a continuous surjection Π from the horofunction compacti�cation

to the visual compacti�cation based at b such that Π(Bγ) = γ for every ray γ starting at b

and Π(h(p)) = p for every p ∈ X.

In particular, the horofunction compacti�cation of X is �ner than the visual compacti�-

cation of X based at any point.

The construction of the map Π is done in Section 5.2.1, and the previous thereom can

be summed up as a combination of Propositions 5.2.5 and 5.2.6 in said section. Most of

the subsequent results in the chapter, as well as the next one, follow as applications of this

theorem.

It is not the �rst time that a map such as Π appears in the literature. Similar maps have

been found for δ-hyperbolic spaces by Webster�Winchester [WW05]. Walsh de�ned such a

map for Hilbert geometries [Wal14b], which satisfy the hypothesis of the theorem whenever

there are no coplanar noncollinear segments in the boundary of the convex set, as shown

by de la Harpe [dlH93, Proposition 2]. Furthermore, in the context of Teichmüller spaces

without boundary, the map Π coincides with the one de�ned by Liu�Shi [LS22, De�nition

3.3].

The map Π does not induce a �ber bundle, as its �bers Π−1(γ) vary from points to higher

dimensional sets in some examples (see Theorem 6.4.10). Still, Theorem 5.1.1 characterizes

the horoboundary as the disjoint union of all the �bers Π−1(γ). This gives a starting point

to study the structure of the horoboundary, by looking at the structure of these �bers. For

this reason, in Section 5.2.2 we study the �bers, and as a corollary of Proposition 5.2.11 we

get the following result.

Proposition 5.1.2. Let Π be the map between the horofunction compacti�cation and the

visual compacti�cation de�ned above, and let γ be a geodesic. Then, Π−1(γ) is path connected.

Using this feature of the �bers we get in the same section a characterization of the

connectivity of the horoboundary.

Proposition 5.1.3. The horoboundary of a proper, uniquely geodesic straight metric space is

connected if and only if its visual boundary based at some point (and hence, any) is connected.
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The analysis of the �bers starts by looking at the Busemann map B from the visual

compacti�cation X ∪Db to the horofunction compacti�cation, de�ned by setting B(γ) = Bγ

for each geodesic ray γ ∈ Db and B(p) = h(p) for each p ∈ X. With this de�nition, the map

satis�es Π ◦ B = id. In Section 5.2.2 we show that this map is continuous if and only if the

two relevant compacti�cations are, as compacti�cations, the same.

Proposition 5.1.4. The visual compacti�cation of a proper, uniquely geodesic, straight met-

ric space based at some point is isomorphic to its horofunction compacti�cation if and only

if the Busemann map is continuous.

The Busemann map is essentially the identity inside X, so the only possible points of

discontinuity are at the boundary. It is therefore of interest to �nd a criterion for the

continuity of B at the boundary, which as we show in Section 5.2.2 gives a criterion for when

the �bers Π−1(γ) are singletons.

Proposition 5.1.5. Let X be a proper, uniquely geodesic, straight metric space, b ∈ X a

basepoint, B the corresponding Busemann map and furthermore, let γ be a geodesic ray based

at b. Then the following three statements are equivalent:

1. The Busemann map B restricted to the boundary is continuous at γ.

2. The �ber Π−1(γ) is a singleton.

3. The Busemann map B is continuous at γ.

In other words, we have reduced the continuity of B to the continuity restricted to the

boundary. This result can then be applied to di�erent settings to obtain a more precise

characterization. In the case of Teichmüller spaces Proposition 5.1.5 can be used to get

an explicit criterion for the continuity of the Busemann map in terms of the quadratic

di�erentials associated to the geodesic rays, giving us a characterization of the �bers that

are singletons.

The map Πb can be de�ned for any basepoint b ∈ X. Hence, as an immediate corollary,

we get that if a sequence converges in the horofunction compacti�cation, the sequence also

converges in all the visual compacti�cations. Under some extra smoothness assumptions,

which shall be explicited in Section 5.2.3, we are able to get the inverse relation. That is, if

the sequence converges in all the visual compacti�caitons, then the sequence also converges
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in the horofunction compacti�cation. This is stated as Corollary 5.2.14, in Section 5.2.3.

To reach such result we give an alternative de�nition of the horofunction compacti�cation,

under the extra smoothness hypotheses, as the reachable subset of the in�nite product of all

the visual compacti�cations. See Theorem 5.2.12 in that same section for details.

5.1.1 Disclosures

This chapter is based on the �rst part of work by the author [Aze21].

5.2 Horofunction compacti�cation of metric spaces.

5.2.1 The relation between the horofunction compacti�cation and

the visual compacti�cation

Fix a uniquely geodesic, proper and straight metric space (X, d) and a basepoint b ∈ X. We

will assume X satis�es these hypotheses through this section. For each geodesic ray γ ∈ ∂X
v

starting at b there is an associated Busemann point Bγ ∈ ∂X
h
. We can extend this map to

all the visual compacti�cation by setting it as the identi�cation with the map h on X given

by the horofunction compacti�cation. That is, we de�ne the Busemann map B : X
v → X

h

by setting B(γ) = Bγ for γ ∈ ∂X
v
and B(x) = h(x) for x ∈ X. The relevance of this map

can be seen with the following result.

Lemma 5.2.1. The visual compacti�cation (i,X
v
) is �ner than the horofunction compacti-

�cation (h,X
h
) if and only if the map B is continuous.

Proof. We have that B(i(x)) = h(x), so B is an extension of h to X
v
. Hence, if B is

continuous, then the visual compacti�cation is �ner than the horofunction compacti�cation.

On the other hand, if the visual compacti�cation is �ner than the horofunction com-

pacti�cation, then we have a continuous map f : X
v → X

h
. For every x ∈ X, we have

f(i(x)) = h(x) = B(i(x)). Furthermore, for any ray γ starting at the basepoint we have

f(γ) = limt→∞ f(i(γ(t)) = limh(γ(t)) = B(γ). Hence, B = f , and B is continuous.

In general, the Busemann map may not be surjective nor continuous. However, we have

the following.
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Proposition 5.2.2. For a proper, uniquely geodesic, straight metric space (X, d) the Buse-

mann map is injective.

Proof. For each x ∈ X, the associated function h(x) has a global minimum at x, while Bγ is

unbounded below for every γ ∈ ∂X
v
. Hence, in the interior of X

v
the map is injective and

B(X) ∩B(∂X
v
) = ∅. Assume we have γ, γ′ ∈ ∂X

v
such that γ ̸= γ′ and B(γ) = B(γ′) = ξ.

Then, for a given sequence tn → ∞ we have limn→∞ h(γ(tn)) = limn→∞ h(γ′(tn)) = ξ. For

any t ∈ R and any n such that tn > t we have

h(γ(tn))(γ(t)) = d(γ(tn), γ(t))− d(γ(tn), γ(0)) = tn − t− tn = −t,

and similarly for γ′. Hence ξ(γ(t)) = ξ(γ′(t)) = −t for all t.
Fix now a t > 0. We have

−t = ξ(γ′(t)) = lim
n→∞

(d(γ′(t), γ(tn))− d(b, γ(tn)))

= lim
n→∞

(d(γ′(t), γ(tn))− tn).

That is, there is a sequence εn with εn → 0 such that

tn − t+ εn ≥ d(γ′(t), γ(tn)) ≥ tn − t− εn.

for every n.

By straightness we can extend γ in the negative direction towards γ(−s) for some s > 0.

We shall now show that the geodesic γ does not minimize the distance between γ(−s) and
γ(tn) for n big enough. Since the space is straight, the geodesic segment between γ(−s)
and b can be extended uniquely, so concatenating it with the segment between b and γ′(t)

does not result in a geodesic. Hence, the distance between γ′(t) and γ(−s) is strictly smaller

than s + t. That is, there is some δ > 0 such that d(γ(−s), γ′(t)) < t + s− δ. As shown in

Figure 5.1 we get a path going from γ(−s), to γ(tn), passing through γ′(t) that has length

less than t + s − δ + tn − t + εn = tn + s − δ + εn. Hence, taking n big enough so that

εn < δ we get that the geodesic segment between γ(−s) and γ(tn) is not minimizing. This

is a contradiction, from which we conclude that γ = γ′. Therefore, B is injective.

Hence, given a Busemman point ξ in B(∂X
v
) we have a unique associated geodesic ray

74



b

γ′(t) γ(tn)

γ(−s)

t tn

< tn − t+ εn

s

< t+ s− δ

Figure 5.1: The triangles involved in the proof of Proposition 5.2.2.

γ ∈ ∂X
v
such that ξ(γ(t)) = −t for all t. Our next aim is to build a similar relation for all

other horofunctions. Our approach is similar to the one used by Walsh in [Wal19, Section

7].

We say that a geodesic γ is an optimal geodesic for a certain horofunction ξ ∈ X
h
if

ξ(γ(t))−ξ(γ(0)) = −t for all t ∈ R. We shall now see that each function in the horoboundary

has at least one optimal geodesic.

Lemma 5.2.3. Let X be a proper, uniquely geodesic, straight metric space and let ξ ∈ ∂X
h

be a horofunction. Suppose that (xn) ⊂ X converges to ξ, with xn = γn(tn), γn ∈ ∂X
v
and

(γn) converging to γ as n → ∞. Then ξ(γ(t)) = −t for every t ∈ R. That is, γ(t) is an

optimal geodesic for ξ.

Proof. Fix t. We have that

ξ(γ(t)) = lim
n→∞

(d(γ(t), γn(tn))− d(b, γn(tn))) = lim
n→∞

(d(γ(t), γn(tn))− tn).

As n goes to in�nity, γn converges to γ. Hence by the given topology on the visual boundary,

the maps γn(·) converge uniformly on compact sets to the geodesic γ(·). In particular,

denoting d(γ(t), γn(t)) = εn we have εn → 0. We get then Figure 5.2, so by the triangle

inequality,

|d(γ(t), γn(tn))− (tn − t)| = |d(γ(t), γn(tn))− d(γn(t), γn(tn))| ≤ εn,

and so ξ(γ(t)) = −t.

Since ∂X
v
is compact, for any horofunction ξ ∈ ∂X

h
and sequence (xn) ⊂ X converging
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b

γn(tn)

γ(tn)

γ(t)

γn(t)

εn

Figure 5.2: In the proof of Lemma 5.2.3, γn converges to γ, so γn(t) converges to γ(t), and
hence the distance between γn(tn) and γn(t) gets arbitrarily close to the distance between
γn(tn) and γ(t).

to ξ we can take a subsequence such that the hypotheses of Lemma 5.2.3 are satis�ed, so

each ξ ∈ ∂X
v
does have at least one optimal geodesic.

If ξ has another optimal geodesic γ′ with γ′(0) = γ(0) we have at least two geodesics

along which ξ(γ(t)) = ξ(γ′(t)) = −t for all t. Following a reasoning similar to the one in

the proof of Proposition 5.2.2, we get a contradiction. This time, however, we have to be a

bit more careful about the distances, as instead of two �xed rays we have a �xed ray and a

sequence converging to a distinct �xed ray.

Proposition 5.2.4. Let ξ ∈ ∂X
h
and b ∈ X. Then there is a unique optimal geodesic for ξ

passing through b.

Proof. Let (xn) = (γn(tn)) be a sequence converging to ξ, with (γn) ⊂ ∂X
v
, and take a

subsequence such that γn converges to some geodesic γ. By Lemma 5.2.3, γ is an optimal

geodesic. Assume that we have a di�erent optimal geodesic γ′ passing through b.

Using that h(γn(tn)) converges pointwise to ξ we have

−t = ξ(γ′(t)) = lim
n→∞

(d(γ′(t), γn(tn))− d(b, γn(tn)))

= lim
n→∞

(d(γ′(t), γn(tn))− tn).
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Hence, there is a sequence εn with εn → 0 such that

tn − t+ εn ≥ d(γ′(t), γn(tn)) ≥ tn − t− εn.

We proceed by showing that for n big enough there is some s > 0 such that the geodesic γn

does not minimize the distance between γn(−s) and γn(tn). As in the proof of Proposition

5.2.2, by applying the triangle inequality between γ′(t), γ(−s) and b we have d(γ′(t), γ(−s)) <
s+ t. Fix s > 0 and pick δ > 0 such that d(γ′(t), γ(−s)) < t+ s− δ. Since γn converges to γ

uniformly on compact sets, γn(−s) converges to γ(−s). Hence, d(γ′(t), γn(−s)) converges to
d(γ′(t), γ(−s)). Then for n big enough we have d(γ′(t), γn(−s)) < t + s− δ. Consider then

n big enough so that εn ≤ δ/2 as well. The triangle between γ′(t), γn(−s) and γn(tn) gives

d(γn(−s), γn(tn)) ≤ d(γn(−s), γ′(t)) + d(γ′(t), γn(tn)) < (t+ s− δ) + (tn − t+ εn) < tn + s.

This is a contradiction, which proves the uniqueness of γ.

Given a basepoint b ∈ X we can now de�ne a map Πb : X
h → X

v

b by sending any

ξ ∈ ∂X
h
to the unique optimal geodesic γ of ξ with γ(0) = b, and by sending h(x) to x for

any x ∈ X. This map is indeed an extension of the relation we had established for Busemann

points in B(∂Xv
), since if ξ = B(γ) for γ ∈ Db then γ is an optimal geodesic of ξ, giving us

Πb(B(γ)) = γ.

We will often write Π instead of Πb whenever the basepoint is not relevant to the discus-

sion. To prove that Π is continuous, we �rst have to see the following result.

Proposition 5.2.5. Let (xn) ⊂ X be a sequence converging to ξ ∈ ∂X
h
. Then, (xn) has a

unique accumulation point in the visual compacti�cation. Further, this accumulation point

depends only on ξ.

Proof. Since ∂X
v
is compact, (xn) has accumulation points in the visual compacti�cation. If

(xn) has two accumulation points we can take two subsequences converging to two di�erent

geodesics, which by Lemma 5.2.3 are optimal geodesics, contradicting Proposition 5.2.4.

If there is another sequence (yn) converging to ξ with a di�erent accumulation point the

result follows by merging both sequences and repeating the reasoning.

Hence, Π can be alternatively de�ned by sending any ξ ∈ ∂X
h
to the unique accumulation

point in X
v
of the sequences converging to ξ in X

h
, and by sending h(x) to x for any x ∈ X.
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By Proposition 5.2.5, this de�nition is equivalent to the previous one.

By this second de�nition of the map Π, we see how it is mostly related to the convergence

of sequences, so using a diagonal sequence argument we can prove its continuity.

Proposition 5.2.6. The map Π is continuous.

Proof. Take a sequence (ξn) ⊂ X
h
converging to ξ. If ξ ∈ h(X) we have that, as h(X) is

open, ξn ∈ h(X) for n big enough. Hence, Π(ξn) = h−1(ξn), which converges to h−1(ξ), as h

is a homeomorphism with its image.

If ξ ∈ ∂X
h
we split the sequence into two subsequences, one contained in h(X) and one

contained in ∂X
h
. The one contained in h(X) converges to ξ, so by de�nition of Π and we

have Π(ξ) = limn→∞ h−1(ξn).

Assume then that (ξn) ⊂ ∂X
h
converges to ξ. We want to see that γn = Π(ξn) converges

to γ = Π(ξ). For each ξn we can take a sequence (h(γmn (tmn )))m converging, as m→ ∞ to ξn.

By Proposition 5.2.5 the sequence γmn (tmn ) converges to γn. Let γ
′ be an accumulation point

of γn. Take a convergent subsequence of γn converging to γ′, and relabel it as γn. Let (Vn)

be a nested sequence of open neighbourhoods of ξ in X
h
such that ξn ∈ Vn and

⋂
n Vn = {ξ}

and let (Wn) be a nested sequence of open neighbourhoods of γ′ in X
v
such that γn ∈ Wn

and
⋂

nWn = {γ′}. We can take such sequences of sets, as both spaces are metrizable.

For each n, there exists m(n) big enough so that γ
m(n)
n ∈ Wn and h(γ

m(n)
n (t

m(n)
n )) ∈ Vn.

By the �rst condition on m(n), we have that γ
m(n)
n converges to γ′. By the second condition,

h(γ
m(n)
n (t

m(n)
n )) converges to ξ, so by the the de�nition of Π and Proposition 5.2.5 the sequence

γ
m(n)
n converges to Π(ξ) = γ. Hence, γ = γ′, so the only accumulation point of (γn) is γ and

by compactness of ∂X
v
the sequence (γn) converges to γ.

By combining Propositions 5.2.5 and 5.2.6 we get that Π is the map announced at the

introduction, giving us a proof of Theorem 5.1.1. As mentioned in the introduction, this

map shows that the horofunction compacti�cation is �ner than the visual compacti�cation.

By using the Busemann map to insert the visual boundary inside the horoboundary, we can

consider the map Π as a projection.

One straightforward consequence of the continuity of Πb is as follows.

Corollary 5.2.7. Let γ be a geodesic ray, not necessarily starting at the basepoint b ∈ X.

Then, γ converges in the visual compacti�cation of X based at b.
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Proof. The ray γ converges in the horofunction compacti�cation to Bγ. Since Πb is contin-

uous, the ray also converges in the visual compacti�cation based at b to Πb(Bγ).

For Teichmüller spaces with the Teichmüller metric this result was �rst proved by Walsh

[Wal19, Theorem 7].

By Lemma 5.2.1, the visual compacti�cation is �ner than the horofunction compacti-

�cation if and only if the Busemann map is continuous. Hence, since the horofunction

compacti�cation is always �ner than the visual compacti�cation, we obtain an isomorphism

whenever this is the case, resulting in Proposition 5.1.4.

5.2.2 The �ber structure

To get a better picture of the shape of the horoboundary we shall study the shape of the

preimages of the projection Π restricted to the boundary. That is, for a given point γ in the

visual boundary we are interested in �nding out information about the �ber Π−1(γ). We

�rst prove the following lemma, which we will use to get bounds on the values of Π−1(γ).

Lemma 5.2.8. Fix a geodesic ray γ ∈ ∂X
v
and p ∈ X not in the bi-in�nite extension of the

geodesic ray γ. Then, the function h(γ(·))(p), with domain [0,∞), is strictly decreasing.

Proof. Take t, s ≥ 0 with s < t. By the triangle inequality we have

d(γ(t), p) ≤ d(γ(s), p) + d(γ(t), γ(s)) = d(γ(s), p) + t− s.

Further, we have strict inequality, as equality would give us two di�erent paths with the

same length between γ(t) and p, with one of them being geodesic. Hence,

h(γ(t))(p) = d(γ(t), p)− d(γ(t), b)

< d(γ(s), p) + t− s− t

= h(γ(s))(p).

The set C(X) can be partially ordered by saying that f ≥ g whenever f(x) ≥ g(x) for

all x ∈ X. If f ≥ g and f ̸= g then we write f > g. If p = γ(r) for some r and s < t we

have h(γ(s))(p) = h(γ(t))(p) = −r for r ≤ s and −s = h(γ(s))(p) > h(γ(t))(p) = −min(r, t)
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otherwise. Hence, adding the previous lemma we have h(γ(s)) > h(γ(t)) whenever s < t.

By attempting to extend this relation to the horofunction boundary we get that Busemann

points are maximal in their �bers.

Proposition 5.2.9. Let γ ∈ ∂X
v
and ξ ∈ Π−1(γ). Then, ξ ≤ B(γ).

Proof. Choose any sequence (xn) ⊂ X such that h(xn) converges to ξ. Since ξ ∈ Π−1(γ)

the sequence (xn) converges to γ in X
v
, so we can write xn = γn(tn) with tn converging to

in�nity and γn converging to γ.

Fix p ∈ X and let ε > 0. Denote sn = sup{t : d(γ(t), γn(t)) < ε and t < tn}. The

geodesics γn converge to γ uniformly on compact sets, so sn → ∞ as n → ∞. Hence, by

de�nition of the Busemann point and since d(γn(sn), γ(sn)) < ε,

Bγ(p) = lim
n→∞

h(γ(sn))(p) ≥ lim sup
n→∞

h(γn(sn))(p)− 2ε.

Furthermore, sn ≤ tn, so by Lemma 5.2.8,

ξ(p) = lim
n→∞

h(γn(tn))(p) ≤ lim sup
n→∞

h(γn(sn))(p) ≤ Bγ(p) + 2ε.

Since ε can be arbitrarily small we get the proposition.

While it might not be possible to get a similar unique minimum in each �ber, we can get

the following result.

Proposition 5.2.10. Let γ ∈ ∂X
v
and ξ ∈ Π−1(γ). Furthermore, let (xn) ⊂ X be a

sequence converging to ξ with xn = γn(tn). For any p, de�ne η(p) = lim infn→∞B(γn)(p).

Then, ξ ≥ η.

Proof. The proof follows a similar reasoning as the last one.

Fix p ∈ X, choose a subsequence so B(γn)(p) converges to η(p) and let (εm) be a sequence

of positive numbers coverging to 0. For each εm, take n(m) big enough so that B(γn(m))(p) ≥
η(p)− εm. Further, take sm bigger than tn(m), and big enough so that

h(γn(m)(sm))(p) ≥ B(γn(m))(p)− εm.
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Such an sm always exists by the de�nition of B(γn(m)). In particular, we have that

lim inf
m→∞

h(γn(m)(sm)(p) ≥ η(p).

By Lemma 5.2.8 we have

ξ(p) = lim
m→∞

h(γn(m)(tn(m))(p) ≥ lim inf
m→∞

h(γn(m)(sm))(p) ≥ η(p).

The intuition one might get from these propositions is that approaching γ �through the

boundary�, that is, through the furthest way possible from the interior of X, gives a lower

bound on the possible values of approaching through other angles, and approaching γ in

a straight way, that is, through the geodesic, gives an upper bound. Hence, when these

two ways of approaching γ are the same, every other possible angle of approach should also

yield the same limit. Following this reasoning we get our next result, announced in the

introduction.

Proposition 5.1.5. Let X be a proper, uniquely geodesic, straight metric space, b ∈ X a

basepoint, B the corresponding Busemann map and furthermore, let γ be a geodesic ray based

at b. Then the following three statements are equivalent:

1. The Busemann map B restricted to the boundary is continuous at γ.

2. The �ber Π−1(γ) is a singleton.

3. The Busemann map B is continuous at γ.

Proof. (1) =⇒ (2): Take ξ ∈ Π−1(γ). By Proposition 5.2.9 we have ξ ≤ B(γ). Since

B is continuous at γ when restricted to the boundary we have that for any γn → γ the

horofunctions B(γn) converge to B(γ). Hence, by Proposition 5.2.10, ξ ≥ B(γ), so ξ = B(γ)

and we have (2).

(2) =⇒ (3): Take then any (xn) ⊂ X
v
converging to γ, consider the sequence (B(xn)) ⊂

X
h
and let η be an accumulation point. By the de�nition of Π we have η ∈ Π−1(γ), so

η = B(γ) since we assumed that Π−1(γ) is a singleton. This shows that B is continuous at

γ.

Finally, it is clear that (3) =⇒ (1).
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The relation obtained in Lemma 5.2.8 can be exploited further. Indeed, trying to carry

it to the boundary in a more delicate manner we can see that the �bers are path connected.

Proposition 5.2.11. Let γ ∈ ∂X
v
. For any ξ ∈ Π−1(γ) there exists a continuous path from

B(γ) to ξ contained in Π−1(γ).

Proof. Take a sequence (xn) ⊂ X converging to ξ in the horofunction compacti�cation, and

write xn = γn(un). As we have seen in the proof of Proposition 5.2.10, we can take a sequence

(ln) ⊂ R with γn(ln) converging to Bγ such that ln < un for all n. For each n we have a

path α̃n(t) connecting γn(ln) and γn(un) by setting α̃n(t) = γn(tun + (1− t)ln) for t ∈ [0, 1].

We would like to carry this path to the limit, getting a path between ξ and B(q). However,

directly taking such a limit might result in some discontinuities, so we have to choose a

parametrization carefully.

To �nd a good parametrization we shall use a certain functional as a control. We want

the functional to carry discontinuities and strict increases in the path of functions to discon-

tinuities and strict increases in the value of the functional. Since X is proper, it is separable,

so let (pi)i∈N be a countable dense set in X. We de�ne the functional I : X
h → R given by

I(f) =
∑
i∈N

f(pi)

2id(b, pi)
.

Since |f(x)| ≤ d(b, x) for all f ∈ X
h
, the summation in the de�nition of I(f) is absolutely

convergent, so I(f) is de�ned, �nite, continuous with respect to f , and for any two f, g ∈ X
h

we have I(f+g) = I(f)+I(g). Furthermore, since (pn) is dense and we are taking continuous

functions, we have that the functional translates strict inequalities. That is, f > g implies

I(f) > I(g). Hence, if I(f) = 0 and f ≥ 0 we have f = 0.

We de�ne then the function Fn(t) = I(h(γn(t)). By continuity of I this function is

continuous, and by Lemma 5.2.8 it is strictly decreasing with respect to t. That is, we have

continuous strictly decreasing functions Fn : [ln, un] → [Fn(un), Fn(ln)]. Hence, we can de�ne

implicitly the continuous parametrizations sn : [0, 1] → [ln, un] by taking the unique value

sn(t) such that

Fn(sn(t)) = (1− t)Fn(ln) + tFn(un).

Denote the Fn(sn(t)) as En(t). By the continuity of I we have that En(t) converges to

(1− t)I(Bγ) + tI(ξ) as n→ ∞, which we denote E(t).
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Take now a countable dense set (tk)k∈N ⊂ [0, 1] containing 0 and 1. We are now ready to

start de�ning the path α : [0, 1] → Π−1(γ), and we begin de�ning it for the dense set (tk).

For k = 1 we de�ne α(t1) as an accumulation point of h(γn(sn(t
1))). Denote (γm1(n)) the

subsequence of γn such that h(γm1(n)(sm1(n)(t
1))) converges to α(t1). De�ne inductively α(tk)

and (γmk(n)) by taking an accumulation point and a corresponding converging subsequence

of h(γmk−1(n)(smk−1(n)(t
k))). By the continuity of I we have

I(α(tk)) = lim
n→∞

(Fmk(n)(smk(n)(t
k))) = E(tk).

For each pair i > j we have that mi(n) is a subsequence of mj(n), so h(γmi(n)(smi(n)(t
j)))

converges to α(tj). Assume ti > tj. By Lemma 5.2.8 we have that h(γmi(n)(smi(n)(t
i))) <

h(γmi(n)(smi(n)(t
j))), so α(ti) ≤ α(tj).

We now have to prove that the de�nition we have given for α on (tk) can be extended

continuously to [0, 1]. Fix any t /∈ (tk) and take a subsequence of tk, labeled tkn , such that

tkn → t. We shall now see that α(tkn) converges to a function which does not depend on the

chosen subsequence, and de�ne α(t) as that limit. We can split and reorder the sequence

(tkn) into (t+n ) and (t−n ) satisfying t+n > t+n+1 > t > t−n+1 > t−n . The associated α(t±n ) are

ordered, so for any p ∈ X the sequence α(t±n )(p) is an increasing (or decreasing) sequence

of of values in R, bounded above (or below) by α(0)(p) (or α(1)(p)). Hence, both sequences

converge pointwise, which implies uniform convergence on compact sets, as these functions

are 1-Liptschitz. Furthermore, these limits do not depend on the chosen sequence, since if

we had any other we could intercalate them and the sequences would still converge. Denote

then α+ the limit associated to t+n , and α
− the limit associated to t−n . Since α(t

+
n ) < α(t−m)

for all n,m we have α+ ≤ α−. For each α(tk) we have I(α(tk)) = E(tk). Hence by the

continuity of I we have that

I(α+) = E(t) = I(α−).

That is, we have

I(α− − α+) = 0.

Since α− and α+ are continuous and α− − α+ ≥ 0 we have α− = α+. We thus de�ne α(t) to

be either one. The same reasoning shows that α is continuous.

We would like to remark that several choices where made in the proof of the previous

lemma, and the obtained path may not be unique.
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We can use the previous result to observe that the horoboundary is connected if and only

if the visual boundary is connected.

Proof of Proposition 5.1.3. Assume that the visual boundary is not connected. Then we

have U, V ⊂ ∂X
v
nonempty and open such that U ∩ V = ∅ and U ∪ V = ∂X

v
. As Π is

continuous, the sets Π−1(U) and Π−1(V ) are open, so the horoboundary is not connected.

For the other implication, assume that the visual boundary is connected while the ho-

roboundary is not connected. Then we have U, V ⊂ ∂X
h
nonempty and open such that

U ∩ V = ∅ and U ∪ V = ∂X
h
. Since �bers are path connected, each of them is contained

in only one of U or V , so Π(U) and Π(V ) are disjoint. Since U ∪ V = ∂X
h
we have

Π(U) ∪ Π(V ) = ∂X
v
, and since both U and V are nonempty, so are the images. Hence,

both images cannot be open at the same time, as ∂X
v
is connected. Therefore, these sets

cannot be both closed. Assume Π(U) is not closed. We then have a sequence (γn) ⊂ Π(U)

converging to a point in Π(V ). Again, since U ∪ V = ∂X
h
, we have that U = Π−1Π(U) and

V = Π−1Π(V ). Hence, any lift of the sequence (γn) to Π−1Π(U) is contained in U and, since

∂X
h
is compact, has accumulation points which, by the continuity of the projection map,

are be contained in Π−1Π(V ) = V . Hence, U is not closed and we get a contradiction.

5.2.3 An alternative de�nition of the horofunction compacti�cation

Under what a priori seem to be more restrictive hypotheses on the space X it is possible to

characterize the horofunction compacti�cation as a subset of the product of all of its visual

compacti�cations. We detail the construction in this section.

The new extra hypotheses are both related to the di�erentiability of the distance function.

We say a that a uniquely geodesic metric space X is C1 along geodesics if given a point

p ∈ X and a geodesic segment γ that does not intersect p, the distance function d(γ(t), p)

is �rst di�erentiable and the value of the derivative depends continuously on both t and p.

Furthermore, the space X has constant distance variation if for any two distinct geodesics

γ, η with γ(0) = η(0) we have either

d

dt
d(γ(t), η(s))

∣∣∣∣
t=0

=
d

dt
d(γ(t), η(1))

∣∣∣∣
t=0

(5.2.1)

for all s > 0, or d
dt
d(γ(t), η(s))

∣∣
t=0

does not exist for any s > 0.
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Many commonly studied metric spaces have constant distance variation. For example,

spaces with bounded curvature, either above of below, have constant distance variation,

as explained in the book by Burago�Burago�Ivanov [BBI01, Section 4]. Importantly to our

case, Teichmüller spaces with the Teichmüller distance satisfy both hypotheses. Earle [Ear77]

proved that the distance function is C1 by providing a formula for its derivative. Applying

the formula to (5.2.1) we get that the derivative depends only on the tangential vector to γ

at 0 and the unit area quadratic di�erential associated to η at 0, so we also have constant

distance variation. Furthermore, Teichmüller spaces with the Teichmüller distance are also

straight and proper, so the results from this section can be applied to them.

Consider the product of all the possible visual compacti�cations obtained by changing

the basepoint,

E =
∏
b∈X

X
v

b ,

with the usual product topology. See the book by Munkres [Mun00, Chapters 2.19 and 5.37]

for some background on in�nite products of topological spaces. Denote πb the projection

from E to X
v

b . By de�nition of the product topology, the diagonal inclusion i : X ↪→ E such

that by πb(i(x)) = x for every x, b ∈ X is continuous, and has continuous inverse restricted

to i(X) given by πb. Hence, i(X) is homeomorphic to X. That is, i is an embedding.

Furthermore, by Tychono�'s theorem the product is compact, as each factor of the product

is compact. Hence the closure i(X), which we shall denote X
V
, is compact. The pair

(i,X
V
) is then a compacti�cation of X, which tracks the information given by the visual

boundary at each point. That is, a sequence in X converges in the topology of X
V
if and

only if it converges for every possible visual compacti�cation X
v

b . The main interest of this

compacti�cation comes from the following result.

Theorem 5.2.12. Let X be a proper, uniquely geodesic, straight metric space which is C1

along geodesics and has constant distance variation. Then (i,X
V
) is isomorphic to (h,X

h
).

Denote Πb the continuous map from X
h
to X

v

b given by Theorem 5.1.1. The isomorphism

between X
h
and X

V
is de�ned by recording the value of each possible Πb within X

V
. That

is, we de�ne Π̃ : X
h → X

V
in such a way that πb ◦ Π̃ := Πb for each b ∈ X. The only

property required to prove that Π̃ is an isomorphism not following directly from previous

results is the injectivity. By Proposition 5.2.4 we know that if f ∈ Π−1
b (γ) then γ is an

optimal geodesic of f . That is, f(γ(t))− f(γ(s)) = −(t− s). Hence, if f, g ∈ Π−1
b (γ), then
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they di�er by a constant along the geodesic γ. If f and g are horofunctions in the preimage

of a point by Π̃, then they di�er by a constant along in�nitely many geodesics, which cover

X. However, the constant might depend on the geodesic, so we need a way to connect these

constants. We proceed by strengthening Proposition 5.2.4 to show that any two functions in

Π−1
b (γ) also have the same directional derivatives at points in γ, which allows us to connect

the geodesics. Precisely, we prove the following.

Proposition 5.2.13. Let X be a proper, uniquely geodesic, straight metric space which is

C1 along geodesics and has constant distance variation. Furthermore, let γ be a geodesic ray

starting at b, and let α be a geodesic starting at some point on γ. Then, d
dt
f ◦ α(t)

∣∣
t=0

exists

and its value is the same for all f ∈ Π−1
b (γ).

Proof. For any b′ ∈ γ we have that γ is an optimal geodesic of f passing through b′. Denoting

γb′ the geodesic ray starting at b′ with the same bi-in�nite extension as γ we have that

f ∈ Π−1
b′ (γb′), by Proposition 5.2.4. Hence, we can assume that α(0) = b by changing the

basepoint if necessary. Let xn be a sequence converging to f . Furthermore, let ηnt be the

geodesic from α(t) to xn and gn(t) be the value of d
ds
h(xn) ◦ α(s)

∣∣
s=t

. By the de�nition of

the map h we have gn(t) = d
ds
d(α(s), xn)

∣∣
s=t

. By the constant distant variation we have

gn(t) =
d
ds
d(α(s), ηnt (1))

∣∣
s=t

, which since X is C1 along geodesics depends continuously on

ηnt (1) and t.

By Proposition 5.2.5 the geodesics ηnt converge as n→ ∞ to some geodesics ηt, so η
n
t (1)

converges to ηt(1). Since the space is C1 along geodesics, the value of d
ds
d(α(s), ηnt (1))

∣∣
s=t

depends continuously on ηnt (1), and so gn converges pointwise to g(t) = d
ds
d(α(s), ηt(1))

∣∣
s=t

.

Take some δ > 0 and assume the convergence is not uniform on [−δ, δ]. Then there is

some ε > 0 such that for each n there is at least one tn ∈ [−δ, δ] such that |gn(tn)−g(tn)| > ε.

Since [−δ, δ] is compact we can take a converging subsequence such that tn converges to some

T ∈ [−δ, δ]. Hence, the point ηntn(1) does not converge to ηT (1), so by properness of X we

can take a subsequence such that ηntn(1) converges to some p ∈ X di�erent from ηT (1). Let

β be the geodesic starting at α(T ) passing through p. The geodesics ηntn converge uniformly

to β, and β ̸= ηT . For any �xed t > 0 we have, following the same reasoning than in the

proof of Proposition 5.2.5,

f(β(t))− f(β(0)) = lim
n→∞

d(xn, β(t))− d(xn, β(0)) = −t.

Hence, β is an optimal geodesic of f passing through α(T ). However, f ∈ Π−1
α(T )(ηT ), so ηT
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is also an optimal geodesic passing through α(T ), contradicting Proposition 5.2.4.

Hence, the convergence of (h(xn) ◦ α)′ = gn to g is uniform on [−δ, δ]. Therefore, f

is di�erentiable and f ′(0) = g(0) = d
ds
d(α(s), γ(1))

∣∣
s=0

, which is the same for all f ∈
Π−1(γ).

Proof of Theorem 5.2.12. Each Πb is continuous, so by the de�nition of the product topology

the map Π̃ is continuous. Hence, by Lemma 2.1.1 to see that Π̃ is an isomorphism it is enough

to show that Π̃ is injective.

Let f, g ∈ X
h
be such that Π̃(f) = Π̃(g). If there is some b ∈ X such that πb ◦ Π̃(f) ∈ X

then f = h(πb ◦ Π̃(f)) = g. Assume then πb ◦ Π̃(f) ∈ ∂X
v

b for all b ∈ X. By Proposition

5.2.13 they have the same directional derivatives at every point. Let α be a geodesic from a

�xed basepoint b to any other point. We have (f ◦ α)′ = (g ◦ α)′, so f − g is constant along

α, and hence everywhere, since any point can be connected to b by a geodesic. Hence, f and

g are the same horofunctions.

By the de�nition of the convergence in the product topology, this characterization gives

us the following equivalence for the convergence to points in the horoboundary.

Corollary 5.2.14. Let X be a proper, uniquely geodesic, straight metric space, C1 along

geodesics and with constant distance variation. A sequence (xn) ⊂ X converges in the

horofunction compacti�cation if and only if the sequence converges in all the visual compact-

i�cations.
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Chapter 6

The horofunction compacti�cation of

Teichmüller spaces

6.1 Introduction

Let S be a compact surface with (possibly empty) boundary and �nitely many marked points,

where we allow marked points to be on the boundary. Denote by T (S) its Teichmüller

space equipped with the Teichmüller metric. Furthermore, for any quadratic di�erential q

based at some basepoint b ∈ T (S), denote by R(q) the geodesic ray in T (S) starting at

b in the direction q, and V (q) the vertical foliation associated to q, see Section 2.2 for a

quick introduction or the book by Farb�Margalit [FM12] for a more in-depth explanation of

these concepts. Recall that a measured foliation is indecomposable if it is either a thickened

curve, or a component with a transverse measure that cannot be expressed as the sum of two

projectively distinct non zero transverse measures. Furthermore, each measured foliation can

be decomposed uniquely into �nitely many indecomposable components (see Section 2.2.2

for detailed de�nitions). Walsh has shown the following characterization of the convergence

of Busemann points in terms of the convergence of the associated quadratic di�erentials.

Theorem 6.1.1 (Walsh [Wal19, Theorem 10]). Let (qn) be a sequence of unit area quadratic

di�erentials based at b ∈ T (S). Then, BR(qn) converges to BR(q) if and only if both of the

following hold:

1. (qn) converges to q with respect to the L1 norm on T ∗
b T (S);
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2. for every subsequence (Gn)n of indecomposable measured foliations such that, for each

n ∈ N, Gn is a component of V (qn), we have that every limit point of Gn is indecom-

posable.

While Walsh's proof is done in the context of surfaces without boundary, it can be easily

extended to our setting. In view of this theorem, we say that a sequence of quadratic

di�erentials (qn) converges strongly to q if it satis�es the two conditions of Theorem 6.1.1.

Furthermore, we say that q is infusible if every sequence of quadratic di�erentials converging

to q converges strongly. By Proposition 5.1.5, a quadratic di�erential q is infusible if and

only if the Busemann map is continuous at R(q). In Section 6.3.1, and more precisely with

Theorem 6.3.4, we derive a topological characterization of the vertical foliations of infusible

quadratic di�erentials. This allows us to determine precisely which surfaces only admit

infusible quadratic di�erentials, yielding the following result.

Theorem 6.1.2. Let S be a compact surface of genus g with bm and bu boundary components

with and without marked points respectively and p interior marked points. Then the horo-

function compacti�cation of T (S) is isomorphic to the visual compacti�cation if and only if

3g + 2bm + bu + p ≤ 4.

This result had been previously proven by Miyachi [Miy08] for surfaces without boundary,

that is, when bm = bu = 0. For the cases where we do not have an isomorphism Miyachi

found non-Busemann points in the boundary. These points are in the closure of Busemann

points, which prompted Liu�Su to ask the following question

Question 6.1.3 (Liu�Su [LS14, Question 1.4.2]). Is the set of Busemann points dense in

the horofunction boundary?

In Section 6.5.1 we give a negative answer to this question, summed up in the following

result announced in the introduction.

Theorem 1.3.1. Let S be a closed surface of genus g with p marked points. Then the

Busemann points are not dense in the horoboundary of T (S) whenever 3g + p ≥ 5.

The result relies on Liu�Su's [LS14] and Walsh's [Wal19] characterization of the horofunc-

tion compacti�cation as the Gardiner�Masur compacti�cation. The latter compacti�cation

consists of certain real-valued functions on the space of measured foliations. Note that we
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use a slightly di�erent but equivalent de�nition than usual for the Gardiner�Masur com-

pacti�cation, as the de�nition we use is more well suited for our computations, and more

easily extendable to surfaces with boundary (see Section 6.2.2 for the precise de�nition). For

each point in the horofunction compacti�cation there is an associated real-valued function

on the set of measured foliations. We show that the functions associated to elements in

the closure of Busemann points are polynomials of degree 2 with respect to some variables

(see Proposition 6.4.2 for the precise statement). We then show that the elements of the

Gardiner�Masur boundary found by Fortier Bourque in [FB23] do not satisfy that condi-

tion. The main ingredient for this last part of the reasoning is the following result proven in

Section 6.5.1, which shows that extremal length is not C2 along certain smooth paths.

Theorem 6.1.4. Let S be a closed surface of genus g with p marked points and empty

boundary satisfying 3g+p ≥ 5. Then there is a point X ∈ T (S) and a path Gt, t ∈ [0, t0], in

the space of measured foliations on X, smooth with respect to the canonical piecewise linear

structure of the space of measured foliations, such that Ext(Gt) is not C2.

The canonical piecewise linear structure of the space of measured foliations was developed

by Bonahon [Bon96], [Bon97a] and [Bon97b]. The �rst derivative of the extremal length

along such a path was determined by Miyachi [Miy13a], so our proof is based on �nding

cases where Miyachi's expression is not C1. This follows from an explicit computation,

whose complication is greatly reduced by using previous estimates established by Markovic

[Mar18].

Another well-studied compacti�cation of Teichmüller space was given by Thurston [Thu88].

The relation between the Thurston compacti�cation and the horofunction compacti�cation

was studied by Miyachi [Miy13b]. He proves that, while neither Thurston's nor the horo-

function compacti�cation is �ner than the other, there is map from the Thurston compacti-

�cation to a subset of the horofunction compacti�cation, which is bicontinuous in the union

of T (S) and uniquely ergodic foliations in Thurstn's boundary. Masur showed [Mas82a]

that this result can be interpreted to say that these two compacti�cations are the same al-

most everywhere according to the Lebesgue measure on Thurston's boundary. The image of

uniquely ergodic foliations by the bicontinuous map is the set of Busemann points associated

to uniquely ergodic foliations. As we show in Section 6.5.2, this set is nowhere dense within

the horoboundary. Hence the map de�ned by Miyachi does not show that these two are the

same almost everywhere according to any strictly positive measure on the horoboundary. In
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fact, any attempt to extend the identity map from the interior of the Thurston compacti�-

cation to the interior of the horoboundary compacti�cation to a set of full measure within

the Thurston compacti�cation results in the same problem, as we see in Section 6.5.2.

Corollary 6.1.5. Let ν be any �nite strictly positive measure on the horoboundary and let

µ be the Lebesgue measure on the Thurston boundary. Furthermore, let ϕ be a map from the

Thurston compacti�cation to the horofunction compacti�cation satisfying ϕ|T (S) = h, where

h is the map used to de�ne the horofunction compacti�cation in Section 2.1.3. Then there

is no subset U of the Thurston boundary with full µ-measure such that ϕ is continuous at

every point in U and ϕ(U) has full ν-measure.

As a straightforward result of the alternative de�nition of the horofunction compacti-

�cation explained in Section 5.2.3, and the fact that the extra hypotheses are satis�ed by

Teichmüller spaces, as shown by Earle in [Ear77], we get the following characterization of

converging sequences in the horofunction compacti�cation.

Corollary 6.1.6. A sequence (xn) ⊂ T (S) converges in the horofunction compacti�cation

if and only if the sequence converges in all the visual compacti�cations.

Considering the horocycles diverging in the horofunction compacti�cation found by Fortier

Bourque [FB23] we get that there is some visual compacti�cation in which these horocycles

do not converge.

Corollary 6.1.7. Let S be a closed surface of genus g with p marked points, such that

3g+ p ≥ 5. There is a basepoint such that a horocycle diverges in the visual compacti�cation

based at that point.

This contrasts with the behavior of Teichmüller rays, which converge in all visual com-

pacti�cations [Wal19, Theorem 7].

The structure of the horoboundary provided by Theorem 5.1.1, as well as the path-

connectivity of the �bers, allows us to prove in Section 6.6 the following path connectivity

result, announced in the introduction.

Theorem 1.3.2. The horoboundary of any Teichmüller space of real dimension at least 2 is

path connected.
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Furthermore, we also prove that whenever the surface has empty boundary the map Π

restricted to the horoboundary admits a section, while it only admits a section for the simpler

cases if the boundary is nonempty (see Theorem 6.6.1 of the same Section for details).

Finally, in Section 6.7 we see how Liu�Su's and Walsh's characterization of the horofunc-

tion compacti�cation as the Gardiner�Masur compacti�cation can be used to translate some

of these �ndings to results regarding the asymptotic value of extremal length functions. For

example, we get the following estimate.

Theorem 6.1.8. Let (qn) be a sequence of unit quadratic di�erentials converging strongly to

a unit quadratic di�erential q. Denote Gj the components of the vertical foliation associated

to q, and H(q) the horizontal foliation. Then, for any F ∈ MF and sequence (tn) of real

values converging to positive in�nity we have

lim
n→∞

e−2tn ExtR(qn;tn)(F ) =
∑
j

i(Gj, F )
2

i(Gj, H(q))
.

This generalizes a previous result proven by Walsh in [Wal19, Theorem 1], where the

same is shown for qn constant.

6.1.1 Disclosures

This chapter is based on the second part of work by the author [Aze21].

6.1.2 Outline of the chapter

The chapter is structured as follows. In Section 6.2 we give a short review of the necessary

background on Teichmüller spaces. In Section 6.3 we determine which quadratic di�erentials

are infusible, and �nd which surfaces admit infusible quadratic di�erentials, getting a proof

of Theorem 6.1.2. In Section 6.4 we characterize the points in the closure of Busemann

points, and get some bounds on the dimension of the �bers of the map Π. In Section 6.5

we show that Busemann points are not dense. In Section 6.6 we determine which surfaces

result in the map Π having a section, and prove that the horoboundary is path connected.

Finally, in Section 6.7 we use the previous results to obtain estimates regarding asymptotic

values of extremal lengths.
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Some of the most dense parts of this chapter are due to the added complexity of consid-

ering surfaces with boundary. As such, the reader focused in surfaces with empty boundary

might want to omit the corresponding sections on a �rst reading. One of the largest re-

lated parts starts after the remark following Theorem 6.3.4 and ends before the start of

Section 6.3.2. The other sizable part starts with Proposition 6.6.3 and ends at the start of

the proof of Theorem 1.3.2, where we note that the proof is signi�cantly simpler in the case

of surfaces without boundary.

6.2 Section speci�c background

6.2.1 The doubling trick

Let X be a Riemann surface with nonempty boundary. Denote by X the mirror surface,

obtained by composing each atlas of X with the complex conjugation. Gluing X to X along

the corresponding boundary components we obtain the conformal double Xd = X ∪ X/ ∼
of X. Note that Xd has empty boundary. Given a foliation F or a quadratic di�erential q

on X, we can repeat the same process, obtaining the corresponding conformal doubles F d

and qd on Xd. For a more detailed treatment of this argument see [Abi80, Section II.1.5].

The main interest of the conformal doubles is that these are surfaces without boundary,

so most of the results relating to Teichmüller theory of surfaces without boundary can be

translated to surfaces with boundary. We have the following.

Proposition 6.2.1. Let X be a Riemann surface with boundary, and F be a foliation on

X. Then,

ExtXd(F d) = 2ExtX(F ).

Proof. We have qF d,Xd = qdF,X , so the result follows, as
∫
Xd |qdF,X | = 2

∫
X
|qF d,Xd|.

6.2.2 The Gardiner�Masur compacti�cation of surfaces with boun-

dary

Recall that for a surface S with marked points and empty boundary we can embed T (S)

into the space of continuous functions from the set S of simple closed curves on S to R via
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Figure 6.1: Visual representation of the doubling trick.

the map ϕ : T (S) → P (RS) de�ned by

ϕ(X) =
[
ExtX(α)

1/2
]
α∈S ,

where the square brackets indicate a projective vector. Gardiner and Masur show [GM91]

that this map is indeed an embedding, and that ϕ(T (S)) is precompact. The Gardiner�Masur

compacti�cation of a surface without boundary is then de�ned as the pair (ϕ, ϕ(T (S))).

Alternatively, after choosing a basepoint b ∈ T (S), it is also possible to consider the map

E : T (S) → C(MF) de�ned by

E(X)(·) :=
(
ExtX(·)
Kb,X

)1/2

,

This map is quite similar to the original map ϕ, the di�erences being that E considers all

measured foliations instead of just the closed curves, and normalizes instead of projectivizing.

Walsh proves [Wal19] that, for surfaces without boundary, the map E de�nes a compacti�-

cation in the same way that ϕ does, and in fact this compacti�cation is isomorphic to the

one de�ned by ϕ.

The compacti�cation de�ned by E �ts better our goal, so we shall de�ne the Gardiner�

Masur compacti�cation of surfaces with boundary as the one obtained by using E . With

this in mind, we �rst need the following result.

Proposition 6.2.2. Let S be a compact surface with possibly boundary and marked points.
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Then the map E : T (S) → C(MF) is injective.

Proof. Assume we have x, y ∈ T (S) with E(x)(F ) = E(y)(F ) for all F ∈ MF . Then,

Kx,y = sup
F∈Pb

Extx(F )

Exty(F )
=
Kb,x

Kb,y

and

Ky,x = sup
F∈Pb

Exty(F )

Extx(F )
=
Kb,y

Kb,x

= K−1
x,y.

However, Ky,x = Kx,y, since the Teichmüller distance is symmetric. Hence, Kx,y = 1 and,

by Kerckho�'s formula, d(x, y) = 1/2 logKx,y = 0.

Miyachi shows [Miy08] that the set E(S) := {E(X) | X ∈ T (S)} is precompact when S

is a surface without boundary. Given a surface with boundary S, denote MFd(S) the

set of measured foliations on Sd obtained by doubling the foliations MF(S). The set

E(Sd)|MFd(S) = {E(X)|MFd(S) | X ∈ T (Sd)}, obtained by restricting the functions in E(Sd)

to MFd, is precompact. Furthermore, we can embed E(S) into E(Sd)|MFd(S) by sending

f ∈ E(S) to fd ∈ E(Sd)|MFd(S) de�ned by fd(F d) = f(F ). Hence, E(S) is precompact.

We de�ne theGardiner�Masur compacti�cation for a surface with boundary as the closure

E of E(S), together with the map E . We shall be using the same characterization for surfaces

without boundary.

One of the relevant features of the Gardiner�Masur compacti�cation is that it coincides

with the horofunction compacti�cation. Indeed, Liu�Su [LS14] and Walsh [Wal19] prove that

for surfaces without boundary these two compacti�cations are isomorphic. In the following,

we shall extend the relevant results to surfaces with boundary. We begin with the driving

theorem from Walsh's paper.

Theorem 6.2.3 (Extension of [Wal19, Theorem 1] to surfaces with boundary). Let R(q) :

R+ → T (S) be the Teichmüller ray with initial unit-area quadratic di�erential q, and let F

be a measured foliation. Then,

lim
t→∞

e−2t ExtR(q;t)(F ) =
∑
j

i(Gj, F )
2

i(Gj, H(q))
,

where the {Gj} are the indecomposable components of the vertical foliation V (q), and H(q)

is the horizontal foliation.
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Proof. If S does not have boundary the result follows from Walsh's paper. Assume then that

S has boundary. Let p be the number of proper arcs of V (q), and reorder the components

so Gj is a proper arc for j ≤ p. The conformal double Gd
j is indecomposable whenever Gj

is a proper arc, and decomposes into two components otherwise, as it is not incident to the

boundary of S. Denote G1
j and G

2
j the two components of Gj for j > p. We have

2 lim
t→∞

e−2t ExtRqt(F ) = lim
t→∞

e−2t ExtRqdt(F
d) =

∑
j≤p

i(Gd
j , F

d)2

i(Gd
j , H(q)d)

+
∑

i∈{1,2}

∑
j>p

i(Gi
j, F

d)2

i(Gi
j, H(q)d)

.

For foliations G,F ∈ MF(S) we have i(Gd, F d) = 2i(G,F ). Hence, i(Gd
j , F

d) =

2i(Gj, F ). Using the symmetry, i(G1
j , F

d) = i(G2
j , F

d), so for j > p we have i(G1
j , F

d) =

i(Gj, F ). Using these identities we get the result.

Following the same reasoning we can extend as well the next result.

Lemma 6.2.4 (Extension of [Wal19, Lemma 3] to surfaces with boundary). Let q be a unit

area quadratic di�erential. Then,

e−2t ExtR(q;t)(F ) ≥
∑
j

i(Gj, F )
2

i(Gj, H(q))
,

where t ∈ R+ and {Gj} are the indecomposable components of the vertical foliation V (q).

Most of the results in Walsh's paper use the previous theorem. In particular, we have

the following.

Corollary 6.2.5 (Extension of [Wal19, Corollary 1] to surfaces with boundary). Let q be

a quadratic di�erential and denote by Gj the components of its vertical foliation. Then, the

Teichmüller ray R(q) converges in the Gardiner�Masur compacti�cation to(∑
j

i(Gj, ·)2

i(Gj, H(q)

)1/2

.

The relation between the Gardiner�Masur compacti�cation is given by the map Ξ : E →
T (S)

h
de�ned by

Ξ(f)(x) :=
1

2
log sup

F∈P

f(F )2

Extx(F )
.
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The following result can be extended to surfaces with boundary by repeating the proof

found in Walsh's paper in this context.

Theorem 6.2.6 (Extension of [Wal19, Lemma 21] to surfaces with boundary). The map Ξ

is an isomorphism between the compacti�cations (E , E) and (h, T (S)
h
).

Directly from the de�nition of Ξ we have the following

Corollary 6.2.7. Let f, g ∈ E. If f ≥ g then Ξ(f) ≥ Ξ(g).

For a given quadratic di�erential q ∈ Q1(o), we shall denote by B(q) the Busemann

point obtained by following along the geodesic R(q). Furthermore, the representation of

the Busemann point B(q) in the Gardiner�Masur compacti�cation shall be denoted as E(q).
By Corollary 6.2.5 we have an explicit representation of E(q). As we have seen in Proposi-

tions 5.1.4 and 5.1.5, the continuity of the Busemann map has some interesting implications,

and it is enough to look for continuity of the map restricted to the boundary. Related to this

question we have the following result, which can also be derived by the same proof found in

Walsh's paper, applied to this context.

Theorem 6.2.8 (Extension of [Wal19, Theorem 10] to surfaces with boundary). Let (qn)

be a sequence of quadratic di�erentials based at b ∈ T (S). Then B(qn) converges to B(q) if

and only if both of the following hold:

1. (qn) converges to q;

2. for every subsequence (Gn)n of indecomposable elements of MF such that, for each n ∈
N, Gn is a component of V (qn), we have that every limit point of Gn is indecomposable.

In view of this theorem, we say that a sequence of quadratic di�erentials (qn) converges

strongly to q if it does so in the sense described by the theorem.

Finally, while the following result may be extendable to surfaces with boundary, we only

use it in the context of surfaces without boundary, so we shall not be working on �nding an

extension.

Theorem 6.2.9 ([Wal19, Theorem 3]). For the Teichmüller space of a surface without boun-

dary with the Teichmüller metric, for any basepoint X ∈ T (S), all Busemann points can be

expressed as B(q) for some quadratic di�erential q based at X.
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6.3 Horoboundary convergence for Teichmüller spaces

6.3.1 Continuity of the Busemann map

We begin by using Proposition 5.1.5 to determine when the Busemann map is continuous.

Recall that a sequence (qn) converges to q strongly if and only if the sequence satis�es the

conditions of Theorem 6.2.8. That is, a sequence (qn) converges to q strongly if and only if

the associated Busemann points B(qn) converge to B(q). With this in mind we introduce

the following notion.

De�nition 6.3.1. Let q be a quadratic di�erential. We say that q is infusible if any sequence

of quadratic di�erentials converging to q converges strongly. We say that q is fusible if it is

not infusible.

In other words, we say that q is fusible when it can be approached by a sequence of

quadratic di�erentials (qn) such that there is some sequence (Gn) of measured foliations

with each Gn being an indecomposable component of V (qn), with (Gn) having at least

one decomposable accumulation point. The following statement follows directly from this

de�nition, Proposition 5.1.5 and Walsh's result.

Proposition 6.3.2. Let q be a unit area quadratic di�erential. The Busemann map B is

continuous at q if and only if q is infusible.

Proof. If q is fusible then we have a sequence converging to q but not strongly. Hence, by

Theorem 6.2.8 the sequence (B(qn)) does not converge to B(q), and so the Busemann map

is not continuous at q.

If q is infusible we have that any sequence (qn) converging to q does so strongly, and so we

have that B(qn) converges to B(q), so B is continuous at q when restricted to the boundary.

By Proposition 5.1.5 this implies that B is continuous at q.

We shall now �nd a criterion on the vertical foliation to determine when a unit area

quadratic di�erential is infusible.

De�nition 6.3.3. Let F be a measured foliation on a surface S and let G be one of its

indecomposable components. We say that G is a boundary annulus if it is an annulus parallel

to a boundary with no marked points, and a boundary component if it is a boundary annulus

or a proper arc. If G is not a boundary component, we shall call it an interior component.
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Each of the connected components of the surface obtained after removing the proper arcs shall

be called interior part. If each of these interior parts has at most one interior component,

then we say that F is internally indecomposable. If F is not internally indecomposable we

say that it is internally decomposable.

For surfaces without boundary, a foliation F is internally indecomposable if and only if

it is indecomposable, as we do not have boundary components. Given these de�nitions we

can state our main result of this section

Theorem 6.3.4. Let q be a quadratic di�erential. Then q is infusible if and only if its

vertical foliation V (q) is internally indecomposable.

This result is somewhat straightforward whenever S does not have boundary, as in order

to have a sequence (qn) that converges to q but not strongly we need a sequence of components

of V (qn) converging to a decomposable component of V (q), but if S is closed and V (q) is

internally indecomposable, then V (q) only has one indecomposable component. Conversely,

if V (q) has more than one indecomposable component, as S does not have boundary V (q)

can be approached by a sequence of simple closed curves, so the associated sequence of

quadratic di�erentials converges to q but not strongly.

For surfaces with boundary the proof is more involved, as simple closed curves are no

longer dense. However, the density of multicurves from Proposition 2.2.1 allows us to follow

a slightly similar reasoning. We begin by proving some results regarding the shape that

foliations have to take when approaching a foliation with boundary components, namely,

boundary components have to be eventually included in the approaching foliations.

Proposition 6.3.5. Let (Fn) be a sequence of measured foliations converging to a measured

foliation F , let G be the union of the boundary components of F and let H be such that

F = H + G. Then, for n big enough, Fn = Hn + anG, with an converging to 1 and Hn

converging to H.

In particular, the proper arcs of the limiting foliation have to be included in the ap-

proaching foliations. Hence, we will be able to separate the surface along these proper arcs

into the interior parts of the limiting foliation, and study the convergence in each of these

parts.

We say that a subset of a boundary component is a boundary arc if it is homeomorphic

to an open interval or a circle, does not contain marked points and, if it is homeomorphic to

an open interval, it is delimited by marked points.
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Repeating the argument by Chen�Chernov�Flores�Fortier Bourque�Lee�Yang [CCF+18]

to a more general setting we get the following characterization of foliations on simple surfaces,

which we shall use to solve the simpler cases.

Lemma 6.3.6. Let S be a sphere with one boundary component possibly containing boundary

marked points and one interior marked point. Then every indecomposable foliation on S is

a proper arc and there are �nitely many distinct proper arcs.

Proof. Assuming that there is some foliation F with a recurrent leaf to some part of S

we get a contradiction, as explained in the proof of [CCF+18, Lemma 4.1]. Hence, each

indecomposable foliation is a curve. Any closed curve in S is contractible to the marked

point. Hence, a each indecomposable foliation is a proper arc.

A proper arc in S must have two endpoints, which must be contained in the boundary

arcs in the boundary component of S. Denote b1 and b2 these two boundary arcs, which

might be the same. We aim to show that there are at most two classes of arcs with endpoints

in b1 and b2. Fix three proper arcs with endpoints on b1 and b2. Any intersection between

these arcs can be removed by doing isotopies moving the endpoints along the arcs b1 or b2.

Hence, these arcs can be isotoped to not intersect each other. Since there is only one interior

marked point, two of these arcs delimit a rectangle with no marked interior marked points,

so are isotopic. Hence, there are at most two di�erent proper arcs between b1 and b2. There

are �nitely marked points in the boundary component, so there are �nitely many boundary

arcs. Therefore, there are �nitely many pairs of boundary arcs, and since we have at most

two proper arcs per pair, there are also �nitely many di�erent proper arcs.

We shall �rst see the proposition for the case where G contains a proper arc and we are

approaching with a sequence of indecomposable foliations.

Lemma 6.3.7. Let S be a surface and let (Fn) be a sequence of indecomposable foliations

on S converging to a measured foliation G. Then G is either a multiple of a proper arc γ, in

which case Fn is also a multiple of γ for n big enough, or G does not contain a proper arc.

Proof. AssumeG contains a proper arc γ with weight w > 0 and denote b one of the boundary

arcs where γ is incident.

Our �rst step is seeing that, for n big enough, Fn intersects b. We shall do this by �nding

di�erent test curves β depending on the shape of b. If the boundary component containing
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b

β

γ

(b)

Figure 6.2: Sample curves used in the proof of Lemma 6.3.7

b has at most one marked point, we consider β to be a curve parallel to that boundary

component as in Figure 6.2a. Otherwise we consider β to be the curve de�ned by taking a

small arc starting at the boundary arc next to b, concatenating with a curve parallel to b,

and concatenating another segment with endpoint in the boundary arc after b, as shown in

Figure 6.2b.

If the curve β is contractible then S is a sphere with one boundary component and at

most one interior marked point, so by Lemma 6.3.6 the result follows. Assume then that

β is not contractible. We have i(γ, β) > 0, so i(G, β) > 0 and hence i(Fn, β) > 0 for n

big enough, which implies that Fn intersects b. Hence, since Fn is indecomposable, it is a

weighted proper arc, which we denote wnγn, where wn > 0 is the weight at γn is a proper

arc.

Denote b1 and b2 the boundary arcs where γ has its endpoints, and denote β1 and β2

the associated test curves shown in Figure 6.2. If both endpoints are in the same boundary

arc we set b2 and β2 as null curves. We shall now �nd a multicurve A surrounding γ, b1

and b2 such that any leaf of G intersecting A but not γ has an endpoint in either b1 or b2.

The multicurve A is chosen so that, together with the boundaries where γ has its endpoints,

delimits the smallest surface containing γ. The precise shape of A depends on whether the

endpoints of γ are in the same boundary component or not, and the distribution of marked

points in these boundaries.

If both endpoints of γ are in di�erent boundary components we proceed di�erently ac-

cording to the distribution of marked points at these boundaries. If each of the boundaries
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Figure 6.3: Construction of the curves A1 and A2 whenever γ has endpoints in di�erent
boundary components in the proof of Lemma 6.3.7

b

A1

A2

(a)

b

A1

A2
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b1 b2

A1

A2

(c)

Figure 6.4: Construction of the curves A1 and A2 whenever γ has endpoints in the same
boundary component in the proof of Lemma 6.3.7

contains at most one marked point then we de�ne A as the curve shown in Figure 6.3a. If one

of the boundary components has two or more marked points, but the other has at most one

marked point we de�ne A as the arc shown in Figure 6.3b. Finally, if each of the boundaries

contains at least two marked marked points we de�ne A as the multicurve formed by the

curves A1 and A2 as shown in Figure 6.3c.

If both endpoints γ are in the same boundary we also proceed di�erently according to the

distribution of marked points. In all cases A is de�ned as a multicurve formed by two curves.

If each possible segment within the boundary component joining the two endpoints has at

most one marked points we proceed as in Figure 6.4a. If one of these segments has two or

more marked points, while the other has at most one we proceed as in Figure 6.4b. Finally,

if both of these segments have two or more marked points we proceed as in Figure 6.4c.

In any of the cases above if a component of A is non essential we remove it from A.

The following argument also applies whenever A is a null curve. Put A and G in minimal
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position and denote P the surface containing γ, delimited by A and the boundary components

where γ has its endpoints. Let α be a connected component of a non critical leaf of G

restricted to P intersecting A. Since G contains γ the proper arc α cannot intersect γ.

Furthermore, by observing the possible con�gurations, if α has one endpoint in A1, the

other one cannot be in A2, as whenever we have both A1 and A2, these are separated

within P by the proper arc γ. Furthermore, if both endpoints are in A1 then α can be

isotoped to not intersect A. Therefore, the other endpoint of α is in either b1 or b2. Hence,

i(G, β1) + i(G, β2) ≥ i(G,A) + w i(γ, β1) + w i(γ, β2) > i(G,A). Since wnγn converges to G,

this last inequality implies that for n big enough,

i(γn, β1) + i(γn, β2) > i(γn, A).

Fix n such that γn satis�es the previous inequality. Assume γn has just one endpoint

inside P . Then, i(γn, β1) + i(γn, β2) = 1, so i(γn, A) = 0 and γn cannot leave P . If γn has

both endpoints in P then i(γn, β1) + i(γn, β2) = 2. Furthermore, if γn leaves P , then it has

to reenter at some point, resulting in i(γn, A1 + A2) = 2. Hence, γn stays inside P .

The weights wn do not converge to 0, as wni(γn, β) converges to i(G, β), but i(γn, β) ≤ 2.

Since γ is contained in G we have i(G, γ) = 0. Therefore, for any ε > 0 and n big enough

we have wni(γn, γ) < ε, so for n big enough i(γn, γ) = 0. Since γn does not intersect γ

and stays inside P , γn can be isotoped to stay inside one of the components obtained after

removing γ from P . Denote C such component. The component C has either one or two

boundary components and no interior marked points or one boundary component and one

interior marked point. By Lemma 6.3.6 the only case where we do not have �nitely many

di�erent proper arcs is when C has two boundary components. However, in that case one

of the boundary components is associated to a curve in A, so γn does not intersect it and

that boundary can be treated as a marked point. Hence, in all cases there are �nitely many

possible proper arcs, and so γn is a multiple of γ for n big enough.

When the boundary component is an annulus we have to be a bit more careful, so we

start by proving it for approaching curves.

Lemma 6.3.8. Let S be a surface and let (wnγn) be a sequence of weighted curves on S

converging to a foliation G, where (wn) are the weights and (γn) are the curves. Then G is

either a multiple of a boundary annulus γ, in which case γn is γ for n big enough, or G does
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not contain a boundary annulus.

Proof. If S is a polygon with at most one interior marked point, then G cannot contain a

boundary annulus. If S is a cylinder then, since we have a boundary annulus, at least one

of the boundaries must not contain marked points. Hence, the number of curves is �nite, as

there is only one possible closed curve, and for counting the proper arcs we can consider the

boundary without marked points as a marked point and apply Lemma 6.3.6. In that case,

the conclusion follows.

Assume then that S is neither a disk with at most one interior marked point nor a

cyclinder with no interior marked points. Then there is a pair of pants P in S containing γ

where each boundary component of P is either non contractible or contractible to a marked

point. Denote B1 the boundary component parallel to γ and B2 and B3 the other two

boundary components of P . Furthermore, assume that G contains γ with weight w.

Begin by assuming that B2 and B3 are not contractible to marked points. Let C be

the proper arc contained in P with both endpoints in B1. Put B2, B3 and C in a minimal

position with respect to G, and consider a connected component of a noncritical leaf of G

intersecting C restricted to P . This noncritical leaf either is isotopic to γ, or to the curves

F , E and D shown in Figure 6.5. Since the leaves of G do not intersect, there cannot be

leaves isotopic to E and leaves isotopic to D at the same time. Breaking symmetry, assume

there are no leaves isotopic to D. Then, i(C,G) = i(C, γ) + i(B3, G) > i(B3, G) ≥ i(B2, G).

Doing the same reasoning assuming that there are no leaves isotopic to E we get i(C,G) >

max(i(B2, G), i(B3, G)). Hence, since wnγn converges to G, γn has to satisfy

i(C, γn) > max(i(B2, γn), i(B3, γn))

for n big enough.

For each n put B3, B2 and C in a minimal position with respect to γn, and consider the

restriction of γn to P . Assume γn is not γ. Then, the curves on the restriction of γn to P

intersecting C are isotopic to either E,F and D, but not γ. As before, this restriction cannot

contain curves isotopic to E and curves isotopic to D for the same n, so assuming there are

no curves isotopic to D we have i(C, γn) = i(B3, γn) which is a contradiction. Doing the

same reasoning assuming that there are no curves isotopic to E also gives a contradiction.

Hence, γn is γ for n big enough.

If B2 or B3 are contractible to marked points we have i(G,B2) or i(G,B3) is 0, and a
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E D

Figure 6.5: Curve labeling for the proof of Lemma 6.3.8

similar reasoning yields the same result.

Proof of Proposition 6.3.5. Let (Fn) be a sequence of measured foliations converging to F .

As pointed out before, Proposition 2.2.1 can be extended to get sequences of weighted mul-

ticurves (γmn )m converging to each Fn. Denote γ
m
n,1, γ

m
n,2, . . . , γ

m
n,k(n,m) the weighted curves of

γmn . For each n we take a subsequence such that k(n,m) is constant with respect to m, and

γmn,i converges for each i as m→ ∞. Denoting Fn,i the limit of γmn,i as m→ ∞, we can write

Fn =
∑
Fn,i.

Denote βj the boundary components of F . That is,
∑
βj = G. Furthermore, denote

bn,j and bmn,j the weights of βj on Fn and γmn , where we set the weight to be 0 if βj is

not contained in the foliation. It is clear that if bn,j = 0 then bmn,j → 0, as we must have

bn,j ≥ lim infm→∞ bmn,j. If bn,j > 0 for some n, then Fn,i contains βj for some i. Hence, by

Lemmas 6.3.7 and 6.3.8 we have Fn,i and γmn,i are both multiples of βj for m big enough.

Then, since each of the multicurves in γmn has to be di�erent, βj is not contained in any

other foliation Fn,i for that given n, so Fni
= bn,jβj and γ

m
n,i can be written as bmn,iβj for m

big enough, with bmn,i converging to bn,j as m→ ∞.

Assume for some j we have bn,j not converging to 1. We can then take a subsequence such

that bn,j converges to some λ ̸= 1. Denote δ = |1−λ|/2. For each n, there exists some m0(n)

big enough so that |1− bmn,j| > δ for all m ≥ m0(n). We can then take a diagonal sequence
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γ
m(n)
n converging to F with m(n) ≥ m0(n). However, following the previous reasoning we get

that γ
m(n)
n should contain βj for n big enough, and the weight should converge to the weight

in G, that is, to 1. However, |1− b
m(n)
n,j | > δ, giving us a contradiction. Hence, bn,j converges

to 1 for all j. Let then an = minj(bn,j). Since bn,j ≥ an we can de�ne Hn = Fn − anG and

we have Fn = Hn + anG. Finally, an → 1 as n→ ∞, so the proposition is proved.

Proposition 6.3.9. Let q be a unit area quadratic di�erential such that V (q) is internally

indecomposable. Then q is infusible.

Proof. Assume q is fusible, that is, we have a sequence of quadratic di�erentials (qn) con-

verging to q but not strongly. Let F n
i be the indecomposable components of V (qn). To

have non-strong convergence we must have at least one sequence of indecomposable compo-

nents converging to a decomposable component G, which we assume is (F n
1 )n. Let β be a

boundary component of V (q). By Proposition 6.3.5 for n big enough a multiple of β must

be contained in V (qn). Furthermore, β cannot be contained in G. Since G cannot contain

boundary components, it must contain at least two interior components. On the other hand,

since V (q) is internally indecomposable, each interior part obtained by removing the proper

arcs contains at most one interior component. Hence, for n big enough F n
1 must intersect

at least two interior parts, that is, F n
1 must cross at least one proper arc. However, for each

proper arc γ there is some n big enough such that γ is contained in the foliation V (qn), so

F n
1 , a component of V (qn), intersects the foliation V (qn), giving us a contradiction.

To prove the other direction we shall �rst see the following lemma.

Lemma 6.3.10. Let S be a compact surface with with possibly nonempty boundary and

�nitely many marked points, let k ≥ 2 and let α = {α1, α2, . . . , αk} be a collection of non

intersecting closed curves on S. Furthermore, let p be the number of curves in α parallel

to a boundary. Then there exists a collection of max(⌈(p/2)⌉), 1) non intersecting curves

intersecting each αi.

Our main interest in the lemma is that the amount of curves needed is strictly smaller

than the amount of closed curves in α. This will allow us, by doing Dehn twists along the

closed curves in α, to create a sequence of foliations converging to a foliation with strictly

more components, which can be translated to a sequence of quadratic di�erentials that

converge but not strongly. The proof of this lemma is based on a reasoning found in [FM12,

Proposition 3.5].
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Figure 6.6: Laying out of curve segments for the proof of Lemma 6.3.10

Proof. We start by replacing all boundaries of S without parallel curves in α by marked

points. Let then α′ be a completion of α to a pair of pants decomposition. Glue the

remaining boundaries pairwise until we have at most one left. After cutting the surface

along the closed curves that were not parallel to boundaries we get a collection of ⌈p/2⌉ tori
with one boundary component and some spheres with b boundary components and n marked

points, with b + n = 3 and b ≥ 1. If p is odd, one of these spheres has a boundary of S

as a boundary. We join the boundaries of each of these surfaces with non intersecting arcs,

as shown in Figure 6.6, that is, in such a way that each boundary component has two arcs

incident to it. We can then paste these surfaces back together in order to obtain a collection

β1, β2, . . . , βl of pairwise disjoint curves in S. If p is odd this collection contains precisely

one proper arc, as we only have two endpoints coming from the boundary we did not paste.

If p is even the collection does not contain any proper arc. By the bigon criterion each βj is

in minimal position with respect to each αi, and each αi intersects either one or two of the

βj. Furthermore, since we did not cut along the original boundaries we pasted from S, each

αi parallel to a boundary of S intersects precisely one of the βj. Suppose we have βj and

βj′ intersecting a curve κ ∈ α′ and that βj and βj′ are distinct. Since we have at most one

proper arc, at least one of βj and βj′ is a closed curve. Hence, doing a half twist about κ, βj

and βj′ become a single curve. Since this process does not create any bigons, the resulting

collection is still in minimal position with α. Continuing this way we obtain a single curve γ

intersecting each curve in κ. Furthermore, γ intersects each pasted boundary once. Cutting

along the pasted boundaries, we get the curves from the lemma. If p is odd, β is a proper

arc, so each cut along a pasted boundary increases the curve count by one, totalling (p+1)/2

curves. If p is even, β is a closed curve, so the �rst cut transforms it into a proper arc, and

the following ones increase the curve count by one, giving a total of max(p/2, 1) curves.

Proposition 6.3.11. Let F be an internally decomposable measured foliation. Then, F can
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be approached by a sequence of weighted multicurves with fewer components than F .

Proof. By the extension to Proposition 2.2.1, we have a sequence of weighted multicurves

γn converging converging to F , with the only proper arcs being the ones contained in F .

Cutting the surface along the proper arcs of γn and quotienting these proper arcs to points

we get k many surfaces Z1, Z2, . . . , Zk with boundary. Let γni be the restriction of γn to Zi,

and let Fi be the limit of γni . The foliation F is the union of the foliations Fi and the proper

arcs.

Fix some i such that Fi is nonempty, and let α1, . . . , αb be the closed curves parallel

to the boundaries of Zi. Let an1 , . . . , a
n
b be the weights of α1, . . . , αb in γ

n
i . We can take a

subsequence such that anj converges for each j to some aj. If aj > 0, the closed curve αj is

contained in Fi. If aj = 0, then the weights anj can be set to 0 on the multicurves γni while

leaving the limit intact. Hence, we can assume that anj = 0 for all j such that aj = 0. Let

p and u be the number of closed curves with aj > 0 parallel to boundaries with or without

marked points respectively. Since we have removed all the closed curves with aj = 0, the

multicurve γni contains precisely p and u closed curves parallel to boundaries with or without

marked points for n big enough. Denote by B the set of closed curves parallel to boundary

components without marked points. Applying Lemma 6.3.10 to the multicurve γni minus B

we get max(⌈(p/2)⌉), 1) curves βn
i intersecting all closed curves in γni except the ones parallel

to boundaries without marked points. Doing the appropriate Dehn twists along the closed

curves of γni and rescaling to the curves βn
i , and adding with the corresponding weights the

curves in B, we get a sequence converging to γni with max(⌈(p/2)⌉), 1)+u many components.

As such, taking a diagonal sequence we can get a sequence of multicurves converging to Fi

with each multicurve containing max(⌈(p/2)⌉), 1) + u components.

Finally, since F is internally decomposable, there is at least one Fi with at least 2 inte-

rior components, so one of these multicurves has strictly less components than the limiting

foliations, and we have non-strong convergence.

Theorem 6.3.4 follows by combining Propositions 6.3.9 and 6.3.11.

We do not need S to have a lot of topology to �nd internally decomposable foliations. In

fact, determining which surfaces do not support internally decomposable foliations we get

the following result.

Proposition 6.3.12. Let Sg,bm,bu,p be a surface of genus g with bm and bu boundaries with

and without marked points respectively and p interior marked points. Then the Busemann
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map is continuous if and only if 3g + 2bm + bu + p ≤ 4.

We shall split the proof in the following two lemmas

Lemma 6.3.13. Let Sg,bm,bu,p be a surface with 3g + 2bm + bu + p > 4. Then it admits an

internally decomposable foliation.

Proof. A multicurve consisting of two interior closed curves generates an internally decom-

posable foliation, so we just have to �nd such a pair for each possible surface satisfying the

hypothesis. If S has genus at least 2 we can take a multicurve consisting of 2 non separating

closed curves. If S is a torus with at least 2 boundaries or marked points, or a boundary

with marked points, we can take a non separating closed curve and a separating closed curve

around 2 boundaries or marked points, or around a boundary with marked points. If S is

a sphere with at least 5 marked points or boundaries, we can take a closed curve around

two interior points or boundaries, and a closed curve around two di�erent interior points

or boundaries. If S is a sphere with 1 boundary with marked points and at least 3 other

boundaries or interior points we can take a closed curve around the boundary with marked

points, and a closed curve around two other interior points or boundaries. Lastly, if S is a

sphere with 2 boundaries with marked points and another interior marked point or boundary

we take a closed curve around each boundary with marked points.

Lemma 6.3.14. Let Sg,bm,bu,p be a surface with 3g+ 2bm + bu + p ≤ 4. Then every foliation

on S is internally indecomposable.

Proof. Assume we have an internally decomposable foliation on Sg,bm,bu,p. Then we can get an

internally decomposable foliation on Sg,0,0,bu+p+2bm by removing the boundary components,

replacing the boundaries without marked points with marked points and each boundary

with marked points for 2 marked points. Furthermore, if we have at least one marked point,

we can get an internally decomposable foliation in Sg,0,0,bu+p+2bm+k, k ∈ N, by replacing a

marked point with a k + 1 marked points.

Hence, we only need to prove that a torus with one marked point and a sphere with 4

marked points do not admit internally decomposable foliations. However, since these do not

have boundaries, a foliation being internally decomposable translates to a foliation having

at least two indecomposable components.

Assume the torus with one marked point admits a foliation with two indecomposable

components. We can replace the marked point with a boundary, and add to the foliation a
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boundary component parallel to that boundary. Considering the doubled surface explained

in Section 6.2.1 we get a closed surface of genus 2 without boundaries nor marked points, with

at least 5 indecomposable components. Recall that the maximum number of indecomposable

components for a foliation on a surface of genus g is 3g−3, so for genus 2 the maximum is 3,

giving us a contradiction. A similar process applies for the sphere with 4 marked points.

Proof of Proposition 6.3.12. The Busemann map is continuous at every point in the interior

of Teichmüller space, as it is the identity when restricted in there and ∂X
v
is closed. Hence,

we only need to prove continuity or discontinuity at the points on the boundary. By Lemma

6.3.13 if 3g + 2bm + bu + p > 4 then S admits an internally decomposable foliation F , so by

Theorem 6.3.4 the Hubbard�Masur quadratic di�erential associated to F at the basepoint

X is fusible and hence the Busemann map is not continuous at that point. On the other

hand, if 3g + 2bm + bu + p ≤ 4 then by Lemma 6.3.14 for any quadratic di�erential q,

the vertical foliation V (q) is internally indecomposable, so again by Theorem 6.3.4 every

quadratic di�erential is infusible an B is continuous at every boundary point.

By combining Proposition 6.3.12 with Proposition 5.1.4, we get the precise classi�cation of

surfaces with horofunction compacti�cation isomorphic to visual compacti�cation announced

in Theorem 6.1.2 from the introduction.

Proof of Theorem 6.1.2. As shown in Proposition 5.1.4, the visual compacti�cation and the

horofunction compacti�cation are isomorphic if and only if the Busemann map is continuous,

so the theorem follows by applying Proposition 6.3.12.

6.3.2 Criteria for convergence

One straightforward consequence of the horofunction compacti�cation being �ner than the

visual compacti�cation is the following criterion regarding the convergence of sequences in

the horofunction compacti�cation.

Corollary 6.3.15. Let (xn) ⊂ T (S) be a sequence. If (xn) converges to a quadratic di�eren-

tial q in the visual compacti�cation, then all accumulation points of (xn) in the horofunction

compacti�cation are contained in Π−1(q). In particular, if V (q) is internally indecomposable,

then (xn) converges in the horofunction compacti�cation.

Furthermore, if (xn) does not converge in the visual compacti�cation, then it does not

converge in the horofunction compacti�cation.

110



Proof. If xn converges in the visual compacti�cation to a quadratic di�erential q then by the

continuity ofΠ all its accumulation points are inΠ−1(q). If V (q) is internally indecomposable,

then by Theorem 6.3.4 the quadratic di�erential q is infusible, so the Busemann map is

continuous at q and by Proposition 5.1.5 the �ber Π−1(q) is a singleton. Therefore xn

converges to Π−1(q), as that is the only accumulation point of xn and the horofunction

compacti�cation is compact.

On the other hand, if xn converges to ξ in the horofunction compacti�cation, by continuity

of Π, xn converges to Π(ξ) in the visual compacti�cation.

A frequent topic in the study of compacti�cations of Teichmüller spaces is the convergence

of certain measure-preserving paths. We shall see now how the previous results can be applied

in that study.

Let X ∈ T (S) be a point in Teichmüller space and q be a unit quadratic di�erential

based at X. It is a well known fact that there exists a unique orientation-preserving iso-

metric embedding ι : H → T (S) from the hyperbolic plane H to the Teichmüller space such

that ι(i) = X and ι∗(q) = i, see the work of Herrlich�Schmithüsen [HS07] for a detailed

explanation. The path ι(i+ t) for t ∈ R+ is called the horocycle generated by q. Since ι is an

isometric embedding, h(X)(p) = d(ι−1X, ι−1p)− d(ι−1X, ι−1b) for X, b, p ∈ ι(H). That is, if

we restrict the evaluations of horofunctions to the image of the Teichmüller disc, the value

coincides with the values in the hyperbolic plane. Hence, since the path i+t is a horocycle of

the Busemann point obtained by moving along the geodesic eti along the hyperbolic plane,

the path ι(i+ t) is also a horocycle of the corresponding Busemann point B(q), obtained by

moving along the geodesic ι(eti).

Since ι is an isometric embedding, the geodesic between X and ι(i + t) is contained

in ι(H). Furthermore, the pushforward and pullback maps are continuous, so denoting

qt the unit quadratic di�erential spawning the geodesic between X and ι(i + t), we have

limt→∞ ι∗(qt) = i, and ι∗(i) = q, so limt→∞ qt = q. The distance between ι(i + t) and X

grows to in�nity, so any horocycle path generated by some q based at X converges to q in

the visual compacti�cation based at X. Hence, horocycles generated by infusible quadratic

di�erentials converge in the horofunction compacti�cation, which had been previously shown

by Jiang�Su [JS16] and Alberge [Alb16] in the context of surfaces without boundary.

Corollary 6.3.16. Let S be a compact surface with possibly nonempty boundary and �nitely

many marked points and let q be an infusible quadratic di�erential based at any X ∈ T (S).
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Then the horocycle generated by q converges in the horofunction compacti�cation.

Proof. The horocycle path converges to q in the visual compacti�cation based at X, so by

Corollary 6.3.15 all accumulation points in the horofunction compacti�cation are contained

in Π−1
X (q). Furthermore, since q is infusible, Π−1

X (q) is a singleton, so the horocycle path has a

unique accumulation point in the horofunction compacti�cation, and hence it converges.

On the other hand, Fortier Bourque found some diverging horocycles in the horofunction

compacti�cation.

Theorem 6.3.17 (Fortier Bourque [FB23, Theorem 1.1]). Let S be a closed surface of genus

g with p marked points, such that 3g+p ≥ 5. Then there is some fusible quadratic di�erential

q based at some basepoint X ∈ T (S) such that the associated horocycle path does not converge

in the horofunction compacti�cation.

Corollary 6.3.15 gives an upper limit on the set of accumulation points, as it has to be

contained in Π−1
X (q).

Furthermore, by Corollary 5.2.14 we have that a path converges in the horofunction

compacti�cation if and only if it converges in each visual compacti�cation. Hence, such a

divergent horocycle also diverges in some visual compacti�cation. That is, we get Corollary

6.1.7. This contrasts with the behavior of Teichmüller rays, which by Corollary 5.2.7 or

[Wal19, Theorem 7] converge in all visual compacti�cations.

6.4 Dimension of the �bers

Our �rst approach in determining the shape of the �bers is looking at the limits of Buse-

mann points, which by Proposition 5.2.10 give us bounds on the elements of Π−1(q). For a

given quadratic di�erential q and a foliation G we de�ne Wq(G) as the map from measured

foliations to R given by

Wq(G) =
i(G, ·)2

i(G,H(q))
,

if i(G,H(q)) > 0, and Wq(G) = 0 otherwise. By the extension of Walsh's Corollary 6.2.5

describing Busemann points in the Gardiner�Masur compacti�cation, we see that the element

Eq = Ξ−1Bq has the form
√∑

i Wq(Vi), where Vi are the indecomposable components of

V (q). Hence, a reasonable path to follow for understanding the limits of Busemann points

is understanding the limits of Wq as q varies.
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Lemma 6.4.1. Let qn be a sequence of quadratic di�erentials on X converging to q, and let

V n
j , 0 < i ≤ c(n) be the indecomposable components of V (qn). Let Gn be a sequence of non

zero measured foliations of the form
∑
αn
j V

n
j , converging to a measured foliation G. Then

lim
n→∞

Wqn(Gn) = Wq(G)

if G is non zero and limn→∞ Wqn(Gn) = 0 if G is zero, where the convergence is pointwise

in both cases.

Proof. For any measured foliation F we have Wqn(Gn)(F ) = i(Gn,F )2

i(Gn,H(qn))
, so if G is non zero

the lemma follows by continuity of the intersection number.

If G is zero the result follows from applying the same proof than in [Wal19, Lemma

27].

Denote B the set of Busemann points, B its closure and B(q) the intersection B∩Π−1(q).

We can use the previous lemma to show that the elements of B(q) satisfy certain properties.

Proposition 6.4.2. Let S be a closed surface with possibly marked points, ξ ∈ B(q) and

Vi, i ∈ {1, . . . , k} be the indecomposable components of V (q). Denote xi =
i(Vi,·)

i(Vi,H(q))
. Then,

the square of the representation of ξ in the Gardiner�Masur compacti�cation, (Ξ−1ξ)2, is a

homogeneous polynomial of degree 2 in the variables xi, whose coe�cients sum to 1.

Recall that we are using a normalized version of the Gardiner�Masur compacti�cation.

Under the projectivized version the sum of the coe�cients cannot have any �xed value.

Proof. Since the surface does not have boundary, all Busemann points are of the form B(q′)

for some quadratic di�erential of unit area q′. Consider a sequence (qn) such that B(qn)

converges to ξ and qn converges to q. Let c(n) be the number of indecomposable vertical

components of V (qn), and let V n
j , 0 < j ≤ c(n) be those components. We know that c(n)

is bounded by some number depending on the topology of the surface. Take a subsequence

such that c(n) is equal to some constant c and V n
j converges for each j. The sum

∑c
j=1 V

n
j

converges as n → ∞ to
∑k

i=1 Vi, so the limit of each V n
j has to be of the form

∑k
i=1 α

i
jVi.

Furthermore,
∑c

j=1 α
i
j = 1, since

k∑
i=1

Vi = V (q) = lim
n→∞

V (qn) = lim
n→∞

c∑
j=1

V n
j =

c∑
j=1

k∑
i=1

αi
jVi =

k∑
i=1

(
c∑

j=1

αi
j

)
Vi.
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The element associated to the Busemann point B(qn) in the Gardiner�Masur compacti�ca-

tion satis�es

E2
qn =

c∑
j=1

Wqn(V n
j ).

Hence, applying Lemma 6.4.1 we get the following expressions for the square of the limit of

Busemann points:

(Ξ−1ξ)2 =
c∑

j=1

Wq

(
k∑

i=1

αi
jVi

)
=

c∑
j=1

(∑k
i=1 α

i
ji(Vi, H(q))xi

)2
∑k

i=1 α
i
ji(Vi, H(q))

.

That is, we get a homogeneous polynomial of degree 2 in the variables xi. Since q has unit

area, the sum of the coe�cients is

c∑
j=1

k∑
i=1

αi
ji(Vi, H(q)) =

k∑
i=1

i(Vi, H(q)) = 1,

which completes our claim.

By Proposition 5.2.9, the Busemann point B(q) gives an upper bound on all functions in

Π−1(q). While Proposition 5.2.10 does not give us a lower bound directly, we can use Lemma

2.1.1 to get one. For a unit area quadratic di�erential q, let Zj be the interior parts of V (q),

and denote Gj the union of interior indecomposable components within Zj. Further, let Pi

be the boundary components of V (q). We de�ne the minimal point at q as

M(q) = Ξ

(∑
i

Wq(Pi) +
∑
j

Wq (Gj)

)1/2

.

Proposition 6.4.3. Let q be a quadratic di�erential. Then, for any ξ ∈ Π−1(q), we have

Ξ−1ξ ≥ Ξ−1M(q)

in the Gardiner�Masur compacti�cation. Furthermore, M(q) ∈ Π−1(q) whenever each Gj

has at most two annuli parallel to the boundaries of Zj with marked points.

In the context of surfaces without boundary the previous result has been also proven by
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Liu�Shi in [LS22, Lemma 3.10]. In such context we have M(q) = Ξi(V (q), ·)2, which by the

proposition is always contained in Π−1(q).

The minimality is essentially derived from the following well-known inequality.

Lemma 6.4.4 (Titu's lemma). For any positive reals a1, . . . , an and b1, . . . , bn we have

∑
j

a2j
bj

≥

(∑
j aj

)2∑
j bj

.

Proof. The inequality can be written as

∑
i

bi
∑
j

a2j
bj

≥

(∑
j

aj

)2

,

so the result follows after applying the Cauchy�Schwartz inequality.

The implication this lemma has for our discussion is that Wq(·) is convex, in the sense

that for any G =
∑

iGi and any measured foliation F we have∑
i

Wq(Gi)(F ) ≥ Wq(G)(F ).

Proof of Proposition 6.4.3. If q is infusible then each Gj is indecomposable, soM(q) = B(q),

the �ber Π−1(q) has one point and the proposition is satis�ed.

Consider then q fusible and ξ ∈ Π−1(q). Let (xn) = (R(qn; tn)) ⊂ T converging to ξ. By

Lemma 6.2.4 we have Ξ−1(h(xn)) ≥ Ξ−1B(qn). Hence, Ξ
−1ξ ≥ lim infn→∞ Ξ−1B(qn).

Given a measured foliation F , take a subsequence so that

lim inf
n→∞

Ξ−1B(qn)(F ) = lim
n→∞

Ξ−1B(qn)(F ).

The foliations V (qn) converge to V (q), so by Proposition 6.3.5 for n big enough all boundary

components Pi are contained within V (qn). Hence, for n big enough the foliations V (qn)

can be split to the interior parts Zj by cutting along the proper arcs. Denote Gn
j the

interior components of the foliation V (qn) restricted to Zj. Let G
n
j,k be the indecomposable

components of Gn
j . The sequence Gn

j converges to Gj, so we can take a subsequence such

that each Gn
j,k converges to some foliation Gj,k with

∑
kGj,k = Gj. Applying Lemma 6.4.1
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we have

lim
n→∞

Ξ−1B(qn)(F ) = lim
n→∞

n∑
i

Wqn(Pi)+
∑
j

∑
k

Wqn
(
Gn

j,k

)
=
∑
i

Wq(Pi)+
∑
j

∑
k

Wq (Gj,k) .

Hence, applying Lemma 6.4.4 to the second sum we get the �rst part of the proposition.

To observe that the limit is actually reached we can repeat the proof of Proposition 6.3.11

and observe that a proper arc for each interior part is enough to approach the foliation

whenever each interior part of the foliation has at most two annuli parallel to boundaries

with marked points.

By Corollary 6.2.7 this lower bound is carried to the horofunction representation and by

Proposition 5.2.9 we have an upper bound. Hence, we have the chain of inequalities

M(q) ≤ ξ ≤ B(q),

for any ξ ∈ Π−1(q). As we see in the next proposition, this chain can be translated as well

to the Gardiner�Masur compacti�cation.

Proposition 6.4.5. Let ξ ∈ Π−1(q). Then,

Ξ−1ξ ≤ Ξ−1B(q).

Proof. We have a sequence of points R(qn; tn) converging to ξ, with qn converging to q.

By Lemma 5.2.3 we have ξ(R(q; t)) = −t. Further, R(qn; tn) converges in the Gardiner�

Masur compacti�cation to the function f(G)2 = limn→∞ e−2tn ExtR(qn;tn)(G), and we have

Ξf(x) = ξ(x). Hence,

1

2
log

f(F )

ExtR(q;t)(F )
≤ 1

2
log sup

G∈P

f(G)

ExtR(q;t)(G)
= −t.

Upon exponentiating and reordering the terms, we get

lim
n→∞

e−2tn ExtR(qn;tn)(F ) = f 2(F ) ≤ e−2t ExtR(q;t)(F )

for all t. Letting t → ∞, the right hand side converges to (Ξ−1B(q)(F ))2, so we get the

proposition.

116



Using these bounds we can further re�ne the characterization of points in Ξ−1Π−1(q).

Proposition 6.4.6. Let q be a quadratic di�erential, let Vi, i ∈ {1, . . . , k} be the indecom-

posable components of V (q) and let xi(F ) =
i(Vi,F )

i(Vi,H(q))
. Given f ∈ Ξ−1Π−1(q) and c > 0 we

have, for all F ∈ MF ,

f 2(F ) = c2 + 2c
∑
i

i(Vi, H(q))(xi(F )− c) +
∑
i,j

O ((xi(F )− c)(xj(F )− c)) .

In particular, as a function of the values xi(F ) at the point xi = c for all i, f 2(x1, . . . , xk)

takes value c2, is di�erentiable and satis�es ∂
∂xi
f 2(x1, . . . , xk) = 2c i(Vi, H(q)).

Proof. We have that (Ξ−1M(q))
2 ≤ f 2 ≤ (Ξ−1B(q))

2
. Denoting ai = i(Vi, H(q)) and xi =

xi(·) we have by Lemmas 6.4.4 and 6.4.3 that (
∑
aixi)

2 ≤ (Ξ−1M(q))
2
. Writing the bounds

on f 2 in terms of the variables xi, we obtain(∑
aixi

)2
≤ f 2 ≤

∑
aix

2
i .

Adding that
∑
ai = 1, we have that f 2 is bounded below by the arithmetic mean, and above

by the quadratic mean. Rewritting both sides as a polynomial in xi − c, we get

c2 + 2c
∑

ai(xi − c) +
(∑

ai(xi − c)
)2

≤ f 2 ≤ c2 + 2c
∑

ai(xi − c) +
∑

ai(xi − c)2,

so the �rst part of the proposition is satis�ed. Subbing in the value xi(F ) = c we get the

second part.

By Propositions 5.2.4 and 5.2.13 all members of Π−1(q) share their values along R(q; ·),
as well as the directional derivatives at the points of the geodesic. For a given q we have

xi(λH(q)) = λ for all i and all λ > 0. Hence, Proposition 6.4.6 shows a similar relation for

the representations of the elements of Π−1(q) in the Gardiner�Masur compacti�cation, as

they share their value, as well as some derivatives, at all foliations of the form λH(q).

As shown by Fortier Bourque [FB23], the Gardiner�Masur boundary contains extremal

length functions, so we can use Proposition 6.4.6 to get some information on the di�erentials

of these functions. Namely, we recover in a more restricted setting the following result,

proven in [Miy13a, Theorem 1.1].
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Theorem 6.4.7 (Miyachi). Let Gt, t ∈ [0, t0] be a path in the space of measured foliations

on X which admits a tangent vector Ġ0 at t = 0 with respect to the canonical piecewise linear

structure. Then, the extremal length Ext(G,X) is right-di�erentiable at t = 0 and satis�es

d

dt+
Ext(Gt, X)

∣∣∣∣
t=0

= 2i(Ġ0, FG0,X),

where FG0,X is the horizontal foliation of the Hubbard�Masur di�erential associated to G0 on

X.

The concrete extremal length functions in the Gardiner�Masur boundary we are going

to use are given by the following theorem.

Theorem 6.4.8 (Fortier Bourque). Let {w1, . . . , wk} be weights with wi > 0, let ϕn =

τ
⌊nw1⌋
1 ◦ · · · ◦ τ ⌊nwk⌋

k be a sequence of Dehn multitwist around a multicurve {α1, . . . , αk} in a

surface S and let X ∈ T (S). Then the sequence ϕn(X) converges to[
Ext1/2

(
k∑

i=1

wii(F, αi)αi, X

)]
F∈MF(S)

in the projective Gardiner�Masur compacti�cation as n→ ∞.

The precise statement of this result is slightly weaker [FB23, Corollary 3.4], but the same

proof yields this extension.

Fix a multicurve {α1, . . . , αk}, weights {w1, . . . , wk} and denote α =
∑
wiαi. Further-

more, normalize the weights {w1, . . . , wk} so that there is a unit area quadratic di�erential

q such that V (q) = α. Denote Vi the vertical components of V (q). That is, Vi = wiαi. We

are able to recover Miyachi's formula when i(Vi, H(q)) = wi for all i. The sequence ϕn(X)

converges in the visual compacti�cation based at X to q ∈ TXT (S). By Theorem 6.4.8 the

function f(F ) = λ1/2 Ext1/2
(∑k

i=1wii(F, αi)αi, X
)
is in Ξ−1Π−1(q) for some λ > 0. We

have i(F, αi) = xi(F )i(Vi, H(q))/wi. So, assuming i(Vi, H(q)) = wi we can write

f 2(F ) = λExt

(
k∑

i=1

xi(F )Vi, X

)
.
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We have xi(H(q)) = 1 for all i, so by Proposition 6.4.6 the value of λ satis�es

f 2(H(q)) = λExt (V (q), X) = 1.

Since q has unit area, Ext (V (q), X) = 1, so λ = 1. Let I be any foliation such that H(q)+ I

is well de�ned, and let Ft = H(q) + tI. We have

f 2(Ft) = Ext

(∑
i

Vi + t
∑
i

xi(I)Vi, X

)
.

Hence, denoting J =
∑
xi(I)Vi and Gt = V (q) + tJ we can apply Proposition 6.4.6 to get

d

dt+
Ext (Gt, X)

∣∣∣∣
t=0

=
∑
i

dxi
dt

∣∣∣∣
t=0

∂f 2

∂xi

∣∣∣∣
xi=1

=
∑
i

i(Vi, I)

i(Vi, H(q))
· 2i(Vi, H(q)) = 2i(V (q), I).

On the other hand, applying Miyachi's Theorem 6.4.7 directly we get

d

dt+
Ext (Gt, X)

∣∣∣∣
t=0

= 2i(H(q), J) = 2
∑
i

i(H(q), Vi)xi(I)

= 2
∑
i

i(H(q), Vi)
i(Vi, I)

i(H(q), Vi)
= 2i(V (q), I),

so both expressions coincide, and we have recovered Theorem 6.4.7 in this rather restricted

setting. We would like to note that Proposition 6.4.6 also gives some information for �nding

the second derivatives around the point H(q). Namely, the second derivatives cannot diverge

to in�nity as we approach H(q).

Combining Proposition 6.4.6 with Proposition 6.4.2 we get fairly restrictive necessary

conditions for the points in B(q) for surfaces without boundary. We shall be using these con-

ditions in Section 6.5 to prove that Busemann points are not dense in the horoboundary. Now

we prove a more straightforward consequence. For a topological space U , denote dim(U) its

Lebesgue dimension. See the book by Munkres [Mun00, Chapter 5.80] for some background

on basic dimension theory. Given an embedding U ↪→ V we have dim(U) ≤ dim(V ), so the

conditions for the points on B(q) gives us the following result.

Corollary 6.4.9. Let S be a surface without boundary. Let q be a quadratic di�erential such
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that V (q) has n indecomposable components. Then,

dim(B(q)) ≤ n(n− 1)

2
.

Proof. By Proposition 6.4.2 we have an embedding of B(q) into the space of homogeneous

polynomials of degree 2. For a given ξ ∈ B(q), let bξi,j be the coe�cient of xixj. Adding

the restriction bi,j = bj,i we have a coe�cient for each possible pair, so the dimension of

homogeneous polynomials of degree 2 is equal to the number of possible pairs, that is,
n(n+1)

2
. Furthermore, by Proposition 6.4.6 we know the value of the �rst derivatives at xi = c

for all i. For each i this gives us the linear equation
∑

j ̸=i b
ξ
i,j + 2bξi,i = 2i(Vi, H(q)). These

n equations are linearly independent, as bξi,i is only contained on the equation related to xi.

As such, the dimension of the coe�cients is at most n(n+1)
2

− n = n(n−1)
2

.

We note that the sum of the coe�cients being 1 is the equation we get when summing the

n equations given by the derivatives, so we cannot use that to restrict further the dimension.

Recall that the number of indecomposable components n is bounded in terms of the

topology of the surface. Hence, the previous corollary gives us a uniform upper bound on

the dimension of B(q). More interestingly, we can also get a lower bound for the dimension

of B(q). This allows us to get a lower bound on the dimension of Π−1(q). Furthermore, as

this is a lower bound, we do not need to restrict ourselves to surfaces without boundary, as

the set of Busemann points always contains the set of Busemann points of the form B(q).

The bound is obtained by �nding a dimensionally big set of di�erent ways to approach a

certain q along the boundary and showing that each of these di�erent approaches results in

di�erent limits for the associated Busemann points.

Theorem 6.4.10. Let S be a surface of genus g with bm and bu boundaries with and without

marked points respectively and p interior marked points. Then there is some unit quadratic

di�erential q such that

dim(B(q)) ≥ 2

⌊
g + bm

2
+
bu + p

4
− σ(g, bu + p)

⌋
,

where σ has value

� 0 if g ≥ 2,
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� 1/4 if g = 1 and bu + p ≥ 1,

� 1/2 if g = 1 and bu + p = 0 or g = 0 and bu + p ≥ 2,

� 3/4 if g = 0 and bu + p = 1 and

� 1 if g = 0 and bu + p = 0.

Proof. For simplicity we shall �rst do the proof in the case where bm = bu = p = 0, and

g ≥ 2. Let q be the quadratic di�erential such that V (q) is the union of the closed curves

V1, . . . , V3C shown in Figure 6.7, where C = ⌊g/2⌋. Let U ⊂ R3C be the space of vectors

(α1, α2, . . . , α3C) with positive coe�cients and such that

α3k+1 + α3k+2 + α3k+3 =
1

C
. (6.4.1)

Each independent linear restriction reduces the dimension of the set U by 1, so dimU = 2C.

Hence, to prove the simplest case of the theorem it su�ces to build an injective continuous

map from U to B(q).
Choose α ∈ U and consider the multicurve γα =

∑
αiGi, where Gi are as in Figure 6.7.

We will shortly show that by applying Dehn twists about the closed curves Vi to γ
α we

can get a sequence of multicurves approaching V (q). We can then take the sequences of

associated Busemann points, which as we will see converge to distinct points in Π−1(q). We

will de�ne the injective continuous map from U to Π−1(q) by setting it as the limit of the

associated sequence of Busemann points, giving us the theorem.

Let τi be the Dehn twist around Vi, and let wα
i be such that

wα
3k+1(α3k+2 + α3k+3) = wα

3k+2(α3k+3 + α3k+1) = w3k+3(α3k+1 + α3k+2) =
1

3C
. (6.4.2)

De�ne ϕα
n = τ

⌊wα
1 n⌋

1 ◦ τ ⌊w
α
2 n⌋

2 ◦ · · · ◦ τ ⌊w
α
3Cn⌋

3C . For 1 ≤ k ≤ C and j ∈ {1, 2, 3} Denote

Fα
k,j =

∑
i∈{1,2,3}−j w

α
3k+iV3k+i. By counting the intersections between the curves Vi and

Gi we have that there is some sequence λn such that λnϕ
α
nG3k+j converges to Fα

k,j for all

k, j as n → ∞. By the conditions on the weights, λnϕ
α
nγ

α converges to V (q). Let qαn be

the quadratic di�erential associated to λnϕ
α
nγ

α. Since λnϕ
α
nγ

α converges to V (q), we have

that qn converges to q, so all accumulation points of (B(qn)) are in Π−1(q). We know that
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. . .G3

G1 G2

G3C

G3C−2 G3C−1

V2 V1

V3

V3C−1 V3C−2

V3C

Figure 6.7: Labelling of the curves when the surface has no boundaries nor marked points.
If g is odd then there is an unused handle.

(Ξ−1B(qαn))
2 =

∑
iWq(αiλnϕ

α
nGi), so by Lemma 6.4.1 we have

(ξα)2 = lim
n→∞

(Ξ−1B(qαn))
2 =

C−1∑
k=0

∑
j∈{1,2,3}

α3k+jWq(Fα
k,j).

De�ne then the map from U to Π−1(q) sending α ∈ U to Ξξα ∈ Π−1(q). As before, we shall

denote xi :=
i(Vi,·)

i(Vi,H(q))
= 3Ci(Vi, ·). With this notation we have

Wq(Fα
k,j) =

i(Fα
k,j, ·)2

i(Fα
k,j, H(q))

=

(∑
i/∈{1,2,3}−j w

α
3k+ix3k+i

)2
3C
∑

i/∈{1,2,3}−j w
α
3k+i

.

That is, given α we know precisely the shape of the polynomial ξα. Since α has positive

coe�cients, each of the wα
i depends continuously on α, so ξα depends continuously on α.

It remains to show injectivity. Let β ∈ U be such that ξα = ξβ. While we have equated

two polynomials, we cannot conclude directly that the coe�cients are equal, as these cannot

be evaluated for arbitrary values. However, we can evaluate at elements of the form b1G3k+1+

b2G3k+2 + b3G3k+3 for b1, b2, b3 ≥ 0, which is enough to prove that ξα and ξβ have the same

coe�cients.

Equating then the coe�cients for x3k+1x3k+2, x3k+2x3k+3 and x3k+1x3k+3 we get
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α3k+1w
α
3k+2w

α
3k+3

wα
3k+2 + wα

3k+3

=
β3k+1w

β
3k+2w

β
3k+3

wβ
3k+2 + wβ

3k+3

,

α3k+2w
α
3k+1w

α
3k+3

wα
3k+1 + wα

3k+3

=
β3k+2w

β
3k+1w

β
3k+3

wβ
3k+1 + wβ

3k+3

and

α3k+3w
α
3k+1w

α
3k+2

wα
3k+1 + wα

3k+2

=
β3k+3w

β
3k+1w

β
3k+2

wβ
3k+1 + wβ

3k+2

.

Dividing these equalities and using equations (6.4.1) and (6.4.2) we get

α3k+1

α3k+2

(1/C + α3k+2)

(1/C + α3k+1)
=
β3k+1

β3k+2

(1/C + β3k+2)

(1/C + β3k+1)
,

α3k+2

α3k+3

(1/C + α3k+3)

(1/C + α3k+2)
=
β3k+2

β3k+3

(1/C + β3k+3)

(1/C + β3k+2)
and

α3k+3

α3k+1

(1/C + α3k+1)

(1/C + α3k+3)
=
β3k+3

β3k+1

(1/C + β3k+1)

(1/C + β3k+3)
.

Rearranging the �rst equality we have

α3k+1

β3k+1

β3k+2

α3k+2

=
(1/C + α3k+1)

(1/C + β3k+1)

(1/C + β3k+2)

(1/C + α3k+1)
. (6.4.3)

If α3k+1

β3k+1
< 1 we have (1/C+α3k+1)

(1/C+β3k+1)
> α3k+1

β3k+1
, and if α3k+2

β3k+2
> 1 we have (1/C+α3k+1)

(1/C+β3k+1)
< α3k+1

β3k+1
.

Assume then that α3k+1 < β3k+1. One of the factors of the left hand side of the product

in Equation (6.4.3) is replaced in the right hand side by a larger value. Hence, the other

factor has to be replaced by a smaller value. That is, the inequality α3k+2 < β3k+2 has to be

satis�ed. Similarly, if α3k+2 < β3k+2 we have α3k+3 < β3k+3. Equation (6.4.1) leads to

1

C
= α3k+1 + α3k+2 + α3k+3 < β3k+1 + β3k+2 + β3k+3 =

1

C
,

which is a contradiction. Similarly, α3k+1 > β3k+1 leads to another contradiction, so α3k+1 =

β3k+1, which leads to α = β. Therefore, dim(B(q)) ≥ dim(U) = 2
⌊
g
2

⌋
.

Assume now that g ≥ 2 and there are some marked points or boundaries. For each pair

of marked points or unmarked boundaries, or for each marked boundary we can repeat the
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G3k+3

G3k+2G3k+1 G3k+1

G3k+3

G3k+2

Figure 6.8: Each pair of marked points and boundary components without marked points
can replace a genus, as well as each boundary with marked points.

proof with an extra genus, by replacing the curves Gi by the curves shown in Figure 6.8,

and halving the associated weights for wi, as the curves intersect now twice the vertical

components instead of once.

If g = 1 we need to place at least one feature at one of the ends to prevent the curve

G1 from being contractible or parallel to a unmarked boundary, so if we have marked points

or boundaries without marked points we place these, as boundaries with marked points are

more e�ective at increasing the dimension. In this way we get that if bu + p ≥ 1 then

dim(B(q)) ≥ 2

⌊
g + bm

2
+
bu + p− 1

4

⌋
and if bu + p = 0 then

dim(B(q)) ≥ 2

⌊
g + bm − 1

2

⌋
.

Lastly, if g = 0 we need to place two elements, one at each end. Using the same choice

as we took for g = 1 we get

dim(B(q)) ≥ 2

⌊
bm
2

+
bu + p− 2

4

⌋
for bu + p ≥ 2,

dim(B(q)) ≥ 2

⌊
bm − 1

2

⌋
for bu + p = 1 and

dim(B(q)) ≥ 2

⌊
bm − 2

2

⌋
for bu + p = 0.

We would like to note that this lower bound is does not look optimal to us. Furthermore,
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the method used is restricted to getting to the dimension of the closure of Busemann points,

so the dimension of the whole �ber may be signi�cantly larger than what could be achieved

by re�ning the strategy from the proof.

6.5 Non density of the Busemann points

6.5.1 Busemann points are not dense in the horoboundary

By Proposition 6.4.2 we know that points in the closure of Busemann points are smooth

in the Gardiner�Masur representation with respect to certain variables. By showing that

at least one point in the horoboundary is not smooth with respect to the corresponding

variables we will prove that Busemann points are not dense. The points we use for this

analysis are once again the ones found by Fortier Bourque in Theorem 6.4.8.

Following Fortier Bourque's reasoning, we shall �rst prove the non density for the sphere

with �ve marked points, and then lift to general closed surfaces by using the branched

coverings given by the following Lemma, found in [GM20, Lemma 7.1].

Lemma 6.5.1 (Gekhtman�Markovic). Let S be a closed surface of genus g with p marked

points, such that 3g + p ≥ 5. Then there is a branched cover Sg,p → S0,5 that branches

at all preimages of marked points that are not marked and induces an isometric embedding

T (S0,5) ↪→ T (Sg,p).

The particular conformal structure given to S0,5 is obtained as follows. Let S1 = R/Z
and let C = S1 × [−1, 1]. We obtain a sphere Σ by sealing the top and bottom of C via

the relation (x, y) ∼ (−x, y) for all (x, y) ∈ S1 × {−1, 1}. Let P be set consisting of the �ve

points (0,±1), (1/2,±1) and (0, 0). The pair S = (Σ, P ), where we view Σ as a topological

space, is the sphere with �ve marked points. We get a point X in T (S) by considering the

complex structure on Σ obtained by the construction, using the identity map as our marking.

Let α(t) = (t, 1/2) and β(t) = (t,−1/2) for t ∈ S1. Denote τα and τβ the Dehn twists

along α and β. By Fortier Bourque's theorem, the sequence (Xn) = ((τα ◦ τβ)nX) converges

to a multiple of Ext1/2(i(α, ·)α+ i(β, ·)β,X)) in the Gardiner�Masur compacti�cation. Fur-

thermore, the sequence (Xn) converges in the visual compacti�cation based at X to the

geodesic spawned by the quadratic di�erential qα+β,X . Indeed, as detailed in [FB23, Section

4], the elements (Xn) diverge to in�nity along the horocycle de�ned by the quadratic di�er-
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α

β

Figure 6.9: Sphere with �ve marked points, with curves α and β. We show that the extremal
length is not C2 along the path α + tβ, t ∈ [0, t0].

ential qα+β,X . Hence, inside embedded hyperbolic plane associated to qα+β,X , the sequence

(Xn) converges in the visual boundary to the geodesic spawned by qα+β,X , and so the same

occurs in the ambient space. That is, ΞExt1/2(i(α, ·)α + i(β, ·)β,X) ∈ Π−1(qα+β,X), so by

Proposition 6.4.2 if we show that Ext(i(α, ·)α + i(β, ·)β,X) is not smooth with respect to

the values of i(α, ·) and i(β, ·), then ΞExt1/2(i(α, ·)α + i(β, ·)β,X) /∈ B(qα+β,X), and hence

it is also not in B.

Lemma 6.5.2. Let X ∈ T (S0,5) and Gt, t ∈ [0, t0] be the foliation α+ tβ on S0,5. The map

f(t) := Ext(Gt, X) is not C2.

Proof. By Miyachi's Theorem 6.4.7 we have

d

dt
Ext(Gt, X) = 2i(β, FGt,X),

where we remind that FGt,X is the horizontal foliation of the unique Hubbard�Masur di�eren-

tial associated to Gt on X. Hence, the Lemma is equivalent to proving that g(t) = i(β, FGt,X)

is not C1.

For a general surface �nding a precise expression of FG,X is a complicated problem, as

the relation established by Hubbard and Masur is not explicit. However, in our case the

surface is topologically simple, and one can use Schwartz�Christo�el maps to get a map

from G to FG,X . In particular, it is possible to show that the sphere with 5 marked points is

conformally equivalent to the Riemannian surface obtained by doubling an L-shaped polygon,

marking the inner angles as shown in Figure 6.10 and setting certain values for a, b and l.

Furthermore, the quadratic di�erential obtained by dz2 has α and β as vertical foliations,

with weights a and b. Hence qGt,X is dz2 on the L-shaped pillowcase where a = 1 and b = t,
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a

l

b

1 α
β

Figure 6.10: Doubling of the L-shaped polygon together with the curves α and β.

so i(β, FGt,X) = 2l. Markovic estimated in [Mar18, Section 9] the values of a, b and l around

b = 0 depending on a common parameter r. Up to rescaling, these values are given by

a(r) =a(0) +D1r +O(r2),

b(r) =D2r +O(r2) and

l(r) =l(0) +D3r log
1

r
+ o

(
r log

1

r

)
,

where A(r) = B(r) + O(f(r)) means |A(r)−B(r)|
f(r)

is bounded around r = 0, and A(r) =

B(r) + o(f(r)) means |A(r)−B(r)|
f(r)

converges to 0 as r converges to 0.

Rescaling the pillowcase by 1/a(r) we see that the parameter t can be expressed as

t(r) = b(r)/a(r), and g(t(r)) = i(β, FGt,X) = 2l(r)/a(r). Observing that t(0) = 0, we can

evaluate the �rst derivative of g(t) at 0 by evaluating the limit

lim
h→0

g(h)− g(0)

h
= lim

r→0

g(t(r))− g(0)

t(r)
= lim

r→0

2l(r)/a(r)− 2l(0)/a(0)

b(r)/a(r)
=

2 lim
r→0

l(r)− l(0)a(r)/a(0)

b(r)
= 2 lim

r→0

D3r log(
1
r
) + o(r log(1

r
))− l(0)D1

a(0)
r

D2r +O(r2)
= ∞.

And so, g(t) is not di�erentiable at t = 0, and hence f(t) is not C2.

Repeating Fortier Bourque's reasoning we can lift this example to any surface of genus

g with p marked points as long as 3g + p ≥ 5. Besides Gekhtman�Markovic's Lemma 6.5.1,

the other key ingredient for the lifting is the following result.

Lemma 6.5.3 (Fortier Bourque). Let π : Sg,p → S0,5 be a branched cover of degree d and

let ι : T (S0,5) ↪→ T (Sg,p) be the induced isometric embedding. For any measured foliation F
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on S0,5 and any X ∈ T (S0,5), we have the identity

Ext(π−1(F ), ι(X)) = dExt(F,X).

Proof. Recall that qF,X is the Hubbard�Masur di�erential associated to γ. We have that

π∗qF,X = qπ−1(F ),ι(X), so

Ext(π−1(F ), ι(X)) =

∫
ι(X)

|qπ−1(F ),ι(X)| = d

∫
X

|qF,X | = dExt(F,X).

Lifting the foliation Gt from Lemma 6.5.2 we get an upper bound for the smoothness of

the extremal length.

Theorem 6.5.4. Let S be a closed surface of genus g with p marked points, such that

3g + p ≥ 5. Then there exist two non intersecting multicurves α̂, β̂ and some X ∈ T (S)

such that the map f(t) := Ext(α̂ + tβ̂, X), t ∈ [0, t0] is not C2.

Proof. Since 3g+p ≥ 5 we have a map π : Sg,p → S0,5, with an induced isometric embedding

ι : T (S0,5) ↪→ T (Sg,p). By Lemma 6.5.2 we have two curves α, β ∈ S0,5 such that, for any

X ∈ T (S0,5) the map t→ Ext(α+tβ,X) is not C2. Let α̂ = π−1(α) and β̂ = π−1(β). We have

α̂+ tβ̂ = π−1(α+ tβ), so applying Lemma 6.5.3 we get Ext(α̂+ tβ̂, i(X)) = dExt(α+ tβ,X).

By Lemma 6.5.2 the function Ext(α + tβ,X) is not C2, so we get the theorem.

Theorem 6.1.4 is essentially a rephrasing of the previous theorem. Finally, we are able

to prove that Busemann points are not dense.

Proof of Theorem 1.3.1. Let α and β be as in Lemma 6.5.2. Furthermore, let π : Sg,p → S0,5

and ι : T (S0,5) ↪→ T (Sg,p) be as in Lemma 6.5.1. For the X ∈ T (S0,5) described before

Lemma 6.5.2 the sequence (Xn) = (τβ ◦ τα)nX is contained in the horocycle generated by

qα+β,X and the distance d(Xn, X) goes to in�nity. Therefore (Xn) converges in T (S0,5)
v

X

to the geodesic spawned by qα+β,X . Following Fortier Bourque's reasoning in the proof of

[FB23, Theorem 1.1], using half translation structures, applying the Dehn twist τα ◦ τβ to X

is equivalent to applying the shearing transformation

hm =

(
1 m

0 1

)
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to the half translation structure de�ned by qα+β,X . This action commutes with the pull-

back coming from the branched cover, so the elements (Xn) are associated with the half

translation structure de�ned by hnπ
∗(qα+β,X). These points diverge to in�nity along the

horocycle de�ned by π∗(qα+β,X), and so converge in T (Sg,p)
v

ι(X) to the geodesic spawned by

qπ−1(α)+π−1(β),ι(X).

Let ci, 1 ≤ i ≤ k, be the components of the half translation structure associated to

π−1(α+β,X). Each ci covers either α or β with some degree di ∈ N. Hence, each component

ci corresponds to a curve and is a cylindrical with height 1 and circumference di. Therefore, if

m is the common multiple between all di, and γi is the curve associated to the component ci,

shifting the �at metric via the matrix hm is equivalent to performingm/di Dehn twists around

each curve γi. Letting ϕ be the composition of such Dehn twists, we have ι(Xmn) = ϕnι(X).

Hence, by Fortier Bourque's Theorem 6.4.8, in the Gardiner�Masur compacti�cation the

sequence (ι(Xmn))n converges, as n→ ∞, to

ξ =

[
Ext1/2

(
k∑

i=1

1

di
i(F, γi)γi, ι(X)

)]
F∈MF(Sg,n)

.

Therefore, Ξξ ∈ Π−1(qπ−1(α)+π−1(β),ι(X)). To see that Ξξ is not in B it remains to see that it is

not in B(qπ−1(α)+π−1(β),ι(X)). We have, i(c,H(qπ−1(α)+π−1(β),ι(X)) = di, so by Proposition 6.4.2

it remains to prove that there is some path of foliations Gt such that the functions xi =
i(γi,Gt)

di

vary smootly, while the function f(x1, . . . , xk) = Ext
(∑k

i=1
1
di
xiγi, ι(X)

)
does not. Reorder

the curves so there is some p ≥ 1 such that π−1α = γ1+. . .+γp and π
−1β = γp+1+. . .+γk. It

follows from Dehn-Thurston's coordinates that for any natural numbers nj, 1 ≤ j ≤ l there

is a multicurve G(nj) such that i(G(nj), γi) = ni. See, for example, the book by Penner�Harer

[PH92, Theorem 1.2.1]. Allowing renormalizations of the multicurves we get that nj can

be any non-negative rationals. Finally, doing a limit argument in the space of projective

measured foliations we can take nj to be any non-negative real numbers. That is, for any

t ≥ 0 there exists a measured foliation Gt such that i(Gt, γi) = di for i ≤ p, and i(Gt, γi) = tdi

otherwise. Hence, along such foliations we have xi = 1 for i ≤ p and xi = t otherwise.

Therefore, along this path,

f(1, . . . , 1, t, . . . , t) = Ext
(
π−1(α) + tπ−1(β), ι(X)

)
,
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which by Theorem 6.5.4 is not smooth, as π−1(α) and π−1(β) are the curves used in the

proof of the Theorem.

6.5.2 Busemann points with one indecomposable component are

nowhere dense

The Thurston compacti�cation can be build in a similar way as the Gardiner�Masur com-

pacti�cation, by using the hyperbolic length of the curves instead of the extremal length.

Let ϕ be the map between T (S) and PRS
+ de�ned by sending X ∈ T (S) to the projective

vector [ℓ(α,X)]α∈S . The pair (ϕ, ϕ(T (S))) de�nes a compacti�cation, and the boundary is

given by the space of projective measured foliations, denoted PMF .

As explained by Miyachi [Miy13b], neither the Thurston nor the horofunction compac-

ti�cation is �ner than the other one. However, it is possible to get some relation. Let

PMFUE ⊂ PMF be the set of uniquely ergodic foliations. Following the work of Masur

[Mas82a], PMFUE has full Lebesgue measure within PMF . Miyachi [Miy13b, Corollary

1] shows that the mapping ϕ on T (S) can be extended to an homeomorphism f between

ϕ(T (S))∪PMFUE and h(T (S))∪BUE such that for x ∈ T (S) we have f(ϕ(x)) = h, where

BUE are the Busemann points associated to quadratic di�erentials whose vertical foliation

is uniquely ergodic. One might understand this result as stating that the two compacti�ca-

tions are the same almost everywhere with respect to the Lebesgue measure on PMF . As

we shall see, the same does not follow with respect to any strictly positive measure on the

horoboundary.

The homeomorphism f described by Miyachi is obtained by �rst de�ning a map between

the boundaries. For a given x ∈ T (S), the map on the boundary is denoted Gx, and by its

de�nition we have Gx(F ) = B(qF,x), where we recall that qF,x is the quadratic di�erential on

x with V (qF,x) = F . Denote B1 the set of Busemann points associated to foliations with one

indecomposable component. We have Gx(PMFUE) = BUE ⊂ B1. However, the following is

also satis�ed.

Theorem 6.5.5. Let S be a closed surface of genus g with p marked points, such that

3g + p ≥ 5. Then the set B1 is nowhere dense in the horoboundary.

Proof. The action of MCG(S) on T (S) is extended to the projectivized version of the

Gardiner�Masur compacti�cation by ψ[f(α)]α∈S = [f(ψα)]α∈S . For any q such that V (q) is
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an indecomposable measured foliation, Eq = Ξ−1B(q) = [i(V (q), α)]α∈S , and hence ψEq =

[i(V (q), ψ(α))]α∈S = [i(ψ1(V (q)), α)]α∈S . Hence, ψEq is equal to the representation of the

Busemann point in the Gardiner�Masur compacti�cation associated to the quadratic di�er-

ential with vertical foliation ψ−1V (q), which also is an indecomposable measured foliation.

Therefore, B1 is invariant under the action of MCG(S), and since MCG(S) acts by homeo-

morphisms, the complement of the closure is also invariant.

Let q0 be a quadratic di�erential such that there is some f ∈ Ξ−1Π−1(q0) not in Ξ−1B.
Such a quadratic di�erential exists, by Theorem 1.3.1. By the proof of the theorem, we can

assume that V (q0) is a multicurve. Furthermore, let q be a quadratic di�erential such that

V (q) and H(q) are the stable and unstable foliations respectively of some pseudo-Anosov

element ϕ ∈ MCG(S). It is well known [FLP12, Expose 12] that for any closed curve α

we have that λ−nϕn(α) converges to i(α,V (q))
i(H(q),V (q))

H(q), where λ is the stretch factor of ϕ. For

any foliation F we have that Π−1M(q0)(F ) = 0 if and only if i(V (q0), F ) = 0, where M(q0)

is the minimal point de�ned in Section 6.4. Hence, since H(q) is the unstable foliation of

a pseudo-Anosov element and V (q0) is a multicurve, we have i(V (q0), H(q)) ̸= 0, and so

f(H(q)) ≥ Π−1M(q0)(H(q)) > 0. We have ϕn[f(α)]α∈S = [f(ϕn(α))]α∈S . Taking limits and

using that the functions in the Gardiner�Masur compacti�cation are homogeneous of degree

1, we get that

lim
n→∞

[ϕnf(α)]α∈S =

[
i(α, V (q))f

(
H(q)

i(V (q), H(q))

)]
α∈S

= [i(α, V (q))]α∈S ,

Hence, in the normalized version, ϕnf converges to i(·, V (q)) = Ξ−1B(q), as V (q) is uniquely

ergodic and therefore indecomposable. That is, B(q) can be approached through a sequence

of elements contained in the complement of the closure of B1.

Let B(q′) be any element in B1, where q
′ is any quadratic di�erential such that V (q) has

one indecomposable component. The set of pseudo-Anosov foliations is dense in MF(S),

so we have a sequence of quadratic di�erentials (qn) converging to q′ with V (qn) being a

pseudo-Anosov foliation. Since q′ has one indecomposable component, the convergence is

strong, and so B(qn) converges to B(q). Each B(qn) can be approached through a sequence

of elements contained in the complement of the closure of B1, so taking a diagonal sequence

the same can be said for B(q).

Corollary 6.5.6. Let S be a closed surface of genus g with p marked points, such that
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3g + p ≥ 5. Then, for any �nite strictly positive measure ν on the horoboundary, the set B1

does not have full ν-measure.

Proof. By Theorem 6.5.5, the complement of B1 is open and nonempty, so it must have

positive ν-measure.

This last result tells us that the image of Miyachi's homeomorphism does not have full

measure within the horoboundary. However, as announced in the introduction, any attempt

to extend the identity from the Thurston compacti�cation to the horoboundary compacti-

�cation to a set of full measure within the Thurston compacti�cation results in the same

problem. We restate here the result as we shall use the notation for the proof.

Corollary 6.1.5. Let ν be any �nite strictly positive measure on the horoboundary and let

µ be the Lebesgue measure on the Thurston boundary. Furthermore, let ϕ be a map from the

Thurston compacti�cation to the horofunction compacti�cation satisfying ϕ|T (S) = h, where

h is the map used to de�ne the horofunction compacti�cation in Section 2.1.3. Then there

is no subset U of the Thurston boundary with full µ-measure such that ϕ is continuous at

every point in U and ϕ(U) has full ν-measure.

Proof. Assume such a U exists. Choose then a basepoint x ∈ T (S) and let U ′ = U∩PMFUE.

For each element of F ∈ U ′ the associated Hubbard�Masur quadratic di�erential qF,x satis�es

R(qF,x; t) → F as t → ∞. Hence, since ϕ is continuous at F we have ϕ(F ) = B(qF,x). That

is, ϕ(U ′) ⊂ B1.

Let G ∈ U . The set PMFUE has full µ measure, so U ′ = PMFUE ∩ U also has full

measure. Hence, since the Lebesgue measure is strictly positive, U ′ is dense within PMF .

Therefore G can be accessed through a sequence (Fn) ⊂ U ′. Hence, since ϕ is continuous in

G we have ϕ(G) = limϕ(Fn), so ϕ(U) ⊂ B1 and ϕ(U) can not have full ν-measure.

Another natural family of measures on the boundary is obtained by considering harmonic

measures, as explained in Section 2.3.1. As a reminder, given a non-elementary measure µ

on MCG(S) it is possible to de�ne a random walk (wn) as the sequence of random variables

de�ned by

wn = g0g1g2 . . . gn,

where gi are independent, identically distributed random variables on MCG(S) sampled

according to the distribution µ. As proven by Kaimanovich and Masur in [KM96, Theorem
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2.2.4], random walks generated by a non-elementary probability measure converges almost

surely in Thurston's compacti�cation, so we can de�ne the hitting measure ν in PMF .

Furthermore, the walk converges almost surely to uniquely ergodic projective foliations, so

we can translate this result to the horofunction compacti�cation in the following way.

Corollary 6.5.7. Let µ be a non-elementary measure on MCG(S). Then the associated

harmonic measure on the horoboundary is supported in a nowhere dense set.

Proof. For any x ∈ T (S) the sequence (wnx) converges almost surely in Thurston com-

pacti�cation to some F ∈ PMFUE. Hence, by [Miy13b, Corollary 1], the sequence (wnx)

converges almost surely to the Busemann point generated by a quadratic di�erential q with

V (q) being a multiple of F . Hence, the support of the harmonic measure is contained in B1,

which is nowhere dense by Theorem 6.5.5.

6.6 Topology of the Horoboundary

In this section we make some progress towards determining the global topology of the ho-

roboundary. We begin by showing that the minimal point M(q) introduced in Proposition

6.4.3 serves as a section for the map Π whenever S does not have a boundary. Our main

goal for this section is proving the following Theorem.

Theorem 6.6.1. Let S be a surface of genus g with bm and bu boundaries with and without

marked points respectively and p interior marked points. Then, the map Π restricted to the

boundary has a global continuous section ∂T v → ∂T h
if and only if at least one of the two

following conditions is satis�ed:

� bm = bu = 0 or

� 2g + 2bm + bu + p−max(1− bu, 0) ≤ 4.

The section is given by sending the ray in the direction of q to the point M(q) de�ned before

Proposition 6.4.3.

Furthermore, if the map does not admit a global section, then it does not admit any local

section around some points.

We begin by proving the theorem for surfaces without boundary, as it is signi�cantly

easier to prove.
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Proposition 6.6.2. Let S be a surface without boundary. Then the projection map Π re-

stricted to the boundary admits a global section, given by the map M : ∂T v → ∂T h
.

Proof. By Proposition 6.4.3 every preimageΠ−1(q) containsM(q). We haveM(q) = Ξ(i(V (q), ·)),
which is continuous, as the map Ξ is continuous.

The rest of the cases of Theorem 6.6.1 require a more careful analysis.

Proposition 6.6.3. Let S be either

� a torus with up at most two unmarked boundaries or interior marked points,

� a torus with one marked boundary and one interior marked point,

� a sphere with one marked boundary and up to three interior marked points or

� a sphere with two marked boundaries and interior marked point.

Then the projection map Π restricted to the boundary admits a global section, given by the

map M : ∂T v → ∂T h
.

Proof. We shall build the section in the same way we built it in Proposition 6.6.2, that is,

sending q to M(q).

Our �rst step in the proof is seeing that if V (q) contains a separating proper arc then

only one of the two parts separated by the proper arc admit interior components. We shall

do this by inspecting each possible case. Assume then that V (q) has a separating proper

arc.

If S is a torus with up to two unmarked boundaries or marked points or a torus with one

marked boundary and one marked point, then the separating proper arc splits the surface

into a torus with a marked boundary and a sphere with a marked boundary and a marked

point or unmarked boundary. The latter does not admit an interior component.

If S is a sphere with one marked boundary and up to three boundaries then the separating

proper arc splits the surface into two spheres, both with one marked boundary, one of them

with two marked points and the other one with one marked point. Again, the latter does

not admit an interior component.

Finally, if S is a sphere with two marked boundaries and one marked point or unmarked

boundary, the proper arc splits the surface into one sphere with two marked boundaries and
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a sphere with one marked boundary and one marked point, which again does not admit an

interior component.

Take then a sequence of unit quadratic di�erentials (qn) converging to q. Let Pi, i ∈
{1, . . . , c} be the boundary components of V (q). Furthermore, denote G the union of the

interior components. By the �rst part of the proof, all the interior components are contained

in the same interior part. We thus have

Ξ−1M(q) =

(∑
i

Wq(Pi) +Wq(G)

)1/2

.

By Proposition 6.3.5 all boundary components of V (q) are contained in V (qn) for n big

enough, and all other boundary components of V (qn), denoted P n, vanish in the limit.

Denote Gn the union of the interior components of V (qn). As before, each indecomposable

component of Gn is contained in the same interior part, so we have

Ξ−1M(qn) =

(∑
i

Wqn(αn
i Pi) +Wqn(P n) +Wqn(Gn)

)1/2

,

which converges to Ξ−1M(q).

Proposition 6.6.4. Let S be either

� a surface of genus at least two and at least one boundary;

� a torus with at least one boundary and two more boundaries or interior marked points;

� a torus with at least two boundaries, one being marked, and possibly interior marked

points;

� a sphere with at least one boundary, and four more boundaries or interior marked

points;

� a sphere with at least two boundaries, one being marked, and two interior marked points

or

� a sphere with at least three boundaries, two being marked, and possibly interior marked

points.
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Then the projection map Π restricted to the boundary does not admit a local section around

some points.

Proof. We shall prove this by �nding a quadratic di�erential q and sequences (q1n) and (q2n)

converging to q such that their preimages by Π are singletons, but such that Π−1(q1n) and

Π−1(q2n) converge to di�erent points in Π−1(q). If we had a section around q, then its value

at q1n and q2n would be Π−1(q1n) and Π−1(q2n) respectively, giving us a contradiction.

In all cases the construction will be similar. For q1n we build a foliation with a separating

proper arc P such that each of the parts has precisely one interior component consisting

of a closed curve, which we denote G1 and G2. Letting the weight of the proper arc di-

minish to 0 we can get a sequence of quadratic di�erentials (q1n) converging to a quadratic

di�erential q such that V (q) = G1 + G2. Let F 1
n = P + nG1 + nG2, A

1
n and A the area

of the Hubbard�Masur di�erentials qF 1
n ,X

and qG1+G2,X respectively. Denote 1√
A1

n

qF 1
n ,X

as

q1n. These quadratic di�erentials have unit area, and converge to 1√
A
qG1+G2,X , which we de-

note q. By construction, V (q1n) is internally indecomposable, so Π−1(q1n) is a singleton, and

Ξ−1Π−1(q1n) =

{(
Wq1n (P )+nWq1n (G1)+nWq1n (G2)√

A1
n

)1/2
}
. The sequences P√

A1
n

, nG1√
A1

n

and nG2√
A1

n

con-

verge respectively to 0, G1√
A
and G2√

A
. Hence, by Lemma 6.4.1 the sequence Π−1(q1n) converges

to

{(
Wq(G1)+Wq(G2)√

A

)1/2}
.

For building q2n we take a curve γ intersecting G1 and G2 at b1 and b2 times, where

b1, b2 ∈ {1, 2}. Denote τ1 and τ2 the Dehn twists around G1 and G2. Let F
2
n = τ

2n/b1
1 τ

2n/b2
2 γ

and A2
n the area of the Hubbard�Masur di�erential qF 2

n ,X
. As before. Denote 1√

A2
n

q2n the

quadratic di�erentials 1√
A2

n

qF 2
n ,X

. These quadratic di�erentials have unit area, and converge

to q. Furthermore, each V (q2n) is a singleton and Ξ−1Π−1(q2n) =

{(
Wq2n ((τ1τ2)nγ)√

A2
n

)1/2
}
. The

sequence (τ1τ2)nγ√
A2

n

converges to G1+G2

A
, so by Lemma 6.4.1 the sequence Ξ−1Π−1(q2n) converges

to

{(
Wq(G1+G2)√

A

)1/2}
, which is di�erent than the limit of Ξ−1Π−1(q1n).

It remains then to �nd such a multicurve. For genus at least two we take P to be a

separating proper arc such that each of the parts is of genus at least one, and G1 and G2 to

be non contractible curves, not parallel to unmarked boundaries on each part, as shown in

Figure 6.11a.

For the torus we take P to be a separating proper arc with both endpoints in the unmarked
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Figure 6.11: Curves chosen in the proof of Proposition 6.6.4

boundary, or a marked boundary if there are no unmarked boundaries. Further, we choose

the proper arc such that, after cutting along the arc, one part is a torus with one boundary.

That is, every other feature of the surface lies in the other part. Then we let G1 and G2 be

non contractible curves on each part, as shown in Figure 6.11b.

Finally, for the sphere we let P be a separating proper arc with both endpoints on an

unmarked boundary, or a marked boundary if there are no boundaries without marked points.

Further, we choose the arc such that each interior part has at least either a combination of

two marked points or boundaries without marked points, or a boundary with marked points.

Hence, each interior part supports an interior component formed by a curve, as shown in

Figure 6.11c.

Proof of Theorem 6.6.1. This is a combination of the results from Propositions 6.6.2, 6.6.3

and 6.6.4.

By Proposition 5.1.3 we know that the horoboundary is connected whenever the real

dimension of Teichmüller space is at least 2. In the following result we go a bit further, by

showing that it is actually path connected.

Proof of Theorem 1.3.2. Let x, y ∈ ∂T (S)
h
. If S does not have boundary then Π has a

global section, so we can lift any path between Π(x) and Π(y) to a path between M(Π(x))

and M(Π(y)). Then, since Π−1(x) and Π−1(y) are path connected, we can connect x to

M(Π(x)) and y to M(Π(y)) via paths.

If S has boundary we might have to be a bit more careful, as we might not have a global

section. However, as we shall see, we can take a path qt between Π(x) and Π(y) such that

B(qt) has �nitely many discontinuities. Then, since each of the preimages is path connected
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these discontinuities can be �xed by using paths in the �bers, so we will have a path between

x and y.

Choose a boundary component of S, denote b a curve parallel to that boundary and

let Fx = V (Π(x)). If Fx contains b then all the expressions of the form (1 − t)Fx + tb

with t ∈ [0, 1] correspond to foliations on S, which we denote Ft. Denote qt the unit area

quadratic di�erential such that V (qt) is a multiple of Ft. This de�nes a continuous path

joining Π(x) and the unit area quadratic di�erential associated to a multiple of b. Let Vi be

the vertical components of Fx that are not b, and let w0 be the weight of b in Fx. Then,

B(qt)
2 = 1√

Area(qFt,X)
((1− t)

∑
Wqt(Vi) + (t+ (1− t)w0)Wqt(b)), which gives a continuous

path from B(q0) ∈ Π−1Π(x) to B(q1) ∈ Π−1(q1). If Fx does not contain b, but b can be

added to the foliation then we proceed just as before. Hence, if both x and y result in

foliations where b can be added, we create a path by concatenating the paths between x, the

Busemann point in Π−1Π(x), the Busemann point associated to b, the Busemann point in

Π−1Π(y) and y.

If b cannot be added to the foliation Fx then there must be some set P of proper arcs in Fx

incident to the boundary component associated to b. Let F ′
x be the foliation Fx without the

proper arcs P and assume F ′
x is nonempty. Denote Ft the foliations (1− t)P +(1+ t)F ′

x, t ∈
[0, 1], and qt the unit area quadratic di�erentials such that V (qt) is a multiple of Ft. Denoting

Vi the vertical components of F ′
x, and Pj the proper arcs incident to the boundary component

associated to b, we have B(qt)
2 = 1√

Area(qFt,X)

(
(1− t)

∑
j Wqt(Pj) + (1 + t)

∑
Wqt(Vi)

)
for

t < 1, which is continuous. Furthermore, limt→1B(qt) ∈ Π−1(q1). Hence, we can concatenate

a paths between x, the Busemann point in Π−1Π(x), the limit limt→1B(qt), the Busemann

point B(q1) and Busemann point associated to b.

If F ′
x is empty we want to add some other components to Fx. If it admits some other

component k then we repeat the previous reasoning with Ft = (1 − t
2
)Fx +

t
2
k, which does

not result in any discontinuity. If Fx does not admit any other component then there must

be at least 2 proper arcs incident to the boundary component associated to b, so we choose

one of them, denoted p, and repeat the previous reasoning with Ft = (1 − t)Fx + tp, which

does not result in any discontinuity. Finally, we concatenate this last path with the previous

paths.

138



6.7 Formulas for limits of extremal lengths

We �nish by reframing the bounds we got for the elements of Ξ−1Π−1(q) as results regarding

limits of extremal lengths, getting in this way some extensions of [Wal19, Theorem 1].

Proposition 6.7.1. Let F be a measured foliation, (qn) be a sequence of unit area quadratic

di�erentials converging to a quadratic di�erential q and (tn) be a sequence of real numbers

converging to in�nity. Then,

(
Ξ−1M(q)

)2 ≤ lim inf
n→∞

e−2tn ExtR(qn;tn)(F ) ≤ lim sup
n→∞

e−2tn ExtR(qn;tn)(F ) ≤
(
Ξ−1B(q)

)2
Proof. Take a subsequence such that e−2tn ExtR(qn;tn)(F ) converges to the liminf. Further-

more, take a subsequence such that R(qn; tn) converge to a point ξ ∈ Π−1(q). By Proposition

6.4.3 we have (Ξ−1M(q))2 ≤ ξ2. Since e−2tn ExtR(qn;tn)(F ) converges to ξ
2(F ) we have the

lower bound. For the upper bound we repeat the process taking the limsup and using

Proposition 6.4.5.

By noting that Ξ−1M(q)(F ) and Ξ−1B(q)(F ) evaluate to 0 if and only if i(V (q), F ) = 0,

we get the following corollary, which has also been proven for surfaces without boundary by

Liu�Shi in [LS22, Corollary 3.11].

Corollary 6.7.2. Let (qn) be a sequence of unit area quadratic di�erentials converging to a

quadratic di�erential q, and (tn) be a sequence of real numbers converging to in�nity. Then,

lim inf
n→∞

e−2tn ExtR(qn;tn)(F ) = 0 ⇐⇒ i(V (q), F ) = 0.

Proposition 6.7.1 can be strengthened slightly in the following manner.

Proposition 6.7.3. Let (qn) be a sequence of unit area quadratic di�erentials converging to

a quadratic di�erential q. Furthermore, denote V n
i the indecomposable components of qn. If

the vertical components can be reordered so that for each i we have that V n
i converges to a

foliation Vi, then

lim inf
n→∞

e−2tn ExtR(qn;tn)(F ) ≥
∑
i

Wq(Vi).

Proof. Take a sequence such that the limit is equal to the liminf, and such that we have

convergence in the Gardiner�Masur compacti�cation. Let ξ be the limit in the horofunction
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compacti�cation. By Lemma 6.2.4 we have e−2tn ExtR(qn;tn)(F ) ≥ (Ξ−1B(qn))
2
, and by

Corollary 6.2.5 we have (Ξ−1B(qn))
2
=
∑

i Wqn(V n
i ). Hence, by Lemma 6.4.1, taking limits

on both sides we get the proposition.

If we have strong convergence the upper bound from Proposition 6.7.1 and the lower

bound from Proposition 6.7.3 coincide, so adding Walsh's formula for the Busemann points

[Wal19, Theorem 1] we have a proof of Theorem 6.1.8.

Finally, the path connectedness of the �bers can be translated to the following result.

Proposition 6.7.4. Let (qn) be a sequence of unit quadratic di�erentials converging to q,

and (tn) be a sequence of times converging to in�nity. Further, for any F ∈ MF denote

L(F ) := lim infn→∞ ExtR(qn;tn)(F ). Then, for any s ∈ [L(F ), E2
q (F )] there is a subsequence

of qns
k
and a sequence (tsk) of times such that, for any G ∈ MF the limit

lim
k→∞

e−2tsk ExtR(qns
k
;tsk)

(G)

is de�ned, and if G = F it has value s.

Proof. We can take a subsequence such that limn→∞ ExtR(qn;tn)(F ) converges to the liminf,

and a further subsequence such that we have convergence in the Gardiner�Masur compac-

ti�cation to a point Ξ−1ξ ∈ Ξ−1Π−1(q). By Theorem 5.2.11 we have a path between ξ

and B(q) contained in Π−1(q), and hence a path γ between Ξ−1ξ and Ξ−1B(q) contained in

Ξ−1Π−1(q). By continuity there is a point in that path such that γt(F ) =
√
s, and by the way

we constructed γt, it is reached by taking a subsequence of (qns
k
) and a sequence (tsk) of times

converging to in�nity. Finally, since γt is a point in the Gardiner�Masur compacti�cation

approached by R(qsns
k
; tsk), the value of γt(G)

2 is equal to the limit from the proposition.
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